
Platform Independent Model (PIM) and
Platform Specific Model (PSM) for
Super Distributed Objects (SDO)

Specification

This OMG document replaces the submission document (sdo/03-03-01) and the Draft Adopted
specification (dtc/03-04-02). It is an OMG Final Adopted Specification and is currently in the
finalization phase. Comments on the content of this document are welcomed, and should be
directed to issues@omg.org by December 15, 2003.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on April 30, 2004. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

OMG Adopted Specification
dtc/03-09-01

Platform Independent Model (PIM) and
Platform Specific Model (PSM) for
Super Distributed Objects (SDO)

Specification

September 2003
Final Adopted Specification

dtc/03-09-01

An Adopted Specification of the Object Management Group, Inc.

Copyright © 2003, Fraunhofer FOKUS
Copyright © 2003, Hitachi Ltd.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
1. Overview . 1-1
1.1 Overview . 1-1
1.2 Scope . 1-1
1.3 Objectives . 1-2
1.4 Compliance . 1-2

2. Platform Independent Model (PIM) 2-1
2.1 Overview of PIM for SDO . 2-1
2.2 Resource Data Model . 2-2

2.2.1 Overview of Resource Data Model 2-2
2.2.2 Data Structures Used by Resource Data Model . . 2-3
2.2.3 SDOSystemElement . 2-6
2.2.4 SDO . 2-7
2.2.5 Organization . 2-8
2.2.6 OrganizationProperty . 2-10
2.2.7 DeviceProfile . 2-10
2.2.8 ServiceProfile . 2-11
2.2.9 Status . 2-12
2.2.10 ConfigurationProfile . 2-12
2.2.11 Examples of resource data model 2-13

2.3 Interfaces . 2-15
2.3.1 Overview of Interfaces . 2-15
2.3.2 Data Structures used by Interfaces 2-16
2.3.3 SDO Interface . 2-17
2.3.4 Configuration Interface . 2-22
2.3.5 SDOService Interface . 2-29
September 2003 PIM & PSM for SDO Final Adopted Specification i

2.3.6 Monitoring Interface . 2-29
2.3.7 Organization Interface . 2-43

3. Platform Specific Model: Mapping to CORBA IDL 3-1
3.1 SDO Module . 3-2
3.2 Data types used in CORBA PSM 3-2
3.3 Exceptions . 3-3
3.4 Interfaces . 3-4

3.4.1 SDOSystemElement Interface 3-4
3.4.2 SDO Interface . 3-5
3.4.3 Configuration Interface . 3-5
3.4.4 SDOService . 3-6
3.4.5 Monitoring Interface . 3-6
3.4.6 Organization Interface . 3-7

4. OMG IDL . 4-1
4.1 SDO Package . 4-1

Appendix A - References . A-1

Appendix B - Complete UML Diagram B-1
ii PIM & PSM for SDO Final Adopted Specification September 2003

Preface
About This Document
Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group
The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
September 2003 PIM & PSM for SDO Final Adopted Specification iii

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating
certification programs and has extensive experience developing and facilitating
industry adoption of test suites used to validate conformance to an open standard or
specification. The Open Group portfolio of test suites includes tests for CORBA, the
Single UNIX Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX
Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are
essential for proper development and maintenance of standards-based products,
ensuring conformance of products to industry-standard APIs, applications portability,
and interoperability. In-depth testing identifies defects at the earliest possible point in
the development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

OMG Documents
The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications
Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.
iv PIM & PSM for SDO Final Adopted Specification September 2003

Obtaining OMG Documents
The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.) OMG formal documents are available from our web site in
PostScript and PDF format. Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments
The following companies submitted and/or supported parts of this specification:

• Fraunhofer Fokus
• Hitachi Ltd.
• University of California Irvine
September 2003 PIM & PSM for SDO: Typographical Conventions v

vi PIM & PSM for SDO Final Adopted Specification September 2003

Overview 1
Contents

This chapter contains the following sections.

1.1 Overview
This chapter provides an overview of the scope and objectives of this specification, and
describes the resolution to RFP requirements and compliance points.

1.2 Scope
The increasing availability of high-performance and low-cost processor technology is
enabling computing power to be embedded densely in various devices (e.g., mobile
phones, PDAs and Internet appliances) as well as traditional computers. Furthermore,
emerging networking technologies such as wireless LAN, IPv6, and plug-and-play-
enabled platforms allow those devices to connect to each other in an easy and ad-hoc
manner and to construct a large scale network of devices that provides various
applications. Much attention is being paid on ubiquitous or pervasive computing driven
by these technological advances. A goal of these networking infrastructures is to provide
a distributed community of devices and software components that pool their services for
solving problems, composing applications and sharing information. The scope of this

Section Title Page

“Overview” 1-1

“Scope” 1-1

“Objectives” 1-2

“Compliance” 1-2
September 2003 PIM & PSM for SDO Final Adopted Specification 1-1

1

specification is the transition and abstraction of those infrastructure technologies that
target resource interconnection on highly distributed environments into a higher layer
with OMG technologies (e.g., UML and CORBA).

1.3 Objectives
An SDO is a logical representation of a hardware device or a software component that
provides well-known functionality and services. One of the key characteristics in super
distribution is to incorporate a massive number of objects, each of which performs its
own task autonomously or cooperatively with other objects. Examples of SDOs include
abstractions of devices such as mobile phones, PDAs, and home appliances, but are not
limited to device abstractions. An SDO may abstract software component and act as a
peer in a peer-to-peer networking system. SDOs provide various different functionalities
(e.g., TV set, refrigerator and light switch) and abstract underlying heterogeneous
technologies. They are organized in an ad hoc manner to provide an application service
in mobile environments[1]. For other characteristics in super distribution, please refer the
Super Distributed Objects Whitepaper [1].

Today, there are several resource interconnection technologies such as Universal Plug
and Play, HAVi, OSGi, ECHONET and Jini. They are, however, restricted to specific
platforms, network protocols and programming languages, or they focus on limited
application domains. No common model-based standards exist to handle various
resources in a unified manner independently of underlying technologies and application
domains. The objectives of this specification are to abstract the existing resource
interconnection technologies into a higher layer, define their information and
computational models in the layer, and make objects defined the models interoperable.

1.4 Compliance
This specification consists of two parts; a Platform Independent Model (PIM) described
with UML and a Platform Specific Model (PSM) that specifies a realization of the PIM
with CORBA IDL. Every compliant implementation must follow the PIM design of the
SDO interface (see Section 2.2.3, “SDOSystemElement,” on page 2-6 for more details).
There are two compliance points in implementations; (1) the SDO interface must be
implemented based on its CORBA PSM (CORBA IDL), or (2) it must be mapped to
another (non-CORBA) target technology without breaking any semantics defined in the
PIM and implemented on the target technology.

No partial implementation of optional resource data model or interfaces without
mandatory ones is deemed conformant.
1-2 PIM & PSM for SDO Final Adopted Specification September 2003

Platform Independent Model (PIM) 2
Contents

This chapter contains the following sections.

This section specifies the PIM from information and computational viewpoints of SDOs.
Section 2.2, “Resource Data Model,” on page 2-2 describes the PIM for the resource data
model, which is used to describe the capabilities and properties of SDOs (i.e., an
information aspect of SDOs). Section 2.3, “Interfaces,” on page 2-15 defines the
interfaces to access and manipulate resource data (i.e., a computational aspect of SDOs).
The PIM is specified using the UML specification in version 1.4.

2.1 Overview of PIM for SDO
An SDO represents a hardware device that may be accessed through existing standards or
software components and provides information and interfaces for dynamic access by
other applications. As described above, the PIM consists of the resource data model and
the interfaces to access and manipulate resource data. The PIM for SDO in this
specification is described based on the following policy.

• Attributes to describe several core data are defined, and named values for extensible
representation of various attributes.

Section Title Page

“Overview of PIM for SDO” 2-1

“Resource Data Model” 2-2

“Interfaces” 2-15
September 2003 PIM & PSM for SDO Final Adopted Specification 2-1

2

The resource data model is built as a series of UML classes that represent key
information aspects of SDOs. Each class in the resource data model defines a set of
attributes that represent static and dynamic properties of SDOs. The attributes are
defined as typed variables or named values. The typed variables are used to specify
the common attributes that all the implementations share. The named values are
used to specify the attributes specific to implementations (applications).

• Basic interfaces are defined as mandatory so that other optional parts can be
navigated.

The interfaces are defined as a set of UML classes that represent key computational
aspects of SDOs. Each class defines an interface that contains a set of operations to
access and manipulate the SDO resource data.

2.2 Resource Data Model
This section specifies the SDO resource data model, which is used to describe the
capabilities and properties of SDOs.

2.2.1 Overview of Resource Data Model
The resource data model includes the following constructs:

• Profiles
• Device profile, which defines a set of hardware specific properties, (see

Section 2.2.7, “DeviceProfile,” on page 2-10.
• Service profile, which defines a set of software specific properties, (see

Section 2.2.8, “ServiceProfile,” on page 2-11).
• Configuration profile, which defines a set of properties to configure SDOs, (see

Section 2.2.10, “ConfigurationProfile,” on page 2-12).

• Organization, which defines a relationship between/among the objects running in
SDO system (see Section 2.2.5, “Organization,” on page 2-8).

• Status, which indicates the current status of SDOs (see Section 2.2.9, “Status,” on
page 2-12).

Figure 2-1 shows a simplified UML notation of the resource data. The complete diagram
is depicted in Appendix B.1.
2-2 PIM & PSM for SDO Final Adopted Specification September 2003

2

Figure 2-1 SDO resource data model

2.2.2 Data Structures Used by Resource Data Model
This section defines the data structures used by the resource data model.

Name Description

StringList A list of strings.

UniqueIdentifier Identifier for the constructs in the resource data model (e.g., SDO). Each identifier is
typed as a string and must be unique in a given domain of application deployment.1

NameValue A pair of a name and its value.

NVList A list of NameValue pairs.

SD O System Elem ent O rganizationProperty

Status O rganization

0..*

1

-organizations
0..*

-ow ner
1 0..1

1

-organizationProperty0..1

1

ServiceProfileD eviceProfile

SD O
0..1 1

-status

0..1 1 0..*1..*

-organizations

0..*

-m em bers

1..*

0..n

1

-serviceProfile 0..n

1

0..1

1

-deviceProfile 0..1

1

C onfigurationProfile

1

0..1

1

-configurationProfile0..1

NameValue

+ name : string
+ value : any
September 2003 PIM & PSM for SDO: Resource Data Model 2-3

2

Parameter Data structure to define a variable (parameter) independently of implementation
technologies. The Parameter structure defines the name and type of a variable.

Attributes defined in Parameter.

• name – parameter’s name

• type – name of parameter’s type. The original value scope of parameter data type
can be constrained by definitions allocated in the attribute allowedValues.

• allowedValues - Values that the parameter can accept. This attribute is used only
when the value scope inherent to the parameter type must be constrained. For
example, the values allowed for a string parameter may be constrained by an
enumeration, or the values allowed for a numeric parameter may be constrained by
a range. The values allowed for a parameter can be defined in enumeration, range, or
interval structures.

The value of attribute allowedValues is null if there is no constraint on a
parameter value, that is, any value can be assigned to the parameter as far as it
follows the value scope inherent to the parameter's type.

BasicDataType Data structure representing a basic data type that can be used to declare a type of a
Parameter’s type (see description of Parameter above). Typically, basic data types
include integer, floating point numbers and string. Available basic data types depend on
the underlying implementation technology used (e.g., programming language or
middleware technology). In the CORBA PSM in this specification, BasicDataType is
typedef-ed with CORBA::TCKind (See Section 3.2, “Data types used in CORBA
PSM,” on page 3-2 and Chapter 4).

AllowedValues

Data structure used to apply a constraint on the value scope inherent to a given
parameter type. The constraint is an enumeration, range, or interval, which is defined
with EnumerationType, RangeType, or IntervalType structures, respectively (see
below).

Parameter

name : string
type : Basic DataType

EnumerationType A llowedValues

+ allowed_values
+allowed_enum

RangeTy pe
+allowed_range

IntervalType+ allowed_interval

EnumerationTy pe A llowedValues+allowed_enum

RangeType
+allowed_range

IntervalTy pe+allowed_interval
2-4 PIM & PSM for SDO Final Adopted Specification September 2003

2

ComplexDataType

ComplexDataType enumerates three types of structures, each of which can be used in
the attribute allowedValues to define a value scope of constraint. The structures that
can be used to specify enumeration, range or interval are defined below.

EnumerationType

The enumeration of values that can be assigned to the attribute AllowedValues of
Parameter. The enumerated values are always of type string .

• enumerated_values – a list of string values that a Parameter can contain.

Example: {“red”, “blue”, “white”}

NumericType

This enumeration is used by structures RangeType and IntervalType. It defines
numeric types used to specify the bounds of intervals or ranges, and the step between
interval values.

RangeType

Data structure representing a range of values that can be assigned to the attribute
AllowedValues of Parameter.

• min – the lower bound of the range

• max – the upper bound of the range

• minInclusive – a boolean value showing if the lower bound value is included in
the range

• maxInclusive – a boolean value showing if the upper bound value is included in
the range.

Example: the range ((int) 0, (int) 20, false, true) defines values {1,2,…20}.

ComplexDataType
ENUMERATION
RANGE
INTERVAL

<<Enumeration>>

StringListEnumerationType +enumerated_values

NumericType
SHORT_TYPE
LONG_TYPE
FLOAT_TYPE
DOUBLE_TYPE

RangeType
min_inclusive : boolean
max_inc lusive : boolean

Numeric
short_value : short
long_value : long
float_value : float
double_value : double

+min

+max
September 2003 PIM & PSM for SDO: Resource Data Model 2-5

2

2.2.3 SDOSystemElement

IntervalType

Data structure representing an interval of values that can be assigned to the attribute
AllowedValues of Parameter defined as interval.

• min – the lower bound of the interval

• max – the upper bound of the interval

• minInclusive – a boolean value showing if the lower bound value is included in
the interval

• maxInclusive – a boolean value showing if the upper bound value is included in
the interval

• step – the step between the values in the interval.

Example: the interval ((int) 0, (int) 20, false, true, 5) defines values {5,10,15,20}.

ParameterList A list of Parameter structures.

DependencyType Data type used to specify relation between elements in an organization. The value
indicates if one side of an Organization depends on the other side. If the
Organization represents dependency relationship, it also indicates which side depends
on which side. Enumeration DependencyType includes three possible forms of
dependency.

1. It is beyond the scope of this specification to define the format of identifiers and the algorithm to generate them, because they are
implementation dependent. For example, some applications may use standardized schemes such as the UUID [2], others may use
proprietary ones. Different SDO systems need to follow an agreed scheme for identifiers to maintain the interoperability between
SDOs.

IntervalType
min_inc lus ive : boolean
max_inclusive : boolean

Numeric
short_value : short
long_value : long
float_value : float
double_value : double

+max
+step

+min

D ependencyType

+ N O R M A L
+ R EV ER SE
+ N O _D EPEN D EN C Y

<<Enum eration>>

SDOSystemElement
- organizations : OrganizationList
2-6 PIM & PSM for SDO Final Adopted Specification September 2003

2

SDOSystemElement is the base class of the classes that represent SDO system's
elements. It is used to indicate that its subclasses represent any system elements running
on the SDO environments. A representative example of the SDO's system elements is
SDOs. SDO is defined as a subclass of SDOSystemElement in Section 2.2.4. The
system elements that are running on the SDO environments but are not SDOs are
hereinafter collectively called non-SDOs in this specification. Examples of non-SDOs
include human users and locations. It is left to future specifications to define non-SDOs
as additional subclasses of SDOSystemElement.

<Attributes>

2.2.4 SDO

The class SDO defines a set of common properties for hardware device and software
component representations.

Attribute Type Description

organizations OrganizationList A list of Organization objects that
SDOSystemElement has.

SDO
- id : UniqueIdentifier
- sdoType : String
- deviceProfile : DeviceProfile
- serviceProfiles : ServiceProfileList
- configurationProfile : ConfigurationProfile
- organizations : OrganizationList
- status : Status
September 2003 PIM & PSM for SDO: Resource Data Model 2-7

2

<Attributes>

2.2.5 Organization

Attribute Type Description

id UniqueIdentifier Unique identifier for an SDO.

sdoType String Textual description of the SDO. sdoType contains short
description of the SDO’s functionality.

deviceProfile DeviceProfile A device profile that an SDO has. Null is assigned when an SDO
does not have any device profile. See Section 2.2.7,
“DeviceProfile,” on page 2-10 for more details about device
profile.

serviceProfiles ServiceProfileList A list of service profiles that an SDO has. Null is assigned when
an SDO does not have any service profile. See Section 2.2.8,
“ServiceProfile,” on page 2-11 for more details about service
profile.

configurationProfile ConfigurationProfile A configuration profile that an SDO has. Null is assigned when
an SDO does not have its configuration profile. See
Section 2.2.10, “ConfigurationProfile,” on page 2-12 for more
details about configuration profile.

status Status A status information of an SDO. Null is assigned when no status
information is available. See Section 2.2.9, “Status,” on
page 2-12 for more details about status.

organizations OrganizationList A list of references to the list of Organization objects that an
SDO keeps with other SDOs or objects of type
SDOSystemElement. Null is assigned when an SDO has no
relationship with other SDOs or SDOSystemElement objects.
See Section 2.2.5, “Organization,” on page 2-8 for more details
about class Organization.

Organization
- members : SDOList
- owner : SDOSystemElement
- dependency : DependencyType
- property : OrganizationProperty
2-8 PIM & PSM for SDO Final Adopted Specification September 2003

2

Organization represents a relationship between/among SDOSystemElements. An
organization can be established among different SDOs, or between SDOs and a non-
SDO. It can also be used to represent a 1-to-1 relationship. The properties of an
Organization can be stored in OrganizationProperty (see Section 2.2.6,
“OrganizationProperty,” on page 2-10).

<Attributes>

Organization is used to form the following three patterns of topology.

1. Hierarchical organization, which indicates owner supervises members. In this
case, DependencyType should hold NORMAL value (see description of
DependencyType in Page 2-6).

2. Reversely hierarchical organization, which indicates members supervise owner.
In this case, DependencyType should hold REVERSE value (see description of
DependencyType in Page 2-6).

3. Flat organization, which indicates no dependency exists. In this case,
DependencyType should hold NO_DEPENDENCY value (see description of
DependencyType in Page 2-6).

Both an SDO and a non-SDO (i.e., an instance of the subclasses specializing
SDOSystemElement)can act as owner of an Organization. When an SDO is an owner,
Organization can represent any of the above three topology patterns.

• When an Organization represents topology pattern (1), an SDO (owner) controls
one or more SDOs (members). For example, air conditioner (owner) controls a
temperature sensor (member), humidity sensor (member), and wind flow controller
(member).

• When an Organization represents topology pattern (2), multiple SDOs(members)
share an SDO (owner). For example, an amplifier (owner) is shared by several AV
components (members) in an AV stereo.

• When a non-SDO is an owner, examples of the topology are as follows.
• User (owner)-SDO (members): When a user (owner) supervises one or more

SDOs (members), the organization represents topology pattern (1).

Attribute Type Description

members SDOList A list of SDOs that are the members associated with the Organization.

owner SDOSytemElement The owner of the Organization. It can be an SDO or non-SDO (See the
text under this table for more detail).

dependency DependencyType This attribute specifies the dependency relation between the owner and
members of the organization. Further details are discussed in text under
this table.

property OrganizationProperty Property of the Organization. OrganizationProperty is described in
Section 2.2.6, “OrganizationProperty,” on page 2-10.
September 2003 PIM & PSM for SDO: Resource Data Model 2-9

2

• Location (owner)-SDO (members): When one or more SDOs (members) are
operating in a specific location (owner), the organization represents topology
pattern (3). For example, multiple PDAs in a same place (e.g., a room) have equal
relationships among them to communicate with each other.

2.2.6 OrganizationProperty

OrganizationProperty contains the properties of an Organization. An Organization
has zero or one (at most one) instance of OrganizationProperty.

<Attributes>

2.2.7 DeviceProfile

DeviceProfile defines the properties of a device that an SDO represents.

Attribute Type Description

properties NVList A set of properties of an Organization. The
property values contained in this attribute are
implementation dependent.Examples include the
identifier of an Organization and the time when
an Organization is established.

OrganizationProperty
+ properties : NVList

DeviceProfile
+ deviceType : string
+ manufacturer : string
+ model : string
+ version : string
2-10 PIM & PSM for SDO Final Adopted Specification September 2003

2

<Attributes>

2.2.8 ServiceProfile

ServiceProfile defines a set of properties of the function provided by a device or
software component that an SDO represents. The function is implemented by another
object that serviceRef refers to (see also Section 2.3.5, “SDOService Interface,” on
page 2-29).

For example, an air conditioner SDO has a function (a capability of service) for "fixing
room temperature," and has control interfaces (referred by ServiceRef) for operations
like "set a room's temperature," "set operation mode (heating/cooling/dehumidifying),"
"turn on/off power," and so on.

Attribute Type Description

deviceType String General type name of a device. This attribute describes general kind of devices to
categorize them and specify fundamental capability of the device.

manufacturer String Identifier for the manufacturer of the device.

model String Model name of the device.

version String Version number of the device.

properties NVList Device specific properties in addition to the above four ones. The property values
contained in this attribute are implementation dependent.

ServiceProfile
+ id : UniqueIdentifier
+ interfaceType : String
+ properties : NVList
+ serviceRef : SDOService
September 2003 PIM & PSM for SDO: Resource Data Model 2-11

2

<Attributes>

2.2.9 Status

Status contains the current status of an SDO. It contains the name defining the kind of
status, and a set of status described by a pair of name and value for each status values.
The current availability (name) of an SDO with concrete status data (e.g., list of power
on/off, activated/deactivated) is an example of status information.

<Attributes>

2.2.10 ConfigurationProfile

Attribute Type Description

id UniqueIdentifier Identifier for a service (or function) that an SDO provides. An SDO
provides one or more services (functions), and 'id' is used to distinguish
different services (functions).

interfaceType String The type of the interface through which an SDO provides its service
(function). The scheme to describe the interface type depends on
underlying implementation technologies. In the proposed CORBA PSM,
this attribute contains the repository ID of the IDL interface through
which an SDO’s service (function) is provided.

properties NVList List of properties specific to the service (function) that an SDO provides.
The property values contained in this attribute are implementation
dependent.

serviceRef SDOService Reference to the object that provides the service (function) represented by
this profile.

Attribute Type Description

name String Name of status.

statusList NVList A list containing status information.

Status
+ name : String
+ statusList : NVList
2-12 PIM & PSM for SDO Final Adopted Specification September 2003

2

ConfigurationProfile contains a set of properties to configure an SDO.

<Attributes>

• Data type definition: ConfigurationSet

Parameter defines the data type of a variable.

2.2.11 Examples of resource data model
This section shows several examples of SDO resource data defined in this specification
in order to demonstrate how it can be used. Two different types of SDOs (Thermometer
SDO and Airconditioner SDO) are described as example SDOs.

The other SDO, for example TemperatureController, gets the temperature of the room
from the Thermometer SDO and controls the Airconditioner SDO.

1. Thermometer SDO

Attribute Type Description

parameters ParameterList A list of Parameter that represents the kinds of properties to
configure an SDO.

configurationSets ConfigurationSetList A list of configurationSet (described below) objects that
represents a set of properties with their values to configure an
SDO.

Attribute Type Description

id UniqueIdentifier Identifier of the set of configuration data stored in
ConfigurationProfile. This can be used to activate the stored
configuration.

description String Descriptive information for configuration data.

configurationData NVList A set of configuration data. This is used to configure an SDO.

Configurat ionProfile
+ parameterList : ParameterList
+ configurationSetList : ConfigurationSetList

ConfigurationSet
+ id : UniqueIdentifier
+ description : String
+ configurationData : NVList
September 2003 PIM & PSM for SDO: Resource Data Model 2-13

2

The thermometer SDO illustrated below is a logical representation of a thermometer
(device). The SDO keeps two attribute values that indicate its identifier and descriptive
information, and has a DeviceProfile and Status.

Figure 2-2 Example: Thermometer SDO

The DeviceProfile contains three attributes in its properties attribute; unit,
rangeMin and rangeMax. They specify the unit of the temperature, minimum and
maximum degrees of temperature that the thermometer can sense, respectively.

Status contains a status information of the Thermometer SDO. The attribute
thermoValue holds the current temperature (30 degrees) of the room where it is located.
The value of this attribute can be monitored by other SDOs but it cannot be changed or
configured.

Because thermometer SDO does not provide any software service (function), it does not
have a ServiceProfile.

2. Airconditioner SDO

The airconditioner SDO described below is a logical representation of an air conditioner
(device). The SDO keeps two attribute values that indicate its identifier and descriptive
information, and has a DeviceProfile, two Organization objects, and two
ServiceProfile objects.

D e v ic e P r o f i le

a t t r ib u t e v a lu e

d e v ic e T y p e T e m p e r a t u r e S e n s o r

m a n u f a c t u r e r T h e r m o I n c .

m o d e l T H 3 1 0

v e r s io n 1

p r o p e r t ie s n a m e v a lu e

u n i t C e ls iu s

r a n g e M in - 5 0

r a n g e M a x 5 0

S D O

a t t r ib u te v a lu e

id a b c _ 1 2 3 4 5

s d o T y p e E N _ T e m p e r a t u r e S e n s o r

S t a t u s

a t t r ib u te v a lu e

n a m e d e v ic e S t a t u s
n a m e v a lu e

s t a tu s L is t t h e r m o V a lu e 3 0
2-14 PIM & PSM for SDO Final Adopted Specification September 2003

2

Figure 2-3 Example: Airconditioner SDO

Since the Airconditioner SDO provides two different software services (functions), it
provide two ServiceProfile objects. One of them is the function to set a target degree
of temperature. Its interface type is defined as
“com::ept_800::electolux::SetTemperature”. (In this example, interfaceType is
described by repository ID in CORBA. Concrete values of interfaceType is dependent
on implementing technologies.)

This airconditioner SDO has two Organization objects that connects with the other
SDOs (e.g., surrounding devices, peripheral device SDOs). If the thermometer SDO and
airconditioner SDO are located in the same room, they can be related with an
Organization object that specifies “NO_DEPENDENCY” in its DependencyType
attribute and a reference to a non-SDO representing the room in its owner attribute.

If the thermometer SDO is contained in the airconditioner, they can be related with an
Organization object that specify “NORMAL” in its DependencyType attribute and
references to the thermometer SDO (member) and airconditioner SDO (owner).

2.3 Interfaces
Two constructs defined in the resource data model runs as objects in SDO systems; SDO
and Organization. This section describes their common interfaces.

2.3.1 Overview of Interfaces
This specification defines the following five interfaces that SDO and Organization
implement.

DeviceProfile
attribute value

deviceType
manufacturer
model
version
properties

Airconditioner
EPT_800
Electrolux
1

SDO
attribute value

sdoID
sdoType

xyy_113
EN_AirConditioner

Organization
attribute value

DependencyType NO_DEPENDENCY

ServiceProfile
attribute value

id
interaceType
properties

serviceRef

1
com::ept_800::electolux::SetTemperature
name value
rangeMin 18

Organization
attribute value

DependencyType NORMAL
September 2003 PIM & PSM for SDO: Interfaces 2-15

2

• SDOInterface, which defines a series of operations to obtain SDO’s properties and
the other interfaces that the SDO implements (MonitoringInterface,
ConfigurationInterface, and SDOService). All the SDOs must implement this
interface.

• MonitoringInterface, which defines the operations to monitor changes in SDO’s
properties. Every SDO does not implement this interface.
NotificationCallbackInterface is also defined as a call back interface of
notification subscribed by using MonitoringInterface. This interface can be
implemented by SDOs optionally.

• ConfigurationInterface, which defines the operations to configure SDO’s profiles
(e.g., device, service, and configuration profiles) and Organizations associated with
the SDO. Every SDO does not implement this interface.

• SDOService, which abstracts the service provided by an SDO. Every SDO does
not implement this interface.

• OrganizationInterface, which defines the operations to establish and maintain
Organizations. All the Organizations must implement this interface.

2.3.2 Data Structures used by Interfaces

2.3.2.1 SDOException
SDOException encapsulates the exceptions that can be raised in SDO systems.

<Attributes>

List of Exception types

SDONotExists

This exception is raised when a client of an SDO cannot reach the target SDO.

NotAvailable

This exception is thrown when there is no response from a target SDO. For example, it
may be raised when a target SDO has already been stopped or down in an unusual state.

InvalidParameter

This exception is raised when a parameter(s) specified in an operation call is invalid. For
example, it may be raised when null is assigned in a parameter that should contain a
value.

Attribute Type Description

type String Name of a raised exception.

description String Descriptive information of a raised exception.
2-16 PIM & PSM for SDO Final Adopted Specification September 2003

2

InterfaceNotImplemented

This exception is raised when an interface that a client tries to access is not implemented.
For example, it may be raised when a client tries to obtain a reference to
MonitoringInterface through getMonitoring(), but it is not implemented.

2.3.3 SDO Interface
The SDO interface is used to manage elements of the SDO. All the other interfaces
specified in this specification are navigated from SDO interface.

(1) getID () : String
This operation returns id of the SDO .

Exceptions
This operation throws SDOException with the following type:

• InvalidParameter type SDOException if the parameter id is null.

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(2) - + getSDOType () : String
This operation returns sdoType of the SDO.

Parameter Type Description

<return> UniqueIdentifier id of the SDO defined in the resource data
model.

SDO
+ getID() : UniqueIdentifier
+ getSDOType() : String
+ getDeviceProfile() : DeviceProfile
+ getServiceProfiles() : ServiceProfileList
+ getServiceProfile(id : String) : String
+ getService(id : String) : SDOService
+ getConfiguration() : Configuration
+ getMonitoring() : Monitoring
+ getOrganizations() : OrganizationList
September 2003 PIM & PSM for SDO: Interfaces 2-17

2

Exceptions
This operation throws SDOException with the following type:

• InvalidParameter type SDOException if the parameter sdoType is null.

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(3) + getDeviceProfile () : DeviceProfile
This operation returns the DeviceProfile of the SDO

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(4) + getServiceProfiles () : ServiceProfileList
This operation returns a list of ServiceProfiles which the SDO has.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

Parameter Type Description

<return> String sdoType of the SDO defined in the resource data
model.

Parameter Type Description

<return> DeviceProfile Returns the DeviceProfile of the SDO if it
exists, or NULL if it does not exist.

Parameter Type Description

<return> ServiceProfilesList List of ServiceProfiles of all the
services the SDOs’ function providing.
2-18 PIM & PSM for SDO Final Adopted Specification September 2003

2

(5) + getServiceProfile (id : String) : ServiceProfile
This operation returns the ServiceProfile which is specified by the argument „id“.

Exceptions
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the ServiceProfile which is specified by
argument id does not exist.

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(6) + getServiceRef (id : String) : SDOService
This operation returns a reference to a function which is specified by the argument id.
Clients can invoke each function by using the returned reference.

Exceptions
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if argument "id" is null, or if the
ServiceProfile which is specified by argument "id" does not exist.

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

Parameter Type Description

id String The identifier referring to one of the
ServiceProfiles.

<return> ServiceProfile The profile of the specified service.

Parameter Type Description

id String The identifier of the ServiceProfile referring
to the requested service of an SDO.

<return> SDOService The service reference of the specified service.
September 2003 PIM & PSM for SDO: Interfaces 2-19

2

(7) + getConfiguration () : Configuration
This operation returns an object implementing the Configuration interface. The
Configuration interface is one of the interfaces that each SDO maintains. The interface
is used to configure the attributes defined in DeviceProfile, ServiceProfile and
Organization. See Section 2.3.4, “Configuration Interface,” on page 2-22 for more
details about the Configuration interface.

Exceptions
This operation throws SDOException with the following type.

• InterfaceNotImplemented type SDOException if the target SDO has no
Configuration interface.

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(8) + getMonitoring () : Monitoring
This operation returns an object implementing the Monitoring interface. The
Monitoring interface is one of the interfaces that each SDO maintains. The interface is
used to monitor the properties of an SDO. See Section 2.3.6, “Monitoring Interface,” on
page 2-29 for more details about the Monitoring interface.

Exceptions
This operation throws SDOException with the following type.

• InterfaceNotImplemented type SDOException if the target SDO has no
Monitoring interface.

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(9) + getOrganizations () : OrganizationList
An SDO belongs to zero or more organizations. If the SDO belongs to one or more
organizations, this operation returns the list of organizations that the SDO belongs to.

Parameter Type Description

<return> Configuration The Configuration interface of an SDO.

Parameter Type Description

<return> Monitoring The Monitoring interface of an SDO.
2-20 PIM & PSM for SDO Final Adopted Specification September 2003

2

Exceptions
This operation throws SDOException with the following type.

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

2.3.3.1 Usage: SDO interface
The section describes examples about how to use the operations of the SDO interface to
get the SDO identifier.

As an example, the operation to get SDO parameter id is shown in Figure 2-4.

In Figure 2-4, sdo1 makes requests to sdo2 to acquire the parameter. The example of
invocation of the operations that enable to get other interfaces by using SDO interface is
described in Section 2.3.6, “Monitoring Interface,” on page 2-29.

Figure 2-4 Sequence Chart: SDO operation concern with data resource

Message 1: sdo1 requests identifier of the sdo2. This identifier is described using String
type.

Message 2: sdo2 returns the value of identifier.

Parameter Type Description

<return> OrganizationList Returns the list of Organizations that the
SDO belong to.

sdo1 : SDO sdo2 : SDO

1: getID()

2: id
September 2003 PIM & PSM for SDO: Interfaces 2-21

2

2.3.4 Configuration Interface
Configuration interface provides operations to add or remove data specified in
resource data model. These operations provide functions to change DeviceProfile,
ServiceProfile, ConfigurationProfile, and Organization.

2.3.4.1 Operations

(1) + setDeviceProfile (dProfile: DeviceProfile) : void
This operation sets DeviceProfile object to the SDO that has this Configuration
interface.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

• InvalidParameter type SDOException if argument "dProfile" is null, or if the
object which is specified by argument "dProfile" does not exist.

Parameter Type Description

dProfile DeviceProfile The device profile that is to be assigned to
this SDO.

Configuration
+ setDeviceProfile(dProfile : DeviceProfile) : void
+ addServiceProfile(sProfile : ServiceProfile) : void
+ addOrganization(organizat ion : Organization) : void
+ removeDeviceProfile() : void
+ removeServiceProfile(id : String) : void
+ removeOrganizat ion(organization : Organization) : void
+ getConfigParameter() : ParameterList
+ getParameterValue(name : String) : any
+ setParameterValue(name : String, value : any) : void
+ getConfigurationSets() : Configurat ionSetList
+ addConfigurationSet(configurationSet : ConfigurationSet) : void
+ removeConfigurationSet(configID : String) : void
+ ac tivateConfigurationSet(configID : String) : void
2-22 PIM & PSM for SDO Final Adopted Specification September 2003

2

(2) + addServiceProfile (sProfile : ServiceProfile) : void
This operation adds ServiceProfile to the target SDO that navigates this
Configuration interface. If the id in argument ServiceProfile is null, new id is
created and the ServiceProfile is stored. If the id is not null, the target SDO searches
for ServiceProfile in it with the same id. It adds the ServiceProfile if not exist, or
overwrites if exist.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if argument "sProfile" is null, or if the
object which is specified by argument "sProfile" does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(3) + addOrganization (organization : Organization) : void
This operation adds Organization object to the SDO that has this Configuration
interface. The Organization object to be added is specified by argument.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if argument "organization" is null, or if the
object which is specified by argument "organization" does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(4) + removeDeviceProfile () : void
This operation removes DeviceProfile object to the SDO that has this Configuration
interface.

Parameter Type Description

sProfile ServiceProfile ServiceProfile to be added.

Parameter Type Description

organization Organization Organization to be added.

Parameter Type Description

none
September 2003 PIM & PSM for SDO: Interfaces 2-23

2

Exceptions
This operation throws SDOException with the following type.

• SDONotExists type SDOException if the target SDO does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

• InvalidParameter type SDOException if argument "dProfile" is null, or if the
object which is specified by argument "dProfile" does not exist.

(5) + removeServiceProfile (id : String) : void
This operation removes ServiceProfile object to the SDO that has this Configuration
interface. The ServiceProfile object to be removed is specified by argument.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if argument "sProfile" is null, or if the
object which is specified by argument "sProfile" does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(6) + remove Organization (organization: Organization) : void
This operation removes Organization object to the SDO that has this Configuration
interface. The Organization object to be removed is specified by argument.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if argument "organization" is null, or the
object which is specified by argument "organization" does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

Parameter Type Description

id String serviceID of a ServiceProfile to be removed.

Parameter Type Description

organization Organization Organization to be removed.
2-24 PIM & PSM for SDO Final Adopted Specification September 2003

2

 (7) getConfigParameter () : ParameterList
This operation returns a list of Parameters.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if the target SDO has no parameters to be
configured.

• NotAvailable type SDOException if there is no response from the target SDO.

 (8) + getParameterValue (name : String) : any
This operation returns a value of parameter that is specified by argument “name.”

Exceptions
This operation throws SDOException with the following type.

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if the value of the argument "name" is
empty String, or null, or if the parameter that is specified by argument "name" does
not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

 (9) + setConfigParameter(sdoID: String, name:String, value:any):void
This operation sets a parameter to a value that is specified by argument “value.” The
parameter to be modified is specified by argument “name”.

Parameter Type Description

<return> ParameterList The list with definitions of parameters
characterizing the configuration.

Parameter Type Description

name String Name of the parameter whose value is
requested.

<return> any The value of the specified parameter.
September 2003 PIM & PSM for SDO: Interfaces 2-25

2

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if arguments ("name" and/or "value") is
null, or if the parameter that is specified by the argument "name" does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(10) + getConfigurationSets () : ConfigurationSetList
This operation returns a list of ConfigurationSets that the ConfigurationProfile
has.

Exceptions
This operation throws SDOException with the following type.

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if the list of ConfigurationSet objects
possessed by the SDO is empty.

• NotAvailable type SDOException if there is no response from the target SDO.

(11) + addConfigurationSet (configurationSet : ConfigurationSet) :
void

This operation adds a ConfigurationSet to the ConfigurationProfile.

Parameter Type Description

name String The name of parameter to be modified.

value any New value of the specified parameter.

Parameter Type Description

<return> ConfigurationSetList The list of stored configuration with
their current values.

Parameter Type Description

configurationSet ConfigurationSet The ConfigurationSet that is
added.
2-26 PIM & PSM for SDO Final Adopted Specification September 2003

2

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if the argument "configurationSet" is null,
or if the object which is specified by this arguments does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(12) + removeConfigurationSet (configurationSetID : String) :
void
This operation removes a ConfigurationSet from the ConfigurationProfile.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if Arguments ("configurationSet") is null,
or if the object that is specified by arguments ("configurationSet") does not
exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(13) + activateConfigurationSet (configID : String) : void
This operation activates one of the stored ConfigurationSets in the
ConfigurationProfile.

Exceptions
This operation throws SDOException with the following type:

• SDONotExists type SDOException if the target SDO does not exist.

• InvalidParameter type SDOException if the argument ("configID") is null or
there is no configuration set with identifier specified by the argument.

• NotAvailable type SDOException if there is no response from the target SDO.

Parameter Type Description

configurationSetID String The ConfigurationSet that is removed.

Parameter Type Description

configID String Identifier of ConfigurationSet to be activated.
September 2003 PIM & PSM for SDO: Interfaces 2-27

2

2.3.4.2 Usage: Configuration
As an example, the message sequence chart for the case of profile acquisition is shown in
Figure 2-5. And, as an example of parameter acquisition, the sequence of
“getConfigParameter()” is shown in Figure 2-6. First, the configuring SDO (sdo1)
gets the Configuration object by invocation of operations of the SDO which is
configured (sdo2). And the sequences of the other operations which belong to the
Configuration interface as shown in Figure 2-5and Figure 2-6.

Figure 2-5 Sequence Chart: Configuration: Add Service Profile

Message 1: the configuring SDO (sdo1) gets the object implementing the
Configuration of the SDO that is being configured (sdo2).

Message 2: sdo2 returns the object sdo2.configuration that implements the
Configuration.

Message 3: sdo1 adds the ServiceProfile object to sdo2.

sdo1 : SDO sdo2 : SDO sdo2.configuration :
Configuration

1: getConfiguration()

2: sdo2.configuration

3: addServiceProfile(ServiceProfile)
2-28 PIM & PSM for SDO Final Adopted Specification September 2003

2

Figure 2-6 Sequence Chart: Configuration

Message 1: the configuring SDO (sdo1) gets the object implementing the
Configuration of the SDO that is being configured (sdo2).

Message 2: sdo2 returns the object sdo2.configuration that implements the
Configuration.

Message 3: sdo1 requests parameter list of sdo2.

Message 4: sdo2 returns the parameters as list of names and values of properties
represented as NVList object.

2.3.5 SDOService Interface
SDOService interface provides operations for the services that are provided by
functions of an SDO.

The interface of a service differs for every service. So, this interface does not have the
fixed model.

2.3.6 Monitoring Interface
Each SDO is characterized by properties. These properties can depict the current state of
an SDO (subject to monitoring) and can be used to control the SDO behavior (subject to
configuration). Each SDO can have different number and different kinds of attributes. It
is dependent upon the actual implementation which properties are provided by an SDO.

sdo1 : SDO sdo2 : SDO sdo2.configuration :
Configuration

1: getConfiguration()

2: sdo2.configuration

3: getConfigParameter()

4: ParameterList
September 2003 PIM & PSM for SDO: Interfaces 2-29

2

The Monitoring interface provides mechanisms to monitor the properties of an SDO.
Each SDO implementing the Monitoring interface must specify the properties that can
be monitored.

The properties of an SDO can be monitored mainly in two different ways: by polling and
by subscription.

Polling is the simpler way of monitoring. The observer requests the current values of the
properties it is interested in. The SDO that wants to monitor one or more properties must
send a request message to the particular SDO. The Monitoring interface provide
functions (getCurrentMonitoringStatus(), and getParameterValue()) that support
the monitoring by polling. The monitoring by polling is described detailed in
Section 2.3.6.4.1, “Monitoring by Polling,” on page 2-36.

Using subscription an observing SDO is notified about changes of monitored properties.
The observing SDO has to subscribe to an SDO which is to be monitored. According to
the subscription the monitored SDO notifies the subscriber using its Call-back interface
(see Section 2.3.6.5, “NotificationCallback Interface,” on page 2-42). The Monitoring
interface supports the subscription through appropriate functions (subscribe(),
renewSubscription(), unsubscribe(), unsubscribeAll()). The monitoring by
subscription is described in detail in Section 2.3.6.4.2, “Monitoring by Subscription,” on
page 2-38.

The Monitoring interface is optional. As mentioned earlier each SDO specifies the
properties that can be monitored. If an SDO does not want to provide any of its
properties to be monitored, it can do so and in this case it does not need to implement the
Monitoring interface.

Monitoring

+ getParameterValue(name : string) : any
+ getMonitoringParameters() : ParameterList
+ getCurrentMonitoringStatus() : NVList
+ subscribe(data : NotificationSubscription) : void
+ renewSubscription(subscriber : UniqueIdentifier, duration : unsigned long) : void
+ unsubscribe(subscriber : UniqueIdentifier, names : StringList) : void
+ unsubscribeAll(subscriber : UniqueIdentifier) : void
2-30 PIM & PSM for SDO Final Adopted Specification September 2003

2

2.3.6.1 Data Structures Defined for Monitoring Interface
Various data structures are defined to implement the Monitoring interface. This section
defines all such data structures including the general data structures and data structures
required only for the Monitoring interface. All such data structures are listed in
Table 2-1 and later on described in detail individually.

Table 2-1 Detailed Description of Data Structures Required for Monitoring Interface

NotificationMode Possible notification modes while subscribing to monitoring properties.

ON_CHANGE - To be notified of the subscribed monitoring property every time
the value of the parameter changes.
ON_INTERVAL - To be notified of the subscribed monitoring property on the
specified interval of time. That is, if a subscription to some property is made in this
mode, the notification is sent to the subscribing SDO only at the specified time
with the current value.

NotificationSubscription

This structure outlines the details of the subscription message. This message is
received and evaluated by the SDO providing properties for monitoring. Depending
on the notification mode, the subscriber (the message sender) will receive
appropriate messages containing the property value periodically or if the property’s
value changes.

NotificationMode
+ ON_CHANGE
+ ON_INTERVAL

NotificationCallback

notify(publisher : SDO, publisherID : UniqueIdentifier, currentStatus : NVList) : void

UniqueIdentifier

StringList

NotificationMode
ON_CHANGE
ON_INTERVAL

NotificationSubscription
startTime : unsigned long
duration : unsigned long
notificationInterval : unsigned long

+subscriber

+subscriberID

+observedData

+notifyMode
September 2003 PIM & PSM for SDO: Interfaces 2-31

2

2.3.6.2 Operations provided by Monitoring Interface
This section describes all the operations provided by the Monitoring interface. All
operations are initially listed in Table 2-2 and then each of them is described with
examples.

• subscriber - The address or reference of the object that will receive notification
messages; the object referenced here must implement the interface
NotificationCallback. The value of this field depends on basis technology of
SDO system. Please read Section 2.3.6.5, “NotificationCallback Interface,” on
page 2-42 for more details.

• subscriberID - The unique identifier of the SDO that subscribes to this
property.

• notifyMode - The mode of notification (ON_CHANGE or ON_INTERVAL).
The notifications are sent either when the value of at least one of subscribed
monitoring properties changes (notification on change), or periodically. In this
case the frequency of notifications is specified with the attribute
notificationInterval.

• observedData - List of names of monitoring properties to be subscribed.

• startTime - Defines the time period (in milliseconds) at which monitoring of
the properties should start. If it is not specified, then the subscription will be
activated right after receiving the subscription message.

• duration - Indicates for how long (in milliseconds) the subscription should be
last.

• notificationInterval - Time interval (in milliseconds) in which the
notification is sent to the subscribing SDO, if the NotificationMode of the
subscription is ON_INTERVAL.

Table 2-2 Operations provided by Monitoring Interface

Name Short Description

getParameterValue (name : String) To get the value of the specified property.

getMonitoringParameters () : ParameterList To get the list of all monitoring properties.

getCurrentMonitoringStatus () : NVList To get all the monitoring properties with their current
values.

subscribe (data : NotificationSubscription) : void This operation subscribes necessary monitoring
properties with certain conditions.

renewSubscription (subscriber : UniqueIdentifier,
duration : unsigned long) : void

This operation renews the already subscribed properties
for the specified duration of time.

Table 2-1 Detailed Description of Data Structures Required for Monitoring Interface
2-32 PIM & PSM for SDO Final Adopted Specification September 2003

2

2.3.6.3 Detailed description of all operations
In this section all the operations introduced above are described in detail.

(1) +getParameterValue (name : String) : any
This operation returns the current value of the specified monitoring property.

Exceptions
This operation throws SDOException with the following type:

• InvalidParameter type SDOException if the argument ‘name’ is null or a
monitoring property named ‘name’ does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(2) +getMonitoringParameters () : ParameterList
This operation returns the list of monitoring properties defined for this SDO.

Exceptions
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the list of properties that can be
monitored is empty.

• NotAvailable type SDOException if there is no response from the target SDO.

unsubscribe (subscriber : UniqueIdentifier, names :
StringList) : void

This operation unsubscribes the specified list of already
subscribed monitoring properties.

unsubscribeAll (subscriber : UniqueIdentifier) : void This operation unsubscribes all the subscribed
properties of the specified SDO.

Parameter Type Description

name String Name of the property whose value is requested.

<return> any The current value of the property.

Parameter Type Description

<return> ParameterList List of containing names and types of
monitoring properties of the SDO.

Table 2-2 Operations provided by Monitoring Interface
September 2003 PIM & PSM for SDO: Interfaces 2-33

2

(3) +getCurrentMonitoringStatus () : NVList
This operation returns the current values of all the monitoring properties of the SDO.

Exceptions
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the list of properties that can be
monitored is empty.

• NotAvailable type SDOException if there is no response from the target SDO.

(4) +subscribe (data : NotificationSubscription) : void
This operation subscribes necessary monitoring properties with certain conditions. The
details of the notification are denoted in the argument data. When a subscription request
arrives, the SDO may add the subscriber to its internal table of subscribers. The
subscriptions in the table can be distinguished by the identifier of the subscriber and the
name of subscribed property.

Exceptions
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the condition specified for the
subscription is not valid. For example, if the mode of subscription is
ON_INTERVAL and the attribute ‘notificationInterval’ is not defined in parameter
NotificationSubscription. This exception arises also if the properties to be
subscribed defined in NotificationSubscription.observedData do not exist. This
exception is thrown even if one of the defined properties does not exist. In this case,
the name of non-existing property must be specified in the exception data.

• NotAvailable type SDOException if there is no response from the target SDO.

Parameter Type Description

<return> NVList The list containing names and current values of
all monitoring properties of the SDO.

Parameter Type Description

data NotificationSubscription Properties being subscribed and
the conditions for the
subscription.
2-34 PIM & PSM for SDO Final Adopted Specification September 2003

2

(5) +renewSubscription (subscriber : UniqueIdentifier, duration :
unsigned long) : void
This operation renews the already subscribed properties for the specified duration of
time. The subscription time is extended for all properties that were subscribed previously
by the specified SDO.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if there are no subscriptions from the
observer SDO defined by the parameter subscriber to renew.

• NotAvailable type SDOException if there is no response from the target SDO.

(6) +unsubscribe (subscriber : UniqueIdentifier, names : StringList) : void
This operation unsubscribes the specified list of already subscribed monitoring
properties.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the stated properties (parameter names)
to be unsubscribed does not exist or was not subscribed. This exception is thrown
even if one of the defined properties does not exist or was not subscribed. The
properties that do not exist or were not subscribed must be specified in the
exception data.

• NotAvailable type SDOException if there is no response from the target SDO.

Parameter Type Description

subscriber UniqueIdentifier Unique ID of the SDO that is renewing
the subscription.

duration unsigned long Time duration until which the
subscriptions of the specified SDO
should be renewed.

Parameter Type Description

subscriber UniqueIdentifier Unique ID of the SDO that is
unsubscribing.

names StringList List of names of the properties being
unsubscribed.
September 2003 PIM & PSM for SDO: Interfaces 2-35

2

(7) +unsubscribeAll (subscriber : UniqueIdentifier) : void

This operation unsubscribes all the subscribed properties of the specified SDO.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if there are no subscriptions from the
observer SDO defined by the parameter subscriber to unsubscribe.

• NotAvailable type SDOException if there is no response from the target SDO.

2.3.6.4 Usage: Monitoring Interface

2.3.6.4.1 Monitoring by Polling
SDOs can get information on status of monitoring parameters of other SDO without
subscription to event notifications as well. Their status can be obtained by requesting the
SDO.

The operations that can be invoked to monitor the status of the SDO are shown in Figure
2-7. In the diagram shown in the picture, sdo1 makes requests to sdo2 to acquire its
status.

Parameter Type Description

subscriber UniqueIdentifier Unique ID of the SDO that is
unsubscribing all its subscriptions.
2-36 PIM & PSM for SDO Final Adopted Specification September 2003

2

Figure 2-7 Sequence Chart: Monitoring

Message 1: the monitoring SDO (sdo1) gets the object implementing the Monitoring
interface of the monitored SDO (sdo2).

Message 2: sdo2 returns the object sdo2.monitoring that implements the Monitoring
interface.

Message 3: sdo1 requests the list of all monitoring properties of sdo2.

Message 4: sdo2 sends response, containing the list of monitoring properties specifying
the sdo2.

Message 5: sdo1 requests the current values of monitoring parameters of the sdo2.

Message 6: sdo2 returns the data requested in message 5 as list of names and current
values of properties represented as NVList object. Knowing the respective types of
status properties, their values can be interpreted properly.

Message 7: sdo1 requests the current value of a particular monitoring property.

Message 8: sdo2 sends back reply containing the current property value. The value
should be interpreted according to the type of the property.

sdo1 : SDO sdo2 : SDO sdo2.monitoring :
Monitoring

1: getMonitoring()

2: sdo2.monitoring

3: getMonitoringParameters()

4: ParameterList

5: getCurrentMonitoringStatus()

6: NVList

7: getParameterValue(string)

8: value
September 2003 PIM & PSM for SDO: Interfaces 2-37

2

2.3.6.4.2 Monitoring by Subscription
Monitoring by subscription uses time-limited subscriptions. When an observer SDO
subscribes to certain data of a publisher SDO, the subscription message includes the
validity (time period) of this subscription. The observer SDO knows when it will expire,
and it just renews the subscription shortly before it expires. The publisher SDO checks
every now and then if the subscription is still valid. If the subscription is already expired,
it simply removes the subscription. It is implementation detail how long should be the
time validity of the subscription. The time validity of the subscription can either be
predefined by the system or defined by the subscriber SDO on its own. The shorter the
time duration, the more often observer SDOs should send renewal messages. The time-
limited subscriptions are advantageous in cases when for some reason observer SDOs are
out of the system without being able to send notification that they are leaving.

Monitoring by subscription provides two different modes. These modes indicate when
the monitoring SDOs should be notified:

• when the value of the monitored properties change (ON_CHANGE mode), or

• on certain time interval (ON_INTERVAL mode).

When subscribing, an SDO has to specify the mode and the properties it wants to
monitor. Once subscribed the observing SDO (subscriber) is notified based upon the
conditions specified. Since the subscriber is notified it must provide a callback interface,
which is described in Section 2.3.6.5, “NotificationCallback Interface,” on page 2-42.

Subscribing with ON_INTERVAL notification mode may have advantage against
subscribing ON_CHANGE if the values of monitoring properties of sdo2 change very
often and are sent very frequently.

ON_CHANGE mode
This section describes in detail the monitoring by subscription using ON_CHANGE
mode. Monitoring ON_CHANGE basis is useful if the subscribing SDO wants to be
notified as soon as one of the subscribed property values has changed. For example if the
Airconditioner SDO described in Section 2.2.11, “Examples of resource data model,” on
page 2-13“ subscribes temperature value in the Thermometer SDO ON_CHANGE basis,
it receives notification about the changes in the temperature value every time the
temperature value changes in the room.
2-38 PIM & PSM for SDO Final Adopted Specification September 2003

2

Figure 2-8 Subscription and Notification in ON_CHANGE mode

The subscription of properties is shown in the sequence diagram (Figure 2-8). The
interaction depicted in Figure 2-8 occurs between two SDOs, sdo1 and sdo2. In the
figure above, sdo1 intends to monitor the status of sdo2. sdo2 possesses an object that
represents the Monitoring interface of sdo2. sdo1 implements the interface
NotificationCallback to be able to receive notifications about status changes.

sdo2 : SDOsdo1 : SDO sdo2.monitoring : Monitoringsdo1Callback :
NotificationCallback

including
parameters
from services

ON_CHANGE
subscription

subscribed
parameter
value changed

subscribed
parameter
value changed

subscribed
parameter
value changed

unsubscribe some
of the subscribed
parameters

parameter still
being subscribed
changed

1: getMonitoring()

2: sdo2.monitoring

3: getMonitoringParameters()

4: ParameterList

5: subscribe(NotificationSubscription)

8: renewSubscription(UniqueIdentifier, unsigned long)

10: unsubscribe(UniqueIdentifier, StringList)

12: unsubscribeAll(UniqueIdentifier)

11: notify(SDO, UniqueIdentifier, NVList)

6: notify(SDO, UniqueIdentifier, NVList)

7: notify(SDO, UniqueIdentifier, NVList)

9: notify(SDO, UniqueIdentifier, NVList)
September 2003 PIM & PSM for SDO: Interfaces 2-39

2

Message 1: the monitoring SDO (sdo1) gets the object implementing the Monitoring
interface of the monitored SDO (sdo2).

Message 2: sdo2 returns the object sdo2.monitoring that implements the Monitoring
interface.

Message 3: sdo1 requests the list of monitoring properties of sdo2.

Message 4: sdo2 sends response, containing the list of monitoring properties specifying
the sdo2. The monitoring properties in list can represent the:

• properties of the SDO.

• properties of SDO services, offered for monitoring.

Message 5: sdo1 subscribes one or more properties of sdo2

Message 6, 7: when the values of one of these subscribed properties change, sdo1 gets a
notification message from sdo2 with the name (or names) of the property that has
changed along with its (or their) current values.

Message 8: shortly before the subscription expires, sdo1 sends a renewal request to
extend the subscription time.

Message 9: since the subscription time is extended, the sdo1 continues receiving
notifications about changes in status of sdo1.

Message 10: sdo1 unsubscribes one or more properties subscribed previously.

Message 11: sdo1 receives notification on changes in status of one of monitoring
properties that remain in subscription.

Message 12: sdo1 unsubscribes all the properties it has subscribed at sdo2. Henceforth, it
does not get any notifications on changes in status of monitoring properties of sdo2.

ON_INTERVAL mode
This section describes in detail the monitoring by subscription using ON_INTERVAL
mode. Monitoring ON_INTERVAL mode is useful if the subscribing SDO wants to be
notified periodically, because it may want to observe the development of a specific
property over a longer period of time (even if the property’s value does not change).
2-40 PIM & PSM for SDO Final Adopted Specification September 2003

2

Figure 2-9 Subscription and Notification ON_INTERVAL

Figure 2-9 shows the notifications made in interval mode. In the diagram shown on the
picture, sdo1 intends to monitor the status of sdo2.

sdo1 : SDO sdo2 : SDO sdo2.monitoring : Monitoringsdo1Callback :
NotificationCallback

including
parameters
from services

ON_INTERVAL
subscription

subscribtion
time interval
passed

subscribtion
time interval
passed

subscribtion
time interval
passed

1: getMonitoring()

2: sdo2.monitoring

3: getMonitoringParameters()

4: ParameterList

5: subscribe(NotificationSubscription)

8: renewSubscription(UniqueIdentifier, unsigned long)

10: unsubscribe(UniqueIdentifier, StringList)

7: notify(SDO, UniqueIdentifier, NVList)

9: notify(SDO, UniqueIdentifier, NVList)

6: notify(SDO, UniqueIdentifier, NVList)

value of
subscribed
parameter has
changed

value of
subscribed
parameter has
changed

11: notify(SDO, UniqueIdentifier, NVList)

12: unsubscribeAll(UniqueIdentifier)
September 2003 PIM & PSM for SDO: Interfaces 2-41

2

In general, the same sequence of operations shown in Figure 2-8 is used to subscribe,
renew, and cancel property notification. The difference is that notifications are sent not in
the event when one of subscribed properties changes its value, but periodically in a
specified time interval. Notifications contain the property names and their values at the
moment when the notification was sent. Notifications are sent irrespectively of the fact
whether the property values have changed or not since the last notification. So it can
occur that between two notifications some properties have changed their values more
than once or never at all. For example, in Figure 2-9 the property values change twice
between notification messages 5 and 8. Furthermore, it can also occur that property
values remain unchanged during several notification intervals, like in the sequence
diagram in Figure 2-9 between notification messages 9 and 11.

2.3.6.5 NotificationCallback Interface
This interface provides call back mechanism for an SDO for the subscription notification.
Monitoring properties of an SDO can be monitored by other SDOs by subscribing such
properties. The changes in the monitored properties are subsequently notified to the
subscribing SDOs. This call back interface will provide interface to notify subscribing
SDOs.

2.3.6.6 Data Structures Defined for NotificationCallback Interface
Two general data structures (UniqueIdentifier and NVList) are used in the
NotificationCallback interface. Please see Section 2.3.6.1, “Data Structures Defined for
Monitoring Interface,” on page 2-31 for their detail description.

2.3.6.7 Operations provided by NotificationCallback Interface

(1) +notify(publisherID : UniqueIdentifier, currentStatus : NVList) :
void

This operation notifies the subscriber that either the value of the property has changed or
the notification interval has elapsed.

Parameter Type Description

publisherID UniqueIdentifier Unique identifier of the SDO that is
sending the notification.

NotificationCallback

+ notify(publisher : SDO, publisherID : UniqueIdentifier, currentStatus : NVList) : void
2-42 PIM & PSM for SDO Final Adopted Specification September 2003

2

2.3.6.8 Usage: NotificationCallback Interface
The examples of usage of operations of NotificationCallback interface are shown in
Figure 2-8 and Figure 2-9. The operations are used to convey the changes in values of
monitoring properties to notification subscriber.

2.3.7 Organization Interface
The Organization interface is used to manage the Organization attribute.

(1) + addOrganizationProperty (organizationProperty :
OrganizationProperty) : void
This operation adds the OrganizationProperty to an Organization. The
OrganizationProperty is the property description of an Organization.

Exception
This operation throws SDOException with the following type.

currentStatus NVList A list containing the properties and
their current values. Please note that
this list may not contain all the
properties that an SDO has been
subscribed to, probably because not all
property has changed or because the
notification interval of some properties
has not elapsed yet.

Parameter Type Description

organizationProperty OrganizationProperty The type of organization to
be added.

O rganization

+ addO rganizationP roperty(organ ization P rope rty : O rganization P roperty) : void
+ getO rganizationP roperty() : O rganization P ro perty
+ rem ove O rgan ization P rope rty() : vo id
+ getM em be rs() : S D O List
+ setM em be rs(sdos : S D O List) : void
+ getO w n er() : S D O S ystem Elem en t
+ setO w n er(sdo : S D O S yste m Ele m ent) : void
+ getD ire ction () : boolean
+ setD ire ction (dire ction : boo lean) : void
September 2003 PIM & PSM for SDO: Interfaces 2-43

2

• InvalidParameter type SDOException if argument "organizationProperty" is
null, or if the object which is specified by argument "organizationProperty" does
not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(2) + removeOrganizationProperty () : void
This operation removes the OrganizationProperty from an Organization.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the Organization which the target SDO
belong to has no organizationProperty.

• NotAvailable type SDOException if there is no response from the target SDO.

(3) + getOrganizationProperty () : OrganizationProperty
This operation returns the OrganizationProperty that an Organization has.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if argument "organizationProperty" is
null, or if the object which is specified by argument "organizationProperty" does
not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(4) + getMembers () : SDOList
This operation returns a list of SDOs that are members of an Organization.

Parameter Type Description

organizationProperty OrganizationProperty The type of organization
to be removed.

Parameter Type Description

<return> OrganizationPropertyList The list with properties of the
organization.
2-44 PIM & PSM for SDO Final Adopted Specification September 2003

2

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the Organization which the target SDO
belongs to has no members.

• NotAvailable type SDOException if there is no response from the target SDO.

(5) + setMembers (sdos : SDOList) : void
This operation sets SDOs as members of the organization. The SDOs to be set is
specified by argument "sdos".

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if argument "SDOList" is null, or if the
object which is specified by the argument "sdos" does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(6) + getOwner () : SDOSystemElement
This operation returns the SDOSystemElement that is owner of the Organization.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the target Organization has no owner.

• NotAvailable type SDOException if there is no response from the target SDO.

Parameter Type Description

<return> SDOList Member SDOs that are contained in the
Organization object.

Parameter Type Description

sdos SDOList The SDOs to be added.

Parameter Type Description

<return> SDOSystemElement Reference of owner object.
September 2003 PIM & PSM for SDO: Interfaces 2-45

2

(7) + setOwner (sdo : SDOSystemElement) : void
This operation sets an SDOSystemElement to the owner of the Organization. The
SDOSystemElement to be set is specified by argument “sdo”.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if argument "sdo" is null, or if the object
which is specified by "sdo" in argument "sdo" does not exist.

• NotAvailable type SDOException if there is no response from the target SDO.

(8) + getDirection () : boolean
This operation gets the relationship direction of the Organization.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if the value of “direction” is null.

• NotAvailable type SDOException if there is no response from the target SDO.

(9) + setDirection (direction : boolean) : void
This operation sets the relationship direction of the Organization. The value to be set is
specified by argument “direction”.

Exception
This operation throws SDOException with the following type.

• InvalidParameter type SDOException if argument "direction" is null.

• NotAvailable type SDOException if there is no response from the target SDO.

Parameter Type Description

sdo SDOSystemElement Reference of owner object.

Parameter Type Description

<return> boolean direction.

Parameter Type Description

direction boolean direction.
2-46 PIM & PSM for SDO Final Adopted Specification September 2003

2

2.3.7.1 Usage: Organization
Figure 2-10 shows a sequence diagram to explain how to obtain a set of properties from
an Organization. In this example, an SDO (sdo1) calls getOrganizations() on another
SDO (sdo2) to obtain the Organization objects that sdo2 is associated with, chooses one
of the obtained Organization objects (organization1), and then calls
getOrganizationProperty() on organization1 in order to see its properties.

Figure 2-10 An example to obtain an OrganizationProperty

Message 1: An SDO (sdo1) asks another SDO (sdo2) to return the Organization
objects that sdo2 is associated with.

Message 2: sdo2 returns sdo2.organizations, which is a list of Organization objects.

Message 3: sdo1 chooses one of the obtained Organization object (organization1) and
requests its properties (i.e., organization1.property).

Message 4: organization1 returns organization1.property.

sdo1 : SDO sdo2 : SDO sdo2.organization :
Organization

1: getOrganizations()

2: sdo2.organizations

3: getOrganizationProperty()

4: sdo2.organizationProperties
September 2003 PIM & PSM for SDO: Interfaces 2-47

2

2-48 PIM & PSM for SDO Final Adopted Specification September 2003

Platform Specific Model: Mapping
to CORBA IDL 3
Contents

This chapter contains the following sections.

This chapter introduces a CORBA specific model for the SDO PIM defined in Chapter 2.
The selected platform is CORBA version 3.0.

The SDO PIM defines the resource data model, interfaces, and necessary data structures
for SDOs. In the PSM these interfaces and the data structures used in the individual
methods are mapped to an according CORBA IDL specification. The complete IDL
specification is presented in Chapter 4.

An interface defined in the SDO PIM is mapped to a CORBA interface. An operation in
a PIM interface is mapped to an CORBA operation. A private attribute in a PIM interface
is mapped to an operation named get_<attribute name>. A public attribute in an interface
is mapped to two operations; get_<attribute name> and set_<attribute name>. An PIM
exception is mapped to a CORBA exception. The other data types in the SDO PIM (e.g.,
resource data) are mapped to the non-interface types in CORBA IDL. The CORBA PSM
is compliant with the IDL style guide [3].

Section Title Page

“SDO Module” 3-2

“Data types used in CORBA PSM” 3-2

“Exceptions” 3-3

“Interfaces” 3-4
September 2003 PIM & PSM for SDO Final Adopted Specification 3-1

3

3.1 SDO Module
The interfaces and data structures defined in the CORBA PSM belong to module
SDOPackage.

3.2 Data types used in CORBA PSM
Addition to the SDO interfaces, data structures that are used as parameters in interface
methods have to be defined in the CORBA PSM.

typedef sequence<string> StringList;
typedef sequence<SDO> SDOList;
typedef sequence<Organization> OrganizationList;
typedef string UniqueIdentifier;
 struct NameValue {

string name;
any value;

 };
typedef sequence<NameValue> NVList;

enum NumericType {
SHORT_TYPE,
LONG_TYPE,
FLOAT_TYPE,
DOUBLE_TYPE};

union Numeric switch (NumericType) {
case SHORT_TYPE: short short_value;
case LONG_TYPE: long long_value;
case FLOAT_TYPE: float float_value;
case DOUBLE_TYPE: double double_value;

};
struct EnumerationType {

StringList enumerated_values;
};
struct RangeType {

Numeric min;
Numeric max;
boolean min_inclusive;
boolean max_inclusive;

};
struct IntervalType {

Numeric min;
Numeric max;
boolean min_inclusive;
boolean max_inclusive;
Numeric step;

};
enum ComplexDataType {ENUMERATION, RANGE, INTERVAL};
union AllowedValues switch (ComplexDataType) {

case ENUMERATION: EnumerationType allowed_enum;
case INTERVAL: IntervalType allowed_interval;
3-2 PIM & PSM for SDO Final Adopted Specification September 2003

3

case RANGE: RangeType allowed_range;
};
struct Parameter {

string name;
CORBA::TCKind type;
AllowedValues allowed_values;

};
typedef sequence<Parameter> ParameterList;
struct OrganizationProperty {

NVList properties;
};
enum DependencyType {

NORMAL,
REVERSE,
NO_DEPENDENCY

};
struct DeviceProfile {

string device_type;
string manufacturer;
string model;
string version;
NVList properties;

};
struct ServiceProfile {

string id;
string interface_type;
NVList properties;
SDOService service;

};
typedef sequence<ServiceProfile> ServiceProfileList;
struct ConfigurationSet {

string id;
string description;
NVList configuration_data;

};
typedef sequence<ConfigurationSet> ConfigurationSetList;

3.3 Exceptions
The methods of SDO interfaces can raise SDOException. The kind of exception is
defined in the attribute type (see Section 2.3.2.1, “SDOException,” on page 2-16). This
exception is mapped to several CORBA exceptions. All defined exceptions have
structure specified by a macro exception_body. Five exceptions are defined in this
specification: NotAvailable, InterfaceNotImplemented, InvalidParameter, and
NotFound.

#define exception_body { string description; }
…
exception NotAvailable exception_body;
exception InterfaceNotImplemented exception_body;
September 2003 PIM & PSM for SDO:Exceptions 3-3

3

exception InvalidParameter exception_body;

The exception SDONotExists defined in the PIM is mapped to CORBA standard system
exception OBJECT_NOT_EXIST.

3.4 Interfaces
The SDO PIM defines several interfaces that can be implemented by an SDO. The SDO
interface is a mandatory interface, whereas Configuration and Monitoring including
NotificationCallback are optional interfaces. This means each SDO implementation has
at least to implement the SDO interface and may additionally implement the other
interfaces.

In the CORBA model all interfaces as defined in the SDO PIM are directly mapped to
CORBA interfaces. The IDL specification includes corresponding interface declarations.
Additionally, all data structures used in the methods of these interfaces are also defined
in the IDL specification.

The SDO IDL specification includes following interfaces declarations:

• interface SDOSystemElement

• interface SDO

• interface SDOService

• interface Configuration

• interface Monitoring

• interface Organization

3.4.1 SDOSystemElement Interface
The SDOSystemElement interface is mapped to an CORBA interface. Interfaces of
objects that represent elements of SDO system, such as SDOs, have to be derived from
this interface. Therefore, the SDO interface inherits this interface. It is reserved for future
extension to include further elements of SDO systems beside the actual SDOs.

The SDOSystemElement interface support an operation, get_organizations, which
allows to get the list of organizations associated with the object implementing this
interface.

interface SDOSystemElement {
OrganizationList get_organizations()

raises (NotAvailable);
};

3.4.2 SDO Interface
The SDO interface in the PIM is mapped directly to a CORBA interface. It inherits the
SDOSystemElement interface.
3-4 PIM & PSM for SDO Final Adopted Specification September 2003

3

interface SDO : SDOSystemElement {
UniqueIdentifier get_id()

raises (NotAvailable);
string get_SDO_type()

raises (NotAvailable);
DeviceProfile get_device_profile ()

raises (NotAvailable);
ServiceProfileList get_service_profiles ()

raises (NotAvailable);
ServiceProfile get_service_profile (

in string id
) raises (InvalidParameter, NotAvailable);

SDOService get_service (
in string id
) raises (InvalidParameter, NotAvailable);

Configuration get_configuration ()
raises (InterfaceNotImplemented, NotAvailable);

Monitoring get_monitoring ()
raises (InterfaceNotImplemented, NotAvailable);

};

3.4.3 Configuration Interface
The Configuration interface in the PIM is mapped directly to a CORBA interface:

interface Configuration {
void set_device_profile (in DeviceProfile dProfile)

raises (InvalidParameter, NotAvailable);
void add_service_profile (in ServiceProfile sProfile)

raises (InvalidParameter, NotAvailable);
void add_organization (in Organization organization)

raises (InvalidParameter, NotAvailable);
void remove_device_profile ()

raises (NotAvailable);
void remove_service_profile (in string id)

raises (InvalidParameter, NotAvailable);
void remove_organization (in Organization organization)

raises (InvalidParameter, NotAvailable);
ParameterList get_config_parameters ()

raises (NotAvailable);
any get_parameter_value (in string name)

raises (InvalidParameter, NotAvailable);
void set_config_parameter (

in string name,
in any value)
raises (InvalidParameter, NotAvailable);

ConfigurationSetList get_configuration_sets ()
raises (NotAvailable);

void add_configuration_set (in ConfigurationSet configuration_set)
raises (InvalidParameter, NotAvailable);
September 2003 PIM & PSM for SDO:Interfaces 3-5

3

void remove_configuration_set (in string config_id)
raises (InvalidParameter, NotAvailable);

void activate_configuration_set (in string config_id)
raises (InvalidParameter, NotAvailable);

};

3.4.4 SDOService
In the PSM, SDO services are represented by CORBA objects. The class SDOService
is mapped to an empty IDL interface. When implementing real services, their interfaces
should be derived from the SDOService interface.

3.4.5 Monitoring Interface
The interface Monitoring in the PIM is mapped to a CORBA interface. The operations
that enable to obtain the list of monitoring parameters supported by the SDO and their
current values are mapped straight forward to operations of Monitoring Interface. The
subscription and notification mechanisms described in Section 2.3.6, “Monitoring
Interface,” on page 2-29 are implemented using the OMG Notification Service [4].

interface Monitoring : CosNotifyComm::StructuredPushConsumer,
CosNotifyComm::StructuredPushSupplier {

any get_parameter_value (
in string name
) raises (InvalidParameter, NotAvailable);

ParameterList get_monitoring_parameters ()
raises (NotAvailable);

NVList get_current_monitoring_status ()
raises (NotAvailable);

};

To use the mechanisms defined in Notification Service, the Monitoring interface inherits
the interfaces StructuredPushSupplier and StructuredPushConsumer, defined
in CosNotifyComm module.

The interface StructuredPushSupplier enables SDOs to publish event notifications to
the Notification Service event channel (referred henceforth as the notification channel).
This interface supports the behavior of objects that send Structured Events into the
notification channel using push-style communication. (Models of event propagation are
described in [5].) The operation subscription_change enables a notification
consumer to inform an instance supporting this interface whenever there is a change to
the types of events it is interested in receiving. The operation
disconnect_structured_push_supplier is invoked to terminate a connection
between the target StructuredPushSupplier, and its associated consumer. The
operations of the interface StructuredPushSupplier cover the group of subscription
operations defined for Monitoring interface in Section 2.3.6.2, “Operations provided by
Monitoring Interface,” on page 2-32.
3-6 PIM & PSM for SDO Final Adopted Specification September 2003

3

The interface StructuredPushConsumer enables the notification channel to send
SDOs status notifications supplied by event suppliers as Structured Events by the push
model, using the operation push_structured_event. The operation offer_change
enables a notification supplier to inform an instance supporting this interface whenever
there is a change to the types of events it intends to produce. The interface
StructuredPushConsumer provides functionality that covers the functionality of
NotificationCallback interface defined in Section 2.3.6.7, “Operations provided by
NotificationCallback Interface,” on page 2-42.

3.4.6 Organization Interface
The Organization interface is mapped in the PSM to a CORBA interface. The class
attributes are mapped to interface operations. For example, the attribute members is
mapped to the operation pair getMembers() and setMembers(). It should also be
noticed that both these operations work with lists of references of SDOs that belong to
the organization. The operations getOwner() and setOwner() manipulate the reference
of an object that owns the organization.

interface Organization {
void add_organization_property (

in OrganizationProperty organization_property
) raises (InvalidParameter, NotAvailable);
void remove_organization_property ()

raises (NotAvailable);
OrganizationProperty get_organization_property ()

raises (NotAvailable);
SDOList get_members ()

raises (NotAvailable);
void set_members (

in SDOList sdos
) raises (InvalidParameter, NotAvailable);

SDOSystemElement get_owner ()
raises (NotAvailable);

void set_owner (
in SDOSystemElement sdo
) raises (InvalidParameter, NotAvailable);

boolean get_direction()
raises (NotAvailable);

void set_direction (
in boolean direction
) raises (NotAvailable);

};
September 2003 PIM & PSM for SDO:Interfaces 3-7

3

3-8 PIM & PSM for SDO Final Adopted Specification September 2003

OMG IDL 4
4.1 SDO Package

// SDOPackage.idl

#ifndef _SDO_PACKAGE_IDL_
#define _SDO_PACKAGE_IDL_

#include <corba.idl>
#include <CosNotifyComm.idl>

/** CORBA specific model for SDOs */

#pragma prefix "org.omg"
#define exception_body { string description; }

module SDOPackage {
interface SDO;
interface SDOService;
interface SDOSystemElement;
interface Configuration;
interface Monitoring;
interface Organization;

/** ------- Data Types -------*/
typedef sequence<string> StringList;
typedef sequence<SDO> SDOList;
typedef sequence<Organization> OrganizationList;
typedef string UniqueIdentifier;

 struct NameValue {
string name;
any value;

 };
September 2003 PIM & PSM for SDO Final Adopted Specification 4-1

4

typedef sequence<NameValue> NVList;
enum NumericType {

SHORT_TYPE,
LONG_TYPE,
FLOAT_TYPE,
DOUBLE_TYPE};

union Numeric switch (NumericType) {
case SHORT_TYPE: short short_value;
case LONG_TYPE: long long_value;
case FLOAT_TYPE: float float_value;
case DOUBLE_TYPE: double double_value;

};
struct EnumerationType {

StringList enumerated_values;
};
struct RangeType {

Numeric min;
Numeric max;
boolean min_inclusive;
boolean max_inclusive;

};
struct IntervalType {

Numeric min;
Numeric max;
boolean min_inclusive;
boolean max_inclusive;
Numeric step;

};
enum ComplexDataType {ENUMERATION, RANGE, INTERVAL};
union AllowedValues switch (ComplexDataType) {

case ENUMERATION: EnumerationType allowed_enum;
case INTERVAL: IntervalType allowed_interval;
case RANGE: RangeType allowed_range;

};
struct Parameter {

string name;
CORBA::TCKind type;
AllowedValues allowed_values;

};
typedef sequence<Parameter> ParameterList;
struct OrganizationProperty {

NVList properties;
};
enum DependencyType {

NORMAL,
REVERSE,
NO_DEPENDENCY

};

struct DeviceProfile {
string device_type;
4-2 PIM & PSM for SDO Final Adopted Specification September 2003

4

string manufacturer;
string model;
string version;
NVList properties;

};
struct ServiceProfile {

string id;
string interface_type;
NVList properties;
SDOService service;

};
typedef sequence<ServiceProfile> ServiceProfileList;
struct ConfigurationSet {

string id;
string description;
NVList configuration_data;

};
typedef sequence<ConfigurationSet> ConfigurationSetList;

/** ------- Exceptions -------*/
exception NotAvailable exception_body;
exception InterfaceNotImplemented exception_body;
exception InvalidParameter exception_body;

/** ------- Interfaces -------*/
interface SDOSystemElement {

OrganizationList get_organizations()
raises (NotAvailable);

};

interface SDO : SDOSystemElement {
UniqueIdentifier get_id()

raises (NotAvailable);
string get_SDO_type()

raises (NotAvailable);
DeviceProfile get_device_profile ()

raises (NotAvailable);
ServiceProfileList get_service_profiles ()

raises (NotAvailable);
ServiceProfile get_service_profile (

in string id
) raises (InvalidParameter, NotAvailable);

SDOService get_service (
in string id
) raises (InvalidParameter, NotAvailable);

Configuration get_configuration ()
raises (InterfaceNotImplemented, NotAvailable);

Monitoring get_monitoring ()
raises (InterfaceNotImplemented, NotAvailable);

};
September 2003 PIM & PSM for SDO:SDO Package 4-3

4

interface Configuration {
void set_device_profile (in DeviceProfile dProfile)

raises (InvalidParameter, NotAvailable);
void add_service_profile (in ServiceProfile sProfile)

raises (InvalidParameter, NotAvailable);
void add_organization (in Organization organization)

raises (InvalidParameter, NotAvailable);
void remove_device_profile ()

raises (NotAvailable);
void remove_service_profile (in string id)

raises (InvalidParameter, NotAvailable);
void remove_organization (in Organization organization)

raises (InvalidParameter, NotAvailable);
ParameterList get_config_parameters ()

raises (NotAvailable);
any get_parameter_value (in string name)

raises (InvalidParameter, NotAvailable);
void set_config_parameter (

in string name,
in any value)
raises (InvalidParameter, NotAvailable);

ConfigurationSetList get_configuration_sets ()
raises (NotAvailable);

void add_configuration_set (in ConfigurationSet configuration_set)
raises (InvalidParameter, NotAvailable);

void remove_configuration_set (in string config_id)
raises (InvalidParameter, NotAvailable);

void activate_configuration_set (in string config_id)
raises (InvalidParameter, NotAvailable);

};

interface Monitoring : CosNotifyComm::StructuredPushConsumer,
CosNotifyComm::StructuredPushSupplier {
any get_parameter_value (

in string name
) raises (InvalidParameter, NotAvailable);

ParameterList get_monitoring_parameters ()
raises (NotAvailable);

NVList get_current_monitoring_status ()
raises (NotAvailable);

};

interface SDOService {};

interface Organization {
void add_organization_property (

in OrganizationProperty organization_property
) raises (InvalidParameter, NotAvailable);

void remove_organization_property ()
raises (NotAvailable);

OrganizationProperty get_organization_property ()
4-4 PIM & PSM for SDO Final Adopted Specification September 2003

4

raises (NotAvailable);
SDOList get_members ()

raises (NotAvailable);
void set_members (

in SDOList sdos
) raises (InvalidParameter, NotAvailable);

SDOSystemElement get_owner ()
raises (NotAvailable);

void set_owner (
in SDOSystemElement sdo
) raises (InvalidParameter, NotAvailable);

boolean get_direction()
raises (NotAvailable);

void set_direction (
in boolean direction
) raises (NotAvailable);

};
};
#endif //_SDO_PACKAGE_IDL_
September 2003 PIM & PSM for SDO:SDO Package 4-5

4

4-6 PIM & PSM for SDO Final Adopted Specification September 2003

References A
[1] SDO Whitepaper, http://www.omg.org/cgi-bin/doc?sdo/01-07-05

[2] "Information technology - Open Systems Interconnection - Remote Procedure Call
 (RPC)", February 2003

[3] OMG IDL Style Guide, ab/98-06-03

[4] Notification Service Specification, formal/02-08-04

[5] Event Service Specification, formal/01-03-01
September 2003 PIM & PSM for SDO Final Adopted Specification A-1

A

A-2 PIM & PSM for SDO Final Adopted Specification September 2003

 Complete UML Diagram B
B.1 Complete UML Diagram of SDO resource data model
The complete UML diagram of SDO is as follows.

Figure B-1 Complete UML Diagram of the SDO resource data model

SDOSystem Elem ent
OrganizationProperty

+ properties : NVList

Status

+ name : String
+ statusList : NVList

Organization

- dependency : DependencyType

0..*

1

-organizations

0..*

-owner1
0..1

1

-organizationProperty0..1

1

ServiceProfile

+ id : UniqueIdentifier
+ interfaceType : String
+ properties : NVList
+ serviceRef : SDOService

DeviceProfile

+ deviceType : String
+ manufacturer : String
+ model : String
+ version : String
+ properties : NVList

SDO

- id : UniqueIdentifier
- sdoType : String0..1 1

-status

0..1 1 0..*1..*

-organizations

0..*

-m em bers

1..*

0..n

1

-serviceProfile 0..n

1

0..1

1

-deviceProfile 0..1

1

ConfigurationSet

+ id : UniqueIdentifier
+ description : String
+ configurationData : NVList

ConfigurationProfile

+ parameterList : ParameterList

1

0..1

1

-configurationProfile0..1
September 2003 PIM & PSM for SDO Final Adopted Specification B-1

B

B.2 Mapping to ECHONET

B.2.1 What is ECHONET
(ref. http://www.echonet.gr.jp/english/index.htm)

The ECHONET Consortium was inaugurated in 1997 to shape an affluent society in
the 21st century that was compatible with both the human being and the environment.

The ECHONET Consortium has since developed key software and hardware to support
a home network that is committed to energy conservation, boosting security, enhancing
home health care, etc. The network we develop uses power lines, radio frequency and
infra-red to provide a low-cost implementation of data transmission without requiring
additional wiring.

The consortium plans a validation test to evaluate the validity of the systems and
software developed and to drive publicity in and outside Japan. It also expects to stage
efforts to enhance security, strengthen interworking with the Internet, and develop new
application middleware.

Figure B-2 Application Areas of ECHONET

B.2.2 ECHONET architecture
(ref. http://www.echonet.gr.jp/english/1_echo/index.htm)

• Designed for detached homes, collective housing, shops, and small office buildings.
B-2 PIM & PSM for SDO Final Adopted Specification September 2003

B

• Open disclosure of APIs and protocol standards will promote applications
development and result in an open system architecture that allows external
expansion and new entries.

• The physical layer will be designed to accept other transmission media as well.

• Upper-level compatibility will be maintained by using HBS as a platform for
development.

Figure B-3 ECHONET architecture

*1) API (Application Program Interface): An interface that makes it possible to call
efficiently on functions provided by the network or OS. The presence of an API greatly
facilitates programming efforts.

*2) HBS (Home Bus System): Japanese standard for home networks. Established in
1988 by the Electronic Industries Association of Japan.

*3) Lon Talk : Lon Talk is a registered trademark of Echelon Corporation in USA and
other countries.

B.3 Mapping SDO to ECHONET

B.3.1 Resource data structure
In ECHONET, several standard objects have been specified to model home appliances.
Typical ones are node profile object and device object. A node profile object describes
an addressable device, and a device object describes common attributes of home
September 2003 PIM & PSM for SDO Final Adopted Specification B-3

B

appliances as well as appliance specific attributes. As a device may have multiple
functions and separated hardware (e.g., an air-conditioner may have indoor units, and
an outdoor unit), a node object can contain multiple device objects.

In addition, a gateway object has been specified to mediate the communication
between application programs outside of a home and ECHONET devices in a home. A
gateway object provides interfaces of some devices that can be accessed from those
applications.

Composite SDO structure of SDOs can be mapped to this structure and enable unified
management of hardware device and software components. An organization represents
composite devices and a gateway object.

B.3.2 Property mapping from ECHONET to SDO
In ECHONET, properties of the objects are defined in detail for each type of devices.
Common properties of them are as follows,

Unique identifier data, Operating status, Fault status, Fault content, Version data,
Manufacturer code, Place of business code, Product code, Serial number, Date of
manufacture, SetM property map, GetM property map, Status change announcement
property map, Set property map, Get property map, Installation location

For more detail, please refer to ECHONET specification (ref.
http://www.echonet.gr.jp/english/8_kikaku/index.htm)

Properties defined in SDO resource data can represent these ECHONET properties as
follows,

• SDO.id

SDO.id is mapped to "Unique identifier data".

• DeviceProfile

The properties specified in DeviceProfile are mapped to some properties of “Device
object” and “Profile object” in ECHONET that contain "Version data",
"Manufacturer code", "Place of business code", "Product code", "Serial number"
and "Date of manufacture".

• ServiceProfile

In ECHONET, functions of a device are described by property map holding an array
of a code unique to each function. The properties specified in ServiceProfile classes
are mapped to Property Maps("SetM property map", "GetM property map", "Status
change announcement property map", "Set property map" and "Get property map")
of “Device object” and “Node profile object” defined in ECHONET.

• Status

ECHONET specifies properties representing status of an object. "Operating status",
"Fault status" and "Fault content" are defined in the “Device object”. These
properties are represented as named value sets in Status.statusList.

• Location
B-4 PIM & PSM for SDO Final Adopted Specification September 2003

B

The "Installation location" property is specified in each Device Object in
ECHONET to describe the location of each device. (e.g., outdoor unit, indoor unit)
These properties are represented to, for example, a newly inherited class of
SDOSystemElement.

B.3.3 Common interfaces
ECHONET specifies simple APIs named setProperty and getProperty. These APIs are
used to handle properties of a device. SDO common interfaces proposed in this
document are easily mapped to these APIs and special properties of ECHONET object
corresponding to the SDO. Configuration interface is used to wrap “setProperty” API.
“getProperty” is wrapped by monitoring interface or other operations in SDO defined
to set SDO profiles.
September 2003 PIM & PSM for SDO Final Adopted Specification B-5

B

B-6 PIM & PSM for SDO Final Adopted Specification September 2003

	1. Overview
	1.1 Overview
	1.2 Scope
	1.3 Objectives
	1.4 Compliance

	2. Platform Independent Model (PIM)
	2.1 Overview of PIM for SDO
	2.2 Resource Data Model
	2.2.1 Overview of Resource Data Model
	2.2.2 Data Structures Used by Resource Data Model
	2.2.3 SDOSystemElement
	2.2.4 SDO
	2.2.5 Organization
	2.2.6 OrganizationProperty
	2.2.7 DeviceProfile
	2.2.8 ServiceProfile
	2.2.9 Status
	2.2.10 ConfigurationProfile
	2.2.11 Examples of resource data model

	2.3 Interfaces
	2.3.1 Overview of Interfaces
	2.3.2 Data Structures used by Interfaces
	2.3.3 SDO Interface
	2.3.4 Configuration Interface
	2.3.5 SDOService Interface
	2.3.6 Monitoring Interface
	2.3.7 Organization Interface

	3. Platform Specific Model: Mapping to CORBA IDL
	3.1 SDO Module
	3.2 Data types used in CORBA PSM
	3.3 Exceptions
	3.4 Interfaces
	3.4.1 SDOSystemElement Interface
	3.4.2 SDO Interface
	3.4.3 Configuration Interface
	3.4.4 SDOService
	3.4.5 Monitoring Interface
	3.4.6 Organization Interface

	4. OMG IDL
	4.1 SDO Package

	A. References
	B. Complete UML Diagram

