CORBA Scripting Language
Specification

Edited according to the IDLscript December 2000 RTF final report (ptc/2002-08-04)
Document Number: ptc/2002-08-05

Document Editor: Dr. Philippe Merle, INRIA & LIFL

Version1.81
Jre2004September 2002

Copyright © 1997-99 L aboratoire dOInformatique Fondamentale de Lille
Copyright © 2001 Object Management Group
Copyright © 1997-99 ObjectbOriented Concepts, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adoptersisdirected to the possibility that compliance with or adoption of OM G specifications may require use
of aninvention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be
required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

Theinformation contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on thispage. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THISMATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at al times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of thiswork covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and |1OP are trademarks of the Object Management Group, Inc.
X/Open is atrademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to

report any ambiguities, inconsi stencies, or inaccuracies they may find by completing the issue reporting form at
http: /imww.omg.org/library/issuerpt.htm.

Contents

Preface Vil
1 IDLSCript Overview.t 1-1
1.1 ScriptingLanguages.o 1-1
1.2 CORBA and ScriptingLanguages 1-2
1.3 ThelDLscriptLanguageccoiiivinennnn. 1-3
14 AnlIDLscriptExample.o 1-6
141 A Grid Distributed Application 1-6

1.4.2 Basic Functionalities 1-7

1.4.3 Dynamic CORBA Connection............. 1-8

1.4.4 Direct Accessto al OMG IDL Definitions ... 1-8

1.45 Connection to Any CORBA Object 1-9

146 OMG IDL Operations, Attributes, and Exceptions1-9

1.47 Proceduresand Modules. 1-10

1.4.8 Implementation of OMG IDL Interfaces 1-11

1.4.9 Creation of Stand-alone CORBA Servers. 1-14

1410 Conclusion................iiiiiino... 1-14

2. ThelDLscript LanguageCore.............covvvun... 2-1
21 OVEIVIBW . .ot 2-2
22 Lexica Conventions.c.oiiiinininnnnn.. 2-2
221 Tokens 2-3

222 Comments...........ciiiii i 2-3

223 ldentifiers........... 2-3

224 Keywords.iiiiiiiii. 2-4

225 Literals........ 2-4

September 2002 June 2001 CORBA <cripting Language i

Contents

2.3
24
2.5

2.6

2.7

2.8

29

2.10

i CORBA <cripting Language

IDLscriptGrammarcoiit it 2-6
SCriPLS .« oo 2-9
EXPressionst e 2-9
251 SyNtaX.........iiii 2-10
252 LiteraVaues.......................... 2-10
253 ldentifiers........... i 2-11
254 ArithmeticOperators 2-11
255 Relational Operators. 2-12
256 Logical Operators.ccvvvivennnn. 2-12
257 Procedural Call......................... 2-13
258 AttributeGetting. 2-13
259 MethodCal 2-13
2510 ArrayCreation..............ccvivinin.n. 2-14
2511 Dictionary Creation 2-14
2512 Indexed Getting 2-14
Variable and Attribute Management. 2-14
261 AsSSignments..............ciiiiiiiian. 2-15
26.2 TheDel Statement...................... 2-15
Objectsand TYPeS oo 2-15
2.7.1 EverythingisTypedObject 2-15
272 BasicVaueTypes...........coouvuiuun... 2-16
273 StringObjects. i 2-17
274 ArrayObjects. ... 2-19
2.75 DictionaryObjects...................... 2-21
2.7.6 Predefined Internal Procedures. 2-22
Control Flow Statements 2-23
281 SYNtaX.t 2-23
282 Thelf Statement....................... 2-23
283 TheWhile Statement 2-24
284 TheDoStatement....................... 2-24
285 TheFor Statement. 2-25
286 TheReturnStatement.................. 2-25
Procedures i 2-26
29.1 Declaration.......... 2-26
2.9.2 Formal Parameters and Default Values. 2-26
29.3 TheReturnedObject..................... 2-27
2.9.4 Loca and Global Variables. 2-27
295 ProcedureAliasing...................... 2-28
ClassES . . o 2-28
2101 Declaration.......... 2-28
September 2002 June 2001

Contents

2.10.2 A SimpleClassExample 2-29

2.10.3 A Single Class Inheritance Example 2-31

2.10.4 A Multiple Class Inheritance Example. 2-31

2.10.5 ClassandInstance Types................. 2-32

211 EXCEPLIONS . ..ottt 2-32
2.11.1 Internal Exceptions. 2-32

2112 UserExceptions.............coouvunn... 2-34

2.11.3 ExceptionHandling 2-35

212 Modules. 2-36
2121 Importation. 2-36

2122 Initidization. i 2-37

2.12.3 AccesstotheContent.................... 2-37

2.12.4 ModuleAliasing..............ccoiiu.. 2-37

2125 ModuleManagement 2-37

3. TheOMGIDL BInding...........coviiiiiiia... 31
31 OVEIVIEW ..o 3-2
3.2 Bindingfor BasicOMGIDL Types.................. 3-2
3.21 IDLscript Representation 3-3

322 BascOMGIDLVaues.................. 3-3

3.3 Bindingfor OMGIDL Module 34
331 OMGIDL Examples 3-4

3.3.2 IDLscript Representation 34

34 BindingforOMGIDL Constant 34
341 OMGIDL Examples 3-4

3.4.2 |DLscript Representation 3-5

35 Bindingfor OMGIDL Enum....................... 3-5
351 AnOMGIDLExample 3-5

3.5.2 IDLscript Representation 3-6

353 EnumValues..............., 3-6

36 Bindingfor OMGIDL Structure 3-6
361 OMGIDL Examples 3-7

3.6.2 IDLscript Representation 37

36.3 StructureValues........................ 3-8

364 StructureFields. 3-8

3.7 BindingforOMGIDL Union. 39
371 AnOMGIDLExample 3-9

3.7.2 |IDLscript Representation 39

373 UnionValues 3-9

374 UnionFields........................... 3-10

September 2002 June 2001 CORBA Scripting Language i

Contents

3.8

3.9

3.10

31

3.12

3.13

3.14

Bindingfor OMG IDL Typedef 311
381 OMGIDLExamples 311
3.8.2 IDLscript Representation 311
383 TypedefVaues......................... 311

Binding for OMG IDL Sequence. 3-12
391 OMGIDLExamples 3-12
3.9.2 IDLscript Representation 3-12
393 SeguenceVaues................iiiin. 3-13
394 Sequenceltems................ 3-13

Bindingfor OMGIDL Arraycoovu... 3-14
3101 OMGIDL Examples 3-14
3.10.2 IDLscript Representation 3-14
3103 ArrayVvalues. 3-15
3104 Arrayltems.......... ... i 3-15

Binding for OMG IDL Exception 3-16
3.11.1 IDLscript Representation 3-16
3.11.2 ExceptionHandling 3-16
3.11.3 System Exception Types. 3-17
3.11.4 System ExceptionValues................. 3-18
3.11.5 User ExceptionTypes. 3-19
3.11.6 User ExceptionValues................... 3-20

Binding for OMG IDL Interface 3-21
3121 OMGIDLExamples 321
3.12.2 IDLscript Representation. 3-21
3.12.3 Object References. 3-22
3.12.4 Accessto OMG IDL Attributes 3-23
3.12.5 Invocation of OMG IDL Operations. 3-23
3.12.6 Invocation of One-way Operations. 3-24
3.12.7 Operation Invocation using the Deferred Mode 3-24

Implementing OMG IDL Interfaces. 3-25
3.13.1 ClassExamples......................... 3-26
3.13.2 OMGIDL Attributes 3-26
3.13.3 OMG IDL Operations. 3-26
3.13.4 Object Registration. 3-27
3.13.5 Object Adapter Run-Time Exceptions 3-28

Bindingfor OMGIDL Value....................... 3-29
3141 OMGIDLExamples 3-29
3.14.2 IDLscript Representation................. 3-29
3143 VaueCreation, 3-30
3144 NullValue........... 3-31

CORBA <cripting Language September 2002 June 2001

Contents

September 2002 June200%

3.145 VaueManipulation 3-31

3.15 Implementing Concrete OMG IDL Values. 3-32
3151 Example. 3-33

3152 StateMembers.................... ... 3-33

3153 Initidizers....... 3-33

3154 Operaionsciiiii i 3-34

3.15.5 Factory Registration. 3-34

3.15.6 CustomValues............. ..., 3-34

3.15.7 VauesasObject References. 3-35

3.16 Bindingfor OMGIDL TypeCode 3-35
317 Bindingfor OMGIDLANY ... 3-38
3.18 TheGloba CORBA Objectc.covvn... 3-40
3.18.1 The CORBA::Object Object............... 3-40

3.18.2 The CORBA::ORB Object................ 3-41

INdeX. . ..o 1

CORBA <cripting Language Y

Contents

vi

CORBA cripting Language

September 2002 June 2001

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) isan international organization supported by
several hundred members, including information system vendors, software devel opers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the establish-
ment of industry guidelines and object management specifications to provide a common
framework for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
Conformance to these specifications will make it possible to devel op a heterogeneous
applications environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

September 2002 June 2001

The Common Object Request Broker Architecture (CORBA), isthe Object Management
GroupOs answer to the need for interoperability among the rapidly proliferating number
of hardware and software products available today. Simply stated, CORBA allows appli-
cations to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

CORBA <cripting Language, v1.1 vii

About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping information
for the following languages:

¥ Ada

¥C

¥ C++

¥ COBOL

¥ IDL Script
¥ |DL to Java
¥ Javato IDL
¥ Python

¥ Smalltalk

Each language is described in a separate stand-alone volume.

Alignment with CORBA

The following table lists each language mapping and the version of CORBA that this lan-
guage mapping is aligned with.

L anguage M apping Aligned with CORBA
version
Ada CORBA 2.0
C CORBA 2.1
C++ CORBA 2.3
COBOL CORBA 2.1
IDL to Java CORBA 2.3
Javato IDL CORBA 2.3
Lisp CORBA 2.3
IDL Script CORBA 2.3
Smalltalk CORBA 2.0

Associated OMG Documents

The CORBA documentation is organized as follows:

¥ Object Management Architecture Guide defines the OMGOs technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It defines the umbrella architecture for the OMG standards. It also
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

viii CORBA <cripting Language, v1.1 September 2002 June 2004

¥ CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

¥ CORBA Services: Common Object Services Soecification contains specifications for
OMGOs Object Services.

¥ CORBA Common Facilities: contains services that many applications may share,
but which are not as fundamental as the Object Services.

¥ CORBA domain specifications are comprised of stand-alone documents for each
specification; however, they are listed under the domain headings, such as
Telecoms, Finance, Med, etc.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain OMG publications, contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Definition of CORBA Compliance

September 2002 June200%

The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users arenOt required to implement these
pointsif they are unnecessary at their site, but if implemented, they must adhere to the
CORBA specifications to be called CORBA -compliant. For instance, if avendor supports
C++, their ORB must comply with the OMG IDL to C++ binding specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed information
about | nterworking compliance, refer to the Common Object Request Broker: Architecture
and Secification, Interworking Architecture chapter.

As described in the OMA Guide, the OMGOs Core Object Model consists of a core and
components. Likewise, the body of CORBA specificationsis divided into core and compo-
nent-like specifications. The structure of this manual reflects that division.

The CORBA specifications are divided into these volumes:

1. The Common Object Request Broker: Architecture and Specification, which
includes the following chapters:

¥ CORBA Core, as specified in Chapters 1-11
¥ CORBA Interoper ability, as specified in Chapters 12-16

CORBA Scripting Language: Definition of CORBA Compliance iX

¥ CORBA Interworking, as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

¥ IDL Scripting Language

¥ Mapping of OMG IDL to the Ada Programming L anguage

¥ Mapping of OMG IDL to the C Programming L anguage

¥ Mapping of OMG IDL to the C++ Programming L anguage

¥ Mapping of OMG IDL to the COBOL Programming Language
¥ Mapping of OMG IDL to the Java Programming L anguage

¥ Mapping of Java Programming Language to OMG/IDL

¥ Mapping of OMG IDL to the Smalltalk Programming L anguage

Acknowledgments
The following companies submitted and/or supported parts of this specification:
¥ AIRSYS ATM
¥ Alcatel
¥ Commissariat ~ |OEnergie Atomique
¥ INRIA

¥ Ingtitut National des TZIZcommunications

¥ Laboratoire dOInformatique Fondamentale de Lille
¥ ObjectbOriented Concepts, Inc.

¥ Silicomp Ingenierie

¥ Spacebel

¥ UniversitZ de Nantes - LRSG

X CORBA <cripting Language, v1.1 September 2002 June 2001

September 2002 June 2002

| DLscript Overview

Note B Text in Red is from the IDLscript December 2000 RTF final report (ptc/2002-

08-04).

Note B |ssue 4502

Note B The CORBA Scripting Language specification is aligned with CORBA version

23 3.0.

Contents

This chapter contains the following sections.

Section Title Page
OScripting LanguagesO 1-2
OCORBA and Scripting LanguagesO 1-2
OThe IDLscript LanguageO 1-3
OAnN IDLscript ExampleO 1-6

CORBA <cripting Language, v1.1

1-1

1.1 Scripting Languages

A scripting language simplifies the access and the use of computer system resources
like files and processes in the context of an operating system shell, relational database
query requests in the context of SQL, and graphic widgets in the context of Tcl/Tk.
These resources are used without the need to write complex programs, hence the
following benefits:

¥ Simplicity of use: A script is often easier to write and more concise (no variable
declarations, dynamic typing, garbage collector) than its equivalent writtenin a
standard programming language. The simplicity of scripting languages allows users,
even novices, to develop small scripts that meet their needs.

¥ Easy to learn: The OteachabilityO of a scripting language is often more simple
than a Otraditional O language like C++. The training time is shorter for a scripting
language.

¥ Enhanced productivity: This ease of use makes development easier and more
flexible, as the user can prototype scripts in interactive mode, then use them in
batch processing mode. This also encourages the exchange of scripts between users:
they can adapt them to meet their individual needs.

¥ Reduced cost: Si mplicity and productivity respectively mean reduced training
costs for users and reduced operating costs in conventional computer environments.

However this previous list is not exhaustive and does not capture all scripting benefits.

1.2 CORBA and <cripting Languages

These benefits can be applied to a CORBA environment by providing a binding
between scripting languages and OMG IDL. This considerably improves the ability to
make use of CORBA distributed objects during all of the development,
implementation, and execution steps:

¥ Des gn and prototyping: During the design step of a distributed CORBA
application, two important problems may occur: the choice of OMG IDL interfaces
and the choice of object distribution. Currently there is no miraculous solution to
these two problems, only experience and know-how allow selecting the OrightO
choices. Under these conditions it is necessary to be able to prototype quickly in
order to evaluate fundamental choices. But prototyping in a compiled language
such as C++ implies a complex and costly development cycle, hence the advantage
of using an interpreted language with a short development cycle in order to develop
functional models.

¥ Development and testing: During the development of an object-oriented
client/server application using CORBA, developers must write a number of pieces
of programs in order to check the validity and the operation correctness of their
CORBA objects. These test codes are hard to debug and write due to the complexity
of mapping rules. In addition, they become useless when the components are
correctly implemented. In this context, a command interpreter saves a lot of time
and effort. It becomes possible to immediately and interactively test object

CORBA <cripting Language, v1.1 September 2002 June 2001

implementations during development. In addition, object test codes can be
generated automatically from the Interface Repository and data on interface
semantics, resulting in automated testing.

¥ Configuration and administration: Most of the services and object frameworks
require a number of client programs to configure, administrate, and connect the
objects (such as the Naming Service). This large number of client programs often
depends on the number of operations described in the objectsO OMG IDL
interfaces. A dynamic scripting language then becomes an excellent alternative for
supporting the multitude of programs as they can be written using a few
instructions and evolve rapidly to meet the needs of service administrators.

¥ Using components: Experienced users can design scripts themselves to meet their
own specific needs. In this way, using components available from the ORB, they
can extract relevant data without the need to refer to ORB specialists.

¥ Assembling software components: Scripts can be used to assemble existing
components in order to create new ones. The new components encapsulate all of the
functions of connected components and provide new functions. Therefore we obtain
akind of Osoftware glueO to build new objects by aggregating existing objects. In
addition, these new components can be used from CORBA applications just like
ordinary objects.

¥ Evolution: If the components evolve or if new ones appear, using scripts means
that it is possible to discover them dynamically at execution time and therefore to
use them as soon as they become available. Minor OMG IDL maodifications do not
necessarily require rewriting scripts.

Therefore a scripting language can offer a number of services during the life cycle of
an object-oriented distributed service. The various uses imply that the scripting
language provides the necessary mechanisms for discovering, invoking, and navigating
among CORBA objects and for implementing objects using scripts. Navigating in and
using large graphs of disparate objects imply dynamically acquiring the stubs of the
types encountered as the scripting language cannot know ahead of time all of the OMG
IDL types.

1.3 ThelDLscript Language

September 2002 June200%

IDLscript is a new general purpose object-oriented scripting language dedicated to
CORBA that allows any user to develop their activities by simply and interactively
accessing objects available on the ORB. Therefore the user is completely free to
operate, administrate, configure, connect, create, and delete distributed objects on the
ORB.

The binding between CORBA and IDLscript is achieved through the DIl and the
Interface Repository. The DIl is used to construct requests at runtime and the IFR is
used to check parameters types of requests (also at runtime). Moreover, using the DS,
IDLscript allows one to implement OMG IDL interfaces through scripted objects.
Figure 1-1 on page 1-4 illustrates the IDLscript architecture.

CORBA Scripting Language: The IDLscript Language 1-3

1-4

Interactive

Batch Scripts

Usefs\ /

| DL script

Static
IFR Stubs

DIl

DSl

OMG IDL Files

Interface
Repository

I1OP ORB

0 A

Any CORBA Objects

9

Figure1-1 The IDLscript Architecture

The main features of IDLscript described in Chapters 2 and 3 include:

¥ Interpretation: The IDLscript engine is a scripting interpreter. It provides three
execution modes: the interactive one, the batch one, and the embedded one. In the
first mode, users provide their scripts interactively. In the second one, the
interpreter loads and executes file scripts allowing batch processing or server
implementations. In the last one, the interpreter can be embedded in another
program and then interprets strings as scripts.

¥ General purpose: IDLscript is atrue high level language comprising programming
concepts such as structured procedures, modularity, and object-oriented
programming (classes/instances, multiple inheritance, and polymorphism). The
IDLscript language provides various syntactical constructions such as basic values
and types (integer, double, boolean, character, string, array, and dictionary),

CORBA <cripting Language, v1.1

September 2002 June 2001

1

expressions (arithmetic, relational, and logical operators), assignments, control flow
statements, procedures, classes, modern exception handling (throw/try/catch/finally)
and modules (downloadable scripts).

¥ Object-oriented: All scripting values are encapsulated by internal engine objects.
These objects provide some attributes and methods according to their type. The
dotted notation is used to access/modify object attributes (i.e., variable =
object.attribute, object.attribute = value) and invoke object methods (i.e.,
object.method(parameters)). IDLscript also allows the definition of scripting
classes.

¥ Dynamic typing: A scripting value/object is the instance of one type. Types are
also objects. A type can be a subtype of severa other ones. Coercion rules are
defined between types. This defines a type conformity tree used for runtime type
checking. For example, method parameter type controls and automatic operand
coercions (e.g., 10 + 3.14). Moreover, scripts can dynamically access to the type
conformity tree to check explicitly the type of an object (i.e., any object hasa _type
attribute and an _is_a method).

¥ Reflexivity: The IDLscript engine allows the introspection of any scripting object
(values and types). The introspection encompasses object displaying and dynamic
attribute, method and type discovering.

¥ Adaptability: IDLscript is a powerful scripting framework which can be adapted to
meet users needs. This framework can be extended by new internal classes which
implement new object types. For example, an extension allows scripts to access to
any Java class or object through the Java Virtual Machine.

¥ Dynamic CORBA binding: The integration between IDLscript and the ORB is
fully dynamic: there is no stubs/skeletons generation. The IDLscript engine
discovers OMG IDL specifications through the Interface Repository. When scripts
invoke CORBA objects, the Dynamic Invocation Interface and the Dynamic
Skeleton Interface are internally used to send and receive requests and the IFR is
used to check parameter types at runtime. But users never use directly these
CORBA dynamic mechanisms: they are totally hidden by the scripting engine.

¥ Complete OMG IDL binding: All OMG IDL concepts such as basic types,
modules, constants, enumerations, structures, unions, typedefs, sequences, arrays,
interfaces, exceptions, TypeCode, and Any types are directly and transparently
available to scripts. The user must only give the IDL scoped name of accessed IDL
specifications. These IDL concepts are reflected by scripting objects which are
implemented by the scripting engine. Reflexivity is available on all these objects.
Scripts can display any IDL values or definitions. Users can interactively discover
the content of an IDL module or interface, the signature (parameters and
exceptions) of an IDL operation, the mode and type of an IDL attribute, or the
definition of a complex IDL type (enum, array, sequence, struct, union, and
typedef).

¥ Object binding: To access and invoke CORBA objects, users must know their
CORBA object references. IDLscript proposes several ways to obtain these
references. Users can specify a known object network address described with the
OMGOs IOR format or with an ORB-specific URL format (i.e., IP host, IP port,
and alocal implementation object name). Moreover, standard CORBA Name and/or

| September 2002 June 2001 CORBA Scripting Language: The IDLscript Language 1-5

Trader services can be dynamically used to obtain needed usersO object references.
To obtain these services, the standard ORB operations are available. Obtained
object references are automatically narrowed to the most derived IDL interfaces.

¥ Dynamic invocation: IDLscript allows scripts to invoke IDL operations, access
IDL attributes of remote CORBA objects/components. All type checks and
coercions/conversions are automatically done by the interpreter. Parameter
coercions are automatically done according to IDL signatures. IDLscript provides a
simple Java-like exception mechanism that allows one to catch usersO defined IDL
exceptions and a so standard CORBA system exceptions. CORBA requests are sent
by the Dynamic Invocation Interface.

¥ Dynamic implementation: CORBA objects (and components and listeners) are
implemented by scripting classes. Incoming requests are intercepted by the
Dynamic Skeleton Interface and are forwarded to scripting objects. The scripting
engine automatically converts incoming/outcoming IDL values to/from scripting
objects respectively.

1.4 Anl|DLscript Example

This section presents a simple IDLscript example: a distributed grid application. This
example aims at presenting the usefulness and simplicity of the new IDLscript
language: access to any OMG IDL specifications, connection to any CORBA objects,
access to OMG IDL attributes, invocation of OMG IDL operations, handling of OMG
IDL exceptions, and finally implementation of CORBA objects and servers.

1.4.1 A Grid Distributed Application

As this example is an illustration of IDLscript, the object model of this application is
deliberately simplified. This application is composed of a Factory OMG IDL
interface that allows the creation of Grid objects:

module GridService {
typedef double Value;
struct Coord { unsigned short x, y; };
exception InvalidCoord { Coord pos; };

interface Grid {
readonly attribute Coord dimension;
void set (in Coord pos, in Value val) raises (InvalidCoord);
Value get (in Coord pos) raises (InvalidCoord);
void destroy ();

h

Note B |ssue 4500

interface Factory {
Grid create_grid (in Coord dim, in Value init_value);

h

CORBA <cripting Language, v1.1 September 2002 June 2001

September 2002 June200%

h

A grid is a matrix of values (the Value type definition). The Coord structure defines
matrix positions and dimensions. The InvalidCoord exception handles out of matrix
bounds. The Grid interface provides the dimension attribute which returns the matrix
dimension and operations to get and set values. The destroy operation allows clients
to destroy a Grid object. The Factory interface providesthe create_grid operation to
create new grids. This operation creates a grid with the related dimension and
initializes each item of the matrix. All OMG IDL type and interface definitions of this
application are defined into the GridService OMG IDL module.

v serva™

Scripts GridService.idl | | CosNaming.idl Scripts
Mrs Smith Mr Doe A Name Server A Grid Server
IDLscript IDLscript Interface f} B O
Interpreter Interpreter Repository @)

ORB based on Internet (I110P)

Figure1-2 The Distributed Grid Application

Figure 1-2 shows the runtime distribution of this application. The Grid server contains
a GridService::Factory CORBA object and the set of grid objects created by this
factory. This server is composed of a set of IDLscript scripts that implement the OMG
IDL interfaces of the GridService module and the server main function. The factory
object reference is registered into the standard CORBA Name Service to alow client
applications to retrieve it. In this example, the Interface Repository only contains the
OMG IDL specifications of used CORBA objects, here the GridService.idl and
CosNaming.idl OMG IDL files. Through this type information, an IDL script
interpreter can have access to all CosNaming::NamingContext,
GridService::Factory, and GridService::Grid objects connected to the ORB.
Finally, Mrs. Smith and Mr. Doe, end-users or CORBA specialists, can interactively
act on the available CORBA objects thanks to the IDLscript interpreter. Moreover,
they can share user scripts that provide advanced processes on CORBA objects.

CORBA Scripting Language: An IDLscript Example 1-7

1.4.2 Basic Functionalities

To perform the usersO activities presented in Section 1.2, OCORBA and Scripting
Languages,O on page 1-2, IDLscript is a true high level language comprising
programming concepts such as structured procedures, modularity, and object-
orientation (classes/instances, multiple inheritance, and polymorphism). IDLscript is a
script interpreter shell:

uni x_pront > cssh
CorbaScript 1.3.1 for ORBacus 3.1.3 for C++

Copyright 1996-99 LIFL, France
>>>

uni x_promt > cssh a_script_file.cs

IDLscript can be used from the command line (interactively) or in batch processing
mode using script files. A script isaset of instructions such as; display avalue, call-up
an operation, assign a variable, control flows, and handle exceptions. This language
supports a few basic data types wired into the interpreter: integers, strings, arrays,
associate tables, basic OMG IDL, data types, etc. The conformity of expressions is
checked dynamically at execution time using a dynamic typing mechanism. As
IDLscript is object-oriented, all values are objects. The dotted notation is used to
express operation call-up, attributes access, or modification. Moreover, DL script
provides standard algorithm constructions (variables, tests, loops) used to express
complex scripts.

1.4.3 Dynamic CORBA Connection

When a user invokes a CORBA object, the interpreter checks that the parameter types
are conformed to the OMG IDL specifications contained in the Interface Repository.
Invocations are performed via the Dynamic Invocation Interface. In addition, OMG
IDL interfaces can be implemented using IDLscript classes. The IDLscript interpreter
then uses the Dynamic Skeleton Interface to intercept and decode the requests sent to
the objects implemented by scripts.

1.4.4 Direct Accessto all OMG IDL Definitions

Through IDLscript, users can interactively and transparently access any OMG IDL
specifications contained in the Interface Repository. This allows one to discover OMG
IDL interfaces, operation parameters and exceptions, the fields in a structure, or the
content of a module. The user must only give the scoped name of accessed OMG IDL
specifications as presented here:

>>> ridService.&id
< OMGIDL interface GidService::Gid {
attribute readonly struct Coord di nension;
void set (in struct Coord pos, in Value val)
rai ses(GidService::InvalidCoord);
Val ue get (in struct Coord pos)

CORBA <cripting Language, v1.1 September 2002 June 2001

rai ses(GidService::InvalidCoord);
voi d destroy ();

},o>

>>> i dService. Coord

< OMG I DL struct Coord {
unsi gned short x;
unsi gned short v;

}o>

IDLscript is transparently connected to the Interface Repository and accesses any
OMG IDL definitions loaded into the Interface Repository as shown in Figure 1-2 on
page 1-7.

1.4.5 Connection to any CORBA Object

September 2002 June200%

Note B |ssue 4501

To access and invoke CORBA objects, users must know their CORBA object
references. IDLscript proposes several ways to obtain these references. Users can
specify a known object network address described with the OMGOs IOR format or
with thetntereperable Name-Serviee CORBA Object URL formats (kee.g.,
H-oploc//corbal oc and H-opnane://cor banane). Moreover, standard
CORBA Name and/or Trader services can be used to obtain usersO needed object
references. To obtain these services, the list_initial_services and
resolve_initial_references operations from the CORBA::ORB interface are
directly available. Consider the following examples:

factory
factory

GridService. Factory("1 OR 00000000000001c4...")
GidService. Factory(

"corbal oc:iiop:an_I P_host_name: 5000/ factory")
CORBA. ORB. list_initial_services ()

["InterfaceRepository", "NaneService", "TradingService",...]
NS = CORBA. ORB.resolve_initial _references("NaneService")
factory = NS.resolve ([["aGridService", ""]1 1)

In the last way, the user does not need to specify the type of the returned object. The
IDLscript interpreter refers to the Interface Repository to determine the interface for
the accessed objects and then checks the typing of invocations. When a CORBA
request returns an object reference, IDL script automatically creates an object reference
for the dynamic type of the returned object. If the interpreter does not yet know the
G i dServi ce. Fact ory type, it automatically loads its definition into its local
Interface Repository cache. Therefore, users can navigate through the naming service
graph and discover at execution time the type of visited objects.

CORBA <cripting Language: An IDLscript Example 1-9

1-10

1.4.6 OMG IDL Operations, Attributes, and Exceptions

Asillustrated in the resolve operation invocation, the user does not have to specify
the parameter types sent to the operations as IDLscript automatically performs the
conversions. The[["aGri dService", ""]] vaueisan array that contains an
array with two items. This value is automatically converted into a
CosNaming::Name, which is an OMG IDL sequence of
CosNaming::NameComponent structures containing two OMG IDL string fields
and then it is forwarded to the resolve operation.

>>> grid = factory.create_grid ([20,5], 1) # or nore pre-
cisely, (GidService.Coord(20,5), GidService.Value(l))
>>> grid. di mensi on
Gri dService:: Coord(20,5)
>>> try {
grid.set([100, 100], 10)
} catch (GidService::InvalidCoord e) {
println ("GidService::InvalidCoord raises on ", e.pos)

}

Note B |ssue 4500

G idService::lnvalidCoord raises on
GridService:: Coord(100, 100)

The previous example illustrates the simplicity of IDLscript to invoke OMG IDL
operations, access OMG IDL attributes of remote CORBA objects. All type checks and
conversions are automatically done by the interpreter. Moreover, IDLscript provides a
simple Java-like exception mechanism that allows scripts to catch user defined OMG
IDL exceptions and also standard CORBA system exceptions.

1.4.7 Procedures and Modules

Naturally, these previous scripts are very rudimentary but IDLscript allows the storage
of more ambitious scripts using procedures and modules. The procedures are used to
capture usersO reusable scripts. The returned result and procedure parameters are not
typed. These procedures can be grouped in downloadable modules.

The following script fragment is part of the gri dTool s module. This module
contains a procedure (Di spl ayGri d) that iterates on a grid to obtain matrix values
by calling the get OMG IDL operation and display them. The user can therefore
download the gri dTool s module to access this procedure and then execute it on the
grid object previously obtained. Declarations contained in an IDLscript module are
accessible with the dotted notation.

File: gridTools.cs
proc DisplayGid (grid)
{
dim= grid. di nensi on
h =dimy

CORBA <cripting Language, v1.1 September 2002 June 2001

w = di mx
println ("The dinensions of this grid are ", w, "*", h)
iterate to get each values of the grid
for i in range (0, h-1) {
for j in range (0, w1) {
print (" ', grid.get([i,]j]))
}

}

printin ()
}

>>> jnport gridTools
>>> gridTool s. Di spl ayGrid(grid)
The di nensions of this grid are 20*5

11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111

In this way a number of users' activities can be implemented without the need for the
user to be a CORBA expert. It is still necessary to know the IDLscript language and
the object OMG IDL interfaces to access them. But writing IDLscript scripts appears
far easier than writing CORBA programs in a compiled language. Users can rapidly
meet their specific needs and exchange scripts when their activities have points in
common.

1.4.8 Implementation of OMG IDL Interfaces

A script handles local values and remote CORBA objects, acting just like a pure
CORBA client program. Another IDLscript functionality supports the implementation
of new object types (local or CORBA ones). It integrates object concepts such as
classes, multiple inheritance, and polymorphism. Instance methods are grouped into
classes and must take an explicit first parameter that refers to the receiver instance.
However there is no enforced convention name for this parameter: users can choose
any name like self, this, or anything else. Through this instance reference, the method
codes can access instance attributes. Instance attributes are declared at their first
assignment.

File: grid_inpl.cs
class GRID {
CRID instance initialization
proc __GRID _(self, dim init_value)
{ # This GRID instance (self) is a
GridService.Gid object
CORBA. ORB. connect (self, GridService.Gid)
set the CRID instance attributes
self.dim= dim
self.values = create_matrix (dim init_val ue)

September 2002 June 2001 CORBA Scripting Language: An IDLscript Example 1-11

1-12

Creation of a matrix
proc create_matrix (dim init_value)

{

w=di m X
I =dimy
val ues = array.create(w
for i in range(0,w1) {
tnp = array.create(l)
for j in range(0,1-1) { tnp[j] = init_value }
val ues[i] = tnp
}
return val ues
}

Inplementation of the GidService::Gid interface

inplements the readonly 'dinension' att
proc _get dinension (self)

{
}

inplements the 'set' operation
proc set (self, pos, val)

return self.dim

{
try {
sel f.val ues[pos. y][pos. x] = val
} catch (Badl ndex exc) {
throw GridService. | nvalidCoord(pos)
}
}

inplenments the 'get' operation
proc get (self, pos)

{
try {
return sel f.val ues[pos. y][pos. X]
} catch (Badl ndex exc) {
throw GridService. | nvalidCoord(pos)
}
}

inplenments the 'destroy' operation
proc destroy (self)

{
}

CORBA. ORB. di sconnect (self)

cl ass FACTORY

proc _ FACTORY_ _ (self)

CORBA <cripting Language, v1.1

ri bute

September 2002 June 2001

September 2002 June200%

{
}

CORBA. ORB. connect (self, GidService. Factory)

the 'create grid operation
proc create_grid (self, dim init_value)
{

grid = GRID(dim init_val ue)

return grid._this

}

The previous code presents an implementation of the Grid service. The GRI D and
FACTORY classes implement respectively the GridService::Grid and
GridService::Factory interfaces. IDLscript enforces a convention name for the
instance initialization method (__ GRID __ and __ FACTORY__). The OMG IDL
operations are implemented by instance methods with the same name. The OMG IDL
attributes are also implemented by instance methods called by the attribute name
prefixed by _get _ for the attribute getting and by the _set _ prefix for the attribute
setting.

The CORBA. ORB symbol refers to the IDLscript reflection of the ORB object. This
object provides operations to connect/disconnect class instances to/from a CORBA
object reference. The connect operation allows one to associate an |DL script
instance to a new CORBA object: the first parameter refers to the instance and the
second one refers to the OMG IDL interface that the instance implements. A third
optional parameter allows user to explicitly set the key. The di sconnect operation
cuts this association, then all its CORBA object references become invalid.

CORBA <cripting Language: An IDLscript Example 1-13

1-14

FACTORY
Instance CORBA.ORB

Generic

DSl Object
GridService::Factory
i instance |

interface

Static
DS IFR Stubs

I10P ORB

Figure1-3 The Grid Server Objects Architecture

Figure 1-3 presents the DL script objects architecture after the creation of the
FACTORY instance. The GridService::Factory object isin the local cache of the
OMG IDL interface. This cache communicates with the Interface Repository to obtain
OMG IDL type information. The generic DSI object is connected to the ORB to
receive reguests for the FACTORY instance. Received reguests are checked thanks to
the local cache (i nt er f ace) and if they are correct, then they are forwarded to the
FACTORY instance (i nst ance). This instance implements the OMG IDL operations
and attributes of the GridService::Factory interface. The _t hi s instance attribute
refers to the generic DSI object. It is used when the object must give its CORBA
object reference.

This approach is similar to the TIE approach used in C++ and Java mappings. This
mechanism of request delegation allows one to provide several DSI object references
for the same IDL script instance: several OMG IDL interfaces could be implemented by
a single IDLscript instance.

1.4.9 Creation of Sand-alone CORBA Servers

In this way a script can become a CORBA object server accessible to all CORBA
programs and therefore to other scripts. The following code shows the Grid server
implementation:

Load the GridService inplementation “grid_inpl.cs' file
i mport grid_inpl

CORBA <cripting Language, v1.1 September 2002 June 2001

Create a FACTORY i nstance
factory = grid_inmpl.FACTORY()

Qbtain the Nanme Service reference
NS = CORBA. ORB.resolve_initial _references("NaneService")

Register the server object into the Name Service
NS.bind ([["aGidService", ""]], factory._this)

Start the main loop to wait for ORB requests
CORBA. CRB. run ()

Unregister the server object fromthe Nane Service
NS. unbind ([["aGidService", ""]])

This server script imports the previous Grid implementation module containing the
GRI D and FACTORY classes. It creates then a FACTORY instance and registers it into
the standard CORBA Name service with the bind operation. Then this script starts a
main loop to wait for ORB requests (CORBA. ORB. r un). Findly, it unregisters the
factory object from the Name Service (unbind operation) when the server is stopped
or shutdowns.

1.4.10 Conclusion

This chapter has presented a quick tour of the IDLscript functionalities. IDLscript
simultaneously offers enough syntax constructions and semantic entities such as
expressions, numerous types of basic data, all of the types expressed in OMG IDL, the
modules, the procedures, the classes and the instances in order to quickly develop
client programs and CORBA object servers. In addition, the dynamic loading of
modules is used to structure scripts into easily reusable entities. These entities are used
to quickly write sets of procedures to use an application and reuse them to build a
number of client applications, meeting the specific needs of each developer and each
user in a CORBA environment.

September 2002 June 2001 CORBA Scripting Language: An IDLscript Example 1-15

1-16 CORBA <cripting Language, v1.1 September 2002 June 2004

ThelDLscript LanguageCore

Note B Text in Red is from the IDLscript December 2000 RTF final report (ptc/2002-

08-04).

This chapter describes the IDLscript core language including lexical conventions,

syntactical and semantic constructs.

Contents

This chapter contains the following sections.

Section Title Page
OOverviewO 2-2
OLexical ConventionsO 2-2
OIDLscript GrammarO 2-6
OScriptsO 2-9
OExpressionsO 2-9
OVariable and Attribute ManagementO 2-14
OObjects and TypesO 2-15
OControl Flow StatementsO 2-23
OProceduresO 2-26
OClassesO 2-28
OExceptionsO 2-32
OModulesO 2-36

| September 2002 June 2002 CORBA <cripting Language, v1.1

2-1

2-2

2.1 Overview

IDLscript is asimple and powerful general purpose object-oriented scripting language.
All the IDLscript entities are objects with attributes and methods. Moreover, DL script
is dedicated to CORBA environments allowing users to write scripts to easily access to
CORBA objects. Scripts can aso implement CORBA objects (e.g., callback objects)
via classes. However the information presented herein is fully CORBA and OMG IDL
independent. The binding between IDLscript and CORBA is presented in the next
chapter.

The IDLscript lexical rules are very similar to OMG IDL rules, although keywords and
punctuation characters are different to support programming concepts. The description
of IDLscriptOs lexical conventions is presented in Section 2.2, OLexica Conventions.

The IDLscript grammar provides a small and "easy-to-learn” set of constructs to define
scripts, expressions, variables, control flow statements, procedures, classes, exceptions,
and modules. The grammar is described below in Section 2.3, OIDL script Grammar,O
on page 2-6.

The IDLscript core concepts are respectively presented in Section 2.4, OScripts,O on
page 2-9, Section 2.5, OExpressions,O on page 2-9, Section 2.7, OObjects and Types,0O
on page 2-15, Section 2.8, OControl Flow Statements,O on page 2-23, Section 2.9,
OProcedures,O on page 2-26, Section 2.10, OClasses,O on page 2-28, Section 2.11,
OExceptions,O on page 2-32, and Section 2.12, OModules,O on page 2-36.

Scripts can be interactively provided by users or stored into source files with the 0.isO
extension.

The description of IDLscript grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 2-1 lists the symbols used in this format
and their meaning.

Table2-1 IDLscript Symbols and Meanings

Symbol M eaning

n= Is defined to be

| Alternatively

<text> Nonterminal

"text" Literal

* The preceding syntactic unit can be repeated zero or more times
+ The preceding syntactic unit can be repeated one or more times

{3 The enclosed syntactic units are grouped as a single syntactic unit
1] The enclosed unit is optional -- may occur zero or one time

2.2 Lexical Conventions

This section® presents the lexical conventions of IDLscript. It defines tokens in an
IDLscript script and describes comments, identifiers, keywords, and literals such as
integer, floating point, and character constants and string literals.

CORBA <cripting Language, v1.1 September 2002 June 2001

Note B |ssue 4502

AsOMG IDL, IDLscript usesthe I1SO Latin-1 (8859.1) character set. This character set
is divided into aphabetic characters (letters), digits, graphic characters, the space
(blank) character and formatting characters (for more information, see Table 3-2, Table
3-3, Table 3-4, and Table 3-5 in the CORBA 2:3-3.0 specification).

2.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments, as
described below, are ignored except as they serve to separate tokens. Some white space
is required to separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

2.2.2 Comments

The sharp character (#) starts a comment, which terminates at the end of the line on
which it occurs. Comments may contain alphabetic, digit, graphic, space, horizontal
tab, vertical tab, and form feed characters. The following example illustrates
comments:

>>> # This is a conmrent

2.2.3 ldentifiers

September 2002 June200%

Identifiers refer to names of variables, types, procedures, classes, and modules. An
identifier is an arbitrarily long sequence of aphabetic, digit, and underscore (" ")
characters. The first character must be an alphabetic or underscore character. All
characters are significant. The following examples are valid identifiers:

identifier identifierl23 an_identifier An_ldentifier

Note that IDLscript is a case sensitive language: an_i denti fi er and
An_l denti fier aretwo different identifiers.

1.This section is an adaptation of The CORBA 2-3-3.0 Specification, Chapter 3, already an
adaptation of Ellis, Margaret A. and Bjarne Stroustrup, The Annoted C++ Reference
Manual, Addison-Wesley Publishing Company, Reading, M assachussets, 1990, ISBN 0-
201-51459-1, Chapter 2. It differsinthelist of legal keywords and punctuation.

CORBA <cripting Language: Lexical Conventions 2-3

2-4

2.2.4 Keywords

The identifiers listed in Table 2-2 are reserved for use as keywords and may not be

used otherwise.

Table2-2 Keywords

catch cl ass del do el se
finally for if i mport in
proc return t hr ow try whil e

Keywords obey the rules for identifiers (see Section 2.5.3, Oldentifiers,0 on

page 2-11) and must be written exactly as shown in the above list. For example,
OclassO is correct; OClassO refers to an identifier and can produce an interpretation
error.

IDLscript scripts use the characters shown in Table 2-3 as punctuation.

Table 2-3 Punctuation Characters

(G D R N I I I S S S T
+ (- % N &&]

= == | = < <= > >=
2.2.5 Literals
This section describes the following literals:
¥ Integer
¥ Floating-point
¥ Character
¥ String

2251

2252

Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with O (digit zero). A sequence of digits starting with O is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by Ox or OX is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or OxC.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing. Consider the following examples:

CORBA <cripting Language, v1.1 September 2002 June 2001

3. 3.2 .2 3.2e-4 .2el5 10el0

2.2.5.3 Character Literals

A character literal is one or more characters enclosed in single quotes, as in the
following examples:

a' '\t' '\045" '\ x4f’

Note B |ssue 4502

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphica character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-43, Table 3-3 on page 3-4, and Table 3-4 on page 3-54 in the
CORBA 2.3-3.0 specification). The value of null is 0. The value of a formatting
character literal is the numerical value of the character as defined in the 1SO 646
standard (see Table 3-5 on page 3-65 in the CORBA 2:3-3.0 specification). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in
Table 2-4. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

Table 2-4 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \
guestion mark \?
single quote \O
double quote \"
octal number \ooo
hexadecimal number \xhh

If the character following a backslash is not of those specified, the behavior is
undefined. An escape sequence specifies a single character.

September 2002 June 2001 CORBA <cripting Language: Lexical Conventions 2-5

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character. A sequence of octal or hexadecimal digits
is terminated by the first character that is not an octal digit or a hexadecimal digit,
respectively. The value of a character constant is implementation dependent if it
exceeds that of the largest char.

Wide character and wide string literals are specified exactly like character and string
literals. All character and string literals, both wide and non-wide, may only be
specified (portably) using the characters found in the 1ISO 8859-1 character set, that is
identifiers will continue to be limited to the | SO 8859-1 character set.

2.2.5.4 GringLiterals

A string literal is a sequence of characters (as defined in Section 2.2.5.3, OCharacter
Literals,O on page 2-5) surrounded by double quotes, as in the following examples:

"Hello world!'\n" "An \"enbedded\" string"

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

"\ xA" "B"

contains the two characters O\xAO and OBO after concatenation (and not the single
hexadecimal character O\xABO).

The size of a string litera is the number of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the literal. Within a string,
the double quote character must be preceded by a\.

A string literal may not contain the character O\00.

2.3 IDLscript Grammar

(1) <scri pt> = <statements>
(2) <st at enent s> = <statenent>"
(3) <st at emrent > =";"

"{" <statenments> "}"
<expressi on>
<vari abl e_managenent >
<control flow statenents>
<pr ocedur e_decl arati on>
<cl ass_decl arati on>
<excepti on_managenent >
<nodul e_managenent >
(4) <expression> ::= <literal >

| <identifier>

| "(" <expression> ")"

CORBA <cripting Language, v1.1 September 2002 June 2001

September 2002 June200%

<met hod_cal | >

<i ndexed_get >
(5) <literal> ::=<long_litera

| <doubl e_literal >

>

<array_creation>
<di ctionary_creation>

<arithnetic_expression>
<rel ati onal _expressi on>
<l ogi cal _expressi on>
<procedural call >
<attribute_get>

| <character_literal >

| <string_literal >

(6) <arithmetic_expression>
D= "+ <expressi
| "-" <express
| <expressi on>
| <expressi on>
| <expressi on>
| <expressi on>
| <expressi on>
| <expressi on>
(7) <rel ational _expression>
1= <expression>
| <expressi on>
| <expressi on>
| <expressi on>
| <expressi on>
| <expressi on>
(8) <l ogical _expression>
co= "1 <expressi
| <expressi on>
| <expressi on>

on>
on>
"

<expressi on>
<expressi on>
<expressi on>
<expressi on>
<expressi on>
<expressi on>

<expr essi on>

"1=" <expression>

<expr essi on>

"<=" <expression>

<expr essi on>

">=" <expression>

"&&" <expression>
"I|" <expression>

(9) <procedural _call> ::= <identifier> "(" <argunents> ")"
(10) <ar gument s> c:= [<expression_list>]
(11) <expression_list> ::= <expression> { "," <expression>}

(12) <attribute_get>

<expressi on>
| <expressi on>

" <identifier>

" <identifier>

(13) <net hod_cal | > = <expression> "." <identifier>
"(" <arguments> ")"

| <expression> "I" <identifier>
"(" <arguments> ")"
(14) <array_creation> ::="[" <argunents> "]"

(15) <dictionary_creation>

c= "{" <dictionary_expression_|list>

(16) <dictionary_expression_|list>

::= [<dictionary_expression> { ", "
<di ctionary_expression> }]

(17) <dictionary_expression>
1= <expression>

CORBA Scripting Language: IDLscript Grammar

<expr essi on>

2-7

2-8

(18)
(19)

(20)

(21)

(22)

(23)

(24)
(25)
(26)
(27)

(28)
(29)

(30)
(31)

(32)

(33)

<i ndexed_get >

<vari abl e_managenent >

;1= <expression> "[" <expression> "]"

<assi gnnent _st at enent >
<del _stat enment >

<assi ghnent _st at enent >

<del _statenent >

<identifier> "=" <expression>
<expression> "." <identifier>

=" <expression>

<expression> "I" <identifier>

" <expressi on>

<expression> "[" <expression> "]"

=" <expression>

"del" <identifier>
"del " <expression> "."
<identifier>

<control flow statenments>

<if_statenent>

<whi | e_statement > :

<do_st at enent >

<f or_stat enent >

<if_statenment>

<whi | e_st at ement >
<do_st at enent >

<for_stat enent >
<return_statenent >

"if" "(" <expression> ")"
<st at enent >

["else" <statement>]
"while" "(" <expression> ")"
<st at enent >

"do" <statenent>

"while" "(" <expression> ")"
"for" <identifier> "in"
<expressi on> <st at enent >

<excepti on_managenent >

<throw statenent> ::
<try catch finally_ statenment>

<exception_type>
<return_statenent >

CORBA Scripting Language, v1.1

<t hr ow_st at enent >
<try catch finally_ statenent>
"throw' <expression>

"try" "{" <statements> "}"

{ "catch" "(" <exception_type>
<identifier> ")"

"{" <statenents> "}" }
["catch" "(" <identifier>")"
"{" <statenments> "}"]

[“finally" "{" <statements> "}"]
<identifier> { "." <identifier>}"

*

"return" [<expression>]

<procedur e_decl arati on>

c:= "proc" <identifier> "("

[<formal _paraneter_list>] ")"
"{" <statements> "}"

<formal _paranmeter_list>

<identifier list>{ ","

September 2002 June 2001

2

2.4 <eripts

2.5 Expressions

September 2002 June200%

<identifier> "=" <expression> }"
(34) <identifier_list> ::= <identifier> { *,’ <identifier>
}*

(35) <cl ass_decl arati on>
c:= "class" <identifier> ["("
<inherited_class_list> ")"]
"{" <statenents> "}"
(36) <inherited class |list>
;1= <expression_list>
(37) <nodul e_nanagenent >
;= <inport_nodul e>
(38) <inport_nodule> ::= "inmport" <identifier_list>

An IDLscript script consists of zero or more statements. A statement can be a null
statement (O;0), a statement block surrounded by bracket characters (O{0 and 0} 0),
an expression, a variable management statement, a control flow statement, a procedure
declaration, a class declaration, an exception management statement, or a module
management statement. The syntax is:

<script> ::= <statenments>
<statenents> ::= <statenment>
<statenment> ::=";"

["{" <statenments> "}"

[<expressi on>

[<vari abl e_managenent >

[<control flow statenents>

[<pr ocedur e_decl arati on>

[<cl ass_decl arati on>

[<excepti on_managenent >

[<nodul e_managenent >

See Section 2.5, OExpressions,O on page 2-9, Section 2.6, OVariable and Attribute
Management,O on page 2-14, Section 2.8, OControl Flow Statements,O on page 2-23,
Section 2.9, OProcedures,O on page 2-26, Section 2.10, OClasses,O on page 2-28,
Section 2.11, OExceptions,0 on page 2-32, and Section 2.12, OModules,O on

page 2-36, respectively, for specifications of <expr essi on>,

<vari abl e_managenent >, <control fl ow st at ement s>,

<pr ocedure_decl arati on>, <cl ass_decl arati on>,

<excepti on_managenent >, and <nodul e_nmanagenent >.

This section describes the syntax for IDLscript expressions. These syntactical
constructs are general and can be applied on any IDLscript objects. Their semantic
meaning depends on the objectOs type as described in Section 2.7, OObjects and
Types,O on page 2-15.

CORBA Scripting Language: Scripts 2-9

2-10

2.5.1 Syntax

An IDLscript expression can be a literal, an identifier, a parenthetical expression, an
arithmetic expression, a relational expression, a logical expression, a procedural call,
an attribute getting, a method call, an array creation, a dictionary creation, and an
indexed getting. The syntax is:

<expression> ::= <literal >
| <identifier>
| "(" <expression> ")"
| <arithmetic_expression>
| <rel ati onal _expressi on>
| <l ogi cal _expressi on>
| <procedural _call >
| <attribute_ get>
| <met hod_cal | >
| <array_creation>
| <di ctionary_creation>
| <i ndexed_get >

See Section 2.5.2, OL iteral Values,O on page 2-10, Section 2.2.3, Oldentifiers,O on
page 2-3, Section 2.5.4, OArithmetic Operators,O on page 2-11, Section 2.5.5,
ORelational Operators,O on page 2-12, Section 2.5.6, OLogical Operators,O on

page 2-12, Section 2.5.7, OProcedural Call,O on page 2-13, Section 2.5.8, OAttribute
Getting,O on page 2-13, Section 2.5.9, OMethod Call,0 on page 2-13, Section 2.5.10,
OArray Creation,O on page 2-14, Section 2.5.11, ODictionary Creation,O on

page 2-14, and Section 2.5.12, Olndexed Getting,O on page 2-14, respectively, for
specificationsof <l i t eral >, <i dentifier>,<arithnetical _expression>,
<rel ati onal _expressi on>, <l ogi cal _expressi on>,

<procedural _call >, <attribute_get>, <met hod_cal | >,
<array_creation>, <dictionary_creation>, and <i ndexed_get >.

2.5.2 Literal Values

The syntax for expression literals is:

<literal> ::= <long_literal >
| <doubl e_literal >
| <character_literal >
| <string_literal >

Here, <l ong_literal > <doubl e literal > <character_literal > and
<string_literal > refers respectively to integer, float-point, character, and string
lexical literals defined in Section 2.2.5, OL iterals,O on page 2-4. Consider the
following examples:

>>> 10 # a long val ue
10

>>> 3. 1415 # a doubl e val ue
3. 1415

CORBA <cripting Language, v1.1 September 2002 June 2001

>>> ' ¢! # a character val ue
o

>>> "Hello World!" # a string val ue
"Hell o Worl d!"

Note that when IDLscript is interactively used it displays the result of the last
expression evaluation.

2.5.3 ldentifiers

Expression identifiers are defined as lexical identifiers described in Section 2.5.3,
Oldentifiers,0 on page 2-11. These identifiers refer to named IDLscript objects like
constants, variables, types, procedures, classes, modules, etc. The two predefined
identifierst r ue and f al se respectively refer to IDLscript constant objects that
represent the two boolean values. The Voi d identifier refers to the unique void object
value. Consider the following examples:

>>> true # the bool ean true val ue

true

>>> fal se # the bool ean fal se val ue
fal se

>>> Void

>>>

Note that if an expression evaluation returns the Voi d value, then this value is not
displayed.

2.5.4 Arithmetic Operators

September 2002 June200%

The syntax for arithmetic expressionsiis:

<arithnetic_expression> ::= "+" <expression>

| "-" <expression>
| <expression> "+" <expression>
| <expression> "-" <expression>
| <expression> "*" <expression>
| <expression> "/" <expression>
| <expression> "% <expression>
| <expression> "\" <expression>

IDLscript supports the usual arithmetic operators: the "+" and "- " unary ones, and the
Mgt pnon ol onfn iand "% binary ones. The "\ " binary operator represents the

integer division. Automatic needed value coercions are done for binary operators.
These operators have the usual meaning. Consider the following examples:

>>> 10 + 3

13

>>> 10 - 3.3

6.7

>>> 10/ 3

CORBA Scripting Language: Expressions 2-11

2-12

3. 33333
>>> 10 % 3
1
>>> 10 \ 3
3
2.5.5 Relational Operators

The syntax for relational expressionsis:

<rel ati onal _expression> ::=

Relational operators are the classical binary ones: "==", "I

only for long integers

only for long integers

<expressi on>
<expr essi on>
<expressi on>
<expressi on>
<expressi on>
<expressi on>

"
"o

=" g

<expr essi on>
<expr essi on>
<expr essi on>
<expr essi on>
<expr essi on>
<expr essi on>

||, ||<:||, ||>||, and

">=". They return boolean values and operand type coercions are done automatically if
needed. This also implies dynamic value type checking at execution time. These
operators have the usual meaning. Consider the following examples:

>>> 10 ==

fal se

>>> 3.1415 > 3
true

2.5.6 Logical Operators
The syntax for logical expressionsis:

<l ogi cal _expression> ::=

<expressi on>

| <expression> "&&" <expression>
| <expression> "||" <expression>

Logical operators are the classical unary and binary ones. The unary not is represented
by "I ™. The binary and is represented by "&&". The binary or is represented by "| | ".
They take two boolean operands. These operators return a boolean value. Dynamic
operand type checking is done at execution time. These operators have the usual
meaning. Consider the following examples:

>>> (10 1= 3.3) && true
true

>>> (10 < 3) || false
fal se

>>> true && fal se

fal se

>>> false || (10 > 3)
true

>>> 1 (10 == 3)

CORBA <cripting Language, v1.1 September 2002 June 2001

true

2.5.7 Procedural Call

The syntax for procedural callsis:

<procedural _call> ::= <identifier> "(" <arguments> ")"
<argunments> ::= [<expression_list>]

. . . . *
<expression_list> ::= <expression> { "," <expression> }

A procedural call can be applied to any IDLscript object named by an identifier.
Arguments, surrounded by brackets, are composed of zero or more expressions
separated by comma characters. The number of arguments and the meaning of a
procedural call depend on the IDLscript object designed by the identifier. For example,
if the object is a procedure (see Section 2.9, OProcedures,O on page 2-26), then the
meaning is to execute this object procedure; whereas if the object is a class (see
Section 2.10, OClasses,O on page 2-28), then the meaning is the instantiation of this
class.

2.5.8 Attribute Getting

The syntax for attribute getting is:

<attribute get> ::= <expression> "." <identifier>
| <expression> "I" <identifier>

An attribute getting can be applied to any expression object. The identifier names the
accessed attribute. Two point notations are provided: 0.0 and O!O. The meaning of an
attribute getting depends on the target object and the used point notation. For most
objects, these two notations are equivalent and the meaning is the access to an existing
attribute of the target object. However applied to a CORBA object reference (see
Section 3.13.3, OObject References,O on page 3-26), the meaning is a synchronous or
a deferred attribute getting.

2.5.9 Method Call

September 2002 June200%

The syntax for method callsis:

<met hod_cal | > ::= <expression> "." <identifier>
Il(ll <argurTEntS> Il)ll
| <expression> "I" <identifier>

"(" <argunents> ")"

A method call can be applied to any expression object. The identifier names the
invoked method. Method arguments, surrounded by brackets, are composed of zero or
more expressions separated by comma characters. Two point notations are also
provided: 0.0 and O!O. The meaning of a method call depends on the target object
and the used point notation. For most objects, these two notations are equivalent and

CORBA Scripting Language: Expressions 2-13

2-14

the meaning is the invocation of an existing method of the target object. However
applied to a CORBA object reference (see Section 3.13.3, OObject References,O on
page 3-26), the meaning is a synchronous or a deferred method call.

2.5.10 Array Creation

The syntax for array creationsiis:
<array_creation> ::= "[" <arguments> "]"

At creation time, an array object (see Section 2.7.4, OArray Objects,O on page 2-19)
can be initialized with zero or more expression objects. Consider the following
examples:

>>> [] # an enpty array
[]

>>> [1, 2.3, 'c’, "hello", true] # an heterogeneous array
[1, 2.3, 'c¢’, "hello", true]

2.5.11 Dictionary Creation

The syntax for dictionary creations is;

<dictionary_creation> ::= "{" <dictionary_expression_list>
<di ctionary_expression_list> ::= [<dictionary_expression>
. . . *

{ "," <dictionary_expression>}]
<di ctionary_expression> ::= <expression> ':' <expression>

At creation time, a dictionary object (see Section 2.7.5, ODictionary Objects,O on
page 2-21) can be initialized with zero or more key/value expression pairs separated by
commas. The key and the value of a pair is separated by O:0. Consider the following
example:

>>> { 1. "one", 2: "two", 3: "three" }
{ 1: "one", 2: "two", 3: "three"}

2.5.12 Indexed Getting

The syntax for indexed getting is:
<i ndexed_get> ::= <expression> "[" <expression> "]"

An indexed getting can be applied to any expression object. The accessed index is aso
an expression object. The meaning depends on the target object.

CORBA <cripting Language, v1.1 September 2002 June 2001

2.6 Variableand Attribute Management

This section describes the syntax for variable and attribute management, that is
assignment and deletion constructs. The syntax is:

<vari abl e_managenent > :: = <assi gnment _st at enent >
| <del _st at ement >

2.6.1 Assignments

The syntax for assignmentsiis:

<assignhnment _statenent> ::= <identifier> "=" <expressi on>
| <expression> "." <identifier> "=" <expression>
| <expression> "I" <identifier> "=" <expression>
| <expression> "[" <expression> "]" "=" <expression>

The first construct is dedicated to variable assignments. Variables can refer to any
expression object. They are defined at their first assignment. During execution time, a
variable can take different kinds of values. Consider the following examples:

>>> v = 10

>>> vy

10

>>> vy = "Hello"
"Hel | o"

Other constructs are for attribute and indexed assignments. Their meaning depends on
the target object.

2.6.2 The Del Satement

The syntax for deletions is:

<del statenment> ::= "del" <identifier>
| "del" <expression> "." <identifier>

The del statement construct allows scripts to forget a previous defined variable. The
variable is designed by thei dent i fi er. Note that this identifier can be preceded by
an expr essi on that defines the scope of the variable such as a module, a class, or an
instance.

2.7 Objectsand Types

This section describes the main IDLscript object types and their functionalities.

September 2002 June 2001 CORBA Scripting Language: Variable and Attribute Management 2-15

2-16

2.7.1 Everything is Typed Object

As IDLscript is an object-oriented scripting language, al scripted entities such as
literals, arrays, dictionaries, procedures, classes, instances, exceptions, and modules are
represented by objects. Each object provides a set of functionalities: operators,
attributes, and methods. These functionalities are used through the syntactical
constructs presented in Section 2.5, OExpressions,O on page 2-9.

The set of functionalities of an object is defined by its type. Through this type, the
interpreter checks the validity of every operator, attribute, and method call. When a
typing error occurs, the interpreter throws an internal exception (see Section 2.11.1,
Olnternal Exceptions,O on page 2-32). Moreover, types are also |DLscript objects. The
_t ype attribute allows scripts to access the IDLscript type of any object. It allows
programmers to check typing information (for example to check argument types of a
procedure). Table 2-5 enumerates the set of functionalities that are supported by all
IDLscript objects and types.

Table2-5 The Object and Type Functionalities

Functionality Explanation

obj ect. _type Returns the type object of any aobject.

object._is_a(type) | Returnstrueif the object is of a certain type or of a
type which is a subtype of this type.

obj ect. _toString() | Returnsastring that is the textual representation of an
object.

type. type Returns the meta type of any type object.

typel. is_a(type2) | Returnstrue if the typel is equal or is a subtype of
type2.

type. _toString() Returns a string that is the textual representation of
the type object.

2.7.2 Basic Value Types

The basic object types are accessible through bool ean, | ong, doubl e, and char
identifiers. Consider the following examples:

>>> b = true

>>> pb. _type

< type boolean ... >
>>> b. _is_a(bool ean)
true

>>> b. _is_a(long)

fal se

>>> b, _toString()
"true"

>>> | = 10

>>> | . _type

CORBA <cripting Language, v1.1 September 2002 June 2001

<type long ... >
>>> | . is_a(long)
true

>>> | . is_a(double)
fal se

>>> | . toString()

" 10"

>>> d = 3.1415

>>> d. _type

< type double ... >
>>> d. _is_a(double)
true

>>> d. _is_a(char)
fal se

>>> d. _toString()
"3.1415"

>>> ¢ = '¢’

>>> c. _type

< type char ... >
>>> c. _is_a(char)
true

>>> c. _is_a(bool ean)
fal se

>>> c. _toString()

" en

These types provide the classical semantic for operators (see Section 2.5.4,
OArithmetic Operators,O on page 2-11, Section 2.5.5, ORelational Operators,O on
page 2-12, and Section 2.5.6, OLogical Operators,O on page 2-12) and automatic
coercions.

2.7.3 Sring Objects

The st ri ng identifier refers to the string type. Strings support a set of attributes,
methods, and operators. All these functionalities are enumerated in Table 2-6 and they
never modify the target string. When indexes are out of the string bounds, an exception
BadIndex is raised (see Section 2.11.1, Olnternal Exceptions,O on page 2-32).

Table 2-6 The String Type Functionalities

Functionality Explanation

s.length Returns the length of the s string.

s[i] Returns the character at the i position. The index ranges from 0 to
slength - 1.

c + s Returns the concatenation of the ¢ character and the s string.

s + ¢ Returns the concatenation of the s string and the ¢ character.

sl + s2 Returns the concatenation of the s1 and s2 strings.

| September 2002 June 2001 CORBA <cripting Language: Objectsand Types 2-17

2-18

Table2-6 The String Type Functionalities

Functionality

Explanation

sl == s2 Returns true if s1 contains the same sequence of characters as s2.

sl !'= s2 Returns true if s1 contains a different sequence of characters as s2.

sl < s2 Returns true if sl is lexicographically lower than s2.

sl <= s2 Returns true if sl is lexicographically lower or equal to s2.

sl > s2 Returns true if sl is lexicographically greater than s2.

sl >= s2 Returns true if sl is lexicographically greater or equal to s2.

s. i ndex(c) Returns the position of the first occurrence of the c character or -1 if
¢ does not occur.

s. i ndex(c, pos) Returns the position of the first occurrence of the c character starting

the search at the pos index or -1 if ¢ does not occur.

sl.index(s2) Returns the position of the first occurrence of the s2 string or -1 if s2
does not occur.
sl.index(s2, pos) Returns the position of the first occurrence of the s2 string starting

the search at the pos index or -1 if s2 does not occur.

s. rindex(c)

Returns the position of the last occurrence of the c character or -1 if
¢ does not occur.

s. rindex(c, pos)

Returns the position of the last occurrence of the ¢ character starting
the backward search at the pos index or -1 if ¢ does not occur.

sl.rindex(s2) Returns the position of the last occurrence of the s2 string or -1 if s2
does not occur.
sl.rindex(s2, pos) Returns the position of the last occurrence of the s2 string starting

the backward search at the pos index or -1 if s2 does not occur.

S. substring(bi)

Returns a new string that is a substring of s beginning at the bi index.

Ss. substring(bi,ei)

Returns a new string that is a substring of s between the bi and ei
indexes.

s.toLower Case()

Returns a new string that is a lower case copy of the s string.

s. toUpper Case()

Returns a new string that is a upper case copy of the s string.

Consider the following examples:

>>> 5§ =

"Hello World!"

>>> 5. _type
< type string ... >
>>> 5. _is_a(string)

true

>>> 5. is_a(bool ean)

fal se

>>> 5. _toString()

CORBA <cripting Language, v1.1

September 2002 June 2001

"Hel lo World!"

>>> s.|ength

12

>>> s[1]

e

>>> 5 + |

"Hello World!!"

>>> "Hello " + "World!"
"Hel lo World!"

>>> s == "Hello World!"
true

>>> s.index('o0")

4

>>> s.index(' o', 6)

7

>>> s.index("Il")

2

>>> s.index("l",5)

9

>>> 5. substring(3,7)
"lo W

>>> 5. tolLower Case()
"hello world!"
>>> 5. toUpper Case()
"HELLO WORLD! "

2.7.4 Array Objects

The ar r ay identifier refers to the array type. Arrays are dynamically extensible
containers of any IDLscript objects. Arrays are built using O[O and O] O delimiters
and values are separated by commas (O, O). Array elements can have different types.
Arrays can be embedded in other arrays. Moreover, array objects provide a set of
operators, attributes, and methods. All these functionalities are enumerated in

Table 2-7. When indexes are out of the array bounds, an IDLscript internal exception
BadIndex is raised.

Table2-7 The Array Type Functionalities

Functionality Explanation

a.length Returns to the length of the a array.

a[i] Returns the value at the i position. The index ranges from O to
alength - 1.

a[i] = v Updates the component value at the i position. The index ranges from
0 to a.length - 1.

al + a2 Returns a new array which is the concatenation of the al and a2
arrays.

a. append(v) Appends the v object at the end of the a array.

September 2002 June 2001 CORBA <cripting Language: Objectsand Types 2-19

Table2-7 The Array Type Functionalities

Functionality Explanation

a.insert(v,i) Inserts the v object at the i position. The index ranges from O to
a.length.

a.delete(i) Deletes the component value at the i position. The index ranges from
0 to a.length - 1.

a.renove(v) Removes the first occurrence of the v object. Returns true if v
occurs.

a. contains(v) Returns true if the v value is contained in the array.

a. i ndex(v) Returns the position of the first occurrence of the v object or -1 if v

does not occur.

a. i ndex(v, pos) Returns the position of the first occurrence of the v object starting
the search at the pos index or -1 if v does not occur.

a.rindex(v) Returns the position of the last occurrence of the v abject or -1 if v
does not occur.

QO

. rindex(v, pos) Returns the position of the last occurrence of the v object starting the
backward search at the pos index or -1 if v does not occur.

array.create(n) Creates an array initialized with n Void objects.

Consider the following examples:

>>> # het erogeneous array
>>> a = [true, [1, 3.1415], 'c', "Hello World!'"]
>>> a. _type

< type array ... >
>>> a._type == array
true

>>> a. i s_a(bool ean)
fal se

>>> a. _toString()

"[true, [1, 3.1415], 'c', "Hello World!"]"
>>> a.length

4

>>> gl 1]

[1, 3.1415]

>>> a[1l] = 10

>>> a

[true, 10, 'c', "Hello World!'"]

>>> a + [1, 2]

[true, 10, 'c', "Hello wWorld!", 1, 2]
>>> a. append (fal se)

>>> a

[true, 10, 'c', "Hello World!", false]
>>> a.insert("a value", 1)

>>> a

2-20 CORBA <cripting Language, v1.1 September 2002 June 2004

[true, "a value", 10, 'c', "Hello World!'", false]
>>> a. del ete(2)

>>> a

[true, "a value", 'c', "Hello World!'", false]

>>> a.renove("a val ue")

true

>>> a

[true, '"c', "Hello World!", false]
>>> a.contai ns(10)

fal se

>>> a.index(fal se)

3

>>> a.index(true, 1)
-1

>>> a = [true, 'c', 10, 'c¢', false]

>>> a.rindex('c')

3

>>> a.rindex('c', 2)

1

>>> a = array. create(b)
>>> a

[Void, Void, Void, Void, Void]

2.7.5 Dictionary Objects

Thedi cti onary identifier refers to the dictionary type. A dictionary object is a
powerful container to store any key - value associations such as indexed tables,
structured records, etc. Keys and values are of any IDLscript object types. Dictionaries
are built using O{ O and O} O delimiters, associations are separated by commas

(6, 0), and key and value by the O: O character. Dictionary objects provide a set of
operators, attributes and methods. All these functionalities are enumerated in

Table 2-8. Searching a key that is not contained by a dictionary raises an | DL script
internal NotFound exception.

Table 2-8 The Dictionary Type Functionalities

Functionality Explanation

dict.size Returns the number of associations in the dict dictionary.

di ct. keys Returns an array of the key objects in the dict dictionary.

di ct.val ues Returns an array of the value objects in the dict dictionary.

di ct [key] Returns the value associated to the key in the dict dictionary.

di ct[key] = value Updates the value associated to a key or adds this key - value
association in the dict dictionary.

September 2002 June 2001 CORBA <cripting Language: Objectsand Types 2-21

Table 2-8 The Dictionary Type Functionalities

Functionality

Explanation

di ct.cont ai

ns(val ue)
dictionary.

Returns true if the value is associated to a key in the dict

di ct.cont ai

nsKey(key)

Returns true if the key is present in the dict dictionary.

di ct.renove(key)

dictionary.

Removes the key and its corresponding value from the dict

Consider the following examples:

>>>d ={ 1: "one", 2: "two", 3: "three"}
>>> d. _type

< type dictionary ... >

>>> d. _type == dictionary

true

>>> d. _is_a(bool ean)

fal se

>>> d. _toString()

"{ 1: "one", 2: "two", 3: "three"}"
>>> d. si ze

3

>>> d. keys

[1, 2, 3]

>>> d. val ues

["one", "two", three"]

>>> d[1]

"one"

>>> d[4] = "four"

>>> d

{ 1: "one", 2: "two", 3: "three", 4: "four"}
>>> d.contai ns("two")

true

>>> d. cont ai nsKey(4)

true

>>> d. renove(2)

>>> d

{ 1: "one", 3: "three", 4: "four"}

CORBA <cripting Language, v1.1

September 2002 June 2001

2.7.6 Predefined Internal Procedures

September 2002 June200%

IDLscript provides some predefined internal procedures respectively named by the
following identifiers: eval , exec, getline, print,andprintln.

Table 2-9 The Predefined Internal Procedures

Internal Procedures Explanation

eval (string) Evaluates a string containing an IDLscript script.
exec(string) Executes the file named by string.

getline() Reads a text line from the standard input stream.
print(argl, ..., Prints zero or more object arguments.

argn)

println(argl, ... Prints zero or more object arguments and a new line.
argn)

The eval function provides the classical powerful evaluation function. It takes a
stringified script, executes it, and returns the result of this evaluation. This allows
programmers to construct interpretable IDLscript code at execution time.

The exec function executes a script file. Variables, procedures, and classes defined
into the file are always available after the file execution.

Theget | i ne function allows scriptsto read atext line from the standard input stream
and returns a string containing this text line.

The interpreter automatically displays the last evaluated expression. But it can be
necessary into complex scripts to display a value or a set of values at any time, for
example, during aloop. The pri nt procedure allows scripts to display a set of object
expressions. The pri nt | n procedure displays a new line after printing al the
expressions.

These internal procedures are executed using the procedural calling notation. Consider
the following examples:

>>> 5 = "1 + 1"
>>> eval (s)
2

>>> exec("a_script.cs")

>>> s = getline()

Hell o Worl d!

>>> g

"Hel lo World!"

>>> print (100, '\n', "stringl string2\n")

100

stringl string2

>>> println (1, " ', '¢'", " ', true, ' ', "string")
1 c true string

CORBA <cripting Language: Objectsand Types 2-23

2.8 Control Flow Satements

This section describes the syntax for IDLscript control flow statements.

2.8.1 Syntax

An IDLscript control flow statement can beani f, awhi | e, ado, afor,and a
r et ur n statement. The syntax is:

<control flow statenments> ::= <if_statenent>

| <whi | e_st at ement >

| <do_st at enent >

| <for_statenent>

| <return_statenment>
See Section 2.8.2, OThe If Statement,O on page 2-23, Section 2.8.3, OThe While
Statement,O on page 2-24, Section 2.8.4, OThe Do Statement,O on page 2-24,
Section 2.8.5, OThe For Statement,O on page 2-25, and Section 2.8.6, OThe Return
Statement,O on page 2-25, respectively, for specifications of <i f _st at ement >,
<whi | e_st at enent >, <do_st at enent >, <f or _st at enent >, and
<return_statenent >.

2.8.2 The If Satement

The syntax for the i f statement is:

<if_statement> ::="if" "(" <expression> ")" <statenent>
["el se" <statenent>]

Thei f statement construct allows scripts to test a condition expression. If it is true,
the following statement is executed, else the statement after el se is executed. Of
course, the el se clause is optional.

The condition must be a boolean expression: a variable containing a boolean object, a
relational operator (e.g., ==, ! =, <, <=, > or >=) or a composition of boolean
expressions (e.g., &&, | | or !). The dynamic type of the expression is checked at
runtime. Consider the following examples:

>>> | =1

>>> if (i == 1) printIn("i == 1");

i ==

>>> | = 2

>>> if (i == 1) { printIn("i ==1") }
else { printIn("i !'=1") }

i 1=1

2.8.3 The While Satement

The syntax for the whi | e statement is:

2-24 CORBA Scripting Language, v1.1 September 2002 June 2004

<whi |l e_statenent> ::= "while" "(" <expression> ")"
<st at ement >

The whi | e statement construct allows scripts to iterate a set of statements while a
condition expression is true. The condition must be a boolean expression object and is
checked at runtime. If the condition is false at the first time, the statements are never
executed. Consider the following example:

>>> | =0

>>> while (i <10) {
print (i, ' ")
i =i +1
}

01234567829

2.8.4 The Do Satement

The syntax for the do statement is:

<do_statenment> ::= "do" <statenent>
"while" "(" <expression> ")"

The do statement construct allows scripts to iterate a set of statements while a
condition expression is true. The condition must be a boolean expression object and is
checked at runtime. Consider the following example:

>>>j =0
>>> do {
print (i, ' ")
i =i +1
} while (i < 10)
01234567389

2.8.5 The For Satement

September 2002 June200%

The syntax for the f or statement is:

<for_statenent> ::= "for" <identifier> "in" <expression>
<st at enent >

Thef or statement construct allows scripts to iterate on an expr essi on enumeration
of objects. During each st at enent execution loop, thei denti fi er variable
contains the next object of the expr essi on. The expr essi on must be an
enumerated object such as a string or an array. This property is checked at runtime.
Consider the following examples:

>>> a = ["Monday", "Tuesday", "Wednesday", "Thursday", "Fri-
day", "Saturday", "Sunday"]

>>> for i inaprint (i, ' ');

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

CORBA Scripting Language: Control Flow Satements 2-25

>>> for i in "hello world!'" print (i, ' ');
hel l o wor | d!
>>> for i in range(0,9) print (i, ' ');

0123456789
>>> r = range(9,0,-1)
>>> for i inr print (i, " ');
9876543210

Ther ange expression allows scripts to perform aloop on an integer interval. The two
first arguments define respectively the first and last integer values of the interval, the
third optional argument sets the interval increment. By default, this increment is equal
to 1. Moreover, a range expression is also an IDLscript object, it can be stored into a
variable.

2.8.6 The Return Satement

2.9 Procedures

The syntax for the r et ur n statement is:
<return_statement> ::= "return" [<expression>]

Ther et ur n statement construct allows a script to interrupt its execution before the
end of the script code. It is mainly used in procedures or instance methods to return a
result to the caller.

The returned value is optional. In this way, ther et ur n statement returns
automatically the Voi d object. This construct can be used when procedures want to
prematurely stop their execution without returning a value.

This section describes the syntax for IDLscript procedures.

2.9.1 Declaration

2-26

The syntax for procedure declarations is:

<procedure_declaration> ::= "proc" <identifier> "("
[<formal _paraneter_list>1] ")"
"{" <statenents> "}"

<formal paraneter list> ::= <identifier list> { ","
<identifier> "=" <expression> }"
<identifier list> ::= <identifier>{ ',’ <identifier> }*

The pr oc declaration construct allows scripts to create a procedure. A procedure is
specified by ani denti fi er name and alist of formal parameters

(formal _paraneter _|i st) defined between brackets (O(O and 0) 0). A
procedure body is composed of a set of st at ement s between brackets (O{ O and
0} 0). Consider the following example which declares a sanpl e procedure with two
formal parameters (p1 and p2):

CORBA <cripting Language, v1.1 September 2002 June 2001

>>> proc sanple (pl, p2)
{
println ("The 'sanple' procedure is called with pl=",
pl, " and p2=", p2)
}
>>> sanple (true, "hello")
The 'sanple' procedure is called with pl=true and p2=hello

Procedures can be redefined at any time. The new procedure must only use the same
name. The previous procedure version becomes unavailable.

2.9.2 Formal Parameters and Default Values

Formal parameters are not typed and there is no limit about their number. A default
value can be assigned to the last formal parameters. These values are evaluated at the
procedure creation time. The procedure statements can access directly to formal
parameters as local variables. Consider the following example:

>>> proc display (pl, p2="World")

{
println (p1, ' ', p2, ')
}
>>> display ("Hello")
Hell o Worl d!
>>> display ("Hello", "You")
Hel l o You!

Formal parameters can be used in read and write mode inside the procedure; it does
not affect the real parameter since procedures do not call update methods on the formal
parameters.

2.9.3 The Returned Object

September 2002 June200%

Procedures can return an object computed inside them using the r et ur n statement,
and this stops the procedure execution. Consider the following example that presents a
recursive implementation of a factorial function:

>>> proc fac (i)

{
if (i ==1) return 1
returni * fac (i - 1)
}
>>> fac (5)
120
CORBA Scripting Language: Procedures 2-27

2-28

2.9.4 Local and Global Variables

Local variables can be defined anywhere inside a procedure. They are defined at their
first assignment. If alocal variable has the same name as a global variable, then this
global variable is hidden in the procedure. Unhidden global variables can be accessed
by procedures only in read mode. However global variables can be accessed and
updated by prefixing them with the global scope name. Consider the following
example:

>>> x = 5
>>> proc sample ()

{
access to the global 'x' variable.
println ("x=", x)
X =3 # create a local 'x' variable.
access to the local 'x' variable.
println ("x=", x)

access and update the global 'x' variable.
global .x = global .x * 2
}
>>> sanple ()
X=5
Xx=3
>>> X
10

2.9.5 Procedure Aliasing

Procedures are objects, they can be assigned to a variable and be called using the new
name. Consider the following example:

>>> alias = fac
>>> alias (5)
120

As procedures are objects, they can be transmitted to another procedure as a parameter.
The following example illustrates passing procedures as parameters: the
sort _criteria parameter of the sort procedure:

>>> proc down (a, b) { return a < b}
>>> proc up (a, b) { return a > b}
>>> proc sort (a, sort_criteria = up)
{
for i in range (0, a.length -2)
for j inrange (i + 1, a.length -1)
if (sort_criteria (a[i], a[j])) {
temp ali]
a[i] = a[j]
} a[j] = tenp

CORBA <cripting Language, v1.1 September 2002 June 2001

2.10 Classes

}
>>1t =[] 60, 6543 , 4, 1124 , 1]
>>> sort (t)
>>>
[1, 4, 60, 124 , 6543]
>>> sort (t, down)
>>>
[6543 , 124, 60, 4, 1]

Thissort procedure works with all basic IDLscript value types. By default, it uses
the up function as sort criteria, but it is possible to pass another procedure like down.
Note that the modification of an array item stays after the execution of a procedure,
because an array is an object passed by reference.

The IDLscript language allows one to design script classes. IDLscript uses the classical
functionalities of object-oriented programming. A class can define instance attributes,
instance methods, class attributes, and class methods. Polymorphism, overriding, and
multiple inheritance are available, but as scripts are not syntactical typed, overloading
is not provided.

2.10.1 Declaration

The syntax for the cl ass declaration is:

<cl ass_declaration> ::= "class" <identifier>
["(" <inherited_class_list>")"]
"{" <statenments> "}"
<inherited_class_list> ::= <expression_|list>

The cl ass declaration construct allows scripts to declare a class named by

i dentifier. A class can inherit a set of parent classes

(inherited class_|ist). Finaly, the class body is composed of a set of
statements.

The class body statements define instance methods, class methods, and class attributes.
Instance attributes are declared at their first assignment. The IDLscript class construct
is very simple because we think that creating scripted objects must be as simple as
possible.

2.10.2 A Smple Class Example

September 2002 June200%

The following example shows a simple class that implements two dimensional points.
This class illustrates the definition of instance attributes, instance methods, class
attributes, and class methods.

>>> cl ass Point 2D {
proc _ Point2D _ (self,x,y) {

CORBA Scripting Language: Classes 2-29

2-30

2.10.2.1

2.10.2.2

2.10.2.3

2.10.2.4

self.x = x
self.y =y
Poi nt 2D. nb_creat ed_poi nts = Poi nt 2D. nb_creat ed_poi nts

+ 1
}
proc show (self) {
println ("Point2D(x=", self.x, ", y=", self.y, ")")
}

proc nove (self, x, y) {
sel f.x self.x + x
self.y self.y + vy
}
proc how many () {
println (nb_created points,
been created.")

}

nb_created points = 0

}

Poi nt 2D i nst ances are

I nstance Methods

In IDLscript, each instance method must have an explicit first argument (sel f for
instance) that refers to the instance receiving the method call. However this first
argument can have any name. Next arguments receive parameters of the method call.

It is possible to define an instance initialization method which is called at the class
instantiation time (__Poi nt 2D__). This method must have the same name as the
class and must be surrounded by two underscores ().

I nstance Attributes

Instance attributes are dynamically declared at their first assignment likein sel f . x
= xandself.y = y statements of the initialization ___Poi nt 2D__ method.

Instance methods can access directly to instance attributes just by prefixing them with
the instance reference like in the show and nove instance methods.

Class Methods

Any procedure declared in the scope of a classis considered as a class method like
how_many.

Class Attributes

Class attributes are just variables assigned in the scope of a class like
nb_creat ed_poi nt s. Accessing to class attributes requires that they should be
prefixed by their class name.

CORBA <cripting Language, v1.1 September 2002 June 2001

2.10.2.5 ClassInstantiations

The procedural calling notation is used to instantiate a class. In IDLscript, there is no
new keyword because everything is an object dynamically created. Consider the
following example:

>>> p = Point2D(1, 1)

>>> p
< Poi nt 2D i nst ance
X =1
y =1
>

The first statement creates a Poi nt 2D instance. The second statement illustrates how
IDLscript simply evaluates an instance: it shows the type of the instance and all
instance attributes.

2.10.2.6 Instance Method Invocations

Consider the following example that illustrates method invocations on a Poi nt 2D
instance:

>>> p. nove(10, 10)

>>> p. show ()

Poi nt 2D(x=11, y=11)

>>> p. _type

< class Point 2D {
proc _ Point2D _ (self, x, y);
proc show (self);
proc nove (self, x, y);
proc how many ();
nb_created_points = 1;

} >

The classical dotted notation is used to invoke instance methods. As other IDL script
objects, instances support the _t ype attribute which returnsits instantiation class. The
evaluation of a class shows the signatures of all instance methods, class methods, and
class attributes.

2.10.3 A Single Class Inheritance Example

IDLscript provides a simple class inheritance mechanism. This allows a class to inherit
other classes like in the following example where the class Poi nt 3D inherits the class
Poi nt 2D. Overriding is available as shown by the show and nove instance methods.
Note that the polymorphism will not work if the procedure signature is changed by
adding new parameters, IDLscript does not provide overloading. Moreover as
procedures are IDLscript values, it is possible to define alias to access to inherited
methods as shown by the nove2D dlias.

September 2002 June 2001 CORBA Scripting Language: Classes 2-31

>>> cl ass Poi nt 3D (Point2D) {
proc _ Point3D _ (self,x,y,z) {
self.__Point2D__(x,Yy)
self.z = z
}
proc show (self) { ... }
nove2D = Poi nt 2D. nove
proc nove (self, p) {
sel f.move2D (p. X, p.Yy)
self.z = self.z + p.z

}
}

>>> p = Point3D(1,1,1)
2.10.4 A Multiple Class Inheritance Example

Multiple inheritance is available in IDLscript as shown by the following example
where the class Col or edPoi nt 3D inherits the Poi nt 3D and Col or edPoi nt 2D
classes.

>>> cl ass Col or edPoi nt 2D (Poi nt 2D) {

proc __ Col oredPoint2D _ (self,x,y,c) { ... }
proc show (self) {...}
}
>>> cl ass Col or edPoi nt 3D (Poi nt 3D, Col or edPoi nt 2D) {
proc _ Col oredPoint3D__ (self,x,y,z,c) { ... }
proc show (self) {...}
}
>>> p = Col oredPoi nt 3D(10, 10, 10, "green")
>>>p
< Col or edPoi nt 3D i nst ance
x = 10
y = 10
z =10
c = "green"

>

The method lookup is based on the deep-first algorithm. So if a method has the same
name in two inherited classes, it will be the version in the first class which will be
chosen. Method aliasing alows one to simply change this standard method lookup.

2.10.5 Class and Instance Types

As classes and instances are | DL script objects, they provide the standard attributes and
methods to manipulate types (see Section 2.7.1, OEverything is Typed Object,O on
page 2-15). Then type comparisons and dynamic type checking are simply available on
classes and instances. Consider the following examples:

2-32 CORBA Scripting Language, v1.1 September 2002 June 2004

2.11 Exceptions

>>> Col or edPoi nt 3D

< cl ass Col oredPoi nt 3D (Poi nt 3D, Col or edPoi nt 2D) {
proc _ Col oredPoint3D _ (self, x, y, z, c);
proc show (self);

} >
>>> p. _type == Col oredPoi nt 3D
true
>>> p. _type == Point 2D
fal se
>>> p. _i s_a(Poi nt 2D)
true
>>> Col or edPoi nt 3D. _i s_a(Poi nt 2D)
true

This section describes the IDLscript exception mechanism. There are two kinds of
exceptions: internal interpreter exceptions and usersO script exceptions.

2.11.1 Internal Exceptions

September 2002 June200%

The internal exceptions are used by the interpreter to signal syntax errors, bad type
checkings, and invalid operations, or any other internal problems during the execution
of a usersO script. Internal exceptions are listed below.

¥ BadArgumentNumber: This exception is thrown when a script calls a procedure or
a method without passing enough parameters.

¥ BadIndex: This exception is thrown when the index to access a string (or an array)
isout of the string (or array) bounds. If an index isless than zero or greater than the
length of a string (or an array), then the interpreter throws this exception.

¥ BadTypeCoerce: This exception is thrown when a script tries to apply operations
between incompatible types. For instance, adding a boolean with a string is
impossible because the boolean and the string object cannot be coerced to two
compatible objects, then the interpreter throws a bad type coerce exception.
Moreover, this exception is thrown when parameters passed to an internal procedure
are not compatible with formal parameter expected types.

¥ ExecutionStopped: This exception is thrown when the interpreter is stopped by an
external reason like a <CTRL- C> signal.

¥ FileNotFound: This exception is thrown when a script tries to load another script
of which the file name is unknown (or not understandable) by the underlying file
system.

¥ NotFound: This exception is thrown when an undefined variable, an undefined
attribute, or an undefined method is accessed by a script.

¥ Notimplemented: This exception is thrown when an internal IDLscript feature is
not currently implemented.

CORBA Scripting Language: Exceptions 2-33

2-34

¥ NotSupported: This exception is thrown when an operator or a syntactic construct
is applied on an IDLscript object which does not support it.

¥ Overflow: This exception is thrown when the interpreter detects an arithmetic
overflow.

¥ ReadOnlyAttribute: This exception is thrown when scripts try to affect aread only
attribute.

¥ SyntaxError: This exception is thrown when alexical or syntactic error appearsin
an interactive script, a downloaded script contained into afile, or a script evaluated
by the eval function.

Consider the following examples:
>>> s = "Hello world!"

>>> s.toLower Case(10) # toLowerCase takes no paraneter.
Exception: < BadArgunment Nunmber: < Internal Met hod
string.toLowerCase() > needed = 0 given =1 >

File "stdin", line 1 in ?

>>> s[100] # 100 is out of the string bounds.
Exception: < Badl ndex: 100 nust be between (0,11) on "Hello
world!" >

File "stdin", line 1 in ?

>>> s < 10 # No type coercion between a string and a | ong
val ue.
Exception: < BadTypeCoerce: "Hello world!" < 10 >

File "stdin", line 1in ?

>>> while (true); # an infinite |oop.
Exception: < ExecutionStopped: by CTRL-C >
File "stdin", line 1 in ?

>>> exec("a_script.cs") # execute a script file not avail -
abl e.
Exception: < FileNotFound: 'a_script.cs' by exec() >

File "stdin", line 1 in ?

>>> sl # This is an undefined vari abl e nane.
Exception: < NotFound: variable 'sl" >
File "stdin", line 2 in ?

>>> s.an_attribute # a string value does not provide this
attribute.
Exception: < NotFound: attribute '"an_ attribute' in "Hello
wor | d!'" >

File "stdin", line 1 in ?

CORBA <cripting Language, v1.1 September 2002 June 2001

2

>>> 5(10) # the procedural call construct is not avail able
on string val ues.
Exception: < NotSupported: call on "Hello world!" >

File "stdin", line 1 in ?

>>> 10 \ 0 # division by zero.
Exception: < Overflow divide by zero >
File "stdin", line 1 in ?

>>> s.length = 10
Exception: < ReadOnl yAttribute: < Internal Sl ot readonly stri
ng.length > >

File "stdin", line 1 in ?

>>> 5,10 # this construction is not syntactically correct.
Exception: < SyntaxError before or on '10'" >
File "stdin", line 1 in ?

2.11.2 User Exceptions

Users can define their own exceptions. The exceptions are launched with the t hr ow
statement followed by an expression.

<throw statenment> ::= "throw' <expression>

Any IDLscript object can be used to throw a user exception. A script can throw a basic
value such as a boolean, a long integer, a string, or a complex value like an array or a
class instance.

>>> throw 10
Exception: < throw 10 >
File "stdin", line 1l in ?

>>> throw "Hel | 0"
Exception: < throw "Hello" >
File "stdin", line 1 in ?

>>> throw [1, 2]
Exception: < throw[1 , 2] >
File "stdin", line 1in ?

>>> class A CLASS { proc __ A CLASS (self,v) { self.v=v}}
>>> throw A CLASS(1)
Exception: < throw < A CLASS instance > >

File "stdin", line 1 in ?

September 2002 June 2001 CORBA <cripting Language: Exceptions 2-35

2.11.3 Exception Handling

Internal and user exceptions can be caught by scripts. The syntax for exception
handling is:

<try catch finally statement> ::= "try" "{" <statements> "}"
{ "catch" "(" <exception_type> <identifier> ")"
"{" <statenents> "}" }"
["catch" "(" <identifier>")" "{" <statenments> "}"]
["finally" "{" <statements> "}"]
<exception_type> ::= <identifier> { "." <identifier>}"

Thet ry statement block surrounds a set of statements throwing exceptions. This
block is followed by a set of cat ch statement blocks. Each cat ch block intercepts a
type of exception values (excepti on_t ype). If the exception type is compatible
with the type caught by a block, then the exception is stored into a variable

(identi fier) and the statements of this block are executed. The last and optional
cat ch block (with no exception type) allows scripts to catch any exception. However,
if the type of the current raised exception is not intercepted by a cat ch block, then
this exception is thrown to the next encapsulating t r y block. Moreover, the optional
final |y block isexecuted in any case, this allows scripts to execute some statements
if there are exceptions or not.

>>> proc exception_handling (v) {

try {

throw v
} catch (boolean e) {

println ("The exception is a boolean =", e)
} catch (long e) {

println ("The exception is a long integer =", €)
} catch (string e) {

println ("The exception is a string =", e)
} finally {

println ("The finally block is executed.")

}

>>> exception_handling(true)
The exception is a boolean = true
The finally block is executed.

>>> exception_handling(1)
The exception is a long integer =1
The finally block is executed.

>>> excepti on_handl i ng(" EXCEPTI ON")
The exception is a string = EXCEPTI ON
The finally block is executed.

>>> exception_handling([1, 2, 3])
The finally block is executed.

2-36 CORBA Scripting Language, v1.1 September 2002 June 2004

2.12 Modules

Exception: <throw[1, 2, 3] >

File "stdin", line 3 in exception_handling
File "stdin", line 1 in ?
>>> try {

exception_handling(A CLASS(1))
} catch (e) {
println ("The exception ", e,
dure.")

}

is thrown by the proce-

The finally block is executed.
The exception < A CLASS instance > is thrown by the proce-
dure.

Modules allow users to store reusable scripts into text files. This means that any text
file containing IDLscript statements is a module. A module looks like an interactive
script: it can declare variables, procedures, classes, and can execute any statements.

2.12.1 Importation

The syntax for module importations is:

<inport_statement> ::= "inport" <identifier_|list>
<identifier list>::= <identifier> { *,’ <identifier>}"

To load modules in the interpreter, users must invoke thei nport statement with alist
of one or more module names.

The file storing a module has the same name as the module postfixed by the . cs
extension. The interpreter has to look for module files using an environment variable
named CSPATH. This variable lists the directories containing module files. Directories
are separated by O: ' or O;0 depending on operating systems.

2.12.2 Initialization

When a module is loaded for the first time, the interpreter executes all statements
contained into the module file. Then, the module can declare any procedure or class,
and execute any statements to initialize global module variables. Next importations do
not reexecute the statements.

2.12.3 Access to the Content

September 2002 June200%

The dotted notation is used to access variables, procedures, and classes of a module:

CORBA Scripting Language: Modules 2-37

2-38

nmodul e_nane. nane_of a_vari abl e
nmodul e_nane. nane_of a_procedure (paraneters)
nmodul e_nane. nane_of _a_cl ass

2.12.4 Module Aliasing

As all IDLscript entities, a module is an object that can be assigned to a variable and
passed as a parameter to a procedure.

>>> jnport nodul el
>>> nodul e2 = nodul el
>>> a_procedur e(nodul e2)

2.12.5 Module Management

The list of al the loaded modules is contained into the sys. nodul es scope.
Consider the following example:

>>> sys. nodul es
< scope sys. nodul es {
nodul e nodul el;
} >
>>> del sys. nodul es. nodul el
>>> sys. nodul es
< scope sys. nodul es {

} >

The del statement can be applied to the sys. nodul es scope to explicitly delete a
loaded module. The next importation of this deleted module reloads the module file
and executes it.

CORBA <cripting Language, v1.1 September 2002 June 2001

TheOMGIDL Binding 3

Note B Text in Red is from the IDLscript December 2000 RTF final report (ptc/2002-
08-04).

Contents

This chapter contains the following sections.

Section Title Page
OOverviewO 32
OBinding for Basic OMG IDL TypesO 3-2
OBinding for OMG IDL Module® 3-4
OBinding for OMG IDL ConstantO 34
OBinding for OMG IDL EnumO 35
OBinding for OMG IDL StructureO 36
OBinding for OMG IDL UnionO 39
OBinding for OMG IDL TypedefO 3-11
OBinding for OMG IDL SequenceO 312
OBinding for OMG IDL ArrayO 3-14
| OBinding for OMG IDL FixedO 3-17
OBinding for OMG IDL ExceptionO 3-19
OBinding for OMG IDL InterfaceO 3-25
Olmplementing OMG IDL InterfacesO 3-29

| September 2002 June 2002 CORBA <cripting Language, v1.1 3-1

3.1 Overview

Section Title Page
OBinding for OMG IDL ValueO 3-33
Olmplementing Concrete OMG IDL ValuesO 3-37
OBinding for OMG IDL TypeCodeO 3-40
OBinding for OMG IDL AnyO 3-43
OThe Global CORBA Object® 3-44

This chapter presents the binding between IDLscript and OMG IDL. It shows how all
OMG IDL constructions such as basic types, modules, constants, enumerations,
structures, unions, typedefs, sequences, arrays, interfaces, attributes, operations,
exceptions, values, TypeCodes, and Anys are represented and can be manipulated from
the IDLscript language.

IDLscript provides a dynamic IDL binding that allows users to access directly and
naturally to any IDL specifications loaded into the Interface Repository. This approach
does not need to generate stubs and skeletons; therefore, users can invoke, navigate,
and discover any CORBA objects at runtime. IDLscript totally hides the complexity of
the DII, DSI, and Interface Repository APIs, and it internally uses them to construct
and receive requests in a safe way.

The IDLscript type system integrates seamlessly the OMG IDL type system. For each
IDL construction, this chapter presents how to access the IDL definition, how it is
represented with IDLscript, how to create such values, and how to manipulate them
using the IDLscript language.

From Section 3.2, OBinding for Basic OMG IDL Types to Section 3.12, OBinding for
OMG IDL Exception,O on page 3-19, this chapter presents the binding for basic
elements of OMG IDL. Section 3.13, OBinding for OMG IDL Interface,O on

page 3-25 presents the binding for OMG IDL interfaces and how to implement these
interfaces using IDLscript (Section 3.14, Olmplementing OMG IDL Interfaces,O on
page 3-29). Section 3.15, OBinding for OMG IDL Value,O on page 3-33 presents the
binding for OMG IDL values and how to implement them with IDLscript classes.
TypeCode and Any are respectively presented in Section 3.17, OBinding for OMG IDL
TypeCode,O on page 3-40 and Section 3.18, OBinding for OMG IDL Any,0 on

page 3-43. Finally the access to the heart of CORBA is presented in Section 3.19,
OThe Global CORBA Object,O on page 3-44.

CORBA <cripting Language, v1.1 September 2002 June 2001

3.2 Bindingfor Basic OMG IDL Types

In IDLscript, any item is accessible by an identifier; therefore, al basic IDL types are
directly accessible by special IDLscript identifiers contained in the CORBA scope. This
CORBA scope contains basic CORBA concepts like basic IDL types, standard system
exceptions related to CORBA uses, and some other embedded scopes (see

Section 3.19, OThe Global CORBA Object,O on page 3-44).

3.2.1 IDLscript Representation

Table 3-1 lists the IDLscript identifiers that refer to basic OMG IDL types.

Table3-1 The IDLscript Representation of OMG IDL Types

Basic OMG IDL Types IDLscript Identifiers

void CORBA .Void

short CORBA.Short

unsigned short CORBA.UShort

long CORBA.Long
CORBA.ULoNg
CORBA.LongLong
unsigned long long CORBA.ULongLong
float CORBA .Float

unsigned long

long long

double CORBA.Double
long double CORBA.LongDouble
boolean CORBA.Boolean
char CORBA.Char
wchar CORBA.WChar
octet CORBA.Octet

string CORBA.String
wstring CORBA.WString

3.2.2 Basic OMG IDL Values

September 2002 June200%

A script can directly manipulate basic IDL types to create basic IDL values as shown
in the following example. Operators described in the previous chapter can be used on
these values. IDLscript can automatically coerce basic IDL values to basic values

when it is necessary as shown on the vl + v2 > 100 and v3 != "" expressions.

>>> v1 = CORBA. Short (1)

>>> v2 = CORBA. ULong(10000)

CORBA Scripting Language: Binding for Basic OMG IDL Types 33

>>> vl + v2 > 100

true

>>> v3 = CORBA. String("Hello World!")
>>> v3. |l ength

12

>>> y3 1= ""

true

3.3 Binding for OMG IDL Module

All IDL modules are directly accessible from the IDLscript interpreter. They are
represented by internal objects managed by the Interface Repository cache of the
IDLscript interpreter.

3.3.1 OMG IDL Examples

The following example presents some module declarations. The module GridService
has already been presented in Section 1.4, OAn IDLscript Example,O on page 1-6. The
module MA illustrates the definition of an embedded module MB.

module GridService{ ...}
module MA { ... };
module MB { ... };

h

3.3.2 IDLscript Representation

In IDLscript, access to an IDL module is done simply by providing its IDL module
identifier. The evaluation of modules displays the content of the module. This
functionality can be used as end-user on-line helping facility. The dotted notation is
used to access the contains of a module.

>>> i dService

< OMGIDL nodule GridService { . . . }; >
>>> m = MA MB

>>> m

< OMGIDL nmodule MA:MB { . . . }; >

The previous example illustrates the access to the GridService and MA::MB
modules. The evaluation of the Gri dSer vi ce module displays its content. Note that
as IDL modules are represented by | DL script objects, they can be assigned to variables
(the malias).

CORBA <cripting Language, v1.1 September 2002 June 2001

3.4 Binding for OMG IDL Constant

34.1 OMG

All IDL constants are directly accessible from the IDLscript interpreter. They are
represented by internal objects managed by the Interface Repository cache of the
IDLscript interpreter.

IDL Examples

The following example presents some constant declarations: the Pl and Math::PI IDL
constants.

const double Pl = 3.14159;
module Math {
const double Pl = 3.14159;

h

3.4.2 IDLscript Representation

In IDLscript, the access to an IDL constant is simply done by providing its IDL
constant identifier. This identifier can be prefixed by its IDL module or interface
scopes where it is defined. The evaluation of an IDL constant displays the IDL
definition of this constant.

>>> Pl
< OMG | DL const double PI = 3.14159; >

>>> hat h. Pl
< OMG | DL const double Math::Pl = 3.14159; >

>>> ¢ = PI
>>> C
< OMG | DL const double PI = 3.14159; >

>>> c. _type
< OVG- | DL typedef doubl e CORBA. Doubl e; >

The previous example shows how to access the IDL Pl and Math::PI constants. The
evaluation of the Pl constant displays its definition and value. As IDL constants are
represented by IDLscript objects, they can be assigned to IDLscript variables to create
some kind of aliases as ¢ and support the _t ype attribute.

3.5 Binding for OMG IDL Enum

September 2002 June200%

All IDL enumeration types and values are directly accessible from the IDLscript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the IDLscript interpreter.

CORBA Scripting Language: Binding for OMG IDL Constant 35

3.5.1 An OMG IDL Example

Consider the following example which presents an enum declaration. The enumeration
Months contains all the months of the year.

/I This definition can be located inside or outside an IDL module or interface
enum Months {

January, February, March, April, May, June, July, August,

September, October, November, December

h

3.5.2 IDLscript Representation

In IDLscript, the access to an IDL enum type is simply done by providing its IDL
enumeration identifier. This identifier can be prefixed by its IDL module or interface
scopes where it is defined. The evaluation of an IDL enum displaysthe IDL definition
of this enumeration.

>>> m = Mont hs

>>>m

< OMG I DL enum Months { January, February, March, April,
May, June, July, August, Septenber, COctober, Novenber,
Decenber }; >

The previous code shows how to access the Mont hs enum This displays all items of
this enumeration. As IDL enumeration types are represented by | DL script objects, they
can be assigned to variables to create some kind of aliases.

3.5.3 Enum Values

The creation of an IDL enum value needs to specify the selected item belonging to the
IDL enum. Asan IDL enum value is represented by an IDLscript object, it is
possible to use the typing attributes and methods such as _t ype and _i s_a.

>>> a = Mont hs. January
>>> a

Mont hs. January

>>> a. _type

< OMG I DL enum Mont hs { January, February, March, April,
May, June, July, August, Septenber, Cctober, Novenber,
Decenber }; >

>>> a. _is_a(Mnths)
true

For instance, the previous code shows how to create and assign the Januar y value of
the Mont hs enumtype to the a variable. The last two instructions access to type
information managed by the interpreter.

CORBA <cripting Language, v1.1 September 2002 June 2001

3.6 Bindingfor OMG IDL Sructure

3.6.1 OMG

All IDL structure types and values are directly accessible from the IDLscript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the IDLscript interpreter.

IDL Examples

Consider the following example which presents some structure declarations. The
structure Point contains two fields named x and y with the basic type double. The
structure TwoPoints contains two embedded Point structures.

/I This definition can be located inside or outside an IDL module or interface
struct Point {

double x;

doubley;

h

struct TwoPoints {
Point a;
Point b;

h

3.6.2 IDLscript Representation

September 2002 June200%

In IDLscript, the access to an IDL structure type is simply done by providing its IDL
structure identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL structure displays the IDL definition of
this structure and all its fields.

>>> Poi nt
< OMG I DL struct Point { double x; double y; }; >

>>> Point. X
< OVG- | DL typedef doubl e CORBA. Doubl e; >

>>> TwoPoi nt s
< OMG I DL struct TwoPoints { Point a; Point b; }; >

>>> TwoPoints. a
< OMG I DL struct Point { double x; double y; }; >

>>> a = Point

>>> a
< OMG I DL struct Point { double x; double y; }; >

CORBA Scripting Language: Binding for OMG IDL Sructure 37

The previous code presents the access to the Point and TwoPoints structures. It is
possible to display the entire definition of a structure or only the definition of one field
using the dotted notation (Poi nt . x and TwoPoi nt s. a). AsIDL structure types are
represented by IDLscript objects, they can be assigned to variables to create some kind
of aliases.

3.6.3 Sructure Values

Note B |ssue 4503

The creation of an IDL structure value is achieved by the calling notation

(I DLType(fieldl,...,fieldn)).If noargumentisprovided, all the struct fields
are (recursively) initialized to their default values. If arguments are provided, t¥he
interpreter checks if the number of given valuesis equal to the number of the expected
IDL fields. If necessary, the interpreter can automatically coerce given values to
expected IDL values. For instance, an expected long field can be initialized by an
integer literal. Moreover, a field of an IDL structure type can be initialized by
providing an array containing the values of each structure field.

>>> p0 = Point ()

>>> p0

Poi nt (0, 0)

pl = Point (1,2)

>>> pl

Poi nt (1, 2)

>>> tp0 = TwoPoi nt s()

>>> t p0

TwoPoi nt s(Poi nt (0, 0), Poi nt (0, 0))

>>> tpl = TwoPoi nts([11, 22], [33, 44])
>>> tpl

TwoPoi nt s(Poi nt (11, 22), Poi nt (33, 44))

>>> tp2 = TwoPoi nt s(pl, Point(3,4))

>>> t p3 TwoPoi nt s(Poi nt (6, 7), Point(8,9))

The previous code presents some examples of structure value creations. All the fields
of the structure must be filled to allow creation and the interpreter coerces integer
literals to basic IDL double values. An embedded structure can be defined by several
ways:. by a literal representation (t p1), by using variables containing structures
already created (t p2), or by giving the IDL types of the items (t p3).

3.6.4 Sructure Fidelds

When an IDL structure value is created, the dotted notation allows one to get and set
field values. The following example presents some accesses to fields of the previous
structure value.

CORBA <cripting Language, v1.1 September 2002 June 2001

>>> pl. X

CORBA. Doubl e(1)
>>> pl.x = -1
>>> pl

Poi nt (-1, 2)

>>> tpl.a

Poi nt (11, 22)

>>> tpl.a.y
CORBA. Doubl e(22)

>>> tpl. _type
< OMG I DL struct TwoPoints { Point a; Point b; } >

As IDL structure values are represented by IDLscript objects, it is possible to use
common value attributes and methods such as _t ype and _i s_a.

3.7 Binding for OMG IDL Union

All IDL union types and values are directly accessible from the IDLscript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the IDLscript interpreter.

3.7.1 An OMG IDL Example

Consider the following example which presents a union declaration. In this example,
the union named AnUnion contains three fields named m_short, m_long, and
m_float.

/I This definition can be located inside or outside an IDL module or interface
union AnUnion switch(unsigned short) {

case 0: short m_short;

case 1: long m_long;

case 2: float m_float;

h

3.7.2 IDLscript Representation

September 2002 June200%

In IDLscript, the access to an union type is simply done by providing its IDL union
identifier. This identifier can be prefixed by its module or interface scopes where it is
defined. The evaluation of an IDL union displays the IDL definition of this union and
al itsfields.

>>> u = AnUnion

>>> U

< OMG- I DL union AnUnion switch (unsigned short) {
case 0: short mshort;
case 1: long ml ong;
case 2: float mfloat;

CORBA Scripting Language: Binding for OMG IDL Union 39

3-10

}o>

>>> y == AnUni on
true

The previous code presents the access to the AnUnion union. As IDL union types are
represented by IDLscript objects, they can be assigned to variables to create aliases,
compared and passed as arguments to procedures.

3.7.3 Union Values

Note B |ssue 4503

The creation of an IDL union value is achieved by the procedural calling notation
| DLt ype(di scrim nator, val ue) and needstwo values:

1. the union discriminator value, and
2. the value associated to this discriminator.

If no argument is not provided, the union discriminator is set to a value consistent with
the first named member of the union and the associated union member is (recursively)
initialized to its default value. If only the discriminator is provided, the associated
union member is (recursively) initialized to its default value. If both values are
provided, tFhe interpreter checks if the discriminator value is correct in relation to the
set of case values of the union. Moreover, it checks if the second given value is correct
according to the expected union case value. If necessary, the interpreter can
automatically coerce the given discriminator and field values to expected IDL values.

>>> AnUni on()
AnUni on(0, 0)

>>> AnUni on(1)
AnUni on(1, 0)

>>> a = AnUnion(0, 1)
>>> a
AnUni on(0, 1)

>>> b = AnUnion(2, 10. 3)
>>> p
AnUni on(2, 10. 3)

>>> a._type == b._type
true

The previous code presents some examples of IDL union value creations. As IDL
union values are represented by IDLscript objects, it is possible to use common value
attributes and methods such as _t ype and _i s_a.

CORBA <cripting Language, v1.1 September 2002 June 2004

3

If thereis no field associated with the discriminator value, the union creation is simply
done by setting the discriminator value.

>>> ¢= AnUni on(3)
>>> C
AnUni on(3)

3.7.4 Union Fields

When an IDL union value is created, the dotted notation allows one to get and set field
case values. The special read-only _d attribute is provided to access the discriminator
value of an IDL union value. When getting a union field, the interpreter checks if the
discriminator has the right value and it throws an internal exception to signal that the
union does not have the right discriminator. Setting a union field automatically changes
the discriminator value. The following example presents some accesses to fields of the
previous union value.

>>> a. _d
CORBA. Ushort (0)

>>> a. mshort
CORBA. Short (1)

>>> a.mlong = 2
>>> a.m| ong
CORBA. Long(2)
>>> a. _d

CORBA. Ushort (1)

3.8 Bindingfor OMG IDL Typedef

All IDL typedef types and values are directly accessible from the IDLscript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the IDLscript interpreter.

3.8.1 OMG IDL Examples

September 2002 June200%

Consider the following example which presents an example of typedef declarations.
The Day typedef refers to the basic unsigned short type and the Coordinate type
refers to the previous Point type.

/l This definition can be located inside or outside an IDL module or interface

typedef unsigned short Day;
typedef Point Coordinate;

CORBA Scripting Language: Binding for OMG IDL Typedef 311

3-12

3.8.2 IDLscript Representation

In IDLscript, access to an IDL typedef type is done simply by providing its IDL
typedef identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL typedef displays the IDL definition of
this type definition.

>>> Day
< OMG I DL typedef unsigned short Day; >

>>> ¢ = Coordi nate
>>> C

< OVMG- I DL typedef Point Coordinate; >

>>> C. X
< OVG- I DL typedef doubl e CORBA. Doubl e; >

The previous code presents the access to the Day and Coordinate typedefs. As IDL

typedef types are represented by IDLscript objects, they can be assigned to variables to
create aliases, compared and passed as arguments to procedures. When an IDL typedef
refers to a complex IDL type, it also supports all attributes and methods provided by

the aliased type.

3.8.3 Typedef Values

The creation of an IDL typedef value is achieved by the calling notation with a set of
initializing values. The number and types of these values must be equal to the number
and types needed to create a value of the aliased type.

>>> d = Day(2)
>>>
Day(2)

>>> ¢ = Coordinate(1.1,2.2)
>>> C

Coordinate(1.1,2.2)

>>> C. X
CORBA. Doubl e(1. 1)

>>> ¢. _is_a(Point)
true

The previous code presents some examples of IDL typedef value creations and their

uses. The created values support the same attributes and methods as those provided by

the aliased type (c. x). Moreover as IDL typedef values are represented by IDLscript

objects, it is possible to use common value attributes and methods such as _t ype and
is_a.

CORBA <cripting Language, v1.1 September 2002 June 2001

3.9 Binding for OMG IDL Sequence

3.9.1 OMG

All IDL sequence types and values are directly accessible from the IDLscript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the IDLscript interpreter.

IDL Examples

Consider the following example which presents some sequence declarations:
SeqString for a string sequence, SeqMonths for a Months sequence, and
SeqgPoint for a Point sequence. Only named sequences are supported by IDLscript,
no binding for anonymous sequences is provided.

/I This definition can be located inside or outside an IDL module or interface
typedef sequence<string> SeqString;

typedef sequence<Months> SeqMonths;

typedef sequence<Point> SegPoint;

3.9.2 IDLscript Representation

In IDLscript, access to an IDL sequence type is done simply by providing its IDL
seguence identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL sequence displays the IDL definition of
this type definition.

>>> SeqString
< OMG I DL typedef sequence<string> SeqString; >

>>> SeqMont hs
< OMG I DL typedef sequence<Mont hs> Seghbnt hs; >

>>> s = SeqPoi nt
>>> S
< OMG | DL typedef sequence<Poi nt> SeqPoint; >

The previous code presents the access to the SeqString, SeqMonths, and SeqPoint
seguence types. As IDL sequence types are represented by IDLscript objects, they can
be assigned to variables to create aliases, compared and passed as arguments to
procedures.

3.9.3 Sequence Values

September 2002 June200%

The creation of an IDL sequence value is achieved by the calling notation with alist of
values. The type of each value must conform to the item type of the IDL sequence. If
necessary, the interpreter automatically coerces given values to required IDL values.

>>> s = SeqString("One", " Two", " Three")

>>> s
SeqString("One", " Two", "Three")

CORBA Scripting Language: Binding for OMG IDL Sequence 3-13

314

>>> s = SegMont hs()
>>> 5

SegMont hs()

>>> s = SeqPoint ([1.1,2.2] , [3.3,4.4] , [5.5,6.6])
>>> g
SeqPoi nt (Point(1.1,2.2),Point(3.3,4.4),Point(5.5,6.6))

>>> 51 = SeqPoint ([1.1,2.2], Point(3.3,4.4), Point(CORBA
Doubl e(5.5), CORBA. Doubl e(6.6)))

>>> sl. _type

< OMz | DL typedef sequence<Poi nt> SeqPoint; >

The previous code presents some examples of DL segquence value creations. If the list
of values is empty, then IDLscript creates an empty sequence value (SegMont hs()).
The creation of structured value sequences is very simple because each structured
value can be provided as an IDLscript array. Then the interpreter checks if the array
contains the expected number of values. However it is also possible to use a more
typed notation as illustrated by the s1 creation. As IDL sequence values are
represented by IDLscript objects, it is possible to use common value attributes and
methods such as_type and is_a.

3.9.4 Sequence Items

An IDL sequence value is similar to a basic IDLscript array. It provides the operator
[] to get and set sequence items, the attribute | engt h to obtain the number of items,
and can be used in the f or statement construction. The following example illustrates
these functionalities on the previous SeqPoi nt value.

>>> s1[0]
Point(1.1,2.2)

>>> s1[0] = [100, 200]
>>> s1[1].x = 300

>>> sl.length
3

>>> for i in sl { println (i) }
Poi nt (100, 200)
Poi nt (300, 4. 4)
Poi nt (5. 5, 6. 6)

CORBA <cripting Language, v1.1 September 2002 June 2001

3.10 Bindingfor OMG IDL Array

All IDL array types and values are directly accessible from the IDLscript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the IDLscript interpreter.

3.10.1 OMG IDL Examples

Consider the following example which presents some array declarations: ArrayLong
for along array, and ArrayPoint for a Point array. IDL arrays have a bounded size
defined at declaration. Only named array types are supported by IDLscript, no binding
for anonymous arrays is provided.

/I This definition can be located inside or outside an IDL module or interface
typedef long ArrayLong[10];
typedef Point ArrayPoint[10];

3.10.2 IDLscript Representation

In IDLscript, access to an IDL array type is simply done by providing its IDL array
identifier. This identifier can be prefixed by its module or interface scopes where it is
defined. The evaluation of an array displays the IDL definition of this type definition.

>>> ArraylLong
< OMz | DL typedef |ong[10] ArraylLong; >

>>> a = ArrayPoi nt
>>> a
< OVG- | DL typedef Point[10] ArrayPoint;>

The previous code presents access to the ArrayLong, and ArrayPoint IDL array
types. AsIDL array types are represented by IDL script values, they can be assigned to
variables to create aliases, compared and passed as arguments to procedures.

3.10.3 Array Values

September 2002 June200%

Note B |ssue 4503

The creation of an IDL array value is achieved by the calling notation with a list of
values. If no value is provided, al the array items are (recursively) initialized to their
default values. If values are provided, tFhe type of each value must conform to the
item type of the IDL array. If necessary, the interpreter automatically coerces given
values to required IDL values. Moreover the interpreter checks if the number of given
values is equal to the size of the IDL array type.

>>> a = ArrayLong()

>>> g
ArraylLong(0,0,0,0,0,0,0,0,0,0)

CORBA <cripting Language: Binding for OMG IDL Array 3-15

>>> a = ArraylLong(1l, 2, 3,4,5)
Exception : < BadArraySi ze: array nust have 10 itens >
File "stdin', line 1 in ?

>>> a = ArraylLong(1,2,3,4,5,6,7,8,9,10)
>>> a
ArraylLong(1, 2,3,4,5,6,7,8,9, 10)

>>> a = ArrayPoint ()

>>> a

ArrayPoi nt (Poi nt (0, 0), Poi nt (0, 0), Poi nt(0, 0), Point(0,0),
Poi nt (0, 0), Poi nt (0, 0), Point (0, 0), Poi nt (0, 0), Poi nt(0,0),
Poi nt (0, 0))

>>> a = ArrayPoint([1,1],[2,2],[3,3],[4,4],[5,5],[6, 6],
[7,71,[8,8],[9,9],[10,10])

>>> g

ArrayPoi nt (Point(1,1), Point(2,2), Point(3,3), Point(4,4),
Poi nt (5, 5), Poi nt (6, 6), Point(7,7), Point(8,8),Point(9,9),
Poi nt (10, 10))

>>> a. _type == ArrayPoint
true

The previous code presents some examples of IDL array value creations. The creation
of structured value IDL arrays is very simple because each structured value can be
provided as an IDLscript array. Then the interpreter checks if the array contains the
expected number of values. However it is also possible to use a more typed notation as
illustrated in Section 3.9.3, OSequence Values,O on page 3-13. As IDL array values
are represented by IDLscript objects, it is possible to use common object attributes and
methods such as _type and _is_a.

3.10.4 Array ltems

An IDL array valueis similar to abasic IDLscript array. It provides the operator [] to
get and set array items, the attribute | engt h to obtain the number of items, and can be
used in the f or statement construction. The following example illustrates these
functionalities on the previous Ar r ayPoi nt value.

>>> a[0]
Point(1,1)

>>> a[0] = [100, 100]
>>> g[1].x = 200

>>> a.length
10

3-16 CORBA <cripting Language, v1.1 September 2002 June 2004

>>> for i ina{ println (i) }
Poi nt (100, 100)

Poi nt (200, 2)

Poi nt (3, 3)

Note B |ssue 4502

3.11 Bindingfor OMG IDL Fixed

All IDL fixed types and values are directly accessible from the IDLscript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the IDLscript interpreter.

3.11.1 OMG IDL Example

Consider the following example which presents the Money fixed type with nine
significant digits and a scale factor of two. Only named fixed types are supported by
IDLscript, no binding for anonymous fixed types is provided.

/I This definition can be located inside or outside an IDL module or interface
typedef fixed<9,2> Money;

3.11.2 IDLscript Representation

In IDLscript, access to an IDL fixed type is done simply by providing its IDL fixed
type identifier. This identifier can be prefixed by its module or interface scopes where
it is defined. The evaluation of an IDL fixed type displays the IDL definition of this
type definition.

>>> Money

< OM= | DL typedef fixed<9, 2> Mney; >
>>> t = Money

>>>

< OM= | DL typedef fixed<9, 2> Mney; >

The previous code presents the access to the Money fixed type. As IDL fixed types
are represented by IDLscript objects, they can be assigned to variables to create
aliases, compared and passed as arguments to procedures.

3.11.3 Fixed Values

The creation of an IDL fixed value is achieved by the calling notation with an initial
value. When the given value is of an integer, floating, or fixed type, the interpreter
automatically coerces this given value to the required IDL fixed value. If the given

September 2002 June200% CORBA <cripting Language: Binding for OMG IDL Fixed 3-17

value is a string, the interpreter automatically converts the string to a fixed value or
throws a CORBA::DATA_CONVERSION exception when the string does not denote
avalid fixed value.

>>> m = Money(10)
>>> m
Money(10)

>>> Money(100. 56)
Money(100. 56)

>>> Money("999. 99")
Money(999. 99)

>>> try {
m = Money("not a valid fixed value string")
} cat ch(CORBA. DATA CONVERSI ON e) {
println("Data conversion exception!")

};

Dat a conversion exception!

>>> nf = Money(m)

>>> nf
Money(10)
>>> nf. _type

< OMG | DL typedef fixed<9,2> Mney; >

>>> nf. i s_a(Mney)
true

The previous code presents some examples of DL fixed value creations with different
initial value types. As IDL fixed values are represented by IDLscript objects, it is
possible to use common value attributes and methods such as _type and _i s_a.

Moreover, IDLscript fixed values have specific attributes and methods enumerated in
Table 3-2.

Table 3-2 The IDLscript Fixed Value Functionalities

Functionality

Explanation

f.digits

Returns the smallest digits that can hold the complete f fixed object.

3-18 CORBA <cripting Language, v1.1 September 2002 June 2004

Table 3-2 The IDLscript Fixed Value Functionalities

Functionality

Explanation

f.scale

Returns the smallest scale that can hold the complete f fixed object.

f.round(s)

Returns a new fixed object equal to the f fixed object rounded down
the specified s scale, where s is an unsigned short. If the new scale
requires the value to lose precision on the right, the r ound method
will round away from zero values that are halfway or more to the
next absolute value for the new fixed precision.

f.truncate(s)

Returns a new fixed object equal to the f fixed object truncated to
the specified s scale, where s is an unsigned short. If the new scale
requires the value to lose precision on the right, thet r uncat e
method always truncates the value towards zero.

September 2002 June200%

Consider the following examples:

>>> m = Money(100. 56)

>>> mdigits

5

>>> m scal e

2

>>> m round(0)
Money(101)

>>> m round(1)
Money(100. 6)

>>> m round(2)
Money(100. 56)

>>> mtruncate(0)
Money(100)

>>> mtruncate(l)
Money(100. 5)

>>> mtruncate(2)
Money(100. 56)

CORBA <cripting Language: Binding for OMG IDL Fixed

3-19

3

3.12 Binding for OMG IDL Exception

3-20

All IDL exception types and values are directly accessible from the IDL script
interpreter. They are represented by internal objects managed by the IDLscript

interpreter.
CORBA .Exception
CORBA.SystemException CORBA.User Exception
All OMG IDL
See Table 3-2 User Exceptions

Figure3-1 The CORBA Exception Type Hierarchy

3.12.1 IDLscript Representation

IDLscript supports all CORBA exception types:
¥ the System Exceptions representing internal ORB problems, and
¥ User Exceptions defined in IDL.

Figure 3-1 shows the hierarchy of the IDLscript types representing IDL exception
types. All CORBA exception types are transitively subtypes of the
CORBA.Exception exception type. This type has two subtypes
CORBA.SystemException and CORBA.UserException representing respectively
the standard CORBA system exceptions and the IDL user exceptions.

3.12.2 Exception Handling

The CORBA exception types are represented by IDLscript types and are thrown and
caught via the exception mechanism presented in Section 2.11, OExceptions,O on
page 2-33. Consider the following example:

try {
a script code.
t hr ow CORBA. UNKNOWN()

} catch (CosNami ng. Nam ngCont ext . Al readyBound ae) {
println ("A CosNam ng. Nam ngCont ext . Al readyBound excep-

tion ", ae, " has been thrown!")

CORBA <cripting Language, v1.1 September 2002 June 2001

} catch (CORBA. User Exception ue) {

println ("An I DL exception ", ue,

has been thrown!")

} catch (CORBA. SystenkException se) {

println ("A system exception ", se,

} finally {

}

a finally script code.

3.12.3 System Exception Types

All standard CORBA system exception types are subtypes of the
CORBA.SystemException type. In IDLscript, access to a system exception type is

September 2002 June200%

simply done by providing its identifier. This identifier must be prefixed by the CORBA

scope name like CORBA.INV_OBJREF, CORBA.COMM_FAILURE, or

CORBA.OBJECT_NOT_EXIST.

Note B |ssue 4502

Table 3-3 The IDLscript Identifiers for CORBA System Exceptions

CORBA.UNKNOWN

CORBA.BAD_PARAM

CORBA.NO_MEMORY

CORBA.IMP_LIMIT

CORBA.COMM_FAILURE

CORBA.INV_OBJREF

CORBA.NO_PERMISSION

CORBA.INTERNAL

CORBA.MARSHAL

CORBA.INITIALIZE

CORBA.NO_IMPLEMENT

CORBA.BAD_TYPECODE

CORBA.BAD_OPERATION

CORBA.NO_RESOURCES

CORBA.NO_RESPONSE

CORBA.PERSIST_STORE

CORBA.BAD_INV_ORDER

CORBA.TRANSIENT

CORBA.FREE_MEM

CORBA.INV_IDENT

CORBA.INV_FLAG

CORBA.BAD_CONTEXT

CORBA.OBJ_ADAPTER

CORBA.DATA_CONVERSION

CORBA.OBJECT_NOT_EXIST

CORBA.INTF_REPOS

CORBA.TRANSACTION_REQUIRED

CORBA.TRANSACTION_ROLLEDBACK

CORBA.INVALID_TRANSACTION

CORBA.INV_POLICY

CORBA.CODESET_INCOMPATIBLE

CORBA.REBIND

CORBA.TIMEOUT

CORBA.TRANSACTION_UNAVAILABLE

CORBA.TRANSACTION_MODE

CORBA.BAD_QOS

CORBA.INVALID_ACTIVITY

CORBA.ACTIVITY_COMPLETED

CORBA.ACTIVITY_REQUIRED

CORBA <cripting Language: Binding for OMG IDL Exception

has been thrown!")

3-21

3-22

Consider the following examples:

Note B |ssue 4502

>>> CORBA. UNKNOWN
< OMG | DL excepti on CORBA: : UNKNOMWN {

unsi gned | ong mi nor;

CORBA: : Cconpl eti on_Sstatus conpl et ed;
}o>

>>> CORBA. Cconpl eti on_Sst at us
< OVG- | DL enum CORBA: : Cconpl etion_Sstatus {
COVPLETED_YES, COWPLETED _NO, COVPLETED MAYBE

o>

>>> CORBA. UNKNOWN. _i s_a(CORBA. Excepti on)
true

>>> e = CORBA. UNKNOWN
>>> e. i s_a(CORBA. SystenException)
true

>>> e. _is_a(CORBA. User Excepti on)
fal se

The previous code illustrates access to the CORBA.UNKNOWN exception type.
Evaluating an exception type shows the IDL definition of the exception. System
exceptions have two fields: the minor one and the completed one. This latter is avalue
of the CORBA. Cconpl eti on_Sst at us enumeration type. As system exception
types are represented by IDLscript objects, they can be assigned to variables to create
aliases, compared and passed as arguments to procedures. Moreover it is possible to
use common object attributes and methods such as _t ype and _i s_a.

3.12.4 System Exception Values

The creation of a system exception value is achieved by the calling notation

CORBA. Except i onName() . IDLscript provides three different ways to create these
values. The first one needs no parameter and creates a system exception with the

m nor field equal to zero and the conpl et ed field equal to the
COVPLETED_MAYBE enumeration value. The second one needs one parameter to
initialize the m nor field. The third one takes two parameters to set the mi nor and
conpl et ed fields.

Note B |ssue 4502

>>> S
>>> S

CORBA. UNKNOWK()
CORBA. UNKNOWK(100)

CORBA <cripting Language, v1.1 September 2002 June 2001

>>> § =
CORBA. UNKNOWN(100, CORBA. Cconpl eti on_Sst at us. COVWPLETED _
YES)

>>> s, m nor
100

>>> 5. conpl et ed
CORBA. Cconpl eti on_Sst at us. COWPLETED_YES

>>> 5. _type == CORBA. UNKNOVWN
true

>>> s. _is_a (CORBA. Exception)
true

>>> 5. is_a (CORBA. Systenkxception)
true

>>> s. _is_a (CORBA. User Excepti on)
fal se

The previous code illustrates the three creation ways of system exceptions. Access to
field values is achieved by the dotted notation. Exception values have two fields: the
m nor and conpl et ed ones. As system exception values are represented by
IDLscript objects, it is possible to use common value attributes and methods such as
_typeand _is_a. A system exception value is a CORBA.Exception and a
CORBA.SystemException as shown in Figure 3-1 on page 3-19.

3.12.5 User Exception Types

September 2002 June200%

Consider the following example that presents some exception declarations. The
exception EmptyException contains no field. The exception Exception contains three
fields: a simple string field, a Months enumeration field, and a structured Point
field.

/I This definition can be located inside or outside an IDL module or interface
exception EmptyException {};

exception Exception {
string s;
Months m;
Point p;

h

In IDLscript, access to an IDL user exception type is done simply by providing its IDL
exception identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL exception displays the IDL definition of
this exception and all its IDL fields.

CORBA Scripting Language: Binding for OMG IDL Exception 3-23

3-24

>>> Enpt yExcepti on
< OVG- | DL exception EnptyException {}; >

>>> Exception

< OMG | DL exception Exception {
string s;
Mont hs m
Poi nt p;

}o>

>>> Exception.p

< OMG I DL struct Point {
doubl e x;
doubl e v;

}o>

>>> Exception. _is_a(CORBA. Exception)
true

>>> e = Exception
>>> e. i s_a(CORBA. SystenException)
fal se

>>> e. _is_a(CORBA. User Excepti on)
true

The previous code illustrates the access to the IDL EmptyException and Exception
exception types. Evaluating an exception type shows the IDL definition of the
exception. As IDL exception types are represented by IDLscript values, they can be
assigned to variables to create aliases, compared and passed as arguments to
procedures. Moreover it is possible to use common value attributes and methods such
as_type and _i s_a. All IDL user exception types are subtypes of the
CORBA.Exception and CORBA.UserException types as shown in Figure 3-1 on
page 3-19.

3.12.6 User Exception Values

Note B |ssue 4503

The creation of an IDL exception value is achieved by the calling notation

| DLExceptionType(fieldl,...,fieldn).If noargumentisprovided, al the
user exception fields are (recursively) initialized to their default values. If arguments
are provided, tFhe interpreter checks if the number of given valuesis equal to the
number of the expected IDL fields. If necessary, the interpreter can automatically
coerce given values to expected IDL values. For instance, an expected string field can
be initialized by a string literal. Moreover, afield of an IDL structure type can be
initialized by providing an array containing the value of each structure field.

CORBA <cripting Language, v1.1 September 2002 June 2001

>>> u = EnptyException()

>>> u = Exception()
>>>
Exception("", Mont hs. January, Poi nt (0, 0))

>>> u = Exception ("Hello", Mnths.June, [100, 100])
>>> U

Exception("Hel | 0", Mont hs. June, Poi nt (100, 100))

>>> U. s
"Hel | 0"

>>> u. _i s_a (CORBA. Excepti on)

true

>>> U. _is_a (CORBA. Systenkxception)
fal se

>>> U. _is_a (CORBA. UserException)
true

The previous code presents some examples of exception value creations. All the fields
of the exception must be filled to allow creation and the interpreter coerces literals and
arrays to the required IDL values. The dotted notation allows one to get and set field
values. As IDL exception values are represented by IDLscript objects, it is possible to
use common value attributes and methods such as_type and _i s_a.

3.13 Binding for OMG IDL Interface

3.13.1 OMG

September 2002 June200%

All IDL interface types and object references are directly accessible from the |DLscript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the IDLscript interpreter.

IDL Examples

Consider the following example which presents some interface declarations. The Foo
interface contains astring assignable attribute, adouble nonassignable attribute
and a meth operation. The AnotherFoo interface is derived from the Foo interface
and it adds a new oper operation, which illustrates al parameter passing modes. The
two operations can raise the EmptyException exception.

interface Foo {

attribute string assignable;

readonly attribute double nonassignable;

long meth(in long p1) raises(EmptyException);
3
interface AnotherFoo : Foo {

long oper(in long p1, out long p2, inout long p3)
raises(EmptyException);

CORBA <cripting Language: Binding for OMG IDL Interface 3-25

3-26

h

3.13.2 IDLscript Representation

In IDLscript, the access to an IDL interface is simply done by providing its IDL
interface identifier. This identifier can be prefixed by its module scopes where it is
defined. The evaluation of an IDL interface displays the IDL definition of this type
definition with the signature of al attributes and operations and the list of inherited
interfaces.

>>> F0o
< OMGIDL interface Foo {

attribute string assignable;

attribute readonly doubl e nonassi gnabl e;

long nmeth (in long pl) rai ses(EnptyException);
} >

>>> a = Anot her Foo
>>> a
< OMGIDL interface AnotherFoo : Foo {
I ong oper (in long pl, out long p2, inout |ong p3)
rai ses(Enpt yExcepti on);
} >

>>> a = Anot her Foo. assi gnabl e
>>> a

< OM>1DL attribute string Foo::assignable >

>>> Anot her Foo. oper
< OMG | DL operation | ong AnotherFoo::oper (in long pl, out
I ong p2, inout |ong p3) raises(EnptyException) >

>>> Anot herFoo. is_a (Foo)
true

The previous code illustrates access to the Foo and AnotherFoo interfaces. The
evaluation of the Foo interface shows the signature of the assignable and
nonassighable attributes and the meth operation. The signature of an attribute is
composed of its access mode (none or readonly), its type, and its formal name. The
signature of an operation is composed of itsreturn type, its formal name, its parameters
list (mode, type, and formal name), and its exceptions list.

As|DL interfaces, IDL attributes, IDL operations are represented by IDL script objects.
They can be assigned to variables to create aliases, compared, and passed as arguments
to procedures. The hierarchy of IDL interfaces is directly accessible to check interface
conformity through the use of common value attributes and methods such as _t ype
and _is_a.

CORBA <cripting Language, v1.1 September 2002 June 2001

3.13.3 Object References

Note B |ssue 4501

Access to CORBA objects requires obtaining related CORBA object references. The
creation of these references is simply achieved by the following calling notations

CORBA. Obj ect ("Stringi fi edObj ect Ref erence") or
InterfaceType("StringifiedObjectReference").

Accepted formats for stringified object references are described in Section 13.6.9
CStringified Object Referencesk, page 13-24 and Section 13.6.10 CObject URLSE,
page 13-25 of the CORBA 3.0 Specification.

>>> objref = CORBA. Object ("IOR..... ")
>>> objref._type
< OMG I DL interface AnotherFoo : Foo {
I ong oper (in long pl, out long p2, inout |ong p3)
rai ses(Enpt yExcepti on);
} >

>>> objref = AnotherFoo("IOR ")

>>> objref = AnotherFoo("corbal oc:iiop:host:port/nane")

>>> objref. _is_a(Foo)
true

The first creation notation allows scripts to create an object reference without
knowledge about its IDL interface. The second creation notation allows scripts to
create an object reference and check if this reference supports a specific IDL interface.
However the interpreter only creates the object reference if the given string is correct;
otherwise, it raises a CORBA.INV_OBJREF exception. Moreover this object
reference is automatically narrowed to the most derived IDL interface type. Then as a
result, users can directly and interactively discover the interface supported by the
object as shown in the previous example.

As object references are represented by IDLscript objects, they can be assigned to
variables, passed as arguments to procedures. Moreover, it is possible to use common
object attributes and methods such as _t ype and _i s_a.

3.13.4 Accessto OMG IDL Attributes

Getting and setting IDL attributes is done simply through the dotted notation and by
using the IDL identifier of attributes. These accesses are realized by the interpreter via
the Dynamic Invocation Interface. The interpreter checks the attribute access mode

September 2002 June 2001 CORBA <cripting Language: Binding for OMG IDL Interface 3-27

3-28

when a script tries to set an attribute (internal 1DLscript exception
ReadOnlyAttribute). If necessary, it also converts automatically the given IDLscript
value into the required IDL value. The following example illustrates access to the
assighable and nonassignable attributes.

>>> objref.assignable = "Hell o Worl d"
>>> println(objref.assignable, "!")
Hel l o Worl d!

>>> objref.nonassignable = 10
Exception: < ReadOnlyAttribute: < attribute readonly double
Foo: : nonassi gnabl e; > >

File "stdin", line 2 in ?

3.13.5 Invocation of OMG IDL Operations

All IDL operations can be simply invoked with IDLscript using the method calling
notation (obj ect . operati on(argl, ..., argn)). Theinterpreter automatically
checks the number of parameters and coerces given values to IDL values. Invocations
are done through the Dynamic Invocation Interface. Exceptions thrown by operations
can be easily intercepted thanks to the IDLscript exception mechanism (t ry, cat ch,
and f i nal | y statements).

>>> objref. meth
< OMG- I DL operation long Foo::neth (in |ong pl)
rai ses(Enpt yException) >

>>> objref.nmeth(100)
100

>>> try {
r = objref.nmeth(100)
} catch (EnmptyException e) {
println("The EnptyExcepti on has been thrown")
}

>>> out Vari abl e = Hol der ()

>>> jnout Vari abl e = Hol der (200)

>>> objref.oper (100, outVariable, inoutVariable)
100

>>> out Vari abl e. val ue

300

The previous example illustrates the invocation of the meth and oper IDL operations.
All parameter passing modes are supported by IDLscript. Passing in parameters is
done by value while out and inout parameters require using a value of the Hol der
type. As IDLscript is dynamically typed, a Holder can store any IDLscript values (i.e.,
there is only one Hol der type). For an out parameter, scripts must only create and

CORBA <cripting Language, v1.1 September 2002 June 2001

3

pass an empty holder to the operation. For an inout parameter, scripts must create and
pass an initialized holder to the operation. After the invocation, the returned value is
available into the holder by its val ue attribute.

3.13.6 Invocation of One-way Operations

Oneway operations are transparently managed by the interpreter. Invocations to
operations defined as oneway will always be achieved asynchronously using the same
syntactic notation as two-way operations.

3.13.7 Operation Invocation using the Deferred Mode

September 2002 June200%

All IDL operations can be simply invoked using the deferred mode with IDLscript
using the method calling notation (obj ect ! operati on(argl,...,argn)). The
interpreter automatically checks the number of parameters and coerces given values to
IDL values. Invocations are done through the Dynamic Invocation Interface.
Exceptions thrown by operations can be easily intercepted thanks to the IDL script
exception mechanism (t ry, cat ch, and f i nal | y statements).

>>> objref. meth
< OMz | DL operation |long Foo::meth (in long pl)
rai ses(Enpt yException) >

>>> futureReply = objref! meth(100)

>>> futureReply. val ue
100

The previous example illustrates deferred invocation of an operation. The result of
invocation is obtained using the val ue attribute of the f ut ur eRepl y object. Access
to the value attribute of the f ut ur eRepl y object is blocking while the result is not
available.

inout and out parameters are a'so managed with deferred calls. Consider the
following example:

>>> out Vari abl e
>>> | nout Vari abl
>>> futureReply

Hol der ()
= Hol der (200)
obj ref!oper (100, out Vari abl e, i nout Vari abl e)

I o 1

>>> futureReply. val ue
100
>>> nyFut ur eRepl yFor MyQut Par anmet er = out Vari abl e. val ue

>>> nyFut ur eRepl yFor MyQut Par anet er . val ue
300

CORBA Scripting Language: Binding for OMG IDL Interface 3-29

In this example, out Vari abl e and i nout Vari abl e are Hol der referencing
future objects. Access to the result after invocation is done as for Hol der ina
synchronous invocation (using the val ue attribute). The value contained in the holder
is a future object. Access to the real result is done like in the previous example: using
the val ue attribute of the f ut ur eRepl y object.

If an exception is thrown during the execution of a deferred call, this exception will be
thrown in the client side at the first access to a future object involved in this
invocation.

Table 3-4 summarizes the functionalities of future objects.

Table 3-4 The Future Object Functionalities

Functionality Explanation

futureReply. val ue Waits for the end of the invocation and returns the
result or raises the replied exception if needed.

futureReply. poll () Polls the end of the invocation and returns a bool ean:
t rue = invocation is completed
fal se = invocation is still running.

futureReply.wait() Waits for the end of the invocation and raises the
replied exception if needed.

3.14 Implementing OMG IDL Interfaces

3-30

The implementation of IDL interfaces is done simply by IDLscript classes (see
Section 2.10, OClasses,O on page 2-29). IDL attributes and operations are
implemented by DL script instance methods. These instance methods must only follow
some haming conventions.

3.14.1 Class Examples

The following example illustrates the implementation of the Foo and AnotherFoo
interfaces presented in Section 3.13.1, OOMG IDL Examples,O on page 3-25. The
Foo interface is implemented by the FOO IDLscript class. The AnotherFoo interface
is implemented by the Anot her FOO IDLscript class. As Anot her FOOis a subclass
of FOO, their instances support instance methods defined in the FOO class.

class FOO {
proc _FOO (self, s, d) { self.s S
self.d d}

proc _get assignable (self) { return self.s }
proc _set assignable (self, value) { self.s = value }
proc _get_nonassignable (self) { return self.d }
proc meth (self, pl) {

if (pl ==0) { throw EnptyException() }

return pl

}

CORBA <cripting Language, v1.1 September 2002 June 2001

}
cl ass Anot her FOO (FOO) ({

proc _ AnotherFOO _ (self, s, d) { self. FOO (s,d) }
proc oper (self, pl, p2, p3) {

if (pl ==0) { throw EnptyException() }

p2.value = pl + p3.value

return pl

}

3.14.2 OMG IDL Attributes

A class that implements an IDL interface must provide instance methods for IDL
attributes. These methods can do any computation on the instance state.

The implementation class must provide a getting method per IDL attribute. The name
of these methods is the concatenation of the attribute name and the prefix _get _ (e.g.,
_get _assi gnabl e and _get nonassi ghabl e). These methods take one
parameter to refer to the current receiver object and must return the (computed) value
of the IDL attribute.

For non-readonly IDL attributes, the implementation class must provide a setting
method. These methods are named by the IDL attribute name prefixed by _set _ (e.g.,
_set _assi gnabl e). They take two parameters: one to refer to the receiver and
another one containing the new value of the IDL attribute. These methods do not return
any value.

3.14.3 OMG IDL Operations

Each IDL operation is implemented by an IDLscript method named as the operation,
(e.g., oper or meth).

Implementation methods must take one parameter for the receiver and as many
parameters as the IDL operation signature defines. in parameters are transmitted by
value while out and inout parameters are received through a Hol der object.

These methods can do any computation on the instance state. They can aso throw any
CORBA system exception or any user exception defined in the IDL operation
signature as shown in the oper method.

3.14.4 Object Registration

IDLscript provides two different ways to register/unregister object implementations
(i.e., IDLscript class instances):

Note B |ssue 4502

September 2002 June 2001 CORBA <cripting Language: Implementing OMG IDL Interfaces 331

3-32

¥ The POA approach: Scripts can use the Portable Object Adapter as defined in the
CORBA 2:3-3.0 specification. Here, native PortableServer::Servant and
PortableServer::Cookie are reflected by class instances.

¥ A simple connect/disconnect approach: Here, object implementations are
connected/disconnected via the connect () and di sconnect () methods of the
CORBA. ORB IDLscript object (see Section 3.19.2, OThe CORBA::ORB Object,0
on page 3-46). Connections may be explicitly or implicitly done by scripts. The
disconnection is always explicitly done by scripts. Consider the following example:

>>> a foo = FOO ("Hell 0", 10)
>>> # 'a foo' refers to a FOO instance.

>>> CORBA. ORB. connect (a_f oo, Foo, "ny_foo")
>>> # 'a foo' is now associated to a Foo CORBA obj ect.
>>> # The 'a foo' instance becomes accessible fromthe
>>> # ORB. The | ast paraneter is optional.

>>> a foo. _this

< DSI Object Foo("IOR 000000000000000c49444c3a466f 6f 3a312e30
00000000010000000000000038000100000000000f 3133342e3230362e31
302e3132390000138f 0000000000184f 422f 49442b4e554d0049444c3a46
6f 6f 3a312e30003200") >

>>> # The ' _this' attribute refers to the associ ated

>>> # DS|I object.

>>> # This is the CORBA object reference inplenented by

>>> # the 'a_foo' instance.

>>>

>>> CORBA. ORB. di sconnect (a_f 00)

>>> # Explicit disconnection. The 'a_foo' instance becones
>>> # jnaccessi ble fromthe ORB.

On the one hand, object implementations may be explicitly connected to the ORB by
calling the ORBOs connect () method. As IDLscript is fully dynamic, this method
takes two parameters:

1. the class instance to connect, and
2. the IDL interface which this instance implements.

(Let us note that a third optional parameter can be used to set the ORB-specific object
name.)

This way allows scripts to explicitly fix which interfaces an object implements. For
example, an IDLscript instance can simultaneously implement several IDL interfaces
with different object references.

On the other hand, an object implementation may also be automatically and implicitly
connected to the ORB if it is transmitted as a parameter to an IDL operation of a
distant CORBA object. This connection is only done if the object implementation was
not already connected to an IDL interface which was conformed to the formal

CORBA <cripting Language, v1.1 September 2002 June 2001

3

parameter type. If the object was already connected to an IDL interface, the previous
connection is reused. This approach simplifies the registration of listener objects
because registration IDL methods explicitly wait for a specific listener interface.
However, this approach can introduce distributed typing problems. For example, if an
object implementation is bound to the CosNaming service without explicit connection,
then it isimplicitly connected to the CORBA::Object interface.

PortableServer::POA, PortableServer::Current, and PortableServer::Policies
interfaces must be implemented by the scripting engine.
PortableServer::POAManager, PortableServer::AdapterActivator,
PortableServer::ServantManager, PortableServer::ServantActivator, and
PortableServer::ServantLocator are implemented by user classes written in
IDLScript.

3.14.5 Object Adapter Run-Time Exceptions

To support IDLscript, an ORB product must provide a reactive or multi-threaded
Object Adapter. Then, interactive scripting can be done simultaneously with incoming
request handling (i.e., listener callbacks are executed concurrently with interactive
scripts). Moreover, some run-time exceptions can be thrown by the IDLscript engine
when it receives a CORBA request via the Dynamic Skeleton Interface.

Note B |ssue 4502

Exception is thrown when...

CORBA::BAD_OPERATION | the invoked IDL operation is not supported
by the interfaces of the object
implementation.

CORBA::OBJ_ADAPTER the object implementation has been
explicitly disconnected from its interfaces.

CORBA::NO_IMPLEMENT | the object implementation class does not
provide an implementation for the invoked
operation or attribute.

CORBABADIINV—ORDER | the invoked implementation throws an
CORBA::UNKNOWN internal exception (i.e., an exception that is

with minor code equal to 2 | | not a CORBA exception).
OMGVMCID

3.15 Bindingfor OMG IDL Value

All IDL value types and associated values are directly accessible from the IDLscript
interpreter. They are reflected by internal objects managed by the IDLscript engine.

September 2002 June 2001 CORBA <cripting Language: Binding for OMG IDL Value 3-33

3-34

3.15.1 OMG IDL Examples

Consider the following examples:
valuetype Information sequence<string>;

valuetype Employee {

I state definition
public string name;
public Information status;
private unsigned long salary;

/I initializer
factory init(in string name, in Information status,

in unsigned long salary);

/l'local operations

void work();

h

This example declares the Information boxed value type, a string sequence, and the
Employee value type with public state members (name and status), a private state
member (salary), an initializer (init), and a local operation (work).

3.15.2 IDLscript Representation

In IDLscript, accessing an IDL value type is simply done by providing its IDL value
identifier. This identifier can be prefixed by the IDL scope where the value type is
defined. Consider following examples:

>>> | nformation
< OMG | DL val uetype Informati on sequence<string>, >

>>> Enpl oyee
< OMG- | DL val uetype Enpl oyee {

public string nane;

public Information status;

private unsigned |ong sal ary;

factory init(in string nane, in Information status, in
unsi gned | ong sal ary);

voi d work();

}o>

>>> Enpl oyee. nane
< OMG | DL public menber string Enpl oyee:: nanme; >

>>> Enpl oyee. sal ary
< OMG | DL private nenber unsigned | ong Enpl oyee::salary; >

>>> Enpl oyee.init

< OMG I DL factory Enployee::init(in string nanme, in Informa-
tion status, in unsigned long salary); >

CORBA <cripting Language, v1.1 September 2002 June 2001

>>> w = Enpl oyee. wor Kk
>>> W
< OMG | DL operation void Enpl oyee::work(); >

The evaluation of an IDL value type shows its IDL definition. For example, the boxed
type for boxed value types (e.g., Information) and inheritance, state members,
initializers, operations for value types (e.g., Employee). The evaluation of state
members, initializers, and operations shows their signature (as for evaluation of IDL
interface attributes and operations). When a boxed value type refers to a complex IDL
type, it also supports all attributes and methods provided by the boxed type.

State members, initializers, and operations are reflected by IDLscript objects. They can
be assigned to variables in order to create aliases (e.g., win the above example),
compared and passed as arguments. The inheritance graph composed of IDL value
types is directly accessible to check type conformity via the common _i s_a method.

3.15.3 Value Creation

September 2002 June200%

The creation of an IDL boxed value is achieved by the calling notation according to
the boxed type. For example, the same number of initialization arguments and each
argument must have the expected type. Automatic coercion can also be applied by the
IDLscript engine if needed. Consider the following example:

>>>j = |Information("this", "is", "an", "exanple")
>>>
Information("this", "is", "an", "exanple")

The creation of concrete values is achieved by calling one of the initializers declared in
the value type. The number and types of arguments must conform to the initializer
signature. Again, automatic coercion can be applied if needed. Note that abstract value
types cannot be instantiated and concrete value types must declare initializers.
Moreover, a local implementation must be known by the IDLscript engine (see
Section 3.16, Olmplementing Concrete OMG IDL Values,O on page 3-37). If there is
no registered local implementation of the concrete value type, then the CORBA::NO_
IMPLEMENT exception is thrown. Consider the following example:

>>> e = Enployee.init("sonmeone", ["infol", "info2"], 0)
>>> e
< Enpl oyee val ue
name = "soneone"
status = Information("infol", "info2")
>

Note that the array passed as second argument to the value initializer is automatically
coerced to an Information value, and that the evaluation of a value only shows public
state members.

As values are reflected by IDLscript objects, they also support the standard _t ype
attribute and the _i s_a method. Consider the following examples:

CORBA <cripting Language: Binding for OMG IDL Value 3-35

3-36

>>> j. _type == Information
true

>>> . _is_a(Enmpl oyee)

fal se

>>> e. _type == Information
fal se

>>> e. _is_a(Enmpl oyee)
true

3.15.4 Null Value

Null values are reflected by the _nul | attribute of the IDLscript reflection of OMG
IDL value types. Consider the following example:

>>> n = Enpl oyee. _nul |

>>> n
< OMG I DL null Enpl oyee val ue >

>>> n. _type == Enpl oyee
true

3.15.5 Value Manipulation

A boxed value can be manipulated in the same way as an object of the boxed type (i.e.,
it supports exactly the same scripting notations. operators, attributes, and methods).
Consider the following example: the Information i valueis manipulated asastring
seguence. For example, i hasal engt h attribute, supports the subscript notation ([])
to access and modify items, and can be used in f or statements (as shown in

Section 3.9.4, OSequence Items,O on page 3-14).

>>> i .length

4

>>> |[3] = "exanple!"”

>>> [3]

"exanpl e!"

>>> for s ini print(s, ' ")

This is an exanpl e!

Both concrete and abstract values are manipulated with the dotted notation for
invoking local operations. Concrete value operations can only be invoked if the value
is associated to a local implementation (see Section 3.16, Olmplementing Concrete
OMG IDL Values,O on page 3-37); otherwise, a CORBA::NO_IMPLEMENT

CORBA <cripting Language, v1.1 September 2002 June 2001

3

exception is thrown. Public state members can be get and set by the dotted notation.
Private state members are not accessible, an access attempt raises a NotSupported
exception. Consider the following examples:

>>> e.name = "M. Smith"

>>> e. nane

"M. Smith"

>>> e.status = ["unkwown"] # automati c coercion

>>> e.status
I nf or mati on(" unkwown")

>>> e.sal ary
Exception: < NotSupported: < private state nmenber unsigned
| ong Enpl oyee::salary; > >

File "stdin", line 1 in ?

>>> e. wor k()

Note that if a value without local implementation for its value type is returned by an
invocation, then only public state members can be accessed.

3.16 Implementing Concrete OMG IDL Values

The implementation of concrete value types is simply done by IDLscript classes (see
Section 2.10, OClasses,O on page 2-29). State members are represented by instance
attributes. Initializers and operations are implemented by instance methods.

3.16.1 Example

September 2002 June200%

The following example illustrates the implementation of the Employee IDL vaue
type presented in Section 3.15.1, OOMG IDL Examples,O on page 3-33. This value
type is implemented by the following EMPLOYEE class:

cl ass EMPLOYEE

{
proc _ EMPLOYEE (self) { . . . }

proc init(self, nane, status, salary)
{

sel f. nane = nane

sel f.status st at us

sel f.sal ary sal ary

}

proc work(self) { . . . }
}

CORBA Scripting Language: | mplementing Concrete OMG IDL Values 3-37

3-38

3.16.2 Sate Members

Both public and private IDL state members are represented by instance attributes that
have the same name. As in IDLscript instance attributes are only defined during their
first assignment. It is the programmerOs responsibility to affect each required instance
attribute. They must be initialized in the class constructor (e.g., _ EMPLOYEE__
method) and/or in each initializer method.

When a distant operation requires a value type parameter and the user provides an
instance, then IDLscript marshals each instance attributes in the same order that it is
defined by the value type. If the instance does not have one of the reguired instance
attributes, then the IDLscript engine raises a CORBA::MARSHAL exception.

Initializers

Initializers are instance methods defined in the class implementing a concrete value
type. They must have an explicit first parameter that refers to the receiver instance
(i.e., as al IDLscript instance methods). Next, parameters will receive arguments
passed at the initializer calling time (seeSection 3.15.3, OValue Creation,O on

page 3-35). Of course, their number must conform to the initializer signature. The
method body must correctly assign instance attributes representing the value state.
Other attribute assignments are also allowed, they represent a transient state which is
never marshaled on the wire.

The CORBA::NO_IMPLEMENT is thrown if the implementation class does not
provide an implementation for an initializer called at concrete value creation time.

3.16.4 Operations

Each IDL value operation is implemented by an instance method named like the
operation (e.g., work). Operation implementations must take an explicit first parameter
referring to the receiver instance, and as many parameters as the operation signature
defines. in parameters are transmitted by value while out and inout parameters are
received through a Hol der object.

These methods can do any computation on the instance state. They can aso throw any
CORBA system exception or any user exception defined in the IDL operation
signature.

The CORBA::NO_IMPLEMENT is thrown if the implementation class does not
provide an implementation for a called value operation.

3.16.5 Factory Registration

Asimplementation classes act like value type factories, the CORBA::ValueFactory
native type is reflected by the IDLscript class concept. These classes must be explicitly
registered by the register_value_factory method of the CORBA. ORB object (see
Section 3.19.2, OThe CORBA::ORB Object,O on page 3-46). This method takes two
parameters: the value type RepositorylD and the associated implementation class.

CORBA <cripting Language, v1.1 September 2002 June 2001

This registration allows the IDLscript engine to instantiate classes when users
explicitly create avalue, or when avalue must be unmarshaled from the wire. Consider
the following script code:

>>> CORBA. ORB. regi ster_val ue_factory("IDL: Enpl oyee: 1. 0",
EMPLOYEE)

As the reflection of an IDL type is also the reflection of the associated
CORBA::TypeCode (see Section 3.17, OBinding for OMG IDL TypeCode,O on
page 3-40), then the RepositoryID can directly be obtained from the value type as
shown in the following script code.

>>> CORBA. ORB. r egi ster_val ue_f act ory(Enpl oyee. i d(), EMPLOYEE)
Note that if implementation classes are stored into script modules, their registration

can be made implicitly by initialization module statements (see Section 2.12.2,
Olnitialization,® on page 2-37). Then users only need to import these script modules.

3.16.6 Custom Values

Note B |ssue 4502

Implementation classes of custom marshaled values must explicitly implement
marshaling and unmarshaling instance methods. The former named nar shal takes, as
parameters, the receiver instance and a CORBA::DataOutputStream object. The
latter named unmar shal takes the receiver instance and a
CORBA::DatalnputStream object. These stream objects support the standard
operations described into the CORBA 2:3-3.0 specification and are invoked as abstract
values (see Section 3.15.5, OValue Manipulation,O on page 3-36).

Consider the following OMD IDL example:

custom valuetype CustomValueExample {
factory init(in boolean b, in char c, in long I);

}1
It can be implemented as:
class | MPL
{
proc init(self, b, c, I)
{
self.statel = b
self.state2 = ¢

sel f.state3 I

}

dos refers to a CORBA:: Dat aCut put Stream obj ect .
proc marshal (sel f, dos)

September 2002 June 2001 CORBA <cripting Language: Implementing Concrete OMG IDL Values 3-39

{

dos.write bool ean(sel f.statel)
dos.write char(sel f.state2)
dos.write | ong(sel f.state3)

}

dis refers to a CORBA:: Dat al nput St ream obj ect .
proc unnmarshal (sel f, dis)

{
self.statel = dis.read_bool ean()
self.state2 = dis.read_char()
self.state3 = dis.read_Il ong

}

3.16.7 Values as Object References

Note B |ssue 4502

If a concrete value type supports an OMG IDL interface (either concrete or abstract),
an instance of the implementation class of this value type can be connected to the ORB
(see Section 3.14.4, OObject Registration,0 on page 3-31). When this value is passed
as parameter to a distant operation call, the IDLscript engine marshals the value state
or the IOR according to the standard semantic defined in the CORBA 23-3.0
specification.

3.17 Bindingfor OMG IDL TypeCode

3-40

Aswe have seen, the IDL script language provides a full and transparent binding to any
IDL definitions. These IDL types are directly accessible through their related DL
definition name. Then these types can be used anywhere it is needed to provide a
CORBA TypeCode value.

>>> Exanpl eTC
< OMG IDL interface Exanpl eTC {
void send (in TypeCode tc);

bz

>>> 0 = Exanmpl eTC("IOR")
>>> 0. send(CORBA. Long)

>>> 0. send(Poi nt)

>>> 0. send(Foo)

>>> tc = CORBA. TypeCode(Foo)
>>> tC

CORBA. TypeCode(Foo)
>>> 0.send(tc)

CORBA <cripting Language, v1.1 September 2002 June 2001

3

The previous code shows how IDL types can be directly sent as CORBA TypeCode
values. The ExampleTC interface defines the send operation, which takes a CORBA
TypeCode value as parameter. This operation can be invoked with any IDL type: the
basic ones like CORBA. Long, the user defined ones like Point, and the interface ones
like Foo. Moreover, TypeCode values can be explicitly created from the
CORBA. TypeCode hinding type.

All the OMG IDL type representations can be managed as IDLscript TypeCode
objects. Table 3-5 enumerates Ty peCode object functionalites.

Table 3-5 The CORBA.TypeCode Functionalities

Functionality

Explanation

t c. equal (aCor baType)

Tests equality between thet ¢ TypeCode and the
aCor baType TypeCode.

t c. equi val ent (aCor baType)

Tests equivalence between thet ¢ TypeCode and a
aCor baType TypeCode.

tc. get _conpact _t ypecode()

Returns the compact TypeCode form of thet ¢
TypeCode.

tc. kind()

Returns the CORBA:: TCKind of thet ¢ TypeCode
and helps to determine what other operations can be
invoked on this TypeCode.

te.id()

Returns the CORBA::RepositoryID globally
identifying the type on the TypeCode. It can be
invoked on object reference, value, structure, union,
enumeration, alias, and exception TypeCodes.
Raises a CORBA::TypeCode::BadKind exception if
needed.

tc. name()

Returns the simple name identifying the type within
its enclosing scope. Raises a
CORBA::TypeCode::BadKind exception if needed.

t c. menber _count ()

Returns the number of members constituting the type.
It can be invoked on structure, union, enumeration,
non-boxed value, and exception TypeCodes. Raises
a CORBA::TypeCode::BadKind exception if
needed.

t c. menber _nane(anl ndex)

Returns the simple name of the member identified by
anindex. It can be invoked on structure, union,
enumeration, non-boxed value, and exception
TypeCodes. Raises a
CORBA::TypeCode::BadKind or a
CORBA::TypeCode::Bounds exception if needed.

September 2002 June200%

CORBA <cripting Language: Binding for OMG IDL TypeCode

3-41

Table 3-5 The CORBA.TypeCode Functionalities

t c. menber _t ype(anl ndex) Returns the TypeCode describing the type of the
member identified by anl ndex. It can be invoked on
structure, union, value and exception TypeCodes.
Raises a CORBA::TypeCode::BadKind or a
CORBA::TypeCode::Bounds exception if needed.

t c. menber _I abel (anl ndex) Returns the label of the union member identified by
anl ndex. It can only be invoked on union
TypeCodes. Raises a
CORBA::TypeCode::BadKind or a
CORBA::TypeCode::Bounds exception if needed.

tc.discrinnator_type() Returns the type of all non-default member labels. It
can only be invoked on union TypeCodes. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.default i ndex() Returns the index of the default member, or -1 if there
is no default member. It can only be invoked on union
TypeCodes.

Raises a CORBA:: TypeCode::BadKind exception if
needed.

tc. 1l ength() Can be invoked on string, wide string, sequence, and
array TypeCodes. For strings, wide strings, and
sequences, it returns the bound, or zero indicating an
unbounded string, wide string or sequence. For
arrays, it returns the number of elementsin the array.
Raises a CORBA:: TypeCode::BadKind exception if
needed.

tc.content _type() Can be invoked on sequence, array, boxed value, and
alias TypeCodes. For sequences and arrays, it
returns the element type. For boxed values, it returns
the boxed type. For aliases, it returns the original
type. Raises a CORBA::TypeCode::BadKind
exception if needed.

tc.fixed digits() Returns the fixed digits of the t ¢ fixed TypeCode.
Raises a CORBA::TypeCode::BadKind exception if
needed.

tc.fixed_scal e() Returns the fixed scale of the t ¢ fixed TypeCode.
Raises a CORBA::TypeCode::BadKind exception if
needed.

3-42 CORBA <cripting Language, v1.1 September 2002 June 2004

Table 3-5 The CORBA.TypeCode Functionalities

tc. menber _visibility(anlndex) | Returnsthe CORBA::Visibility of the non-boxedt c

value member identified by anl ndex. Raises a
CORBA::TypeCode::BadKind or a
CORBA::TypeCode::Bounds exception if needed.

tc.type_nodifier() Returns the CORBA::ValueModifier of the non-

boxed t ¢ valuetype TypeCode. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.concrete_base type() Returns the concrete base TypeCode of the non-

boxed t ¢ valuetype TypeCode. Raises a
CORBA::TypeCode::BadKind exception if needed.

The CORBA:: TCKind enumeration is reflected according to the rules defined in
Section 3.5, OBinding for OMG IDL Enum,O on page 3-5.

The CORBA::RepositorylD, CORBA::Visibility, and CORBA::ValueModifier
typedef are reflected according to the rules defined in Section 3.8, OBinding for OMG
IDL Typedef,O on page 3-11.

The CORBA::PRIVATE_MEMBER, CORBA::PUBLIC_MEMBER, CORBA::VM _
NONE, CORBA::VM_CUSTOM, CORBA::VM_ABSTRACT, and CORBA::VM _
TRUNCATABLE constants are reflected according to the rules defined in Section 3.4,
OBinding for OMG IDL Constant,O on page 3-4.

The CORBA::TypeCode::Bounds and CORBA::TypeCode::BadKind user
exceptions are reflected according to the rules defined in Section 3.12, OBinding for
OMG IDL Exception,O on page 3-19.

3.18 Binding for OMG IDL Any

September 2002 June200%

As we have seen, the IDLscript language allows one to simply create and manipulate
any IDL values. These values can be directly created from their related IDL type. Then
these values can be used anywhere it is needed to provide a CORBA Any value.

>>> Exanpl eAny
< OM& I DL interface Exanpl eAny {
void send (in any a);

b

>>> p = Point (10, 10)

>>> foo = Foo("IOR")

>>> 0 = Exanpl eAny("IOR")
>>> 0. send(CORBA. Long(10))

>>> 0. send(p)

>>> 0. send(f o00)

>>> 0. send(Anot her Foo)

CORBA Scripting Language: Binding for OMG IDL Any 3-43

344

>>> a = CORBA. Any(p)
>>> g

CORBA. Any(Poi nt (10, 10))
>>> 0. send(a)

>>> a.type

< OMG I DL struct Point {
doubl e x;
doubl e v;

}oo>

>>> a.val ue

Poi nt (10, 10)

The previous example shows how IDL values can be directly sent as CORBA Any
values. The ExampleAny interface defines the send operation, which takes a
CORBA Any value as parameter. This operation can be invoked with any IDL value.
The interpreter automatically coerces the IDL value to an Any value like for

CORBA. Long(10), Poi nt (10, 10), Foo("IOR") and Anot her Foo
invocations.

Moreover, Any values can be explicitly created from the CORBA. Any binding type.
Such a value supports two attributes:

1. t ype to obtain the IDL TypeCode of the value stored in the Any.
2. val ue to obtain the stored value.

Any values used as return values, inout or out parameters follow the rules defined in
Section 3.13.5, Olnvocation of OMG IDL Operations,O on page 3-27.

Some automatic coercions have been defined for the most common types. This feature
simplifies the use of IDL specifications using CORBA::Any. When an any is
expected, IDLscript allows scripts to give one of the value of Table 3-6.

Table3-6 CORBA.Any Implicit Conversions

Type Conversion to

along L CORBA: : Any(CORBA: : Long(L))

a double D CORBA: : Any(CORBA: : Doubl e(D))
achar C CORBA: : Any(CORBA: : Char (Q))
aboolean B CORBA: : Any(CORBA: : Bool ean(B))
astring S CORBA: : Any(CORBA: : String(S))

CORBA <cripting Language, v1.1 September 2002 June 2001

3.19 TheGlobal CORBA Object

The IDLscript engine contains a global object named CORBA which is the reflection of
the CORBA IDL module. This object defines a scope containing the hierarchy of the
previously presented objects: basic IDL types, basic IDL enums, standard CORBA
exception types, standard CORBA typedefs and standard CORBA constants. It also
contains the Object interface and the ORB object.

Moreover the CORBA object dynamically allows the access to the other IDL definitions
contained in the CORBA module if they are populated into the Interface Repository
(e.g., CORBA::Repository, etc.).

3.19.1 The CORBA::Object Object

The CORBA. Obj ect object is the reflection of the base CORBA::Object IDL
interface. In fact, it is an IDLscript type that defines the standard methods supported
by all CORBA abject references.

Table 3-7 presents the IDLscript reflection of the CORBA::Object operations.

Note B |ssue 4502

Table 3-7 The Reflection of the CORBA::Object Operations

Object Operation Reflected by
get_interface _get_interface

is_nil _is nil

duplicate Not reflected.

release Not reflected.

is a _is a

non_existent _non_existent
is_equivalent _is_equivalent

hash _hash

create request Not reflected.
get_policy _get_policy
get_domain_managers _get_domain_managers
set_policy_overrides _set_policy overrides
get_client_policy _get_client_policy
get_policy_overrides _get_policy overrides
validate connection _validate _connection
get_component _get_component

September 2002 June200%

CORBA <cripting Language: The Global CORBA Object

3-45

3-46

Each CORBA::Object operation is reflected by a CORBA. Ohj ect method prefixed
by an underscore (O_O) to avoid possible name conflicts with operations defined in
IDL interfaces.

As IDLscript provides an automatic garbage collector, the duplicate and release
operations are not reflected in the CORBA. Ohj ect type.

Theis_a operation is reflected by the i s_a method supported by any IDLscript
object. Note that the parameter is not a repository 1D string but an IDLscript type.

The create_request operation is not reflected because the IDLscript language
provides a simpler calling notation to invoke object operations (see Section 3.13.5,
Olnvocation of OMG IDL Operations,0 on page 3-27). However, an IDLscript engine
must use the DIl to invoke distant CORBA object operations.

The CORBA::InterfaceDef, CORBA::Policy, CORBA::PolicyType,
CORBA::PolicyList, CORBA::SetOverrideType, and
CORBA::DomainManagersList IDL types are reflected in the CORBA global
object according to the rules defined in Section 3.13, OBinding for OMG IDL
Interface,O on page 3-25, Section 3.8, OBinding for OMG IDL Typedef,O on
page 3-11, Section 3.9, OBinding for OMG IDL Sequence,O on page 3-12, and
Section 3.5, OBinding for OMG IDL Enum,O on page 3-5.

Following examples illustrate the use of these standard CORBA aobject operations:

>>> 0 = CORBA Object("IOR...")

>>> | = 0._get _interface()

>>> . _is_nil()

fal se

>>> |, _is_a(CORBA. InterfaceDef)

true

>>> |, _non_existent()

fal se

>>> 0. _is_equivalent(i)

fal se

>>> h = 0. _hash()

>>> p = 0._get_policy(. . . a policy type . . .)
>>> 0._set_policy_overrides(. . . a policy list . . .

CORBA. Set Overri deType. ADD_OVERRI DE)
>>> d = 0._get_domai n_nanagers()

3.19.2 The CORBA::ORB Object

The CORBA. ORB object is the reflection of the ORB singleton object and it is
initialized at the starting time of an IDLscript engine before its first use. It provides
standard ORB operations (i.e., object_to_string, string_to_object,
list_initial_services, resolve_initial_references, run, shutdown, etc.).
Moreover, it also provides operations to explicitly connect/disconnect a scripting
object to/from a CORBA object (see Section 3.14.4, OObject Registration,O on

CORBA <cripting Language, v1.1 September 2002 June 2001

September 2002 June200%

page 3-31). These operations are IDLscript specific but offer a user-friendly way
simpler than the POA. However, scripts must use the POA when its advanced features
are needed.

The Table 3-8 presents the IDLscript reflection of the CORBA::ORB operations.

Note B |ssue 4502

Table 3-8 The Reflection of the CORBA::ORB Operations

ORB Operation Reflected by
id id
object_to_string object_to_string
string_to_object string_to_object
create list, create_operation_list, Not reflected.

get_default_context,
send_multiple_requests_oneway,
send_multiple requests deferred,
poll_next_response,
get_next_response

get_service_information get_service_information
list_initial_services list_initial_services
resolve_initial_references resolve_initial_references
register_initial_reference register_initial_reference
create *_tc Not reflected.
work_pending work_pending

perform _work perform_work

run run

shutdown shutdown

destroy destroy

create policy create policy
register_value factory register_value_factory
unregister_value_factory unregister_value_factory
lookup_value_factory lookup_value_factory

The CORBA::ORB::InvalidName, CORBA::Servicelnformation,
CORBA::ServiceOption, CORBA::ServiceDetail, CORBA::ServiceDetailType,
CORBA::ORB::Objectld, CORBA::ORB::ObjectldList and other IDL definitions
are respectively reflected by IDLscript according to the rules defined in this chapter.

CORBA <cripting Language: The Global CORBA Object 3-47

The Dynamic Invocation Interface related operations are not reflected by the | DL script
engine because the language defined herein provides an elegant and user-friendly
calling notation to invoke object operations (see Section 3.13.5, Olnvocation of OMG
IDL Operations,O on page 3-27). However, an IDLscript engine must use the DIl to
invoke distant CORBA object operations.

The TypeCode creation operations are not reflected by the IDLscript engine because
any OMG IDL definition is automatically available. TypeCode creations only need to
define them using OMG IDL and popularize them into the Interface Repository.

Asthe CORBA::ValueFactory native type is reflected by IDLscript classes, the
register_value_factory operation takes a class object as second parameter. Both the
register_value_factory and unregister_value_factory operations returns the
previous registered class object, or the Voi d object if none.

The following examples illustrate some of these standard ORB operations:

>>> orb = CORBA. ORB

>>> 0 = orb.object _to_string("IOR . . .")
>>> orb. object _to_string(o)
"TOR . . "

>>> orb.list_initial _services()

CORBA: : ORB: : (bj ect I dLi st ("I nterfaceRepository"”, "NanmeService
", "Root POA", ...)

>>> ns = orb.resolve_initial_references("NaneService")

>>> orb. wor k_pendi ng()
true

>>> orb. performwork()
>>> orb.run()

>>> orb. shut down(true)

>>> class EMPLOYEE { . . . }

>>> orb.regi ster_value_factory("IDL: Enpl oyee: 1. 0", EMPLOYEE)
>>> vf = orb.| ookup_val ue_factory(Enpl oyee.id())

>>> vf == EMPLOYEE

true

>>> vf = orb.unregister_val ue_factory(Enmpl oyee.id())

3-48 CORBA Scripting Language, v1.1 September 2002 June 2004

| ndex

A

Adaptability 1-5

Any IDL values 3-38

Any Implicit Conversions 3-39
Arithmetic Operators 2-11
Array Creation 2-14

Array Items 3-15

Array Objects 2-19

Array typesand values 3-14
Array Values 3-15
Assignments 2-15
Attribute Getting 2-13
Attributes 3-23

B

Basic Value Types 2-16

Binding for Basic OMG IDL Types 3-2
Binding for OMG IDL Any 3-38
Binding for OMG IDL Array 3-14
Binding for OMG IDL Enum 3-5
Binding for OMG IDL Exception 3-16
Binding for OMG IDL Interface 3-21
Binding for OMG IDL Module 3-4
Binding for OMG IDL Sequence 3-12
Binding for OMG IDL Structure 3-6
Binding for OMG IDL TypeCode 3-35
Binding for OMG IDL Typedef 3-11
Binding for OMG IDL Union 3-9
Binding for OMG IDL Value 3-29
Binding Overview 3-2

C

Character Literals 2-5

Classes 2-28

Comments 2-3

Complete OMG IDL binding 1-5

Compliance iii

Concrete value types 3-32

Control Flow Statements 2-23

CORBA
Object Operations 3-40
ORB Object 3-41
Contributors iv
Documentation set i

Core, compliance iii

Custom Values 3-34

D

Declaration 2-26

Del Statement 2-15
Dictionary Creation 2-14
Dictionary Objects 2-21

Do Statement 2-24

Dynamic CORBA Binding 1-5
Dynamic Implementation 1-6
Dynamic Invocation 1-6

E

Enum 3-5

Escape Sequences 2-5
Exception Handling 2-35, 3-16
Exception Types 3-17

September 2002 June200%

Exception Types and Values 3-16
Exception Values 3-18
Exceptions 2-32, 3-28
Expressions 2-9

F

Factory Registration 3-34
Floating-point Literals 2-4
For Statement 2-25

Formal Parameters and Default Values 2-26

Future Object Functionalities 3-25

G

Global CORBA Object 3-40

Grid Distributed Application 1-6

Grid Server Objects Architecture 1-13

|
ldentifiers 2-3, 2-11
IDLscript architecture 1-4
IDL script core concepts 2-2
IDLscript core language 2-1
IDLscript Grammar 2-2, 2-6
IDLscript Language 1-3
IDLscript Lexical Rules 2-2
IDLscript Representation 3-3
IDLscript Symbols and Meanings 2-2
If Statement 2-23
Implementing OMG IDL Interfaces 3-25
Indexed Getting 2-14
Initializers 3-33
Integer Literals 2-4
Internal Exceptions 2-32
Interoperability, compliance iii
Interworking
Compliance iv
Invocation of One-way Operations 3-24

K
Keywords 2-4

L

Lexical conventions 2-2

Literal Values 2-10

Literals 2-4

Local and Global Variables 2-27
Logical Operators 2-12

M

Method Call 2-13

Modules 2-36

Multiple Class Inheritance Example 2-31

N
Null Value 3-31

0]
Object and Type Functionalities 2-16
Object Binding 1-5
Object Management Group i
address of iii
Object References 3-22

CORBA <cripting Language

Index-1

| ndex

Objects and Types 2-15
Operation Invocation 3-24
Operations 3-23, 3-34

P

Predefined Internal Procedures 2-22
Procedural Call 2-13

Procedure Aliasing 2-28
Procedures 2-26

Punctuation Characters 2-4

R

Relational Operators 2-12
Return Statement 2-25
Returned Object 2-27

S

Scripting language - description 1-1
Scripts 2-9

Sequence Items 3-13

Sequence Types and Values 3-12
Simple Class Example 2-29
State Members 3-33

String Literals 2-6

String Objects 2-17

Structure Fields 3-8

Structure Types 3-6

Structure Values 3-8

Index-2

Syntax 2-10
System Exception Types 3-17
System Exception Values 3-18

T
Tokens 2-3

TypeCode 3-35

TypeCode Functionalities 3-36
Typedef Typesand Values 3-11
Typedef Vaues 3-11

u

Union Fields 3-10

Union Typesand Values 3-9
User Exception Types 3-19
User Exception Values 3-20
User Exceptions 2-34

\Y

Vaue Creation 3-30

Value Manipulation 3-31

Value Types 3-29, 3-32

Values 3-3

Values as Object References 3-35

Variable and Attribute Management 2-14

w
While Statement 2-24

CORBA cripting Language

September 2002 June200%

	ChapTitle - Preface
	Head1 - About the Object Management Group
	Head2 - What is CORBA?

	Head1 - About CORBA Language Mapping Specifications
	Head2 - Alignment with CORBA

	Head1 - Associated OMG Documents
	Head1 - Definition of CORBA Compliance
	Head1 - Acknowledgments

	ChapTitle - IDLscript Overview
	Head1 - 1.1 Scripting Languages
	Head1 - 1.2 CORBA and Scripting Languages
	Head1 - 1.3 The IDLscript Language
	Head1 - 1.4 An IDLscript Example
	Head2 - 1.4.1 A Grid Distributed Application
	Head2 - 1.4.2 Basic Functionalities
	Head2 - 1.4.3 Dynamic CORBA Connection
	Head2 - 1.4.4 Direct Access to all OMG IDL Definitions
	Head2 - 1.4.5 Connection to any CORBA Object
	Head2 - 1.4.6 OMG IDL Operations, Attributes, and Exceptions
	Head2 - 1.4.7 Procedures and Modules
	Head2 - 1.4.8 Implementation of OMG IDL Interfaces
	Head2 - 1.4.9 Creation of Stand-alone CORBA Servers
	Head2 - 1.4.10 Conclusion

	ChapTitle - The IDLscript Language Core
	Head1 - 2.1 Overview
	Head1 - 2.2 Lexical Conventions
	Head2 - 2.2.1 Tokens
	Head2 - 2.2.2 Comments
	Head2 - 2.2.3 Identifiers
	Head2 - 2.2.4 Keywords
	Head2 - 2.2.5 Literals

	Head1 - 2.3 IDLscript Grammar
	Head1 - 2.4 Scripts
	Head1 - 2.5 Expressions
	Head2 - 2.5.1 Syntax
	Head2 - 2.5.2 Literal Values
	Head2 - 2.5.3 Identifiers
	Head2 - 2.5.4 Arithmetic Operators
	Head2 - 2.5.5 Relational Operators
	Head2 - 2.5.6 Logical Operators
	Head2 - 2.5.7 Procedural Call
	Head2 - 2.5.8 Attribute Getting
	Head2 - 2.5.9 Method Call
	Head2 - 2.5.10 Array Creation
	Head2 - 2.5.11 Dictionary Creation
	Head2 - 2.5.12 Indexed Getting

	Head1 - 2.6 Variable and Attribute Management
	Head2 - 2.6.1 Assignments
	Head2 - 2.6.2 The Del Statement

	Head1 - 2.7 Objects and Types
	Head2 - 2.7.1 Everything is Typed Object
	Head2 - 2.7.2 Basic Value Types
	Head2 - 2.7.3 String Objects
	Head2 - 2.7.4 Array Objects
	Head2 - 2.7.5 Dictionary Objects
	Head2 - 2.7.6 Predefined Internal Procedures

	Head1 - 2.8 Control Flow Statements
	Head2 - 2.8.1 Syntax
	Head2 - 2.8.2 The If Statement
	Head2 - 2.8.3 The While Statement
	Head2 - 2.8.4 The Do Statement
	Head2 - 2.8.5 The For Statement
	Head2 - 2.8.6 The Return Statement

	Head1 - 2.9 Procedures
	Head2 - 2.9.1 Declaration
	Head2 - 2.9.2 Formal Parameters and Default Values
	Head2 - 2.9.3 The Returned Object
	Head2 - 2.9.4 Local and Global Variables
	Head2 - 2.9.5 Procedure Aliasing

	Head1 - 2.10 Classes
	Head2 - 2.10.1 Declaration
	Head2 - 2.10.2 A Simple Class Example
	Head2 - 2.10.3 A Single Class Inheritance Example
	Head2 - 2.10.4 A Multiple Class Inheritance Example
	Head2 - 2.10.5 Class and Instance Types

	Head1 - 2.11 Exceptions
	Head2 - 2.11.1 Internal Exceptions
	Head2 - 2.11.2 User Exceptions
	Head2 - 2.11.3 Exception Handling

	Head1 - 2.12 Modules
	Head2 - 2.12.1 Importation
	Head2 - 2.12.2 Initialization
	Head2 - 2.12.3 Access to the Content
	Head2 - 2.12.4 Module Aliasing
	Head2 - 2.12.5 Module Management

	ChapTitle - The OMG IDL Binding
	Head1 - 3.1 Overview
	Head1 - 3.2 Binding for Basic OMG IDL Types
	Head2 - 3.2.1 IDLscript Representation
	Head2 - 3.2.2 Basic OMG IDL Values

	Head1 - 3.3 Binding for OMG IDL Module
	Head2 - 3.3.1 OMG IDL Examples
	Head2 - 3.3.2 IDLscript Representation

	Head1 - 3.4 Binding for OMG IDL Constant
	Head2 - 3.4.1 OMG IDL Examples
	Head2 - 3.4.2 IDLscript Representation

	Head1 - 3.5 Binding for OMG IDL Enum
	Head2 - 3.5.1 An OMG IDL Example
	Head2 - 3.5.2 IDLscript Representation
	Head2 - 3.5.3 Enum Values

	Head1 - 3.6 Binding for OMG IDL Structure
	Head2 - 3.6.1 OMG IDL Examples
	Head2 - 3.6.2 IDLscript Representation
	Head2 - 3.6.3 Structure Values
	Head2 - 3.6.4 Structure Fields

	Head1 - 3.7 Binding for OMG IDL Union
	Head2 - 3.7.1 An OMG IDL Example
	Head2 - 3.7.2 IDLscript Representation
	Head2 - 3.7.3 Union Values
	Head2 - 3.7.4 Union Fields

	Head1 - 3.8 Binding for OMG IDL Typedef
	Head2 - 3.8.1 OMG IDL Examples
	Head2 - 3.8.2 IDLscript Representation
	Head2 - 3.8.3 Typedef Values

	Head1 - 3.9 Binding for OMG IDL Sequence
	Head2 - 3.9.1 OMG IDL Examples
	Head2 - 3.9.2 IDLscript Representation
	Head2 - 3.9.3 Sequence Values
	Head2 - 3.9.4 Sequence Items

	Head1 - 3.10 Binding for OMG IDL Array
	Head2 - 3.10.1 OMG IDL Examples
	Head2 - 3.10.2 IDLscript Representation
	Head2 - 3.10.3 Array Values
	Head2 - 3.10.4 Array Items

	Head1 - 3.11 Binding for OMG IDL Fixed
	Head2 - 3.11.1 OMG IDL Example
	Head2 - 3.11.2 IDLscript Representation
	Head2 - 3.11.3 Fixed Values

	Head1 - 3.12 Binding for OMG IDL Exception
	Head2 - 3.12.1 IDLscript Representation
	Head2 - 3.12.2 Exception Handling
	Head2 - 3.12.3 System Exception Types
	Head2 - 3.12.4 System Exception Values
	Head2 - 3.12.5 User Exception Types
	Head2 - 3.12.6 User Exception Values

	Head1 - 3.13 Binding for OMG IDL Interface
	Head2 - 3.13.1 OMG IDL Examples
	Head2 - 3.13.2 IDLscript Representation
	Head2 - 3.13.3 Object References
	Head2 - 3.13.4 Access to OMG IDL Attributes
	Head2 - 3.13.5 Invocation of OMG IDL Operations
	Head2 - 3.13.6 Invocation of One-way Operations
	Head2 - 3.13.7 Operation Invocation using the Deferred Mode

	Head1 - 3.14 Implementing OMG IDL Interfaces
	Head2 - 3.14.1 Class Examples
	Head2 - 3.14.2 OMG IDL Attributes
	Head2 - 3.14.3 OMG IDL Operations
	Head2 - 3.14.4 Object Registration
	Head2 - 3.14.5 Object Adapter Run-Time Exceptions

	Head1 - 3.15 Binding for OMG IDL Value
	Head2 - 3.15.1 OMG IDL Examples
	Head2 - 3.15.2 IDLscript Representation
	Head2 - 3.15.3 Value Creation
	Head2 - 3.15.4 Null Value
	Head2 - 3.15.5 Value Manipulation

	Head1 - 3.16 Implementing Concrete OMG IDL Values
	Head2 - 3.16.1 Example
	Head2 - 3.16.2 State Members
	Head2 - 3.16.3 Initializers
	Head2 - 3.16.4 Operations
	Head2 - 3.16.5 Factory Registration
	Head2 - 3.16.6 Custom Values
	Head2 - 3.16.7 Values as Object References

	Head1 - 3.17 Binding for OMG IDL TypeCode
	Head1 - 3.18 Binding for OMG IDL Any
	Head1 - 3.19 The Global CORBA Object
	Head2 - 3.19.1 The CORBA::Object Object
	Head2 - 3.19.2 The CORBA::ORB Object

