
CORBA/TC Interworking and SCCP
Inter-ORB Protocol Specification

First Edition
January 2001

Copyright 1999, AT&T
Copyright 1999, GMD FOKUS
Copyright 1999, IONA Technologies, Plc
Copyright 1999, NORTEL
Copyright 1999, Teltec DCU

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . 1
About the Object Management Group . 1

What is CORBA? . 1

Associated OMG Documents . 2

Acknowledgments . 3

1. Introduction . 1-1
1.1 Interworking Overview . 1-1

1.2 Architectural Overview . 1-3
1.2.1 Introduction . 1-3

1.2.2 TC/CORBA Application Interworking 1-3
1.2.3 Interfaces . 1-12

1.2.4 GIOP Mapping onto Connectionless SCCP . . . 1-15

2. TC/CORBA Application Interworking 2-1

2.1 Specification Translation. 2-1
2.1.1 Introduction . 2-1

2.1.2 A Note on the "versions" of ASN.1, ROS, and
TC used in this Specification 2-2

2.1.3 TC-User ASN.1 specification to OMG IDL
Translation Algorithm 2-3

2.1.4 Generation of TC Repository to hold
ScopedName to ID Mapping 2-7

2.1.5 Mapping of TC-User/ROS Constructs 2-8

2.2 Interaction Translation . 2-16

2.2.1 Introduction . 2-16
2.2.2 The Base TC-User Interfaces 2-16
January 2001 CORBA & TC Interworking, v1.0 i

Contents
2.2.3 Application Location and Association Initiation 2-29
2.2.4 Association Maintenance 2-33

2.2.5 Operation Invocation . 2-34
2.2.6 Asynchronous ROS/TC Operation Invocations. 2-42

2.2.7 Quality of Service in ROS/TC 2-42

3. TC PDU-oriented Interfaces . 3-1
3.1 Introduction . 3-1

3.2 TC PDU-oriented Interfaces Framework 3-2

3.3 Interface Definitions . 3-3

3.3.1 Common Data Types for the TC PDU-oriented
Interfaces . 3-3

3.3.2 The TcPduProviderFactory Interface 3-7

3.3.3 The TcPduProvider Interface 3-8
3.3.4 The TcPduUserFactory Interface 3-11

3.3.5 The TcPduUser Interface 3-12

3.4 Integration of Interfaces . 3-15
3.4.1 Integration of TC PDU-oriented Interfaces and

Interworking Interfaces 3-15

3.4.2 Application Location and Dialog Initiation . . . 3-17

4. SCCP Inter-ORB Protocol (SIOP) 4-1
4.1 Usage of SCCP Services . 4-1

4.2 SIOP IOR Profiles. 4-5

4.2.1 Multiple Component Profile 4-7
4.2.2 The SCCP Contact Info Component. 4-7

4.2.3 The TAG_SCCP_IOP profile 4-9

 Appendix A - References . A-1

 Appendix B - Complete IDL . B-1

 Appendix C - Specification Translation Example C-1

 Appendix D - Applicability to Non-IN Protocols D-1

 Appendix E - Ros Definitions . E-1

Appendix F - Conformance . F-1
ii CORBA & TC Interworking, v1.0 January 2001

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the establishment
of industry guidelines and object management specifications to provide a common
framework for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
Conformance to these specifications will make it possible to develop a heterogeneous
applications environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows
applications to communicate with one another no matter where they are located or who
has designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application
Programming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.
January 2001 CORBA & TC Interworking, v1.0 1

OMG Documents

In addition to the CORBA Core Specification, OMG’s document set includes the
following publications.

OMG Modeling

The Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed object
systems. The specification includes the formal definition of a common Object Analysis
and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL facility that
supports model interchange between OA&D tools and metadata repositories. The UML
provides the foundation for specifying and sharing CORBA-based distributed object
models.

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and their
corresponding models. The MOF provides the infrastructure for implementing CORBA-
based design and reuse repositories. The MOF specifies precise mapping rules that enable
the CORBA interfaces for metamodels to be automatically generated, thus encouraging
consistency in manipulating metadata in all phases of the distributed application
development cycle.

The OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including both
model and metamodel information. The specification supports the encoding of metadata
consisting of both complete models and model fragments, as well as tool-specific
extension metadata. XMI has optional support for interchange of metadata in differential
form, and for metadata interchange with tools that have incomplete understanding of the
metadata.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes the
conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA objects.
The IDL definition is the contract between the implementor of an object and the client.
IDL is a strongly typed declarative language that is programming language-independent.
Language mappings enable objects to be implemented and sent requests in the developer’s
programming language of choice in a style that is natural to that language. The OMG has
an expanding set of language mappings, including Ada, C, C++, COBOL, IDL to Java,
Java to IDL, Lisp, and Smalltalk.
2 CORBA & TC Interworking, v1.0 January 2001

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.

These services are the basic building blocks for distributed object applications. Compliant
objects can be combined in many different ways and put to many different uses in
applications. They can be used to construct higher level facilities and object frameworks
that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
Collection, Concurrency, Event, Externalization, Interoperable Naming, Licensing, Life
Cycle, Notification, Persistent Object, Property, Query, Relationship, Security, Time,
Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable to
most domains. Adopted OMG Common Facilities are collectively called CORBAfacilities
and include Internationalization and Time, and Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include Domain
Interfaces for application domains such as Finance, Healthcare, Manufacturing, Telecoms,
E-Commerce, and Transportation.

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these points
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++,
their ORB must comply with the OMG IDL to C++ binding.

Interoperability and Interworking are separate compliance points. For detailed information
about Interworking compliance, refer to the Common Object Request Broker: Architecture
and Specification, Interworking Architecture chapter.
January 2001 CORBA & TC Interworking, v1.0 Definition of CORBA Compliance 3

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only when
representatives of the OMG membership accept them as such by vote. (The policies and
procedures of the OMG are described in detail in the Object Management Architecture
Guide.)

OMG formal (published) specifications are available from the OMG website
http://www.omg.org/technology/documents/formal/index.htm. To obtain print-on-demand
books in the documentation set or other OMG publications, contact the Object
Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted parts of this specification:

• AT&T

• GMD FOKUS

• IONA Technologies, Plc

• NORTEL

• Teltec DCU
4 CORBA & TC Interworking, v1.0 January 2001

 Introduction 1
Contents

This chapter contains the following sections.

Source Documents

This specification is based on the following OMG document(s):

• telecom/98-10-03 - submission document

• dtc/99-12-02 - FTF draft adopted specification

• dtc/00-02-02 - FTF final adopted specification

• dtc/00-02-08 - FTF final report

1.1 Interworking Overview

This specification addresses the interworking between CORBA-based Intelligent
Network (IN) applications and the same applications implemented using the existing
IN infrastructure. Two scenarios for the use of CORBA in IN signaling are:

1. The interworking of CORBA-based IN Application Entities (e.g., a Service Control
Point (SCP)) with legacy IN Application Entities (e.g., a Service Switching Point
(SSP)) through a gateway mechanism that provides a CORBA view of a legacy
target and a legacy view of a CORBA target.

Section Title Page

“Interworking Overview” 1-1

“Architectural Overview” 1-3
January 2001 CORBA & TC Interworking, v1.0 1-1

1

2. The interworking of CORBA-based IN Application Entities while using the existing
Signalling System No. 7 (SS7) infrastructure as a transport network for GIOP
messages.

The first type of interworking may be identified as a gateway that allows CORBA-
based IN applications to interwork with those that communicate using the Intelligent
Network Application Part (INAP) or another protocol that uses TC/ROS services.

However, while it is anticipated that the principal and immediate application of the
solution provided in this specification will be the development of an IN/CORBA
gateway, and most of the examples that illustrate the use of such gateways will be
based on IN scenarios, it must be kept in mind that the solution described here is of
general applicability to any TC User. An important family of TC-based protocols that
need to be supported by the gateway includes the Mobile Application Part (MAP)
protocol. The various MAP specifications [12] (e.g., MAP-GSM, IS41, etc.) define
signalling traffic for mobile telephony networks. The approach taken in this
specification supports any TC-User protocol and is not limited to INAP or any set of
INAP variants.

Figure 1-1 Interworking between CORBA-based IN applications and
Traditional IN Applications (IN/CORBA Gateway)

In Figure 1-1, the CORBA-based SCP (or any TC-User Application Entity) has IDL
interfaces created through Specification Translation of the ASN.1 specifications of
INAP (or any TC-User protocol). This IDL-based specification provides a uniform
interface that may be used when implementing either native CORBA-based IN
Applications or Proxy CORBA objects at the gateway. This uniformity is essential to
ensure location transparency and to eliminate the need for proxy objects in native
CORBA to CORBA interactions. The translation algorithm is based on the NMF/The
Open Group Joint Inter-Domain Management Task Force (JIDM) work on ASN.1 to
IDL specification translation [4].

To support IN/TC-User interaction semantics (naming, dialogs, etc.) in the CORBA
domain, a small set of functionality has been defined that re-uses some of the CORBA
Object Services (Interaction Translation). This allows maximum re-use of the CORBA
infrastructure when using it as an environment for developing IN or other TC-User

Existing SS7
Network

Traditional
SSP

CORBA
based SCP

Gateway

CORBA Operations

TC messages
(Containing ROS Invokes)

TC messages
(Containing ROS Invokes)
1-2 CORBA & TC Interworking, v1.0 January 2001

1

applications. It also means that building an IN/TC-User application is simplified as
most of the TC-specific functionality has been encapsulated in these TC-specific uses
of some of the CORBA Object Services.

Additionally an IDL-based TC interface is provided to standardize the communication
between proxy objects associated with the gateway and the TC protocol stack.

The second type of interworking may be identified as what the EURESCOM P508
project [13] calls a Kernel Transport Network. This allows islands of CORBA objects
to communicate over the existing SS7 infrastructure, thereby taking advantage of the
investment of public network operators in this efficient and robust packet network.

Figure 1-2 Interworking between islands of CORBA based IN Applications
using the SS7 Network (SS7 as Kernel Transport Network)

In Figure 1-2, the ORB hides the use of SS7 as a transport mechanism from the
interacting CORBA objects. This specification defines a GIOP mapping onto the
connectionless Signalling Connection Control Part (SCCP) protocol of the SS7
protocol suite.

1.2 Architectural Overview

1.2.1 Introduction

There are two complementary but orthogonal architectures in this specification:

1. TC/CORBA Application Interworking: a set of static Specification Translation
algorithms for converting TC/ROS-User Application definitions in ASN.1 to OMG
IDL and a set of TC/ROS-User services. The IDL interfaces for the TC/ROS-User
specific services provide additional functionality on top of the IDL interfaces
defined for a subset of the standard CORBA object services. The Interworking
mechanisms described in this specification are location transparent (i.e., when
interacting through a gateway with entities in another domain no special interaction
sematics are required).

2. GIOP Mapping onto connectionless SCCP: a well-defined new GIOP mapping, onto
connectionless SCCP in the SS7 stack, is defined.

CORBA
based SSP

Existing SS.7
Network

CORBA
based SCP

GIOP MappingGIOP Mapping
onto SS7 onto SS7
January 2001 CORBA & TC Interworking, v1.0 1-3

1

An overview of each of these architectures is provided in the following sub-sections.

1.2.2 TC/CORBA Application Interworking

1.2.2.1 Background on TC/SS7 and IN

Signalling in telecommunications networks consists of communication between
customer premise equipment, switches, network-based servers, and databases to
complete a call between two end-subscribers (either fixed or mobile). The signaling
protocol used by telecom network operators and equipment vendors for
communications between the various network elements is the one standardized by the
ITU-T, the Signaling System No. 7 (SS7) protocol suite [9].

A brief overview of the SS7 protocol architecture of relevance to this specification is
provided below. As shown in Figure 1-3 on page 1-5, the SS7 protocols consist of:

• The stack comprising of the Message Transfer Part (MTP), which provides a
connectionless, highly reliable datagram capability augmented by some additional
addressing capabilities provided by the connectionless Signalling Connection
Control Part (SCCP).

• On top of this is the Transaction Capabilities (TC) protocol, which consists of the
Transaction sub-layer (TSL) that provides a very “skinny” end-to-end connection
for the transfer of remote operations (RO) using the OSI Remote Operations Service
(ROS), which is essentially an RPC-like capability.

The specifics of the remote operations and their returns are described as ROS
Application Service Elements (ASE) using the Abstract Syntax Notation One (ASN.1)
and encoded using the Basic Encoding Rules (BER). One group of ASEs is of
particular interest to this specification - the remote operations that define the
interactions between switches and network servers (containing service-specific
intelligence) are defined by a set of ASEs called the Intelligent Network Application
Part (INAP). While it is anticipated that the principal and immediate application of the
solutions provided in this specification will be the development of a gateway that maps
INAP-based remote operations to CORBA calls, and all the examples that illustrate the
use of such gateways will be based on the Intelligent Network architecture, it must be
kept in mind that the solutions offered here are of general applicability to any TC-User
ASE.
1-4 CORBA & TC Interworking, v1.0 January 2001

1

Figure 1-3 The SS7 Protocol Stack

Several scenarios for the use of CORBA in signalling networks are envisaged. The
principal application appears to be in support of Intelligent Network (IN) services.
Briefly, therefore, an IN-based architecture refers to all extensions of switched
networks that include request/reply based communications between switching
equipment and remote network servers to enhance the development and real-time
delivery of services.

In an IN, the service application programs are no longer totally switch-based, but are
distributed among the switches and supporting computers (remote servers). This
separation of service control from traditional switching functions, if provided through
logical separation of the respective control software, has the advantage of considerably
simplifying the software development and maintenance in a switch.

If the network implementation of this logical separation places the service control
functions remote from the switch, such as in a remote server, the switch interrupts its
processing at certain pre-determined points to query the remote server to provide
service-specific instructions. The switches in a network do not have to be loaded with
service-specific information. That is located at remote servers, where the service-
specific logic and service data can be added and changed by Operations Support
Systems (OSS). This permits quicker service implementations, and allows the network
operator to more easily customize the service logic and data for individual customers.
It is also possible to allow customers with access to their data and service logic,
something that would be regarded with concern if these functions were located at a
switch. This separation is fundamental to Intelligent Network (IN) architectures.

X500 INAP
GSM/
IS41 Others

TC

ROS

Transaction sub-layer

SCCP 0/1

MTP 1-3

operation, result,
error definitions

request-reply
“envelope”

“skinny” end-to-
end connection

reliable,
connectionless,
message
transport
January 2001 CORBA & TC Interworking, v1.0 1-5

1

Figure 1-4 shows a typical IN architecture. (The interfaces of interest for this
specification are shown in bold).

Figure 1-4 Typical IN Architecture and Signalling Interfaces

IN-capable switches called Service Switching Points (SSP) are connected to remote
servers called Service Control Points (SCP) via the SS7 network. SCPs may have
associated databases, called Service Data Points (SDP). The standardized application
protocol on the interfaces of interest (shown in bold in Figure 1-4) is the Intelligent
Network Application Part (INAP), which in turn uses the request-reply mechanism of
the Transaction Capabilities Part (TC) protocol.

A likely application of CORBA in IN signalling is the interworking of CORBA-based
implementations of SCPs with legacy SSPs through a bridging mechanism where the
CORBA-based implementations offer an external message-based interface, which is
identical to the standardized SS7 protocol suite. (A more long-term, though perfectly
technically feasible scenario, is the reverse situation, where CORBA-based SSPs
communicate with “legacy” SCPs).

1.2.2.2 Interworking Architectures

The interworking mappings provided in this specification will enable IN-based systems
that define their interfaces based on INAP and use the SS7 protocol to interwork with
CORBA-based IN systems. This requires a mapping between existing IN-based system

PBX

Service Data Point

Service Control Point

Intelligent Peripheral
or Service Node

Legend:
BRI: Basic Rate Interface
DTMF:Dual Tone Multi-Frequency
IN: Intelligent Network
INAP: IN Application Protocol
ISUP: ISDN User Part
PBX: Private Branch Exchange
PRI: Primary Rate Interface
TC: Transaction Capabilities

Q.931/BRI or
DTMF

Q.931/PRI
Q.931/BRI
or DTMF

ISUP
ISUP

INAP/TC

INAP/TC

INAP/TC

INAP/TC

IN Switch

IN Switch
1-6 CORBA & TC Interworking, v1.0 January 2001

1

interfaces and CORBA object models. Several algorithms need to be provided to effect
this interworking. Application interworking is split into Specification Translation (ST)
and Interaction Translation (IT).

The ST is an extension of the JIDM specification translation standard [4] already
adopted by The Open Group/NMF and also adopted by the OMG TMN/CORBA
Interworking specification. The JIDM work uses GDMO templates to define IDL
interfaces for managed objects. In the TC-User domain there are no GDMO templates
defined, instead TC-User protocols are defined by several ASN.1 constructs, either
using the ASN.1 macro notation (pre-1994) or ASN.1 information object classes (post-
1994). The JIDM approach is expanded here to define mappings for these constructs to
IDL interfaces. The JIDM translation algorithms of basic ASN.1 types to IDL are
retained. As the JIDM ST does not provide a mapping of the ROS constructs based on
the 1994 ASN.1 notation, there will be no discrepancy between the two ST algorithms.

Specifically, the ST will map a generic TC-User protocol (defined using Abstract
Syntax Notation One, and using the ROS Information Object Classes OPERATION,
ERROR, and EXTENSION to specify remote operations) to the corresponding CORBA
IDL constructs. While INAP operations will be used to illustrate the mappings, it is
once again worth reiterating that the mappings will permit the conversion of any TC-
User protocol to its CORBA equivalent. This is particularly important in the IN domain
due to the proliferation of variants of the basic IN protocol (INAP) and the pressures
for convergence between INAP and other IN-like protocols such as Mobile Application
Part (MAP).

The IT defines how to locate, name, and interact with TC/ROS-User implementations
in the CORBA domain. It includes defining the mapping of the TC dialog handling
facilities onto appropriate behavior at the gateway such that a TC-User implemented as
a CORBA object has access to the TC facilities, while a TC-User implemented in the
non-CORBA domain is offered the same standardized message-based interface as at
present. This also includes the conversion between CORBA calls marshalled using
IIOP/CDR onto TC APDUs encoded in BER. The interworking implementation also
has to construct the SCCP/MTP “envelope” for communication with the network
element in the SS7 domain.

Figure 1-5 on page 1-8 illustrates the resulting architecture.
January 2001 CORBA & TC Interworking, v1.0 1-7

1

Figure 1-5 TC/CORBA Application Interworking Architecture

It is also possible to define a TC/CORBA gateway based on this architecture. By using
proxy objects at a gateway, all TC-User interactions of CORBA objects can be mapped
into TC PDUs in the SS7 domain. This is because the semantics of TC-User
interactions have been retained in the CORBA domain. All of the interfaces defined
during ST allow the transfer of sufficient context information to allow an individual
CORBA object (or proxy object at a gateway) to maintain multiple TC dialogs
simultaneously. This greatly enhances scalability of the solution. Additionally CORBA
objects may support explicit TC flow control primitives (TC-Begin, TC-Continue, TC-
End, etc.) to aid further in optimal utilization of the SS.7 infrastructure when
interacting with TC-User AEs in the traditional SS7 domain.

TC-User CORBA objects and TC-User proxy objects (at a gateway) may optionally
support TC flow control primitives through some IDL-defined parameters.

One further (optional) facility is provided in this specification, namely IDL interfaces
to the TC protocol stack (hereafter called the TC PDU-oriented interfaces), which
allow proxy objects standardized, efficient access to the TC/SS7 protocol stack. Of
course individual proxy object implementations may instead access a particular TC
implementation through a proprietary API.

ORB

Naming
Service

LifeCycle
Service

Messaging
Service

TcUser TC-User
LifeCycle
Service

TC-User
CORBA
Object

TC-User
CORBA
Object

Specification
Translation

Standard
CORBA

Interaction
Translation

Standard
CORBA

TC-User
TcRepository

TC-User
(e.g., INAP)

ASN.1 Definition

initiator responder

TC-User
Factory
Objects

Factory
Finder
1-8 CORBA & TC Interworking, v1.0 January 2001

1

Figure 1-6 TC/CORBA Gateway based on Interworking Architecture

1.2.2.3 Specification Translation

Specification Translation defines a set of algorithms for mapping between ASN.1
descriptions of TC-User Protocols and CORBA-based TC-User objects. TC-User
objects are characterized by sets of operations defined using the APPLICATION-
SERVICE-ELEMENT (ASE) macro or the OPERATION-PACKAGE information object
class and, optionally, the APPLICATION-CONTEXT (AC) macro or CONTRACT
information object class to define the specific ASEs and the rules of interactions for a
TC dialog.

Each AC/Contract is mapped to two CORBA interfaces, one for the initiator of a dialog
and one for the responder. Each interface is populated with IDL operations and
exceptions based on the ASN.1 operations and errors defined within the ASN.1
definition of the AC/Contract. A Factory interface is defined that has convenient
create operations for each interface defined during Specification Translation. For TC-
User modules that don’t have ACs/Contracts defined, a symmetrical default interface is
created into which all the defined operations are placed, together with a Factory
interface with create operations to create the default single interface.

When translating ASN.1 operations and errors to IDL operations and exceptions, an
additional parameter is added to hold TC-specific context information (such as invoke
IDs, etc.). The mapping of the basic ASN.1 types uses the JIDM Specification
Translation algorithms.

ORB

Naming
Service

Messaging
Service

TcUser
Factory

TC-User
CORBA
Object

TC-User
CORBA

Proxy Object

TC-User
TcRepository

TC/SS7
Stack

TC PDU
Interfaces

TC/SS7
Stack

Traditional
TC-User

Application
Entity

TC-CORBA
Gateway

Traditional
SS7 Domain

CORBA
Domain

TC-User
LifeCycle
Service

LifeCycle
Service

Finder
January 2001 CORBA & TC Interworking, v1.0 1-9

1

An additional repository is generated during Specification translation to hold ASN.1
operation and error identifier to IDL scoped name mappings and operation timer
information. IDL operations have been defined to access information in this repository.

1.2.2.4 Interaction Translation

Figure 1-7 shows the basic steps invoked at a gateway between a legacy IN system, a
Service Switching Point (SSP), and an IN system - a Service Control Point (SCP)
implemented using CORBA to explain at a high-level the issues addressed by
Interaction Translation.

Figure 1-7 Interaction of TC-Users at an IN/CORBA Gateway

As shown in Figure 1-7, a TcPduUserFactory interface registers (step 1) with a
TcPduProviderFactory object to request notification of PDUs received from the
non-CORBA domain destined for a particular Global Title (GT) and, optionally, for a
particular Application Context (AC). It is assumed that on the reception of a BEGIN
PDU for a registered GT and AC, the TcPduProviderFactory creates (if an
appropriate one does not exist) a suitable TcPduProvider object to interact with the
TC/SS7 protocol stack.

Step 2 shows the reception of a TC operation, operation1, in a BEGIN PDU from a
remote TC-User (the SSP). The TcPduProvider invokes a create_tc_pdu_user
operation on the previously registered TcPduUserFactory (see step 3) which creates
an appropriate TcPduUser object. The TcPduProvider invokes a begin_ind

Traditional
TCAP-User

(SSP)

TcPdu

2. BEGIN(operation1)

1. register

IN Domain CORBA Domain

MTP
SCCP
TCAP

TcPdu

TC-CORBA Gateway

TcPdu

5. resolve

Provider

ProviderFactory

User

SSP
Proxy

TcFactoryFinder SCP
Factory

SCP

6b. create_tc_user

7. operation1
8. continue_req

9. result op1

6a.

4. begin_ind

TcPdu
User

Factory

3. create_tc_pdu_user
1-10 CORBA & TC Interworking, v1.0 January 2001

1

operation on the TcPduUser object (see step 4), which contains within its input
parameters both the TC dialog and component portions of the message as well as a
call-back reference on itself.

The CORBA Naming Service is used to store name bindings using SS7 Global Titles
to enable location of factories that can create TC-User/ROS-User Application Entities.
A naming context is created for each Global Title, below which are naming contexts
for each application context. The scoped names for the dialog initiator and responder
interfaces for a particular AC are stored as naming contexts below the naming context
for the application contexts. Each named object is either a default TcUserFactory
(for cases where no Application Context is present1) or a specific factory associated
with a particular Application Context (for those TC applications that explicitly signal
the Application Context). Rather than deal directly with the CORBA Naming Service,
a TC-friendly interface, TcFactoryFinder, provides operations to obtain and add
information on the name tree. Step 5 in Figure 1-7 shows the TcPduUserFactory
using the TcFactoryFinder interface to resolve the Global Title and obtain the factory
references for the CORBA objects that will represent the TC-User interactions in the
CORBA domain, namely the factories to create the SSP proxy object at the gateway
and the SCP object.

Once a reference to the appropriate responder and initiator interface creation factories
has been found in the naming service, a request can be made (to an initiator interface
creation factory, not shown in the figure) to create an appropriate proxy object
representing the legacy SSP at the gateway, as shown in step 6a in Figure 1-7. To
initiate a TC-User interaction (with the appropriate responder interface), the responder
interface creation factory (called SCP factory in the figure) must be supplied with an
object reference to the corresponding initiator interface in the create_tc_user
operation for the CORBA object corresponding to the SCP (step 6b).

Various creation parameters may be passed in the create request to constrain the
created object. This initiates a new association and allows TC-like two-way
communication (dialog). Operations may now be invoked (step 7) on the created TC-
User object (using the CORBA Messaging Service to allow asynchronous requests and
replies). Each operation carries with it TC context information that includes an
Association ID. This allows a single TC-User object, such as the SCP in Figure 1-7, to
simultaneously engage in multiple associations (TC dialogs). This is important for
scalability and preserving response time.

Additional TC context information is carried in each operation, which may be used to
regulate the use of TC flow control primitives by proxy objects at an IN/CORBA
gateway. Pure CORBA to CORBA interactions may ignore this information.

Note – The support of TC flow control by TC-User/CORBA objects and TC-User
proxy objects (at a gateway) is optional.

Each TC-User object has common functionality for ending and aborting associations
defined in the TcUser interface. This allows an object to be informed of these
important events.

1.Although an Application Context is implied.
January 2001 CORBA & TC Interworking, v1.0 1-11

1

All of these interfaces are common to both TC-User CORBA objects and TC-User
proxy objects residing at an IN/CORBA gateway. This preserves location transparency
for interactions in the CORBA domain.

1.2.3 Interfaces

The interfaces defined in this specification are as follows.

TcUser

This interface inherits from the COS LifeCycleObject and defines operations that are
supported by all TC-User objects to create a new association, and to end or abort an
existing association. It also defines a readonly attribute that identifies if TC context
setting information (e.g., to indicate TC dialog handling primitives) should be included
in associations with this object.

TcFactoryFinder

This interface provides “wrapper” operations for TC-User objects to register with the
CORBA Naming Service, an operation to find such objects, and a method to
explicitly replace information in the Naming Service rather than just add new entries.

TcUserGenericFactory

This interface defines generic create operations for TC-User objects. It provides a
common type for all factories generated during Specification Translation.

TcServiceFinder

This is a helper interface to find references to all the TC-User CORBA services.

TcRepository

This interface provides standardized access to the information generated during
specification translation providing the mappings from TC/ROS operation, extension
and error codes to IDL scoped names.

GwAdmin

This interface provides a single point of contact for accessing all gateway-related
functions. In particular, it defines readonly attributes for the TcFactoryFinder and
TcPduProvider interfaces.

TcPduProvider

This is one of a set of TC PDU-oriented interfaces and defines a standard interface for
encapsulating the TC protocol stack in the CORBA domain. Operations are modeled
on the TC dialog handling request primitives defined in ITU-T Rec. Q.771 [9] (TC-
BEGIN, TC-CONTINUE, TC-END, TC-CANCEL, TC-ABORT, etc.) as well as
support operations.
1-12 CORBA & TC Interworking, v1.0 January 2001

1

TcPduUser

This is the complementary interface to the TcPduProvider and provides the CORBA
equivalent of the TC-User implementation, which is the recipient of TC messages
from, or originator of messages to, the SS7 stack.

TcPduProviderFactory

This interface allows a TcPduUserFactory object to register as the factory for
creating the TcPduUser object that is to be associated with a particular Global Title
and Application Context. The TcPduProviderFactory also permits the creation of
TcPduProvider objects.

TcPduUserFactory

A TcPduUserFactory object may register with a TcPduProviderFactory object in
order to be made available for creation of TcPduUser objects associated with a
particular Global Title and Application Context.

The relationship of the various interfaces are illustrated using the following class
diagrams in Figure 1-8 and Figure 1-9 on page 1-14.

Figure 1-8 Relationship of the Various Interfaces

CosLifeCycle::
LifeCycleObject

CosNaming::
NamingContext

TcSignalling::
TcFactoryFinder

TcSignalling::
TcUser

TcSignalling::
TcUserGeneric

Factory

TcSignalling::
TcRepository

TcSignalling::
GwAdmin

TcSignalling::
TcServiceFinder

CosMessaging
Interface

Repository

TC-User
(eg INAP)

TC-User
Factory

“Creates”

“Is Dervided from”

“Uses”

“May Use”

Standard CORBA Service

Specified in TcSignalling

Generated by Specification Translation
January 2001 CORBA & TC Interworking, v1.0 1-13

1

Figure 1-9 Relationship of the TC PDU Oriented Interfaces

1.2.4 GIOP Mapping onto Connectionless SCCP

To deploy CORBA technology as a central building block of a Distributed Processing
Environment in specific domains, the General Inter-ORB Protocol (GIOP) and the
Internet Inter-ORB Protocol (IIOP) are in many cases not sufficient. For example, in
the telecommunications domain the use of GIOP/IIOP instead of existing
telecommunication protocols would result in a loss of efficiency and reliability. It is
important not to ignore proven networking technologies, like the reliable and efficient
Signaling System No. 7 (SS.7).

SS7 consists of a set of protocols used for communication between signalling points as
described in Section 1.2.2.1, “Background on TC/SS7 and IN,” on page 1-4. In this set,
the Signalling Connection Control Part (SCCP) provides services that are usable for
object communication in a CORBA environment. It allows the reliable transport of
data preserving the order of the data. Furthermore, it allows flexibility in addressing a
signalling point. A signalling point may be addressed either with a signalling point
code (an integer) or with a global title (a sequence of digits like a telephone number).
The global title addressing mechanism is used together with global title translation.
This translation mechanism transforms the global title transparent to the user into the
signalling point code of the destination.

In currently deployed SS7 networks, only class 0 and class 1 SCCP are available. Both
classes offer connectionless services. The class 0 service does not guarantee that the
order of messages sent between a source and destination is maintained. Class 1 SCCP
provides guaranteed message sequencing. As this is an essential requirement for GIOP,
only class 1 SCCP can be used for mapping GIOP over SCCP. SCCP also provides
means for failure detection. It informs the sender of a message in case of a failure in
the message delivery.

TcSignalling::
TcPduProvider

TcSignalling::
TcPduProvider

TcSignalling::
GwAdmin

TcSignalling::
TcPduUser

“Creates”
“Uses” Specified in TcSignalling

Factory

TcSignalling::
TcPduUser
Factory
1-14 CORBA & TC Interworking, v1.0 January 2001

1

The features available in SCCP class 1 make it suitable as a transport mechanism for
GIOP messages. The definition of a GIOP mapping onto the SCCP protocol allow us
to preserve large parts of current CORBA products as the generation and processing of
GIOP messages is already available in most products.

The SS7 infrastructure is highly available, widely implemented, and can be used for
fast communication. It is envisioned that more and more CORBA-based signalling
applications will reside in CORBA-based “islands” connected through this signalling
infrastructure. For instance, the information generated in a CORBA-based logging
procedure could be made available to other entities in the network using Inter-ORB
communication over SCCP. The introduction of such a service would not interfere with
existing SCCP users. The SS7 infrastructure only needs to be changed at the
originating and the terminating signalling point where the contents of the SCCP
messages are processed.

For these reasons a mapping of GIOP onto the SCCP protocol is defined in the “SCCP
Inter-ORB Protocol (SIOP)” chapter. The mapping provides:

• reliable and message-order-preserving transport of GIOP messages over SCCP
class 1

• flexible addressing mechanism through a new IOR profile and a new IOR
component

• version control

• grouping of CORBA objects through endpoint identifiers

• independence from byte ordering

• error procedures in case of misformatted data
January 2001 CORBA & TC Interworking, v1.0 1-15

1

1-16 CORBA & TC Interworking, v1.0 January 2001

 TC/CORBA Application
Interworking 2
Contents

This chapter contains the following sections.

2.1 Specification Translation

2.1.1 Introduction

As the translation of ASN.1 basic types to IDL has already been standardized by the
Joint Inter-Domain Management (JIDM) Task Force of The Open Group and NMF, this
specification will re-use that standardization [4] here. This specification fully supports
the above mentioned JIDM Specification Translation specification, amended with the
current list of errata and corrigenda to the document, as expressed in the “JIDM
Specification Translation Issues List” (available from The OpenGroup and NMF web
sites and from the OMG as document telecom/98-05-05). The justification for these
changes is also available through the mentioned amending documentation.

Only the parts of the JIDM document dealing with the translation of ASN.1 modules
and types to IDL are relevant to this specification. The relevant parts consist of Chapter
2 and supporting IDL modules. As this specification provides mappings of ROS
constructs not covered by the JIDM document, there will be no discrepancy between
the two.

Section Title Page

“Specification Translation” 2-1

“Interaction Translation” 2-15
January 2001 CORBA & TC Interworking, v1.0 2-1

2

The JIDM Translation algorithms are extended here by providing IDL mappings for
five ASN.1 constructs used in TC and TC-User specifications. The JIDM translation of
an ASN.1 module is also extended by specifying the generation of a repository
containing all TC-User protocol operation codes, error codes, and object identifiers.
This identifier mapping file is similar to the approach for identifier mapping in the
SNMP portion of the OMG TMN/CORBA Interworking specification.

2.1.2 A Note on the “versions” of ASN.1, ROS, and TC used in this
Specification

ASN.1 was first defined in 1988. Subsequently, a second "version" was provided in
1994 [10] that corrected many omissions and errors in the previous version. One major
revision was the deprecation (and complete replacement) of the user-defined syntax
called the MACRO notation. This was replaced with Information Object Classes, as
well as notation to describe constraints, extensions, etc.

Several OSI standards that used the 1994 ASN.1 notation were completely revised to
make use of the new notation. Among these were the revised ROS standards of 1994,
which provided a complete replacement of the MACROs that described operations,
errors, and concepts such as ASE and Application Context with Information Object
Classes called OPERATION, ERROR, OPERATION-PACKAGE, and CONTRACT to
define the same concepts.

It should be noted that the new ASN.1 notation allowed the definition of a user-defined
syntax for Information Object Classes. This permitted the definition of a notation for
operations, errors, operation packages, and contracts that closely mimicked the syntax
of the earlier notation (for operations, errors, application service elements, and
application contexts) without inheriting many of the defects of the earlier notation that
had led to their deprecation. Thus, users of the earlier notation would find only very
minor differences (e.g., position of brackets, etc.) between the earlier and the new
notation.

A ROS-User protocol that took advantage of the new ASN.1 notation, as well as the
new ROS information object classes, was the OSI Directory X.500 standard. All new
OSI standards using ASN.1 and/or ROS are expected to use the new ASN.1 notation as
well as the new ROS constructs.

Transaction Capabilities (TC) was first defined in 1988. A subsequent version was
provided in 1993 [9]. The 1993 version corrected several minor errors in the 1988
version, provided a thorough revision of the state transition diagrams, and added one
new feature - the optional support of protocol to convey Application Context
information. There was no change to existing external interfaces, provided the
additional (optional) DialogControl APDUs were not used. This would provide
backward compatibility for TC users who had no need for the transfer of application
context information, while offering the feature to new applications that would benefit
from it.

There are several ITU-T standardized TC-User ASEs such as Mobile Application Part
(MAP), Global Virtual Network Services (GVNS), International Calling Card
Verification (ICCV) etc., which do not need the additional services provided by TC
2-2 CORBA & TC Interworking, v1.0 January 2001

2

1993. The ITU-T INAP, while partitioning the operations by interface (SCP-SSP, SCP-
SDP etc.), each interface being assigned to several ASEs, have as yet not explicitly
employed the additional functions provided by TC 1993. In addition, there are several
versions of INAP based on different standards bodies (ETSI, ANSI, etc.).

By offering in this specification a generic mapping applicable to any TC-User protocol,
with or without the additional functionality provided by TC 1993, we permit the
building of gateways that can be used in a variety of realistic service scenarios. There
is no need for service-specific gateways. Obviously all “dialects” of INAP (whether
one of the standardized ITU-T IN Capability Sets, the ETSI version or the ANSI
version, or indeed any proprietary version) will be able to make use of the mechanisms
provided in this specification.

2.1.3 TC-User ASN.1 specification to OMG IDL Translation Algorithm

The interfaces of TC-User applications are described in ASN.1 modules. To convert
these to descriptions of CORBA entities, these modules must be translated into IDL
specifications. There are three main forms of description:

1. One using ASN.1 and natural language (for example ITU-T INAP CS-1)[8]

2. One using just ASN.1 (for example ETSI INAP CS-1)[11]. In this case additional
ASN.1 macros are used to formally define the parts of the specification; otherwise,
defined using natural language.

3. Newer specifications (for example ITU-T CS-2) may be identified as a third type as
they use the revised ASN.1 notation (information objects instead of macros).

All three forms of specifications are considered in the mappings provided below.

2.1.3.1 Type I ASN.1 Description of TC-User

An older ASN.1 and natural language description (henceforth called a Type I TC-User
description) has the general form:

MODULE ::= <module_name>
BEGIN

IMPORTS <import_list>
EXPORTS <export_list>

OPERATION MACRO_1
...
OPERATION MACRO_n
ERROR MACRO_1
...
ERROR MACRO_m

END
January 2001 CORBA & TC Interworking, v1.0 2-3

2

2.1.3.2 Type II ASN.1 description of TC-User

An older ASN.1 only description (henceforth called a Type II TC-User description) has
the general form:

MODULE ::= <module_name>
BEGIN

IMPORTS <import_list>
EXPORTS <export_list>

OPERATION MACRO_1
...
OPERATION MACRO_n
ERROR MACRO_1
...
ERROR MACRO_m
APPLICATION-SERVICE-ELEMENT MACRO_1
...
APPLICATION-SERVICE-ELEMENT MACRO_x
APPLICATION-CONTEXT MACRO_1
...
APPLICATION-CONTEXT MACRO_y

END

2.1.3.3 Type III ASN.1 description of TC-User

A new ASN.1 only description (henceforth called a Type III TC-User description) has
the general form:

MODULE ::= <module_name>
BEGIN

IMPORTS <import_list>
EXPORTS <export_list>

OPERATION information object_1
...
OPERATION information object_n
ERROR information object_1
...
ERROR information object_m
OPERATION-PACKAGE information object_1
...
OPERATION-PACKAGE information object_x
CONTRACT information object_1
...
CONTRACT information object_y

END
2-4 CORBA & TC Interworking, v1.0 January 2001

2

2.1.3.4 Mapping Algorithm

The JIDM Specification Translation document does not define algorithms for
converting any of the ASN.1 macros or equivalent information objects used in the
above specifications. This is the primary extension to the JIDM specification presented
in this document. A mapping is also defined for the ASN.1 EXTENSION
macro/information object as it is extensively used in several TC-user OPERATION
definitions.

In general:

• An instance of an OPERATION provides zero or one RESULT definition and refers
to zero, one, or more instances of an ERROR information object class/macro.

• An instance of an APPLICATION-SERVICE-ELEMENT/OPERATION-PACKAGE
refers to one or more OPERATIONs.

• An instance of an APPLICATION-CONTEXT/CONTRACT refers to one or more
instances of an APPLICATION-SERVICE-ELEMENT/OPERATION-PACKAGE.

The basic scheme for the static translation of a TC/ROS-User specification to a
CORBA IDL specification is as follows:

1. Map a TC-User application definition contained within an ASN.1 module into an
IDL module called <module_name> in accordance with the standard JIDM
ASN.1 module to IDL module name mapping rules and all interfaces, types, and
constants generated from an ASN.1 module will

• be within the scope of the corresponding IDL module,

• declare the imported types in the ASN.1 module as typedefs of imported IDL
types, and

• declare an IDL interface, called TcUserFactory that inherits from the interface
TcSignaling::TcUserGenericFactory, if the current TC-User description is
Type I and there is at least one instance of a ROS/TC OPERATION defined, or if
the current TC-User description is Type II/III and there is at least one instance of
an APPLICATION-CONTEXT/CONTRACT defined.

2. Map each of the ASN.1 types into a corresponding IDL type using the translation
scheme defined in [4]. A complex ASN.1 data type (used to describe TC-User
PDUs) may generate more than one IDL data type.

3. For a Type I description module that has a TcUserFactory interface defined:

• Create an interface called DefAc.

• Create an IDL exception definition (as described in Section 2.1.5.2, “Mapping for
ERRORs,” on page 2-10) for every ERROR instance declared or imported into the
module.

• Create an IDL return type in the operation signature (as described in
Section 2.1.5.1, “Mapping for OPERATIONs,” on page 2-8) for every
OPERATION instance with a RESULT keyword declared or imported into the
module.
January 2001 CORBA & TC Interworking, v1.0 2-5

2

• Create an IDL operation definition within DefAc (as described in Section 2.1.5.1,
“Mapping for OPERATIONs,” on page 2-8) for every OPERATION instance
declared or imported into the module.

• Define an operation (create_def_ac_initiator) within the scope of the
TcUserFactory interface. This operation will return an object of type
<module_name>::DefAc. This operation has no parameters.

• Define an operation (create_def_ac_responder) within the scope of the
TcUserFactory interface. This operation will return an object of type
<module_name>::DefAc. This operation has the following parameters:

• in parameter of type <module_name>::DefAc called initiator
• in parameter of type TcSignaling::AssociationId called a_id
• in parameter of type TcSignaling::TcContextSetting called

tc_context_setting
• out parameter of type TcSignaling::AssociationId called a_id_rtn
• raises clause containing the exceptions:

TcSignaling::NoMoreAssociations,
TcSignaling::UnsupportedTcContext

• 1Define an operation (create_def_ac_responder_with_dialog_data) within
the scope of the TcUserFactory interface. This operation will return an object of
type <module_name>::DefAc. This operation has the following parameters:

• in parameter of type <module_name>::DefAc called initiator
• in parameter of type TcSignaling::AssociationId called a_id
• in parameter of type TcSignaling::TcContextSetting called

tc_context_setting
• in parameter of type string called protocol_version
• in parameter of type TcSignaling::DialogUserData called d_u_d
• out parameter of type TcSignaling::AssociationID called a_id_rtn
• raises clause containing the exceptions

TcSignaling::NoMoreAssociations, TcSignaling::InvalidParameter,
and TcSignaling::UnsupportedTcContext

4. For a Type II/III description module that has a TcUserFactory interface defined:

• Create an IDL exception definition (as described in Section 2.1.5.2, “Mapping for
ERRORs,” on page 2-10) for every ERROR instance declared or imported into the
module.

• Create an IDL return type for the operation signature (as described in
Section 2.1.5.1, “Mapping for OPERATIONs,” on page 2-8) for every
OPERATION instance with a RESULT keyword declared or imported into the
module.

• Create two interfaces: <contract_name>Initiator and
<contract_name>Responder (as described in Section 2.1.5.4, “CONTRACT
(or APPLICATION-CONTEXT) Mapping,” on page 2-12) for every
APPLICATION-CONTEXT/CONTRACT instance.

1. It is unlikely that a Type 1 TC-User description uses the TC Dialog portion. This create
operation was put in for completeness to cover this unlikely case. The authors have found no
example of such use.
2-6 CORBA & TC Interworking, v1.0 January 2001

2

• Define an operation (create_<contract_name>_initiator) within the scope of
the TcUserFactory interface. This operation will return an object of type
<module_name>::<contract_name>Initiator. This operation has no
parameters.

• Define an operation (create_<contract_name>_responder) within the scope
of the TcUserFactory interface. This operation will return an object of type
<module_name>::<contract_name>Responder. This operation has the
following parameters:

• in parameter of type <module_name>::<contract_name>Initiator called
initiator

• in parameter of type TcSignaling::AssociationId called a_id
• in parameter of type TcSignaling::TcContextSetting called

tc_context_setting
• out parameter of type TcSignaling::AssociationID called a_id_rtn
• raises clause containing the exceptions:

TcSignaling::NoMoreAssociations,
TcSignaling::UnsupportedTcContext;

• Define an operation
(create_<contract_name>_responder_with_dialog_data) within the scope
of the TcUserFactory interface. This operation will return an object of type
<module_name>::<contract_name>Responder. This operation has the
following parameters:

• in parameter of type <module_name>::<contract_name>Initiator called
initiator

• in parameter of type TcSignaling::AssociationId called a_id
• in parameter of type TcSignaling::TcContextSetting called

tc_context_setting
• in parameter of type string called protocol_version
• in parameter of type TcSignaling::DialogUserData called d_u_d
• out parameter of type TcSignaling::AssociationID called a_id_rtn
• raises clause with the exceptions TcSignaling::NoMoreAssociations,

TcSignaling::UnsupportedTcContext, and
TcSignaling::InvalidParameter

5. The compiler will generate data for an operation code repository that will provide
access via the interface TcRepository to the following elements: IDL Scoped
name for the ASN.1 operation or error, IdType (i.e., local (integer) or global (ASN.1
object identifier)), ID (i.e., the actual value defined in the ASN.1 specifications),
Type (i.e., operation or error), Timer (associated with the operation).

2.1.4 Generation of TC Repository to hold ScopedName to ID Mapping

In addition to the IDL file produced during specification translation, a TC Repository
is created that contains the information about mapping the IDL scoped name for
interfaces and identifier constants to a corresponding TC operation, error and, if
present, extension data type identifiers. This information is used to match ROS/TC
operation codes, extensions, and error codes to specific IDL constructs.
January 2001 CORBA & TC Interworking, v1.0 2-7

2

The TcRepository interface provides access to the following information:

• IDL scoped name of the IDL construct: this represents the unique name in the
Interface Repository of the corresponding ASN.1 module element (operations,
errors and, if present, extension data types).

• the type of identifier: this allows constructs (usually operations or errors) to be
named by either a local value or an object identifier.

• the identifier value: the operation or error code (or other identifier) is placed here.

• the timer value: this is the maximum length of an operation timer in seconds. If no
timer value is formally defined for an operation then a value of 0 is used.

An example of the sort of information captured in such a repository would be:

Scoped-Name IdType ID Type Timer

Q1218_3::DefAc::initialDP local 0 operation 0

Q1218_3::DefAc::originationAttemptAuthorized local 1 operation 0

Q1218_3::DefAc::canceled local 0 error None

where Q1218_3 is the module name of an IN-specific ASN.1 module converted to IDL
using specification translation.

2.1.5 Mapping of TC-User/ROS Constructs

This section defines detailed mapping rules for the individual ASN.1 constructs
required for TC/ROS Specification Translation. Examples of all mappings are also
provided.

2.1.5.1 Mapping for OPERATIONs

The OPERATION information object class (or MACRO in the case of Type I and II
descriptions) is used to define ROS/TC-User operations within the scope of a ROS/TC-
User protocol. Each instance of a ROS/TC-User OPERATION is mapped to an IDL
operation signature. The mapping is defined below. Appendix E provides the ASN.1
definition for the OPERATION information object class as well as the macro.

Operation Instance Mapping

1. Map the ROS operation name to an IDL operation name according to the JIDM type
name mapping rules.

2. Map the keyword ARGUMENT (which is a single ASN.1 type) to a single in
argument type of the IDL operation. The ASN.1 ARGUMENT type is mapped to an
IDL type using the JIDM specification translation rules.

3. Create an inout argument of type TcContext called ctext. This will be used to
carry TC dialog handling information, invoke ids, association ids, and linked ids for
operations that may have linked replies.
2-8 CORBA & TC Interworking, v1.0 January 2001

2

4. Map the ROS RESULT argument (which is a single ASN.1 type) to the IDL result
type in the operation signature. The ASN.1 RESULT type is mapped to an IDL
return type using JIDM specification translation rules. If there is no ASN.1 data
type following the RESULT keyword or the RESULT keyword is absent, the IDL
result type is a void.

5. If there are ERRORS defined for an operation, then add an IDL raises expression to
the operation signature. For each ASN.1 ERROR type following the ERRORS
keyword add its translated (see Section 2.1.5.2, “Mapping for ERRORs,” on
page 2-10 item 1) IDL exception name to the list in the raises clause.

The TcContext construct is explained in the TcUser interface section of the
Interaction Translation specification, section 4.2.1.

Operation Identifier Assignment Mapping

The operation code assignment is used to create the TC Repository as described in
Section 2.1.4, “Generation of TC Repository to hold ScopedName to ID Mapping,” on
page 2-7.

OPERATION Mapping Example

The example below shows how an OPERATION instance may be defined for a TC-
User, in this case an operation defined by IN Capability Set 1 (CS-1). The argument of
the operation is of type InitialDPArg. The operation only reports unsuccessful
completion by one set of errors.

InitialDP ::= OPERATION
ARGUMENT InitialDPArg
ERRORS { MissingCustomerRecord, MissingParameter,
SystemFailure, TaskRefused, UnexpectedComponentSequence,
UnexpectedDataValue, UnexpectedParameter }

The mapping of the ASN.1 operation to an IDL operation is shown below:

void2 InitialDP (in InitialDPArgType InitialDPArg, inout TcContext ctext)
raises (MissingCustomerRecord, MissingParameter, SystemFailure,
TaskRefused,
UnexpectComponentSequence, UnexpectedDataValue, UnexpectedParameter);

The ASN.1 operation argument type InitialDPArg is mapped to the IDL type
InitialDPArgType and an in parameter of this type is placed in the IDL operation
parameter list. The IDL operation also takes an inout parameter of type TcContext,
which is used to carry dialog flow control information, the operation’s invokeID and
the AssociationId as context information when the operation is invoked. The ASN.1
errors are mapped to parameters of the raises clause in the IDL operation signature.

2. As the operation does not have a result returned, it is necessary to insert the IDL result type
void.
January 2001 CORBA & TC Interworking, v1.0 2-9

2

2.1.5.2 Mapping for ERRORs

Each instance of a ROS ERROR information object class (or macro, for Type I and II
descriptions) is mapped to an IDL user defined exception. The mapping is defined
below. Appendix E provides the ASN.1 definition for the ERROR information object
class as well as the macro.

Error Instance Mapping

1. Map the ROS ERROR instance’s name to an IDL exception name.

2. If there is a PARAMETER defined as an ASN.1 type for the error instance, map it
to a single parameter of an IDL exception using the JIDM translation rules.

3. If there is a PARAMETER defined as an unnamed ASN.1 construct, map the
parameter of the error to a single IDL type with name <ErrorName>Param and
use the JIDM translation rules for the contents of this type. This type is defined as
a single parameter of the IDL exception created.

4. Create an additional parameter in the IDL exception of type DialogFlowCtr with
name ctr.

The IDL for the type DialogFlowCtr is described in Section 2.2.2.1, “TC Context
Information,” on page 2-16.

Error Identifier Assignment Mapping

This form of the macro is used to create an entry in the TC Repository as described in
Section 2.1.4, “Generation of TC Repository to hold ScopedName to ID Mapping,” on
page 2-7.

ERROR mapping example

A mapping for an instance of an error taken from IN CS-1 is shown below. The ASN.1
for an error instance named SystemFailure which conveys a single parameter
UnavailableNetworkResource is as follows:

SystemFailure ::= ERROR
 PARAMETER UnavailableNetworkResource

It maps to the following IDL:

exception SystemFailure (UnavailableNetworkResourceType
unavailableNetworkResource; DialogFlowCtr ctr;);

2.1.5.3 Mapping for the EXTENSION MACRO

The ASN.1 EXTENSION MACRO is defined in ITU-T Recommendation Q.1400 for
the purpose of allowing extensions to be made to standardized TC application
protocols. The use of the EXTENSION MACRO is intended only for minor extensions
to an abstract syntax, for example to allow the addition of information elements that
may enhance an activity but are not essential to performing the basic activity or to
2-10 CORBA & TC Interworking, v1.0 January 2001

2

allow the addition of a capability that is not essential to the base capability. All data
types defined in Interface Recommendation for IN CS-1 use this extension mechanism
and so an ASN.1-to-IDL mapping of the EXTENSION MACRO is required to fully
support standard application protocols (e.g., INAP) at a gateway. The EXTENSION
MACRO is defined below.

EXTENSION MACRO::=
TYPE NOTATION::= ExtensionType Criticality
VALUE NOTATION::= value (VALUE CHOICE {

private-extension INTEGER,
standard-extension OBJECT IDENTIFIER })

ExtensionType::= ìEXTENSION-SYNTAXî type | empty
Criticality::= ìCRITICALITYî value (Criticality Type)
CriticalityType::= ENUMERATED { ignore(0), abort(1) }

EXTENSION instance mapping

Every EXTENSION Macro instance will result in the creation of two IDL types, an
extension criticality identifier and an extension type.

1. The instance of the EXTENSION macro EXTENSION SYNTAX field is mapped to
an IDL type according to the standard JIDM ASN.1 type mapping rules. If the
ASN.1 Type is named, the standard JIDM mapping to an IDL type is performed, if
unnamed it is given the same name as the extension (barring the need for JIDM
disambiguation).

2. The CRITICALITY field of the macro is mapped to an IDL constant declaration of
the ASN1_ExtensionCriticality type with an identifier equal to the extension
name appended with the string “ExtensionCriticality” and an appropriate value. If
there is no CRITICALITY declaration, an IDL type with criticality
ASN1_EXTENSION_ABORT is declared as this is the default.

3. The macro VALUE declaration and the ScopedName of the IDL Extension Type
is placed in the TC Repository.

EXTENSION mapping example

The following example is taken from ETSI INAP CS-1 (where it is used as an example
of the EXTENSION macro).

SomeNetworkSpecificIndicator ::= EXTENSION
EXTENSION SYNTAX BOOLEAN
CRITICALITY abort
someNetworkSpecificIndicator SomeNetworkSpecificIndicator ::= 1

The IDL this maps to is given below:

typedef ASN1_Boolean SomeNetworkSpecificIndicator;
const ASN1_ExtensionCriticality
SomeNetworkSpecificIndicatorExtensionCriticality =
ASN1_EXTENSION_ABORT;
January 2001 CORBA & TC Interworking, v1.0 2-11

2

2.1.5.4 CONTRACT (or APPLICATION-CONTEXT) Mapping

The CONTRACT information object class (or APPLICATION-CONTEXT macro in the
case of Type II descriptions) is used to define the rules of engagement for a ROS/TC-
User protocol. Each instance of a ROS CONTRACT is mapped to an IDL interface.
The mapping is defined below. Appendix E provides the ASN.1 definition for the
CONTRACT information object class (as well as the APPLICATION-CONTEXT
macro).

Contract (or Application Context) Instance Mapping

When mapping a Type III (respectively Type II description), an instance of a
CONTRACT (respectively APPLICATION-CONTEXT macro) is used to create IDL
interface definitions as follows:

1. Create one interface named <contract_name>Responder, and within this
interface create IDL operation signatures (as described in “Operation Instance
Mapping” on page 2-8) for each ROS operation identified by the keyword:

• CONSUMER INVOKES for each OPERATION-PACKAGE (or ASE) identified
by the keyword INITIATOR CONSUMER OF for the
CONTRACT/APPLICATION-CONTEXT instance definition.

• SUPPLIER INVOKES for each OPERATION-PACKAGE (or ASE) identified by
the keyword RESPONDER CONSUMER OF for the
CONTRACT/APPLICATION-CONTEXT instance definition.

• OPERATIONS for each OPERATION-PACKAGE (or ASE) identified by either of
the keywords INITIATOR CONSUMER OF or RESPONDER CONSUMER OF
for the CONTRACT / APPLICATION-CONTEXT instance definition.

• OPERATIONS, CONSUMER INVOKES, and SUPPLIER INVOKES for each
OPERATION-PACKAGE (or ASE) identified by the keyword OPERATIONS OF
for the CONTRACT/APPLICATION-CONTEXT instance definition.

2. Create one interface named <contract_name>Initiator, and within this interface
create IDL operation signatures (as described in “Operation Instance Mapping” on
page 2-8) for each ROS operation identified by the keyword:

• CONSUMER INVOKES for each OPERATION-PACKAGE (or ASE) identified
by the keyword RESPONDER CONSUMER OF for the
CONTRACT/APPLICATION-CONTEXT instance definition.

• SUPPLIER INVOKES for each OPERATION-PACKAGE (or ASE) identified by
the keyword INITIATOR CONSUMER OF for the CONTRACT/APPLICATION-
CONTEXT instance definition.

• OPERATIONS for each OPERATION-PACKAGE (or ASE) identified by either of
the keywords INITIATOR CONSUMER OF or RESPONDER CONSUMER OF
for the CONTRACT / APPLICATION-CONTEXT instance definition.

• OPERATIONS, CONSUMER INVOKES, and SUPPLIER INVOKES for each
OPERATION-PACKAGE (or ASE) identified by the keyword OPERATIONS OF
for the CONTRACT/APPLICATION-CONTEXT instance definition.
2-12 CORBA & TC Interworking, v1.0 January 2001

2

3. Define an operation (create_<interface_name>_responder) within the scope of
the TcUserFactory interface for each of the above-mentioned responder
interfaces.*

4. Define an operation
(create_<interface_name>_responder_with_dialog_data) within the scope
of the TcUserFactory interface for each of the above-mentioned responder
interfaces.*

5. Define an operation (create_<interface_name>_initiator) within the scope of
the TcUserFactory interface for each of the above-mentioned initiator interfaces.*

* Refer to Section 2.1.3.4, “Mapping Algorithm,” on page 2-5 (item 4) for more
information.

Contract (or Application Context) Mapping Example

The example below shows how a ROS/TC Contract is defined in ASN.1. The
Application Context instance exampleContext1 includes the OPERATION-
PACKAGE instance examplePackage1, which is also defined below. The dialog
initiator may invoke operations exampleOp1 and exampleOp2. The dialog
responder may not invoke any operation.

exampleContext1 CONTRACT ::=
{
INITIATOR CONSUMER OF {examplePackage1}
ID objectIdentifierOfexampleContext1
}

where:

examplePackage1 OPERATION-PACKAGE ::=
{

CONSUMER INVOKES {exampleOp1 | exampleOp2}
ID objectIdentifierOfexamplePackage1

}

The mapping of the Contract to an IDL interface is as follows:

interface exampleContext1Initiator {
<resultType> exampleOp1(<params>);
<resultType> exampleOp2(<params>);

};

Only one interface, exampleContext1Initiator, is generated in this case. Within this
interface two operation signatures are generated. These operations correspond to the
two ROS operations listed in the CONSUMER INVOKES clause of the
examplePackage1 operation package, which is then listed in the INITIATOR
CONSUMER OF clause of the exampleContract1 contract definition. There is no
responder interface generated for this example as only the initiator is a consumer of the
examplePackage1 operation package and the operation package definition specifies
that only the CONSUMER INVOKES.
January 2001 CORBA & TC Interworking, v1.0 2-13

2

Example

A real example taken from the ETSI CORE INAP CS-1 [11] is as follows. The
example shows an Application Context definition taken from ETSI INAP CS-1. The
core-INAP-CS1-IP-to-SCP-AC defines the rules of engagement between an SCP
and an Intelligent Peripheral (IP). The initiator of this association plays the role of the
consumer of the operation packages SCF-SRF-activation-of-assist-ASE,
Timer-ASE, Specialized-resource-control-ASE, Cancel-ASE,
Activity-test-ASE. Note that each of these ASEs are defined showing which
operations the initiator (playing the role of the consumer) invokes and those that it
performs.

core-INAP-CS1-IP-to-SCP-AC APPLICATION-CONTEXT
- - dialog initiated by IP with AssistRequestInstructions
INITIATOR CONSUMER OF { SCF-SRF-activation-of-assist-ASE,
Timer-ASE, Specialized-resource-control-ASE, Cancel-ASE, Activity-test-ASE }
::= {ccitt(0) identified-organization(4) etsi(0) inDomain(1) in-network(1)
ac(1) cs1-ip-to-scp(2) version1(0)};

SCF-SRF-activation-of-assist-ASE ::=
APPLICATION-SERVICE-ELEMENT

- - consumer is SSF/SRF
CONSUMER INVOKES { assistRequestInstructions }

Timer-ASE ::= APPLICATION-SERVICE-ELEMENT
- - supplier is SCF
SUPPLIER INVOKES { resetTimer }

Specialized-resource-control-ASE ::=
APPLICATION-SERVICE-ELEMENT
- - consumer is SSF/SRF

CONSUMER INVOKES {specializedResourceReport }
SUPPLIER INVOKES {playAnnouncement,
promptAndCollectUserInformation}

Cancel-ASE ::= APPLICATION-SERVICE-ELEMENT
- - supplier is SCF

SUPPLIER INVOKES {Cancel}

Activity-test-ASE ::= APPLICATION-SERVICE-ELEMENT
- - supplier is SCF

SUPPLIER INVOKES {activityTest}

The corresponding IDL that is generated is as follows:

interface Core_INAP_CS1_IP_to_SCP_ACInitiator:TcSignaling::TcUser {
... resetTimer(...) raises(...);
... playAnnouncement(...) raises(...);
... promptAndCollectUserInformation(...) raises(...);
... Cancel(...) raises(...);
... activityTest(...) raises(...);
}; // end Core_INAP_CS1_IP_to_SCP_ACInitiator

interface Core_INAP_CS1_IP_to_SCP_ACResponder:TcSignaling::TcUser {
... assistRequestInstructions (...) raises(...);
2-14 CORBA & TC Interworking, v1.0 January 2001

2

... specializedResourceReport(...) raises(...);
}; // end Core_INAP_CS1_IP_to_SCP_ACResponder

interface TcUserFactory:TcSignaling::TcUserGenericFactory {

Core_INAP_CS1_IP_to_SCP_ACResponder
create_Core_INAP_CS1_IP_to_SCP_ACResponder(

in Core_INAP_CS1_IP_to_SCP_ACInitiator initiator,
in TcSignaling::AssociationId a_id,
in TcSignaling::TcContextSetting tc_context_setting,
out TcSignaling::AssociationId a_id_rtn)

raises (NoMoreAssociations, UnsupportedTcContext);

Core_INAP_CS1_IP_to_SCP_ACResponder
create_Core_INAP_CS1_IP_to_SCP_A_Responder_with_dialogdata(

in Core_INAP_CS1_IP_to_SCP_ACInitiator initiator,
in TcSignaling::AssociationId a_id,
in TcContextSetting tc_context_setting,
in string protocol_version,
in TcSignaling::DialogUserData d_u_d,
out TcSignaling::AssociationId a_id_rtn)

raises (NoMoreAssociations, InvalidParameter, UnsupportedTcContext);

Core_INAP_CS1_IP_to_SCP_ACInitiator
create_Core_INAP_CS1_IP_to_SCP_ACInitiator();

}; // end TcUserFactory

2.2 Interaction Translation

2.2.1 Introduction

A set of CORBA interfaces are described to support TC-User to TC-User interactions
between either CORBA-based implementations or a mixture of CORBA-based
implementations and Proxy CORBA objects that communicate with traditional TC-
User implementations. This includes the preservation of location transparency and
maximum re-use of standard CORBA Services for CORBA-based implementations.

The main TC concept modeled is the dialog which has no parallel in the CORBA
domain. A TcSignaling Association is defined which may be mapped onto a TC dialog.
In order to insulate CORBA objects from the details of TC dialogs:

• starting an association is constrained by the use of the CORBA Naming Service to
find a suitable TcUserFactory interface and then invoking an appropriate create
operation with suitable parameters. This models the operation of the TC-BEGIN
dialog primitive and associated semantics.
January 2001 CORBA & TC Interworking, v1.0 2-15

2

• each association takes place between a pair of interacting CORBA objects. This
does not preclude the use of a specific CORBA object in multiple, simultaneous
associations as each operation within an association carries with it an
AssociationId referring to a specific association.

As a way of showing the interactions between TC-user implementations, a number of
message sequence charts are included in Section 2.2.3, “Application Location and
Association Initiation,” on page 2-28. These graphically illustrate the interactions
between objects and show some of the timing constraints involved.

To get location-independent interaction of TC-user applications, four major interaction
features are supported:

1. application location (finding)

2. association initiation

3. association maintenance

4. operation invocation

In general, application location and association initiation are provided by the CORBA
Naming Service and the Life Cycle Service, association maintenance is provided by
the base interfaces of all TC-user CORBA objects and operation invocation is provided
by specification translation, the ORB, the Messaging Service, and optionally the
Interface Repository and TC Repository.

2.2.2 The Base TC-User Interfaces

There are two interfaces defined in the TcSignaling IDL module that serve as parent
interfaces for TC-User objects and TC-User object Factories. Their functionality is
described in this section. Each TC dialog maps to one association between two TC-
User objects.

2.2.2.1 TC Context Information

In the CORBA domain, all TC-User interactions take place within the context of a
TcSignaling Association. During Specification Translation all operations have an
inout parameter TcContext added to their operation signature in addition to any types
carried in the ROS/TC operation definition. This parameter contains the association ID,
invoke ID, TC dialog flow control information, and the linked ID (where needed).
Exceptions generated during Specification Translation have a TC dialog flow control
parameter in addition to any parameter in the ROS/TC error definition. Each of these
constructs is defined below.

typedef string ScopedName;
typedef CosNaming::Istring Istring;
typedef long AssociationId;
typedef long InvokeId;
// Range -128 to +127 for Q.773
// InvokeId values
const InvokeId NO_ID = 2000000000;
2-16 CORBA & TC Interworking, v1.0 January 2001

2

typedef short DialogFlowCtr;
// DialogFlowCtr values
const DialogFlowCtr BEGIN = 0;
const DialogFlowCtr CONTINUE = 1;
const DialogFlowCtr END = 2;
const DialogFlowCtr QUEUE_COMPONENT = 3;
const DialogFlowCtr UNIDIRECTIONAL = 4;
const DialogFlowCtr NOT_SPECIFIED = 5;

typedef short TcContextSetting;
// TcContextSetting values
const TcContextSetting TC_CONTEXT_BASE = 0;
const TcContextSetting TC_CONTEXT_NO_FLOW = 1;
const TcContextSetting TC_CONTEXT_ALL = 2;

struct TcContext {
DialogFlowCtr ctr;
InvokeId ivk_id;
InvokeId lnk_id;
AssociationId a_id;

};

typedef string ScopedName;;

ScopedName is used to hold the Scoped Name in the Interface Repository of an
operation, extension, or error generated during ST.

typedef long AssociationId;

AssociationId is used to specify a unique identifier for a TC dialog between two TC-
User objects.

typedef Istring TcAddress;

TcAddress is used to specify a SS7 Global Title

typedef long InvokeId;

InvokeId is used to specify a TC operation invoke ID. A TC-User object may place the
value of NO_ID in this field to indicate that no invoke ID is specified. (Note that this
is incompatible with support for TC linked operations.) Management of Invoke IDs
follows that of Q.774 (93). The relevant text (3.2.1.1.2) is quoted here for
completeness;

“Invoke IDs are assigned by the invoking end at operation invocation time. A TC-user
need not wait for one operation to complete before invoking another. At any point in
time, a TC-user may have any number of operations in progress at a remote end
(although the latter may reject an invoke component for lack of resources).”

Each invoke ID value is associated with an operation invocation and its corresponding
invoke state machine. Management of this invoke ID state machine takes place only at
the end which invokes the operation invocation, and does not manage a state machine
January 2001 CORBA & TC Interworking, v1.0 2-17

2

for this invoke ID. Note that both ends may invoke operations in a full-duplex manner:
each end manages state machines for the operations it has invoked, and is free to
allocate invoke IDs independently of the other.

An invoke ID value may be reallocated when the corresponding state machine returns
to idle. However immediate reallocation could result in difficulties when certain
abnormal situations arise. A released ID value (when the state machine returns to idle)
should therefore not be reallocated immediately; the way this is done is
implementation-dependent, and thus is not described in this Recommendation.”

typedef short DialogFlowCtr;

DialogFlowCtr is used to convey explicit TC flow control information for interactions
between TC-Users. Normally TC-User objects interact without considering possible
PDU flows from proxy objects, but some applications (e.g., INAP) may wish to
explicitly trigger PDU creation at a gateway. TC allows this via dialog flow control
primitives.

Normally DialogFlowCtr values are ignored by non-Proxy object implementations,
although they may additionally be used to indicate the end of associations with a TC-
User object, which supports multiple associations. A DialogFlowCtr type
accompanies every IDL operation and exception defined in Specification Translation.
All non-negative values are reserved for use in OMG specifications. Any negative
value of DialogFlowCtr is considered a vendor extension.

The meaning of the values for TC-User objects are as follows:

• BEGIN: treat this operation, result, or exception as both the appropriate TC
component type and a TC dialog handling begin primitive.

• CONTINUE: treat this operation, result, or exception as both the appropriate TC
component type and a TC dialog handling continue primitive.

• END: treat this operation, result, or exception as both the appropriate TC
component type and a TC dialog handling end primitive. This may also be used to
signal the end of the current dialog to a TC-User CORBA object that supports
multiple associations when included as a parameter to an operation, result, or
exception.

• QUEUE_COMPONENT: queue the current operation, result, or exception until a
subsequent operation or exception with a suitable value for this parameter triggers
the sending of a PDU.

• UNIDIRECTIONAL: treat this operation as both a TC invoke component and a TC
dialog handling unidirectional primitive. This is treated like an END parameter (i.e.,
it produces a short association that only lasts for the current operation). This value
is only valid for operations and not operation results or exceptions.

• NOT_SPECIFIED: perform whatever default PDU sequencing behavior is
configured at a proxy object in a gateway. This is the default setting for CORBA
object to CORBA object interactions when TcContextSetting is set to
TC_CONTEXT_BASE or TC_CONTEXT_NO_FLOW.
2-18 CORBA & TC Interworking, v1.0 January 2001

2

typedef short TcContextSetting;

The structure TcContext is used to carry TC-specific context information in the
CORBA domain. This structure and DialogFlowCtr are used as parameters in
generated IDL operations, results, and exceptions. Many CORBA-based TC
applications may not directly use this information. When a TC-User object is created,
a parameter of type TcContextSetting shall be supplied. There are three levels of TC
context parameter support identified:

1. TC_CONTEXT_BASE: no support for AssociationId or DialogFlowCtr.
InvokeId for both invoke IDs (ivk_id) and linked IDs (lnk_id) is supported. The
parameter a_id shall be zero in all operations and operation results. The parameter
ctr has the value NOT_SPECIFIED in all operations, operation results, and
exceptions. This setting does not allow the support of multiple associations with one
TC-User object. All TC-User objects must support this value.

2. TC_CONTEXT_NO_FLOW: no support for DialogFlowCtr. The parameter ctr
has the value NOT_SPECIFIED in all operations, operation results, and exceptions.
Invoke IDs, Linked IDs, and AssociationIds are supported. TC-User objects may
support this value.

3. TC_CONTEXT_ALL: All TcContext information is supported. TC-User objects
may support this value.

All non-negative values are reserved for use in OMG specifications. Any negative
value of TcContextSetting is considered a vendor extension. When a proxy object at
a gateway receives an operation, result, or exception with default values, the proxy
object implementation adds any additional information required for generation of
TC/SS7 PDUs.

struct TcContext {
DialogFlowCtr ctr;
InvokeId ivk_id;
InvokeId lnk_id;
AssociationId a_id;

};

TcLinkedContext is used to to hold the AssociationId, InvokeId, Linked ID
(lnk_id), and DialogFlowCtr information for a TC-User operation. A lnk_id is used
to signal a linked operation invocation; therefore, it must be equal to the InvokeId of
the linked-to operation. Normally it has the value NO_ID. The use of context
information by a TC-User depends upon the TcContextSetting creation parameter of
that object.

2.2.2.2 The TcUser Interface

Every TC-User object derives from the TcUser interface. It provides functionality
common to all TC-User objects. The IDL for this interface is shown below.

exception UnknownAssociation{};
exception NoMoreAssociations{};
January 2001 CORBA & TC Interworking, v1.0 2-19

2

exception InvalidParameter{};

interface TcUser:CosLifeCycle::LifeCycleObject {

void abort_association(in AssociationId a_id)
raises (UnknownAssociation);

void abort_association_with_data(in AbortValue abort_value,
 in AssociationId a_id)

raises (UnknownAssociation, InvalidParameter);

void end_association (in AssociationId a_id)
raises (UnknownAssociation);

AssociationId new_association(
in TcUser initiator,
in AssociationId a_id)

raises(NoMoreAssociations);

AssociationId new_association_with_dialog_data(
in TcUser initiator,
in AssociationId a_id,
in string protocol_version,
in DialogUserData d_u_d)

raises(NoMoreAssociations, InvalidParameter);

readonly attribute TcContextSetting tc_context_setting;

}; //end TcUser

TcUser is derived from CosLifeCycle::LifeCycleObject although conformant
implementations need only implement the remove operation from that interface. A
CORBA No_Implement exception is thrown when move or copy are invoked.

By invoking operations on the TcUser interface, objects are able to:

• Abort a current association to the TC-User object.

• End gracefully a current association to the TC-User object3.

• Allocate another association to an existing TC-User object.

• Check to see which TcContext parameters the object supports.

It is anticipated that many TC-User objects will support more than one simultaneous
association to enhance scalability.

void abort_association (in AssociationId a_id)
raises (UnknownAssociation);

3. This operation would be used to end an association without sending the result of an invoca-
tion.
2-20 CORBA & TC Interworking, v1.0 January 2001

2

The abort_association operation is used to inform the TC-user object that the
association referenced by the parameter AssociationId has been aborted. All
associated operations are also aborted. The UnknownAssociation exception is
raised if the TC-user object has no current open association with an AssociationId
equal to the one provided.

void abort_association_with_data (in AbortValue abort_value,
in AssociationId a_id)

raises (UnknownAssociation, InvalidParameter);

The abort_association_with_data operation is used to inform the TC-user object
that the association referenced by the parameter AssociationId has been aborted. All
associated operations are also aborted. Additional TC abort information may be
supplied in the AbortValue parameter. The UnknownAssociation exception is
raised if the TC-user object has no current open dialog with an AssociationId equal
to the one provided. The InvalidParameter exception is raised if the TC-user object
cannot process the abort_value parameter.

void end_association (in AssociationId a_id)
raises (UnknownAssociation);

The end_association operation is used to inform the TC-user object that the
association referenced by the parameter a_id has been ended normally. The
UnknownAssociation exception is raised if the TC-user object has no current open
association with an AssociationId equal to the one provided.

AssociationId new_association(
in TcUser initiator,
in AssociationId a_id)

raises(NoMoreAssociations);

The new_association operation is used to inform the TC-user object that a new
association with it has been initiated. A reference to the corresponding interface of the
initiator is supplied by the in parameter initiator. The AssociationId to be used for
all operations, exceptions, and results returned to the initiator is included in the a_id
parameter. The AssociationId to be used by the initiator for all operations,
exceptions, and results sent to the responder is supplied as a return parameter. When a
new association is created in this way, it has the same TcContextSetting originally
supplied when creating the object. The NoMoreAssociations exception is raised if
the TC-user object cannot handle any more associations at the current time.

AssociationId new_association_with_dialog_data(
in TcUser initiator,
in AssociationId a_id,
in string protocol_version,
in DialogUserData d_u_d)

 raises(NoMoreAssociations, InvalidParameter);

The new_association_with_dialog_data operation is used to inform the TC-user
object that a new association including TC DialogPortion data has been initiated by
the calling object. A reference to the corresponding interface of the initiator is supplied
January 2001 CORBA & TC Interworking, v1.0 2-21

2

by the in parameter initiator. The AssociationId to be used for all operations,
exceptions, and results returned to the initiator is included in the a_id in parameter.
The AssociationId to be used by the initiator for all operations, exceptions, and
results sent to the responder is supplied as a return parameter. When a new association
is created in this way, it has the same TcContectSetting originally supplied when
creating the object. The NoMoreAssociations exception is raised if the TC-user
object cannot handle any more associations at the current time. The
InvalidParameter exception is raised if the TC-user object is incapable of
interpreting either the protocol_version or d_u_d parameters.

readonly attribute TcContextSetting tc_context_setting;

The tc_context_setting attribute has the value of TcContextSetting supplied to the
object at creation time.

2.2.2.3 The TcUserGenericFactory Interface

The TcUserGenericFactory interface is provided as the basis for all TC-User object
creation factories. The IDL definition for this interface is provided below.

As a TcUserFactory controls the creation of TC-User objects, many strategies for
optimum scalability and minimum response time may be adopted. For example, a
factory could create a pool of objects for which there is consistent demand then rather
than creating a new object when a create request is received, it informs one of the
objects in the pool of the new association and passes back the cached object reference
of that object.

A TcUserFactory could also administer CORBA Security permissions to ensure that
objects are only invoked upon by bona fide association initiators.

interface TcUserGenericFactory{

TcUser create_tc_user_responder(
in ScopedName resp_iface,
in TcUser initiator,
in AssociationId a_id,
in TcContextSetting tc_context_setting,
out AssociationId a_id_rtn)

raises(CosLifeCycle::NoFactory,
NoMoreAssociations, UnsupportedTcContext);

TcUser create_tc_user_responder_with_dialog_data(
in ScopedName resp_iface,
in TcUser initiator,
in AssociationId a_id,
in string protocol_version,
in DialogUserData d_u_d,
in TcContextSetting tc_context_setting,
out AssociationId a_id_rtn)

raises(CosLifeCycle::NoFactory, NoMoreAssociations,
2-22 CORBA & TC Interworking, v1.0 January 2001

2

InvalidParameter, UnsupportedTcContext);

TcUser create_tc_user_initiator(
in ScopedName init_iface)

raises(CosLifeCycle::NoFactory);

}; // end TcUserGenericFactory

By invoking operations on the TcUserGenericFactory interface, objects are able to:

• Create TC-User responder objects and initiate associations with them.

• Create TC-User responder objects and initiate associations with them using dialog
data to support TC93 applications.

• Create TC-User initiator objects.

All specific TcUserFactory interfaces inherit from this interface.

TcUser create_tc_user_responder(
in ScopedName resp_iface,
in TcUser initiator,
in AssociationId a_id,
in TcContextSetting tc_context_setting,
out AssociationId a_id_rtn)

raises(CosLifeCycle::NoFactory,
NoMoreAssociations, UnsupportedTcContext);

The create_tc_user_responder operation is used to create a TC-User responder
object and begin an association with it. A ScopedName describing the object to be
created is supplied as the in parameter resp_iface. A reference to the initiator object
is supplied as the in parameter initiator. The in parameter a_id holds the initiator’s
association ID for the association started. The responder’s AssociationId for the
association is supplied in the out parameter a_id_rtn. The in parameter
tc_context_setting is used to define the TC context information to be used in the
association.

• The NoFactory exception is raised if the generic factory cannot create the object
requested.

• The NoMoreAssociations exception is raised if the factory cannot create any
more requestor objects at the current time.

• The UnsupportedTcContext exception is raised if the value of
TcContextSettings requested is not supported by the responder object created by
the factory.

TcUser create_tc_user_Responder_with_dialog_data(
in ScopedName resp_iface,
in TcUser initiator,
in AssociationId a_id,
in string protocol_version,
January 2001 CORBA & TC Interworking, v1.0 2-23

2

in DialogUserData d_u_d,
in TcContextSetting tc_context_setting,
out AssociationId a_id_rtn)

raises(CosLifeCycle::NoFactory, NoMoreAssociations,
InvalidParameter, UnsupportedTcContext);

The create_tc_user_responder_with_dialog_data operation is used to create a
TC-User responder object and begin an association with it using TC dialog data. A
ScopedName describing the object to be created is supplied as the in parameter
resp_iface. A reference to the initiator object is supplied as the in parameter
initiator. The in parameter a_id holds the initiator’s association ID for the association
started. The responder’s AssociationId for the association is supplied in the out
parameter a_id_rtn. The protocol_version parameter carries the TC-User protocol
version information. The d_u_d BEGIN user data. The in parameter
tc_context_setting is used to define the TC context information to be used in the
association.

• The NoFactory exception is raised if the generic factory cannot create the object
requested.

• The NoMoreAssociations exception is raised if the factory cannot create any
more requestor objects at the current time.

• The InvalidParameter exception is raised if the factory cannot interpret either the
protocol_version or d_u_d parameters.

• The UnsupportedTcContext exception is raised if the value of
TcContextSettings requested is not supported by the responder object created by
the factory.

TcUser create_tc_user_initiator(
 in ScopedName init_iface)
 raises(CosLifeCycle::NoFactory);

The create_tc_user_initiator operation is used to create a TC-User initiator object.
A ScopedName describing the object to be created is supplied as the in parameter
init_iface. The NoFactory exception is raised if the generic factory cannot create the
object requested.

2.2.2.4 The TcFactoryFinder Interface

Every TC/CORBA gateway will provide a TcFactoryFinder interface that provides
various helper operations which in effect provide a “wrapper” to the CORBA Naming
Service. The TcFactoryFinder interface is available through the GwAdmin
interface. The IDL for this interface is shown below.

interface TcFactoryFinder{

void bind(in TcAddress addr,
in ApplicationContext a_c,
2-24 CORBA & TC Interworking, v1.0 January 2001

2

in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory resp_tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName,
CosNaming::NamingContext::AlreadyBound);

void unbind(in TcAddress addr,
in ApplicationContext a_c,
in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory resp_tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

void rebind(in TcAddress addr,

in ApplicationContext a_c,
in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory resp_tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

TcUserGenericFactory resolve(in TcAddress addr,

in ApplicationContext a_c,
out ScopedName resp_iface,
out ScopedName init_iface)

raises (CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

}; // end TcFactoryFinder

This interface allows TC-User objects to easily:

• register with the CORBA Naming Service,

• resolve the name of a TC-User object, and

• explicitly replace information in the Naming Service rather than just add new
entries.

void bind(in TcAddress addr,
in ApplicationContext a_c,
in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
January 2001 CORBA & TC Interworking, v1.0 2-25

2

CosNaming::NamingContext::InvalidName,
CosNaming::NamingContext::AlreadyBound);

The bind operation is used to publish a new TC-user object factory address in the
CORBA Naming Service. This binds a specific TcUserFactory’s object reference to a
TC/SS.7 address consisting of a Global Title and optionally an Application Context.
See Section 2.2.3, “Application Location and Association Initiation,” on page 2-28 for
details of the stucture of TC/SS.7 address information in the naming service.

The addr parameter holds the Global Title.

The a_c parameter holds the Application Context name or the value “DefAc” if no
Application Context is to be specified.

The resp_iface parameter holds the TC-User responder interface’s IDL scoped name
(corresponding to the interface type created by the registering factory).

The init_iface parameter holds the TC-User initiator interface’s IDL scoped name
(corresponding to the interface type created by the registering factory). In the case of a
Type I definition (symmetric initiator and responder interfaces) the values of both
resp_iface and init_iface are the same.

The tc_user_factory parameter holds the reference to the registering factory. The
exceptions thrown are the same as the CosNaming::NamingContext::bind
operation and have the same meaning. For IN implementations, this operation may be
seen as deploying a service (the TC-User object created by the registering factory).

void unbind(in TcAddress addr,
in ApplicationContext a_c,
in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

The unbind operation is used to remove a binding between a TcUserFactory’s
object reference and a TC/SS.7 address. Only the singleton Cos Naming nodes
referenced in the operation parameters are removed. The parameters have the same
meaning as in the bind operation above. The exceptions have the same meaning as
when thrown by the CosNaming::NamingContext::unbind operation. For IN
implementations, this operation may be seen as withdrawing an already deployed
service (the TC-User object created by the registering factory).

void rebind(in TcAddress addr,
in ApplicationContext a_c,
in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);
2-26 CORBA & TC Interworking, v1.0 January 2001

2

The rebind operation is used to change the object reference and optionally the
responder and initiator interfaces already bound to a TC/SS.7 address. The addr and
a_c parameters form the already existing TC/SS.7 address. The other parameters have
the same meanings as in the bind operation. The exceptions are identical to those
raised by the CosNaming::NamingContext::rebind operation and have the same
meaning.

TcUserGenericFactory resolve(in TcAddress addr,
in ApplicationContext a_c,
out ScopedName resp_iface,
out ScopedName init_iface)

raises (CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

The resolve operation takes as input a TC/SS.7 address, a Global Title, and optionally
an Application Context and returns a reference to a TcUserGenericFactory and the
names of the responder and initiator interfaces associated with the objects created by
that factory. The in parameter addr holds the Global Title to be resolved. The in
parameter a_c holds the Application Context to be resolved or the value “DefAc” for
the default Application Context. The returned TcUserGenericFactory is a reference
to the factory associated with the TC/SS.7 address. The out parameter resp_iface is
the IDL scoped name of the responder interface created by the factory. The out
parameter init_iface is the IDL scoped name of the initiator interface corresponding to
the interface created by the factory. In the case of a Type I definition (symmetric
initiator and responder interfaces) the values of both resp_iface and init_iface are
the same.

2.2.2.5 The GwAdmin Interface

Every TC/CORBA gateway will have a singleton GwAdmin object that provides
various helper operations for CORBA based TC-Users. A GwAdmin object will
always be identified by a well-publicized name in the CORBA Naming Service. The
interface is defined below.

interface GwAdmin{

readonly attribute TcFactoryFinder tc_user_factory_naming_if;

readonly attribute TcPduProviderFactory tc_pdu_provider_factory_if;

}; // end GwAdmin

This interface allows TC-User objects to obtain the object reference to the
TcFactoryFinder object or the TcPduProvider interface for use by protocol-aware
CORBA objects in interacting with the SS7 stack. This will usually only be used by
Proxy objects. It is not necessary to support this attribute in a conformant
implementation as the proxy objects may use directly a proprietary API for accessing
January 2001 CORBA & TC Interworking, v1.0 2-27

2

the SS7/TC protocol stack. The GwAdmin will return a null reference for the
tc_pdu_provider_factory_if attribute if the gateway does not support the TC PDU-
oriented interfaces.

2.2.2.6 The TcServiceFinder Interface

Every TC/CORBA domain will have at least one TcServiceFinder object that
provides various helper operations to find all the TC-User CORBA services. A
TcServiceFinder object will always be identified by a well-publicized name in the
CORBA Naming Service. The interface is shown below.

interface TcServiceFinder{
readonly attribute CosNaming::NamingContext gt_root;
readonly attribute GwAdmin gw_admin_if;
readonly attribute TcRepository tc_repository_if;

}; //end TcServiceFinder

readonly attribute CosNaming::NamingContext gt_root;

The attribute gt_root returns a reference to the root TC/SS.7 Cos Naming Service
naming context for the local domain.

readonly attribute GwAdmin gw_admin_if;

The attribute gw_admin_if returns a reference to the local TC/CORBA gateway’s
GwAdmin interface.

readonly attribute TcRepository tc_repository_if;

The attribute gw_admin_if returns a reference to the local TC/CORBA
TcRepository.

2.2.3 Application Location and Association Initiation

Due to the extended capabilities of signalling application context provided by the 1993
specifications of TC (hereafter called TC93) over those of the earlier TC specification
(hereafter called TC88) it is necessary to define a two-tier mechanism for application
location and association initiation. The base functionality is used in the TC88 case and
this is extended to allow the richer TC93 interactions.

2.2.3.1 Base Functionality (TC88)

Application Location

All TC-User Application Entities can be located by their Global Title. This is used as a
naming context in the CORBA Naming Service. In order to facilitate easy location,
there is a well defined name, called GT, used as the root of the global GT tree. This is
defined within the scope of some naming-context in the CORBA Naming Service. The
location of this naming context is published in the TcServiceFinder interface.
2-28 CORBA & TC Interworking, v1.0 January 2001

2

An individual Global Title is placed into the naming tree below the well-defined
naming context GT. It is placed into the naming service as a naming context. If it is
desired to support multiple TC-User applications on one Global Title, then an SS.7
SSN may be used to distinguish between them. To support this functionality use the
same naming tree as for TC93 and use the SSN value as the name of an application
context node.

Underneath a particular GT there is a naming context named DefAc. Beneath this is
located an object name node called “TcUserFactory” for the default factory
associated with that TC Application Entity. There are also two naming contexts named:

• “RESP:<responder_interface_name>” - where
<responder_interface_name> is the ScopedName of the interface supported
by the objects created by the factory

• “INIT:<initiator_interface_name>” - where <initiator_interface_name> is the
ScopedName of the corresponding interface to the objects created by the factory.

In the case of a symmetric interface, both of these nodes will have the same name.

Figure 2-1 The Global Title Naming Tree in the COS Naming Service for TC88

Table 2-1 TC88 Global Title Descriptions

Node IDL Type Name - Id Name - Kind

Root GT Naming Context “GT” <null>

Particular GT Naming Context <specific GT> <null>

Default Appl. Context Naming Context DefAc <null>

TcUser factory Named Object “TcUserFactory” <null>

Initiator iface name Naming Context “INIT:<iface_name>” <null>

Responder iface name Naming Context “RESP:<iface_name>” <null>

GT

GT_2 GT_NGT_1

DefAc DefAc DefAc

CosNaming StructureNode Type CosName(Id)

Root

Global Titles

“GT”

<GT_N>

“DefAc”

TcUserFactory TcUserFactory TcUserFactoryFactory

DefaultAC

“TcUserFactory”

RESP:<i_f> INIT:<i_f> R I R IInterfaces
January 2001 CORBA & TC Interworking, v1.0 2-29

2

By setting up the naming tree like this, any CORBA object (including proxy objects at
a gateway) can find a factory associated with a GT and the name of the interface
supported by that factory. In the TC88/Type I description case this is also the interface
that must be supported by the initiating server object (or a server object associated with
an initiating CORBA client object) as the interfaces involved in the association are
symmetrical.

Association Initiation

Initiating an association may be done by invoking a:

• create_<interface_name>_responder operation on the TcUserFactory

• create_<interface_name>_responder_with_dialog_data operation on the
TcUserFactory

• new_association operation on a TC-User object of the correct type already created.

• new_association_with_dialogdata operation on a TC-User object of the correct
type already created.

When a new association is started, both responder and initiator exchange
AssociationIds. If the TcContextSetting selected for the association supports
AssociationIds, both must place the AssociationId received during association
initiation in the TcContext parameter of all outgoing messages (operations, results,
exceptions) within that association.

Figure 2-2 Application Location and association initiation by a TC88-User (no dialog Portion)

TcFactory
Finder

SCP
TcUserFactory

TcUser(SCP)

resolve [dest GT]

create_tc_userResponder [responder, own ObjRef]

IDLoperation for oper1

IDLoperation_res for oper1

The GwAdmin
can be used to locate
this interface; in turn
this interface uses the
Naming Service

TcUser
(SSP)

end_association
2-30 CORBA & TC Interworking, v1.0 January 2001

2

The process of initiating an association is shown in the Message Sequence Chart
(MSC) in Figure 2-2. This MSC considers the case of association initiation and
operation invocation in the CORBA domain. Furthermore, to reduce complexity, we
have considered the use of TC without the use of Application Context (i.e., the dialog
Portion). The steps, briefly, are as follows.

1. The TcUser(SSP) can use the GwAdmin interface (not shown in the MSC) to
obtain the reference to an TcFactoryFinder object, on which it invokes a resolve
operation to obtain the object references of factory interfaces bound to the GT
passed as a parameter in the invocation. The TcFactoryFinder interface makes use
of the CORBA Naming Service (not shown in the MSC) to perform the name
resolution. (It is assumed that the name bindings have been performed at some
earlier time).

2. The TcUserFactory reference is returned by the address resolution is used to
create an instance of the target CORBA object, the SCP.

3. The SSP invokes the desired IDL equivalent of a specific INAP operation on the
SCP. (The MSC for converting the identifier of a received TC/ROS operation to its
IDL scoped name is shown in Figure 2-4 on page 2-34. In Figure 2-2, those steps
are assumed to have been performed.)

4. The result is returned to the SSP which then ends the association with an
end_association operation.

2.2.3.2 Extensions for TC93

TC93 adds the possibility of sending a dialog PDU within a BEGIN PDU. The dialog
PDU can contain the following pieces of information of relevance to association setup:

• Protocol Version number

• Application Context

• User Data

The exact use of user-data is TC-User object and Factory dependent. The Naming
Service structure can be extended by adding additional, specific, Application Context
nodes below a Global Title node as shown in Figure 2-3. This allows both TC88 and
TC93 communication with CORBA implementations of entities using the same Global
Title.
January 2001 CORBA & TC Interworking, v1.0 2-31

2

Figure 2-3 The Global Title Naming Tree in the COS Naming Service for TC93

As protocol version does not change frequently, instead of adding another tier of nodes
in the Naming Service, it is passed as a creation parameter in the
create_with_dialogdata operation. User data may be passed as a creation parameter
in the create_with_dialogdata operation.

The process for association setup is as before, with the difference that the responder
and initiator interfaces may now be asymmetric.

2.2.4 Association Maintenance

TC-user applications communicate with each other through associations in which
operations may be invoked in either direction. The application location and association
initiation procedure ensures that the two CORBA objects communicating have an
object reference to one another.

The TcUser interface provides two levels of association control:

Table 2-2 TC93 Global Title Descriptions

Node IDL Type Name - Id Name - Kind

Root GT Naming Context “GT” <null>

Particular GT Naming Context <specific GT> <null>

TC-User object factory Named Object “TcUserFactory” <null>

Application Context Naming Context <AC name> <null>

Initiator iface name Naming Context INIT:<iface_name> <null>

Responder iface name Naming Context RESP:<iface_name> <null>

GT

GT_NGT_1

DefAc AC_M

CosNaming StructureNode Type CosName(Id)

Root

Global Titles

“GT”

<GT_X>

<AC_Y>

TcUserFactoryFactory

Application

“TcUserFactory”

RESP:<i_f> INIT:<i_f> R IInterfaces

Context
AC_1

R I

TcUserFactory TcUserFactory
2-32 CORBA & TC Interworking, v1.0 January 2001

2

• standard: to be supported by all TC-User objects. This is defined by the operations
on the TcUser interface. This allows an object to notify the other that the
association has aborted or request the end of an association.

• full control: may be supported by TC-User proxy objects residing at a gateway or
CORBA objects that wish to use the DialogFlowCtr parameter (part of TcContext
and TcLinkedContext) to optimize dialog support. This allows explicit use of TC
dialog flow control; so a proxy object can minimize the traffic generated on the
SS.7 network and a normal CORBA object can end associations without needing to
invoke the new_association and end_association operations.

In addition to the control of an association, a multi-association TC-User object
maintains information on current associations by allocating a locally unique
AssociationId when starting an association. It also receives a unique AssociationId
from the other TC-User CORBA objects in the association (or its factory). All TC-User
CORBA objects must place the AssociationId received in the TcContext parameter
of all operations, results, and exceptions within an association. Similarly all operations,
results, and exceptions that it receives during an association will have the
AssociationId it allocated at association initiation.

2.2.5 Operation Invocation

Given the ST already specified, it is possible for CORBA-based TC-user applications
to interact via associations. If operation invocations and returns are to be translated into
the non-CORBA domain, the information lost from the ASN.1 during the translation
process must be replaced.

To support this activity the TC Repository has been specified. This is similar to the
SMI OID Repository specified in the TMN/CORBA Interworking specification. The
TC Repository provides a way to find the operation or error name (as stored in the IR)
given the operation or error code and the interface name.

The following MSC illustrates the use of the TC Repository when translating
operations between CORBA and TC/ROS. Various implementation scenarios could
make different use of the TC and Interface Repositories; for instance, a gateway
implemented entirely as CORBA static stubs could have the information in the TC
Repository and the IR “hard-coded” into the code associated with the stub; however, a
fully dynamic gateway will need these services.
January 2001 CORBA & TC Interworking, v1.0 2-33

2

Figure 2-4 Using the TcRepository

2.2.5.1 The TcRepository

This interface standardizes access to the information generated during Specification
Translation to store ASN.1 identifier to IDL scoped name mappings. It is also a place
where operation timer and priority values may be stored.

The interface to access the TC repository is as follows:

enum IdType {LOCAL_ID, OID};
union IdValue switch(IdType) {

case LOCAL_ID: ASN1_Integer local_id;
case OID: ASN1_ObjectIdentifier oid;

};

interface TcRepository {

ScopedName get_error_name(in ScopedName iface,
in IdValue code);

ScopedName get_operation_name(in ScopedName iface,
in IdValue code);

ScopedName get_extension_name(in ScopedName iface,
in IdValue code);

IdValue get_id(in ScopedName scoped_name);

ASN1_ExtensionCriticality get_extension_criticality(
in ScopedName extension_scoped_name);

SSP Proxy SCPTcRepository
Interface

Repository

get_operation_name(::resp_iface, opcode)

::resp_iface_name::opname

lookup(::resp_iface_name::opname)

InterfaceDef

IDL operation for opname

response for operation opname
2-34 CORBA & TC Interworking, v1.0 January 2001

2

unsigned long get_operation_timer(in ScopedName
op_scoped_name);

}; //end TcRepository

enum IdType {LOCAL_ID, OID};

IdType is used to discriminate between an ASN.1 locally assigned identifier and an
ASN.1 object identifier. These are the two ways an ASN.1 macro may be assigned an
identifier in an ASN.1 module.

union IdValue switch(IdType) {
case LOCAL_ID: ASN1_Integer local_id;
case OID: ASN1_ObjectIdentifier oid;

};

IdValue holds either an object identifier (OID) or local identifier value.

ScopedName get_error_name(in ScopedName iface,
in IdValue code);

The get_error_name operation returns the ScopedName in the IR of the exception
mapped to a particular ASN.1 Error during ST. The parameter iface takes the scoped
name of the interface in the IR to which the exception belongs. The IdValue takes the
ASN.1 local identifier or OID of the Error.

ScopedName get_operation_name(in ScopedName iface,
in IdValue code);

The get_operation_name operation returns the ScopedName in the IR of the IDL
operation mapped to a particular ASN.1 operation during ST. The parameter iface
takes the scoped name of the interface in the IR to which the operation belongs. The
IdValue takes the ASN.1 local identifier or OID of the operation.

IdValue get_id(in ScopedName scoped_name);

The get_id operation returns the ASN.1 identifier of the ASN.1 Type mapped to IDL
whose scoped name in the IR is passed as an in parameter.

ASN1_ExtensionCriticality get_extension_criticality(in ScopedName
extension_scoped_name);

The get_extension_criticality operation returns the ASN1_ExtensionCriticality
value of the IDL type (a mapped ASN.1 extension type) whose scoped name in the IR
is passed as an in parameter.

unsigned long get_operation_timer(in ScopedName
op_scoped_name);

The get_operation_timer operation returns the timer value in seconds of the
operation whose scoped name in the IR has been passed as an in parameter.
January 2001 CORBA & TC Interworking, v1.0 2-35

2

2.2.5.2 Mapping of ROS/TC Rejects to CORBA System Exceptions

Both ROS and TC provide an exception reporting capability through the use of the
Reject Application Protocol Data Unit (APDU). The Reject type provides an APDU
for reporting erroneous use of the other ROS/TC APDUs or to inform a peer ROS/TC-
user that a problem has been detected with an APDU that was previously received.

The Reject APDU carries a problem code parameter that describes the nature of the
error that has occurred. The problem code may indicate one of four categories of
problems: GeneralProblem, InvokeProblem, ReturnResultProblem, or
ReturnErrorProblem. As the GeneralProblem or InvokeProblem Reject
problem codes are implicitly available to all ROS/TC operations, they correspond to
standard CORBA exceptions that are implicitly included in all CORBA operation
signatures. However, a GeneralProblem, ReturnResultProblem, or
ReturnErrorProblem generated while processing an operation result or exception
has no corresponding CORBA procedure.

Each standard CORBA exception includes a minor code to designate the subcategory
of the exception.

To uniquely identify ROS/TC exceptions in CORBA, new minor field values of the
system exceptions must be defined. Here only the lower order bits of the minor field
are specified in Table 2-3 on page 2-41. The higher order bits (VMCID) are
administratively assigned by the OMG. The OMG list of assigned VMCIDS is located
at: http://www.omg.org/cgi-bin/doc?tags

Note – The lower order bit values do not interfere with the lower order bit values of the
exception in the Objects by Value specification [18]. The high order bits (VMCID) can
be either the same as in the Objects by Value submission, or a new VMCID for
domain-specific purposes can be assigned. This decision should be made during the
post-processing of the specification.

The existing CORBA system exceptions may then be used to uniquely represent
ROS/TC Reject problem codes generated while processing a ROS/TC operation.

Most Reject problem codes represent protocol errors whereas the standard CORBA
exceptions are at the application level. Consequently, not all Reject problem codes can
be mapped directly to standard CORBA exceptions and an alternative solution is
required. The solution is as follows:

• If a native ROS/TC-user server application generates a Reject during the
processing of an operation, then in the CORBA domain, a CORBA standard
exception, identified by a distinct minor code, is thrown. The type of this exception
is explained in “Mapping of TC/ROS General Problem” on page 2-37 and
“Mapping of TC/ROS Invoke Problem” on page 2-38.

• If a native TC-user server application generates a Reject during the processing of
a CORBA operation result or exception, then the abort_association operation on
the TcUser interface is invoked with appropriate parameters. This is described in
“Handling of TC/ROS ReturnResult Problem” on page 2-39 and “Handling of
TC/ROS ReturnError Problem” on page 2-39.
2-36 CORBA & TC Interworking, v1.0 January 2001

http://www.omg.org/cgi-bin/doc?tags

2

• If a CORBA system exception is raised by a CORBA-based server, then the
processing of such an event is explained in “Processing of System Exceptions raised
by CORBA-based servers” on page 2-41.

Mapping of TC/ROS General Problem

In TC/ROS, GeneralProblems apply to the TC component sub-layer in general,
and have no specific relationship to a particular component type such as an Invoke.
There are three General Problems: unrecognizedPDU, mistypedPDU, and
badlyStructuredPDU. These may occur within the context of an operation
(CORBA exception generated) or while processing an exception or result (uses the
abort_association operation on the TcUser interface). These are mapped as
follows:

unrecognizedPDU Problem

The unrecognizedPDU problem is received if the component type tag is not
recognized as one of ROIV, RORS, ROER, or RORJ. If this occurs within the context of
an operation, it is mapped to the CORBA exception DATA_CONVERSION, with
minor code value as given in Table 2-3 on page 2-41 and with a completion status of
COMPLETED_NO. If this occurs outside the scope of an operation invocation, this
problem cannot be ignored due to its general impact. The solution proposed here is to
abort the ROS Association or the TC dialog and report the error through the TCUser
base interface as described in Section 1.2, “Architectural Overview,” on page 1-3.

mistypedPDU Problem

The mistypedAPDU problem is received if the structure of a component does not
conform to that described in the ROS/TC specifications. If this occurs within the
context of an operation, it is mapped to the CORBA exception
DATA_CONVERSION, with minor code value as given in Table 2-3 on page 2-41
and with a completion status of COMPLETED_NO. If this occurs outside the scope of
an operation invocation, this problem cannot be ignored due to its general impact. The
solution is to abort the ROS Association or the TC dialog and report the error through
the TCUser base interface as described in Section 1.2, “Architectural Overview,” on
page 1-3.

badlyStructuredPDU Problem

The badlyStructuredAPDU problem is received if the contents of a component do
not conform to the encoding rules defined for this APDU, as described in the TC/ROS
specifications. If this occurs within the context of an operation, it is mapped to the
CORBA exception MARSHAL, with minor code value as given in Table 2-3 on
page 2-41 and with a completion status of COMPLETED_NO. If this occurs outside
the scope of an operation invocation, this problem cannot be ignored due to its general
impact. The solution is to abort the ROS Association or the TC dialog and report the
error through the TCUser base interface as described in Section 1.2, “Architectural
Overview,” on page 1-3.
January 2001 CORBA & TC Interworking, v1.0 2-37

2

Mapping of TC/ROS Invoke Problem

Invoke Problems are generated by the TC component sub-layer or the ROS/TC-
user and relate only to the Invoke APDU. There are eight Invoke Problems:
duplicateInvocation, unrecognizedOperation, mistypedArgument,
resourceLimitation, initiatorReleasing, unrecognizedLinkedID,
linkedResponseUnexpected, and unexpectedChildOperation. These are
mapped as described in the following sub-sections.

duplicateInvocation Problem

The duplicateInvocation problem is received if the InvokeID is one for a
previously invoked operation for which a response has not been received. It is mapped
to the CORBA exception BAD_INV_ORDER, with minor code value as given in
Table 2-3 on page 2-41 and with a completion status of COMPLETED_NO.

unrecognizedOperation Problem

The unrecognizedOperation problem is received if the operation code was
unknown or not agreed between the two ROS/TC-Users. It is mapped to the CORBA
exception BAD_OPERATION with a minor code value as given in Table 2-3 on
page 2-41 and a completion status of COMPLETED_NO.

mistypedArgument Problem

The mistypedArgument problem is received if the type of parameter in an Invoke
component is unknown or not that agreed to between the two ROS/TC-Users for that
operation. It is mapped to the CORBA exception BAD_PARAM, with minor code
value as given in Table 2-3 on page 2-41 and a completion status of
COMPLETED_NO.

resourceLimitation Problem

The resourceLimitation problem is received if sufficient resources to perform
the requested operation are not available. It is mapped to the CORBA exception
NO_RESOURCES with minor code value as given in Table 2-3 on page 2-41 and a
completion status of COMPLETED_MAYBE.

initiatorReleasing Problem

The initiatorReleasing problem is received if the requested operation cannot be
invoked due to soonest release of the dialog. It is mapped to exception
COMM_FAILURE, with minor code value as given in Table 2-3 on page 2-41 and
with a completion status of COMPLETED_NO.

unrecognizedLinkedID Problem

The unrecognizedLinkedID problem is received if the given LinkedID does not
relate to any active operation. It is mapped to the CORBA exception
BAD_INV_ORDER with minor code value as given in Tabl e2-3 on pa ge2-41 and a
completion status of COMPLETED_NO.
2-38 CORBA & TC Interworking, v1.0 January 2001

2

linkedResponseUnexpected Problem

The linkedResponseUnexpected problem is received if linked invocations are
not allowed for the operation referred to by the given LinkedID. It is mapped to the
CORBA exception NO_PERMISSION with minor code value as given in Tabl e2-3
on page 2-41 and with a completion status of COMPLETED_NO.

unexpectedChildOperation Problem

The unexpectedChildOperation problem is received if the operation referred to
by the linkedID does not allow this linked operation. It is mapped to exception
NO_PERMISSION with minor code value as given in Table 2-3 on page 2-41 and a
completion status of COMPLETED_NO.

Handling of TC/ROS ReturnResult Problem

ReturnResult problems are generated by the TC component sub-layer or by the
ROS/TC-User and relate only to erroneous use of the ReturnResult component
type.

unrecognizedInvocationResult Problem

The unrecognizedInvocationResult problem is generated if no operation with
the specified InvokeID was previously invoked by the peer ROS/TC-User. This
problem cannot be ignored due to its general impact. The solution is to abort the ROS
Association or the TC dialog and report the error through the TCUser base interface as
described in Section 1.2, “Architectural Overview,” on page 1-3.

resultResponseUnexpected Problem

The resultResponseUnexpected problem is received if the previously invoked
operation has not returned a response regarding success. This could only happen if the
ASN.1 to IDL language mapping was not performed correctly and implies a general
fault. This problem cannot be ignored due to its general impact. The solution is to
abort the ROS Association or the TC dialog and report the error through the TCUser
base interface as described in Section 1.2, “Architectural Overview,” on page 1-3.

mistypedResult Problem

The mistypedResult problem is received if a parameter in the ReturnResult
component was wrong or not agreed between the two TC-Users. This could only
happen if the ASN.1 to IDL language mapping was not performed correctly and
implies a general fault. This problem cannot be ignored due to its general impact. The
solution is to abort the ROS Association or the TC dialog and report the error through
the TCUser base interface as described in Section 1.2, “Architectural Overview,” on
page 1-3.

Handling of TC/ROS ReturnError Problem

ReturnError problems are generated by the TC component sub-layer or by the
ROS/TC-User and relate only to the Return Error component type.
January 2001 CORBA & TC Interworking, v1.0 2-39

2

unrecognizedInvocation Problem

The unrecognizedInvocation problem is received if no operation with the
specified InvokeID was previously invoked by the remote ROS/TC-User. This
problem cannot be ignored due to its general impact. The solution is to abort the ROS
Association or the TC dialog and report the error through the TCUser base interface as
described in Section 1.2, “Architectural Overview,” on page 1-3.

errorResponseUnexpected Problem

The errorResponseUnexpected problem is received if the previously invoked
operation was not defined to return a response to report an error. This could only
happen if the ASN.1 to IDL language mapping was not performed correctly and
implies a general fault. This problem cannot be ignored due to its general impact. The
solution is to abort the ROS Association or the TC dialog and report the error through
the TCUser base interface as described in Section 1.2, “Architectural Overview,” on
page 1-3.

unrecognizedError Problem

The unrecognizedError problem is received if the error received is not one
among the list of errors for all possible operations that are defined for the interaction
between the two ROS/TC-Users. This could only happen if the ASN.1 to IDL language
mapping was not performed correctly and implies a general fault. This problem cannot
be ignored due to its general impact. The solution is to abort the ROS Association or
the TC dialog and report the error through the TCUser base interface as described in
Section 1.2, “Architectural Overview,” on page 1-3.

unexpectedError Problem

The unexpectedError problem is received if the error received is not one among
the list of errors defined for the operation identified by the InvokeID. This could
only happen if the ASN.1 to IDL language mapping was not performed correctly and
implies a general fault. This problem cannot be ignored due to its general impact. The
solution proposed here is to abort the ROS Association or the TC dialog and report the
error through the TCUser base interface as described in Section 1.2, “Architectural
Overview,” on page 1-3.

mistypedParameter Problem

The mistypedParameter problem is received if the parameter in the
ReturnError APDU is wrong or not that agreed between the two TC-Users. This
could only happen if the ASN.1 to IDL language mapping was not performed correctly
and implies a general fault. This problem cannot be ignored due to its general impact.
The solution is to abort the ROS Association or the TC dialog and report the error
through the TCUser base interface as described in Section 1.2, “Architectural
Overview,” on page 1-3.
2-40 CORBA & TC Interworking, v1.0 January 2001

2

Processing of System Exceptions raised by CORBA-based servers

In the case where a CORBA system exception, not related to a ROS/TC Reject error, is
thrown by the ORB or Object Adapter after an Invoke has been sent to a CORBA-
based server Application Entity from a ROS/TC-based application, the
association/dialog must be aborted as there is no way of mapping these exceptions to
the fine-grained Reject problems in the non-CORBA domain. If the invocation is
delivered successfully, the CORBA-based Application Entity may choose to raise a
TC-specific exception based on the contents of the invocation received. Such
exceptions are then mapped by the TC-User Proxy object to a particular
InvokeProblem.

Table 2-3 Reject Problems and System Exceptions

Reject Problem Action System Exception Minor Code
General Problem1

1. GeneralProblems that do not occur as a result of an operation invoke are instead mapped to an
abort_association operation on TcUser.

unrecognizedPDU user defined DATA_CONVERSION 100

mistypedPDU user defined DATA_CONVERSION 101

badlyStructuredPDU user defined MARSHAL 100

Invoke Problem
duplicateInvocation user defined BAD_INV_ORDER 100

unrecognizedOperation user defined BAD_OPERATION 100

mistypedArgument user defined BAD_PARAM 100

resourceLimitation user defined NO_RESOURCES 100

initiatorReleasing user defined COMM_FAILURE 100

unrecognizedLinkedId user defined BAD_INV_ORDER 101

linkedResponseUnexpected user defined NO_PERMISSION 100

unexpectedLinkedOperation user defined NO_PERMISSION 101

ReturnResultProblem
unrecognizedInvocation abort dialog NA NA

resultResponseUnexpected abort dialog NA NA

mistypedResult abort dialog NA NA

ReturnErrorProblem
unrecognizedInvocation abort dialog NA NA

errorResponseUnexpected abort dialog NA NA

unrecognizedError abort dialog NA NA

unexpectedError abort dialog NA NA

mistypedParameter abort dialog NA NA
January 2001 CORBA & TC Interworking, v1.0 2-41

2

2.2.6 Asynchronous ROS/TC Operation Invocations

In ROS, the OPERATION information object class contains a field that permits the
definition of whether an operation is synchronous or not (i.e., if defined as
synchronous, another synchronous operation may not be invoked until the current
operation instance has returned). TC specifies that all operations are invoked
asynchronously. CORBA currently provides two modes of invocation:

1. synchronous: the client program or thread blocks when a remote invocation is made
and waits until the result arrives.

2. deferred synchronous: the client thread continues processing, subsequently polling
to see if results are available.

Currently, the deferred synchronous model is only available when using the Dynamic
Invocation Interface (DII). As ROS and TC applications will require a truly
asynchronous method invocation model for use with both static and dynamic stubs, the
current CORBA specification alone will not provide the infrastructure required for full
TC/CORBA Interworking. This specification proposes using the facilities provided by
the CORBA Messaging Service to allow ROS/TC users in the CORBA domain access
to a truly asynchronous invocation model.

2.2.7 Quality of Service in ROS/TC

ROS and TC permit the application designer to quote a priority for sending an
invocation/result to aid the infrastructure in choosing the order of sending for the case
where there are several invocations/results waiting to be sent. In TC, designers may
provide, as ASN.1 comments, a timer value associated with an operation. This
indicates a “time to respond” to an operation invocation, failing which the client
assumes the operation failed and proceeds to the next task. The TcRepository defined
in this specification may be used to store ROS/TC operation timer values. These may
be accessed by a CORBA object to find an appropriate timer value to use with the
CORBA Messaging Service.
2-42 CORBA & TC Interworking, v1.0 January 2001

 TC PDU-oriented Interfaces 3
Contents

This chapter contains the following sections.

3.1 Introduction

The TC PDU-oriented interfaces are designed to standardize access by TC protocol
aware CORBA objects (such as proxy objects at a gateway) to a TC/SS.7 protocol
stack. This allows implementation of TC-aware applications that are independent of a
particular stack vendor. It is not necessary to use the TC PDU-oriented interfaces to
implement a TC/CORBA gateway, as a custom mapping to an individual SS7 stack
may be part of the implementation of the proxy interfaces generated during
Specification Translation.

These interfaces represent a very low level mapping that requires users to be aware of
the details of the TC primitive interface as defined in ITU-T Rec. Q.771 [16]. It is also
unusual in that it requires TC-protocol aware objects to be able to encode and decode
native ASN.1/BER data based on ITU-T Rec. Q.773 [16].

Section Title Page

“Introduction” 3-1

“TC PDU-oriented Interfaces Framework” 3-2

“Interface Definitions” 3-3

“Integration of Interfaces” 3-15
January 2001 CORBA & TC Interworking, v1.0 3-1

3

3.2 TC PDU-oriented Interfaces Framework

The TC PDU-oriented interfaces provide a CORBA environment for the use of
TC/SS.7 (not TC-User) transport and messaging services. This is done in a TC PDU-
oriented fashion. The facilities exposed are:

• TC dialog handling by the TC/SS.7 stack and TC-aware CORBA objects

• TC component handling by the TC/SS.7 stack and TC-aware CORBA objects

• Initiation of TC sessions by TC-aware CORBA objects

• Registration/Deregistration of TC-aware CORBA objects to receive TC dialogs

• Setting of per-dialog parameters such as QoS

There are four interfaces defined here:

1. TcPduProvider: is supported by the TC/SS.7 stack.

2. TcPduProviderFactory: also supported by the TC/SS.7 stack.

3. TcPduUser: must be supported by a CORBA object wishing to be a user of the
TC/SSS.7 stack.

4. TcPduUserFactory: which must also be supported by a CORBA object wishing
to be a user of the TC/SSS.7 stack.

Access to these interfaces is through the TcSignaling::GwAdmin interface. These
interfaces will not be used in pure CORBA (non-gateway) interactions.

All communication from a CORBA object to a TC/SS.7 protocol stack will be through
a TcPduProvider. These TcPduProvider objects (each of which may have multiple
dialogs) may be created at a gateway through the invocation of methods on a
TcPduProviderFactory object. There is only one TcPduProviderFactory at a
gateway.

All communication from a TC/SS.7 protocol stack to a CORBA object will be through
a TcPduUser. In the case of a dialog initiated by a CORBA object, a TcPduUser
object is defined at the start of the TC dialog. In the case of a dialog initiated by a
TC/SS.7 protocol stack upon receipt of a TC message from the non-CORBA domain,
the TcPduUserFactory that has been registered for a particular TC address (Global
Title and optionally an Application Context) is used to create the appropriate
TcPduUser.

Both the TcPduProvider and TcPduUser interfaces support TC primitive
operations.

Each TC component is represented by IDL parameters, that include any header
information for the component (such as invocation and linked IDs) and an Asn1Data
type to carry any ASN.1 (e.g., operation code and arguments encoded using Basic
Encoding Rules (BER)) associated with the component. The DialogPortion of TC
PDUs is also represented as an Asn1Data Type.
3-2 CORBA & TC Interworking, v1.0 January 2001

3

3.3 Interface Definitions

3.3.1 Common Data Types for the TC PDU-oriented Interfaces

typedef unsigned short ProblemType;
typedef unsigned short ProblemCode;

These two values are used to carry the TC/ROSE error codes for rejected components.
All of the standard values are available through const declarations of these types.

typedef unsigned long Timeout;

Timeout is used to specify the timer value in seconds to indicate the time taken for an
operation to complete.

typedef unsigned short OperationClass;

OperationClass is used to specify the TC operation class for TC Invoke components.
Standard values for OperationClass are defined as const declarations.

struct RejectProblem{
ProblemType type;
ProblemCode code;

};

A RejectProblem is used to carry TC Reject component information identifying via
ProblemType the component that is being rejected and using ProblemCode to
specify the specific problem. Standard values for the TC/ROS reject causes are defined
as const declarations.

enum TerminationType{
PREARRANGED,
BASIC

};

TerminationType is used to specify in the TcPduUser or TcPduProvider end
operations whether the termination requires the explicit reception/sending of an END
PDU.

union DialogPortion switch(Boolean) {
case TRUE : ApplicationContext a_c;
case FALSE : Asn1Data dialog_info;

};

DialogPortion is used to carry TC DialogPortion information in TcPduUser or
TcPduProvider operations. The Asn1Data field may be used to carry the full
DialogPortion PDU or ApplicationContext may be used to carry just the
Application Context to be encoded in the DialogPortion PDU.
January 2001 CORBA & TC Interworking, v1.0 3-3

3

typedef unsigned long DialogId;

DialogId is used to hold the TC transaction ID identifying a particular transaction
between to TC-Users.

typedef short DialogQos;

DialogQos is used to carry the TC Quality of Service for a dialog. It identifies which
SCCP Transport Class should be used for the PDU and whether to return the PDU in
case it cannot be delivered. The standard values of DialogQos are defined as const
declarations. All non-negative values are reserved for use in OMG specifications. Any
negative value of DialogQos is considered a vendor extension.

Asn1Data sequence<octet>;

Asn1Data is used to carry an indefinite amount of BER-encoded ASN.1 data. The
specific structure of the Asn1Data octets depend on the context in which it is used.
See the specific type or operation in which Asn1Data is used for more information.

typedef short PAbortReason;

PAbortReason is used to carry the TC P-Abort Reason code. The standard values of
PAbortReason are defined as const declarations. All non-negative values are
reserved for use in OMG specifications. Any negative value of PAbortReason is
considered a vendor extension.

enum ComponentType{
INVOKE,
RESULT_L,
RESULT_NL,
ERROR,
U_REJECT,
R_REJECT

};

ComponentType defines the set of TC components that may be passed in a
ComponentList.

struct Invoke(
OperationClass op_class;
InvokeId ivk_id;
InvokeId lnk_id;
Asn1Data oper;
Timeout op_timer;
);

Invoke is used to carry a TC Invoke component and corresponds to the TC-INVOKE
primitive. The OperationClass must be specified. The Invoke ID ivk_id must be
specified. All operations within a dialog must have unique invoke IDs. If the operation
is linked to a previous operation, then the Linked ID lnk_id must be set equal to the
3-4 CORBA & TC Interworking, v1.0 January 2001

3

ivk_id of the operation linked to. Otherwise lnk_id is set to TcSignaling::NO_ID.
Asn1Data is used to encode the TC operation code and TC operation parameters. If
the Asn1Data carries BER encoded data, it must have the following format:

Operation code tag
Operation code length
Operation code value
Parameter tag
Parameter length
Parameters

The op_timer value may be used to specify the timeout (in seconds) for the operation
or 0 to use the default timer for the dialog when sending the component. A received
component always has an op_timer value of 0.

struct ResultL(
InvokeId ivk_id;
Asn1Data result;
);

ResultL is used to carry the result of a TC operation and corresponds to the TC-
RESULT-L primitive. The member ivk_id must carry the invoke ID of the original
operation. Asn1Data is used to carry the actual result information. If the Asn1Data
carries BER encoded data, it must have the following format:

Sequence tag
Sequence length
Operation code tag
Operation code length
Operation code value
Parameter tag
Parameter length
Parameters

struct ResultNl(
InvokeId ivk_id;
Asn1Data result;
);

ResultNl is used to carry a segment of a result of a TC operation and corresponds to
the TC-RESULT-NL primitive. The member ivk_id must carry the invoke ID of the
original operation. Asn1Data is used to carry the actual result information. If the
Asn1Data carries BER encoded data, it must have the following format:

Sequence tag
Sequence length
Operation code tag
Operation code length
Operation code value
Parameter tag
Parameter length
January 2001 CORBA & TC Interworking, v1.0 3-5

3

Parameters

struct UError(
InvokeId ivk_id;
Asn1Data error;
);

Error is used to carry an error associated with a TC operation and corresponds to the
TC-ERROR primitive. The member ivk_id must carry the invoke ID of the original
operation. Asn1Data is used to carry the actual result information. If the Asn1Data
carries BER encoded data, it must have the following format:

Error code tag
Error code length
Error code value
Parameter tag
Parameter length
Parameters

struct UReject(
InvokeId ivk_id;
RejectProblem problem;
);

UReject is used to carry a TC/ROSE reject cause associated with a TC component that
is being rejected by the TC-User, and corresponds to the TC-U-REJECT primitive. The
member ivk_id must carry the invoke ID of the rejected component.

struct RReject(
InvokeId ivk_id;
RejectProblem problem;
);

RReject is used to carry a TC/ROSE provider reject associated with a TC component
and corresponds to the TC-R-REJECT primitive. The member ivk_id must carry the
invoke ID of the rejected component.

union Component switch(ComponentType) {
case INVOKE : Invoke i;
case RESULT_L : ResultL r_l;
case RESULT_NL : ResultNl r_nl;
case U_ERROR : UError u_e;
case U_REJECT : UReject u_r;
case R_REJECT : RReject r_r;
};

Component defines the group of allowed ComponentTypes.

typedef sequence<Component> ComponentList;

A ComponentList is a sequence of Components.
3-6 CORBA & TC Interworking, v1.0 January 2001

3

3.3.2 The TcPduProviderFactory Interface

The TcPduProviderFactory interface is used to create new TC sessions for CORBA
objects and to register and de-register factory objects that may create objects for
receiving dialogs from TC/SS.7 entities.

TcPduProvider create_tc_pdu_provider(
in TcPduUser user,
out DialogId d_id)

raises(NoMoreDialogs);

The first operation, create_tc_pdu_provider, allows a CORBA object to start a TC
session by returning a reference to a TcPduProvider interface. This is initialized by
passing a single in parameter of a reference to a TcPduUser interface associated with
the invoking CORBA object. This is where all the asynchronous replies to the TC
dialogs initiated on the TcPduProvider will be sent. A single out parameter, d_id,
returns the first dialog ID to be used in a TC dialog. The NoMoreDialogs exception
is raised if the TcPduProviderFactory is unable to create any more TcPduProvider
objects at this time.

void register(in TcAddress dest,
in ApplicationContext a_c,
in TcPduUserFactory user_factory)

raises(AlreadyBound);

The second operation, register, allows a CORBA object to register a specific
TcPduUserFactory object as the factory object which creates TcPduUser objects
associated with a particular destination TC/SS.7 address. The address is formed from
the tuple (Global Title, Application Context Name). The Application Context Name
may be null to indicate that all calls to the Global Title without Application Context
information are to be sent to objects created by the registering factory. The Application
Context Name may contain the string “_ALL_CONTEXTS_” to indicate that all calls
to the Global Title are to be sent to objects created by the registering factory object. As
only one destination factory object may register for each address, an exception of
AlreadyBound is provided to signal that the specified address already has a factory
registered.

void deregister(in TcAddress dest,
in ApplicationContext a_c)

raises(UnknownAddress);

Finally a deregister operation is provided so that factory objects may indicate that
they no longer wish to create objects associated with the destination address specified
in the deregister parameters. This has no effect on dialogs already in progress, it
merely disallows any new dialogs directing creation requests to the deregistering
object. The meaning of the contents of the Application Context Name parameter is
interpreted as for the register operation. If the address specified in the operation
parameters does not match any already registered, then the UnknownAddress
exception is thrown.
January 2001 CORBA & TC Interworking, v1.0 3-7

3

3.3.3 The TcPduProvider Interface

This interface is used to communicate with the TC/SS.7 stack. It provides TC dialog
handling primitives that may carry TC components if desired. There are also some
component oriented primitives supported and operations for getting and setting the
dialog Qos.

DialogId get_dialog_id(in TcPduUser user)
raises (NoMoreDialogs);

The operation get_dialog_id is used to request a dialog ID to be used for a
subsequent TC dialog. The parameter user allows the TcPduProvider to deal with
multiple TcPduUser objects as it must be able to associate incoming TC service
primitive requests with the correct call-back interface. The exception
NoMoreDialogs is raised if the object can support no more dialogs at this time.

void uni_req(in DialogQos qos,
in TcAddress dest,
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (NoMoreDialogs, LReject);

The operation uni_req is used to send a UNIDATA PDU to the TC/SS.7 stack (i.e.,
start an unstructured dialog). This will contain any components already queued with
the same Dialog ID. A DialogId is supplied to correlate earlier components or later
errors with this unstructured dialog. The Global Titles of the originator and destination
must be supplied in the orig and dest parameters. The default Qos for the dialog is
also supplied. TC DialogPortion information may be supplied. Note that the PDU
size restrictions of TC must be complied with when creating any PDU. The
ComponentList holds the components (if any) to be included in this PDU. The
exception NoMoreDialogs is generated when the interface cannot currently handle
any more dialogs, for example due to resource limitations. The LReject exception
may be raised if received components are in error. If the Qos is set to
ENABLE_ERRORS, then notice_ind primitives may be generated at the
TcPduUser interface.

void begin_req(in DialogQos qos,
in TcAddress dest,
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (NoMoreDialogs, LReject);

The begin_req operation is used to start a TC structured dialog by sending a BEGIN
PDU. This will contain any components already queued with the same Dialog ID. A
DialogId is supplied to correlate earlier components or later structured dialog
primitives with this dialog. All further structured dialog operations in this dialog must
supply the same dialog ID as an in parameter. The Global Titles of the originator and
3-8 CORBA & TC Interworking, v1.0 January 2001

3

destination must be supplied in the orig and dest parameters. The default Qos for the
dialog is also supplied. TC DialogPortion information may be supplied. Note that the
PDU size restrictions of TC must be complied with when creating any PDU. The
ComponentList holds the components (if any) to be included in this PDU. The
exception NoMoreDialogs is generated when the interface cannot currently handle
any more dialogs, for example due to resource limitations. The LReject exception
may be raised if received components are in error. If the Qos is set to
ENABLE_ERRORS, then notice_ind primitives may be generated at the
TcPduUser interface.

void continue_confirm_req(
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (InvalidDialogId, LReject);

The continue_confirm_req operation is used to send a reply to a TC-BEGIN in an
already open structured dialog. This will contain any components already queued with
the same Dialog ID. A new originating address may be supplied in the orig parameter.
The DialogId supplied must be the same as the dialog ID of the dialog already open.
TC DialogPortion information may be supplied. The ComponentList holds the
components (if any) to be included in this PDU. The exception invalidDialogId is
raised when the TcPduProvider has no structured dialog with the same dialog ID
currently open. The LReject exception may be raised if received components are in
error.

void continue_req(in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (InvalidDialogId, LReject);

The continue_req operation is used to send another PDU in an already open
structured dialog. This will contain any components already queued with the same
Dialog ID. The DialogId supplied must be the same as the dialog ID of the dialog
already open. TC DialogPortion information may be supplied. The ComponentList
holds the components (if any) to be included in this PDU. The exception
invalidDialogId is raised when the TcPduProvider has no structured dialog with
the same dialog ID currently open. The LReject exception may be raised if received
components are in error.

void end_req(in DialogId d_id,
in DialogPortion d_p,
in TerminationType term,
in ComponentList c_list)

raises (InvalidDialogId, LReject);

The end_req operation is used to send another PDU in an already open structured
dialog and to close that dialog. This will contain any components already queued with
the same Dialog ID. The DialogId supplied must be the same as the dialog ID of an
already open dialog. TC DialogPortion information may be supplied. TC
January 2001 CORBA & TC Interworking, v1.0 3-9

3

TerminationType information must also be supplied. The ComponentList holds the
components (if any) to be included in this PDU. The exception invalidDialogId is
raised when the TcPduProvider has no structured dialog with the same dialog ID
currently open. The LReject exception may be raised if received components are in
error.

void u_abort_req(in DialogId d_id,
in DialogPortion d_p)

raises (InvalidDialogId);

The u_abort_req operation is used to send an ABORT PDU in an already open
structured dialog and to close that dialog. The DialogId supplied must be the same as
the dialog ID of an already open dialog. TC Dialog Portion abort information may be
supplied. The exception InvalidDialogId is raised when the TcPduProvider has no
structured dialog with the same dialog ID currently open.

void set_dialog_qos(in DialogId d_id,
in DialogQos qos)

raises(InvalidDialogId, InvalidParameter);

The operation set_dialog_qos is used to change the Qos of a structured dialog while
it is in progress. The DialogId must be supplied. The exception InvalidDialogId is
raised when the TcPduProvider has no structured dialog with the same dialog ID
currently open. The exception InvalidParameter is raised when an unknown value of
DialogQos is set.

DialogQos get_dialog_qos(in DialogId d_id)
raises(InvalidDialogId);

The operation get_dialog_qos is used to find the current Qos of a structured dialog
while it is in progress. The DialogId must be supplied. The exception
InvalidDialogId is raised when the TcPduProvider has no structured dialog with
the same dialog ID currently open.

void u_cancel_req(in DialogId d_id,
in InvokeId ivk_id)

raises(InvalidDialogId, InvalidParameter);

The u_cancel_req operation is used to discard a previously queued component and
corresponds to the TC-U-CANCEL primitive. The parameter d_id carries the dialog
ID of the dialog to which this component belongs. The member ivk_id must carry the
invoke ID of the rejected component. The exception InvalidDialogId is raised if the
DialogId supplied has not been allocated by the TcPduProvider or refers to a closed
dialog. The exception InvalidParameter is raised when no operation with the
specified invoke ID is outstanding.

void destroy()
raises(DialogStillOpen);
3-10 CORBA & TC Interworking, v1.0 January 2001

3

The operation destroy is used to end a TC session. All dialogs must be ended before a
session can finish. The exception DialogStillOpen is raised if there are still TC
structured dialogs open.

Figure 3-1 illustrates the use of the TcPduProviderFactory and TcPduProvider
interfaces to support the initiation of a TC dialog from a TC-aware CORBA object. A
TcPduUser requests the creation of a TcPduProvider object (step 1) providing its
own object reference. The TcPduUser then invokes a begin_req operation (step 2)
which carries a TC invoke request as component data. The TcPduProvider uses the
SS7 stack to communicate with the external TC-User by generating the BEGIN PDU
(step 3) and receives a CONTINUE PDU (step 4). It indicates receipt of a CONTINUE
PDU by invoking a continue_ind operation which carries a TC result indication as
component data to the TcPduUser.

Figure 3-1 Use of a TcPduProviderFactory to support dialog initiation
by a TC-aware CORBA object

3.3.4 The TcPduUserFactory Interface

The TcPduUserFactory interface is used to create new TcPduUser objects that may
handle sessions for a particular application context.

interface TcPduUserFactory{
TcPduUser create_tc_pdu_user

(in ApplicationContext application_context)
raises(NoMoreDialogs);

}; // end TcPduUserFactory

Traditional
TCAP-User

(SSP)

TcPdu

4. CONTINUE
1. create_gw_tc_pdu_provider(ownObjRef)

IN Domain CORBA Domain

MTP
SCCP
TCAP

TcPdu

TcPdu5. continue_ind

3. BEGIN

User

Provider

ProviderFactory

2. begin_req
January 2001 CORBA & TC Interworking, v1.0 3-11

3

The create_tc_pdu_user operation allows an object to start a session by returning a
reference to a TcPduUser object. The ApplicationContext parameter identifies the
context with which the TcPduUser will be identified with. The NoMoreDialogs
exception is raised if the TcPduUserFactory is unable to create any more
TcPduUser objects at this time.

3.3.5 The TcPduUser Interface

This interface is used by the TC/SS.7 stack to communicate with CORBA objects.
There are two modes of use:

1. As a call back interface for a particular TC session started by a CORBA object.

2. As an initial call handler interface for a particular TC/SS.7 address (Global Title,
Application Context) whose factory object (a TcPduUserFactory) has been
registered with the TcPduProviderFactory.

It provides TC dialog handling primitives that may carry TC components if desired.
There are also some component-oriented primitives supported. Finally, there are get
and set operations for dialog Qos so that the TC/SS.7 stack can inform the CORBA
object of changes in Qos during a TC structured dialog.

void uni_ind(in TcPduProvider sender,
in DialogQos qos,
in TcAddress dest,
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (NoMoreDialogs);

The operation uni_ind is used to indicate reception of a UNIDATA PDU to a CORBA
object (start an unstructured dialog). The sending TcPduProvider object places its
own reference in the first parameter. The Global Titles of the originator and destination
must be supplied in the orig and dest parameters. The default Qos for the dialog is
also supplied. TC DialogPortion information may be supplied. The DialogId for the
current dialog is supplied to allow coordination with further messages in the dialog.
The ComponentList holds the components (if any) included in this PDU. The
exception NoMoreDialogs is generated when the interface cannot currently handle
any more dialogs, for example due to resource limitations.

void begin_ind(in TcPduProvider sender,
in DialogQos qos,
in TcAddress dest,
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (NoMoreDialogs);
3-12 CORBA & TC Interworking, v1.0 January 2001

3

The begin_ind operation is used to indicate reception of a UNIDATA PDU to a
CORBA object (the start a TC structured dialog). The sending TcPduProvider object
places its own reference in the first parameter. The Global Titles of the originator and
destination must be supplied in the orig and dest parameters. The default Qos value
for the dialog is also supplied. TC DialogPortion information may be supplied. A
DialogId is supplied to correlate later dialog operations with this invocation. All
further structured dialog operations in this dialog must supply the same dialog ID as an
in parameter. The ComponentList holds the components (if any) included in this
PDU. The exception NoMoreDialogs is generated when the interface cannot
currently handle any more dialogs, for example due to resource limitations.

void continue_ind(in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (InvalidDialogId);

The continue_ind operation is used to indicate receipt of a CONTINUE PDU in an
already open TC structured dialog. The DialogId supplied must be the same as the
dialog ID of an already open dialog. TC DialogPortion information may be supplied.
The ComponentList holds the components (if any) included in this PDU. The
exception InvalidDialogId is raised when the TcPduUser has no structured dialog
with the same dialog ID currently open.

void end_ind(in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (InvalidDialogId);

The end_ind operation is used to indicate reception of another PDU in an already
open TC structured dialog and to end that dialog. The DialogId supplied must be the
same as the dialog ID of an already open dialog. TC DialogPortion information may
be supplied. The ComponentList holds the components (if any) included in this
PDU. The exception InvalidDialogId is raised when the TcPduUser has no
structured dialog with the same dialog ID currently open.

void u_abort_ind(in DialogId d_id,
in DialogPortion d_p)

raises (InvalidDialogId);

The u_abort_ind operation is used to inform a CORBA object that a dialog has been
aborted by the remote TC user (TC-U-ABORT primitive). The dialog has prematurely
ended and all associated operations are also aborted. The DialogId references the
dialog which has been aborted. TC DialogPortion information may be supplied. The
exception InvalidDialogId is raised when the TcPduUser has no structured dialog
with the same dialog ID currently open.

void notice_ind(in DialogId d_id,
in short report_cause)

raises (InvalidDialogId);
January 2001 CORBA & TC Interworking, v1.0 3-13

3

The notice_ind operation is used to inform a CORBA object that there has been a
delivery failure for a PDU in the current dialog (TC-NOTICE primitive). It shall only
be invoked when the Qos for the dialog has been set to report errors. The DialogId
references the dialog which has been aborted. The report_cause parameter holds the
TC NOTICE report cause information. The exception InvalidDialogId is raised when
the TcPduUser has no structured dialog with the same dialog ID currently open.

void l_cancel_ind(in DialogId d_id
in InvokeId ivk_id)

raises(InvalidDialogId, InvalidParameter);

The l_cancel_ind operation is used to indicate timer expiry of a TC operation
invocation. The CORBA object must now treat this operation as failed. The DialogId
supplied must be the same as the dialog ID of an already open dialog. The InvokeID
of the operation whose timer has expired is also supplied. The exception
InvalidDialogId is raised when the TcPduUser has no structured dialog with the
same dialog ID currently open. The exception InvalidParameter is raised when no
operation with the specified invoke ID is outstanding.

void p_abort_ind(in DialogId d_id,
in PAbortReason reason)

raises (InvalidDialogId);

The p_abort_ind operation is used to inform a TcPduUser object that a dialog has
been aborted by the lower layers (TC-P-ABORT primitive). All associated operations
are also aborted. The DialogId references the dialog that has been aborted. The
PAbortReason field is used to carry the provider abort information. The exception
InvalidDialogId is raised when the TcPduUser has no structured dialog with the
same dialog ID currently open.

DialogQos get_dialog_qos(in DialogId d_id)
raises(InvalidDialogId);

The get_dialog_qos operation allows the TC/SS.7 stack to query the current value of
QoS in a particular dialog. The DialogId of the queried dialog must be supplied. The
exception InvalidDialogId is raised when the TcPduUser has no structured dialog
with the same dialog ID currently open.

void set_dialog_qos(in DialogId d_id,
in DialogQos qos)

raises(InvalidDialogId, InvalidParameter);

The set_dialog_qos operation allows the TC/SS.7 stack to inform the CORBA object
of changes in the QoS of a structured dialog. The DialogId identifies which of the
currently open dialogs is changing the QoS. The exception InvalidDialogId is raised
when the TcPduUser has no structured dialog with the same dialog ID currently
open. The exception InvalidParameter is raised when an unknown value of
DialogQos is set.
3-14 CORBA & TC Interworking, v1.0 January 2001

3

Figure 3-2 shows the use of the TcPduUser and the TcPduUserFactory interfaces
when a dialog is initiated from the SS7 domain. It is assumed that a
TcPduUserFactory object has registered with the TcPduProviderFactory its
interest (step 1) in receiving notice of received TC PDUs destined for a particular GT
and a particular AC.

The TcPduProviderFactory has created an appropriate TcPduProvider object if
one with the appropriate characteristics does not already exist. When the
TcPduProvider receives (see step 2) a TC BEGIN PDU with an Invoke component
containing operation1, it invokes (see step 3) a create_tc_pdu_user operation on the
registered TcPduUserFactory object.

A begin_ind operation is then sent (step 4) to the TcPduUser object with an in
parameter identifying operation1. The result of this operation invocation is sent as an
in parameter result_op1 of another invocation continue_ind (see step 5) on the
TcPduProvider, which formats a TC CONTINUE PDU for sending to the external
TC-User.

Figure 3-2 Role of a TcPduUser interface upon initiation of a Dialog from the SS7 domain

3.4 Integration of Interfaces

3.4.1 Integration of TC PDU-oriented Interfaces and Interworking
Interfaces

The TcPduUser interfaces define a framework for building TC-aware CORBA
applications. Their use depends on a detailed knowledge of TC. The TC-User
interfaces generated by Specification Translation reflect the semantics of TC-Users

Traditional
TCAP-User

(SSP)

TcPdu

2. operation1
1. register(GT,AC,ownObjRef)

IN Domain CORBA Domain

MTP
SCCP
TCAP

TcPdu

TcPdu4. begin_ind

5. continue_req
Provider

ProviderFactory

User
7. result1

TcPdu
User

3. create_tc_pdu_user
January 2001 CORBA & TC Interworking, v1.0 3-15

3

within a CORBA framework. Their use is not limited to gateway implementations and
is less constrained by the standard TC requirements. The implementation at a gateway
of a proxy object (based on the Specification Translation interfaces) will be
constrained by TC. Hence a proxy object may be implemented using the TC PDU-
oriented interfaces instead of the proprietary API of a specific TC/SS.7 stack. These
two possibilities are illustrated in the figure below.

Figure 3-3 Two Proxy Object Implementation Strategies

The TC PDU-oriented interfaces can be used to build generic incoming dialog handlers
at a gateway. In the scenario illustrated in Figure 3-4 on page 3-17, a TcPduUser
object uses the results of a resolve operation to determine what type of proxy object
to create for a particular incoming call. The proxy object then takes over the dialog
with the receiving “SCP” (another object generated by specification translation).

The IDL interfaces defined for TC PDU handling also allow proxy objects to be easily
distributed across multiple nodes instead of residing on the same node as the SS.7
stack hardware.

Proprietary TC/SS.7 API

TC/SS.7 Stack

Proxy Object (TC-User)

Proprietary TC/SS.7 API

TC/SS.7 Stack

TC PDU oriented InterfacesProxy Object (TC-User)
3-16 CORBA & TC Interworking, v1.0 January 2001

3

Figure 3-4 Using the TC PDU-oriented interfaces with Interworking Interfaces

3.4.2 Application Location and Dialog Initiation

The process of initiating a dialog is shown in the Message Sequence Chart (MSC) in
Figure 3-3 on page 3-16. This MSC considers the case of dialog initiation and
continuation from the external (IN) legacy domain. Furthermore, to reduce complexity,
we have considered the use of TC without the use of Application Context (i.e., the
dialog Portion). The steps, briefly, are as follows.

1. A TcPduUserFactory object registers as the factory for creation of TcPduUser
objects which are to receive TC messages destined for a given Global Title (GT) at
a SS7/TC-to-CORBA gateway. It does so by invoking a register operation on a
TcPduProviderFactory object, providing its own object reference (at which it
wishes to receive creation requests for TcPduUsers) and the GT in question. The
TcPduProviderFactory creates an instance of a TcPduProvider object assuming
that one for that GT has not already been created. The TcPduProvider object at
the gateway is the CORBA proxy for the underlying TC/SS7 protocol stack.

Traditional
TCAP-User

(SSP)

TcPdu

2. operation1

1. register

IN Domain CORBA Domain

MTP
SCCP
TCAP

TcPdu

TC-CORBA Gateway

TcPdu

6. begin_ind

4. resolve

Provider

ProviderFactory

User

SSP
Proxy

TcUserFactory

SCP

Factory

SCP

5. create_tc_user

7. operation1
8. continue_req

9. result op1

Finder

3. create_tc_pdu_user

TcPduUser
Factory
January 2001 CORBA & TC Interworking, v1.0 3-17

3

2. When a BEGIN APDU is received at a gateway from the external system (the SSP)
addressed to a GT for which there is a registered TcPduUserFactory, the
TcPduProvider invokes a create_tc_pdu_user operation on the
TcPduUserFactory. The reference to the TcPduUser is returned and the
TcPduProvider invokes a begin_ind operation on the TcPduUser interface
passing in as parameters, among other things, any invocations received with the
BEGIN as well as an object reference by which the TcPduUser may invoke
operations on the TcPduProvider.

3. The TcPduUser can use the GwAdmin interface (not shown in the MSC) to
obtain the reference to a TcFactoryFinder object, on which it invokes a resolve
operation to obtain the object references of factory interfaces bound to the GT
passed as a parameter in the invocation. The TcFactoryFinder interface makes use
of the CORBA Naming Service (not shown in the MSC) to perform the name
resolution. (It is assumed that the name bindings have been performed at some
earlier time).

4. The TcUserFactory reference (a single one in the case where Application Context
is not supported) returned by the address resolution is used to create an instance of
a SSP (a proxy object at the gateway) and an instance of the target CORBA object,
the SCP.

5. The SSP proxy invokes the IDL equivalent of the received TC/ROS invocation on
the SCP. (The MSC for converting the identifier of the received TC/ROS operation
to its IDL scoped name is shown in Figure 3-5 on page 3-19. In Figure 3-3 on
page 3-16, those steps are assumed to have been performed.)

6. The returned result is included in a continue_req operation on the
TcPduProvider interface, where a CONTINUE PDU is generated to be sent to the
SSP.
3-18 CORBA & TC Interworking, v1.0 January 2001

3

Figure 3-5 Dialog initiation with TC PDU-oriented interfaces with Interworking Interfaces

Legacy
SSP

Legacy
SSP

TcFactory
Finder

TcUserSCP

BEGIN PDU [origGT,destGT,did,invoke(inv-
id,oper1,param)]

begin_ind(origGT, destGT, did, components)begin_ind(origGT, destGT, did, components)

resolve (destGT)

[AeFactory, resp_iface, init_iface]

create_ae[init _iface]

create_ae[resp_iface]

IDLoperation for oper1

IDLoperation_res

CONTINUE PDU

[did,result-l(inv-id,opcode,param)

CONTINUE PDU

[did,result-l(inv-id,opcode,param)

The GwAdmin
can be used to locate
this interface; in turn
this interface uses the
Naming Service

TcPdu
Provider

TcPdu
Provider
Factory

register(destGT, ownObjRef)
GwTcPdu
Handler

GwTcPdu
Handler

SSP Proxy

continue_req[did, RESULT_L]

A GwTcPduHandler
object is created if one
does not exist.

SSP
TcUserFactory

TcPduUser

create_tc_pdu_user (destAC)

(TcPduUser)
January 2001 CORBA & TC Interworking, v1.0 3-19

3

3-20 CORBA & TC Interworking, v1.0 January 2001

 SCCP Inter-ORB Protocol (SIOP) 4
Contents

This chapter contains the following sections.

The mapping of GIOP message transfer to SCCP class 1 service (sequenced
connectionless service) is called SCCP Inter-ORB Protocol (SIOP). SCCP is applied as
defined in ITU-T Recommendations Q.711 through Q.714 [16].

SIOP version 1.2 clients must support GIOP 1.0 or GIOP 1.1 or GIOP 1.2. SIOP
version 1.2 servers must support GIOP 1.0 and GIOP 1.1 and GIOP 1.2. An SIOP
server that receives GIOP requests with a particular version must answer with GIOP
messages of the same version.

4.1 Usage of SCCP Services

The object reference of a server being reachable over SIOP is constructed as explained
in the next section. The IOR contains an SCCP address that will identify the signalling
point where the server is located.

SCCP class 1 is a connectionless service. The sender and recipient of SCCP messages
are identified by an SCCP address, which consists of a global title (a string) and some
additional information described below. The SCCP address identifies a signalling point
(a node, e.g., a workstation), which is connected to the Signalling System No. 7. There
may be situations where on this node a magnitude of servers are running possible in
different capsules [17] (e.g., different operation system processes). It is also possible

Section Title Page

“Usage of SCCP Services” 4-1

“SIOP IOR Profiles” 4-5
January 2001 CORBA & TC Interworking, v1.0 4-1

4

that several clients in different capsules have to communicate over an SCCP. In this
case, the communication of the servers and clients has to be multiplexed over a single
access point to the Signalling System No. 7. SCCP has no mechanism to identify a
group of clients or servers that belong together (e.g., by belonging to the same
capsule). Other protocols like TCP/IP provide such a mechanism (e.g., with a port
number).

To facilitate such a multiplexing mechanism, endpoint identifiers are defined for SIOP.
An endpoint identifier is an arbitrary unsigned short greater than zero which identifies
a communication endpoint for a group of objects that can be reached over an access to
the Signalling System No. 7 identified by an SCCP address. An endpoint identifier
with the value 0 is reserved for error handling purposes. If a client communicates with
a server over SIOP both have to provide their endpoint identifier. It is outside the scope
of this specification to discuss how endpoint identifiers are allocated and distribution
of messages to different capsules is provided. It is also not specified here how clients
and servers are associated with a specific endpoint identifier. However one object may
be associated to different endpoint identifiers at the same time (e.g., one for the role as
client and another for the role as server).

An SIOP message starts with the CDR encapsulation of MessageHeader as defined
in the module SIOP:

module SIOP { // IDL
typedef unsigned short EndpointId;
struct Version {

octet major;
octet minor;

};

const octet ERROR_MESSAGE = 0;
const octet NORMAL_MESSAGE = 1;

struct MessageHeader {
char magic [4];
Version SIOP_version;
octet flags;
octet message_type;
EndpointId calling_endpoint;
EndpointId called_endpoint;
unsigned long message_size;

};
};

The value of message_type is either ERROR_MESSAGE or
NORMAL_MESSAGE.

Note – Octet constants are allowed according to the solution to issue 725 of the Core
RTF report ptc/98-07-05.
4-2 CORBA & TC Interworking, v1.0 January 2001

4

The fields in MessageHeader are defined as follows:

• magic identifies the SIOP protocol with the string “SIOP“ encoded in ISO Latin-1
(8859.1).

• SIOP_version identifies the version of SIOP this message complies to. The
SIOP_version is independent from the GIOP version of the GIOP message. SIOP
specified here has a major version 1 and a minor version 2.

• flags is used to identify the byte order of the members calling_endpoint,
called_endpoint, and message_size. A zero value at the least significant bit
indicates big-endian byte ordering, and a one indicates little-endian byte ordering.

• message_type identifies the type of the message, which is either
ERROR_MESSAGE or NORMAL_MESSAGE.

• calling_endpoint identifies the endpoint identifier of the sender of the message. It
is encoded according to the byte ordering specified in flags.

If ... Then ...

the message_type field of
MessageHeader identifies a
message of type
ERROR_MESSAGE

no other components follow the MessageHeader. This
message is only sent if a received message did not comply
to the message format stated here or if the
called_endpoint field in a received message with
message_type of NORMAL_MESSAGE did not address
a valid group of objects. It is not specified here what it
means that a calling_endpoint is valid.

the message had a wrong format the calling_endpoint and called_endpoint both have to
be set to 0. In the case of invalid called_endpoint, the
calling_endpoint has to be the same as the
called_endpoint, which was wrong in the received
message and the called_endpoint has to be the same as
the calling_endpoint in the received message. For
instance - if a message with message_type set to
NORMAL_MESSAGE is received with a
calling_endpoint of 5 and a called_endpoint of 3, but 3
does not address a valid group of objects, then a message
with message_type set to ERROR_MESSAGE is
returned with calling_endpoint 3 and called_endpoint
5.

the message could not be decoded at
all (it did not comply to the message
format)

a message with message_type set to
ERROR_MESSAGE is returned with calling_endpoint 0
and called_endpoint 0.

the message_type field is
NORMAL_MESSAGE

a GIOP message follows.
January 2001 CORBA & TC Interworking, v1.0 4-3

4

• called_endpoint identifies the endpoint identifier of the receiver of the message.
It is encoded according to the byte ordering specified in flags.

• message_size contains the number of octets of the GIOP message following the
SIOP header in case of a message_type with the value NORMAL_MESSAGE.
The value of message_size is zero in case of ERROR_MESSAGE. It is encoded
according to the byte ordering specified in flags.

The encoded SIOP::MessageHeader and the GIOP message in case of a
NORMAL_MESSAGE will form together an SIOP message.

The client and the server will send SIOP messages using the SCCP class 1 N-
UNITDATA primitive. The sequence control field of N-UNITDATA is set to “sequence
guaranteed.” The return option is set to “return message on error.” It is not mandatory
that the beginning of an SIOP message be aligned with the beginning of the N-
UNITDATA user data field. It is also not mandatory that the end of an SIOP message
be aligned with the end of the N-UNITDATA user data field. However the user data
field of N-UNITDATA messages will contain nothing other than SIOP messages (i.e.,
no additional padding is applied).

A subsystem number used for SIOP over SCCP will be selected by the network
operator. If international interoperability is necessary, transparent use of the subsystem
number across international boundaries can be used with multi-lateral agreement
between the involved parties. If further standardization is needed for interoperability, a
subsystem number can be assigned by ITU-T together with a revision of this document.

Note – ITU-T considers that subsystem numbers currently used in traffic between
different national networks with bilateral agreement can be transferred unchanged over
international boundaries. According to the old SCCP standard it should be set to 0. See
COM11-D909/WP5 for the ITU SG11 May meeting. For the standardization of a new
SSN for SIOP, the usage of SIOP should be first monitored. If there is a real need, the
assignment of a standard SSN could happen quickly.

SCCP class 1 is a connectionless service; therefore, it is not necessary to open a
connection to be able to make client server communication. However, it is not an error
that one side sends a GIOP CloseConnection message. The receipt of this message
has no effect. The sending of the message is deprecated.

Each SCCP message contains an SCCP address for the calling and called party
number. The calling party number identifies the signalling point where the client is
located in case of Request, LocateRequest, Fragment, and CancelRequest
messages. The calling party number identifies the signalling point where the server is
reachable in case of Reply, Fragment, or LocateReply messages. The called party
number identifies the signalling point according to the SCCP address in the SCCP IOR
profile if the client sends a Request, CancelRequest, Fragment, or
LocateRequest message. The called party number in case of a Reply, LocateReply,
or Fragment is the same as the calling party number of the related Request,
LocateRequest, or Fragment message. The called party number of MessageError
messages is the calling party number of the message that was erroneous. The calling
party number addresses the signalling point where the message was received.
4-4 CORBA & TC Interworking, v1.0 January 2001

4

The request_id unambiguously associates replies with a request per tuple of calling
party number, called party number, calling_endpoint, and called_endpoint.

The reception of an N-NOTICE indicates that the network was not able to deliver a
certain N-UNITDATA to the called party number. In this case, all requests with
outstanding answers are considered unsuccessful. The clients are informed with a
COMM_FAILURE exception if appropriate. Since SCCP is connection-less bi-
directional GIOP is used by default. No special IOP::ServiceContext is defined (i.e.,
no BiDirSIOPServiceContext). Setting a BiDirectionalPolicy has no effect.

4.2 SIOP IOR Profiles

An IOR of an object being reachable over SCCP class 1 has either a profile with the
tag TAG_SCCP_IOP present, or a TAG_MULTIPLE_COMPONENTS profile with
the components TAG_COMPLETE_OBJECT_KEY, TAG_SCCPADDRESS, and
TAG_SIOP_VERSION, or profiles of both kinds. The following definitions are used:

module SIOP { // IDL

typedef octet TranslationTypeIndicator;

union TranslationType switch (boolean) {
case TRUE:

TranslationTypeIndicator translation_type_indicator;
};

typedef unsigned short NatureOfAddressIndicator;

union NatureOfAddress switch (boolean) {
case TRUE:

NatureOfAddressIndicator nature_of_address_indicator;
};
const NatureOfAddressIndicator

SUBSCRIBER_NUMBER = 1;
const NatureOfAddressIndicator

NATIONAL_SIGNIFICANT_NUMBER = 3;
const NatureOfAddressIndicator

INTERNATIONAL_NUMBER = 4;

typedef unsigned short NumberingPlanIndicator;

union NumberingPlan switch (boolean) {
case TRUE:

NumberingPlanIndicator numbering_plan_indicator;
};

const NumberingPlanIndicator UNKNOWN = 0;
const NumberingPlanIndicator ISDN_TELEPHONY_E164 = 1;
January 2001 CORBA & TC Interworking, v1.0 4-5

4

struct GlobalTitleIndicator {
string global_title;
TranslationType translation_type;
NatureOfAddress nature_of_address;
NumberingPlan numbering_plan;

};

union GlobalTitle switch (boolean) {
case TRUE: GlobalTitleIndicator global_title_indicator;

};

typedef unsigned short SPCIndicator;

union SPC switch (boolean) {
case TRUE: SPCIndicator spc_indicator;

};

typedef octet SSNIndicator;

union SSN switch(boolean) {
case TRUE: SSNIndicator ssn_indicator;

};

struct SCCPAddress {
GlobalTitle global_title;
SPC signalling_point_code;
SSN sub_system_number;

};

struct ProfileBody {
Version SIOP_version;
SCCPAddress address;
EndpointId endpoint;
sequence<octet> object_key;
sequence <IOP::TaggedComponent> components;

};

struct ContactInfo {
Version SIOP_version;
SCCPAddress address;
EndpointId endpoint;

};
};

module IOP { // IDL

const ProfileId TAG_SCCP_IOP = 2;

const ComponentId TAG_SCCP_CONTACT_INFO = 24;
};
4-6 CORBA & TC Interworking, v1.0 January 2001

4

4.2.1 Multiple Component Profile

If the object is addressed by a TAG_MULTIPLE_COMPONENTS profile, the
TaggedComponents include components for TAG_COMPLETE_OBJECT_KEY
and TAG_SCCP_CONTACT_INFO. Other components may be present.

The component for TAG_COMPLETE_OBJECT_KEY is defined in the DCE ESIOP
chapter in [CORBA2.2]. It identifies the key of the object being addressed by the IOR.

4.2.2 The SCCP Contact Info Component

A TAG_MULTIPLE_COMPONENTS profile must contain one or more components
with the tag TAG_SCCP_CONTACT_INFO. The component_data contains the
CDR encapsulation of an SIOP::ContactInfo. Each such contact info identifies:

• in the address member - the SCCP address of the signalling point to which
messages can be sent to reach the identified object (see below),

• in the SIOP_version member - the SIOP version. The version consists of a major
and a minor version number of SIOP that the agent at the specified address is
prepared to receive. The agent must be able to accept any SIOP message with the
specified version or messages with smaller minor version numbers. SIOP versions
with different major numbers may not be compatible.

• in the endpoint member - the endpoint identifier that identifies the group to which
the object belongs. This endpoint identifier must be used as called_endpoint in
the SIOP::MessageHeader in each message directed to the object.

An SCCPAddress has the members signalling_point_code,
sub_system_number, and global_title which are of a union type with a boolean
discriminator. A discriminator value TRUE indicates that a value for that member is
given.

The signalling point code is given as value of the type SPCIndicator that has a value
between 0 and 65535. Some networks may further restrict this value range. The global
title is given as a value of the type GlobalTitleIndicator. The subsystem number has
a value between 0 and 255.

The global_title of GlobalTitleIndicator contains the global title that addresses the
signalling point. It consists of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F in ISO Latin-1 (8859.1) only. These characters result in the following BCD encoded
address signals. An SCCP address contains multiple BCD encoded digits - called
address signals - for the global title:

Table 4-1 BCD Codes

Character BCD Code

0 0000

1 0001

2 0010
January 2001 CORBA & TC Interworking, v1.0 4-7

4

The length of the global title may be odd or even. Only BCD encoding is used for
SCCP address information.

The members translation_type, nature_of_address and numbering_plan are of
a union type with a boolean discriminator. The value TRUE of the discriminator
indicates that a value for this field is given. The value FALSE of the discriminator
indicates that no value was provided in the appropriate field of the SCCP address.

The following combinations of discriminator values are allowed:

The member translation_type_indicator indicates the 8 bits necessary for the
translation type.

The member nature_of_address_indicator has a value between 0 and 127
(including 0 and 127). The value indicates the nature of address of the global title. The
three values SUBSCRIBER_NUMBER, NATIONAL_SIGNIFICANT_NUMBER,
and INTERNATIONAL_NUMBER are predefined for this field.

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Table 4-2 Discriminator Values

discriminator value for translation_type numbering_plan nature_of_address

Type 1 FALSE FALSE FALSE

Type 2 TRUE TRUE FALSE

Type 3 TRUE TRUE FALSE

Type 4 TRUE TRUE TRUE

Table 4-1 BCD Codes

Character BCD Code
4-8 CORBA & TC Interworking, v1.0 January 2001

4

The member numbering_plan_identification has a value between 0 and 15
(including 0 and 15). This value indicates the numbering plan of the global title. The
two values UNKNOWN and ISDN_TELEPHONY_E164 are predefined for this field.

4.2.3 The TAG_SCCP_IOP profile

In case the IOR contains a profile with the tag TAG_SCCP_IOP, the profile_body is
an instance of an SIOP::ProfileBody that is marshaled into an encapsulation.

The members of SIOP::ProfileBody are defined below:

• SIOP_version describes the version of SIOP that the agent at the specified address
is prepared to receive. The agent must be able to accept any SIOP message with the
specified version or messages with smaller minor version numbers. SIOP versions
with different major numbers may not be compatible.

• address identifies the signalling point where messages for the specified object
may be sent. See Section 4.2.2, “The SCCP Contact Info Component,” on page 4-7
for details of the values of this member.

• endpoint specifies the endpoint identifier of the group the object belongs to. See
Section 4.2.2, “The SCCP Contact Info Component,” on page 4-7 for details of the
values of this member.

• object_key is an opaque value supplied by the agent producing the IOR. The
semantics is the same as the member object_key of IIOP::ProfileBody_1_0 and
IIOP::ProfileBody_1_1 in [CORBA2.2].

• components is a sequence of TaggedComponent, which contains additional
information that may be used in making invocations on the object described by this
profile. TaggedComponents that apply to SIOP 1.0 are the following:
• TAG_ORB_TYPE
• TAG_CODE_SETS
• TAG_JAVA_CODEBASE

For a description of these components see [CORBA2.2] and [CORBASecurity].
January 2001 CORBA & TC Interworking, v1.0 4-9

4

4-10 CORBA & TC Interworking, v1.0 January 2001

 References A
A.1 List of References

[1] Subrata Mazumdar and Nilo Mitra, “ROS-to-CORBA Mappings: First Step
towards Intelligent Networking using CORBA”, Proceedings of Conference on
Intelligence in Services and Networks, 1997, Como, Italy.

[2] Subrata Mazumdar and Nilo Mitra, “Design of a ROS-CORBA Gateway for
Interoperable Intelligent Networking Applications”, second part of AT&T
Response to OMG RFI on Issues Concerning Intelligent Networking with
CORBA.

[3] JIDM Interaction Translation, Final submission to OMG's CORBA/TMN
Interworking RFP, telecom/98-

[4] The Open Group, Preliminary Specification Inter-Domain Management:
Specification Translation, X/Open Document Number: P509, ISBN: 1-85912-
150-0

[5] Lucent Technologies, Initial Submission to OMG’s CORBA/TMN Interworking
RFP, SNMP Part

[6] N. Mitra and S. D. Usiskin, “Interrelationship of the SS7 Protocol Architecture
and the OSI Reference Model and Protocols,” The Froehlich/Kent Encyclopedia
of Telecommunications, Volume 9, Marcel Dekker, Inc., 1995.

[7] ITU-T Rec. Q.1400 “Architecture Framework for the Development of Signalling
and OA&M Protocols using OSI Concepts”

[8] ITU-T Rec. Q.1218 “Interface Recommendation for Intelligent Network CS-1”,
Geneva, 1995.

[9] ITU-T Rec. Q.771, Signalling System No. 7 - Functional Description of
Transaction Capabilities
January 2001 CORBA & TC Interworking, v1.0 A-1

A

ITU-T Rec. Q.772, Signalling System No. 7 - Transaction Capabilities
Information Element Definitions

ITU-T Rec. Q.773, Signalling System No. 7 - Transaction Capabilities Formats
and Encodings

ITU-T Rec. Q.774, Signalling System No. 7 - Transaction Capabilities
Procedures

ITU-T Rec. Q.775, Signalling System No. 7 - Guidelines for Using Transaction
Capabilities

[10] ITU-T Rec. X.680 through 683 (1994) | ISO/IEC 8824-1/2/3/4:1995,
Information technology - Open Systems Interconnection - Abstract Syntax
Notation One (ASN.1).

[11] ETSI, ETS 300 374-1, “Intelligent Network(IN); Intelligent Network Capability
Set 1 (CS1); Core Intelligent Network Application Protocol(INAP);
Part1:Protocol Specification”, 1997.

[12] ETSI, European digital cellular telecommunications system (phase1); Mobile
application part specification, I-ETS 300 044 (GSM 09.02)

[13] EURESCOM, “Introduction to Distributed Computing Middleware in Intelligent
Networks: A Eurescom P508 Perspective,” OMG document orbos/97-09-11

[14] ITU-T Rec. X.880 (1994) | ISO/IEC 13712-1:1995, Information technology -
Remote Operations: Concepts, model and notation.

[15] OMG Request for Proposal on Real-Time CORBA, orbos/98-01-08.

[16] ITU-T Rec. Q.711, Signalling System No. 7 - Functional Description of the
Signalling Connection Control Part, Geneva, March 1993

ITU-T Rec. Q.712, Signalling System No. 7 - Definition and Function of SCCP
Messages, Geneva, March 1993

ITU-T Rec. Q.713, Signalling System No. 7 - SCCP Formats and Codes,
Geneva, March 1993

ITU-T Rec. Q.714, Signalling System No. 7 - SCCP Procedures, Geneva, March
1993

[17] ISO/IEC 10746-2: Open Distributed Processing - Reference Model:
Architecture, March 1993

[18] OMG TC document orbos/98-11-31, Objects by Value, Joint Revised
Submission (version 2)
A-2 CORBA & TC Interworking, v1.0 January 2001

 Complete IDL B
B.1 The TcSignalling Module

//File: TcSignaling.idl
#ifndef _TC_SIGNALING_
#define _TC_SIGNALING_

// This module defines base and utility interfaces for
// CORBA-based Telecom SS.7 Transaction Capabilities(TC) users

#include <Naming.idl>
#include <CosLifeCycle.idl>
#include “ASN1Types.idl”
#pragma prefix “omg.org”
module TcSignaling{

typedef short ASN1_ExtensionCriticality ;
// ASN1_ExtensionCriticality values
const ASN1_ExtensionCriticality ASN1_EXTENSION_ABORT = 0;
const ASN1_ExtensionCriticality ASN1_EXTENSION_IGNORE = 1;

typedef string ScopedName;
enum IdType {LOCAL_ID, OID};
union IdValue switch(IdType) {

case LOCAL_ID: ASN1_Integer local_id;
case OID: ASN1_ObjectIdentifier oid;

};

typedef CosNaming::Istring Istring;
typedef long AssociationId;
typedef Istring TcAddress;
typedef Istring ApplicationContext;
typedef long InvokeId;
January 2001 CORBA & TC Interworking, v1.0 B-1

B

// Range -128 to +127 for Q.773
// InvokeID values
const InvokeId NO_ID = 2000000000;

typedef short DialogFlowCtr;
// DialogFlowCtr values
const DialogFlowCtr BEGIN = 0;
const DialogFlowCtr CONTINUE = 1;
const DialogFlowCtr END = 2;
const DialogFlowCtr QUEUE_COMPONENT = 3;
const DialogFlowCtr UNIDIRECTIONAL = 4;
const DialogFlowCtr NOT_SPECIFIED = 5;

typedef short TcContextSetting;
// TcContextSetting values
const TcContextSetting TC_CONTEXT_BASE = 0;
const TcContextSetting TC_CONTEXT_NO_FLOW = 1;
const TcContextSetting TC_CONTEXT_ALL = 2;

struct TcContext{
DialogFlowCtr ctr;
InvokeId ivk_id;
InvokeId lnk_id;
AssociationId a_id;
};

typedef sequence<CosLifeCycle::NameValuePair> DialogUserData;
typedef short PAbortReason;
// PAbortReason values
const PAbortReason UNRECOG_MESSAGE_TYPE = 0;
const PAbortReason UNRECOG_TID = 1;
const PAbortReason BAD_FORMAT_TRANSACTION = 2;
const PAbortReason INCORRECT_TRANSACTION = 3;
const PAbortReason RESOURCE_LIMIT = 4;
enum AbortType {P_ABORT,

UNSUPPORTED_APPLICATION_CONTEXT,
USER_DEFINED_INFO

 };
union AbortValue switch(AbortType) {
case P_ABORT: PAbortReason reason;
case UNSUPPORTED_APPLICATION_CONTEXT:
ApplicationContext a_c;
case USER_DEFINED_INFO: DialogUserData d_u_d;
};
exception UnknownAssociation{};
exception NoMoreAssociations{};
exception InvalidParameter{};
exception UnsupportedTcContext{};

interface TcUser:CosLifeCycle::LifeCycleObject {

B-2 CORBA & TC Interworking, v1.0 January 2001

B

void abort_association(in AssociationId a_id)
raises (UnknownAssociation);

 void abort_association_with_data(in AbortValue abort_value,
in AssociationId a_id)

raises (UnknownAssociation, InvalidParameter);

void end_association (in AssociationId a_id)
raises (UnknownAssociation);

AssociationId new_association(in TcUser initiator,

in AssociationId a_id)
raises(NoMoreAssociations);

AssociationId new_association_with_dialogdata(

in TcUser initiator,
in AssociationId a_id,
in string protocol_version,
in DialogUserData d_u_d)

raises(NoMoreAssociations, InvalidParameter);

readonly attribute TcContextSetting tc_context_setting;

}; //end TcUser

interface TcUserGenericFactory{

TcUser create_tc_user_responder(
in ScopedName responder,
in TcUser initiator,
in AssociationId a_id,
in TcContextSetting tc_context_setting,

out AssociationId a_id_rtn)
raises(CosLifeCycle::NoFactory,

NoMoreAssociations, UnsupportedTcContext);

TcUser create_tc_user_responder_with_dialog_data(
in ScopedName responder,
in TcUser initiator,
in AssociationId a_id,
in string protocol_version,
in DialogUserData d_u_d,
in TcContextSetting tc_context_setting,

out AssociationId a_id_rtn)
raises(CosLifeCycle::NoFactory, NoMoreAssociations,

InvalidParameter, UnsupportedTcContext);

TcUser create_tc_user_initiator(
in ScopedName initiator)

raises(CosLifeCycle::NoFactory);

January 2001 CORBA & TC Interworking, v1.0 B-3

B

}; // end TcUserGenericFactory

interface TcFactoryFinder{

void bind(in TcAddress addr,
in ApplicationContext a_c,
in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory resp_tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName,
CosNaming::NamingContext::AlreadyBound);

void unbind(in TcAddress addr,

in ApplicationContext a_c,
in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory resp_tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

void rebind(in TcAddress addr,

in ApplicationContext a_c,
in ScopedName resp_iface,
in ScopedName init_iface,
in TcUserGenericFactory resp_tc_user_factory)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

TcUserGenericFactory resolve(in TcAddress addr,

in ApplicationContext a_c,
out ScopedName resp_iface,
out ScopedName init_iface)

raises (CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

}; // end TcFactoryFinder

interface TcPduProviderFactory; //forward definition

interface GwAdmin{

readonly attribute TcFactoryFinder tc_user_factory_naming_if;

readonly attribute TcPduProviderFactory
tc_pdu_provider_factory_if;

B-4 CORBA & TC Interworking, v1.0 January 2001

B

}; // end GwAdmin

interface TcRepository {

ScopedName get_error_name(in ScopedName iface,
in IdValue code);

ScopedName get_operation_name(in ScopedName iface,
in IdValue code);

ScopedName get_extension_name(in ScopedName iface,
in IdValue code);

IdValue get_id(in ScopedName scoped_name);

ASN1_ExtensionCriticality get_extension_criticality(
in ScopedName extension_scoped_name);

unsigned long get_operation_timer(in ScopedName
op_scoped_name);

}; //end TcRepository

interface TcServiceFinder{

readonly attribute CosNaming::NamingContext gt_root;
readonly attribute GwAdmin gw_admin_if;
readonly attribute TcRepository tc_repository_if;

}; //end TcServiceFinder

typedef short ProblemType;
typedef short ProblemCode;
// ProblemType values
const ProblemType GENERAL_PROBLEM = 0;
const ProblemType INVOKE_PROBLEM = 1;
const ProblemType RETURN_RESULT_PROBLEM = 2;
const ProblemType RETURN_ERROR_PROBLEM = 3;
// ProblemCode values
const ProblemCode GP_UNRECOGNIZED_COMPONENT = 0;
const ProblemCode GP_MISTYPED_COMPONENT = 1;
const ProblemCode GP_BAD_STRUCTURED_COMPONENT = 2;
const ProblemCode IP_DUPLICATE_INV_ID = 0;
const ProblemCode IP_UNRECOG_OPERATION = 1;
const ProblemCode IP_MISTYPED_PARAM = 2;
const ProblemCode IP_RESOURCE_LIMIT = 3;
const ProblemCode IP_INIT_RELEASE = 4;
const ProblemCode IP_UNRECOG_LINK_ID = 5;
const ProblemCode IP_LINKED_RESP_EXPECTED = 6;
const ProblemCode IP_UNEXPECTED_LINKED_OP = 7;
January 2001 CORBA & TC Interworking, v1.0 B-5

B

const ProblemCode RRP_UNRECOG_INV_ID = 0;
const ProblemCode RRP_RR_UNEXPECTED = 1;
const ProblemCode RRP_MISTYPED_PARAM = 2;
const ProblemCode REP_UNRECOG_INV_ID = 0;
const ProblemCode REP_RE_UNEXPECTED = 1;
const ProblemCode REP_UNRECOG_ERROR = 2;
const ProblemCode REP_UNEXPECTED_ERROR = 3;
const ProblemCode REP_MISTYPED_PARAM = 4;

typedef unsigned long Timeout;
typedef sequence<octet> Asn1Data;
typedef unsigned short OperationClass;
// OperationClass values
const OperationClass TC_CLASS_1 = 1;
const OperationClass TC_CLASS_2 = 2;
const OperationClass TC_CLASS_3 = 3;
const OperationClass TC_CLASS_4 = 4;

struct RejectProblem{

ProblemType type;
ProblemCode code;

};
enum TerminationType{

PREARRANGED,
BASIC

};
union DialogPortion switch(boolean) {

case TRUE: ApplicationContext a_c;
case FALSE: Asn1Data dialog_info;

};

typedef unsigned long DialogId;
typedef short DialogQos;
// DialogQos values
const DialogQos SCCP_CLASS_0_NO_ERROR = 0;
const DialogQos SCCP_CLASS_0_WITH_ERROR = 1;
const DialogQos SCCP_CLASS_1_NO_ERROR = 2;
const DialogQos SCCP_CLASS_1_WITH_ERROR = 3;
const DialogQos QOS_NOT_SPECIFIED = 3;

exception DialogStillOpen{};
exception InvalidDialogId{};
exception NoMoreDialogs{};
exception LReject {InvokeId ivk_id; RejectProblem problem;};

enum ComponentType{
INVOKE,
RESULT_L,
RESULT_NL,
U_ERROR,
U_REJECT,
B-6 CORBA & TC Interworking, v1.0 January 2001

B

R_REJECT
};

struct Invoke{
OperationClass op_class;
InvokeId ivk_id;
InvokeId lnk_id;
Asn1Data oper;
Timeout op_timer;

};
// can use default timer with timeout of 0
// note incoming msgs always have a time of 0

struct ResultL{
InvokeId ivk_id;
Asn1Data result;

};
struct ResultNl{

InvokeId ivk_id;
Asn1Data result;

};
struct UError{

InvokeId ivk_id;
Asn1Data error;

};
struct UReject{

InvokeId ivk_id;
RejectProblem problem;

};
struct RReject{

InvokeId ivk_id;
RejectProblem problem;

};
union Component switch(ComponentType) {

case INVOKE : Invoke i;
case RESULT_L : ResultL r_l;
case RESULT_NL : ResultNl r_nl;
case U_ERROR : UError u_e;
case U_REJECT : UReject u_r;
case R_REJECT : RReject r_r;

};

typedef sequence<Component> ComponentList;

interface TcPduUser; //forward definition

interface TcPduProvider{

DialogId get_dialog_id(in TcPduUser user)
raises (NoMoreDialogs);

void uni_req(in DialogQos qos,
January 2001 CORBA & TC Interworking, v1.0 B-7

B

in TcAddress dest,
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (NoMoreDialogs, LReject);

void begin_req(in DialogQos qos,
in TcAddress dest,
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (NoMoreDialogs, LReject);

void continue_confirm_req(
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (InvalidDialogId, LReject);

void continue_req(in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (InvalidDialogId, LReject);

void end_req(in DialogId d_id,
in DialogPortion d_p,
in TerminationType term,
in ComponentList c_list)

raises (InvalidDialogId, LReject);

void u_abort_req(in DialogId d_id,
in DialogPortion d_p)

raises (InvalidDialogId);

void set_dialog_qos(in DialogId d_id,
in DialogQos qos)

raises(InvalidDialogId, InvalidParameter);

DialogQos get_dialog_qos(in DialogId d_id)
raises(InvalidDialogId);

void u_cancel_req(in DialogId d_id,
in InvokeId ivk_id)

raises(InvalidDialogId, InvalidParameter);

void destroy()
raises(DialogStillOpen);
B-8 CORBA & TC Interworking, v1.0 January 2001

B

}; // end TcPduProvider

interface TcPduUser{

void uni_ind(in TcPduProvider sender,
in DialogQos qos,
in TcAddress dest,
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (NoMoreDialogs);

void begin_ind(in TcPduProvider sender,
in DialogQos qos,
in TcAddress dest,
in TcAddress orig,
in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (NoMoreDialogs);

void continue_ind(in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (InvalidDialogId);

void end_ind(in DialogId d_id,
in DialogPortion d_p,
in ComponentList c_list)

raises (InvalidDialogId);

void u_abort_ind(in DialogId d_id,
in DialogPortion d_p)

raises (InvalidDialogId);

void notice_ind(in DialogId d_id,
in short report_cause)

raises (InvalidDialogId);

void l_cancel_ind(in DialogId d_id,
in InvokeId ivk_id)

raises(InvalidDialogId, InvalidParameter);

void p_abort_ind(in DialogId d_id,
in PAbortReason reason)

raises (InvalidDialogId);

DialogQos get_dialog_qos(in DialogId d_id)
raises(InvalidDialogId);
January 2001 CORBA & TC Interworking, v1.0 B-9

B

void set_dialog_qos(in DialogId d_id,
in DialogQos qos)

raises(InvalidDialogId, InvalidParameter);
}; // end TcPduUser

exception UnknownTcAddress{};
exception AlreadyBound{};

interface TcPduUserFactory{

TcPduUser create_tc_pdu_user(
in ApplicationContext application_context)

raises(NoMoreDialogs);

}; // end TcPduUserFactory

interface TcPduProviderFactory{

TcPduProvider create_tc_pdu_provider(
in TcPduUser user,
out DialogId d_id)

raises(NoMoreDialogs);

void register(in TcAddress dest,
in ApplicationContext a_c,
in TcPduUserFactory user_factory)

raises(AlreadyBound);

void deregister(in TcAddress dest,
in ApplicationContext a_c)

raises(UnknownTcAddress);

}; // end TcPduProviderFactory
}; //end TcSignaling

#endif // _TC_SIGNALING_

B.2 The SIOP Module

//FILE: SIOP.idl
#ifndef _SIOP_IDL_
#define _SIOP_IDL_

// SCCP Inter-ORB Protocol definitions

#include <IOP.idl>

#pragma prefix "omg.org"
module SIOP { // IDL
B-10 CORBA & TC Interworking, v1.0 January 2001

B

typedef unsigned short EndpointId;
struct Version {

octet major;
octet minor;

};

const octet ERROR_MESSAGE = 0;
const octet NORMAL_MESSAGE = 1;

struct MessageHeader {
char magic [4];
Version SIOP_version;
octet flags;
octet message_type;
EndpointId calling_endpoint;
EndpointId called_endpoint;
unsigned long message_size;

};

typedef octet TranslationTypeIndicator;
union TranslationType switch (boolean) {

case TRUE:
TranslationTypeIndicator translation_type_indicator;

};
typedef unsigned short NatureOfAddressIndicator;
union NatureOfAddress switch (boolean) {

case TRUE:
NatureOfAddressIndicator nature_of_address_indicator;

};
const NatureOfAddressIndicator

SUBSCRIBER_NUMBER = 1;
const NatureOfAddressIndicator

NATIONAL_SIGNIFICANT_NUMBER = 3;
const NatureOfAddressIndicator

INTERNATIONAL_NUMBER = 4;
typedef unsigned short NumberingPlanIndicator;
union NumberingPlan switch (boolean) {

case TRUE:
NumberingPlanIndicator numbering_plan_indicator;

};
const NumberingPlanIndicator UNKNOWN = 0;
const NumberingPlanIndicator ISDN_TELEPHONY_E164 = 1;
struct GlobalTitleIndicator {

string global_title;
TranslationType translation_type;
NatureOfAddress nature_of_address;
NumberingPlan numbering_plan;

};
union GlobalTitle switch (boolean) {

case TRUE: GlobalTitleIndicator global_title_indicator;
};
January 2001 CORBA & TC Interworking, v1.0 B-11

B

typedef unsigned short SPCIndicator;
union SPC switch (boolean) {

case TRUE: SPCIndicator spc_indicator;
};
typedef octet SSNIndicator;
union SSN switch(boolean) {

case TRUE: SSNIndicator ssn_indicator;
};
struct SCCPAddress {

GlobalTitle global_title;
SPC signalling_point_code;
SSN sub_system_number;

};

struct ProfileBody {
Version SIOP_version;
SCCPAddress address;
EndpointId endpoint;
sequence<octet> object_key;
sequence <IOP::TaggedComponent> components;

};
struct ContactInfo {

Version SIOP_version;
SCCPAddress address;
EndpointId endpoint;

};
};
#endif // _SIOP_IDL_
module IOP { // IDL

// the numbers XXX must be assigned by OMG
const ProfileId TAG_SCCP_IOP = XXX;
const ComponentId TAG_SCCP_CONTACT_INFO = XXX;

};
B-12 CORBA & TC Interworking, v1.0 January 2001

 Specification Translation Example C
The following example illustrates how TC-User protocol definitions, specified in
ASN.1, may be mapped to OMG IDL using the JIDM Specification Translation rules.
ROS/TC-User information object class definitions (or macro definitions) are mapped
according to the rules specified in this document. The ASN.1 definitions shown below
in IN-CS-1-Operations module and IN-CS-1-datatypes module are taken from the
Intelligent Network CS-1 Application Protocol Abstract Syntax specified in ITU-T
Recommendation Q.1218 [8].

C.1 IN-CS-1-Operations module

IN-CS-1-Operations { ccitt recommendation q 1218 modules(0)
cs-1-operations(0) version1(0) }
DEFINITIONS ::=
BEGIN
IMPORTS
…
OriginationAttemptAuthorized ::= OPERATION

 ARGUMENT
 OriginationAttemptAuthorizedArg

 ERRORS {
 MissingCustomerRecord,
 MissingParameter,
 SystemFailure,
 TaskRefused,
 UnexpectedComponentSequence,
 UnexpectedDataValue,
 UnexpectedParameter }
…
END
January 2001 CORBA & TC Interworking, v1.0 C-1

C

C.2 IN-CS-1-datatypes module

IN-CS-1-datatypes { ccitt recommendation q 1218 modules(0)
cs-1-datatypes(0) version1(0) }
DEFINITIONS
BEGIN
IMPORTS
…
OriginationAttemptAuthorizedArg ::= SEQUENCE {

 dpSpecificCommonParameters [0] DpSpecificCommonParame-
ters,
 dialledDigits[1] CalledPartyNumber OPTIONAL,
 callingPartyBusinessGroupID [2] CallingPartyBusinessGroupID
OPTIONAL,
 callingPartySubaddress [3] CallingPartySubaddress
OPTIONAL,
 callingFacilityGroup [4] FacilityGroup OPTIONAL,
 callingFacilityGroupMember [5] FacilityGroupMember
OPTIONAL,
 travellingClassMark [6] TravellingClassMark OPTIONAL,
 extensions[7] SEQUENCE SIZE(0..MAX) OF ExtensionField
OPTIONAL }
…
END

As specified by the JIDM Specification Translation rules, each ASN.1 module maps to
an IDL module contained in a separate IDL file. IDL modules and files are named
using the “nickname” that has been assigned to the ASN.1 module. IMPORT clauses
are mapped as a list of #include directives for the appropriate IDL files. The ASN.1
OPERATIONs, defined in the IN-CS-1-Operations module, are mapped to IDL
operation signatures as shown below. Arguments of the OPERATIONs, defined in the
IN-CS-1-datatypes module, are translated according to the JIDM rules. The exception
parameters are defined in an included IDL file which is created from the mapping of
the IN-CS-1-Errors ASN.1 module.

C.3 Generated IDL Interface for Type I ASN.1 description

// IDL Filename : Q1218IN_.idl
// Generated from ASN.1 module :
// IN-CS-1-Operations { ccitt recommendation q 1218 modules(0) cs-1-opera-
tions(0) version1(0) }

#include "ASN1Types.idl"
#include "ASN1Limits.idl"
#include "Q1218IN_1.idl"
#include "Q1218IN_2.idl"
#ifndef _Q1218IN__IDL_
#define _Q1218IN__IDL_
C-2 CORBA & TC Interworking, v1.0 January 2001

C

module Q1218IN_ {
…
… parameters to exceptions are defined in IDL module Q1218IN_2 (IN-CS-1-
Errors)
…

exception MissingCustomerRecord {DialogFlowCtr d_f_c;};
exception MissingParameter {DialogFlowCtr d_f_c;};
exception SystemFailure {

UnavailableNetworkResourceType unavailableNetworkResource;
DialogFlowCtr d_f_c;};

exception TaskRefused {
TaskRefusedErrorArgType taskRefusedErrorArg;
DialogFlowCtr d_f_c;};

exception UnexpectedComponentSequence {
DialogFlowCtr d_f_c;};

exception UnexpectedDataValue {DialogFlowCtr d_f_c;};
exception UnexpectedParameter {DialogFlowCtr d_f_c;};

…
interface DefAc{
…
void OriginationAttemptAuthorized(

in OriginationAttemptAuthorizedArgType
OriginationAttemptAuthorizedArg,

inout TcContext ctext)
raises (MissingCustomerRecord,

MissingParameter,
SystemFailure,
TaskRefused,
UnexpectedComponentSequence,
UnexpectedDataValue,
UnexpectedParameter)

};

};
#endif /* _Q1218IN__IDL_ */

C.4 Generated IDL Types

// IDL Filename : Q1218IN_1.idl
// Generated form ASN.1 module :
// IN-CS-1-datatypes { ccitt recommendation q 1218 modules(0) cs-1-
datatypes(0) version1(0) }

#include "ASN1Types.idl"
#include "ASN1Limits.idl"
#include "Q1400Ext.idl"

#ifndef _Q1218IN_1_IDL_
#define _Q1218IN_1_IDL_
January 2001 CORBA & TC Interworking, v1.0 C-3

C

module Q1218IN_1 {
…
... nested types in OriginationAttemptAuthorizedArgType defined here ..
…
struct OriginationAttemptAuthorizedArgType
{

DpSpecificCommonParametersTypedpSpecificCommonParameters;
CalledPartyNumberTypeOptdialledDigits;
CallingPartyBusinessGroupIDTypeOpt callingPartyBusinessGroupID;
CallingPartySubaddressTypeOptcallingPartySubaddress;
FacilityGroupTypeOptcallingFacilityGroup;
FacilityGroupMemberTypeOpt callingFacilityGroupMember;
TravellingClassMarkTypeOpttravellingClassMark;
ExtensionsTypeOptextensions;

};
...
};
#endif // _Q1218IN__IDL_
C-4 CORBA & TC Interworking, v1.0 January 2001

 Applicability to Non-IN Protocols D
D.1 Overview

This specification addresses interworking between CORBA and TC-User application
entities, which covers a range of applications and is not strictly limited to traditional IN
(as defined by the INAP protocol). An important family of protocols also supported is
the SS7 Mobile Application Part (MAP) [12]. The various MAP specifications (MAP-
GSM, IS41, etc.) define signalling traffic for mobile telephony networks. In addition to
basic signalling and addressing the special signalling requirements of mobility, MAP
supports a number of supplementary services that are similar in many respects to
traditional IN services. Integration of the infrastructure for traditional IN services and
mobile services is enabled by the approach of this specification.

The elements of the GSM signalling network and the possible signalling interactions
between them (as standardized by ETSI) are illustrated below.
January 2001 CORBA & TC Interworking, v1.0 D-1

D

Figure D-1 Entities and Interfaces in a MAP-GSM Signalling Network

The current MAP-GSM specifications [12] do not define Application Contexts/Contracts
in the MAP definition, so the specification translation approach in this specification for a
Type I ASN.1 specification is valid. This would allow the use of the CORBA Naming
Service as defined in Section 2.2.3, “Application Location and Association Initiation,” on
page 2-28 of this specification.

D.2 Use of MAP-GSM Interfaces

The MAP-GSM specifications [12] include the concept of named interfaces between the
elements of the signalling network (shown as single letter labels on the signalling paths
in the above figure). These interfaces are defined in terms of supported and required
operations and may form the basis for OMG IDL interface definitions. This requires a

MSC-B MSC-A BSC

HLR VLR-A EIR

VLR-B

A

BC

D

G

F

E

F

MAP/SS.7 Signalling Link
Non-MAP Signalling Link

BSC: Base Station Controller
EIR: Equipment Identity Register
HLR: Home Location Register
MSC: Mobile Switching Centre
VLR: Visitor Location Register
D-2 CORBA & TC Interworking, v1.0 January 2001

D

small extension to the ASN.1 mapping algorithm defined in this specification. As an
example, the definition of operations for a MAP HLR (section 6.5.3 in [12]) is shown in
the table below.

Unfortunately each of these MAP interfaces is bi-directional (unlike a TC/ROS
Application Context). This means that the concepts of AC initiator and responder do not
easily map onto a MAP interface. Instead, it is necessary to define two pseudo-ACs
replacing the MAP interface. These are defined as the dialog initiation destination entity

Table D-1 Operations for HLR

Operation Interface S/R

activateSS D R

activateTraceMode D S

alertServiceCentre C S

beginSubscriberActivity D R

cancelLocation D S

deactivateSS D R

deactivateTraceMode D S

deleteSubscriberData D S

deregisterMobileSubscriber D R

eraseSS D R

forwardcheckssindication D S

forwardSsNotification D S

getPassword D S

insertSubscriberData D S

interrogateSS D R

noteMsPresent D R

updateLocation D R

processUnstructuredSsData D R

provideRoamingNumber D S

registerChargingInformation C R

registerPassword D R

registerSS D R

reset D Both

sendRoutingInfoForSM C R

sendRoutingInformation C R

setMessageWaitingData C R
January 2001 CORBA & TC Interworking, v1.0 D-3

D

name concatenated onto the MAP interface name with a preceding underscore (e.g.,
HLR_C and MSC_C). Two IDL interfaces may then be generated for the MAP interface,
one for the supported operations of each entity in the interaction. Of course, the
supported operations of one entity correspond to the required operations of the other
entity. These interfaces are named by concatenating the three elements:

1. the MAP entity name (e.g., HLR)

2. the MAP interface name preceded by an underscore (e.g., _C)

3. the string “_supported”

In the CORBA Naming Service the structure for the interfaces thus generated is shown
below.

Figure D-2 Structure of MAP information in CORBA Naming Service

This structure is compatible with the structure of TC information defined for the TC’93
case described in Section 2.2.3.2, “Extensions for TC93,” on page 2-31 of this
specification. However, as no AC information is provided in the signalling APDUs, the
gateway implementation must be configured to map particular calling addresses to types
of calling entities. For pure CORBA interactions, the initiating CORBA object must
know which pseudo-AC it wishes to interact with.

The table of operations for the HLR would map to OMG IDL as follows:

interface HLR_D_supported : TcUserGenericFactory {
// corresponds to GSM interface D (HLR side)
… activateTraceMode(…) raises (…);
… cancelLocation(…) raises (…);
… deactivateTraceMode(…) raises (…);
… deleteSubscriberData(…) raises (…);
… forwardcheckssindication(…) raises (…);
… forwardSsNotification(…) raises (…);

 Node Type

GT

GT_HLR

GTRoot

GT

AC HLR_C HLR_D

RESP:HLR_C_supportedINIT:MSC_C_supported

AeFactoryAeFactory

Interface names
D-4 CORBA & TC Interworking, v1.0 January 2001

D

… getPassword(…) raises (…);
… insertSubscriberData(…) raises (…);
… provideRoamingNumber(…) raises (…);
… reset(…) raises (…);
}; // end interface HLR_D_supported
interface VLR_D_supported : TcUserGenericFactory {
// corresponds to GSM interface D (VLR side)
… activateSS(…) raises (…);
… beginSubscriberActivity(…) raises (…);
… deactivateSS(…) raises (…);
… deregisterMobileSubscriber(…) raises (…);
… eraseSS(…) raises (…);
… interrogateSS(…) raises (…);
… noteMsPresent(…) raises (…);
… updateLocation(…) raises (…);
… processUnstructuredSsData(…) raises (…);
… registerPassword(…) raises (…);
… reset(…) raises (…);
}; // end interface VLR_D_supported

interface HLR_C_supported : TcUserGenericFactory {
// corresponds to GSM interface C (HLR side)
… alertServiceCentre (…) raises (…);
}; // end interface HLR_C_supported

interface MSC_C_supported : TcUserGenericFactory {
// corresponds to GSM interface C (MSC side)
… registerChargingInformation (…) raises (…);
… sendRoutingInfoForSM (…) raises (…);
… sendRoutingInformation (…) raises (…);
… setMessageWaitingData (…) raises (…);
}; // end interface MSC_C_supported
// additional interfaces for other AEs omitted

interface AeFactory : TcUserGenericFactory {
 HLR_D_supported create_HLR_D_supported (
in VLR_D_supported corresponding_iface,

in AssociationId a_id,
in boolean explicit_flow_control);
HLR_D_supported create_HLR_D_supported_with_dialogdata (
in VLR_D_supported corresponding_iface,
in AssociationId a_id,
in boolean explicit_flow_control
in string protocol_version,
in DialogUserData d_u_d));
VLR_D_supported create_VLR_D_supported (
in HLR_D_supported corresponding_iface,
in AssociationId a_id,
in boolean explicit_flow_control);
January 2001 CORBA & TC Interworking, v1.0 D-5

D

VLR_D_supported create_VLR_D_supported_with_dialogdata (
in HLR_D_supported corresponding_iface,
in AssociationId a_id,
in boolean explicit_flow_control
in string protocol_version,
in DialogUserData d_u_d));
HLR_C_supported create_HLR_C_supported (
in MSC_C_supported corresponding_iface,
in AssociationId a_id,
in boolean explicit_flow_control);
HLR_C_supported create_HLR_C_supported_with_dialogdata (
in MSC_C_supported corresponding_iface,
in AssociationId a_id,
in boolean explicit_flow_control
in string protocol_version,
in DialogUserData d_u_d));
MSC_C_supported create_MSC_C_supported (
in VLR_C_supported corresponding_iface,
in AssociationId a_id,
in boolean explicit_flow_control);
 MSC_C_supported create_MSC_C_supported_with_dialogdata (
in VLR_C_supported corresponding_iface,
in AssociationId a_id,
in boolean explicit_flow_control
in string protocol_version,
in DialogUserData d_u_d));
// additional create operations for other AEs omitted
}; // end interface AeFactory
D-6 CORBA & TC Interworking, v1.0 January 2001

 Ros Definitions E
ITU-T Rec. X.880 | ISO/IEC 13712-1 [14] defines a number of concepts and
constructs to describe the interaction between objects that follow the ROS
request/reply interaction paradigm. Such objects are called ROS-objects, and the basic
interaction is specified by the invocation of an operation by one ROS-object (the
invoker) and its performance by another (the performer). Performance of an operation
may lead to a return from the performer to the invoker of a report of the outcome - a
result, to report a successful completion, or an error otherwise. During the performance
of an operation, the performer may invoke linked operations to be performed by the
invoker (of the original operation).

E.1 Operation and Error

The OPERATION information object class (whose syntax is shown below) collects
together all the syntactic aspects of what constitutes a remote operation, which is
shared by the invoker and performer, and for some aspects the infrastructure through
which they communicate. This includes:

• The data type of the value (identified by the keyword ARGUMENT) to be conveyed
with the requested operation.

• The data type of the result (identified by the keyword RESULT), if any, returned
upon successful completion of the operation.

• A set of errors (identified by the keyword ERRORS), any of which may be returned
to signal the unsuccessful performance of the operation.

• Other operations "linked" to this one (identified by the keyword LINKED), which
may be invoked by the performer before completing the originally invoked
operation.

• Whether this operation is invoked synchronously (identified by the keyword
SYNCHRONOUS).
January 2001 CORBA & TC Interworking, v1.0 E-1

E

• A means to identify this operation from others (identified by the keyword CODE)
that may be invoked by this invoker on the same performer.

The syntax for the OPERATION information object class is as follows:

OPERATION ::= CLASS {
&ArgumentType OPTIONAL,
&argumentTypeOptional BOOLEAN OPTIONAL,
&returnResult BOOLEAN DEFAULT TRUE,
&ResultType OPTIONAL,
&resultTypeOptional BOOLEAN OPTIONAL,
&Errors ERROR OPTIONAL,
&Linked OPERATION OPTIONAL,
&synchronous BOOLEAN DEFAULT FALSE,
&alwaysReturns BOOLEAN DEFAULT TRUE,
&InvokePriority Priority OPTIONAL,
&ResultPriority Priority OPTIONAL,
&operationCode Code UNIQUE OPTIONAL

}
WITH SYNTAX
{

[ARGUMENT&ArgumentType [OPTIONAL&argumentTypeOptional]]
[RESULT&ResultType [OPTIONAL&resultTypeOptional]]
[RETURN RESULT &returnResult]
[ERRORS &Errors]
[LINKED &Linked]
[SYNCHRONOUS &synchronous]
[ALWAYS RESPONDS &alwaysReturns]
[INVOKE PRIORITY &InvokePriority]
[RESULT-PRIORITY &ResultPriority]
[CODE &operationCode]

}

The equivalent description in the earlier ASN.1 MACRO notation is as follows:

OPERATION MACRO ::=
BEGIN
TYPE NOTATION ::= Parameter Result Errors Linked Operations
VALUE NOTATION ::= value(VALUE CHOICE{

localValue INTEGER,
globalValue OBJECT IDENTIFIER})

Parameter ::= “PARAMETER” NamedType | empty
Result ::= “RESULT” ResultType | empty
ResultType ::= NamedType | empty
Errors ::= “ERRORS” “{“ErrorNames”}” | empty
LinkedOperations ::= “LINKED” “{“LinkedOperationNames”}” | empty
ErrorNmaes ::= ErrorList | empty
ErrorList ::= Error | ErrorList”,” Error
Error ::= value (ERROR) | type
LinkedOperationNames ::= OperationList | empty
OperationList ::= Operation | OperationList”,”Operation
Operation ::= value (OPERATION) | type
NamedType ::= identifier type | type
END
E-2 CORBA & TC Interworking, v1.0 January 2001

E

An error is a report of the unsuccessful performance of an operation. The information
object class ERROR, to which all errors belong, is specified as follows:

ERROR ::= CLASS
{

&ParameterType OPTIONAL,
¶meterTypeOptional BOOLEAN OPTIONAL,
&ErrorPriority Priority OPTIONAL,
&errorCode Code UNIQUE OPTIONAL

}
WITH SYNTAX
{

[PARAMETER &ParameterType [OPTIONAL ¶meterTypeOptional]]
[PRIORITY &ErrorPriority]
[CODE &errorCode]

}

The description of errors using the earlier ASN.1 MACRO notation is as follows:

ERROR MACRO ::=
BEGIN
TYPE NOTATION ::= Parameter
VALUE NOTATION ::= value(VALUE CHOICE{

localValue INTEGER,
globalValue OBJECT IDENTIFIER})

Parameter ::= “PARAMETER” NamedType | empty
NamedType ::= Named type | type
END

Note – The OPERATION and ERROR information object classes are a more precise
specification of the features of an operation (and any associated errors) than that
provided by the earlier MACRO notation with the same names. In fact, the user-defined
syntax provided by the WITH SYNTAX clause (which must be used for the definition
of individual operations) closely mimics the syntax based on the earlier MACRO
notation. The only changes are minor rearrangements of some items, and the inclusion
of additional fields for features, which in the earlier notation were expressed purely as
comments, if at all. Note also that TC-Users do not specify the invocation and response
priority fields.

E.2 Operation Package (Application Service Element)

The interaction between (pairs of) ROS-objects belonging to some ROS-object-class
are defined in terms of sets of related operations, each set being described by an
information object class called OPERATION-PACKAGE. An instance of the operation
package class defines which operations each ROS-object in the pair may invoke the
other. Thus, unlike a traditional client-server model, which defines the operations that
a client may invoke of the server, the ROS model simultaneously describes both the
client and server aspects of a ROS-object.
January 2001 CORBA & TC Interworking, v1.0 E-3

E

If both objects can only invoke the same set of operations of the other, then the
package is said to be symmetrical. Otherwise, if there is a set of operations that one
object can invoke, and a different set that the complementary object can invoke, then
the package is said to be asymmetrical. In this case, based on some intuitive judgment
of their roles, or arbitrarily, one of these objects is called the consumer (of the
operation package) while the other is the supplier.

The OPERATION-PACKAGE information object class (whose syntax is provided
below) defines, given an assignment of the roles - consumer and supplier - played by a
pair of ROS-objects:

• the set of operations, if any, identified by the keyword OPERATIONS, which each
may invoke of the other,

• the set of operations, if any, identified by the keyword CONSUMER INVOKES,
which one object, called the consumer, may invoke of the other - the supplier,

• the set of operations, if any, identified by the keyword SUPPLIER INVOKES,
which the supplier may invoke on the consumer, and

• an identifier, identified by the keyword ID, by which this operation package may be
distinguished from others that may operate between this pair of ROS-objects

It is important to note that a given ROS-object could be playing the role of a consumer
with respect to some operation packages, and that of a supplier with respect to some
others.

The syntax of the OPERATION-PACKAGE information object class is as follows:

OPERATION-PACKAGE ::= CLASS
{

&Both OPERATION OPTIONAL,
&Consumer OPERATION OPTIONAL,
&Supplier OPERATION OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL

}
WITH SYNTAX
{

[OPERATIONS &Both]
[CONSUMER INVOKES&Supplier]
[SUPPLIER INVOKES &Consumer]
[ID &id]

}

The OPERATION-PACKAGE information object class replaces the earlier notation for
a collection of operations defined by the APPLICATION-SERVICE-ELEMENT
MACRO.

Some TC-User specifications (called Type II descriptions in this specification) still use
the macro notation to define ASEs. Therefore, for completeness, definition of the
APPLICATION-SERVICE-ELEMENT macro is provided below:
E-4 CORBA & TC Interworking, v1.0 January 2001

E

APPLICATION-SERVICE-ELEMENT MACRO ::=
BEGIN
TYPE NOTATION ::= SymmetricAse | ConsumerInvokes SupplierInvokes |
empty
VALUE NOTATION ::= value(VALUE OBJECT IDENTIFIER)
SymmetricAse ::= “OPERATIONS” “{“OperationList”}”
ConsumerInvokes ::= “CONSUMER INVOKES” “{“OperationList”}” | empty
SupplierInvokes ::= “SUPPLIER INVOKES” “{“OperationList”}” | empty
OperationList ::= Operation | OperationList “,” Operation
Operation ::= value(OPERATION)
END

Note – The user-defined (and governing) syntax for the OPERATION-PACKAGE
information object class has been chosen to reproduce the same syntax as that
produced by the APPLICATION-SERVICE-ELEMENT macro.

E.3 Connection Package

A pair of ROS-objects must have an association between them to serve as a context for
the invocation and performance of operations. If the association is dynamically
established, one of the ROS-objects plays the role of the initiator (of the association
set-up), while the other is the responder. ROS defines a connection package as two
special operations, called bind and unbind, that are available as an option to an
application designer to dynamically establish and release, respectively, the association
between two ROS-objects.

An information object class, CONNECTION-PACKAGE, describes the bind and unbind
operations used to establish/release the association, whether the responder can unbind
and if the attempt to unbind can fail.

Note – TC-Users do not, save in one instance, namely the IN CS2 SCF-SDF interface,
make use of the explicit bind and unbind mechanism.

E.4 Contract

In addition to the means by which an association is established between two ROS-
objects, the association is governed by an association contract, which is specified in
terms of a set of packages that collectively determine the operations that can be
invoked during the lifetime of the association.

The association contract, specified by the ASN.1 information object class CONTRACT
(see the definition below), is therefore the mutual agreement between a pair of ROS-
objects on:

• The connection package, if any, identified by the keyword CONNECTION, which is
used to establish and release the association.

• The operation packages, if any, identified by the keyword INITIATOR CONSUMER
OF, for which the association initiator assumes the role of the consumer.
January 2001 CORBA & TC Interworking, v1.0 E-5

E

• The operation packages, if any, identified by the keyword INITIATOR SUPPLIER
OF, for which the association initiator assumes the role of supplier.

• The packages, if any, identified by the keyword OPERATIONS OF, which are
symmetrical or where the initiator may assume either the consumer or the supplier
role.

• An identification, identified by the keyword ID, of this contract.

The syntax for the CONTRACT information object class is as follows:

CONTRACT ::= CLASS
{

&connection CONNECTION-PACKAGE OPTIONAL,
&OperationsOf OPERATION-PACKAGE OPTIONAL,
&InitiatorConsumerOf OPERATION-PACKAGE OPTIONAL,
&InitiatorSupplierOf OPERATION-PACKAGE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL

}
WITH SYNTAX
{

[CONNECTION &connection]
[OPERATIONS OF &OperationsOf]
[INITIATOR CONSUMER OF &InitiatorConsumerOf]
[RESPONDER CONSUMER OF &InitiatorSupplierOf]

[ID &id]
}

The CONTRACT information object class replaces the APPLICATION-CONTEXT
MACRO defined in an earlier version of the ROS and used in Type II descriptions.

The APPLICATION-CONTEXT macro definition is provided below:

APPLICATION-CONTEXT MACRO ::=
BEGIN
TYPE NOTATION ::= Symmetric | InitiatorConsumerOf ResponderConsum-
erOf | empty
VALUE NOTATION ::= value(VALUE OBJECT IDENTIFIER)
Symmetric ::= "OPERATIONS OF" "{" ASEList "}"
InitiatorConsumerOf ::= "INITIATOR CONSUMER OF" "{" ASEList "}" |
empty
ResponderConsumerOf ::= "RESPONDER CONSUMER OF" "{" ASEList "}" |
empty
ASEList ::= ASE | ASEList "," ASE
ASE ::= type - - shall reference an APPLICATION-SERVICE-ELEMENT
type.
END

Note – The user-defined (and governing) syntax for the CONTRACT information object
class has been chosen to reproduce the same syntax as that produced by the
APPLICATION-CONTEXT macro.
E-6 CORBA & TC Interworking, v1.0 January 2001

 Conformance F
F.1 General Conformance Requirements

All implementations claiming conformance to this specification shall:

a) provide a complete implementation of an interface specification (mandatory or
otherwise) for which conformance is claimed unless some part of the interface
specification is identified as optional.

b) conform to the mappings of ASN.1 to IDL, as specified in XoJIDM ST [4] and
extended by this document, where support of a TC-User protocol specified in ASN.1 is
also claimed. Note that the GDMO and SMI to IDL mappings also provided in
XoJIDM ST are not required for conformance to this specification.

F.1.1 Specific Conformance Requirements

An implementation can claim conformance to this specification at four conformance
points named, respectively:

• TC ASN.1 to IDL Complier;

• TC-User Facilities;

• TC/SS7 Stack Interface;

• SIOP;

Conformance to the TC/SS7 Stack interface shall be either in the Provider or User role,
or both.

All conformance points are minimal; conformant implementations can always
implement additional functionality.

TC ASN.1 to IDL Complier Conformance Point

Implementations claiming conformance shall:
January 2001 CORBA & TC Interworking, v1.0 F-1

F

1. correctly perform the mapping of ASN.1 to IDL, as specified in XoJIDM ST [4]
and extended by this document. Note that the GDMO and SMI to IDL mappings
also provided in XoJIDM ST are not required for conformance to this specification.

TC-User Facilities Conformance Point

Implementations claiming conformance shall:

1. correctly exercise the client behaviour of those interfaces specified in the
TcSignaling module required to perform its role as a TC-User, namely:

- TcSignaling::TcUser
- TcSignaling::TcUserGenericFactory

2. if the TC-User protocol being supported defines one or more TcUser interfaces,
correctly implement these interfaces and behaviours supported by the TC-User and
correctly exercise the client behaviour of the corresponding interfaces. TC-User
objects shall support name resolution of TC-User objects as defined in this
document either through a CosNaming::NamingContext interface or through a
TcSignalling::TcFactoryFinder interface. An appropriate implementation of
factory object(s) for any supported interfaces shall also be supplied. TC-User
objects shall correctly exercise the client behaviour of the interfaces
TcSignalling::GwAdmin, TcSignalling::TcRepository,
TcSignalling::ServiceFinder, if required

3. correctly implement the interfaces and behaviours supported by
TcSignalling::GwAdmin, TcSignalling::TcRepository,
TcSignalling::ServiceFinder, if required

TC/SS7 Stack Interface Conformance Point

(a) Provider Role

Implementations claiming conformance in the Provider role shall:

1. correctly exercise the client behaviour of those interfaces specified in the
TcSignaling module required to perform its role as a Provider, namely:

- TcSignaling::TcPduUser

2. correctly implement the interface and behaviours specified for the
TcSignalling::TcPduProvider object

3. correctly implement the interface and behaviours specified for the
TcSignalling::TcPduProviderFactory object

(b) User Role

Implementations claiming conformance in the User role shall:

1. correctly exercise the client behaviour of those interfaces specified in the
TcSignaling module required to perform its role as a User, namely:

- TcSignaling::TcPduProvider
F-2 CORBA & TC Interworking, v1.0 January 2001

F

- TcSignaling::TcPduProviderFactory

2. correctly implement the interface and behaviours specified for the
TcSignalling::TcPduUser object

SIOP Conformance Point

Implementations claiming conformance shall:

1. use the SCCP Inter-ORB Protocol (SIOP) for inter-ORB communication over the
Signaling System No. 7 SCCP class 1 protocol.
January 2001 CORBA & TC Interworking, v1.0 F-3

F

F-4 CORBA & TC Interworking, v1.0 January 2001

	Preface
	Acknowledgments

	Introduction
	1.1 Interworking Overview
	1.2 Architectural Overview
	1.2.1 Introduction
	1.2.2 TC/CORBA Application Interworking
	1.2.3 Interfaces
	1.2.4 GIOP Mapping onto Connectionless SCCP

	TC/CORBA Application Interworking
	2.1 Specification Translation
	2.1.1 Introduction
	2.1.2 A Note on the “versions” of ASN.1, ROS, and TC used in this Specification
	2.1.3 TC-User ASN.1 specification to OMG IDL Translation Algorithm
	2.1.4 Generation of TC Repository to hold ScopedName to ID Mapping
	2.1.5 Mapping of TC-User/ROS Constructs

	2.2 Interaction Translation
	2.2.1 Introduction
	2.2.2 The Base TC-User Interfaces
	2.2.3 Application Location and Association Initiation
	2.2.4 Association Maintenance
	2.2.5 Operation Invocation
	2.2.6 Asynchronous ROS/TC Operation Invocations
	2.2.7 Quality of Service in ROS/TC

	TC PDU-oriented Interfaces
	3.1 Introduction
	3.2 TC PDU-oriented Interfaces Framework
	3.3 Interface Definitions
	3.3.1 Common Data Types for the TC PDU-oriented Interfaces
	3.3.2 The TcPduProviderFactory Interface
	3.3.3 The TcPduProvider Interface
	3.3.4 The TcPduUserFactory Interface
	3.3.5 The TcPduUser Interface

	3.4 Integration of Interfaces
	3.4.1 Integration of TC PDU-oriented Interfaces and Interworking Interfaces
	3.4.2 Application Location and Dialog Initiation

	SCCP Inter-ORB Protocol (SIOP)
	4.1 Usage of SCCP Services
	4.2 SIOP IOR Profiles
	4.2.1 Multiple Component Profile
	4.2.2 The SCCP Contact Info Component
	4.2.3 The TAG_SCCP_IOP profile

	References
	Complete IDL
	Specification Translation Example
	Applicability to Non-IN Protocols
	Ros Definitions
	Conformance

