Date: July 2016

AEELY F‘I
el

v

-..,“,““
-
_..-n'l'lu'l.“
" '..“‘1
A

L)
=

v

Structured Assurance Case Metamodel (SACM)

Version 2.0 — Beta 2

OMG Document Number ptc/17-03-02
Normative Reference: http://www.omg.org/spec/SACM/2.0/PDF
Associated Normative Machine Consumable Files:

http://www.omg.org/spec/SACM/2.0/cmof.xmi

Copyright © 2010-2015, The MITRE Corporation
Copyright © 2010-2015, Adelard LLP

Copyright © 2010-2015, The University of Y ork
Copyright © 2015, Universidad Carlos 111 de Madrid
Copyright © 2015, Carnegie Mellon University
Copyright © 2010-2015, Benchmark Consulting
Copyright © 2010, Computer Sciences Corporation
Copyright © 2010-2015, KDM Analytics, Inc.
Copyright © 2010-2015, L ockheed Martin
Copyright © 2016, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group speci fication in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to implement
any portion of this specification in any company's products. The information contained in this document is
subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a honexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no
person shall be deemed to have infringed the copyright in the included material of any such copyright holder
by reason of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to al of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and specia purpose specifications that
are based upon this specification, and to use, copy, and distribute this specification as provided under the
Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice
appear on any copies of this specification; (2) the use of the specificationsis for informationa purposes and
will not be copied or posted on any network computer or broadcast in any media and will not be otherwise
resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This
limited permission automatically terminates without notice if you breach any of these terms or conditions.
Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which alicense may be required by any OMG specification, or for conducting legal
inquiriesinto the legal validity or scope of those patents that are brought to its attention. OMG specifications
are prospective and advisory only. Prospective users are responsible for protecting themselves against
liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by
any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS' AND
MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS
CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE,
INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The entire risk as to the quality and performance of software devel oped using this specification is borne by
you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph
() (1) (ii) of The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specifiedin 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL
INSTRUMENT GLOBAL IDENTIFIER®, |IOP®, IMM®, Model Driven Architecture®, MDA®, Object
Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling
Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object
Management Group, Inc.

For acomplete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective
owners.

http://www.omg.org/legal/tm_list.htm

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through
its designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers
of computer software to use certification marks, trademarks or other special designations to indicate
compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of anature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents,
http://issues.omg.org/issues/create-new-issue

http://issues.omg.org/issues/create-new-issue

Table of Contents

oo o = T T T T T T 1
1.1 Genera 1
IS (o0 (g 0 AN (0 [U]001= 0 TN 1
D B BV OENCE ettt iee e 1
1.4 History, Motivation, and RaliONAl €....ccueeieeeiiiieieiiiiiiiiiiiiiieiieeeeie e 2
A O] 11101 11700 TR 4
2.1 I OAUCEHI ONL ittt ettt et 4
2.2 Argumentation Model COmMPliaNCe POINE....eeieeeiiiieiiiiiiiieiiieiii e, 4
2.3 Artefact Mmodel cOMPliaNCe POINT. ...eeieiiieiiiiiiieiieieiii st eee e eseeceeier e ireens 4
2.4 Assurance Case Model cOmMPlianCe POIN..c.uuiiieeiiiiieiieiiieiieeieeieeeeeie e 4
2.5 Terminology Model comMpPlianCe POINE...c.ueiiieeiiiiiiiiiiiiieiieieii e 5
Kl R S (= 1 o= TN 5
3.1 NOrMatiVe REFEIENCES. ittt 5
3.2 NON-NOrMativVe REFEIENCES. ..ueeiieeiiiieiiiiiiiiiii et eeeeeeiee i 5
A TermS anNd DEfiNiTiONS. ueeceiieiiiiiieieiii ittt eee it eeee et e s e eee e et eeteeee e e e e e e et e it eere e et e ereeeree e 6
D SVMIDONS ittt ettt e e 6
6 Additional INfOrMIAION. c.ueiiieeiiiiiiii ittt eeee ettt 7
6.1 Changes to Adopted OM G Speci ficationS [OPtiONal]...eeeieeeeieiiiiiieiiiiiieiieii e 7
6.2 ACKNOWI EAQEMENES. .ttt ettt ettt 7
6.3 HOW tO PrOCEEA. . iiiiiiiiiiiiii ettt 7
7 Background and RaAtiONAIE......eeieiiieeiieiiieiiiieiiii ettt ee et eee e e et ere et eeas 9
7.1 The Need for ASSUIANCE CaSES. ..uuuiiiiiiieiiieieeeeee ettt ettt e e ieeee e 9
7.2 SErUCTUIrEd ATQUIMIENES. 1ttt eeee ettt et e eetee e i e eeieeeeeteeeeieeeeiteeeeaes 9
7.3 Arguments as aSSErted POSITIONS. .. uueieiieeiiieiiieei it iiie i eiee et e e ieeeieeieieiteeeeeeeeeeeeteeieeereeirereneeeireens 11
7.4 Structured ArguMENtSiN SACIM i 11
7.5 Precise statementS rel ated t0 EVIdENCEO. . ceuueiiieiiiiiiiiiie e 11
8 Structured Assurance Case BASE ClaSSES....uuiiieiiieiiieiiiiiieiieii i e it eies e iee e e ieeeireeeeeesreeeeeenee e e 15
8.1 General 15
8.2 SACMEIement (ADSLIACE)....uiiieeeiiieiiiiiiiiiii ittt 15
8.3 MOodelElement (ADSLIACE)veeieiieiiieiieiiiiieeie ettt e 15
8.4 UtilityElement (ADSITACE) . ..cieuiiiieiiieiiiiiiiiieiiieiee et 16
8.5 ImplementatiONCONSIr AN ...ceeiiiieieeiiieeeii it eeeee i e e e 17
oA B o o) (1) T 17
87Note 17
8.8 TANUEAV AlUB. ..ttt ettt 17
9 Structured AsSUranCe Case PaCKAOES. ...ueueiieiiieeiieie ettt e e i e ses e e st s et e ereeeteeiee e 19
9.1 General 19
9.2 ArtefactElement (ADSIIACE)uieeeiiiiiiiiiiieeii e 19
L RCTANSSU 1= 005,07 S = 0 0= 0 (< PR 20
9.4 AssuranceCasePackagel MEEITACE. c..oieueiiiiiiiiiieiiieieeeii e 20
9.5 AssuranceCasePackageCitatiON. .. iiieeiiiiieieii et 21
S RSWANL0[V[101= 011 0= 01 o= 0 (< TR TS 21
9.7 TermMiNOlOOYPACKAOE. 1o vii ittt eaie e 22
9.8 Artef aCtPACKAOE. ottt 22
10 Structured Assurance Case TErMIiNOIOQY ClaSSES....uuiuiiieiiiiiieiiieiiiii it stes e stee et it e 23
10.1 General 23
10.2 TerminologyElement (ADSEraCt) .. c.eeiieeieiiiiiiiiiieiiieeiieeiee et iee e 23
N0 RS N=Ta0 0 [1010) 0101V nr=0: = 0 [RSP 24
10.4 Terminol0gyPaCKaOECH Al ON..c.euee it eeie e, 24
10.5 Terminol OgYASSEL (ADSIIACE) ...uiiieeiiiiiiiiiiiiiiiieiieiie et 25
O X Or (= 0 [0 A T 25
10.7 ExpressionElement (ADSIrACE)....cuueiieeiieeeiiiiiiiieiieeiiieeie e, 25
10,8 XD OSSOttt ettt e e i e e i e i 26
109 Term 26
10.10 Terminol OgY A SSEtCI Al ON..iuveiiieeiiieeieiiiieeeii ettt ettt eeeee e eeeee e i 27
11 SACM Argumentation MetamMOAE]uuiiieeiiiiiiiiiiiiiiii e 31
11.1 General 31
11.2 Argumentation ClasS DiaOraM. cueeeeeeeeieeiiiieieeiiiieeeeie ettt eeee et eieee e 31
11.2.1 ArgumentationElement Class (ADSIIACE)....uiieeiiiieeeiiiiiiiiiieiei e 32
11.2.2 ArgumentPackage ClaSS......uecueiieeiiieeiiiiiii ittt iee e eite e e et e ieeete e i et e e 32
11.2.3 ArgumentPackageCitatioN ClasS......ouuiieeiiieiiiieiiiieiieieieeeeeeeeeee ettt 33
11.2.4 ArgumentPackageBinding ClasS.ouuiicuiiiieiiiiiiiiieiiiieiiieee et 33

Structured Assurance Case Metamodel, v2.0

vii

11.2.5 ArgumentPackagel Nterface ClaSS......ooiieiiiiiieiiiiiee i se st see et e seeeeeens 34
11.2.6 ArgumentASSet Class (ADSLIACE)uuiieeiiiieieiiiiiieiiiiieeeeeeee ettt 34
11.2.7 AsSertion Class (ADSIITACE) . ..cuuiiieeiiiiiiiiiiiiieeiiicieeeeeie ettt 35
11.2.8 ArtefactASSECItation ClaSS......iiuiiiiiieiiiiiieiiii it eee e e eeesee e e eteeeteeeeeiteeeree i 35
11.2.9 ArgumentASSELCItaliON ClaSS. . uuiieeiiiiiiiiiiiieiiiieieieeie ettt 35
10,270 Claim ClaSS...uiiieiiiiiiiiietieiee ettt ettt ettt e ettt et e et e et e et e eete et e eeeeeieeeetee et e et eaeeeiteeies 36
11.2.11 ArgumentREASONING ClaSS. . cueiieiiieiiieiiiiiieeiiii i ie s iee e e it e e ite et e it eeteeereeeeteeereeeteeieeeeeeires 37
11.2.12 AssertedRelationship Class (ADSIrACE)iiueeieiiiiiiiiiiiiiiieieiieeee e 37
11.2.13 AsSartedINferenCe ClaSS....uuuiiiiiiiiiiiiiiieei ettt 38
N NS S 1 (S0 |V L0 S0 0N O F T 38
11.2.15 AssertedChallENQge ClasS. .. cuuui ittt ieee e 39
11.2.16 AssertedCounterEVIidenCe ClasS...iuuuiiiuiiiieiiiiiiiiiieeeiiiee et 39
11.2.17 ASSEtEACONIEXT ClaSS...uiiuiiieiiiiiiiiiieiiiei it iei e e iee et iee e eee e eeeiesiteeieeeer e et s eteeeteeeteeareeenees 40
12 ATEf A0t ClaSSES. ittt ettt e et e et et eeeeatee i 43
12.1 Genera 43
NG (- 0l = 0010 [O 1= 10 o TR TR 44
12.3 ArtefactPackageBiNding. . c.eeeeeeiiieeiiiiiiiiiiiiiii i 44
12.4 ArtefactPackagel NEEITaCE. ..uuui i 45
12.5 ArtefactAsset Class (ADSIIACt)....ueieeieiiieiieiiieiciieci et 46
12.5.1 ArtefaCtASSELCItatiON ClaSS. . uiiieiiiieiiiiiiiieii ettt 46
1252 ArTEFACE ClASS...uiiiieiiiieiiiieii ettt 46
AR N1 (== ol (0] 01 1 N0 = o T 47
1254 ArtefaCtEVENE ClaSS. . couiiiiiiiieiiiiiie ettt ettt 47
1255 RESOUICE ClaSS..uuiiiiuiiiieiiiiiiiiiii ittt ettt eeee et et e et e et e e eeeeee e 48
12.5.6 ACHVILY ClaSS..iiuiiieiiitiiieiiiii ettt iee et eee et et e et e it e st e eee e it e ete et e it e et e eeeeareeereeerens 48
1257 TECHNIQUE ClaSS. ittt eeeee e ee e ee e 49
12.5.8 PartiCiPaNt ClaSS....uuiieiiiiiiiieiiiiiiiiiiiiiiiie ettt 49
12.5.9 ArtefactASSEtRE atioNSNID ClaSS. . cueiieiiiiiiiiiii ittt e e s 49
12.5.10 ArtefactRelatioNShi|D ClaSS...uuiiiiiiiiiiiiiiii e 50
12.5.11 ActivityRelatioNShiD ClaSS....uuiiieiiiiiiiiiiiiiiiieiieeee et 50
12.5.12 ArtefactActivityReElatioNShiP ClaSS....uuiieiiieiieiiiiiciciiiieieees e 50
12.5.13 ArtefactTechniqueRelatioNShip ClaSS....uuiieeiiieiiiiiiieiiiieiieeeieee e 51
12.5.14 ParticipantROIERElati ONSNIP ClaSS.. . ccuuiiiieiiiiiiiiiiiiiiiiiiiiieeeiii e, 51
12.5.15 ArtefactResourceRE atioNSNiP ClaSS.....uuiieiiiiieiiitiiiiiiieeeii et ee s 52
Annex A —Mappings from existing industrial Notations for 8SSUraNCe CaSESuvveieeviie i e e 53
Annex B — Examples of Assurance Casesin SACM 2.0 XMI ... e e e 55
vili Structured Assurance Case Metamodel, v2.0

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through afull-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG'’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-speci fic standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
« CORBAIIIOP

« Data Distribution Services
* Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

* UML, MOF, CWM, XMI
« UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
« CORBAServices
* CORBAFacilities

Structured Assurance Case Metamodel, v2.0 iX

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as 1 SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times'Times New Roman/Liberation Serif - 10 pt.: Standard body text

HelveticalArial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bol d: Progranming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Termsthat appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
hhttp://issues.omg.org/issues/create-new-issue.

X Structured Assurance Case Metamodel, v2.0

http://www.omg.org/report_issue.htm

1 Scope

1.1 General

This specification defines a metamodel for representing structured assurance cases. An Assurance Case is a set of
auditable claims, arguments, and evidence created to support the claim that a defined system/service will satisfy the
particular requirements. An Assurance Case is adocument that facilitates information exchange between various system
stakeholder such as suppliers and acquirers, and between the operator and regulator, where the knowledge related to the
safety and security of the system is communicated in a clear and defendable way. Each assurance case should
communicate the scope of the system, the operational context, the claims, the safety and/or security arguments, along
with the corresponding evidence.

Systems Assurance is the process of building clear, comprehensive, and defensible arguments regarding the safety and
security properties of systems. The vital element of Systems Assurance is that it makes clear and well-defined claims
about the safety and security of systems. Certain claims are supported through reasoning. Reasoning is expressed by
explicit annotated links between claims, where one or more claims (called sub-claims) when combined provide
inferential support to alarger claim. Certain associations (recorded as assertions) between claims and subclaims can
reguire supporting aruments of their own (e.g., justification of an asserted inference). Claims are propositions which are
expressed by statementsin some natural language. The degree of precision in formulation of the claims may contribute
to the comprehensiveness of an assurance case. The context isimportant to communicate the scope of the claim, and to
clarify the language used by the claim by providing necessary definition and explanations. Context involves
assumptions made about the system and its environment. Explicit statement of the assumptions contributes to the
comprehensiveness of the argument. Argumentation flow between claimsis structured to facilitate communication of
the entire assurance case.

1.2 Structured Arguments

Part of this specification defines a metamodel for representing structured arguments. A convincing argument that a
system meets its assurance requirementsis at the heart of an assurance case, which a'so may contain extensive
references to evidence. The Argumentation Metamodel facilitates projects by allowing them to effectively and
succinctly communicate in a structured way how their systems and services are meeting their assurance requirements.
The scope of the Argumentation Metamodel is therefore to allow the interchange of structured arguments between
diverse tools by different vendors. Each Argumentation Metamodel instance represents the argument that is being
asserted by the stakeholder that is offering the argument for consideration.

This specification is designed to stand alone, or may be used in combination with the SACM Artefact Metamodel. The
Artefact Metamodel is designed to represent aspects of evidence and properties about evidence in further detail. In the
Argumentation Metamodel we have simplified support to model the relation of evidence to a structured argument.
Standardization will ensure that end users are investing not just in individual tools but also rather in a coordinated

strategy.

The metamode! for argumentation provides a common structure and interchange format that facilitates the exchange of
system assurance arguments contained within individual tool models. The metamodel represents the core concepts for
structured argumentation that underlie a number of existing argumentation notations.

1.3 Evidence

Part of this specification provides a metamodel for communicating the way in which evidence artefacts are collected by
various participants using techniques, resources and activities. This allows users to build arepository of evidence that
communicates its provenance and how it was gathered. This Artefact Metamodel identifies the main elements that

Structured Assurance Case Metamodel, v2.0 1

determine the evidence collection process. artefacts, participants, resources, activities and techniques. Artefacts may be
exchanged as packages or combined into composites.

The SACM Artefact Metamodel definesa catalog of elements for constructing and interchanging packages of evidence
that communicate how the evidence was collected.

In conjunction with the Argumentation Metamodel, certain claims may be expressed to be supported by evidence that is
within the Artefact Metamodel, to permit the authors of the assurance claimsto offer evidentiary support for their
positions. Evidence is usually collected by applying systematic methods and procedures and is often collected by
automated tools. Evidence isinformation or objective artefacts, based on established fact or expert judgment, which is
presented to show that the claim to which it relatesis valid (i.e., true). Various and diverse things may be produced as
evidence, such as documents, expert testimony, test results, measurement results, records related to process, product,
and people, etc.

1.4 History, Motivation, and Rationale

The original Structured Assurance Case Metamodel version 1.0 was the composite of two efforts within the OMG's
Systems Assurance Task Force. One effort, the Structured Assurance Evidence Metamodel (SAEM) was created
through the OMG Reguest For Proposal (RFP) approach and the other, the Argumentation Metamodel (ARG) was
created through the OM G Reguest For Comment (RFC) approach. Both were completed in the mid-2010 timeframe and
then put into the same Finalization Task Force (FTF) due to the interconnectedness of their topics and concepts. The
first version of SACM was eventually produced in the spring of 2012 consisting of atop-level container object joining
SAEM and ARG without significantly altering the two original metamodels.

A Revision Task Force (RTF) was convened to drive further integration of the two original parts of SACM into one
Metamodel and that effort formulated a set of goals to shape and guide the integration. Basically the stated goal s were:

! Improve support for ISO/IEC 15026-2. In order to fecilitate the use of structured assurance cases
for producing and reviewing 1SO/IEC 15026-2 conformant assurance cases, the structured
assurance case metamodel needs to more fully support the constructs and entitiesin ISO/IEC
15026-2.

! Improve support for “Goal Structuring Notation.” In order to facilitate the use of structured
assurance cases by the existing community of practitioners across the world that are currently using
Goa Structuring Notation (GSN) and the speci fic capabilitiesin GSN for working with assurance
cases, the structured assurance case metamodel needs to more fully support the constructs and
entitiesin GSN.

! Harmonization of Parts. In order to facilitate acceptance and successful use of SACM, the
argumentation and evidence container metamodel s need to be more consistently aligned and
integrated. Areas of focus include elimination of overlap, making useful facilities now available
on one side generalized to be useful on both sides, achieving uniform terminology and
consistency, and using common concepts.

! Add initial support for Patterns/Templates. In order to make the use of assurance cases more
practical and efficient for users including those that do not have in-depth experience within the
assurance case domain (e.g., acquisition officials, systems integrators, auditors, regulators, and tool
vendors), the structured assurance case metamode needs to support the concept of assurance case
patterns and templates. Patterns will provide support to enable reuse and the effective composition
of assurance cases along with the underlying argumentation supporting goals. Templates will
provide support for defining and describing constrai ning conventions that a community may require
for assurance cases within a particular domain due to regulatory requirements or accepted practices
in that domain/industry/community.

2 Structured Assurance Case Metamodel, v2.0

! Improve the modularity and simplicity of SACM
! Provide for future concepts such as structured expressions and other formalisms

The SACM 1.1 was subsequently worked to attempt to meet these goals and a draft metamodel was created during the
summer OM G 2013 Berlin meeting. However the magnitude of the changes necessary to actually integrate the two
original metamodels into one cohesive approach and achieve some of the other goal s turned out to be too big of a
change for apoint release. The final SACM 1.1, released in July 2015, was scaled back to address some of the issues
and it cleaned up some terminology and logical issues but it did not substantially alter the underlying metamodel.

During this same timeframe other efforts in the OMG (the Dependability Assurance Framework for Safety-Sensitive
Consumer Devices (DAF)) and in The Open Group (the Dependability Assurance Framework (O-DA), aswell asthe
work of the Food and Drug Administration (FDA) in the U.S. started making use of the assurance case concept and
articulated implicit requirements/needs for tools that would work with assurance case models and their exchange.

Additionally, the Open Platform for EvolutioNary Certification of Safety-critical Systems (OPENCOSS) effort in
Europe was exploring different uses of assurance cases, including the creation of a Common Certification Language,
and the OMG's Architecture Driven Modernization Task Force crafted a Structured Pattern Metamodel Standard
(SPMS) that provided a method for describing patterns within models. Together these new needs and the new openly
available capabilities represented in OPENCOSS and SPMSS offer away forward.

This version 2.0 of SACM has been created as a major version release since pursuing another point release revision of
SACM would appear to be incompatible with achieving the integration and harmonization that is critical to obtain wide-
spread adoption and implementation within the tooling market and allow that market to deliver on some of the potential
capabilities they could provide to address the emerging and evolving need for assurance case tools, such as:

! Improving the Understandability of an Assurance Case to a 3rd Party

! Improving Rigor of Assurance Cases through Modeling

! Allowing for Reexamination of Assumptions, Argument Structuring, and the Appropriateness of
Evidence

! Allowing for Reuse of Sub-Claim/Evidence Constructs That “Work”
! Authoring/Sharing Libraries of Sub-Claims/Supporting Evidence

! Providing for Assurance Case Analytics/Validation

! Providing for Exchange of Assurance Cases (Import/Export)

! Providing for Enforcing Community of Interest Norms of Practice

The resulting metamodel in this version of SACM come from the ideas in the 2013 Berlin metamodel, along with the
approaches utilized for modeling artefact- and process-related concepts in OPENCOSS Common Certification
Language and the pattern metamodel and concepts from the SPMS.

Structured Assurance Case Metamodel, v2.0 3

2 Conformance

2.1 Introduction

The Structured Assurance Case Metamodel (SACM) speci fication defines the following four compliance points:

! Argumentation Model
! Artefact Model
! Assurance Case Model

! Terminology M odel

2.2 Argumentation Model compliance point

Software that conforms to the SACM specification at the Argumentation Model compliance point shall be able to
import and export XMI documents that conform with the SACM XML Schema produced by applying XM rulesto the
normative MOF metamodel defined in the Argumentation subpackage of the SACM specification, including the
common elements defined in the Common and Predefined diagrams of the SACM. The top object of the Argumentation
package as a unit of interchange shall be the Argumentation::ArgumentPackage element of the SACM.

Conformance to the Argumentation Model compliance point does not entail support for the Evidence subpackage of
SACM, or the terminology sub package of the SACM.

This compliance point facilitates interchange of the structured argumentation documents produced by existing tools
supporting existing structured argument notations such as the Goal Structuring Notation (GSN) and the Claims-
Arguments-Evidence (CAE) notation which provide their own mapping onto SACM argumentation aspects. Further
details of these mappings are given in Annex A.

2.3 Artefact Model compliance point

Software that conforms to the specification at the Artefact Model compliance point shall be able to import and export

XMI documents that conform with the SACM XML Schema produced by applying XMI rules to the normative M OF

metamodel defined in this Artefact subpackage of the SACM specification, including the common elements defined in
the Common and Predefined diagrams of the SACM. The top object of the Evidence package as a unit of interchange

shall be the ArtefactM odel :: ArtefactPackage element of the SACM.

Conformance to the Artefact Model compliance point does not entail support for the Argumentation subpackage of
SACM, or the terminology diagram of the SACM. This compliance point facilitates interchange of the packages of
evidence. In particular, this compliance point facilitates development of evidence repositories in support of software
assurance and regulatory compliance.

2.4 Assurance Case Model compliance point

This compliance point is mandatory. Software that conforms to the specification at the Assurance Case Model
compliance point shall be able to import and export XMI documents that conform with the SACM XML Schema
produced by applying XM rules to the normative MOF metamodel defined in this entire specification. The top object of
the Assurance Case package as a unit of interchange shall be the SACM::AssuranceCasePackage element.

The Conformance clause identifies which clauses of the specification are mandatory (or conditionally mandatory) and
which are optional in order for an implementation to claim conformance to the specification.

4 Structured Assurance Case Metamodel, v2.0

2.5 Terminology Model compliance point

Software that conforms to the specification at the Terminology Model compliance point shall be able to import and
export XMI documents that conform with the SACM XML Schema produced by applying XMl rules to the normative
MOF metamodel defined in this entire specification. The top object of the Termonology package as a unit of
interchange shall be the SACM:: AssuranceCasePackage element.

The Conformance clause identifieswhich clauses of the specification are mandatory (or conditionally mandatory) and
which are optional in order for an implementation to claim conformance to the specification.

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

! ISO/IEC 15026-1:2013 Systems and software engineering - Systems and software assurance - Part

1: Concepts and vocabulary, 2013. <http://www.iso.org/iso/catalogue detail.htm?
csnumber=62526>

! ISO/IEC 15026-2: 2011 Systems and software engineering - Systems and software assurance -
Part 2: Assurance case, 2011. <http://www.iso.org/iso/catalogue detail.htm?csnumber=52926>
! OMG UML 2.5 Infrastructure Specification formal/15-03-01. <http://www.omg.or ec/UML/>
! OMG Meta-Object Facility (MOF) version 2.5 formal/2015-06-05.
<http://www.omg.org/spec/M OF/>

! OMG MOF XML Metadata I nterchange (XMI) Specification, version 2.5.1,
formal/2015-06-07 <http://www.omg.org/spec/XM1/>

3.2 Non-normative References

The following non-normative documents contain provisions which, through reference in this text, provide informative
context for material in this specification.

! Goal Structuring Notation (GSN) Community Standard, Nov 2011.
<http://www.goal structuringnotation.info/documents/GSN_ Standard.pdf >

! Open Platform for EvolutioNary Certification of Safety-critical Systems (OPENCOSS)
WP4: Common Certification Language, 2012-2015.
<http://www.opencoss-project.eu/node/7>

! Open Platform for EvolutioNary Certification of Safety-critical Systems (OPENCOSS) WP6:
Evolutionary Evidential Chain, 2012-2015. <http://www.opencoss-project.eu/node/7>.

! Evidence management for compliance of critical systems with safety standards: A survey on the
state of practice, Information and Software Technology 60: 1-15, Elsevier (North-Holland) (2015).
<http://www.sciencedirect.com/sci ence/article/pii/S0950584914002560>

! OMG Structured Pattern Metamodel Standard (SPMS), beta2, ptc/14-09-31
<http://www.omg.org/spec/SPM S/>

! Open Group Dependability Assurance Framework (O-DA), Jul 2013.
<https://www?2.opengroup.org/ogsys/catal og/C13F>

Structured Assurance Case Metamodel, v2.0

https://www2.opengroup.org/ogsys/catalog/C13F
http://www.omg.org/spec/SPMS/
http://www.sciencedirect.com/science/article/pii/S0950584914002560
http://www.opencoss-project.eu/node/7
http://www.opencoss-project.eu/node/7
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/UML/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52926
http://www.iso.org/iso/catalogue_detail.htm?csnumber=62526
http://www.iso.org/iso/catalogue_detail.htm?csnumber=62526

! OMG Dependability Assurance Framework for Safety-Sensitive Consumer Devices (DAF), betal,
May 2015. <http://www.omg.org/spec/DAF/>

! Infusion Pumps Total Product Life Cycle Guidance for Industry and FDA Staff, Dec 2014.

<http://www.fda.gov/medical Devices/DeviceRegul ati onandGui dance/ Gui danceD ocuments/ucm2061
53.htm>

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Argument

A body of information presented with the intention to establish one or more claims through the presentation of related
supporting claims, evidence, and contextual information.

Assurance Case

A collection of auditable claims, arguments, and evidence created to support the contention that a defined
system/service will satisfy its assurance requirements.

Claim

A proposition being asserted by the author or utterer that is atrue or false statement.

Evidence

Objective artefacts being offered in support of one or more claims.

Evidence Repository

A software service providing access to, and information about, a collection of evidence items, such as records,
documents, and other exhibits together with related information that facilitates management of evidence, the
interpretation of evidence, and understanding the evidentiary support provided to claims.

Structured argument

A particular kind of argument where the relationshi ps between the asserted claims, and from the evidence to the claims
are explicitly represented.

5 Symbols

There are no symbols defined in this specification.

6 Structured Assurance Case Metamodel, v2.0

http://www.fda.gov/medicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm206153.htm
http://www.fda.gov/medicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm206153.htm
http://www.omg.org/spec/DAF/

6 Additional Information

6.1 Changes to Adopted OMG Specifications [optional]

This specification completely replaces the SACM 1.1 specification.

6.2 Acknowledgements
The following companies submitted this specification:

! MITRE Corporation

! AdeladLLP

! KDM Analytics

! Lockheed Martin

! Benchmark Consulting

The following companies supported this specification:

! University of York
! Universidad Carlos |11 de Madrid
! Carnegie Mellon University

6.3 How to Proceed

Therest of this document contains the technical content of this specification.
Clause 7. Specification overview - Provides design rationale for the SACM Argumentation Metamodel specification.

Part 1 of the specification defines the normative common elements. This part includes three clauses.
Material in this part of the specification isrelated to all compliance points.

Clause 8. SACM Base classes define the common base classes of the Structured Assurance Case Metamodel.
Clause 9. SACM Packages define the common packages of the Structured Assurance Case Metamodel.
Clause 10. SACM Terminology defines the common terminology classes of the Structured Assurance Case Metamodel.

Part 2 of the specification definesthe SACM Argumentation metamodel. The Argumentation Metamodel
defines the catalog of elements for constructing and interchanging structured statements describing
argumentations. Material in this part of the specification is related to the Assurance Case and Argumentation
compliance points, and is not required for the Evidence Container compliance point. This part includes a
single clause. The non-normative Annex B contains some examples of the SACM XML interchange format
for Argumentation, and describes how SACM Argumentation is related to existing graphical notations for
describing structured arguments, such asthe Goal Structuring Notation (GSN) and the Claims-Arguments-
Evidence (CAE) notation.

Structured Assurance Case Metamodel, v2.0

Clause 11. The SACM Argumentation Metamodel - Provides the details of the Argumentation Metamodel specification.

Part 3 of the specification definesthe SACM Artefact Metamodel. The Artefact Metamodel definesthe
catalog of elements for constructing and interchanging precise statements involved in evidence-related
efforts. This part includes asingle clause. Materia in this part of the specification is related to the Assurance
Case and the Evidence Container compliance points, and it is not required for the Argumentation compliance
point.

Clause 12 definesthe key elements of the Artefact Metamodel.

8 Structured Assurance Case Metamodel, v2.0

7 Background and Rationale

7.1 The Need for Assurance Cases

All sectors of society are placing growing reliance on software-enabled and connected systems, both information
systems and embedded systems. Adequate functioning of many of these systemsis critical to the well-being of
organizations and society. Today, these numerous, large, complex systems provide increased benefits by connecting
with others and often directly or indirectly to the Internet.

However the societal and individual risks posed by attacks on, or in the maladaptive behavior of such systems, are
significant enough to warrant a pro-active technology adoption approach whereby the emergent risks can be analyzed,
explored, communicated, and ultimately accepted by those responsible for the assurance.

Thus, system suppliers face the task of engineering their products and services to meet these challenges and threatsin
such away that users and other stakeholders can rationally possess the needed confidence in them — or at least judge
their level of risk. This means that suppliers must not only ensure their delivery of adequate systems, but acquirers and
users require the explicit, valid, well-reasoned, and evidence-supported grounds! for their confidence and decision
making including related engineering conclusions and their uncertainty.

Historically assurance cases covering safety and security requirements for systems have been seen as an important tool
for the interchange of assurance information.

To make system assurance more practical, automation and meaningful exchange of this assurance-related information is
needed. System suppliers, tool vendors, acquirers, users, and others would benefit from aflexible and extensible means
for its representation and exchange.

The concept of an assurance case is one that provides a framework for analyzing and communicating the assurance
arguments and evidence that relates to a system under consideration. Suppliers and customers can see how the system
lifecycle products (system requirements, design, testing, field experience, etc.) relate to and satisfy the assurance
reguirements, enabling sufficient confidence to be gained in the behavior and integration of the system within its
operational context.

Simply put, an assurance case comprises the arguments and evidence that a system will meet its assurance requirements
over itslifecycle.

7.2 Structured Arguments

Arguments have always been used - albeit informally - to communicate and persuade stakeholders that sufficient
confidence can be had in a particular system. However these arguments are often spread over arange of system and
management documentation, and it is difficult to see the argument as awhole in a clear way.

In the assurance domain an ‘argument’ is defined as “a connected series of statements or reasons intended to
establish a position...; a process of reasoning”2. In attempting to persuade others of a position, we cite reasons
why aclaim should be accepted as true. These reasons are described as the premises of the argument, and the
claim they support asits conclusion. These terms can be used to define the ‘normal form’ of an argument as:

+ Suppliers also need the same or similar case to justify release and deployment.

= Shorter Oxford English Dictionary, 6th Edition (2007).

Structured Assurance Case Metamodel, v2.0 9

Premise

Premise

Premise
So, Conclusion

This form reduces argument to its most primitive building blocks, for example:

Premise: All complex systems are susceptible to failure.
Premise: Failures can lead to accidents.

Therefore,
Conclusion: Accidents can occur in complex safety-critical systems.

Theterms ‘premise’ and ‘conclusion’ are relative. The premise of one reasoning step (e.g., that “All complex systems
are susceptible to failure”) may itself need further reasoning support and will become the conclusion of a subsequent
supporting argument. This givesrise to hierarchical argument structures (* chains of reasoning’) in which arguments are
established by the composition of a number of (premise-conclusion) reasoning stepsin order to support an overall
conclusion, asillustrated in Figure 7.1.

Premise /
Conclusion

Premise /
Conclusion

Premise /
Conclusion

Premise /
Conclusion

Figure 7.1 - Argument Chain Structure

10 Structured Assurance Case Metamodel, v2.0

7.3 Arguments as asserted positions

It isimportant to note that the representation of an argument is not the same as avalid argument. The process of
argument representation and communication is separate from that of argument evaluation. For example, an argument
may include invalid reasoning, or may have areliance on irrelevant or false information.

Therefore representations of arguments should be seen as positions that are effectively asserted by the authors or
organizations that are putting forward the argument.

Clearly professional ethics require that assurance stakeholders should present arguments that they believe to be correct,
valid, and relevant.

A key concept is that structured arguments allow usersto express and declare what they consider the argument to be.

7.4 Structured Arguments in SACM

SACM contains those elements presented as fundamental to the expression and exchange of structured arguments.

As noted above, atypical natural language dictionary definition of an argument is that an argument comprises a series
of linked premises (propositions), leading to a conclusion. From this we can derive a set of practical modeling
approaches that allow usersto link together propositions (claims) and to communicate how they consider that higher
level claims be supported or derived from the lower level claims. Since a claim can be used to support one or more
other claims, the general form of a directed graph emerges.

SACM aimsto provide amodeling framework to allow users to express and exchange their argument structures. The
representation of an argument in SACM does not imply that the argument is complete, valid, or correct. Similarly, the
evaluation or acceptance of an argument by a separate party is not covered by the SACM. In the SACM model,
structured arguments comprise argument elements (primarily claims) that are being asserted by the author of the
argument, together with relationships that are asserted to hold between those elements.

7.5 Precise statements related to evidence

In the smplest form, evidence consists of a collection of documents, records or artefacts that provide evidentiary
support to a set of claims.

Artefacts may be structured together into composite artefacts or collections. For higher degrees of assuranceit is
pertinent to know how these artifacts have been created and managed over their lifecycle, and what techniques and
resources were used in their generation —i.e., the provenance of the artefact.

The Artefact Metamodel defines the vocabulary for constructing and interchanging precise statements describing
evidence- related efforts, including

! Describing artefacts and their properties and associated events

! Caollection and management of evidence by participants, using resources, techniques, and activities,
by describing the relationships between them

! Structuring of artefacts — e.g. as composite artefacts or collections

An extensible approach is presented whereby users of an Artefact Model may specify the relationships that hold
between the artefact assets. If necessary aterminology package may be used to reuse common relationships.

Structured Assurance Case Metamodel, v2.0 11

Describing artefacts — artefacts have properties and associated events. An artefact event can be used to
communicate, for example, the review date or release date for the artefact.

Collection and M anagement of Evidence — can be described by means of an extensible set of relationships
between participants, activities, resources and the associated evidence artefacts.

Structuring of artefacts — Artefacts may be part of alarger composite by means of artefact to artefact
rel ationships, or within acommon artefact package.

12 Structured Assurance Case Metamodel, v2.0

Part | - Common Elements

Thefirst part of the specification defines the common elements of the Structured Assurance Case Metamodel, including

the Base Classes, the Structured Assurance Case Terminology Classes, and the Structured A ssurance Case Packages.
Subsequent parts define the Argumentation Metamodel and the Artefact Metamodel .

Figure 7.2 — Overall SACM Class Diagram

Y ellow denotesitems covered in Clause 8, Structured Assurance Case Base Classes.
Orange denotes items covered in Clause 9, Structured Assurance Case Packages.

Blue denotesitems covered in Clause 10, Structured Assurance Case Terminology Classes.
Green denotes items covered in Clause 11, Argumentation Metamodel.

Purple denotes items covered in Clause 12, Artefact Metamodel.

Structured Assurance Case Metamodel, v2.0

13

14

This page intentionally left blank.

Structured Assurance Case Metamodel, v2.0

8 Structured Assurance Case Base Classes

8.1 General

This chapter presents the normative specification for the SACM Base Metamodel. It begins with an overview of the
metamodel structure followed by a description of each element.

Terminology::
. Element
Expression +expression
+value : String 0.1
+key|0..1 T
UtilityElement SACMElement
+sExpression : String
. . - ModelElement
TaggedValue Note ImplementationConstraint Description
+sKey : Stri +gid : String
siey - String +name : String
0.* 0.1 +isAbstract : Boolean
0.% 0.% +description ’
+implementationConstraint

+note
+taggedValue

Figure 8.1 — Structured Assurance Case Base Classes Diagram

The Structured Assurance Case Base Classes express the foundational concepts and rel ationships of the base elements
of the SACM metamodel and are utilized, through inheritance metamodel by the bulk of the rest of the Structured
Assurance Case Metamodel.

8.2 SACMElement (abstract)
SACMElement isthe base class for SACM.

Superclass
MOF:Element

Attributes

None

Semantics
All the elements of a structured assurance case effort created with SACM correspond to a SACMElement.

Structured Assurance Case Metamodel, v2.0 15

8.3 ModelElement (abstract)
ModelElement is the base element for the majority of modeling elements.

Superclass
SACMElement

Attributes

gid: String — a unique identifier that is unique within the scope of the model instance
name: String — the name of the element

isAbstract: Boolean —aflag to indicate whether the Model Element is considered to be abstract. Thisis used to indicate
whether an element is part of a pattern or template.

Associations

implementationConstraint: ImplementationConstraint [0..*] — alows the description of any implementation constraint
associated with converting the element from being abstract to being concrete description:

Description — the description of the element [0..1]
note: Annotation [0..*] —a collection of annotations associated with the element.
taggedValue: TaggedValue [0..*] —acollection of tagged values may be associated with each Model Element

Semantics
All theindividual and identifiable elements of a SACM model correspond to a Model Element.

Constraints

ImplementationConstraints should only be specified if isAbstract is true.

8.4 UtilityElement (abstract)

UtilityElement is an abstract element for a number of utility elements.

Superclass
SACMElement

Associations

expression: Expression [1] — the expression object containing the value of the UtilityElement (see Terminology section
10)

Semantics

UtilityElement supports the specification of additional information for a M odel Element.

Attributes
sExpression: String — the text that describes the value of the UtilityElement.

16 Structured Assurance Case Metamodel, v2.0

Constraints
If an Expression class is associated (through the expression association) with UtilityElement then sExpression should be
null.

8.5 ImplementationConstraint

This class specifies details of any implementation constraints that must be satisfied whenever areferencing
ModelElement is to be converted from isAbstract = true to isAbstract = false . For example in the context of a
SACM pattern fragment, an element will need to satisfy the implementation rules of the pattern.

Superclass

UtilityElement

Semantics

ImplementationConstraints indicate the conditions to fulfill in order to alow an abstract Model Element (isAbstract =
true) to become non-abstract (isAbstract = false).

Constraints

ImplementationConstraints should only specified if isAbstract istrue.

8.6 Description

This class specifies a description that may be associated with a Model Element. In many cases Description is used to
provide the ‘ content’ of a SACM element. For example, it would be used to provide the text of a Claim.

Superclass

UtilityElement

Semantics

A Description provides details about Model Elements in relation to aspects such as their content or purpose. Therefore,
Descriptions can be used to both characterize M odel Elements and facilitate their understanding.

8.7 Note

This class specifies a generic note that may be associated with a Model Element. For example a note may include a
number of explanatory comments.

Superclass

UtilityElement

Semantics

Notes are used to specify additional (typically optional) generic, unstructured, untyped information about a
Model Element. An example of thiskind of information could be a comment about a M odel Element.

Structured Assurance Case Metamodel, v2.0 17

8.8 TaggedValue

This class represents a simple key/value pair that can be attached to any element in SACM. Thisisa simple extension
mechanism to allow users to add attributes to each element beyond those already specifiedin SACM.

Superclass

UtilityElement

Attributes

key: Expression —the key of the tagged value
sKey: Expression —the text that describes the key of the tagged value.

Semantics

TaggedVaues can be used to specify attributes, and their corresponding values, for M odel Elements.

Constraints

TaggedV aues should not be used to document attributes that already form part of SACM (e.g., ArtefactProperty).

If an Expression class is associated (through the key association) with TaggedValue then skey should be null.

18 Structured Assurance Case Metamodel, v2.0

9 Structured Assurance Case Packages

9.1 General

This chapter presents the normative speci fication for the SACM Packages Metamodel. It begins with an overview of the

metamodel structure followed by a description of each element.

\V,
ArtefactElement

AssuranceCasePackagelnterface

0.*

AssuranceCasePackage Hinterface
+assuranceCasePackage
+citedPackage
1 0..*
+assuranceCasePackage
AssuranceCasePackageCitation
+argumentPackage |0..*

9 9 +artefactPackage | 0..* +terminologyPackage | 0..*

Argumentation::
Y Artefact:: Terminology::
ArgumentPackage
9 9 ArtefactPackage TerminologyPackage

Figure 9.1 - Structured Assurance Case Packages Class Diagram

In SACM, the parent container element is AssuranceCasePackage. AssurancesCasePackages can be thought of
assurance case ‘modules’. Packages can contain other packages, including citations to other packages not contained
within the same package hierarchy. Packages optionally can have a separately declared interface
(AsliuranceCasePackagel nterface) (analogous to a public header file) that declares selected packages contained by a
package.

Assurance cases (AssuranceCasePackages) consist of arguments (containined in ArgumentPackages), evidence
descriptions (contained in ArtefactPackages) and Terminology definitions (contained in Terminol ogyPackages).

9.2 ArtefactElement (abstract)

ArtefactElement is an abstract class that serves as a parent class for Artefacts and AssuranceCasePackage elements.
Superclass

Structured Assurance Case Metamodel, v2.0

19

Model Element

Semantics

ArtefactElement correspond to the base class for specifying all the identifiable units of data modelled and managed in a
structured assurance case effort.

9.3 AssuranceCasePackage

AssuranceCasePackage is an exchangeable element that may contain a mixture of artefacts, argumentation and
terminology. When users exchange content, it is expected they use this asthe top level container. It isarecursive
container, and may contain one or more sub-packages.

This follows the existing practice of considering an assurance case when fully completed to comprise both
argumentation and evidence, although each may be exchanged individually.

AssuranceCasePackage is a sub-class of ArtefactElement. Semantically an AssuranceCasePackage can be considered as
an artefact of evidence (e.g. from the perspective of another AssuranceCasePackage).

Superclass

ArtefactElement

Associations

assuranceCasePackageCitation: AssuranceCasePackageCitation [0..*] —acollection of optional citations to other
AssuranceCasePackages

assuranceCasePackage: AssuranceCasePackage [0..*] —anumber of optional sub-packages

interface: AssuranceCasePackagel nterface [0..*] —a number of optional assurance case package interfaces that the
current package may implement

artefactPackage: ArtefactPackage [0..*] —anumber of optional artefact sub-packages

terminol ogyPackage: TerminologyPackage [0..*] —anumber of optional terminology sub-packages

Semantics

AssuranceCasePackage is the root class for creating structured assurance cases.

9.4 AssuranceCasePackagelnterface

AssuranceCasePackagelnterface is akind of AssuranceCasePackage that defines an interface that may be exchanged
between users. An AssuranceCasePackage may declare one or more ArtefactPackagel nterfaces.

Superclass

AssuranceCasePackage

20 Structured Assurance Case Metamodel, v2.0

Semantics

AssuranceCasePackagel nterface enabl es the declaration of the elements of an AssuranceCasePackage that might be
referred to (cited) in another AssuranceCasePackage, thus the elements can be used for assurance in the scope of the
latter AssuranceCasePackage.

Constraints

AssuranceCasePackagel nterface are only allowed to contain the following: ArgumentPackagel nterfaces,
ArtefactPackagel nterfaces, and Terminol ogyPackages.

9.5 AssuranceCasePackageCitation
AssuranceCasePackageCitation is used to cite another AssuranceCasePackage. The citation can be used where an

assurance case author wishes to refer to an AssuranceCasePackage outside of the current AssuranceCasePackage
hierarchy.

Superclass
ArtefactElement

Associations
citedPackage: AssuranceCasePackage — the existing AssuranceCasePackage being referenced.

Constraints

The citedPackage referred to by a AssuranceCasePackageCitation must be outside of the containment hierarchy
containing the citation.

9.6 ArgumentPackage

ArgumentPackage is a container for the structured argument aspect of the assurance case. It contains the structure of
assertions which comprise the structured argument.

Superclass

ArgumentationElement

Associations

argumentPackageCitation: ArgumentPackageCitation [0..*] —an optional set of citations to other ArgumentPackages
argumentPackage: ArgumentPackage [0..*] — an optional set of sub ArgumentPackages, allowing for recursive
containment argumentAsset: ArgumentAsset [0..*] an optional set of ArgumentAssets

Semantics

ArgumentPackage is the base class for specifying the results of the argumentation efforts for a structured assurance case
(i.e., an AssuranceCase).

Structured Assurance Case Metamodel, v2.0 21

9.7 TerminologyPackage

TerminologyPackage is a container element for terminology that may be exchanged. Terminology can define terms,
expressions or categories, used elsewhere in the assurance case.

Superclass

Terminol ogy Element

Associations

terminol ogyPackageCitation: TerminologyPackageCitation [0..*] — an optional set of citations to other
TerminologyPackage €l ements

terminologyAsset: TerminologyAsset [0..*] —an optional set of terminology assets (expressions, terms and categories)

terminol ogyPackage: TerminologyPackage [0..*] —an optional set of contained Terminol ogyPackage elements,
alowing for recursive containment.
Semantics

TerminologyPackage is the base class for specifying all the terminology needs and constraints (via TerminologyAssets)
for astructured assurance case (i.e., an AssuranceCase).

9.8 ArtefactPackage

ArtefactPackage is a container element for the assets that are used as evidence or cited in support of a structured
argument. These assets form the evidentia basis for the assurance case.

Superclass

ArtefactElement

Associations

artefactPackageCitation: ArtefactPackageCitation [0..*] —an optional set of citations to other ArtefactPackage elements
artefactAsset: ArtefactAsset [0..*] —an optional set of ArtefactAsset elements, such as citations, artefacts, resources,
activities, etc.

artefactPackage: ArtefactPackage [0..*] - an optional set of contained ArtefactPackage elements, allowing for recursive
containment.

Semantics

ArtefactPackage is the base class for specifying and structuring the ArtefactAssets of a structured assurance case (i.e.,
an AssuranceCase).

22 Structured Assurance Case Metamodel, v2.0

10 Structured Assurance Case Terminology
Classes

10.1 General

This chapter presents the normative specification for the SACM Terminology Metamodel. It begins with an overview of
the metamodel structure followed by a description of each element.

ModelElement +origin

+gid : String 0.1
+name : String
+isAbstract : Boolean

i

TerminologyPackageCitation TerminologyElement
EE—
+terminologyPackageCitation /
tcitedPdckage
0.*
1 +terminplogyPackage

TerminologyPackage | « ierminologyAsset

0.% TerminologyAsset

+citedAsset 1 T
ExpressionElement +category Category
0.*
2 0.*
+element
TerminologyAssetCitation Expression +form Term
+value : String 0.1 +value : String
+externalReference : String

Figure 10.1 — Terminology Class Diagram

This portion of the SACM metamodel describes and defines the concepts of term, expression and an external interface
to terminology information from others. This area of the Structured Assurance Case Metamodel aso provides the
starting foundation for formalism in the assembly of termsinto expressions without mandating the formalism for those
that do not need it.

10.2 TerminologyElement (abstract)

TerminologyElement is an abstract class that serves as a parent class for all SACM terminology assets
(TerminologyAsset) and the packaging of these assets (Terminol ogyPackage and TerminologyPackageCitation).

Structured Assurance Case Metamodel, v2.0 23

Superclass
Model Element

Semantics

TerminologyElement is the base class for specifying the terminology aspects of an assurance case
(AssuranceCasePackage).

10.3 TerminologyPackage
The TerminologyPackage Class is the container class for SACM terminology assets.

Superclass
Terminol ogyElement

Associations

TerminologyAsset: TerminologyAsset[0..%]

The TerminologyAssets contained in a given instance of a TerminologyPackage.
terminol ogyPackage: TerminologyPackage[0..*]

The nested terminologyPackage contained in a given instance of a TerminologyPackage
terminol ogyPackageCitation: Terminol ogyPackageCitation[0..*]

The nested terminol ogyPackageCitation contained in a given instance of a TerminologyPackage

Semantics

Terminol ogyPackages contain the Terminol ogyAssets that can be used within the naming and description of SACM
arguments and artefacts. Terminol ogyPackage elements can be nested, and can contain citations (references) to other
TerminologyPackages.

10.4 TerminologyPackageCitation
The TerminlogyPackageCitation is a citation (reference) to another Terminol ogyPackage.

Superclass

Terminol ogyElement

Associations
citedPackage: TerminologyPackage[0..1]

The Terminol ogyPackage being cited by the Terminol ogyPackageCitation.

24 Structured Assurance Case Metamodel, v2.0

Semantics

Terminol ogyPackageCitations make it possible to cite other Terminol ogyPackages.

For example, within a TerminologyPackage it can be useful to refer to another Terminol ogyPackage (to reference
terminology) that is not contained with the same Terminol ogyPackage and is defined elsewhere.

Constraints

The citedPackage referred to by a Terminol ogyPackageCitation must be outside of the containment hierarchy
containing the citation.

10.5 TerminologyAsset (abstract)

The TerminologyAsset Class is the abstract class for the different types of terminology elements represented
in SACM.

Superclass

Terminology Element

Semantics

TerminologyAssets represent all of the elements required to model and categorize expressionsin SACM
(expressions and terminology categories).

10.6 Category

The Category class describes categories of ExpressionElements (Terms and Expressions) and can be used to group
these elements within Terminol ogyPackages.

Superclass

TerminologyAsset

Semantics

Terms and ExpressionElements can be said to belong to Categories. Categories can group Terms, Expressions, or a
mixture of both. For example, a Category could be used to describe the terminology associated with a specific assurance
standard, project, or system.

10.7 ExpressionElement (abstract)

The ExpressionElement class is the abstract class for the elementsin SACM that are necessary for modeling
expressions.

Structured Assurance Case Metamodel, v2.0 25

Superclass

Terminol ogyAsset

Associations

category: Category [0..*] — optionally associates the ExpressionElement with one or more terminology categories.

Semantics

ExpressionElements are used to model (potentially structured) expressionsin SACM. All ModelElements contain a
Description whose value is provided by means of an Expression.

10.8 Expression

The Expression classis used to model both abstract and concrete phrases in SACM. Abstract Expressions are denoted
by the inherited isAbstract attribute being set true. A concrete expression (denoted by isAbstract being false) is one that
has aliteral string value and references only concrete ExpressionElements.

Superclass
ArtefactElement

Attributes

value: String — An attribute recording the value of the expression

Associations

element: ExpressionElement [0..*] — an optional reference to other ExpressionElements forming part of the
StructuredExpression.

Semantics

Expressions are used to model phrases and sentences. These are defined using the value attribute. The value attribute
can be asimple litera string. Alternatively, the expression can also be defined (using the value string) as a production
rule involving other ExpressionElements. In this case, the value string must use a suitable (string) form for denoting the
position of involved ExpressionElements (e.g. “ $<ExpressionElement.name>$") within the production rule, and
expressing production rule operators (e.g. Extended Backus-Naur Form operators).

Constraints

Where an Expression has associated ExpressionElements these should be referenced by name within the
Expression.value.

Where an Expression.value references ExpressionElements by name, these ExpressionElements should be
associated (using the element association) with Expression.

10.9 Term

The Term classis used to model both abstract and concrete termsin SACM. Abstract Terms can be considered
placeholders for concrete terms and are denoted by the inherited iSAbstract attribute being set true. A concretetermis
denoted by isAbstract being false.

26 Structured Assurance Case Metamodel, v2.0

Attributes

value: String — An attribute recording the value of the Term
external Reference: String — An attribute recording an external reference (e.g., URI) to the object referred to by the Term

Superclass

ExpressionElement

Semantics
Term class is used to model both abstract and concrete termsin SACM. Abstract Terms can be considered placeholders

for concrete terms and are denoted by the inherited isAbstract attribute being set true. A concrete term is denoted by
isAbstract being false.

The external Reference attribute enables the referencing of the object signified by the term (signifier). It also provides a
mechanism whereby terms can reference concepts and terms defined in other ontology and terminology models.

10.10 TerminologyAssetCitation

The TerminologyAssetCitation is a citation (reference) to an ExpressionElement contained in another
TerminologyPackage.

Superclass

ExpressionElement

Associations

citedAsset: TerminologyAsset [1] The TerminologyAsset being cited by the TerminologyAssetCitation.

Semantics

Terminol ogyA ssetCitations make it possible to cite TerminologyAssets from other Terminol ogyPackages when forming
TerminologyPackages or Expressions.

For example, within a TerminologyPackage it can be useful to refer to TerminologyAssets within another
TerminologyPackage (to reference terminology) that are not contained with the same Terminol ogyPackage and is
defined elsewhere. Within an Expression it can also be useful to refer to TerminologyAssets within another
TerminologyPackage that are not contained with the same Terminol ogyPackage and is defined elsewhere.

Constraints

The citedAsset referred to by a TerminologyAssetCitation must be outside of the containment hierarchy containing the
citation.

Structured Assurance Case Metamodel, v2.0 27

28

This page intentionally left blank.

Structured Assurance Case Metamodel, v2.0

Part Il - Argumentation Metamodel
This part of the specification defines the Argumentation Metamodel.

Structured Assurance Case Metamodel, v2.0

29

30

This page intentionally left blank.

Structured Assurance Case Metamodel, v2.0

11

11.1

This chapter presents the normative speci fication for the SACM Argumentation Metamodel. It begins with an overview

SACM Argumentation Metamodel

General

of the metamodel structure followed by a description of each element.

11.2

Argumentation Class Diagram

ModelElement

+gid : String
+name : String
+isAbstract : Boolean

I

T +toBeSupported : Boolean

AssertedChallenge | | Assertedinference | | AssertedContext

Figure 11.1 — Argumentation Class Diagram

Structured Assurance Case Metamodel, v2.0

ArgumentationElement
9 ArgumentPackageCitation
+content : String
ArgumentPackageBinding
+argumentationPackage
1 |0.*
ArgumentPackage
+participantPackage
+argumentAsset (}\ ArgumentPackagelnterface
0.*
0.% +interface o
+structure
+source | ArgumentAsset 0.*
0.*
+arget
0.*
1
+citedAsset
ArgumentAssetCitation
Artefact::
- g 0 i +citedAsset;
+externalReference : String 0.1
0.1
+reasoning
+metaClaim
0.*
Claim
+assumed : Boolean

31

This portion of the SACM model describes and defines the concepts required to model structured arguments.
Arguments are represented in SACM through explicitly representing the Claims and citation of artefacts (e.g., as
evidence) (ArtefactAssetCitation), and the ‘links between these elements — e.g., how one or more Claims are asserted
to infer another Claim, or how one or more artefacts are asserted as providing evidence for a Claim (AssertedEvidence).
In addition to these core elements, in SACM it is possible to provide additional description of the ArgumentReasoning
associated with inferential and evidential relationships, represent counter-arguments (through AssertedChallenge),
counter-evidence (through AssertedCounterEvidence), and represent how artefacts provide the context in which
arguments should be interpreted (through AssertedContext.)

The packaging of structured argumentsinto ‘modular’ argument packages is enabled through
ArgumentPackages, an optional declaration of an interface for the package (ArgumentPackagel nterface)
that cites a specific selection of the ArgumentElements contained within the package, and the ability to link
(by means of an argument) two or more argument packages (through an ArgumentPackageBinding). It is

a so possible within a package to cite elements contained within other argument packages (through using
ArgumentAssetCitation).

In the following sections we describe these model elements in detail.

11.2.1 ArgumentationElement class (abstract)
An ArgumentationElement is the top level element of the hierarchy for argumentation elements.

Semantics

The ArgumentationElement is a common class for al elements within a structured argument.

11.2.2 ArgumentPackage Class

The ArgumentPackage Class is the container class for a structured argument represented using the SACM
Argumentation Metamodel.

Superclass

ArgumentationElement

Associations
argumentAsset: ArgumentAsset[0..*]

The ArgumentAssets contained in a given instance of an ArgumentPackage.
argumentPackage: ArgumentationPackage[0..*]

The nested argumentPackage contained in a given instance of an ArgumentPackage
interface: ArgumentationPackage[0..*]

Reference to the declared interface for the ArgumentPackage.

Semantics

ArgumentPackages contain structured arguments. These arguments are composed of ArgumentA ssets.
ArgumentPackages elements can be nested, and can contain citations (references) to other ArgumentPackages.

32 Structured Assurance Case Metamodel, v2.0

For example, arguments can be established through the composition of Claims (propositions) and the
Assertedl nferences between those Claims.

11.2.3 ArgumentPackageCitation Class
The ArgumentPackageCitation is a citation (reference) to another ArgumentPackage.

Superclass

ArgumentPackage

Associations
citedPackage: ArgumentPackage[1]

The ArgumentPackage being cited by the ArgumentPackageCitation.
Semantics
ArgumentPackageCitations make it possible to cite other ArgumentPackages.

For example, within an ArgumentPackage it can be useful to refer to another ArgumentPackage that is not
contained within the same ArgumentPackage.

Constraints
ArgumentPackageCitations have no contents other than the association to the citedPackage.

The citedPackage referred to by an ArgumentPackageCitation must be outside of the containment
hierarchy containing the citation.

11.2.4 ArgumentPackageBinding Class

The ArgumentPackageBinding is a sub type of ArgumentPackage used to record the mapping (agreement) between two
or more ArgumentPackages.

Superclass

ArgumentPackage

Associations

partici pantPackage: ArgumentPackagel nterface[2..*]
The ArgumentPackages being mapped together by the ArgumentPackageBinding.

Semantics

ArgumentPackageBindings can be used to map resolved dependencies between the Claims of two or more
ArgumentPackages.

Structured Assurance Case Metamodel, v2.0 33

For example, one ArgumentPackage may contain a claim that istoBeSupported (i.e. currently has no supporting
argument). An ArgumentPackageBinding can be used to record the mapping (by means of containing a structured
argument linking ArgumentAssetCitations to the claims in question) between this claim and a supporting claim in
another ArgumentPackage.

An ArgumentPackagel nterface is a sub type of ArgumentPackage that can be used to create an explicit interface to an
existing ArgumentPackage.

Constraints

The ‘root” ArgumentAssets contained by an ArgumentPackageBinding (i.e. the ArgumentAssets only associated as
target of an AssertedRelationship) and ‘leaf’ ArgumentAssets (i.e. the ArgumentAssets only associated as source of an
AssertedRelationship) must be ArgumentAssetCitations to Claims or ArtefactAssetCitations contained within the
ArgumentPackages associated by the participantPackage association.

11.2.5 ArgumentPackagelnterface Class

Superclass

ArgumentPackage

Semantics

ArgumentPackagel nterfaces can be used to declare (by means of containing ArgumentAssetCitations) the
ArgumentAssets contained in an ArgumentPackage that form part of the explicit, declared, interface of the
ArgumentPackage.

For example, whilst an ArgumentPackage may contain many Claims, it may be desirable to create an
ArgumentPackagel nterface that cites only a subset of those claims that are intended to be mapped / used (e.g. by means
of an ArgumentPackageBinding) by other ArgumentPackages. There may be more than one ArgumentPackagel nterface
for agiven ArgumentPackage that reveal different aspects of the ArgumentPackage for different audiences.
Constraints

ArgumentPackagel nterfaces are only alowed to contain ArgumentAssetCitations to ArgumentAssets within the
ArgumentPackage with which this ArgumentPackagel nterface is associated (by the interface association).

11.2.6 ArgumentAsset Class (abstract)
The ArgumentAsset Classis the abstract class for the elements of any structured argument represented in SACM.

Superclass

ArgumentationElement

Semantics

ArgumentAssets represent the constituent building blocks of any structured argument contained in an
ArgumentPackage.

For example, ArgumentAssets can represent the Claims made within a structured argument contained in an
ArgumentPackage.

34 Structured Assurance Case Metamodel, v2.0

11.2.7 Assertion Class (abstract)

Assertions are used to record the propositions of Argumentation (including both the Claims about the subject of the
argument and the structure of the Argumentation being asserted). Propositions can be true or false, but cannot be true
and false simultaneoudly.

Associations
metaClaim:Claim[0..*]

references Claims concerning (i.e., about) the Assertion (e.g., regarding the confidence in the Assertion)

Semantics

Structured arguments are declared by stating claims, citing evidence and contextual information, and asserting how
these elements relate to each other.

11.2.8 ArtefactAssetCitation Class
The ArtefactAssetCitation Class enables the citation of an artefact that relates to the structured argument.

Superclass

ArgumentA sset

Attributes

external Reference: String An attribute recording a URL to external evidence.

Associations
citedArtefact: ArtefactElement[0..1]

The ArtefactElements cited by the current ArtefactAssetCitation object.

Semantics

It is necessary to be able to cite artefacts that provide supporting evidence, context, or additional description for the core
reasoning of the recorded argument. ArtefactAssetCitations allow there to be an objectified citation of this information
within the structured argument, thereby allowing the relationship between this artefact and the argument to aso be
explicitly declared.

The external Reference attribute can be used when wishing to cite an Artefact not being modeled by an SACM
ArtefactElement.

11.2.9 ArgumentAssetCitation Class

The ArgumentAssetCitation cites an ArgumentAsset within another ArgumentPackage, for use within the current
ArgumentPackage.

Superclass
ArgumentAsset

Structured Assurance Case Metamodel, v2.0 35

Associations
citedAsset: ArgumentAsset[0..*]

References an ArgumentAsset within another ArgumentPackage.

Semantics

Within an ArgumentPackage it can be useful to be able to cite elements of another ArgumentPackage (i.e.,
ArgumentAssets) to act as explicit proxies for those el ements acting within the argumentation structure. For example, in
supporting a Claim it may be useful to cite a Claim contained within another ArgumentPackage.

Constraints

The citedAsset referred to by an ArgumentAssetCitation must be outside of the containment hierarchy containing the
citation.

11.2.10 Claim Class

Claims are used to record the propositions of any structured argument contained in an ArgumentPackage.
Propositions are instances of statements that could be true or false, but cannot be true and false
simultaneously.

Superclass

Assertion
Attributes
assumed: Boolean

An attribute recording whether the claim being made is declared as being assumed to be true rather than being
supported by further reasoning.

toBeSupported: Boolean

An attribute recording whether further reasoning has yet to be provided to support the Claim (e.g. further evidence to be
cited).

Semantics

The core of any argument is a series of claims (premises) that are asserted to provide sufficient reasoning to support a
(higher- level) claim (a conclusion).

A Claim that isintentionally declared without any supporting evidence or argumentation can be declared as being
assumed to be true. It is an assumption. However, it should be noted that a Claim that is not ‘assumed’ (i.e., assumed =
false) is not being declared as false.

36 Structured Assurance Case Metamodel, v2.0

A Claim that isintentionally declared as requiring further evidence or argumentation can be denoted by setting
toBeSupported to be true.
Constraints

Self.assumed and self.toBeSupported cannot both be true simultaneoudly.

11.2.11 ArgumentReasoning Class

ArgumentReasoning can be used to provide additional description or explanation of the asserted inference or challenge
that connects one or more Claims (premises) to another Claim (conclusion). ArgumentReasoning elements are therefore
related to Assertedl nferences and AssertedChallenges. It is also possible that ArgumentReasoning elements can refer to
other structured Arguments as a means of documenting the detail of the argument that establishes the asserted
inferences.

Superclass

ReasoningElement

Associations
structure:ArgumentPackage]0..1]

Optional reference to another the ArgumentPackage that provides the detailed structure of the argument being described
by the ArgumentReasoning.

Semantics

The AssertedRel ationship that relates one or more Claims (premises) to another Claim (conclusion), or evidence cited
by an ArtefactAssetCitation to a Claim, may not always be obvious. In such cases ArgumentReasoning can be used to
provide further description of the reasoning involved.

11.2.12 AssertedRelationship Class (abstract)

The AssertedRelationship Class is the abstract association class that enables the ArgumentAssets of any structured
argument to be linked together. The linking together of ArgumentAssets allows a user to declare the relationship that
they assert to hold between these elements.

Superclass

Assertion

Associations

source:ArgumentAsset[0..%]

Reference to the ArgumentAsset(s) that are the source (start-point) of the relationship.

Structured Assurance Case Metamodel, v2.0 37

target: ArgumentAsset[0..*]
Reference to the ArgumentAsset(s) that are the target (end-point) of the relationship.
reasoning: ArgumentReasoning[0..*]

Reference to the ArgumentReasoning being described by the ArgumentReasoning.

Semantics

In SACM, the structure of an argument is declared through the linking together of primitive ArgumentAssets. For
example, asufficient inference can be asserted to exist between two claims (“Claim A implies Claim B”) or sufficient
evidence can be asserted to exist to support aclaim (“Claim A is evidenced by Evidence B”). An inference asserted
between two claims (A — the source — and B —the target) denotes that the truth of Claim A is said to infer the truth of
Clam B.

11.2.13 AssertedIinference Class

The Assertedl nference association class records the inference that a user declares to exist between one or more
Assertion (premises) and another Assertion (conclusion). It isimportant to note that such adeclarationisitself an
assertion on behalf of the user.

Superclass
AssertedRel ationship

Semantics

The core structure of an argument is declared through the inferences that are asserted to exist between Assertions (e.g.,
Claims). For example, an Assertedinference can be said to exist between two claims (“Claim A implies Claim B”). An
Assertedl nference between two claims (A — the source — and B — the target) denotes that the truth of Claim A issaid to
infer the truth of Claim B.

Constraints

The source of Assertedinference relationships must be Claims, or ArgumentAssetCitations that cite a Claim.

The target of Assertedinference relationships must be Assertions, or ArgumentAssetCitations that cite an Assertion.

11.2.14 AssertedEvidence Class

The AssertedEvidence association class records the declaration that one or more artefacts of Evidence (cited by
ArtefactAssetCitations) provide information that hel ps establish the truth of a Claim. It isimportant to note that such a
declaration isitself an assertion on behalf of the user. The artefact (cited by an ArtefactAssetCitation) may provide
evidence for more than one Claim.

Superclass
AssertedRelationship

38 Structured Assurance Case Metamodel, v2.0

Semantics

Where evidence (cited by ArtefactAssetCitation) exists that helps to establish the truth of a Claim in the argument, this
relationship between the Claim and the evidence can be asserted by an AssertedEvidence association. An
AssertedEvidence association between an artefact cited by an ArtefactAssetCitation and a Claim (A — the source
evidence cited — and B —the target claim) denotes that the evidence cited by A is said to help establish the truth of
ClamB.

Constraints
The source of AssertedEvidence relationships must be ArtefactAssetCitation.

The target of AssertedEvidence relationships must be Assertions, or ArgumentAssetCitations that cite an Assertion.

11.2.15 AssertedChallenge Class

The AssertedChallenge association class records the challenge (i.e. counter-argument) that a user declares to exist
between one or more Claims and another Claim. It isimportant to note that such a declaration is itself an assertion on
behalf of the user.

Superclass
AssertedRelationship

Semantics

An AssertedChallenge by Claim A (source) to Claim B (target) denotes that the truth of Claim A challenges the truth of
Clam B (i.e., Claim A leads towards the conclusion that Claim B isfalse).

Constraints

The source of AssertedChallenge relationships must be Claims, or ArgumentAssetCitations that cite a Claim.

The target of AssertedChallenge relationships must be Assertions, or ArgumentAssetCitations that cite an Assertion.

11.2.16 AssertedCounterEvidence Class

AssertedCounterEvidence can be used to associate evidence (cited by ArtefactAssetCitations) to a Claim, where this
evidenceis being asserted to infer that the Claim isfalse. It isimportant to note that such adeclaration isitself an
assertion on behalf of the user.

Superclass
AssertedRelationship

Semantics

An AssertedCounterEvidence association between some evidence cited by an InformationNode and a Claim (A —the
source evidence cited — and B — the target claim) denotes that the evidence cited by A is counter-evidence to the truth of
Claim B (i.e,, Evidence A suggests the conclusion that Claim B is false).

Structured Assurance Case Metamodel, v2.0 39

Constraints
The source of AssertedCounterEvidence relationships must be ArtefactAssetCitation.

The target of AssertedCounterEvidence relationships must be Assertions, or ArgumentAssetCitations that cite an
Assertion.

11.2.17 AssertedContext Class

The AssertedContext association class can be used to declare that the artefact cited by an ArtefactAssetCitation(s)
provides the context for the interpretation and scoping of a Claim or ArgumentReasoning element. In addition, the
AssertedContext association class can be used to declare a Claim asserted as necessary context (i.e. a precondition) for
another Assertion or ArgumentReasoning.

Superclass
AssertedRelationship

Semantics

Contextua information often needs to be cited in order to make clear the interpretation and scope of a Claim or
ArgumentReasoning description. For example, a Claim can be said to be valid only in a defined context (“Claim A is
asserted to be true only in a context as defined by the information cited by Artefact B” or conversely “Informationltem
B isthe asserted context for Claim A”). A declaration (AssertedContext) of context (ArtefactAssetCitation B) for a
ReasoningElement A records that B is asserted to be contextual information required for the interpretation and scoping
of A (i.e., B definesthe context where the reasoning presented by A is asserted as true).

Contextual Claims often need to be cited as preconditions for a Claim or ArgumentReasoning. For example, aClaim
may be asserted only in the context of another claim (“Claim A is asserted to be true only in a context where Claim B is
true”. Similarly, a description of ArgumentReasoning A may only be considered true in a context where Clam B is
true”.

Constraints

The source of AssertedContext relationships must be ArtefactAssetCitations or Claims.

The target of AssertedContext relationships must be Assertions, ArgumentAssetCitations that cite an Assertion,
“ArgumentReasoning” elements or ArgumentAssetCitations that cite ArgumentReasoning elements.

40 Structured Assurance Case Metamodel, v2.0

Part Ill - Artefact Metamodel

This part of the specification definesthe Artefact Metamodel .

Structured Assurance Case Metamodel, v2.0

41

42

This page intentionally left blank.

Structured Assurance Case Metamodel, v2.0

12 Artefact Classes

12.1 General

This chapter presents the normative specification for the SACM Artefact Metamodel. It begins with an overview of the
metamodel structure followed by a description of each element.

ModelElement

+gid : String

+name : String ArtefactPackageCitation
+isAbstract : Boolean
A
ArtefactElement
ArtefactPackageBinding
R

+OtedPackage | 1
particip ag
ArtefactPackage ArtefactPackagelnterface

“+interface

o. b -
N
+artefactPackage
[+artefactAsset

o 0.*

0 ArtefactAsset

1
+citedAsset

ArtefactAssetCitation Artefact Resource Activity Participant Technique

»»»»»»»» String +location : String +startime : String
+date : String +endtime : String

+artefactProperty |, +arefactEvent |

ArtefactProperty ArtefactEvent

ArtefactAssetRelationship

+date : String

NS

Figure 12.1 — Artefact Class Diagram

Artefacts correspond to the main evidentiary elements of an assurance case. By means of assertions (AssertedEvidence
and AssertedCounterEvidence), artefacts are used for supporting claims and arguments.

In general, artefacts are managed when the corresponding objects are available. For example, atest caseis
linked to the requirement that validates once the test case has already been created. However, artefact
management might also require the specification of patterns (or templates) in order to allow a user, for
instance, to indicate that a given artefact must be created but it has not yet. A common scenario of this
situation corresponds to the process during which a supplier and a certifier have to agree upon the artefacts
that the supplier will have to provide as assurance evidence for a system. As aresult of this process, artefact
patterns could be specified, and such patterns would need to be made concrete during the lifecycle of the
system. Artefact patterns are specified by mean of the attribute ‘isAbstract’ (Model Element). For example, a
supplier and a certifier might agree upon the need for maintaining a hazard log during a system’ s lifecycle.
Such ahazard log would initially be modeled as an Artefact that is abstract. Once created, the value of this
attribute of the hazard log would be ‘false’. The specification of artefact patterns also facilitates their reuse,
as the corresponding artefacts might have to be created in the scope of more than one assurance case effort.
Using again hazard logs as an example, their structure might be the same for several systems, thus all the
corresponding hazard logs might be based on a same abstract Artefact.

Structured Assurance Case Metamodel, v2.0 43

When made concrete, an Artefact can relate to many different types of information necessary for developing confidence
in the Artefact and thus for assurance purposes. Such information can be regarded as meta-data or provenance
information about an Artefact, provides information about its management, and is specified with the rest of
specializations of ArtefactAsset (different to ArtefactAssetCitation). Using a design specification as an example,
properties (ArtefactProperty) could be specified regarding its quality (completeness, consistency...), and it would have a
lifecycle with events such as its creation and modifications. The specification could be created by using UML
(Technique) in an Activity named ‘ Specify system design’, stored in a Resource corresponding to a diagram created
with some modeling tool, and later used as input for another Activity called ‘Verify system design’. A given person
(Participant) playing the role of system designer could be the owner of the design specification, which would also relate
to other artefacts: the requirements specification that satisfies, the architecture that implements, its verification report,
etc. Further relationships might be specified between other artefact assets, such precedence between activities (* Specify
system design’ precedes ‘Verify system design’) and the participantsin an Activity.

12.2 ArtefactPackageCitation

ArtefactPackageCitation is used to cite another ArtefactPackage. The citation can be used where an assurance case
author wishes to refer to an existing ArtefactPackage.

Superclass

ArtefactPackage

Associations
citedPackage: ArtefactPackage [1] — the ArtefactPackage cited by the ArtefactPackageCitation

Semantics

ArtefactPackageCitations enable the reference, in a given ArtefactPackage, to another ArtefactPackage.

Constraints

ArtefactPackageCitations have no contents other than the association to the citedPackage.

12.3 ArtefactPackageBinding

The ArtefactPackageBinding is a sub type of ArtefactPackage used to record ArtefactA ssetRel ationships between the
ArtefactAssats of two or more ArtefactPackages.

Superclass
ArtefactPackage

44 Structured Assurance Case Metamodel, v2.0

Associations

participantPackage: Artef actPackagel nterface][2..*]

The ArtefactPackages containing the ArtefactAssets being related together by the ArtefactPackageBinding.

Semantics

ArtefactPackageBindings can be used to map dependencies between the cited ArtefactAssets of two or more
ArtefactPackages. For example, abinding could be used to record a ‘ derivedFrom’ ArtefactAssetRel ationship between
the ArtefactAsset of one package to the ArtefactAsset of another.

Contraints

ArtefactPackageBindings must only contain ArtefactA ssetRelationships with source and target ArtefactAssetCitations
citing ArtefactsAssets contained within the ArtefactPackagel nterfaces associated by participantPackage.

12.4 ArtefactPackagelnterface

ArtefactPackagel nterface is akind of ArtefactPackage that defines an interface that may be exchanged between users. A
typical use case might be for acomponent supplier to provide its customers with ArtefactPackagel nterfaces that contain
the relevant supplier’s ArtefactElements for the customers ArtefactPackages. An ArtfefactPackage may also declare
that it implements or conforms to a particular ArtefactPackagel nterface.

Superclass

ArtefactPackage

Associations
artefactPackageCitation: ArtefactPackageCitation [0..*] —an optional set of citations to other ArtefactPackage elements

artefactAsset: ArtefactAsset [0..*] —an optional set of ArtefactAsset elements, such as citations, artefacts, resources,
activities, etc.

artefactPackage: ArtefactPackage [0..*] - an optional set of contained ArtefactPackage elements, allowing for recursive
containment.

Semantics

ArtefactPackagel nterface enables the declaration of the elements of an ArtefactPackage that might be referred to (cited)
in another ArtefactPackage, thus the elements can be used for assurance in the scope of the latter ArtefactPackage.

Constraints

ArtefactPackagel nterfaces are only allowed to contain ArtefactA ssetCitations to ArtefactAssets within the
ArtefactPackage with which this ArtefactPackagel nterface is associated (by the interface association).

Structured Assurance Case Metamodel, v2.0 45

12.5 ArtefactAsset class (abstract)

The ArtefactAsset class represents the artefact-speci fic pieces of information of an assurance case, in contrast to the
argument- speci fic pieces of information.

Superclass
ArtefactElement

Semantics

Information about artefacts is essentia for any assurance case. The artefacts correspond, for instance, to the evidence
provided in support of the arguments and claims of an assurance case. It is also important to have access to related
pieces of information such as the provenance of an artefact, its lifecycle, and its properties. All thisinformation might
have to be consulted for devel oping confidence in the validity of an assurance case.

12.5.1 ArtefactAssetCitation class
The ArtefactAssetCitation class allows an ArtefactPackage to refer to the components of another ArtefactPackage.

Superclass
ArtefactAsset

Associations
citedAsset:ArtefactAsset[1]

The ArtefactAsset that the ArtefactAssetCitation cites

Constraints
The citedAsset of an ArtefactAssetCitation must be part of an ArtefactPackagel nterface

The citedAsset of an ArtefactAssetCitation must be part of a different ArtefactPackage
The citedAsset of an ArtefactAssetCitation cannot be an ArtefactAssetCitation

The citedAsset of an ArtefactAssetCitation cannot be an ArtefactAssetRelationship

Semantics

ArtefactAssets belong to single ArtefactPackages. Nonethel ess, the ArtefactAssets can be referred to in other
ArtefactPackages in order to, for instance, specify that a relationship exists between ArtefactAssets of different
ArtefactPackages. For example, an ArtefactPackage might be specified for all the V&V results of an assurance case,

and another for the requirements specifications. The fist ArtefactPackage might refer to the second for further specifying
that agiven V&V result corresponds to the validation of a given requirement.

12.5.2 Artefact class

The Artefact class represents the distinguishable units of data used in an assurance case.

46 Structured Assurance Case Metamodel, v2.0

Superclass

ArtefactAsset

Attributes

version: String
The version of the Artefact

date: String
The date on which the artefact was created.

Associations

artefactProperty:: ArtefactProperty[O..*]
The ArtefactProperties of the Artefact

artefactEvent::ArtefactEvent[0..*]
The set of ArtefactEvents that represent the lifecycle of the Artefact

Semantics

Artefacts correspond to the main evidentiary support for the arguments and claims of an assurance case: an Artefact can
play therole of evidence of a Claim (AssertedEvidence), or of counterevidence (AssertedCountedEvidence). An
Artefact can take several forms, such as a diagram, a plan, areport, or a specification, both in electronic (e.g., a pdf file)
or physical (e.g., a paper document) formats. Typical examples of Artefacts include system lifecycle plans,
dependability (e.g., safety) analysis results, system specifications, and V&V results.

12.5.3 ArtefactProperty class
The ArtefactProperty class enables the specification of the characteristics of an Artefact.

Semantics

An Artefact can have different, specific characteristics independent of the argumentation structure in which the Artefact
is used. Some can be objective (e.g., the result of atest case execution, as passed or not passed) and others can be based
on aperson’sjudgement (e.g., regarding a quality aspect of areport).

12.5.4 ArtefactEvent class
The ArtefactEvent class enables the specification of the eventsin the lifecycle of an Artefact.

Attributes

date: String
The date on which the ArtefactEvent occurred.

Structured Assurance Case Metamodel, v2.0 47

Semantics

Artefacts change during their lifecycle, and different types of happenings can occur at different moments:
creation, modification, revocation... ArtefactEvents serve to maintain a history log of an Artefact, and can be consulted
to know how an Artefact has evolved and to develop confidence in its adeguate management.

12.5.5 Resource class
The Resource class corresponds to the tangible objects representing an Artefact.

Superclass

ArtefactAsset

Attributes

location: String

The path or URL specifying the location of the Resource.
Semantics

Artefacts are located and accessible somewhere, usually in the form of some electronic file for an assurance case. Such
information is specified by means of Resources.

12.5.6 Activity class
The Activity class represents units of work related to the management of ArtefactAssets.

Superclass

ArtefactAsset

Attributes

startTime: String
Time when the Activity started.

endTime: String
Time when the Activity ended.

Semantics

The Artefacts used in an assurance case are the result of and managed via the execution of processes, which consist of
Activities: specification of requirements, design of the system, integration of system components, €etc.
ArtefactActivityRelationships can be used to specify the relationship between Activities and Artefacts. Activities can,
for instance, be described as using a given Artefact asinput or producing an Artefact as output. Activities can be related
to one another using ActivityRelationships (e.g. ‘ preceding’). The purpose of an activity can be specifiedin its
description.

48 Structured Assurance Case Metamodel, v2.0

12.5.7 Technique class

The Technique class represents techniques associated with Artefacts (e.g. associated with the creation, inspection,
review or analysis of an Artefact).

Superclass
ArtefactAsset

Semantics

Artefacts are created, or managed from amore general perspective, via some method whose use results in specific
characteristics for the Artefacts. For example, the use of UML (as a Technique) for designing a system resultsin a
design specification with a set of UML diagrams that could represent static and dynamic internal aspects of the system.

12.5.8 Participant class
The Participant class enables the specification of the parties involved in the management of ArtefactAssets.

Superclass
ArtefactAsset

Semantics

Different parties can participate in an assurance case effort, such as specific people, organizations, and tools.

12.5.9 ArtefactAssetRelationship class

The ArtefactAssetRelationship class enables the ArtefactAssets of an AssuranceCase to be linked together. The linking
together of ArtefactAssets allows a user to specify that a relationship exists between the assets.

Superclass
ArtefactAsset

Associations

source:ArtefactAsset[0..*]
The source of the ArtefactRelationship

target:ArtefactAsset[0..*]
The target of the ArtefactRelationship

Constraints
The source or target of an ArtefactAssetRelationship cannot be another ArtefactAssetRelationship

Structured Assurance Case Metamodel, v2.0 49

Semantics

An ArtefactAsset can be related to other ArtefactAssets. Thiskind of information is specified by means of
ArtefactAssetRel ationships, which can also have a specific type depending on the ArtefactAssets being linked together.

12.5.10 ArtefactRelationship class
The ArtefactRel ationship class enables two Artefacts to be linked together.

Superclass
ArtefactAssetRel ationship

Constraints

The source and target of an ArtefactRelationhsip must be Artefacts, or ArtefactAssetCitations citing an
Artefact

Semantics

The Artefacts managed during a system’ s lifecycle do not exist in isolation, but relationships typically exist between
them: the test cases that validate some requirement, the design standard followed in a design specification, etc. These
relationships are speci fied by means of ArtefactRelationships.

12.5.11 ActivityRelationship class
The ActivityRelationship class enables two Activities to be related together.

Superclass
ArtefactAssetRelationship

Constraints

The source and target of an ActivityRelationship must be Activities or ArtefactAssetCitations citing an Activity

Semantics

ActivityRelationships aim to support the specification of how Activities, and citations to them, relate each other: an
Activity that precedes another, an Activity decomposed into others, etc.

12.5.12 ArtefactActivityRelationship class

The ArtefactActivityRelationships class enables an Artefact and an Activity to be linked together.

50 Structured Assurance Case Metamodel, v2.0

Superclass

ArtefactAssetRelationship

Constraints
The source of an ArtefactActivityRelationship must be an Artefact, or an ArtefactAssetCitation citing an Artefact.

The target of an ArtefactActivityRelationship must be an Activity, or an ArtefactAssetCitation citing an Activity.

Semantics

Artefacts are managed in the scope of Activities, which usually use the Artefact as input and output. Such information is

specified by means of ArtefactActivityRelationships.

12.5.13 ArtefactTechniqueRelationship class

The ArtefactTechniqueRelationship class enables an Artefact and a Technique to be linked together.

Superclass

ArtefactAssetRel ationship

Constraints
The source of an ArtefactActivityRelationship must be an Artefact, or an ArtefactAssetCitation citing an Artefact.

The target of an ArtefactActivityRelationship must be a Technique, or an ArtefactAssetCitation citing a Technique.

Semantics

Artefacts result from the application of Techniques, such as the application of UML for a design specification.
ArtefactTechniqueRel ationships are used to specify such akind of information.

12.5.14 ParticipantRoleRelationship class
The ParticipantRoleRel ationships class enables a Participant to be linked to other ArtefactAssets.

Superclass
ArtefactAssetRelationship

Structured Assurance Case Metamodel, v2.0

51

Constraints
The source of an ParticipantRoleRelationship must be a Participant or an ArtefactAssetCitation citing a Participant.

Semantics

The information about the roles and functions that a Participant plays with regard to other ArtefactAssetsis specified by
means of ParticipantRoleRel ationships. Examples of roles and functions include the owner of an Artefact, the executor
of an Activity, and possible relationships between Participants (e.g., supervisor).

12.5.15 ArtefactResourceRelationship class
The ArtefactResourceRel ationship class enables an Artefact and a Resource to be linked together.
Superclass

ArtefactAssetRelationship

Constraints
The source of an ArtefactActivityRelationship must be an Artefact, or an ArtefactAssetCitation citing an Artefact.

The target of an ArtefactActivityRelationship must be a Resource, or an ArtefactAssetCitation citing a Resource.

Semantics

The speci fic Resources where an Artefact is located are specified by means of ArtefactResourceRelationships.

52 Structured Assurance Case Metamodel, v2.0

Annex A: Mappings from existing industrial notations
for assurance cases

(informative)

A.1 Goal Structuring Notation (GSN)

Details of the of the mapping between GSN elements and SACM, and the available relevant tool support, are
maintained at the following URL:

http://www.goalstructuringnotation.info/gsn-metamodel

A.2 Claims, Arguments, Evidence (CAE)

Details of the mapping between CAE elements and SACM, and the available relevant tool support, are maintained at
the following URL:

http://www.adelard.com/asce/choosing-asce/standardisation.html

Structured Assurance Case Metamodel, v2.0

53

http://www.adelard.com/asce/choosing-asce/standardisation.html
http://www.goalstructuringnotation.info/gsn-metamodel

54

This page intentionally |eft blank.

Structured Assurance Case Metamodel, v2.0

Annex B: Examples of Assurance Cases in
SACM 2.0 XMl

(informative)

B.1 Example Assurance Cases

Examples of SACM 2.0 Assurance Cases with HTML renderings, graphical depictions, and machine readable XMI are
maintained at the following URL:

http://www.goalstructuringnotation.info/sacm-examples

Structured Assurance Case Metamodel, v2.0

55

http://www.goalstructuringnotation.info/sacm-examples

56

This page intentionally |eft blank.

Structured Assurance Case Metamodel, v2.0

	1 Scope
	1.1 General
	1.2 Structured Arguments
	1.3 Evidence
	1.4 History, Motivation, and Rationale

	2 Conformance
	2.1 Introduction
	2.2 Argumentation Model compliance point
	2.3 Artefact Model compliance point
	2.4 Assurance Case Model compliance point
	2.5 Terminology Model compliance point

	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications [optional]
	6.2 Acknowledgements
	6.3 How to Proceed

	7 Background and Rationale
	7.1 The Need for Assurance Cases
	7.2 Structured Arguments
	7.3 Arguments as asserted positions
	7.4 Structured Arguments in SACM
	7.5 Precise statements related to evidence

	8 Structured Assurance Case Base Classes
	8.1 General
	8.2 SACMElement (abstract)
	8.3 ModelElement (abstract)
	8.4 UtilityElement (abstract)
	8.5 ImplementationConstraint
	8.6 Description
	8.7 Note
	8.8 TaggedValue

	9 Structured Assurance Case Packages
	9.1 General
	9.2 ArtefactElement (abstract)
	9.3 AssuranceCasePackage
	9.4 AssuranceCasePackageInterface
	9.5 AssuranceCasePackageCitation
	9.6 ArgumentPackage
	9.7 TerminologyPackage
	9.8 ArtefactPackage

	10 Structured Assurance Case Terminology Classes
	10.1 General
	10.2 TerminologyElement (abstract)
	10.3 TerminologyPackage
	10.4 TerminologyPackageCitation
	10.5 TerminologyAsset (abstract)
	10.6 Category
	10.7 ExpressionElement (abstract)
	10.8 Expression
	10.9 Term
	10.10 TerminologyAssetCitation

	11 SACM Argumentation Metamodel
	11.1 General
	11.2 Argumentation Class Diagram

	12 Artefact Classes
	12.1 General
	12.2 ArtefactPackageCitation
	12.3 ArtefactPackageBinding
	12.4 ArtefactPackageInterface
	12.5 ArtefactAsset class (abstract)

