
CORBA Scripting Language
Specification

February 2003
Version 1.1

formal/03-02-01

An Adopted Specification of the Object Management Group, Inc.

Copyright © 1997-99 Laboratoire d’Informatique Fondamentale de Lille
Copyright © 2003 Object Management Group
Copyright © 1997-99 Object–Oriented Concepts, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form located at this
URL: http://www.omg.org/technology/agreement.htm.

Contents
Preface . vii

1. IDLscript Overview. 1-1
1.1 Scripting Languages . 1-1

1.2 CORBA and Scripting Languages 1-2

1.3 The IDLscript Language . 1-3

1.4 An IDLscript Example . 1-6
1.4.1 A Grid Distributed Application 1-6
1.4.2 Basic Functionalities . 1-7
1.4.3 Dynamic CORBA Connection 1-8
1.4.4 Direct Access to all OMG IDL Definitions . . . 1-8
1.4.5 Connection to any CORBA Object 1-9
1.4.6 OMG IDL Operations, Attributes, and Exceptions 1-9
1.4.7 Procedures and Modules. 1-10
1.4.8 Implementation of OMG IDL Interfaces 1-11
1.4.9 Creation of Stand-alone CORBA Servers 1-14
1.4.10 Conclusion . 1-14

2. The IDLscript Language Core . 2-1
2.1 Overview . 2-2

2.2 Lexical Conventions . 2-2
2.2.1 Tokens . 2-3
2.2.2 Comments. 2-3
2.2.3 Identifiers . 2-3
2.2.4 Keywords . 2-4
2.2.5 Literals . 2-4
February 2003 CORBA Scripting Language i

Contents
2.3 IDLscript Grammar . 2-6

2.4 Scripts . 2-9

2.5 Expressions . 2-9
2.5.1 Syntax. 2-10
2.5.2 Literal Values . 2-10
2.5.3 Identifiers . 2-11
2.5.4 Arithmetic Operators . 2-11
2.5.5 Relational Operators . 2-12
2.5.6 Logical Operators . 2-12
2.5.7 Procedural Call . 2-13
2.5.8 Attribute Getting. 2-13
2.5.9 Method Call . 2-13
2.5.10 Array Creation . 2-14
2.5.11 Dictionary Creation . 2-14
2.5.12 Indexed Getting . 2-14

2.6 Variable and Attribute Management 2-14
2.6.1 Assignments . 2-15
2.6.2 The Del Statement . 2-15

2.7 Objects and Types . 2-15
2.7.1 Everything is Typed Object 2-15
2.7.2 Basic Value Types. 2-16
2.7.3 String Objects . 2-17
2.7.4 Array Objects . 2-19
2.7.5 Dictionary Objects . 2-21
2.7.6 Predefined Internal Procedures 2-22

2.8 Control Flow Statements . 2-23
2.8.1 Syntax. 2-23
2.8.2 The If Statement . 2-24
2.8.3 The While Statement . 2-24
2.8.4 The Do Statement . 2-24
2.8.5 The For Statement . 2-25
2.8.6 The Return Statement . 2-25

2.9 Procedures . 2-26
2.9.1 Declaration . 2-26
2.9.2 Formal Parameters and Default Values 2-26
2.9.3 The Returned Object. 2-27
2.9.4 Local and Global Variables. 2-27
2.9.5 Procedure Aliasing . 2-28

2.10 Classes . 2-28
2.10.1 Declaration . 2-29
ii CORBA Scripting Language February 2003

Contents
2.10.2 A Simple Class Example 2-29
2.10.3 A Single Class Inheritance Example 2-31
2.10.4 A Multiple Class Inheritance Example 2-31
2.10.5 Class and Instance Types 2-32

2.11 Exceptions . 2-32
2.11.1 Internal Exceptions . 2-32
2.11.2 User Exceptions . 2-35
2.11.3 Exception Handling . 2-35

2.12 Modules . 2-37
2.12.1 Importation . 2-37
2.12.2 Initialization . 2-37
2.12.3 Access to the Content . 2-37
2.12.4 Module Aliasing . 2-37
2.12.5 Module Management . 2-38

3. The OMG IDL Binding. 3-1

3.1 Overview . 3-2

3.2 Binding for Basic OMG IDL Types 3-3
3.2.1 IDLscript Representation 3-3
3.2.2 Basic OMG IDL Values 3-3

3.3 Binding for OMG IDL Module . 3-4
3.3.1 OMG IDL Examples . 3-4
3.3.2 IDLscript Representation 3-4

3.4 Binding for OMG IDL Constant . 3-5
3.4.1 OMG IDL Examples . 3-5
3.4.2 IDLscript Representation 3-5

3.5 Binding for OMG IDL Enum . 3-5
3.5.1 An OMG IDL Example 3-6
3.5.2 IDLscript Representation 3-6
3.5.3 Enum Values. 3-6

3.6 Binding for OMG IDL Structure . 3-7
3.6.1 OMG IDL Examples . 3-7
3.6.2 IDLscript Representation 3-7
3.6.3 Structure Values . 3-8
3.6.4 Structure Fields . 3-8

3.7 Binding for OMG IDL Union. 3-9
3.7.1 An OMG IDL Example 3-9
3.7.2 IDLscript Representation 3-9
3.7.3 Union Values . 3-10
3.7.4 Union Fields . 3-11
February 2003 CORBA Scripting Language iii

Contents
3.8 Binding for OMG IDL Typedef . 3-11
3.8.1 OMG IDL Examples . 3-11
3.8.2 IDLscript Representation 3-12
3.8.3 Typedef Values . 3-12

3.9 Binding for OMG IDL Sequence . 3-13
3.9.1 OMG IDL Examples . 3-13
3.9.2 IDLscript Representation 3-13
3.9.3 Sequence Values . 3-13
3.9.4 Sequence Items. 3-14

3.10 Binding for OMG IDL Array . 3-15
3.10.1 OMG IDL Examples . 3-15
3.10.2 IDLscript Representation 3-15
3.10.3 Array Values . 3-15
3.10.4 Array Items. 3-16

3.11 Binding for OMG IDL Fixed . 3-17
3.11.1 OMG IDL Example . 3-17
3.11.2 IDLscript Representation 3-17
3.11.3 Fixed Values . 3-17

3.12 Binding for OMG IDL Exception 3-19
3.12.1 IDLscript Representation 3-20
3.12.2 Exception Handling . 3-20
3.12.3 System Exception Types 3-21
3.12.4 System Exception Values 3-22
3.12.5 User Exception Types . 3-23
3.12.6 User Exception Values 3-24

3.13 Binding for OMG IDL Interface . 3-25
3.13.1 OMG IDL Examples . 3-25
3.13.2 IDLscript Representation 3-26
3.13.3 Object References. 3-26
3.13.4 Access to OMG IDL Attributes 3-27
3.13.5 Invocation of OMG IDL Operations 3-28
3.13.6 Invocation of One-way Operations 3-28
3.13.7 Operation Invocation using the Deferred Mode 3-29

3.14 Implementing OMG IDL Interfaces 3-30
3.14.1 Class Examples. 3-30
3.14.2 OMG IDL Attributes . 3-31
3.14.3 OMG IDL Operations. 3-31
3.14.4 Object Registration . 3-31
3.14.5 Object Adapter Run-Time Exceptions 3-33

3.15 Binding for OMG IDL Value . 3-33
iv CORBA Scripting Language February 2003

Contents
3.15.1 OMG IDL Examples . 3-33
3.15.2 IDLscript Representation 3-34
3.15.3 Value Creation . 3-35
3.15.4 Null Value. 3-36
3.15.5 Value Manipulation . 3-36

3.16 Implementing Concrete OMG IDL Values 3-37
3.16.1 Example . 3-37
3.16.2 State Members . 3-37
3.16.3 Initializers . 3-38
3.16.4 Operations . 3-38
3.16.5 Factory Registration . 3-38
3.16.6 Custom Values . 3-39
3.16.7 Values as Object References 3-40

3.17 Binding for OMG IDL TypeCode 3-40

3.18 Binding for OMG IDL Any . 3-43

3.19 The Global CORBA Object. 3-44
3.19.1 The CORBA::Object Object 3-44
3.19.2 The CORBA::ORB Object 3-46

Index. Index-1

Reference sheet . 1
February 2003 CORBA Scripting Language v

Contents
vi CORBA Scripting Language February 2003

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 600 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group’s answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.
February 2003 CORBA Scripting Language, v1.1 i

About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping information for
several languages. Each language is described in a separate stand-alone volume.

Alignment with CORBA

This language mapping is aligned with CORBA, v3.0.

OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only when
representatives of the OMG membership accept them as such by vote.

Formal documents are available in PostScript and PDF format. You will find our docu-
ments in the OMG Specifications Catalog, which is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Contacting the OMG

Contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue

Needham, MA 02494
USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320
pubs@omg.org

http://www.omg.org
ii CORBA Scripting Language, v1.1 February 2003

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these points
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++,
their ORB must comply with the OMG IDL to C++ binding specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed information
about Interworking compliance, refer to the Common Object Request Broker: Architecture
and Specification, Interworking Architecture chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

If applicable, terms that appear in italics are defined in the glossary. Italic text also
represents the name of a document, specification, or other publication.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• AIRSYS ATM

• Alcatel

• Commissariat à l’Energie Atomique

• INRIA

• Institut National des Télécommunications

• Laboratoire d’Informatique Fondamentale de Lille

• Object–Oriented Concepts, Inc.

• Silicomp Ingenierie

• Spacebel

• Université de Nantes - LRSG
February 2003 CORBA Scripting Language: Definition of CORBA Compliance iii

iv CORBA Scripting Language, v1.1 February 2003

IDLscript Overview 1
Note – The CORBA Scripting Language specification is aligned with CORBA version
3.0.

Note – Text in Red is from the IDLscript December 2000 RTF final report (ptc/2002-
08-04) and Issue 4502.

Contents

This chapter contains the following sections.

1.1 Scripting Languages

A scripting language simplifies the access and the use of computer system resources
like files and processes in the context of an operating system shell, relational database
query requests in the context of SQL, and graphic widgets in the context of Tcl/Tk.
These resources are used without the need to write complex programs, hence the
following benefits:

Section Title Page

“Scripting Languages” 1-1

“CORBA and Scripting Languages” 1-2

“The IDLscript Language” 1-3

“An IDLscript Example” 1-6
February 2003 CORBA Scripting Language, v1.1 1-1

1

• Simplicity of use: A script is often easier to write and more concise (no variable
declarations, dynamic typing, garbage collector) than its equivalent written in a
standard programming language. The simplicity of scripting languages allows users,
even novices, to develop small scripts that meet their needs.

• Easy to learn: The “teachability” of a scripting language is often more simple than
a “traditional” language like C++. The training time is shorter for a scripting
language.

• Enhanced productivity: This ease of use makes development easier and more
flexible, as the user can prototype scripts in interactive mode, then use them in
batch processing mode. This also encourages the exchange of scripts between users:
they can adapt them to meet their individual needs.

• Reduced cost: Simplicity and productivity respectively mean reduced training
costs for users and reduced operating costs in conventional computer environments.

However this previous list is not exhaustive and does not capture all scripting benefits.

1.2 CORBA and Scripting Languages

These benefits can be applied to a CORBA environment by providing a binding
between scripting languages and OMG IDL. This considerably improves the ability to
make use of CORBA distributed objects during all of the development,
implementation, and execution steps:

• Design and prototyping: During the design step of a distributed CORBA
application, two important problems may occur: the choice of OMG IDL interfaces
and the choice of object distribution. Currently there is no miraculous solution to
these two problems, only experience and know-how allow selecting the “right”
choices. Under these conditions it is necessary to be able to prototype quickly in
order to evaluate fundamental choices. But prototyping in a compiled language
such as C++ implies a complex and costly development cycle, hence the advantage
of using an interpreted language with a short development cycle in order to develop
functional models.

• Development and testing: During the development of an object-oriented
client/server application using CORBA, developers must write a number of pieces
of programs in order to check the validity and the operation correctness of their
CORBA objects. These test codes are hard to debug and write due to the complexity
of mapping rules. In addition, they become useless when the components are
correctly implemented. In this context, a command interpreter saves a lot of time
and effort. It becomes possible to immediately and interactively test object
implementations during development. In addition, object test codes can be
generated automatically from the Interface Repository and data on interface
semantics, resulting in automated testing.

• Configuration and administration: Most of the services and object frameworks
require a number of client programs to configure, administrate, and connect the
objects (such as the Naming Service). This large number of client programs often
depends on the number of operations described in the objects’ OMG IDL interfaces.
1-2 CORBA Scripting Language, v1.1 February 2003

1

A dynamic scripting language then becomes an excellent alternative for supporting
the multitude of programs as they can be written using a few instructions and evolve
rapidly to meet the needs of service administrators.

• Using components: Experienced users can design scripts themselves to meet their
own specific needs. In this way, using components available from the ORB, they
can extract relevant data without the need to refer to ORB specialists.

• Assembling software components: Scripts can be used to assemble existing
components in order to create new ones. The new components encapsulate all of the
functions of connected components and provide new functions. Therefore we obtain
a kind of “software glue” to build new objects by aggregating existing objects. In
addition, these new components can be used from CORBA applications just like
ordinary objects.

• Evolution: If the components evolve or if new ones appear, using scripts means
that it is possible to discover them dynamically at execution time and therefore to
use them as soon as they become available. Minor OMG IDL modifications do not
necessarily require rewriting scripts.

Therefore a scripting language can offer a number of services during the life cycle of
an object-oriented distributed service. The various uses imply that the scripting
language provides the necessary mechanisms for discovering, invoking, and navigating
among CORBA objects and for implementing objects using scripts. Navigating in and
using large graphs of disparate objects imply dynamically acquiring the stubs of the
types encountered as the scripting language cannot know ahead of time all of the OMG
IDL types.

1.3 The IDLscript Language

IDLscript is a new general purpose object-oriented scripting language dedicated to
CORBA that allows any user to develop their activities by simply and interactively
accessing objects available on the ORB. Therefore the user is completely free to
operate, administrate, configure, connect, create, and delete distributed objects on the
ORB.

The binding between CORBA and IDLscript is achieved through the DII and the
Interface Repository. The DII is used to construct requests at runtime and the IFR is
used to check parameters types of requests (also at runtime). Moreover, using the DSI,
IDLscript allows one to implement OMG IDL interfaces through scripted objects.
Figure 1-1 on page 1-4 illustrates the IDLscript architecture.
February 2003 CORBA Scripting Language: The IDLscript Language 1-3

1

Figure 1-1 The IDLscript Architecture

The main features of IDLscript described in Chapters 2 and 3 include:

• Interpretation: The IDLscript engine is a scripting interpreter. It provides three
execution modes: the interactive one, the batch one, and the embedded one. In the
first mode, users provide their scripts interactively. In the second one, the interpreter
loads and executes file scripts allowing batch processing or server implementations.
In the last one, the interpreter can be embedded in another program and then
interprets strings as scripts.

• General purpose: IDLscript is a true high level language comprising programming
concepts such as structured procedures, modularity, and object-oriented
programming (classes/instances, multiple inheritance, and polymorphism). The
IDLscript language provides various syntactical constructions such as basic values
and types (integer, double, boolean, character, string, array, and dictionary),

IIOP ORB

Static
IFR Stubs DII DSI

IDLscript
Interface

Repository

Any CORBA Objects

OMG IDL FilesBatch ScriptsInteractive
Users
1-4 CORBA Scripting Language, v1.1 February 2003

1

expressions (arithmetic, relational, and logical operators), assignments, control flow
statements, procedures, classes, modern exception handling (throw/try/catch/finally)
and modules (downloadable scripts).

• Object-oriented: All scripting values are encapsulated by internal engine objects.
These objects provide some attributes and methods according to their type. The
dotted notation is used to access/modify object attributes (i.e., variable =
object.attribute, object.attribute = value) and invoke object methods (i.e.,
object.method(parameters)). IDLscript also allows the definition of scripting
classes.

• Dynamic typing: A scripting value/object is the instance of one type. Types are
also objects. A type can be a subtype of several other ones. Coercion rules are
defined between types. This defines a type conformity tree used for runtime type
checking. For example, method parameter type controls and automatic operand
coercions (e.g., 10 + 3.14). Moreover, scripts can dynamically access to the type
conformity tree to check explicitly the type of an object (i.e., any object has a _type
attribute and an _is_a method).

• Reflexivity: The IDLscript engine allows the introspection of any scripting object
(values and types). The introspection encompasses object displaying and dynamic
attribute, method, and type discovering.

• Adaptability: IDLscript is a powerful scripting framework that can be adapted to
meet users’ needs. This framework can be extended by new internal classes that
implement new object types. For example, an extension allows scripts to access to
any Java class or object through the Java Virtual Machine.

• Dynamic CORBA binding: The integration between IDLscript and the ORB is
fully dynamic: there is no stubs/skeletons generation. The IDLscript engine
discovers OMG IDL specifications through the Interface Repository. When scripts
invoke CORBA objects, the Dynamic Invocation Interface and the Dynamic
Skeleton Interface are internally used to send and receive requests and the IFR is
used to check parameter types at runtime. But users never use directly these
CORBA dynamic mechanisms: they are totally hidden by the scripting engine.

• Complete OMG IDL binding: All OMG IDL concepts such as basic types,
modules, constants, enumerations, structures, unions, typedefs, sequences, arrays,
interfaces, exceptions, TypeCode, and Any types are directly and transparently
available to scripts. The user must only give the IDL scoped name of accessed IDL
specifications. These IDL concepts are reflected by scripting objects that are
implemented by the scripting engine. Reflexivity is available on all these objects.
Scripts can display any IDL values or definitions. Users can interactively discover
the content of an IDL module or interface, the signature (parameters and
exceptions) of an IDL operation, the mode and type of an IDL attribute, or the
definition of a complex IDL type (enum, array, sequence, struct, union, and
typedef).

• Object binding: To access and invoke CORBA objects, users must know their
CORBA object references. IDLscript proposes several ways to obtain these
references. Users can specify a known object network address described with the
OMG’s IOR format or with an ORB-specific URL format (i.e., IP host, IP port, and
a local implementation object name). Moreover, standard CORBA Name and/or
February 2003 CORBA Scripting Language: The IDLscript Language 1-5

1

Trader services can be dynamically used to obtain needed users’ object references.
To obtain these services, the standard ORB operations are available. Obtained object
references are automatically narrowed to the most derived IDL interfaces.

• Dynamic invocation: IDLscript allows scripts to invoke IDL operations, access
IDL attributes of remote CORBA objects/components. All type checks and
coercions/conversions are automatically done by the interpreter. Parameter
coercions are automatically done according to IDL signatures. IDLscript provides a
simple Java-like exception mechanism that allows one to catch users’ defined IDL
exceptions and also standard CORBA system exceptions. CORBA requests are sent
by the Dynamic Invocation Interface.

• Dynamic implementation: CORBA objects (and components and listeners) are
implemented by scripting classes. Incoming requests are intercepted by the
Dynamic Skeleton Interface and are forwarded to scripting objects. The scripting
engine automatically converts incoming/outcoming IDL values to/from scripting
objects respectively.

1.4 An IDLscript Example

This section presents a simple IDLscript example: a distributed grid application. This
example aims at presenting the usefulness and simplicity of the new IDLscript
language: access to any OMG IDL specifications, connection to any CORBA objects,
access to OMG IDL attributes, invocation of OMG IDL operations, handling of OMG
IDL exceptions, and finally implementation of CORBA objects and servers.

1.4.1 A Grid Distributed Application

As this example is an illustration of IDLscript, the object model of this application is
deliberately simplified. This application is composed of a Factory OMG IDL interface
that allows the creation of Grid objects:

module GridService {
typedef double Value;
struct Coord { unsigned short x, y; };
exception InvalidCoord { Coord pos; };

interface Grid {
readonly attribute Coord dimension;
void set (in Coord pos, in Value val) raises (InvalidCoord);
Value get (in Coord pos) raises (InvalidCoord);
void destroy ();

};
interface _Factory {

Grid create_grid (in Coord dim, in Value init_value);
};

};
1-6 CORBA Scripting Language, v1.1 February 2003

1

A grid is a matrix of values (the Value type definition). The Coord structure defines
matrix positions and dimensions. The InvalidCoord exception handles out of matrix
bounds. The Grid interface provides the dimension attribute that returns the matrix
dimension and operations to get and set values. The destroy operation allows clients
to destroy a Grid object. The Factory interface provides the create_grid operation to
create new grids. This operation creates a grid with the related dimension and
initializes each item of the matrix. All OMG IDL type and interface definitions of this
application are defined into the GridService OMG IDL module.

Figure 1-2 The Distributed Grid Application

Figure 1-2 shows the runtime distribution of this application. The Grid server contains
a GridService::Factory CORBA object and the set of grid objects created by this
factory. This server is composed of a set of IDLscript scripts that implement the OMG
IDL interfaces of the GridService module and the server main function. The factory
object reference is registered into the standard CORBA Name Service to allow client
applications to retrieve it. In this example, the Interface Repository only contains the
OMG IDL specifications of used CORBA objects, here the GridService.idl and
CosNaming.idl OMG IDL files. Through this type information, an IDLscript
interpreter can have access to all CosNaming::NamingContext,
GridService::Factory, and GridService::Grid objects connected to the ORB.
Finally, Mrs. Smith and Mr. Doe, end-users or CORBA specialists, can interactively act
on the available CORBA objects thanks to the IDLscript interpreter. Moreover, they
can share user scripts that provide advanced processes on CORBA objects.

1.4.2 Basic Functionalities

To perform the users’ activities presented in Section 1.2, “CORBA and Scripting
Languages,” on page 1-2, IDLscript is a true high level language comprising
programming concepts such as structured procedures, modularity, and object-
orientation (classes/instances, multiple inheritance, and polymorphism). IDLscript is a
script interpreter shell:

ORB based on Internet (IIOP)

User
Scripts

IDLscript
Interpreter

IDLscript
Interpreter

Mrs Smith Mr Doe A Name Server A Grid Server

Interface
Repository

GridService.idl CosNaming.idl Server
Scripts
February 2003 CORBA Scripting Language: An IDLscript Example 1-7

1

unix_promt> cssh
CorbaScript 1.3.1 for ORBacus 3.1.3 for C++
Copyright 1996-99 LIFL, France
>>>

unix_promt> cssh a_script_file.cs

IDLscript can be used from the command line (interactively) or in batch processing
mode using script files. A script is a set of instructions such as; display a value, call-up
an operation, assign a variable, control flows, and handle exceptions. This language
supports a few basic data types wired into the interpreter: integers, strings, arrays,
associate tables, basic OMG IDL, data types, etc. The conformity of expressions is
checked dynamically at execution time using a dynamic typing mechanism. As
IDLscript is object-oriented, all values are objects. The dotted notation is used to
express operation call-up, attributes access, or modification. Moreover, IDLscript
provides standard algorithm constructions (variables, tests, loops) used to express
complex scripts.

1.4.3 Dynamic CORBA Connection

When a user invokes a CORBA object, the interpreter checks that the parameter types
are conformed to the OMG IDL specifications contained in the Interface Repository.
Invocations are performed via the Dynamic Invocation Interface. In addition, OMG
IDL interfaces can be implemented using IDLscript classes. The IDLscript interpreter
then uses the Dynamic Skeleton Interface to intercept and decode the requests sent to
the objects implemented by scripts.

1.4.4 Direct Access to all OMG IDL Definitions

Through IDLscript, users can interactively and transparently access any OMG IDL
specifications contained in the Interface Repository. This allows one to discover OMG
IDL interfaces, operation parameters and exceptions, the fields in a structure, or the
content of a module. The user must only give the scoped name of accessed OMG IDL
specifications as presented here:

>>> GridService.Grid
< OMG-IDL interface GridService::Grid {

attribute readonly struct Coord dimension;
void set (in struct Coord pos, in Value val)

raises(GridService::InvalidCoord);
Value get (in struct Coord pos)

raises(GridService::InvalidCoord);
void destroy ();

}; >

>>> GridService.Coord
< OMG-IDL struct Coord {

unsigned short x;
1-8 CORBA Scripting Language, v1.1 February 2003

1

unsigned short y;
}; >

IDLscript is transparently connected to the Interface Repository and accesses any
OMG IDL definitions loaded into the Interface Repository as shown in Figure 1-2 on
page 1-7.

1.4.5 Connection to any CORBA Object

To access and invoke CORBA objects, users must know their CORBA object
references. IDLscript specifies several ways to obtain these references. Users can
specify a known object network address described with the OMG’s IOR format or with
CORBA Object URL formats (e.g., corbaloc and corbaname). Moreover, standard
CORBA Name and/or Trader services can be used to obtain users’ needed object
references. To obtain these services, the list_initial_services and
resolve_initial_references operations from the CORBA::ORB interface are
directly available. Consider the following examples:

factory = GridService.Factory("IOR:00000000000001c4...")
factory = GridService.Factory(

"corbaloc:iiop:an_IP_host_name:5000/factory")
CORBA.ORB.list_initial_services ()
["InterfaceRepository", "NameService", "TradingService",...]
NS = CORBA.ORB.resolve_initial_references("NameService")
factory = NS.resolve ([["aGridService", ""]])

In the last way, the user does not need to specify the type of the returned object. The
IDLscript interpreter refers to the Interface Repository to determine the interface for
the accessed objects and then checks the typing of invocations. When a CORBA
request returns an object reference, IDLscript automatically creates an object reference
for the dynamic type of the returned object. If the interpreter does not yet know the
GridService.Factory type, it automatically loads its definition into its local
Interface Repository cache. Therefore, users can navigate through the naming service
graph and discover at execution time the type of visited objects.

1.4.6 OMG IDL Operations, Attributes, and Exceptions

As illustrated in the resolve operation invocation, the user does not have to specify
the parameter types sent to the operations as IDLscript automatically performs the
conversions. The [["aGridService", ""]] value is an array that contains an
array with two items. This value is automatically converted into a
CosNaming::Name, which is an OMG IDL sequence of
CosNaming::NameComponent structures containing two OMG IDL string fields
and then it is forwarded to the resolve operation.

>>> grid = factory.create_grid ([20,5], 1) # or more pre-
cisely, (GridService.Coord(20,5), GridService.Value(1))
>>> grid.dimension
GridService::Coord(20,5)
February 2003 CORBA Scripting Language: An IDLscript Example 1-9

1

>>> try {
grid.set([100,100],10)

 } catch (GridService::InvalidCoord e) {
 println ("GridService::InvalidCoord raises on ", e.pos)
 }

GridService::InvalidCoord raises on
GridService::Coord(100, 100)

The previous example illustrates the simplicity of IDLscript to invoke OMG IDL
operations, access OMG IDL attributes of remote CORBA objects. All type checks and
conversions are automatically done by the interpreter. Moreover, IDLscript provides a
simple Java-like exception mechanism that allows scripts to catch user defined OMG
IDL exceptions and also standard CORBA system exceptions.

1.4.7 Procedures and Modules

Naturally, these previous scripts are very rudimentary but IDLscript allows the storage
of more ambitious scripts using procedures and modules. The procedures are used to
capture users’ reusable scripts. The returned result and procedure parameters are not
typed. These procedures can be grouped in downloadable modules.

The following script fragment is part of the gridTools module. This module
contains a procedure (DisplayGrid) that iterates on a grid to obtain matrix values
by calling the get OMG IDL operation and display them. The user can therefore
download the gridTools module to access this procedure and then execute it on the
grid object previously obtained. Declarations contained in an IDLscript module are
accessible with the dotted notation.

File: gridTools.cs
proc DisplayGrid (grid)
{

dim = grid.dimension
h = dim.y
w = dim.x
println ("The dimensions of this grid are ", w, "*", h)
iterate to get each values of the grid
for i in range (0, h-1) {
for j in range (0, w-1) {

print (' ', grid.get([i,j]))
}

println ()
}

}

>>> import gridTools
>>> gridTools.DisplayGrid(grid)
The dimensions of this grid are 20*5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1-10 CORBA Scripting Language, v1.1 February 2003

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In this way a number of users’ activities can be implemented without the need for the
user to be a CORBA expert. It is still necessary to know the IDLscript language and
the object OMG IDL interfaces to access them. But writing IDLscript scripts appears
far easier than writing CORBA programs in a compiled language. Users can rapidly
meet their specific needs and exchange scripts when their activities have points in
common.

1.4.8 Implementation of OMG IDL Interfaces

A script handles local values and remote CORBA objects, acting just like a pure
CORBA client program. Another IDLscript functionality supports the implementation
of new object types (local or CORBA ones). It integrates object concepts such as
classes, multiple inheritance, and polymorphism. Instance methods are grouped into
classes and must take an explicit first parameter that refers to the receiver instance.
However there is no enforced convention name for this parameter: users can choose
any name like self, this, or anything else. Through this instance reference, the method
codes can access instance attributes. Instance attributes are declared at their first
assignment.

File: grid_impl.cs
class GRID {

GRID instance initialization
proc __GRID__ (self, dim, init_value)
{ # This GRID instance (self) is a
GridService.Grid object

CORBA.ORB.connect (self, GridService.Grid)
set the GRID instance attributes
self.dim = dim
self.values = create_matrix (dim, init_value)

}

Creation of a matrix
proc create_matrix (dim, init_value)
{

w=dim.x
l=dim.y
values = array.create(w)
for i in range(0,w-1) {
tmp = array.create(l)
for j in range(0,l-1) { tmp[j] = init_value }
values[i] = tmp

}
return values
}

Implementation of the GridService::Grid interface
implements the readonly 'dimension' attribute
February 2003 CORBA Scripting Language: An IDLscript Example 1-11

1

proc _get_dimension (self)
{

return self.dim
}
implements the 'set' operation
proc set (self, pos, val)
{

try {
self.values[pos.y][pos.x] = val
} catch (BadIndex exc) {
throw GridService.InvalidCoord(pos)

}
}

implements the 'get' operation
proc get (self, pos)
{

try {
return self.values[pos.y][pos.x]
} catch (BadIndex exc) {
throw GridService.InvalidCoord(pos)

}
}

implements the 'destroy' operation
proc destroy (self)
{

CORBA.ORB.disconnect (self)
}

}

class FACTORY
{

proc __FACTORY__ (self)
{

CORBA.ORB.connect (self, GridService.Factory)
}

the 'create_grid' operation
proc create_grid (self, dim, init_value)
{

grid = GRID(dim, init_value)

return grid._this
}

}

The previous code presents an implementation of the Grid service. The GRID and
FACTORY classes implement respectively the GridService::Grid and
GridService::Factory interfaces. IDLscript enforces a convention name for the
1-12 CORBA Scripting Language, v1.1 February 2003

1

instance initialization method (__GRID__ and __FACTORY__). The OMG IDL
operations are implemented by instance methods with the same name. The OMG IDL
attributes are also implemented by instance methods called by the attribute name
prefixed by _get_ for the attribute getting and by the _set_ prefix for the attribute
setting.

The CORBA.ORB symbol refers to the IDLscript reflection of the ORB object. This
object provides operations to connect/disconnect class instances to/from a CORBA
object reference. The connect operation allows one to associate an IDLscript
instance to a new CORBA object: the first parameter refers to the instance and the
second one refers to the OMG IDL interface that the instance implements. A third
optional parameter allows user to explicitly set the key. The disconnect operation
cuts this association, then all its CORBA object references become invalid.

Figure 1-3 The Grid Server Objects Architecture

Figure 1-3 presents the IDLscript objects architecture after the creation of the
FACTORY instance. The GridService::Factory object is in the local cache of
the OMG IDL interface. This cache communicates with the Interface Repository to
obtain OMG IDL type information. The generic DSI object is connected to the ORB to
receive requests for the FACTORY instance. Received requests are checked thanks to
the local cache (interface) and if they are correct, then they are forwarded to the
FACTORY instance (instance). This instance implements the OMG IDL operations
and attributes of the GRIDService::Factory interface. The _this instance
attribute refers to the generic DSI object. It is used when the object must give its
CORBA object reference.

IIOP ORB

instance

interface

Generic
DSI Object

create_grid

_this

FACTORY
Instance

connect

disconnect

CORBA.ORB

create_grid

GridService::Factory

DSI Static
IFR Stubs
February 2003 CORBA Scripting Language: An IDLscript Example 1-13

1

This approach is similar to the TIE approach used in C++ and Java mappings. This
mechanism of request delegation allows one to provide several DSI object references
for the same IDLscript instance: several OMG IDL interfaces could be implemented by
a single IDLscript instance.

1.4.9 Creation of Stand-alone CORBA Servers

In this way a script can become a CORBA object server accessible to all CORBA
programs and therefore to other scripts. The following code shows the Grid server
implementation:

Load the GridService implementation `grid_impl.cs' file
import grid_impl

Create a FACTORY instance
factory = grid_impl.FACTORY()

Obtain the Name Service reference
NS = CORBA.ORB.resolve_initial_references("NameService")

Register the server object into the Name Service
NS.bind ([["aGridService", ""]], factory._this)

Start the main loop to wait for ORB requests
CORBA.ORB.run ()

Unregister the server object from the Name Service
NS.unbind ([["aGridService", ""]])

This server script imports the previous Grid implementation module containing the
GRID and FACTORY classes. It creates then a FACTORY instance and registers it into
the standard CORBA Name service with the bind operation. Then this script starts a
main loop to wait for ORB requests (CORBA.ORB.run). Finally, it unregisters the
factory object from the Name Service (unbind operation) when the server is stopped
or shutdown.

1.4.10 Conclusion

This chapter has presented a quick tour of the IDLscript functionalities. IDLscript
simultaneously offers enough syntax constructions and semantic entities such as
expressions, numerous types of basic data, all of the types expressed in OMG IDL, the
modules, the procedures, the classes and the instances in order to quickly develop
client programs and CORBA object servers. In addition, the dynamic loading of
modules is used to structure scripts into easily reusable entities. These entities are used
to quickly write sets of procedures to use an application and reuse them to build a
number of client applications, meeting the specific needs of each developer, and each
user in a CORBA environment.
1-14 CORBA Scripting Language, v1.1 February 2003

The IDLscript Language Core 2
Note – Text in Red is from the IDLscript December 2000 RTF final report (ptc/2002-
08-04).

This chapter describes the IDLscript core language including lexical conventions,
syntactical and semantic constructs.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 2-2

“Lexical Conventions” 2-2

“IDLscript Grammar” 2-6

“Scripts” 2-9

“Expressions” 2-9

“Variable and Attribute Management” 2-14

“Objects and Types” 2-15

“Control Flow Statements” 2-23

“Procedures” 2-26

“Classes” 2-28

“Exceptions” 2-32

“Modules” 2-37
February 2003 CORBA Scripting Language, v1.1 2-1

2

2.1 Overview

IDLscript is a simple and powerful general purpose object-oriented scripting language.
All the IDLscript entities are objects with attributes and methods. Moreover, IDLscript
is dedicated to CORBA environments allowing users to write scripts to easily access
CORBA objects. Scripts can also implement CORBA objects (e.g., callback objects)
via classes. However the information presented herein is fully CORBA and OMG IDL
independent. The binding between IDLscript and CORBA is presented in the next
chapter.

The IDLscript lexical rules are very similar to OMG IDL rules, although keywords and
punctuation characters are different to support programming concepts. The description
of IDLscript’s lexical conventions is presented in Section 2.2, “Lexical Conventions,”
on page 2-2.

The IDLscript grammar provides a small and “easy-to-learn” set of constructs to define
scripts, expressions, variables, control flow statements, procedures, classes, exceptions,
and modules. The grammar is described in Section 2.3, “IDLscript Grammar,” on
page 2-6.

The IDLscript core concepts are respectively presented in Section 2.4, “Scripts,” on
page 2-9; Section 2.5, “Expressions,” on page 2-9; Section 2.7, “Objects and Types,”
on page 2-15; Section 2.8, “Control Flow Statements,” on page 2-23; Section 2.9,
“Procedures,” on page 2-26; Section 2.10, “Classes,” on page 2-28; Section 2.11,
“Exceptions,” on page 2-32; and Section 2.12, “Modules,” on page 2-37.

Scripts can be interactively provided by users or stored into source files with the “.is”
extension.

The description of IDLscript grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 2-1 lists the symbols used in this format
and their meaning.

2.2 Lexical Conventions

This section1 presents the lexical conventions of IDLscript. It defines tokens in an
IDLscript script and describes comments, identifiers, keywords, and literals such as
integer, floating point, and character constants, and string literals.

Table 2-1 IDLscript Symbols and Meanings

Symbol Meaning
::= Is defined to be

| Alternatively

<text> Nonterminal

"text" Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed unit is optional -- may occur zero or one time
2-2 CORBA Scripting Language, v1.1 February 2003

2

As OMG IDL, IDLscript uses the ISO Latin-1 (8859.1) character set. This character set
is divided into alphabetic characters (letters), digits, graphic characters, the space
(blank) character, and formatting characters (for more information, see Table 3-2, Table
3-3, Table 3-4, and Table 3-5 in the CORBA 3.0 specification).

2.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments, as
described below, are ignored except as they serve to separate tokens. Some white space
is required to separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

2.2.2 Comments

The sharp character (#) starts a comment, which terminates at the end of the line on
which it occurs. Comments may contain alphabetic, digit, graphic, space, horizontal
tab, vertical tab, and form feed characters. The following example illustrates
comments:

>>> # This is a comment

2.2.3 Identifiers

Identifiers refer to names of variables, types, procedures, classes, and modules. An
identifier is an arbitrarily long sequence of alphabetic, digit, and underscore ("_")
characters. The first character must be an alphabetic or underscore character. All
characters are significant. The following examples are valid identifiers:

 identifier identifier123 an_identifier An_Identifier

Note that IDLscript is a case sensitive language: an_identifier and
An_Identifier are two different identifiers.

1.This section is an adaptation of The CORBA 2.3 Specification, Chapter 3, already an
adaptation of Ellis, Margaret A. and Bjarne Stroustrup, The Annoted C++ Reference
Manual, Addison-Wesley Publishing Company, Reading, Massachussets, 1990, ISBN 0-
201-51459-1, Chapter 2. It differs in the list of legal keywords and punctuation.
February 2003 CORBA Scripting Language: Lexical Conventions 2-3

2

2.2.4 Keywords

The identifiers listed in Table 2-2 are reserved for use as keywords and may not be
used otherwise.

Keywords obey the rules for identifiers (see Section 2.5.3, “Identifiers,” on page 2-11)
and must be written exactly as shown in the above list. For example, “class” is correct;
“Class” refers to an identifier and can produce an interpretation error.

IDLscript scripts use the characters shown in Table 2-3 as punctuation.

2.2.5 Literals

This section describes the following literals:

• Integer

• Floating-point

• Character

• String

2.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0xC.

2.2.5.2 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may be missing. Consider the following examples:

Table 2-2 Keywords

catch class del do else

finally for if import in

proc return throw try while

Table 2-3 Punctuation Characters

() [] { } , ; . :: :

+ - * / % \ ! && ||

= == != < <= > >=
2-4 CORBA Scripting Language, v1.1 February 2003

2

3. 3.2 .2 3.2e-4 .2e15 10e10

2.2.5.3 Character Literals

A character literal is one or more characters enclosed in single quotes, as in the
following examples:

 'a' ’\t' ’\045' ’\x4f’

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphical character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4 in the
CORBA 3.0 specification). The value of null is 0. The value of a formatting character
literal is the numerical value of the character as defined in the ISO 646 standard (see
Table 3-5 on page 3-5 in the CORBA 3.0 specification). The meaning of all other
characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in
Table 2-4. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

If the character following a backslash is not of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character. A sequence of octal or hexadecimal digits

Table 2-4 Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \’

double quote \"

octal number \ooo

hexadecimal number \xhh
February 2003 CORBA Scripting Language: Lexical Conventions 2-5

2

is terminated by the first character that is not an octal digit or a hexadecimal digit,
respectively. The value of a character constant is implementation dependent if it
exceeds that of the largest char.

Wide character and wide string literals are specified exactly like character and string
literals. All character and string literals, both wide and non-wide, may only be
specified (portably) using the characters found in the ISO 8859-1 character set, that is
identifiers will continue to be limited to the ISO 8859-1 character set.

2.2.5.4 String Literals

A string literal is a sequence of characters (as defined in Section 2.2.5.3, “Character
Literals,” on page 2-5) surrounded by double quotes, as in the following examples:

 "Hello world!\n" "An \"embedded\" string"

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

 "\xA" "B"

contains the two characters ’\xA’ and ’B’ after concatenation (and not the single
hexadecimal character ’\xAB’).

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the literal. Within a string,
the double quote character must be preceded by a \.

A string literal may not contain the character ’\0’.

2.3 IDLscript Grammar

(1) <script> ::= <statements>
(2) <statements> ::= <statement>*

(3) <statement> ::= ";"
 | "{" <statements> "}"
 | <expression>
 | <variable_management>
 | <control_flow_statements>
 | <procedure_declaration>
 | <class_declaration>
 | <exception_management>
 | <module_management>
(4) <expression> ::= <literal>
 | <identifier>
 | "(" <expression> ")"
 | <arithmetic_expression>
 | <relational_expression>
 | <logical_expression>
 | <procedural_call>
2-6 CORBA Scripting Language, v1.1 February 2003

2

 | <attribute_get>
 | <method_call>
 | <array_creation>
 | <dictionary_creation>
 | <indexed_get>
(5) <literal> ::= <long_literal>
 | <double_literal>
 | <character_literal>
 | <string_literal>
(6) <arithmetic_expression>
 ::= "+" <expression>
 | "-" <expression>
 | <expression> "+" <expression>
 | <expression> "-" <expression>
 | <expression> "*" <expression>
 | <expression> "/" <expression>
 | <expression> "%" <expression>
 | <expression> "\" <expression>
(7) <relational_expression>
 ::= <expression> "==" <expression>
 | <expression> "!=" <expression>
 | <expression> "<" <expression>
 | <expression> "<=" <expression>
 | <expression> ">" <expression>
 | <expression> ">=" <expression>
(8) <logical_expression>
 ::= "!" <expression>
 | <expression> "&&" <expression>
 | <expression> "||" <expression>
(9) <procedural_call> ::= <identifier> "(" <arguments> ")"
(10) <arguments> ::= [<expression_list>]
(11) <expression_list> ::= <expression> { "," <expression>}*

(12) <attribute_get> ::= <expression> "." <identifier>
 | <expression> "!" <identifier>
(13) <method_call> ::= <expression> "." <identifier>
 "(" <arguments> ")"
 | <expression> "!" <identifier>
 "(" <arguments> ")"
(14) <array_creation> ::= "[" <arguments> "]"
(15) <dictionary_creation>
 ::= "{" <dictionary_expression_list>
 "}"
(16) <dictionary_expression_list>
 ::= [<dictionary_expression> { ","
 <dictionary_expression> }*]
(17) <dictionary_expression>
 ::= <expression> ’:’ <expression>
(18) <indexed_get> ::= <expression> "[" <expression> "]"
(19) <variable_management>
 ::= <assignment_statement>
 | <del_statement>
February 2003 CORBA Scripting Language: IDLscript Grammar 2-7

2

(20) <assignment_statement>
 ::= <identifier> "=" <expression>
 | <expression> "." <identifier>
 "=" <expression>
 | <expression> "!" <identifier>
 "=" <expression>
 | <expression> "[" <expression> "]"
 "=" <expression>
(21) <del_statement> ::= "del" <identifier>
 | "del" <expression> "."
 <identifier>
(22) <control_flow_statements>
 ::= <if_statement>
 | <while_statement>
 | <do_statement>
 | <for_statement>
 | <return_statement>
(23) <if_statement> ::= "if" "(" <expression> ")"
 <statement>
 ["else" <statement>]
(24) <while_statement> ::= "while" "(" <expression> ")"
 <statement>
(25) <do_statement> ::= "do" <statement>
 "while" "(" <expression> ")"
(26) <for_statement> ::= "for" <identifier> "in"
 <expression> <statement>
(27) <exception_management>
 ::= <throw_statement>
 | <try_catch_finally_statement>
(28) <throw_statement> ::= "throw" <expression>
(29) <try_catch_finally_statement>
 ::= "try" "{" <statements> "}"
 { "catch" "(" <exception_type>
 <identifier> ")"
 "{" <statements> "}" }*

 ["catch" "(" <identifier> ")"
 "{" <statements> "}"]
 ["finally" "{" <statements> "}"]
(30) <exception_type> ::= <identifier> { "." <identifier> }*

(31) <return_statement>
 ::= "return" [<expression>]
(32) <procedure_declaration>
 ::= "proc" <identifier> "("
 [<formal_parameter_list>] ")"
 "{" <statements> "}"
(33) <formal_parameter_list>
 ::= <identifier_list> { ","
 <identifier> "=" <expression> }*

(34) <identifier_list> ::= <identifier> { ‘,’ <identifier>
 }*

(35) <class_declaration>
2-8 CORBA Scripting Language, v1.1 February 2003

2

 ::= "class" <identifier> ["("
 <inherited_class_list> ")"]
 "{" <statements> "}"
(36) <inherited_class_list>
 ::= <expression_list>
(37) <module_management>
 ::= <import_module>
(38) <import_module> ::= "import" <identifier_list>

2.4 Scripts

An IDLscript script consists of zero or more statements. A statement can be a null
statement (’;’), a statement block surrounded by bracket characters (’{’ and ’}’), an
expression, a variable management statement, a control flow statement, a procedure
declaration, a class declaration, an exception management statement, or a module
management statement. The syntax is:

<script> ::= <statements>
<statements> ::= <statement>*

<statement> ::= ";"
 | "{" <statements> "}"
 | <expression>
 | <variable_management>
 | <control_flow_statements>
 | <procedure_declaration>
 | <class_declaration>
 | <exception_management>
 | <module_management>

See Section 2.5, “Expressions,” on page 2-9; Section 2.6, “Variable and Attribute
Management,” on page 2-14; Section 2.8, “Control Flow Statements,” on page 2-23;
Section 2.9, “Procedures,” on page 2-26; Section 2.10, “Classes,” on page 2-28;
Section 2.11, “Exceptions,” on page 2-32; and Section 2.12, “Modules,” on page 2-37
for specifications of <expression>, <variable_management>,
<control_flow_statements>, <procedure_declaration>,
<class_declaration>, <exception_management>, and
<module_management>.

2.5 Expressions

This section describes the syntax for IDLscript expressions. These syntactical
constructs are general and can be applied on any IDLscript objects. Their semantic
meaning depends on the object’s type as described in Sectio n2.7, “Objects and Types,”
on page 2-15.
February 2003 CORBA Scripting Language: Scripts 2-9

2

2.5.1 Syntax

An IDLscript expression can be a literal, an identifier, a parenthetical expression, an
arithmetic expression, a relational expression, a logical expression, a procedural call,
an attribute getting, a method call, an array creation, a dictionary creation, and an
indexed getting. The syntax is:

<expression> ::= <literal>
 | <identifier>
 | "(" <expression> ")"
 | <arithmetic_expression>
 | <relational_expression>
 | <logical_expression>
 | <procedural_call>
 | <attribute_get>
 | <method_call>
 | <array_creation>
 | <dictionary_creation>
 | <indexed_get>

See Section 2.5.2, “Literal Values,” on page 2-10; Section 2.2.3, “Identifiers,” on
page 2-3; Section 2.5.4, “Arithmetic Operators,” on page 2-11; Section 2.5.5,
“Relational Operators,” on page 2-12; Section 2.5.6, “Logical Operators,” on
page 2-12; Section 2.5.7, “Procedural Call,” on page 2-13; Section 2.5.8, “Attribute
Getting,” on page 2-13; Section 2.5.9, “Method Call,” on page 2-13; Section 2.5.10,
“Array Creation,” on page 2-14; Section 2.5.11, “Dictionary Creation,” on page 2-14;
and Section 2.5.12, “Indexed Getting,” on page 2-14 for specifications of <literal>,
<identifier>, <arithmetical_expression>, <relational_expression>, <logical_expression>,
<procedural_call>, <attribute_get>, <method_call>, <array_creation>,
<dictionary_creation>, and <indexed_get>.

2.5.2 Literal Values

The syntax for expression literals is:

<literal> ::= <long_literal>
 | <double_literal>
 | <character_literal>
 | <string_literal>

Here, <long_literal>, <double_literal>, <character_literal>, and
<string_literal> refer respectively to integer, float-point, character, and string
lexical literals defined in Section 2.2.5, “Literals,” on page2-4. Consider the following
examples:

>>> 10 # a long value
10
>>> 3.1415 # a double value
3.1415
>>> 'c' # a character value
2-10 CORBA Scripting Language, v1.1 February 2003

2

'c'
>>> "Hello World!" # a string value
"Hello World!"

Note that when IDLscript is interactively used it displays the result of the last
expression evaluation.

2.5.3 Identifiers

Expression identifiers are defined as lexical identifiers described in Section 2.5.3,
“Identifiers,” on page 2-11. These identifiers refer to named IDLscript objects like
constants, variables, types, procedures, classes, modules, etc. The two predefined
identifiers true and false respectively refer to IDLscript constant objects that
represent the two boolean values. The Void identifier refers to the unique void object
value. Consider the following examples:

>>> true # the boolean true value
true
>>> false # the boolean false value
false
>>> Void
>>>

Note that if an expression evaluation returns the Void value, then this value is not
displayed.

2.5.4 Arithmetic Operators

The syntax for arithmetic expressions is:

<arithmetic_expression> ::= "+" <expression>
 | "-" <expression>
 | <expression> "+" <expression>
 | <expression> "-" <expression>
 | <expression> "*" <expression>
 | <expression> "/" <expression>
 | <expression> "%" <expression>
 | <expression> "\" <expression>

IDLscript supports the usual arithmetic operators: the “+” and “-” unary ones, and the
“+”, “-”, “*”, “/”, and “%” binary ones. The “\” binary operator represents the
integer division. Automatic needed value coercions are done for binary operators.
These operators have the usual meaning. Consider the following examples:

>>> 10 + 3
13
>>> 10 - 3.3
6.7
>>> 10 / 3
3.33333
February 2003 CORBA Scripting Language: Expressions 2-11

2

>>> 10 % 3 # only for long integers
1
>>> 10 \ 3 # only for long integers
3

2.5.5 Relational Operators

The syntax for relational expressions is:

<relational_expression> ::= <expression> "==" <expression>
 | <expression> "!=" <expression>
 | <expression> "<" <expression>
 | <expression> "<=" <expression>
 | <expression> ">" <expression>
 | <expression> ">=" <expression>

Relational operators are the classical binary ones: “==”, “!=”, “<“, “<=”, “>”, and
“>=”. They return boolean values and operand type coercions are done automatically if
needed. This also implies dynamic value type checking at execution time. These
operators have the usual meaning. Consider the following examples:

>>> 10 == 3
false
>>> 3.1415 > 3
true

2.5.6 Logical Operators

The syntax for logical expressions is:

<logical_expression> ::= "!" <expression>
 | <expression> "&&" <expression>
 | <expression> "||" <expression>

Logical operators are the classical unary and binary ones. The unary not is represented
by “!”. The binary and is represented by “&&”. The binary or is represented by “||”.
They take two boolean operands. These operators return a boolean value. Dynamic
operand type checking is done at execution time. These operators have the usual
meaning. Consider the following examples:

>>> (10 != 3.3) && true
true
>>> (10 < 3) || false
false
>>> true && false
false
>>> false || (10 > 3)
true
>>> ! (10 == 3)
true
2-12 CORBA Scripting Language, v1.1 February 2003

2

2.5.7 Procedural Call

The syntax for procedural calls is:

<procedural_call> ::= <identifier> "(" <arguments> ")"
<arguments> ::= [<expression_list>]
<expression_list> ::= <expression> { "," <expression> }*

A procedural call can be applied to any IDLscript object named by an identifier.
Arguments, surrounded by brackets, are composed of zero or more expressions
separated by comma characters. The number of arguments and the meaning of a
procedural call depend on the IDLscript object designed by the identifier. For example,
if the object is a procedure (see Section 2.9, “Procedures,” on page 2-26), then the
meaning is to execute this object procedure; whereas if the object is a class (see
Section 2.10, “Classes,” on page 2-28), then the meaning is the instantiation of this
class.

2.5.8 Attribute Getting

The syntax for attribute getting is:

<attribute_get> ::= <expression> "." <identifier>
 | <expression> "!" <identifier>

An attribute getting can be applied to any expression object. The identifier names the
accessed attribute. Two point notations are provided: ’.’ and ’!’. The meaning of an
attribute getting depends on the target object and the used point notation. For most
objects, these two notations are equivalent and the meaning is the access to an existing
attribute of the target object. However applied to a CORBA object reference (see
Section 3.13.3, “Object References,” on pag e3-27), the meaning is a synchronous or a
deferred attribute getting.

2.5.9 Method Call

The syntax for method calls is:

<method_call> ::= <expression> "." <identifier>
 "(" <arguments> ")"
 | <expression> "!" <identifier>
 "(" <arguments> ")"

A method call can be applied to any expression object. The identifier names the
invoked method. Method arguments, surrounded by brackets, are composed of zero or
more expressions separated by comma characters. Two point notations are also
provided: ’.’ and ’!’. The meaning of a method call depends on the target object and
the used point notation. For most objects, these two notations are equivalent and the
meaning is the invocation of an existing method of the target object. However applied
to a CORBA object reference (see Section 3.13.3, “Object References,” on page3-27),
the meaning is a synchronous or a deferred method call.
February 2003 CORBA Scripting Language: Expressions 2-13

2

2.5.10 Array Creation

The syntax for array creations is:

<array_creation> ::= "[" <arguments> "]"

At creation time, an array object (see Section 2.7.4, “Array Objects,” on page 2-19) can
be initialized with zero or more expression objects. Consider the following examples:

>>> [] # an empty array
[]
>>> [1, 2.3, ’c’, "hello", true] # an heterogeneous array
[1, 2.3, ’c’, "hello", true]

2.5.11 Dictionary Creation

The syntax for dictionary creations is:

<dictionary_creation> ::= "{" <dictionary_expression_list>
 "}"
<dictionary_expression_list> ::= [<dictionary_expression>
 { "," <dictionary_expression> }*]
<dictionary_expression> ::= <expression> ’:’ <expression>

At creation time, a dictionary object (see Section 2.7.5, “Dictionary Objects,” on
page 2-21) can be initialized with zero or more key/value expression pairs separated by
commas. The key and the value of a pair is separated by ’:’. Consider the following
example:

>>> { 1: "one", 2: "two", 3: "three" }
{ 1: "one", 2: "two", 3: "three"}

2.5.12 Indexed Getting

The syntax for indexed getting is:

<indexed_get> ::= <expression> "[" <expression> "]"

An indexed getting can be applied to any expression object. The accessed index is also
an expression object. The meaning depends on the target object.

2.6 Variable and Attribute Management

This section describes the syntax for variable and attribute management, that is
assignment and deletion constructs. The syntax is:

<variable_management> ::= <assignment_statement>
 | <del_statement>
2-14 CORBA Scripting Language, v1.1 February 2003

2

2.6.1 Assignments

The syntax for assignments is:

<assignment_statement> ::= <identifier> "=" <expression>
 | <expression> "." <identifier> "=" <expression>
 | <expression> "!" <identifier> "=" <expression>
 | <expression> "[" <expression> "]" "=" <expression>

The first construct is dedicated to variable assignments. Variables can refer to any
expression object. They are defined at their first assignment. During execution time, a
variable can take different kinds of values. Consider the following examples:

>>> v = 10
>>> v
10
>>> v = "Hello"
"Hello"

Other constructs are for attribute and indexed assignments. Their meaning depends on
the target object.

2.6.2 The Del Statement

The syntax for deletions is:

<del_statement> ::= "del" <identifier>
 | "del" <expression> "." <identifier>

The del statement construct allows scripts to forget a previous defined variable. The
variable is designed by the identifier. Note that this identifier can be preceded by
an expression that defines the scope of the variable such as a module, a class, or an
instance.

2.7 Objects and Types

This section describes the main IDLscript object types and their functionalities.

2.7.1 Everything is Typed Object

As IDLscript is an object-oriented scripting language, all scripted entities such as
literals, arrays, dictionaries, procedures, classes, instances, exceptions, and modules are
represented by objects. Each object provides a set of functionalities: operators,
attributes, and methods. These functionalities are used through the syntactical
constructs presented in Section 2.5, “Expressions,” on page 2-9.

The set of functionalities of an object is defined by its type. Through this type, the
interpreter checks the validity of every operator, attribute, and method call. When a
typing error occurs, the interpreter throws an internal exception (see Section 2.11.1,
“Internal Exceptions,” on page 2-32). Moreover, types are also IDLscript objects. The
February 2003 CORBA Scripting Language: Objects and Types 2-15

2

_type attribute allows scripts to access the IDLscript type of any object. It allows
programmers to check typing information (for example to check argument types of a
procedure). Table 2-5 enumerates the set of functionalities that are supported by all
IDLscript objects and types.

2.7.2 Basic Value Types

The basic object types are accessible through boolean, long, double, and char
identifiers. Consider the following examples:

>>> b = true
>>> b._type
< type boolean ... >
>>> b._is_a(boolean)
true
>>> b._is_a(long)
false
>>> b._toString()
"true"
>>> l = 10
>>> l._type
< type long ... >
>>> l._is_a(long)
true
>>> l._is_a(double)
false
>>> l._toString()
"10"
>>> d = 3.1415
>>> d._type
< type double ... >
>>> d._is_a(double)
true

Table 2-5 The Object and Type Functionalities

Functionality Explanation

object._type Returns the type object of any object.

object._is_a(type) Returns true if the object is of a certain type or of a
type that is a subtype of this type.

object._toString() Returns a string that is the textual representation of an
object.

type._type Returns the meta type of any type object.

type1._is_a(type2) Returns true if the type1 is equal or is a subtype of
type2.

type._toString() Returns a string that is the textual representation of the
type object.
2-16 CORBA Scripting Language, v1.1 February 2003

2

>>> d._is_a(char)
false
>>> d._toString()
"3.1415"
>>> c = ’c’
>>> c._type
< type char ... >
>>> c._is_a(char)
true
>>> c._is_a(boolean)
false
>>> c._toString()
"c"

These types provide the classical semantic for operators (see Sectio n2.5.4, “Arithmetic
Operators,” on page 2-11, Section 2.5.5, “Relational Operators,” on page 2-12, and
Section 2.5.6, “Logical Operators,” on page 2-12) and automatic coercions.

2.7.3 String Objects

The string identifier refers to the string type. Strings support a set of attributes,
methods, and operators. All these functionalities are enumerated in Table 2-6 and they
never modify the target string. When indexes are out of the string bounds, an exception
BadIndex is raised (see Section 2.11.1, “Internal Exceptions,” on page 2-32).

Table 2-6 The String Type Functionalities

 Functionality Explanation

s.length Returns the length of the s string.

s[i] Returns the character at the i position. The index ranges from 0 to
s.length - 1.

c + s Returns the concatenation of the c character and the s string.

s + c Returns the concatenation of the s string and the c character.

s1 + s2 Returns the concatenation of the s1 and s2 strings.

s1 == s2 Returns true if s1 contains the same sequence of characters as s2.

s1 != s2 Returns true if s1 contains a different sequence of characters as s2.

s1 < s2 Returns true if s1 is lexicographically lower than s2.

s1 <= s2 Returns true if s1 is lexicographically lower or equal to s2.

s1 > s2 Returns true if s1 is lexicographically greater than s2.

s1 >= s2 Returns true if s1 is lexicographically greater or equal to s2.

s.index(c) Returns the position of the first occurrence of the c character or -1 if c
does not occur.

s.index(c,pos) Returns the position of the first occurrence of the c character starting
the search at the pos index or -1 if c does not occur.
February 2003 CORBA Scripting Language: Objects and Types 2-17

2

Consider the following examples:

>>> s = "Hello World!"
>>> s._type
< type string ... >
>>> s._is_a(string)
true
>>> s._is_a(boolean)
false
>>> s._toString()
"Hello World!"
>>> s.length
12
>>> s[1]
'e'
>>> s + '!'
"Hello World!!"
>>> "Hello " + "World!"
"Hello World!"
>>> s == "Hello World!"
true
>>> s.index('o')
4
>>> s.index('o',6)

s1.index(s2) Returns the position of the first occurrence of the s2 string or -1 if s2
does not occur.

s1.index(s2,pos) Returns the position of the first occurrence of the s2 string starting the
search at the pos index or -1 if s2 does not occur.

s.rindex(c) Returns the position of the last occurrence of the c character or -1 if c
does not occur.

s.rindex(c,pos) Returns the position of the last occurrence of the c character starting the
backward search at the pos index or -1 if c does not occur.

s1.rindex(s2) Returns the position of the last occurrence of the s2 string or -1 if s2
does not occur.

s1.rindex(s2,pos) Returns the position of the last occurrence of the s2 string starting the
backward search at the pos index or -1 if s2 does not occur.

s.substring(bi) Returns a new string that is a substring of s beginning at the bi index.

s.substring(bi,ei) Returns a new string that is a substring of s between the bi and ei
indexes.

s.toLowerCase() Returns a new string that is a lower case copy of the s string.

s.toUpperCase() Returns a new string that is a upper case copy of the s string.

Table 2-6 The String Type Functionalities

 Functionality Explanation
2-18 CORBA Scripting Language, v1.1 February 2003

2

7
>>> s.index("l")
2
>>> s.index("l",5)
9
>>> s.substring(3,7)
"lo Wo"
>>> s.toLowerCase()
"hello world!"
>>> s.toUpperCase()
"HELLO WORLD!"

2.7.4 Array Objects

The array identifier refers to the array type. Arrays are dynamically extensible
containers of any IDLscript objects. Arrays are built using ’[’ and ’]’ delimiters and
values are separated by commas (’,’). Array elements can have different types. Arrays
can be embedded in other arrays. Moreover, array objects provide a set of operators,
attributes, and methods. All these functionalities are enumerated in Table 2-7. When
indexes are out of the array bounds, an IDLscript internal exception BadIndex is
raised.

Table 2-7 The Array Type Functionalities

Functionality Explanation

a.length Returns to the length of the a array.

a[i] Returns the value at the i position. The index ranges from 0 to a.length
- 1.

a[i] = v Updates the component value at the i position. The index ranges from 0
to a.length - 1.

a1 + a2 Returns a new array which is the concatenation of the a1 and a2
arrays.

a.append(v) Appends the v object at the end of the a array.

a.insert(v,i) Inserts the v object at the i position. The index ranges from 0 to
a.length.

a.delete(i) Deletes the component value at the i position. The index ranges from 0
to a.length - 1.

a.remove(v) Removes the first occurrence of the v object. Returns true if v occurs.

a.contains(v) Returns true if the v value is contained in the array.

a.index(v) Returns the position of the first occurrence of the v object or -1 if v
does not occur.

a.index(v,pos) Returns the position of the first occurrence of the v object starting the
search at the pos index or -1 if v does not occur.
February 2003 CORBA Scripting Language: Objects and Types 2-19

2

Consider the following examples:

>>> # heterogeneous array
>>> a = [true, [1, 3.1415], 'c', "Hello World!"]
>>> a._type
< type array ... >
>>> a._type == array
true
>>> a._is_a(boolean)
false
>>> a._toString()
"[true, [1, 3.1415], 'c', "Hello World!"]"
>>> a.length
4
>>> a[1]
[1, 3.1415]
>>> a[1] = 10
>>> a
[true, 10, 'c', "Hello World!"]
>>> a + [1,2]
[true, 10, 'c', "Hello World!", 1, 2]
>>> a.append (false)
>>> a
[true, 10, 'c', "Hello World!", false]
>>> a.insert("a value", 1)
>>> a
[true, "a value", 10, 'c', "Hello World!", false]
>>> a.delete(2)
>>> a
[true, "a value", 'c', "Hello World!", false]
>>> a.remove("a value")
true
>>> a
[true, 'c', "Hello World!", false]
>>> a.contains(10)
false
>>> a.index(false)
3
>>> a.index(true, 1)
-1

a.rindex(v) Returns the position of the last occurrence of the v object or -1 if v does
not occur.

a.rindex(v,pos) Returns the position of the last occurrence of the v object starting the
backward search at the pos index or -1 if v does not occur.

array.create(n) Creates an array initialized with n Void objects.

Table 2-7 The Array Type Functionalities

Functionality Explanation
2-20 CORBA Scripting Language, v1.1 February 2003

2

>>> a = [true, 'c', 10, 'c', false]
>>> a.rindex('c')
3
>>> a.rindex('c',2)
1
>>> a = array.create(5)
>>> a
[Void, Void, Void, Void, Void]

2.7.5 Dictionary Objects

The dictionary identifier refers to the dictionary type. A dictionary object is a
powerful container to store any key - value associations such as indexed tables,
structured records, etc. Keys and values are of any IDLscript object types. Dictionaries
are built using ’{’ and ’}’ delimiters, associations are separated by commas (’,’), and
key and value by the ’:’ character. Dictionary objects provide a set of operators,
attributes, and methods. All these functionalities are enumerated in Table 2-8.
Searching a key that is not contained by a dictionary raises an IDLscript internal
NotFound exception.

Consider the following examples:

>>> d = { 1: "one", 2: "two", 3: "three"}
>>> d._type
< type dictionary ... >
>>> d._type == dictionary
true
>>> d._is_a(boolean)
false
>>> d._toString()
"{ 1: "one", 2: "two", 3: "three"}"

Table 2-8 The Dictionary Type Functionalities

Functionality Explanation

dict.size Returns the number of associations in the dict dictionary.

dict.keys Returns an array of the key objects in the dict dictionary.

dict.values Returns an array of the value objects in the dict dictionary.

dict[key] Returns the value associated to the key in the dict dictionary.

dict[key] = value Updates the value associated to a key or adds this key - value
association in the dict dictionary.

dict.contains(value) Returns true if the value is associated to a key in the dict
dictionary.

dict.containsKey(key) Returns true if the key is present in the dict dictionary.

dict.remove(key) Removes the key and its corresponding value from the dict
dictionary.
February 2003 CORBA Scripting Language: Objects and Types 2-21

2

>>> d.size
3
>>> d.keys
[1, 2, 3]
>>> d.values
["one", "two", three"]
>>> d[1]
"one"
>>> d[4] = "four"
>>> d
{ 1: "one", 2: "two", 3: "three", 4: "four"}
>>> d.contains("two")
true
>>> d.containsKey(4)
true
>>> d.remove(2)
>>> d
{ 1: "one", 3: "three", 4: "four"}

2.7.6 Predefined Internal Procedures

IDLscript provides some predefined internal procedures respectively named by the
following identifiers: eval, exec, getline, print, and println.

The eval function provides the classical powerful evaluation function. It takes a
stringified script, executes it, and returns the result of this evaluation. This allows
programmers to construct interpretable IDLscript code at execution time.

The exec function executes a script file. Variables, procedures, and classes defined
into the file are always available after the file execution.

The getline function allows scripts to read a text line from the standard input stream
and returns a string containing this text line.

Table 2-9 The Predefined Internal Procedures

Internal Procedures Explanation

eval(string) Evaluates a string containing an IDLscript script.

exec(string) Executes the file named by string.

getline() Reads a text line from the standard input stream.

print(arg1, ...,
argn)

Prints zero or more object arguments.

println(arg1, ...
argn)

Prints zero or more object arguments and a new line.
2-22 CORBA Scripting Language, v1.1 February 2003

2

The interpreter automatically displays the last evaluated expression. But it can be
necessary into complex scripts to display a value or a set of values at any time, for
example, during a loop. The print procedure allows scripts to display a set of object
expressions. The println procedure displays a new line after printing all the
expressions.

These internal procedures are executed using the procedural calling notation. Consider
the following examples:

>>> s = "1 + 1"
>>> eval (s)
2
>>> exec("a_script.cs")
. . .
>>> s = getline()
Hello World!
>>> s
"Hello World!"
>>> print (100, '\n', "string1 string2\n")
100
string1 string2
>>> println (1, ' ', 'c', ' ', true, ' ', "string")
1 c true string

2.8 Control Flow Statements

This section describes the syntax for IDLscript control flow statements.

2.8.1 Syntax

An IDLscript control flow statement can be an if, a while, a do, a for, and a
return statement. The syntax is:

<control_flow_statements> ::= <if_statement>
 | <while_statement>
 | <do_statement>
 | <for_statement>
 | <return_statement>

See Section 2.8.2, “The If Statement,” on page 2-24; Section 2.8.3, “The While
Statement,” on page 2-24; Section 2.8.4, “The Do Statement,” on page 2-24;
Section 2.8.5, “The For Statement,” on page 2-25; and Section 2.8.6, “The Return
Statement,” on page 2-25 for specifications of <if_statement>,
<while_statement>, <do_statement>, <for_statement>, and
<return_statement>.
February 2003 CORBA Scripting Language: Control Flow Statements 2-23

2

2.8.2 The If Statement

The syntax for the if statement is:

<if_statement> ::= "if" "(" <expression> ")" <statement>
 ["else" <statement>]

The if statement construct allows scripts to test a condition expression. If it is true,
the following statement is executed, else the statement after else is executed. Of
course, the else clause is optional.

The condition must be a boolean expression: a variable containing a boolean object, a
relational operator (e.g., ==, !=, <, <=, > or >=) or a composition of boolean
expressions (e.g., &&, || or !). The dynamic type of the expression is checked at
runtime. Consider the following examples:

>>> i = 1
>>> if (i == 1) println("i == 1");
i == 1
>>> i = 2
>>> if (i == 1) { println("i == 1") }
 else { println("i != 1") }
i != 1

2.8.3 The While Statement

The syntax for the while statement is:

<while_statement> ::= "while" "(" <expression> ")"
 <statement>

The while statement construct allows scripts to iterate a set of statements while a
condition expression is true. The condition must be a boolean expression object and is
checked at runtime. If the condition is false at the first time, the statements are never
executed. Consider the following example:

>>> i = 0
>>> while (i < 10) {
 print (i, ' ')
 i = i + 1
 }
0 1 2 3 4 5 6 7 8 9

2.8.4 The Do Statement

The syntax for the do statement is:

<do_statement> ::= "do" <statement>
 "while" "(" <expression> ")"
2-24 CORBA Scripting Language, v1.1 February 2003

2

The do statement construct allows scripts to iterate a set of statements while a
condition expression is true. The condition must be a boolean expression object and is
checked at runtime. Consider the following example:

>>> i = 0
>>> do {
 print (i, ' ')
 i = i + 1
 } while (i < 10)
0 1 2 3 4 5 6 7 8 9

2.8.5 The For Statement

The syntax for the for statement is:

<for_statement> ::= "for" <identifier> "in" <expression>
 <statement>

The for statement construct allows scripts to iterate on an expression enumeration
of objects. During each statement execution loop, the identifier variable
contains the next object of the expression. The expression must be an
enumerated object such as a string or an array. This property is checked at runtime.
Consider the following examples:

>>> a = ["Monday", "Tuesday", "Wednesday", "Thursday", "Fri-
day", "Saturday", "Sunday"]
>>> for i in a print (i, ' ');
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
>>> for i in "hello world!" print (i, ' ');
h e l l o w o r l d !
>>> for i in range(0,9) print (i, ' ');
0 1 2 3 4 5 6 7 8 9
>>> r = range(9,0,-1)
>>> for i in r print (i, ' ');
9 8 7 6 5 4 3 2 1 0

The range expression allows scripts to perform a loop on an integer interval. The two
first arguments define respectively the first and last integer values of the interval, the
third optional argument sets the interval increment. By default, this increment is equal
to 1. Moreover, a range expression is also an IDLscript object, it can be stored into a
variable.

2.8.6 The Return Statement

The syntax for the return statement is:

<return_statement> ::= "return" [<expression>]
February 2003 CORBA Scripting Language: Control Flow Statements 2-25

2

The return statement construct allows a script to interrupt its execution before the
end of the script code. It is mainly used in procedures or instance methods to return a
result to the caller.

The returned value is optional. In this way, the return statement returns
automatically the Void object. This construct can be used when procedures want to
prematurely stop their execution without returning a value.

2.9 Procedures

This section describes the syntax for IDLscript procedures.

2.9.1 Declaration

The syntax for procedure declarations is:

<procedure_declaration> ::= "proc" <identifier> "("
 [<formal_parameter_list>] ")"
 "{" <statements> "}"
<formal_parameter_list> ::= <identifier_list> { ","
 <identifier> "=" <expression> }*

<identifier_list> ::= <identifier> { ‘,’ <identifier> }*

The proc declaration construct allows scripts to create a procedure. A procedure is
specified by an identifier name and a list of formal parameters
(formal_parameter_list) defined between brackets (’(’ and ’)’). A procedure
body is composed of a set of statements between brackets (’{’ and ’}’). Consider
the following example that declares a sample procedure with two formal parameters
(p1 and p2):

>>> proc sample (p1, p2)
 {
 println ("The 'sample' procedure is called with p1=",
 p1, " and p2=", p2)
 }
>>> sample (true,"hello")
The 'sample' procedure is called with p1=true and p2=hello

Procedures can be redefined at any time. The new procedure must only use the same
name. The previous procedure version becomes unavailable.

2.9.2 Formal Parameters and Default Values

Formal parameters are not typed and there is no limit about their number. A default
value can be assigned to the last formal parameters. These values are evaluated at the
procedure creation time. The procedure statements can access directly to formal
parameters as local variables. Consider the following example:
2-26 CORBA Scripting Language, v1.1 February 2003

2

>>> proc display (p1, p2="World")
 {
 println (p1, ' ', p2, ’!’)
 }
>>> display ("Hello")
Hello World!
>>> display ("Hello", "You")
Hello You!

Formal parameters can be used in read and write mode inside the procedure; it does not
affect the real parameter since procedures do not call update methods on the formal
parameters.

2.9.3 The Returned Object

Procedures can return an object computed inside them using the return statement,
and this stops the procedure execution. Consider the following example that presents a
recursive implementation of a factorial function:

>>> proc fac (i)
 {
 if (i == 1) return 1
 return i * fac (i - 1)
 }
>>> fac (5)
120

2.9.4 Local and Global Variables

Local variables can be defined anywhere inside a procedure. They are defined at their
first assignment. If a local variable has the same name as a global variable, then this
global variable is hidden in the procedure. Unhidden global variables can be accessed
by procedures only in read mode. However global variables can be accessed and
updated by prefixing them with the global scope name. Consider the following
example:

>>> x = 5
>>> proc sample ()
 {
 # access to the global 'x' variable.
 println ("x=", x)
 x = 3 # create a local 'x' variable.
 # access to the local 'x' variable.
 println ("x=", x)
 # access and update the global 'x' variable.
 global.x = global.x * 2
 }
>>> sample ()
February 2003 CORBA Scripting Language: Procedures 2-27

2

x=5
x=3
>>> x
10

2.9.5 Procedure Aliasing

Procedures are objects, they can be assigned to a variable and be called using the new
name. Consider the following example:

>>> alias = fac
>>> alias (5)
120

As procedures are objects, they can be transmitted to another procedure as a parameter.
The following example illustrates passing procedures as parameters: the
sort_criteria parameter of the sort procedure:

>>> proc down (a, b) { return a < b }
>>> proc up (a, b) { return a > b }
>>> proc sort (a, sort_criteria = up)
 {
 for i in range (0, a.length -2)
 for j in range (i + 1, a.length -1)
 if (sort_criteria (a[i], a[j])) {
 temp = a[i]
 a[i] = a[j]
 a[j] = temp
 }
 }
>>> t = [60 , 6543 , 4 , 1124 , 1]
>>> sort (t)
>>> t
[1 , 4 , 60 , 124 , 6543]
>>> sort (t, down)
>>> t
[6543 , 124 , 60 , 4 , 1]

This sort procedure works with all basic IDLscript value types. By default, it uses
the up function as sort criteria, but it is possible to pass another procedure like down.
Note that the modification of an array item stays after the execution of a procedure,
because an array is an object passed by reference.

2.10 Classes

The IDLscript language allows one to design script classes. IDLscript uses the classical
functionalities of object-oriented programming. A class can define instance attributes,
instance methods, class attributes, and class methods. Polymorphism, overriding, and
multiple inheritance are available, but as scripts are not syntactical typed, overloading
is not provided.
2-28 CORBA Scripting Language, v1.1 February 2003

2

2.10.1 Declaration

The syntax for the class declaration is:

<class_declaration> ::= "class" <identifier>
 ["(" <inherited_class_list> ")"]
 "{" <statements> "}"
<inherited_class_list> ::= <expression_list>

The class declaration construct allows scripts to declare a class named by
identifier. A class can inherit a set of parent classes
(inherited_class_list). Finally, the class body is composed of a set of
statements.

The class body statements define instance methods, class methods, and class attributes.
Instance attributes are declared at their first assignment. The IDLscript class construct
is very simple because we think that creating scripted objects must be as simple as
possible.

2.10.2 A Simple Class Example

The following example shows a simple class that implements two dimensional points.
This class illustrates the definition of instance attributes, instance methods, class
attributes, and class methods.

>>> class Point2D {
 proc __Point2D__ (self,x,y) {
 self.x = x
 self.y = y
 Point2D.nb_created_points = Point2D.nb_created_points + 1
 }
 proc show (self) {
 println ("Point2D(x=", self.x, ", y=", self.y, ")")
 }
 proc move (self, x, y) {
 self.x = self.x + x
 self.y = self.y + y
 }
 proc how_many () {
 println (nb_created_points, " Point2D instances are been

created.")
 }
 nb_created_points = 0
 }

2.10.2.1 Instance Methods

In IDLscript, each instance method must have an explicit first argument (self for
instance) that refers to the instance receiving the method call. However this first
argument can have any name. Next arguments receive parameters of the method call.
February 2003 CORBA Scripting Language: Classes 2-29

2

It is possible to define an instance initialization method, which is called at the class
instantiation time (__Point2D__). This method must have the same name as the
class and must be surrounded by two underscores (_).

2.10.2.2 Instance Attributes

Instance attributes are dynamically declared at their first assignment like in self.x =
x and self.y = y statements of the initialization __Point2D__ method.

Instance methods can access directly to instance attributes just by prefixing them with
the instance reference like in the show and move instance methods.

2.10.2.3 Class Methods

Any procedure declared in the scope of a class is considered as a class method like
how_many.

2.10.2.4 Class Attributes

Class attributes are just variables assigned in the scope of a class like
nb_created_points. Accessing to class attributes requires that they should be
prefixed by their class name.

2.10.2.5 Class Instantiations

The procedural calling notation is used to instantiate a class. In IDLscript, there is no
new keyword because everything is an object dynamically created. Consider the
following example:

>>> p = Point2D(1,1)
>>> p
< Point2D instance
 x = 1
 y = 1
>

The first statement creates a Point2D instance. The second statement illustrates how
IDLscript simply evaluates an instance: it shows the type of the instance and all
instance attributes.

2.10.2.6 Instance Method Invocations

Consider the following example that illustrates method invocations on a Point2D
instance:

>>> p.move(10,10)
>>> p.show ()
Point2D(x=11, y=11)
>>> p._type
2-30 CORBA Scripting Language, v1.1 February 2003

2

< class Point2D {
 proc __Point2D__ (self, x, y);
 proc show (self);
 proc move (self, x, y);
 proc how_many ();
 nb_created_points = 1;
} >

The classical dotted notation is used to invoke instance methods. As other IDLscript
objects, instances support the _type attribute that returns its instantiation class. The
evaluation of a class shows the signatures of all instance methods, class methods, and
class attributes.

2.10.3 A Single Class Inheritance Example

IDLscript provides a simple class inheritance mechanism. This allows a class to inherit
other classes like in the following example where the class Point3D inherits the class
Point2D. Overriding is available as shown by the show and move instance methods.
Note that the polymorphism will not work if the procedure signature is changed by
adding new parameters, IDLscript does not provide overloading. Moreover as
procedures are IDLscript values, it is possible to define alias to access to inherited
methods as shown by the move2D alias.

>>> class Point3D (Point2D) {
 proc __Point3D__ (self,x,y,z) {
 self.__Point2D__(x,y)
 self.z = z
 }
 proc show (self) { ... }
 move2D = Point2D.move
 proc move (self, p) {
 self.move2D (p.x, p.y)
 self.z = self.z + p.z
 }
 }
>>> p = Point3D(1,1,1)

2.10.4 A Multiple Class Inheritance Example

Multiple inheritance is available in IDLscript as shown by the following example
where the class ColoredPoint3D inherits the Point3D and ColoredPoint2D
classes.

>>> class ColoredPoint2D (Point2D) {
 proc __ColoredPoint2D__ (self,x,y,c) { ... }
 proc show (self) {...}
 }

>>> class ColoredPoint3D (Point3D, ColoredPoint2D) {
February 2003 CORBA Scripting Language: Classes 2-31

2

 proc __ColoredPoint3D__ (self,x,y,z,c) { ... }
 proc show (self) {...}
 }

>>> p = ColoredPoint3D(10,10,10,"green")
>>> p
< ColoredPoint3D instance
 x = 10
 y = 10
 z = 10
 c = "green"
>

The method lookup is based on the deep-first algorithm. So if a method has the same
name in two inherited classes, it will be the version in the first class that will be
chosen. Method aliasing allows one to simply change this standard method lookup.

2.10.5 Class and Instance Types

As classes and instances are IDLscript objects, they provide the standard attributes and
methods to manipulate types (see Section 2.7.1, “Everything is Typed Object,” on
page 2-15). Then type comparisons and dynamic type checking are simply available on
classes and instances. Consider the following examples:

>>> ColoredPoint3D
< class ColoredPoint3D (Point3D,ColoredPoint2D) {
 proc __ColoredPoint3D__ (self, x, y, z, c);
 proc show (self);
 } >

>>> p._type == ColoredPoint3D
true
>>> p._type == Point2D
false
>>> p._is_a(Point2D)
true
>>> ColoredPoint3D._is_a(Point2D)
true

2.11 Exceptions

This section describes the IDLscript exception mechanism. There are two kinds of
exceptions: internal interpreter exceptions and users’ script exceptions.

2.11.1 Internal Exceptions

The internal exceptions are used by the interpreter to signal syntax errors, bad type
checkings, and invalid operations, or any other internal problems during the execution
of a users’ script. Internal exceptions are listed below.
2-32 CORBA Scripting Language, v1.1 February 2003

2

Exception Description

BadArgumentNumber This exception is thrown when a script calls a
procedure or a method without passing enough
parameters.

BadIndex This exception is thrown when the index to access a
string (or an array) is out of the string (or array)
bounds. If an index is less than zero or greater than the
length of a string (or an array), then the interpreter
throws this exception.

BadTypeCoerce This exception is thrown when a script tries to apply
operations between incompatible types. For instance,
adding a boolean with a string is impossible because
the boolean and the string object cannot be coerced to
two compatible objects, then the interpreter throws a
bad type coerce exception. Moreover, this exception is
thrown when parameters passed to an internal
procedure are not compatible with formal parameter
expected types.

ExecutionStopped This exception is thrown when the interpreter is
stopped by an external reason like a <CTRL-C>
signal.

FileNotFound This exception is thrown when a script tries to load
another script of which the file name is unknown (or
not understandable) by the underlying file system.

NotFound This exception is thrown when an undefined variable,
an undefined attribute, or an undefined method is
accessed by a script.

NotImplemented This exception is thrown when an internal IDLscript
feature is not currently implemented.

NotSupported This exception is thrown when an operator or a
syntactic construct is applied on an IDLscript object
that does not support it.

Overflow This exception is thrown when the interpreter detects
an arithmetic overflow.

ReadOnlyAttribute This exception is thrown when scripts try to affect a
read only attribute.

SyntaxError This exception is thrown when a lexical or syntactic
error appears in an interactive script, a downloaded
script contained into a file, or a script evaluated by the
eval function.
February 2003 CORBA Scripting Language: Exceptions 2-33

2

Consider the following examples:

>>> s = "Hello world!"

>>> s.toLowerCase(10) # toLowerCase takes no parameter.
Exception: < BadArgumentNumber: < InternalMethod
string.toLowerCase() > needed = 0 given = 1 >
 File "stdin", line 1 in ?

>>> s[100] # 100 is out of the string bounds.
Exception: < BadIndex: 100 must be between (0,11) on "Hello
world!" >
 File "stdin", line 1 in ?

>>> s < 10 # No type coercion between a string and a long
value.
Exception: < BadTypeCoerce: "Hello world!" < 10 >
 File "stdin", line 1 in ?

>>> while (true); # an infinite loop.
Exception: < ExecutionStopped: by CTRL-C >
 File "stdin", line 1 in ?

>>> exec("a_script.cs") # execute a script file not avail-
able.
Exception: < FileNotFound: 'a_script.cs' by exec() >
 File "stdin", line 1 in ?

>>> s1 # This is an undefined variable name.
Exception: < NotFound: variable 's1' >
 File "stdin", line 2 in ?

>>> s.an_attribute # a string value does not provide this
attribute.
Exception: < NotFound: attribute 'an_attribute' in "Hello
world!" >
 File "stdin", line 1 in ?

>>> s(10) # the procedural call construct is not available
on string values.
Exception: < NotSupported: call on "Hello world!" >
 File "stdin", line 1 in ?

>>> 10 \ 0 # division by zero.
Exception: < Overflow: divide by zero >
 File "stdin", line 1 in ?

>>> s.length = 10
Exception: < ReadOnlyAttribute: < InternalSlot readonly stri
ng.length > >
 File "stdin", line 1 in ?
2-34 CORBA Scripting Language, v1.1 February 2003

2

>>> s.10 # this construction is not syntactically correct.
Exception: < SyntaxError before or on '10' >
 File "stdin", line 1 in ?

2.11.2 User Exceptions

Users can define their own exceptions. The exceptions are launched with the throw
statement followed by an expression.

<throw_statement> ::= "throw" <expression>

Any IDLscript object can be used to throw a user exception. A script can throw a basic
value such as a boolean, a long integer, a string, or a complex value like an array or a
class instance.

>>> throw 10
Exception: < throw 10 >
 File "stdin", line 1 in ?

>>> throw "Hello"
Exception: < throw "Hello" >
 File "stdin", line 1 in ?

>>> throw [1,2]
Exception: < throw [1 , 2] >
 File "stdin", line 1 in ?

>>> class A_CLASS { proc __A_CLASS__(self,v) { self.v = v } }
>>> throw A_CLASS(1)
Exception: < throw < A_CLASS instance > >
 File "stdin", line 1 in ?

2.11.3 Exception Handling

Internal and user exceptions can be caught by scripts. The syntax for exception
handling is:

<try_catch_finally_statement> ::= "try" "{" <statements> "}"
 { "catch" "(" <exception_type> <identifier> ")"
 "{" <statements> "}" }*

 ["catch" "(" <identifier> ")" "{" <statements> "}"]
 ["finally" "{" <statements> "}"]
<exception_type> ::= <identifier> { "." <identifier> }*

The try statement block surrounds a set of statements throwing exceptions. This
block is followed by a set of catch statement blocks. Each catch block intercepts a
type of exception values (exception_type). If the exception type is compatible
with the type caught by a block, then the exception is stored into a variable
(identifier) and the statements of this block are executed. The last and optional
February 2003 CORBA Scripting Language: Exceptions 2-35

2

catch block (with no exception type) allows scripts to catch any exception. However,
if the type of the current raised exception is not intercepted by a catch block, then
this exception is thrown to the next encapsulating try block. Moreover, the optional
finally block is executed in any case, this allows scripts to execute some statements
if there are exceptions or not.

>>> proc exception_handling (v) {
 try {
 throw v
 } catch (boolean e) {
 println ("The exception is a boolean = ", e)
 } catch (long e) {
 println ("The exception is a long integer = ", e)
 } catch (string e) {
 println ("The exception is a string = ", e)
 } finally {
 println ("The finally block is executed.")
 }
 }

>>> exception_handling(true)
The exception is a boolean = true
The finally block is executed.

>>> exception_handling(1)
The exception is a long integer = 1
The finally block is executed.

>>> exception_handling("EXCEPTION")
The exception is a string = EXCEPTION
The finally block is executed.

>>> exception_handling([1, 2, 3])
The finally block is executed.
Exception: < throw [1 , 2 , 3] >
 File "stdin", line 3 in exception_handling
 File "stdin", line 1 in ?

>>> try {
 exception_handling(A_CLASS(1))
 } catch (e) {
 println ("The exception ", e, " is thrown by the proce-
dure.")
 }

The finally block is executed.
The exception < A_CLASS instance > is thrown by the proce-
dure.
2-36 CORBA Scripting Language, v1.1 February 2003

2

2.12 Modules

Modules allow users to store reusable scripts into text files. This means that any text
file containing IDLscript statements is a module. A module looks like an interactive
script: it can declare variables, procedures, classes, and can execute any statements.

2.12.1 Importation

The syntax for module importations is:

<import_statement> ::= "import" <identifier_list>
<identifier_list> ::= <identifier> { ‘,’ <identifier> }*

To load modules in the interpreter, users must invoke the import statement with a list
of one or more module names.

The file storing a module has the same name as the module postfixed by the .cs
extension. The interpreter has to look for module files using an environment variable
named CSPATH. This variable lists the directories containing module files. Directories
are separated by ’:' or ’;’ depending on operating systems.

2.12.2 Initialization

When a module is loaded for the first time, the interpreter executes all statements
contained into the module file. Then, the module can declare any procedure or class,
and execute any statements to initialize global module variables. Next importations do
not re-execute the statements.

2.12.3 Access to the Content

The dotted notation is used to access variables, procedures, and classes of a module:

module_name.name_of_a_variable
module_name.name_of_a_procedure (parameters)
module_name.name_of_a_class

2.12.4 Module Aliasing

As all IDLscript entities, a module is an object that can be assigned to a variable and
passed as a parameter to a procedure.

>>> import module1
>>> module2 = module1
>>> a_procedure(module2)
February 2003 CORBA Scripting Language: Modules 2-37

2

2.12.5 Module Management

The list of all the loaded modules is contained into the sys.modules scope.
Consider the following example:

>>> sys.modules
< scope sys.modules {
 module module1;
 } >
>>> del sys.modules.module1
>>> sys.modules
< scope sys.modules {
 } >

The del statement can be applied to the sys.modules scope to explicitly delete a
loaded module. The next importation of this deleted module reloads the module file
and executes it.
2-38 CORBA Scripting Language, v1.1 February 2003

The OMG IDL Binding 3
Note – Text in Red is from the IDLscript December 2000 RTF final report (ptc/2002-
08-04).

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 3-2

“Binding for Basic OMG IDL Types” 3-3

“Binding for OMG IDL Module” 3-4

“Binding for OMG IDL Constant” 3-5

“Binding for OMG IDL Enum” 3-5

“Binding for OMG IDL Structure” 3-7

“Binding for OMG IDL Union” 3-9

“Binding for OMG IDL Typedef” 3-11

“Binding for OMG IDL Sequence” 3-13

“Binding for OMG IDL Array” 3-15

“Binding for OMG IDL Fixed” 3-17

“Binding for OMG IDL Exception” 3-19

“Binding for OMG IDL Interface” 3-25

“Implementing OMG IDL Interfaces” 3-30
February 2003 CORBA Scripting Language, v1.1 3-1

3

This chapter presents the binding between IDLscript and OMG IDL. It shows how all
OMG IDL constructions such as basic types, modules, constants, enumerations,
structures, unions, typedefs, sequences, arrays, interfaces, attributes, operations,
exceptions, values, TypeCodes, and Anys are represented and can be manipulated from
the IDLscript language.

3.1 Overview

IDLscript provides a dynamic IDL binding that allows users to access directly and
naturally to any IDL specifications loaded into the Interface Repository. This approach
does not need to generate stubs and skeletons; therefore, users can invoke, navigate,
and discover any CORBA objects at runtime. IDLscript totally hides the complexity of
the DII, DSI, and Interface Repository APIs, and it internally uses them to construct
and receive requests in a safe way.

The IDLscript type system integrates seamlessly the OMG IDL type system. For each
IDL construction, this chapter presents how to access the IDL definition, how it is
represented with IDLscript, how to create such values, and how to manipulate them
using the IDLscript language.

From Section 3.2, “Binding for Basic OMG IDL Types to Section 3.12, “Binding for
OMG IDL Exception,” on page 3-19, this chapter presents the binding for basic
elements of OMG IDL. Section 3.13, “Binding for OMG IDL Interface,” on page 3-25
presents the binding for OMG IDL interfaces and how to implement these interfaces
using IDLscript (Section 3.14, “Implementing OMG IDL Interfaces,” on page 3-30).
Section 3.15, “Binding for OMG IDL Value,” on page 3-33 presents the binding for
OMG IDL values and how to implement them with IDLscript classes. TypeCode and
Any are respectively presented in Section 3.17, “Binding for OMG IDL TypeCode,” on
page 3-40 and Section 3.18, “Binding for OMG IDL Any,” on page 3-43. Finally the
access to the heart of CORBA is presented in Section 3.19, “The Global CORBA
Object,” on page 3-44.

“Binding for OMG IDL Value” 3-33

“Implementing Concrete OMG IDL Values” 3-37

“Binding for OMG IDL TypeCode” 3-40

“Binding for OMG IDL Any” 3-43

“The Global CORBA Object” 3-44

Section Title Page
3-2 CORBA Scripting Language, v1.1 February 2003

3

3.2 Binding for Basic OMG IDL Types

In IDLscript, any item is accessible by an identifier; therefore, all basic IDL types are
directly accessible by special IDLscript identifiers contained in the CORBA scope. This
CORBA scope contains basic CORBA concepts like basic IDL types, standard system
exceptions related to CORBA uses, and some other embedded scopes (see
Section 3.19, “The Global CORBA Object,” on page 3-44).

3.2.1 IDLscript Representation

Table 3-1 lists the IDLscript identifiers that refer to basic OMG IDL types.

3.2.2 Basic OMG IDL Values

A script can directly manipulate basic IDL types to create basic IDL values as shown
in the following example. Operators described in the previous chapter can be used on
these values. IDLscript can automatically coerce basic IDL values to basic values when
it is necessary as shown on the v1 + v2 > 100 and v3 != "" expressions.

>>> v1 = CORBA.Short(1)
>>> v2 = CORBA.ULong(10000)

Table 3-1 The IDLscript Representation of OMG IDL Types

Basic OMG IDL Types IDLscript Identifiers

void CORBA.Void

short CORBA.Short

unsigned short CORBA.UShort

long CORBA.Long

unsigned long CORBA.ULong

long long CORBA.LongLong

unsigned long long CORBA.ULongLong

float CORBA.Float

double CORBA.Double

long double CORBA.LongDouble

boolean CORBA.Boolean

char CORBA.Char

wchar CORBA.WChar

octet CORBA.Octet

string CORBA.String

wstring CORBA.WString
February 2003 CORBA Scripting Language: Binding for Basic OMG IDL Types 3-3

3

>>> v1 + v2 > 100
true
>>> v3 = CORBA.String("Hello World!")
>>> v3.length
12
>>> v3 != ""
true

3.3 Binding for OMG IDL Module

All IDL modules are directly accessible from the IDLscript interpreter. They are
represented by internal objects managed by the Interface Repository cache of the
IDLscript interpreter.

3.3.1 OMG IDL Examples

The following example presents some module declarations. The module GridService
has already been presented in Section 1.4, “An IDLscript Example,” on page 1-6. The
module MA illustrates the definition of an embedded module MB.

module GridService { . . . };
module MA { . . . };
module MB { . . . };

};

3.3.2 IDLscript Representation

In IDLscript, access to an IDL module is done simply by providing its IDL module
identifier. The evaluation of modules displays the content of the module. This
functionality can be used as end-user on-line helping facility. The dotted notation is
used to access the contains of a module.

>>> GridService
< OMG-IDL module GridService { . . . }; >

>>> m = MA.MB
>>> m
< OMG-IDL module MA::MB { . . . }; >

The previous example illustrates the access to the GridService and MA::MB
modules. The evaluation of the GridService module displays its content. Note that
as IDL modules are represented by IDLscript objects, they can be assigned to variables
(the m alias).
3-4 CORBA Scripting Language, v1.1 February 2003

3

3.4 Binding for OMG IDL Constant

All IDL constants are directly accessible from the IDLscript interpreter. They are
represented by internal objects managed by the Interface Repository cache of the
IDLscript interpreter.

3.4.1 OMG IDL Examples

The following example presents some constant declarations: the PI and Math::PI IDL
constants.

const double PI = 3.14159;
module Math {
 const double PI = 3.14159;
};

3.4.2 IDLscript Representation

In IDLscript, the access to an IDL constant is simply done by providing its IDL
constant identifier. This identifier can be prefixed by its IDL module or interface
scopes where it is defined. The evaluation of an IDL constant displays the IDL
definition of this constant.

>>> PI
< OMG-IDL const double PI = 3.14159; >

>>> Math.PI
< OMG-IDL const double Math::PI = 3.14159; >

>>> c = PI
>>> c
< OMG-IDL const double PI = 3.14159; >

>>> c._type
< OMG-IDL typedef double CORBA.Double; >

The previous example shows how to access the IDL PI and Math::PI constants. The
evaluation of the PI constant displays its definition and value. As IDL constants are
represented by IDLscript objects, they can be assigned to IDLscript variables to create
some kind of aliases as c and support the _type attribute.

3.5 Binding for OMG IDL Enum

All IDL enumeration types and values are directly accessible from the IDLscript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the IDLscript interpreter.
February 2003 CORBA Scripting Language: Binding for OMG IDL Constant 3-5

3

3.5.1 An OMG IDL Example

Consider the following example, which presents an enum declaration. The enumeration
Months contains all the months of the year.

// This definition can be located inside or outside an IDL module or interface
enum Months {
 January, February, March, April, May, June, July, August,
 September, October, November, December
};

3.5.2 IDLscript Representation

In IDLscript, the access to an IDL enum type is simply done by providing its IDL
enumeration identifier. This identifier can be prefixed by its IDL module or interface
scopes where it is defined. The evaluation of an IDL enum displays the IDL definition
of this enumeration.

>>> m = Months
>>> m
< OMG-IDL enum Months { January, February, March, April,
May, June, July, August, September, October, November,
December }; >

The previous code shows how to access the Months enum. This displays all items of
this enumeration. As IDL enumeration types are represented by IDLscript objects, they
can be assigned to variables to create some kind of aliases.

3.5.3 Enum Values

The creation of an IDL enum value needs to specify the selected item belonging to the
IDL enum. As an IDL enum value is represented by an IDLscript object, it is possible
to use the typing attributes and methods such as _type and _is_a.

>>> a = Months.January
>>> a
Months.January

>>> a._type
< OMG-IDL enum Months { January, February, March, April,
May, June, July, August, September, October, November,
December }; >

>>> a._is_a(Months)
true

For instance, the previous code shows how to create and assign the January value of
the Months enum type to the a variable. The last two instructions access to type
information managed by the interpreter.
3-6 CORBA Scripting Language, v1.1 February 2003

3

3.6 Binding for OMG IDL Structure

All IDL structure types and values are directly accessible from the IDLscript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the IDLscript interpreter.

3.6.1 OMG IDL Examples

Consider the following example, which presents some structure declarations. The
structure Point contains two fields named x and y with the basic type double. The
structure TwoPoints contains two embedded Point structures.

// This definition can be located inside or outside an IDL module or interface
struct Point {
 double x;
 double y;
};

struct TwoPoints {
 Point a;
 Point b;
};

3.6.2 IDLscript Representation

In IDLscript, the access to an IDL structure type is simply done by providing its IDL
structure identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL structure displays the IDL definition of
this structure and all its fields.

>>> Point
< OMG-IDL struct Point { double x; double y; }; >

>>> Point.x
< OMG-IDL typedef double CORBA.Double; >

>>> TwoPoints
< OMG-IDL struct TwoPoints { Point a; Point b; }; >

>>> TwoPoints.a
< OMG-IDL struct Point { double x; double y; }; >

>>> a = Point
>>> a
< OMG-IDL struct Point { double x; double y; }; >
February 2003 CORBA Scripting Language: Binding for OMG IDL Structure 3-7

3

The previous code presents the access to the Point and TwoPoints structures. It is
possible to display the entire definition of a structure or only the definition of one field
using the dotted notation (Point.x and TwoPoints.a). As IDL structure types are
represented by IDLscript objects, they can be assigned to variables to create some kind
of aliases.

3.6.3 Structure Values

The creation of an IDL structure value is achieved by the calling notation
(IDLType(field1,...,fieldn)). If no argument is provided, all the struct fields
are (recursively) initialized to their default values. If arguments are provided, the
interpreter checks if the number of given values is equal to the number of the expected
IDL fields. If necessary, the interpreter can automatically coerce given values to
expected IDL values. For instance, an expected long field can be initialized by an
integer literal. Moreover, a field of an IDL structure type can be initialized by
providing an array containing the values of each structure field.

>>> p0 = Point()
>>> p0
Point(0,0)
p1 = Point (1,2)
>>> p1
Point(1,2)
>>> tp0 = TwoPoints()
>>> tp0
TwoPoints(Point(0,0),Point(0,0))
>>> tp1 = TwoPoints([11,22],[33,44])
>>> tp1
TwoPoints(Point(11,22),Point(33,44))

>>> tp2 = TwoPoints(p1,Point(3,4))

>>> tp3 = TwoPoints(Point(6,7),Point(8,9))

The previous code presents some examples of structure value creations. All the fields
of the structure must be filled to allow creation and the interpreter coerces integer
literals to basic IDL double values. An embedded structure can be defined by several
ways: by a literal representation (tp1), by using variables containing structures already
created (tp2), or by giving the IDL types of the items (tp3).

3.6.4 Structure Fields

When an IDL structure value is created, the dotted notation allows one to get and set
field values. The following example presents some accesses to fields of the previous
structure value.

>>> p1.x
CORBA.Double(1)
>>> p1.x = -1
3-8 CORBA Scripting Language, v1.1 February 2003

3

>>> p1
Point(-1,2)

>>> tp1.a
Point(11,22)
>>> tp1.a.y
CORBA.Double(22)

>>> tp1._type
< OMG-IDL struct TwoPoints { Point a; Point b; } >

As IDL structure values are represented by IDLscript objects, it is possible to use
common value attributes and methods such as _type and _is_a.

3.7 Binding for OMG IDL Union

All IDL union types and values are directly accessible from the IDLscript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the IDLscript interpreter.

3.7.1 An OMG IDL Example

Consider the following example, which presents a union declaration. In this example,
the union named AnUnion contains three fields named m_short, m_long, and
m_float.

// This definition can be located inside or outside an IDL module or interface
union AnUnion switch(unsigned short) {
 case 0: short m_short;
 case 1: long m_long;
 case 2: float m_float;
};

3.7.2 IDLscript Representation

In IDLscript, the access to an union type is simply done by providing its IDL union
identifier. This identifier can be prefixed by its module or interface scopes where it is
defined. The evaluation of an IDL union displays the IDL definition of this union and
all its fields.

>>> u = AnUnion
>>> u
< OMG-IDL union AnUnion switch (unsigned short) {
 case 0: short m_short;
 case 1: long m_long;
 case 2: float m_float;
}; >

>>> u == AnUnion
February 2003 CORBA Scripting Language: Binding for OMG IDL Union 3-9

3

true

The previous code presents the access to the AnUnion union. As IDL union types are
represented by IDLscript objects, they can be assigned to variables to create aliases,
compared and passed as arguments to procedures.

3.7.3 Union Values

The creation of an IDL union value is achieved by the procedural calling notation
IDLtype(discriminator, value) and needs two values:

1. the union discriminator value, and

2. the value associated to this discriminator.

If no argument is not provided, the union discriminator is set to a value consistent with
the first named member of the union and the associated union member is (recursively)
initialized to its default value. If only the discriminator is provided, the associated
union member is (recursively) initialized to its default value. If both values are
provided, the interpreter checks if the discriminator value is correct in relation to the
set of case values of the union. Moreover, it checks if the second given value is correct
according to the expected union case value. If necessary, the interpreter can
automatically coerce the given discriminator and field values to expected IDL values.

>>> AnUnion()
AnUnion(0,0)

>>> AnUnion(1)
AnUnion(1,0)

>>> a = AnUnion(0,1)
>>> a
AnUnion(0,1)

>>> b = AnUnion(2,10.3)
>>> b
AnUnion(2,10.3)

>>> a._type == b._type
true

The previous code presents some examples of IDL union value creations. As IDL
union values are represented by IDLscript objects, it is possible to use common value
attributes and methods such as _type and _is_a.

If there is no field associated with the discriminator value, the union creation is simply
done by setting the discriminator value.

>>> c= AnUnion(3)
>>> c
AnUnion(3)
3-10 CORBA Scripting Language, v1.1 February 2003

3

3.7.4 Union Fields

When an IDL union value is created, the dotted notation allows one to get and set field
case values. The special read-only _d attribute is provided to access the discriminator
value of an IDL union value. When getting a union field, the interpreter checks if the
discriminator has the right value and it throws an internal exception to signal that the
union does not have the right discriminator. Setting a union field automatically changes
the discriminator value. The following example presents some accesses to fields of the
previous union value.

>>> a._d
CORBA.UShort(0)

>>> a.m_short
CORBA.Short(1)

>>> a.m_long = 2
>>> a.m_long
CORBA.Long(2)
>>> a._d
CORBA.UShort(1)

3.8 Binding for OMG IDL Typedef

All IDL typedef types and values are directly accessible from the IDLscript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the IDLscript interpreter.

3.8.1 OMG IDL Examples

Consider the following example, which presents an example of typedef declarations.
The Day typedef refers to the basic unsigned short type and the Coordinate type
refers to the previous Point type.

// This definition can be located inside or outside an IDL module or interface
typedef unsigned short Day;
typedef Point Coordinate;

3.8.2 IDLscript Representation

In IDLscript, access to an IDL typedef type is done simply by providing its IDL
typedef identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL typedef displays the IDL definition of
this type definition.

>>> Day
< OMG-IDL typedef unsigned short Day; >
February 2003 CORBA Scripting Language: Binding for OMG IDL Typedef 3-11

3

>>> c = Coordinate
>>> c
< OMG-IDL typedef Point Coordinate; >

>>> c.x
< OMG-IDL typedef double CORBA.Double; >

The previous code presents the access to the Day and Coordinate typedefs. As IDL
typedef types are represented by IDLscript objects, they can be assigned to variables to
create aliases, compared and passed as arguments to procedures. When an IDL typedef
refers to a complex IDL type, it also supports all attributes and methods provided by
the aliased type.

3.8.3 Typedef Values

The creation of an IDL typedef value is achieved by the calling notation with a set of
initializing values. The number and types of these values must be equal to the number
and types needed to create a value of the aliased type.

>>> d = Day(2)
>>> d
Day(2)

>>> c = Coordinate(1.1,2.2)
>>> c
Coordinate(1.1,2.2)

>>> c.x
CORBA.Double(1.1)

>>> c._is_a(Point)
true

The previous code presents some examples of IDL typedef value creations and their
uses. The created values support the same attributes and methods as those provided by
the aliased type (c.x). Moreover as IDL typedef values are represented by IDLscript
objects, it is possible to use common value attributes and methods such as _type and
_is_a.

3.9 Binding for OMG IDL Sequence

All IDL sequence types and values are directly accessible from the IDLscript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the IDLscript interpreter.
3-12 CORBA Scripting Language, v1.1 February 2003

3

3.9.1 OMG IDL Examples

Consider the following example, which presents some sequence declarations:
SeqString for a string sequence, SeqMonths for a Months sequence, and
SeqPoint for a Point sequence. Only named sequences are supported by IDLscript,
no binding for anonymous sequences is provided.

// This definition can be located inside or outside an IDL module or interface
typedef sequence<string> SeqString;
typedef sequence<Months> SeqMonths;
typedef sequence<Point> SeqPoint;

3.9.2 IDLscript Representation

In IDLscript, access to an IDL sequence type is done simply by providing its IDL
sequence identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL sequence displays the IDL definition of
this type definition.

>>> SeqString
< OMG-IDL typedef sequence<string> SeqString; >

>>> SeqMonths
< OMG-IDL typedef sequence<Months> SeqMonths; >

>>> s = SeqPoint
>>> s
< OMG-IDL typedef sequence<Point> SeqPoint; >

The previous code presents the access to the SeqString, SeqMonths, and
SeqPoint sequence types. As IDL sequence types are represented by IDLscript
objects, they can be assigned to variables to create aliases, compared and passed as
arguments to procedures.

3.9.3 Sequence Values

The creation of an IDL sequence value is achieved by the calling notation with a list of
values. The type of each value must conform to the item type of the IDL sequence. If
necessary, the interpreter automatically coerces given values to required IDL values.

>>> s = SeqString("One","Two","Three")
>>> s
SeqString("One","Two","Three")

>>> s = SeqMonths()
>>> s
SeqMonths()

>>> s = SeqPoint ([1.1,2.2] , [3.3,4.4] , [5.5,6.6])
February 2003 CORBA Scripting Language: Binding for OMG IDL Sequence 3-13

3

>>> s
SeqPoint(Point(1.1,2.2),Point(3.3,4.4),Point(5.5,6.6))

>>> s1 = SeqPoint ([1.1,2.2], Point(3.3,4.4), Point(CORBA.
Double(5.5), CORBA.Double(6.6)))
>>> s1._type
< OMG-IDL typedef sequence<Point> SeqPoint; >

The previous code presents some examples of IDL sequence value creations. If the list
of values is empty, then IDLscript creates an empty sequence value (SeqMonths()).
The creation of structured value sequences is very simple because each structured
value can be provided as an IDLscript array. Then the interpreter checks if the array
contains the expected number of values. However it is also possible to use a more
typed notation as illustrated by the s1 creation. As IDL sequence values are
represented by IDLscript objects, it is possible to use common value attributes and
methods such as _type and _is_a.

3.9.4 Sequence Items

An IDL sequence value is similar to a basic IDLscript array. It provides the operator
[] to get and set sequence items, the attribute length to obtain the number of items,
and can be used in the for statement construction. The following example illustrates
these functionalities on the previous SeqPoint value.

>>> s1[0]
Point(1.1,2.2)

>>> s1[0] = [100,200]

>>> s1[1].x = 300

>>> s1.length
3

>>> for i in s1 { println (i) }
Point(100,200)
Point(300,4.4)
Point(5.5,6.6)

3.10 Binding for OMG IDL Array

All IDL array types and values are directly accessible from the IDLscript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the IDLscript interpreter.
3-14 CORBA Scripting Language, v1.1 February 2003

3

3.10.1 OMG IDL Examples

Consider the following example, which presents some array declarations: ArrayLong
for a long array, and ArrayPoint for a Point array. IDL arrays have a bounded size
defined at declaration. Only named array types are supported by IDLscript, no binding
for anonymous arrays is provided.

// This definition can be located inside or outside an IDL module or interface
typedef long ArrayLong[10];
typedef Point ArrayPoint[10];

3.10.2 IDLscript Representation

In IDLscript, access to an IDL array type is simply done by providing its IDL array
identifier. This identifier can be prefixed by its module or interface scopes where it is
defined. The evaluation of an array displays the IDL definition of this type definition.

>>> ArrayLong
< OMG-IDL typedef long[10] ArrayLong;>

>>> a = ArrayPoint
>>> a
< OMG-IDL typedef Point[10] ArrayPoint;>

The previous code presents access to the ArrayLong, and ArrayPoint IDL array
types. As IDL array types are represented by IDLscript values, they can be assigned to
variables to create aliases, compared and passed as arguments to procedures.

3.10.3 Array Values

The creation of an IDL array value is achieved by the calling notation with a list of
values. If no value is provided, all the array items are (recursively) initialized to their
default values. If values are provided, the type of each value must conform to the item
type of the IDL array. If necessary, the interpreter automatically coerces given values
to required IDL values. Moreover the interpreter checks if the number of given values
is equal to the size of the IDL array type.

>>> a = ArrayLong()
>>> a
ArrayLong(0,0,0,0,0,0,0,0,0,0)

>>> a = ArrayLong(1,2,3,4,5)
Exception : < BadArraySize: array must have 10 items >
File "stdin", line 1 in ?

>>> a = ArrayLong(1,2,3,4,5,6,7,8,9,10)
>>> a
ArrayLong(1,2,3,4,5,6,7,8,9,10)
February 2003 CORBA Scripting Language: Binding for OMG IDL Array 3-15

3

>>> a = ArrayPoint()
>>> a
ArrayPoint(Point(0,0),Point(0,0),Point(0,0),Point(0,0),
Point(0,0),Point(0,0),Point(0,0),Point(0,0),Point(0,0),
Point(0,0))

>>> a = ArrayPoint([1,1],[2,2],[3,3],[4,4],[5,5],[6,6],
[7,7],[8,8],[9,9],[10,10])
>>> a
ArrayPoint(Point(1,1),Point(2,2),Point(3,3),Point(4,4),
Point(5,5),Point(6,6),Point(7,7),Point(8,8),Point(9,9),
Point(10,10))

>>> a._type == ArrayPoint
true

The previous code presents some examples of IDL array value creations. The creation
of structured value IDL arrays is very simple because each structured value can be
provided as an IDLscript array. Then the interpreter checks if the array contains the
expected number of values. However it is also possible to use a more typed notation as
illustrated in Section 3.9.3, “Sequence Values,” on page 3-13. As IDL array values are
represented by IDLscript objects, it is possible to use common object attributes and
methods such as _type and _is_a.

3.10.4 Array Items

An IDL array value is similar to a basic IDLscript array. It provides the operator [] to
get and set array items, the attribute length to obtain the number of items, and can be
used in the for statement construction. The following example illustrates these
functionalities on the previous ArrayPoint value.

>>> a[0]
Point(1,1)

>>> a[0] = [100,100]

>>> a[1].x = 200

>>> a.length
10

>>> for i in a { println (i) }
Point(100,100)
Point(200,2)
Point(3,3)
...
3-16 CORBA Scripting Language, v1.1 February 2003

3

3.11 Binding for OMG IDL Fixed

All IDL fixed types and values are directly accessible from the IDLscript interpreter.
They are represented by internal objects managed by the Interface Repository cache of
the IDLscript interpreter.

3.11.1 OMG IDL Example

Consider the following example, which presents the Money fixed type with nine
significant digits and a scale factor of two. Only named fixed types are supported by
IDLscript, no binding for anonymous fixed types is provided.

// This definition can be located inside or outside an IDL module or interface
typedef fixed<9,2> Money;

3.11.2 IDLscript Representation

In IDLscript, access to an IDL fixed type is done simply by providing its IDL fixed
type identifier. This identifier can be prefixed by its module or interface scopes where
it is defined. The evaluation of an IDL fixed type displays the IDL definition of this
type definition.

>>> Money
< OMG-IDL typedef fixed<9,2> Money; >
>>> t = Money
>>> t
< OMG-IDL typedef fixed<9,2> Money; >

The previous code presents the access to the Money fixed type. As IDL fixed types are
represented by IDLscript objects, they can be assigned to variables to create aliases,
compared and passed as arguments to procedures.

3.11.3 Fixed Values

The creation of an IDL fixed value is achieved by the calling notation with an initial
value. When the given value is of an integer, floating, or fixed type, the interpreter
automatically coerces this given value to the required IDL fixed value. If the given
value is a string, the interpreter automatically converts the string to a fixed value or
throws a CORBA::DATA_CONVERSION exception when the string does not denote a
valid fixed value.

>>> mi = Money(10)
>>> mi
Money(10)

>>> Money(100.56)
Money(100.56)

>>> Money("999.99")
February 2003 CORBA Scripting Language: Binding for OMG IDL Fixed 3-17

3

Money(999.99)

>>> try {
m = Money("not a valid fixed value string")

} catch(CORBA.DATA_CONVERSION e) {
println("Data conversion exception!")

};
Data conversion exception!

>>> mf = Money(mi)
>>> mf
Money(10)

>>> mf._type
< OMG-IDL typedef fixed<9,2> Money; >

>>> mf._is_a(Money)
true

The previous code presents some examples of IDL fixed value creations with different
initial value types. As IDL fixed values are represented by IDLscript objects, it is
possible to use common value attributes and methods such as _type and _is_a.

Moreover, IDLscript fixed values have specific attributes and methods enumerated in
Table 3-2.

Consider the following examples:

>>> m = Money(100.56)
>>> m.digits
5
>>> m.scale
2
>>> m.round(0)

Table 3-2 The IDLscript Fixed Value Functionalities

 Functionality Explanation

f.digits Returns the smallest digits that can hold the complete f fixed object.

f.scale Returns the smallest scale that can hold the complete f fixed object.

f.round(s) Returns a new fixed object equal to the f fixed object rounded down
the specified s scale, where s is an unsigned short. If the new scale
requires the value to lose precision on the right, the round method
will round away from zero values that are halfway or more to the next
absolute value for the new fixed precision.

f.truncate(s) Returns a new fixed object equal to the f fixed object truncated to the
specified s scale, where s is an unsigned short. If the new scale
requires the value to lose precision on the right, the truncate
method always truncates the value towards zero.
3-18 CORBA Scripting Language, v1.1 February 2003

3

Money(101)
>>> m.round(1)
Money(100.6)
>>> m.round(2)
Money(100.56)
>>> m.truncate(0)
Money(100)
>>> m.truncate(1)
Money(100.5)
>>> m.truncate(2)
Money(100.56)

3.12 Binding for OMG IDL Exception

All IDL exception types and values are directly accessible from the IDLscript
interpreter. They are represented by internal objects managed by the IDLscript
interpreter.

Figure 3-1 The CORBA Exception Type Hierarchy

3.12.1 IDLscript Representation

IDLscript supports all CORBA exception types:

• the System Exceptions representing internal ORB problems, and

• User Exceptions defined in IDL.

CORBA.Exception

CORBA.SystemException CORBA.UserException

All OMG IDL
User Exceptions

See Table 3-2
February 2003 CORBA Scripting Language: Binding for OMG IDL Exception 3-19

3

Figure 3-1 shows the hierarchy of the IDLscript types representing IDL exception
types. All CORBA exception types are transitively subtypes of the CORBA.Exception
exception type. This type has two subtypes CORBA.SystemException and
CORBA.UserException representing respectively the standard CORBA system
exceptions and the IDL user exceptions.

3.12.2 Exception Handling

The CORBA exception types are represented by IDLscript types and are thrown and
caught via the exception mechanism presented in Section 2.11, “Exceptions,” on
page 2-32. Consider the following example:

try {
 # a script code.
 throw CORBA.UNKNOWN()
} catch (CosNaming.NamingContext.AlreadyBound ae) {
 println ("A CosNaming.NamingContext.AlreadyBound exception ", ae, " has been

thrown!")
} catch (CORBA.UserException ue) {
 println ("An IDL exception ", ue, " has been thrown!")
} catch (CORBA.SystemException se) {
 println ("A system exception ", se, " has been thrown!")
} finally {
 # a finally script code.
}

3.12.3 System Exception Types

All standard CORBA system exception types are subtypes of the
CORBA.SystemException type. In IDLscript, access to a system exception type is
simply done by providing its identifier. This identifier must be prefixed by the CORBA
scope name like CORBA.INV_OBJREF, CORBA.COMM_FAILURE, or
CORBA.OBJECT_NOT_EXIST.

Table 3-3 The IDLscript Identifiers for CORBA System Exceptions

CORBA.UNKNOWN CORBA.BAD_PARAM

CORBA.NO_MEMORY CORBA.IMP_LIMIT

CORBA.COMM_FAILURE CORBA.INV_OBJREF

CORBA.NO_PERMISSION CORBA.INTERNAL

CORBA.MARSHAL CORBA.INITIALIZE

CORBA.NO_IMPLEMENT CORBA.BAD_TYPECODE

CORBA.BAD_OPERATION CORBA.NO_RESOURCES

CORBA.NO_RESPONSE CORBA.PERSIST_STORE

CORBA.BAD_INV_ORDER CORBA.TRANSIENT

CORBA.FREE_MEM CORBA.INV_IDENT
3-20 CORBA Scripting Language, v1.1 February 2003

3

Consider the following examples:

>>> CORBA.UNKNOWN
< OMG-IDL exception CORBA::UNKNOWN {
 unsigned long minor;
 CORBA::completion_status completed;
}; >

>>> CORBA.completion_status
< OMG-IDL enum CORBA::completion_status {
 COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE
}; >

>>> CORBA.UNKNOWN._is_a(CORBA.Exception)
true

>>> e = CORBA.UNKNOWN
>>> e._is_a(CORBA.SystemException)
true

>>> e._is_a(CORBA.UserException)
false

The previous code illustrates access to the CORBA.UNKNOWN exception type.
Evaluating an exception type shows the IDL definition of the exception. System
exceptions have two fields: the minor one and the completed one. This latter is a value
of the CORBA.completion_status enumeration type. As system exception types
are represented by IDLscript objects, they can be assigned to variables to create
aliases, compared and passed as arguments to procedures. Moreover it is possible to
use common object attributes and methods such as _type and _is_a.

CORBA.INV_FLAG CORBA.BAD_CONTEXT

CORBA.OBJ_ADAPTER CORBA.DATA_CONVERSION

CORBA.OBJECT_NOT_EXIST CORBA.INTF_REPOS

CORBA.TRANSACTION_REQUIRED CORBA.TRANSACTION_ROLLEDBACK

CORBA.INVALID_TRANSACTION CORBA.INV_POLICY

CORBA.CODESET_INCOMPATIBLE CORBA.REBIND

CORBA.TIMEOUT CORBA.TRANSACTION_UNAVAILABLE

CORBA.TRANSACTION_MODE CORBA.BAD_QOS

CORBA.INVALID_ACTIVITY CORBA.ACTIVITY_COMPLETED

CORBA.ACTIVITY_REQUIRED

Table 3-3 The IDLscript Identifiers for CORBA System Exceptions
February 2003 CORBA Scripting Language: Binding for OMG IDL Exception 3-21

3

3.12.4 System Exception Values

The creation of a system exception value is achieved by the calling notation
CORBA.ExceptionName(). IDLscript provides three different ways to create these
values. The first one needs no parameter and creates a system exception with the
minor field equal to zero and the completed field equal to the
COMPLETED_MAYBE enumeration value. The second one needs one parameter to
initialize the minor field. The third one takes two parameters to set the minor and
completed fields.

>>> s = CORBA.UNKNOWN()
>>> s = CORBA.UNKNOWN(100)
>>> s =
CORBA.UNKNOWN(100,CORBA.Ccompletion_Sstatus.COMPLETED_
YES)

>>> s.minor
100

>>> s.completed
CORBA.completion_status.COMPLETED_YES

>>> s._type == CORBA.UNKNOWN
true

>>> s._is_a (CORBA.Exception)
true

>>> s._is_a (CORBA.SystemException)
true

>>> s._is_a (CORBA.UserException)
false

The previous code illustrates the three creation ways of system exceptions. Access to
field values is achieved by the dotted notation. Exception values have two fields: the
minor and completed ones. As system exception values are represented by
IDLscript objects, it is possible to use common value attributes and methods such as
_type and _is_a. A system exception value is a CORBA.Exception and a
CORBA.SystemException as shown in Figure 3-1 on page 3-20.

3.12.5 User Exception Types

Consider the following example that presents some exception declarations. The
exception EmptyException contains no field. The exception Exception contains three
fields: a simple string field, a Months enumeration field, and a structured Point
field.

// This definition can be located inside or outside an IDL module or interface
exception EmptyException {};
3-22 CORBA Scripting Language, v1.1 February 2003

3

exception Exception {
 string s;
 Months m;
 Point p;
};

In IDLscript, access to an IDL user exception type is done simply by providing its IDL
exception identifier. This identifier can be prefixed by its module or interface scopes
where it is defined. The evaluation of an IDL exception displays the IDL definition of
this exception and all its IDL fields.

>>> EmptyException
< OMG-IDL exception EmptyException {}; >

>>> Exception
< OMG-IDL exception Exception {
 string s;
 Months m;
 Point p;
}; >

>>> Exception.p
< OMG-IDL struct Point {
 double x;
 double y;
}; >

>>> Exception._is_a(CORBA.Exception)
true

>>> e = Exception
>>> e._is_a(CORBA.SystemException)
false

>>> e._is_a(CORBA.UserException)
true

The previous code illustrates the access to the IDL EmptyException and Exception
exception types. Evaluating an exception type shows the IDL definition of the
exception. As IDL exception types are represented by IDLscript values, they can be
assigned to variables to create aliases, compared and passed as arguments to
procedures. Moreover it is possible to use common value attributes and methods such
as _type and _is_a. All IDL user exception types are subtypes of the
CORBA.Exception and CORBA.UserException types as shown in Figure 3-1 on
page 3-20.

3.12.6 User Exception Values

The creation of an IDL exception value is achieved by the calling notation
IDLExceptionType(field1,...,fieldn). If no argument is provided, all the
user exception fields are (recursively) initialized to their default values. If arguments
February 2003 CORBA Scripting Language: Binding for OMG IDL Exception 3-23

3

are provided, the interpreter checks if the number of given values is equal to the
number of the expected IDL fields. If necessary, the interpreter can automatically
coerce given values to expected IDL values. For instance, an expected string field can
be initialized by a string literal. Moreover, a field of an IDL structure type can be
initialized by providing an array containing the value of each structure field.

>>> u = EmptyException()

>>> u = Exception()
>>> u
Exception("",Months.January,Point(0,0))

>>> u = Exception ("Hello", Months.June, [100,100])
>>> u
Exception("Hello",Months.June,Point(100,100))

>>> u.s
"Hello"

>>> u._is_a (CORBA.Exception)
true
>>> u._is_a (CORBA.SystemException)
false
>>> u._is_a (CORBA.UserException)
true

The previous code presents some examples of exception value creations. All the fields
of the exception must be filled to allow creation and the interpreter coerces literals and
arrays to the required IDL values. The dotted notation allows one to get and set field
values. As IDL exception values are represented by IDLscript objects, it is possible to
use common value attributes and methods such as _type and _is_a.

3.13 Binding for OMG IDL Interface

All IDL interface types and object references are directly accessible from the IDLscript
interpreter. They are represented by internal objects managed by the Interface
Repository cache of the IDLscript interpreter.

3.13.1 OMG IDL Examples

Consider the following example, which presents some interface declarations. The Foo
interface contains a string assignable attribute, a double nonassignable attribute,
and a meth operation. The AnotherFoo interface is derived from the Foo interface
and it adds a new oper operation, which illustrates all parameter passing modes. The
two operations can raise the EmptyException exception.

interface Foo {
 attribute string assignable;
 readonly attribute double nonassignable;
3-24 CORBA Scripting Language, v1.1 February 2003

3

 long meth(in long p1) raises(EmptyException);
};

interface AnotherFoo : Foo {
 long oper(in long p1, out long p2, inout long p3)
 raises(EmptyException);
};

3.13.2 IDLscript Representation

In IDLscript, the access to an IDL interface is simply done by providing its IDL
interface identifier. This identifier can be prefixed by its module scopes where it is
defined. The evaluation of an IDL interface displays the IDL definition of this type
definition with the signature of all attributes and operations and the list of inherited
interfaces.

>>> Foo
< OMG-IDL interface Foo {
 attribute string assignable;
 attribute readonly double nonassignable;
 long meth (in long p1) raises(EmptyException);
} >

>>> a = AnotherFoo
>>> a
< OMG-IDL interface AnotherFoo : Foo {
 long oper (in long p1, out long p2, inout long p3) raises(EmptyException);
} >

>>> a = AnotherFoo.assignable
>>> a
< OMG-IDL attribute string Foo::assignable >

>>> AnotherFoo.oper
< OMG-IDL operation long AnotherFoo::oper (in long p1, out long p2, inout long

p3) raises(EmptyException) >

>>> AnotherFoo._is_a (Foo)
true

The previous code illustrates access to the Foo and AnotherFoo interfaces. The
evaluation of the Foo interface shows the signature of the assignable and
nonassignable attributes and the meth operation. The signature of an attribute is
composed of its access mode (none or readonly), its type, and its formal name. The
signature of an operation is composed of its return type, its formal name, its parameters
list (mode, type, and formal name), and its exceptions list.

As IDL interfaces, IDL attributes, IDL operations are represented by IDLscript objects.
They can be assigned to variables to create aliases, compared, and passed as arguments
to procedures. The hierarchy of IDL interfaces is directly accessible to check interface
conformity through the use of common value attributes and methods such as _type
and _is_a.
February 2003 CORBA Scripting Language: Binding for OMG IDL Interface 3-25

3

3.13.3 Object References

Access to CORBA objects requires obtaining related CORBA object references. The
creation of these references is simply achieved by the following calling notations
CORBA.Object("StringifiedObjectReference") or
InterfaceType("StringifiedObjectReference").

Accepted formats for stringified object references are described in Section 13.6.9
«Stringified Object References», page 13-24 and Section 13.6.10 «Object URLs», page
13-25 of the CORBA 3.0 Specification.

>>> objref = CORBA.Object("IOR:.....")
>>> objref._type
< OMG-IDL interface AnotherFoo : Foo {
 long oper (in long p1, out long p2, inout long p3)
raises(EmptyException);
} >

>>> objref = AnotherFoo("IOR:.....")
>>> objref = AnotherFoo("corbaloc:iiop:host:port/name")

>>> objref._is_a(Foo)
true

The first creation notation allows scripts to create an object reference without
knowledge about its IDL interface. The second creation notation allows scripts to
create an object reference and check if this reference supports a specific IDL interface.
However the interpreter only creates the object reference if the given string is correct;
otherwise, it raises a CORBA.INV_OBJREF exception. Moreover this object
reference is automatically narrowed to the most derived IDL interface type. Then as a
result, users can directly and interactively discover the interface supported by the
object as shown in the previous example.

As object references are represented by IDLscript objects, they can be assigned to
variables, passed as arguments to procedures. Moreover, it is possible to use common
object attributes and methods such as _type and _is_a.

3.13.4 Access to OMG IDL Attributes

Getting and setting IDL attributes is done simply through the dotted notation and by
using the IDL identifier of attributes. These accesses are realized by the interpreter via
the Dynamic Invocation Interface. The interpreter checks the attribute access mode
when a script tries to set an attribute (internal IDLscript exception
ReadOnlyAttribute). If necessary, it also converts automatically the given
IDLscript value into the required IDL value. The following example illustrates access
to the assignable and nonassignable attributes.

>>> objref.assignable = "Hello World"
>>> println(objref.assignable, ’!’)
Hello World!
3-26 CORBA Scripting Language, v1.1 February 2003

3

>>> objref.nonassignable = 10
Exception: < ReadOnlyAttribute: < attribute readonly double
Foo::nonassignable; > >
 File "stdin", line 2 in ?

3.13.5 Invocation of OMG IDL Operations

All IDL operations can be simply invoked with IDLscript using the method calling
notation (object.operation(arg1,...,argn)). The interpreter automatically
checks the number of parameters and coerces given values to IDL values. Invocations
are done through the Dynamic Invocation Interface. Exceptions thrown by operations
can be easily intercepted thanks to the IDLscript exception mechanism (try, catch,
and finally statements).

>>> objref.meth
< OMG-IDL operation long Foo::meth (in long p1)
raises(EmptyException) >

>>> objref.meth(100)
100

>>> try {
 r = objref.meth(100)
 } catch (EmptyException e) {
 println("The EmptyException has been thrown")
 }

>>> outVariable = Holder()
>>> inoutVariable = Holder(200)
>>> objref.oper (100, outVariable, inoutVariable)
100
>>> outVariable.value
300

The previous example illustrates the invocation of the meth and oper IDL operations.
All parameter passing modes are supported by IDLscript. Passing in parameters is
done by value while out and inout parameters require using a value of the Holder
type. As IDLscript is dynamically typed, a Holder can store any IDLscript values (i.e.,
there is only one Holder type). For an out parameter, scripts must only create and
pass an empty holder to the operation. For an inout parameter, scripts must create
and pass an initialized holder to the operation. After the invocation, the returned value
is available into the holder by its value attribute.

3.13.6 Invocation of One-way Operations

Oneway operations are transparently managed by the interpreter. Invocations to
operations defined as oneway will always be achieved asynchronously using the same
syntactic notation as two-way operations.
February 2003 CORBA Scripting Language: Binding for OMG IDL Interface 3-27

3

3.13.7 Operation Invocation using the Deferred Mode

All IDL operations can be simply invoked using the deferred mode with IDLscript
using the method calling notation (object!operation(arg1,...,argn)). The
interpreter automatically checks the number of parameters and coerces given values to
IDL values. Invocations are done through the Dynamic Invocation Interface.
Exceptions thrown by operations can be easily intercepted thanks to the IDLscript
exception mechanism (try, catch, and finally statements).

>>> objref.meth
< OMG-IDL operation long Foo::meth (in long p1)
raises(EmptyException) >

>>> futureReply = objref!meth(100)
...
>>> futureReply.value
100

The previous example illustrates deferred invocation of an operation. The result of
invocation is obtained using the value attribute of the futureReply object. Access
to the value attribute of the futureReply object is blocking while the result is not
available.

Inout and out parameters are also managed with deferred calls. Consider the
following example:

>>> outVariable = Holder()
>>> inoutVariable = Holder(200)
>>> futureReply = objref!oper(100,outVariable,inoutVariable)
...
>>> futureReply.value
100
>>> myFutureReplyForMyOutParameter = outVariable.value

>>> myFutureReplyForMyOutParameter.value
300

In this example, outVariable and inoutVariable are Holder referencing
future objects. Access to the result after invocation is done as for Holder in a
synchronous invocation (using the value attribute). The value contained in the holder
is a future object. Access to the real result is done like in the previous example: using
the value attribute of the futureReply object.

If an exception is thrown during the execution of a deferred call, this exception will be
thrown in the client side at the first access to a future object involved in this invocation.
3-28 CORBA Scripting Language, v1.1 February 2003

3

Table 3-4 summarizes the functionalities of future objects.

3.14 Implementing OMG IDL Interfaces

The implementation of IDL interfaces is done simply by IDLscript classes (see
Section 2.10, “Classes,” on page 2-28). IDL attributes and operations are implemented
by IDLscript instance methods. These instance methods must only follow some naming
conventions.

3.14.1 Class Examples

The following example illustrates the implementation of the Foo and AnotherFoo
interfaces presented in Section 3.13.1, “OMG IDL Examples,” on page 3-25. The Foo
interface is implemented by the FOO IDLscript class. The AnotherFoo interface is
implemented by the AnotherFOO IDLscript class. As AnotherFOO is a subclass of
FOO, their instances support instance methods defined in the FOO class.

class FOO {
 proc __FOO__ (self, s, d) { self.s = s
 self.d = d }
 proc _get_assignable (self) { return self.s }
 proc _set_assignable (self, value) { self.s = value }
 proc _get_nonassignable (self) { return self.d }
 proc meth (self, p1) {
 if (p1 == 0) { throw EmptyException() }
 return p1
 }
}
class AnotherFOO (FOO) {
 proc __AnotherFOO__ (self, s, d) { self.__FOO__(s,d) }
 proc oper (self, p1, p2, p3) {
 if (p1 == 0) { throw EmptyException() }
 p2.value = p1 + p3.value
 return p1
 }
}

Table 3-4 The Future Object Functionalities

Functionality Explanation

futureReply.value Waits for the end of the invocation and returns the result
or raises the replied exception if needed.

futureReply.poll() Polls the end of the invocation and returns a boolean:
true = invocation is completed
false = invocation is still running.

futureReply.wait() Waits for the end of the invocation and raises the replied
exception if needed.
February 2003 CORBA Scripting Language: Implementing OMG IDL Interfaces 3-29

3

3.14.2 OMG IDL Attributes

A class that implements an IDL interface must provide instance methods for IDL
attributes. These methods can do any computation on the instance state.

The implementation class must provide a getting method per IDL attribute. The name
of these methods is the concatenation of the attribute name and the prefix _get_ (e.g.,
_get_assignable and _get_nonassignable). These methods take one
parameter to refer to the current receiver object and must return the (computed) value
of the IDL attribute.

For non-readonly IDL attributes, the implementation class must provide a setting
method. These methods are named by the IDL attribute name prefixed by _set_ (e.g.,
_set_assignable). They take two parameters: one to refer to the receiver and
another one containing the new value of the IDL attribute. These methods do not return
any value.

3.14.3 OMG IDL Operations

Each IDL operation is implemented by an IDLscript method named as the operation,
(e.g., oper or meth).

Implementation methods must take one parameter for the receiver and as many
parameters as the IDL operation signature defines. In parameters are transmitted by
value while out and inout parameters are received through a Holder object.

These methods can do any computation on the instance state. They can also throw any
CORBA system exception or any user exception defined in the IDL operation signature
as shown in the oper method.

3.14.4 Object Registration

IDLscript provides two different ways to register/unregister object implementations
(i.e., IDLscript class instances):

• The POA approach: Scripts can use the Portable Object Adapter as defined in the
CORBA 3.0 specification. Here, native PortableServer::Servant and
PortableServer::Cookie are reflected by class instances.

• A simple connect/disconnect approach: Here, object implementations are
connected/disconnected via the connect() and disconnect() methods of the
CORBA.ORB IDLscript object (see Section 3.19.2, “The CORBA::ORB Object,” on
page 3-46). Connections may be explicitly or implicitly done by scripts. The
disconnection is always explicitly done by scripts. Consider the following example:

>>> a_foo = FOO ("Hello",10)
>>> # 'a_foo' refers to a FOO instance.

>>> CORBA.ORB.connect(a_foo, Foo, "my_foo")
>>> # 'a_foo' is now associated to a Foo CORBA object.
>>> # The 'a_foo' instance becomes accessible from the
3-30 CORBA Scripting Language, v1.1 February 2003

3

>>> # ORB. The last parameter is optional.

>>> a_foo._this
< DSI Object Foo("IOR:000000000000000c49444c3a466f6f3a312e30
00000000010000000000000038000100000000000f3133342e3230362e31
302e3132390000138f0000000000184f422f49442b4e554d0049444c3a46
6f6f3a312e30003200") >
>>> # The '_this' attribute refers to the associated
>>> # DSI object.
>>> # This is the CORBA object reference implemented by
>>> # the 'a_foo' instance.

>>> ...
>>> CORBA.ORB.disconnect(a_foo)
>>> # Explicit disconnection. The 'a_foo' instance becomes
>>> # inaccessible from the ORB.

On the one hand, object implementations may be explicitly connected to the ORB by
calling the ORB’s connect() method. As IDLscript is fully dynamic, this method
takes two parameters:

1. the class instance to connect, and

2. the IDL interface that this instance implements.

(Let us note that a third optional parameter can be used to set the ORB-specific object
name.)

This way allows scripts to explicitly fix which interfaces an object implements. For
example, an IDLscript instance can simultaneously implement several IDL interfaces
with different object references.

On the other hand, an object implementation may also be automatically and implicitly
connected to the ORB if it is transmitted as a parameter to an IDL operation of a
distant CORBA object. This connection is only done if the object implementation was
not already connected to an IDL interface that was conformed to the formal parameter
type. If the object was already connected to an IDL interface, the previous connection
is reused. This approach simplifies the registration of listener objects because
registration IDL methods explicitly wait for a specific listener interface. However, this
approach can introduce distributed typing problems. For example, if an object
implementation is bound to the CosNaming service without explicit connection, then it
is implicitly connected to the CORBA::Object interface.

PortableServer::POA, PortableServer::current, and
PortableServer Policies interfaces must be implemented by the scripting
engine. PortableServer::POAManager,
PortableServer::AdapterActivator,
PortableServer::ServantManager,
PortableServer::ServantActivator, and
PortableServer::ServantLocator are implemented by user classes written in
IDLScript.
February 2003 CORBA Scripting Language: Implementing OMG IDL Interfaces 3-31

3

3.14.5 Object Adapter Run-Time Exceptions

To support IDLscript, an ORB product must provide a reactive or multi-threaded
Object Adapter. Then, interactive scripting can be done simultaneously with incoming
request handling (i.e., listener callbacks are executed concurrently with interactive
scripts). Moreover, some run-time exceptions can be thrown by the IDLscript engine
when it receives a CORBA request via the Dynamic Skeleton Interface.

3.15 Binding for OMG IDL Value

All IDL value types and associated values are directly accessible from the IDLscript
interpreter. They are reflected by internal objects managed by the IDLscript engine.

3.15.1 OMG IDL Examples

Consider the following examples:

valuetype Information sequence<string>;

valuetype Employee {
 // state definition
 public string name;
 public Information status;
 private unsigned long salary;
 // initializer
 factory init(in string name, in Information status,
 in unsigned long salary);
 // local operations
 void work();
};

This example declares the Information boxed value type, a string sequence, and the
Employee value type with public state members (name and status), a private state
member (salary), an initializer (init), and a local operation (work).

Exception is thrown when...

CORBA::BAD_OPERATION the invoked IDL operation is not supported by the
interfaces of the object implementation.

CORBA::OBJ_ADAPTER the object implementation has been explicitly
disconnected from its interfaces.

CORBA::NO_IMPLEMENT the object implementation class does not provide
an implementation for the invoked operation or
attribute.

CORBA::UNKNOWN
with minor code equal to 2 |
OMGVMCID

the invoked implementation throws an internal
exception (i.e., an exception that is not a CORBA
exception).
3-32 CORBA Scripting Language, v1.1 February 2003

3

3.15.2 IDLscript Representation

In IDLscript, accessing an IDL value type is simply done by providing its IDL value
identifier. This identifier can be prefixed by the IDL scope where the value type is
defined. Consider the following examples:

>>> Information
< OMG-IDL valuetype Information sequence<string>; >

>>> Employee
< OMG-IDL valuetype Employee {
 public string name;
 public Information status;
 private unsigned long salary;
 factory init(in string name, in Information status, in
unsigned long salary);
 void work();
}; >

>>> Employee.name
< OMG-IDL public member string Employee::name; >

>>> Employee.salary
< OMG-IDL private member unsigned long Employee::salary; >

>>> Employee.init
< OMG-IDL factory Employee::init(in string name, in Informa-
tion status, in unsigned long salary); >

>>> w = Employee.work
>>> w
< OMG-IDL operation void Employee::work(); >

The evaluation of an IDL value type shows its IDL definition. For example, the boxed
type for boxed value types (e.g., Information) and inheritance, state members,
initializers, operations for value types (e.g., Employee). The evaluation of state
members, initializers, and operations shows their signature (as for evaluation of IDL
interface attributes and operations). When a boxed value type refers to a complex IDL
type, it also supports all attributes and methods provided by the boxed type.

State members, initializers, and operations are reflected by IDLscript objects. They can
be assigned to variables in order to create aliases (e.g., w in the above example),
compared and passed as arguments. The inheritance graph composed of IDL value
types is directly accessible to check type conformity via the common _is_a method.
February 2003 CORBA Scripting Language: Binding for OMG IDL Value 3-33

3

3.15.3 Value Creation

The creation of an IDL boxed value is achieved by the calling notation according to the
boxed type. For example, the same number of initialization arguments and each
argument must have the expected type. Automatic coercion can also be applied by the
IDLscript engine if needed. Consider the following example:

>>> i = Information("this", "is", "an", "example")
>>> i
Information("this", "is", "an", "example")

The creation of concrete values is achieved by calling one of the initializers declared in
the value type. The number and types of arguments must conform to the initializer
signature. Again, automatic coercion can be applied if needed. Note that abstract value
types cannot be instantiated and concrete value types must declare initializers.
Moreover, a local implementation must be known by the IDLscript engine (see
Section 3.16, “Implementing Concrete OMG IDL Values,” on page 3-37). If there is no
registered local implementation of the concrete value type, then the CORBA::NO_
IMPLEMENT exception is thrown. Consider the following example:

>>> e = Employee.init("someone", ["info1", "info2"], 0)
>>> e
< Employee value
 name = "someone"
 status = Information("info1", "info2")
>

Note that the array passed as second argument to the value initializer is automatically
coerced to an Information value, and that the evaluation of a value only shows
public state members.

As values are reflected by IDLscript objects, they also support the standard _type
attribute and the _is_a method. Consider the following examples:

>>> i._type == Information
true

>>> i._is_a(Employee)
false

>>> e._type == Information
false

>>> e._is_a(Employee)
true

3.15.4 Null Value

Null values are reflected by the _null attribute of the IDLscript reflection of OMG
IDL value types. Consider the following example:
3-34 CORBA Scripting Language, v1.1 February 2003

3

>>> n = Employee._null

>>> n
< OMG-IDL null Employee value >

>>> n._type == Employee
true

3.15.5 Value Manipulation

A boxed value can be manipulated in the same way as an object of the boxed type (i.e.,
it supports exactly the same scripting notations: operators, attributes, and methods).
Consider the following example: the Information i value is manipulated as a
string sequence. For example, i has a length attribute, supports the subscript
notation ([]) to access and modify items, and can be used in for statements (as
shown in Section 3.9.4, “Sequence Items,” on page 3-14).

>>> i.length
4

>>> i[3] = "example!"
>>> i[3]
"example!"

>>> for s in i print(s, ’ ’)
This is an example!

Both concrete and abstract values are manipulated with the dotted notation for
invoking local operations. Concrete value operations can only be invoked if the value is
associated to a local implementation (see Section 3.16, “Implementing Concrete OMG
IDL Values,” on page 3-37); otherwise, a CORBA::NO_IMPLEMENT exception is
thrown. Public state members can be get and set by the dotted notation. Private state
members are not accessible, an access attempt raises a NotSupported exception.
Consider the following examples:

>>> e.name = "Mr. Smith"
>>> e.name
"Mr. Smith"

>>> e.status = ["unkwown"] # automatic coercion
>>> e.status
Information("unkwown")

>>> e.salary
Exception: < NotSupported: < private state member unsigned
long Employee::salary; > >
 File "stdin", line 1 in ?

>>> e.work()
February 2003 CORBA Scripting Language: Binding for OMG IDL Value 3-35

3

Note that if a value without local implementation for its value type is returned by an
invocation, then only public state members can be accessed.

3.16 Implementing Concrete OMG IDL Values

The implementation of concrete value types is simply done by IDLscript classes (see
Section 2.10, “Classes,” on page 2-28). State members are represented by instance
attributes. Initializers and operations are implemented by instance methods.

3.16.1 Example

The following example illustrates the implementation of the Employee IDL value
type presented in Section 3.15.1, “OMG IDL Examples,” on page 3-33. This value type
is implemented by the following EMPLOYEE class:

class EMPLOYEE
{
 proc __EMPLOYEE__(self) { . . . }

 proc init(self, name, status, salary)
 {
 self.name = name
 self.status = status
 self.salary = salary
 }

 proc work(self) { . . . }
}

3.16.2 State Members

Both public and private IDL state members are represented by instance attributes that
have the same name. As in IDLscript, instance attributes are only defined during their
first assignment. It is the programmer’s responsibility to affect each required instance
attribute. They must be initialized in the class constructor (e.g., __EMPLOYEE__
method) and/or in each initializer method.

When a distant operation requires a value type parameter and the user provides an
instance, then IDLscript marshals each instance attribute in the same order that it is
defined by the value type. If the instance does not have one of the required instance
attributes, then the IDLscript engine raises a CORBA::MARSHAL exception.

3.16.3 Initializers

Initializers are instance methods defined in the class implementing a concrete value
type. They must have an explicit first parameter that refers to the receiver instance (i.e.,
as all IDLscript instance methods). Next, parameters will receive arguments passed at
the initializer calling time (see Section 3.15.3, “Value Creation,” on page 3-35). Of
3-36 CORBA Scripting Language, v1.1 February 2003

3

course, their number must conform to the initializer signature. The method body must
correctly assign instance attributes representing the value state. Other attribute
assignments are also allowed, they represent a transient state that is never marshaled on
the wire.

The CORBA::NO_IMPLEMENT is thrown if the implementation class does not
provide an implementation for an initializer called at concrete value creation time.

3.16.4 Operations

Each IDL value operation is implemented by an instance method named like the
operation (e.g., work). Operation implementations must take an explicit first
parameter referring to the receiver instance, and as many parameters as the operation
signature defines. In parameters are transmitted by value while out and inout
parameters are received through a Holder object.

These methods can do any computation on the instance state. They can also throw any
CORBA system exception or any user exception defined in the IDL operation
signature.

The CORBA::NO_IMPLEMENT is thrown if the implementation class does not
provide an implementation for a called value operation.

3.16.5 Factory Registration

As implementation classes act like value type factories, the CORBA::ValueFactory
native type is reflected by the IDLscript class concept. These classes must be explicitly
registered by the register_value_factory method of the CORBA.ORB object
(see Section 3.19.2, “The CORBA::ORB Object,” on page 3-46). This method takes
two parameters: the value type RepositoryID and the associated implementation
class. This registration allows the IDLscript engine to instantiate classes when users
explicitly create a value, or when a value must be unmarshaled from the wire. Consider
the following script code:

>>> CORBA.ORB.register_value_factory("IDL:Employee:1.0",
EMPLOYEE)

As the reflection of an IDL type is also the reflection of the associated
CORBA::TypeCode (see Section 3.17, “Binding for OMG IDL TypeCode,” on
page 3-40), then the RepositoryID can directly be obtained from the value type as
shown in the following script code.

>>> CORBA.ORB.register_value_factory(Employee.id(),EMPLOYEE)

Note that if implementation classes are stored into script modules, their registration can
be made implicitly by initialization module statements (see Section 2.12.2,
“Initialization,” on page 2-37). Then users only need to import these script modules.
February 2003 CORBA Scripting Language: Implementing Concrete OMG IDL Values 3-37

3

3.16.6 Custom Values

Implementation classes of custom marshaled values must explicitly implement
marshaling and unmarshaling instance methods. The former named marshal takes, as
parameters, the receiver instance and a CORBA::DataOutputStream object. The
latter named unmarshal takes the receiver instance and a
CORBA::DataInputStream object. These stream objects support the standard
operations described into the CORBA 3.0 specification and are invoked as abstract
values (see Section 3.15.5, “Value Manipulation,” on page 3-36).

Consider the following OMD IDL example:

custom valuetype CustomValueExample {
 factory init(in boolean b, in char c, in long l);
};

It can be implemented as:

class IMPL
{
 proc init(self, b, c, l)
 {
 self.state1 = b
 self.state2 = c
 self.state3 = l
 }

 # dos refers to a CORBA::DataOutputStream object.
 proc marshal(self, dos)
 {
 dos.write_boolean(self.state1)
 dos.write_char(self.state2)
 dos.write_long(self.state3)
 }

 # dis refers to a CORBA::DataInputStream object.
 proc unmarshal(self, dis)
 {
 self.state1 = dis.read_boolean()
 self.state2 = dis.read_char()
 self.state3 = dis.read_long
 }
}

3-38 CORBA Scripting Language, v1.1 February 2003

3

3.16.7 Values as Object References

If a concrete value type supports an OMG IDL interface (either concrete or abstract),
an instance of the implementation class of this value type can be connected to the ORB
(see Section 3.14.4, “Object Registration,” on page3-31). When this value is passed as
parameter to a distant operation call, the IDLscript engine marshals the value state or
the IOR according to the standard semantic defined in the CORBA 3.0 specification.

3.17 Binding for OMG IDL TypeCode

As we have seen, the IDLscript language provides a full and transparent binding to any
IDL definitions. These IDL types are directly accessible through their related IDL
definition name. Then these types can be used anywhere it is needed to provide a
CORBA TypeCode value.

>>> ExampleTC
< OMG-IDL interface ExampleTC {
 void send (in TypeCode tc);
}; >

>>> o = ExampleTC("IOR:....")
>>> o.send(CORBA.Long)
>>> o.send(Point)
>>> o.send(Foo)

>>> tc = CORBA.TypeCode(Foo)
>>> tc
CORBA.TypeCode(Foo)
>>> o.send(tc)

The previous code shows how IDL types can be directly sent as CORBA TypeCode
values. The ExampleTC interface defines the send operation, which takes a CORBA
TypeCode value as parameter. This operation can be invoked with any IDL type: the
basic ones like CORBA.Long, the user defined ones like Point, and the interface
ones like Foo. Moreover, TypeCode values can be explicitly created from the
CORBA.TypeCode binding type.

All the OMG IDL type representations can be managed as IDLscript TypeCode
objects. Table 3-5 enumerates TypeCode object functionalites.

Table 3-5 The CORBA.TypeCode Functionalities

Functionality Explanation

tc.equal(aCorbaType) Tests equality between the tc TypeCode and the
aCorbaType TypeCode.

tc.equivalent(aCorbaType) Tests equivalence between the tc TypeCode and a
aCorbaType TypeCode.
February 2003 CORBA Scripting Language: Binding for OMG IDL TypeCode 3-39

3

tc.get_compact_typecode() Returns the compact TypeCode form of the tc
TypeCode.

tc.kind() Returns the CORBA::TCKind of the tc TypeCode
and helps to determine what other operations can be
invoked on this TypeCode.

tc.id() Returns the CORBA::RepositoryID globally
identifying the type on the TypeCode. It can be
invoked on object reference, value, structure, union,
enumeration, alias, and exception TypeCodes. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.name() Returns the simple name identifying the type within its
enclosing scope. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.member_count() Returns the number of members constituting the type. It
can be invoked on structure, union, enumeration, non-
boxed value, and exception TypeCodes. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.member_name(anIndex) Returns the simple name of the member identified by
anIndex. It can be invoked on structure, union,
enumeration, non-boxed value, and exception
TypeCodes. Raises a CORBA::TypeCode::BadKind
or a CORBA::TypeCode::Bounds exception if needed.

tc.member_type(anIndex) Returns the TypeCode describing the type of the
member identified by anIndex. It can be invoked on
structure, union, value and exception TypeCodes.
Raises a CORBA::TypeCode::BadKind or a
CORBA::TypeCode::Bounds exception if needed.

tc.member_label(anIndex) Returns the label of the union member identified by
anIndex. It can only be invoked on union
TypeCodes. Raises a CORBA::TypeCode::BadKind
or a CORBA::TypeCode::Bounds exception if needed.

tc.discriminator_type() Returns the type of all non-default member labels. It can
only be invoked on union TypeCodes. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.default_index() Returns the index of the default member, or -1 if there is
no default member. It can only be invoked on union
TypeCodes. Raises a CORBA::TypeCode::BadKind
exception if needed.

Table 3-5 The CORBA.TypeCode Functionalities
3-40 CORBA Scripting Language, v1.1 February 2003

3

The CORBA::TCKind enumeration is reflected according to the rules defined in
Section 3.5, “Binding for OMG IDL Enum,” on page 3-5.

The CORBA::RepositoryID, CORBA::Visibility, and
CORBA::ValueModifier typedef are reflected according to the rules defined in
Section 3.8, “Binding for OMG IDL Typedef,” on page 3-11.

The CORBA::PRIVATE_MEMBER, CORBA::PUBLIC_MEMBER, CORBA::VM_
NONE, CORBA::VM_CUSTOM, CORBA::VM_ABSTRACT, and CORBA::VM_
TRUNCATABLE constants are reflected according to the rules defined in Section 3.4,
“Binding for OMG IDL Constant,” on page 3-5.

The CORBA::TypeCode::Bounds and CORBA::TypeCode::BadKind user
exceptions are reflected according to the rules defined in Section 3.12, “Binding for
OMG IDL Exception,” on page 3-19.

tc.length() Can be invoked on string, wide string, sequence, and
array TypeCodes. For strings, wide strings, and
sequences, it returns the bound, or zero indicating an
unbounded string, wide string, or sequence. For arrays,
it returns the number of elements in the array. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.content_type() Can be invoked on sequence, array, boxed value, and
alias TypeCodes. For sequences and arrays, it returns
the element type. For boxed values, it returns the boxed
type. For aliases, it returns the original type. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.fixed_digits() Returns the fixed digits of the tc fixed TypeCode.
Raises a CORBA::TypeCode::BadKind exception if
needed.

tc.fixed_scale() Returns the fixed scale of the tc fixed TypeCode.
Raises a CORBA::TypeCode::BadKind exception if
needed.

tc.member_visibility(anIndex) Returns the CORBA::Visibility of the non-boxed
tc value member identified by anIndex. Raises a
CORBA::TypeCode::BadKind or a
CORBA::TypeCode::Bounds exception if needed.

tc.type_modifier() Returns the CORBA::ValueModifier of the non-
boxed tc valuetype TypeCode. Raises a
CORBA::TypeCode::BadKind exception if needed.

tc.concrete_base_type() Returns the concrete base TypeCode of the non-boxed
tc valuetype TypeCode. Raises a
CORBA::TypeCode::BadKind exception if needed.

Table 3-5 The CORBA.TypeCode Functionalities
February 2003 CORBA Scripting Language: Binding for OMG IDL TypeCode 3-41

3

3.18 Binding for OMG IDL Any

As we have seen, the IDLscript language allows one to simply create and manipulate
any IDL values. These values can be directly created from their related IDL type. Then
these values can be used anywhere it is needed to provide a CORBA Any value.

>>> ExampleAny
< OMG-IDL interface ExampleAny {
 void send (in any a);
}; >

>>> p = Point(10,10)
>>> foo = Foo("IOR:....")

>>> o = ExampleAny("IOR:....")
>>> o.send(CORBA.Long(10))
>>> o.send(p)
>>> o.send(foo)
>>> o.send(AnotherFoo)

>>> a = CORBA.Any(p)
>>> a
CORBA.Any(Point(10,10))
>>> o.send(a)

>>> a.type
< OMG-IDL struct Point {
 double x;
 double y;
}; >
>>> a.value
Point(10,10)

The previous example shows how IDL values can be directly sent as CORBA Any
values. The ExampleAny interface defines the send operation, which takes a
CORBA Any value as parameter. This operation can be invoked with any IDL value.
The interpreter automatically coerces the IDL value to an Any value like for
CORBA.Long(10), Point(10,10), Foo("IOR:....") and AnotherFoo
invocations.

Moreover, Any values can be explicitly created from the CORBA.Any binding type.
Such a value supports two attributes:

1. type to obtain the IDL TypeCode of the value stored in the Any.

2. value to obtain the stored value.

Any values used as return values, inout or out parameters follow the rules defined
in Section 3.13.5, “Invocation of OMG IDL Operations,” on page 3-28.
3-42 CORBA Scripting Language, v1.1 February 2003

3

Some automatic coercions have been defined for the most common types. This feature
simplifies the use of IDL specifications using CORBA::Any. When an any is expected,
IDLscript allows scripts to give one of the values of Table 3-6.

3.19 The Global CORBA Object

The IDLscript engine contains a global object named CORBA that is the reflection of
the CORBA IDL module. This object defines a scope containing the hierarchy of the
previously presented objects: basic IDL types, basic IDL enums, standard CORBA
exception types, standard CORBA typedefs, and standard CORBA constants. It also
contains the Object interface and the ORB object.

Moreover the CORBA object dynamically allows the access to the other IDL definitions
contained in the CORBA module if they are populated into the Interface Repository
(e.g., CORBA::Repository, etc.).

3.19.1 The CORBA::Object Object

The CORBA.Object object is the reflection of the base CORBA::Object IDL
interface. In fact, it is an IDLscript type that defines the standard methods supported by
all CORBA object references.

Table 3-7 presents the IDLscript reflection of the CORBA::Object operations.

Table 3-6 CORBA.Any Implicit Conversions

Type Conversion to

a long L CORBA::Any(CORBA::Long(L))

a double D CORBA::Any(CORBA::Double(D))

a char C CORBA::Any(CORBA::Char(C))

a boolean B CORBA::Any(CORBA::Boolean(B))

a string S CORBA::Any(CORBA::String(S))

Table 3-7 The Reflection of the CORBA::Object Operations

Object Operation Reflected by

get_interface _get_interface

is_nil _is_nil

duplicate Not reflected.

release Not reflected.

is_a _is_a

non_existent _non_existent

is_equivalent _is_equivalent

hash _hash
February 2003 CORBA Scripting Language: The Global CORBA Object 3-43

3

Each CORBA::Object operation is reflected by a CORBA.Object method prefixed
by an underscore (’_’) to avoid possible name conflicts with operations defined in IDL
interfaces.

As IDLscript provides an automatic garbage collector, the duplicate and release
operations are not reflected in the CORBA.Object type.

The is_a operation is reflected by the _is_a method supported by any IDLscript
object. Note that the parameter is not a repository ID string but an IDLscript type.

The create_request operation is not reflected because the IDLscript language
provides a simpler calling notation to invoke object operations (see Section 3.13.5,
“Invocation of OMG IDL Operations,” on page 3-28). However, an IDLscript engine
must use the DII to invoke distant CORBA object operations.

The CORBA::InterfaceDef, CORBA::Policy, CORBA::PolicyType,
CORBA::PolicyList, CORBA::SetOverrideType, and
CORBA::DomainManagersList IDL types are reflected in the CORBA global
object according to the rules defined in Section 3.13, “Binding for OMG IDL
Interface,” on page 3-25, Section 3.8, “Binding for OMG IDL Typedef,” on page 3-11,
Section 3.9, “Binding for OMG IDL Sequence,” on page 3-13, and Section 3.5,
“Binding for OMG IDL Enum,” on page 3-5.

Following examples illustrate the use of these standard CORBA object operations:

>>> o = CORBA.Object("IOR:...")
>>> i = o._get_interface()
>>> i._is_nil()
false
>>> i._is_a(CORBA.InterfaceDef)
true
>>> i._non_existent()
false
>>> o._is_equivalent(i)
false
>>> h = o._hash()
>>> p = o._get_policy(. . . a policy type . . .)

create_request Not reflected.

get_policy _get_policy

get_domain_managers _get_domain_managers

set_policy_overrides _set_policy_overrides

get_client_policy _get_client_policy

get_policy_overrides _get_policy_overrides

validate_connection _validate_connection

get_component _get_component

Table 3-7 The Reflection of the CORBA::Object Operations
3-44 CORBA Scripting Language, v1.1 February 2003

3

>>> o._set_policy_overrides(. . . a policy list . . .,
 CORBA.SetOverrideType.ADD_OVERRIDE)
>>> d = o._get_domain_managers()

3.19.2 The CORBA::ORB Object

The CORBA.ORB object is the reflection of the ORB singleton object and it is
initialized at the starting time of an IDLscript engine before its first use. It provides
standard ORB operations (i.e., object_to_string, string_to_object,
list_initial_services, resolve_initial_references, run,
shutdown, etc.). Moreover, it also provides operations to explicitly
connect/disconnect a scripting object to/from a CORBA object (see Section 3.14.4,
“Object Registration,” on page3-31). These operations are IDLscript specific but offer
a user-friendly way simpler than the POA. However, scripts must use the POA when its
advanced features are needed.

Table 3-8 presents the IDLscript reflection of the CORBA::ORB operations.

Table 3-8 The Reflection of the CORBA::ORB Operations

ORB Operation Reflected by

id id

object_to_string object_to_string

string_to_object string_to_object

create_list, create_operation_list,
get_default_context,
send_multiple_requests_oneway,
send_multiple_requests_deferred,
poll_next_response,
get_next_response

Not reflected.

get_service_information get_service_information

list_initial_services list_initial_services

resolve_initial_references resolve_initial_references

register_initial_reference register_initial_reference

create_*_tc Not reflected.

work_pending work_pending

perform_work perform_work

run run

shutdown shutdown

destroy destroy

create_policy create_policy
February 2003 CORBA Scripting Language: The Global CORBA Object 3-45

3

The CORBA::ORB::InvalidName, CORBA::ServiceInformation,
CORBA::ServiceOption, CORBA::ServiceDetail,
CORBA::ServiceDetailType, CORBA:: ORB::ObjectId,
CORBA::ORB::ObjectIdList, and other IDL definitions are respectively reflected
by IDLscript according to the rules defined in this chapter.

The Dynamic Invocation Interface related operations are not reflected by the IDLscript
engine because the language defined herein provides an elegant and user-friendly
calling notation to invoke object operations (see Section 3.13.5, “Invocation of OMG
IDL Operations,” on page 3-28). However, an IDLscript engine must use the DII to
invoke distant CORBA object operations.

The TypeCode creation operations are not reflected by the IDLscript engine because
any OMG IDL definition is automatically available. TypeCode creations only need to
define them using OMG IDL and popularize them into the Interface Repository.

As the CORBA::ValueFactory native type is reflected by IDLscript classes, the
register_value_factory operation takes a class object as second parameter.
Both the register_value_factory and unregister_value_factory
operations return the previous registered class object, or the Void object if none.

The following examples illustrate some of these standard ORB operations:

>>> orb = CORBA.ORB

>>> o = orb.object_to_string("IOR: . . .")
>>> orb.object_to_string(o)
"IOR: . . ."

>>> orb.list_initial_services()
CORBA::ORB::ObjectIdList("InterfaceRepository", "NameService
", "RootPOA", ...)
>>> ns = orb.resolve_initial_references("NameService")

>>> orb.work_pending()
true
>>> orb.perform_work()
>>> orb.run()
>>> orb.shutdown(true)

>>> class EMPLOYEE { . . . }
>>> orb.register_value_factory("IDL:Employee:1.0", EMPLOYEE)
>>> vf = orb.lookup_value_factory(Employee.id())
>>> vf == EMPLOYEE
true

register_value_factory register_value_factory

unregister_value_factory unregister_value_factory

lookup_value_factory lookup_value_factory

Table 3-8 The Reflection of the CORBA::ORB Operations
3-46 CORBA Scripting Language, v1.1 February 2003

3

>>> vf = orb.unregister_value_factory(Employee.id())
February 2003 CORBA Scripting Language: The Global CORBA Object 3-47

3

3-48 CORBA Scripting Language, v1.1 February 2003

Index
A
Adaptability 1-5
Any IDL values 3-38
Any Implicit Conversions 3-39
Arithmetic Operators 2-11
Array Creation 2-14
Array Items 3-15
Array Objects 2-19
Array types and value s3-14
Array Values 3-15
Assignments 2-15
Attribute Getting 2-13
Attributes 3-23

B
Basic Value Types 2-16
Binding for Basic OMG IDL Types 3-2
Binding for OMG IDL Any 3-38
Binding for OMG IDL Array 3-14
Binding for OMG IDL Enum3-5
Binding for OMG IDL Exceptio n3-16
Binding for OMG IDL Interface 3-21
Binding for OMG IDL Module 3-4
Binding for OMG IDL Sequence 3-12
Binding for OMG IDL Structure 3-6
Binding for OMG IDL TypeCode3-35
Binding for OMG IDL Typede f3-11
Binding for OMG IDL Union 3-9
Binding for OMG IDL Value 3-29
Binding Overview 3-2

C
Character Literals 2-5
Classes 2-28
Comments 2-3
Complete OMG IDL binding 1-5
Compliance iii
Concrete value types 3-32
Control Flow Statements 2-23
CORBA

Object Operations 3-40
ORB Object 3-41
Contributors iv
Documentation set ii

Core, compliance iii
Custom Values 3-34

D
Declaration 2-26
Del Statement 2-15
Dictionary Creation 2-14
Dictionary Objects 2-21
Do Statement 2-24
Dynamic CORBA Binding 1-5
Dynamic Implementation 1-6
Dynamic Invocation 1-6

E
Enum 3-5
Escape Sequences 2-5
Exception Handling 2-35, 3-16
Exception Types 3-17

Exception Types and Values 3-16
Exception Values 3-18
Exceptions 2-32, 3-28
Expressions 2-9

F
Factory Registration 3-34
Floating-point Literals 2-4
For Statement 2-25
Formal Parameters and Default Values 2-26
Future Object Functionalities 3-25

G
Global CORBA Obje c t3-40
Grid Distributed Application 1-6
Grid Server Objects Architecture 1-13

I
Identifiers 2-3, 2-11
IDLscript architecture 1-4
IDLscript core concepts 2-2
IDLscript core language 2-1
IDLscript Grammar 2-2, 2-6
IDLscript Language 1-3
IDLscript Lexical Rules 2-2
IDLscript Representation 3-3
IDLscript Symbols and Meanings 2-2
If Statement 2-23
Implementing OMG IDL Interfaces 3-25
Indexed Getting 2-14
Initializers 3-33
Integer Literals 2-4
Internal Exceptions 2-32
Interoperability, compliance iii
Interworking

Compliance iv
Invocation of One-way Operations3-24

K
Keywords 2-4

L
Lexical conventions 2-2
Literal Values 2-10
Literals 2-4
Local and Global Variables 2-27
Logical Operators 2-12

M
Method Call 2-13
Modules 2-36
Multiple Class Inheritance Example 2-31

N
Null Value 3-31

O
Object and Type Functionalities 2-16
Object Binding 1-5
Object Management Group i

address of iii
Object References 3-22
February 2003 CORBA Scripting Language Index-1

Index
Objects and Types 2-15
Operation Invocation 3-24
Operations 3-23, 3-34

P
Predefined Internal Procedures 2-22
Procedural Call 2-13
Procedure Aliasing 2-28
Procedures 2-26
Punctuation Characters 2-4

R
Relational Operators 2-12
Return Statement 2-25
Returned Object 2-27

S
Scripting language 1-1
Scripts 2-9
Sequence Items 3-13
Sequence Types and Values 3-12
Simple Class Example 2-29
State Members 3-33
String Literals 2-6
String Objects 2-17
Structure Fields 3-8
Structure Types 3-6
Structure Values 3-8

Syntax 2-10
System Exception Types 3-17
System Exception Values 3-18

T
Tokens 2-3
TypeCode 3-35
TypeCode Functionalities 3-36
Typedef Types and Values 3-11
Typedef Values 3-11

U
Union Fields 3-10
Union Types and Values 3-9
User Exception Types 3-19
User Exception Values 3-20
User Exceptions 2-34

V
Value Creation 3-30
Value Manipulation 3-31
Value Types 3-29, 3-32
Values 3-3
Values as Object References 3-35
Variable and Attribute Management 2-14

W
While Statement 2-24
Index-2 CORBA Scripting Language February 2003

CORBA Scripting Language, v1.1
Reference Sheet

This version supersedes formal/01-06-05.

The document history for this version of the specification is as follows:

• ptc/02-08-04 - RTF report

• ptc/02-08-05 - convenience document
February 5, 2003 7

8 March 13, 2003

	Preface
	About the Object Management Group
	What is CORBA?

	About CORBA Language Mapping Specifications
	Alignment with CORBA

	Contacting the OMG
	Definition of CORBA Compliance
	Acknowledgments

	1. IDLscript Overview
	1.1 Scripting Languages
	1.2 CORBA and Scripting Languages
	1.3 The IDLscript Language
	1.4 An IDLscript Example
	1.4.1 A Grid Distributed Application
	1.4.2 Basic Functionalities
	1.4.3 Dynamic CORBA Connection
	1.4.4 Direct Access to all OMG IDL Definitions
	1.4.5 Connection to any CORBA Object
	1.4.6 OMG IDL Operations, Attributes, and Exceptions
	1.4.7 Procedures and Modules
	1.4.8 Implementation of OMG IDL Interfaces
	1.4.9 Creation of Stand-alone CORBA Servers
	1.4.10 Conclusion

	2. The IDLscript Language Core
	2.1 Overview
	2.2 Lexical Conventions
	2.2.1 Tokens
	2.2.2 Comments
	2.2.3 Identifiers
	2.2.4 Keywords
	2.2.5 Literals

	2.3 IDLscript Grammar
	2.4 Scripts
	2.5 Expressions
	2.5.1 Syntax
	2.5.2 Literal Values
	2.5.3 Identifiers
	2.5.4 Arithmetic Operators
	2.5.5 Relational Operators
	2.5.6 Logical Operators
	2.5.7 Procedural Call
	2.5.8 Attribute Getting
	2.5.9 Method Call
	2.5.10 Array Creation
	2.5.11 Dictionary Creation
	2.5.12 Indexed Getting

	2.6 Variable and Attribute Management
	2.6.1 Assignments
	2.6.2 The Del Statement

	2.7 Objects and Types
	2.7.1 Everything is Typed Object
	2.7.2 Basic Value Types
	2.7.3 String Objects
	2.7.4 Array Objects
	2.7.5 Dictionary Objects
	2.7.6 Predefined Internal Procedures

	2.8 Control Flow Statements
	2.8.1 Syntax
	2.8.2 The If Statement
	2.8.3 The While Statement
	2.8.4 The Do Statement
	2.8.5 The For Statement
	2.8.6 The Return Statement

	2.9 Procedures
	2.9.1 Declaration
	2.9.2 Formal Parameters and Default Values
	2.9.3 The Returned Object
	2.9.4 Local and Global Variables
	2.9.5 Procedure Aliasing

	2.10 Classes
	2.10.1 Declaration
	2.10.2 A Simple Class Example
	2.10.3 A Single Class Inheritance Example
	2.10.4 A Multiple Class Inheritance Example
	2.10.5 Class and Instance Types

	2.11 Exceptions
	2.11.1 Internal Exceptions
	2.11.2 User Exceptions
	2.11.3 Exception Handling

	2.12 Modules
	2.12.1 Importation
	2.12.2 Initialization
	2.12.3 Access to the Content
	2.12.4 Module Aliasing
	2.12.5 Module Management

	3. The OMG IDL Binding
	3.1 Overview
	3.2 Binding for Basic OMG IDL Types
	3.2.1 IDLscript Representation
	3.2.2 Basic OMG IDL Values

	3.3 Binding for OMG IDL Module
	3.3.1 OMG IDL Examples
	3.3.2 IDLscript Representation

	3.4 Binding for OMG IDL Constant
	3.4.1 OMG IDL Examples
	3.4.2 IDLscript Representation

	3.5 Binding for OMG IDL Enum
	3.5.1 An OMG IDL Example
	3.5.2 IDLscript Representation
	3.5.3 Enum Values

	3.6 Binding for OMG IDL Structure
	3.6.1 OMG IDL Examples
	3.6.2 IDLscript Representation
	3.6.3 Structure Values
	3.6.4 Structure Fields

	3.7 Binding for OMG IDL Union
	3.7.1 An OMG IDL Example
	3.7.2 IDLscript Representation
	3.7.3 Union Values
	3.7.4 Union Fields

	3.8 Binding for OMG IDL Typedef
	3.8.1 OMG IDL Examples
	3.8.2 IDLscript Representation
	3.8.3 Typedef Values

	3.9 Binding for OMG IDL Sequence
	3.9.1 OMG IDL Examples
	3.9.2 IDLscript Representation
	3.9.3 Sequence Values
	3.9.4 Sequence Items

	3.10 Binding for OMG IDL Array
	3.10.1 OMG IDL Examples
	3.10.2 IDLscript Representation
	3.10.3 Array Values
	3.10.4 Array Items

	3.11 Binding for OMG IDL Fixed
	3.11.1 OMG IDL Example
	3.11.2 IDLscript Representation
	3.11.3 Fixed Values

	3.12 Binding for OMG IDL Exception
	3.12.1 IDLscript Representation
	3.12.2 Exception Handling
	3.12.3 System Exception Types
	3.12.4 System Exception Values
	3.12.5 User Exception Types
	3.12.6 User Exception Values

	3.13 Binding for OMG IDL Interface
	3.13.1 OMG IDL Examples
	3.13.2 IDLscript Representation
	3.13.3 Object References
	3.13.4 Access to OMG IDL Attributes
	3.13.5 Invocation of OMG IDL Operations
	3.13.6 Invocation of One-way Operations
	3.13.7 Operation Invocation using the Deferred Mode

	3.14 Implementing OMG IDL Interfaces
	3.14.1 Class Examples
	3.14.2 OMG IDL Attributes
	3.14.3 OMG IDL Operations
	3.14.4 Object Registration
	3.14.5 Object Adapter Run-Time Exceptions

	3.15 Binding for OMG IDL Value
	3.15.1 OMG IDL Examples
	3.15.2 IDLscript Representation
	3.15.3 Value Creation
	3.15.4 Null Value
	3.15.5 Value Manipulation

	3.16 Implementing Concrete OMG IDL Values
	3.16.1 Example
	3.16.2 State Members
	3.16.3 Initializers
	3.16.4 Operations
	3.16.5 Factory Registration
	3.16.6 Custom Values
	3.16.7 Values as Object References

	3.17 Binding for OMG IDL TypeCode
	3.18 Binding for OMG IDL Any
	3.19 The Global CORBA Object
	3.19.1 The CORBA::Object Object
	3.19.2 The CORBA::ORB Object

	Index
	Reference Sheet

