
Date: September 2024 

 
 

Robotic Interaction Service (RoIS) 
Framework 
Version 2.0 - beta 1 
 

__________________________________________________ 

OMG Document Number:  dtc/24-09-17 

Normative reference:  https://www.omg.org/spec/RoIS/2.0/ 

Machine readable file(s): https://www.omg.org/RoIS/20240901 

__________________________________________________ 
 

This OMG document replaces the submission document (robotics/24-09-07). It is an OMG Adopted Beta 
Specification and is currently in the finalization phase. Comments on the content of this document are welcome 
and should be directed to issues@omg.org by October 14, 2024. 
 
You may view the pending issues for this specification from the OMG revision issues web page 
https://issues.omg.org/issues/lists. 
 
The FTF Recommendation and Report for this specification will be published in December 2025. If you are 
reading this after that date, please download the available specification from the OMG Specifications Catalog. 

 

 

 

 

 

 

 



ii                                                                      Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1 
 

Copyright © 2012-2024, Japan Robot Association (JARA) 
Copyright © 2012, Electronics and Telecommunication Research Institute (ETRI) 
Copyright © 2024, Korea Association of Robot Industry (KAR) 
Copyright © 2012-2024, Object Management Group, Inc. 

 

 
USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES 

The material in this document details an Object Management Group specification in accordance with the terms, 
conditions and notices set forth below. This document does not represent a commitment to implement any 
portion of this specification in any company's products. The information contained in this document is subject to 
change without notice. 

 
LICENSES 

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, 
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and 
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person 
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason 
of having used the specification set forth herein or having conformed any computer software to the 
specification. 

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant 
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to 
sublicense), to use this specification to create and distribute software and special purpose specifications that are 
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright 
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any 
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied 
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for 
commercial purposes; and (3) no modifications are made to this specification. This limited permission 
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you 
will destroy immediately any copies of the specifications in your possession or control.  

 
PATENTS 

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications 
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents 
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal 
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and 
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of 
patents. 

 
GENERAL USE RESTRICTIONS 

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications 
regulations and statutes. This document contains information which is protected by copyright. All Rights 
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any 
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage 
and retrieval systems--without permission of the copyright owner. 

 

 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                    iii 
 

 

 

 

 

 
DISCLAIMER OF WARRANTY 

 

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY 
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES 
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO 
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR 
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A 
PARTICULAR PURPOSE OR USE.  IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR 
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR 
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, 
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY 
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS 
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  

The entire risk as to the quality and performance of software developed using this specification is borne by you. 
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification. 

 
RESTRICTED RIGHTS LEGEND 

Use, duplication or disclosure by the U.S. Government  is subject to the restrictions set forth in subparagraph (c) 
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in 
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as 
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The 
specification copyright owners are as indicated above and may be contacted through the Object Management 
Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A. 

 
TRADEMARKS 

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT 
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management 
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, 
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, 
Inc.  

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company 
names mentioned are used for identification purposes only, and may be trademarks of their respective owners. 

 
COMPLIANCE 

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its 
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of 
computer software to use certification marks, trademarks or other special designations to indicate compliance 
with these materials. 

https://www.omg.org/legal/tm_list.htm


iv                                                                      Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1 
 

Software developed under the terms of this license may claim compliance or conformance with this 
specification if and only if the software compliance is of a nature fully matching the applicable compliance 
points as stated in the specification. Software developed only partially matching the applicable compliance 
points may claim only that the software was based on this specification, but may not claim compliance or 
conformance with this specification. In the event that testing suites are implemented or approved by Object 
Management Group, Inc., software developed using this specification may claim compliance or conformance 
with the specification only if the software satisfactorily completes the testing suites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                    v 
 

OMG’s Issue Reporting Procedure 

 

All OMG specifications are subject to continuous review and improvement. As part of this process we 
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the 
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  vi                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 

Table of Contents 
 
0     Section 0 ........................................................................................................ Error! Bookmark not defined. 

0.1 Copyright Weaver and IPR Modes ................................................. Error! Bookmark not defined. 
0.2 Submission Team ............................................................................ Error! Bookmark not defined. 
0.3 Resolution of Requirements ............................................................ Error! Bookmark not defined. 

0.3.1 Mandatory Requirements ............................................... Error! Bookmark not defined. 
0.3.2 Optional Requirements ................................................... Error! Bookmark not defined. 

0.4 Issues to be Discussed ..................................................................... Error! Bookmark not defined. 
0.5 Statement of Proof of Concepts ...................................................... Error! Bookmark not defined. 
0.6 Changes to the Existing Standards .................................................. Error! Bookmark not defined. 

1 Scope ........................................................................................................................................ 1 
2 Conformance ............................................................................................................................ 1 
3 Normative References .............................................................................................................. 1 
4 Terms and Definitions .............................................................................................................. 2 
5 Symbols .................................................................................................................................... 3 
6 Additional Information ............................................................................................................. 3 

6.1 Acknowledgements ........................................................................................................................... 3 
6.2 Intellectual Property Right ................................................................................................................ 4 
6.3 Reuse of the Ontologies .................................................................................................................... 4 
6.4 Notations ........................................................................................................................................... 4 

7 RoIS Framework ...................................................................................................................... 6 
7.1 Overview of RoIS Framework .......................................................................................................... 6 
7.2 Structure of RoIS Framework ........................................................................................................... 8 
7.3 RoIS Communication Framework .................................................................................................... 9 

7.3.1 RoIS Messaging Framework ............................................................................................ 9 
7.3.2 Use of Other Component Models ................................................................................... 10 
7.3.3 Use of Streaming Channels ............................................................................................ 10 

7.4 RoIS Functional Components ......................................................................................................... 10 
7.4.1 RoIS HRI Profiles ........................................................................................................... 10 
7.4.2 Ontology for RoIS Functional Components ................................................................... 11 

8 Platform Independent Model .................................................................................................. 12 
8.1 Format and Conventions ................................................................................................................. 12 

8.1.1 Class and Interface .......................................................................................................... 12 
8.1.2 Enumeration 12 
8.1.3 Message 13 
8.1.4 HRI Component and method .......................................................................................... 13 

8.2 RoIS Interface ................................................................................................................................. 14 
8.2.1 Return Codes .................................................................................................................. 14 
8.2.2 Interaction 14 

8.2.2.1 System Interface ...................................................................................................... 14 
8.2.2.1.1 System Connection / Disconnection ........................................................................ 14 
8.2.2.1.2 System Error Notification ....................................................................................... 15 

8.2.2.2 Command Interface ................................................................................................. 16 
8.2.2.3 Query Interface........................................................................................................ 19 
8.2.2.4 Event Interface ........................................................................................................ 20 

8.2.2.4.1 Event Registration / Cancellation ............................................................................ 20 
8.2.2.4.2 Event Notification ................................................................................................... 21 

8.2.2.5 Streaming Interface ................................................................................................. 21 
8.2.3 Interfaces 22 

8.2.3.1 Interfaces for HRI Engine ....................................................................................... 23 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               vii 
 

8.2.3.2 Interfaces for Service Application ........................................................................... 27 
8.2.4 Message Data .................................................................................................................. 30 

8.2.4.1 Command Message ................................................................................................. 30 
8.2.4.2 Command Result Message ...................................................................................... 33 
8.2.4.3 Query Message ........................................................................................................ 33 
8.2.4.4 Event Message ........................................................................................................ 34 
8.2.4.5 Event Detail Message .............................................................................................. 34 
8.2.4.6 Error Message ......................................................................................................... 34 
8.2.4.7 Error Detail Message ............................................................................................... 35 

8.3 RoIS Profiles ................................................................................................................................... 35 
8.3.1 Overview 35 
8.3.2 Parameter Profile ............................................................................................................ 36 
8.3.3 Message Profile .............................................................................................................. 37 
8.3.4 HRI Component Profile .................................................................................................. 39 
8.3.5 HRI Engine Profile ......................................................................................................... 39 

8.4 Common Messages ......................................................................................................................... 40 
8.4.1 Basic HRI Components .................................................................................................. 40 
8.4.2 RoIS Component Ontology ............................................................................................ 41 
8.4.3 System Information ........................................................................................................ 43 
8.4.4 Person Detection ............................................................................................................. 44 
8.4.5 Person Localization ........................................................................................................ 45 
8.4.6 Person Identification ....................................................................................................... 47 
8.4.7 Face Detection ................................................................................................................ 48 
8.4.8 Face Localization ............................................................................................................ 49 
8.4.9 Sound Detection ............................................................................................................. 51 
8.4.10 Sound Localization ......................................................................................................... 52 
8.4.11 Speech Recognition ........................................................................................................ 54 
8.4.12 Gesture Recognition ....................................................................................................... 56 
8.4.13 Speech Synthesis ............................................................................................................ 57 
8.4.14 Reaction 59 
8.4.15 Navigation 60 
8.4.16 Follow 62 
8.4.17 Move 64 
8.4.18 Audio Streaming ............................................................................................................. 66 
8.4.19 Video Streaming ............................................................................................................. 68 

A.1 Parameter Profile ............................................................................................................................. 71 
A.2 Message Profile ............................................................................................................................... 71 

A.2.1 Command Message Profile ............................................................................................. 71 
A.2.2 Event Message Profile .................................................................................................... 72 
A.2.3 Query Message Profile .................................................................................................... 72 

A.3 HRI Component Profile ................................................................................................................... 73 
A.4 HRI Engine Profile .......................................................................................................................... 75 
B.1 CommandUnitSequence .................................................................................................................. 77 
B.2 CommandMessage ........................................................................................................................... 78 
C.1 Speech Recognition (W3C-SRGS) .................................................................................................. 80 
C.2 Person Gender Identification ........................................................................................................... 81 
C.3 Person Age Recognition ................................................................................................................... 82 
C.4 Wheelchair Robot ............................................................................................................................ 82 
C.5 Example of interactive measuring vital data with a personal robot ................................................. 84 

C.5.1. Approach 87 
C.5.2. Leave 88 
C.5.3. Touch Detection 89 
C.5.4. Touch 90 

D.1 Reaction Type .................................................................................................................................. 91 
E.1 Empty Condition .............................................................................................................................. 94 
E.2 Search By Property Values .............................................................................................................. 95 



  viii                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

E.3 Search by location name .................................................................................................................. 96 
E.4 Search by location coordinates ........................................................................................................ 97 
F.1 RoIS Example Usecase with RoSO ....................................................................................................... 98 
F.2 Cybernetic Avatar Service with RoSO/RoIS ......................................................................................... 99 

F.2.1 Cybernetic Avatar with RoIS components ............................................................................. 99 
F.2.2 Cybernetic Avatar Service Operator Console ........................................................................ 99 
F.2.3 Cybernetic Avatar Communication Platform ....................................................................... 100 
F.2.4 Example: Product explanation at large stores ...................................................................... 100 

F.2.4.1 Overview ............................................................................................................................................. 100 
F.2.4.2 Benefit ................................................................................................................................................. 100 
F.2.4.3 Deployment Example .......................................................................................................................... 100 
F.2.4.4 RoSO Description ................................................................................................................................ 101 

 
 
 
 
 

  



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               ix 
 

Preface 

OMG 
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies, and academia.  

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™); 
and industry-specific standards for dozens of vertical markets. 

More information on the OMG is available at http://www.omg.org/. 

OMG Specifications 
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications 
are available from the OMG website at: 
https://www.omg.org/spec 

 
All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at: 
 
OMG Headquarters 
9C Medway Road, PMB 274 
Milford, MA 01757 
USA 
Tel: +1-781-444-0404 
Fax: +1-781-444-0320 
Email: pubs@omg.org 

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org 
 
 
 
 
 
 
 
 
 
 
 

  





Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               1 
 

1 Scope 
This specification defines a framework that can handle messages and data exchanged between human-robot interaction 
service components and service applications. It includes a platform-independent model (PIM) of the framework. 

The new 3-layered structure of RoIS 2.0 should be described here. 

 Definition of the functional components using RoSO and RoIS ontologies. 

 The lower surface of the messaging layer is to be removed from the messaging section and PSMs. 

 Add a functional component that provides streaming functions for cybernetic avatar services. 

2 Conformance 
Any implementation or product claiming conformance to this specification shall support the following conditions: 

• Implementations shall provide interfaces described in “Section 8.2 RoIS Interface.” 

• Data structure of messages treated by implementations shall support the profile described in “Section 8.3 RoIS 
Profiles.” 

• Implementations shall support the common messages described in “Section 8.4 Common Messages.” This does 
not mean that the module shall include every common message described herein. However, every module 
should support the common messages when the module uses the basic components listed in “8.4 Common 
Messages.” 

• Implementations shall handle component profiles described in XML files (XML-Profile PSM machine readable 
files) and messages defined in the component profile.  

3 Normative References 
The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.  

[Commons] Object Management Group, Commons Ontology Library, Version 1.1, 2024. Available at 
https://www.omg.org/spec/Commons/ . 

[CORBA] Object Management Group, Common Object Request Broker Architecture (CORBA), Version 3.4, 2021. 
Available at https://www.omg.org/spec/CORBA/ . 

[DDS] Object Management Group, Data Distribution Services (DDS), Version 1.4, 2015. Available at 
https://www.omg.org/spec/DDS/ . 

[ISO639] International Organization for Standardization, Codes for the representation of names of languages. 

[ISO8601] International Organization for Standardization, Data elements and interchange formats –Information 
interchange- Representation of dates and times. 

[ISO14882] International Organization for Standardization, Programming Language C++, 2020. 

[ISO19111] International Organization for Standardization, Geographic information – Spatial referencing by coordinates, 
2007. 

[ISO19115] International Organization for Standardization, Geographic information – Metadata, 2003. 

[ISO19143] International Organization for Standardization, Geographic information – Filter encoding, 2010. 

https://www.omg.org/spec/Commons/
https://www.omg.org/spec/CORBA/
https://www.omg.org/spec/DDS/


  2                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

[ISO19784] International Organization for Standardization, Biometric application programming interface, 2006. 

[OWL 2] OWL 2 Web Ontology Language Quick Reference Guide (Second Edition), W3C Recommendation 11 
December 2012. Available at http://www.w3.org/TR/2012/RECowl2-quick-reference-20121211/. 

[RDF] RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak, David Wood and Markus Lanthaler, Editors. W3C 
Recommendation, 25 February 2014. Available at http://www.w3.org/TR/rdf11-concepts/. 

[RDF Schema] RDF Schema 1.1. Dan Brickley and R.V. Guha, Editors. W3C Recommendation, 25 February 2014. 
Available at http://www.w3.org/TR/rdf-schema/. 

[RDF Turtle] RDF 1.1 Turtle. Eric Prud’hommeaux, Gavin Carothers, Editors. W3C Recommendation 25 February 2014. 
Available at http://www.w3.org/TR/turtle/ . 

[RLS] Object Management Group, Robotic Localization Service (RLS), Version 1.1, 2012. Available at 
https://www.omg.org/spec/RLS/ . 

[RTC] Object Management Group, Robotic Technology Component (RTC), Version 1.1, 2012. Available at 
https://www.omg.org/spec/RTC/ . 

[UML] Object Management Group, OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.5.1, 
2017. Available at https://www.omg.org/spec/UML/ . 

[W3C-SRGS] W3C, Speech Recognition Grammar Specification Version 1.0, 2004 

[W3C-SSML] W3C, Speech Synthesis Markup Language (SSML) Version 1.0, 2004 

 

4 Terms and Definitions 
For the purposes of this specification, the following terms and definitions apply.  

 

Basic HRI Component An HRI Component which provides a basic HRI function of service robots, 
where “basic HRI function” means “an HRI function implemented in many (but 
not all) service robots.” 15 Basic HRI Components and their interfaces are 
defined in this document. 

Detection A function that finds target objects, such as persons and faces, and returns the 
number of the objects found. When the function can detect only existence or non- 
existence of the target, the number shall be provided in only two states, i.e., one 
and zero. 

HRI Abbreviated form of “Human-Robot Interaction” 

HRI Component An object which uses sensors or actuators to provide a specific HRI function, 
such as person detection, person identification or speech. An HRI Component 
may be implemented as a software object or an aggregate of multiple objects, 
while such internal structure is encapsulated. 

HRI Engine An object that manages HRI Components. It mediates Human-Robot Interaction 
functions of the HRI Components to Service Application(s). 

Identification A function that finds target objects and returns a list of identifiers of objects 
found. 

http://www.w3.org/TR/2012/RECowl2-quick-reference-20121211/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/turtle/
https://www.omg.org/spec/RLS/
https://www.omg.org/spec/RTC/
https://www.omg.org/spec/UML/


Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               3 
 

Identifier (ID, in short) A token, such as an integer or a text string, assigned to an object with which an 
HRI system deals. Any ID cannot exist alone but it must be defined in some 
name space of a Reference Coordinate System (RCS), so ID and its 
corresponding RCS shall be treated as a unit. There exist two kinds of identifiers: 
permanent ID and temporary ID. Permanent ID is an identifier assigned to an 
object permanently, such as the social security number or an employee ID in a 
company. Temporary ID is used when sensors find objects which should be 
distinguished later but whose permanent IDs are not handy. 

Localization A function that finds target objects and returns a list of locations of objects 
found. A list of identifiers assigned to each object shall also be returned to 
distinguish objects each other. 

Service Application A software which controls HRI Components (via HRI Engine) to implement a 
robot scenario. 

User-defined HRI Component An HRI Component which provides an HRI function other than those any Basic 
HRI Components provide. 

 

 

5 Symbols 
No symbols are defined in this document. 

 

6 Additional Information  
6.1 Acknowledgements 
The following companies submitted this specification: 
• Japan Robot Association (JARA) 
• Korea Association of Robot Industry (KAR) 
 
The following additional organizations contributed to this specification: 
• National Institute of Advanced Industrial Science and Technology (AIST) 
• Shibaura Institute of Technology 
• Meijo University 
 
The following additional companies and organizations are supporters of this specification: 
• Advance Telecommunications Research Institute International (ATR) 
• Electronics and Telecommunications Research Institute (ETRI) 
• Future Robot Co., Ltd. 
• Hitachi, Ltd. 
• Ministry of Internal Affairs and Communications, Japan 
• New Energy and Industrial Technology Development Organization (NEDO) 
• Nippon Telegraph and Telephone 



  4                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

• University of Seoul 
• University of Tokyo 
• University of Tsukuba 
 

6.2 Intellectual Property Right 
The submission team, including all submitters and contributors listed above (i) grants to the Object Management Group, 
Inc. (OMG) a perpetual, nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and 
to modify this document and distribute copies of the modified version, and to allow other persons to do so; and (ii) agrees 
that no person shall be deemed to have infringed our copyright interest in the Submission by using OMG specifications 
or conforming any software to OMG specifications.  

As specified in the RFP, the IPR mode for this submission is the RF on Limited Terms per Appendix A of the OMG IPR 
Policy [IPR]. 

 

6.3 Reuse of the Ontologies 
The Robotic Interaction Service (RoIS) Framework 2.0 uses and extends the Robotic Service Ontology (RoSO). RoSO 
uses and extends a number of the ontologies specified in the companion Commons Ontology Library specification. The 
Commons Ontology Library contains small but fundamental building block ontologies that are essential to RoSO. RoSO 
also uses ontologies included in the Languages, Countries, and Codes (LCC) specification for the identification of 
languages and geographic regions associated with vocabulary elements. 

 

6.4 Notations 
The notation used to represent description logic expressions (i.e., the expressions in the Parent columns in class tables 
containing ontology details) is consistent with the notation defined in the Description Logic Handbook [DL Handbook]. 
The notation used in this specification, representing a subset of OWL 2, is described in Table 6.1, below. 

 

Table 6.1: Description Logic Expressions Notation 

Construct Description Notation 
Boolean Connectives and Enumeration  

intersection The intersection of two classes consists of exactly those 
individuals which are instances of both classes. 

C ∩ D 

union The union of two classes contains every individual which 
is contained in at least one of these classes. 

C ∪ D 

enumeration An enumeration defines a class by enumerating all its 
instances. 

oneOf (i1, i2, i3, … in) 

Property Restrictions   

universal quantification Universal quantification is used to specify a class of 
individuals for which all related individuals must be 
instances of a given class (i.e., allValuesFrom in OWL). 

∀R.C, where R is the relation 
(property) and C is the class that 
constrains all values for related 
individuals 

existential 
quantification 

Existential quantification is used to specify a class as the 
set of all individuals that are connected via a particular 
property to at least one individual which is an instance of 
a certain class (i.e., someValuesFrom in OWL). 

∃R.C, where R is the relation 
(property) and C is the class that 
constrains some values of related 
individuals 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               5 
 

individual value Individual value restrictions are used to specify classes of 
individuals that are related to one particular individual 
(i.e., hasValue in OWL). 

∀R.I, where R is the relation 
(property) and I is the individual 

exact cardinality Cardinality (number) restrictions specify classes by 
restricting the cardinality on the sets of fillers for roles 
(relationships, or properties in OWL). Exact cardinality 
restrictions restrict the cardinality of possible fillers to 
exactly the number specified. 

= n R (for unqualified 
restrictions) 
= n R.C (for qualified 
restrictions, i.e., including 
onClass or on DataRange) 

maximum cardinality Maximum cardinality restrictions restrict the cardinality 
of possible fillers to at most the number specified 
(inclusive). 

≤ n R (for unqualified 
restrictions) 
≤ n R.C (for qualified 
restrictions) 

minimum cardinality Minimum cardinality restrictions restrict the cardinality 
of possible fillers to at least the number specified 
(inclusive). 

≥ n R (for unqualified 
restrictions) 
≥ n R.C (for qualified 
restrictions) 

Class Axioms   

equivalent classes Two classes are considered equivalent if they contain 
exactly the same individuals. 

≡ C 

disjoint classes Disjointness means that membership in one class 
specifically excludes membership in another. 

¬ C 

Property Axioms   

complex role inclusions Role inclusions allow [object] properties to be chained 
together in a sequence that is a subproperty of a higher-
level property. 

R ○ R 

 
  



  6                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

7 RoIS Framework 
7.1 Overview of RoIS Framework 
Many service-robot applications prepare robot scenarios like the one shown in Figure 7.1. Such a scenario describes an 
application that controls robot behavior after the output from a variety of sensors embedded in the robot or the 
environment triggers a transition in the state of the robot. Figure 7.1 shows an example of a robot scenario for a robotic 
reception service. In this scenario, events like “detect a person” and “identify the person” or obtained information like 
“person ID” and “position of the person” act as state-transition triggers while commands like “approach the person” and 
“tell the message” determine what the robot is to do next. Of importance here is that state-transition triggers and 
commands in the robot scenario are not described on the physical level (hardware layer) as in sensors and movement 
mechanisms in the robot but rather on the symbol level (symbolic layer) as in “person detection” and “person 
identification.” 

 
Figure 7.1: Example of robot scenario for robotic reception service. Events delivered from sensors, actuators or 
other event sources, such as an internal timer, to a service application trigger each state transition and the 
application controls the robot according to the scenario. 

At present, however, the service-robot developer and service application programmer is often one and the same 
(individual or group) and applications like the one shown in Figure 7.2 are optimized by directly accessing the hardware 
layer. As a result, any changes made to the hardware mechanism make it necessary to revise the application to 
accommodate those changes. It is essential that this problem be solved for the sake of improving the reusability of 
applications and expanding the market for service robots. 

act Example of robot scenario for robotic reception service

Check presence/absence
of person(s)

Get position of the person   &
approach the person

Start person detection

Go to start position

Get the person ID

Start person
identification

Check what to
guide

Say "good bye"

Tell the message

[There is someone]

[ID is unknown]

[There is no one]

[ID is given]

[There is message]

[Detect a person]

[There is no message]

[Identify the person]

[else]

[else]



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               7 
 

 

 

Figure 7.2: Conventional style of service application programming. Service application programmer must write 
service application programs for eachrobot independently because functions provided by each robot are 
different. 

 
Figure 7.3: RoIS service application programming style. The same service application program works on different 
robot platforms with little modification. 

 



  8                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

7.2 Structure of RoIS Framework 
The Robotic Interaction Service (RoIS) Framework abstracts the hardware in the service robot (sensors and actuators) 
and the Human-Robot Interaction (HRI) functions provided by the robot, and provides a uniform interface between the 
service robot and application. 
 

 
 

 

 

Figure 7.4: Example of HRI Engine and HRI Components 

 
Calling each of the HRI functions provided by a robotic system such as a service robot or intelligent sensing system a 
“functional implementation,” a robotic system can be expressed as a set of one or more functional implementations. 
These functional implementations (e.g., face recognition, wheel control) are usually provided in a form that is dependent 
on robot hardware such as sensors and actuators. 
Referring to Figure 7.4, this specification defines the RoIS Framework as one that manages the interface not in units of 
functional implementations incorporated in the robot but rather in abstract functional units applicable to a service 
application. Such an abstract functional unit is called an “HRI Component.” Here, HRI Components (e.g., person 
detection, person identification) are logical functional elements making up the description of a human-robot interaction 
scenario. 
These HRI Components are realized through physical units such as sensors placed on the robot and/or in the 
environment. It is assumed that one physical unit can have more than one function, which means that there is not 
necessarily a one-to-one match between physical units and functional units. As a result, physical units must be defined 
separately from functional units. With this in mind, a physical unit equipped with HRI Components is called an “HRI 
Engine.” 
An entire system can consist of multiple physical units, and for such a system, the interface is managed by defining 
individual physical units as sub HRI Engines and the total system as the (main) HRI Engine that includes these sub HRI 
Engines. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               9 
 

The HRI Component provides hardware-independent APIs. Only symbolic data is exchanged between HRI Components 
and Service Applications through the HRI Engine. The symbolic data is used in the Service Applications without special 
handling such as pattern recognition, signal processing and human judgment. For example, the symbolic data shall not 
include raw data such as image data and sound data collected by the sensors. 
Using the RoIS Framework as a go-between, a Service Application selects and uses only necessary functions and leaves 
hardware-related matters such as which sensor to use to the HRI Engine. In the case that more than one sub HRI Engine 
includes the same HRI Component, the HRI Engine can be entrusted with selecting the appropriate sub HRI Engine. The 
use of HRI Components need not be static. Switching between HRI Components belonging to different sub HRI Engines 
can also be considered depending on robot position, sensor status, and other conditions. In this case, the Service 
Application simply specifies necessary functions since the main HRI Engine will automatically perform HRI Component 
switching. For example, in the case of the robotic service that covers broad areas, such automatic switching relieves the 
Service Application programmers of the selection of the actual HRI Components. 
In this way, selection and switching of appropriate sub HRI Engines and HRI Components are all performed on the HRI-
Engine side, so that in the RoIS Framework, service-application requirements assume unified interaction with only one 
HRI Engine, that is, the main HRI Engine regardless of the number and hierarchical configuration of sub HRI Engines 
and HRI Components. In other words, there is no need for the Service Application to be aware of the existence of sub 
HRI Engines or of how the main HRI Engine and sub HRI Engines interact with each other. 

7.3 RoIS Communication Framework 

7.3.1 RoIS Messaging Framework 
 

Figure 7.5: Schematic diagram of RoIS Framework and its message flows. In the framework, Service Application 
communicates with HRI Engine by some messages through System, Event, Query and Command Interfaces. 
 
The RoIS Framework provides the following four interfaces consisting of a System Interface that enables the Service 
Application to use the RoIS Framework and three interfaces that enable the Service Application to exchange information 
with the HRI Engine (Figure 7.5). 
• System Interface: Manages the connection status between the Service Application and HRI Engine. 
• Command Interface: Enables the Service Application to send commands to the HRI Engine. 
• Query Interface: Enables the Service Application to query the HRI Engine on information it holds. 
• Event Interface: Enables the Service Application to receive notifications on changes in HRI Engine status. 

Service Application 
RoIS 
Framework 

Error Error Error 

Message 
Profile 

HRI Engine 

Command 
Interface 

Query 
Interface 

Event 
Interface 

System 
Interface 

Request Request Data Request Data Request Data 



  10                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

Here, data exchanged between the Service Application and HRI Engine via any of these interfaces are called “messages.” 
The following sections describe these interfaces and messages in more detail. 
 
These messages shall include only the symbolic data. By doing so, the Service Application can obtain information only 
as the symbolic data through these interfaces. Also, the Service Application can specify instruction using only the 
symbolic data. For example, the symbolic data can be directly used for conditional programming sentences such as IF- 
type statement and SWITCH-type statement and specifying the robot behavior for human-robot interaction. 
To make use of an HRI Engine, the Service Application must learn beforehand the functions provided by the HRI 
Engine, that is, the configuration of the HRI Engine and HRI Components and details on the messages that can be used. 
In this specification, such information is defined in terms of profiles, whose structures are described in 8.3 RoIS Profiles. 

7.3.2 Use of Other Component Models 
RoIS messaging framework defines messages exchanged in the RoIS protocol but does not define detailed transfer 
method of those messages. C++ PSM and CORBA PSM are defined, but they only define method signatures of 
components’ functions to be exposed by components and messaging functions to be called from those components. 

RoIS messages can be exchanged upon any messaging protocols or remote procedure calls such as OMG CORBA, OMG 
RTC or ROS (or ROS2 upon OMG DDS). This specification does not intend to define implementation details of message 
exchange but does allow making use of any transport protocols. Interoperability among nodes is to be discussed only 
within the same transport protocol. Annex F.2.3 provides an example implementation of message transport for cybernetic 
avatar services developed upon web socket. 

7.3.3 Use of Streaming Channels 
Robotic services that provided with semi-autonomous service robots require participation of human operators. As semi-
autonomous service robots including avatar robots are supposed to be operated remotely by human operators, those 
robots and/or execution environment are expected to transmit information of the surroundings to the operators. Video and 
audio streams are expected to be used in addition to components with sensing functions. Though the RoIS messaging 
framework and the definitions of functional components’ messages do not cover the details of streaming formats, this 
specification defines how to manage and control such streams as components’ functions in 8.4.18 Audio Streaming and 
8.4.19 Video Streaming and provides an example implementation of such components and streaming platform in Annex 
F.2.3.  

7.4 RoIS Functional Components 

7.4.1 RoIS HRI Profiles 
Profiles define the functions provided by the HRI Engine via the RoIS Framework interfaces, that is, the configuration of 
the HRI Engine and HRI Components, and the messages that can be used. They are used to obtain information so that the 
Service Application can make use of HRI-Engine functions. 

An HRI Engine Profile, HRI Component Profile, and Message Profile are defined for the HRI-Engine layer of physical 
units, the HRI-Component layer of abstract functional units, and the message layer of data exchanged between the 
Service Application and HRI Components, respectively, in the RoIS Framework. These profiles enable the Service 
Application to understand the configuration of the HRI Engine. 

The main application of each profile is summarized below: 
• Parameter Profile: This profile defines the parameters of message arguments, results, the HRI Engine, and HRI 

Components. It defines parameter identifier (parameter name), data type, and default value. 
• Message Profile: This profile defines messages to be sent and received between the Service Application and 

HRI Engine via the RoIS Framework. It defines message identifiers (message name) and required arguments 
and results. Arguments and results are defined by including a Parameter Profile defined for each parameter. 
The profile for each type of message corresponding to an interface (command message, query message, and 
event message) is defined as a subclass of this class. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               11 
 

• HRI Component Profile: This profile defines a list of messages and parameters possessed by an HRI-
Component unit. It defines HRI-Component identifiers (HRI-Component name, ID, etc.). Messages and 
parameters that can be used by this HRI Component are defined by specifying Message Profiles and Parameter 
Profiles. An HRI Component that includes multiple sub-HRI-Components can be defined by specifying other 
HRI-Component Profiles as sub-profiles. 

• HRI Engine Profile: This profile defines a list of HRI Components and parameters possessed by an HRI- 
Engine unit. It defines HRI-Engine identifiers (HRI-Engine name, ID, etc.). HRI Components and parameters 
that can be used by this HRI Engine are defined by specifying HRI-Component Profiles and Parameter. 

Details of each profile are described in 8.3 RoIS Profiles. 
 

7.4.2 Ontology for RoIS Functional Components 
Several ontologies have been developed to describe things and events in the world and make it possible to process 
reasoning on those things and events. In the field of robotic services, if the specification and requirements of robotic 
functional components are described with ontology, service developers and service execution environment reasoning for 
service execution. 

RoSO provides ontologies for robotic services including basic vocabularies to describe Human-Robot or Human-Agent 
Interaction (HRI/HAI) to be defined upon abstract ontologies (not concretely specified but depicted as “High-level 
Ontology” in Figure 1 and 2). The vocabularies constitute robotic services, vocabularies to describe functions and 
constraints of robotic functional components for deployment in robotic services; and vocabularies to describe functions 
and requirements of higher-level robotic services. 
Those vocabularies are, partly from a physical viewpoint, classified under Agents, Services, Functions, and 
Environments. The ontology also incorporates common ontologies from OMG Commons Library.  

 
Figure 7.6 How RoSO supports and is supported by other standards. (Figure 2 in RoSO 1.0 beta) 

 

As RoSO defines fundamental ontology for robotic services, vocabularies specific for component functions and their 
parameters are defined as an extension for RoSO in Section 8.4.2. 
 
  



  12                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

8 Platform Independent Model 
8.1 Format and Conventions 

8.1.1 Class and Interface 
Classes and interfaces described in this PIM are documented using tables of the following format: 

Table x.x: <Class/Interface Name> 

Description: <description> 

Derived From+ <parent class> 

Attributes 

<attribute name> <attribute type> <obligation> <occurrence
> 

<description> 

… … … … … 

Operations 

<operation name> <description> 

<direction> <parameter name> <parameter type> <description> 

… … … ... 

Note that derived attributes or operations are not described explicitly. Also, as the type of return code for every operation 
in this specification is Returncode_t, which is defined in 8.2.1 Return Codes, this is omitted in the description table. 

The ‘obligation’ and ‘occurrence’ are defined as follows. 

Obligation 

M (mandatory): This attribute shall always be supplied. 

O (optional): This attribute may be supplied. 

C (conditional): This attribute shall be supplied under a condition. The condition is given as a part of the attribute 
description. 

 

Occurrence 

N: No upper limit in the number of occurrences. 

ord: The appearance of the attribute values shall be ordered.  

unq: The appeared attribute values shall be unique. 

 

8.1.2 Enumeration 
Enumerations are documented as follows: 

Table x.x: <enumeration name> 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               13 
 

<constant name> <description> 

… … 

 

8.1.3 Message 
Messages that are exchanged via the interfaces described in this PIM are documented using tables of the following 
format: 

Table x.x: <Message Name> 

Description: <description> 

Derived From: <parent class> 

Attributes 

<attribute name> <attribute type> <obligation> <occurrence> <description> 

… … … … … 

 

8.1.4 HRI Component and method 
Methods that are incorporated in an HRI Component in this PIM are documented using tables of the following format: 
Table x.x: <HRI Component Name> 

Description: <description> 

Command Method 

<method name> <description> 

argument <argument parameter name> <data type> <obligation> <description> 

Event Method 

<method name> <description> 

result <result parameter name> <data type> <obligation> <description> 

Query Method 

<method name> <description> 

result <result parameter name> <data type> <obligation> <description> 

Note that derived methods are related to commands, events, and query messages, which are defined in 8.2 RoIS 
Interface. 

The ‘argument’ and ‘result’ indicate that the columns of the line describe element of ‘ArgumentList’ and ‘ResultList’ for 
each message type, which are defined in Table 8.17 and Table 8.16, respectively. 



  14                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 

8.2 RoIS Interface 

8.2.1 Return Codes 
At the PIM level we have modeled errors as operation return codes typed ReturnCode_t. Each PSM may map these to 
either return codes or exceptions. The complete list of return codes is indicated below. 

 
Table 8.1: ReturnCode_t enumeration 

OK Successful return. 

ERROR Generic, unspecified error. 

BAD_PARAMETER Illegal parameter value. 

OUT_OF_RESOURCES Service ran out of the resources needed to complete the operation. 

TIMEOUT The operation timed out. 

 

8.2.2 Interaction 

8.2.2.1 System Interface 

The System Interface manages the connection status between the Service Application and HRI Engine. 

8.2.2.1.1 System Connection / Disconnection 

The sequence diagram of the interface for performing connection and disconnection between the Service Application and 
HRI Engine is shown in Figure 8.1. 

To begin with, the Service Application connects with the HRI Engine by connect(). On completing the connection, the 
Service Application executes get_profile() as needed to obtain profiles related to the functions provided by the HRI 
Engine. To terminate use of the HRI Engine, the Service Application disconnects from the HRI Engine by disconnect(). 

The Service Application can send or receive no messages of any kind via the RoIS Framework until the connection 
operation with the RoIS Framework is completed. Additionally, the Service Application should not send or receive any 
messages under any circumstances after requesting a disconnection from the RoIS Framework. These operations are 
therefore executed in a synchronous manner. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               15 
 

 
Figure 8.1: Sequence Diagram of System Interface (Connect / Disconnect) 

 

8.2.2.1.2 System Error Notification 

The sequence diagram of the interface enabling the Service Application to receive error notifications from the HRI 
Engine is shown in Figure 8.2. 

 

 
Figure 8.2 Sequence Diagram of System Interface (System Error) 

sd Connect and Disconnect

«HRI_Engine»
:Engine1

:ServiceApp

ref
Each message pattern

opt 

[If user needs]
get_profile(condition, profile)

Returncode_t= connect()

connect()

Returncode_t= get_profile(-, profile = result)

Returncode_t= disconnect()

disconnect()

sd System Error

:ServiceApp «HRI_Engine»
:Engine1

opt 

[If users need detail information]

get_error_detail(error_id, condition, results = null)

Returncode_t= get_error_detail(-, -, results = outcome)

notify_error(error_id = assigned_id, error_type)



  16                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 

In the event that an error has occurred in the HRI Engine or an HRI Component, the Service Application receives an 
error notification by notify_error() in an asynchronous manner. The notify_error() operation passes an “error_id” 
assigned to each error and “error_type” indicating the type of error. To obtain more detailed error information, the 
Service Application can execute get_error_detail() specifying that error_id. 

The error notification of the HRI Engine is effective from the time connect() is called until disconnect() is called. 

The error notification of the HRI Component is effective from the time bind() (or bind_any()) is called until release() is 
called via the Command Interface. Similarly, in the case of Event Interface, Service Applications can receive the error 
notification of the HRI Component from subscribe() until unsubscribe(). 

8.2.2.2 Command Interface 

The Command Interface enables the Service Application to issue commands to an HRI Component. The sequence 
diagram of the Command Interface is shown in Figure 8.3. 
 

 
Figure 8.3: Sequence Diagram of Command Interface 

 

It is assumed that an HRI Component can be used by more than one Service Application. Therefore, the Service 
Application needs to make a resource reservation for the necessary HRI Component so that it can avoid being operated 
by another Service Application. For this reason, firstly the Service Application binds the necessary HRI Component. 

Then, the Service Application requests the HRI Component to execute the operation. Finally, the Service Application 
releases the HRI Component when the operation is finished. The Command Interface includes these three steps, i.e., 
“BindComponent,” “Execute,” and “Release.” The details of these steps are described as follows. 

 

sd Command

:ServiceApp «HRI_Engine»
:Engine1

ref BindComponent

ref
Execute

ref Release



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               17 
 

 
Figure 8.4: Sequence Diagram of “BindComponent” in Command Interface 

 

The Service Application specifies necessary conditions so that an HRI Component that can be used by the HRI Engine 
can be selected and subjected to a bind operation. Specifically, in the case that the Service Application selects an HRI 
Component from a list of candidates provided by the HRI Engine, the Service Application specifies conditions by 
search(), obtains a list of HRI-Component reference IDs (called “component_refs”), and binds an HRI Component by 
specifying a component_ref from this list by bind(). Alternatively, in the case that an HRI Component is automatically 
selected by the HRI Engine, the Service Application specifies conditions by bind_any() and obtains a component_ref that 
has been bound. 

Each operation within the Command Interface executes the selected HRI Component as a target of control by specifying 
the bound component_ref. This configuration enables the management of HRI-Component operation conditions to be 
consolidated in the HRI Engine. The Service Application therefore has no need to understand the 

sd BindComponent

:ServiceApp «HRI_Engine»
:Engine1

opt 

[If users need to initialize]

opt 

[If users need]

alt 

[User specifies a target HRIcomponent]

[else]

loop 

[For all HRICompopnents used]

bind_any(condition, component_ref = null)

get_parameter(component_ref, parameters = null)

Returncode_t= search(-, component_ref_list)

bind(component_ref)

search(condition, component_ref_list = null)

Returncode_t= get_parameter(-, parameters = outcome)

Returncode_t= bind(-)

completed(command_id = assigned_id, status)

set_parameter(component_ref, parameters, command_id = null)

Returncode_t= set_parameter(-, -, command_id = assigned_id)

Returncode_t= bind_any(-, component_ref)



  18                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

operation conditions of HRI Components, and interference from other Service Applications during a series of Command 
Interface processes can be prevented. 

The Service Application may obtain and set HRI-Component parameters by get_parameter() and set_parameter(), 
respectively. 

 
Figure 8.5: Sequence Diagram of “Execute” in Command Interface 

 
The Service Application issues a command against an HRI Component by using execute() to send a command message 
that specifies that command. The command message is described as a “command_unit_list” that can specify component 
both sequential command operation and parallel command operation. The details of “command_unit_list” are described 
in 8.2.4.1 Command Message. 

On receiving the command message from the Service Application, the HRI Engine immediately returns a return value 
and an ID for that command message (called a “command_id”) and begins performing the specified operation. This 
operation is executed in an asynchronous manner so that execution time does not affect the operation of the Service 
Application. 

On completion of the specified operation, the Service Application asynchronously receives an operation-completed 
notification by completed(), which indicates the corresponding command_id and the completion state of that operation in 
the form of “status.” 

The Service Application can obtain detailed execution results as needed by specifying the target command_id by 
get_command_result(). 

sd Execute

:ServiceApp «HRI_Engine»
:Engine1

opt 

[If users need detail information]

loop 

[All assigned command messages in command_unit_list]

loop 

[As user needs]

loop 

[As user needs]

Returncode_t= execute(command_unit_list = assigned)

Returncode_t= get_command_result(-, -, results = outcome)

completed(command_id = assigned_id, status)

get_command_result(command_id, condition, results = null)

execute(command_unit_list)



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               19 
 

 
Figure 8.6: Sequence Diagram of “Release” in Command Interface 

 

Once a series of Command Interface processes has been completed, the Service Application specifies the component_ref 
and releases that HRI Component by release(). 

In the above way, the Service Application can follow the execution status of each command message that it issues. 

The Event Message described below is defined separately to provide notifications on the intermediate state of specific 
operations. 

 

8.2.2.3 Query Interface 

The Query Interface enables the Service Application to query the HRI Engine on information it holds. The sequence 
diagram of the Query Interface is shown in Figure 8.7. 
 

 
Figure 8.7: Sequence Diagram of Query Interface 

sd Release

:ServiceApp «HRI_Engine»
:Engine1

loop 

[All assigned HRIcomponents]

Returncode_t= release(-)

release(component_ref)

sd Query

ServiceApp «HRI_Engin...
:Engine1

query(query_type, condition, results)

Returncode_t= query(-, -, results = outcome)



  20                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

The Service Application specifies a query message indicating the information to be obtained (called a “query_type”) and 
conditions for obtaining that information using query() and obtains desired information. This operation is executed in a 
synchronous manner since a state transition in a robot scenario is generally performed synchronously based on the 
information obtained by a query message. A query message can be issued at any time. 

 

8.2.2.4 Event Interface 

The Event Interface enables the Service Application to receive notifications on changes in the state of the HRI Engine. 
This interface performs “subscribe/unsubscribe” operations to register/cancel notifications and notification operations to 
pass events to the Service Application. The sequence diagram of the entire Event Interface is shown in Figure 8.8. 
 

 
Figure 8.8: Sequence Diagram of Event Interface 

8.2.2.4.1 Event Registration / Cancellation 

The Service Application uses subscribe() to register with the HRI Engine the type of the event message to be obtained 
(called an “event_type”). On receiving the event-message registration request from the Service Application, the HRI 

sd Event

:ServiceApp «HRI_Engine»
:Engine1

loop 

opt 

[When target event occurred]

break 

[Stop event detection ]

opt 

[If users need detail information]

Returncode_t= unsubscribe(-)

unsubscribe(subscribe_id = assigned_id)

Returncode_t= get_event_detail(-, -, results = outcome)

Returncode_t= subscribe(-, -, subscribe_id=assigned_id)

get_event_detail(event_id, condition, results = null)

notify_event(event_id = assigned_id, event_type, subscribe_id=assigned_id, expires)

subscribe(event_type, condition, subscribe_id)



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               21 
 

Engine immediately returns a return value and an ID for that registration (called a “subscribe_id”). On completing 
reception of event messages, the Service Application can cancel event-message notifications by using an unsubscribe() 
operation and specifying the subscribe_id assigned at the time of registration. The HRI Engine makes no notification of 
event messages that the Service Application is not subscribed to or of event messages that have been unsubscribed. In 
addition, the HRI Engine simply ignores subscribe requests for event messages that are already subscribed to and 
unsubscribe requests for event messages that have already been unsubscribed without issuing any errors. 

8.2.2.4.2 Event Notification 

The Service Application asynchronously receives an event message to which it has subscribed when the HRI Engine 
executes notify_event(). The notify_event() operation passes an ID assigned for every notification of an event message 
(called an “event_id”), event_type indicating the type of event message, and the subscribe_id assigned at the time of 
registering that notification. The Service Application can obtain detailed information on a notified event by performing a 
get_event_detail() operation with the event_id for that event specified. 

 

8.2.2.5 Streaming Interface 

The Streaming Interface enables the service application to receive a data stream from and transmit it to the HRI engine. It 
mainly intends to send audio and video streams between service operators and clients facing the HRI engine. As streaming 
data are expected to be generated continuously and more frequently than sensor events, it is used when the use of Event 
Interface is unsuitable. The interface defines several Commands and Events to control the streams but does not define the 
details of transport and encoding. The sequence diagram of the entire Streaming Interface is shown in Figure 8.9. 

The service application initiates a streaming connection by a connect_stream() command. Before connecting the stream, 
parameters for encoding and transport shall be set by a set_parameter() command. The service can obtain available 
parameters by a get_parameter() query to find suitable parameters. Both the HRI Engine and the service application then 
establish a streaming connection, but the details of the connection are out of the scope of RoIS. RoIS only handles the 
management of streams between the service application and the HRI Engine. The stream is closed when the service 
application sends a disconnect_stream() command. 

The service application can suspend the receiving stream by sending a suspend_stream() command. It can also resume the 
suspended stream by sending a resume_stream() command. On the other hand, the HRI Engine can send a 
notify_stream_status() event when it needs to suspend, resume, or close the stream. When the service application receives 
such events, it shall handle the event and control the stream appropriately. The service application can also query the status 
of the stream at the HRI Engine. 

Though the streaming interface allows the handling of a two-way streaming connection, it does not define methods and 
events to control the endpoint at the service application from the HRI engine. The service application can suspend and 
resume the sending stream without any notification and the HRI Engine cannot request suspend and resume the receiving 
streams.  

  



  22                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 
Figure 8.9: Sequence Diagram of Streaming Interface 

 

8.2.3 Interfaces 
The overall configuration of the interfaces in the RoIS Framework is shown in Figure 8.10. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               23 
 

 
Figure 8.10: RoIS Interfaces 

 

8.2.3.1 Interfaces for HRI Engine 

The interfaces for the HRI Engine are defined in Table 8.2 to Table 8.6. The streaming interface is not defined in Figure 
8.10 since the interface is defined upon existing interfaces. 
 
Table 8.2: System Interface 
 

Description: The interface required to enable the HRI Engine to receive requests related to system management 
from the Service Application. 

Derived From: None 

Operations 

class Interfaces

«interface»
System

+ connect(): Returncode_t
+ disconnect(): Returncode_t
+ get_profile(in condition: ::ISO19143::QueryExpression, out profile: HRI_Engine_Profile): Returncode_t
+ get_error_detail(in error_id: String, in condition: ::ISO19143::QueryExpression, out results: ResultList): Returncode_t

«interface»
Command

+ search(in condition: ::ISO19143::QueryExpression, out component_ref_list: List<RoIS_Identifier>): Returncode_t
+ bind(in component_ref: RoIS_Identifier): Returncode_t
+ bind_any(in condition: ::ISO19143::QueryExpression, out component_ref: RoIS_Identifier): Returncode_t
+ release(in component_ref: RoIS_Identifier): Returncode_t
+ get_parameter(in component_ref: RoIS_Identifier, out parameters: ParameterList): Returncode_t
+ set_parameter(in component_ref: RoIS_Identifier, in parameters: ParameterList, out command_id: String): Returncode_t
+ execute(inout command_unit_list: CommandUnitSequence): Returncode_t
+ get_command_result(in command_id: String, in condition: ::ISO19143::QueryExpression, out results: ResultList): Returncode_t

«interface»
Service_Application_Base

+ completed(in command_id: String, in status: Completed_Status)
+ notify_error(in error_id: String, in error_type: RoIS Exception Type)
+ notify_event(in event_id: String, in event_type: String, in subscribe_id: String, in expire: DateTime)

«interface»
Event

+ subscribe(in event_type: String, in condition: ::ISO19143::QueryExpression, out subscribe_id: String): Returncode_t
+ unsubscribe(in subscribe_id: String): Returncode_t
+ get_event_detail(in event_id: String, in condition: ::ISO19143::QueryExpression, out results: ResultList): Returncode_t

«interface»
Query

+ query(in query_type: String, in condition: ::ISO19143::QueryExpression, out results: ResultList): Returncode_t

«enumeration»
Completed_Status

literals
 «enum» OK
 «enum» ERROR
 «enum» ABORT
 «enum» OUT_OF_RESOURCES
 «enum» TIMEOUT

«HRI_Engine»
Engine1

«ServiceApp»
ServiceApp

«enumeration»
RoIS Exception Type

literals
 «enum» ENGINE_INTERNAL_ERROR
 «enum» COMPONENT_INTERNAL_ERROR
 «enum» COMPONENT_NOT_RESPONDING
 «enum» USER_DEFINED_ERROR

«HRI_Component»
Component1

1..*



  24                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

connect Connects to the HRI Engine. 

disconnect Disconnects from the HRI Engine. 

get_profile Obtains the profile. 

in condition QueryExpression [ISO19143] Specifies conditions of the profile to be 
obtained. 

out profile HRI_Engine_Profile Holds the obtained HRI Engine profile. 

get_error_detail Obtains details on an error notification from the HRI Engine. 

in error_id String Specifies the ID identifying the error event 
assigned at the time of error-event 
notification. 

in condition QueryExpression [ISO19143] Specifies conditions for the error information to 
be obtained. 

out results ResultList Holds error information. 

 
Table 8.3: Command Interface 
 

Description: The interface required to enable the HRI Engine to receive command-related requests from the Service 
Application. 

Derived From: None 

Operations 

search Searches for an HRI Component matching the conditions for executing a function. 

in condition QueryExpression [ISO19143] Specifies the conditions for the HRI Component 
to be searched for. 

out component_ref_list List<RoIS_Identifier> Holds a list of IDs for components that match 
specified conditions. 

bind Binds the specified HRI Component. 

in component_ref RoIS_Identifier Specifies the ID of the HRI Component to be 
bound. 

bind_any Has the HRI Engine automatically select and bind an HRI Component that matches the 
conditions for executing a function. 

in condition QueryExpression [ISO19143] Specifies the conditions of the HRI Component 
to be selected. 

out component_ref RoIS_Identifier Holds the ID of the bound HRI Component. 

release Releases the specified HRI Component. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               25 
 

in component_ref RoIS_Identifier Specifies the ID of the HRI Component to be 
released. 

get_parameter Obtains parameters of the bound HRI Component. 

in component_ref RoIS_Identifier Specifies the ID of the bound HRI Component. 

out parameters ParameterList Holds the obtained parameters. 

set_parameter Sets parameters of the bound HRI Component. 

in component_ref RoIS_Identifier Specifies the ID of the bound HRI Component. 

in parameters ParameterList Specifies the parameters to be set. 

out command_id String Holds the command ID assigned for this 
command message. 

execute Sends a command message to the bound HRI Component. 

in command unit list CommandUnitSequence Specifies the command messages to be sent 
and hold the command IDs for the messages. 

get_command_result Obtains detailed results on completing execution of the command. 

in command_id String Specifies the command ID assigned for this 
command message. 

in condition QueryExpression [ISO19143] Specifies the conditions for obtaining 
command-execution results. 

√out results ResultList Holds command-execution results. 

 
Table 8.4: Query Interface 
 

Description: The interface required to enable the HRI Engine to receive queries from the Service Application. 

Derived From: None 

Operations 

query Sends a query message to the HRI Engine and obtains information. 

in query_type String Specifies the type of the query message to be 
sent. 

in condition QueryExpression [ISO19143] Specifies the conditions of the information to be 
obtained. 

out results ResultList Holds the obtained information. 

 



  26                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 
 
 
 
Table 8.5: Event Interface 
 

Description: The interface required to enable the HRI Engine to receive event-related requests from the Service 
Application. 

Derived From: None 

Operations 

subscribe Registers an event message for which notifications are to be received. 

in event_type String Specifies the type of the event message to be 
registered. 

in condition QueryExpression [ISO19143] Specifies the conditions of the event message 
to be registered. 

out subscribe_id String Holds the event-registration ID assigned when 
registering this event message. 

unsubscribe Cancels the registered event message. 

in subscribe_id String Specifies the event-registration ID assigned 
when registering this event message. 

get_event_detail Obtains detailed information on this event notification. 

in event_id String Specifies the ID of the event notification 
assigned at the time of this event-message 
notification. 

in condition QueryExpression [ISO19143] Specifies the conditions of the information to 
be obtained. 

out results ResultList Holds detailed information on the event 
notification. 

 
Table 8.6: Streaming Interface 
 

Description: The interface required to enable the HRI Engine to receive stream-related requests from the Service 
Application. 

Derived From: None 

Operations 

connect_stream Connect to a new stream of the component bound (as well as Event subscription). The 
message is defined as a Command Message. 

out stream_id String A stream ID is assigned by the HRI Engine for 
each established connection. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               27 
 

disconnect_stream Disconnect a stream specified by a stream ID. (as well as canceling an Event subscription). 
The message is defined as a Command Message. 

in stream_id String Specifies the ID of the stream to disconnect. 

query_stream_status Obtains stream status of HRI Engine, in addition to the event notification from the HRI Engine 
to Services. The message is defined as a Query Message. 

in stream_id String Specifies the ID of the stream. 

out status StreamStatus Status of the stream returned from the HRI 
Engine. 

suspend_stream Requests to suspend the stream. The message is defined as a Command Message. 

in stream_id String Specifies the ID of the stream. 

resume_stream Requests to resume the (suspended) stream. The message is defined as a Command 
Message. 

in stream_id String Specifies the ID of the stream. 

notify_stream_status Notifies stream event from the HRI Engine to services as an Event notification. The service 
also needs to subscribe/unscribe events using Event interface. 

in event_id String Holds the ID of the event notification assigned 
when sending the event message. 

in event_type StreamStatus Status of the stream changed at the HRI 
Engine. 

 

8.2.3.2 Interfaces for Service Application 

The interface provided on the service-application side is defined in Table 8.7. 
 
Table 8.7: Service Application Base Interface 
 

Description: The interface required to enable the Service Application to receive notifications from the HRI Engine. 

Derived From: None 

Operations 

notify_event Receives event message for which notification has been registered. 

in event_id String Holds the ID of the event notification assigned 
when sending the event message. 

in event_type String Holds the ID of this event message. 



  28                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

in subscribe_id String Holds the event-registration ID assigned when 
registering this event message. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               29 
 

in expire DateTime [ISO8601] Time limit for obtaining detailed results by 
get_event_detail(). 

notify_error Receives an error notification from the HRI Engine or the HRI Component. 

in error_id String Holds the ID of the error notification assigned 
when notifying of this error. 

in error_type ExceptionType Holds the type of error. 

completed Receives notification that command execution has completed. 

in command_id String Holds the command ID assigned when the 
command message was sent. 

in status Completed_Status Holds the state of command completion. 

ExceptionType and Completed_Status are defined in Table 8.8 and Table 8.9. 
 
Table 8.8: ExceptionType enumeration 
 

ENGINE_INTERNAL_ERROR An error internal to the HRI Engine. 

COMPONENT_INTERNAL_ERROR An error internal to the HRI Component. 

COMPONENT_NOT_RESPONDING No response received from the HRI Component. 

USER_DEFINED_ERROR An error defined by the user. 

Note: Corresponding situations of these error types shall be defined with respect to each HRI Engine. 

 
Table 8.9: Completed_Status enumeration 
 

OK Successful return. 

ERROR Generic, unspecified error. 

ABORT The operation was aborted. 

OUT_OF_RESOURCES Service ran out of the resources needed to complete the operation. 

TIMEOUT The operation timed out. 

Note: Corresponding situations of these statuses shall be defined with respect to each command message. 

Stream_Status is defined in Table 8.10. 
 
Table 8.10: Stream_Status enumeration 
 

STREAMING_NOT_RUNNING The stream is connected but not yet started, or it is closed. 

STREAMING_NOT_CONNECTED The stream is not connected. 

STREAMING_RUNNING The stream is running. 

STREAMING_SUSPENDED The stream is suspended (as an event) or suspending (as a status). 

STREAMING_RESUMED The stream is resumed (as an event). 



  30                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

Note: Corresponding situations of these statuses shall be returned for queries or notified as events. 

 

8.2.4 Message Data 
The data exchanged by the RoIS Interface are summarized in the previous section as the parameters for each operation. 
Among these data, “message data” for each interface indicates the data that includes the information for the whole purpose 
of the interface. Thus, “command message” indicates the data exchanged by execute(), “query message” indicates the data 
exchanged by query(), and “event message” indicates the data exchanged by notify_event(). For the Command Interface 
and the Event Interface, the result of the command operation and the detail of the event notification are also important. 
Therefore, these data are defined as “command result message” and “event detail message” respectively. This section 
describes the data structure of each message. 

8.2.4.1 Command Message 

The data structure of the command message exchanged by execute() is shown in Figure 8.11. 
 

 
Figure 8.11: Data Structure of Command Message. 

 

RoIS_Identifier is defined for describing an ID with the reference codebook for the ID. The detail of this data type is 
depicted in Table 8.11. 
 
Table 8.11: RoIS_Identifier 
 

Description: A data type for describing an ID that identifying an instance and the reference codebook for the ID. 

Derived From : MD_Identifier [ISO19115] 

Attributes 

codebook reference String O 1 URI of the codebook used. 

version String O 1 Version identifier for the codebook. 

class Data Structure

ResultList

ArgumentList ParameterList

CommandUnitSequence
«abstract»

CommandBase

- delay time: UnlimitedNatural [0..1]

CommandMessage

- component_ref: RoIS_Identifier
- command_type: String
- arguments: ArgumentList [0..1]
- command_id: String

RoIS_Identifier

- codebook reference: String [0..1]
- version: String [0..1]

ISO 19115::
MD_Identifier

ConcurrentCommands

Branch

Parameter

- name: String
- data_type_ref: RoIS_Identifier
- value: Any

Command_Result_Message

- command_id: String
- condition: QueryExpression [0..1]

Query_Message

- query_type: String
- condition: QueryExpression [0..1]

Event_Message

- event_id: String
- event_type: String
- subscribe_id: String [0..1]
- expire: DateTime

Event_Detail_Message

- event_id: String
- condition: QueryExpression [0..1]

+Parameters

1..*
{ordered}

+Parameters
1..*

{ordered}

+Parameters

1..*
{ordered} +result

0..*

1..*

+command_unit_list

1..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               31 
 

The data configurations are defined in Table 8.12 to Table 8.20. 
 
Table 8.12: CommandUnitSequence class 

 
Table 8.13: CommandUnit class 
 

Description: An abstract data class for specifying a command or a concurrent combination of commands to the HRI 
Engine. 

Derived From : 

Attributes 

delay time Integer O 1 A delay time from receiving the command 
message till starting the operation. 

The time shall be specified in millisecond. 

 
Table 8.14 CommandMessage class 

Description: A concrete data class for specifying a command to the HRI Engine. 

Derived From : CommandUnit 

Attributes 

component_ref RoIS_Identifier M 1 Identifier of the HRI Component. 

command_type String M 1 Identifier of the command message type. 
 
The operation “execute” in the command 
interface shall operate similarly to the 
operation “set_parameter” in the 
command interface when the 
command_type is “set_parameter.” 

command_id Sting M 1 ID of the command transmission assigned 
when the HRI Engine receiving the 
command message. 

arguments ArgumentList O 1 Arguments for the command message 

 
 
 
Table 8.15: ConcurrentCommands class 

Description: A data class for specifying a list of commands to the HRI Engine. 

Derived From:  

Attributes 

command unit list CommandUnit M N ord CommandUnit object consisting of at least 
one command message. 



  32                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

Description: A concrete data class for specifying a combination of commands to the HRI Engine that expresses a 
procedure for operating several command messages in parallel. 

Derived From : CommandUnit 

Attributes 

branch list Branch M N Each Branch object contains at least one 
CommandMessage. HRI Engine processes 
Branch objects in parallel. 

 
Table 8.16: Branch class 

Description: A concrete data class for specifying a combination of commands to the HRI Engine that expresses a 
procedure for operating several command messages sequentially. 

Derived From : 

Attributes 

command list CommandMessage M N ord CommandMessage object consisting of at 
least one command message. 

ResultList, ArgumentList and ParameterList are defined for treating data values in each message as depicted in the 
following tables. 
 
Table 8.17: Parameter class 

Description: A data class for specifying a parameter. 

Derived From: None 

Attributes 

name String M N Parameter name 

data_type_ref RoIS_Identifier M N Reference ID of data definition 

value Any M N Parameter value 

 
Table 8.18: ResultList classs 

Description: A data class for specifying a list of result parameters. 

Derived From: None 

Attributes 

Parameters Parameter M N ord Result parameters 

 
Table 8.19: ArgumentList class 

Description: A data class for specifying a list of argument parameters. 

Derived From: None 

Attributes 

Parameters Parameter M N ord Argument parameters 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               33 
 

 
Table 8.20: ParameterList class 

Description: A data class for specifying a list of configuration parameters 

Derived From: None 

Attributes 

Parameters Parameter M N ord Configuration parameters 

 

8.2.4.2 Command Result Message 

The data configuration of the command result message exchanged by get_command_result() is given below. 
 
Table 8.21: Command Result Message class 

Description: A data class for specifying a command result message 

Derived From: None 

Attributes 

command_id String M 1 ID of the command transmission assigned 
when receiving the command message 

condition QueryExpression [ISO19143] O 1 Conditions of information to be obtained 

results ResultList M 1 Results of command execution 

 

8.2.4.3 Query Message 

The data configuration of the query message exchanged by query() is given below. 
 
Table 8.22: Query Message class 
 

Description: A data class for specifying a query message 

Derived From: None 

Attributes 

query_type String M 1 type of the query message 

condition QueryExpression [ISO19143] O 1 Conditions of information to be obtained 

results ResultList M 1 Obtained information 

 
 



  34                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

8.2.4.4 Event Message 

The data configuration of the event message exchanged by notify_event() is given below. 
 
Table 8.23: Event Message class 

Description: A data class for specifying an event message 

Derived From: None 

Attributes 

event_id String M 1 ID of the event notification assigned when 
sending the event message 

event_type String M 1 type of the event message 

subscribe_id String M 1 ID of event registration assigned when 
registering the event message 

expire DateTime O 1 Time limit for obtaining detailed results by 
get_event_detail(). 

 

8.2.4.5 Event Detail Message 

The data configuration of event details exchanged by get_event_detail() is given below. 
 
Table 8.24: Event Detail Message class 
 

Description: A data class for specifying an event detail message 

Derived From: None 

Attributes 

event_id String M 1 ID of the event notification assigned when 
sending the event message 

condition QueryExpression [ISO19143] O 1 Conditions of information to be obtained 

results ResultList M 1 Detailed information on event 

 

8.2.4.6 Error Message 

The data configuration of event details exchanged by notify_error() is given below. 
 
Table 8.25: Error Message class 

Description: A data class for specifying an error message 

Derived From: None 

Attributes 

error_id String M 1 ID of the error notification assigned when 
sending the event message 

error_type String M 1 type of the error message 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               35 
 

subscribe_id String M 1 ID of event registration assigned when 
registering the event message 

expire DateTime [ISO8601] O 1 Time limit for obtaining detailed results by 
get_error_detail(). 

8.2.4.7 Error Detail Message 

The data configuration of error details exchanged by get_error_detail() is given below. 
 
Table 8.26: Error Detail Message class 

Description: A data class for specifying an error detail message 

Derived From: None 

Attributes 

error_id String M 1 ID of the error notification assigned when 
sending the error message 

condition QueryExpression [ISO19143] O 1 Conditions of information to be obtained 

results ResultList M 1 Detailed information on error 

 

8.3 RoIS Profiles 

8.3.1 Overview 
Profiles define the functions provided by the HRI Engine via the RoIS Framework interfaces, that is, the configuration of 
the HRI Engine and HRI Components, and the messages that can be used. They are used to obtain information so that the 
Service Application can make use of HRI-Engine functions. 

 
Figure 8.12: RoIS Profile. RoIS profile mainly consists of 4 types of profiles, i.e., “HRI_Engine_Profile,” 

“HRI_Component_Profile,” “Message_Profile,” and “Parameter_Profile.” 

An HRI Engine Profile, HRI Component Profile, and Message Profile are defined for the HRI-Engine layer of physical 
units, the HRI-Component layer of abstract functional units, and the message layer of data exchanged between the Service 

class Profile

HRI_Engine_Profile HRI_Component_Profile Message_Profile

+ name: String

ISO 19111::
IO_IdentifiedObject

Parameter_Profile

+ name: String
+ data_type_ref: RoIS_Identifier
+ default_value: Any [0..1]
+ description: String [0..1]

Command_Message_Profile

+ timeout: UnlimitedNatural [0..1]

Command_Resultl_Message_Profile

Query_Message_Profile

Event_Detail_Message_Profile

Error_Detail_Message_Profile

+argument

0..*
{ordered}

+parameter
0..*

{ordered}

+sub_component
0..1

+message

1..*

+component

1..*

+sub_profile
0..*

+results
0..*

{ordered}



  36                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

Application and HRI Components, respectively, in the RoIS Framework. These profiles enable the Service Application to 
understand the configuration of the HRI Engine. 

The main application of each profile is summarized below: 
• Parameter Profile: This profile defines the parameters of message arguments, results, the HRI Engine, and HRI 

Components. It defines parameter identifier (parameter name), data type, and default value. 
• Message Profile: This profile defines messages to be sent and received between the Service Application and HRI 

Engine via the RoIS Framework. It defines message identifiers (message name) and required arguments and 
results. Arguments and results are defined by including a Parameter Profile defined for each parameter. The profile 
for each type of message corresponding to an interface (command message, query message, and event message) is 
defined as a subclass of this class. 

• HRI Component Profile: This profile defines a list of messages and parameters possessed by an HRI-Component 
unit. It defines HRI-Component identifiers (HRI-Component name, ID, etc.). Messages and parameters that can 
be used by this HRI Component are defined by specifying Message Profiles and Parameter Profiles. An HRI 
Component that includes multiple sub-HRI-Components can be defined by specifying other HRI-Component 
Profiles as sub-profiles. 

• HRI Engine Profile: This profile defines a list of HRI Components and parameters possessed by an HRI- Engine 
unit. It defines HRI-Engine identifiers (HRI-Engine name, ID, etc.). HRI Components and parameters that can be 
used by this HRI Engine are defined by specifying HRI-Component Profiles and Parameter. 

 
The Service Application obtains an HRI Engine profile (or its referent) by get_profile(). It can obtain the HRI Engine 
Profile of a certain HRI Engine by specifying conditions such as the location of that HRI Engine or the HRI Components 
possessed by the HRI Engine in ‘condition.’ 
The Service Application can then learn about the types of available functions through the identifiers of HRI-Component 
Profiles included in the HRI Engine Profile. Additionally, it can obtain detailed information on messages exchanged by 
each interface when using a certain HRI Component through Message Profiles included in that HRI-Component Profile. 
Specifically, the Service Application begins by searching for desired functions from the identifiers of HRI-Component 
Profiles included in the obtained HRI Engine Profile. If a command message is to be used, the Service Application 
searches for an HRI-Component Profile having the same identifier as that obtained at the time of binding. 
When exchanging a message, the Service Application specifies the identifier of that message. Detailed information on a 
message to be exchanged can be obtained by referencing the profile having the same identifier as that message from the 
Message Profiles corresponding to the interface to be used. 
Definitions of identifiers and data types of arguments needed when exchanging a message can be obtained from Parameter 
Profiles included in that Message Profile. 
When exchanging a message, passing a list of values as arguments (or results) based on parameter identifiers and data 
types defined in these Parameter Profiles guarantees that the data types exchanged between the Service Application and 
HRI Engine match up. 
The same holds for parameters. Passing a list of values as set_parameter() and get_parameter() arguments based on 
parameter identifiers and data types defined in Parameter Profiles included in an HRI-Engine Profile or HRI- Component 
Profile guarantees that the data types exchanged between the Service Application and HRI Engine match up. Information 
on standard values can also be obtained from default values defined in Parameter Profiles. 
Details of each profile are described in the following sections. 

8.3.2 Parameter Profile 
The Parameter Profile defines parameters for message arguments and HRI-Engine and HRI-Component parameters. Items 
to be defined in this profile are listed in Table 8.27. 
 
Table 8.27: Parameter_Profile 
 

Description: Profile for defining each parameter for HRI Engines. 

Derived From: 

Attributes 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               37 
 

name String M 1 Parameter name 

data_type_ref RoIS_Identifier M 1 Reference ID of data definition 

default_value Any O 1 Necessary arguments when issuing this 
message 

description String O 1 Description 

 

8.3.3 Message Profile 
The Message Profile defines messages exchanged between the Service Application and HRI Engine via the interfaces in 
the RoIS Framework. This profile is defined for every message. Items to be defined in this profile are listed in Table 8.28. 
 
Table 8.28: Message_Profile 
 

Description: Base profile for defining messages for each interface type. 

Derived From: None 

Attributes 

name String M 1 Message name 

results Parameter_Profile O N ord Defines parameters obtained as execution 
results in this message (parameters 
included in get_command_result() in 
command interface, query() in query 
interface, and get_event_detail () in event 
interface). 

The definition method follows that of the 
Parameter Profile. 

Multiple items may be defined. 

Messages used in the Command Interface are defined in the Command Message Profile. Items to be defined in the 
Command Message Profile are listed in Table 8.29. 
 
Table 8.29: Command_Message_Profile 

Description: Profile for defining messages for command interface type. 

Derived From: Message_Profile 

Attributes 



  38                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 

Messages used in the Command Interface to send the results are defined in the Command Result Message Profile. Items to 
be defined in the Command Result Message Profile are listed in Table 8.30. 
 
Table 8.30: Command_Result_Message_Profile 

 

Messages used in the Query Interface are defined in the Query Message Profile. Items to be defined in the Query Message 
Profile are listed in Table 8.31. 
 
Table 8.31: Query_Message_Profile 

Description: Profile for defining messages for query interface type. 

Derived From: Message_Profile 

 

Messages used in the Event Interface are defined in the Event Detail Message Profile. Items to be defined in the Event 
Detail Message Profile are listed in Table 8.32. 
 
Table 8.32: Event_Detail_Message_Profile 

Description: Profile for defining messages for command interface type. 

Derived From: Message_Profile 

Messages used in the System Interface are defined in the Error Detail Message Profile. Items to be defined in the Error 
Detail Message Profile are listed in Table 8.33. 
 
Table 8.33: Error_Detail_Message_Profile 
 

Description: Profile for defining messages for system interface type. 

Derived From: Message_Profile 

 

argument Parameter_Profile O N ord Defines parameters given as arguments in 
this message (parameters included in 
arguments of execute() in the command 
interface). 

The definition method follows that of the 
Parameter Profile. 

Multiple items may be defined. 
timeout Integer O 1 The time between receipt of the message 

and judgment of failure to start the 
operation. 

The time shall be specified in millisecond. 

Derived From: Message_Profile_Profile. 

Description: Profile for defining messages for command interface type. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               39 
 

8.3.4 HRI Component Profile 
The HRI Component Profile defines the abstract functional units to be used by the Service Application corresponding to 
the functions provided by the HRI Engine. That is, it defines the class of HRI Component and the messages that can be 
used by that HRI Component. This profile is defined for every HRI Component. Items to be defined in this profile are 
listed in Table 8.34. 
 
Table 8.34: HRI_Component_Profile 
 

Description: Profile for defining lists of messages and parameters for each HRI Component. 

Derived From: IO_IdentifiedObject [ISO19111] 

Attributes 

message Message_Profile M N Defines a message profile for a message 
of the HRI Component. 

The definition method follows that of the 
Message Profile. 

Multiple items may be defined. 

sub_component HRI_Component_Profile O 1 Specifies an HRI Component profile 
when included in the definition of 
another HRI Component profile. 

Only one item may be defined. 

parameter Parameter_Profile O N ord Defines the parameter profile for a 
parameter of this HRI Component. 

The definition method follows that of the 
Parameter Profile. 

Multiple items may be defined. 

 

8.3.5 HRI Engine Profile 
The HRI Engine Profile defines the class of an HRI Engine or sub HRI Engine and the HRI Components that can be used 
by that HRI Engine. This profile is defined for every HRI Engine. Items to be defined in this profile are listed in Table 
8.35. 
 
Table 8.35: HRI_Engine_Profile 
 

Description: Profile for defining lists of logical units and parameters for each HRI Engine and sub HRI Engine. 

Derived From: IO_IdentifiedObject [ISO19111] 

Attributes 

component HRI_Component_Profile M N Specifies the HRI Component Profile of 
an HRI Component of this HRI Engine. 

Multiple items may be defined. 



  40                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

sub_profile HRI_Engine_Profile O N Specifies the sub HRI Engine Profile 
included in this HRI Engine. 

Multiple items may be defined. 

 

8.4 Common Messages 
In this specification, messages received via an interface of the HRI Engine are called HRI-Component methods and 
common messages are defined as the methods. 

8.4.1 Basic HRI Components 
In the RoIS Framework, the HRI Components shown in Table 8.36 are defined as Basic HRI Components. The Basic HRI 
Components are HRI Components that are commonly used to obtain information and to control robot behaviors for the 
human-robot interaction. The Basic HRI Component shall be a functional unit that is developed with mature technologies 
from the viewpoint of the usage. Methods for each Basic HRI Component shall be simple as possible. Mandatory 
parameters for the operation shall be minimized. The Basic HRI Component shall be operated only with the mandatory 
parameter. If the component can provide additional information or configuration parameter, those parameters may be 
provided as optional parameter. The other HRI Components may be provided as “User-defined HRI Component.” 
Examples of “User-defined HRI Component” are described in Annex A. 

Note that it is not mandatory for an HRI Engine to implement all of these Basic HRI Components. It is sufficient that they 
only have the HRI Component Profiles of the actually-implemented HRI Components. 
 
Table 8.36: Basic HRI Components 

HRI Component Name Description 

system information Provides the information of the system such as status of the system and position 
of the physical unit. 

person detection Detects number of people 

person localization Detects position of people 

person identification Identifies ID (name) of people 

face detection Detects number of human faces 

face localization Detects position of human faces 

sound detection Detects number of sound sources 

sound localization Detects position of sound sources 

speech recognition Recognizes person’s speech 

gesture recognition Recognizes person’s gesture 

speech synthesis Generates robot speech 

reaction Performs specified reaction 

navigation Moves to specified target location 

follow Follows a specified target object 

move Moves to specified distance or curve 

audio streaming Contorols audio streaming between HRI engines and Services 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               41 
 

video streaming Contorols video streaming between HRI engines and Services 

 

Each HRI Component incorporates the following methods and parameters in common. 
Table 8.37: RoIS_Common 

Description: common method for all HRI Components. 

Command Method 

start Start the functionality of the HRI Component. 

stop Stop the functionality of the HRI Component. 

suspend Pause the functionality of the HRI Component. 

resume Resume the functionality of the HRI Component. 

Query Method 

component_status Obtain status information of the component. 

result status Component_Status M Status information of this component. 

 

Component status is defined as follows. 
Table 8.38: Component_Status enumeration 

UNINITIALIZED The component is not initialized. 

READY The component is ready to use. 

BUSY The component is used by other application(s). 

WARNING Warning against the use of the component 

ERROR Generic, unspecified error. 

Methods and parameters of each HRI Component described in this PIM are documented in the following sections. 

 

8.4.2 RoIS Component Ontology 
Data types of parameters in RoIS are statically defined as sub classes of RoSO data types. Parameters used in RoIS 
functional components are defined as properties and range of them are defined upon RoSO vocabularies. RoIS basic 
functional components are defined as subclasses of roso:Sensor or roso:Actuator. 

 
Table 8.39: Robotic Functional Service (RoIS) Component Ontology Metadata 

Metadata Term Value 
OntologyIRI https://www.omg.org/spec/RoIS 

/RoboticInteractionServiceComponentOntology/ 
rdfs:label Robotic Interaction Service (RoIS) Component Ontology 
dct:abstract The Robotic Interaction Service Components Ontology 

provides vocabularies to describe RoIS basic functional 
components 

cmns-av:copyright Copyright © 2024 Japan Robot Association 

https://www.omg.org/spec/RoIS%20/RoboticInteractionServiceComponentOntology/
https://www.omg.org/spec/RoIS%20/RoboticInteractionServiceComponentOntology/


  42                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

cmns-av:copyright Copyright © 2024 Korea Association of Robot Industry 
cmns-av:copyright Copyright © 2024 Shibaura Institute of Technology 
cmns-av:copyright Copyright © 2024 National Institute of Advanced Industrial 

 Science and Technology, Japan 
cmns-av:copyright Copyright © 2024 Université Sorbonne Paris Nord 
cmns-av:copyright Copyright © 2024 Object Management Group 
dct:references http://purl.org/dc/terms/ 
dct:references http://www.w3.org/2004/02/skos/core# 
dct:title Robotic Interaction Service Component Ontology 
owl:versionIRI https://www.omg.org/spec/RoIS/20240901/ 

RoboticInteractionServiceComponentOntology/ 
 

Following properties and classes are defined in RoIS Ontology that are used to describe components’ requirements as 
ontology. 
 
Table 8.40: Robotic Functional Service (RoIS) Component Ontology Details 

Properties 
Name Annotations Property Axioms 

hasDetectionRegion 
(has detection region) 

Definition: indicates a region in which a 
component can detect targets 

Parent Property: roso:hasAttribute 
Domain: roso:Component 
Range: roso:Region 

hasDetectionThreshold 
(has detection 
threshold) 

Definition: indicates a spatial interval by which a 
component can distinguish detected targets 

Parent Property: roso:hasAttribute 
Domain: roso:Component 
Range: roso:SpatialInterval 

hasMinimalInterval 
(has minimal interval) 

Definition: indicates a periodic interval by which a 
component can detect targets 

Parent Property: roso:hasAttribute 
Domain: roso:Component 
Range: cmns-dt:TimeInterval 

hasTimeLimit 
(has time limit) 

Definition: indicates a time limit by which a 
component completes the function 

Parent Property: roso:hasAttribute 
Domain: roso:Component 
Range: cmns-dt:TimeInstant 

 

Classes 
Name Annotations Class Expressions 

FaceDetection 
(face detection) 

Definition: component function to count the 
number of faces detected in the detection region 

Parent Class: roso:Sensing 
 

FaceLocalization 
(face localization) 

Definition: component function to localize 
positions of faces detected in the detection region 

Parent Class: roso:Sensing 
 

Follow 
(follow) 

Definition: component function to move following 
a target agent 

Parent Class: roso:Actuation 
 

GestureRecognition 
(gesture recognition) 

Definition: component function to recognize 
gestures represented by other agents 

Parent Class: roso:Sensing 
 

Move 
(move) 

Definition: component function to move along the 
indicated path 

Parent Class: roso:Actuation 
 

Navigation 
(navigation) 

Definition: component function to navigate another 
agent to the indicated goal point 

Parent Class: roso:Actuation 
 

SoundDetection 
(sound detection) 

Definition: component function to count the 
number of sound sources detected in the detection 
region 

Parent Class: roso:Sensing 
 

SoundLocalization 
(sound localization) 

Definition: component function to localize 
positions of sound sources detected in the detection 
region 

Parent Class: roso:Sensing 
 

SpeechRecognition 
(speech recognition) 

Definition: component function to recognize 
speech sound to text 

Parent Class: roso:Sensing 
 

http://purl.org/dc/terms/
http://www.w3.org/2004/02/skos/core
https://www.omg.org/spec/RoIS/20240901/%20RoboticInteractionServiceComponentOntology/
https://www.omg.org/spec/RoIS/20240901/%20RoboticInteractionServiceComponentOntology/


Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               43 
 

SpeecSynthesis 
(speech synthesis) 

Definition: component function to synthesize 
speech sound from text 

Parent Class: roso:Actuation 
 

PersonDetection 
(person detection) 

Definition: component function to count the 
number of persons detected in the detection region 

Parent Class: roso:Sensing 
 

PersoIdentification 
(person identification) 

Definition: component function to identify persons 
detected in the detection region 

Parent Class: roso:Sensing 
 

PersonLocalization 
(person localization) 

Definition: component function to localize 
positions of persons detected in the detection 
region 

Parent Class: roso:Sensing 
 

Reaction 
(reaction) 

Definition: component function to perform motions 
to interact with other agents 

Parent Class: roso:Actuation 
 

AudioStreaming 
(audio streaming) 

Definition: component function to control audio 
streaming between HRI engines and services 

Parent Class: roso:Sensing 
 

VideoStreaming 
(video streaming) 

Definition: component function to control video 
streaming between HRI engies and services 

Parent Class: roso:Sensing 
 

 

8.4.3 System Information 

 
Figure 8.13: System Information 

 
Table 8.41: System Information 
 

Description: This is a component for providing system information. The system information includes the status and 
the location of the system. This information belongs to the HRI Engine that is treated as a unified physical unit of 
several HRI Components. Therefore this component is different from other HRI Components and does not include 
RoIS_Common methods. 

Localization of a physical unit (i.e., robot, sensor, and actuator) is one of the essential functions for providing robotic 
services in physical space. An HRI Engine that is defined as a physical unit shall include this HRI Component to inform 
Service Applications about its location information. The location information depends on the physical elements of the 
HRI Engine; for example, if the HRI Engine is defined as a movable robot, this component may provide at least the 
position of the robot, and if the HRI Engine consists of sensors that are mounted in a wide room extensively, this 
component may provide at least the reference position. When possible, the HRI Component may provide the 
location information of each sensor or actuator as a list of location data. 

Query Method 

robot_position Returns location information. 

result timestamp DateTime [ISO8601] M Measurement time. 

class System Information

«interface»
System_Information

+ robot_position(out timestamp: DateTime, out position_data: List<::RLS::Data>, out robotref: List<RoIS_Identifier>): Returncode_t
+ engine_status(out engine_status: Component_Status, out operable time: DateTime): Returncode_t

«HRI_Engine»
Engine1

«HRI_Component»
System_Information_Component

0..*



  44                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

result robot_ref List<RoIS_Identifier> M List of the robot IDs. 

result position data List<Data> [RLS] M List of location data. Each entry at least 
contains ID of the location data. This may 
also be accompanied with additional 
information such as position or pose of the 
robot, sensor or actuator. It may also 
contain certainty of the localization act. 

engine_status Returns status information of the HRI Engine. 

result status Component_Status M Status information of this engine. 

result operable time List<DateTime> 
[ISO8601] 

O Operable time of the HRI Engine that 
includes this basic component. 

 

8.4.4 Person Detection 

Figure 8.14: Person Detection 
 
Table 8.42: Person Detection 
 

Description: This is a component for detecting number of persons. This component notifies a number of the detected 
people when the number has changed. 

This functionality is essential for typical robotic services; for example, if a Service Application is required to start its 
service when a person enters the service area, this component is effective to detect the entry of people. Similarly, if 
the Service Application needs to stop the service when the person moves out of the service area, this component can 
also detect the exit of people. 

class Person_Detection

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«interface»
Person_Detection

+ person_detected(in timestamp: DateTime, in number: UnlimitedNatural)

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«HRI_Component»
Person_Detection_Component

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               45 
 

Event Method 

person_detected Notifies number of people when the number has changed. 

result timestamp DateTime [ISO8601] M Measurement time. 

result number UnlimitedNatural M Number of detected persons 

 

8.4.5 Person Localization 

Figure 8.15: Person Localization 

 

Table 8.43: Person Localization 
 

Description: This is a component for detecting position of persons. This component notifies position of the detected 
people when the position has been localized. 

This functionality is essential for typical robotic services; for example, when a robot finds a person close to it, the 
robot may approach to the person and start asking if there is something the robot can do for the person. In some 
advanced robotic services, an environmental sensing system may find out a person is lost and order robots to 
approach the person for help. 

Command Method 

set_parameter Specifies person localization parameters. 

class Person_Localization

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«interface»
Person_Localization

- detection threshold: UnlimitedNatural
- minimum interval: UnlimitedNatural

+ person_localized(in timestamp: DateTime, in person_ref: List<RoIS_Identifier>, in position_data: List<::RLS::Data>)
+ get_parameter(out minimum-interval: UnlimitedNatural, out detection-threshold: UnlimitedNatural): Returncode_t
+ set_parameter(in minimum-interval: UnlimitedNatural, in detection-threshold: UnlimitedNatural): Returncode_t

«HRI_Component»
Person_Localization_Component

0..*



  46                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

argument detection threshold UnlimitedNatural O This component notifies an event if the 
distance of movement since previous event 
notification exceeds the threshold value. 

argument minimum interval UnlimitedNatural O This component notifies an event if the 
period since previous event notification 
exceeds the value of minimal interval. 

Query Method 

get_parameter Obtains person localization parameters. 

result detection threshold UnlimitedNatural O This component notifies an event if the 
distance of movement since previous 
event notification exceeds the 
threshold value. 

result minimum interval UnlimitedNatural O This component notifies an event if the 
period since previous event notification 
exceeds the value of minimal interval. 

Event Method 

person_localized Notifies position of people when the position has localized. 

result timestamp DateTime [ISO8601] M Measurement time. 

result person ref List<RoIS_Identifier> M List of detected person IDs. Reference 
information related to the ID shall be 
provided with each ID. 

By referring to the reference for the IDs, 
the Service Application can understand 
the relationship between the obtained 
IDs and the other IDs that are obtained 
from another component. 

result position data List<Data> [RLS] M List of detected person data. Each data 
entry at least contains position of the 
detected person. This may also be 
accompanied with additional 
information such as pose of the 
detected person. It may also contain 
certainty of the detection act. 

 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               47 
 

8.4.6 Person Identification 

 
Figure 8.16: Person Identification 

 

class Person_Identification

«interface»
Person_Identification

+ person_identified(in timestamp: DateTime, in person_ref: List<RoIS_Identifier>)

«HRI_Component»
Person_Identification_Component

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

0..*



  48                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

Table 8.44: Person Identification 

Description: This is a component for identifying person ID. This component notifies ID(s) of the detected people 
when the ID(s) has been identified. 

This functionality is essential for performing various robotic services, from simply calling by one’s name to 
performing advanced services based on person profiles or service histories. Numbers of methods and means for 
identification have been proposed and have been used so far, such as face, iris or gate recognition. This HRI 
Component provides an abstract mean for utilizing person recognition results. 

Event Method 

person_identified Notifies ID of people when the ID has identified. 

result timestamp DateTime [ISO8601] M Measurement time. 

result person ref List<RoIS_Identifier> M List of detected person IDs. Reference 
information related to the ID shall be 
provided with each ID. 

By referring to the reference for the IDs, the 
Service Application can understand the 
relationship between the obtained IDs and 
the other IDs that are obtained from 
another component. 

 

8.4.7 Face Detection 

 
Figure 8.17: Face Detection 

class Face_Detection

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«interface»
Face_Detection

+ face_detected(in timestamp: DateTime, in number: UnlimitedNatural)

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«HRI_Component»
Face_Detection_Component

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               49 
 

 
Table 8.45: Face Detection 

Description: This is a component for detecting number of human faces. This component notifies a number of the 
detected faces when the number has changed. 

This functionality is similar to “person_detection” component but it is treated as a separate component. This is 
because often the detection of human face has an individual meaning in the Service Applications. For example, if a 
robot detects a person but the person is not facing to the robot, the robot may not talk to the person. In such a case, 
the robot may move to the other direction of the person or wait until the person turns to the robot. Therefore this 
functionality is also essential for various robotic services. 

Event Method 

face_detected Notifies number of human face when the number has changed. 

result timestamp DateTime [ISO8601] M Measurement time. 

result number UnlimitedNatural M Number of human faces 

8.4.8 Face Localization 

 
Figure 8.18: Face Localization 

 
Table 8.46: Face Localization 

class Face_Localization

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«interface»
Face_Localization

+ detection threshold: UnlimitedNatural
+ minimum interval: UnlimitedNatural

+ face_localized(in timestamp: DateTime, in face_ref: List<RoIS_Identifier>, in position_data: List<::RLS::Data>)
+ get_parameter(in minimum-interval: UnlimitedNatural, in detection-threshold: UnlimitedNatural): Returncode_t
+ set_parameter(out minimum-interval: UnlimitedNatural, out detection-threshold: UnlimitedNatural): Returncode_t

«HRI_Component»
Face_Localization_Component

0..*



  50                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

Description: This is a component for detecting the position of human faces. This component notifies position of the 
detected human face(s) when the position has been localized. 

This functionality is similar to “person_localization” component but it is treated as a separate component. This is 
because often the position of human face has an individual meaning in the Service Applications. For example, if a 
robot is smaller than the human, the robot may need to look up the person. In such a case, the position of the face is 
needed separately from the position of the person. Therefore this functionality is also essential for various robotic 
services. 

Command Method 

set_parameter Specifies face localization parameters. 

argument detection threshold UnlimitedNatural O This component notifies an event if the 
distance of movement since previous event 
notification exceeds the threshold value. 

argument minimum interval UnlimitedNatural O This component notifies an event if the 
period since previous event notification 
exceeds the value of minimal interval. 

Query Method 

get_parameter Obtains face localization parameters. 

result detection threshold UnlimitedNatural O This component notifies an event if the 
distance of movement since previous event 
notification exceeds the threshold value. 

result minimum interval UnlimitedNatural O This component notifies an event if the 
period since previous event notification 
exceeds the value of minimal interval. 

Event Method 

face_localized Notifies position of human face when the position has localized. 

result timestamp DateTime [ISO8601] M Measurement time. 

result face ref List<RoIS_Identifier> M List of detected human face IDs. Reference 
information related to the ID shall be 
provided with the each ID. 

By referring to the reference for the IDs, the 
Service Application can understand the 
relationship between the obtained IDs and 
the other IDs that are obtained from 
another component. 

result position data List<Data> [RLS] M List of detected human face data. Each data 
entry at least contains position of the 
detected face. This may also be 
accompanied with additional information 
such as pose of the detected face. It may 
also contain certainty of the detection act. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               51 
 

8.4.9 Sound Detection 

 
Figure 8.19: Sound Detection 

 
Table 8.47: Sound Detection 

Description: This is a component for detecting number of sound sources. This component notifies a number of 
detected sound sources when the number has changed. 

This functionality is essential for typical robotic services; for example, in the case of home security service, the robot 
may watch for intruders coming or sound an alarm when it hears something. 

Event Method 

sound_detected Notifies number of sound sources when the number has changed. 

Result timestamp DateTime [ISO8601] M Measurement time. 

result number UnlimitedNatural M Number of sound sources. 
 
If the component can not detect sound 
sources separately, this parameter shall be 
1 or 0. 

 

class Sound_Detection

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«interface»
Sound_Detection

+ sound_detected(in timestamp: DateTime, in number: UnlimitedNatural)

«HRI_Component»
Sound_Detection_Component

0..*



  52                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

8.4.10 Sound Localization 

 
Figure 8.20: Sound Localization 

 
Table 8.48: Sound Localization 

Description: This is a component for detecting position of sound sources. This component notifies position of 
detected sound source(s) when the position has been localized. 

Often this functionality is used to detect the location of the speaker(s) by detecting the speaker’s voice since a person 
talks to the robot when he/she wants to start interaction. 

Command Method 

set_parameter Specifies sound localization parameters. 

argument detection 
threshold 

UnlimitedNatural O This component notifies an event if the 
distance of movement since previous 
notification exceeds the threshold value. 

argument minimum interval UnlimitedNatural O This component notifies an event if the 
period since previous event notification 
exceeds the threshold value. 

Query Method 

get_parameter Obtains sound localization parameters. 

class Sound_Localization

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«interface»
Sound_Localization

+ detection threshold: UnlimitedNatural
+ minimum interval: UnlimitedNatural

+ sound_localized(in timestamp: DateTime, in sound_ref: List<RS_Identifier>, in position_data: List<::RLS::Data>)
+ get_parameter(in minimum-interval: UnlimitedNatural, in detection-threshold : UnlimitedNatural): Returncode_t
+ set_parameter(out minimum-interval: UnlimitedNatural, out detection-threshold : UnlimitedNatural): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«HRI_Component»
Soubd_Localization_Component

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               53 
 

result detection 
threshold 

UnlimitedNatural O This component notifies an event if the 
distance of movement since previous 
notification exceeds the threshold value. 

result minimum interval UnlimitedNatural O This component notifies an event if the 
period since previous event notification 
exceeds the value of minimal interval. 

Event Method 

sound_localized Notifies position of sound sources when the position has localized. 

result timestamp DateTime [ISO8601] M Measurement time. 

result sound ref List<RoIS_Identifier> M List of detected sound source IDs. 
Reference information related to the ID 
shall be provided with the each ID. 

By referring to the reference for the IDs, the 
Service Application can understand the 
relationship between the obtained IDs and 
the other IDs that are obtained from 
another component. 

result position data List<Data> [RLS] M List of detected sound source data. Each 
data entry at least contains position of the 
detected sound source. It may also contain 
certainty of the detection act. 

 
 
 



  54                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

8.4.11 Speech Recognition 

 
Figure 8.21: Speech Recognition 

 
Table 8.49: Speech Recognition 

 
Description: This is a component for recognizing human speech. This component notifies text data of the recognized 
speech when the speech has been recognized. 

This functionality is essential for human robot interactions, from simply ordering the robot to do something to giving 
enough information to the Service Application for appropriate services. 

Here, we assume speech recognition algorithm which is not configurable by a descriptive grammar (e.g., W3C- 
SRGS). See Annex C for speech recognition algorithm which can be configured by a descriptive grammar. Mandatory 
requirement for the speech recognition component is to return result in string format. 

Command Method 

set_parameter Specifies speech recognition paramters. 

argument languages Set<String> [ISO639- 1] M Specifies languages the speech recognizer 
will recognize. 

argument grammer String O Specifies grammar for the speech 
recognizer. 

argument rule String O Specifies active rule in the grammer. 

class Speech_Recognition

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«interface»
Speech_Recognition

+ languages: String [0..*]
+ grammer: String
+ rule: String
+ recognizable languages: String [0..*]

+ set_parameter(in languages: Set<String>, in grammer: String, in rule: String): Retuncode_t
+ get_parameter(out recognizable_languages: Set<String>, out languages: Set<String>, out grammer: String, out rule: String): Returncode_t
+ speech_recognized(in timestamp: DateTime, in recognized_test: List<String>)
+ speech_input_started(in timestamp: DateTime)
+ speech_input_finished(in timestamp: DateTime)

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«HRI_Component»
Speech_Recoginition_Component

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               55 
 

Query Method 

get_parameter Obtains speech recognition paramters. 

result recognizable languages Set<String> [ISO639- 1] M Obtains languages the speech recognizer can 
recognize. 

result languages Set<String> [ISO639- 1] M Obtains languages the speech recognizer 
recognizes. 

result grammer String O Obtains grammar for the speech recognizer. 

result rule String O Obtains active rule in the grammer. 

Event Method 

speech_recognized Notifies recognized result when the speech has been recognized. 

result timestamp DateTime [ISO8601] M Time when the recognition has completed. 

result recognized text List<String> M List of speech recognition results. The result 
is provided as string data. 

For the speech recognition algorithm which 
can only output one candidate, returning a 
list filled with one result is recommended. 
String of recognized text can contain either 
a word or a sentence. 

speech_input_started Notifies the recognizer has detected start of speech input. 

result timestamp DateTime [ISO8601] M Time when the speech input has started. 

speech_input_finished Notifies the recognizer has detected end of speech input. 

result timestamp DateTime [ISO8601] M Time when the speech input has ended. 

 
 
 
 



  56                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 

8.4.12 Gesture Recognition 

 
Figure 8.22: Gesture Recognition 

 
Table 8.50: Gesture Recognition 

 
Description: This is a component for recognizing human gesture. This component notifies ID of the recognized 
gesture when the gesture has been recognized. 

This functionality is essential for human robot interactions. In the case of noisy environment or far field interaction, 
the user may interact with the robot by using gesture. 

The meaning of gesture is different among such as countries and situations. Also the recognizable gestures may be 
different by gesture recognition algorithms. The result shall be simply provided as gesture ID and the Service 
Application shall understand the meaning of the ID by the reference for the ID. 

Query Method 

get_parameter Obtains speech recognition paramters. 

class Gesture_Recognition

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«interface»
Gesture_Recognition

+ recognizable_gestures: RoIS_Identifier [0..*]

+ get_parameter(out recognizable_gesture: Set<RoIS_Identifier>): Returncode_t
+ gesture_recognized(in timestamp: DateTime, in gesture_ref: List<RS_Identifier>)

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«HRI_Component»
Gesture_Recoginition_Component

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               57 
 

result recognizable gestures Set<RoIS_Identifier> M Obtains gestures the gesture recognizer 
can recognize. The gesture is expressed as 
ID and the reference for the ID shall be 
provided with each ID. 

Event Method 

gesture_recognized Notifies recognized result when the gesture has been recognized. 

result timestamp DateTime [ISO8601] M Measurement time. 

result gesture ref List<RoIS_Identifier> M List of gesture recognition results. The result 
is provided as gesture types. The type is 
specified by gesture IDs. 

 
Reference information related to the ID 
shall be provided with each ID. 

For the gesture recognition algorithm 
which can only output one candidate, 
returning a list filled with one result is 
recommended. 

 

8.4.13 Speech Synthesis 

 
Figure 8.23: Speech Synthesis 

 

 

 

 

 

 

class Speech_Synthesis

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«interface»
Speech_Synthesis

+ speech_text: String
+ SSML_text: String
+ volume: UnlimitedNatural
+ language: String
+ character: RoIS_Identifier
+ synthesizable_languages: String [0..*]
+ synthesizable_characters: RoIS_Identifier [0..*]

+ set_parameter(in speech_text(SSML_format): String, in SSML_text: String, in volume: UnlimitedNatural, in character: RoIS_Identifier): Returncode_t
+ get_parameter(out speech_text: String, out SSML_text: String, out volume: UnlimitedNatural, out character: RoIS_Identifier, out synthesizable_languages: Set<String>, out synthesizable_characters: Set<RoIS_Identifier>): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«HRI_Component»
Speech_Synthesis_Component

0..*



  58                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 
Table 8.51: Speech Synthesis 

Description: This is a component for generating synthesized speech. This component acts to generate synthesized 
speech by specifying the speech text. 

This functionality is essential for human robot interactions. Naturally the robot talks to the user when it 
communicates with the user. 

Here, we assume speech synthesis algorithm which can synthesize a voice in multiple characters (e.g., male, female, 
robotic). W3C-SSML format is used to specify the language and the prosodic parameters. For speech synthesis 
algorithm which cannot specify the prosodic parameters, XML tags in W3C-SSML format shall be skipped. 

Command Method 

set_parameter Specifies speech synthesis parameters. 

argument speech_text String C Text to synthesize (in plain text format). 

argument SSML text String [W3C-SSML] C Text to synthesize (in W3C-SSML format). 

argument volume UnlimitedNatural O Volume. 

argument language String [ISO639-1] O Langage of the speech. 

argument character RoIS_Identifier O Character of the voice. 

Query Method 

get_parameter Obtains speech synthesis parameters. 

result speech_text String C Information about specified text (in plain 
text format). 

result SSML text String [W3C-SSML] C Information about specified text (in W3C- 
SSML format). 

result volume UnlimitedNatural O Information about specified volume. 

result language String [ISO639-1] O Information about specified language. 

result character RoIS_Identifier O Information about specified character of the 
voice. 

result synthesizable_languages Set<String> [ISO639- 1] O Information about languages that can be 
synthesized. 

result synthesizable_characters Set<RoIS_Identifier> O Information about characters that can be 
synthesized. 

Condition: These elements shall be selected according to the speech text format. 

 
 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               59 
 

8.4.14 Reaction 

 
Figure 8.24: Reaction 

 
Table 8.52: Reaction 

Description: This is a component for executing specified reaction. This component acts to execute specified reaction 
by specifying the reaction ID. 

This functionality is useful for human robot interactions. Generally it is difficult for the Service Application 
programmers to specify the robot reaction in detail since it depends on the hardware architecture. Therefore, this 
component provides a simple way to specify the robot reaction. For example, if the Service Application needs to 
express “yes”/“no” to the user, the Service Application programmer can execute the reaction only by specifying the 
reaction ID for “yes”/”no” reaction without regard for the expression method, such as nodding yes/no or showing a 
message for yes/no on its display. 

The meaning of reaction is different among such as countries. Also the executable reactions may vary from robot to 
robot. The reaction shall be simply specified by reaction ID and the Service Application shall understand the meaning 
of the ID by the reference for the ID. 

Command Method 

set_parameter Specifies reaction paramters. 

class Reaction

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«interface»
Reaction

+ reaction_ref: RoIS_Identifier
+ available_reactions: RoIS_Identifier [0..*]

+ set_parameter(in reaction_ref: RoIS_Identifier): Returncode_t
+ get_parameter(out available_reaction: Set<RoIS_Identifier>, out reaction_ref: RoIS_Identifier): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«HRI_Component»
Reaction_Component

0..*



  60                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

argument reaction ref RoIS_Identifier M Reaction type. The type is specifyed by 
reaction ID. 

Reference information related to the ID 
shall be specified with the each ID. 

Query Method 

get_parameter Obtains reaction parameters. 

result available_reactions Set<RoIS_Identifier> M Obtains reaction types the robot can 
execute. The reaction type is expressed as 
ID reference information. 

result reaction ref RoIS_Identifier M Information about specified reaction type. 

 
 

8.4.15 Navigation 

 
Figure 8.25: Navigation 

 

class Navigation

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«interface»
Navigation

+ target_position: ::RLS::Data [0..*] {ordered}
+ time_limit: UnlimitedNatural
+ routing_policy: String

+ set_parameter(in target_position: List<::RLS::Data>, in time_limit: UnlimitedNatural, in routing_policy: String): Returncode_t
+ get_parameter(out target_position: List<::RLS::Data>, out time_limit: UnlimitedNatural, out routing_policy: String): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«HRI_Component»
Navigation_Component

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               61 
 

Table 8.53: Navigation 

Description: This is a component for commanding navigation toward specified destinations. This 
component acts to move to the destination by specifying the position data of the destination. An HRI 
Engine (typically a robot) may include this component when the HRI Engine has the ability to move in the 
physical world. 

Navigation function is essential for typical robotic services to specify the robot movement toward the 
destination. This component allows Service Applications to command robots to perform navigation without 
concerning the actual navigation device. Target position shall be specified as a list of spatial positions. The 
actual paths to be navigated between each position and strategies such as for path generation or for 
obstacle avoidance are left to the component implementation. 

This component shall finish its operation when the robot arrives at the final position. 

Command Method 

set_parameter Specifies parameters for navigation. 

argument target_position List<Data> [RLS] M List of target position data. Each data 
entry may contain ID of the target 
position. The position data of the target 
position may be included in this entry, or 
may be obtained by referring by the ID. 
This may also be accompanied with 
additional information such as speed. 

argument time_limit UnlimitedNatural O Time limit for determining whether it is 
impossible to continue the navigation. 

The time shall be specified in 
millisecond. 

argument routing_policy String O Policy for determining the navigation 
route. For example, there may be the 
routing policies such as “time priority” or 
“distance priority.” 

Query Method 

get_parameter Obtains parameters for navigation. 

result target position List<Data> [RLS] M List of specified target position data. 

result time_limit UnlimitedNatural O Time limit for determining whether it is 
impossible to continue the navigation. 

The time shall be specified in 
millisecond. 



  62                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

result routing_policy String O Policy for determining the navigation 
route. For example, there may be the 
routing policies such as “time priority” or 
“distance priority.” 

 

8.4.16 Follow 

 
Figure 8.26: Follow 

 
Table 8.54: Follow 

Description: This is a component for following a specified object. This component acts to follow an object by 
specifying the ID of the object. An HRI Engine (typically a robot) may include this component when the HRI Engine has 
the ability to move in the physical world. 

Follow function is essential for typical robotic services to specify the robot movement for following the target object. 

This component shall keep following the target until the stop command is requested although the target is not 

moving. 

Command Method 

set_parameter Specifies parameters for follow. 

class Follow

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«interface»
Follow

+ target_object_ref: RoIS_Identifier
+ distance: UnlimitedNatural
+ time_limit: UnlimitedNatural

+ set_parameter(in target_object_ref: RoIS_Identifier, in distance: UnlimitedNatural, in time_limit: UnlimitedNatural): Returncode_t
+ get_parameter(out target_object_ref: RoIS_Identifier, out distance: UnlimitedNatural, out time_limit: UnlimitedNatural): Returncode_t

«HRI_Component»
Follow_Component

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               63 
 

argument target object ref RoIS_Identifier M Taget object. The object is specified by 
object IDs. 

The reference information related to the ID 
shall be specified with each ID. 

argument distance UnlimitedNatural M Minimum distance between the target and 
the robot. 

When the robot comes closer than the limit 
distance, the robot suspends following. 

The distance shall be specified in millimeter. 

argument time_limit UnlimitedNatural O Time limit for determining whether it is 
impossible to continue following. 

If this parameter is not specified, the 
default value may be used. 

The time shall be specified in milliseconds. 

Query Method 

get_parameter Obtains parameters for follow. 

result target object ref RoIS_Identifier M Information about the specified target 
object. 

result distance UnlimitedNatural M Minimum distance between the target and 
the robot. 

The distance shall be specified in 
millimeters. 

result time_limit UnlimitedNatural O Time limit for determining whether it is 
impossible to continue following. 

The time shall be specified in milliseconds. 

 

 



  64                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

8.4.17 Move 

 
Figure 8.27: Move 

 
Table 8.55: Move 

Description: This is a component for moving based on a specified motion. The motion is simply specified by a line or 
a curve. An HRI Engine (typically a robot) may include this component when the HRI Engine has the ability to move in 
the physical world. 

Move function is essential for typical robotic services to specify a little motion for moving over a little from the 
current position. 

This component shall finish its operation when the specified motion finishes. 

Command Method 

set_parameter Specifies parameters for move. 

argument line List<Integer> C Distance and orientation for specifying the 
line. 

The distance shall be specified in millimeter 
and the orientation shall be specified in 
degree. 

class Move

«HRI_Engine»
Engine1

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 «enum» UNINITIALIZED
 «enum» READY
 «enum» BUSY
 «enum» WARNING
 «enum» ERROR

«interface»
Move

+ line: Integer [0..*] {ordered}
+ curve: Integer [0..*] {ordered}
+ time: UnlimitedNatural

+ set_parameter(in line: List<Integer>, in curve: List<Integer>, in time: UnlimitedNatural): Returncode_t
+ get_parameter(out line: List<Integer>, out curve: List<Integer>, out time: UnlimitedNatural): Returncode_t

«HRI_Component»
Move_Component

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               65 
 

argument curve List<Integer> C Radius and direction for specifying the 
curve. 

The radius shall be specified in millimeter 
and the direction shall be specified in 
degree. 

argument time UnlimitedNatural O Operating time for the motion. 
 
The time shall be specified in milliseconds. 

Query Method 

get_parameter Obtains parameters for move. 

result line List<Integer> C Specified distance and orientation for 
specifying the line. 

The distance shall be specified in millimeter 
and the orientation shall be specified in 
degree. 

result curve List<Integer> C Specified radius and direction for specifying 
the curve. 

The radius shall be specified in millimeter 
and the direction shall be specified in 
degree. 

result time UnlimitedNatural O Specified operating time. 
The time shall be specified in milliseconds. 

Condition: These elements shall be selected according to the motion. 

 



  66                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

8.4.18 Audio Streaming 

 
Figure 8.28: Audio Streaming 

 
Table 8.56: Audio Streaming 

 
Description: This component controls audio streaming between HRI engines and services. This component transmits 
audio streams captured by the component and receives audio streams from services. The encoding and transport are 
negotiated through parameter exchange. 

This functionality is essential for performing various robotic services, especially remotely operated by person. 

Command Method 

set_parameter Specifies audio streaming parameters. 

argument encoding parameters String O This component encodes an audio stream 
with specified encoding parameters. 

argument transport parameters String O This component sets up a transport 
channel with specified transport 
parameters. 

connect_stream  

result stream_id String O An id assigned to distinguish the 
stream. 

disconnect_stream Disconnect  



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               67 
 

argument stream_id String M Specifies the stream to disconnect. 

suspend_stream Requests the HRI engine to suspend the specified stream. 

argument stream_id String M Specifies the stream to suspend. 

resume_stream Requests the HRI engine to suspend the specified stream. 

argument stream_id String M Specifies the stream to resume. 

Query Method 

get_parameter  

result available encodings String O This component can accept request for 
audio stream encoding. 

result available transports String O This component can accept request for 
audio stream transport. 

get_stream_status  

argument stream_id String M Specifies the stream to query its status. 

result status Stream_Status O Status of the stream 

Event Method 

notify_stream_status Notifies status of the stream captured at the services. 

argument stream_id String M The ID of the stream  

argument timestamp DateTime [ISO8601] M Measurement time 

argument status Stream_Status M Status of the stream 

 



  68                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

8.4.19 Video Streaming 

 
Figure 8.29: Video Streaming 

 
Table 8.57: Video Streaming 

Description: This component controls video streaming between HRI engines and services. This component transmits 
video streams captured by the component and receives audio streams from services. The encoding and transport are 
negotiated through parameter exchange. 

This functionality is essential for performing various robotic services, especially remotely operated by person. 

Command Method 

set_parameter Specifies audio streaming parameters. 

argument encoding parameters String O This component encodes an video stream 
with specified encoding parameters. 

argument transport parameters String O This component sets up a transport 
channel with specified transport 
parameters. 

connect_stream  

result stream_id String O An id assigned to distinguish the 
stream. 

disconnect_stream Disconnect  

argument stream_id String M Specifies the stream to disconnect. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               69 
 

suspend_stream Requests the HRI engine to suspend the specified stream. 

argument stream_id String M Specifies the stream to suspend. 

resume_stream Requests the HRI engine to suspend the specified stream. 

argument stream_id String M Specifies the stream to resume. 

Query Method 

get_parameter  

result available encodings String O This component can accept request for 
audio stream encoding. 

result available transports String O This component can accept request for 
audio stream transport. 

get_stream_status  

argument stream_id String M Specifies the stream to query its status. 

result status Stream_Status O  

Event Method 

notify_stream_status Notifies status of the stream captured at the services. 

argument stream_id String M The ID of the stream  

argument timestamp DateTime [ISO8601] M Mearsurement time 

argument status Stream_Status M Status of the stream 

 

 

 
  



  70                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 

 

This page intentionally left blank. 
 

 
  



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               71 
 

Annex A: Examples of Profile in XML 
(Informative) 

The following shows examples of describing each type of profile in XML. 
 

A.1 Parameter Profile 
This is an example of a Parameter Profile for a parameter described in XML. 
 

This Parameter Profile defines the maximum detectable number of persons as a parameter in the person detection function. 
This parameter is defined as a parameter exchanged by RoIS interface method, such as the argument parameter for 
‘set_parameter()’ and the result parameter for ‘get_parameter()’. 

The parameter name is defined as ‘max_number’ in the attribute ‘rois:name’ of the <rois:ParamerProfile> tag, and a 
description of this parameter is given in the attribute ‘rois:description’. In addition, when a default value for the parameter 
is specified, the value can be specified using the attribute ‘rois:default_value’ in the <rois:ParameterProfile> tag. Data type 
of the parameter is specified using the <rois:data_type_ref> tag within the <rois:ParameterProfile> tag. Here, the data type 
of ‘max_number’ is defined as ‘urn:x-rois:def:DataType:ATR::Integer’in the attribute ‘rois:code’ of the 
<rois:data_type_ref> tag. 

Note that ‘data_type_ref’ is an ID used for referencing a separately defined data type. Here, for example, ‘urn:x- 
rois:def:DataType:ATR::Integer’ in the data type list is defined as integer type. 
 

A.2 Message Profile 

A.2.1 Command Message Profile 
This is an example of a Message Profile for a message used in the Command Interface described in XML. 
 

This Message Profile defines a command message for change rate of speech in the speech synthesis component. 

 

Message Profile is defined using <rois:MessageProfile>. When the message is used in the Command Interface, the type of 
the message is specified as ‘rois:CommandMessageProfileType’ in the attribute ‘xsi:type’ of the 

<rois:MessageProfile> tag. 

The message name is defined as ‘change_speech_speed’ in the ‘rois:name’ attribute of the <rois:MessageProfile> tag. In a 
Command Message Profile, an argument parameter for a command message is defined using a <rois:Arguments> tag within 

<rois:ParameterProfile rois:description=”Maximum detectable number of person” rois:default_value=”10” 
rois:name=”max_number”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::Integer” /> 

</rois:ParameterProfile> 

<rois:MessageProfile xsi:type=”rois:CommandMessageProfileType” rois:name=”change_speech_speed”> 

<rois:Arguments rois:description=”utterance speed” rois:name=”speed”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::Integer” /> 

</rois:Arguments> 

</rois:MessageProfile> 



  72                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

the <rois:CommandMessageProfile> tag. The description form of <rois:Arguments> follows the Parameter Profile. 

Here, an integer parameter is defined as the argument parameter when issuing the command message. The parameter name 
is defined as “speed” in the attribute ‘rois:name’ of the <rois:Arguments> tag, and a description of this parameter is given 
in the attribute ‘rois:description’. In addition, the <rois:data_type_ref> tag within the <rois:Arguments> tag defines the 
data type as ‘urn:x-rois:def:DataType:ATR::Integer’. 

A.2.2 Event Message Profile 
This is an example of a Message Profile for a message used in the Event Interface described in XML. 
 

This Message Profile defines an event message notifying that a person has been detected in the person detection 
component. 

Message Profile is defined using <rois:MessageProfile> . When the message is used in the Event Interface, the type of the 
message is specified as ‘rois:EventMessageProfileType’ in the attribute ‘xsi:type’ of the <rois:MessageProfile> tag. 

The message name is defined as ‘person_detected’ in the attribute ‘rois:name’ of the <rois:MessageProfile> tag. In an 
event message, a result parameter used in ‘get_event_detail()’ performed in conjunction with event notification is defined 
using a <Results> tag within the < rois:MessageProfile > tag. The description form of <rois:Results> follows the 
Parameter Profile. 

Two parameters are defined here for the result parameters. Each definition uses the attribute ‘rois:name’ of the 

<rois:Results> tag and the <rois:data_type_ref> tag within the <rois:Results> tag for defining the result parameter name 
and the data type, respectively. Specifically, the data type indicating detection time is defined as ‘urn:x- 
rois:def:DataType:ATR::DateTime’ for the result parameter ‘timestamp’ and that indicating the number of the detected 
person is defined as ‘urn:x-rois:def:DataType:ATR::Integer’ for the result parameter ‘number’. 

Note that data_type_ref is an ID used for referencing a separately defined data type. Here, for example, ‘urn:x- 
rois:def:DataType:ATR::DateTime’ in the data type list is defined as DateTime_type. 

A.2.3 Query Message Profile 
This is an example of a Message Profile for a message used in the Query Interface described in XML. 
 

 

<rois:MessageProfile xsi:type=”rois:EventMessageProfileType” rois:name=”person_detected”> 

<rois:Results rois:name=”timestamp”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::DateTime” /> 

</rois:Results> 

<rois:Results rois:name=”number”> 

   
 

 

<rois:MessageProfile xsi:type=”rois:QueryMessageProfileType” rois:name=”engine_status”> 

<rois:Results rois:name=”status”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::Component_Status” /> 

</rois:Results> 

<rois:Results rois:name=”operable_time”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::DateTime” /> 

</rois:Results> 
</rois:MessageProfile> 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               73 
 

This Message Profile defines a basic message for performing a query on HRI Engine status. 

 

Message Profile is defined using <rois:MessageProfile> . When the message is used in the Query Interface, the type of the 
message is specified as ‘rois:QueryMessageProfileType’ in the attribute ‘xsi:type’ of the <rois:MessageProfile> tag. 

The message name is defined as ‘engine_status’ in the attribute ‘rois:name’ of the <rois:MessageProfile> tag. In a Query 
Message Profile, a result parameter used in ‘query()’ is defined using the <rois:Results> tag within the 
<rois:MessageProfile> tag. The description form of <rois:Results> follows the Parameter Profile. 

Two result parameters are defined in this profile, i.e., the status and the operable time of the HRI Engine. The names of 
these result parameters are defined using the attribute ‘rois:name’ of <rois:Results> tag and <rois:data_type_ref> tag 
within the <rois:Results> tag, respectively. The data type for these result parameters are defined as ‘urn:x- 
rois:def:DataType:ATR::Component_Status’ and ‘urn:x-rois:def:DataType:ATR::DateTime’ by using 
<rois:data_type_ref> tag. 

This Message Profile defines a basic message for performing a query on HRI Engine status. 

Message Profile is defined using <rois:MessageProfile> . When the message is used in the Query Interface, the type of the 
message is specified as ‘rois:QueryMessageProfileType’ in the attribute ‘xsi:type’ of the <rois:MessageProfile> tag. 

The message name is defined as ‘engine_status’ in the attribute ‘rois:name’ of the <rois:MessageProfile> tag. In a Query 
Message Profile, a result parameter used in ‘query()’ is defined using the <rois:Results> tag within the 
<rois:MessageProfile> tag. The description form of <rois:Results> follows the Parameter Profile. 

Two result parameters are defined in this profile, i.e., the status and the operable time of the HRI Engine. The names of 
these result parameters are defined using the attribute ‘rois:name’ of <rois:Results> tag and <rois:data_type_ref> tag 
within the <rois:Results> tag, respectively. The data type for these result parameters are defined as ‘urn:x- 
rois:def:DataType:ATR::Component_Status’ and ‘urn:x-rois:def:DataType:ATR::DateTime’ by using 
<rois:data_type_ref> tag. 

 

Note that data_type_ref is an ID used for referencing a separately defined data type. In this case, ‘urn:x- 
rois:def:DataType:ATR::Component_Status’ in the data type list is defined as Component_Status type. 
 

A.3 HRI Component Profile 
This is an example of an HRI Component Profile described in XML. 

<rois:HRIComponentProfile> 

<gml:identifier>urn:x-rois:def:HRIComponent:ATR:PersonDetection</gml:identifier> 

<gml:name>person_detection</gml:name> 

// ===== Command Message ===== 

<rois:MessageProfile xsi:type=”rois:CommaneMessageProfileType” rois:name=”start” /> 

<rois:MessageProfile xsi:type=”rois:CommaneMessageProfileType” rois:name=”stop” /> 

<rois:MessageProfile xsi:type=”rois:CommaneMessageProfileType” rois:name=”suspend” /> 

<rois:MessageProfile xsi:type=”rois:CommaneMessageProfileType” rois:name=”resume” /> 
// ===== Query Message ===== 

<rois:MessageProfile xsi:type=”rois:QueryMessageProfileType” rois:name=”component_status”> 

<rois:Results rois:name=”status”> 



  74                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::Component_Status” /> 

</rois:Results> 

</rois:MessageProfile> 

// ===== Event Message ===== 

<rois:MessageProfile xsi:type=”rois:EventMessageProfileType” rois:name=”person_detected”> 
<rois:Results rois:name=”timestamp”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::DateTime” /> 

</rois:Results> 

<rois:Results rois:name=”number”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::Integer” /> 

</rois:Results> 

</rois:MessageProfile> 

// ===== Parameter ===== 

<rois:ParameterProfile rois:description=”Maximum detectable number of person” rois:default_value=”10” 
rois:name=”max_number”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::Integer” /> 
</rois:ParameterProfile> 

</rois:HRIComponentProfile> 
 

This profile defines, in particular, a list of messages belonging to the person detection function as an example of an HRI 
Component. The HRI Component name is defined as ‘person_detection’ and the HRI Component ID as ’urn:x- 
rois:def:HRIComponent:ATR::PersonDetection’ in the <gml:name> tag and the <gml:identifier> tag, respectively, within 
the <rois:HRIComponentProfile> tag. The messages and parameters that can be used by the HRI Component are defined 
using the <rois:MessageProfile> tag and <rois:ParameterProfile> tag, respectively, within the 

<rois:HRIComponentProfile> tag. Definition of a message by the <rois:MessageProfile> tag and definition of a parameter 
by the <rois:ParameterProfile> tag follow the definition of the Message Profile and the Parameter Profile, respectively. 
Here, the person_detection HRI Component is defined as having four command messages (start, stop, pause, and resume), 
one query messages (component_status), and one event message (person_detected) for a total of six messages. It is also 
defined as having one parameter (max_number) which is exchanged by ‘set_parameter()’ and ‘get_parameter()’ method. 

Furthermore, when defining an HRI Component that adds original messages and parameters to those belonging to this 
person_detection HRI Component, the HRI Component Profile can be defined as shown by the following example. 

 

<rois:HRIComponentProfile> 

<gml:identifier>urn:x-rois:def:HRIComponent:ATR::PersonMonitor</gml:identifier> 

<gml:name>person_monitor</gml:name> 

// ===== Include HRI Component Profile 

<rois:SubComponentProfile>urn:x- 
rois:def:HRIComponent:ATR::PersonDetection</rois:SubComponentProfile> 

     
  

  

 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               75 
 

This HRI Component Profile defines an HRI Component called ‘person_monitor.’ This HRI Component adds to the 
messages of the person_detection HRI Component by also having an event message called “person_disappeared” that 
sends a notification advising that a person can no longer be detected. In this case, the person_detection HRI Component 
can be included as a sub HRI Component Profile so that the same message definitions can be omitted. A sub HRI 
Component Profile is included by specifying the ID of that HRI Component Profile using the <rois:SubComponentProfile 
> tag within the <rois:HRIComponentProfile> tag. 

A.4 HRI Engine Profile 
This is an example of an HRI Engine Profile described in XML. 
 

 

 

This HRI Engine Profile defines an HRI Engine called ‘MainHRI’ having two HRI Components: ‘person_detection’ and 
‘person_identification’. The profile name is defined as ‘MainHRI’ and the HRI Engine Profile ID as “urn:x- 
rois:def:HRIEngine:ATR::MainHRI” in the <gml:name> tag and the <gml:identifier> tag, respectively, within the 

<rois:HRIEngineProfile> tag. The HRI Component Profiles in this HRI Engine are defined by specifying the ID of that 
HRI Component Profile by the <rois:HRIComponent> within the <rois:HRIEngineProfile> tag. 
 

</rois:HRIComponentProfile> 

<rois:HRIEngineProfile> 

<gml:identifier>urn:x-rois:def:HRIEngine:ATR::MainHRI</gml:identifier> 

<gml:name>MainHRI</gml:name> 

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes” ?> 

<rois:HRIComponent>urn:x- 
rois:def:HRIComponent:ATR::PersonDetection</rois:HRIComponent> 

<rois:HRIComponent>urn:x- 
rois:def:HRIComponent:ATR::PersonIdentification</rois:HRIComponent> 
</rois:HRIEngineProfile> 

<rois:HRIComponentProfile> 

<gml:identifier>urn:x-rois:def:HRIComponent:ATR::PersonDetection</gml:identifier> 

<gml:name>person_detection</gml:name> 

<rois:MessageProfile xsi:type=”rois:CommandMessageProfileType” rois:name=”start” /> 
..... 

</rois:HRIComponentProfile> 

<rois:HRIComponentProfile> 

<gml:identifier>urn:x-rois:def:HRIComponent:ATR::PersonIdentification</gml:identifier> 

<gml:name>person_identification</gml:name> 

<rois:MessageProfile xsi:type=”rois:CommandMessageProfileType” rois:name=”start” /> 
..... 



  76                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

A system consisting of more than one HRI Engine can be defined in the following way. 

 

The above example defines a system called “mainHRI” that includes two HRI Engines ‘SubHRI01’ having two HRI 
Components (person detection and person identification) and ‘SubHRI02’ having three HRI Components (person 
detection, person identification, and face detection). The HRI Engine Profile of ‘MainHRI’ includes the HRI Engine 
Profile of ‘HRI01’ and that of ‘HRI02’ as sub profiles by specifying the IDs of the corresponding HRI Component Profiles 
using the <rois:SubProfile> tag within the <rois:HRIEngineProfile> tag. 
 
  

<rois:HRIEngineProfile> 

<gml:identifier>urn:x-rois:def:HRIEngine:ATR::MainHRI</gml:identifier> 

<gml:name>MainHRI</gml:name> 

<rois:SubProfile> 

<gml:identifier>urn:x-rois:def:HRIEngine:ATR::SubHRI01</gml:identifier> 

<gml:name>SubHRI01</gml:name> 

<rois:HRIComponent>urn:x- rois:def:HRIComponent:ATR::PersonDetection</rois:HRIComponent> 
<rois:HRIComponent>urn:x- rois:def:HRIComponent:ATR::PersonIdentification</rois:HRIComponent> 

</rois:SubProfile> 

<rois:SubProfile> 

<gml:identifier>urn:x-rois:def:HRIEngine:ATR::SubHRI02</gml:identifier> 

<gml:name>SubHRI02</gml:name> 

  

  
  

 

 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               77 
 

Annex B: Examples of CommandUnitSequence in 
XML (informative) 

B.1 CommandUnitSequence 
This is an example of a CommandUnitSequence description for execute() in the command interface. 
 

CommandUnitSequence specifies a procedure for operating several command messages using a 

<rois:CommandUnitSequence> tag. A CommandUnitSequence is composed of a series of command unit lists and each 
command unit list is specified as either ‘rois:CommandMessageType’ or ‘rois:ConcurrentCommandType.’ 

 

When the command unit list specifies a single command message, ‘xsi:type’ in the <rois:command_unit_list> is specified 
as ‘rois:CommandMessageType,’ while the command unit list specifies a parallel operation of several command lists, the 
attribute ‘xsi:type’ is specified as ‘rois:ConcurrentCommandsType.’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.1: Structure of the CommandUnitSequence example 

<rois:CommandUnitSequence> 

<rois:command_unit_list xsi:type=”rois:CommandMessageType” rois:command_type=”A” /> 

<rois:command_unit_list xsi:type=”rois:CommandMessageType” rois:command_type=”B” /> 

<rois:command_unit_list xsi:type=”rois:ConcurrentCommandsType”> 

<rois:branch_list xsi:type=”rois:BranchType”> 

<rois:command_list xsi:type=”rois:CommandMessageType” rois:command_type=”C” /> 

<rois:command_list xsi:type=”rois:CommandMessageType” rois:command_type=”D” /> 
</rois:branch_list> 

  

    

 

 

    

 

Command D 

Command C 

Command B 

Command A 

Command E 

Command F 



  78                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

ConcurrentCommands is composed of multiple Branches, whose attribute ‘xsi:type’ is specified as ‘rois:BranchType,’ and 
all the Branches are executed in parallel. In each Branch, several elements of ‘rois:CommandMessageType’ are listed 
using <rois:command_list> tag to be executed sequentially. A command unit list following the ConcurrentCommands 
should wait until all commands in all Branches in the ConcurrentCommands are completed. 

This example specifies a procedure for operating six command messages, i.e., ‘A’ to ‘F,’ illustrated in Figure B.1. In this 
procedure, the attribute ‘xsi:type’ of the first two <rois:command_unit_list> tags are specified as 
‘rois:CommandMessageType’, that is, two commands ‘A’ and ‘B’ are sequentially operated. 

The next <rois:command_unit_list> is specified as ‘rois:ConcurrentCommandsType’ with the attribute ‘xsi:type,’ that is, it 
contains parallel operation branches in it. Two <rois:branch_list> tags, i.e., ‘Parallel Command Branch 1’ and ‘Parallel 
Command Branch 2’, are operated in parallel. In the former element of <rois:branch_list>, two command messages, i.e., 
command message ‘C’ and ‘D’, are specified using <rois:command_list xsi:type=”rois:CommandMessageType”> tags so 
that the command message C and D are operated sequentially. The latter element of <rois:branch_list> contains command 
message ‘E,’ that is executed independent from the former branch. 

The last occurrence of <rois:command_unit_list>, that is specified as ‘rois:CommandMessageType’ with ‘xsi:type’ 
attribute, is executed after execution of both branches. 
 

B.2 CommandMessage 
This is an example of a CommandMessage description for the CommandUnitList. 
 

A command message is defined using a <rois:command_list> tag with the attribute ‘xsi:type’ of 
‘rois:CommandMessageType’. This example defines a “set_parameter” message for the speech synthesis component. The 
command method of the HRI Component is specified as “set_parameter” in the <rois:command_type> tag. The 

<rois:command_list xsi:type=”rois:CommandMessageType” rois:command_type=”set_parameter” 
rois:command_id=””> 

<rois:component_ref rois:version=”0.1” 

rois:codebook_ref=”urn:x-rois:def:DataType:ATR::ComponentType” rois:code=”speech_synthesis” /> 

<rois:arguments> 

<rois:parameter rois:name=”speech_text”> 
<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::String” /> 

<rois:value>hello</rois:value> 

</rois:parameter> 

<rois:parameter rois:name=”volume”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::Integer” /> 

<rois:value>10</rois:value> 

</rois:parameter> 

<rois:parameter rois:name=”language”> 

<rois:data_type_ref rois:code=”urn:x-rois:def:DataType:ATR::Integer” /> 

<rois:value>en</rois:value> 

</rois:parameter> 
</rois:arguments> 

</rois:command_list> 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               79 
 

<rois:component_ref> within <rois:command_list> tag defines the reference ID of the HRI Component as 
“speech_synthesis”. Note that the reference ID is obtained when the Service Application bind the HRI Component. The 
reference ID is expressed using RoIS_Identifier, If there is a reference codebook for the reference IDs, the codebook and 
its version are specified in the attribute ‘rois:codebook and ‘rois:version’ in the <rois:component_ref> tag. Here, the 
codebook and the version are specified as ‘urn:x-rois:def:DataType:ATR::ComponentType’ and ‘0.1’, respectively. 

 

The HRI Engine set a command ID of this message in the attribute ‘rois:command_id’ of the <rois:command_list> tag 
when the HRI Engine receives this message. Therefore the Service Application does not need to define any value in this 
tag. 

Three argument parameters are specified for this command message. These arguments are defined using the 

<rois:parameter> tags within the <rois:arguments> tag. The name of each parameter is specified in the attribute 
‘rois:name’ of the <rois:parameter> tag and the value is specified using <rois:value> tag within the <rois:parameter> tag. 
Here, the parameters ‘speech text,’ ‘volume’ and ‘language’ are specified as ‘hello,’ ‘10’ and ‘en’, respectively. Note that, 
data type is expressed in ISO639-1 and ‘en’ means English. 



  80                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

Annex C: Examples of User-Defined HRI Component 
(informative) 

C.1 Speech Recognition (W3C-SRGS) 
Table C.1: Speech Recognition ([W3C-SRGS]) 
 

Description: Recognize speech input. Here, we assume speech recognition algorithm which is configurable by a 
descriptive grammar ([W3C-SRGS]). Mandatory requirement for the speech recognition component is to return N- 
best result. For the speech recognition algorithm which can only output one candidate, returning a list filled with 1- 
best result is recommended. String of recognized text can contain either a word or a sentence. 

Command Method 

set_parameter Specifies speech recognition parameters. 

argument languages Set<String> [ISO639- 1] O Specifies languages the speech recognizer 
will recognize. 

argument position_of_sound Data [RLS] O Specifies direction of sound source the 
speech recognizer listen to. 

argument grammar String [W3C-anyURI] M Specifies URI of grammar file in W3C- SRGS 
format. 

argument active_rule RuleReference [W3C- 
SRGS] 

M Specifies active rule in the grammar. 

Query Method 

get_parameter Obtains speech recognition paramters. 

result languages Set<String> [ISO639- 1] M Information about languages the recognizer 
is recognizing. 

result position_of_sound Data [RLS] O Information about direction of sound source 
the recognizer is listening to. 

result grammar String [W3C-anyURI] M Information about speech recognition 
grammar. 

result active_rule RuleReference [W3C- 
SRGS] 

M Information about active rule in the 
grammar. 

result recognizable_languages Set<String> [ISO639- 1] M Information about languages the recognizer 
can recognize. 

Event Method 

speech_recognized Notifies speech recognition has completed. 

result timestamp DateTime [ISO8601] M Time when the recognition has completed. 

result timestamp_speech_start DateTime [ISO8601] O Time when the speech input has started. 

result timestamp_speech_end DateTime [ISO8601] O Time when the speech input has ended. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               81 
 

result nbest NbestType M Speech recognition result in N-best format. 

result lattice LatticeType O Speech recognition result in lattice format. 

result position_of_sound Data [RLS] O Direction and error distribution of sound 
source of the recognized speech. 

speech_input_started Notifies the recognizer has detected start of speech input. 

speech_input_finished Notifies the recognizer has detected end of speech input. 

speech_recognition_started Notifies the recognizer has started the recognition process. 

speech_recognition_finished Notifies the recognizer has finished the recognition process. 
 

Table C.2: NBestType 
 

Description: Data type for speech recognition result in N-best format. 

Derived From: None 

Attributes 

nbest List<String, String [ISO639-1], Error [RLS]> M N ord Tuple of recognized string, 
language, certainty. 

 
Table C.3: LatticeType 
 

Description: Data type for speech recognition result in lattice format. 

Derived From: None 

Attributes 

lattice List<String, String [ISO639-1], RS_Identifier 
[ISO19115], RS_Identifier [ISO19115], 
RS_Identifier [ISO19115], Error [RLS]> 

M N ord Tuple of recognized string, 
language, id, previous id, 
next id, certainty. 

 

C.2 Person Gender Identification 
Table C.4: Person Gender Identification 
 

Description: This is a component for identifying person gender. This component notifies person gender code of the 
detected people when the code has been identified. 

This functionality may be effective for performing various robotic services since often the service needs to switch its 
content on the basis of person gender. 

Event Method 

person_gender_identified Notifies gender code of people when the gender has been identified. 

result timestamp DateTime [ISO8601] M Measurement time. 

result person ref List<RoIS_Identifier> M List of detected person IDs. Reference 
information related to the ID may be 



  82                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

    provided with the each ID. 
 
By referring the reference for the IDs, the 
Service Application can understand the 
relationship between the obtained IDs and 
the other IDs that are obtained from 
another component. 

result person gender code List<Integer> [ISO5218] M List of detected person gender code. 

 

C.3 Person Age Recognition 
Table C.5: Person Age Recognition 

Description: This is a component for recognizing person age. This component notifies person age of the detected 
people when the age has been recognized. There may be a range of the recognized age. Therefore the recognized 
age shall be described by lower age limit and upper age limit. 

This functionality may be effective for performing various robotic services since the service often needs to switch its 
content on the basis of person age. 

Event Method 

person_age_recognized Notifies age of people when the age has been recognized. 

result timestamp DateTime [ISO8601] M Measurement time. 

result person ref List<RoIS_Identifier> M List of detected person IDs. Reference 
information related to the ID may be 
provided with the each ID. 

By referring the reference for the IDs, the 
Service Application can understand the 
relationship between the obtained IDs and 
the other IDs that are obtained from 
another component. 

result lower age limit List<Integer> M List of upper limit of recognized age. 

result upper age limit List<Integer> M List of lower limit of recognized age. 

 

C.4 Wheelchair Robot 
Table C.6: Wheelchair Robot 

  



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               83 
 

Description: This component defines a common interface to control the semi-autonomous wheelchair robot that extends 
the existing definition of Navigation component in RoIS 1.0. 

The component has facilities to localize itself, to avoid collisions with obstacles and people in a corridor, and to notify 
event of 'brake' with 'wc_status_changed' event. 

Command Method 

brake Changes wheelchair brake status. 

argument status Boolean M Changes wheelchair brake status. 

set_parameter Specifies parameters to control the wheelchair robot. 

argument preferred_max_speed Double O Preferred max-speed defined by the user in 
mm/sec. 

argument behaviour_tag String O Tag of the interaction scenario to be 
executed. 

argument navigation_mode String O Specifies control mode from two literals 
“Location” or “Tag.” 

Query Method 

wc_status_change Gets the current status of wheelchair 

result position String M Robot position in comma separated double 
values [x.x, y.y]. 

result brake_status Boolean M Wheelchair brake status. 

result pause_status Boolean M Wheelchair pause status. 

result wc_status String M Six possible value literals: running, obstacle, 
path_error, stopped, brakes, paused. 

result nav_status String M Two possible value literals: running, stopped. 

get_parameter Obtains parameters to control the wheelchair robot 

result preferred_max_speed Double O Preferred max-speed defined by the user in 
mm/sec. 

result behavior_tag String O Tag of the interaction scenario to be 
executed. 

result navigation_mode String O Specifies control mode from two literals 
“Location” or “Tag.” 

Event Method 

wc_status_change Notifies the status change of wheelchair as an event as well as the query message with 
same name. 



  84                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 

C.5 Example of interactive measuring vital data with a personal 
robot 

FigureC.5.1: shows a scenario in which a personal home robot measures a user's vital data. (In the activity diagram 
below, the RoIS component responsible for each activity is described with a comment. 

result position String M Robot position in comma separated double 
values [x.x, y.y]. 

result brake_status Boolean M Wheelchair brake status. 

result pause_status Boolean M Wheelchair pause status. 

result wc_status String M Six possible value literals: running, obstacle, 
path_error, stopped, brakes, paused. 

result nav_status String M Two possible value literals: running, stopped. 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               85 
 

 
FigureC.1: Example of interactive measuring vital data with a personal robot 

 

  

act [package] Personal Robot [Health Monitoring]

:Home Server:Personal Robot:User

Enter a room
Recognize a user enters a room

Person Detection

Greet
Speech Synthesis

Return the greeting
and take a seat

Recognize user greetings Speech Recognition

Identify target user

Person Identification

:User ID

Measure the user's vital data

Measure the user's location

Person Localization

Move towards to the user

Move

Record the user's
vital data

:Results of
measuring vital data

Ask the user's health condition

Speech Synthesis

Answer about
health condition

Recognize the answer

Speech Recognition

Determine the content of the dialogue
based on various information (results

of measuring vital data , response
content, past logs)

Talk to the user

Speech Synthesis

Ask permission to measure
the user's vital data

:Data for user
identification

Acquire data required
for user identification

Speech Synthesis
Reply to the notification

Recognize user responses

Speech Recognition

:Response Content

:Contents to be mentioned

[If accepted]

[If denied] [else]



  86                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

 An example of a detailed scenario of "Measure the user’s vital data" is shown below. 

 
FigureC.2: Detailed scenario example of " Measure the user’s vital data" 

  

act [package] Personal Robot [Measure the user's vital data]

:Personal Robot:User

Put out left handHold the hand of
a Personal Robot

Detect touch

Notify that user’s
health will be checked

Touch the right arm to
the user's arm

Measure the user's vital data

Approach

Touch Detection

Speech Synthesis

Touch

Request a handshake

Confirm that the
user has held hand

Speech Synthesis
Reply whether

held hand

Notify that vital data measurement
has been completed

Leave right arm from user's arm

Speech Synthesis

Recognize user
responses

Speech Recognition

Move the right arm
close to the user's arm

Approach

Speech Synthesis

Leave

[else]

[If response is "I held it"]



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               87 
 

The user-defined HRI components defined based on the above scenario are shown below. 

C.5.1. Approach 

 
Figure C.3: Approach 

 
Table C.6: Approach 
 

Description: This component is to be used to move a specified part close to the target pose. This component performs 
autonomous movement to a specified pose. 
Approach function is essential for typical robot services to move a hand or arm to a target pose. This component 
allows Service Application to command robots to perform approach without considering the actual arm configuration 
or degrees of freedom. The target pose shall be specified as a spatial pose based on a coordinate system appropriate 
to the specified part to be moved. The actual motion trajectory to the target pose, and strategies such as trajectory 
generation and obstacle avoidance are left to the the component implementation. 
Command Method 
set_parameter Specifies parameters for approach. 

argument action_target UnlimitedNatural M Part of the robot structure which the action is performed. 
Specify the entire robot, hand position, arm posture, etc. 

argument target_pose Data [RLS] M Target pose of the action. 
It is defined in a coordinate system according to the part of the 
action. 

Query Method 

get_parameter Obtains parameters for approach. 

result action_target UnlimitedNatural M Part of the robot structure which the action is performed. 
The entire robot, hand position, arm posture, etc. are specified. 

result target_pose Data [RLS] M Target pose of the action. 
It is defined in a coordinate system according to the part of the 

class Approach

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 UNINITIALIZED
 READY
 BUSY
 WARNING
 ERROR

«interface»
Approach

+ target_pose: ::RLS::Data
+ action_target: UnlimitedNatural

+ set_parameter(in action_target: UnlimitedNatural, in target_pose: ::RLS::Data): Returncode_t
+ get_parameter(out action_target: UnlimitedNatural, out target_pose: ::RLS::Data): Returncode_t

«HRI_Component»
Approach_Component

«HRI_Engine»
Engine1

0..*



  88                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

action. 

C.5.2. Leave 

 
Figure C.4: Leave 

 
Table C.7: Leave 
 

Description: This component is used to move a specified part away to a pose from the target. This component is used in 
conjunction with Approach. This component performs autonomous return of  a specified part to a specified pose, such as to its 
initial pose. 
Similar to the approach function, the leave function is essential for typical robot services to move  a hand or arm away 
to a target pose. This component allows Service Application to command robots to perform leave without considering 
the actual arm configuration or degrees of freedom. The target pose shall be specified as a spatial pose based on a 
coordinate system appropriate to the specified part being moved. The actual motion trajectory to the target pose, and 
strategies such as trajectory generation and obstacle avoidance are left to the the component implementation. 
Command Method 
set_parameter Specifies parameters for leave. 

argument action_target UnlimitedNatural M The part on which the action is performed. 
Specify the entire robot, hand position, arm posture, etc. 

argument target_pose Data [RLS] M Target pose of the action. 
It is defined in a coordinate system according to the part of the 
action. 

Query Method 

get_parameter Obtains parameters for leave. 

result action_target UnlimitedNatural M The part on which the action is performed. 
The entire robot, hand position, arm posture, etc. are specified. 

class Leave

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 UNINITIALIZED
 READY
 BUSY
 WARNING
 ERROR

«interface»
Leave

+ action_target: UnlimitedNatural
+ target_pose: ::RLS::Data

+ set_parameter(in action_target: UnlimitedNatural, in target_pose: ::RLS::Data): Returncode_t
+ get_parameter(out action_target: UnlimitedNatural, out target_pose: ::RLS::Data): Returncode_t

«HRI_Component»
Leave_Component

«HRI_Engine»
Engine1

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               89 
 

result target_pose Data [RLS] M Target pose of the action. 
It is defined in a coordinate system according to the part of the 
action. 

 

C.5.3. Touch Detection 

 
Figure C.5: Touch Detection 

 
Table C.8: Touch Detection 
 

Description: This component is used for detecting number of touch points. This component notifies a list of identifiers of 
detected contact parts when the number of contact parts changes. The body part is defined according to the service to be 
performed, such as the right upper arm, the left lower arm, or the hand. 

Touch Detection function is essential for typical robotic services that involve contact with some objects. Additionally, for services 
that do not intend for contact to occur, Touch Detection can also be used to stop the service when contact is detected in order 
to prevent harm to those around. This component also detects changes in the number of contact points, and can also notify 
when contact is lost. 

The method of contact detection, the detectable parts, etc. are left to the component implementation. 

Command Method 
set_parameter Specifies parameters for touch detection. 

argument force_threshold Real M The force threshold for determining contact. 

Query Method 

get_parameter Obtains parameters for touch detection. 

result force_threshold Real M The force threshold for determining contact. 

Event Method 

class Touch Detection

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 UNINITIALIZED
 READY
 BUSY
 WARNING
 ERROR

«interface»
Touch Detection

+ force_threshold: Real

+ set_parameter(in force_threshold: Real): Returncode_t
+ get_parameter(out force_threshold: Real): Returncode_t
+ touch_detected(in timestamp: DateTime, in parts_data: List<UnlimitedNatural>): Returncode_t

«HRI_Component»
Touch_Detection_Component

«HRI_Engine»
Engine1

0..*



  90                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

touch_detected Notifies touch detected. 

argument timestamp DateTime [ISO8601] M Measurement time. 

argument parts_data List<UnlimitedNatural> M A list of identifiers of the parts where contact was 
detected. 

C.5.4. Touch 

 
Figure C.6: Touch 

 
Table C.9: Touch 
 

Description: This component performs make contact with a human using the specified pose or force. 

Touch function is essential for robots to perform services that involve human contact. This component is solely responsible for 
contacting with humans. To move the robot close to the contact point, robot services need to use the approach component in 
advance. 

Ensuring safety in the event of contact depends on the component's implementation. 

Command Method 
set_parameter Specifies parameters for touch. 

argument distance_threshold Real C Distance threshold to contact location. 
Used when contact force threshold is not specified. 

argument force_threshold Real C Contact Force Threshold． 
Used when distance threshold is not specified. 

get_parameter Obtains parameters for touch. 

result distance_threshold Real C Distance threshold to contact location. 
Setted when force threshold is not specified. 

class Touch

«interface»
RoIS_Common

+ start(): Returncode_t
+ stop(): Returncode_t
+ suspend(): Returncode_t
+ resume(): Returncode_t
+ component_status(out status: Component_Status): Returncode_t

«enumeration»
Component_Status

literals
 UNINITIALIZED
 READY
 BUSY
 WARNING
 ERROR

«interface»
Touch

+ distance_threshold: Real
+ force_threshold: Real

+ set_parameter(in distance_threshold: Real, in force_threshold: Real): Returncode_t
+ get_parameter(out distance_threshold: Real, out force_threshold: Real): Returncode_t

«HRI_Component»
Touch_Component

«HRI_Engine»
Engine1

0..*



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               91 
 

result force_threshold Real C Contact Force Threshold． 
Setted when distance threshold is not specified. 

 

 
Annex D: Examples of Data Type (informative) 

D.1 Reaction Type 
Table D.1: Example of Reaction_Type 
 

Gesture ID Name Description 

1 nod the head Move the head downward and return to the original position 

2 angle the head Move the head to the side and return to the original position 

3 shake the head Move the head right and left 

4 look right Turn the head to the right hand side 

5 look left Turn the head to the left hand side 

6 look up Turn the head upward 

7 look down Turn the head downward 

8 drop the head Turn the head obliquely downward 

9 bow the head Turn the head slightly downward 

10 shake hands Shake hands by the right hand and look at the person’s face 

11 spread hands slightly Spread both hands slightly 

12 raise hands and spread Spread both forearms horizontally 

13 spread hands Spread both hands horizontally at shoulders’ height 

14 clap hands Clap hands several times 

15 clap hands rhythmically Clap hands rhythmically 

16 point by the right hand Point to a direction by the right hand, with turning the palm up and 
stretching the arm 

17 point by the left hand (Same as above, but using the left hand) 

18 indicate a monitor display Turn the head to a monitor display and point to the display by the right 
hand 

19 raise both hands Move both arms in front of the body and raise them from bottom to top 

20 raise both hands from side Raise both arms from the standing at attention pose to top 

21 raise both hands at the 
shoulder height 

Raise both hands from the frontal side to the shoulder height 



  92                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

22 raise a hand straight up (1) Raise a hand straight up. Wave the hand to catch attention (depends 
on the implementation) 

23 raise a hand straight up (2) Raise a hand straight up 



Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               93 
 

24 raise the right hand Raise the right hand 

25 raise the left hand Raise the left hand 

26 turn the right palm down Turn the right palm down slightly with opening the right hand 

27 turn the left palm up (Same as above, but using the left hand) 

28 wave the hand Wave the hand 

29 move the fingertip up Move the thumb-side of the hand in front of the body with the 
fingertip up and move the hand downward slightly 

30 cross arms Cross arms, making an “X” sign 

31 make a circle with arms Make a circle with arms above the head 

32 put both hands on the head Put both hands on the head 

33 put a hand on forehead Put a hand on forehead 

34 salute Move the right hand to the temple with the arm bent and turning the 
palm down 

35 put a hand to ear Put a hand to the ear 

36 put a hand to mouth Put a hand to mouth, like shouting. It may use both hands 
(implementation dependent) 

37 make a V sign Make a “V” sign with a hand 

38 strike the chest lightly Strike the chest lightly with a hand (or a fist) 

39 rub the stomach Move the right hand right and left in front of the stomach 

40 put a hand on the waist Put a hand on the waist with bending the arm 

41 put both hands on the waist 
(1) 

Put both hands on the waist with bending arms 

42 put both hands on the waist 
(2) 

Put both hands on the waist with bending arms and turning the head 
slightly up 

43 cross arms Cross both arms in front of the chest 

44 swing arms back and forth Swing both arms back and forth like walking 

45 knock Move a fist back and forth like knocking 

46 push by both hands Raise both hands in front of the chest and move them ahead like 
pushing 

47 indicate a height by a hand Put a hand at a certain height with turning the palm down 

48 bend an arm Move a hand to the shoulder with bending the arm slowly 

49 put an arm on a shoulder Put an arm on someone’s shoulder 

50 glance at a wristwatch Glance at the left wrist 

  



  94                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

Annex E: Examples of Conditions (informative) 
Conditions are used as arguments in function calls described below. 

1. In System Interface, to inquire system status (get_profile() and get_error_detail()). 

2. In Command Interface, to search and bind components (search(), bind_any()), and to retrieve result of command 
execution (get_command_result()). 

3. In Query Interface, to inquire component status (query()). 

4. In Event Interface, to subscribe events (subscribe()), and to retrieve event detail (get_event_detail()). 

Those conditions are defined as QueryExpression in [ISO19143]. 

Following subsections illustrate examples of conditions used to search components. 
 

E.1 Empty Condition 
The outer element SearchCondition is introduced to describe a condition. ComponentCondition is a container to describe a 
filter for component selection. ComponentGroup condition is also used to describe filters for multiple components, so it 
can contain a filter and several component conditions. 
 

  

<?xml version=”1.0” encoding=”UTF-8” ?> 

<unr:SearchCondition xmlns:unr=”http://www.irc.atr.jp/std/unr/0.1” xmlns:fes=”http://www.opengis.net/fes/2.0”> 

<unr:ComponentGroupCondition> 

<fes:filter/> 

<unr:ComponentCondition id=”cond1” type=”” mode=”exclusive”> 

<fes:filter/> 
</unr:ComponentCondition> 

</unr:ComponentGroupCondition> 

 

    

 

 

 

http://www.irc.atr.jp/std/unr/0.1
http://www.opengis.net/fes/2.0


Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               95 
 

E.2 Search By Property Values 
The following example illustrates a condition to find components by specifying property values. 
 

<?xml version=”1.0” encoding=”UTF-8” ?> 

<unr:SearchCondition xmlns:unr=”http://www.irc.atr.jp/std/unr/0.1” 
xmlns:fes=”http://www.opengis.net/fes/2.0”> 

<unr:ComponentGroupCondition 
types=”RobotProfileId type2” aliases=”a b”> 

<fes:And> 

<fes:Within> 

<fes:ValueReference>a/Property/location</fes:ValueReference> 

<fes:Literal>Floor_3</fes:Literal> 

</fes:Within> 

<fes:PropertyIsEqualTo> 

<fes:ValueReference>a/Identifier</fes:ValueReference> 
<fes:Literal>example_robot1</fes:Literal> 

</fes:PropertyIsEqualTo> 

<fes:Within> 

<fes:ValueReference>Property/location</fes:ValueReference> 

<fes:Literal>Floor_2</fes:Literal> 

</fes:Within> 

<fes:PropertyIsEqualTo> 
<fes:ValueReference>a/Identifier</fes:ValueReference> 

<fes:Literal>example_robot1</fes:Literal> 

</fes:PropertyIsEqualTo> 

</fes:And> 

<unr:ComponentCondition> 

<fes:filter/> 

</unr:ComponentCondition> 

</unr:SearchCondition> 

 

http://www.irc.atr.jp/std/unr/0.1
http://www.opengis.net/fes/2.0


  96                                                                            Robotic Interaction Service (RoIS) Framework, v2.0 – beta 1     

E.3 Search by location name 
The following example illustrates a condition to find components by specifying locations of them. 
 

 
  

<?xml version=”1.0” encoding=”UTF-8” ?> 

<unr:SearchCondition xmlns:unr=”http://www.irc.atr.jp/std/unr/0.1” 
xmlns:fes=”http://www.opengis.net/fes/2.0”> 

<unr:ComponentCondition id=”cond2” 

type=”unr:x-rois:def:component:OMG::ExampleComponent” mode=”exclusive”> 
<fes:And> 

<fes:PropertyIsEqualTo> 

<fes:ValueReference>Property/min_speed</fes:ValueReference> 

<fes:Literal>200</fes:Literal> 

</fes:PropertyIsEqualTo> 

<fes:PropertyIsEqualTo> 

<fes:ValueReference>Name</fes:ValueReference> 

<fes:Literal>dummy1</fes:Literal> 

</fes:PropertyIsEqualTo> 

<fes:PropertyIsEqualTo> 
<fes:ValueReference>RobotId</fes:ValueReference> 

<fes:Literal>dummy_robot1</fes:Literal> 

</fes:PropertyIsEqualTo> 

</fes:And> 

</unr:ComponentCondition> 

</unr:SearchCondition> 

http://www.irc.atr.jp/std/unr/0.1
http://www.opengis.net/fes/2.0


Robotic Interaction Service (ROIS) Framework, v2.0 – beta 1                                                                               97 
 

E.4 Search by location coordinates 
The following example illustrates a condition to find components by specifying location coordinates described by using 
GML elements. 

 
 

<?xml version=”1.0” encoding=”UTF-8” ?> 

<unr:SearchCondition xmlns:unr=”http://www.irc.atr.jp/std/unr/0.1” 

xmlns:fes=”http://www.opengis.net/fes/2.0” 

  xmlns:gml=”http://www.opengis.net/gml/3.2”> 

<unr:ComponentGroupCondition types=”RobotProfileId type2” aliases=”a b”> 

<fes:And> 

<fes:Within> 

<fes:ValueReference>a/Property/location</fes:ValueReference> 

<gml:Envelope srsName=”urn:atr:def:crs:IDK::01”> 

<gml:lowerCorner>13.0983 31.5899</gml:lowerCorner> 

<gml:upperCorner>35.5472 42.8143</gml:upperCorner> 
</gml:Envelope> 

</fes:Within> 

<fes:PropertyIsEqualTo> 

<fes:ValueReference>a/Identifier</fes:ValueReference> 

<fes:Literal>example_robot1</fes:Literal> 

</fes:PropertyIsEqualTo> 

<fes:Within> 

<fes:ValueReference>Property/location</fes:ValueReference> 

<gml:Envelope srsName=”urn:atr:def:crs:IDK::01”> 

<gml:lowerCorner>13.0983 31.5899</gml:lowerCorner> 

<gml:upperCorner>35.5472 42.8143</gml:upperCorner> 
</gml:Envelope> 

</fes:Within> 

<fes:PropertyIsEqualTo> 

<fes:ValueReference>a/Identifier</fes:ValueReference> 

<fes:Literal>example_robot1</fes:Literal> 

</fes:PropertyIsEqualTo> 

</fes:And> 

<unr:ComponentCondition id=”cond1” type=””></unr:ComponentCondition> 

</unr:ComponentGroupCondition> 
 

http://www.irc.atr.jp/std/unr/0.1
http://www.opengis.net/fes/2.0
http://www.opengis.net/gml/3.2


  98                                                                                                                                                                     Title, version                                   

Annex F: RoIS Service Description Examples 
(Informative) 

 

F.1 RoIS Example Usecase with RoSO 
Figure 7.1 shows an example of a robot scenario for a robotic reception service. In the RoIS development model, though 
the robot service developers choose appropriate robotic functional components to compose their robotic systems and 
services, there is no description of how they can choose such components suitable for their purpose. 
 
In a closed environment, such as a flat 20m-by-20m square entrance lobby space, when a messenger robot finds a person 
in the environment, it then approaches the person. After identifying the person, the robot looks up if there are messages to 
the person, and then, if some messages are found, it tells the messages to the person. 
 
Figure F. 1 and the machine readable file RoboticReceptionService.ttl provides a turtle description of an example service 
description. 
 

 
Figure F.1 A service description example of Robotic Reception Service 

 
  

　roso:situatedAt　
　roso:Service　

　roso:Region　

　roso:Person　

　roso:ServiceReceiver　

　roso:hasRole　

　roso:Robot　
　roso:providedBy　

Lobby Space (20m x 20m sq)
　rois:regionLabel　

　roso:ServiceProvider　

　roso:hasRole　

Robotic Reception Service

　cmns-dsg:hasName　

　roso:interactsWith　

Messanger RoobotMessage Receiver

　cmns-dsg:hasName　　cmns-dsg:hasName　

　roso:Point　

Start Point

　roso:hasStartPoint　

　rois:regionLabel　

　rois:Move　

　rois:PersonDetection　

　rois:PersonIdentification　

　rois:SpeechSynthesis　

　rois:PersonLocalization　　rois:hasDetectionRegion　

　roso:isCapableOf　

　roso:isCapableOf　

　roso:isCapableOf　

　roso:isCapableOf　

　roso:isCapableOf　

　cmns-dt:TimeInterval　

　rois:hasMinimalInterval　 100ms
　cmns-dt:hasDurationValue　



Title, version                                                                                                                                                                          99 

F.2 Cybernetic Avatar Service with RoSO/RoIS 
This subsection describes examples of cybernetic avatar services described with RoSO and RoIS. 

A cybernetic avatar is a robot that represents a person and interacts with another person (in case it is also represented by 
another avatar) to achieve a service scenario. As the operator of an avatar needs to understand the service environment and 
circumstances of the avatar, the avatar is usually capable of providing video and audio streams captured by itself to the 
operator and also providing interactive actions via speech and motion. 

A cybernetic avatar is not a fully autonomous robot but is partly or totally controlled by a human operator. That is, a 
service provided with a cybernetic avatar is a sequence of interactions between service recipients and service operators. In 
simple cases, a service session may be operated by a service operator, but in complex cases, it may be operated by a team 
of operators. An operator may control multiple avatars at once so that can provide plural service sessions simultaneously. 

A cybernetic avatar is implemented as an HRI engine equipped with several HRI components and located in front of 
service customers, and a service system with operators’ consoles is implemented as a client of the HRI engine of the 
avatar. 

 
Figure F.2: Cybernetic Avatar Service Environment 

 

The following sections describe 1) a cybernetic avatar composed of a set of RoIS components, 2) an operation console of 
cybernetic avatars as a client of a set of cybernetic avatar components, 3) a communication platform that connects 
cybernetic avatars and their consoles, and finally 4) descriptions of cybernetic avatar services with RoSO/RoIS ontologies. 

 

F.2.1 Cybernetic Avatar with RoIS components 
A cybernetic avatar provides interaction service for a person by representing its operator. As an operator exists behind the 
avatar, the avatar itself does not need to be equipped with autonomous functions, but video and audio streams to be sent to 
operators so that operators can recognize the customers’ behaviors and make decisions.  

The HRI Engine of a cybernetic avatar is capable of detecting person around it and also localizing the person in the 
environment. 

The CA has audio streaming and video string functions. The operator therefore can connect to camera and mic to receive 
the environment around the CA. The stream is also used to send the operators (or synthesized) voice to the customer. The 
CA have reaction component to make motions and also use voice stream that is generated at service console by 
transforming operators voice in real-time or partly reusing recorded or synthesized voice. 

F.2.2 Cybernetic Avatar Service Operator Console 
It is expected a hundred of CAs will be deployed; some will be operated by experienced operators to support customers in 
the experiment field, and others will be operated by remote visitors to participate in the event. The experienced operators 
will control multiple CAs at once to provide services through CAs. Virtual visitors will control a CA per person as one’s 
avatar participating in the event and representing the operator. 

HRI Engine

Video 
Streaming

Audio 
Streaming

Reaction

Person
Localization

Person
Detection

Cybernetic
Avatar
Service

Operator Console

Cybernetic Avatar
Service Platform



  100                                                                                                                                                                     Title, version                                   

Each CA is controlled through operator console that helps the operator communicate with someone through CA’s 
expression. The operator receives audio and video streams in addition to the locations of the people detected around the 
CA. The operator chose the CAs motions and send transformed voice. The console is, therefore, a part of a service 
application that receives sensor events from a PersonDetection component and a PersonLocalization component, actuates 
the CA through a Reaction component, and also connects to an AudioStreaming component and a VideoStreaming 
component to communicate with persons in front of the CA. 

F.2.3 Cybernetic Avatar Communication Platform 
A cybernetic avatar communication platform provides communication function between CAs and service consoles. It 
manages a lot of CAs in the service environment and manages control sessions between service operators and CAs. The 
platform is a middleware that enables a service console as a Service Application of the RoIS framework to control a CA as 
an HRI Engine, and also is a communication infrastructure that handles streaming connections used beneath the RoIS 
streaming components. 

The CA platform for experiments implements its streaming connection upon WebSocket that connects a service console 
implemented as a browser application with the streaming components on the CAs. Service Application endpoints of RoIS 
are instantiated on the platform, give control consoles to operators as browser applications, and bind components on CAs 
as RoIS HRI Engines. 

F.2.4 Example: Product explanation at large stores 

F.2.4.1 Overview 

A store clerk remotely operates a semi-autonomous tele-operated robot (CA) to explain/recommend products to customers 
who come to the store. Regarding the location-fixed type CA, the CA is installed next to the product to be 
explained/recommended, and when the customer comes near the CA, the CA automatically plays the prepared 
explanation/recommendation contents. When a customer verbally asks a question to the CA, the question is transmitted to 
the clerk who is the tele-operator, and the clerk answers verbally or by selecting prepared answer contents with U/I. 
Regarding the movable type CA, in addition to the location-fixed type service, it will approach the customer to start the 
service, guide the customer to the location of the product. 

F.2.4.2 Benefit 

For the store clerk, since it is possible to respond without going to the site, it is not only possible to save the physical 
strength to stand all day for explanation and save travel time, and it is not necessary to be in the same store. It is possible to 
respond from other store or home. It will also be possible to provide services such as complying with the customer's 
national language from other country. 

For customers, it is difficult to ask about products in stores with few store clerks or in stores where store clerks are busy. 
CA makes easier to ask about products. In addition, it is difficult to find what you want to ask from predetermined 
question items such as reading product advertisements or interactive digital signage, but with CA you can ask directly 
verbally, so stress is reduced. 

Another advantage is that it can prevent infection such as COVID-19 for both clerks and customers. 

F.2.4.3 Deployment Example 

[Service from a location-fixed type CA] 

A location-fixed type semi-autonomous tele-operated robot (CA) is installed on a shelf next to a product which is to be 
recommended to customers. 

The CA is capable to find customers around the shelf by using a person detection component that can detect up to 10 
persons in 150 cm from the CA. 

The CA tries to connect to one of the CA’s tele-operators when it detects customers within the range. 

The CA is also capable to detect the position (direction and distance) of customers within the same detection range so that 
the CA can turn to the near-by customer (or a group of customers) before starting recommendation. 



Title, version                                                                                                                                                                          101 

The CA is not capable of autonomous conversation that means it does not have any facility for speech recognition. 

The CA is capable to transmit the customers speech (audio and video signal) to the tele-operator of the CA. 

When a customer stops by the CA for more than 0.3 seconds (that requires the location of persons are to be updated 0.1 
second frequency), the CA initiates interaction with the customer automatically just playing a pre-defined motion and 
speech. A reaction component and a speech synthesis component are required on the CA. 

After the tele-operator clerk is ready connected, the CA receives commands for reaction and speech from the clerk. 

If there aren’t any operators assigned, the CA plays pre-recorded recommendation without interacting with the customers. 

F.2.4.4 RoSO Description 

A service desciption diagram using RoSO and RoIS ontology is shown in Figure F.3 and a machine readable file 
CyberneticAvatarService.ttl. 

 

 
Figure F.3 A service description example of Cybernetic Avatar Service 

 
 
 

　roso:Service　

Product Explanation 
at Large Stores

　cmns-dsg:hasName　

Messanger RoobotMessage Receiver Start Point

　rois:SpeechSynthesis　

　rois:PersonLocalization　 　cmns-dt:TimeInterval　

　rois:hasMinimalInterval　

100ms

　cmns-dt:hasDurationValue　

　roso:Avatar　
　roso:providedBy　

　roso:isCapableOf　

　roso:CircleRegion　　rois:PersonDetection　

　roso:isCapableOf　

　rois:hasDetectionRegion　

　rois:hasDetectionRegion　

cm

150　rois:radiusValue　

　rois:unitName　

　roso:isCapableOf　

　rois:AudioStreaming　

　roso:isCapableOf　

　rois:Reaction　

　roso:isCapableOf　



  102                                                                                                                                                                     Title, version                                   

 

This page intentionally left blank. 

 

 
 


	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements
	6.2 Intellectual Property Right
	6.3 Reuse of the Ontologies
	6.4 Notations

	7 RoIS Framework
	7.1 Overview of RoIS Framework
	7.2 Structure of RoIS Framework
	7.3 RoIS Communication Framework
	7.3.1 RoIS Messaging Framework
	7.3.2 Use of Other Component Models
	7.3.3 Use of Streaming Channels

	7.4 RoIS Functional Components
	7.4.1 RoIS HRI Profiles
	7.4.2 Ontology for RoIS Functional Components


	8 Platform Independent Model
	8.1 Format and Conventions
	8.1.1 Class and Interface
	8.1.2 Enumeration
	8.1.3 Message
	8.1.4 HRI Component and method

	8.2 RoIS Interface
	8.2.1 Return Codes
	8.2.2 Interaction
	8.2.2.1 System Interface
	8.2.2.1.1 System Connection / Disconnection
	8.2.2.1.2 System Error Notification

	8.2.2.2 Command Interface
	8.2.2.3 Query Interface
	8.2.2.4 Event Interface
	8.2.2.4.1 Event Registration / Cancellation
	8.2.2.4.2 Event Notification

	8.2.2.5 Streaming Interface

	8.2.3 Interfaces
	8.2.3.1 Interfaces for HRI Engine
	8.2.3.2 Interfaces for Service Application

	8.2.4 Message Data
	8.2.4.1 Command Message
	8.2.4.2 Command Result Message
	8.2.4.3 Query Message
	8.2.4.4 Event Message
	8.2.4.5 Event Detail Message
	8.2.4.6 Error Message
	8.2.4.7 Error Detail Message


	8.3 RoIS Profiles
	8.3.1 Overview
	8.3.2 Parameter Profile
	8.3.3 Message Profile
	8.3.4 HRI Component Profile
	8.3.5 HRI Engine Profile

	8.4 Common Messages
	8.4.1 Basic HRI Components
	8.4.2 RoIS Component Ontology
	8.4.3 System Information
	8.4.4 Person Detection
	8.4.5 Person Localization
	8.4.6 Person Identification
	8.4.7 Face Detection
	8.4.8 Face Localization
	8.4.9 Sound Detection
	8.4.10 Sound Localization
	8.4.11 Speech Recognition
	8.4.12 Gesture Recognition
	8.4.13 Speech Synthesis
	8.4.14 Reaction
	8.4.15 Navigation
	8.4.16 Follow
	8.4.17 Move
	8.4.18 Audio Streaming
	8.4.19 Video Streaming

	A.1 Parameter Profile
	A.2 Message Profile
	A.2.1 Command Message Profile
	A.2.2 Event Message Profile
	A.2.3 Query Message Profile

	A.3 HRI Component Profile
	A.4 HRI Engine Profile
	B.1 CommandUnitSequence
	B.2 CommandMessage
	C.1 Speech Recognition (W3C-SRGS)
	C.2 Person Gender Identification
	C.3 Person Age Recognition
	C.4 Wheelchair Robot
	C.5 Example of interactive measuring vital data with a personal robot
	C.5.1. Approach
	C.5.2. Leave
	C.5.3. Touch Detection
	C.5.4. Touch

	D.1 Reaction Type
	E.1 Empty Condition
	E.2 Search By Property Values
	E.3 Search by location name
	E.4 Search by location coordinates
	F.1 RoIS Example Usecase with RoSO
	F.2 Cybernetic Avatar Service with RoSO/RoIS
	F.2.1 Cybernetic Avatar with RoIS components
	F.2.2 Cybernetic Avatar Service Operator Console
	F.2.3 Cybernetic Avatar Communication Platform
	F.2.4 Example: Product explanation at large stores
	F.2.4.1 Overview
	F.2.4.2 Benefit
	F.2.4.3 Deployment Example
	F.2.4.4 RoSO Description




