
PIM and PSM for Software Radio
Components

2nd FTF Convenience Document (with change bars)

This document represents the changes to the Final Adopted Specification, dtc/04-05-04, with
corrections to the typographical errors and 1st and 2nd FTF issue resolutions. It is provided as a
resolution to 1st FTF first ballot issues 7578, 7579, 7580, 7587, 7655, 7656, 7657, 7658, 7661
(partial), 7672, 7689, 7690, 7691, 7693, 7696, 7697, 7698, 7699, 7700, 7701, 7702, 7781, 7786;
and second ballot issues: 7581, 7655, 7657, 7688, 7693, 7694, 7695, 7704, 7705, 7706, 7707, 7708,
7709. 7710, 7711, 7712, 7713, 7714, 7715, 7717, 7718, 7719, 7720, 7725, 7726, 7727, 7728, 7757,
7787, 7789, 7868, 7959, 7983, 7984, 7985; third ballot issues: 7578, 7579, 7588, 7658, 7716, 7717,
7742, 7785, 7786, 7849, 7877, 7878, 7888, 7895, 7904, 7905, 7953, 8121, 8122, 8123, 8124, 8125,
8200, 8201, 8205, 8291; the fourth ballot issue: 8697;

and 2nd FTF first ballot issues: 7582, 7583, 7586, 7703, 7729, 7845, 7894, 8296, 8830, 8831, 8832,
8833, 8834, 8835, 8836, 8837, 8838, 8839, 8840, 8841, 8842, 8857, 8858, 8868, 8869, 8872, 8873,
8931, 8934, 8948, 8949; and second ballot issues: 8980 and 8981.

Proposed resolutions are shown with a red change bar on the left, and a note preceeding the change
bar stating which issue the change relates to. In case there is no note associated with the change bar,
then it is a typo correction and the change is associated with issue 7781.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on September 23,
2005. If you are reading this after that date, please download the available specification from the
OMG Specifications Catalog.

OMG Adopted Specification
PIM and PSM for SWRadio Components

2nd FTF Convenience Document
dtc/2005-09-04

Accompanying documents:

SWRadio 2nd FTF Report, dtc/2005-09-03
Convenience doc, no change bars dtc/2005-09-05
IDL Files dtc/2005-09-02
XML Files dtc/2005-08-05
UML Files dtc/2005-08-06
Detailed Voting Record for the 2nd FTF dtc/2005-09-06

Date: September, 14th 2005

PIM and PSM for Software Radio Components
Final Adopted Specification
2nd FTF Convenience Document

dtc/2005-09-04

Copyright © 2005, BAE Systems
Copyright © 2005, The Boeing Company
Copyright © 2005, David Frankel Consulting
Copyright © 2005, École de technologie supérieure
Copyright © 2005, ISR Technologies, Inc.
Copyright © 2005, ITT Industries
Copyright © 2005, L-3 Communications Systems West
Copyright © 2005, Mercury Computer Systems, Inc.
Copyright © 2005, The MITRE Corporation
Copyright © 2005, Northrop Grumman
Copyright © 2005, Object Management Group
Copyright © 2005, Raytheon Corporation
Copyright © 2005, Rockwell Collins
Copyright © 2005, SCA Technica, Inc.
Copyright © 2005, THALES
Copyright © 2005, Zeligsoft, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves

against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software

developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report
any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web
page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

dtc/2005-09-04

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 5

Contents

1 Scope. 11

2 Conformance. 13

2.1 Conformance Criteria . 13

2.2 Conformance on the Part of a Waveform Application . 13

2.3 Conformance on the Part of a Software Radio Infrastructure . 13

2.4 Conformance with the UML Profile for Software Radio Applications . 14
2.4.1 Conformance by a Model of a Specific Application . 14
2.4.2 Conformance by a Software Radio Tool . 14

2.5 Sample Conformance Statements . 15

3 References. 17

3.1 Normative References. 17
3.1.1 UML Specifications . 17
3.1.2 CORBA Core Specifications . 18
3.1.3 CORBA Services Specifications . 18
3.1.4 Enhanced View of Time Specification . 18
3.1.5 Property Service Specification . 19

3.2 Non-Normative References . 19
3.2.1 UML Model for PIM and PSM for Software Radio Components . 19

4 Terms and Definitions . 21

5 Symbols (and abbreviated terms) . 23

6 Additional Information . 25

6.1 Changes to Adopted OMG Specifications . 25

6.2 Guide to this Specification . 25

6.3 Credits. 25

6.4 Design Rationale. 26
6.4.1 Supporting a Product Line of SWRadio Applications . 26
6.4.3 Model Components: Two PIMs and Two PSMs . 27
6.4.4 Mappings . 28
6.4.5 Runtime Components . 29
6.4.6 How the Pieces Fit Together. 29

dtc/2005-09-04

6 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

7 Introduction to SWRadio . 33

7.1 Introduction . 33

7.2 Software Communication Architecture . 34

7.3 Model Driven Architecture . 34

7.4 SWRadio Platform and Applications. 35

7.5 SWRadio Architecture . 37

8 UML Profile for Software Radio . 39

8.1 Application and Device Components . 42
8.1.1 Base Types . 44
8.1.2 Literal Specifications . 51
8.1.3 Properties . 53
8.1.4 Interface and Port Stereotypes . 66
8.1.5 Resource Components . 68
8.1.6 Device Components . 84
8.1.7 Application Components . 99

8.2 Communication Equipment . 111
8.2.1 RequiredTypes Package. 115
8.2.2 CommEquipmentCommunicationPath . 119
8.2.3 CommEquipmentConnector . 119
8.2.4 Port . 119
8.2.5 CommEquipment . 121

8.3 Infrastructure . 135
8.3.1 Radio Services . 135
8.3.2 Communication Channel . 155
8.3.3 Radio Management . 163
8.3.4 SWRadio Deployment . 184

9 Platform Independent Model (PIM). 205

9.1 Common Radio Facilities . 207
9.1.1 Lightweight Services . 207

9.2 Common Layer Facilities. 209
9.2.1 QoS Management Facilities . 211
9.2.2 Flow Control Facilities . 215
9.2.3 Measurement Facilities . 221
9.2.4 Error Control Facilities . 226
9.2.5 Protocol Data Unit Facilities . 229
9.2.6 Stream Facilities. 233

9.3 Data Link Layer Facilities . 235
9.3.1 Link Layer Control Facilities. 235

dtc/2005-09-04

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 7

9.3.2 Medium Access Control Layer Facilities . 250

9.4 IO Facilities. 257
9.4.1 Serial IO Package . 257
9.4.2 Audio Interfaces . 263
9.4.3 IOSignals . 268

9.5 Physical Layer Facilities. 269
9.5.1 Data Transfer . 269
9.5.2 Control . 269

9.6 Radio Control Facilities . 283
9.6.1 Radio Set Facilities . 283

10 Platform Specific Model (PSM) . 293

Annex A Core Framework CORBA IDL (non-normative) . 299

A.1 Base Types Interfaces . 299
A.1.1 CF Common Types Interface . 299
A.1.2 CF Base Types Interface. 301

A.2 CF Resource Interfaces. 302

A.3 CF ResourceFactory Interfaces. 305

A.4 CF Devices Interfaces. 306

A.5 CF DeviceManager Interfaces . 309
A.5.1 CF Service Registration Interface. 309
A.5.2 CF DeviceManager Interface . 310

A.6 CF DomainManager Interfaces. 311
A.6.1 CF Domain Event Channels Interface . 311
A.6.2 CF Domain Installation Interface . 312
A.6.3 CF Device Manager Registration Interface . 313
A.6.4 CF DomainManager Interface . 314

A.7 CF Application Interfaces. 315

A.8 CF StateManagement Interface . 316

A.9 CF Port Types . 318
A.9.1 Boolean Sequence Port Type . 318
A.9.2 Char Sequence Port Type . 318
A.9.3 Short Sequence Port Type. 319
A.9.4 Ushort Sequence Port Type . 319
A.9.5 Long Sequence Port Type. 320
A.9.6 Ulong Sequence Port Type . 320
A.9.7 LongLong Sequence Port Type . 321
A.9.8 UlongLong Sequence Port Type. 321

dtc/2005-09-04

8 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

A.9.9 Float Sequence Port Type . 321
A.9.10 Double Sequence Port Type. 322
A.9.11 LongDouble Sequence Port Type . 322
A.9.12 Wchar Sequence Port Type . 323
A.9.13 Wstring Sequence Port Type . 323
A.9.14 CF Port Types CORBA Module . 324

A.10 CF Event Types . 324
A.10.1 Domain Event . 324
A.10.2 State Event . 325

A.11 Core Framework CORBA Module . 326

Annex B Common Layer Facilities CORBA IDL (non-normative) . 329

B.1 Common Layer Basic Types . 329

B.2 Error Control Interfaces . 330
B.2.1 Error Control Management Interface. 330
B.2.2 Signal Interface . 330
B.2.3 DfSWRadio Error Control CORBA Module . 331

B.3 Flow Control Interfaces . 331
B.3.1 Flow Control Management Interface . 331
B.3.2 Flow Control Signaling Interface. 333
B.3.3 DfSWRadio Flow Control CORBA Module . 334

B.4 Measurement Interfaces . 334
B.4.1 Measurement Types . 334
B.4.2 Measurement Management Interfaces . 335
B.4.3 Measurement Point Interface . 337
B.4.4 Measurement Recorder Interface . 338
B.4.5 Measurement Storage Interface . 338
B.4.6 DfSWRadio Measurement CORBA Module. 340

B.5 PDU Interfaces. 340

B.6 Quality of Service Interface . 341

B.7 Stream Interface . 342

B.8 DfSWRadio Common Layer Module . 343

Annex C Common Radio Facilities CORBA IDL (non-normative). 345

C.1 CF File Services Interfaces . 345
C.1.1 CF File Interface . 345
C.1.2 FileSystem . 346
C.1.3 FileManager . 348

C.2 DF SWRadio Common Radio . 349

dtc/2005-09-04

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 9

C.2.1 Managed Component Statuses Interface. 349

Annex D Data Link Layer Facilities CORBA IDL (normative) . 351

D.1 Data Link Layer Interfaces . 351
D.1.1 Data Link Layer Types . 351
D.1.2 Data Link Layer Ack Connectionless Interfaces . 352
D.1.3 Data Link Layer Connection Interface . 354
D.1.4 Data Link Layer Connectionless Interfaces . 355
D.1.5 Data Link Layer Local Management . 356

D.2 MAC Interfaces. 359

D.3 DfSWRadio Data Link Layer Module. 360

Annex E Physical Layer CORBA IDL (non-normative). 361

E.1 Physical Layer Input/Output Interfaces . 361

Annex F Physical Layer Properties (non-normative) . 363

F.1 I/O XML Properties . 363
F.1.1 Audio XML Properties . 363
F.1.2 Serial XML Properties . 373

Annex G Radio Control Facilities CORBA IDL (non-normative) . 385

G.1 Radio Set Management Interfaces . 385

Annex H Operating System Profiles (non-normative) . 389

H.1 SCA Application Environment Profile . 389
H.1.1 Scope. 389
H.1.2 Standards. 389
H.1.3 Constraints . 390

Annex I SWRadio Properties XML (non-normative). 411

I.1 SWRadio Properties XML . 411

Annex J Communication Channel XML (non-normative) . 423

J.1 CommChannel XML . 423

Annex K SWRadio CORBA IDL (non-normative) . 427

K.1 Domain Facility Software Radio Module. 427

Annex L SWRadio Document Type Definitions (non-normative) . 429

L.1 Deployment Overview.. 430

dtc/2005-09-04

10 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.2 Software Package Descriptor. . 431
L.2.1 Software Package. 431

L.3 Device Package Descriptor. 447
L.3.1 Device Package. 447

L.4 Properties Descriptor. . 455
L.4.1 properties.. 455

L.5 Software Component Descriptor.. 471
L.5.1 softwarecomponent. 471

L.6 Software Assembly Descriptor. 477
L.6.1 description.. 478
L.6.2 componentfiles. . 478
L.6.3 partitioning. . 479
L.6.4 assemblycontroller. . 487
L.6.5 connections. 487
L.6.6 externalports. 497

L.7 Device Configuration Descriptor. . 499
L.7.1 description.. 500
L.7.2 devicemanagersoftpkg. . 500
L.7.3 componentfiles. . 501
L.7.4 partitioning. . 501
L.7.5 componentplacement. . 501
L.7.6 connections. 507
L.7.7 domainmanager . 507
L.7.8 filesystemnames. . 508

L.8 DomainManager Configuration Descriptor. . 510
L.8.1 description.. 511
L.8.2 domainmanagersoftpkg.. 511
L.8.3 services. 511

L.9 Document Type Definitions. 513
L.9.1 Software Package Descriptor DTD . 513
L.9.2 Software Component Descriptor DTD . 518
L.9.3 Device Package Descriptor DTD. 521
L.9.4 Properties Descriptor DTD . 524
L.9.5 Software Assembly Descriptor DTD . 529
L.9.6 Device Configuration Descriptor DTD . 537
L.9.7 Domain Configuration Descriptor DTD . 544

dtc/2005-09-04

1 Scope 1 Scope

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 11

1 Scope
This specification responds to the requirements set by “Request for Proposals for a Platform Independent Model
(PIM) and CORBA Platform Specific Model (PSM)” (swradio/02-06-02) of radio infrastructure facilities that can
be utilized in developing waveforms, which promotes the portability of waveforms across Software Defined Ra-
dios (SDR). The terms Software Radio and Software Defined Radio are used to describe radios that are imple-
mented with strong emphasis on software. This type of radio, which is called SWRadio in this specification.

The SWRadio specification is physically partitioned into three major chapters: UML Profile for SWRadio, PIM
and PSM for CORBA IDL. UML Profile for SWRadio defines a language for modeling SWRadio elements by
extending the UML language with radio domain specific definitions. PIM provides a model of SWRadio system
behavior and standardized application program interfaces (APIs) as well as example component definitions that
realize the provided interfaces. PIM is specified independently from the underlying middleware technology.
UML and its extensions provided by the UML Profile for SWRadio were used for modeling a software radio sys-
tem in the PIM.

This specification also provides a mechanism for transforming the elements of the PIM model into the platform
specific model for CORBA IDL. This mapping definition is given in the PSM (Chapter 10).

Finally, the SWRadio specification provides different compliance points depending on the role the implementer
of this specification plays. Those different roles and respective partitioning of this document is given in the Con-
formance (Chapter 2).

dtc/2005-09-04

1 Scope 1 Scope

12 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

2 Conformance 2 Conformance

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 13

2 Conformance

Note – Issue 7785 - Waveform vs Application changes throughout Chapter 2

2.1 Conformance Criteria
Conformance with the OMG Software Radio specification can be partial. Therefore, several separate conform-
ance points are defined below. The conformance language references several parts of the specification:

● The Application PIM is defined in Chapter 9.

● The Application PSM is defined in Annexes A to J

● The Software Radio Infrastructure PIM is defined in Chapter 9

● The Software Radio Infrastructure PSM is defined in Annexes A to J

● The Profile-to-Waveform PIM Mapping is defined in Chapter 9.

● The PIM-to-PSM Mapping is defined in Chapter 10.

● The UML Profile for Software Radio Waveform Applications is defined in Chapter 8.

The Design Rationale in Section 6.4 explains the role that each of these items play in the overall specification.

2.2 Conformance on the Part of a Waveform Application
An application is considered to be a conformant waveform application for the CORBA/XML platform if it does
all of the following:

● Implements the CORBA interfaces that the Applications PSM defines

● Implements the XML serialization formats that the Applications PSM defines.

● Implements the semantics that the Application PIM defines.

Note that the Applications PIM essentially defines the semantics for the CORBA interfaces and XML serializa-
tion formats. The semantics for a CORBA interface defined in the Applications PSM are defined by the seman-
tics of the corresponding element(s) in the Applications PIM. It is possible to deduce the corresponding elements
in the PIM for such a CORBA interface by reversing the PIM-PSM Mapping.

An application for a platform other than CORBA/XML can legitimately claim a degree of conformance to this
specification if it implements the semantics that the Application PIM defines. For a platform “X,” such an appli-
cation is considered to be a conformant waveform application for the X platform. In practice this would require
the definition of an alternate Application PSM, and would require that it is possible to unambiguously trace back
from elements of the alternate PSM to elements of the Waveform PIM.

2.3 Conformance on the Part of a Software Radio Infrastructure
A software radio infrastructure is considered to be a conformant software radio infrastructure for the COR-
BA/XML platform if it does all of the following:

● Implements the CORBA interfaces that the Software Radio Infrastructure PSM defines

● Implements the XML serialization formats that the Software Radio PSM defines.

● Implements the semantics that the Software Radio Infrastructure PIM defines.

dtc/2005-09-04

2.4 Conformance with the UML Profile for Software Radio Applications 2 Conformance

14 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note that Software Radio Infrastructure PIM essentially defines the semantics for the CORBA interfaces and
XML serialization formats. The semantics for a CORBA interface defined in the Software Radio Infrastructure
PSM are defined by the semantics of the corresponding element(s) in the Software Radio Infrastructure PIM. It
is possible to deduce the corresponding elements in the PIM for such a CORBA interface by reversing the PIM-
PSM Mapping.

A software radio infrastructure for a platform other than CORBA/XML can legitimately claim a degree of con-
formance to this specification if it implements the semantics that the Software Radio Infrastructure PIM defines.
For a platform “X,” such an application is considered to be a conformant software radio infrastructure for the X
platform. In practice this would require the definition of an alternate Software Radio Infrastructure PSM, and
would require that it is possible to unambiguously trace back from elements of the alternate PSM to elements of
the Software Radio Infrastructure PIM.

2.4 Conformance with the UML Profile for Software Radio Applications
There are two kinds of conformance with respect to the profile: conformance on the part of a model of a specific
software radio application, and conformance on the part of a software radio tool.

2.4.1 Conformance by a Model of a Specific Application

A UML model of a specific application either conforms to the profile or it does not. There are no categories of
this kind of conformance. Such a UML model conforms to the profile if it satisfies all constraints imposed by the
profile package.

2.4.2 Conformance by a Software Radio Tool

2.4.2.1 Definition of Terms for Discussion of Tool Conformance

To support the discussion of conformance by a software radio tool, we define two terms: “identified subset of
UML 2.0" and “all constructs defined by the profile.”

The identified subset of UML 2.0 for the profile is the set of packages contained in the UML 2.0 Superstructure
specification Part 1 (Structure). Part 1 includes the following packages and the transitive closure of all packages
contained by these packages and of all packages upon which these packages depend:

● Classes

● Composite Structures

● Components

● Deployments

Hereafter we sometimes use the abbreviated term identified subset to refer to the identified subset of UML 2.0

The term all constructs defined by the profile is defined to mean all constructs that are part of the package's iden-
tified subset of UML 2.0, plus all extensions to that subset that the profile defines. Thus this term includes UML
constructs that are part of the identified subset but that are not extended by the profile.

2.4.2.2 Categories of Tool Conformance

A tool is considered to be a conformant simple modeling tool for the profile if it does both of the following:

● Supports expression of all constructs defined by the profile, via UML 2.0 notation.

dtc/2005-09-04

2 Conformance 2.5 Sample Conformance Statements

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 15

● Supports the UML 2.0 XMI exchange mechanism for the identified subset and for UML 2.0 profiles.

A tool is considered to be a conformant CORBA/XML-based forward engineering tool for the profile if it does
both of the following:

● Supports the Profile-to-Waveform PIM Mapping defined in Chapter 9 of this specification

● Supports the PIM-to-PSM Mapping defined in Chapter 10.

● Produces applications that are conformant waveform applications, based on the definition of such
conformance in the “Conformance on the Part of a Waveform Application” section above.
Alternately, if a tool only produces an application skeleton, the skeleton must not make it impossible
for a full application based on the skeleton to qualify as a conformant waveform application; in other
words, the skeleton must be able to form the basis of a conformant waveform application.

A forward engineering tool that targets a platform technology other than CORBA/XML can legitimately claim a
degree of conformance to the profile if it conforms to the Profile-to-Waveform PIM Mapping and produces ap-
plications that are conformant waveform applications, or produces application skeletons that can form the basis
of conformant waveform applications. In practice this requires the definition of an alternate PIM-PSM mapping.
A forward engineering tool of this nature for the platform “X” is considered to be a conformant X-Based forward
engineering tool for the profile.

2.5 Sample Conformance Statements
“XXX is a conformant waveform application for the CORBA/XML platform, in accordance with the OMG Soft-
ware Radio specification.”

“XXX is a conformant waveform application for the J2EE/XML platform, in accordance with the OMG Software
Radio specification.”

“XXX is a conformant software radio infrastructure for the CORBA/XML platform, in accordance with the
OMG Software Radio specification.”

“XXX is a conformant software radio infrastructure for the J2EE/XML platform, in accordance with the OMG
Software Radio specification.”

“XXX is a model of a specific waveform application. The model conforms to the UML Profile for Software Ra-
dio Waveform Applications, in accordance with the OMG Software Radio specification.”

“XXX is a conformant simple modeling tool for the UML Profile for Software Radio Waveform Applications, in
accordance with the OMG Software Radio specification.”

“XXX is a conformant CORBA/XML-based forward engineering tool for the UML Profile for Software Radio
Waveform Applications, in accordance with the OMG Software Radio specification.”

“XXX is a conformant J2EE/XML-based forward engineering tool for the UML Profile for Software Radio
Waveform Applications, in accordance with the OMG Software Radio specification.”

Note – As pointed out in the Design Rationale chapter's Known Issues section, there are some
issues with the specification that the submitters plan to resolve as part of the activity of the Fi-
nalization Task Force (FTF). These conformance criteria are written on the assumption that the
issues are resolved as indicated in that section.

dtc/2005-09-04

2.5 Sample Conformance Statements 2 Conformance

16 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

3 References 3 References

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 17

3 References

Note – Issue 8697: 1) Rename chapter 3 to "References"
2) Create a subheader called "Normative References" and pull ev-
erything currently in Chapter 3 under Normative subsection.
3) Create a subheader called "Non-normative References" and put
the following in there:
"UML Model for PIM and PSM for SWRadio Components"
OMG Document number: dtc/2005-03-06
[http://www.omg.org]

3.1 Normative References

3.1.1 UML Specifications

3.1.1.1 UML Language Specification

Unified Modeling Language (UML) Superstructure Specification Version 2.0
Formal OMG Specification, document number: formal/2005-07-04
The Object Management Group, July 2005
[http://www.omg.org]

3.1.1.2 OCL Language Specification

Object Constraint Language (OCL) Specification Version 2.0
Final Adopted OMG Specification, document number: ptc/2005-06-06
The Object Management Group, June 2005
[http://www.omg.org]

3.1.1.3 Deployment and Configuration

Deployment and Configuration of Component-based Applications
Final Adopted OMG Specification, document number: ptc/2003-07-08
The Object Management Group, April 2002
[http://www.omg.org]

Note – Unless this document becomes a formal OMG specification, its reference is not norma-
tive.

3.1.1.4 UML Profile for CORBA Specification

UML Profile for CORBA Specification V1.0
Formal OMG Specification, document number: formal/2002-04-01
The Object Management Group, April 2002
[http://www.omg.org]

dtc/2005-09-04

3.1.2 CORBA Core Specifications 3 References

18 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

3.1.2 CORBA Core Specifications

3.1.2.1 CORBA Specification

Common Object Request Broker (CORBA/IIOP), version 3.0.2
Formal OMG Specification, document number: formal/2002-12-06
The Object Management Group, December 2002
[http://www.omg.org]

3.1.2.2 Minimum CORBA Specification

Minimum CORBA, V1.0
Formal OMG Specification, document number: formal/2002-08-01
The Object Management Group, August 2002
[http://www.omg.org]

3.1.3 CORBA Services Specifications

Note – Issue 8201 Resolution (Replacement of Naming and Event Service references with ref-
erences to the Lightweight Services and the Lightweight Log Service)

3.1.3.1 Lightweight Services Specification

Lightweight Services, version 1.0
Formal OMG Specification, document number: formal/2004-10-01
The Object Management Group, October 2004
[http://www.omg.org]

3.1.3.2 Lightweight Log Service Specification

Lightweight Log Service, version 1.0
Formal OMG Specification, document number: formal/2003-11-03
The Object Management Group, November 2003
[http://www.omg.org]

Note – Issue 8201 Resolution (misspelling fix in 3.3.3 title)

3.1.4 Enhanced View of Time Specification

Enhanced View of Time Service, version 1.1
Formal OMG Specification, document number: formal/2002-05-07
The Object Management Group, May 2002
[http://www.omg.org]

3.1.5 Property Service Specification

Property Service, version1.0
Formal OMG Specification, document number: formal/2000-06-22
The Object Management Group, June 2000
[http://www.omg.org]

dtc/2005-09-04

3 References 3.2 Non-Normative References

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 19

Note – Issue 8697: Provide a non-normative reference to SWRadio UML Model

3.2 Non-Normative References

3.2.1 UML Model for PIM and PSM for Software Radio Components

UML Model for PIM and PSM for Software Radio Components
OMG document number: dtc/2005-03-06

The Object Management Group, March 2005
[http://www.omg.org]

dtc/2005-09-04

3.2.1 UML Model for PIM and PSM for Software Radio Components 3 References

20 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

4 Terms and Definitions 4 Terms and Definitions

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 21

4 Terms and Definitions
For the purposes of this document, the following terms and definitions apply.

Common Object Request Broker Architecture (CORBA)

An OMG distributed computing platform specification that is independent of implementation languages.

Component

A component can always be considered an autonomous unit within a system or subsystem. It has one or more
ports, and its internals are hidden and inaccessible other than as provided by its interfaces. A component repre-
sents a modular part of a system that encapsulates its contents and whose manifestation is replaceable within its
environment. A component exposes a set of ports that define the component specification in terms of provided
and required interfaces. As such, a component serves as a type, whose conformance is defined by these provided
and required interfaces (encompassing both their static as well as dynamic semantics).

CORBA Component Model (CCM)

An OMG specification for an implementation language independent distributed component model.

Facility

An environment providing a realization of certain functionality through set of well defined interfaces.

Interface Definition Language (IDL)

An OMG and ISO standard language for specifying interfaces and associated data structures.

Logical Device

A software component that is an abstraction of a hardware device it represents.

Mapping

The Specification of a mechanism for transforming the elements of a model conforming to a particular metamod-
el into elements of another model that conforms to another (possibly the same) metamodel.

Metadata

The Data that represents models. For example, a UML model; a CORBA object model expressed in IDL; and a
relational database schema expressed using CWM.

Metamodel

A model of models.

Meta Object Facility (MOF)

An OMG standard, closely related to UML, that enables metadata management and language definition.

dtc/2005-09-04

4 Terms and Definitions 4 Terms and Definitions

22 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Model

A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA)

An approach to IT system specification that separates the specification of functionality from the specification of
the implementation of that functionality on a specific technology platform.

Platform

A set of subsystems/technologies that provide a coherent set of functionality through interfaces and specified us-
age patterns that any subsystem that depends on the platform can use without concern for the details of how the
functionality provided by the platform is implemented.

Platform Independent Model (PIM)

A model of a subsystem that contains no information specific to the platform, or the technology that is used to
realize it.

Platform Specific Model (PSM)

A model of a subsystem that includes information about the specific technology that is used in the realization of
it on a specific platform, and hence possibly contains elements that are specific to the platform.

Radio Platform

The Radio Platform is made of a Hardware Platform and a Software Platform.

Radio Set

A single radio set unit that can be ground fixed, mounted on a mobile platform or held by hand.

Radio System

A networked set of radio sets that provide wireless communication facilities between callers and callees.

Request for Proposal (RFP)

A document requesting OMG members to submit proposals to the OMG's Technology Committee. Such propos-
als must be received by a certain deadline and are evaluated by the issuing task force.

Service

A set of functionality with common characteristics.

Unified Modeling Language (UML)

An OMG standard language for specifying the structure and behavior of systems. The standard defines an ab-
stract syntax and a graphical concrete syntax.

UML Profile

A standardized set of extensions and constraints that tailors UML to particular use.

dtc/2005-09-04

5 Symbols (and abbreviated terms) 5 Symbols (and abbreviated terms)

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 23

5 Symbols (and abbreviated terms)

Note – Issue 7656 Typos & Acronyms

Table 5-1 – Symbols (and abbreviated terms)

Abbreviation Definition

API Application Program Interface

ASIC Application Specific Integrated Circuit

BIT Built-In Test

BSP Burst Schedule Packets

COMSEC Communication Security

CORBA Common Object Request Broker Architecture

COTS Commercial Off the Shelf

CPU Central Processing Unit

DLPI Data Link Protocol Interface

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GIOP General Inter-ORB Protocol

GPP General Purpose Processor

GPRS General Packet radio Services

GPS Global Positioning System

GSM Global System for Mobiles

HCI Human-Computer Interface

HW Hardware

I/O Input/Output

ID Identification, Identifier

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

INFOSEC Information Security

IOR Interoperable Object Reference

IP Internet Protocol

ISO International Standards Organization

LAPx Link Access Protocol x (where x represents 1 of several protocols defined by industry

MAC Medium Access Control, a sublayer of the OSI Data Link Layer

MIB Management Information Base

N/A Not Applicable

dtc/2005-09-04

5 Symbols (and abbreviated terms) 5 Symbols (and abbreviated terms)

24 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

NAPI Networking Application Programming Interface

OE Operating Environment

OMG Object Management Group

ORB Object Request Broker

OS Operating System

OSI Open System Interconnection

PIM Platform Independent Model

POSIX Portable Operating System Interface

PPP Point-to-Point Protocol

PSE52 Real-time Controller System Profile, defined in IEEE Std. 1003.13

PSM Platform Specific Model

QoS Quality of Service

RAM Random Access Memory

RF Radio Frequency

RS-232 Electronic Industries Alliance interface standard

RS-422 Electronic Industries Alliance interface standard

RS-423 Electronic Industries Alliance interface standard

RS-485 Electronic Industries Alliance interface standard

SDR Software Defined Radio

SW Software

TBD To Be Determined

TCP Transmission Control Protocol

TOD Time Of Day

TRANSEC Transmission Security

UML Unified Modeling Language

USB Universal Serial Bus

UMTS Universal Mobile Telecommunications System

UUID Universally Unique Identifier

XML eXtensible Markup Language

Table 5-1 – Symbols (and abbreviated terms)

Abbreviation Definition

dtc/2005-09-04

6 Additional Information 6 Additional Information

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 25

6 Additional Information

Note – Issue 7785 - Waveform vs Application changes throughout Chapter 6

6.1 Changes to Adopted OMG Specifications
The specifications contained in this document require no changes to adopted OMG specifications.

6.2 Guide to this Specification
This specification consists of four major parts, contained in the following chapters 7 to 10.

● Chapter 7 provides an introduction into the field of software defined communication and provides the
architectural overview of the material contained in this specification

● Chapter 8 defines the modeling language used in this specification in form of a UML profile.

● Chapter 9 contains the Platform Independent Model (PIM). The UML language extended by the
profile defined in Chapter 8 is used to specify this PIM.

● Chapter 10 contains a description of the mapping process from the Platform Independent Model
(PIM) to a Platform Specific Model (PSM).

● A mapping of the SWRADIO PIM to the CORBA Component Model (CCM) is contained in the
Annexes

Note – Issue 8697: Add reference to the UML Model

The UML model referenced in Section 3.2.1 is used to generate the class diagrams shown throughout this speci-
fication. This UML model is non-normative, and provided for informational purposes only. The intent of the au-
thors is to provide a normative set of XMI files that would contain the UML Profile for SWRadio and PIM
facilities, when a tool that meets the requirements of this specification becomes available.

6.3 Credits
 The following organizations (listed in alphabetical order) contributed to this specification:

● BAE Systems

● BOEING

● Blue Collar Objects

● Carleton University

● Communications Research Center Canada

● École de Technologie Supérieure

● General Dynamics Decision Systems

● Harris

● ITT Aerospace

● ISR Technologies

dtc/2005-09-04

6.4 Design Rationale 6 Additional Information

26 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● L-3 Communications Corporation

● Mercury Computer Systems

● The MITRE Corporation

● Mobile Smarts

● Raytheon Corporation

● Rockwell Collins

● SCA Technica

● Space Coast Communication Systems

● Spectrum Signal Processing

● THALES

● Virginia Tech University

● Zeligsoft

● 88solutions

6.4 Design Rationale

6.4.1 Supporting a Product Line of SWRadio Applications

Product Line Practices (PLP), as defined by the Carnegie-Mellon Software Engineering Institute1, involves de-
veloping a set of core assets for a domain of software products. Application engineers reuse the core assets to
build specific products. Originally PLP envisioned runtime components as the primary core assets for a product
line. A number of industry practitioners have extended PLP by including specification languages and model com-
ponents among the core assets for a product line2.

PLP draws a distinction between core asset engineering on the one hand, and application engineering on the oth-
er. Application engineering reuses assets produced by the core asset engineering process.

This specification supports a product line for the domain of Software Radio Applications.

6.4.2 The UML Profile for Software Radio Applications:
A Domain-Specific Language

A specification language for a product line makes it possible to specify individual products that are members of
the product line. Such a language allows specification at a level of abstraction that is specific to the product line
and thus is at a higher level of abstraction than that offered by a general-purpose modeling or programming lan-
guage. For this reason, specification languages for product lines are called domain-specific languages (DSLs).
A DSL's higher level of abstraction hides complexity from the application engineer.

1.Carnegie Mellon Software Engineering Institute, “The Product Line Practices Initiative,” Web page,
http://www.sei.cmu.edu/plp/.
2.See, in particular, Krzysztof Czarnecki and Ulrich W. Eisenecker, Generative Programming: Methods,
Tools, and Applications, Addison Wesley, 2000.

dtc/2005-09-04

6 Additional Information 6.4.3 Model Components: Two PIMs and Two PSMs

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 27

This specification defines a DSL for a product line of software radio applications. The DSL is the UML Profile
for Software Radio Applications. Although UML is a general-purpose modeling language, this profile defines a
variant of UML that is specific to the software radio product line. This DSL is an important core asset for the
product line.

6.4.3 Model Components: Two PIMs and Two PSMs

As mentioned above, extensions to PLP also include model components among the core assets for a product line.
Model components are bits of models as opposed to bits of executable code. Tools reuse model components in
various ways.

For example, based on the application engineer's specifications expressed via the DSL, tools select model com-
ponents, configure them in particular ways, and compile them. The compiled model components can (but don't
have to) execute on top of runtime components that also are part of the product line.

For another example, fixed CORBA IDL is a model component that might be supplied as a core asset for a prod-
uct line.

This specification defines model components for the software radio applications product line. They are embodied
in two platform-independent3 models (PIMs)-the Waveform Applications PIM and the Software Radio Infra-
structure PIM-and in two platform-specific models (PSMs)-the Waveform Applications PSM and the Software
Radio Infrastructure PSM.

6.4.3.1 Applications PIM

This PIM defines types that software radio applications must implement. The intent is that the application engi-
neer never sees this PIM. Tools that process specifications expressed via the UML profile use the PIM to gener-
ate application skeletons or possibly to generate complete applications in some cases.

For example, if an application engineer marks an element of a application model with the DeviceComponent ste-
reotype that the profile defines, then a tool that processes the model produces an element that has all the features
that the application engineer explicitly defined for the stereotyped element and that also has the features defined
by the DeviceComponent type in the PIM.

Note that, for the device component concept, there is both a stereotype in the profile and a type in the PIM. The
semantics of the DeviceComponent stereotype are that the stereotyped element must implement the DeviceCom-
ponent type defined in the PIM.

6.4.3.2 Software Radio Infrastructure PIM

This PIM defines the types a software radio infrastructure must implement. It includes an abstraction of the Soft-
ware Communications Architecture (SCA) specification, defined by the Joint Tactical Radio System (JTRS) Joint
Program Office.

3.Platform-independence is a relative, not an independent concept. It is not meaningful to assert that a model
is independent without a specifying what kinds of platforms the model is independent of. For the purposes of
this specification, platform-independent means independent of information formatting technologies such as
XML; 3GLs and 4GLs such as Java, C++, C#, and Visual Basic; distributed component middleware such as
J2EE, CORBA, and .NET; and Messaging middleware such as WebSphere MQ Integrator (MQSeries) and
MSMQ

dtc/2005-09-04

6.4.4 Mappings 6 Additional Information

28 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Application developers do not see this PIM, and tools that implement application specifications expressed via the
profile do not use this PIM. However, applications require the presence of an implementation of this PIM (see
the Section 6.4.6 below How the Pieces Fit Together). Thus we can appropriately characterize this PIM as a core
asset for the software radio applications product line.

6.4.3.3 Applications PSM

The Applications PSM defines CORBA IDL and XML that applications must implement in order to run in a
CORBA/XML platform environment. The IDL and XML is derived from the Applications PIM. Later sections of
this design rationale explain the derivations.

6.4.3.4 Software Radio Infrastructure PSM

The Software Radio Infrastructure PSM defines CORBA IDL and XML that software radio infrastructures must
implement in order to run in a CORBA/XML platform environment. The IDL and XML is derived from the Soft-
ware Radio Infrastructure PIM. Later sections of the design rationale explain the derivations.

6.4.4 Mappings

Among the core assets for the product line are mappings that transform application specifications at one level of
abstraction to specifications at a lower level of abstraction. Application development tools implement the map-
pings.

The specification defines two mappings-the Profile-to-WaveformPIM Mapping and the PIM-to-PSM Mapping.
In combination, the mappings define how to generate a PSM for a application from a model expressed in terms
of the profile. For this specification, an application PSM consists of a combination of CORBA IDL and XML.

The specification could have defined one mapping instead of these two mappings. The one mapping would be a
Profile-to-PSM mapping. However, in order to promote flexibility in choice of middleware, the mapping is bro-
ken down into the two mappings, which a tool can apply transitively. If an implementer wishes to base PSMs
on some technology other than CORBA and XML, it is necessary only to replace the PIM-to-PSM Mapping.

The intention is that these mappings are complexity that tools hide from application engineers to the greatest de-
gree possible.

6.4.4.1 Profile-to-Waveform PIM Mapping

This mapping relates stereotypes in the UML profile to types in the PIM. The mapping of the profile's Device-
Component stereotype to the Waveform Applications PIM's DeviceComponent type, cited earlier in this design
rationale as an example, is an element of this mapping.

Thus, given an element in an application model expressed via the UML profile, the mapping defines how to re-
fine the application model into a more detailed platform-independent model of the application. The more detailed
model of the application leverages the types defined in the Waveform Applications PIM.

Note that the application model expressed via the profile is itself platform independent, based on our definition
of platform independence for this specification. Thus there are two platform-independent levels of abstraction
that are relevant here, although one is at a higher level of abstraction than the other; that is, the model that the
application engineer creates via the profile is at a higher level of abstraction than the refined application PIM that
a tool produces using the Profile-to-WaveformPIM mapping.

This specification provides this mapping as part of the definition of the profile's semantics.

dtc/2005-09-04

6 Additional Information 6.4.5 Runtime Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 29

6.4.4.2 PIM-to-PSM Mapping

This mapping defines how to transform a refined application PIM-that is, a PIM produced by the Profile-to-
WaveformPIM mapping-into a PSM for the application. In other words, it defines how to further refine an appli-
cation model to the CORBA/XML level of abstraction.

The specification also applies the PIM-PSM mapping directly to the Applications PIM to derive the Waveform
Applications PSM, which consists of fixed IDL and XML that applications must implement. The IDL and XML
generated by applying this mapping to a refined application model includes this fixed IDL and XML.

Furthermore, the specification also applies the PIM-PSM mapping to the Software Radio Infrastructure PIM to
derive the Software Radio Infrastructure PSM, which consists of fixed IDL and XML that software radio infra-
structures must implement. There is one exception to this rule: The specification does not apply the mapping to
the SCA PIM that is part of the Software Radio Infrastructure PIM, because the SCA IDL and XML are pre-
defined by the SCA specification.

The fact that the specification applies this mapping directly to the fixed Applications and Software Radio Infra-
structure PIMs is another reason for separating the mapping from the Profile-to-WaveformPIM mapping.

6.4.5 Runtime Components

Although runtime components are often critical core assets for a product line, this specification does not provide
runtime components to support the software radio applications product line. The OMG standardizes languages,
transformations, and types, not implementations of such. Tools that implement the language, transformations,
and types defined in this specification will probably provide runtime components that support the implementa-
tion.

6.4.6 How the Pieces Fit Together

Figure 6-1 below illustrates some of the interconnections among a software radio infrastructure, applications, and
external application clients. External clients invoke infrastructure APIs and the infrastructure invokes application
APIs. Standardized interfaces for software radio infrastructures make it possible to port external clients from one
software radio infrastructure to another. Standardized interfaces for applications make it possible for a software
radio infrastructure to support multiple waveform applications and to port applications from one software radio
infrastructure to another.

Figure 6-2 below illustrates a point explained earlier, namely that the fixed types defined in the Applications PIM
and the Software Radio Infrastructure PIM map to fixed, CORBA interfaces (and associated, fixed XML descrip-
tors) for applications and software radio infrastructures, respectively. This specification derives the fixed IDL
and XML via the PIM-to-PSM mapping. Conceptually, this application of the PIM-to-PSM mapping is per-
formed once.

Applications support additional CORBA interfaces and XML descriptors that correspond to the features that the
application engineer defines in the application model (that is, the model that the application engineer expresses
in terms of the UML profile). Figure 6-3 below illustrates that tools derive the IDL and XML by applying the

dtc/2005-09-04

6.4.6 How the Pieces Fit Together 6 Additional Information

30 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

two mappings transitively. The IDL and XML derived in this fashion also support the fixed Application IDL and
XML contained in the Application PSM. Conceptually, this transitive application of the Profile-to-WaveformPIM
and PIM-to-PSM mappings is performed once for each application.

Figure 6-1 – Interactions of External Client, Radio Infrastructure, and Application

External
Client Application

Middleware Platform
(E.g. CORBA/XML)

Software
Radio

Infrastructure
(1) (2)

(1) External client calls software radio infrastructure to
request the services of a application

(2) Infrastructure calls application to request initiation

dtc/2005-09-04

6 Additional Information 6.4.6 How the Pieces Fit Together

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 31

.

.

Figure 6-2 – Deriving the Fixed CORBA IDL and Fixed XML from the Fixed PIMs

Figure 6-3 – Applying the Mappings Transitively

Application
PIM

(Fixed UML)

Application
PSM

(Fixed CORBA IDL
and XML)PIM to

PSM
MappingSoftware Radio Infrastructure

PIM
(Fixed UML)

Software Radio Infrastructure
PSM

(Fixed CORBA IDL
and XML)

Application
Model

(Expressed via the
UML Profile for
Software Radio

Applications)

Refined
Application

PIM
(Leverages

the
Applications
PIM, which

is fixed UML)

Application
PSM

(Leverages
The

Wavefor
Applications
PSM, which
is fixed IDL
and XML)

Profile to
PIM

Mapping

PIM to
PSM

Mapping

Visible to
Application

Engineer

Not visible to
Application
Engineer

dtc/2005-09-04

6.4.6 How the Pieces Fit Together 6 Additional Information

32 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

7 Introduction to SWRadio 7 Introduction to SWRadio

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 33

7 Introduction to SWRadio

Note – Issue 7785 - Waveform vs Application changes throughout Chapter 7, Issue 7845 - Add
non-normative at the end of first paragraph

7.1 Introduction
The terms Software Radio and Software Defined Radio (SDR) are used to describe radios that are implemented
with strong emphasis on software. This type of radio, which is called SWRadio in this specification, offers im-
portant technical and commercial advantages. This non-normative section gives an overview of the rationale and
architecture of software radios.

A Software Defined Radio is a wireless communication system (low-capability mobile phones to high-capability
multi-channel radios), in which the particular communication and transmission characteristics are realized
through specialized software running on flexible signal processing hardware. This is very different from the tra-
ditional approach of using specialized hardware and has the benefit of instant reuse or sharing of a single system
platform for multiple communication purposes. Within the physical limits of the underlying hardware, virtually
any communication task can be realized instantaneously through a software load, including the ability of exten-
sive field-upgrades and maintenance.

SWRadio technology is changing every facet of communication system design and usage. SDR is not just anoth-
er way to build radios with the same functions, but SDR designs support many new critical needs. SDR supports
several waveforms inside the same box, eases bug fixing, enables reconfigurability, allows for digitized, IP-
based, data transmissions and improves security. It also enables an open market where waveform providers can
be independent of platform providers. These improvements are essential for the radio military market but also
meet the current and emerging needs of the civil radio market.

Enabling cost-effective technology insertion is a strong motivation for manufacturers suddenly faced with a more
volatile market than in the past and where tomorrow's standards are unclear. The life cycle of new radio sets has
become so short that the return-on investments cannot be ensured. Enabling cost-effective technology insertion is
also a concern for many operators and for customers faced with exploding costs. Reconfigurability is a key fea-
ture for next generation radio systems. It involves adding, removing and modifying radio functionality.

SWRadio supports multiple concurrent waveforms inside a single radio set is critical for the military market
where numerous waveforms are used by warfighters from various services and countries. Civil market changes,
and future civil radios, are likely to support both a cellular waveform and a high bandwidth local waveform on
the same hardware. Moreover, future radio node equipment may have to concurrently support multiple cellular
waveforms such as Global System for Mobiles (GSM), General Packet Radio Services (GPRS), Universal Mo-
bile Telecommunications System (UMTS) and high throughput waveforms such as Bluetooth and WiFi.

SWRadio facilitates repair of system defects through over-the-air or over-the-wire reprogramming of software
features. Repairing system defects is an important issue for radio manufacturers since this may involve returning
thousands of radio sets to factories. Software downloads to fix bugs is a key need for radios. This need is being
addressed on a waveform-by-waveform basis (3GPP), but this does not solve the problem for future multi-wave-
form radios. SWRadio technology addresses this need through defining standard component interfaces and defin-
ing a plug & play like deployment mechanism.

For the last century, radio was mainly used to transmit human voice in the commercial sector. In the future, these
radios will transmit digitized data as well as analog voice. This is a major shift. For example, a radio that was
mainly focused on point-to-point links will have to support new services such as networking and be used to man-
age the seamless qualities of radio function challenges. Radio is sometimes viewed as being the last hop inside a
network, but it is likely to also be used as a flexible wireless backbone in more and more cases.

dtc/2005-09-04

7.2 Software Communication Architecture 7 Introduction to SWRadio

34 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Radio security has changed. Security functions cannot be frozen for an entire radio system life. Security func-
tions must be able to evolve to counter new and evolving threats and to keep the security chain safe. This is es-
pecially important when coupling radios with information systems becomes the norm.

In addition to the functional improvements described above, SDR targets also bring all those new functions with-
in an architecture that supports a cost-effective engineering approach. Software Defined Radio will allow a wave-
form designer to provide the application that can run on a platform designed by a different vendor. In order to do
this effectively the interface between the platform and the application must be well defined and published. This
specification is intended to provide that definition.

Hereafter, we discuss four main elements that impacted the development of this specification: Software Commu-
nications Architecture, Model Driven Architecture, Platform and Waveform definitions and the SWRadio Archi-
tecture.

7.2 Software Communication Architecture
The Software Communication Architecture (SCA) is the software architecture developed by the US Military's
Joint Tactical Radio System (JTRS) Joint Program Office (JPO) for the next generation of radio systems. SDR
companies are currently developing radio systems based on this architecture. It is considered as the de-facto stan-
dard in the SDR industry. The SCA forms the basis for the development of this specification.

SCA has been published to meet the requirements for radios that will operate in multiple domains and frequency
bands. SCA compliant radios shall be able to communicate with legacy systems to minimize the impact of plat-
form integration. The architecture enables technology insertion, so that new technologies can be incorporated to
improve performance, and future-proof radios can be built.

Like most other software architectures, the SCA allows for the maximum possible reuse of software components.
The components support plug-and-play behavior with applications being portable from one radio platform to the
next.JTRS radios support legacy network protocols, for the purpose of seamless integration. The architecture
supports wideband networking capabilities for voice, data and video.

The SCA defines an Operating Environment (OE) that will be used by JTRS radios. It also specifies the services
and interfaces that the applications use from the environment. The interfaces are defined in CORBA IDL, and
graphically represented in UML. The OE consists of a Core Framework (CF), a CORBA middleware and a
POSIX-based Operating System (OS). The OS running the SCA must provide services and interfaces that are de-
fined as mandatory in the Application Environment Profile (AEP) of the SCA. The CF describes the interfaces,
their purposes and their operations. It provides an abstraction of the underlying software and hardware layers for
software application developers. An SCA compatible system must implement these interfaces. The interfaces are
grouped as Base Application Interfaces, Framework Control Interfaces and Framework Services Interfaces.

The CF uses a Domain Profile to describe the component metadata in the system. The Domain Profile is a set of
XML files that describe the identity, capabilities, properties, inter-dependencies, and location of the hardware de-
vices and software components that make up the system.

7.3 Model Driven Architecture
The OMG Model Driven Architecture (MDA) defines a model-based development approach to software develop-
ment. The main objective of MDA is to enable the portability/reuse of models across different technology plat-
forms. MDA focuses on the definition of Platform Independent Model (PIM), Platform Specific Model (PSM),
and Model Mappings that allows moving from one model to another in a systematic manner. One goal of MDA
is to define a set of Model Mappings between standard technologies that can be reused in different contexts. One
of the main benefits of MDA is that models can be defined independently of specific implementation platforms
and mapped to different platforms using predefined mappings.

dtc/2005-09-04

7 Introduction to SWRadio 7.4 SWRadio Platform and Applications

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 35

The current SWRadio specification fully endorses the MDA approach. It defines a UML Profile for SWRadio, a
PIM, and a CORBA/XML PSM for SWRadio components. The UML Profile for SWRadio, which is defined as
an extension of the UML 2.0 specification, defines a set of standard stereotypes that can be used for the develop-
ment of SWRadio applications, infrastructure, and deployment platforms. This profile is used in the current spec-
ification to define the PIM and PSM. The Platform Independent Model (PIM) formally defines a set of standard
facilities for SWRadio without the technical details of any specific implementation. The Platform Specific Model
(PSM) defines a version of the specification that is based on CORBA and XML specific technologies. The map-
ping between the PIM and the CORBA/XML PSM is captured in PIM-to-PSM mappings (given in Chapter 10).
This PIM-to-PSM mapping can be automated, which would allow automatically updating the PSM to reflect
changes made in the PIM to maintain a complete consistency between the two models.

7.4 SWRadio Platform and Applications
This specification supports a SWRadio Platform/Application approach where:

● the SWRadio Platform provides a standardized yet extensible set of software services that abstracts
hardware dependencies and support waveforms as well as other applications types such as
management applications. This specification defines a set of Platform-Independent Interfaces and
does not make any assumptions on how those interfaces are supported.

● Applications can be developed and cross ported onto various Platforms implementations,

Such a SWRadio Platform/Application approach opens the way to an open market where applications providers
can be independent of platform providers.

The SWRadio Platform concept used here refers to a composite infrastructure that is intended to support a set of
applications to build various dedicated configurations such as radio nodes, radio terminals and/or other radio
gateways. As a matter of fact, the SWRadio Platform define a basis for a product line approach.

The SWRadio Platform concept extends the Platform concept used within MDA in the way that SWRadio Plat-
form not only refer to a software API but also include a set of hardware and software components.

A Radioset based on a SWRadio Platform can be seen as made of several layers. From bottom to top layers are:

● Hardware layer: set of heterogeneous hardware resources including general purpose devices as well as
specialized ones,

● Operating Environment layer: basically provides operating system and (distributed) middleware
services,

● Facilities layer: provides sets of services to the application developer,

● Application layer: figures a standalone capability provided by the radioset.

Those layers are figured below:

dtc/2005-09-04

7.4 SWRadio Platform and Applications 7 Introduction to SWRadio

36 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Applications supported by SWRadio Platform can be dispatched into 3 categories:

● Waveform Applications that are the main focus of SWRadio and figure the waveform-specific
application functions that noticeably coordinate the underlying SWRadio Platform functions to
achieve the end-to-end waveform processing. These Applications also support general purpose
Management Applications with waveform-specific management functions.

● Management Applications that figure general purpose, waveform-independent applications that
enable to manage and control the Radioset and its embedded applications. Management Applications
act as managers as defined in the OSI management framework (see IS 7498) and see Waveform
Applications as agents to relay their requests. SWRadio Platform provides the management services
excluding the presentation HMI.

● Other Applications figure all other kind of applications that can be provided inside a radioset such as:

● Network applications that mainly support routing, security, directory or QoS functions),

● End user applications such as Situation Awareness and/or other 3rd party applications.

Applications are supported by SWRadio Facilities inside which Logical Devices abstract some of the actual hard-
ware devices of the SWRadio Platform. Logical Devices are defined for management purpose and their proper-
ties are designed to support management functions such as (re)configuration, performance or fault management.

Logical Devices should not be used directly by applications. Instead, applications should use higher level SWRa-
dio Facilities.

Figure 7-4 – SWRadio Layered View

Management Waveform

 SWR
 Facilities

 Logical
 Device

Operating Environment

Hardware

RADIOSET
borderSWRadio

PLATFORM
border

Other

Applications

dtc/2005-09-04

7 Introduction to SWRadio 7.5 SWRadio Architecture

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 37

7.5 SWRadio Architecture
The SWRadio architecture consists of two main concepts: services as well as applications and layering. Services
concept depends on the interfaces provided and the usage of those interfaces. Application layering provides a
logical grouping of functionality based on current commercial practice.

Through realization relationships in the PIM, a component can offer one or more services. A SWRadio vendor
may choose to provide certain services that are required for their platform, and likewise acquire extra services
from third party vendors. The services that can be provided by different actors that use this specification is de-
tailed in the Chapter 2 Conformance.

● For a logical grouping of functionality, this specification follows the Open System Interconnection
(OSI) Model elaborated and promoted by the International Standard Organization (ISO)

A full description of the OSI model can be found inside the ISO IS 7498The OSI model assumes that the struc-
ture of the communications functions located on a network node should be structured into a stack of 7 Layers
where:

● a layer talks with its counterpart located on another radio set,

● the communication between peer layers is ruled by a Protocol which exchanges Protocol Data Units
(PDU),

● a layer supplies Services to upper layers through Service Access Points (SAP),

● a layer acts as a PDU consumer and/or provider for its upper and lower layers.

Note that some communication links do not always require all layers and that some layers may be empty inside
a communications stack. The core of the OSI could be modeled as in Figure 2. In this figure, a sublayer is a sub-
division of a layer.

dtc/2005-09-04

7.5 SWRadio Architecture 7 Introduction to SWRadio

38 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Ironically, and despite its importance, the OSI model has primarily been a conceptual model that was implement-
ed in hybrid manners in practice for performance reasons. Moreover, with the worldwide adoption of IP, the
“old” layered model on which IP is built superseded the OSI model.Within the SDR context, the OSI model still
proves to be a good design technique since it allows separation of concerns by making use of layering. This ap-
proach promotes the usage of interoperable and reconfigurable components through standard interfaces and well-
defined packaging.

This specification acknowledges that the OSI communication model is a good reference design for any commu-
nication system, but conformance with this model is not mandatory for any radio set due to design and perfor-
mance constraints. The proposed architecture supports not only the OSI model, but also other in-use or next-to-
come models.

The OSI concepts described in this specification apply to the Extended OSI model which allows Management
and QoS interfaces to cut through the waveform layer stack and communicate with any layer. Furthermore, this
specification only focuses on physical and link (link layer control and medium access control) layers of the OSI
stack.

Figure 7-5 – Abstract OSI Model Core

Protocol

Layer

Service
Access Point

SublayerSublayerSublayer

Protocol
Data Unit

Protocol
Data Unit

Protocol
Data Unit

exchanges

processes

supplies

talks to

(upper layer) invokes talks to

Service
Access Point

Service
Access Point

Layer Layer

dtc/2005-09-04

8 UML Profile for Software Radio 8 UML Profile for Software Radio

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 39

8 UML Profile for Software Radio
Application and Device Components Page 42
Communication Equipment . Page111
Infrastructure . Page135

Note – Issue 7845

This normative section defines the UML Profile for SWRadio. This profile is an integral part of the “PIM and
PSM for SWRADIO Components. The set of stereotypes defined in this profile constitutes the core language for
the definition of the SWRadio PIM and PSM. The current UML Profile for SWRadio extends the UML 2.0 meta-
language, with emphasis on extensions to. It mainly extends the Components package and Deployment package
of UML 2.0.

The goal of the UML Profile for SWRadio is to enable the development of UML tools to support the develop-
ment of SWRadio applications and systems. The objectives are not only to facilitate the modelling of SWRadio
applications and systems, but also to enable the automatic generation of descriptor files (e.g. XML descriptor
files) and code (or code skeletons) from UML models, to enable validation at design time, and to enable the de-
velopment of simulation environment for SWRadio.

To address the issues of the different actors involved in SWRadio product developments, the current profile has
been developed with three main viewpoints in mind: the viewpoint of application and device developers, the
viewpoint of infrastructure/middleware providers, and the viewpoint of SWRadio platforms providers. These
three viewpoints define distinct sets of concepts (and stereotypes) that are required in different contexts.

To be consistent with the three viewpoints introduced above, the UML Profile for SWRadio is partitioned in
three main packages: the Applications and Devices package, the Infrastructure package, and the Communication
Equipment package. Each package defines the set of concepts and UML stereotypes required to perform a specif-
ic role in the development of an SWRadio product.

The Applications and Devices package defines the set of concepts that are required to develop SWRadio applica-
tions and devices. This package mainly contains a set of stereotypes that extends the UML 2.0 meta-classes
Component and Interface. This set of stereotypes includes Resource, Device, DeviceDriver, and SWRAPI
(SWRadio API).

One of the main objectives of this profile is to standardize interfaces and components to enable Commercial-off-
the-Shelf (COTS) component SWRadio application development.

For this purpose, the Applications and Devices package defines the concept (as a stereotype) of SWRAPI
(SWRadio API) as en extension of UML interfaces. This stereotype is used to type the different SWRadio APIs
that aim at being standardized. The set of SWRAPIs defined in this specification can be split in two categories:
SWRadio application component interfaces and services interfaces.

The Infrastructure package defines the concepts that are required to develop software components deploy servic-
es and applications (e.g., waveforms) within a radio infrastructure for SWRadio applications, and to manage the
radio's domain, services, and devices. This package mainly contains a set of stereotypes that extends the UML
2.0 meta-classes Component and Interface. This set of stereotypes includes RadioManager, DeviceManager, Ap-
plication, and ApplicationFactory components.

dtc/2005-09-04

8 UML Profile for Software Radio 8 UML Profile for Software Radio

40 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The Communication Equipment package defines the concepts that are required to model SWRadio equipment.
This package defines stereotypes for the different types of hardware devices used in SWRadio. This package
mainly contains a set of stereotypes that extends the UML 2.0 meta-class Device. This set of stereotypes includes
RF Device, I/O Device, Security Device, Antenna, Amplifier, Frequency Converter, etc. For each Device stereo-
type specific characteristics are defined that are required by a waveform component for deployment behavior.

Note – Issue 7694 - Explanation of different port types (2nd Ballot)

The UML Profile for SWRadio uses the concept of a Port as defined in the UML 2.0 specification by extending
the Port definition for two different purposes. In Section 8.1.4, port stereotypes such as ServicePort, StreamPort
are defined as software component ports which enable their users to access the associated software interfaces. In
Section 8.2.4, the concept of a hardware port in a RadioSet environment is introduced, and Port specializations
such as AnalogInputPort and DigitalPort are specified.

dtc/2005-09-04

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 41

Application and Device Components Page 42
Base Types . Page 44
ErrorNumberType. Page 45
InvalidFileName . Page 46
InvalidObjectReference . Page 46
Octet . Page 47
OctetSequence . Page 47
Properties . Page 48
PropertyValue . Page 48
StringSequence . Page 49
SystemException . Page 49
Properties . Page 53
CapacityProperty . Page 55
CharacteristicProperty. Page 56
CharacteristicSelectionProperty. Page 57
CharacteristicSetProperty . Page 58
ConfigureProperty . Page 59
ExecutableProperty . Page 60
InputValueProperty . Page 60
QueryProperty . Page 61
RadioProperty . Page 61
ServiceProperty . Page 62
SimpleProperty. Page 63
StructProperty . Page 65
TestDefProperty . Page 65
TestProperty . Page 66
Interface and Port Stereotypes . Page 66
StreamPort . Page 68
Resource Components . Page 68
ComponentIdentifier . Page 69
ControllableComponent . Page 70
LifeCycle . Page 71
PortConnector . Page 71
PortSupplier . Page 72
PropertySet. Page 73
Resource. Page 75
TestableObject . Page 78
ResourceComponent . Page 80
Resource Factory Component . Page 82
SWRadioComponent . Page 83
Device Components . Page 84
DeviceComponent . Page 94
DeviceDriver . Page 96
ExecutableDeviceComponent . Page 96
DeviceCompositionComponent . Page 97
LoadableDeviceComponent . Page 98
Application Components . Page 99
Application . Page 101
ApplicationResourceComponent . Page 102
WaveFormLayerResource . Page 103
PhysicalLayerResource. Page 104

dtc/2005-09-04

8.1 Application and Device Components

42 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

MediumAccessControlResource . Page 105
LinkLayerControlResource . Page 106
NetworkLayerResource . Page 108

8.1 Application and Device Components

Note – Issue 7785 - Waveform vs Application changes throughout Chapter 8

The Applications and Devices package provides a set of component and interface stereotype definitions that are
used for the development of SWRadio applications, logical devices, and SWRadio components. For application
developers all sections are applicable except for Device Components section and for device developers all sec-
tions are applicable except for Application Components section. Figure 8-6 depicts the relationships among the
packages within the Application and Device Components, which are as follows:

● Base Types - defines basic types for SWRadio applications, logical devices, and component
definitions.

● Properties - defines stereotypes for configure, query, testable, service artifact (capability and capacity)
and executable properties for SWRadio components and executable code artifacts.

● Interface & Port Stereotypes - defines stereotypes for SWRadio interfaces and components.

● Resource Components - defines stereotypes for the interfaces and components for the
ResourceComponent, which is the basic component type for SWRadio application and device
components.

● Device Components - defines stereotypes for the logical device components that represent devices
that SWRadio component are deployed on or use within a SWRadio.

dtc/2005-09-04

 8.1 Application and Device Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 43

● Application Components - defines stereotypes for the ResourceComponents for SWRadio
applications.

Figure 8-6 – Applications and Devices Overview

BaseTypes

Devic e
Components

Properti es

Resource
Components

Applicat ion
Components

dtc/2005-09-04

8.1.1 Base Types

44 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.1 Base Types

The Base Types defines the basic types and exceptions used by multiple SWRadio components as shown in Fig-
ure 8-7 below.

Note – Issue 7655 (figure above), Issue 7586 changed constriant to be “xor”

Note – Issue 7655

8.1.1.1 BooleanSequence

Description

The BooleanSequence data type is an unbounded sequence of Boolean(s).

Note – Issue 7895, added TimeType

Figure 8-7 – Base Types Overview

OctetSequence
<<dataType>>

ErrorNumberType
<<enumerat ion>>SystemException

errorNumber : ErrorNumberType
msg : String

<<exception>>

InvalidFileName
<<exception>>

InvalidObjectReference
msg : String

<<exception>>

String
<<primitive>>

StringSequence
<<dataType>>

*

1

*

1

Octet
<<primitive>>

*

1

*

1

Properties
<<datatype>>

PrimitiveType
<<dataType>> Properties

<<datatype>>

PropertyValue
<<dataType>>

*
1

*
1

0..10..1+primitiveValue
0..1+properties0..1

{xor}

Integer
<<primitive>>

Float
<<primitive>>

FloatSequence
<<dataType>>

*

1

*

1

Double
<<primitive>>

DoubleSequence
<<dataType>>

*

1

*

1

LongLong
<<primitive>>

LongLongSequence
<<dataType>>

*

1

*

1

Long
<<primitive>>

LongSequence
<<dataType>>

*

1

*

1

Short
<<primitive>>

ShortSequence
<<dataType>>

*

1

*

1

ULong
<<primi tive>>

ULongSequence
<<dataType>>

*

1

*

1

UShort
<<primitive>>

UShortSequence
<<dataType>>

*

1

*

1

Character
<<primitive>>

CharSequence
<<dataType>>

*

1

*

1

ULongLong
<<primitive>>

ULongLongSequence
<<dataType>>

*

1

*

1

ObjectReference
<<primitive>>

ObjectRefSequence
<<dataType>>

*

1

*

1

LongDouble
<<primitive>>

LongDoubleSequence
<<dataType>>

*
1

*
1

WString
<<primitive>>

WStingSequence
<<dataType>>

*

1

*

1

WChar
<<primitive>>

WCharSequence
<<dataType>>

*

1

*

1

Boolean
(from UML)

<<primi tive>>

BooleanSequence
<<dataType>>

*

1

*

1

TimeType
seconds : ULongLong
nanoseconds : ULongLong

dtc/2005-09-04

 8.1.1 Base Types

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 45

8.1.1.2 Character

Description

The Character primitive type is an 8-bit quantity that encodes a single-byte character from any byte-oriented
code set.

Constraints

The Character value is a LiteralCharacter.

8.1.1.3 CharSequence

Description

The CharSequence data type is an unbounded sequence of Character(s).

8.1.1.4 Double

Description

The Double primitive type is an IEEE double-precision floating point number. See IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.

Constraints

The Double value is a LiteralDouble.

8.1.1.5 DoubleSequence

Description

The DoubleSequence data type is an unbounded sequence of Double(s).

8.1.1.6 ErrorNumberType

Description

The ErrorNumberType enumeration defines error number information used in various exceptions.

Attributes

Those enumeration literal names starting with “CF_E” map to the POSIX definitions (starting with “E”) that can
be found in IEEE Std. 1003.1 1996 Edition. CF_NOTSET is not defined in the POSIX specification.
CF_NOTSET is a specific value that is applicable for any exception when the method specific or standard
POSIX error values are not appropriate.)

Enumeration Literal names are:

CF_NOTSET, CF_E2BIG, CF_EACCES, CF_EAGAIN, CF_EBADF, CF_EBADMSG, CF_EBUSY,
CF_ECANCELED, CF_ECHILD, CF_EDEADLK, CF_EDOM, CF_EEXIST, CF_EFAULT, CF_EFBIG,
CF_EINPROGRESS, CF_EINTR, CF_EINVAL, CF_EIO, CF_EISDIR, CF_EMFILE, CF_EMLINK,
CF_EMSGSIZE, CF_ENAMETOOLONG, CF_ENFILE, CF_ENODEV, CF_ENOENT, CF_ENOEXEC,

dtc/2005-09-04

8.1.1 Base Types

46 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

CF_ENOLCK, CF_ENOMEM, CF_ENOSPC, CF_ENOSYS, CF_ENOTDIR, CF_ENOTEMPTY,
CF_ENOTSUP, CF_ENOTTY, CF_ENXIO, CF_EPERM, CF_EPIPE, CF_ERANGE, CF_EROFS,
CF_ESPIPE, CF_ESRCH, CF_ETIMEDOUT, CF_EXDEV

Note – Issue 7655, Issue 7586

8.1.1.7 Float

Description

The Float primitive type is an IEEE single-precision floating point number. See IEEE Standard for Binary Float-
ing-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.

Constraints

The Float value shall be a LiteralFloat that is an IEEE single-precision floating point number.

8.1.1.8 FloatSequence

Description

The FloatSequence data type is an unbounded sequence of Float(s).

8.1.1.9 InvalidFileName

Description

The InvalidFileName <<exception>>, type of SystemException, indicates an invalid file name. The errorNum-
ber attribute indicates the type of error (e.g., CF_ENAMETOOLONG). The String msg attribute provides infor-
mation describing why the filename was invalid.

8.1.1.10 InvalidObjectReference

Description

The InvalidObjectReference <<exception>> indicates an invalid object reference error.

Attributes

● msg: String A msg attribute is supplied for further information on the exception being
raised.

Note – Issue 7655, Issue 7586

8.1.1.11 Long

Description

The Long primitive type, a specialization of Integer primitive type, is a signed integer range –231.. 231 – 1.

Constraints

The Long value shall be a LiteralInteger with a range of –231.. 231 – 1.

dtc/2005-09-04

 8.1.1 Base Types

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 47

8.1.1.12 LongDouble

Description

The LongDouble primitive type is an IEEE double-extended floating-point number. See IEEE Standard for Bina-
ry Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.

Constraints

The LongDouble value shall be a LiteralLongDouble that is an IEEE double-extended floating-point number.

8.1.1.13 LongDoubleSequence

Description

The LongDoubleSequence data type is an unbounded sequence of LongDouble(s).

8.1.1.14 LongLong

Description

The LongLong primitive type, a specialization of Integer primitive type, is a signed integer range -263 .. 263 - 1.

Constraints

The LongLong value shall be a LiteralInteger with a range of -263 .. 263 - 1.

8.1.1.15 LongLongSequence

Description

The LongLongSequence data type is an unbounded sequence of LongLong(s).

8.1.1.16 LongSequence

Description

The LongSequence data type is an unbounded sequence of Long(s).

8.1.1.17 Octet

Description

The Octet primitive type, a specialization of Integer primitive type, is an unsigned integer within range 0..255.

Constraints

The Octet value shall be a LiteralInteger with a range of 0..255.

8.1.1.18 OctetSequence

Description

This type is an unbounded sequence of octets as shown in Figure 8-7

dtc/2005-09-04

8.1.1 Base Types

48 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7655

8.1.1.19 ObjectReference

Description

The ObjectReference primitive type, a specialization of String primitive type, is a stringified object reference of
an object.

Constraints

The ObjectReference value is LiteralString.

8.1.1.20 ObjectRefSequence

Description

The ObjectRefSequence data type is an unbounded sequence of ObjectReference(s).

8.1.1.21 Properties

Description

The Properties, as shown in Figure 8-7, is an unbounded sequence of PropertyValue(s), which is used in defining
a sequence of id and value pairs.

8.1.1.22 PropertyValue

Description

The PropertyValue is used to hold a property's value.

Attributes

● id: String

The id attribute identifies a specific property of the component.
● value: primitive datatype or Properties

The value attribute contains the property's value.

Constraints

Note – Issue 7895, fix type, Issue 7586 added “either” in text

The value attribute shall be either a primitive type (e.g., String, ULong, etc.) or Properties.

Note – Issue 7655, Issue 7586

8.1.1.23 Short

Description

The Short primitive type, a specialization of Integer primitive type, is a signed integer range –215.. 215 – 1.

dtc/2005-09-04

 8.1.1 Base Types

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 49

Constraints

The Short value shall be a LiteralInteger with a range of –215.. 215 – 1.

8.1.1.24 ShortSequence

Description

The ShortSequence data type is an unbounded sequence of Short(s).

8.1.1.25 StringSequence

Description

This type is an unbounded sequence of Strings as shown in Figure 8-7.

8.1.1.26 SystemException

Description

The SystemException exception, as shown in Figure 8-7, denotes a type that is used when an exception is raised
by an operation.

Attributes

● errorNumber: ErrorNumberType
The errorNumber indicates the type of system error.

● msg: String

The message attribute is used to add additional information on the error that oc-
curred.

Note – Issue 7655, Issue 7586

8.1.1.27 ULong

Description

The ULong primitive type, a specialization of Integer primitive type, is an unsigned integer range 0.. 232 – 1.

Constraints

The ULong value shall be a LiteralInteger with a range of 0.. 232 – 1.

8.1.1.28 ULongLong

Description

The ULongLong primitive type, a specialization of Integer primitive type, is an unsigned integer range 0.. (264 -
1).

Constraints

The ULongLong value shall be a LiteralInteger with a range of 0 .. 264 - 1.

dtc/2005-09-04

8.1.1 Base Types

50 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.1.29 ULongLongSequence

Description

The ULongLongSequence data type is an unbounded sequence of ULongLong(s).

8.1.1.30 ULongSequence

Description

The ULongSequence data type is an unbounded sequence of ULong(s).

8.1.1.31 UShort

Description

The UShort primitive type, a specialization of Integer primitive type, is an unsigned integer range 0.. 216 – 1.

Constraints

The UShort value shall be a LiteralInteger with a range of 0.. 216 – 1.

8.1.1.32 UShortSequence

Description

The UShortSequence data type is an unbounded sequence of UShort(s).

8.1.1.33 WChar

Description

The WChar primitive type represents a wide character that can be used for any character set.

Constraints

The WChar value shall be a LiteralWChar.

8.1.1.34 WCharSequence

Description

The WCharSequence data type is an unbounded sequence of WChar(s).

8.1.1.35 WString

Description

The WString primitive type represents a wide character sting that can be used for any character set.

Constraints

The WString value is a LiteralWString.

dtc/2005-09-04

 8.1.2 Literal Specifications

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 51

8.1.1.36 WStringSequence

Description

The WStringSequence data type is an unbounded sequence of WString(s).

Note – Issue 7895, Added TimeType

8.1.1.37 TimeType

Description

The TimeType, as shown in Figure 8-7, denotes a type that represents time.

Attributes

● seconds: ULongLong
Seconds.

● nanoseconds: ULongLong
Nanoseconds.

Note – Issue TBD added semantics

Semantics

The TimeType attribute is used to define time. Seconds in the future when an event should occur or in the past
when an event has occurred. Seconds field is the seconds that have occurred since last synchronization epoch. (Ep-
och method will be defined by instantiating API.) In most cases, the epoch will occur one time when the box is in-
itialized. Nanosecond offset from the seconds field (described above) when a future event will occur or past event
has occurred

Note – Issue 7655

8.1.2 Literal Specifications

Note – Issue 8872, extensions not specializations

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being
modeled. The literal specifications identified in this section are extensions of the UML LiteralSpecification meta-
class.

8.1.2.1 LiteralCharacter

Description

A literal character, an extension of LiteralSpecification, contains a Character-valued attribute.

dtc/2005-09-04

8.1.2 Literal Specifications

52 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Attributes

•value : Character

Semantics

A LiteralCharacter specifies a constant Character value.

8.1.2.2 LiteralDouble

Description

A literal double, an extension of LiteralSpecification, contains a Double-valued attribute.

Attributes

•value : Double

Semantics

A LiteralDouble specifies a constant Double value.

8.1.2.3 LiteralFloat

Description

A literal float, an extension of LiteralSpecification, contains a Float-valued attribute.

Attributes

•value : Float

Semantics

A LiteralFloat specifies a constant Float value.

8.1.2.4 LiteralLongDouble

Description

A literal long double, an extension of LiteralSpecification, contains a LongDouble-valued attribute.

Attributes

•value : LongDouble

Semantics

A LiteralLongDouble specifies a constant LongDouble value.

dtc/2005-09-04

 8.1.3 Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 53

8.1.2.5 LiteralWChar

Description

A literal wide character, an extension of LiteralSpecification, contains a WChar-valued attribute.

Attributes

•value : WChar

Semantics

A LiteralWChar specifies a constant wide character value.

8.1.2.6 LiteralWString

Description

A literal wide string, an extension of LiteralSpecification, contains a WString-valued attribute.

Attributes

•value : WString

Semantics

A LiteralWString specifies a constant wide string value.

8.1.3 Properties

Note – Issues 7688, 7983, 7984, 7985

This section defines the property stereotypes for SWRadio components. A property is a named value denoting an
attribute of a class. The property types contained in this package are configure, query, simple, test, structure, and

Note – Issue 7895, fix type

service. All properties are based upon primitive data type values (e.g., char, ULong, string, etc.). The reason for
this is two fold: 1) these primitive types are supported by distributed component middleware and 2) the primitive
types allow for a generic mechanism to be built such as deployment, component interaction, and Human Com-
puter Interface (HCI). All the values of a sequence type (simple or structure sequence) are based upon the same
property definition, in order to simplify processing within an embedded environment. Simple, Structure, and Se-
quence properties can be used for configuring and/or querying a component's properties. Test properties are test-
able properties for a component. There are four subclasses of a SimpleProperty which are CapacityProperty,
CharacteristicProperty, CharacteristicSelectionProperty and ExecutableProperty. The ServiceProperty is used to

dtc/2005-09-04

8.1.3 Properties

54 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

describe the characteristic capabilities and capacities of a Service. The ExecutableProperty is used to describe the
executable parameters for an executable implementation (e.g., process, thread). The details of each property type
are described in the following subsections.

Table 8-2 – Properties Stereotypes

Stereotype Base Class Parent Tags Constraints Description

CapacityProperty Property ServiceProperty,
SimpleProperty

See constraints
in section below

Represents capacity
property.

CharacteristicProp
erty

Property ServiceProperty,
SimpleProperty

See constraints
in section below

Represents
characteristic property.

CharacteristicSele
ctionProperty

Property ServiceProperty,
SimpleProperty

See constraints
in section below

Represents
characteristic property
that is a simple list.

CharacteristicSetP
roperty

Property ServiceProperty,
RadioProperty

See constraints
in section below

Represents a set of
characteristic properties
that are of the same
classification.

ConfigureProperty Property N/A stepSize See constraints
in section below

Represents a
configurable and
queryable property.

EnumerationPrope
rty

Class N/A See constraints
in section below

Represents a
enumeration property
type where the
enumeration literals
have an integer value.

ExecutablePropert
y

Property SimpleProperty queryable See constraints
in section below

Represents an
executable parameter
property.

InputValuePropert
y

Property SimpleProperty Represents an input
value parameter
property for a test.

QueryProperty Property SimpleProperty See constraints
in section below

Represents a queryable
property.

<<abstract>>Radi
oProperty

Property N/A integerId,
label,
maxLatency,
range,
units

See constraints
in section below

Represents the common
attributes for all
SWRadio property
types.

ResultValueProper
ty

Property SimpleProperty Represents a result
value for a test.

<<abstract>>Servi
ceProperty

Property N/A capabilityMod
el,
locallyManage
d

See constraints
in section below

Represents
characteristic or
capacity property for a
service.

dtc/2005-09-04

 8.1.3 Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 55

Note – Issue8200 added EnumerationProperty before ExecutableProperty

8.1.3.1 CapacityProperty

Description

The CapacityProperty as shown in Figure 8-8 is a type of ServiceProperty and SimpleProperty that defines a
managed or unmanaged dynamic capacity for a ServiceComponent.

Note – Issues 7983, 7586

Constraints

● The CapacityProperty's locallyManaged attribute default value shall be True. The corresponding OCL is as follows:
context CapacityProperty::locallyManaged:Boolean
init: true

● Valid values for the CapacityProperty's capabilityModel attribute value shall be: “counter” and “quantity”. The cor-
responding OCL is as follows:
context CapacityProperty
inv validcapabilitymodel: self.capabilityModel = 'counter' or self.capability-
Model = 'quantity'

● CapacityProperty shall have an initial value of ‘quantity’. The corresponding OCL is as follows:
context CapacityProperty::capabilityModel:String
init: 'quantity'

Semantics

Note – Issue 7895, fix type

CapacityProperty's type is usually a numeric type (e.g., ULong, float, etc.).

The meanings of the CapacityProperty's capabilityModel attribute values shall be:

SimpleProperty Property RadioProperty See constraints
in section below

Represents a
RadioProperty that
contains a primitive
value type.

StructProperty Class N/A See constraints
in section
below.

Represents a struct of
SimpleProperties.

TestDefProperty Class N/A See Constraints
in section
below.

Describes a test
definition type and its
associated inputs and
expected results.

TestProperty Property RadioProperty See constraints
in section
below.

Describes a test
property.

Table 8-2 – Properties Stereotypes

Stereotype Base Class Parent Tags Constraints Description

dtc/2005-09-04

8.1.3 Properties

56 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● “counter” - This CapacityModel has a capacity of an counter. The capacity value is decremented by
one until zero during allocation and incremented by one during deallocation. Allocation fails if the
counter is at zero. Example: a sound card with 4 output channels.

● “quantity” - This CapacityModel has a certain capacity that can be consumed. The value of the
deployment requirement value is subtracted from the capacity during allocation and added to the
capacity during deallocation. The allocation is successful if the capacity has a value that equals or
exceeds the value of the deployment requirement. Example: memory size.

Other capabilityModel attribute values can be specified. These other specified capabilityModel attribute values
may be managed at the ManagedServiceComponent level or at an ApplicationFactory level.

8.1.3.2 CharacteristicProperty

Description

The CharacteristicProperty is a type a ServiceProperty and SimpleProperty that defines a static characteristic for
a ServiceComponent.

Constraints

Note – Issues 7586, 7983

● The CharacteristicProperty's locallyManaged attribute default value shall be False. The corresponding OCL is as fol-
lows:
context CharacteristicProperty::locallyManaged:Boolean
init: false

● Valid values for the CharacteristicProperty's capabilityModel attribute value shall be: “eq”, “ne”, “le”, “ge”, “lt”,
“gt”, “maximum” or “minimum”. The corresponding OCL is as fol-
lows:
context CharacteristicProperty
inv validcapabilitymodel: self.capabilityModel in Set { 'eq', 'ne', 'le', 'ge', 'lt', 'gt',
'maximum', 'minimum' }

● CharacteristicProperty shall have an initial value of ‘eq’. The corresponding OCL is as follows:
context CharacteristicProperty::capabilityModel:String
init: 'eq'

Semantics

The meanings of the CharacteristicProperty's capabilityModel attribute values shall be:

● “eq” - is an equality comparison between the CharacteristicProperty's value attribute and a
deployment requirement (Infrastructure::SWRadio Deployment::SWRadio
Artifacts::BasicDeploymentRequirement). They are equal if the CharacteristicProperty's value equals
the deployment requirement. If they are equal then the CharacteristicProperty can satisfy a
deployment requirement otherwise it cannot satisfy the deployment requirement.

● “ne” - is a not equal comparison between the CharacteristicProperty's value attribute and a
deployment requirement. They are not equal if CharacteristicProperty's value does not equal the
deployment requirement. If they are not equal then the CharacteristicProperty can satisfy a
deployment requirement otherwise it cannot satisfy the deployment requirement.

dtc/2005-09-04

 8.1.3 Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 57

● “le” - is a less than or equal comparison between the CharacteristicProperty's value attribute and a
deployment requirement. If the deployment requirement is less than or equal to the
CharacteristicProperty then the CharacteristicProperty can satisfy a deployment requirement
otherwise it cannot satisfy the deployment requirement.

● “ge” - is a greater than or equal comparison between the CharacteristicProperty's value attribute and a
deployment requirement. If the deployment requirement is greater than or equal to the
CharacteristicProperty then the CharacteristicProperty can satisfy a deployment requirement
otherwise it cannot satisfy the deployment requirement deployment requirement otherwise it cannot
satisfy the deployment requirement.

● “lt” - is a less than comparison between the CharacteristicProperty's value attribute and a deployment
requirement. If the deployment requirement is less than the CharacteristicProperty then the
CharacteristicProperty can satisfy a deployment requirement otherwise it cannot satisfy the
deployment requirement.

● “gt” - is a greater than comparison between the CharacteristicProperty's value attribute and a
deployment requirement. If the deployment requirement is greater than the CharacteristicProperty
then the CharacteristicProperty can satisfy a deployment requirement otherwise it cannot satisfy the
deployment requirement deployment requirement otherwise it cannot satisfy the deployment
requirement.

● “Minimum” - behaves as “ge”

● “Maximum” - behaves as “le”

Other capabilityModel attribute values can be specified. These other specified capabilityModel attribute values
may be managed at the ServiceComponent level or at an ApplicationFactory level.

8.1.3.3 CharacteristicSelectionProperty

Description

Note – Issue 7985

The CharacterisiticSelectionProperty is a type a ServiceProperty and SimpleProperty that defines a static charac-
teristic for a ServiceComponent. The property contains a list of characteristic values of the same primitive type.

Constraints

Note – Issues 7586, 7983

● The CharacteristicSelectionProperty's locallyManaged attribute default value shall be False. The corresponding
OCL is as follows:
context CharacteristicSelectionProperty::locallyManaged:Boolean
init: false

● Valid values for the CharacteristicSelectionProperty's capabilityModel attribute value shall be: “selection”. The cor-
responding OCL is as follows:
context CharacteristicSelectionProperty
inv validcapabilitymodel: self.capabilityModel = 'selection'

● CharacteristicSelectionProperty shall have an initial value of ‘selection’. The corresponding OCL is as follows:
context CharacteristicSelectionProperty::capabilityModel:String
init: 'selection'

dtc/2005-09-04

8.1.3 Properties

58 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Semantics

The meanings of the CharacteristicSelectionProperty's capabilityModel attribute values are:

● “selection” - is an equality/match comparison between any CharacteristicSelectionProperty's value
attribute and a BasicDeploymentRequirement (Infrastructure::SWRadio Deployment::SWRadio
Artifacts). They shall be equal/match if any SelectionCharacteristicProperty's value equals the
deployment requirement. If they are equal/match then the CharacteristicSelectionProperty can satisfy
a deployment requirement otherwise it cannot satisfy the deployment requirement.

Other capabilityModel attribute values can be specified. These other specified capabilityModel attribute values
may be managed at the ServiceComponent level or at an ApplicationFactory level.

8.1.3.4 CharacteristicSetProperty

Description

The CharacteristicSetProperty is a type a ServiceProperty and RadioProperty that defines a characteristic that de-
fines the same set of characteristics for a ServiceComponent. Each item in the set is of the same characteristic
classification such as library or runtime. All the items in the set represent characteristics that are supported by the
Service. Each supported characteristic has a set of qualifiers (e.g., name, version, etc.) that describe the charac-
teristic.

Note – Issue 7985, removed attributes and types noheader sections

Constraints

Note – Issues 7586, 7983, 7985

● The CharacteristicSetProperty's locallyManaged attribute default value shall be False. The corresponding OCL is as
follows:
context CharacterisiticSetProperty::locallyManaged:Boolean
init: false

● Valid values for the CharacteristicSetProperty's capabilityModel attribute value shall be: “selection”. The corre-
sponding OCL is as follows:
context CharacteristicSetProperty
inv validcapabilitymodel: self.capabilityModel = 'selection'

● CharacteristicSetProperty shall have an initial value of ‘selection’. The corresponding OCL is as follows:
context CharacteristicSetProperty::capabilityModel:String
init: 'selection'

● Each CharacteristicSetProperty’s attribute type shall be a stereotyped as StructProperty. The corresponding OCL is
as follows:
context CharacteristicSetProperty
inv: self.allAttributes()->collect(a | a.type.stereotype = ‘StructProperty’)

● Each CharacteristicSetProperty’s attribute type shall be the same type definition. The corresponding OCL is as fol-
lows:
context CharacteristicSetProperty
inv: self.allAttributes()->collect(a | a.type)->size() = 1

Semantics

The meanings of the CharacteristicSetProperty's capabilityModel attribute values are:

dtc/2005-09-04

 8.1.3 Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 59

● “selection” - is an equality/match comparison between any CharacteristicSetProperty's value attribute
and a DeploymentRequirementQualifier (Infrastructure::SWRadio Deployment::SWRadio Artifacts).
They shall be equal/match if any CharacteristicSetProperty's characteristic equals the deployment
requirement. If they are equal/match then the CharacteristicSetProperty can satisfy a deployment
requirement otherwise it cannot satisfy the deployment requirement.

Other capabilityModel attribute values can be specified. These other specified capabilityModel attribute values
may be managed at the ServiceComponent level or at an ApplicationFactory level.

Note – Issue 7689 - Name Problem in 8.1.2.5, Issue 7985 changed definition and name of Con-
figQuery Property

8.1.3.5 ConfigureProperty

Description

The ConfigureProperty indicates a configurable and queryable property. There are four types of ConfigureProp-
erty, which are: primitive types, primitive sequence types, StructProperty and StructProperty sequences.

Attributes

Note – Issue 7895, fix types.

● stepSize: ULong [0..1]

The stepSize attribute represents the fact that some properties have discrete in-
crements. An example is a tunable duplexer, which uses a stepper motor to ad-
just the tuned frequency.

Constraints

● ConfigureProperty isReadOnly attribute shall be false. The corresponding OCL is as folows:
context ConfigureProperty
inv validisreadonly: self.isReadOnly = false

Semantics

The ConfigureProperty defines properties associated with the PropertySet interface implementations. The proper-
ties supported by a SWRadio component are described in a component's descriptor.

Note – Issue 8200 added EnumerationProperty

8.1.3.6 EnumerationProperty

Description

The EnumerationProperty, an extension of Class, as shown in Table 8-2 defines an enumeration type where the
enumeration literals have an integer value.

Constraints

Note – Issue 7586 added constraints

● The EnumerationProperty type shall be integer (Short, UShort, Long, ULong, ULongLong, LongLong).

dtc/2005-09-04

8.1.3 Properties

60 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● Each EnumerationProperty’s attribute name shall be unique within the EnumeraationProperty. The corresponding
OCL is as fol-
lows:
context EnumerationProper-
ty inv:
self.allAttributes()->isUnique(a | a.name)

● Each EnumerationProperty’s attribute values shall be unique within the EnumeraationProperty. The corresponding
OCL is as fol-
lows:
context EnumerationProper-
ty inv:
self.allAttributes()->isUnique(a | a.value)

● Each EnumerationProperty’s attribute value shall be in the range of the EnumerationProperty Type.

Semantics

The EnumerationProperty forms an enumeration type definition. EnumerationProperty is legal for integer type
properties elements. The EnumerationProperty attributes are enumeration literals, which have an integer value.
EnumerationProperty attribute values are implied; if not specified, the initial value is 0 and subsequent values are
incremented by 1. This allows a configure, query, or characteristic property to be expressed as an enumeration
with integer values.

Note – Issue 7690 - Name problem in Section 8.1.2.6, Removed ConfigureQuerySimpleProper-
ty and ConfigureQuerySimpleSeqProperty, Issue 7742 - removed figure since associations can-
not be shown between stereotypes.

8.1.3.7 ExecutableProperty

Description

The ExecutableProperty a type of SimpleProperty as shown in Table 8-2 that defines executable parameters for
an ExecutableCode element such as a main process.

Attributes

● Queryable : Boolean = True

The queryable attribute indicates whether or not the ExecutableProperty can be
queried for its value. True means the property is queryable.

Constraints

● The ExecutableProperty's value shall be specified.

Note – Issue 7984

8.1.3.8 InputValueProperty

Description

The InputValueProperty, a type of SimpleProperty as shown in Table 8-2, provides the capability to define a in-
put property for a TestDefProperty.

dtc/2005-09-04

 8.1.3 Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 61

Note – Issue 7985

8.1.3.9 QueryProperty

Description

The QueryProperty, a type of RadioProperty as shown in Table 8-2, provides the capability to define a read-only
property that can be queried at run-time by a control command. It cannot be modified by a control command.

Constraints

● The type for QueryProperty shall be constrained to be SWRadio primitive types, primitive sequence types, Struct-
Property.

● The QueryProperty isReadOnly attribute value shall be always set to true.
The corresponding OCL is as follows:
context QueryProperty inv validisreadonly: self.isReadOnly = true

8.1.3.10 RadioProperty

Description

The abstract RadioProperty is an extension of the UML Property that provides the basic attributes for all SWRa-
dio properties definitions.

Attributes

Note – Issue 7985 moved attributes to here from SimpleProperty and ConfigureProperty, Issue
8869 IntegerID type

● integerId : Long [0..1]

The optional integerId attribute is an integer string that represents the identifier
for the radio property.

● label: String [0..1]
The optional label attribute contains a property's human readable name that can
be used when the name attribute is not human readable.

● maxLatency: TimeType [0..1]

The maxLatency attribute represents the time needed by an attribute to achieve
its proper operating status. An example is the gain of an amplifier. The max-
Latency indicates the time that the amplifier needs before it attains its operating
gain. The latency is measured from power-up.

● range: Range [0..1]

The optional range attribute indicates the allowable min and max values for val-
ue attribute.

● units: String [0..1]

The optional units attribute indicates the unit of measure for the value attribute.

dtc/2005-09-04

8.1.3 Properties

62 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Types and Exceptions

Range (min: String, max: String)

The Range type defines the min and max allowable values for a property. The String value represents an
numerical value.

Constraints

Note – Issue 7586

● The integerID attribute when specified shall have precedence over the name attribute for the identification of the
RadioProperty.

● The value for the name attribute shall be case sensitive.

Semantics

Note – Issue 7983, Issue 7586

The name or integerId attribute is used for radio property identification. The label attribute is to be used for dis-
play purposes when specified instead of the property name. This is useful when the name is not human readable
such as a Universal Unique IDentifier (UUID) value.

Note – Issue 7984

8.1.3.11 ResultValueProperty

Description

The ResultValueProperty, a type of SimpleProperty as shown in Table 8-2, provides the capability to define a re-
sult property for a TestDefProperty.

8.1.3.12 ServiceProperty

Description

Note – Issue7985 Updated Figure

dtc/2005-09-04

 8.1.3 Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 63

The abstract ServiceProperty as shown in Figure 8-8, defines capability and/or capacity characteristics for a Ser-
viceComponent.

Attributes

Note – Issue7985, moved maxLatency to RadioProperty

● capabilityModel: Boolean

The capabilityModel attribute identifies the CapabilityModel to be used for this
ServiceProperty

● locallyManaged: Boolean

The locallyManaged attribute indicates whether a Service manages this capabil-
ity or capacity. A value of True means a Service manages the capacity otherwise
it does not.

Constraints

Note – Issue 7983

● ServiceProperty shall have a value (not null) when the locallyManaged attribute value is false. The corresponding
OCL is as follows:
context ServiceProperty
inv requiredValue: self.locallyManaged and self.value.nonEmpty()

Semantics

The ServiceProperty's capabilityModel attribute indicates the type of capabilityModel to be used to determine if
the ServiceProperty can satisfy the deployment requirement.

8.1.3.13 SimpleProperty

Description

Note – Issue 7895, fix type

Figure 8-8 – ServiceProperty Definition

ServiceProperty
c apabi l i tyM odel : S tring
l oc al l yM ana ge d : B oo le an

<<stereotype>>

CapacityProperty
<<stereotype>>

CharacteristicProperty
<<stereotype>>

CharacteristicSelectionProperty
<<stereotype>>

CharacteristicSetProperty
<<stereotype>>

Ra di oP rope rty
<<stereotype>>

Sim pleProperty
<<stereotype>>

dtc/2005-09-04

8.1.3 Properties

64 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The SimpleProperty is a type of RadioProperty that defines a primitive data type (e.g., character, ULong, string,
etc.).

Note – Issue 7985 moved range and attributes to RadioProperty, Issue 8200 remove enumera-
tions attribute and Types, Updated Constraints text for valid type. OCL for valid needs to be
done to agree with text (TBD). This will be done as part of Issue 7586

Note – Issue 7895 Removed Range typedef from here, defined in 8.2.1

Constraints

● The value shall comply with the property type.
● The type shall be limited to the SWRadio primitive types (Boolean, Character, Float, Double, Long, LongDouble,

LongLong, ObjectReference, Octet, Short, String, ULong, ULongLong, USh-
ort) and EnumerationProperty. The corresponding OCL is as follows:
def: primTypes : Set = {Boolean, Character, Float, Double, Long, LongDouble,
LongLong, ObjectReference, Octet, Short, String, ULong, ULongLong, USh-
ort}
context SimpleProperty
inv validtype: primTypes->exists(t : self.oclIsTypeOf(t))

● The range attribute min and max values shall be compatible with the type and max is greater than or equal to min.
The corresponding OCL is as follows:
context simpleProperty
inv validrange: self.range.max >= self.range.min
inv validmax: (self.oclIsTypeOf(Boolean) or self.oclIsTypeOf(Character) or
self.oclIsTypeOf(ObjectReference) or self.oclIsTypeOf(String) or
self.oclIsTypeOf(WString) or self.oclIsTypeOf(WChar)) or
((self.oclIsTypeOf(Float) and (self.range.max >= 0 or self.range.max <= 255))
or (self.oclIsTypeOf(Double) and (self.range.max >= 0 or self.range.max <=
255)) or (self.oclIsTypeOf (Long) and (self.range.max >= -231 or
self.range.max <= 231 - 1)) or (self.oclIsTypeOf (LongDouble) and
(self.range.max >= 0 or self.range.max <= 255)) or (self.oclIsTypeOf(Lon-
gLong) and (self.range.max >= -263 or self.range.max <= 263 - 1)) or
(self.oclIsTypeOf(Octet) and (self.range.max >= 0 or self.range.max <= 255))
or (self.oclIsTypeOf(Short) and (self.range.max >= -215 or self.range.max <=
215 - 1)) or (self.oclIsTypeOf(ULong) and (self.range.max >= 0 or
self.range.max <= 232 - 1)) or (self.oclIsTypeOf(ULongLong) and
(self.range.max >= 0 or self.range.max <= 264 - 1)) or (self.oclIsTypeOf(USh-
ort) and (self.range.max >= 0 or self.range.max <= 216 - 1)))
inv validmin: (self.oclIsTypeOf(Boolean) or self.oclIsTypeOf(Character) or
self.oclIsTypeOf(ObjectReference) or self.oclIsTypeOf(String) or
self.oclIsTypeOf(WString) or self.oclIsTypeOf(WChar)) or
((self.oclIsTypeOf(Float) and (self.range.min >= 0 or self.range.min <= 255))
or (self.oclIsTypeOf(Double) and (self.range.min >= 0 or self.range.min <=
255)) or (self.oclIsTypeOf (Long) and (self.range.min >= -231 or self.range.min
<= 231 - 1)) or (self.oclIsTypeOf (LongDouble) and (self.range.min >= 0 or
self.range.min <= 255)) or (self.oclIsTypeOf(LongLong) and (self.range.min
>= -263 or self.range.min <= 263 - 1)) or (self.oclIsTypeOf(Octet) and
(self.range.min >= 0 or self.range.min <= 255)) or (self.oclIsTypeOf(Short) and
(self.range.min >= -215 or self.range.min <= 215 - 1)) or

dtc/2005-09-04

 8.1.3 Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 65

(self.oclIsTypeOf(ULong) and (self.range.min >= 0 or self.range.min <= 232 -
1)) or (self.oclIsTypeOf(ULongLong) and (self.range.min >= 0 or
self.range.min <= 264 - 1)) or (self.oclIsTypeOf(UShort) and (self.range.min >=
0 or self.range.min <= 216 - 1)))

● The value shall comply with the range when the type is a numeric. The corresponding OCL is as follows:
context SimpleProperty
inv validvaluerange: (self.oclIsTypeOf(Boolean) or self.oclIsTypeOf(Charac-
ter) or self.oclIsTypeOf(ObjectReference) or self.oclIsTypeOf(String) or
self.oclIsTypeOf(WString) or self.oclIsTypeOf(WChar)) or
((self.oclIsTypeOf(Float) or self.oclIsTypeOf(Double) or self.oclIsTypeOf
(Long) or self.oclIsTypeOf (LongDouble) or self.oclIsTypeOf(LongLong) or
self.oclIsTypeOf(Octet) or self.oclIsTypeOf(Short) or
self.oclIsTypeOf(ULong) or self.oclIsTypeOf(ULongLong) or
self.oclIsTypeOf(UShort)) and (self.value <= self.range.max and self.value >=
self.range.min))

Note – Issue 7985, removed SimpleSequenceProperty

Note – Issue 7985, changed description and removed attributes and modified constraints

8.1.3.14 StructProperty

Description

The StructProperty is a type that contains a list of SimpleProperties.

Constraints

● Each StructProperty’s attribute name must be unique within the StructProperty. The corresponding OCL is as fol-
lows:
context StructProperty
inv: self.allAttributes()->isUnique(a | a.name)

● Each StructProperty’s attribute shall be a SimpleProperty or primitive type. The corresponding OCL is as follows:
context StructProperty
inv: self.allAttributes()->forAll(a | a.stereotype.name = 'SimpleProperty' or
primTypes->exists(t : a.oclIsTypeOf(t)))

● The multiplicity for each StructProperty’s attribute shall be one. The corresponding OCL is as follows: context
StructProperty
inv: self.allAttributes()->forAll(a | a.size = 1)

Note – Issue 7985, removed StructSequenceProperty

Note – Issue 7984

8.1.3.15 TestDefProperty

Description

The TestDefProperty, a type of Class as shown in Table 8-2, provides the capability to define the input parame-
ters for the test and the results that can be returned for a test.

dtc/2005-09-04

8.1.4 Interface and Port Stereotypes

66 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Constraints

● The attribute shall be InputValueProperty or ResultValuePoperty stereotypes. The corresponding OCL is as fol-
lows:
context TestDefProperty
inv: self.all Attributes()->forAll(a | a.stereotype.name = 'InputValueProperty' or
a.stereotype.name = 'ResultValueProperty')

● There shall be at least one ResultValueProperty attribute defined. The corresponding OCL is as fol-
lows:
context TestDefProperty
inv: self.allAttributes()->exists(a | a.stereotype.name = 'ResultValueProperty')

● Each Attribute name shall be unique. The corresponding OCL is as fol-
lows:
context TestDefProperty
inv: self.allAttributes()->isUnique(a | a.name)

● Each Attribute value shall be specified (not null). The corresponding OCL is as foll-
lows:
context TestDefProperty
inv: self.allAttributes()->forAll(a | a.value->notEmpty())

8.1.3.16 TestProperty

Description

The TestProperty, a type of RadioProperty as shown in Table 8-2, provides the capability to define the input pa-
rameters for the test and the results that can be returned for a test.

Constraints

Note – Issue 7984

● The type for a TestProperty shall be stereotype as TestDefProperty.

8.1.4 Interface and Port Stereotypes

This section defines the port, property, and interface stereotypes for SWRadio interfaces and components as de-
picted in Table 8-3. Port stereotypes categorize the function of the various ports within a SWRadio component
and the type of interfaces associated with these ports. Interface stereotypes categorize the type of interface pro-
vided by or used by SWRadio components. Property stereotypes are defined for SWRadio interface and compo-
nent attributes to indicate the type of property visually and how the property is going to be managed. These
stereotypes are used to define elements in the UML Profile for SWRadio, PIM Facilities, and by application and
device component developers.

dtc/2005-09-04

 8.1.4 Interface and Port Stereotypes

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 67

Note – Issue 7693 - Added IStreamControl to Table 8-3. Issue 7985 removed configquery &

Table 8-3 – Interface & Port Stereotypes

Stereotype
Base
Class Parent Tags Constraints Description

ControlPort Port SWRadioPort Only associated
with IControl
interfaces.

Represents a port for control
management.

DataPort Port SWRadioPort Only associated
with IData
interfaces.

Represents a port the sends or receives
data using an IDATA interface

DataControlPort Port SWRadioPort Only associated
with IDataControl
interfaces.

Represents a port the sends or receives
data with control using an IDataControl
interface

IData Interface SWRAPI Provides the mechanism to send data.

IDataControl Interface SWRAPI Provides the mechanism to send data
with control.

IControl Interface SWRAPI Provides the mechanism for sending or
receiving control

IStream Interface SWRAPI Provides the mechanism to manage
streams

IStreamControl Interface SWRAPI Provides the mechanism to manage
streams that contain control information
in addition to user data

ReadOnly Property N/A IsReadOnly = True Represents a queryable property for a
SWRadio interface or component that
has an associated get operation.

ReadWrite Property N/A IsReadOnly = False Represents a configurable and
queryable property for a SWRadio
interface or component that has
associated set and get operations.

ServicePort Port SWRadioPort Represents a port that provides or uses
a SWRadio Service

StreamControlP
ort

Port SWRadioPort SAP,
Address

Only associated
with IStreamControl
interfaces.

Represents a port that sends or receives
a continuous data stream, with
occasional control information

StreamPort Port SWRadioPort SAP,
Address

Only associated
with IStream
interfaces.

Represents a port that sends or receives
continuous streaming of data

SWRadioPort Port N/A Only associated
with SWRAPI
interfaces.

Represents a SWRadio port that is
associated with SWRAPIs

SWRAPI Interface N/A Represents an implemented or required
application or logical device component
interface.

dtc/2005-09-04

8.1.5 Resource Components

68 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Query. Issue 7785 replace waveform application with application

8.1.4.1 StreamPort

Description

The StreamPort defines a streaming port that receives or sends continuous data.

Tags

Note – Issue 7895, fix types.

● sap: ULong

The sap (Service Access Point) attribute contains a SAP identifier
● address: OctetSequence

The address attribute contains address information.

8.1.5 Resource Components

Note – Issue 7672 Resolution (SWRadio Component to ResourceComponent), Issue 7742
Broke the section into 2 subsections, one for model library interfaces defined in the profile and
the second for component stereotypes defined in the profile. Issue 7785 replace waveform an/or
waveform application with application

This section defines the interfaces for a SWRadio ResourceComponent along with component stereotypes. The
Resource Component stereotypes are extensions of the UML 2.0 Component (UML2.0::Components::BasicCom-
ponents) classifiers as described in section 8.1.5.2. Figure 8-9, depict the base interfaces used in defining soft-
ware radio components for applications, logical devices, and communication channels. The following subsection
describe the details of these base interfaces (8.1.5.1), which are management interfaces for SWRadio components
along with the SWRadio component stereotypes (8.1.5.2).

Note – Issue 7742 added new subsection for modelLibrary M1 interfaces. SubSections in this
were renumered to be a header 5.

dtc/2005-09-04

 8.1.5 Resource Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 69

8.1.5.1 Resource Components Interfaces

This section defines the resource component modelLibrary interfaces contained in the profile definition as
shown in Figure 8-9, which are: ComponentIdentifier, ControllableComponent, LifeCycle, PortConnector, Port-
Supplier, PropertySet, Resource, ResourceFactory, and TestableObject that are described in the following subsec-
tions. These interfaces provide basic management interfaces for SWRadio component developers.

Types and Exceptions

● <<exception>>UnknownProperties (invalidProperties : Properties)

The UnknownProperties <<exception>> indicates a set of properties unknown
by the component.

8.1.5.1.1 ComponentIdentifier

Description

The ComponentIdentifier interface defines the identifier operations for a SWRadio's component.

Attributes

● <<readonly>>identifier: String

The unique identifier for a component.

Figure 8-9 – Resource Interfaces Overview

dtc/2005-09-04

8.1.5 Resource Components

70 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.5.1.2 ControllableComponent

Description

The ControllableComponent interface defines the generic operations for controlling a SWRadio's components.

Attributes

● <<readonly>>started: Boolean

The started atribute indicates if a Resource has been started or not. A value of
True indicates the start has been performed successfully. A value of False
means stop mode of operation.

Operations

Note – Issue 7904

● start(): {raises = (StartError)}

The start operation is provided to command a component implementing this in-
terface to start internal processing. The start operation puts the component in
an operating condition. The behavior when entering into an operating condition
is component implementation specific. The component implementation’s cur-
rent internal state (e.g. current settings of data structures, memory allocations,
hardware device configurations, etc.) is used as the operational starting point.
This operation does not return a value. The start operation shall raise the Start-
Error exception if an error occurs while starting the component.

Note – Issue 7904

● stop(): {raises = (StopError)}

The stop operation is provided to command a component implementing this in-
terface to stop internal processing. The stop operation disables all current oper-
ations and puts a component in a non-operating condition. The behavior when
exiting the operating state is component implementation specific. This opera-
tion does not return a value. The stop operation shall raise the StopError excep-
tion if an error occurs while stopping the component.

Types and Exceptions

● <<exception>>StartError

The StartError, a type of SystemException, indicates that an error occurred dur-
ing an attempt to start the Resource. The error number value (e.g., CF_EDOM,
CF_EPERM, CF_ERANGE) and message is component-dependent, providing
additional information describing the reason for the error.

● <<exception>>StopError

The StopError, a type of SystemException, indicates that an error occurred dur-
ing an attempt to stop the Resource. The error number (e.g.,
CF_ECANCELED, CF_EFAULT, CF_EINPROGRESS) and message is com-
ponent-dependent, providing additional information describing the reason for
the error.

dtc/2005-09-04

 8.1.5 Resource Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 71

8.1.5.1.3 LifeCycle

Description

The LifeCycle interface defines the generic operations for initializing or releasing instantiated component-specif-
ic data and/or processing elements.

Operations

● initialize(): {raises = (InitializeError)}

The purpose of the initialize operation is to provide a mechanism to set a com-
ponent to a known initial state. (e.g., data structures may be set to initial values,
memory may be allocated, hardware devices may be configured to some state,
etc.). The Initialization behavior is component implementation dependent.
This operation does not return a value. The initialize operation shall raise the
InitializeError when an initialization error occurs.

● releaseObject(): {raises = (ReleaseError)}

The purpose of releaseObject is to provide a means by which acomponent may
be removed. The releaseObject operation shall release all internal memory al-
located by the component. The releaseObject operation shall remove the com-
ponent from the Operating Environment (OE). This operation does not return a
value. The releaseObject operation shall raise the ReleaseError when a release
error occurs.

Types and Exceptions

● <<exception>>InitializeError(errorMessage: StringSequence)

The InitializeError exception indicates that an error occurred during component
initialization. The errorMessage attribute is component-dependent and pro-
vides additional information describing why the error occurred.

● <<exception>>ReleaseError(errorMessage: StringSequence)

The ReleaseError exception indicates that an error occurred during component
releaseObject. The errorMessage attribute is component-dependent and pro-
vides additional information describing why the error occurred.

8.1.5.1.4 PortConnector

Description

The PortConnector interface provides operations for managing associations between ports. The PortConnector in-
terface is used to connect a required port to a provided port.

Operations

● connectPort(in requiredPortName: String, in connection: Object, in connectionId: String): {raises

= (InvalidPort, OccupiedPort)}

The connectPort operation shall make a connection to a component's provided
port identified by its input parameters. This operation does not return a value.
The connectPort operation shall support all of the required ports identified in the
component's descriptor. The connectPort operation shall raise InvalidPort when
connection is an invalid connection for this Port. The connectPort operation

dtc/2005-09-04

8.1.5 Resource Components

72 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

shall raise OccupiedPort when unable to accept the connections because the
Port is already fully occupied.

Note – Issue 7580 Resolution

● disconnectPort (in requiredPortName: String, in connectionId: String): {raises = (InvalidPort)}

The disconnectPort operation shall break the connection to the component. The
connection is identified by requiredPortName and connectionId. The discon-
nectPort operation shall raise InvalidPort when the requiredPortName or con-
nectionId passed to disconnectPort is not connected or associated with the
component. This operation does not return a value.

Types and Exceptions

● <<exception>>InvalidPort (errorCode: UnsignedShort, msg: String)

The InvalidPort exception indicates one of the following errors has occurred in
the specification of a Port association:
errorCode 1 means the connection (Provided Port) component is invalid or il-
legal object reference,
errorCode 2 means the connectionId is not known (not used by this Port).
errorCode 3 means the Required Port name does not exist for this component.

● <<exception>>OccupiedPort

The OccupiedPort exception indicates the Port is unable to accept any addition-
al connections.

Constraints

Note – Issue 7586, added requirements

● The PortConnector interface shall support all the used or required ports as specified in the
component’s descriptor that relealizes this interface.

Semantics

Note – Issue 7580 Resolution (last three lines of paragraph)

A component realizes operations for transferring data and control. The component also establishes the meaning
of its data and control values. Examples of how components may use ports include: push or pull, synchronous or
asynchronous, mono- or bi-directional, and whether to use flow control (e.g., pause, start, stop). The nature of
PortConnector, fan-in, fan-out, or one-to-one, is component dependent. A required port may support several con-
nections. How components' ports are connected is described in a component assembly descriptor. The input con-
nectionId is a unique identifier used by disconnectPort when breaking this specific connection from the required
port identified by the input requiredPortName. The connectionId is unique at the required port level.

8.1.5.1.5 PortSupplier

Description

Note – Issue 7579 Resolution

This interface provides the getProvidedPorts operation for components that have provided ports.

dtc/2005-09-04

 8.1.5 Resource Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 73

Operations

Note – Issue 7579 Resolution

● getProvidedPorts(inout ports: PortSequence): {raises = (UnknownPorts)}

The getProvidedPorts operation provides a mechanism to obtain a component’s
provided ports in form of a sequence of name/value pairs, where each name cor-
responds to a provided port’s name and the corresponding value is the provided
port reference to be returned. The getProvidedPorts operation shall return all the
component provided ports if the ports argument is zero size. The getProvid-
edPorts operation shall return only those provided ports specified in the ports
argument if the ports argument is not zero size. The getProvidedPorts opera-
tion shall support all of the provided ports identified in the component's descrip-
tor. The getProvidedPorts operation shall raise UnknownPorts when one or
more provided port names being requested are not known by the component.

Types and Exceptions

Note – Issue 7579 Resolution

● PortType (name: String, object: Port)

PortType defines a structure that associates a name with a port.
● PortSequence

PortSequence provides an unbounded sequence of PortType.
● <<exception>>UnknownPorts (invalidPorts: StringSequence)

The UnknownPorts exception is raised when one or more provided ports being
requested are not known by the component. The invalidPorts attribute returned
indicates the requested provided ports that were invalid.

Constraints

Note – Issue 7586, added requirements

● The PortSupplier interface shall support all the provided interfaces as specified in the component’s
descriptor that relealizes this interface

8.1.5.1.6 PropertySet

Description

The PropertySet interface defines configure and query operations to access component properties/attributes.

Operations

● configure(in configProperties:Properties):{raises=(InvalidConfiguration, PartialConfiguration)}

The configure operation allows id/value pair configuration properties to be as-
signed to components implementing this interface. The configure operation
shall assign values to the component's properties as indicated in the configProp-
erties argument. This operation does not return a value. The configure opera-
tion shall raise PartialConfiguration when some configuration properties were
successfully set and some configuration properties were not successfully set.

dtc/2005-09-04

8.1.5 Resource Components

74 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The configure operation shall raise InvalidConfiguration when a configuration
error occurs that prevents any property configuration on the component.

● query(inout configProperties: Properties): {raises = (UnknownProperties)}

The query operation allows a component to be queried to retrieve its properties.
The query operation shall return all the component queryable properties if the
input configProperties are zero size. The query operation shall return only
those id/value pairs specified in the input configProperties if the configProper-
ties are not zero size. The query operation shall raise UnknownProperties when
one or more properties being requested are not known by the component.

Types and Exceptions

Note – Issue 7695 - missing explanation for invalid propoerties

● <<exception>>InvalidConfiguration (msg: String, invalidProperties: Properties)

The InvalidConfiguration exception indicates the configuration of a component
has failed (no configuration at all was done). The msg attribute is component-
dependent, providing additional information describing the reason why the er-
ror occurred. The returned invalidProperties attribute indicates the properties
that were not accepted by the component.

Note – Issue 7695 - Missing explanation for invalid properties

● <<exception>>PartialConfiguration (reasons: StringSequence,invalidProperties: Properties)

The PartialConfiguration exception indicates the configuration of a Component
was partially successful. The reasons attribute is component-dependent, provid-
ing additional information describing the reasons why the error occurred. The
returned invalidProperties attribute indicates the properties that were not ac-
cepted by the component.

Constraints

Note – Issue 7586, added requirements

Valid properties for the configure operation shall be ConfigureProperty(s).

Valid properties for the query operation shall be:

● ConfigureProperty and QueryProperty properties, or

● ServiceProperty properties whose locallyManaged attribute value is True, or

● ExecutableProperty properties whose queryable attribute value is True.

The value attribute for each PropertyValue in the Properties shall be in its native form as specified by the Radio-
Property definition.

The PropertySet interface shall support the configure and query type properties as specified in the component’s
descriptor that realizes this interface.

The mapping to the ConfigureProperty and QueryProperty types to the ResourceComponent's configure and que-
ry's operation properties parameter are:

dtc/2005-09-04

 8.1.5 Resource Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 75

1. A SimpleProperty or primitive type corresponds to a PropertyValue item in Properties list. The
PropertyValue item's id matches the Configure or Query Property's name or integer attribute and the
PropertyValue item's value matches the Configure or Query Property's value attribute but is converted
to a format that agrees with the Configure or Query Property's type attribute.

2. A SimpleProperty sequence or primtive type sequence corresponds to a PropertyValue item in
Properties list. The PropertyValue item's id matches the Configure or Query Property's name or
integer attribute and the PropertyValue item's value matches the Configure or Query Property's values
attribute that is converted to a primitive sequence type (as described in Section 8.1.1 Base Types),
which agrees with the Configure or Query Property's type attribute.

3. A StructProperty corresponds to a PropertyValue item in Properties list. The PropertyValue item's id
matches the Configure or Query Property's name or integer attribute and the PropertyValue item's
value contains a Properties type, where each StructProperty's SimpleProperty (id, value) corresponds
to a Properties element in the list as described in item 1 above. The Properties element list size is
based on the number of StructProperty's SimpleProperty items.

4. StructProperty sequencecorresponds to a PropertyValue item in Properties list. The PropertyValue
item's id matches the Configure or Query Property's name or integer attribute and the PropertyValue
item's value contains a Properties type. The Properties element list size is based on the number of
StructSequenceProperty's structValues attribute. Each item in the Properties element also contains a
Properties type that is used to contain a structValue (StructProperty) as described in item 3 above.

The ExecutableProperty, CapacityProperty, and CharacteristicProperty shall follow the SimpleProperty format for
the query operation. The CharacteristicSelectionProperty shall follow the SimpleProperty sequence format for the
query operation. The CharacteristicSetProperty shall follow the StuctProperty sequence format for the query oper-
ation.

Semantics

The type of property is known by its name or integerId attribute.

8.1.5.1.7 Resource

Description

Note – Issue 7696 - missing reference to the figure

The Resource interface, as shown in Figure 8-9, provides a common API for the control and configuration of
software radio components (applications and device). The Resource is a specialization of the ComponentIdentifi-
er, ControllableObject, LifeCycle, PortSupplier, PortConnector, PropertySet, and TestableObject interfaces.

PortSupplier, PropertySet, Resource, ResourceFactory, and TestableObject that are described in the following
subsections. These interfaces provide basic management interfaces for SWRadio

dtc/2005-09-04

8.1.5 Resource Components

76 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue7588, 7904 Resolutions - Added figure, constraints and semantics sections

Constraints

A realization of the Resource interface shall result in a specialized clarification of the inherited ControllableOb-
ject, Lifecycle, and PortConnector interface behaviors that is consistent with the following items and Figure
8-10:

● A StartError exception shall be generated if the start operation from ControllableObject is called
before at least one call is made to the initialize operation from Lifecycle.

● An InitializeError shall be generated if initialize operation from Lifecycle is called while the
Resource component’s ControllableObject started attribute is true.

● The behavior of the stop operation from ControllableObject shall maintain the component’s current
configuration to allow subsequent start operations to resume from configuration present at stop,
assuming no other LifeCycle, PortConnector, PropertySet, or TestableObject operations are exercised
while stopped.

● The disconnectPort operation shall perform any cleanup associated with object being disconnected
before completing the disconnect operation. The specific cleanup processing is Resource component
implementation dependent.

Figure 8-10 – Resource Interfaces Overview

Created
Released

Initialized;
s tar ted = false

Operational;
s tarted = true

Stopped; s tarted
= false

initialize()

s tart()

s top()

releaseObjec t()

s tart()

releaseObject()

init ialize()

dtc/2005-09-04

 8.1.5 Resource Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 77

● Use of the releaseObject operation from LifeCycle while the Resource component’s
ControllableObject started attribute is true shall result in a behavior consistent with first initiating the
Resource’s stop operation, then calls to disconnectPort on each of the Resource component’s ports,
and then the releaseObject behavior itself.

Semantics

 The Resource PropertySet implementation is not inhibited by the stop operation. However, the configure behav-
ior impacts to the Resource while stopped are limited in scope to updating internal data structures, in preparation
for the next start operation.

 The Resource Port Supplier and Port Connector implementation is not inhibited nor impacted by the stop oper-
ation, all methods of these two interfaces are supported, behavior unchanged. However, the behavior of the pro-
vided ports themselves is impacted. The impact of the stop is port implementation specific. The usual case is
that port behavior is halted upon being stopped (started attribute is false). Resource component usage of con-
nected port capabilities will cease and any access to provided port capabilities would result in error notification.
An example would be an IO port that, upon being stopped, prevents further data from being pushed out and al-
lows no further data to be pushed in. A notable exception would include status providing ports that would re-
main active even while stopped to maintain good standing with observing components.

Note – Issue 7742 Added ResourceFactory interface since the ResourceFactory stereotype con-
tained M1 operations and types.

8.1.5.1.8 ResourceFactory

Description

The ResourceFactory interface provides an optional mechanism for the management of ResourceComponents.

Operations

● createResource(in resourceId: String, in qualifiers: Properties, Return ResourceComponent):

{raises = (CreateResourceFailure)}

The createResource operation provides the capability to create a ResourceCom-
ponent or retrieve an existing ResourceComponent. The resourceId parameter
is the identifier for ResourceComponent. The qualifiers are parameter values
used by the ResourceFactory in creation of the ResourceComponent. The qual-
ifiers may be used to identify, for example, specific subtypes of a Resource-
Component created by a ResourceFactory.

If no ResourceComponent exists for the given resourceId, the createResource
operation shall create a ResourceComponent. otherwise the createResource op-
eration shall return an existing ResourceComponent whose identifier attribute
matches the input resourceId.The createResource operation shall assign the giv-
en resourceId to a new ResourceComponent's identifier attribute.

The createResource operation shall raise the CreateResourceFailure exception
when it cannot create the ResourceComponent and cannot find an existing Re-
sourceComponent that contains the resourceId.

● releaseResource(in resourceId: String): {raises = (InvalidResourceId)}

The releaseResource operation provides the mechanism of releasing the Re-

dtc/2005-09-04

8.1.5 Resource Components

78 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

source in the environment on the server side. The releaseResource operation
shall release the ResourceComponent from the ResourceFactory as identified
by the input resourceId parameter when the number of create requests matches
the number of release requests for the input resourceId.

The releaseResource operation shall raise the InvalidResourceId exception if an
invalid resourceId is received.

● Shutdown(): {raises = (ShutdownFailure)}

The shutdown operation provides the mechanism for releasing the Resource-
FactoryComponent from the environment on the server side. The shutdown op-
eration results in the ResourceFactoryComponent being unavailable to any
subsequent calls to its component reference (i.e. it is released from the environ-
ment). The shutdown operation shall raise the ShutdownFailure exception if un-
able to terminate the ResourceFactoryComponent.

Types and Exceptions

● <<exception>>CreateResourceFailure

The CreateResourceFailure exception, a type of System Exception, indicates
that the createResource operation failed to create the Resource. The error
number indicates an ErrorNumberType value (e.g., CF_NOTSET,
CF_EBADMSG, CF_EINVAL, CF_EMSGSIZE, CF_ENOMEM). The mes-
sage is component-dependent, providing additional information describing the
reason for the error.

● <<exception>>InvalidResourceId

The InvalidResourceId exception indicates the resourceId does not exist in the
ResourceFactoryComponent.

● <<exception>>ShutdownFailure (msg: String)

The ShutdownFailure exception indicates that the shutdown method failed to
release the ResourceFactoryComponent from the operating environment due to
the fact the Factory still contains ResourceComponents. The message is com-
ponent-dependent, providing additional information describing why the shut-
down failed.

Constraints

The created ResourceComponent's identifier attribute shall be the resourceId parameter value.

Semantics

A ResourceFactory interface is used to create and release a ResourceComponent.

8.1.5.1.9 TestableObject

Description

The TestableObject interface defines a set of operations that can be used to test component implementations.

Operations

● runTest(in testId:String, inout testValues:Properties):{raises=(UnknownTest, UnknownProperties)}

The runTest operation allows components to be "blackbox" tested. This allows

dtc/2005-09-04

 8.1.5 Resource Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 79

Built-In Test (BIT) to be implemented and this provides a means to isolate faults
(both software and hardware) within the system. The runTest operation shall
use the testId parameter to determine which of its predefined test implementa-
tions should be performed. The testValues parameter Properties (id/value
pair(s)) shall be used to provide additional information to the implementation-
specific test to be run. The runTest operation shall return the result(s) of the
test in the testValues parameter.

The runTest operation shall raise UnknownTest when there is no underlying test
implementation associated with the input testId given.

The runTest operation shall raise UnknownProperties when the input parameter
testValues contains input test parameters that are invalid. The UnknownProp-
erties's invalidProperties attribute contains the invalid inputValues properties
id(s) that are not known by the component or the value(s) that are out of range.

Types and Exceptions

● <<exception>>UnknownTest

The UnknownTest exception indicates the requested testId for a test to be per-
formed is not known by the component.

Constraints

Note – Issue 7586, modifed requirements

The TestableObject interface shall support all the TestProperty(s) as stated in the component’s descriptor that re-
alizes this interface.

The format for a TestProperty’s InputValueProperty(s) and ResultValueProperty(s) for a test shall be as de-
scribed for a SimpleProperty in the PropertySet section 8.1.5.1.6.

Semantics

The testid parameter corresponds to the name or integerId attribute of the TestProperty. Each TestProperty’s In-
putValueProperty maps to the testValues parameter for input to the test. Each TestProperty’s ResultValueProper-
ty maps to the testValues, which are the return values for the test being performed.

Note – Issue 7742 added new subsection for M2 stereotypes. SubSections in this section were
renumered to be a header 5. Updated figures to M1 Illustrations and changed Assoications
header to be M1 Associations. For each component definition, a constraint was added for the
interface that is realized by that component type. Removed Resource from table below.

8.1.5.2 Resource Components Stereotypes

Note – Issue 7586, Added constraints text in table

dtc/2005-09-04

8.1.5 Resource Components

80 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

This section defines the SWRadio resource component stereotypes contained in the profile definition as shown in
Table 8-4, which are: ResourceComponent, ResourceFactoryComponent, and SWRadioComponent that are de-
scribed in the following subsections. These stereotypes provide the basic component definitions for SWRadio
component developers. The SWRAPI stereotype denotes SWRadio interfaces that are used by or realized by Re-

sourceComponent. SWRAPI interfaces are defined in the PIM Facilities of this specification.

8.1.5.2.1 ResourceComponent

Description

Note – Issue 7742 Updated Figure, added association for QueryProperty, updated wording in
constraints

Table 8-4 – Resource Components Stereotypes

Stereotype Base Class Parent Tags Constraints Description

ResourceComponent Component SWRadioComp
onent

See
constraints
in section
below

Represents a component of a
application.

ResourceFactoryCompone
nt

Component SWRadioComp
onent

See
constraints
in section
below

Manages
ResourceComponent(s)

SWRadioComponent Component N/A See
constraints
in section
below

Represents the base definition
for all SWRadio Components.

swrapiRealization Association N/A Represents an implemented or
required application or logical
device component interface.

swrapiUsage Association N/A Describes an association that
realizes a SWRAPI.

dtc/2005-09-04

 8.1.5 Resource Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 81

The ResourceComponent, as shown in Table 8-4, provides the component definition for software radio resource
component. Figure 8-11 depicts the property associations for a ResourceComponent.

M1 Associations

Note – Issue 8873 Resolution - Replacement of non-existent ConfigureQuertyProperty type
with the ConfigureProperty type

● configureQueryProperty: ConfigureProperty [*]

A ResourceComponent may have zero to many configurable and queryable
properties.

● readOnlyProperty: QueryProperty [*]

A ResourceComponent may have zero to many query properties.
● testProperty: TestProperty [*]

A ResourceComponent may have zero to many test properties.
● <<swrapirealization>>:SWRAPI [*]

A ResourceComponent may realize many SWRAPIs depending on type of Re-
sourceComponent.

● <<swrapiusage>>:SWRAPI [*]

A ResourceComponent may require many SWRAPIs depending on type of Re-
sourceComponent.

Constraints

Note – Issue 7742, 7586 moved PropertySet constraints to PropertySet section, Issue 7742, add-
ed interface constraint

● The ResourceComponent shall realize the Resource interface.

Figure 8-11 – ResourceComponent M1 Illustration

dtc/2005-09-04

8.1.5 Resource Components

82 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Semantics

The ResourceComponent configure, query, and start operations are not inhibited by the stop operation.

8.1.5.2.2 Resource Factory Component

Description

Note – Issue 7742, updated figure and associations text, renamed component

The ResourceFactory class, as shown in Table 8-4, provides an optional mechanism for the management of Re-
sources. Figure 8-12 depicts the associations for a ResourceFactoryComponent, which are described below.

M1 Associations

Note – Issue 8873 Resolution - Replacement of non-existent ConfigureQuertyProperty type
with the ConfigureProperty type

● createOptionsProperty: ConfigureProperty [*]

These are the properties that a ResourceFactoryComponent understands and can
used when creating up a Resource.

● namedRegistrar: NamingService

The NamingService that contains a named ResourceFactoryComponent refer-
ence.

● product: Resource [*]

A ResourceComponent can be created from a ResourceFactoryComponent.

Constraints

The ResourceFactoryComponent shall realize the ResourceFactory interface.

Figure 8-12 – ResourceFactoryComponent M1 Illustration

ResourceFactory
(from Resource Components Interfaces)

<<interface>>

CreateOptionsProperty
stepSize : Single [0..1]

<<configureproperty>>

ResourceComponent
<<resourcecomponent>>

CFApplicationFactory

capabil ityManager : Boolean
(from Applicat ion Dep loyment M1 Defs)

<<applicationfactorycomponent>>

CFApplicationManager
(from Applicat ion Dep loyment M1 Defs)

<<applicationmanager>>

NamingService
<<servicecomponent>>

ResourceFactoryComponent
<<resourcefactorycomponent>>

*

0..1

+createOptionsProperty *

0..1

0..1*

+creator

0..1

+product

*
0..1

1

+resourceCreator

0..1

+delegator
1

*

1+resourceReleaser

* +appTeardownManager

1

1

1

+namedRegistrar

1

+registrant 1

dtc/2005-09-04

 8.1.5 Resource Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 83

Semantics

A ResourceFactoryComponent is used to create and release a ResourceComponent. When multiple clients have
obtained a reference to the same ResourceComponent, the ResourceFactoryComponent must not release the Re-
sourceComponent until release requests have been received from all the clients that issued the create request.
Application and Waveform developers are not required to use ResourceFactoryComponents for their application
definition. ResourceFactoryComponent provides the mechanism of creating separate process threads for each
component created in the ResourceFactory.

8.1.5.2.3 SWRadioComponent

Description

Note – Issue 7742, updated figure to be a M1 type, added constraint for interface, updated as-
socations, removed attributes since this is M1 data.

The SWRadioComponent, as shown in Table 8-4, is extension of the UML component. Figure 8-13 depicts the
relationships for any software radio component.

M1 Associations

● componentDescriptor: ComponentDescriptor [1]

A SWRadioComponent has at least one descriptor that describes the compo-
nent's characteristics such as ports and properties.

● serviceProvider: ComponentService [*]

A SWRadioComponent can be optionally associated with zero to many Servic-
es.

Constraints

A SWRadioComponent shall realize the ComponentIdentifier interface.

Figure 8-13 – SWRadioComponent M1 Illustration

dtc/2005-09-04

8.1.6 Device Components

84 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Semantics

SWRadioComponent may implement a ConfigureProperty with a name of “PRODUCER_LOG_LEVEL”. The
PRODUCER_LOG_LEVEL ConfigureProperty provides the ability to “filter” the log message output of a
SWRadioComponent. This property may be configured via the PropertySet interface to output only specific log
levels.

SWRadioComponents shall output only those log records to a LogService that correspond to enabled log level
values in the PRODUCER_LOG_LEVEL attribute. Log levels that are not in the PRODUCER_LOG_LEVEL at-
tribute are disabled. SWRadioComponents shall use their identifier attribute in the log record output to the
LogService. SWRadioComponents shall operate normally in the case where the connections to a LogService are
nil or an invalid reference.

8.1.6 Device Components

Note – Issue 7742 Broke the section into 2 subsections, one for model library (M1) interfaces
defined in the profile and the second for component stereotypes (M2) defined in the profile.

The Device Components sections define the set of interfaces and component stereotypes used to communicate
and manage SWRadio physical devices. The component stereotypes are depicted in the Table 8-5 below, which
are extensions of the UML Component. The following subsections describe the details of logical device interfac-
es (8.1.6.1) and component stereotypes (8.1.6.2).

8.1.6.1 Device Component Interfaces

Note – Issue 8842 - rename DeviceAggregation to DeviceComposition

dtc/2005-09-04

 8.1.6 Device Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 85

This section defines the modelLibrary device component interfaces contained in the profile definition as shown

in Figure 8-14, which are: DeviceComposition, Device, LoadableDevice, and ExecutableDevice that are de-
scribed in the following subsections. These interfaces provide basic management interfaces for SWRadio physi-
cal devices.

8.1.6.1.1 Device

Description

The Device, as shown in Figure 8-14, defines an interface that abstracts the underlying hardware. The Device is
a specialization of Resource and ManagedServiceComponent interfaces with additional capacity behavior.

A Device (e.g., logical device) interface is a functional abstraction for a set (e.g., zero or more) of hardware de-
vices and provides the following attributes and operations:

● State Management Attributes - This information describes the administrative, usage, and operational
states of the device.

● Capacity Operations - In order to use a device, certain capacities (e.g., memory, performance, etc.)
must be obtained from the device. The capacity properties will vary among devices and are described
in a component's descriptor. A device may have multiple allocatable capacities, each having its own
unique capacity model.

Figure 8-14 – Device Component Interfaces Definition

dtc/2005-09-04

8.1.6 Device Components

86 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 8842 - rename DeviceAggregation to DeviceComposition

Attributes

● <<readonly>>compositeDevice: DeviceCompositionComponent

The readonly compositeDevice attribute contains a DeviceCompositionCompo-
nent reference. This DeviceCompositionComponent reference refers to the ob-
ject used by this device (e.g. in the context of the parent of the composite) to
maintain the composite parts (includes a list of composite part devices, e.g. chil-
dren) or is a nil component/object reference if no such composition association
exists.

● <<readonly>>label: String

The readonly label attribute contains the Device's label. The label attribute is
the meaningful name given to a Device. The attribute could convey location in-
formation within the system (e.g., audio1, serial1, etc.).

● <<readonly>>softwareProfile: String

The profile descriptor (data/command uses and provides ports, configure and
query properties, capacity properties, status properties, etc.).

Operations

● <<optional>> allocateCapacity (in capacities: Properties, return Boolean): {raises = (

InvalidCapacity, InvalidState)}

The allocateCapacity operation provides the mechanism to request and allocate
capacity from the DeviceComponent. The allocateCapacity operation shall re-
duce the current capacities of the DeviceComponent based upon the input ca-
pacities parameter. The allocateCapacity operation is valid when the
adminState attribute is UNLOCKED, operationalState attribute is ENABLED,
and usageState attribute is not BUSY.

The allocateCapacity operation shall set the usageState attribute to BUSY,
when the DeviceComponent determines that it is not possible to allocate any
further capacity. The allocateCapacity operation shall set the usageState at-
tribute to ACTIVE, when capacity is being used and any capacity is still avail-
able for allocation.

The allocateCapacity operation shall return "True", if the capacities have been
allocated, or "False", if not allocated.

The allocateCapacity operation shall raise the InvalidCapacity exception, when
the capacities are invalid or the capacity values are the wrong type or ID.

The allocateCapacity operation shall raise the InvalidState exception, if the De-
vice's adminState is not UNLOCKED or operationalState is DISABLED when
invoked.

● <<optional>> deallocateCapacity (in capacities: Properties): {raises = (InvalidCapacity,

InvalidState)}

The deallocateCapacity operation provides the mechanism to return capacities
back to the Device, making them available to other users.

dtc/2005-09-04

 8.1.6 Device Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 87

The deallocateCapacity operation shall adjust the current capacities of the De-
vice based upon the input capacities parameter. The deallocateCapacity opera-
tion is valid when the adminState is UNLOCKED or SHUTTING_DOWN and
operationalState is ENABLED and usageState is not IDLE.

The deallocateCapacity operation shall set the usageState attribute to ACTIVE
when, after adjusting capacities, any of the Device's capacities are still being
used.

The deallocateCapacity operation shall set the usageState attribute to IDLE
when, after adjusting capacities, none of the Device's capacities are being used.

The deallocateCapacity operation does not return any value.

The deallocateCapacity operation shall raise the InvalidCapacity exception,
when the capacity ID is invalid or the capacity value is the wrong type. The In-
validCapacity exception states the reason for the exception.

The deallocateCapacity operation shall raise the InvalidState exception, if the
Device's adminState is LOCKED or operationalState is DISABLED or usageS-
tate is IDLE when invoked.

Note – Issue 8842

● releaseObject(): {raises = (releaseError)}

The following behavior is in addition to the LifeCycle releaseObject operation
behavior.

If the compositeDevice attribute is not nil, the releaseObject operation shall call
the releaseObject operation on all of the DeviceComponents managed b y the
compositeDevice attribute referenced by the DeviceCompositionComponent
(i.e., those DeviceComponents that are contained within the DeviceComposi-
tionComponent's compositeParts attribute).

The releaseObject operation shall transition the DeviceComponent's admin-
State to SHUTTING_DOWN state when the DeviceComponent's adminState is
UNLOCKED, and usageState is not IDLE or the compositeDevice attribute is
not nil and the referenced DeviceCompositionComponent’s compositeParts at-
tribute is not empty of devices.

The releaseObject operation shall transition the DeviceComponent's admin-
State to LOCKED when the DeviceComponent's adminSate is
SHUTTING_DOWN and usageState attribute is IDLE and the compositeDe-
vice attribute is nil or the compositeDevice attribute referenced DeviceCompo-
sitionComponent's compositeParts attribute is empty of devices; all composite
parts have been removed.

The releaseObject operation shall transition the DeviceComponent’s admin-
State to LOCKED when the DeviceComponent’s adminState is UNLOCKED,
and the usageState is IDLE and the compositeDevice attribute is nil or the ref-
erenced DeviceCompositionComponent’s compositeParts attribute is empty of

dtc/2005-09-04

8.1.6 Device Components

88 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

devices; all composite parts have been removed.

The releaseObject operation shall release the DeviceComponent, when the De-
vice's adminState transitions to LOCKED, ensuring that its usageState is IDLE
and any composite parts have been removed.

If the DeviceComponent is a composite part or child of another DeviceCompo-
nent then the releaseObject operation shall cause the DeviceComponent to re-
move itself from the DeviceCompositionComponent (using the
DeviceComposition reference provided as an execute property at the construc-
tion of the DeviceComponent).

If the DeviceComponent is registered with a DeviceManager, then the release-
Object operation shall unregister the DeviceComponent from its DeviceManag-
er.

Types and Exceptions

● <<exception>>InvalidCapacity (msg: String, capacities: Properties)

The InvalidCapacity exception indicates the capacities that are not valid for this
device.

● <<exception>>InvalidState (msg: String)

The InvalidState exception indicates that the device is not capable of the oper-
ation being attempted due to its state(s) (e.g., admin, operational or usage).

8.1.6.1.2 ExecutableDevice

Description

The ExecutableDevice interface, as shown in Figure 8-14, extends the LoadableDevice by adding execute and
terminate behavior.

Operations

● execute(in name: String, in options: Properties, in parameters: Properties, return

ProcessID_Type): {raises = (InvalidState, InvalidFunction,

InvalidParameters, InvalidOptions, InvalidFileName, ExecuteFail)}

The execute operation provides the mechanism for starting up and executing a
software process or thread. A process or thread can be used to execute a runtime
environment, function, or file.

● terminate(in processId: ProcessID_Type): {raises = (InvalidProcess, InvalidState)}

The terminate operation provides the mechanism for terminating the execution
of a process or thread on a specific device that was started up with the execute
operation. The terminate operation shall terminate the execution of the process
or thread designated by the processId input parameter on the Device.

When the last thread is terminated from a process, the terminate operation
should terminate the process. The terminate operation shall raise the Invalid-
State exception if the Device's adminState is LOCKED or operationalState is
DISABLED upon invocation.

dtc/2005-09-04

 8.1.6 Device Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 89

The terminate operation shall raise the InvalidProcess exception when the
processId is not executing on the Device.

Types and Exceptions

● <<exception>>ExecuteFail

The ExecuteFail exception, a type of SystemException, indicates that the Exe-
cute operation failed due to device dependent reasons. The ExecuteFail excep-
tion indicates that an error occurred during an attempt to invoke the execute
function on the device. The error number indicates an ErrorNumberType value
(e.g. CF_EACCES, CF_EBADF, CF_EINVAL, CF_EIO, CF_EMFILE,
CF_ENAMETOOLONG, CF_ENOENT, CF_ENOMEM, CF_ENOTDIR).
The message is component-dependent, providing additional information de-
scribing the reason for the error.

● <<exception>>InvalidFunction

The InvalidFunction exception indicates that a function, as identified by the in-
put name parameter, hasn't been loaded on this device.

● <<exception>>InvalidProcess

The InvalidProcess exception, a type of SystemException, indicates that a proc-
ess, as identified by the processID parameter, is not executing on this device.
The error number indicates an ErrorNumberType value (e.g., CF_ESRCH,
CF_EPERM, CF_EINVAL). The message is component-dependent, providing
additional information describing the reason for the error.

● <<exception>>InvalidParameters (invalidParms: Properties)

The InvalidParameters exception indicates the input parameters are invalid on
the execute operation. The InvalidParameters exception is raised when there
are invalid execute parameters. Each parameter's ID and value must be a valid
string type. The invalidParms attribute is a list of invalid parameters specified
in the execute operation.

● <<exception>>InvalidOptions (invalidOpts: Properties)

The InvalidOptions exception indicates the input options are invalid on the ex-
ecute operation. The invalidOpts attribute is a list of invalid options specified in
the execute operation.

Note – Issue 7895, fix types, Issue 8949 changed type to Long

● ProcessID_Type: Long

This type, a specialization of Long, defines a process number within the system.
Process number is unique to the Processor operating system that created the
process.

● PRIORITY_ID : String = "PRIORITY"

The PRIORITY_ID is the identifier for the ExecutableDevice's execute options

Note – Issue 7895, fix types

● parameters. The value for a priority option parameter shall be an unsigned long.
● STACK_SIZE_ID = "STACK_SIZE"

The STACK_SIZE_ID is the identifier for the ExecutableDevice's execute op

Note – Issue 7895, fix types

dtc/2005-09-04

8.1.6 Device Components

90 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● tions parameter. The value for a stack size option parameter shall be an unsigned
long.

● CREATE_THREAD_REQUEST = "CREATE_THREAD"

The CREATE_THREAD_REQUEST is the identifier for the ExecutableDe-
vice's execute options parameter. The value for create thread request option

Note – Issue 7895, fix types

● shall be an unsigned long that indicates the thread ID to be collocated with. A
zero valid indicates no thread ID collocation is indicated. A non-zero indicates
the thread ID to be collocated with.

● RUNTIME_REQUEST = "RUNTIME_REQUEST"

The RUNTIME_REQUEST is the identifier for the ExecutableDevice's execute
options parameter. The value for runtime request option shall be a string of the
runtime name to be executed.

● RUNTIME_OPTIONS = "RUNTIME_OPTIONS"

The RUNTIME_OPTIONS is the identifier for the ExecutableDevice's execute
options parameter. The value for runtime options option shall be a Base-
Types::Properties. Each ID/value pair in the Properties represents a runtime op-
tion. The id indicates the option name and the value is the option value.

Semantics

The execute operation shall execute the function or file identified by the input name parameter using the input pa-
rameters and options parameters when no runtime or thread options are specified. Whether the input name param-
eter is a function or a file name is implementation-specific.

The execute operation shall pass the input parameters (ID/value string pairs) as arguments (array of strings) to the
operating system “execute/thread” function, where argument (0) is the function name, argument (1) maps to input
parameters (0) id and argument (2) maps to input parameters (0) value and so forth.

The execute operation shall create a thread when the options parameter is CREATE_THREAD_REQUEST is spec-
ified. The execute operation shall create thread in the same process as the thread ID identified by the
CREATE_THREAD_REQUEST value when the CREATE_THREAD_REQUEST value is not zero.

The execute operation shall create a runtime process/thread when the RUNTIME_REQUEST options is specified in
the options parameter. The execute operation create the runtime process/thread using the RUNTIME_REQUEST
value. The execute operation shall pass the RUNTIME_OPTIONS as specified in the input options parameter, the
input name, and arguments in the form that is compliant with runtime parameters syntax.

Note – Issue 8948, changed wording on processID

The execute operation shall use STACK_SIZE_ID and PRIORITY_ID options, when specified, to set the proc-
ess/thread stack size and priority for the target executable. The execute operation returns a unique processID for the
process or thread that it created.

The execute operation shall raise the InvalidState exception, if the Device's adminState is not UNLOCKED or op-
erationalState is DISABLED when invoked. The execute operation shall raise the InvalidFunction exception when
the function indicated by the input name parameter does not exist for the Device (e.g., not loaded on device). The
execute operation shall raise the InvalidFileName exception when the file name indicated by the input name param-
eter does not exist for the Device (e.g., not loaded on device). The execute operation shall raise the InvalidParame-
ters exception when the input parameters parameter item ID or value are not string types. The execute operation

dtc/2005-09-04

 8.1.6 Device Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 91

shall raise the InvalidOptions exception when the input options parameter does not comply with STACK_SIZE_ID,
PRIORITY_ID, THREAD_CREATE_REQUEST, RUNTIME_CREATE_REQUEST, and RUNTIME_OPTIONS
(described in Types section below). The execute operation shall raise the ExecuteFail exception when the operating
system “execute” function for the device is not successful.

Note – Issue 8842 rename DeviceAggregation

8.1.6.1.3 DeviceComposition

Description

The DeviceComposition is an interface that provides the capability to construct a composite device definition.

Attributes

● <<readonly>>compositeParts: DeviceComponent [*]

The readonly compositeParts attribute shall contain a list of DeviceComponents
that have been added to DeviceComposition or a zero length sequence if the
composition is empty (no devices have been added or all have been removed).

Operations

Note – Issue 8842 rename DeviceAggregation

● addDevice (in associatedDevice: DeviceComponent): {raises = (InvalidObjectReference)}

The addDevice operation provides the mechanism to associate a Device with a
DeviceComposition. The addDevice operation shall add the input associated-
Device parameter to the compositeParts attribute when the associatedDevice
does not already exist in the compositeParts attribute. The associatedDevice is
ignored when duplicated. This operation does not return any value. The addDe-
vice operation shall raise the InvalidObjectReference when the input associat-
edDevice is a nil DeviceComponent reference.

Note – Issue 8842 rename DeviceAggregation

● removeDevice (in associatedDevice: DeviceComponent): {raises = (InvalidObjectReference)}

The removeDevice operation provides the mechanism to disassociate a Device-
Component from a DeviceComposition. The removeDevice operation shall re-
move the input associatedDevice parameter from the compositeParts attribute.
This operation does not return any value. The removeDevice operation shall
raise the InvalidObjectReference when the input associatedDevice is a nil De-
viceComponent reference or does not exist in the compositeParts attribute.

Semantics

The DeviceComposition interface provides composite behavior that can be used to add and remove DeviceCom-
ponents from a composite relationship. Composite part DeviceComponents use this interface to introduce or re-
move an association between themselves and a DeviceComponent that manages the compositoin. When the
aggregating DeviceComponent that manages the DeviceComposition changes state or is being released by the re-
leaseObject operation, its associated DeviceComponents are affected. (all DeviceComponents added to the De-
viceComposition)

dtc/2005-09-04

8.1.6 Device Components

92 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.6.1.4 LoadableDevice

Description

The LoadableDevice interface, as shown in Figure 8-14, extends the Device interface by adding software loading
and unloading behavior.

Operations

● load(in fs: FileSystem, in filename: String , in loadKind: LoadType): {raises = (InvalidState,

InvalidLoadKind, InvalidFileName, LoadFail)}

The load operation provides the mechanism for loading software on a specific
device.

The load operation shall load a file on the specified device based upon the input
loadKind and fileName parameters using the input FileSystem parameter to re-
trieve the file.

Multiple loads of the same input fileName do not result in an exception or a du-
plicate load, however the load operation should account for this attempt so that
the unload operation behavior can be performed. The load operation shall raise
the InvalidState exception if the Device's adminState is not UNLOCKED or op-
erationalState is DISABLED upon invocation.

The load operation shall raise the InvalidLoadKind exception if the input load-
Kind parameter is not supported.

The load operation shall raise the InvalidFileName exception if the file desig-
nated by the input filename parameter cannot be found.

The load operation shall raise the LoadFail exception if an attempt to load the
device is unsuccessful.

● unload(in filename: String): {raises = (InvalidState, InvalidFileName)}

The unload operation provides the mechanism to unload software that is cur-
rently loaded. The unload operation shall unload the application software on the
device based on the input fileName parameter. The unload operation shall per-
form the unload when the number of unload requests matches the number of
load requests for the input filename.

The unload operation shall raise the InvalidState exception if the adminState at-
tribute is LOCKED or its operationalState attribute is DISABLED upon invo-
cation.

The unload operation shall raise the InvalidFileName exception if the file des-
ignated by the input filename parameter cannot be found.

Types and Exceptions

● <<enumeration>>LoadType (KERNEL_MODULE, DRIVER, DLL, EXECUTABLE)

The LoadType defines the type of load to be performed which are:
-KERNEL_MODULE,
-DRIVER,

dtc/2005-09-04

 8.1.6 Device Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 93

-DLL,
-EXECUTABLE, SHARED_LIBRARY

● <<exception>>InvalidLoadKind

The InvalidLoadKind exception indicates that the LoadableDevice is unable to
load the type of file designated by the loadKind parameter.

● <<exception>>LoadFail (errorNumber : ErrorNumberType, msg : String)

The LoadFail exception indicates that the Load operation failed due to device
dependent reasons. The LoadFail exception indicates that an error occurred dur-
ing an attempt to load the device. The error number indicates an ErrorNumber-
Type value (e.g. EACCES, CF_EAGAIN, CF_EBADF, CF_EINVAL,
CF_EMFILE, CF_ENAMETOOLONG, CF_ENOENT, CF_ENOMEM,
CF_ENOSPC, CF_ENOTDIR). The message is component-dependent, provid-
ing additional information describing the reason for the error.

Note – Issue 7742 - added Device Component Stereoptypes subsection, changed names of load-
able and executable device stereotypes by adding component at the end of the name. Updated
stereotype table with name changes. Removed type, operations, attributes from definitions.
Changed Assoications noheader to M1 Associations.

8.1.6.2 Device Component Stereotypes

Note – Issue 7586, added constraints table in table

The component stereotypes are depicted in the Table 8-5 below, which are extensions of the UML Component.
The following subsections describe the details of logical device interfaces and component stereotypes.

Table 8-5 – Device Components Stereotypes

Stereotype Base Class Parent Tags Constraints Description

DeviceComponent Component ResourceComponent,
ManagedServiceComponent

See
constraints
in section
below

Represents a logical device
that abstracts the underlying
hardware.

DeviceDriver Component N/A Represents a device driver
that interfaces with the
hardware.

ExecutableDeviceC
omponent

Component LoadableDeviceComponent See
constraints
in section
below

Manages execution and
termination of OS processes
on a device.

DeviceComposition
Component

Component N/A See
constraints
in section
below

Provides the capability to
construct composite
devices.

LoadableDeviceCo
mponent

Component DeviceComponent See
constraints
in section
below

Represents a loadable
device that manages loading
behavior on a device.

dtc/2005-09-04

8.1.6 Device Components

94 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.6.2.1 DeviceComponent

Description

Note – Issue 7742, updated figure to be M1 type,

The DeviceComponent, as shown in Figure 8-15, defines a component that abstracts the underlying hardware.
The DeviceComponent is a type of ResourceComponent and ManagedServiceComponent with additional capaci-
ty behavior.

A DeviceComponent (e.g., logical device) is a functional abstraction for a set (e.g., zero or more) of hardware
devices and provides the following attributes and operations:

● State Management Attributes - This information describes the administrative, usage, and operational
states of the device.

● Capacity Operations - In order to use a DeviceComponent, certain capacities (e.g., memory,
performance, etc.) must be obtained from the DeviceComponent. The capacity properties will vary
among DeviceComponents and are described in a component's descriptor. A DeviceComponent may
have multiple allocatable capacities, each having its own unique capacity model.

M1 Associations

● deviceDriver: DeviceDriver [*]

The device drivers used by the logical device for communicating with the radio
hardware.

Figure 8-15 – DeviceComponent M1 Illustration

dtc/2005-09-04

 8.1.6 Device Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 95

Constraints

The DeviceComponent shall support the ServiceProperty capabilities and capacities properties as stated in the
Device's component descriptor as specified by the softwareProfile attribute.

The ServiceProperty properties that are managed capacities shall be queryable from the DeviceComponent's que-
ry operation and managed by the allocateCapacity and deallocateCapacity operations.

The setAdminState operation shall be become disabled when the releaseObject operation is invoked.

The DeviceComponent shall provide the allocateCapacity and deallocateCapacity operations when the Device-
Component contains ServiceProperty(s) whose locallyManaged attribute value is True.

The DeviceComponent shall realize the Device interface.

Semantics

The managed capacity properties are managed by the logical device through its capacity operations and reflected
by its state attributes.

The DeviceComponent contains CapacityModel(s) when the DeviceComponent contains ServiceProperty(s)
whose locallyManaged attribute value is True.

The BasicDeploymentRequirement corresponds to a PropertyValue item in the allocateCapacity or deallocateCa-
pacity capacities parameter. The PropertyValue item's id matches the BasicDeploymentRequirement's identifica-
tion and the PropertyValue item's value matches the BasicDeploymentRequirement's value attribute but is
converted into a format that agrees with the ServiceProperty's type attribute.

The DeploymentRequirementQualifer (Infrastructure::SWRadio Deployment::SWRadio Artifacts) corresponds to
a PropertyValue item in the allocateCapacity or deallocateCapacitycapacities parameter. The PropertyValue
item's id matches the DeploymentRequirementQuailifer 's identification and the PropertyValue item's value con-
tains a Properties type, where each DeploymentRequirementQuailifer's qualifier (id, value) corresponds to a
Properties element in the list. The Properties element list size is based on the number of DeploymentRequire-
mentQuailifer 's qualifier items. DeploymentRequirementQualifier's qualifier value attribute is converted into a
format that agrees with the CharacteristicQuery value attribute.

dtc/2005-09-04

8.1.6 Device Components

96 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.6.2.2 DeviceDriver

Description

The DeviceDriver, as shown in Figure 8-16, represents a component that interfaces with the SWRadio communi-
cation equipment.

M1 Associations

● CommEquipment: CommEquipment [1..*]

The device element the device driver is managing and controlling.

8.1.6.2.3 ExecutableDeviceComponent

Description

The ExecutableDeviceComponent, as shown in Figure 8-17, extends the LoadableDeviceComponent by adding
execute and terminate process/thread behavior.

Figure 8-16 – DeviceDriver M1 Illustration

Figure 8-17 – ExecutableDeviceComponent M1 Illustration

dtc/2005-09-04

 8.1.6 Device Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 97

M1 Associations

Note – Issue 7697 - Wrong Name

● mainProcess: ExecutableCode [*]

Zero to many MainProcesses may be executed and terminated on a device.
● resourceAdaptor: ResourceComponent [*]

A ResourceComponent can take on the role of an adaptor that communicates
with components that are not implemented with a distributive component mid-
dleware environment.

Constraints

The ExecutableDeviceComponent shall realize the ExecutableDevice interface.

Note – Issue 8842

8.1.6.2.4 DeviceCompositionComponent

Description

The DeviceCompositionComponent is a component that provides the capability to construct a composite device
definition.

Constraints

The DeviceCompositionComponent shall realize the DeviceComposition interface.

Semantics

The DeviceCompositionComponent component provides composite behavior that can be used to add and remove
DeviceComponents from a composite relationship. Composite part DeviceComponents are provided with and use
a reference to a DeviceCompositionComponent (as an instance of a DeviceComposition interface realization) to
introduce or remove an association between themselves and a DeviceComponent that manages the composition.
When the DeviceComponent that manages the DeviceComposition changes state or is being released by the re-
leaseObject operation, its associated DeviceComponents are affected (all DeviceComponents added to the De-
viceComposition).

dtc/2005-09-04

8.1.6 Device Components

98 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.6.2.5 LoadableDeviceComponent

Description

The LoadableDeviceComponent, as shown in Figure 8-18, extends the DeviceComponent component by adding
software loading and unloading behavior.

Attributes

● <<characteristicselectionproperty>> loadKind(name = "Load Kind",

type = string)

The <<characteristicselectionproperty>> (Application and Device Compo-
nents::Properties) LoadKind defines the type of LoadKindTypes supported for
the LoadableDevice load operation. Valid values are: DLL, DRIVER, EXE-
CUTABLE, KERNEL MODULE, and SHARED LIBRARY. The valid values
are device specifc.

● <<characteristicsetproperty>> os(name = "OS", characteristic [1] = (qualifier [1] = (

name ="Name", value = ""), qualifier [2] = (name ="Version",

value = "")))

The <<characteristicsetproperty>> (Application and Device Compo-
nents::Properties) os defines the type of Operating Systems supported for the
LoadableDevice load operation. The OS name values are case sensitive. The
value attributes are device specific.

● ·<<characteristicsetproperty>>runtime(name = "Runtime",

characteristic [1] = (qualifier [1] = (name ="Name",

value = ""), qualifier [2] = (name ="Version", value = "")))

The <<characteristicsetproperty>> (Application and Device Compo-

Figure 8-18 – LoadableDeviceComponent M1 Illustration

dtc/2005-09-04

 8.1.7 Application Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 99

nents::Properties) runtime defines the runtime environements supported for the
LoadableDevice load operation. The value attributes are device specific.

● <<characteristicsetproperty>>library(name = "Library",

characteristic [1] = (qualifier [1] = (name ="Name",

value = ""), qualifier [2] = (name ="Version", value = "")))

The <<characteristicsetproperty>> (Application and Device Compo-
nents::Properties) library defines the libraries supported for the LoadableDevice
load operation. The value attributes are device specific.

M1 Associations

● ObjectCode: ObjectCode [*]

Zero to many ObjectCodes may be loaded on a device.

Constraints

The LoadableDeviceComponent shall support the load type capabilities identified in the Device's component de-
scriptor as specified in the softwareProfile attribute.

When a LoadKind characteristic property is not defined for the LoadableDeviceComponent, the load operation
shall support all load kinds.

The LoadableDeviceComponent shall realize the LoadableDevice interface.

Semantics

The loaded software may be subsequently executed on the LoadableDeviceComponent, if the component is also
an ExecutableDeviceComponent.

8.1.7 Application Components

The Application Components sections define the set of components used to define applications and waveforms.
The Application Components stereotypes are depicted in Table 8-6 below, which are extensions of the UML
Component (UML2.0::Components::BasicComponents). The following subsections describe the details of these
elements.

Note – Issue 7742, updated all figures to be M1 types and changed figure title, added con-
straints for the stereotypes as necessary that were depicted in the figures, Changed Associations
noheader to M1 associations, Changed some of the cardinality on the associations., Issue 7586
added forward references for constraints

dtc/2005-09-04

8.1.7 Application Components

100 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Table 8-6 – Applications Stereotypes

Stereotype Base Class Parent Tags
Const
raints Description

Application Component N/A Represents an assembly of
ApplicationResources and
SWRadioComponents.

ApplicationResourceCom
ponent

Component ResourceComponent See
constr
aints
in
sectio
n
below

Provides a common
definition for an
application's
ResourceComponent.

LinkLayerControlResourc
e

Component WaveformLayerResource See
constr
aints
in
sectio
n
below

Represents a standard Link
Layer Control component
of the OSI layer model.

MediumAccessControlRe
source

Component WaveformLayerResource See
constr
aints
in
sectio
n
below

Represents a standard
Medium Access Control
component of the OSI layer
model.

NeworkLayerResource Component WaveformLayerResource See
constr
aints
in
sectio
n
below

Represents a standard
Network Layer component
of the OSI layer model.

PhysicalLayerResource Component WaveformLayerResource See
constr
aints
in
sectio
n
below

Represents a standard
Physical Layer component
of the OSI layer model.

WaveformApplication Component Application Represents a waveform
application.

WaveformLayerResource Component ApplicationResourceCom
ponent

Represents a standard
component of the OSI layer
model.

dtc/2005-09-04

 8.1.7 Application Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 101

8.1.7.1 Application

Description

The Application, as shown in Figure 8-19, provides a component assembly definition for a set of ApplicationRe-
sourceComponent(s) and SWRadioComponent(s).

M1 Associations

● appComponent: ApplicationResource [1..*]

The set of ApplicationResources that are connected together to form the appli-
cation assembly.

● loadableComponent: SWRadioComponent [*]

The set of signal processing components that comprise the application assem-
bly.

Figure 8-19 – Application M1 Illustration

SWRadioComponent
<<swradiocomponent>>

ApplicationResourceComponent
<<applicationresourcecomponent>>

1..*0..1

+loadableComponent

1..*

+resourceAdaptor

0..1

Application
<<application>>

1..*

*

+appComponent 1..*

+componentAssembly *

*

*

+loadableComponent *

+componentAssembly
*

dtc/2005-09-04

8.1.7 Application Components

102 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.7.2 ApplicationResourceComponent

Description

The ApplicationResourceComponent, as shown in Table 8-6, provides a common API for control and configura-
tion of an application resource component. Figure 8-20 depicts the associations for an ApplicaitonResourceCom-

ponent.

M1 Associations

● namedRegistrar: NamingService [0..1]

The optional NamingService that contains a named ApplicationComponent ref-
erence.

● loadableComponent: SWRadioComponent [*]

A loadableComponent may be associated with a ApplicationResourceCompo-
nent when the component acts a resourceAdaptor. In this case, the loabable-
Component cannot be communicated with unless through the resourceAdaptor.

Constraints

Note – Issue 7586

An ApplicationResourceComponent shall be registered with a NamingService when a ResourceFactoryCompo-
nent does not create the ApplicationResourceComponent.

Semantics

ApplicationResourceComponent references are contained in NamingService so the deployment machinery (e.g.,
ApplicationFactory) can obtain the deployed component.

Figure 8-20 – ApplicationResourceComponent M1 Illustration

dtc/2005-09-04

 8.1.7 Application Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 103

8.1.7.3 WaveFormLayerResource

Description

The WaveformLayerResource, as shown in Table 8-6, specializes the ApplicationResource stereotype. The
WaveformLayerResource stereotype provides a mechanism to realize a waveform layer component, should a
non-OSI layer is required. For standard OSI layers, the stereotypes that specialize the WaveformLayerResource
should be used.

A WaveformLayerResource, can perform two types of communication as shown in Figure 8-21. In the horizon-
tal communication scenario, a waveform layer component communicates with one or more peer waveform layer
components that are located in another radio set. In the vertical communication scenario, a waveform compo-
nent communicates with other waveform components within the same radio set.

Note – Issue 7698 - Cardinality Problem

M1 Associations

Note – Issue 7698 - Cardinality Problem

● radioSetA, radioSetB: WaveformLayerResource [0..*]

This association shows the data transfer between two WaveformLayerResourc-
es that reside in different radio sets. This is an example of horizontal communi-
cation.

Note – Issue 7698 - Cardinality Problem

● serviceProvisionPoint, serviceAccessPoint: WaveformLayerResource [0..*]

This association shows the data transfer between two or more WaveformLayer-
Resources that are in the same radio sets. This is an example of vertical commu-

Figure 8-21 – WaveformLayerResource M1 Illustration

dtc/2005-09-04

8.1.7 Application Components

104 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

nication. Service Access Point is defined as a interface or a port on the client
waveform component through which the client uses a service. Service Provision
Point is defined as a port or interface on a server providing a service.

8.1.7.4 PhysicalLayerResource

Description

The PhysicalLayerResource, as shown in Table 8-6, specializes the WaveformLayerResource stereotype. The
PhysicalLayerResource stereotype provides a mechanism to realize a standard Physical Layer component of the
OSI layer model. A PhysicalLayerResource is associated with a medium access control or link layer control re-
source as shown in Figure 8-22. The standard facilities of a Physical Layer API are defined in the PIM facilities.

Note – Issue 7699 - Redundant Association (also removed the association description from the
associations section below)

M1 Associations

● MediumAccessControlResource : WFMediumAccessControlResource [0..1]

PhysicalLayerResource communicates with MediumAccessControlResource,
and MediumAccessControlResource controls the transmission parameters re-
lated to the physical medium. Also, protocol data is communicated bi-direction-
ally between those two components. (Vertical Communication)

● linkLayerControllerResource : WFLinkLayerControllerResource [0..1]

PhysicalLayerResource communicates with LinkLayerControllerResource, and
LinkLayerControllerResource controls the transmission parameters related to
the link establishment and quality. Also, protocol data is communicated bi-di-
rectionally between those two components. (Vertical Communication)

Figure 8-22 – PhysicalLayerResource M1 Illustration

dtc/2005-09-04

 8.1.7 Application Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 105

Constraints

A PhysicalLayerResource shall be associated with either a MediumAccessControlResource or a
LinkLayerControlResource.

8.1.7.5 MediumAccessControlResource

Description

The MediumAccessControlResource, as shown in Table 8-6, specializes the WaveformLayerResource stereotype.
The MediumAccessControlResource stereotype provides a mechanism to realize a standard Medium Access Con-
trol component of the OSI layer model. A MediumAccessControlResource is associated with a physical layer re-
source and link layer control resource as shown in Figure 8-23. The standard facilities of a Medium Access
Control API are defined in the PIM facilities.

Note – Issue 7700 - Redundant Association (also removed the association description from the
associations section below)

M1 Associations

● physicalLayerResource : WFPhysicalLayerResource [1]

PhysicalLayerResource communicates with MediumAccessControlResource,
and MediumAccessControlResource controls the transmission parameters re-
lated to the physical medium. Also, protocol data is communicated bi-direction-
ally between those two components. (Vertical Communication)

Figure 8-23 – MediumAccessControlResource M1 Illustration

WFLinkLayerControlResource
<<linklayercontrolresource>>

Resource
(from Resource Components Interfaces)

<<interface>>

WFMediumAccessControlResource
<<mediumaccesscontrolresource>>

1

0..1

+linkLayerControlResource1

+mediumAccessControlResource0..1

WFPhysicalLayerResource
<<physicallayerresource>>

1

0..10..1

1+physicalLayerResource

+mediumAccessControlResource

dtc/2005-09-04

8.1.7 Application Components

106 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● linkLayerControllerResource : WFLinkLayerControllerResource [1]

MediumAccessControlResource communicates with LinkLayerControllerRe-
source, and LinkLayerControllerResource controls the transmission parameters
related to the link establishment and quality. MediumAccessController Re-
source may perform some quality of service related measurements and commu-
nicate this to the Link controller. Also, protocol data is communicated bi-
directionally between those two components (Vertical Communication).

Constraints

A MediumAccessControlResource shall be associated with a PhysicalLayerResource and a LinkLayerControlRe-
source.

8.1.7.6 LinkLayerControlResource

Description

The LinkLayerControlResource, as shown in Table 8-6, specializes the WaveformLayerResource stereotype. The
LinkLayerControlResource stereotype provides a mechanism to realize a standard Link Layer Control component
of the OSI layer model. A LinkLayerControlResource is associated with a physical layer resource or a medium
access control resource as shown in Figure 8-24. The standard facilities of a Link Layer Control API are defined
in the PIM facilities.

Note – Issue 7701 - Redundant Association (also removed the association description from the
associations section below)

M1 Associations

● physicalLayerResource : WFPhysicalLayerResource [0..1]

LinkLayerControlResource may communicate directly with PhysicalLayerRe-
source, by-passing the Medium Access layer. This communication is only in the

Figure 8-24 – LinkLayerControlResource M1 Illustration

NetworkLayerResource
<<networklayerresource>>

WFMediumAccessControlResource
<<mediumaccesscontrolresource>>

WFLinkLayerControlResource
<<linklayercontrolresource>>

1

1..*

+networkLayerResource 1

+linkLayerControlResource 1..* 1

0..1

+linkLayerControlResource
1

+mediumAccessControlResource0..1 WFPhysicalLayerResource
<<physicallayerresource>>

0..1

0..1

+LinkLayerControlResource
0..1

+physicalLayerResource
0..1

Resource
(f rom Resou rce Components Interfaces)

<<interface>>

{XOR}

dtc/2005-09-04

 8.1.7 Application Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 107

control plane. In other scenarios where a Medium Access layer is not present in
the waveform, this association encompasses both control and data plane com-
munication between those two components. (Vertical Commnucation)

● mediumAccessControlResource : WFMediumAccessControlResource [0..1]

LinkLayerControlResource communicates with MediumAccessControlRe-
source, and LinkLayerControlResource controls the transmission parameters
related to the link establishment and quality. MediumAccessControlResource
may perform some quality of service related measurements and communicate
this to the Link controller. Also, protocol data is communicated bi-directionally
between those two components. (Vertical Communication)

● networkLayerResource: NetworkLayerResource [1]
NetworkLayerResource communicates with LinkLayerControlResources.

Constraints

The LinkLayerControlResource shall be associated with a NetworkLayerResource.

Note – 7586, added “either”

The LinkLayerControlResource shall be either associated with a PhysicalLayerResource or a MediumAccess-
ControlResource.

dtc/2005-09-04

8.1.7 Application Components

108 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.1.7.7 NetworkLayerResource

Description

The NetworkLayerResource, as shown in Figure 8-6, specializes the WaveformLayerResource stereotype. The
NetworkLayerResource stereotype provides a mechanism to realize a standard Network Layer component of the
OSI layer model. A NetworkLayerResource is associated with one or more link layer control resource and can
also play the role of a gateway/translator as shown in Figure 8-25. The facilities of a network layer component is
out of the scope of this specification and is not included in the PIM.

Note – Issue 7702 - Redundant Association (also removed the association description from the
associations section below)

Associations

● linkLayerControlResource : WFLinkLayerControlResource [1..*]

A NetworkLayerResource may communicate with one or more Link Layer
components within the waveform.

● Gateway/translator: NetworkLayerResource */[1..*]

A radio set may be programmed to act as a waveform bridge / repeater, and in
the case the network layer resource communicates with other network layer re-

Figure 8-25 – NetworkLayerResource M1 Illustration

NetworkLayerResource
<<networklayerresource>>

*

1..*

*

gateway/translator1..*

WFLinkLayerControlResource
<<linklayercontrolresource>>

1

1..*

+networkLayerResource
1

+linkLayerControlResource 1..*

Resource
(from Re source Co mponents Interfaces)

<<interface>>

dtc/2005-09-04

 8.1.7 Application Components

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 109

sources to provide gateway/waveform translator functionality. (Horizontal
Communication).

Constraints

A NeworkLayerResource shall be associated with one or more LinkLayerControlResources.

dtc/2005-09-04

8.1.7 Application Components

110 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 8.2 Communication Equipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 111

Communication Equipment . Page111
RequiredTypes Package . Page 115
CommEquipmentCommunicationPath . Page 119
CommEquipmentConnector . Page 119
Port . Page 119
AnalogInputPort . Page 119
AnalogOutputPort . Page 120
DigitalPort . Page 120
CommEquipment . Page 121
PowerSupply . Page 123
PowerSupply . Page 123
Processor . Page 124
IODevice . Page 125

8.2 Communication Equipment

Note – Issue 7785 - Waveform vs Application changes throughout Chapter 8

The Communication Equipment package contains device stereotypes that describe devices realized by a specific
Communication Channel. The selected devices represent basic functions associated with software radio equip-
ment. Additional stereotypes are defined for modeling the relationships between radio devices. However, this
specification neither dictates, nor restricts, the arrangement of radio devices. Actual connection definitions be-
tween devices are left out to the implementer.

The purpose of the Communication Equipment package is twofold. It defines a language to describe a specific
hardware platform upon which applications execute. This description can be stored in XML files for automatic
processing. This enables the deployment and configuration machinery to acquire knowledge about the platform
capabilities. This information could be used to determine whether or not a platform has the required capabilities
to run an application before instantiating it. On the other hand, this language is also useful from a system engi-
neering point of view. By mapping the information contained in the model to a simulation language, the operat-
ing capabilities of a radio platform can be studied off-line. This greatly eases the application development and
porting process since the actual hardware platform is not required for determining if a specific platform can sup-
port a specific waveform. The stereotypes providing this language are summarized in Table 8-7.

It must be noted that this package only provides basic definition for a software radio hardware devices. Imple-
menters can extend device definitions to meet their specific needs.

dtc/2005-09-04

8.2 Communication Equipment

112 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7985 - Table updated to remove QueryProperty and ConfigureProperty properties,

Table 8-7 – Communication Equipment Stereotypes

Stereotype
Base
Class Parent Tags Constraints Description

Amplifier Device IODevice dutyCycle,
gain,
maxGain,
minGain

See
constraints in
section below

Increases the energy
of signals passing
through it.

AnalogInputPort Port N/A inputImp,
inputLevel,
maxInputLevel,
insertionLoss,
inputVSWR

See
constraints in
section below

Receives an analog
signal.

AnalogOutputPort Port N/A maxOutputLevel,
outputImp,
outputVSWR

See
constraints in
section below

Transmits an analog
signal.

Antenna Device IODevice calibration,
radiationPattern,
polarization,
type,
maxRadiationPattern,
minRadiationPattern,
polarizationCapability

See
constraints in
section below

Converts an electrical
signal into an
electromagnetic wave
and vice versa for
carrying data over an
air interface.

AudioDevice Device IODevice N/A There has to
be at least
one
AnalogInput
Port.

Converts electrical
signals into sounds
waves.

CommEquipment Device N/A equipmentInformation,
equipmentSize,
equipmentWeight,
powerConsumption,
maxOperatingTemperature,
minOperatingTemperature,
radiationCapability,
meanTimeBetweenFailures,
lastMaintenanceCheck,
maintenancePeriod,
temperatureStatus

See
constraints in
section below

Represents a radio
communication
device.

CommEquipment
CommunicationPa
th

Commu
nication
Path

N/A N/A See
constraints in
section below

Represents an
association between
communication
equipments through
which signals and
messages are
exchanged.

dtc/2005-09-04

 8.2 Communication Equipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 113

CommEquipment
Connector

Connect
or

N/A N/A See
constraints in
section below

Represents a link that
enables
communication
between two or more
instances of
communication
equipment ports.

CryptoDevice Device CommEquipment algorithm,
keyLength

See
constraints in
section below

Performs encryption
and decryption on a
set of data.

DigitalConverter Device IODevice sampleRate,
maxSampleRate,
minSampleRate,
sampleSize,
phaseNoise

See
constraints in
section below

Converts an analog
signal into a digital
signal and vice versa.

DigitalPort Port N/A quantizationNoise,
dataFlowDirection,
streaming,
maxThroughput

See
constraints in
section below

Receives or transmits
a digital signal.

Filter Device IODevice N/A See
constraints in
section below

Alters the frequency
spectrum of signals
passing through it.

FrequencyConvert
er

Device IODevice currentInputFrequency,
currentOutputFrequency,
maxInputFrequency,
minInputFrequency,
maxOutputFrequency,
minOutputFrequency,
loInputLeakagePower,
loOutputLeakagePower,
outputToInputLeakage,
phaseNoise,
loStability

See
constraints in
section below

Performs frequency
translation in such a
manner that the output
frequencies are
higher/lower in the
spectrum than the
input frequencies.

HoppingFrequenc
yConverter

Device FrequencyConve
rter

nextInputFrequency,
nextOutputFrequency

N/A Performs hopping
frequency conversion.

IODevice Device CommEquipment maxPowerHandling,
minPowerHandling,
noiseFigure,
maxOperatingVSWR,
freqResponse,
tunedFrequency,
maxFrequencyResponse,
minFreqencyResponse,
maxFrequency,
minFrequency,
amplitudePhaseResponse

N/A Operates on a signal.

Table 8-7 – Communication Equipment Stereotypes

Stereotype
Base
Class Parent Tags Constraints Description

dtc/2005-09-04

8.2 Communication Equipment

114 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Issue 7582 removed CharacteristicProperty from table

Microphone Device IODevice N/A There has to
be at least
one
AnalogOutpu
tPort.

Converts sound waves
into an electrical
signal.

PowerSupply Device CommEquipment type,
efficiency

N/A Provides electrical
power to other
devices.

Processor Device CommEquipment processorArchitecture,
maxOperatingFrequency,
nonVolatileMemoryCapacit
y,
volatileMemoryCapacity

See
constraints in
section below

Processes digital or
analog data.

ProgrammableLog
icDevice

Device Processor logicUnitCapacity,
reconfigurability,
timeForReconfiguration

N/A Uses hardware logic
to process data.

RadiatingElement Device IODevice active,
radiationPattern,
polarization,
type,
positionInAntennaArray

See
constraints in
section below

Represents the part of
an antenna that
actually emits and
receives
electromagnetic
waves.

SerialIODevice Device IODevice N/A N/A Transmits and
receives digital
signals serially.

SoftwareProcessor Device Processor operatingEnvironment N/A Uses software
instructions to process
digital data.

Switch Device IODevice inputOutputIsolation,
switchSetting

See
constraints in
section below

Connects two I/O
ports to each other
given a specific
configuration.

Table 8-7 – Communication Equipment Stereotypes

Stereotype
Base
Class Parent Tags Constraints Description

dtc/2005-09-04

 8.2.1 RequiredTypes Package

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 115

8.2.1 RequiredTypes Package

The RequiredTypes template package contains common types for the CommEquipment package. This template
package must be bound to another package which substitutes the formal template parameters with concrete class-
es. The formal parameters are identified in the list below as formal template parameter. The other types are al-
ready defined.

Figure 8-26 – Communication Equipment Overview

dtc/2005-09-04

8.2.1 RequiredTypes Package

116 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Types and Exceptions

● AmplitudePhaseResponse

An amplitude phase response with one point represents a, 1 dB compression
point. In an amplitude phase response with two points, the first point represents
the 1 dB compression point and the second point represents the IP3 (third order
intercept) point. An amplitude phase response with more than two points rep-
resents the entire AM-to-AM and AM-to-PM curves. Typically, curves repre-
sent instantaneous power.

Note – Issue 7895 provide a primitive type

● AntennaCalibration: OctetSequence

Antenna calibration data.
● <<enumeration>>AntennaType (OMNI, DIRECTIONAL, OTHER)

The physical configuration of an antenna.

Note – Issue 7895 provide a primitive type

● <<enumeration>>ArchitectureType(FPGA, CPLD, PPC, x86)

The architecture of the device (examples could be FPGA, CPLD, PPC, x86,
etc).

● CartesianCoordinates(x: Meter, y: Meter, z: Meter)

Three dimensional coordinates. This type is used to specify the location of an
object from a given reference point.

Note – Issue 7708 redundant class Name DigitalConverter

● <<enumeration>> ConverterType (ATOD, DTOA, BOTH)

The ConverterType defines the type of the converter. A converter can be an an-
alog to digital converter (ATOD), digital to analog converter (DTOA) or can
have both functionalities (BOTH).

● <<enumeration>> CryptoAlgorithm (BLOWFISH, RSA, DES, 3DES, AES, HASH_MD5, OTHER)

Cryptographic algorithm.

Note – Issue 7895 provide a primitive type (added Date & typed Decibel)

● Date(ULong day, ULong month, ULong year)
Date in days, months, and years.

● Decibel

Decibel, a specialization of Float, denotes the ratio between two voltages, cur-
rents, or signal power levels.

● <<enumeration>>Direction (INPUT, OUTPUT)

Direction of data flow.

Note – Issue 7895

● <<enumeration>>DistributionType (GAUSSIAN, POISSON, RAYLEIGH, RICIAN, BINOMIAL, CHISQUARE,
TDISTRIBUTION, WEIBULL, LOGNORMAL, NONE)
Specifies the type of probability distribution.

Note – Issue 7895 provide a primitive type

● Frequency

Frequency, a specialization of Float, denotes the number of complete cycles per
second of a signal.

Note – Issue 7895 provide a primitive type

dtc/2005-09-04

 8.2.1 RequiredTypes Package

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 117

● FrequencyResponsePoint(frequency: Hertz, amplitude: dB, phase: Degrees)

A frequency response is the relation between signal amplitude and gain versus
frequency. A frequency response with only one point represents a single-sided
3 dB bandwidth. A frequency response with more than one point is an arbitrary
frequency response with an arbitrary resolution. A given frequency response
has 0 dB gain and is centered at 0 Hz (it does not have to be symmetric).

Note – Issue 7895 provide a primitive type

● Impedance

Impendance, a specialization of Float, denotes the opposition that a device of-
fers to an electric current. Impedance is composed of two components, resist-
ance and reactance.

Note – Issue 7895 provide a primitive type

● LogicUnit

LogicUnit, a specialization of UShort, denotes the description a basic logic
blocks available inside the device.

● Meter

Meter, a specialization of Double, denotes the fundamental unit of length in the
metric system.

Note – Issue 7895 provide a primitive type

● OperatingEnvironmentDescription

OperatingEnvironmentDescription, a specialization of String,

denotes a description of the environment which the device is using (examples
could be OS, middleware, etc).

Note – Issue 7895 provide a primitive type (TBD)

● PhaseNoise

Random and short duration fluctuations in the phase of a signal.
● PlugAndPlayInformation(manufacturerName: String, modelName: String, modelNumber: String,

modelDescription: String, serialNumber: String,

majorRevision: String, minorRevision: String)

Generic information about a hardware device.
● <<enumeration>>PolarizationKind (VERTICAL, HORIZONTAL, RIGHT_CIRCULAR_POLARIZE,

LEFT_CIRCULAR_POLARIZE)

The orientation of the RF energy radiated from the device.

Note – Issue 7895 provide a primitive type

● Power

Power, a specialization of Float, denotes the Rate at which electrical energy is
transformed to another type of energy.

● <<enumeration>>PowerSupplyType (AC_DC, DC_DC)

If a device is of AC_DC type, it converts AC power to DC power. If the device
is of DC_DC type, it converts DC power to DC power.

Note – Issue 7895

● ProbabilityDensity (distribution: DistributionType, parameterList: double[*])

Specifies an exact or approximate value of a probability density function. In
case distribution is NONE, parameterList refers to the expected values of the

dtc/2005-09-04

8.2.1 RequiredTypes Package

118 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

random variable E(x), E(x^2), E(x^3), ... etc. Otherwise, parameters list con-
tains the parameters required by the distribution type.

● QuantizationNoiseDensity

Distribution function estimating the quantization noise resulting from using a
specific quantization process.

● <<enumeration>>RadiatingElementType (MONOPOLE, DIPOLE, PATCH, CONE, DISH, OTHER)

Physical configuration of a radiating element.
● Radiation

Information about a specific radiation environment.

Note – Issue 7895

● Range (minval: ULong, maxval: ULong)

 Represents the allowable min and max values for a range of values.

Note – Issue 7895 provide a primitive type

● RadiationPattern(gain: Decibel, angle: Degrees)

Field intensity variation of an antenna as an angular function with respect to a
3D coordinate system.

● <<enumeration>>ReconfigurabilityType (STATIC, DYNAMIC)

STATIC reconfigurability means that the device is configured at the start of ex-
ecution and remains unchanged for the duration of the application. DYNAMIC
reconfigurability means the ability for partial reconfiguration of certain logic
blocks while others are performing computations.

Note – Issue 7895 provide a primitive type

● Size(Float x, Float y, Float z)

Represents the physical size of an object in a given unit.

Note – Issue 7895 provide a primitive type (TBD)

● SwitchSetting

Indicates the connections between the switch's ports.

Note – Issue 7895 provide a primitive type

● Temperature

Temperature, a specialization of Float, represents the temperature of an object
in a given unit (Celsius, Kelvin…).

Note – Issue 7895, add definition for Time - comment, it may be better to change
all references of “Time” to TimeType, Issue 8869, change all references to
TimeType and remove Time which is a specialization of Time

Note – Issue 7895 provide a primitive type

● VSWR

VSWR, a specialization of Float, denotes the ratio of the device operating im-
pedance to a desired characteristic impedance (usually 50 ohm characteristic
impedance reference).

Note – Issue 7895 provide a primitive type

● Weight

Weight, a specializtion of Float, represents the physical weight of an object in a
given unit.

dtc/2005-09-04

 8.2.2 CommEquipmentCommunicationPath

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 119

8.2.2 CommEquipmentCommunicationPath

Description

The CommEquipmentCommunicationPath stereotype is an extension of the UML 2.0 CommunicationPath meta-
class (from UML2.0::Deployments::Nodes). A CommEquipmentCommunicationPath is an association between
two communication equipment elements, through which signals and messages may be exchanged.

Constraints

The association ends of a CommEquipmentCommunicationPath are of type CommEquipment.

8.2.3 CommEquipmentConnector

Description

The CommEquipmentConnector stereotype is an extension of the UML 2.0 Connector metaclass (from
UML2.0::CompositeStructures::InternalStructures). A CommEquipmentConnector is a link that enables commu-
nication between two or more instances of communication equipments ports (see Section 8.2.4).

Constraints

The type attribute must be of CommEquipmentCommunicationPath type.

A CommEquipmentConnector connects compatible hardware ports. A set of compatible ports consists either one
AnalogInputPort and one AnalogOutputPort or two DigitalPorts. In the case of two DigitalPorts, one DigitalPort
must be the input port and the other must be the output port.

Note – Issue 7582 Removed section 8.2.4 Property

Note – Issue 7985 - Remove QueryProperty and ConfigureProperty subsections from Comm
Equipment section 8.2.4 Property.

8.2.4 Port

Communication equipments communicate with each other through ports. Three extensions to the UML 2.0 Port
metaclass (from UML2.0::CompositeStructures::Ports) are defined: AnalogInputPort, AnalogOutputPort and
DigitalPort. By using the port stereotype, the implementer can customize, or extend a device with additional
ports for exchanging control, status or any other information. An example is an amplifier. Typically, when an
amplifier has two ports, it is a fixed gain amplifier, when it has three ports it can be an AGC.

A bidirectional analog port can be constructed by aggregating one AnalogInputPort and one AnalogOutputPort.
A bidirectional digital port can be constructed by aggregating two instances of DigitalPort.

8.2.4.1 AnalogInputPort

Description

The AnalogInputPort stereotype is an extension of the UML 2.0 Port metaclass (from UML2.0::CompositeStruc-
tures::Ports). The AnalogInputPort defined the attributes of an analog input port.

dtc/2005-09-04

8.2.4 Port

120 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Attributes

● <<characteristicproperty>>inputImpedance: Impedance

The inputImpedance attribute represents the impedance of the port.
● <<characteristicproperty>>inputLevel: Power

The inputLevel attribute represents the power level currently at the input of the
port.

● <<characteristicproperty>>inputVSWR: VSWR [0..1]

The inputVSWR attribute represents the voltage standing wave ratio of the port.
● <<characteristicproperty>>insertionLoss: Decibel

The insertionLoss attribute represents the loss occurring when a device is insert-
ed in a transmission line. This value is the ratio between the signal powers on
that end of the line after and before insertion of the device.

● <<characteristicproperty>>maxInputLevel: Power

The maxInputLevel attribute represents the maximum input power that the port
can sustain.

Constraints

An AnalogInputPort can only be connected to an AnalogOutputPort.

8.2.4.2 AnalogOutputPort

Description

The AnalogOutputPort stereotype is an extension of the UML 2.0 Port metaclass (from UML2.0::Composit-
eStructures::Ports). The AnalogOutputPort defines the attributes of an analog output port.

Attributes

● <<characteristicproperty>>maxOutputLevel: Power

The maxOutputLevel attribute represents the maximum output power that the
port can provide.

● <<characteristicproperty>>outputImpedance: Impedance

The outputImpedance attribute represents the impedance of the port.
● <<characteristicproperty>>outputVSWR: VSWR [0..1]

The outputVSWR attribute represents the voltage standing wave ratio of the
port.

Constraints

An AnalogOutputPort can only be connected to an AnalogInputPort.

8.2.4.3 DigitalPort

Description

The DigitalPort stereotype is an extension of the UML 2.0 Port metaclass (from UML2.0::CompositeStruc-
tures::Ports). The DigitalPort defines the attributes of a digital port.

dtc/2005-09-04

 8.2.5 CommEquipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 121

Attributes

● <<characteristicproperty>>dataFlowDirection: Direction

The dataFlowDirection attribute indicates whether the port is an input port or an
output port.

Note – Issue 7895: Changed Integer to Float

● <<characteristicproperty>>maxThroughput: Float

The maximum throughput of the port.

Note – Issue 7895 - Type is changed from QuantizationNoiseDensity to
ProbabilityDensity

● <<characteristicproperty>>quantizationNoise: ProbabilityDensity

The quantizationNoise attribute represents the noise resulting from the
approximation error in the quantization process. Quantization noise is related
to the specific quantization process and the characteristics of the quantized
signal.

● <<characteristicproperty>>streaming: Boolean

The streaming attribute indicates if the port is a streaming port.

Constraints

A DigitalPort with the dataFlowDirection attribute equal to INPUT can only be connected to a DigitalPort with
the dataFlowDirection attribute equal to OUTPUT and vice versa.

8.2.5 CommEquipment

Note – Issue 7742 - Changed figure.

Figure 8-27 – CommEquipment M1 Illustration

AnalogInputPort
<<characterisit icproperty>> inputImpedance : Impedance
<<characteristicproperty>> inputLevel : Power
<<characteristicproperty>> maxInputLevel : Power
<<characteristicproperty>> insertionLoss : Decibel
<<characterisit icproperty>> inputVSWR : VSWR [0. .1]

<<analoginputport>>

AnalogOutputPort
<<characteristicproperty>> maxOutputLevel : Power
<<characterisiticproperty>> outputImpedance : Impedance
<<characterisiticproperty>> outputVSWR : VSWR [0..1]

<<analogoutputport>>

DigitalPort
<<characteristicproperty>> dataFlowDirection : Direction
<<characteristicproperty>> maxThroughput : Float
<<characteristicproperty>> quantizationNoise : QuantizationNoiseDensity
<<characteristicproperty>> streaming : Boolean

<<digitalport>>

CommEquipment
<<characteristicproperty>> equipmentSize : Size
<<characteristicproperty>> equipmentWeight : Weight
<<characteristicproperty>> maintenancePeriod : TimeType [0..1]
<<characteristicproperty>> maxOperatingTemperature : Temperature
<<characteristicproperty>> meanTimeBetweenFailures : TimeType [0..1]
<<characteristicproperty>> minOperatingTemperature : Temperature
<<characteristicproperty>> powerConsumption : Power
<<characteristicproperty>> radiationCapability : Radiation [0..1]
<<configureproperty>> lastMaintenanceCheck : Date [0..1]
<<queryproperty>> equipmentInformation : PlugAndPlayInformation
<<queryproperty>> temperatureStatus : Temperature [0..1]

<<commequipment>>
*

1

+analogReceiverPort

*
+device

1

*1

+analogTransmitterPort

*

+device

1

*

1 +digitalPort

*

+device

1

dtc/2005-09-04

8.2.5 CommEquipment

122 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Description

The CommEquipment stereotype is an extension of the UML 2.0 Device metaclass (from UML2.0::Deploy-
ment::Nodes). CommEquipment is the overall base class for describing that collection of devices, which are used
to realize the Communication Channel. Antennas, amplifiers, CPUs and FPGAs are example CommEquipment
Elements. They all contains the attributes of the CommEquipment stereotype.

Attributes

Note – Issue 8869 TimeType

● <<characteristicproperty>>equipmentSize: Size

The size attribute indicates the size of the physical device.
● <<characteristicproperty>>equipmentWeight: Weight

The weight attribute indicates the weight of the physical device.
● <<characteristicproperty>>maxOperatingTemperature: Temperature

The maxOperatingTemperature attribute indicates the maximum sustainable
operating temperature of the physical device.

● <<characteristicproperty>>meanTimeBetweenFailures: TimeType [0..1]

The meantimeBetweenFailures attribute indicates the length of time a user may
reasonably expect a component to work properly before an incapacitating fault
occurs.

● <<characteristicproperty>>minOperatingTemperature: Temperature

The minOperatingTemperature attribute indicates the minimum sustainable op-
erating temperature of the physical device.

● <<characteristicproperty>>powerConsumption: Power

The powerConsumption attribute indicates the power consumed by the device.
● <<characteristicproperty>>radiationCapability: Radiation [0..1]

The radiationCapability attribute indicates the sustainable radiation level of the
physical device. This attribute could is useful for radiation hardened devices.

● <<configureproperty>>lastMaintenanceCheck: Date [0..1]

The lastMaintenanceCheck attribute indicates the date at which the last mainte-
nance check was performed. Could be used for devices requiring manual cali-
bration.

● <<queryproperty>>equipmentInformation: PlugAndPlayInformation

The equipmentInformation attribute gives descriptive information about the
physical device. This information could be used in a plug and play hardware
environment.

● <<queryproperty>>maintenancePeriod: TimeType [0..1]

The maintenancePeriod attribute indicates the time interval between required
maintenance check. Could be used for components requiring manual calibra-
tion.

● <<queryproperty>>temperatureStatus: Temperature [0..1]

The temperatureStatus attribute indicates the internal temperature of the device.

Note – Issue 7704 - Missing constraint (2nd Ballot)

Constraints

Note – 7586, changed aggregate to composite in text to agree with figure above

dtc/2005-09-04

 8.2.5 CommEquipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 123

CommEquipment shall have a composite relationship to at least one of the following: AnalogInputPort,
AnalogOutputPort or DigitalPort.

8.2.5.1 CryptoDevice

Description

The CryptoDevice stereotype represents a dedicated device that performs encryption and decryption services for
Communication Channels. Typically, these devices are used in military communication systems; there are also
commercial devices that perform these functions.

Attributes

Note – Issue 7895 - change Integer to Ushort

● <<queryproperty>>keyLength: UShort [0..*]

The keyLength attribute indicates the length of the cipher key supported by the
device. It could be either 1024 bits long or more for Public Key or 128 bits or
more for Symmetric Key. More than one key length can be supported
depending on the algorithm.

● <<queryproperty>>algorithm: CryptoAlgorithm [0..*]

The algorithm attribute identifies the cryptographic algorithms supported by the
device.

Constraints

A CryptoDevice shall have at least two DigitalPorts.

A CryptoDevice’s DigitalPort shall have its dataFlowDirection attribute equal to INPUT and the other CryptoDe-
vice’s DigitalPort shall have its dataFlowDirection attribute equal to OUTPUT.

8.2.5.2 PowerSupply

Description

The PowerSupply stereotype represents a device that provides electrical power to CommEquipment components.
It is therefore associated with all others CommEquipment components. It must be noted that this specification
does not address the issue of power management. It is expected that power management is the responsibility of a
higher level application.

Attributes

Note – Issue 7895 - change Single to Ushort

● <<characteristicproperty>>efficiency: UShort

The efficiency attribute is the ratio of signal power output to total power input.
● <<characteristicproperty>>type: PowerSupplyType

The type attribute indicates if the device converts AC power to DC power or DC
power to DC power.

Constraints

Note – 7586 changed text

dtc/2005-09-04

8.2.5 CommEquipment

124 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

A PowerSupply shall have at least one AnalogInputPort representing the input voltage and one AnalogOutputPort
for the output voltage.

The allowed PowerSupply input or output voltage value range for Efficiency is from 0 to 1 (it is expressed as a
percentage).

8.2.5.3 Processor

Description

The Processor stereotype represents a device that provides computational functions along with supporting func-
tions such as memory and I/O. Processor types include general purpose processors (such as PowerPCs, x86s,
etc.), digital signal processors, field programmable gate arrays, application-specific integrated circuits configured
for computational functions, and others.

Examples of devices that are considered as processors can include but are not limited to: digital down converter,
codec, interconnect, RAID subsystem, memory subsystem etc.

Due to the diverse nature of these devices, they are modeled by their communication capability, i.e. their ports
and by their volatile and non-volatile memory capacities.

Attributes

● <<characteristicproperty>>maxOperatingFrequency: Frequency

The maxOperatingFrequency attribute indicates the maximum frequency at
which the device is able to operate.

● <<queryproperty>>processorArchitecture: ArchitectureType

The architecture attribute indicates the specific type of programmable device.

Note – Issue 7895 - change Integer to ULong for both of the following attributes

● <<queryproperty>>nonVolatileMemoryCapacity: ULong

The nonVolatileMemoryCapacity attribute indicates the total number of bytes
of persistent memory available to the processor.

● <<queryproperty>>volatileMemoryCapacity: ULong

The volatileMemoryCapacity attribute indicates the total number of bytes of
volatile memory available to the processor.

Constraints

Note – 7586 changed text wording

A Processor shall have at least one DigitalPort.

8.2.5.3.1 ProgrammableLogicDevice

Description

The ProgrammableLogicDevice stereotype represents a device that processes digital data using hardware logic. It
is a specialization of the Processor class. Examples of programmable logic device (PLD) are FPGA and CPLD.
This stereotype contains attributes specific to this type of device. Basic logic blocks are use to dynamically in-
stantiate a particular function during device initialization.

dtc/2005-09-04

 8.2.5 CommEquipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 125

Attributes

● <<characteristicproperty>>logicUnitCapacity: LogicUnit

The logicUnitCapacity attribute is the total amount of logic units available in-
side the device.

● <<characteristicproperty>>reconfigurability: ReconfigurabilityType

The reconfigurability attribute indicates whether the device is statically or dy-
namically reconfigurable.

Note – Issue 8869 TimeType

● <<characteristicproperty>>timeForReconfiguration: TimeType

The timeForReconfiguration attribute indicates the duration of the reconfigura-
tion process.

8.2.5.3.2 SoftwareProcessor

Description

The SoftwareProcessor stereotype represents a device that executes software instructions in order to execute spe-
cific algorithms. GPP and DSP processor are example devices of this type.

Attributes

● <<queryproperty>>operatingEnvironment: OperatingEnvironmentDescription [1..*]
The operatingEnvironment attribute contains information regarding the
operating environment that the device is using.

8.2.5.4 IODevice

Description

Note – Issue 7706 Name change (2nd Ballot)

The IODevice stereotype represents the base stereotype for all devices that provide analog or digital input/output
capability for the RadioSet.

The IODevice class not only applies to the subscriber-side of the radio but also to the RF-side. The term sub-
scriber-side does not imply a human actor. From a higher perspective, both ends of a radio can be considered as
I/O. Filters, amplifiers, etc., can be found on both the subscriber-side and RF-side of the equipment.

The members of the IODevice class were conceived with this flexibility in mind. This implies that all devices
can operate at non DC frequencies. The IODevice class includes a “tunedFrequency” parameter which can have
any frequency as a valid entry.

Elements inheriting the IODevice class can used to construct more complex elements like receivers and exciters.

All of the attributes are optional to cover the specifics of both analog and digital IO devices.

Attributes

● <<characteristicproperty>> noiseFigure: Decibel [0..1]

The noiseFigure attribute is the ratio of the noise power at the output to the noise
power at the input, where the input noise temperature is equal to the reference
temperature (290 K). The noise figure is expressed in decibels.

dtc/2005-09-04

8.2.5 CommEquipment

126 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<characteristicproperty>>amplitudePhaseResponse: AmplitudePhaseResponse [0..1]

The amplitudePhaseResponse attribute gives the amplitude/phase response plot
for the device. The amplitude phase response contains two components. The
first component is a representation of the output power versus the input power.
The second component is a representation of the output phase versus input pow-
er. The purpose of the amplitude phase response is to describe any active ele-
ment which cannot be described by an ideal relationship (non linearities) e.g.:
Power Amplifier.

● <<characteristicproperty>>maxTunedFrequency: Frequency [0..1]

The maxTunedFrequency attribute is the maximum frequency of the bandwidth
for which the device performance is rated.

● <<characteristicproperty>>maxFrequencyResponse: FrequencyResponse[0..1]

The maxFrequencyResponse attribute is the maximum frequency response the
device is able to achieve. The maximum amplitude and/or phase at a given fre-
quency.

● <<characteristicproperty>>maxOperatingVSWR: VSWR [0..1]

The maxOperatingVSWR attribute is the ratio of the device operating imped-
ance to a desired characteristic impedance (usually 50 ohm characteristic im-
pedance reference).

● <<characteristicproperty>>maxPowerHandling: Power [0..1]

The maxPowerHandling attribute is the maximum power the device can sustain.
● <<characteristicproperty>>minTunedFrequency: Frequency [0..1]

The minTunedFrequency attribute is the minimum frequency of the bandwidth
for which the device performance is rated.

● <<characteristicproperty>>minFrequencyResponse: FrequencyResponse [0..1]

The minFrequencyResponse attribute is the minimum frequency response the
device is able to achieve. The minimum amplitude and/or phase at a given fre-
quency.

● <<characteristicproperty>>minPowerHandling: Power [0..1]

The minPowerHandling attribute is the minimum RF power the device must be
supplied in order to work.

● <<configureproperty>>freqResponse: FrequencyResponse [0..1]

The freqResponse attribute represents the frequency response plot for the de-
vice.

● <<configureproperty>>tunedFrequency: Frequency [0..1]

The tunedFrequency attribute corresponds to the center frequency of the fre-
quency response.

Constraints

An IODevice shall have at least one AnalogInputPort or one AnalogOutputPort or one DigitalPort.

dtc/2005-09-04

 8.2.5 CommEquipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 127

8.2.5.4.1 Antenna

Description

The Antenna stereotype, shown in Figure 8-28 represents the RF radiating elements necessary for transmis-
sion/reception of radio energy through the ether. The Antenna class consists of both a simple passive radiating el-
ement as well as an antenna array with possibly some dedicated intelligence.

Attributes

● <<characteristicproperty>>maxRadiationPattern: RadiationPattern

The maxRadiationPattern attribute indicates the maximum radiation pattern that
the device is able to achieve.

● <<characteristicproperty>>minRadiationPattern: RadiationPattern

The minRadiationPattern attribute indicates the minimum radiation pattern that
the device is able to achieve.

● <<characteristicproperty>>polarizationCapability: PolarizationKind

The polarizationCapability attribute gives the orientation options of the RF en-
ergy radiated from the antenna.

● <<characteristicproperty>>type: AntennaType

The type attribute indicates the physical type of the antenna.
● <<configureproperty>>calibration: AntennaCalibration

The calibration attribute contains calibration data for the antenna.
● <<configureproperty>>polarization:PolarizationKind[0..1]

The polarization attribute indicates the current orientation of the RF energy ra-
diated from the antenna.

● <<configureproperty>>radiationPattern: RadiationPattern

The radiationPattern attribute represents the current radiation pattern config-
ured in the device.

M1 Associations

● arrayElement: RadiatingElement [1..*]

The individual radiating element objects of the antenna.

Constraints

Note – Issue 7586, changed text description

Figure 8-28 – Antenna M1 Illustration

AntennaElement
<<characteristicproperty>> polarization : PolarizationKind
<<characteristicproperty>> positionInAntennaArray : CartesianCoordinates
<<characteristicproperty>> radiationPattern : RadiationPattern
<<characteristicproperty>> type : RadiatingElementType
<<configureproperty>> active : Boolean

<<anntennaelement>>Antenna
<<characteristicproperty>> maxRadiationPattern : RadiationPattern [0..1]
<<characteristicproperty>> minRadiationPattern : RadiationPattern [0..1]
<<characteristicproperty>> polarizationCapability : PolarizationKind
<<characteristicproperty>> type : AntennaType
<<configureproperty>> calibration : AntennaCalibration
<<configureproperty>> polarization : PolarizationKind
<<configureproperty>> radiationPattern : RadiationPattern

<<antenna>>

1..*1

+arrayElement

1..*

+antennaArray

1

dtc/2005-09-04

8.2.5 CommEquipment

128 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

An Antenna shall have at least one AnalogInputPort or one AnalogOutputPort.

8.2.5.4.2 Amplifier

Description

Note – Issue 7707 - Name change (2nd Ballot)

The Amplifiers stereotype represents a device that provides gain. Amplifiers include but are not limited to base
band, RF, power and low noise amplifiers. Different Amplifier types are differentiated by the values of their at-
tributes.

Attributes

Note – Issue 7895 - change Single to ULong

● <<characteristicproperty>>dutyCycle: ULong

The dutyCycle attribute is the maximum continuous duty cycle the device can
operate.

● <<characteristicproperty>>maxGain: Decibel

The maxGain attribute is the maximum power amplification factor a device is
able to apply to a signal.

● <<characteristicproperty>>minGain: Decibel

The minGain attribute is the minimum power amplification factor a device is
able to apply to a signal.

● <<configureproperty>>gain: Decibel

The gain attribute is the current power amplification factor applied to the input
signal by the device.

Constraints

An Amplifier shall have at least (one AnalogInputPort and one AnalogOutputPort) or two DigitalPorts.

Note – Issue 7708 - Redundant class name DigitalConverter (2nd Ballot)

8.2.5.4.3 Converter

Description

The Converter stereotype represents a device that performs analog-to-digital and / or digital-to-analog conversion
of transmit and / or receive signal.

Attributes

● <<characteristicproperty>> converterType:ConverterType
The converterType attribute represents the type of converter. It can be an
ATOD, DTOA or BOTH.

Note – Issue 7895 - change Single to Float

● <<characteristicproperty>>maxSampleRate: Float

The maxSampleRate attribute is the maximum sample rate the device is able to
achieve.

dtc/2005-09-04

 8.2.5 CommEquipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 129

● <<characteristicproperty>>minSampleRate: Float

The minSampleRate attribute is the minimum sample rate the device is able to
achieve.

Note – Issue 7895 - Type is changed from QuantizationNoiseDensity to
ProbabilityDensity

● <<characteristicproperty>>phaseNoise: ProbabilityDensity

The phaseNoise attribute represents the phase noise that the device introduces
in the signal.

Note – Issue 7895 - change Integer to ULong

● <<characteristicproperty>>sampleSize: ULong

The sampleSize attribute represents the size in bits of a sample.
● <<configureproperty>>sampleRate: Frequency

The sampleRate attribute is the current number of samples per second converted
by the device.

Constraints

Note – Issue 7586 changed text description

A Converter shall have at least (one AnalogInputPort or one AnalogOutputPort) and one DigitalPort.

8.2.5.4.4 Filter

Description

Note – Issue 7709 - Name change Filter

The Filter stereotype provides selective frequency gain or attenuation to the Communication Channel in both an-
alog and digital domains. Filters also provide signal shaping in both amplitude and phase to the Communications
Channel.

In a Communication Channel, filters can often be called by other names depending on their location and / or
functionality (e.g. duplexers, interference cancellers, equalizers…). The filter class regroups all those devices re-
gardless of their implementation, location and function. The filter class recognizes that the functionality of all
these devices is to attenuate/enhance some frequency components of the signal. Furthermore, since the frequency
response is a configure property; the filter class can represent both fixed and adaptive filters.

Due to the large number of “filters” in a Communication Channel, the filter device can be found between every
other type of device. It is certainly frequent to have filters before ADC and after DAC, before and / or after am-
plifiers, frequency converters, antennas/radiating elements, and switches.

Constraints

Note – Issue 7586 changed text description

A Filter shall have at least one AnalogInputPort and one AnalogOutputPort.

dtc/2005-09-04

8.2.5 CommEquipment

130 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.2.5.4.5 FrequencyConverter

Description

Note – Issue 7710 - Name change FrequencyConverter

The FrequencyConverter stereotype represents an analog or digital device that translates signals between one
center frequency to another center frequency. When the output center frequency is higher than the input center
frequency, the device is called an up converter otherwise it is called a down converter. Like filters frequency
converters can take many names or forms (e.g. Direct RF, frequency hopping, harmonic, etc.).

In an analog FrequencyConverter, the local oscillator is assumed to be part of the device. Therefore the Frequen-
cyConverter can be a device with two ports. This choice was made to support elegantly harmonic converters and
other devices, which do not require an external local oscillator.

The FrequencyConverter device does not implement the entire exciter or receiver concept by itself. However, it
is a key building block in the definition of higher level concepts.

Attributes

● <<characteristicproperty>>loInputLeakagePower: Power [0..1]

The loInputLeakagepower attribute represents the local oscillator input leakage
power.

● <<characteristicproperty>>loOutputLeakagePower: Power [0..1]

The loOutputLeakagePower attribute represents the local oscillator output leak-
age power.

Note – Issue 7710 - Name change

Note – Issue 7895 - change Single to Ushort

● <<characteristicproperty>>loStability: UShort [0..1]

The loStability attribute represents the local oscillator stability expressed in
PPM.

● <<characteristicproperty>>maxInputFrequency: Frequency [0..1]

The maxInputFrequency attribute represents the maximum input signal fre-
quency the device is able to handle.

● <<characteristicproperty>>maxOutputFrequency: Frequency [0..1]

The maxOutputFrequency represents the maximum output signal frequency the
device is able to handle.

● <<characteristicproperty>>minInputFrequency: Frequency [0..1]

The minInputFrequency represents the minimum input signal frequency the de-
vice is able to handle.

● <<characteristicproperty>>minOutputFrequency: Frequency [0..1]

The minOutputFrequency represents the minimum output signal frequency the
device is able to handle.

Note – Issue 7710 - Name change

● <<characteristicproperty>>outputToInputLeakage: Decibel [0..1]

The outputToInputLeakage attribute indicates the amount of the output frequen-
cy which is found at the input.

dtc/2005-09-04

 8.2.5 CommEquipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 131

● <<characteristicproperty>>phaseNoise: PhaseNoiseType [0..1]

The phaseNoise attribute represents the phase noise that the device introduces
in the signal.

● <<configureproperty>>currentInputFrequency: Frequency [0..1]

The currentInputFrequency indicates the frequency of the signal currently at the
input of the device.

● <<configureproperty>>currentOutputFrequency: Frequency [0..1]

The currentOutputFrequency indicates the frequency of the signal currently at
the output of the device,

Constraints

Note – Issue 7710 - Name change, Issue 7586 changed text description

A FrequenceConverter shall have (at least one AnalogInputPort and one AnalogOutputPort) or (at least two Dig-
italPorts).

8.2.5.4.6 HoppingFrequencyConverter

Description

The HoppingFrequencyConverter stereotype represents a device that performs frequency conversion while
switching between predefined frequencies. It is a specialization of the FrequencyConverter stereotype.

Attributes

● <<configureproperty>>nextInputFrequency: Frequency [0..1]

The nextInputFrequency attribute represents the input frequency that the device
will select after the next triggering event. This attribute is used for instantane-
ous frequency changes. Typically in the context of frequency hoping and fre-
quency scanning algorithms.

● <<configureproperty>>nextOutputFrequency: Frequency [0..1]

The nextOutputFrequency attribute represents the output frequency that the de-
vice will select after the next triggering event. This attribute is used for instan-
taneous frequency changes. Typically in the context of frequency hoping and
frequency scanning algorithms.

Note – Issue 7711 - Name change in RadiatingElement Section 8.2.6.4.7 (2nd Ballot)

8.2.5.4.7 AntennaElement

Description

The AntennaElement stereotype represents a device that translates electrical energy into an electromagnetic wave
and vice-versa. An AntennaElement is a passive element. The AntennaElement acts as the transducer between
the electrical world and the air interface. Typical examples can be cones, patches, dipoles, dishes, etc.

Note – Issue 7711 - Name change in RadiatingElement Section 8.2.6.4.7 (2nd Ballot)

Figure 8-29 –

dtc/2005-09-04

8.2.5 CommEquipment

132 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Attributes

● <<characteristicproperty>>polarization: PolarizationKind

The polarization attribute indicates the orientation of the RF energy radiated for
the AntennaElement.

● <<characteristicproperty>>positionInAntennaArray: CartesianCoordinates

The positionInAntennaArray attribute indicates its 3D position in array with re-
pect to the geometric center of the array.

● <<characteristicproperty>>radiationPattern: RadiationPattern

The radiationPattern attribute represents the current radiation pattern for this
single AntennaElement.

Note – Issue 7711 - Name change in RadiatingElement Section 8.2.6.4.7 (2nd Ballot)

● <<characteristicproperty>>type: RadiatingElementType

The type attribute indicates the physical configuration of the AntennaElement.
● <<configureproperty>>active: Boolean

The active attribute indicates if the AntennaElement is currently active.

M1 Associations

Note – Issue 7711 - Name change in RadiatingElement Section 8.2.6.4.7 (2nd Ballot)

● antennaArray: Antenna [1]

The antenna object which the AntennaElement is part of.

Constraints

Note – Issue 7586 changed text description

An AntennaElement shall have at least one AnalogInputPort and one AnalogOutputPort.

8.2.5.4.8 Switch

Description

Note – Issue 7712 - Change name Switch to AnalogSwitch.

The Switch stereotype represents a device that provides routing of signals between different devices. A Switch
may have many input and output ports and it connects the chosen input port to one or many output ports. It may
also be programmed to turn off the signal transmission. In this case, no input would be connected to any output
port.

Attributes

● <<characteristicproperty>>inputOutputIsolation: Decibel

The inputOutputIsolation attribute represents the amount of input port leakage
on all unselected output ports.

● <<configureproperty>>switchSetting: SwitchSetting

The switchSetting attribute indicates the current configuration matrix of the de-
vice.

dtc/2005-09-04

 8.2.5 CommEquipment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 133

Constraints

Note – Issue 7712 - Change name Switch to AnalogSwitch.

A Switch shall have (at least one AnalogInputPort and one AnalogOutputPort) or (at least two DigitalPorts).

dtc/2005-09-04

8.2.5 CommEquipment

134 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 8.3 Infrastructure

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 135

Infrastructure . Page135
Radio Services . Page 135
Radio Services Interfaces . Page 135
Radio Services Stereotypes . Page 139
ServiceComponent. Page 144
File Services . Page 145
Communication Channel . Page 155
Channel . Page 156
LogicalCommunicationChannel . Page 157
SecureLogicalCommunicationChannel . Page 158
LogicalPhysicalChannel . Page 158
LogicalProcessingChannel . Page 160
LogicalIOChannel. Page 161
LogicalSecurityChannel . Page 162
Radio Management . Page 163
RadioSet Management. Page 163
RadioSystemManager . Page 176
Device Management. Page 176
Domain Event Channels . Page 182
SWRadio Deployment . Page 184
SWRadio Artifacts . Page 184
Applications Deployment . Page 193

8.3 Infrastructure

Note – Issue 7785 - Waveform vs Application changes throughout Chapter 8

8.3.1 Radio Services

Note – Issue 7581 moved File Services here. Isssue 7742 added two subsections Radio Services
Interfaces and Radio Services Stereotypes. Modified text for section 8.3.1 to reference the new
subsections. Removed IStateManagement as a stereotype from Table below. Moved Capability-
Model, CapacityModel, CharacteristicModel, and StateManagement interface to Radio Services
Interfaces and made them a header 5.

This section defines the interfaces and stereotypes for SWRadio services. The following subsections provide the
definitions for Radio Services Interfaces, Radio Services Stereotypes, and File Services.

8.3.1.1 Radio Services Interfaces

The following subsections provide the definitions for StateManagement and CapabilityModel(s).

8.3.1.1.1 CapabilityModel

Description

dtc/2005-09-04

8.3.1 Radio Services

136 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The abstract CapabilityModel, as shown Figure 8-30, provides the ability to determine if a ServiceProperty can
satisfy a deployment requirement. As shown in the 8-30, there are two specializations of a CapabilityModel,
which are: CharacteristicModel and CapacityModel.

M1 Associations

● serviceProperty: ServiceProperty [1]

A ServiceProperty is associated with a CapabilityModel that determines the fea-
sibility of the ServiceProperty satisfying a deployment requirement.

Semantics

A CapabilityModel may be applicable for a set of ServiceProperty(s) depending on the ServiceProperty(s)' value
type. For example, a CapabilityModel that compares string types may be applicable for a number of ServicePro-
perty(s) that are of a String type. CapabilityModel(s) are implemented or used by the deployment machinery such
as ApplicationFactory(s) and ManagedServiceComponent(s).

8.3.1.1.2 CapacityModel

Description

The CapacityModel, as shown in Figure 8-30, provides the ability to manage allocation and deallocation of a Ca-
pacityProperty.

Operations

● allocateCapacity (in requiredCapacity: CapabilityType, return Boolean)

The allocateCapacity operation provides the mechanism to request and allocate
capacity. The allocateCapacity operation behavior is implementation specific.

● deallocateCapacity (in requiredCapacity: CapabilityType)

The deallocateCapacity operation provides the mechanism to deallocate capac-
ity. The deallocateCapacity operation behavior is implementation specific.

Constraints

A CapacityModel shall be associated with CapacityProperty.

Figure 8-30 – CapabilityModels Definition

CapabilityType

CapacityModel

allocateCapacity()
deallocateCapacity()

(from Radio Services Interfaces)

Capabili tyType

CharacterisiticModel

compare()

(f ro m Rad io Service s In terfaces)

ServiceProperty
<<serviceproperty>>

CapabilityType

CapabilityModel
(from Radio Services Interfaces)

+capabilityModel +serviceProperty

1 11 1

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 137

Semantics

The types of CapacityProperty managed by a CapacityModel are usually numeric types. Examples of Capacity-
Model(s) are: decrement and increment counter types and quantity subtraction and addition types.

8.3.1.1.3 CharacteristicModel

Description

The CharacteristicModel, as shown in Figure 8-30, provides the ability to determine the feasibility of a character-
istic property that is static characteristic property.

Operations

● compare (in requiredCharacterisitic: CapabilityType, return Boolean)

The compare operation provides a generic compare mechanism to determine
whether a characteristic can satisfy a requiredCharacterisitic request. The im-
plementation of the compare operation is implementation specific.

Constraints

A CharacteristicModel shall be associated with characteristic property type.

Semantics

The types of characterisitic property compared by a CharacteristicModel can be any type (e.g., Characteris-
ticProperty, CharacteristicSelectionProperty, and CharacteristicSetProperty). Examples of types of Characteristic-
Model(s) are equality operators: “eq”, “ne”, “le”, “ge”, “gt”, and “lt” and also selection/matching operators.

8.3.1.1.4 StateManagement

Description

The StateManagement interface, as shown in Figure 8-31, provides the ability to retrieve state information and
administratively manage a component. The StateManagement interface incorporates aspects of the Administra-
tive, Operational, and Usage states described in ISO/IEC International Standard 10164-2.

Attributes

● <<readonly>>adminState: AdminType [0..1]

The administrative state indicates the permission to use or prohibition against
using the component. The adminState attribute contains the admin state value.

● <<readonly>>operationalState : OperationalType

The readonly operationalState attribute contains the component's operational
state (ENABLED or DISABLED). The operational state indicates whether or
not a component is functioning.

● <<readonly>>adminStateRequestSupportedCharacterisitic : AdminRequestSupportedType =

UNLOCK_REQUEST

The adminStateRequestSupportedCharacterisitic attribute indicates the behav-
ior requirement for the StateManagement's setAdminState operation and ad-
minState attribute, which indirectly affect the admin states that have to be
supported.

dtc/2005-09-04

8.3.1 Radio Services

138 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<readonly>>states: StatesType

The readonly states attribute contains the values for all three states: admin, op-
erational, and usage.

● <<readonly>>usageState: UsageType

The readonly usageState attribute contains the component's usage state (IDLE,
ACTIVE, or BUSY). UsageState indicates whether or not a component is in
use, and if so, whether or not it has spare capacity for allocation.

Operations

● <<optional>>setAdminState (in adminRequest: AdminRequestType): {raises = (UnsupportedRequest)}

The setAdminState operation changes the adminState. attribute based upon the
input adminRequest parameter.

The setAdminState operation shall set the adminState attribute to UNLOCKED
upon receipt of an UNLOCK admin request.

The setAdminState operation shall set the adminState to LOCKED and usageS-
tate to IDLE upon receipt of a LOCK admin request, when the adminStateRe-
questSupportedCharacteristic attribute value is LOCK or ALL.

The setAdminState operation shall set the adminState to SHUTTING_DOWN
upon receipt of a SHUTDOWN admin request, when the adminState attribute
is UNLOCKED, and adminStateRequestSupportedCharacteristic attribute val-
ue is SHUTDOWN or ALL.

The setAdminState operation shall raise the UnsupportedRequest exception
when the adminRequest is not supported.

Types and Exceptions

● <<enumeration>>AdminRequestType (LOCK, SHUTDOWN, UNLOCK)

The AdminRequestType defines the administrative state request values for a
component as follows:

● LOCK - requests a forceful state transition to the LOCKED state.

● SHUTDOWN - makes a graceful lock request that results in a
transition to the SHUTTING_DOWN state

● UNLOCK - requests a transition to the UNLOCKED state.
● <<enumeration>>AdminRequestSupportedType (ALL, NOT_IMPLEMENED, LOCK, SHUTDOWN, UNLOCK)

The AdminRequestSupportedType defines the valid administrative state re-
quest values for a component as follows:

● ALL - all requests are supported

● NOT_IMPLEMENTED - no requests are supported

● LOCK - only LOCK and UNLOCK

● SHUTDOWN - only SHUTDOWN and UNLOCK

● UNLOCK - only UNLOCK

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 139

● <<enumeration>>AdminType (LOCKED, SHUTTING_DOWN, UNLOCKED)

The AdminType defines the administrative state values for a component as fol-
lows:

● LOCKED - The component is reserved for administrative usage only.
For example, no capacity requests are granted by a component such as
device. Transitions to this state may originate from either the
SHUTTING_DOWN or UNLOCKED state.

● SHUTTING_DOWN - a transition state from UNLOCKED to
LOCKED, this state does not allow capacity requests to be granted
successfully and is maintained until all capacities are deallocated and
the component is not in use.

● UNLOCKED - The component is available for full usage providing
the operationalState is ENABLED. A state transition from
SHUTTING_DOWN or LOCKED can occur.

● <<enumeration>>OperationalType

The OperationalType defines the operational state values for a component as
follows:

● ENABLED - the component is functional

● DISABLED - the component is non-functional
● StatesType(adminState : AdminType, operationalState : OperationalType, usageState : UsageType)

The StatesType contains the state values for a component.
● <<enumeration>>UsageType

The UsageType defines the usage state values for a component as follows:

● IDLE - not in use

● ACTIVE - in use, with capacity remaining for allocation, or

● BUSY - in use, with no capacity remaining for allocation

Constraints

When the adminStateRequestSupportedCharacteristic value attribute is NOT_IMPLEMENTED then a compo-
nent that realizes this interface may not support setAdminState operation and adminState attribute. The
NOT_IMPLEMENTED behavior is dependent of the PSM.

The adminState attribute shall transition to the LOCKED state from SHUTTING_DOWN state when the compo-
nent's usageState attribute becomes IDLE and the adminStateRequestSupportedCharacteristic attribute value is
SHUTDOWN or ALL.

Semantics

The interface is used by components that manage their own states and capacities, and provide administrative con-
trol. The relationships, values, and state transitions amongst the adminState, operationalState, usageState, and at-
tributes are described in the ISO/IEC International Standard 10164-2.

8.3.1.2 Radio Services Stereotypes

The SWRadio service stereotypes, which are extensions of the UML 2.0 Component (UML2.0::Components::Ba-
sicComponents) and Interface (UML2.0::Classes::Interfaces) classifiers are depicted in the Table 8-8 below.

dtc/2005-09-04

8.3.1 Radio Services

140 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.1.2.1 ManagedServiceComponent

Description

Note – Issue 7742 updated text description and replaced figure with M1 illustration

Table 8-8 – SWRadio Services Stereotypes

Stereotype Base Class Parent
Tag
s Constraints Description

ManagedServiceComponent Component ServiceComponent See
constraints
in section
below

Offers Service(s) within the
radio environment, which can
be used by swradio
components.

Service Interface N/A Provides the parent interface
definition for the services
within the radio environment
that can be used by SWRadio
components.

ServiceComponent Component N/A Provides the parent
component definition for the
service components within
the radio environment that
can be used by swradio
components.

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 141

The ManagedServiceComponent is a type of ServiceComponent that provides state management behavior as
shown in Table 8-8 and Figure 8-31.

M1 Associations

● capacityModel: CapacityModel [*]

The capacityModel used by a managed service depends on the set of capacities
managed by the component.

● domainEventChannel: EventChannelService [0..1]

The event channel used by a managed service for indicating state changes.

Note – Issue 7713 - Wrong section name, Issue 7985

Attributes

Note – Issue 7742 changed the tags to be boolean to indicate if the optional configure and query
properties are supported by a component. Added constraints to go with these attributes.

● alarmStatusSupported: Boolean = false

The alarmStatusSupported attribute is used to indicate if the
<<configureproperty>>alarmStatus is supported. A value of true means sup-
ported by the component. A alaramStatus can have zero or more of the follow-
ing values, not all of which are applicable to every class of managed component.
When the value of this attribute is empty set, this implies that none of the status
conditions described below are present. AlarmStatus Ushort values are: under
repair = 2, critical = 4, major = 8, minor = 16, and alarm outstanding = 32.

Figure 8-31 – ManagedServiceComponent M1 Illustration

StateManagement
(from Radio Services Interfaces)

<<interface>>

EventChannelServ ice
<<componentservice>>

CapabilityType

CapacityModel
(from Radio Services Interfaces)

ManagedServiceComponent
alaramStatusSupported : Boolean = True
availabilityStatusSupported : Boolean = True
controlStatusSupported : Boolean = True
proceduralStatusSupported : Boolean = True
standbyStatusSupported : Boolean = True
unknownStatusSupported : Boolean = True

<<managedservicecomponent>>

0..1

*

+domainEventChannel 0..1

*

*

+capacityModel

*

dtc/2005-09-04

8.3.1 Radio Services

142 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● availabilityStatusSupported: Boolean = false

The availabilityStatusSupported attribute is used to indicate if the
<<queryproperty>>availabilityStatus is supported. A value of true means
supported by the component. The availabilityStatus attribute can have zero or
more of the following values, not all of which are applicable to every class of
managed component. When the value of this attribute is empty set, this implies
that none of the status conditions described below are present. AvailabilitySta-
tus UShort values are: in test = 2, failed = 4, power off = 8, off line = 16, off
duty = 32, dependency = 64, degraded = 128, not installed = 256, and log full =
512.

● controlStatusSupported: Boolean = false

The controlStatusSupported attribute is used to indicate if the
<<configureproperty>>controlStatus is supported. A value of true means
supported by the component. The controlStatus attribute that can have zero or
more of the following values, not all of which are applicable to every class of
managed component. When the value of this attribute is empty set, this implies
that none of the status conditions described below are present. ControlStatus
UShort values are: subject to test =2, part of services locked = 4, reserved for
test = 8, and suspended = 16.

● proceduralStatusSupported: Boolean = false

The procedurealStatusSupported attribute is used to indicate if the
<<queryproperty>>procedualStatus is supported. A value of true means sup-
ported by the component. The proceduralStatus is supported only by those
classes of managed components that represent some procedure (e.g., a test proc-
ess) which progresses through a sequence of phases. Depending upon the man-
aged component definition, the procedure may be required to reach certain
phase for the resource to be operational and available for use (i.e. for the man-
aged component to be enabled). Not all phases may be applicable to every class
of managed component. If the value of this attribute is an empty set the managed
component is ready, for example, the initialization is complete. When the value
of this attribute is empty set, this implies that none of the status conditions de-
scribed below are present. ProceduralStatus UShort values are: initialized re-
quired = 2, not initialized = 4, initializing = 8, reporting = 16, and terminating
= 32.

● standbyStatusSupported: Boolean = false

The standbyStatusSupported attribute is used to indicate if the
<<queryproperty>>standbyStatus is supported. A value of true means sup-
ported by the component. The standbyStatus attribute is single-valued and is
only meaningful when the back-up relationship role exists. StandbyStatus USh-
ort values are: standby hot = 2, standby cold = 4, and providing service = 8.

● unknownStatusSupported: Boolean = false

The unknownStatusSupported attribute is used to indicate if the
<<queryproperty>>unknownStatus is supported. A value of true means sup-
ported by the component. The unknownStatus attribute is used to indicate that
the state of the resource represented by the managed component is unknown.
When the unknownStatus attribute Boolean value is True, the value of the state
attributes may not reflect the actual state of the resource.

Constraints

A ManagedServiceComponent shall at a minimum support the UNLOCKED adminState value.

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 143

A ManagedServiceComponent shall at a minimum support the ENABLED operationalState value.

A ManagedServiceComponent shall support the IDLE, and ACTIVE and/or BUSY usageState values. The sup-
ported usageState values depend on the component's usage model.

A ManagedServiceComponent shall be associated with at least one CapacityProperty as described by the compo-
nent's descriptor.

When alarmStatusSuuported attribute is true then the ManagedServiceComponent shall support the configuring
and querying of the alarmStatus property.

When availabilityStatusSuuported attribute is true then the ManagedServiceComponent shall support the query-
ing of the availabilityStatus property.

When controlStatusSuuported attribute is true then the ManagedServiceComponent shall support the configuring
and querying of the controlStatus property.

When proceduralStatusSuuported attribute is true then the ManagedServiceComponent shall support the querying
of the proceduralStatus property.

When standbyStatusSuuported attribute is true then the ManagedServiceComponent shall support the querying of
the standbyStatus property.

When unknownStatusSuuported attribute is true then the ManagedServiceComponent shall support the querying
of the unknownStatus property.

Semantics

Note – Typos

A ManagedServiceComponent may be associated with one to many ServiceProperty(s) (Characteristic Properties
and CapacityProperty). The CapacityModel(s) associated with a ManagedServiceComponent depends on the Ca-
pacityProperty(s) managed by the component. The capacities associated with a ManagedServiceComponent may
be managed or not managed by the component.

The adminStateRequestSupportedCharacterisitic attribute may be dynamically set at creation by a ConfigurePro-
perty or ExecutableProperty.

Whenever the adminState attribute changes, a StateChangeEventType (Infrastructure::Radio Management::Event
Channels) event may be issued to an event channel. The StateChangeEventType event data shall be populated as
follows when issued:

1. The producerId field is the identifier attribute of the component.

2. The sourceId field is the identifier attribute of the component.

3. The stateChangeCategory field is ADMINISTRATIVE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the adminState attribute value before and after
the state change, respectively.

Whenever the operationalState attribute changes, a StateChangeEventType event may be issued to an event chan-
nel. The event data shall be populated as follows when issued:

1. The producerId field is the identifier attribute of the component.

2. The sourceId field is the identifier attribute of the component.

dtc/2005-09-04

8.3.1 Radio Services

144 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

3. The stateChangeCategory field is OPERATIONAL_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the operationalState attribute value before and
after the state change, respectively.

Whenever the usageState attribute changes, a StateChangeEventType event may be issued to an event channel.
The StateChangeEventType event data shall be populated as follows when issued:

1. The producerId field is the identifier attribute of the component.

2. The sourceId field is the identifier attribute of the component.

3. The stateChangeCategory field is USAGE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the usageState attribute value before and after
the state change, respectively.

8.3.1.3 ServiceComponent

Description

Note – Issue 7714 - Invalid reference, Issue 7742 updated text and figure (M1 Illustration), re-
named Associations noheader to be M1 Associations.

The abstract ServiceComponent, as shown in Figure 8-32, offers service(s) within the radio environment, which
can be used by SWRadioComponent(s). The potential Service(s) offered by a ServiceComponent are depicted in
the Types and Exceptions section below.

M1 Associations

● componentDescriptor: ComponentDescriptor [1]

The Descriptor that provides the ServiceComponent definition.
● capabilityProperty: ServiceProperty [1..*]

The capability properties that describe a Service's capabilities.
● offerredService: Service [1..*]

An offeredService holds the set of Services that are provided by a ServiceCom-
ponent

Figure 8-32 – ServiceComponent M1 Illustration

Service
<<service>>

ServiceProperty
<<serviceproperty>>

ComponentDescriptor
<<descriptor>>

ServiceComponent
<<servicecomponent>>

1..*

1..*

1..*+offeredService

+serviceProvider 1..*

1..*1 1..*

+capabilityProperty

1

1

1 +specifiedService

+componentDescriptor 1

1

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 145

Types and Exceptions

● <<service>>EventService

Provides capabilities for event generation and reception between decoupled
components.

● <<service>>LogService

Provides capabilities for writing and retrieving system log information, and
managing a log

● <<service>>NamingService

Provides a white page capability for component registration and retrieval.

Semantics

ServiceComponent(s) are registered with DeviceManager(s). A DomainManagerComponent knows the Service-
Component(s) when DeviceManagerComponent(s) registers to a DomainManagerComponent.

Note – Issue 7581, Issue 7742 broke the section up into subsections, one for interfaces (model
library) and one for stereotypes. Updated figure below.

8.3.1.4 File Services

The FileServices consist of interfaces and components that are used to manage and access a distributed file sys-
tem. The File Services are used for installation and removal of application and artifact files within the system,
and for loading and unloading those files on the various processors that they execute upon. The File Services in-
terface are described in section 8.3.1.4.1 and the file services component stereotypes are described in section
8.3.1.4.5. The relationships between the interfaces and components are graphically depicted in Figure 8-33.

dtc/2005-09-04

8.3.1 Radio Services

146 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.1.4.1 File Services Interfaces

This section defines the intefaces for File, FileSystem, and FileManager as shown in Figure 8-33. These interfac-
es provide basic file manupulation operations which are described in detail in the following subsections.

Figure 8-33 – File Services Overview

FileManagerComponent
<<filemanagercomponent>>

FileSystemComponent
<<filesystemcomponent>>

*

*

FileComponent
<<filecomponent>>

*

1

*

1

*

+fileMgr

+mountedFileSystem

FileSystem

remove()
copy()
exists()
list()
create()
open()
mkdir()
rmdir()
query()

(from File Services Interfaces)

<<interface>>

FileManager

mount()
unmount()
getMounts()

(from File Services Interfaces)

<<interface>>

File

<<readonly>> fileName : String
<<readonly>> filePointer : ULong

close()
read()
setFilePointer()
sizeOf()
write()

(from File Services Interfaces)

<<interface>>

*

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 147

Types and Exceptions
● <<exception>>FileException

The FileException, is a type of SystemException, that indicates a file-related er-
ror. The error number indicates an ErrorNumberType value (e.g., CF_EBADF,
CF_EEXIST, CF_EISDIR, CF_EMFILE, CF_ENFILE, CF_ENOENT,
CF_ENOSPC, CF_ENOTDIR, CF_ENOTEMPTY, CF_EROFS). The String
msg attribute can provide information describing why the FileException oc-
curred

8.3.1.4.2 File

Description

The File interface, as shown in Figure 8-33, provides the ability to read and write files residing within a poten-
tially distributed FileSystem. A file can be thought of conceptually as a sequence of Octet(s) with a current file-
Pointer describing where the next read or write will occur. This filePointer points to the beginning of the file
upon construction of the file object.

Attributes

● <<readonly>>fileName: String

The readonly fileName attributes shall contain the file name given to a file sys-
tem open or create.

● <<readonly>>filePointer: unsigned Long

The readonly filePointer attribute shall contain the file position where the next
read or write will occur.

Operations

● close(): {raises= (FileException)};

The close operation shall close the file from the file system. The close operation
shall remove the File component. The close operation shall raise the FileExcep-
tion when it cannot successfully close the file.

● read(out data : OctetSequence, in length : UnsignedLong) : {raises= (IOException)};

The read operation shall read the number of Octet(s) specified by the input
length parameter and advance the value of the filePointer attribute by the
number of Octet(s) read. The read operation will read less than the number of
octets specified if an end of file is encountered before the input length number
of octets is read.

The read operation shall return via the out data parameter an OctetSequence that
equals the number of octets actually read from the File. If the filePointer at-
tribute value is at the end of the File prior to a read, the read operation shall re-
turn a 0-length OctetSequence. The read operation shall raise the IOException
when a read error occurs.

● setFilePointer(in filePointer : UnsignedLong) : {raises (InvalidFilePointer, FileException)}

The setFilePointer operation shall set the filePointer attribute value to the input
filePointer. The setFilePointer operation shall raise the FileException when the
file pointer for the referenced file cannot be set to the value of the input file-
Pointer parameter. The setFilePointer operation shall raise the InvalidFile-

dtc/2005-09-04

8.3.1 Radio Services

148 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Pointer exception when the value of the filePointer parameter exceeds the file
size.

● sizeOf(return UnsignedLong) : }raises (FileException)}

The sizeOf operation shall return the number of octets stored in the file. The
sizeOf operation shall raise the FileException when a file-related error occurs
(e.g., file does not exist anymore).

● write(in data : OctetSequence) : {raises (IOException)}

The write operation shall write data to the file. If the write is successful, the
write operation shall update the filePointer attribute to reflect the number of oc-
tets written. If the write is unsuccessful, the filePointer attribute value shall
maintain or be restored to its value prior to the write operation call. The write
operation shall raise the IOException when a write error occurs.

Types and Exceptions

● <<exception>>InvalidFilePointer

The InvalidFilePointer exception indicates the file pointer is out of range based
upon the current file size.

● <<exception>>IOException

The IOException exception, specialization of SystemException, indicates an er-
ror occurred during a read or writes operation to a File. The error number (e.g.,
CF_EFBIG, CF_ENOSPC, CF_EROFS and message is component-dependent.
The message provides additional information describing the reason for the er-
ror.

Constraints

The filePointer shall be set to the beginning of the file when a File is opened for read only or created for the first
time. When a File already exists and is opened for write, the filePointer shall be set at the end of the File.

8.3.1.4.3 FileSystem

Description

The FileSystem interface, as shown in Figure 8-33, defines common operations that enable access to a physical
file system.

Operations

Note – Issue 8831 - copy () - Added behavior and exception requirements for when the target
file exists.

● copy(in sourceFileName : String, in destinationFileName : String) : {raises = (InvalidFileName,

FileException)}

The copy operation provides the ability to copy a regular file (non-directory) to
another regular file. The copy operation shall copy the source file with the spec-
ified sourceFileName to the destination file with the specified destination-
FileName. If the destination file already exists, and the sourceFileName and the
destinationFileName are different, the copy operation shall overwrite the desti-
nation file. The copy operation shall raise the FileException when a file-related
error occurs. The copy operation shall raise the InvalidFileName exception
when the source or destination filename is not a valid file name or not an abso-

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 149

lute pathname. The copy operation shall raise the InvalidFileName exception
when the destination file name is identical to the source file name (i.e. attempt-
ing to copy on top of itself).

● create(in fileName : String, return FileComponent) : {raises = (InvalidFileName, FileException)}

The create operation provides the ability to create a new file on the FileSystem.
The create operation shall create a new File based upon the fileName attribute.
The create operation shall return a File component reference to the opened file.
The create operation shall raise the FileException if the file already exists or an-
other file error occurred. The create operation shall raise the InvalidFileName
exception when a fileName is not a valid file name or not an absolute pathname
or path prefix does not exist.

● exists(in fileName : String, return Boolean) : {raises = (InvalidFileName)}

The exists operation checks to see if a file exists based on the fileName param-
eter. The exists operation shall return True if the file exists, or False if it does
not. The exists operation shall raise the InvalidFileName exception when
fileName is not a valid file name or not an absolute pathname.

● list(in pattern : String, return FileInformationSequence) : {raises = (FileException,

InvalidFileName)}

The list operation provides the ability to obtain a list of files along with their in-
formation in the FileSystem according to a given search pattern. The list oper-
ation can return information for one file or a set of files. The list operation shall
return a FileInformationSequence for files that match the wildcard criteria spec-
ified in the input pattern parameter. The list operation shall return a zero length
sequence when no files are located that match the input pattern parameter. The
list operation shall raise the InvalidFileName exception when the input pattern
does not start with a slash "/" or cannot be interpreted due to unexpected char-
acters. The list operation shall raise the FileException when a file-related error
occurs.

● open(in filename : String, in read_Only : Boolean, return : FileComponent) : {raises = (

InvalidFileName, FileException)}

The open operation provides the ability to open a file for read or write. The open
operation shall open a file based upon the input fileName. The read_Only pa-
rameter indicates if the file should be opened for read access only. The open
operation shall open the file for read only access when the read_Only parameter
is True. The open operation shall return a File component parameter on suc-
cessful completion. The returned File's filePointer attribute shall be set to the
beginning of the file when the read_Only parameter is true, otherwise the File's
filePointer attribute is set to the end of the file. If the file is opened with the
read_Only flag set to true, then writes to the file will be considered an error. The
open operation shall raise the FileException if the file does not exist or another
file error occurred. The open operation shall raise the InvalidFileName excep-
tion when the filename is not a valid file name or not an absolute pathname.

● mkdir(in directoryName : String) : {raises(InvalidFileName, FileException)}

The mkdir operation provides the ability to create a directory on the file system.
The mkdir operation creates a FileSystem directory based on the directoryName
given. The mkdir operation shall create all parent directories required to create
the directoryName path given. The mkdir operation shall raise the FileExcep-
tion if a file-related error occurred during the operation. The mkdir operation
shall raise the InvalidFileName exception when the directoryName is not a valid
directory name.

dtc/2005-09-04

8.3.1 Radio Services

150 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● query(inout fileSystemProperties : Properties) : {raises(UnknownFileSystemProperties)}

The query operation provides the ability to retrieve information about a file sys-
tem. The query operation shall return file system information to the calling cli-
ent based upon the given fileSystemProperties' ID. At a minimum, the query
operation shall support the following property Ids in the fileSystemProperties
parameter:

1. SIZE - an ID value of “SIZE” causes query to return an unsigned
long long containing the file system size (in octet(s) <<datatype>>).

2. AVAILABLE SPACE - an ID value of “AVAILABLE SPACE”
causes the query operation to return an unsigned long long containing
the available space on the file system (in octet(s) <<datatype>>). The
query operation shall raise the UnknownFileSystemProperties
exception when the given file system property is not recognized.

● remove(in fileName : String) : {raises = (FileException, InvalidFileName)}

The remove operation provides the ability to remove a regular file (non-direc-
tory) from a file system. The remove operation shall remove the file with the
given fileName. The remove operation shall raise the InvalidFileName excep-
tion when the fileName is not a valid fileName or not an absolute pathname.
The remove operation shall raise the FileException when a file-related error oc-
curs.

● rmdir(in directoryName : String) : {raises(InvalidFileName, FileException)}

The rmdir operation provides the ability to remove a directory from the file sys-
tem. The rmdir operation removes a FileSystem directory, based on the direc-
toryName given, only if the directory is empty (no files exist in directory). The
rmdir operation shall raise the FileException when the directory does not exist,
if the directory is not empty, or another file-related error occurred. The rmdir
operation shall raise the InvalidFileName exception when the directoryName is
not a valid directory name.

Types and Exceptions

● SIZE : constant String = "SIZE"

Property name for file system's total size.
● AVAILABLE_SPACE : constant String := "AVAILABLE_SPACE"

Property name for file system's available unused space.
● <<enumeration>>FileType (PLAIN, DIRECTORY, FILE_SYSTEM)

The FileType indicates the type of file entry. A FILE_SYSTEM can have
PLAIN or DIRECTORY files and mounted file systems contained in a FileSys-
tem.

● FileInformationType (name : String, kind : FileType, size : UnsignedLongLong

fileProperties : Properties)

The FileInformationType indicates the information returned for a file. Not all
the fields in the FileInformationType are applicable for all file systems. The-
FileInformationType attributes are:

● The name indicates the simple name of the file.

● The kind indicates the type of the file entry.

● The size indicates the size in Octet(s).

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 151

● The FileProperties indicates other optional File properties that could
be given out.

● FileInformationSequence.

The FileInformationSequence type defines an unbounded sequence of FileIn-
formationTypes

.

● CREATED_TIME_ID : constant String = "CREATED_TIME".

The CREATED_TIME_ID is the identifier for the created time file property. A
created time property indicates the time the file was created.

● MODIFIED_TIME_ID : constant String ="MODIFIED_TIME"

The MODIFIED_TIME_ID is the identifier for the modified time file property.
The modified time property is the time the file data was last modified.

● LAST_ACCESS_TIME_ID : constant String = "LAST_ACCESS_TIME"

The LAST_ACCESS_TIME_ID is the identifier for the last access time file
property. The last access time property is the time the file was last access (e.g.
read).

● <<exception>>UnknownFileSystemProperties

The UnknownFileSystemProperties exception, specialization of Unknown-
Properties, indicates a set of properties unknown by the component.

Constraints

Valid characters for a file name and file absolute pathname shall adhere to POSIX compliant file naming conven-
tions. At a minimum a regular file name length of 40 characters shall be supported. At a minimum a combined
path prefix and ending regular file name length of 1024 characters shall be supported.

At a minimum, the FileSystem shall support the FileInformationType attributes: name, kind, and size information
for a file. Examples of other file properties that may be specified for fileProperties are created time, modified
time, and last access time as stated in Types and Exceptions above. The value for these properties shall be un-
signed long long and measured in seconds since 00:00:00 UTC, Jan. 1, 1970.

FileInform ationType
nam e : S tring
k ind : F ileType
s ize : Uns ignedLongLong
fileP roperties : P roperties

FileInform ationS equence

*

1

*

1

dtc/2005-09-04

8.3.1 Radio Services

152 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.1.4.4 FileManager

Description

The FileManager, as shown in Figure 8-33, specializes the FileSystem interface and extends that interface by
adding mount and unmount operations. This allows multiple, distributed FileSystems to be accessed through a
FileManager. The FileManager appears as a single FileSystem although the actual file storage may span multiple
physical file systems. This is called a federated file system. A federated file system is created using the mount
and unmount operations.

Associations

● mountedFileSystem:FileSystemComponent[*]

MountedFileSystem(s) that are associated with a FileManagerComponent.

Operations

● getMounts(return MountSequence)

The getMounts operation shall return a sequence of Mount structures that de-
scribe the mounted FileSystems.

● mount(in string mountPoint, in FileSystemComponent file_System) : {raises(InvalidFileName,

InvalidFileSystem, MountPointAlreadyExists)}

The mount operation shall associate the specified FileSystem with the given
mountPoint. A mountPoint name shall begin with a "/". A mountPoint name is
a logical directory name for a FileSystem. The mount operation shall raise the
InvalidFileName exception when the input file name is invalid. The mount op-
eration shall raise the MountPointAlreadyExists exception when the mount-
Point already exists in the file manager. The mount operation shall raise the
InvalidFileSystem exception when the input FileSystem is a null object refer-
ence.

● query(inout fileSystemProperties : Properties) : {raises(UnknownFileSystemProperties)}

The query operation shall return the combined mounted file systems informa-
tion to the calling client based upon the given input fileSystemProperties' IDs.
As a minimum, the query operation shall support the following input fileSys-
temProperties IDs:

1. SIZE - a property item ID value of “SIZE” will cause the query
operation to return the combined total size of all the mounted file
system as an unsigned long long property value.

2. AVAILABLE_SPACE - a property item ID value of
“AVAILABLE_SPACE” will cause the query operation to return the
combined total available space (in Octet(s)) of all the mounted file
system as unsigned long long property value.

● unmount(in string mountPoint) : {raises(NonExistentMount)}

The unmount operation shall remove a mounted FileSystemComponent from
the FileManagerComponent whose mounted name matches the input mount-
Point name. The unmount operation shall raise the NonExistentMount excep-
tion when the mountPoint does not exist.

dtc/2005-09-04

 8.3.1 Radio Services

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 153

Types and Exceptions

● MountType (MountPoint : String, fs : FileSystem)

The MountType structure identifies the FileSystems mounted within the FileM-
anager.

● MountSequence

The MountSequence is an unbounded sequence of MountTypes.

● <<exception>>InvalidFileSystem

The InvalidFileSystem exception indicates the FileSystemComponent is a null
(nil) component reference.

● .<<exception>>MountPointAlreadyExists
The MountPointAlreadyExists exception indicates the mount point is already in
use in the FileManagerComponent.

● <<exception>>NonExistentMount

The NonExistentMount exception indicates a mount point does not exist within
the FileManagerComponent.

Constraints

The FileManager's operations shall remove the FileSystem mounted name from the input fileName before pass-
ing the fileName to an operation on a mounted FileSystem.

The FileManager shall use the mounted FileSystem operations based upon the mounted FileSystem name that ex-
actly matches the input fileName to the lowest matching subdirectory.

The FileManager shall propagate exceptions raised by a mounted FileSystem's operation.

Semantics

The FileManager's FileSystem operations behavior implements the requirements of the FileSystem operations
against the mounted file systems. The FileManager's FileSystem operations ensure that the filename/directory ar-
guments given are absolute pathnames relative to a mounted FileSystem.

The system may support multiple FileSystem implementations. Some FileSystems will correspond directly to a
physical file system within the system. The FileManager supports a federated, or distributed, file system that may
span multiple file system components. From the client perspective, the File Manager may be used just like any
other FileSystem component since the FileManager realizes the FileSystem interface.

M ountTy pe
m ount Poi nt : St ri ng
fs : F i leSy s t em

M ountS equenc e

*

1

*

1

dtc/2005-09-04

8.3.1 Radio Services

154 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Based upon the pathname of a directory or file and the set of mounted FileSystems, the FileManager will dele-
gate the FileSystem operations to the appropriate FileSystem. For example, if a FileSystem is mounted at /ppc2,
an open operation for a file called /ppc2/profile.xml would be delegated to the mounted FileSystem. The mount-
ed FileSystem will be given the filename relative to it. In this example the FileSystem's open operation would re-
ceive /profile.xml as the fileName argument.

Another example of this concept can be shown using the copy operation. When a client invokes the copy opera-
tion, the FileManager will delegate operations to the appropriate FileSystems (based upon supplied pathnames)
thereby allowing copy of files between FileSystems.

8.3.1.4.5 File Services Stereotypes

The File Services components are identified in Table 8-9 - File Services Stereotypes and their relationship are
graphically depicted in Figure 8-33.

Note – Issue 7742 removed IFileSystem from stereotype table, moved interface to File Services
Interfaces section. Added component to stereotype names to be consistent with spec and to be
different than the interface names.

8.3.1.4.6 FileComponent

Description

The File, as shown in Figure 8-33, provides the ability to read and write files residing within a potentially distrib-
uted FileSystem. A file can be thought of conceptually as a sequence of Octet(s) with a current filePointer de-
scribing where the next read or write will occur. This filePointer points to the beginning of the file upon
construction of the file object.

Constraints

A FileComponent shall realize the File interface.

Table 8-9 – File Services Stereotypes

Stereotype Base Class Parent
Tag
s Constraints Description

FileComponent Component N/A Reads and writes a file within a
FileSystem.

FileSystemCompon
ent

Component N/A Remotely accesses a physical file
system.

FileManagerCompo
nent

Component N/A Provides a single interface to
multiple, distributed FileSystems

dtc/2005-09-04

 8.3.2 Communication Channel

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 155

8.3.1.4.7 FileManagerComponent

Description

The FileManagerComponent, as shown in Figure 8-33, realizes the FileManager interface and extends that inter-
face by adding mount and unmount operations. This allows multiple, distributed FileSystemComponents to be
accessed through a FileManagerComponent. The FileManagerComponent appears as a single file system al-
though the actual file storage may span multiple physical file systems. This is called a federated file system. A
federated file system is created using the mount and unmount operations.

M1 Associations

● mountedFileSystem:FileSystemComponent[*]

MountedFileSystem(s) that are associated with a FileManagerComponent.

Constraints

The FileManagerComponent shall realize the FileManager interface.

8.3.1.4.8 FileSystemComponent

Description

A FileSystemComponent, as shown in Figure 8-33, realizes the FileSystem interface and may be associated with
a File-Manager and consist of many FileComponents.

Associations

● fileManager : FileManagerComponent[*]

A file system can be associated with many FileManagerComponents.

8.3.2 Communication Channel

Description

Note – Issue TBD , remove last sentence, Issue 7742 updated figure by removing associations
since stereotypes cannot have associations. Updated text below.

A SWRadio provides a means to enable communications between physically separated users. A SWRadio has the
capability to utilize its devices as needed for a particular communications scenario and to use them possibly in a
different way in another instance. A Communication Channel is the data description for the collection and inter-
connection of the radio's devices necessary for a particular application to be able to provide communication.

The LogicalCommunicationChannel, shown in which inherits from an abstract Channel class is logically parti-
tioned into partitioned into three groups: the LogicalPhysicalChannel (e.g., Radio Frequency (RF)), the Logi-
calProcessingChannel, and the LogicalIOChannel. LogicalPhysicalChannel bundles devices that provide
communication over the physical medium, LogicalIOChannel bundles devices that provide I/O functionality for
the platform and LogicalProcessingChannel for signal processing needs. A radio may support one or many differ-
ent logical communication channels. It may support multiple communication channels, but not all simultaneously

dtc/2005-09-04

8.3.2 Communication Channel

156 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

due to the need for some device(s) by multiple waveforms. A component stereotyped as CommChannel as de-
fined in Infrastructure::Radio Management::Radio Set Management package needs visibility into the capabilities
needed by its applications and the capabilities provided by its devices in order to deploy a usable communication
channel.

Note – Issue 7582, updated figure and title below

8.3.2.1 Channel

Description

Note – Issue 7582 modified text

Figure 8-34 – Communication Channel Types Overview

{com municat ion ch annel
requi res at le ast o ne of
an logical ph ysi cal
cha nnel o r an I/O
cha nnel , in combin ati on
wi th at l east one other
type of channel }

Channel
<<characteristicproperty>> maxThroughput : Double
<<characteristicproperty>> isDynamic : Boolean

<<abstract>>

LogicalPhysicalChannel
<<stereotype>>

LogicalProcessingChannel
<<stereotype>>

LogicalCommunicationChannel
<<stereotype>>

LogicalIOChannel
<<stereotype>>

any channel can have an
association with any other
channel

Class
(from UML)

<<metaclass>>

LogicalSecureChannel
<<stereotype>> SecureLogicalCommunic

ationChannel

<<stereotype>>

{Has at l east one
Log ica lSecureChanne l}

<<extension>>

dtc/2005-09-04

 8.3.2 Communication Channel

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 157

Channel provides an abstract class definition by extending the UML Class definition. This abstract class defini-
tion is specialized by all of the stereotype definitions in the Communication Channel section.

Attributes

Note – Issue 8125: throughput chaned to maxThroughput, Issue 7582 added stereotypes to at-
tributes

● <<characteristicproperty>>maxThroughput: Double

Data throughput of the channel
● <<characteristicproperty>>isDynamic: Boolean

Specifies whether the channel is a dynamic channel or not. A Dynamic channel
is one whose definition can be changed in run-time by the application

Note – Issue 7742 Changed Associations noheader to M1 Associations. Removed last sentence
in Description.

M1 Associations

● channel: Channel [*]

A channel can have associations to any number of channels

8.3.2.2 LogicalCommunicationChannel

Description

LogicalCommunicationChannel stereotype is a specialization of the abstract Channel and is a data descriptor for
different types sub-channels. It is an aggregate of LogicalProcessingChannel, LogicalIOChannel and Logi-
calPhysical channel as shown in Figure 8-35.

Note – Issue 7742 updated Figure below to be M1 type. Changed Associations noheader to M1
Associations and changed associations descriptions to match figure. Updated Constraints

Figure 8-35 – LogicalCommunicationChannel M1 Illustration

CommChannel
<<commchannel>>

Appl ication
<<appl ication>>

{communication channel
requires at least one physical
channel or an I/O channel, in
combination with at least one
other type of channel}

Logical IOChannel
<<logicaliochannel>>

LogicalPhys ica lChannel
<<logica lphysicalchannel>>

LogicalCommunicationChannel
throughput : Double
isDynamic : Boolean = False

<<logicalcommunicationchannel>>

1

1+channelManager

1 +logicalCommChannel

1

1

1

1

+instantiateWF1

+instantiatedChannel

*
*

*

+compatib leWF* +compatibleChannel*

*

*

+channel

*

+channel

* *

LogicalProcessingChannel
<<stereotype>>

*
* *

*

dtc/2005-09-04

8.3.2 Communication Channel

158 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

M1 Associations

● compatibleWF: Application [*]

A Logical Communication Channel may have all the capabilities required by a
WaveformApplication.

● instantiatedWF: Application [1]

An instantiated application runs on its associated CommunicationChannel
● commManager: CommChannel [1]

A LogicalCommunicationChannel is managed by a CommChannel

Constraints

A LogicalCommChannel communication channel requires at least one LogicalPhysicalChannel or an LogicalIO-
Channel and combination of any other channel type (LogicalPhysicalChannel, LogicalIOChannel, and Logi-
calProcessingChannel).

The model allows for realizations that do not require security nor any processing (i.e. a non-software defined ra-
dio). Further, a valid channel may be an RF relay, with no local I/O, or may include a router and require no RF
capability.

8.3.2.3 SecureLogicalCommunicationChannel

Description

The SecureLogicalCommunicationChannel stereotype is an extnesion of LogicalCommunicationChannel stereo-
type and adds another aggregation relationship to the LogicalSecurityChannel stereotype as shown in Figure
8-34. Includes the relationships inherited from the LogicalCommunicationChannel, this stereotype provides a
data descriptor definition that can be made of four different types of sub-channels: LogicalProcessingChannel,
LogicalIOChannel, LogicalPhysicalChannel and LogicalSecurityChannel.

Note – Issue 7742 added constraints

Constraints

A SecureLogicalCommunicationChannel shall have at least one LogicalSecureChannel associated with it.

Note – Issue 7742 updated figure below and changed Associations noheader to M1 Associa-
tions noheader. Added Constraints section and one constraint

8.3.2.4 LogicalPhysicalChannel

Description

The LogicalPhysicalChannel stereotype extends the abstract Channel by consisting of all devices processing the
analog signal after digitization, to and including the antenna(s). For convenience, A/D and D/A conversion devic-
es, if used, are included here. The current state of the art is such that most of the operations of the interfaces re-

dtc/2005-09-04

 8.3.2 Communication Channel

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 159

alized by these devices are performed via hardware elements as opposed to software; nonetheless, the model does
not force either implementation. Figure 8-36 shows the LogicalPhysicalChannel definition with attributes of its
aggregated components.

M1 Associations

● anntenna: Antenna [1..*]

LogicalPhysicalChannel can be associated with an Antenna
● converter: Converter [*]

LogicalPhysicalChannel can be associated with a Converter
● filter: Filter [*]

LogicalPhysicalChannel can be associated with a Filter
● amplifier: Amplifier [*]

LogicalPhysicalChannel can be associated with an Amplifier
● frequencyConverter: FrequencyConverter [*]

LogicalPhysicalChannel can be associated with a FrequencyConverter
● powerSupply: PowerSupply [*]

LogicalPhysicalChannel can be associated with a PowerSupply
● switch: Switch [*]

LogicalPhysicalChannel can be associated with a Switch

Constraints

● A LogicalPhysicalChannel shall be associated with at least one Antenna element.

Figure 8-36 – LogicalPhysicalChannel M1 Illustration

all devices can be associated with
1..* phsyical Channels, depending
on presence/configurat ion of
Switching

Antenna
<<antenna>>

Converter
<<converter>>

Filter
<<filter>>

FrequencyConverter
<<frequencyconverter>>

Amplifier
<<amplifier>>

Switch
<<switch>>

LogicalPhysicalChannel
<<logicalphysicalchannel>>

1..*

1

*

1

*

1

*

*

1

*

1

PowerSupply
<<powersupply>>

*

1

1..*

+antenna

+converter *

* *

*

*

*

+filter
+frequencyConverter

+powerSupply

+amplifier

+switch
1 1 1 1

1
1

dtc/2005-09-04

8.3.2 Communication Channel

160 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.2.5 LogicalProcessingChannel

Description

The LogicalProcessingChannel stereotype extends the abstract Channel and provides the processing nodes for ap-
plications and radio services used by the waveforms running on the processing channel's operating environ-
ment(s). An exception to this is the processing node(s) specific to supporting security functions, which are part
of the LogicalSecurityChannel. Figure 8-37 shows the LogicalProcessingChannel definition.

Note – Issue 7742 updated figure below to a M1 type and updated associations. Change Asso-
ciations noheader to be M1 Associations. Addec Constraints sections and one constraint.

M1 Associations

● availableOperatingEnvironment: OperatingEnvironment [*]

A LogicalProcessingChannel uses the interfaces provided by the operating en-
vironment

● loadedApplication: Application [*]

A LogicalProcessingChannel can run multiple Applications on it
● processor: Processor [1..*]

A LogicalProcessingChannel contains at least one processor to perform compu-
tations on.

Constraints

● A LogicalProcessingChannel shall be associated with at least one processor.

Figure 8-37 – LogicalProcessingChannel M1 Illustration

Application
<<application>>

Processor
<<processor>>

LogicalProcessingChannel
<<logicalprocessingchannel>>

*

*

*+loadedApplication

*

1..*

1

1..*+processor

1

OperatingEnvironment
operatingSystem
middlewareType

**

+availableOperatingEnvironment

dtc/2005-09-04

 8.3.2 Communication Channel

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 161

8.3.2.6 LogicalIOChannel

Description

The LogicalIOChannel stereotype extends the abstract Channel and provides for the baseband connection to the
radio and consists of the devices that format, encode, decode, etc. the communication signals at that interface.
Figure 8-38 shows the description of the Logical I/O Channel.

Note – Issue 7716 updated Figure 8-37 (below). Removed IO_Algorithm.

Note – Issue 7742 updated figure, Changed Associations noheader to M1 Associations nohead-
er and modified associations.

M1 Associations

Note – Issue 8122 and 8123 modified figure above for associations and text below. Added Con-
staints

● processor: Processor [*]

A LogicalIOChannel may be associated with zero or more processors.
● loadedAlgorithm: I/O_Algorithm [*]

There may be any number of IO algorithms loaded on the IO channel
● ioDevice: IODevice [1..*]

Each LogicalIOChannel has only one IODevice

Constraints
● A LogicalIOChannel shall be associated with at least one IODevice.

Note – Issue 7742 Updated figure below, Replaced Associations noheader with M! associations
no header. Updated constraints

Figure 8-38 – LogicalIOChannel M1 Illustration

Processor
<<processor>>

IODevice
<<iodevice>>

LogicalIOChannel
<<logicaliochannel>>

*

1

*

1

1..*

1

1..*

1

dtc/2005-09-04

8.3.2 Communication Channel

162 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7716 - I/O Algorithm Description

Semantics

The LogicalIOChannel can include an IO algorithm which can be distinguished by the codec type and data con-
version type. An IODevice and Processor can be associated with the algorithm that is a part of the channel. Pro-
cessor acts as a data processor and an algorithm loader while the IODevice acts as the data processor which
employs the IO algorithm to process data.

8.3.2.7 LogicalSecurityChannel

Description

The LogicalSecurityChannel stereotype extends the abstract Channel and provides the processing node(s) for se-
curity applications applicable to communications. The LogicalSecurityChannel is present in a logical channel
definition only if the channel has security requirements. This channel may be used for separating between secure
and insecure sides of the communication. (Red - Black separation). The LogicalSecurityChannel definition is
shown in Figure 8-39.

Note – Issue 7717 - Removed SecurityAlgorithm, SecurityKey, SecurityPolicy from Figure 8-
38 (below)

M1 Associations

● cryptoDevice: CryptoDevice [1..*]

A LogicalSecurityChannel shall be associated with at least one CryptoDevice
● processor: Processor [*]

A LogicalSecurityChannel may be associated with any number of processors
● loadedAlgorithm: SecurityAlgorithm [1..*]

A LogicalSecurityChannel shall be associated with at least one SecurityAlgo-
rithm. A security channel may support loading multiple algorithms at the same
time

Figure 8-39 – LogicalSecurityChannel M1 Illustration

CryptoDevice
<<cryptodevice>>

Processor
<<processor>>

LogicalSecureChannel
<<logicalsecurechannel>>

*
+cryptoDevice

* *+processor *

Shall be associated
with at least a
Cyypro or Processor

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 163

● loadedKey: SecurityKey [1..*]

A LogicalSecurityChannel shall be associated with at least one SecurityKey.
● loadedPolicy: SecurityPolicy [*]

A LogicalSecurityChannel may be associated with any number of security pol-
icies that direct its actions.

Constraints

LogicalSecurity Channel has either a crypto device or a processor that runs a security algorithm; it may have a
processor(s) for other functions.

The LogicalSecurityChannel runs security algorithms on either a Processor or a dedicated Crypto Device

Note – Issue 7717 Resolution

Semantics

A LogicalSecurityChannel uses the Crypto and the Processor to provide security features of a waveform. A Log-
icalSecurityChannel may provide a security algorithm, security keys and a security policy in order to facilitate
those features.

8.3.3 Radio Management

This section defines the stereotypes for radio management. Radio management involves the management of the
radio, inclusive of its devices and services. The radio management stereotypes are categorized by domain and de-
vice management. The details of these categories are described in the following RadioSet Management and De-
vice Management subsections.

8.3.3.1 RadioSet Management

Note – Issue 7742 created subsections RadioSet Management Interfaces and RadioSet Manage-
ment Stereotypes. Moved the interfaces to RadioSet Management Interfaces. Made Interfaces
sections a header 6. Added DomainManager interface definition that was based upon Domain-
Manager component.

8.3.3.1.1 RadioSet Management Interfaces

This section defines the interfaces for RadioSet management. The types of capabilities offered by RadioSet man-
agement are categorized as follows:

1. Domain Registration Management - provides the mechanism for registering and unregistering
DeviceManager’s services within a RadioSet.

2. Domain Installation Management - provides the mechanism for installing and nonstaining
applications within a RadioSet.

3. Domain Manager - provides the mechanism for retrieving a radio domain's components.

4. Domain Event Channels- provides the mechanism for managing RadioSet's event channels
connections.

dtc/2005-09-04

8.3.3 Radio Management

164 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Types and Exceptions

● <<exception>>InvalidProfile

The InvalidProfile exception indicates an invalid profile error. A profile error
indicates an invalid Descriptor (e.g., component description, Application de-
scription, etc.).

8.3.3.1.1.1 DomainEventChannels

Description

The DomainEventChannels interface, as shown in an association in Figure 8-41, provides radio domain event
channel registration capabilities. The interface provides the capabilities of adding and removing connections to
event channels in a radio domain.

Operations

● registerWithEventChannel(in registeringObject: Object, in registeringId: String, in

eventChannelName : String): {raises = (InvalidObjectReference,

InvalidEventChannelName, AlreadyConnected)}

The registerWithEventChannel operation shall connect a consumer (registerin-
gObject input parameter) to a domain's event channel as indicated by the input
eventChannelName parameter.

The registerWithEventChannel operation shall raise the InvalidObjectRefer-
ence exception when the input registeringObject parameter contains an invalid
reference to an event channel consumer type interface. The registerWith-
EventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid event channel
name. The registerWithEventChannel operation shall raise the AlreadyCon-
nected exception when the input eventChannelName parameter references an
event channel that is connected to the consumer identified by the input register-
ingId parameter.

● unregisterFromEventChannel(in unregisteringId: String, in eventChannelName: String): { raises =

(InvalidEventChannelName, NotConnected)}

The unregisterFromEventChannel operation shall disconnect a consumer (un-
registeringId input parameter) from a domain's event channel as indicated by the
eventChannelName parameter.

The unregisterFromEventChannel operation shall raise the InvalidEventChan-
nelName exception when the input eventChannelName parameter contains an
invalid reference to an event channel. The unregisterFromEventChannel opera-
tion shall raise the NotConnected exception when the input parameter unregis-
teringId parameter is not connected to the specified input event channel.

Types and Exceptions

● <<exception>>AlreadyConnected

The AlreadyConnected exception indicates that a registering consumer is al-
ready connected to the specified event channel.

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 165

● <<exception>>InvalidEventChannelName

The InvalidEventChannelName exception indicates that the event channel with
that name does not exist within the domain.

● <<exception>> NotConnected

The NotConnected exception indicates that the unregistering consumer was not
connected to the specified event channel.

8.3.3.1.1.2 DomainInstallation

Description

The DomainInstallation interface, as shown in an association in Figure 8-41, defines radio domain application in-
stallation capabilities. The interface provides the capabilities of adding and removing applications from a radio
domain.

Operations

Note – Issue 8839 - installApplication () - Added requirement for signalling duplicate installa-
tion requests as an error by raising the ApplicationInstallationError exception.

● installApplication(in profileFileName: String): {raises = (InvalidProfile, InvalidFileName,

ApplicationInstallationError)}

The installApplication operation is used to install new application artifacts and
descriptors in the domain. A SWRadioDeployment::Application Deploy-
ment::ApplicationFactory is created in the domain as a result of successful in-
stallation. The profileFileName is the absolute path of the profile filename. The
installApplication operation shall verify that the Application's descriptor file
exists in the domain and that all the files the Application depends on are also
resident.

The installApplication operation shall raise the ApplicationInstallationError ex-
ception when the installation of the Application file(s) is not successfully com-
pleted. The installApplication operation shall raise the
ApplicationInstallationError exception when the to-be-installed application’s
identifier (specified in the application’s descriptor referenced by the profile-
FileName input parameter) is the same as a previously registered application.
The installApplication operation shall raise the InvalidFileName exception
when the input file or any referenced file name does not exist in the file system
as defined in the absolute path of the input profileFileName. The installAppli-
cation operation shall raise the InvalidProfile exception when the input file or
any referenced descriptor file is not compliant with its descriptor definition.

Note – Issue 8837 - uninstallApplication () - Removed requirement for removing all files asso-
ciated with the installed application.

● uninstallApplication(in applicationId: String): {raises = (InvalidIdentifier,

ApplicationUninstallationError)}

The uninstallApplication operation is used to uninstall an application from the
domain. The applicationId corresponds to the identifier in the SWRadioDeploy-
ment::Application Deployment::ApplicationFactory. The uninstallApplication
operation shall remove the ApplicationFactory from the domain.

dtc/2005-09-04

8.3.3 Radio Management

166 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The uninstallApplication operation shall raise the InvalidIdentifier excep-
tion when the applicationId is invalid. The uninstallApplication operation
shall raise the ApplicationUninstallationError exception when an internal
error causes an unsuccessful uninstallation of the Application.

Types and Exceptions

Note – Issue 8839 - Editorial change to ApplicationInstallationError exception synopsis by add-
ing missing exception attributes.

● <<exception>>ApplicationInstallationError (ErrorNumberType: errorNumber, msg: String)

The ApplicationInstallationError exception, a type of System Exception, is
raised when an application installation has not completed correctly. The error
number indicates the type of error (e.g., CF_EINVAL,
CF_ENAMETOOLONG, CF_ENOENT, CF_ENOMEM, CF_ENOSPC,
CF_ENOTDIR, CF_ENXIO). The message is component-dependent, provid-
ing additional information describing the reason for the error.

● <<exception>>ApplicationUninstallationError

The ApplicationUninstallationError exception, a type of SystemException, is
raised when an application uninstallation has not completed correctly.

● <<exception>> InvalidIdentifier

The InvalidIdentifier exception indicates an application identifier is invalid.

Semantics

Note – Issue 8837 - Clarified that creation/removal of installation files to/from the domain oc-
curs separately from and before/after the installApplication/uninstallApplication operations.

An installer service typically invokes these operations when adding or removing an ApplicationFactory (installed
Application) after creating or prior to deleting the associated files.

8.3.3.1.1.3 DeviceManagerRegistration

Description

The DeviceManagerRegistration interface, as shown in an association in Figure 8-41, defines radio domain ser-
vice registration capabilities. The interface provides the capabilities of adding and removing DeviceManager’s
services from a radio domain.

Operations

Note – Issue 8840 - Clarification of registerDeviceManager connection behavior - any entity
can satisfy a domain registration request, pending connection is established until required ser-
vice is registered with the domain, services from a different DeviceManager may satisfy con-
nection requirements from another DeviceManager.

● registerDeviceManager(in deviceMgr: DeviceManager): {raises = (InvalidObjectReference,

InvalidProfile, RegisterError)}

The registerDeviceManager operation shall add the input deviceMgr to the do-
main, if it does not already exist. The registerDeviceManager operation shall
add each deviceMgr's Service attributes (e.g., identifier, name/label, character-
istic and capacity properties, etc.) to the domain as specified in the deviceMgr's

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 167

registeredServices attribute. The registerDeviceManager operation shall estab-
lish any connections specified in the DeviceManager’s descriptor that are pos-
sible with the current set of domain registered services--others are left
unconnected pending future service registrations. The registerDeviceManager
operation shall establish any pending connections from previously registered
DeviceManagers if any of the newly registered services complete these connec-
tions.

For connections established for an EventService's EventChannel, the register-
DeviceManager operation shall connect to the event channel as specified in the
deviceMgr's descriptor. If the EventChannel does not exist, the registerDevice-
Manager operation shall create the EventChannel.

The registerDeviceManager operation may obtain all the Descriptor(s) from the
registering DeviceManager's FileSystem.

The registerDeviceManager operation shall mount the deviceMgr's FileSystem
to the domain. The mounted FileSystem name shall have the format, "/Domain-
Name/HostName", where DomainName is the name of the domain and Host-
Name is the input deviceMgr's label attribute.

The registerDeviceManager operation shall raise the InvalidObjectReference
exception when the input parameter deviceMgr contains an invalid reference to
a DeviceManager interface.

The registerDeviceManager operation shall raise the RegisterError exception
when an internal error exists which causes an unsuccessful registration.

Note – Issue 8840 - Clarification of unregisterDeviceManager disconnection behavior.

● unregisterDeviceManager(in deviceMgr: DeviceManager): {raises = (InvalidObjectReference,

UnregisterError) }

The unregisterDeviceManager operation is used to unregister a DeviceManager
component from domain. The unregisterDeviceManager operation shall unreg-
ister input deviceMgr component and its Service(s) from the domain. The un-
registerDeviceManager operation shall disconnect the established connections
(including those made to an EventService’s Event Channel) involving the un-
registering DeviceManager. Any such broken connections to components re-
maining from other DeviceManager’s DCD files shall be considered as
“pending” future connections. The unregisterDeviceManager operation may
destroy the EventService EventChannel when no more consumers and produc-
ers are connected to it.

The unregisterDeviceManager operation shall unmount the deviceMgr's File-
System from the domain.

The unregisterDeviceManager operation shall raise the InvalidObjectReference
when the input parameter deviceMgr contains an invalid reference to a Device-
Manager interface. The unregisterDeviceManager operation shall raise the Un-
registerError exception when an internal error exists which causes an
unsuccessful unregistration.

dtc/2005-09-04

8.3.3 Radio Management

168 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 8839 - Changed registeringService parameter type from Service to ServiceCompo-
nent.

Note – Issue 8840 - The registering service may satisfy pending connection requests from other
DeviceManagers.

● registerService(in registeringService: ServiceComponent, in registeredDeviceMgr: DeviceManager,

in name: String): {raises = (InvalidObjectReference,

DeviceManagerNotRegistered, RegisterError) }

The registerService operation registers a DeviceManager's Service to a domain.
The registerService operation shall add the registeringService and the register-
ingService's attributes (e.g., identifier, name/label, descriptor's characteristic
and capacity properties, etc.) to the domain, if the registeringService does not
already exist and registeredDeviceManager exists in the domain.

The registerService operation shall establish any required port connections
pending from any previously registered DeviceManagers that are satisfied by
the newly registered service, using the IPortConnector and IPortSupplier inter-
faces.

The registerService operation shall raise the InvalidProfile exception when reg-
isteringService's descriptor is invalid. The registerService operation shall raise
a DeviceManagerNotRegistered exception when the input registeredDeviceM-
ger is not registered with the domain. The registerService operation shall raise
the InvalidObjectReference exception when input parameters registeringServ-
ice or registeredServiceMgr contain an invalid reference. The registerService
operation shall raise the RegisterError exception when an internal error exists
which causes an unsuccessful registration.

Note – Issue 8840 - Clarification of disconnect behavior for unregisterService () - broken con-
nections during the service unregistration process are recognized as future pending connections.

● unregisterService(in unregisteringService: Service, in name: String): {raises = (

InvalidObjectReference, UnregisterError)}

The unregisterService operation shall remove a Service entry from the domain.
The unregisterService operation shall disconnect the unregisteringService's port
connections. Such connections to the remaining components shall then be con-
sidered as “pending” future connections. The unregisterService operation may
destroy the EventService's EventChannel when no more consumers and produc-
ers are connected to it.

The unregisterService operation shall raise the InvalidObjectReference excep-
tion when the input parameter contains an invalid reference to a Service inter-
face. The unregisterService operation shall raise the UnregisterError exception
when an internal error exists which causes an unsuccessful unregistration.

Types and Exceptions

● <<exception>>DeviceManagerNotRegistered

The DeviceManagerNotRegistered exception indicates the registering Service's

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 169

DeviceManager is not registered in the domain. A Service's DeviceManager
has to be registered prior to a service registration to the domain.

● <<exception>>RegisterError

The RegisterError exception, a type of System Exception, indicates that an in-
ternal error has occurred to prevent domain registration operations from suc-
cessful completion.

● <<exception>>UnregisterError

The UnregisterError exception, a type of SystemException, indicates that an in-
ternal error has occurred to prevent domain unregistration operations from suc-
cessful completion.

Semantics

Note – Issue 8839 - Added semantics for duplicate DeviceManager and ServiceComponent reg-
isteration requests. Changed references to Service(s) with ServiceComponent(s).

The DeviceManagerRegistration interface provides the mechanisms for components, such as DeviceManagers, to
register their ServiceComponent(s) (e.g., ManagedServiceComponent or DeviceComponent) for a specific do-
main. As ServiceComponent(s) are removed from the environment, the interface provides the capability of re-
moving them from the domain. Setting up connections for a registeringService is usually done for
DeviceComponents that need an EventChannel, LogService, etc. As ServiceComponent(s) are made available to
a domain, they become available for the domain's Application(s) deployment usage.

The behavior for duplicated registering DeviceManager or ServiceComponent may result in a RegisterError ex-
ception being thrown or the duplicated registration may be ignored. The duplicated registration behavior is left
up to PSMs, PIMs, or profiles that extend the SWRadio profile.

dtc/2005-09-04

8.3.3 Radio Management

170 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.3.1.2 DomainManager

Description

The DomainManager interface as shown in Figure 8-41 describes the definition and relationships that are com-
mon for all SWRadio domain managers. The DomainManager provides the capabilities of retrieving a domain’s
components and profile.

Note – Issue 7905 Resolution (Above Diagram - Removal of portExists () from DomainMan-
ager).

Attributes

● <<readonly>>applications : ApplicationManager [*]

The readonly applications attribute contains a sequence of instantiated applica-
tions in the domain. The applications attribute shall contain the list of SWRadi-
oDeployment::Application Deployment::Application Deployment
Stereotypes::ApplicationManager(s) that have been instantiated (e.g., created
by ApplicationFactory) within the domain.

● <<readonly>>applicationFactories : ApplicationFactoryComponent [*]

The readonly applicationFactories attribute contains a list of ApplicationFacto-
ries in the domain. The applicationFactories attribute shall contain a list of one
SWRadioDeployment::Application Deployment::Application Deployment

Figure 8-40 – DomainManager Definition

PortSupplier
(from Resource Components Interfaces)

<<interface>>
PropertySet

(from Resource Components Interfaces)

<<interface>>

DomainManager
<<readonly>> applications : ApplicationManager[*]
<<readonly>> ApplicationFactories : ApplicationFactoryComponent [*]
<<readonly>> deviceManagers : DeviceManagerComponent [*]
<<readonly>> domainProfile : String
<<readonly>> fileManager : FileManagerComponent

<<interface>>

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 171

Stereotypes::ApplicationFactory per Application successfully installed (i.e. no
exception raised by the DomainInstallation::install).

● <<readonly>>deviceManagers : DeviceManagerComponent [*]

The readonly deviceManagers attribute contains a sequence of DeviceManager-
Components in the domain. The deviceManagers attribute shall contain a list of
registered DeviceManagerComponents that have registered with the Domain-
ManagerComponent.

● <<readonly>>domainManagerProfile : String

The readonly domainManagerProfile attribute contains a file reference to the
domain configuration descriptor. The descriptor provides configuration infor-
mation for a domain. Files referenced within the descriptor will have to be ob-
tained from the domain's fileMgr attribute.

● <<readonly>>fileMgr : FileManagerComponent

The readonly fileMgr attribute contains the DomainManager's RadioServic-
es::File Services::File Services Stereotypes::FileManagerComponent.

Note – Issue 7905 Resolution - Deleted the Operations section due to removal of the portExists
operation.

8.3.3.1.3 RadioSet Management Stereotypes

Note – Issue 7742 renamed Associations noheader to M1 Associations throughout. Renamed
DomainManager to DomainManagerComponent. Updated RadioSet Management to a M1 Illus-
tration.

This section defines the stereotypes for RadioSet management. The RadioSet management stereotypes depicted
in Table 8-10 and Figure 8-41 are extensions of the UML 2.0 Component (UML2.0::Components::BasicCompo-
nents).

Table 8-10 – DomainManagement Stereotypes

Stereotype Base Class Parent
Tag
s Constraints Description

CommChannel Component N/A Represents a component that
manages a
LogicalCommunicationChann
el.

DomainManagerCompo
nent

Component SWRadioComponent Provides Domain Retrieval
capability and represents a
component that manages a
domain.

RadioManager Component DomainManagerCompo
nent

Represents a component that
manages a RadioSet.

RadioSystemManager Component N/A Represents a component that
manages RadioManagers.

dtc/2005-09-04

8.3.3 Radio Management

172 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.3.1.3.1 CommChannel

Description

The CommChannel, as shown in an association in Figure 8-41 represents a component that provides communica-
tion channel management.

M1 Associations

● deployedWaveform: ApplicationManager [0..1]
The LogicalCommunicationChannel represents the set of devices that provide
the communication path for the communication channel.

● logicalCommunicationChannel: LogicalCommunicationChannel [1]

The LogicalCommunicationChannel represents the set of devices that provide
the communication path for the communication channel.

● waveformDeployer:ApplicationFactoryComponent[*]

The ApplicationFactory that deploys the waveform onto the communication
channel.

Semantics

The CommChannel may be associated with static or a dynamic LogicalCommunicationChannel. The devices as-
sociated with a static LogicalCommunicationChannel do not vary over the life cycle of the communication chan-
nel. For dynamic LogicalCommunicationChannel the devices can vary during the life cycle of the
communication channel.

Figure 8-41 – RadioSet Management M1 Illustration

CFApplicationManager
(from Application Deployment M1 Defs)

<<applicationmanager>>

CFApplicationFactory

capabilityManager : Boolean
(from Application Deployment M1 Defs)

<<applicationfactorycomponent>>

LogicalCommunicationChannel
(from Communication Channel M1 Defs)

<<logicalcommunicationchannel>>

CommChannel
<<commchannel>>

0..1

1

+deployedWafeform 0..1

+instantiatedCommChannel 1

*

1..*

+waveformDeployer *

+commChannel1..*

11 1

+logicalCommChannel

1

+channelManager

RadioSet

RadioSystem

RadioManager
<<radiomanager>>

1..*

1

1..*

1

11 1

+radioSet

1

+radioManager

RadioSystemManager
<<radiosystemmanager>>

11

+radioSystem

1

+RadioSystemManager

10..1

1..*1..*

0..1
+radioSystemManager

+radioManager

DomainManager

providedPortsExist()

(from RadioSet Management Interfaces)

<<interface>>

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 173

8.3.3.1.3.2 DomainManagerComponent

Description

Note – Issue 7742 updated Figure to a M1 Illustration, removed attributes and operations,
changed DomainManager to DomainManagerComponent.

The DomainManagerComponent as shown in Table 8-10 and Figure 8-42 describes the definition and relation-
ships that are common for all SWRadio domain managers. The DomainManagerComponent provides the capabil-
ities of retrieving a domain's components and profile.

Note – Issue 7578 and 7579 Resolution (Above Diagram) - Note to Tansu from Neli: These is-
sues do not affect the above diagram. The diagram change is for issue 7742?

M1 Associations

● domainEventChannel: EventChannel [*]

A DomainManagerComponent may be associated with many event channels.
Refer to Domain Event Channels section below for description of domain event
channels and event types.

● namedRegistrar: NamingService [1]

The NamingService that contains a named DomainManagerComponent refer-
ence.

● registeredServiceCapability: ServiceProperty [1..*]

The registedServiceCapability(s) are the set of ServiceComponent's Service-
Property(s) registered and/or known by the DomainManagerComponent.

Figure 8-42 – DomainManagerComponent M1 Illustration

<<Actor>>
DomainUser

NamingService
<<servicecomponent>>

VendorDeviceManager
<<devicemanagercomponent>>

InstallerService
<<servicecomponent>>

DomainManager
(from RadioSet Management Interfaces)

<<interface>>

VendorDomainManager
<<domainmanagercomponent>>

1..*0..1

+registeredNode

1..*

+domainRegistration

0..1

0..1

0..1

+installerService
0..1

+applicat ionRegist rar:Do
mainInstallation

0..1

1*

+domainRepository

1

+domainUser

*

0..1
*

+domainEventChannelsRegistrar:
DomainEventChannels

0..1
+domainEventConsumer *

1

1

+namedRegistrar

1

+domainRegistrant1

1 1..*
+domainRegistrar

1

+deviceManagerRegist rant
:DeviceMangerRegistration

1..*

ServiceProperty
<<serviceproperty>>

1..*

*

1..*

*

+registeredServiceCapability

EventChannel
<<eventChannel>> *

0..1

+domainEventChannel

*

+eventChannelConnector 0..1

dtc/2005-09-04

8.3.3 Radio Management

174 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Constraints

The identifier attribute shall contain a unique identifier for a DomainManagerComponent. The identifier shall be
identical to the id attribute of the DomainManagerComponent's configuration descriptor as specified by the do-
mainProfile attribute.

During component construction the DomainManagerComponent shall register itself with the NamingService.
During NamingService registration the DomainManagerComponent shall create a “naming context” using “/Do-
mainName” as its name.ID component and "" (Null string) as its name.kind component, then create a “name
binding” to the “/DomainName” naming context using “/DomainManager” as its name.ID component, "" (Null
string) as its name.kind component, and the DomainManager's object reference.

The DomainManagerComponent shall create its own FileManager component that consists of all registered De-
viceManager's FileSystems.

The DomainManagerComponent shall restore ApplicationFactories after startup for Application(s) that were pre-
viously installed by the DomainManagerComponent installApplication operation. The DomainManagerCompo-
nent shall add the restored ApplicationFactories to the DomainManagerComponent's applicationFactories
attribute.

If the DomainManagerComponent has the association role of a domainEventChannelsRegistrar then the Domain-
ManagerComponent shall provide a port that provides the IDomainEventChannels service and the port name is
DomainEventChannelsPort, and support the DomainOutgoingEventChannel and DomainIncomingEventChannel..

If the DomainManagerComponent has the association role of a domainRegistration then the DomainManager-
Component shall provide a port that provides the DeviceManagerRegistration service and the port name is Do-
mainDeviceMgrRegPort.

If the DomainManagerComponent has the association role of a applicationRegistrar then the DomainManager-
Component shall provide a port that provides the ApplicationInstallation service and the port name is DomainIn-
stallationPort.

If the DomainManagerComponent has a LogService required port then the DomainManagerComponent shall pro-
vide a port that provides LogService admin service and the port name is DomainLogAdminPort.

If the DomainManagerComponent has a LogService required port then the DomainManagerComponent shall pro-
vide a port that provides LogService consumer service and the port name is DomainLogConsumerPort.

Each registered ServiceProperty with the same identification shall be the same type within DomainManagerCom-
ponent.

Semantics

Note – Issue 7719 - wrong semantics description

The set of interfaces realized by a DomainManagerComponent depends on the system the DomainManagerCom-
ponent is built for. As shown in Figure 8-42 above, the DomainManagerComponent could realize PortSupplier
and PropertySet interfaces and inherits from SWRadioComponent. The types of ServiceArtifactProperty(s) sup-
ported by a DomainManagerComponent are implementation specific. A DomainManagerComponent implemen-
tation may constraint the types of ServiceArtifactProperty(s) which would be reflected in its registration
behavior.

Note – Issue 7905 Resolution - Deleted references to the portExists operation usage due to re-
moval of this operation.

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 175

The DomainManagerComponent may upon successful add of an component to its applications, applicationFacto-
ries, or deviceManagers attribute or registered Service send an event to the Outgoing Domain Management-
EventChannel with event data consisting of a DomainManagementObjectAddedEventType. The
DomainManagementObjectAddedEventType event data shall be populated as follows when issued:

1. The producerId is the identifier attribute of the DomainManagerComponent.

2. The sourceId is the identifier attribute of the created (ApplicationManager), installed
(ApplicationFactory), or registered (DeviceManager or Service) component to the domain.

3. The sourceName is the name attribute of the added component to the domain.

4. The sourceHandle is the component reference added to the domain.

5. The sourceCategory is the type of component added to the domain.

The DomainManagerComponent may upon successful removal of a component from its applications, application-
Factories, or deviceManagers attribute or unregistered Service send an event to the Outgoing Domain Manage-
mentEventChannel with event data consisting of a DomainManagementObjectRemovedEventType. The
DomainManagementObjectRemovedEventType event data shall be populated as follows when issued:

1. The producerId is the identifier attribute of the DomainManagerComponent.

2. The sourceId is the identifier attribute of the component uninstalled (ApplicationFactory), released
(ApplicationManager), or unregistered (DeviceManager or Service).

3. The sourceName is the name attribute of the removed component from the domain.

4. The sourceCategory is the type of component removed from the domain.

The DomainManagerComponent shall produce DomainManagementObjectRemovedEventType and DomainMan-
agementObjectAddedEventType when the DomainManagerComponent has the association role of a domain-
EventChannelsRegistrar.

8.3.3.1.3.3 RadioManager

Description

Note – Issue 7720 - Irrelevant description

The RadioManager component, as shown in Figure 8-41, describes the definition and relationships that are com-
mon for RadioSet manager. The RadioSystemManager is responsible for control and management tasks for the
RadioSystem. It may be associated with one or more RadioManagers which are used to control the RadioSets the
RadioSystem consists of.

M1 Associations

● radioSet: RadioSet [1]

A RadioManager is associated with one RadioSet

dtc/2005-09-04

8.3.3 Radio Management

176 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.3.1.3.4 RadioSystemManager

Description

The RadioSystemManager component, as shown in Figure 8-41, describes the definition and relationships that
are common for RadioSystem managers. The RadioManager extends the DomainManagerComponent by provid-
ing communication channel management within the RadioSet.

M1 Associations

● radioManager: RadioManager[1..*]

The associated RadioManager provides the capability to manage a RadioSet
within a RadioSystem.

● radioSystem: RadioSytem [1]

The RadioSystem provides a set of communication equipment that their rela-
tionships.

8.3.3.2 Device Management

Note – Issue 774 added two subsections, Device Management Interfaces and Device Manage-
ment Stereotypes. Moved the interfaces to Device Management Interfaces section.

This section defines the stereotypes and interfaces for radio device management, whcich are described in the two
subsections below: 8.3.3.2.1 and .8.3.3.2.2.

8.3.3.2.1 Device Management Interfaces

This section defines the interfaces for radio device management. The types of capabilities offered by radio de-
vice management are categorized as follows:

1. Service Registration Management - provides the mechanism for registering and unregistering services
within a device.

2. DeviceManager - provides the mechanism for retrieving SWRadio's node services and information.

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 177

8.3.3.2.1.1 DeviceManager

Description

The DeviceManager interface as shown in Figure 8-44 defines the attributes and operations relationships that are
common for all SWRadio node managers. A DeviceManager interface is used to manage the ServiceCompo-
nent(s) on a node and to retrieve information about a node or device manager.

Note – Issue 7905 Resolution (Above Diagram - Removal of portExists () from DeviceMan-
ager).

Attributes

● <<readonly>>label: String

The readonly label attribute contains a node's meaningful name.
● <<readonly>>fileSys: FileSystemComponent

The readonly fileSys attribute contains the FileSystem associated with this node
or a nil component reference if no FileSystem is associated with this node.

● <<readonly>>deviceConfigurationProfile : String

The readonly deviceConfigurationProfile attribute contains information on the
initial configuration for the node. Files referenced within the profile are ob-
tained using the fileSys attribute.

● <<readonly>>registeredServices : ServiceSequence

The readonly registeredServices attribute contains a list of Services that have
registered with a node or a sequence length of zero if no Services have regis-
tered with the node.

Operations

● getComponentImplementationId (in componentInstantiationId: String, return String):

The getComponentImplementationId operation shall return the implementation
ID used to create the component identified by the input componentInstantiatio-

Figure 8-43 – DeviceManager Definition

DeviceManager
<<readonly>> registeredServices : ServiceType [*]
<<readonly>> deviceConfigurationProfile : String
<<readonly>> fileSys : FileSystem
<<readonly>> label : String

shutdown()
getComponentImplementationId()

<<interface>>

PropertySet
(from Resource Components Interfaces)

<<interface>>
PortConnector

(from Resource Components Interfaces)

<<interface>>
PortSupplier

(from Resource Components Interfaces)

<<interface>>

dtc/2005-09-04

8.3.3 Radio Management

178 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

nId parameter. The implementation ID corresponds to the ServiceExecutable-
Code's implementation id in a component implementation descriptor that was
used to manifest a ServiceComponent. The getComponentImplementationId
operation shall return an empty string when the input componentInstantiationId
parameter does not match a ServiceExecutableCode's implementation ID de-
ployed by the DeviceManager. This operation does not raise any exceptions.

Note – Issue 7905 Resolution - Deteled the portExists operation.

● shutdown ()

The shutdown operation provides the mechanism to terminate a DeviceManag-
er. The shutdown operation shall unregister the DeviceManager from the Do-
mainManagerComponent.

The shutdown operation shall release all of the DeviceManager's registered
ServiceComponent(s) (DeviceManager's registeredServices attribute) that sup-
port the Ilifecycle interface and started up by the DeviceManager.

The shutdown operation shall terminate the execution of each ExecutableCode
that was created as specified in the deviceConfigurationProfile attribute. For a
released (releaseObject operation) ServiceComponent, the termination shall
take place after the ServiceComponent has unregistered with the DeviceManag-
er.

The shutdown operation shall remove the DeviceManager from the environ-
ment when all of the released registered Services are unregistered from the De-
viceManager. This operation does not return any value and does not raise any
exceptions.

Types and Exceptions

● ServiceType(serviceObject: ServiceComponent, serviceName: String)

This structure provides the Service reference and name of Service that have reg-
istered with the node.

8.3.3.2.1.2 ServiceRegistration

Description

The ServiceRegistration interface defines SWRadio node service registration capabilities. The interface provides
the capabilities of adding and removing ServiceComponent(s) from a SWRadio node.

Operations

● registerService(in registeringService: ServiceComponent, in name: String): {raises =

(InvalidObjectReference) }

The registerService operation provides the mechanism to register a Service-
Component with a node. The registeringService is ignored when duplicated.
The registerService operation shall raise the InvalidObjectReference exception
when the input registeringService is a nil component reference.

● unregisterService(in unregisteringService: ServiceComponent, in name: String): {raises = (

InvalidObjectReference)}

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 179

The unregisterService operation provides the mechanism to unregister a Serv-
iceComponent from a node. The unregisterService operation shall raise the In-
validObjectReference when the input registeredService is a nil component
reference or does not exist in the node.

Semantics

The ServiceRegistration interface provides the mechanisms for ServiceComponent(s) started up on a node to reg-
ister to a node or device manager that is managing a node. As ServiceComponent(s) are removed from node en-
vironment, the interface provides the capability of removing them from a node or device manager. Services
managed by a node manager can also include managed services such as DeviceComponent(s).

8.3.3.2.2 Device Management Stereotypes

This section defines the stereotypes for radio device management. The device management stereotypes are de-
picted in Table 8-11 below, which are extensions of UML 2.0 Component (UML2.0::Components::BasicCompo-
nents). The details of each classifier are described in the following subsections.

Note – Issue 7742 added component to the DeviceManager name, added contraints for the in-
terfaces realized by a DeviceManagerComponent, updated figure to be a M1 Illustration,
Changed Assoication noheader to be M1 Associations.

Table 8-11 – Node Management Stereotypes

Stereotype Base Class Parent
Tag
s Constraints Description

DeviceManagerCom
ponent

Component SWRadioComponent Manages a node and its services.

dtc/2005-09-04

8.3.3 Radio Management

180 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.3.2.2.1 DeviceManagerComponent

Description

The DeviceManagerComponent a type of SWRadioComponent as shown in Table 8-11. Figure 8-44 denotes the
relationships that are common for all SWRadio node managers. A DeviceManagerComponent manages the Ser-
viceComponent(s) on a node.

Note – Issue 7578 and 7579 Resolution (diagram above) - Note to Tansu: These issues do not
affect the above diagram. The diagram change is for issue 7742?

M1 Associations

● node: Node[1..*]

One to many nodes can be managed by a DeviceManagerComponent.
● domainNamedRegistrar: NamingService [0..1]

A NamingService contains the named DomainManagerComponent's compo-
nent reference that is obtained by a DeviceManager that needs to register to a
DomainManagerComponent.

● domainNodeRegistrar: DomainManagerComponent [0..1]

A DomainManagerComponent harnesses all nodes' services and capabilities
within the domain.

● logicalDeviceMainProcess: LogicalDeviceExecutableCode [*]

A logical device main process that manifests a DeviceComponent can be exe-
cuted by a DeviceManagerComponent.

● registeredService: ServiceComponent[1..*]

A set of ServiceComponent(s) (e.g., DeviceComponents, etc.) registered to a
DeviceManagerComponent.

Figure 8-44 – DeviceManager M1 Illustration

NamingService
<<servicecomponent>>

VendorDomainManager
(from RadioSet Management M1 Defs)

<<domainmanagercomponent>>

VendorLogicalDeviceExecutableCode
(from SWRadio Artifacts M1 Defs)

<<logicaldeviceexecutablecode>>
ServiceExecutableCode

<<serviceexecutablecode>>

VendorServiceComponent
(from Radio Services M1 Defs)

<<servicecomponent>>

DeviceManager
(f rom De vice Management Interfaces)

<<interface>>

node
<<node>>

VendorDeviceManager
<<devicemanagercomponent>>

0..1

*

0..1

+domainNamedRegistrar

+domainNameRetriever

*

0..1

1..*

+domainRegistration 0..1

+registeredNode 1..*

*

*

*
+logicalDeviceMainProcess

*

+serviceDeployer

<<executes>>

*

*

+serviceMainProcess *

+serviceDeployer

*

<<executes>>

0..1

*

+serviceRegistrar::ServiceRegistration
0..1

+serviceRegistrant

*

*1

+registeredService

*

+serviceManager

1

1..*

1

+node

1..*

+nodeManager

1

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 181

● serviceMainProcess: ServiceExecutableCode [*]

A service component’s main process that manifests a ServiceComponent can be
executed by a DeviceManagerComponent.

Constraints

The registeredServices attribute shall contain a list of registered Radio Services::ServiceComponent(s) that have
registered with the DeviceManagerComponent. Each registeredservice in the registeredServices attribute shall be
registered with the DeviceManagerComponent's associated DomainManagerComponent when the DeviceMan-
agerComponent registers with theDomainManagerComponent.

Each unregistered ServiceComponent shall be unregistered from the DeviceManagerComponent's associated Do-
mainManagerComponent when the unregistered ServiceComponent is registered with the DeviceManagerCom-
ponent and the DeviceManagerComponent is not shutting down. If a SWRadio Deployment::SWRadio
Artifacts::ServiceExecutableCode was started up by the DeviceManagerComponent as specified in the device-
Configuration attribute, then the DeviceManagerComponent shall terminate the ServiceExecutableCode and deal-
locate capacity to the device the ServiceExecutableCode was deployed on.

If the DeviceManagerComponent has the association role of a serviceRegistrar, then the DeviceManagerCompo-
nent shall provide a port that provides the ServiceRegistration service and the port name is ServiceRegistration.

The DeviceManagerComponent shall realize the DeviceManager interface.

Semantics

The DeviceManagerComponent provides the capability of starting up services' main processes on a given node
by the deviceConfigurationDescriptor attribute. Services started up also include DeviceComponent(s) that are a
type of ManagedServiceComponent. A DeviceManagerComponent registers to a DomainManagerComponent us-
ing the deviceConfigurationProfile descriptor information.

The DeviceManagerComponent upon start up shall register itself with a DomainManagerComponent as specified
in the deviceConfigurationProfile attribute. A DeviceManagerComponent shall use its deviceConfigurationPro-
file attribute for determining:

1. Services to be deployed for this DeviceManagerComponent (for example, LogService,
DeviceComponent),

2. DeviceComponents to be created for this DeviceManagerComponent,

3. Services to be deployed on (executing on) another Device,

Note – Issue 8842

4. DeviceComponents to be part of another DeviceComponent’s composition definition,

5. Mount point names for File Systems,

6. The DeviceManagerComponent's identifier attribute value, and

7. The DeviceManagerComponent's label attribute value.

The DeviceManagerComponent shall create file system components implementing the FileSystem interface. If
multiple FileSystems are to be created, the DeviceManagerComponent shall mount created FileSystemCompo-
nents to a FileManagerComponent (widened to a FileSystem through the FileSys attribute). Each mounted File-
SystemComponent name shall be unique within the DeviceManagerComponent.

dtc/2005-09-04

8.3.3 Radio Management

182 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

If the DeviceManagerComponent deploys a ServiceComponent, the DeviceManagerComponent shall supply exe-
cute operation parameters as stated for SWRadio Deployment::SWRadio Artifacts::ServiceExecutableCode. The
Service Name executable parameter shall be Service's usagename element as specified in the deviceManager's
DCD. The DeviceManagerComponent shall use an SWRadio Deployment::SWRadio Artifacts::ExecutableCode's
user-defined executable parameters as specified in the component's implementation descriptor. The DeviceMan-
agerComponent shall use an ExecutableCode's stacksize, priority, runtime executable options when specified in
the component's implementation descriptor. The DeviceManagerComponent shall allocate the ExecutableCode's
capacity requirements against the device the ExecutableCode is deployed on.

If the DeviceManagerComponent deploys a DeviceComponent, the DeviceManagerComponent shall supply exe-
cute operation parameters as stated for SWRadio Deployment::SWRadio Artifacts::LogicalDeviceExecutable-
Code. The following LogicalDeviceExecutableCode's execute operation parameters values shall be:

● The Device Identifier executable parameter shall be Service's id element as specified in the
DeviceManager's DCD.

● The Profile Name executable parameter shall be Service's component implementation descriptor as
specified in the DeviceManagerComponent's DCD. The file name shall be the
DeviceManagerComponent’s full mounted file system file path name.

● Composite Device Component Reference executable parameter shall be a registered
DeviceComponent's compositeDevice attribute that corresponds to the composite part relationship as
specified in the DeviceManagerComponent's DCD. This parameter is only used when the composite
part relationship is specified in the DeviceManagerComponent's DCD.

Note – Issue 8858 Resolution

Note – Issue 8873 Resolution - Replacement of non-existent ConfigureQuertyProperty type
with the ConfigureProperty type

The DeviceManagerComponent shall initialize and configure ServiceComponents that are started by the Device-
ManagerComponent after they have registered with the DeviceManagerComponent provided they realize the
Lifecycle and PropertySet interfaces. The DeviceManagerComponent shall configure a registered Service, pro-
vided the registered Service has ConfigureProperty(s).

A ServiceComponent’s configuration property values shall only come from the deviceConfigurationProfile de-
scriptor, not from the component’s implementation or component definition descriptors.

Note – Issue 7905 Resolution - Removed references to the portExists operation usage due to re-
moval of this operation.

8.3.3.3 Domain Event Channels

For radio and domain management, a domain may support a number of event channels. Two event channels that
a domain may support are:

● IncomingDomainEventChannel - This event channel receives events from the domain's registered
components.

● OutgoingDomainEventChannel - This event channel sends events from the domain out to registered
domain event consumers.

dtc/2005-09-04

 8.3.3 Radio Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 183

The types of domain events that could be issued are depicted in the Figure 8-45 and described in the Types and
Exceptions section below.

Types and Exceptions

● DomainManagementObjectAddedEventType(sourceHandle: String)

The DomainManagementObejectAddedEventType is a specialization of Do-
mainManagementObjectEventType. This event type indicates a component has
been added to the domain. The sourceHandle attribute indicates the component
reference of the component added to the domain.

● DomainManagementObjectEventType (sourceName: String, sourceCategory: SourceCategoryType,

sourceId: String, producerId: String)

The DomainManagementObjectRemovedEventType is a specialization of
event, which contains information about the event that occurred in the domain.

● SourceName attribute is the name of source that caused the event.

● SourceCategory attribute indicates the type of component that caused
the event.

● SourceID is the identifier of the source that caused the event.

● ProducerId is the identifier of the producer of the event.
● DomainManagementObjectRemovedEventType

The DomainManagementObjectRemovedEventType is a specialization of Do-
mainManagementObjectEventType. This event type indicates a component has
been removed from the domain.

● <<enumeration>>SourceCategoryType(COMM_CHANNEL, DEVICE_MANAGER, DEVICE, DOMAIN_MANAGER,

APPLICATION, APPLICATION_FACTORY, SERVICE))

The SoureCategoryType defines the types of components within the domain

Figure 8-45 – Domain Events Overview

Doma inManagem entObject A
ddedEventTy pe

sourceHandle : String

Do mainManagem entObject
RemovedEvent Type

EventType

DomainManag ement Objec tEventType
sourceName : String
sourceCategory : SourceCategoryType
sourceId : S tring
producerId : String

IncomingDoma inEventChann el
<<EventChannel>>

Out goi ngDoma inEvent
Channel

<<EventChannel>>

1

*

+domainOutgoing
EventChannel

1

+domainOutgoing
Event

*

StateChangeEventType
stateChangeCategory : StateChangeCategoryType
stateChangeFrom : SateChangeType
stateChangeTo : SateChangeType
producerId : String
sourceId : String

1

*

+incomingDomainEventChannel1

+stateChangeEvent**

1

+state Ch angeEvent

+outgoingDomainEventChannel

*

1

dtc/2005-09-04

8.3.4 SWRadio Deployment

184 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

that can be added or removed. A ManagedService in the domain can also have
its state changed.

● <<enumeration>>StateChangeCategoryType(Administrative_Event_State,Operational_Event_State,

Usage_Event_State)

The StateChangeCategoryType indicates either an admin, operational, or usage
state change.

● <<enumeration>>StateChangeCategoryType(Administrative_Event_State, Operational_Event_State,

Usage_Event_State)

The StateChangeCategoryType indicates either an admin, operational, or usage
state change.

● StateChangeEventType(stateChangeCategory:StateChangeCategoryType,

stateChangeFrom:StateChangeType, stateChangeTo: StateChangeType,

producerId: String, sourceId: String)

The StateChangeEventType indicates either an admin, operational, or usage
state change. The stateChangeCategory attribute indicates the type of state
change. The sourceId attribute indicates the source component's state change
and the producerId indicates the component that produced the event.

● <<enumeration>>StateChangeType(LOCKED, UNLOCKED, SHUTTING_DOWN, ENABLED, DISABLED, IDLE, BUSY,

ACTIVE)

The StateChangeType indicates the values for state changes. LOCKED, UN-
LOCKED, and SHUTTING_DOWN values are associated with admin state
changes. ENABLED and DISABLED values are associated with operational
state changes. IDLE, BUSY, and ACTIVE values are associated with usage
state changes.

8.3.4 SWRadio Deployment

SWRadio deployment describes the SWRadio executable artifacts that are involved in the deployment of applica-
tions (e.g, applications), logical devices, and services within a SWRadio environment. This section also describes
the components that are involved in the deployment of and management of SWRadio Applications in the Appli-
cation Deployment subsection.

8.3.4.1 SWRadio Artifacts

This section defines the types and stereotypes for SWRadio artifacts which are described in the following teo
ssubsections respectivey, 8.3.4.1.1 and 8.3.4.1.2.

Note – Issue 7742 added two subsections, one for model library types in the profile and the sec-
ond one for SWRadio artifact stereotypes. Moved the types into the SWRadio Aritfacts Types
section. Removed duplicate DeploymentRequirement section.

8.3.4.1.1 SWRadio Artifacts Types

This section defines the types for SWRadio artifacts which are: BasicDeploymentRequirement, DeploymentRe-
quirement, and DeploymentRequirementQualifier that are depicted in Figure 8-49. These types are used to spec-
ify a deployment requirement on a device with in a radio set.

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 185

8.3.4.1.1.1 BasicDeploymentRequirement

Description

The BasicDeploymentRequirement, as shown in Figure 8-49 on Page 191, specializes the DeploymentRequire-
ment. The BasicDeploymentRequirement is used to define the deployment requirement value for a ServiceProp-
erty.

Attributes

● value: String

The value attribute indicates the deployment requirement needed (service char-
acteristic or capacity).

Constraints

The value attribute shall conform to the string format that is valid for the referenced ServiceProperty type defini-
tion (e.g., string, integer, etc.).

8.3.4.1.1.2 DeploymentRequirement

Description

The DeploymentRequirement abstraction, as shown in Figure 8-49 on Page 191, is used to provide the common
definition for deployment requirements. The DeploymentRequirement is used to define the deployment require-
ment value for a ServiceProperty.

Attributes

● name: String

The name attribute indicates the name of the ServiceProperty the deployment
requirement is against.

Semantics

The deployment requirement is used to specify the type of service needed and/or the capacity needed from a ser-
vice. These deployment requirements are evaluated against the registered Service's ServiceProperty(s) within a
domain.

8.3.4.1.1.3 DeploymentRequirementQualifier

Description

The DeploymentRequirementQualifier, as shown in Figure 8-49 on Page 191, specializes the DeploymentRe-
quirement. The DeploymentRequirementQualifer is used to define characteristic qualifiers for a deployment re-
quirement such as name and version for complier, operating system, library, runtime, and interface.

Attributes

Note – Issue TBD not CharacterisiticQualifier not defined, definition was removed for proper-
ties issue 7984 but still is applicable here. Need to add a types section.

dtc/2005-09-04

8.3.4 SWRadio Deployment

186 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● qualifier: CharacteristicQualifier [1..*]

The qualifier attribute indicates characteristic qualifier for a deployment re-
quirement.

8.3.4.1.2 SWRadio Artifacts Stereotypes

This section defines the stereotypes for SWRadio artifacts. The SWRadio artifacts stereotypes are depicted in Ta-
ble 8-12 and Figure 8-46 below, which are extensions of the UML Artifact. The details of each artifact are de-
scribed in the following subsections.

Table 8-12 – SWRadio Artifacts Stereotypes

Stereotype
Base
Class Parent Tags Constraints Description

BITStream Artifa
ct

LoadableCode Indicates an artifact that is
object code for a prologic
device (e.g., Field
Programmable Gate Array
device).

depends on Associ
ation

N/A Indicates an association that
depicts a coding
dependency where the code
pointed needs to be loaded
first.

Descriptor Artifa
ct

N/A Indicates an artifact that is a
deployment or component
specification that conveys
information on the element
to be deployed.

executes Associ
ation

N/A Indicates an association that
denotes execution code on a
device

Library Artifa
ct

LoadableCode Indicates an artifact that is
loadable static or dynamic
object code.

loads Associ
ation

N/A Indicates an association that
denotes the loading of code
on a device

LogicalDevice
ExecutableCo
de

Artifa
ct

ServiceExecutab
leCode

Minimum Executable
parameters supported:
Identifier, Software
Profile, Composite
Device IOR

Indicates an artifact that is
an executable operating
system main process that
manifest a LogicalDevice
component.

ExecutableCo
de

Artifa
ct

LoadableCode EntryPointName,
ProcessPriority,
stackSize

Executable parameters
conform to argv of the
POSIX exec family of
functions

Indicates an artifact that is
an executable operating
system main process or
entry point.

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 187

LoadableCode Artifa
ct

N/A Indicates an artifact that
defines the base SWRadio
artifact definition and
relationships for any type of
SWRadio artifact.

ResourceExec
utableCode

Artifa
ct

ExecutableCode Minimum Executable
parameters supported:
identifier, naming
context component
reference, name binding

Indicates an artifact that is
an executable operating
system main process that
manifests either an
SWRadioResource or/and
ResourceFactory
component.

ServiceExecut
ableCode

Artifa
ct

ExecutableCode Minimum Executable
parameters supported:
DeviceManager
Registration Reference,
Service Name

Indicates an artifact that is
an executable operating
system main process that
manifests a Service.

terminates Associ
ation

N/A Indicates an association that
denotes termination
executable code on a device

unloads Associ
ation

N/A Indicates an association that
denotes the unloading of
code from a device

Table 8-12 – SWRadio Artifacts Stereotypes

Stereotype
Base
Class Parent Tags Constraints Description

dtc/2005-09-04

8.3.4 SWRadio Deployment

188 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7742 Updated Figure Above., removed Association

8.3.4.1.2.1 ExecutableCode

Description

The ExecutableCode artifact, as shown in Figure 8-47, defines the definition and relationships that are common
for SWRadio main process types.

Figure 8-46 – SWRadio Artifacts Relationships

BITStream
(from SWRadio Artifacts Stereotypes)

<<stereotype>>

Library
kind : LoadKind
dynamic : Boolean = TRUE

<<stereotype>>

Artifact
(from UML)

ExecutableCode
entryPointName : String = main
stackSize : Ulong[0..1]
processPriority : Ushort[0..1]

<<stereotype>>

ServiceExecutableCode
<<stereotype>>

ResourceExecutableCode
<<stereotype>>

LogicalDeviceExecutableCode
<<stereotype>>

LoadableCode
compiler : DeploymentRequirementQualifier [0..1]

<<stereotype>>

<<extension>>

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 189

Note – Issue 7742 updated figure, Made figure at the M1 level. Changed Associations to be M1

Associations

Attributes

Note – removed Latency attribute since this is part of RadioProperty, Issue 7895 changed types
for processPriority and stackSize.

● entryPointName: String = main

The entryPointName attribute indicates the name of the process to be created
within the operating system.

● processPriority: Ushort [0..1]

The processPriority attribute indicates the priority of the process to be created
within the operating system

● stackSize: Ulong [0..1]

The stackSize attribute indicates the stack size of the process to be created with-
in the operating system

M1 Associations

● userDefinedExecParms: ExecutableProperty [*]

For any main process or entry point, a user can specify executable parameters
that are to be passed to the process upon creation.

Constraints

The ExecutableCode entry point's input parameters (id/value string pairs) shall conform to the standard argv of
the POSIX exec family of functions, where argv(0) is the function name followed by id/value string pairs.

8.3.4.1.2.2 Library

Description

The Library artifact defines the LoadableCode artifact that is a loadable image.

Figure 8-47 – ExecutableCode M1 Illustration

SWRadioComponent
<<swradiocomponent>>

VendorExecutableDevice
<<executabledevicecomponent>>

ExecutableCode
stackSize : ULong = 65656
entryPointName : String = main
processPriority : Short = 15

<<executablecode>>

1

*

+processManager

1
+mainProcess

*
<<executes>>

<<manifest>>

*

1

*+mainProcess

1

+processManager

<<terminates>>

ExecutableProperty
<<executableproperty>>

*
11

*

+userDefinedExecParms+mainProcess

dtc/2005-09-04

8.3.4 SWRadio Deployment

190 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Attributes

● kind: LoadKind

The kind attribute indicates the type of load to be performed.
● dynamic: Boolean = TRUE

The dynamic attribute indicates if the library to be loaded is dynamic or static.
TRUE means dynamic loadable.

Types and Exceptions

● <<enumeration>> LoadKind (KERNEL_MODULE, DLL, DRIVER, SHARED_LIBRARY, EXECUABLE)

The LoadKind defines the type of load to be performed.

8.3.4.1.2.3 LogicalDeviceExecutableCode

Description

The LogicalDeviceExecutableCode artifact, a type of ServiceExecutableCode (see Figure 8-48), defines the oper-
ating system main process that manifests a LogicalComponent component, which is specific type of ManagerSer-
viceComponent.

Note – Issue7742 updated figure above to be at the M1 Level.

Constraints

Note – Issue 8842 (thruout constraints section)

The LogicalDeviceExecutableCode shall accept following executable parameters in addition to the ServiceExe-
cutableCode parameters:

● Profile Name - The ID is “PROFILE_NAME” and the value is a string that is the full mounted file
system file path name that is used for DeviceComponent profile attribute.

● Device Identifier - The ID is “DEVICE_ID” and the value is a string that is used for the
SWRadioComponent's identifier attribute.

● Composite Device Component Reference - The ID is “Composite_DEVICE_IOR” and the value is a
string that is a DeviceCompositionComponent reference.

The LogicalDeviceExecutableCode Service Name executable parameter shall be used for the DeviceComponent's
label attribute value.

The LogicalDeviceExecutableCode shall add the DeviceComponent manifested by the process to the device com-
position using the Composite Device Component Reference executable parameter when specified.

Figure 8-48 – LogicalDeviceExecutableCode M1 Illustration

VendorLogicalDeviceExecutableCode
<<logicaldeviceexecutablecode>>

VendorDeviceComponent
<<devicecomponent>> <<manifest>>

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 191

The LogicalDeviceExecutableCode Device Identifier executable parameter shall be used for the DeviceCompo-
nent's identifier attribute value.

The LogicalDeviceExecutableCode Profile Name executable parameter shall be used for the DeviceComponent's
softwareProfile attribute value.

8.3.4.1.2.4 LoadableCode

Description

The SWRadio LoadableCode artifact, as shown in Figure 8-49, describes the definition and relationships that are
common for all SWRadio artifact types.

Note – Issue 7742, updated figure above to be at the M1 Level. Changed Attributes header to
M1 Attributes. Changed Associations header to M1 Associations

M1 Attributes

● compiler: DeploymentRequirementQualifier [0..1]

The compiler attribute indicates the complier name and version used to create
the loadable code.

● deployedOnRequirement: DeploymentRequirement [1..*]

A SWRadio LoadableCode artifact needs to specify “deployed on” deployment
requirements in order for the artifact code gets deployed on the right SWRadio
communication channel's device. The set of deployedOnRequirements specifies
the device required and the capacity needed from the device.

● loadDependencyRequirement: DeploymentRequirement [*]

A SWRadio LoadableCode artifact can have dependency to other object code
that requires loading and or execution first. The set of loadDependencyRequire-
ments specifies the object code dependency.

Figure 8-49 – SWRadio LoadableCode M1 Illustration

*

Descriptor
<<descriptor>>

VendorLoadableDevice
<<loadabledevicecomponent>>

LoadableCode
<<loadablecode>>

0..1

1

0..1

+implementationDescriptor 1

+codeSpecifier

<<depends on>>

**

+loadManager

*

+loadedCode

*

<<loads>>
* 1

+unloadedCode

* +unloadManager1

<<unloads>>

BasicDeploymentRequirement
value : String

DeploymentRequirementQualifier
quaili fier : CharacteristicQualifier [1..n]

DeploymentRequirement
name : String

*
+LoadDependencyRequirement

*
*

+requiredUsageRequirement

* 1..*

1

+deployedOnRequirement

1..*

1

dtc/2005-09-04

8.3.4 SWRadio Deployment

192 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● requiredUsageRequirement: DeploymentRequirement [*]

A SWRadio LoadableCode artifact requires usage of a SWRadio service. The
set of requiredUsageRequirements specifies the service required.

M1 Associations

● implementationDescriptor: Descriptor [1]

SWRadio LoadableCode artifacts are described by an implementation descrip-
tor, which captures the deployment requirements and the type of artifact to be
deployed

Semantics

A LoadableDevice manages the loading and unloading of SWRadio LoadableCode on a loadable device.

8.3.4.1.2.5 ResourceExecutableCode

Description

The ResourceExecutableCode artifact, as shown in Figure 8-50, defines the operating system main process that
manifests an Resource or ResourceFactory component.

Note – Updated Figure above to be at the M1 Level.

Constraints

ResourceExecutableCode shall accept the following three executable parameters:

● NamingContext Component Reference - The ID is “NAMING_CONTEXT_IOR” and the value is a
stringified naming context reference. The reference is used to obtain the NamingContext path. The
format of a NamingContext path is sequence of NamingContext where each “slash” (/) represents a
separate naming context. A NamingContext is made up of ID and kind pair, which is indicated by
“id.kind” in the NamingContext string. The NamingContext kind is optional and when not specified a
null string will be used. For example, the structure of the naming context path is “/ SomeName /
[optional naming context sequences]”. There is at least one “slash” (/) in the Naming Context string.

● Name Binding - The ID is “NAME_BINDING” and the value is a string that corresponds to the name
used to bind the manifested component to the naming service.

Figure 8-50 – ResourceExecutableCode M1 Illustration

{XOR}

AppResourceExecutableCode
<<executableproperty>> COMPONENT_IDENTIFIER : String
<<executableproperty>> NAME_BINDING : String
<<executableproperty>> NAMING_CONTEXT_IOR : String
<<executableproperty>> EntryPointName : String = main
<<executableproperty>> stackSize : Ulong = 65656
<<executableproperty>> processPriority : Short = 15
<<executableproperty>> userDefinedParameter : Long = 1

<<resourceexecutablecode>>ResourceComponent
<<resourcecomponent>>

ResourceFactoryComponent
<<resourcefactorycomponent>>

0..1
<<manifest>>

0..1<<manifest>>

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 193

● Identifier - The ID is “COMPONENT_IDENTIFIER” and the value is a string that is used for the
SWRadioComponent's identifier value.

ResourceExecutableCode shall register the Resource or ResourceFactory component manifested by the process to
the NamingService as specified by the NamingContext Component Reference executable parameter. The name
binding registered to the NamingService shall be as specified by the Name Binding executable parameter.

The ResourceExecutableCode Identifier executable parameter shall be used for the manifested SWRadioCompo-
nent's identifier attribute value.

8.3.4.1.2.6 ServiceExecutableCode

Description

The ServiceExecutableCode artifact, as shown in Figure 8-51, defines the operating system main process that
manifests a Service component.

Note – Updated the above Figure to be at the M1 Level.

Constraints

The ServiceExecutableCode shall accept the following user-defined executable parameters:

● DeviceManager Registration Reference - The ID is “DEVICE_MGR_IOR” and the value is a string
that is the INodeRegistration component reference.

● Service Name - The ID is “SERVICE_NAME” and the value is a string that corresponds to the
service name.

The ServiceExecutableCode shall register the ServiceComponent’s Service(s) manifested by the process to the
DeviceManager using the DeviceManager Registration Reference executable parameter.

8.3.4.2 Applications Deployment

Note – Issue 7742, broke this section into two subsection, interfaces at the m1 level (model li-
brary) and component stereotypes

This section defines the interfaces (8.3.4.2.1) and components (8.3.4.2.3) that perform the deployment behavior
within a SWRadio.

Figure 8-51 – ServiceExecutableCode M1 Illustration

VendorServiceComponent
<<servicecomponent>>

VendorDeviceManager
<<devicemanagercomponent>>

ServiceExecutableCode
<<executableproperty>> EntryPointName : String = main
<<executableproperty>> stackSize : Ulong = 65656
<<executableproperty>> processPriority : Short = 15
<<executableproperty>> userDefinedParameter : Long = 1
<<executableproperty>> SERVICE_NAME : String = LogService
<<executableproperty>> Device_MGR_IOR : String

<<serviceexecutablecode>>

**
+serviceDeployer

*

+serviceMainProcess

*

<<executes>>

*
0..1

+serviceRegistrant
* +serviceRegistrar

0..1

<<manifest>>

*

<<terminates>>

+serviceMainProcess

*

dtc/2005-09-04

8.3.4 SWRadio Deployment

194 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.4.2.1 Applications Deployment Interfaces

This section defines the interfaces that perform the deployment behavior within a SWRadio. The SWRadio de-
ployments interfaces are Application and ApplicationFactory, which are described in the following subsections.

Types and Exceptions

● DeviceAssignmentType(componentId: String, assignedDeviceId: String)

DeviceAssignmentType defines a structure that associates a component with
the DeviceComponent upon which the component must execute.

● DeviceAssignmentSequence

DeviceAssignmentSequence provides an unbounded sequence of DeviceAs-
signmentType.

8.3.4.2.1.1 Application

Description

 The Application interface provides for the control, configuration, and status of an instantiated application or
waveform in the radio domain. The Application interface is specialization of the Resource interface that provides

generic opeations for controlling the deployed application.

Attributes

● <<readonly>>componentDevices: DeviceAssignmentSequence

The readonly componentDevices attribute contains a list of DeviceCompo-
nents, which each ApplicationAssembly's component uses, is loaded on or is ex-
ecuted on.

● <<readonly>>componentImplementations: ComponentElementSequence

The readonly componentImplementations attribute contains the list of compo-
nents' implementation IDs within the Application for those components created.

● <<readonly>>componentNamingContexts: ComponentElementSequence

The readonly componentNamingContexts attribute contains the list of compo-
nents' Naming Context using Naming Service.

● <<readonly>>componentProcessIds: ComponentProcessIdSequence

The readonly componentProcessIds attribute contains the list of components'
process IDs within the Application for components that are manifested within
an ExecutableCode on an ExecutableDeviceComponent.

● <<readonly>>name: String

The readonly name attribute contains the name of the created Application. The
ApplicationFactory's create operation name parameter provides the name con-
tent.

● <<readonly>>profile: String

The readonly profile attribute contains the instantiated Application descriptor
file reference.

Figure 8-52 – Application Definition

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 195

Operations

Note – Issue 7579 Resolution

● getProvidedPorts (inout ports: PortSequenceType): {raises (UnknownPorts)}

The getProvidedPorts operation returns object references only for input port
names that match the external provided port names that are in the Application’s
component assembly descriptor. In the ports name/value pair sequence, each
name corresponds to an external provided port name and each value corre-
sponds to the object reference of the external provided port to be returned. The
getProvidedPorts operation shall return all the external provided ports if the
ports argument is zero size. The getProvidedPorts operation shall return only
those provided ports specified in the ports argument if the ports argument is not
zero size. The getProvidedPorts operation shall raise an UnknownPorts excep-
tion when one or more requested provided ports are invalid.

● releaseObject(): (raises (ReleaseError)}

The releaseObject operation terminates execution of the ApplicationManager.

Types and Exceptions

● ComponentProcessIdType(componentId: String, processed: unsigned long)

The ComponentProcessIdType defines a type for associating a component with
its process ID. This type can be used to retrieve a process ID for a specific com-
ponent.

● ComponentProcessIdSequence

The ComponentProcessIdSequence type defines an unbounded sequence of
componentProcess IdTypes.

● ComponentElementType(componentId:String, processed: unsigned long)

The ComponentElementType defines a type for associating a component with
an element (e.g., naming context, implementation ID).

● ComponentElementSequence

The ComponentElementSequence defines an unbounded sequence of Compo-
nentElementType.

8.3.4.2.2 ApplicationFactory

Description

 The ApplicationFactory interface provides the dynamic mechanism to create a specific type of Application (e.g.
waveform) in the SWRadio domain. Figure 8-56 depicts the ApplicationFactory's capacity constraints and Figure
8-57 depicts the relationships that are common for all ApplicationFactory(s).

Figure 8-53 – ApplicationFactory Capacity Overview

dtc/2005-09-04

8.3.4 SWRadio Deployment

196 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Attributes

● <<characteristic>>capabilityManager: Boolean = False
The characterisitic capabilityManager attribute indicates the
ApplicationFactory behavior in regards to CapacityProperty(s). A value of True
means the ApplicationManager manages CapacityProperty(s), otherwise it does
not.

● <<readonly>>name:

The readonly name attribute contains the name of the installed Application.
● <<readonly>>softwareProfile:

The readonly softwareProfile attribute contains the installed Application de-
scription file reference.

Operations

● create(in name: String, in initConfiguration: Properties, in deviceAssignments:

DeviceAssignmentSequence, return ApplicationManager):{raises (

CreateApplicationError, CreateApplicationRequestError,

InvalidInitConfiguration)}

The create operation provides the capability of creating an ApplicationManag-
er.

Types and Exceptions

● <<exception>>CreateApplicationRequestError

This exception is raised when the DeviceAssignmentSequence contains 1 or
more invalid Application component-to-device assignment(s)

Figure 8-54 – ApplicationFactory Definition

SWRadioComponent
(f rom Resource Components)

<<stereotype>>

ResourceFactory
(f rom Resource Components)

<<stereotype>>

ExecutableDevice
(f rom Device Components)

<<stereotype>>

ApplicationResourceComponent
(f rom Application Components)

<<stereotype>>

LoadableDevice
(f rom Device Components)

<<stereotype>>

ApplicationManager
<<stereotype>>

NamingService
<<service>>

ResourceComponent
(f rom Resource Compone...)

<<stereotype>>

EventService
<<service>>

ApplicationFactory
<<readonly>> name : String
<<readonly>> softwareProfile : String
<<characteristic>> capacityManager : Boolean = False

create()

<<stereotype>>

0..11

+resourceCreator

0..1

+delegator

1

*

1..*

+appCreator*

+processCreator

1..*

1

1..*

+initializer
1

+deployedComponent1..*
1

1 +initialConfigurer
1

+assemblyController

1

*

1..*

+applicationDeployer

*

+loader 1..*

*1

+deployedApplication

*
+applicationDeployer

1

1

*

+namedRegistrar

1

+deployedComponent
Retrieval*

1..*

+portConnector

1..*

+connectionInitiator

1

*

+eventChannelCreator

1

+eventChannelRequestor *

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 197

● <<exception>>CreateApplicationError

The CreateApplicationError exception, specialization of SystemException, is
raised the create operation is unsuccessfully due to internal processing errors.
The error number indicates an ErrorNumberType value (e.g., E2BIG, ENAM-
ETOOLONG, ENFILE, ENODEV, ENOENT, ENOEXEC, ENOMEM,
ENOTDIR, ENXIO, EPERM). The message is component-dependent, provid-
ing additional information describing the reason for the error.

● <<exception>> InvalidInitConfiguration

The InvalidInitConfiguration exception is raised when the input initConfigura-
tion parameter is invalid.

Semantics

The create operation provides the capability of deploying an Application by making dynamic decisions on which
DeviceComponent(s) the Application's components are deployed on and which Service(s) are used by an Appli-
cation. The create operation determines which registered domain Services can satisfy the Application's deploy-
ment requirements as stated in the installed Application descriptor. The create operation also provides the
mechanism to direct which DeviceComponent(s) are to be used for Application deployment instead of the Appli-
cationFactoryComponent making the DeviceComponent decision.

The create operation shall use descriptor information as referenced by the softwareProfile to determine the Ap-
plication deployment requirements.

If input deviceAssignments (not zero length) are provided, the create operation verifies each device assignment,
for the specified component, against the Application's deployment requirements.

Note – Issue 8841 - Clarification of create () behavior for deploying application components.
Use the term deployment and partitioning requirement instead of allocation requirements for
application components. Also, specify that capability and characteristic requirements are spec-
ified in a Service component’s ServiceProperties.

The create operation shall allocate the Application's deployment requirements against candidate Service(s) to de-
termine which candidate Service(s) satisfy all the Application's deployment requirements and partitioning re-
quirements (e.g., components HostCollocation, components process thread collocation, etc.). The create
operation shall only use Service(s) whose capability and capacity characteristics (expressed in the Service(s)’
ServiceProperties) satisfy the allocation requirements (i.e. deployment and partitioning requirements) specified
for the Application components. The create operation shall use the ServiceProperty's CapabilityModel or dele-
gate as specified by Service's ServiceProperty's capabilityModel and locallyManaged attributes for determining
Service(s) that can satisfy an Application's deployment requirement. The actual Service(s) chosen will reflect
changes in capacity based upon component deployment requirements allocated to them, which may also cause
state changes for the Service(s).

The create operation shall load the Application components (including all of the Application-dependent compo-
nents) to the chosen DeviceComponent(s).

The create operation shall execute the application components (including all of the application-dependent compo-
nents) as specified in the application's descriptor. The create operation shall use each component's implementa-
tion stack size and priority attributes, when specified, for the ExecutableDevice's execute options parameters.

The create operation shall pass the mandatory execute parameters as specified for ResourceExecutableCode for
each Application component's implementation that has an entry point.

dtc/2005-09-04

8.3.4 SWRadio Deployment

198 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The create operation shall pass ResourceExecutableCode's executable parameters (NamingContext, Name Bind-
ing, Identifier) to an ExecutableDevice's execute formal parameter named parameters. The create operation cre-
ates any naming contexts that do not exist to which the component will bind to. The structure of the naming
context path shall be “/ DomainName / [optional naming context sequences]”. In the naming context path, each
“slash” (/) represents a separate naming context.

The ResourceExecutableCode's executable Name Binding parameter value shall be set to a string in the format of
“ComponentName_UniqueIdentifier”. The ComponentName value shall be the component instantiation naming-
service's name attribute in the Application's component assembly descriptor. The UniqueIdentifier is determined
by the implementation.

The create operation uses “ComponentName_UniqueIdentifier” to retrieve the component's object reference from
the Naming Context. Due to the dynamics of bind and resolve to NamingService, the create operation should
provide sufficient attempts to retrieve component object references from NamingService prior to generating an
exception.

The ResourceExecutableCode's executable Identifier parameter value shall be set to a string in the format of
“Component_Instantiation_Identifier: Application_Name”. The Component_Instantiation_Identifier shall be the
component's instantiation id attribute in the Application's component assembly descriptor. The
Application_Name field shall be identical to the create operation's input name parameter. The Application_Name
field provides a specific instance qualifier for executed ResourceComponent(s).

The create operation shall pass a component's implementation's ExecutableProperty(s) to an ExecutableDevice's
execute formal parameter named parameters. The create operation shall pass Executable Property values as string
values.

Note – Issue 8857 resolution (Next THREE paragraphs)

Note – Issue 8873 resolution (Usage of ConfigureProperty type instead of the non-existent Con-
figureQueryProperty type)

The create operation shall, in order, initialize application components that support the LifeCycle interface, then
establish connections for application components that support the PortConnector interface, and finally configure
the application components that support the PropertySet interface and have ConfigureProperty(s) described in the
application’s component assembly descriptor. The Application’s assemblycontroller shall be configured after the
configuration of all application components.

The create operation uses the PortSupplier interface for obtaining provider interfaces for a connection.

The create operation input initConfiguration properties shall only apply to the assemblycontroller component of
the deployed Application as defined in the Application's descriptor. A deployed component’s configuration
property values shall only come from the Application's descriptor, not from the component’s implementation or
component definition descriptors.

The create operation configures an Application's assemblyController component provided the assemblyController
has ConfigureProperty(s). The create operation shall use the union of the input initConfiguration properties of the
create operation and the assemblyController’s ConfigureProperties. The input initConfiguration parameters shall
have precedence over the assemblyController’s configure property values.

The create operation shall, when creating a ResourceComponent from a ResourceFactory, pass the associated Re-
sourceFactory's ConfigureProperty(s) as qualifiers parameters to the referenced ResourceFactory component's
createResource operation.

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 199

Note – Issue 7579 resolution (renamed getProvidedPorts in the last sentence)

The create operation shall interconnect ResourceComponent(s) (Application's components or DeviceCompo-
nents') ports in accordance with the Application's component assembly descriptor. The create operation obtains
provider ports in accordance with the Application's component assembly via PortSupplier's getProvidedPorts op-
eration.

The connections to domain Service(s) such as LogService, FileManager, FileSystem, Event Service, and
NamingService are specified as component's connections using domainfinder in the Application's component as-
sembly descriptor. Domain Service(s) are services that have been registered to the domain.

For connections established for a EventService's event channel, the create operation shall connect a PushCon-
sumer or PushSupplier object to the event channel as specified in the component's connection in the Application's
component assembly descriptor. If the event channel does not exist, the create operation shall create the event
channel.

The create operation establishes connections to ResourceComponent(s) using the PortConnector::connectPort op-
eration. The create operation shall use the connection id attribute as the unique identifier for a specific connec-
tion when provided in the Application's component assembly descriptor. The create operation shall create a
connection ID when no connection id is specified for a connection in the Application's component assembly de-
scriptor.

If the Application is successfully created, the create operation returns an ApplicationManager component refer-
ence for the created Application. A sequence of created Application references can be obtained using the Do-
mainManagerComponent's readonly applications attribute (getApplications operation).No additional semantics.

The create operation shall raise the CreateApplicationRequestError exception when the DeviceAssignmentSe-
quence parameter contains one (1) or more invalid Application component to device assignment(s).

The create operation shall raise the CreateApplicationError exception when the Application cannot be successful-
ly instantiated due to internal processing error(s).

The create operation shall raise the InvalidInitConfiguration exception when the input initConfiguration parame-
ter is invalid. The InvalidInitConfiguration invalidProperties identifies the properties that are invalid.

The created ApplicationManager's name attribute shall be identical to the input name parameter.

8.3.4.2.3 Application Deployment Stereotypes

This section defines the components that perform the deployment behavior within a SWRadio. The SWRadio ste-
reotypes are depicted in the Table 8-13, which are extensions of the UML Component. The details of each com-
ponent are described in the following subsections.

Note – Issue7742 Renamed ApplicationFactory to ApplicationFactoryComponent

dtc/2005-09-04

8.3.4 SWRadio Deployment

200 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

8.3.4.2.3.1 ApplicationManager

Description

Note – Issue 7742 removed attributes and operations, updated figure to be M1 type, renamed
Associations noheader to be M1 Assoications noheader. Updated associations. Added constraint
for interface.

The ApplicationManager is a type of ResourceComponent as shown in Figure 8-55. The ApplicationManager
provides the interface for the control, configuration, and status of an instantiated application or waveform in the
radio domain. The ApplicationManager is the proxy for the deployed Application component.

M1 Associations

● assemblyController: ApplicationResourceComponent [1]

The Application's assemblyController that ApplicationManager delegates oper-
ations to.

Table 8-13 – SWRadio Applications

Stereotype Base Class Parent Tags Constraints Description

ApplicationManager Component Resource Component Represents the proxy for
deployed Application.

ApplicationFactory
Component

Component SWRadioComponent Name,
SoftwareProfile

Represents the deployment
machinery for
Application's Descriptor.

Figure 8-55 – ApplicationManager Definition

VendorDeviceComponent
<<devicecomponent>>

VendorLoadableDevice
<<loadabledevicecomponent>>

VendorExecutableDevice
<<executabledevicecomponent>>

ResourceComponent
<<resourcecomponent>>

ResourceFactoryComponent
<<resourcefactorycomponent>>

ApplicationResourceComponent
<<applicationresourcecomponent>>

NamingService
<<servicecomponent>>

EventServ ice
<<componentservice>>

CFApplicationFactory
capabili tyManager : Boolean

<<applicationfactorycomponent>>

CFApplicationManager
<<applicat ionmanager>>

*

1

+deployedApplicat ion*

+applicationDeployer
1

*

* +appTeardownManager

*+capacityDeallocator
*

*

1..*

+appTeardownManager
*

+processTerminator 1..*

*

1..*

+appTeardownManager
*

+unloader

1..*

1 1+proxydelegator1
+assemblyController1

1
1..*+appTeardownManager

1 +releasedResource

1..*

1
1..*

+container

1
+deployedComponent

1..*

1..*

1

+portDisconnector

1..*

1

1

*

+appTeardownManager
1

+resourceReleaser
*

1

*

+namedRegistrar
1

*

1

*

CapabilityType

Capabil ityModel

*
+capabilityModel

+eventChannelManager

*

1

*

Applicat ion
(f rom Applicati on Deployment Interfaces)

<<interface>>

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 201

● capacityDeallocator: VendorDeviceComponent [*]

The DeviceComponents that were allocated capacities during the Application
deployment are used to return capacities back to these devices.

● capabilityModel: CapabilityModel [*]

The capabilityModels for ServiceProperty(s) used and managed by the Appli-
cation.

● deployedComponent: ApplicationResourceComponent [1..*]

The Application's ApplicationResourceComponent that are deployed.
● eventChannelManager: EventService [1]

The EventService that manages the creation and destruction of EventChannels.
● portDisonnector: ResourceComponent [1..*]

The ResourceComponent(s) provide the capability to disconnect provided ports
from their required ports.

● namedRegistrar: NamingService [1]
The NamingService that has the deployed Application components references.

● releasedResource: ApplicationResourceComponent [1..*]

The ApplicationResourceComponent(s) that were manifested during the Appli-
cation deployment are released.

● resourceReleaser: ResourceFactoryComponent [*]

The ResourceFactory(s) that were used during the Application deployment are
used to release ApplicationResourceComponent(s) from these ResourceFacto-
ry(s).

● processTerminator: VendorExecutableDevice [1..*]

The ExecutableDevices that executed ExecutabeCode during Application de-
ployment are used to terminate these processes.

● unloader: LoadableDevice [1..*]

The LoadableDevices that were loaded with ObjectCode during the Application
deployment are used to unload the ObjectCode from these devices.

Constraints

The ApplicationManager shall be either associated with DeviceComponent(s) or CapabilityModel(s) for the deal-
locate capacity behavior.

The ApplicationManager shall realize the Application interface.

Semantics

The ApplicationManager shall delegate the implementation of the inherited ResourceComponent operations
(runTest, start, stop, configure, and query) to the Application's assembly controller's ApplicationResourceCom-
ponent. The ApplicationManager shall propagate exceptions raised by these operations. The initialize operation is
not propagated to the Application's assembly controller. The initialize operation causes no action within an Ap-
plicationManager.

Note – Issue 8931 (Paragraph Below)

The ApplicationManager releaseObject operation shall deallocate Application's required capacities against the
ServiceComponent(s) that were obtained from or associated with. The actual DeviceComponent(s) may reflect
changes in capacity based upon component capacity requirements deallocated from them, which may also cause
state changes for the DeviceComponent(s). The releaseObject operation shall release all references to the Appli-
cation components. The releaseObject operation shall disconnect port connections to non-application component
providers that have been connected based upon the Application's component assembly descriptor. The releaseOb-

dtc/2005-09-04

8.3.4 SWRadio Deployment

202 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

ject operation shall disconnect Application's components consumers and producers from an EventService's event
channel. The releaseObject operation may destroy an EventService's event channel when no more consumers and
producers are connected to it. For components (e.g., Resource, ResourceFactory) that are registered with Naming
Service, the releaseObject operation unbinds those components and destroys the associated naming contexts as
necessary from the NamingService. The releaseObject operation shall disconnect ports first, then release the Ap-
plication's ResourceComponent(s) and ResourceFactory(s), terminate Application component's ExecutableCode,
and lastly unload Application component's LoadableCode from the DeviceComponent(s). The releaseObject op-
eration shall raise a ReleaseError exception when the releaseObject operation unsuccessfully releases the Appli-
cation components due to internal processing errors.

Note – Issue7742 renamed ApplicationFactory to ApplicationFactoryComponent, removed op-
erations and some attributes, updated figures to M1 types, removed semantics, renamed Associ-
ations noheader to be M1 Associations noheader, and updated some associations. Added
constraint for interface.

8.3.4.2.4 ApplicationFactoryComponent

Description

 The ApplicationFactoryComponent provides the dynamic mechanism to create a specific type of Application
(e.g. waveform) in the SWRadio domain. Figure 8-56 depicts the ApplicationFactory's capacity constraints and
Figure 8-57 depicts the relationships that are common for all ApplicationFactory(s).

Figure 8-56 – ApplicationFactoryComponent Capacity Overview

Capabil ityType

CapabilityModel
(from Radio Services Interfaces)

ServiceProperty
<<serviceproperty>>

1

1

+serviceProperty 1

+capabili tyModel
1

ManagedServiceComponent
<<managedservicecomponent>>

CFApplicationFactory
capabilityManager : Boolean

<<applicationfactorycomponent>>

*

*

+capabili tyModel
*

*

*

+domainServiceProperty

*

*

+managedService

*

dtc/2005-09-04

 8.3.4 SWRadio Deployment

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 203

Attributes

● capabilityManager: Boolean = False

The capabilityManager attribute indicates the ApplicationFactoryComponent
behavior in regards to CapacityProperty(s). A value of True means the
ApplicationManagerComponent manages CapacityProperty(s), otherwise it
does not.

M1 Associations

Note – Issue 8873 Resolution - Replacement of non-existent ConfigureQuertyProperty type
with the ConfigureProperty type

● assemblyController: ApplicationResourceComponent [1]

The ApplicationResourceComponent that is the assemblyController for the
instantiated Application, which acts as the initialConfigurer of the
ConfigureProperty(s) for the instantiated Application.

● capabilityModel: CapabilityModel [*]

The CapabilityModel(s) used for determining which domainServiceProperty(s)
can satisfy the Application's deployment requirements.

● portConnector: ResourceComponent [1..*]

The ResourceComponent(s) that are connected to Services and to other
ResourceComponent(s) by the ApplicationFactory.

● deployedApplication: CFApplicationManager [*]

The ApplicationManager that manages the instantiated Application.
● deployedComponent: ApplicationResourceComponent [1..*]

The instantiated Application's deployed ApplicationResourceComponents that
are initialized.

● domainServiceProperty: ServiceProperty [1..*]

The registered Services' ServiceProperty(s) that are used for determining
Services to be used for Application deployment.

Figure 8-57 – ApplicationFactory M1 Illustration

ApplicationFactory
(f rom Application Deploy ment Interf aces)

<<interface>>

ResourceFactoryComponent
<<resourcefactorycomponent>>

VendorDeviceComponent
<<devicecomponent>>

VendorExecutableDevice
<<executabledevicecomponent>>

VendorLoadableDevice
<<loadabledevicecomponent>>

ApplicationResourceComponent
<<applicationresourcecomponent>>

CFApplicationManager
<<applicationmanager>>

NamingService
<<servicecomponent>>

EventServ ice
<<componentservice>>

ResourceComponent
<<resourcecomponent>>

CFApplicationFa ctory

capabil i tyManager : Boolean

<<applicationfactorycomponent>>

1
*

+delegator

1

+resourceCreator

*

*

*

+appDeploymentManager
*

+ca pacityAllocator

*

*

1..*

+appCreator
*

+processCreator 1..*

*

1..*

+applicationDeployer
*

+loader

1..*

1

1..*

+initial izer
1

+deployedComponent

1..*

1

1

+initialConfigurer
1

+assemblyController
1

1

*
+applicationDeployer

1

+deployedApplication

*

1

*

+namedRegistrar

1

+deployedComponentRetrieval
*

1

*

+eventChannelCreator
1

+eventCh annelRequestor*

1..*

1+portConnector

1..*

+connectionIniti ator

1

dtc/2005-09-04

8.3.4 SWRadio Deployment

204 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● eventChannelCreator: EventService [1]

The EventService that manages EventChannels.
● loader: VendorLoadableDevice [1..*]

The LoadableDeviceComponent(s) are used to load ObjectCode during the Ap-
plication deployment.

● managedService: ManagedServiceComponent [*]

A managedService manages its own CapacityModel(s).
● NamedRegistrar: NamingService[1]

The NamingService that contains deployed component object references.
● processCreator: VendorExecutableDevice [1..*]

The ExecutableDeviceComponent(s) are used to execute Application main
processes during Application deployment.

● resourceCreator: ResourceFactoryComponent [*]

The ResourceFactory can be used during the Application deployment as an op-
tional means of creating ApplicationResourceComponent(s).

Constraints

The identifier attribute shall be identical to the installed Application's descriptor id attribute.

The name attribute shall be identical to the installed Application's descriptor name attribute.

When capacityManager attribute is False the ApplicationFactoryComponent shall only use ServiceCapacityProp-
erty(s) that are locally managed by a ManagedServiceComponent, otherwise the ApplicationFactory manages the
ServiceCapacityProperty(s). Characteristic properties can be either managed or unmanaged by the Application-
FactoryComponent.

The ApplicationFactoryComponent shall realize the ApplicationFactory interface.

dtc/2005-09-04

9 Platform Independent Model (PIM) 9 Platform Independent Model (PIM)

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 205

9 Platform Independent Model (PIM)
Common Radio Facilities . Page207
Common Layer Facilities . Page209
Data Link Layer Facilities . Page235
IO Facilities . Page257
Physical Layer Facilities . Page269
Radio Control Facilities . Page283

Note – Issue 7845

The SWRadio PIM specified in this section is a normative specification of the SWRadio profile. It may be real-
ized using many technologies. The CORBA reference PSM in Section 10 is one such realization.

Note – Issue 7785 - Waveform vs Application changes throughout Chapter 9

The SWRADIO PIM Components are made of:

● Common Layer Facilities - This facility defines the set of interfaces that all components (regardless
of any layering) within the radio can realize. Examples of these types of interfaces are flow control,
packet, and stream interfaces.

Note – Issue 8201 Resolution (Removal of references to File Services from Common Radio Fa-
cilities)

● Common Radio Facilities - This facility defines the set of services that all components within the
radio can be used. Examples of these types of services are log, naming, and event service.

● Data Link Layer Facilities - These facilities define Link Layer Control (LLC) and Media Access
Control (MAC) layer functionality for communication needs.

● Physical Layer Facilities - These facilities define the functionality to convert the digitized signal into
a propagating RF wave, and conversely, to convert a propagating RF wave into a digitized signal for
processing. The facilities also include frequency tuning, filters, interface cancellation, analog digital
conversion, up/down conversion, gain control, synthesizer etc., functionality. Physical layer facilities
also include functionality for baseband I/O such as serial and audio devices.

● Radio Control Facilities - These facilities define the functionality to configure, get status, and control
the radio domain and channels within the radio.

dtc/2005-09-04

9 Platform Independent Model (PIM) 9 Platform Independent Model (PIM)

206 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 9.1 Common Radio Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 207

Common Radio Facilities . Page207

9.1 Common Radio Facilities

Note – Issue 8201 Resolution (Addition of all of section 9.1.1 (Lightweight Services)

9.1.1 Lightweight Services

9.1.1.1 NamingService

The NamingService provides a white page capability for component registration and retrieval. This white page
capability provides the means to have a centralized repository of component references in the system. Servers
(components that provide services) register their component references with the NamingService under a unique
name so that clients (components that require these services) can find them. Clients find the desired component
references distributed throughout the system by their assigned name as published within this while page capabil-
ity. Once a client finds the desired server component, the client can start requesting the desired services.

Note – Issue 7586

Semantics

The NamingService's NameComponent structure is made up of an id-and-kind pair. The "id" element of each
NameComponent is a string value that uniquely identifies a NameComponent.

9.1.1.2 EventService

The EventService decouples the communication between consumer and producer components, where consumer
components are unaware of producer components, and vice versa. Consumer components process event data that
are produced by producer components. The OMG Lightweight Event Service as required by this specification is
restricted to support the canonical Push Model approach where producers push events to event channels and
event channels in turn push these events to consumers.

The CosLightweightEventComm package is used by consumers for receiving events and by producers for gener-
ating events. A component that consumes events shall implement the CosLightweightEventComm PushConsum-
er interface. A component that produces events shall implement the CosLightweightEventComm PushSupplier
interface and use the CosLightweightEventComm PushConsumer interface for generating the events. A producer
component shall handle all cases, without raising any exceptions outside of the producer component, due to the
connections to a CosEventComm PushConsumer being nil or an invalid reference. The EventService will have
the capability to create event channels. An event channel allows multiple suppliers to communicate with multiple
consumers asynchronously. An event channel is both a consumer and a producer of events. For Example, event
channels can be standard CORBA objects and communication with an event channel is accomplished using stan-
dard CORBA requests.

Note – Issue 7586

9.1.1.3 LogService

The OMG Lightweight Log Service Specification contains the interfaces and the types necessary for the use of a
log. These interfaces consist of the LogProducer, LogConsumer and LogAdministrator. Using the LogProducer
interface, a log producer may generate log records conformant to this specification. Using the LogConsumer in-

dtc/2005-09-04

9.1.1 Lightweight Services

208 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

terface, a log consumer may retrieve records from a log. Using the LogAdministrator interface, a log administra-
tor may control the operation of a log. Throughout this specification, use of the term Log, Log Service, or
LogService refers to any one of these interfaces based upon the context it is used in. Additionally, these interfac-
es provide operations that may be used to obtain the status of a log. The OMG Lightweight Log Service Specifi-
cation also defines the types necessary to control the logging output of a log producer. SWRadioComponents that
produce logs are required to implement ConfigureProperty(s) and QueryProperty(s) that allow the component to
be configured and queried as to what log records it will output.

Note – Issue 8873 Resolution - Replacement of non-existent ConfigureQuertyProperty type
with the ConfigureProperty and QueryProperty types (last sentence in above paragraph)

A LogService may be provided in a software radio installation. The optional aspect of the LogService is restrict-
ed to its implementation and deployment. A software radio provider may deliver a product conformant to this
specification without a LogService implementation. For instance, a handheld platform with limited resources
may choose not to deploy a LogService as part of its domain. Several Infrastructure components contain require-
ments to write log records using the log service. Components that are required to write log records are also re-
quired to account for the absence of a LogService and otherwise operate normally.

Note – Issue 7586, removed cosntraints since it is already in SWradioComponents semantics
section.

Note – Issue 8873, Constraints section added back as the SWRadioComponents semantics sec-
tion provides optional and limited requirements for SWRadioComponents that MAY be log
producers. The LogService constraints section provides complete and mandatory requirements
for log producers.

Constraints

A log producer is a SWRadioComponent that produces log records using the LogProducer interface. (A compo-
nent that calls the writeRecord(s) operation of the LogProducer interface.)

Note – Issue 8873 Resolution - Replacement of non-existent ConfigureQuertyProperty type
with the ConfigureProperty and QueryProperty types

A standard record type is defined for all log producers to use when writing log records. The log producer may be
configured via the PropertySet interface to output only specific log levels. Log producers shall implement a Con-
figureProperty and a QueryProperty with an ID of "PRODUCER_LOG_LEVEL". The
PRODUCER_LOG_LEVEL ConfigureProperty provides the ability to "filter" the log message output of a log
producer. The type of the PRODUCER_LOG_LEVEL ConfigureProperty and QueryProperty shall be a Light-
weight LogService LogLevelSequence. The LogLevelSequence will contain all log levels that are enabled. Only
the messages that contain an enabled log level shall be sent by a log producer to a Log. Log levels that are not in
the LogLevelSequence are disabled.

Log producers shall use their component identifier (identifier attribute of the ComponentIdentifier interface) in
the producerId field of the CosLwLog ProducerLogRecord.

Log producers shall operate normally in the case where the connections to a Log are nil or an invalid reference.

Log producers shall output only those log records that correspond to enabled CosLwLog LogLevel values.

dtc/2005-09-04

 9.2 Common Layer Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 209

Common Layer Facilities . Page209
QoS Management Facilities. Page 211
IQualityOfService . Page 211
IQualityOfServiceConnection . Page 212
IQualityOfServiceConnectionless . Page 214
Flow Control Facilities. Page 215
IFlowControlManagement . Page 216
IFlowControlSignalling . Page 217
IPriorityFlowControl. Page 218
Measurement Facilities . Page 221
MeasurementType . Page 222
MeasurementPlan. Page 222
IMeasurementPoint . Page 223
IMeasurementPlanManager . Page 224
MeasurementRecorder . Page 225
MeasurementStorage. Page 225
Error Control Facilities . Page 226
IError_Control. Page 226
IStatusSignal . Page 227
Signal . Page 228
Protocol Data Unit Facilities . Page 229
IBasePdu. Page 230
ISimplePdu . Page 231
IPdu . Page 231
IPriorityPdu. Page 231
IDataPdu . Page 232
IConcretePdu . Page 232
IConcreteDataPdu . Page 232
Stream Facilities. Page 233
IStream . Page 233

9.2 Common Layer Facilities
This section defines the Common Layer Facilities, which provide interfaces that cross cut through facilities that
correlate to layers. These interfaces can be viewed as building blocks for waveform components that realize mul-
tiple interfaces. Figure 9-58 shows the relationships among the packages contained in the Common Layer Facil-
ities part of the PIM. These packages are given as follows:

● Quality of Service Facilities - defines the quality of service related facilities.

● Flow Control Facilities - provides means to control communication flow so that a sender does not
transmit more packets than a receiver can process.

● Measurement Facilities - specifies facilities to set up waveform related measurement parameters and
schedule the measurement.

● Error Control Facilities -- allows the Receiver to tell the Sender about frames damaged or lost during
transmission, and coordinates the re-transmission of those frames by the Sender.

● PDU Facilities - defines the Protocol Data Unit (PDU) building block concept that can be used in
connectionless communication among radio sets as well as inter-component communication within a
radio.

dtc/2005-09-04

9.2 Common Layer Facilities

210 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● Stream Facilities - defines the stream building block concept that can be used in connection-oriented
communication among radio sets as well as inter-component communication within a radio.

Types and Exceptions

Note – Issue 7895: add primitive type

● SduSizeType (maxSduSize : ULong, minSduSize : ULong)

SduSizeType defines the maxSduSize and minSduSize attributes as positive
longs. Those two values together define the range of values sduSize can take.

● AddressType

AddressType is an OctetSequence that represents the source or destination ad-
dress.

Note – Issue 7895: Issue TBD remove integer, remove type defined in BaseTypes

Figure 9-58 – Common Layer Facilities Overview

P D U F ac ili ti e s S t ream
F ac ilit ies

F low C on tro l
F ac ilit ies

E rro r C on tr o l
F ac ilit ie s

Q oS M anagem ent
F ac ilit ies

M e as ure m ent F ac ilit ies

dtc/2005-09-04

 9.2.1 QoS Management Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 211

9.2.1 QoS Management Facilities

Quality of Service (QoS) Management Facilities define the facilities that can be used to control quality of service
related parameters. The QoS parameters that can be set up are given in the DLPI specification document. Figure
9-59 shows an overview of QoS facilities.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

9.2.1.1 IQualityOfService

Description

Note – Issue 7878 Resolution (Renamed IErrorControl to IError_Control)

IQualityOfService, as shown in Figure 9-59, is the main interface that is used to control the quality of service pa-
rameters of a waveform. The parameters that are to be controlled depend on the nature of the established commu-
nication link. (Connection-oriented and connectionless). This interface provides the capabilities of signalling and
negotiating QoS parameters with waveform components. A component realizing the IQualityOfService interface
depends on other components that realize transmission interfaces (Common Layer Facilities::IPdu) for transfer-
ring control and user data, flow control interfaces (Common Layer Facilities::IFlowControl) that allows a QoS
controller component to change flow control parameters such as data rate, buffer size, measurement interfaces
(Common Layer Facilities::IMeasurement) for monitoring QoS related system performance parameters and error
control interfaces (Common Layer Facilities::IError_Control) for controlling error control coding parameters.

Figure 9-59 – Quality of Service Facilities Overview

IQualityOfServiceConnection
<<configquery>> throughput : double
<<configquery>> transitDelay : TimeType
<<configquery>> priority : Ushort
<<configquery>> protection : Ushort
<<query>> residualErrorRate : double
<<query>> resilience : double

<<icontrol>>
IQualityOfServiceConnectionless

<<configquery>> transitDelay : TimeType
<<configquery>> priority : Ushort
<<configquery>> protection : Ushort
<<query>> residualErrorRate : Double

<<icontrol>>

IQualityOfService

transmitQoSParameters()
negotiateQoSParameters()

<<icontrol>>

dtc/2005-09-04

9.2.1 QoS Management Facilities

212 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Operations

● transmitQoSParameters()

This operation signals the quality of service parameters to the requester.
● negotiateQoSParameters()

This operation provides a generic interface to negotiate the quality of service
parameters with the peer receiver/transmitter.

Semantics

IQualityOfService interface depends on the IStream and IPdu interfaces to communicate QoS parameters using
transmitQoSParameters operation. A component that plays the AssemblyController role within the same radio
set, or the peer receiving radio set may acquire the QoS parameters.

The negotiateQoSParameters operation implies implementation of an encapsulated underlying bidirectional com-
munication protocol. This operation also includes interfacing with error control, flow control and measurement
related components within the waveform, to setup their parameters that will meet the quality of service require-
ments.

9.2.1.2 IQualityOfServiceConnection

Description

IQualityOfServiceConnection specializes the IQualityOfService interface to provide QoS attributes for connec-
tion oriented communication establishment. The definition of IQualityOfServiceConnection is shown in Figure
9-59.

Attributes

● <<configquery>> throughput : Double

Throughput is a connection-mode QoS parameter that has end-to-end signifi-
cance. It is defined as the total number of Service Data Unit (SDU) bits success-
fully transferred divided by the greater of both:

● the time between the first and last data request in a sequence

● the time between the first and last data indication in the sequence.

Throughput is only meaningful for a sequence of complete SDUs.

Note – Issue 8869 TimeType

● << configquery >> transitDelay : TimeType

The transitDelay attribute indicates the elapsed time between a data request and
the corresponding receipt of data. The elapsed time is only computed for SDUs
successfully transferred.

Note – Issue 7895, change primitive type to not be an integer

● << configquery >> priority : UShort

The specification of priority is concerned with the relationship between connec-
tions. This attribute specifies the relative importance of a connection with re-
spect to:

dtc/2005-09-04

 9.2.1 QoS Management Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 213

● the order in which connections are to have their QoS degraded, if
necessary

● the order in which connections are to be released to recover resources,
if necessary. Priority attribute is of UShort type. A lower value means
lower priority and vice versa.

Note – Issue 7895, change primitive type to not be an integer

● << configquery >> protection : UShort

Protection is the extent to which a provider attempts to prevent unauthorized
monitoring or manipulation of user-originated information. Protection is speci-
fied by a minimum and maximum protection option within a range of possible
protection options. Protection attribute is of UShort type. A lower value means
lower protection and vice versa. Protection has local significance only.

● <<query>> residualErrorRate : Double

Residual Error Rate is the ratio of total incorrect, lost and duplicated SDUs to
the total SDUs transferred between radio sets during a period of time. This prop-
erty cannot be configured and is used for QoS monitoring purposes only.

● <<query>> resilience : Double

Resilience is meaningful in connection mode only, and represents the probabil-
ity of either: provider-initiated disconnects or provider-initiated resets during a
time interval of 10,000 seconds on a connection.

Semantics

IQualityOfServiceConnection interface inherits transmitQoSParameters and negotiateQoSParameters operations
from its base class IQualityOfService. Those operations are used respectively transmit and negotiate all of the at-
tributes of the IQualityOfServiceConnection interface.

Throughput attribute is specified and negotiated for transmit and receive directions independently at connection
establishment. The throughput specification defines the target and minimum acceptable values for a connection.
Each specification is an average rate.

Transit delay attribute is negotiated on an end-to-end basis during connection establishment. For each connec-
tion, transit delay is negotiated for transmit and receive directions separately by specifying the target value and
maximum acceptable value. The transit delay for an individual SDU may be increased if the receiving user flow
controls the interface. The average and maximum transit delay values exclude any user flow control of the inter-
face

Priority attribute is negotiated locally between each user and the provider in connection-mode service. Each user
negotiates a particular priority value with the provider during connection establishment. The value is specified by
a minimum and a maximum within a given range. This parameter only has meaning in the context of some man-
agement entity or structure able to judge relative importance. The priority has local significance only.

Protection attribute is negotiated locally between each user and the provider in connection mode. Provider pro-
tects against modification, replay, addition, or deletion of user data. Each user negotiates a particular value with
the provider during connection establishment. This attribute only has local significance.

Resilience attribute is not a negotiated QoS parameter. It is set by an administrative mechanism, which is in-
formed of the value by network management.

dtc/2005-09-04

9.2.1 QoS Management Facilities

214 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.2.1.3 IQualityOfServiceConnectionless

Description

IQualityOfServiceConnectionless specializes the IQualityOfService interface to provide QoS attributes for con-
nectionless communication establishment. Figure 9-59 shows the IQualityOfServiceConnectionless definition.

Attributes

● << configquery >> transitDelay : Double

This attribute indicates the elapsed time between a data request and the corre-
sponding receipt of data. The elapsed time is only computed for SDUs success-
fully transferred. This attribute is of Time class as defined in the
Communication Equipment section of the UML Profile.

Note – Issue 7895, change primitive type to not be an integer

● << configquery >> priority : UShort

This attribute specifies the relative importance of a connectionless communica-
tion service. Priority is determined locally for each user in connectionless mode
service. A lower value means lower priority and vice versa.

● << configquery >> protection: UShort

Protection is the extent to which a provider attempts to prevent unauthorized
monitoring or manipulation of user-originated information. Protection is speci-
fied by a minimum and maximum protection option within a range of possible
protection options. Protection attribute is of UShort type. A lower value means
lower protection and vice versa. Protection has local significance only.

● <<query>> residualErrorRate : Double

Residual Error Rate is the ratio of total incorrect, lost and duplicated SDUs to
the total SDUs transferred between radio sets during a period of time. This prop-
erty cannot be configured and is used for QoS monitoring purposes only.

Semantics

In determining the transitDelay attribute, the transmitting radio set selects a particular value within the supported
range, and the value may be changed for each SDU submitted for connectionless transmission. The transit delay
for an individual SDU may be increased if the receiving user flow controls the interface. The average and maxi-
mum transit delay values exclude any user flow control of the interface.

The specification of priority attribute is concerned with the relationship between connectionless data transfer re-
quests. This attribute specifies the relative importance of data units with respect to gaining use of shared resourc-
es. The transmitting radio set selects a particular priority value within the supported range, and the value may be
changed for each SDU submitted for transmission. This parameter only has meaning in the context of some man-
agement entity or structure able to judge relative importance. The priority has local significance only.

Protection attribute has local significance only. Provider protects against modification, replay, addition, or dele-
tion of user data. The transmitting radio set selects a particular value within the supported range, and the value
may be changed for each SDU submitted for transmission.

dtc/2005-09-04

 9.2.2 Flow Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 215

9.2.2 Flow Control Facilities

Flow Control facilities define interfaces that relate to flow control of data transmission and reception. Those fa-
cilities control packet flow so that a provider does not transmit more packets than a receiver can process. Flow
control is necessary because users and providers are often unmatched in capacity and processing power. The fa-
cilities are separated into two interfaces for signaling and control management behavior, namely: IFlowControl-
Signalling and IFlowControlManagement interfaces. The goal of flow-control mechanisms is to prevent dropped
packets that must be retransmitted. Figure 9-60 shows an overview of Flow Control facilities. Flow Control can
be implemented between peer layers for both connection oriented and connectionless communication modes, or
at the service boundary between different layers within the same Software Defined Radio (SDR) set.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Figure 9-60 – Flow Control Facilities Definition

IFlowControlManagement
<<icontrol>>

IPriorityFlowControl
<<icontrol>>

IFlowControlSignalling
<<idatacontrol>>

dtc/2005-09-04

9.2.2 Flow Control Facilities

216 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.2.2.1 IFlowControlManagement

Description

IFlowControlManagement provides an interface for flow control manager component to control and manage flow
control related arguments. The interface provides the capabilities of enabling and disabling flow control signal-
ing, enabling priority based queueing and negotiating flow control parameters with the peer flow controller. Fig-
ure 9-61 shows the definition of IFlowControlManagement.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Attributes

● <<readwrite>> flowControlSignalling: Boolean

This attribute indicates whether flow control signalling is currently enabled or
not.

● <<readwrite>> priorityHandling: Boolean

This attribute indicates whether priority queue handling is currently enabled or
not.

● <<readwrite>> dataRate : Double

Target data rate.
● <<readwrite>>> emptySignaling : Boolean

This attribute indicates whether the flow controller should signal when a queue
is empty.

Operations

● negotiateFlowControl ()

This operation sends a flow control request to the remote radio set in case of a
horizontal communication scenario, or to another waveform component in case
of a vertical communication scenario. It also sets up flow control related param-
eters.

Figure 9-61 – IFlowControlManagement Definition

IFlowControlManagement

<<readwrite>> priorityHandling : boolean
<<readwrite>> dataRate : double
<<readwrite>> flowControlSignaling : boolean
<<readwrite>> emptySignalling : boolean

negotiateFlowControl()
tearDownFlowControl()

(f rom Flow Control Facilities)

<<icontrol>>

dtc/2005-09-04

 9.2.2 Flow Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 217

● tearDownFlowControl ()

tearDownFlowControl operation terminates an existing flow control between
the user and provider.

Semantics

negotiateFlowControl and tearDownFlowControl operations indicate an underlying protocol mechanism that al-
lows for two-way handshaking between components in order to negotiate and tear down flow control.

A component realizing IFlowControlManagement interface shall communicate with the component that realizes
IStream or IPdu interface in order to transmit flow control related data, and with the component that realizes the
IPriorityQueue interface in order to setup and teardown a priority queue.

9.2.2.2 IFlowControlSignalling

Description

IFlowControlSignalling provides an interface for sending flow control related signals. The interface provides the
signalling capabilities for data congestion, high and low watermark, empty buffer, acknowledgement and nega-
tive acknowledgement events. Figure 9-62 shows the definition of IFlowControlSignalling.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Operations

Note – Issue 7658

● <<oneway>>signalCongestion (in priorityQueueID : Octet)

This operation signals a congestion (the user can not handle incoming packets
and they are being dropped.

● <<oneway>>signalHighWatermark (in priorityQueueID : Octet)

The signalHighWaterThreshold operation is used to alert the peer entity that
high watermark threshold has been reached.

Figure 9-62 – IFlowControlSignalling Definition

IFlowControlSignalling

<<oneway>> signalCongestion()
<<oneway>> signalHighWatermark()
<<oneway>> signalLowWatermark()
<<oneway>> signalEmpty()
<<oneway>> signalACK()
<<oneway>> signalNAK()

(from Flow Control Faci l i ties)

<<idatacontrol>>

dtc/2005-09-04

9.2.2 Flow Control Facilities

218 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<oneway>>signalLowWatermark (in priorityQueueID : Octet)

The signalLowWaterThreshold operation is used to alert the peer entity that low
watermark threshold has been reached.

● <<oneway>>signalEmpty (in priorityQueueID : Octet)

The signalEmpty operation signals that the buffer is empty and ready to receive
data.

● <<oneway>>signalACK (in priorityQueueID : Octet)

The signalACK operation is used to acknowledge successful reception of a
PDU sent by the provider.

● <<oneway>>signalNAK (in priorityQueueID : Octet)

The signalNAK operation is used to acknowledge unsuccessful reception of a
PDU sent by the provider.

Semantics

The component that consumes data shall use this interface to indicate to the sender the condition of the data con-
sumer. A component realizing IFlowControlSignalling interface shall receive signals from the data consumer
through this interface.

9.2.2.3 IPriorityFlowControl

Description

IPriorityFlowControl interface specializes the IFlowControlManagement interface and extends it by adding prior-
ity queue handling behavior. This interface can be used to create and destroy both PriorityQueue and Win-
dowedPriorityQueue structures.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Figure 9-63 – IPriorityFlowControl Definition

IPriorityFlowControl

<<readonly>> numPriorityQueues : unsigned short

createPriorityQueue()
destroyPriorityQueue()
createWindowedPriorityQueue()

(from Flow Control Facilities)

<<icontrol>>

IFlowControl Management
(from Flow Control Facilities)

<<icontrol>>

dtc/2005-09-04

 9.2.2 Flow Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 219

Attributes

Note – Issue 7895, change primitive type to not be an integer

● <<readonly>> numPriorityQueues : UShort

Number of priority queues that the flow controller component is managing. This
attribute can only be queried, setting the number of priority queues is done by
creating and destroying priority queues using the related operations.

Operations

Note – Issue 7658, Issue 7895, change primitive type to not be an integer

● createWindowedPriorityQueue (in priority: UShort, in queueSize: ULong, in highWatermarkThreshold:

ULong, in lowWaterMarkThreshold: ULong, return Octet)

This operation creates a windowed priority queue bound to the flow control
manager, and returns the priorityQueueId for it.

Note – Issue 7895, change primitive type to not be an integer

● createPriorityQueue (in priority: UShort, in queueSize: ULong, in highWatermarkThreshold: ULong,

in lowWaterMarkThreshold: ULong, return Octet)

This operation creates a priority queue bound to the flow control manager, and
returns the priorityQueueId for it.

● destroyPriorityQueue (in priorityQueueID : Octet)

This operation destroys a previously instantiated priority queue. This interface
can also be used to destroy a WindowedPriorityQueue, which is a specialization
of PriorityQueue.

Types and Exceptions

Note – Issue 7895, change primitive type to not be an integer

● PriorityQueue (priority: UShort, queueSize: ULong, highWatermarkThreshold: ULong, lowWatermark-

Threshold: ULong)

PriorityQueue provides a struct definition to keep priority queues parameters.
Priority queues are used by the flow control mechanism to direct incoming Pro-
tocol Data Units (PDU) with different priority tags to corresponding queues.
Queues with higher priority get easier access to system resources; while lower
priority queue elements wait until higher priority ones are processed. The values
of highWatermarkThreshold and lowWatermarkthreshold attributes are appli-
cation dependent and usually are determined by the flow controller of the QoS
controller after negotiating with the remote entity. The interface provides the
capability for configuring various parameters of a priority queue such as the
queue size, priority level and high and low watermark levels. The attributes of
PriorityQueue class is defined as:

● priority : UShort
Priority defines the relative importance of queues. A lower value
means a lower value and vice versa.

● queueSize : ULong
The maximum number of elements the queue can hold.

dtc/2005-09-04

9.2.2 Flow Control Facilities

220 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● highWatermarkThreshold : ULong
High watermark threshold shows the number of elements in the queue
where a dangerous occupancy is reached in the buffer and probability
of dropping PDUs has increased.

● lowWatermarkThreshold : ULong
Low watermark threshold shows the number of elements in the queue
where a dangerous occupancy is reached in the buffer and probability
of dropping PDUs has increased, although is less than the
highWatermarkThreshold point.

● spaceAvailable : ULong
The size of available buffer space in the priority queue in terms of
queue elements.

● priorityQueueID : Octet
This attribute is assigned during the instantiation of a priority queue
component and is used by other components to uniquely identify the
priority queue.

Note – Issue 7895

● WindowedPriorityQueue(windowSize : ULong, windowIndex : ULong)

WindowedPriorityQueue specializes the PriorityQueue class in order to provide
a mechanism for windowed acknowledgement in a priority queue. .

● windowSize : ULong
Size of the window. This attribute can be changed during initialization
and/or after the communication has been established.

● windowIndex: ULong
Index of the current data window that is being acknowledged. Every
time a window is acknowledged, the index is incremented.

PriorityQueue
(f ro m Fl ow Control Faci li ties)

WindowedPriorityQueue

windowSize : Ulong
windowIndex : Ulong

(f ro m Fl ow Control Faci li ties)

dtc/2005-09-04

 9.2.3 Measurement Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 221

9.2.3 Measurement Facilities

Measurement facilities relate to performing a measurement as requested by a component that has controller func-
tionality over the component that implements the measurement building block. Any waveform layer component
can be scheduled to perform a measurement, such as traffic volume measurement, bit error rate measurement,
voice silence duration measurement, link quality measurement, etc. These measurements plans are communicated
to the component through a class of type MeasurementPlan. Measurement Facilities interfaces are shown in Fig-
ure 9-64.

Note – Issue 7985 - fix type

Note – Issue 7878 Resolution (Diagram below - Renamed “Measurement” type to “Measure-
mentType”)

Types and Exceptions

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

Figure 9-64 – Measurement Facilities Overview

StoragePolicyType
<<enumeration>>

MeasurementSequence

MeasurementPointSequence

Measurement
sourceId : String
pointId : String
timeStamp : TimeType
data : Properties

**

MeasurementPlanManager
<<readwrite>> planId : String
<<readwrite>> startTime : TimeType
<<readonly>> activated : Boolean

createPlan()
listPlans()
start()
suspend()
stop()

<<icontrol>>

MeasurementPoint
<<readonly>> identifier : String
<<readwrite>> delay : TimeType
<<readwrite>> storage : MeasurementStorage
<<readonly>> dataType : String
<<readonly>> activated : Boolean

activate()
deactivate()

<<icontrol>>

**

1

*

1

+measurment *

MeasurementStorage
<<readwrite>> fileName : String
<<readwrite>> storagePol icy : StoragePolicyType
<<readwrite>> maxSize : ULong

query()
clear()
truncate()
remove()

<<icontrol>>

1

0..1

1

0..1

**

MeasurementPlan
<<readonly>> name : String
<<readonly>> activated : Boolean
<<readwrite>> deferred : TimeType

listStores()
createStorage()
setStorage()
listPoints()
addPoint()
removePoint()
removeStorage()

<<icontrol>>

*

0..1
+measurementPlan

*

0..1
*

*
+measurementPoint

*

*

1

*
+measurementStorage

1

*

MeasurementPlanSequence

**

MeasurementRecorder

<<oneway>> record()

<<idata>>

StoragePolicyType
<<enumeration>>

MeasurementSequence

MeasurementPointSequence

MeasurementType
sourceId : String
pointId : String
timeStamp : TimeType
data : Properties

**

MeasurementPlanManager
<<readwrite>> planId : String
<<readwrite>> startTime : TimeType
<<readonly>> activated : Boolean

createPlan()
listPlans()
start()
suspend()
stop()

<<icontrol>>

MeasurementPoint
<<readonly>> identifier : String
<<readwrite>> delay : TimeType
<<readwrite>> storage : MeasurementStorage
<<readonly>> dataType : String
<<readonly>> activated : Boolean

activate()
deactivate()

<<icontrol>>

**

1

*

1

+measurment *

MeasurementStorage
<<readwrite>> fileName : String
<<readwrite>> storagePolicy : StoragePolicyType
<<readwrite>> maxSize : Ulong

query()
clear()
truncate()
remove()

<<icontrol>>

1

0..1

1

0..1

**

MeasurementPlan
<<readonly>> name : String
<<readonly>> activated : Boolean
<<readwrite>> deferred : TimeType

listStores()
createStorage()
setStorage()
listPoints()
addPoint()
removePoint()
removeStorage()

<<icontrol>>

*

0..1+measurementPlan

*

0..1
*

*
+measurementPoint

*

*

1

*
+measurementStorage

1

*

MeasurementPlanSequence

**

MeasurementRecorder

<<oneway>> record()

<<idata>>

dtc/2005-09-04

9.2.3 Measurement Facilities

222 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● MeasurementSequence

The MeasurementSequence type represents an unbounded sequence of Meas-
urementTypes.

● MeasurementPlanSequence

The MeasurementPlanSequence type represents an unbounded sequence of
MeasurementPlans.

● MeasurementPointSequence

The MeasurementPointSequence type represents an unbounded sequence of
MeasurementPoints.

● MeasurementStorageSequence

The MeasurementStorageSequence type represents an unbounded sequence of
MeasurementStorages.

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

9.2.3.1 MeasurementType

Description

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

MeasurementType represents the information captured or measured for a MeasurementPoint.

Attributes

● sourceId: String

The sourceId attribute represents the component that contains the measurement
point that made the measurement.

● pointId: String

The pointId attribute represents the measurement point that made the measur-
ment.

● timeStamp TimeType

The timeStamp represents the time the measurement was made.
● data: Properties

The data attribute represents the measurement data. The measurement point da-
taType attribute indicates the type of measurement data captured in the meas-
urement.

Semantics

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

As MeasurementPoints are activated they create MeasurementTypes which are recorded in a MeasurementStor-
age.

9.2.3.2 MeasurementPlan

Description

The Measurement Plan interface is used to manage a measurement plan, to configure it, and to manage its mea-
sures.

dtc/2005-09-04

 9.2.3 Measurement Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 223

Attributes

● <<readonly>name: String

The name attribute is the name of the measurement plan.
● <<readonly>>activated: Boolean

The activated attribute indicates if the plan is activated. A value of True indi-
cates the plan is activated.

● <<readwrite>>deferred: TimeType

The deferred attribute represents when the activation should take place.

Associations

● measurementCommunicator: ITransmission [0..1]

IMeasurement interface may be associated with an ITransmission interface.

Operations

● addPoint (in point: MeasurementPoint)
The addPoint operation shall add a MeasurementPoint to the plan.

● createStorage (in fileName: String, return MeasurementStorage
The createStorage operation creates a new MeasurementStorage for a plan.

● listPoints (return MeasurementPointSequence)
The listPoints operation shall return all MeasurementPoint(s) attached to this
plan by either through the addPoint operation.

● listStores (return MeasurementStoreSequence)

The listStoresoperation shall return all MeasurementStore(s) attached to this
plan by either through the create or by the set operations.

● removePoint (in pointId : String)

The removePoint operation shall remove a MeasurementPoint from the plan as
specified by the input.

● removeStorage (in storageId : String)

The removeStorage operation shall remove a MeasurementStorage from the
plan as specified by the input.

● setStorage (in storage: MeasurementStorage

The setStorage operation sets the current storage for the plan.

9.2.3.3 IMeasurementPoint

Description

The MeasurementPoint interface is used to manage a measurement point, to set and to get its configuration, to
control its activation and its deactivation, and to set its storage

Attributes

● <<readonly>> activated: Boolean

The activated attribute indicates if the MeasurementPoint is activated or not. A
value of True means the MeasurementPoint is activated.

● <<readonly>> identifier: String

The identifier attribute uniquely identifies a MeasurementPoint.
● <<readwrite>> delay : TimeType

The delay attribute indicates the delay for deferred/immediate measurement.

dtc/2005-09-04

9.2.3 Measurement Facilities

224 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<readwrite>> storage : MeasurementStorage

The storage attribute indicates the current MeasurementStorage associated with
measurement point.

● <<readonly>> dataType : String

The dataType attribute indicates the type of data issued from Measurement
Point.

Associations

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

● measurement: MeasurementType [*]

The MeasurementTypes produced by a MeasurementPoint.

Operations

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

● activate()

The activate operation activates the MeasurementPoint to start collecting Meas-
urementTypes.

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

● deactivate()

The deactivate operation deactivates the MeasurementPoint from collecting
MeasurementTypes.

9.2.3.4 IMeasurementPlanManager

Description

The MeasurementPlan interface is used to control a measurement plan.

Attributes

● <readonly>> activated: Boolean

The activated attribute indicates if a MeasurementPlan is activated or not. A val-
ue of True indicates a plan is activated.

● <<readwrite>> planId: String

The planId attribute indicates the MeasurementPlan that can be activated or is
activated.

● <<readwrite>> startTime: TimeType

The startTime attribute indicates the time to activate the plan.

Associations

● measurementPlan: MeasurementPlan [*]

A measurement plan is associated with one MeasurementPlanManager.

dtc/2005-09-04

 9.2.3 Measurement Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 225

Operations

● createPlan (in name: String, return MeasurementPlan)

The createPlan operation shall create a MeasurementPlan with the specified in-
put name.

● listPlans (return MeasurementPlanSequence)

The listPlans operation shall return all MeasurementPlans that have been creat-
ed, which have not been removed since there creation.

● start ()

The start operations shall activate or restart to execute the plan as specified by
the planId attribute.

● suspend ()

The suspend operation shall halt the plan measurement execution.
● stop ()

The stop operation shall stop the plan measurement execution.

9.2.3.5 MeasurementRecorder

Description

The MeasurementRecorder interface is used to record measurements.

Operations

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

● record:(in in_measurement: MeasurementType)

The record operation records a MeasurementType.

9.2.3.6 MeasurementStorage

Description

The MeasurementStorage interface is used to control and retrieve measurements.

Attributes

● <<readwrite>> fileName: String

The fileName attribute indicates the name of file that actually store records.
● <<readwrite>> storagePolicy StoragePolicyType

he storagePolicy attribute indicates the storage policy.

Note – Issue 7895, change primitive type to not be an integer

● <<readwrite>> maxSize : ULong

The maxSize attribute indicates the allocated size for measurement storage.

Operations

● record:()

The record operation enables to record a measure.

dtc/2005-09-04

9.2.4 Error Control Facilities

226 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● query (in queryProperties: Properties, return MeasurementSequence

The query operation enables to retrieve a set of measurements based upon the
input queryProperties.

● clear ()

The clear operation shall clear all recorded measurements from storage.

Note – Issue 7895, change primitive type to not be an integer

● truncate (in size : ULong

The truncate operation truncates storage file to new size. The truncate operate
shall set the maxSize attribute to the input size value.

● remove()

This operation deletes the storage. The component is no longer available for
service.

Types and Exceptions

● THIS SHOULD BE A BULLET WITH ALIGNMENT LIKE PREVIOUS ONES <<enumeration>>StoragePolicyType (ONE-

SHOT, CIRCULAR)

The StoragePolicyType indicates how the storage should be performed.

9.2.4 Error Control Facilities

Error Control facilities allow the Data User (consumer) to tell the Data Provider about the protocol data units
damaged or lost during transmission, and coordinate the re-transmission of those data units by the Provider.
Since the Flow Control Facilities provide the User's acknowledgement (ACK) of correctly-received data units, it
is closely linked to error control. The Error Control interface attributes are communicated to the component
through a class of type ErrorControlType. Error Control Facilities also provides a mechanism for receiving status
asynchronously by the StatusSignal interface.

Note – Issue 7878 Resolution (Renamed IErrorControl to IError_Control)

9.2.4.1 IError_Control

Description

Note – Issue 7878 Resolution (Renamed IErrorControl to IError_Control)

The IError_Control interface provides a mechanism to establish error control related facilities at both the Provid-
er and User sides of communication. The error control mechanism can be used to change the error control param-
eters that affect any layer of the waveform.

Attributes

● <<readwrite>> errorControlParams: ErrorControlParamsType

This attribute defines which error control attributes are currently enabled to ex-
ecute for the existing communication link.

dtc/2005-09-04

 9.2.4 Error Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 227

Operations

● estimateSequenceNumber()

The estimatePduCounter operation provides a mechanism to estimate the se-
quence number for the next PDU that is expected.

● checkSequenceNumber()

This operation provides a mechanism to check the sequence number of the re-
ceived PDU against what has been estimated.

● requestRetransmit()

The requestRetransmit operation allows the user to request a retransmission of
a recently arrived PDU, which contained an error.

● reportReceptionError()

This operation provides a mechanism to report an error at the reception to the
provider port. It is different from the requestRetransmit operation in the sense
that it only reports the error and does not request the data to be retransmitted.
This operation is more suitable for radio links that has low latency requirements.
(like video stream)

● checkFrameError()

The checkFrameError operation provides a mechanism to check the incoming
data unit against any errors. This operation may be implemented by cyclic re-
dundancy check (CRC) algorithm, or any other algorithm that introduces some
redundancy to the SDU and checks for authenticity at the receiver side.

● forwardErrorCorrection()

This operation allows the user to correct some of the errors that occurred during
reception. Forward error correction works without any feedback mechanism or
reporting back to the original sender. The channel coding type of redundancy
introduced to the SDU allows the receiver to correct some of the bit errors in-
troduced by the physical channel.

Types and Exceptions

● ErrorControlParamsType (ARQStopWait: boolean, errorControl: boolean, forwardErrorCorrection:

boolean, slidingWindowARQ: boolean)

The ErrorControlParamsType is a struct that defines the error control attributes
that can be enabled as a part of the error control facility. It contains ARQStop-
Wait, errorControl, forwardErrorCorrection and slidingWindowARQ Boolean
attributes.

Constraints

Note – Issue 7586

If errorControl parameter of errorControlParams attribute is set to be False (no error control at all), then all other
parameters of the errorControlParams shall be set to False.

9.2.4.2 IStatusSignal

Description

Note – Issue 7657 (2nd Ballot)

dtc/2005-09-04

9.2.4 Error Control Facilities

228 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The IStatusSignal interface provides a mechanism to asynchronously indicate a status from one component to an-
other component. Figure 9-65 shows the definition of IStatusSignal.

Operations

Note – Issue 7657 (2nd Ballot)

● <<oneway>>signalStatus(in status : statusType)

The signalStatus operation provides a mechanism to send a status.

Semantics

The StatusSignal is a template interface. To use this interface one must form a new interface by binding to this
interface with a specific StatusType.

9.2.4.3 Signal

Description

The Signal interface provides a generic mechanism to asynchronously indicate a status from one component to
another component. Figure 9-65 shows the definition of Signal.

Operations

● <<oneway>>signalStatus()

The signalStatus operation provides a mechanism to send a status.

Figure 9-65 – IStatusSignal Definition

StatusType

IStatusSignal

<<oneway>> signalStatus(in status : StatusType)

<<icontrol>>

S igna l
<<icontrol>>

<StatusType -> Properties>

<<bind>>

dtc/2005-09-04

 9.2.5 Protocol Data Unit Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 229

Semantics

The StatusSignal is a template interface. To use this interface one must form a new interface by binding to this
interface with a specific StatusType.

9.2.5 Protocol Data Unit Facilities

This facility defines the Protocol Data Unit (PDU) concept that can be used as the smallest data unit element in
any waveform layer. PDUs are data elements that are used to store protocol data, and query certain attributes that
relate to the usage of PDUs in the waveform protocol. Packet terminology is very specific to Logical Link Layer,
so in order to make this concept applicable to any waveform layer that carries data in small units, packet has
been renamed as a Protocol Data Unit. The PDU facilities define IBasePdu, ISimplePdu, IPdu, IDataPdu and IP-
riorityPdu interfaces as shown in Figure 9-66. In order to provide flexibility of usage, those interfaces are speci-
fied as parametrized classes. This package also provides two concrete interface recommendations that realize
IDataPdu and IPdu through binding concrete data types as parameters. The operations and attributes for the inter-
faces are not shown in Figure 9-66.

dtc/2005-09-04

9.2.5 Protocol Data Unit Facilities

230 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Note – Issue 7789 IPdu specialization

9.2.5.1 IBasePdu

Description

The IBasePdu interface is an abstract class that can be specialized by any PDU definition, whether it is used for
data, control, or both. This class forms the basis for ISimplePdu and IPriorityPdu interfaces. It only defines com-
mon attributes that any PDU can have, and does not specify any operations. Those types are defined as depen-
dencies of the IBasePdu interface. This interface can be used for both vertical and horizontal communication
links. Figure 9-66 shows the definition of IBasePdu interface.

Figure 9-66 – PDU Facilities Overview

ControlType
SDUType

ISimplePdu

<<oneway>> pushPDU()

<<idatacontrol>>

IBasePdu
<<readonly>> sduSize : SduSizeType

ControlType
SDUType

IPdu
<<idatacontrol>>

SduSizeType

maxSduSize : Ulong
minSdu Size : Ulong

(f rom Common Layer Facil ities)

ControlType
SDUType

IPriorityPdu

<<oneway>> pushPDU()

<<idatacont rol>>

IPriorityFlowControl
(f rom Flow Control Facilities)

<<icontrol>>

IConcretePdu
<<idatacontrol>>

<SDUType -> OctetSequence>
<ControlType -> ControlHeaderType>

<<bind>>

SDUType

IDataPdu

<<one way>> pushPDU()

<<idata>>

IConcreteDataPdu
<<idata>>

<SDUType -> OctetSequence>

<<bind>>

IFlowControlSignalling

<<one way>> signa lCon gesti on()
<<one way>> signa lHig hWa term ark()
<<one way>> signa lLo wWa term ark()
<<one way>> signa lEmpty()
<<one way>> signa lACK()
<<one way>> signa lNAK()

(f rom Flow Control Facilities)

<< idatacont rol>>

dtc/2005-09-04

 9.2.5 Protocol Data Unit Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 231

Attributes

● <<readonly>> SduSize

The SduSize attribute is of type SduSizeType and it specifies the minimum and
maximum payload size that can be stored in a single PDU.

Types and Exceptions

● SduSizeType

SduSizeType defines the maxSduSize and minSduSize attributes as positive
longs. Those two values together define the range of values sduSize can take.

9.2.5.2 ISimplePdu

Description

The ISimplePdu interface is a parametrized class that specializes the IBasePdu interface and adds a pushPDU be-
havior to it. ISimplePdu interface is shown in Figure 9-66.

Operations

Note – Issue 7658

● <<oneway>>pushPDU(in control : ControlType, in sdu : SDUType)

The pushPDU interface is used to create and send protocol data units through
the existing communication link.

9.2.5.3 IPdu

Description

Note – Issue 7789

The IPdu interface is a parametrized class which specializes ISimplePdu interface and can be implemented using
different header and service data unit (SDU) types. IPdu interface also specializes IFlowControlSignalling inter-
face, so it supports flow control signalling. This interface can be used for both vertical and horizontal communi-
cation links. Figure 9-66 shows the definition of IPdu interface.

9.2.5.4 IPriorityPdu

Description

The IPriorityPdu interface is a parameterized class that specializes the IBasePdu and IPriorityFlowControl inter-
faces. A component realizing the IPriorityPdu interface shall contain priority queuing behavior besides the func-
tionalities of an IPdu interface. IPriorityPdu also defines a pushPDU behavior which also takes priority
information into account. IPriorityPdu interface is shown in Figure 9-66.

Operations

Note – Issue 7658

dtc/2005-09-04

9.2.5 Protocol Data Unit Facilities

232 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<oneway>>pushPDU(in priority : Octet, in control : ControlType, in sdu : SDUType)

The pushPDU interface is used to create and send protocol data units through
the existing communication link.

9.2.5.5 IDataPdu

Description

The IBasePdu interface is a parametrized class which specializes IBasePdu interface and can be implemented us-
ing different SDU types. IDataPdu does not have any header information, so it can be used when there is a
stream of data is to be transferred in frames, with no header requirements. This interface can be used for both
vertical and horizontal communication links. Figure 9-66 shows the definition of IDataPdu interface.

Operation

Note – Issue 7658

● <<oneway>>pushPDU(in sdu : SDUType)

The pushPDU interface is used to create and send protocol data units through
the existing communication link.

9.2.5.6 IConcretePdu

Description

IConcretePdu interface realizes the IPdu by binding the SDUType with UML Profile for SWRadio::Application
and Device Components::BaseTypes::OctetSequence and ControlType with ControlHeaderType.

Types and Exceptions

Note – Issue 7895, change primitive type to not be an integer

● ControlHeaderType (sourceAddress: AddressType, destinationAddress: AddressType, priority: UShort,

sduSize: sduSizeType, sequenceNumber: ULong)

ControlHeaderType is defined in this package in order to provide a concrete
PDU definition. This class defines the sourceAddress and destionationAddress
fields for the PDU, priority attribute as an ULong, sduSize as the allowed min-
imum and maximum values and the sequenceNumber, which shows the se-
quence number of a PDU in a given stream of data packets.

9.2.5.7 IConcreteDataPdu

Description

IConcreteDataPdu interface provides a concrete interface by realizing the parameterized IDataPdu and binding
the SDUType with UML Profile for SWRadio::Application and Device Components::BaseTypes::OctetSequence.

dtc/2005-09-04

 9.2.6 Stream Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 233

9.2.6 Stream Facilities

The stream building block defines interfaces to establish and control data streams. These data streams can be
used for various purposes and may have different implementations. They can be used for in-band signalling such
as transmitting data along with some waveform command and control signals embedded in the stream. They can
be used for out-of-band streaming which may be implemented as non-standard CORBA streams.

9.2.6.1 IStream

Description

The IStream interface, as shown in Figure 9-67, defines stream communication capabilities. The interface pro-
vides capabilities of establishing and releasing a stream, as well as setting up local parameters at the initialization
time of

Note – Issue 7895 Changed .priority to UShort

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Attributes

● <<configquery>> sourceAddress : AddressType

Source address attribute designates the stream provider. This may refer to a port
definition, or in the horizontal communication scenario, an address provided by
a high layer protocol such as IP.

● <<configquery>> destinationAddress : AddressType

Destination address attribute designates the stream user. This may refer to a port
definition, or in the horizontal communication scenario, an address provided by
a high layer protocol such as IP.

Note – Issue 7895, change primitive type to not be an integer

Figure 9-67 – IStream Definition

IStream
<<configquery>> sourceAddress : AddressType
<<configquery>> destinationAddress : AddressType
<<configquery>> priority : UShort
<<query>> streamID : Octet

establishStream(sourceAddress : AddressType, destinationAddress : AddressType, priority : integer) : Octet
releaseStream(streamID : Octet)
localSetup()

<<istream>>

dtc/2005-09-04

9.2.6 Stream Facilities

234 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<configquery>> priority : UShort

Priority attribute specifies the priority level of the established stream. High pri-
ority streams are allocated more resources, relatively less latency and high qual-
ity of service operation is expected from a high priority stream implementation.

● <<query>> streamID : Octet

streamID attribute is the unique ID that the system assigns to the stream. This
attribute can only be queried, since it is set by the establishStream operation.

Operations

Note – Issue 7895, change primitive type to not be an integer

● establishStream (in sourceAddress : AddressType, in destinationAddress : AddressType, in priority

: UShort, return streamID : Octet)

The establishStream operation is used to establish a prioritized data stream by
handshaking the stream parameters with the remote component.

● releaseStream (in streamID : Octet)

The releaseStream operation is used to release the currently established stream.
This operation can be a simple teardown of the stream, or a connection termi-
nation with acknowledging the peer end, depending on the implementation.

● localSetup()

This operation sets up the local parameters required for setting up a communi-
cation stream. These parameters are discussed in the quality of Service building
block.

Types and Exceptions

● AddressType (address : OctetSequence)

AddressType provides a definition for a generic addressing mechanism.

dtc/2005-09-04

 9.3 Data Link Layer Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 235

Data Link Layer Facilities . Page235
Link Layer Control Facilities . Page 235
Local Link Management Package. Page 235
Connectionless Link Package . Page 238
Acknowledged Connectionless Link Package . Page 242
Connection Link Package . Page 247
Medium Access Control Layer Facilities . Page 250
IMediumAccessControl . Page 251
IMacPdu . Page 254
MediumAccessController Component . Page 255

9.3 Data Link Layer Facilities

9.3.1 Link Layer Control Facilities

This section defines the Link Layer Control (LLC) facilities. LLC layer provides facilities to upper layers, for
management of communication links between two or more radio sets. LLC layer definition is mainly based on
the DLPI specification. DLPI specifies an SCA conformant API that is an instantiation of the ISO Data Link Ser-
vice Definition DIS 8886 and Logical Link Control DIS 8802-2 (LLC). Where the two standards do not conform,
DIS 8886 prevails.

The LLC interface supports three modes of communication: connection, connectionless and acknowledged con-
nectionless. The connection mode is circuit-oriented and enables data to be transferred over a pre-established
connection in a sequenced manner. After the link parameters are negotiated and the link is established, data pro-
vider can send a data stream through the link. Data may be lost or corrupted in this service mode, however, due
to provider-initiated resynchronization or connection aborts.

The connectionless mode is message-oriented and supports data transfer in self-contained units (PDUs) with no
logical relationship required between units. Because there is no acknowledgement of each data unit transmission,
this service mode can be unreliable in the most general case. However, a specific logical link provider can pro-
vide assurance that messages will not be lost, duplicated, or reordered.

The acknowledged connectionless mode provides the means by which a data link user can send data and request
the return of data at the same time. By this way, the transmitter knows which data packets made it through, and
retransmits the required packets. Although the exchange service is connectionless, in-sequence delivery is guar-
anteed for data sent by the initiating station. The data unit transfer is point-to-point.

For each of these communication modes, established link should be controlled locally using local link manage-
ment interfaces. For this purpose, the LLC facilities are sub-packaged into four different categories.

9.3.1.1 Local Link Management Package

This package provides a mechanism to manage the properties of communication links that are instantiated or es-
tablished by the LLC. The local management services apply to all modes of service. These services, which fall
outside the scope of standards specifications, define the method for initializing a stream that is connected to a
logical link provider. Logical link provider information reporting services are also supported by the local man-
agement facilities. This package consists of a single interface, ILocalLinkManagement and several other type
definitions that the interface depends upon.

dtc/2005-09-04

9.3.1 Link Layer Control Facilities

236 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.3.1.1.1 ILocalLinkManagement

Description

ILocalLinkManagement interface provides functionality to control local parameters that are related to link estab-
lishment, binding, information reporting, as well as managing connection properties. ILocalLinkManagement is
defined in Figure 9-68. Every logical link is referenced by a ConnectionID that describes the service SAPs that
the link is bound to.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Note – Issue 7725 - 9.3.1.1.1 IlocalLinkManagement Unbind

Note – Issue 7729 - Replace void in getInfo operation with a return type.

Attributes

● <<readwrite>> sduSize : sduSizeType

This attribute specifies the minimum and maximum service data unit size the
LLC resource can transfer. If incoming data is less that this amount, the LLC
resource waits to transmit until more data comes in. (or until timeout occurs, de-
pending on the implementation)

Operations

Note – Issue 7658

Note – ISSUE 7729 - IlocalLinkManagement: The getInfo operation does return any informa-
tion and exceptions listed in text description are undefined.

● getInfo(in connectionID : ConnectionIDType, return InfoType): {raises = (InvalidPort,
SystemError)}
This operation requests information of the provider about the currently estab-

Figure 9-68 – ILocalLinkManagement Definition

ILocalLinkManagement

<<readwrite>> sduSize : SduSizeType

getInfo(connectionID : ConnectionIDType) : InfoType
bindStream(connectionID : ConnectionIDType, bindRequest : BindRequestType) : Bi ndResponseType
unbindStream(connectionID : ConnectionIDType) : BindResponseType
bindSubsequentStream(connectionID : ConnectionIDType, bindRequest : BindRequestType) : BindResponseType
unbindSubsequentStream(connectionID : ConnectionIDType) : BindResponseType
enableMulticast(connectionID : ConnectionIDType)
disableMulticast(connectionID : ConnectionIDType)
enablePromiscuousMode(connectionID : Connecti onIDType, promiscouosMode : PromiscuousModeType)
disablePromiscuousMode(connectionID : ConnectionIDType)

(f rom LocalLinkManagement)

<<istream>>

dtc/2005-09-04

 9.3.1 Link Layer Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 237

lished connection. The connectionID parameter identifies a stream (defined as
a user connected to the provider). The operation may raise the InvalidPort ex-
ception (as defined in Section 8.1.5.1.4) or SystemException (as defined in Sec-
tion 8.1.1.26).

Note – Issue 7658

● bindStream(in connectionID : ConnectionIDType, in bindRequest : BindRequestType, return Bind-

ResponseType)

The bindStream operation associates a SAP with a stream. The SAP is identified
by a SAP address. It requests that the logical link provider bind a SAP to a
stream. It also notifies the logical link provider to make the stream active with
respect to the SAP for processing connectionless and acknowledged connec-
tionless data transfer and connection establishment requests. Protocol-specific
actions taken during activation should be described in logical link provider spe-
cific addenda.

Note – Issue 7658

● bindSubsequentStream(in connectionID : ConnectionIDType, in bindRequest : BindRequestType, return

BindResponseType)

Certain logical link providers require the capability of binding a stream on mul-
tiple SAP addresses. BindSubsequentStream operation provides that added ca-
pability. The logical link provider returns the bound SAP address in the same
primitive. The logical link provider indicates failure by raising and exception.

Note – Issue 7658

Note – Issue 7725 - 9.3.1.1.1 IlocalLinkManagement

● unbindStream(in connectionID : ConnectionIDType)

The unbindStream operation requests the logical link provider to unbind all
SAP(s) from a stream. This operation also unbinds all the subsequently bound
SAPs that have not been unbound.

Note – Issue 7658

Note – Issue 7725 - 9.3.1.1.1 IlocalLinkManagement

● unbindSubsequentStream(in connectionID : ConnectionIDType)

The unbindSubsequentStream requests the logical link provider to unbind the
subsequently bound SAP.

Note – Issue 7658

● enableMulticast(in connectionID : ConnectionIDType)

enableMulticast operation requests the logical link provider to enable specific
multicast addresses on a per stream basis.

Note – Issue 7658

● disableMulticast(in connectionID : ConnectionIDType)

disableMulticast operation requests the logical link provider to disable specific
multicast addresses on a per stream basis.

dtc/2005-09-04

9.3.1 Link Layer Control Facilities

238 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7658

● enablePromiscuousMode(in connectionID : ConnectionIDType, in promiscouosMode : PromiscuousMode-

Type)

This operation requests the provider to enable promiscuous mode on a per
Stream basis, either at the physical level or at the SAP level.

Note – Issue 7658

● disablePromiscuousMode(in connectionID : ConnectionIDType)

This operation requests the provider to disable promiscuous mode on a per
Stream basis.

Types and Exceptions

● <<enumeration>> PromisciousModeType (PHYSICAL, SAP, MULTIPLE)

Promiscuous mode can be enabled on a per connection basis, either at the phys-
ical level (PHYSICAL) or at the SAP level, or at a multiple (MULTIPLE) level.

● ConnectionIDType (sourceAddress: AddressType, destinationAddress: AddressType, priority: UShort,

sapAddress: SAPAddressType, linkService: LinkServiceType)

ConnectionIDType class completely specifies a logical link that is established
at the LLC layer. It specifies the sourceAddress and destionationAddress for ra-
dio sets, the sapAddress that the logical link is bound to within the local radio
set, as well as the linkService type (connection, connectionless, ack connection-
less).

● BindRequestType

This class defines the BindRequest header attributes. This header is passed to
the LLC when a connection is required to be bound to a SAP. The attributes of
BindRequestType are: sapAddress, maxConnectionId, linkService (type of link
service, connection, ack connection or connectionless), isListenStream
(Boolean), autoXID (Boolean), autoTest (Boolean)

● BindResponseType

This class defines the BindResponse header attributes. The attributes of Bind-
ResponseType are: sapAddress, maxConnectionId, autoXID (Boolean), au-
toTest (Boolean)

9.3.1.2 Connectionless Link Package

This package provides facilities to provide connectionless mode communication for an LLC layer. The connec-
tionless mode is message-oriented and supports data transfer in self-contained units with no logical relationship
required between units. This package consists of a main interface, IConnectionlessLink and several other type
definitions that the interface depends upon.

ConnectionIDType
sourceAddress : AddressType
destinationAddress : AddressType
priority : Ushort
sapAddress : SAPAddressType
linkService : LinkServiceType

dtc/2005-09-04

 9.3.1 Link Layer Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 239

The connectionless mode package does not use the connection establishment and release phases of the connec-
tion-mode service. The local management phase is still required to initialize a stream. Once initialized, however,
the connectionless data transfer phase is immediately entered. Because there is no established connection, how-
ever, the connectionless data transfer phase requires the LLC user to identify the destination of each protocol
data unit to be transferred. The destination LLC user is identified by the address associated with that user. Since
there is no acknowledgement of each PDU transmission, this service mode can be unreliable in the most general
case. However, a specific link layer or MAC provider can provide flow and error control mechanisms to assure
that messages will not be lost, duplicated, or reordered.

9.3.1.2.1 ConnectionlessLink Component

Description

Note – Issue 7726 (change below)

ConnectionlessLink component as shown in Figure 9-69, provides functionality to control parameters that are re-
lated to connectionless link establishment, and management as well as preparing and sending protocol data units.
After the connection is established, data can be transferred using ConnectionlessLink component for unacknowl-
edged connectionless communication scenario. This component realizes the IQualityOfServiceConnectionless in-
terface for quality of service related facilities, IFlowControlSignaling for flow control interfaces, and IIndicator
and IRequestPdu interfaces for PDU based communication. Connectionless link component can provide facilities
for segmentation and reassembly of protocol data, as well as concatenation and padding of PDU's to match the
protocol specification. Every logical link is referenced by a ConnectionID that describes the port(s) that the link
is bound to. Local link management interface establishes the links and bounds them to vertical (internal) streams.
This component can have a user role, a provider role, or both; depending on the waveform scenario.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Figure 9-69 – ConnectionlessLink Component Definition

IQualityOfServiceConnectionless
(f rom QoS Management Facilities)

<<icontrol>>
ILocalLinkManagement
(f rom LocalLinkManagement)

<<istream>>

ConnectionlessLinkComponent
<<LinkLayerControlResource>> IIndicatorPdu

<<idatacontrol>>

IRequestPdu
<<idatacontrol>>

IFlowControlSignalling
(f rom Flow Control Facilities)

<<idatacontrol>>

dtc/2005-09-04

9.3.1 Link Layer Control Facilities

240 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7726 ConnectionlessLink Component: realize IFlowControlSignalling instead of
IFlowControlManagement

Associations

● localLinkManager: ILocalLinkManagement [1]

ILocalLinkManagement interface can act as a local link manager to the links
that are used by the IConnectionlessLink interface.

Types and Exceptions

Note – Issue 7895 - correct the types

● ConnectionIDType: (sourceAddress: AddressType, destinationAddress: AddressType, priority: UShort,

sapAddress: SAPAddressType, linkService: LinkServiceType)

ConnectionIDType defines the parameters related to an LLC connection. This
includes the source and destination address (horizontal communication param-
eters) as well as the SAP address that the connection is bound to. Priority pa-
rameter sets the priority value if priority handling is used in the LLC.
LinkService parameter determines the type of link (connection, connectionless,
acknowledged connectionless)

Constraints

Note – Issue 7584: Specify which interfaces are mandatory

ConnectionlessLinkComponent shall provide one ControlPort, at least one input DataControl port and at least
one output DataControl port.

dtc/2005-09-04

 9.3.1 Link Layer Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 241

9.3.1.2.2 IIndicatorPdu

Description

IIndicator interface, as shown in Figure 9-70, realizes the IPdu interface from the Common Layer Facilities::PDU
Facilities, by binding ControlHeaderType to MediumAccessControlHeaderType and SDUType to OctetSe-
quence.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Types and Exceptions

● IndicatorHeaderType (isGroupAddress: Boolean)

Indicator header is used to conveys one SDU from the LLC provider to the LLC
user. IndicatorHeaderType inherits from ControlHeaderType defined in the
Common Layer Facilities::PDU Facilities package.

isGroupAddress attribute defines whether the destination address is a group ad-
dress.

Figure 9-70 – IIndicatorPdu and IRequestPdu Definitions

ControlType
SDUType

IPriorityPdu

<<oneway>> pushPDU()

(from PDU Facilities)

<<idatacontrol>>

IIndicatorPdu
(from Link Connectionless)

<<idatacontrol>>
IRequestPdu

(from Link Connecti onl ess)

<<idatacontrol>>

<<bind>> <<bind>>

<ControlHeaderType -> IndicatorHeaderType>
<SDUType -> OctetSequence>

<ControlHeaderType -> RequestHeaderType>
<SDUType -> OctetSequence>

dtc/2005-09-04

9.3.1 Link Layer Control Facilities

242 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.3.1.2.3 IRequestPdu

Description

IRequestPdu interface, as shown in Figure 9-70, realizes the IPdu interface from the Common Layer Facili-
ties::PDU Facilities, by binding ControlHeaderType to MediumAccessControlHeaderType and SDUType to Oc-
tetSequence.

Types and Exceptions

● RequestHeaderType

This header type conveys one SDU from the LLC user to the LLC provider for
transmission to a peer LLC
user. RequestHeaderType inherits from ControlHeaderType defined in the
Common Layer Facilities::PDU Facilities package.

9.3.1.3 Acknowledged Connectionless Link Package

This package provides facilities to provide acknowledged connectionless mode communication for LLC layer.
The acknowledged connectionless mode is message-oriented and supports data transfer in self-contained units
with no logical relationship required between units. Although the exchange service is connectionless, in-sequence
delivery is guaranteed for data sent by the initiating station. The acknowledged connectionless mode provides the
means by which a data link user can send data and request the return of data at the same time. The data unit
transfer is point-to-point. This package consists of a main interface, IAckConnectionlessLink and several other
type definitions that the interface depends upon.

The acknowledged connectionless mode package also does not use the connection establishment and release
phases of the connection-mode service. The local management phase is still required to initialize a stream. Once
initialized, the acknowledged connectionless data transfer phase is immediately entered. Because there is no es-
tablished connection, the LLC user is required to identify the destination of each protocol data unit to be trans-
ferred. The destination LLC user is identified by the address associated with that user.

Acknowledged connectionless data transfer guarantees that data units will be delivered to the destination user in
the order in which they were sent. A data link user entity can send a data unit to the destination LLC user, re-
quest a previously prepared data unit from the destination LLC user, or exchange data units.

dtc/2005-09-04

 9.3.1 Link Layer Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 243

9.3.1.3.1 IAckConnectionless

Description

IAckConnectionlessLink interface as shown in Figure 9-71, provides the extra functionality to control parameters
that are related to acknowledged connectionless link establishment and management.

Note – Issue 7661: Lack Consistent use of SWRadio Stereotypes in Facilities interface

Note – Issue 7727: Replace specialization of ConnectionlessLinkComponent with realization of
IQualityOfServiceConnectionless, IFlowControlSignaling, and ILocalLinkManagement.

 Operations

Note – Issue 7658

● ackReception (in sequenceNumber : Octet)

Acknowledgement of received PDU.
● nakReception(in sequenceNumber : Octet)

Negative acknowledgement of PDU. This operation indicates that an expected
data packet was not received at all, or it was received in error.

Types and Exceptions

Note – Issue 7895, fix types

● ConnectionIDType (sourceAddress: AddressType, destinationAddress: AddressType, priority: UShort,

sapAddress: SAPAddressType, linkService: LinkServiceType)

ConnectionIDType defines the parameters related to an LLC connection. This
includes the source and destination address (horizontal communication param-
eters) as well as the SAP address that the connection is bound to. Priority pa-

Figure 9-71 – IAckConnectionlessLink Definition

IQualityOfServiceConnectionless
(f rom QoS Management Facilities)

<<icontrol>>
ILocalLinkManagement
(f rom LocalLinkManagement)

<<istream>>

ConnectionlessLinkComponent
<<LinkLayerControlResource>> IIndicatorPdu

<<idatacontrol>>

IRequestPdu
<<idatacontrol>>

IFlowControlSignalling
(f rom Flow Control Facilities)

<<idatacontrol>>

dtc/2005-09-04

9.3.1 Link Layer Control Facilities

244 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

rameter sets the priority value if priority handling is used in the LLC.
LinkService parameter determines the type of link (connection, connectionless,
acknowledged connectionless).

● <<enumeration>> PacketIndicatorType (PI_ONEWAY, PI_TWOWAY)

PacketIndicatorType specifies whether one way or two way packet indication
will be used.

ConnectionIDType

sourceAddress : AddressType
destinat ionAddress : AddressType
priority : Ushort
sapAddress : SAPAddressType
linkService : LinkServiceType

(from Link Layer Control Facilities)

SAPAddressType

sap : Ulong
address : OctetSequence

(from Link Layer Control Facil ities)

LinkServiceType

CONNECTION
CONNECTIONLESS
ACKCONNECTIONLESS

(from LocalLinkManagement)

<<enumerat ion>>

dtc/2005-09-04

 9.3.1 Link Layer Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 245

9.3.1.3.2 IAckReplyPdu

Description

IAckReplyPdu interface, as shown in Figure 9-72, realizes the IPriorityPdu interface from the Common Layer
Facilities::PDU Facilities, by binding ControlHeaderType to RequestHeaderType and SDUType to OctetSe-
quence. This PDU interface shall be used when replying to a data request.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Note – Issue 7728 - AckReplyPdu definition: Change RequestHedaerType to ReplyHeaderType
in IAckReplyPdu bind definition

Figure 9-72 – IAckReplyPdu, IAckIndicatorPdu and IAckRequestPdu Definitions

ControlType
SDUType

IPriorityPdu
(from PDU Facilities)

<<idatacontrol>>

IAckReplyPdu
(from Link AckConnection...)

<<idatacontrol>>

IAckIndicatorPdu
(from Link AckConnection...)

<<idatacontrol>>
IAckRequestPdu

(from Link AckConnection...)

<<idatacontrol>>

<<bind>>

<<bind>>

<<bind>>

< ControlHeaderType -> ReplytHeaderType >
<SDUType -> OctetSequence>

< ControlHeaderType -> IndicatorHeaderType >
<SDUType -> OctetSequence>

< ControlHeaderType -> RequestHeaderType >
<SDUType -> OctetSequence>

dtc/2005-09-04

9.3.1 Link Layer Control Facilities

246 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Types and Exceptions

● replyHeaderType

Conveys a SDU to the LLC provider from the LLC user to be held by the LLC
provider and sent out at a later time when requested to do so by the peer LLC
provider. replyHeaderType is shown in Figure 9-73.

9.3.1.3.3 IAckIndicatorPdu

Description

IAckIndicatorPdu interface, as shown in Figure 9-72, realizes the IPriorityPdu interface from the Common Layer
Facilities::PDU Facilities, by binding ControlHeaderType to IndicatorHeaderType and SDUType to OctetSe-
quence. This PDU interface shall be used when indicating successful or unsuccessful data request or transfer.

Types and Exceptions

● indicatorHeaderType

This header type is passed from the LLC provider to the LLC user to indicate
either a successful request of a SDU from the peer data link user entity, or ex-
change of SDUs with a peer data link user entity. indicatorHeaderType is shown
in Figure 9-73.

Figure 9-73 – IAckConnectionLink Header Types

IndicatorHeaderTy pe

packetIndicator : PacketIndicatorTy pe
useAckServ iceInMAC : boolean

(from Link AckConnectionless)

PacketIndicatorTy pe

PI_ONEWAY
PI_TWOWAY

(from Link AckConnectionless)

<<enumeration>>
Reply HeaderTy pe

correlationID : Positiv eInteger
(from Link AckConnectionless)

RequestHeaderTy pe

packetIndicator : PacketIndicatorTy pe
correlationID : Positiv eInteger
useAckServ iceInMAC : Boolean

(from Link AckConnectionless)

ControlHeaderTy pe
(from PDU Facilities)

dtc/2005-09-04

 9.3.1 Link Layer Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 247

9.3.1.3.4 IAckRequestPdu

Description

IAckRequestPdu interface, as shown in Figure 9-72, realizes the IPriorityPdu interface from the Common Layer
Facilities::PDU Facilities, by binding ControlHeaderType to RequestHeaderType and SDUType to OctetSe-
quence. This PDU interface shall be used when indicating successful or unsuccessful data request or transfer.

Types and Exceptions

● requestHeaderType

(packetIndicator: PacketIndicatorType, correlationID: ULong, useAckService-
InMac: Boolean)This header type is passed to the LLC provider by the LLC
user to request that a SDU be returned from a peer LLC provider or that SDUs
be exchanged between stations using acknowledged connectionless mode data
unit exchange procedures. requestHeaderType is shown in Figure 9-72.

9.3.1.3.5 AckConnectionlessLinkComponent

Description

Note – Issue 7727

AckConnectionlessLinkComponent as shown in Figure 9-71, realizes IAckConnectionlessLink, IErrorControl,
IQualityOfServiceConnectionless, IFlowControlSignaling, and ILocalLinkManagement interfaces. With those re-
lationships, this component provides functionality to control parameters that are related to acknowledged connec-
tionless link establishment and management. After the connection is established, data can be transferred using
IAckIndicatorPdu, IAckRequestPdu and IackReplyPdu interfaces for acknowledged connectionless communica-
tion scenario. IErrorControl is realized for detecting and reporting errors in the reception or transmission. Ac-
knowledged connectionless link component may realize facilities for segmentation and reassembly of protocol
data, as well as concatenation and padding of PDU's to match the protocol specification. Every logical link is ref-
erenced by a ConnectionID that describes the port(s) that the link is bound to. Local link management interface
establishes the links and bounds them to vertical (internal) streams. A component realizing the IAckConnection-
lessLink API can have a user role, a provider role, or both; depending on the waveform scenario.

Constraints

Note – Issue 7584: Specify which interfaces are mandatory

AckConnectionlessLinkComponent shall provide one ControlPort, at least one input DataControl port and at least
one output DataControl port.

9.3.1.4 Connection Link Package

This package provides facilities to provide connection mode communication for LLC layer. The connection
mode is circuit switched and supports data transfer in streams. The connection-mode service is characterized by
four phases of communication: local management, connection establishment, data transfer, and connection re-
lease. Local management functionality is provided by the local management package defined earlier. Rest of the
functionality is defined in this package.

dtc/2005-09-04

9.3.1 Link Layer Control Facilities

248 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.3.1.4.1 IConnectionLink

Description

IConnectionLink interface as shown in Figure 9-74, provides functionality to control parameters that are related
to connection oriented link establishment, and management as well as enabling and disabling data streams. After
the connection is established, data can be transferred using IConnectionLink interface for connection oriented
communication scenario. This interface inherits the IQualityOfServiceConnection interface for quality of service
related facilities, IServiceAccessPoint for performing vertical communication tasks, IFlowControl for flow con-
trol interfaces, and ITransmission for controlling data and control streams. Every logical link is referenced by a
ConnectionID that describes the SAPs that the link is bound to. Local link management interface establishes the
links and bounds them to vertical (internal) streams. A component realizing the IConnectionLink API can have a
user role, a provider role, or both; depending on the waveform scenario. This interface encompasses all of the
possibilities.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Note – Issue 7787 IConnectionLink Operations: establishStream operation should take source
and destionation address as input parameters. Furthermore, muxStreams should return a stream-
ID that is a reference to the multiplexed stream. demuxSteams should return the streamID's of
the demultiplexed streams.

Operations

Note – Issue 7658

Note – Issue 7787

Figure 9-74 – IConnectionLink Definition

IQualityOfServiceConnection
(f rom QoS Managem ent Fac ilit ies)

<<icontrol>>

IFlowControlManagem ent
(f rom F low C ontrol Fac ilit ies)

<<icontrol>>

ILocalLinkManagem ent

<<readwrite>> s duSize : SduSizeType
(f rom LocalLinkManagem ent)

<<is tream >>

IConnectionLink

es tablis hStre am (in s ourceAddres s : addres s Type, i n des tinationAddres s : addres sType) : ConnectionIDType
s ta rtStream (s tream ID : Con nectionIDType)
s to pStream (s tream ID : Con nectionIDType)
rel ease Stream (s tream ID : Conn ectionIDType)
m uxStre am s (s tre am ID : ConnectionIDType [2..*]) : Connection IDType
de muxS tream (s tream ID : Connection IDType, return [1..n] : ConnectionIDType)

<<is tream >>

ConnectionLinkCom ponent
<<LinkLayerControlRes ource>>IConcreteDataPdu

(f rom PD U Fac ilit ies)

<<idata>>

dtc/2005-09-04

 9.3.1 Link Layer Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 249

● establishStream(in sourceAddress : AddressType, in destinationAddress : AddressType, return : Con-

nectionIDType)

This operation allows the LLC service user to initialize a stream.

Note – Issue 7658

● startStream(in streamID : ConnectionIDType)

This operation starts data transfer through a previously established stream

Note – Issue 7658

● stopStream(in streamID : ConnectionIDType)

This operation stops data transfer through the given stream

Note – Issue 7658

● releaseStream(in streamID : ConnectionIDType)

The releaseStream operation destroys the stream and releases all of the resourc-
es associated with it.

Note – Issue 7658

Note – Issue 7787

● muxStreams(in streamID [2..n] : ConnectionIDType, return ConnectionIDType)

This operation multiplexes multiple (two or more) streams into a single stream.
This can be done by both the receiving or transmitting entity.

Note – Issue 7658

Note – Issue 7787

● demuxStream(in streamID : ConnectionIDType, return [1..n] : ConnectionIDType)

This operation demultiplexes a stream that is composed of multiple data
streams.

Types and Exceptions

Note – Issue 7895, fix types

● ConnectionIDType (sourceAddress: AddressType, destinationAddress: AddressType, priority: UShort,

sapAddress: SAPAddressType, linkService: LinkServiceType)

ConnectionIDType defines the parameters related to an LLC connection. This
includes the source and destination address (horizontal communication param-
eters) as well as the SAP address that the connection is bound to. Priority pa-
rameter sets the priority value if priority handling is used in the LLC.
LinkService parameter determines the type of link (connection, connectionless,
acknowledged connectionless)

dtc/2005-09-04

9.3.2 Medium Access Control Layer Facilities

250 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.3.1.4.2 ConnectionLinkComponent

Description

ConnectionLinkComponent as shown in Figure 9-74, provides functionality to control parameters that are related
to connection oriented link establishment, and management as well as enabling and disabling data streams. After
the connection is established, data can be transferred using IConnectionLink interface for connection oriented
communication scenario. This interface inherits the IQualityOfServiceConnection interface for quality of service
related facilities, IFlowControlManagement for flow control interfaces, ILocalLinkManagement for link manage-
ment tasks, IConnectionLink for managing connection oriented streams and IConcreteDataPdu for transferring
data over a stream on a frame-by-frame basis with no control information.. Every logical link is referenced by a
ConnectionID that describes the SAPs that the link is bound to. Local link management interface establishes the
links and bounds them to vertical (internal) streams. A component realizing the IConnectionLink API can have a
user role, a provider role, or both; depending on the waveform scenario. This interface encompasses all of the
possibilities

Constraints

Note – Issue 7584: Specify which interfaces are mandatory

ConnectionLinkComponent shall provide one ControlPort and at least one StreamPort.

9.3.2 Medium Access Control Layer Facilities

This section defines the MAC Layer facilities. MAC Layer provides facilities to upper layers, for both data trans-
mission and control purposes. In that manner, LLC layer, Radio resource Control (RRC) layer, and other layers
that can by-pass the waveform stack to communicate with the MAC layer. MAC layer uses the facilities offered
by the physical layer in order to perform medium access control tasks. DLPI specification, OSI reference model
X.200e, IEEE 802 series, 3GPP UMTS and GSM specifications were used when defining this interface.

The MAC Facilities define interactions between a user of the MAC layer, termed a Service User, and a MAC
layer, termed a Service Provider. The MAC Facilities declare operations that can be invoked by a Service User
on a Service Provider for pushing data or sending non-real-time control signals (for configuration purposes).
There are also callback operations that can be invoked by a Service Provider on a Service User to report event
occurrences. A MAC component communicates with a SAP in order to transfer data and control information be-
tween components within the same radio set. (Vertical communication) It also provides interfaces to communi-
cate with the remote radio set MAC layer. (Horizontal communication)

Due to the complexity and variety of waveforms, defining a single MAC API capable of satisfying all waveform
requirements would result in significant processing and memory inefficiencies. For these reasons, most of the
main MAC layer interface is defined as a bundle of building blocks as defined in the Common Layer Facilities.
Several services provided by a MAC interface is listed as follows:

● Flow control and priority queueing (from Common Layer Facilities::Flow Control Facilities)

● Quality of Service (from Common Layer Facilities::Quality of Service Facilities)

● Error Control (from Common Layer Facilities::Error Control Facilities)

● Measurement and reporting of requested traffic parameters (from Common Layer
Facilities::Measurement Facilities)

dtc/2005-09-04

 9.3.2 Medium Access Control Layer Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 251

● Handling of data and control channels

● Scheduling of transmission (Common Radio Facilities::Scheduling Facilities)

● Reordering, Assembly, Multiplexing of data

Figure 9-75 shows an example medium access layer component definition for a CDMA system. The example
CDMA parameter type is bound to the MediumAccessParameter definition.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

9.3.2.1 IMediumAccessControl

Description

The IMediumAccessControl Facility as shown in Figure 9-75 is a parameterized interface that defines operations
for activating (or selecting) a transport channel and setting the control mode of the medium access parameters.
The MediumAccessParameterType is the parameter type that is dependent on the physical medium and the mul-
tiple access mechanism. The IMediumAccessControl interface is realized by the MediumAccessController com-
ponent.

For the best software re-use practice, several facilities that are provided by a MAC component are defined as
common interfaces in the common layer facilities. Those facilities can be realized by components other than a
MAC component, and they may be used in a non-OSI specific waveform layer implementation. The IMediumAc-
cessControl interface provides extra MAC layer specific functionality.

Figure 9-75 – MAC Facilities Overview

MediumAccessContro ller
<<MediumAccessControlResource>>

IErrorControl
<<icontrol>>

IFlowControlManagement
(from Flow Control Facilit ies)

<<icontrol>>

IQualityOfService

transmitQoSParameters()
negotiateQoSParameters()

(from QoS Management Facilities)

<<icontrol>>

IMacPdu
<<idatacontrol>>

MediumAccessParameterType

IMediumAccessControl
<<configquery>> accessMethod : AccessMethodType
<<configquery>> macHeader : MediumAccessControl HeaderType
<<configquery>> linkServiceType : L inkServiceT ype
<<configquery>> desti nationType : Destinat ionT ype
<<configquery>> mediumAccessParameters : Medi umAccessParameterT ype
<<configquery>> rfPowerLevel
<<configquery>> traffi cVolumeMeasurement : bool ean
<<configquery>> dupl icateDetecti on : boolean
<<configquery>> dupl icateRecovery : boolean
<<configquery>> dataFragment : boolean
<<configquery>> dataReassembly : boolean

determi neMediumAccessParameters()
act ivateChannel()

<<icontrol>>

<MediumAccessParameterType -> CdmaParameterType

CdmaParameterType
<<configquery>> spreadingSequence : OctetSequence

<<bind>>

dtc/2005-09-04

9.3.2 Medium Access Control Layer Facilities

252 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Attributes

● <<configquery>> accessMethod: AccessMethodType

This attribute defines the access method mechanism MAC component is using.
Possible values are defined in the AccessMethodType class definition.

● <<configquery>> macHeader: MediumAccessControlHeaderType

MacHeader attribute defines the in-band control parameters that will be embed-
ded in the MAC PDU header. Possible fields are defined in the MediumAccess-
ControlHeaderType definition.

● <<configquery>> linkServiceType: LinkServiceType

This attribute provides a mechanism for setting the link service type (connec-
tionless, ack connectionless, connection oriented). LLC layer can set this pa-
rameter, and request MAC services related to the link type.

● <<configquery>> destinationType: DestinationType

This attribute determines whether the destination is a single entity (unicast),
multiple entities (multicast) or the entire network of radio sets (broadcast).

● <<configquery>> mediumAccessParameters: MediumAccessParameterType

This is an abstract definition of a mediumAccessParameter type. Implementa-
tion of this parameter is dependent upon the waveform that implements the
MAC component. It may consist of the spreading and scrambling codes on case
of WCDMA, allowed time slots for TDMA, frequency bandwidth and hop-set
for hopping FDMA, etc.

● <<configquery>> rfPowerLevel

rfPowerLevel attribute is used to get/set the RF power output level. MAC com-
ponent can communicate the RF power level to the physical layer API, if in-
structed by a higher layer component. Also in certain MAC layer specifications,
MAC layer has the ability to extract power control bits from the incoming MAC
PDU and set the RF power level accordingly.

● <<configquery>> trafficVolumeMeasurement: Boolean

This attribute specifies whether the traffic control measurement is enabled or
not. Measurement parameters are communicated to the MAC layer using the
Measurement Facilities.

● <<configquery>> duplicateDetection: Boolean

duplicateDetection attribute is used to specify whether duplicate PDU detection
is enabled in the MAC layer or not.

● <<configquery>> duplicateRecovery: Boolean

duplicateRecovery attribute is used to specify whether duplicate PDU recovery
is enabled in the MAC layer or not.

● <<configquery>> dataFragment: Boolean

dataFragment attribute is used to specify whether data fragmenting is enabled
in the transmission chain of the MAC layer or not. If data fragmenting is ena-
bled, related parameters (SDU size etc.) should be defined in the mediumAc-
cessParameters attribute.

● <<configquery>> dataReassembly: Boolean

dataReassembly attribute is used to specify whether data reassembling is ena-
bled in the reception chain of the MAC layer or not. If data reassembly is ena-
bled, related parameters (SDU size etc.) should be defined in the
mediumAccessParameters attribute.

dtc/2005-09-04

 9.3.2 Medium Access Control Layer Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 253

Associations

● serviceAccessPoint: IServiceAccessPoint[1..n]

IServiceAccessPoint is used to provide MAC service to higher waveform lay-
ers.

● measurementProvider: IMeasurement

IMeasurement interface is used by other layers in order to communicate meas-
urement requests to the MAC layer. MAC layer also uses this interface to report
measurement results.

Note – Issue 7849 - IScheduling removed

Operations

Note – Issue 7658

● determineMediumAccessParameters (return Boolean)

This operation is realized differently depending on the medium the waveform is
trying to access to. It can be the ethernet address for an ethernet type connection,
or spreading code for UMTS waveform.

Note – Issue 7658, Issue 7895, fix types

● activateChannel (in presetNum: UShort, return Boolean)

Invoked by a Service User on a Service Provider to pass the number of a select-
ed preset channel. The number refers to a preset channel such as the emergency,
guard or primary channel. If the Service Provider knows the PresetNum and
succeeds to set the corresponding channel it returns the value true, otherwise it
returns the value false.

Types and Exceptions

● <<enumeration>> DestinationType

DestinationType class defines the type of destination that is being addressed.
Possible values are:

● UNICAST: For addressing a single recipient.

● MULTICAST: For addressing multiple recipients.

● BROADCAST: For addressing entire network of possible recipients.
● AccessMethodType : String

This class is used to define the access method that the MAC layer is using. Some
possible values are: CSMACD (Carrier Sense Multiple Access / Collision De-
tect), ETHER (Ethernet), ISDN, ATM, LOOP (Software Loopback), etc. For a
full listing, see DLPI specification.

● <<abstract>> MediumAccessParameterType

Implementation of this class is dependent upon the waveform that implements
the MAC component. It may consist of the spreading and scrambling codes on
case of WCDMA, allowed time slots for TDMA, frequency bandwidth and hop-
set for hopping FDMA, etc.

dtc/2005-09-04

9.3.2 Medium Access Control Layer Facilities

254 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7586

Semantics

Transmission Security is either implemented by the LLC or the MAC.

9.3.2.2 IMacPdu

Description

IMacPdu interface, as shown in Figure 9-76, realizes the IPdu interface from the Common Layer Facilities::PDU
Facilities, by binding ControlHeaderType to MediumAccessControlHeaderType and SDUType to OctetSe-
quence.

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

Types and Exceptions

Note – Issue 7895, fix types

● MediumAccessControlHeaderType (receiverAddress : AddressType, transmitterAddress : AddressType,

CRC : OctetSequence, frameType : ULong, frameSubType : ULong, more-

Flag : Boolean, retryFlag : Boolean, powerManagementCommands : Oc-

tetSequence, privacyKey : OctetSequence)

Figure 9-76 – IMacPdu Definition

IMacPdu
(from MAC Facili ties)

<<idatacontrol>>

ControlType
SDUType

IPdu
(from PDU Facilities)

<<idatacontrol>>

<<bind>>

< ControlHeaderType -> MediumAccessControlHeaderType >
< SDUType -> OctetSequence>

dtc/2005-09-04

 9.3.2 Medium Access Control Layer Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 255

MediumAccessControlHeaderType class inherits and extends the ControlHead-
erType class as defined in the PDU Facilities. Attributes defined by this class
are:

● receiverAddress: Address information of the receiver. This field may
be different than the destionationAddress defined by the control
header, in case of retransmission/bridging of a PDU over multiple
radio sets before reaching its final destination.

● transmitterAddress: Address information for the transmitter. This field
may be different than the sourceAddress defined by the control
header, in case of retransmission/bridging of a PDU over multiple
radio sets before reaching its final destination.

● CRC: cyclic redundancy check code for error checking.

● frameType: this is an abstract definition and defines the type of frame
that is being transferred.

● frameSubType: this is an abstract definition and defines the sub-type
of frame (if exists) that is being transferred.

● moreFlag: specifies whether there is more data that will be sent as a
part of current transmission.

● retryFlag: specifies whether current packet is a retransmission or not.

● powerManagementCommands: this abstract attribute is used to convey
the power management commands to the receiver. Power management
is especially required in spread spectrum systems in order to overcome
the near/far problem.

● privacyKey: This key is used in case transmission involves security
features.

9.3.2.3 MediumAccessController Component

Description

Note – IScheduling removed

The MediumAccessController Component as shown in Figure 9-75 realizes IMediumAccessControl, IErrorCon-
trol, IFlowControlManagement, IMeasurement, IMacPdu and IQualityOfService interfaces. Any extra functional-
ity that is not defined by the interfaces from the common layer facilities package is defined by the
IMediumAccessControl interface. In order to realize IMediumAccessControl interface the implementer shall bind
a specific medium access parameter type to MediumAccessParameterType. For example, in a code division mul-
tiple access (CDMA) system, users are distinguished by their orthogonal spreading sequences, therefore the Me-
diumAccessParameterType is bound to CdmaParameterType for a CDMA MediumAccessController component
as shown in Figure 9-75. Through realizing above mentioned interfaces, this component provides operations for
activating (or selecting) a transport channel and setting the control mode of the medium access parameters. MAC
Facilities provide Service Users with methods to send non-real-time control and data between software resources
and methods to signal the Service User that an event has occurred. Real-time control and signals are communi-
cated via the packet interface. The MediumAccessControlResource is defined in the UML Profile.

dtc/2005-09-04

9.3.2 Medium Access Control Layer Facilities

256 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Constraints

Note – Issue 7584: Specify which interfaces are mandatory

MediumAccessController component shall provide one ControlPort, at least one input DataControl port and at
least one output DataControl port.

dtc/2005-09-04

 9.4 IO Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 257

IO Facilities . Page257
Serial IO Package. Page 257
Serial IO Control Interfaces . Page 258
Audio Interfaces . Page 263
Audio Control Interfaces . Page 264

9.4 IO Facilities
Inside a radioset, the IO subsystem has mission to establish bidirectional connections, termed IO channels, be-
tween a waveform stack and a physical radioset wired line. Those wired IOs may serve several purposes such as:

● connecting the radioset with a human operator through a microphone and a headset,

● linking a radioset with a Local Area Network (LAN) to provide a bridge between LAN stations and
mobile equipment,

● connecting peripheral sensors devices to the radioset,

● clustering radiosets together to offer scalable and/or fault-tolerant capabilities,

● providing a mean to upload/download software from/to the radioset.

Currently, waveforms stacks are plugged to dedicated serial lines using single or half-duplex protocols and each
additional IO physical channel require an additional physical slot (one-to-one relationship). Now, wired radiosets
can be connected to multiplexed serial lines and/or buses (Ethernet, USB) and a single physical IO slot may vir-
tually support an unlimited number of virtual channels (one-to-many relationship).

This package defines two types of IO mechanisms: Serial IO and Audio IO.

9.4.1 Serial IO Package

The Serial IO services are realized by a SerialIODeviceComponent that provides and uses the following set of in-
terfaces:

● SerialIOSignals,

● SerialIODevice

● SerialIOControl

Those interfaces are summarized on the Figure 9-77 below:

Note – Issues 7868 incomplete definitions, 7985 property stereotypes

dtc/2005-09-04

9.4.1 Serial IO Package

258 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface

9.4.1.1 Serial IO Control Interfaces

9.4.1.1.1 SerialIOControl

This interface is used for in-band control of Serial IO

Description

The SerialIOControl interface is used to control flow on customer's side.

Operations

● enableRTS_CTS (in enable : Boolean)

Enable Clear To Send (CTS) and Request To Send (RTS).
● setCTS (in cts : Boolean)

Force CTS.

Figure 9-77 – Serial IO Framework

<<controlport>>

<<controlport>>

<<dataport>>
<<dataport>>

DataOutPort
DataOutPort<<dataport>>

<<dataport>>

DataInPort
DataInPort

<<controlport>>
BufferSignalOut

Port

SerialIOControl

enableRTS_CTS()
setCTS()

<<icontrol>>

ConcreteDataPdu
(from PDU Facilities)

<<idata>>

SerialIOSignals
<<icontrol>>

FlowControlSignalling
(from Flow Control Facilities)

<<icontrol>>

<<uses>>

<<uses>>

<<uses>>

IOSignalOutPort

IOControlInPort

SerialIODevice
<<configureproperty>> characterWidth : UShort
<<queryproperty>> ctsStatus : Boolean
<<configureproperty>> flowControlXonXoff : Boolean
<<configureproperty>> hardwareFlowControl : Boolean
<<queryproperty>> maxPayloadSize : UShort
<<queryproperty>> minPayloadSize : UShort
<<configureproperty>> numberStartBits : UShort
<<configureproperty>> numberStopBits : UShort
<<configureproperty>> onThreshold : Ulong
<<configureproperty>> parityChecking : UShort
<<configureproperty>> protocol : UShort
<<configureproperty>> receiveBaudRate : ULong
<<configureproperty>> receiveBufferSize : ULong
<<configureproperty>> receiveClockSource : UShort
<<configureproperty>> receiveEncoding : UShort
<<queryproperty>> rts_cts_mode : Boolean
<<configureproperty>> transmitBaudRate : ULong
<<configureproperty>> transmitClockSource : UShort
<<configureproperty>> transmitEncoding : UShort
<<configureproperty>> txActive : Boolean

<<icontrol>>

SerialIODeviceComponent
<<characteristicproperty>> deviceType : String = SerialDevice
<<characteristicproperty>> location [0..1] : UShort
<<capacityproperty>> portsCapacity : UShort = 1

<<devicecomponent>>

dtc/2005-09-04

 9.4.1 Serial IO Package

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 259

9.4.1.1.2 SerialIOSignals

Note – Issue 7661 Lack Consistent use of SWRadio Stereotypes in Facilities interface, Issue
7868 incomplete definitions

Description

This interface is used by IO device to signal clients when RTS signal is up.

9.4.1.1.3 SerialIODevice

Description

The Serial IODevice is the control interface used for out-band control of serial lines.

Attributes

Note – Issue 7985 configure and query property stereotype
● <<configureproperty>> characterWidth : UShort

(Asynchronous protocol only) Number of bits in character (5, 6, 7, or 8).
● <<queryproperty>> ctsStatus: Boolean

Indicates the CTS status.
● <<configureproperty>> flowControlXonXoff: Boolean

Controls whether flow Control signals should be generated. True means Xon
and False means Xoff.

● <<configureproperty>> hardwareFlowControl : Boolean

To enable/disable use of RTS/CTS hardware signals used for flow control.
● <<queryproperty>> maxPayloadSize : UShort

Maximum size of payload for the pushPDU() method in ConcreteDataPDU in-
terface.

● <<queryproperty>> minPayloadSize : UShort

Minimum size of payload for the pushPDU() method in ConcreteDataPDU in-
terface.

● <<configureproperty>> numberStartBits : UShort

(Asynchronous protocol only) Number of start bits (0 or 1).

Figure 9-78 – Serial IO Signal

dtc/2005-09-04

9.4.1 Serial IO Package

260 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<configureproperty>> numberStopBits : UShort

(Asynchronous protocol only) Number of stop bits (1 or 2).
● <<configureproperty>> onThreshold : ULong

Optional, used only for receive flow control. IDLE time that Serial I/O waits
before data received through the serial port must be forwarded to the component
connected to the DataOutPort. IDLE time in number of not received characters
unit.

● <<configureproperty>> parityChecking : UShort

Type of parity checking (Even = 0, odd = 1).
● <<configureproperty>> protocol: UShort

Sets asynchronous serial data protocol (Asynchronous=0 and Synchronous =
1).

● <<configureproperty>> receiveBaudRate: ULong

Baud rate for Receive data
● <<configureproperty>> receiveBufferSize : ULong

Size of packets to buffer before any data is written to device caller.
● <<configureproperty>> receiveClockSource : UShort

Clock source for Receive data: internal Receive baud rate generator, external
clock line, and Transmit clock source, respectively. Predefined values for cod-
ing scheme are 0=Internal Receive and 1=External clock.

● <<configureproperty>> receiveEncoding : UShort

Sets the encoding method for Transmission of serial data to NRZ, NRZI Mark,
FM0, Manchester, and Differential Manchester, respectively. Predefined values
for coding scheme are 0=NRZ, 1=NRZI Mark, 2=FM0, 3=Manchester, and
4=Differential Manchester, respectively.

● <<queryproperty>> rts_cts_mode: Boolean

Retrieves the RTS/CTS mode.
● <<configureproperty>> transmitBaudRate : ULong

Baud rate for transmit data.
● <<configureproperty>> transmitClockSource : UShort

Clock source for Transmission of data: internal Transmit baud rate generator,
external clock line, Receive clock source, and clock recovery, respectively. Pre-
defined values for coding scheme are 0=Internal Receive and 1=External clock.

● <<configureproperty>> transmitEncoding : UShort

Sets the encoding method for Transmission of serial data to NRZ, NRZI Mark,
FM0, Manchester, and Differential Manchester, respectively. Predefined values
for coding scheme are 0=NRZ, 1=NRZI Mark, 2=FM0, 3=Manchester, and
4=Differential Manchester, respectively.

● <<configureproperty>> txActive : Boolean

Set if on-going transmission.

Note – Issue7868 missing definitions

9.4.1.2 SerialIODeviceComponent

Description

The <<devicecomponent>> SerialIODeviceComponent contains the basic definition, ports and properties, for a
logical serial I/O device.

dtc/2005-09-04

 9.4.1 Serial IO Package

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 261

Attributes

● <<characteristicproperty>> DeviceType : String = "SerialDevice"
Defines the type of device.

● <<capacityproperty>> portsCapacity : UShort = 1
Specifies the number of serial ports for a device.

● <<characteristicproperty>> Location : UShort [0..1]
Defines if the device is on red (unencrypted boundary) or black side (encrypt-
ed boundary) of an encryption boundary (Black/Encrypted = 0, Red/Unen-
crypted = 1).

Ports

Table 9-14 – SerialIODeviceComponent Required Ports

Table 9-15 – SerialIODeviceComponent Provided Ports

Required Port Name Required Interface Connections Purpose

DataOutPort <<idata>>
ConcreteDataPDU

SerialIODeviceComponent
can only be connected to
one component by this port

This port is used by
SerialIODeviceComponent
to connect to a component
to which data, coming from
a host connected to the
serial port, are forwarded.

BufferSignalOutPort <<icontrol>>
FlowControlSignaling
interface (SWRadio
Facilities::Common Layer
Facilities::Flow Control
Facilities)

SerialIODeviceComponent
can be connected to any
number of components by
this port

This port is used by
SerialIODeviceComponent
to connect to components in
order to notify serial data
buffer signal events.

IOSignalOutPort <<icontrol>>SerialIOSignal
s

SerialIODeviceComponent
can be connected to any
number of components by
this port

This port is used by
SerialIODeviceComponent
to connect to components in
order to notify Request To
Send (RTS) change.

TraceOutPort OMG LightWeight Log
Service

SerialIODeviceComponent
can only be connected to
one log service by this port

This port is used by
SerialIODeviceComponent
to connect to log service in
order to send log
information.

dtc/2005-09-04

9.4.1 Serial IO Package

262 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Constraints

Note – Issue 7586

● Number of Start Bits value shall be 0 or 1.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.numberStartBits in Set {0,1}

● Number of Stop Bits value shall be 1 or 2.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.numberStopBits in Set {1,2}

● Location value shall be 0 or 1.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.location in Set {0,1}

● ParityChecking value shall be 0 or 1.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.parityChecking in Set {0,1}

● Protocol value shall be 0 or 1.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.protocol in Set {0,1}

● Receive Clock Source value shall be 0 or 1.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.receiveClockSource in Set {0,1}

● Receive Encoding value shall be 0 or 1.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.receiveEncoding in Set {0,1,2,3,4}

Provided Port Name Provided Interface Purpose

DataInPort <<idata>>ConcreteDataPD
U (SWRadio
Facilities::Common Layer
Facilities::PDU Facilities)

The
SerialIODeviceComponent
provides this port so that
components can send data to
this component using this
port.

IOControlInPort SerialIOControl The
SerialIODeviceComponent
provides this port so that
clients can control RTS/
Clear To Send (CTS) signals
on the serial device.

dtc/2005-09-04

 9.4.2 Audio Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 263

● Trasnmit Clock Source value shall be 0 or 1.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.transmitClockSource in Set {0,1}

● Transmit Encoding value shall be 0 or 1.
The corresponding OCL is as follows:
context SerialIODeviceComponent
inv: self.transmitEncoding in Set {0,1}

Semantics

The SerialIODeviceComponent provides a basic standard definition of a logical serial I/O device. The <<icon-
trol>> SerialIODevice interface defines configuration and query properties based upon industry. The PropertySet
interface (UML Profile for SWRadio::Application and Device Components::Resource Components) is used to
configure and query these properties for a serial device, which can occur at initial setup of the serial I/O device
or during runtime by application using the serial device.

The SerialIODeviceComponent supports a provided port named DataInPort and a required port named DataOut-
Port, which are both based upon the same <<idata>> ConcreteDataPDU interface (SWRadio Facilities::Common
Layer Facilities::PDU Facilities).

The SerialIODeviceComponent supports RTS/CTS management by a provided port named IOControlInPort and
a required port named IOSignalOutPort.

The SerialIODeviceComponent also uses the <<icontrol>> FlowControlSignaling interface (SWRadio Facili-
ties::Common Layer Facilities::Flow Control Facilities) to indicate the serial data buffer state as follows:

● signalHighWatermark The signalHighWatermark indicates that the serial I/O data buffer is full and
that no more data can be processed until its state is changed to data buffer not
full data buffer empty.

● signalLowWatermark The signalLowWatermark indicates that the serial I/O data buffer is capable of
receiving and processing more data.

● signalEmpty The signalEmpty indicates that the serial I/O data buffer is empty and capable
of receiving and processing more data.

● signalCongestion The signalCongestion indicates that the serial I/O data buffer is full and data is
being dropped not processed.

9.4.2 Audio Interfaces

The Audio IO services are realized by a AudioIODeviceComponent that provides and uses the following set of
interfaces:

● AudioIOControl,

● AudioIODevice.

dtc/2005-09-04

9.4.2 Audio Interfaces

264 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issues 7868 incomplete definitions, 7985 property stereotypes, Issue 8205 Updated Fig-

ure Below

9.4.2.1 Audio Control Interfaces

Note – Issues 7868 missing definitions, 7868 alphabetical order and made consistent with figure

9.4.2.1.1 AudioIODevice

Description

The AudioIODevice is the control interface used to configure and control Acquisition and Restitution Audio de-
vice.

Attributes

Note – Issue 7985 configure and query property stereotyoes, Issue 8205 converted audio types
to integer types

● <<configureproperty>> bandWidth : ULong

Width of frequency band.

Figure 9-79 – Audio Framework

dtc/2005-09-04

 9.4.2 Audio Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 265

● <<configureproperty>> deltaGroupDelay : Long

Delta group delay.
● <<configureproperty>> gainControllerDynamic : Long

Define Gain
● <<configureproperty>> gainControllerStep : Long

Defines granularity of gain.
● <<configureproperty>> highBoundFrequency : UShort

High bound sampling frequency in order to satisfy the Shannon sampling crite-
rion.

● <<configureproperty>> highBoundPB : UShort

Defines the high bound rejection limit in low frequencies to avoid continuous
component (pass band).

● <<configureproperty>> highBoundRejectionGain : Long

High bound of rejection gain.
● <<configureproperty>> highBoundRejectionSlope : Long

High bound of rejection slope.
● <<configureproperty>> highBoundTransitionBand : ULong

High bound of transition band.
● <<configureproperty>> levelAdjustmentDynamic : Long

capability of the gain.
● <<configureproperty>> levelAdjustmentStep : Long

granularity of the gain.
● <<configureproperty>> lowBoundFrequency : UShort

Low bound sampling frequency in order to satisfy the Shannon sampling crite-
rion.

● <<configureproperty>> lowBoundPB : UShort

Defines the low bound rejection limit in low frequencies to avoid continuous
component (pass band).

● <<configureproperty>> lowBoundRejectionGain : Long

Low bound of rejection gain.
● <<configureproperty>> lowBoundRejectionSlope : Long

Low bound of rejection slope.
● <<configureproperty>> lowBoundTransitionBand : ULong

Low bound of transition band.
● <<configureproperty>> maxLatency : Long

Maximum allowed latency.
● <<configureproperty>> maxNominalLevel : Long

Defines maximum bound of nominal level.
● <<configureproperty>> minNominalLevel : Long

Defines minimal bound of nominal level.
● <<configureproperty>> nominalLevel : Long

Defines the instruction for output analog signal nominal level.
● <<configureproperty>> NoiseFloor : Long

Defines the level of noise (assumed white) present in audio frequency samples
as inputting inside (resp. being output from) Audio. Expressed in dBFS/Hz.
Possible spurious are integrated in this value.

● <<configureproperty>> QuantificationNoiseFloor : Long

Defines the level of quantification noise present in digital samples as inputting
inside (resp. being output from) ADC. Expressed in dBFS.

● <<configureproperty>> ripple : Long

Ripple

dtc/2005-09-04

9.4.2 Audio Interfaces

266 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<configureproperty>> SamplingFrequency : UShort

Defines the sampling frequency of the audio frequency signal.
● <<configureproperty>> saturationMerge : Long

Avoid gain saturation (in dBfs).
● <<configureproperty>> SignalDynamic : Long

Expresses the expected variations of signal magnitude around the nominal level.

Note – Issue 7868 Missing Definitions

9.4.2.1.2 PTTSignals

Description

This interface is used by audio IO device to signal clients when Pushed-To-Talk (PTT) is pushed or released.

Figure 9-80 – PTTSignals

9.4.2.2 AudiolIODeviceComponent

Description

The <<devicecomponent>> AudioIODeviceComponent contains the basic definition, ports and properties, for a
logical audio I/O device.

Attributes

● <<characteristicproperty>> DeviceType : String = "AudioDevice"
Defines the type of device.

● <<capacityproperty>> portsCapacity : UShort = 1
Specifies the number of audio ports for a device.

● <<characteristicproperty>> Location : UShort [0..1]
Defines if the device is on red (unencrypted boundary) or black side (encrypt-
ed boundary) of an encryption boundary (Black/Encrypted = 0, Red/Unen-
crypted = 1).

dtc/2005-09-04

 9.4.2 Audio Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 267

Ports

Table 9-16 – - AudioIODeviceComponent Required Ports

Table 9-17 – AudioIODeviceComponent Provided Ports

Semantics

The AudioIODeviceComponent provides a basic standard definition of a logical Audio I/O device. The <<icon-
trol>> AudioIODevice interface defines configuration and query properties based upon industry. The PropertySet
interface (UML Profile for SWRadio::Application and Device Components::Resource Components) is used to
configure and query these properties for a Audio device, which can occur at initial setup of the Audio I/O device
or during runtime by application using the Audio device.

Required Port Name Required Interface Connections Purpose

DataOutPort <<idata>>
ConcreteDataPDU
(SWRadio
Facilities::Common Layer
Facilities::PDU Facilities)

AudioIODeviceComponent
can only be connected to
one component by this port

This port is used by
AudioIODeviceComponent
to connect to a component
to which data, coming from
a host connected to the
audio port, are forwarded.

BufferSignalOutPort <<icontrol>>
FlowControlSignaling
interface (SWRadio
Facilities::Common Layer
Facilities::Flow Control
Facilities)

SerialIODeviceComponent
can be connected to any
number of components by
this port

This port is used by
AudioIODeviceComponent
to connect to components in
order to notify audio data
buffer signal events.

PTTSignalOutPort <<icontrol>>PTTSignals AudioIODeviceComponent
can be connected to any
number of components by
this port

This port is used by
AudioIODeviceComponent
to connect to components in
order to notify Push To Talk
(PTT) change.

TraceOutPort OMG LightWeight Log
Service

AudioIODeviceComponent
can only be connected to
one log service by this port

This port is used by
AudioIODeviceComponent
to connect to log service in
order to send log
information.

Provided Port Name Provided Interface Purpose

DataInPort <<idata>>ConcreteDataPD
U (SWRadio
Facilities::Common Layer
Facilities::PDU Facilities)

The
AudioIODeviceComponent
provides this port so that
components can send data to
this component using this
port.

dtc/2005-09-04

9.4.3 IOSignals

268 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The AudioIODeviceComponent supports a provided port named DataInPort and a required port named DataOut-
Port, which are both based upon the same <<idata>> ConcreteDataPDU interface (SWRadio Facilities::Common
Layer Facilities::PDU Facilities).

The AudioIODeviceComponent supports PTT management by a required port named IOSignalOutPort.

The AudioIODeviceComponent also uses the <<icontrol>> FlowControlSignaling interface (SWRadio Facili-
ties::Common Layer Facilities::Flow Control Facilities) to indicate the Audio data buffer state as follows:
● signalHighWatermark The signalHighWatermark indicates that the serial I/O data buffer is full and

that no more data can be processed until its state is changed to data buffer not
full data buffer empty.

● signalLowWatermark The signalLowWatermark indicates that the serial I/O data buffer is capable of
receiving and processing more data.

● signalEmpty The signalEmpty indicates that the serial I/O data buffer is empty and capable
of receiving and processing more data.

● signalCongestion The signalCongestion indicates that the serial I/O data buffer is full and data is
being dropped not processed.

9.4.3 IOSignals

Description

This interface is used by IO device to signal clients when a request to send data condition has occurred.

Operations

● ·<<oneway>> signalRTS (in rts: Boolean):The signalRTS operation indicates whether a request to send data condi-
tion exists. True means the condition does exist to send data. False means the
condition does not exist for sending data.

dtc/2005-09-04

 9.5 Physical Layer Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 269

Physical Layer Facilities . Page269
Data Transfer . Page 269
Control . Page 269
Modem Facilities . Page 270
RF/IF Facilities . Page 276

Note – Issue 7985: replace configquery with configureproperty stereotype replace query with
queryproperty stereotype throughout Physical Facilities

9.5 Physical Layer Facilities

Note – Issue 7656 Typos and Acronyms

According to Open System Interconnection (OSI) model, the purpose of the physical layer is “…provides the me-
chanical, electrical, functional and procedural means to activate, maintain, and de-activate physical-connections
for bit transmission between data-link-entities 4’’. It is the stated goal of the physical layer facilities to provide
the necessary interfaces required to implement the functionality specified by the OSI physical layer. Due to the
proposed facilities partitioning, interfaces in the Common Layer Facilities and in the Common Radio Facilities
may be required to achieve this objective. Depending on waveform complexity, interfaces defined in this package
may have to be combined with higher layer facilities such as the Data Link Layer Facilities. Various types of
components, such as resources or devices, can implement an interface. As with all other interfaces, this specifi-
cation does not restrict a particular implementation. Finally although the Physical Layer Facilities were designed
with the OSI model as framework, it does not impose such a layering on any waveform implementation.

The approach supporting this specification separates the interfaces required to implement the physical layer into
two sets of facilities. The data flow facilities, which are common to many layers, and the setup and control facil-
ities that are specific to the physical layer.

Like in the communication equipment package, the Physical Layer Facilities provide the required interfaces to
interact with both the subscriber-side and RF-side of the radio. Protocol specific combination, like Ethernet,
USB, RS232, GSM, CDMA2000, Bluetooth etc. can be build using the facilities presented here in conjunction
with the other higher layer services.

9.5.1 Data Transfer

The data transfer services required by the physical layer are provided via the Common Layer Facilities. A phys-
ical layer component must realize data transfer interfaces to communicate with the upper OSI layers.

9.5.2 Control

The Physical Layer Facilities package contains interfaces used to configure and control components performing
the physical layer functions of a waveform. Interfaces are defined using high-level concepts. This degree of ab-
straction enables waveform developers to create waveform applications while abstracting away many of the low-
level details of the supporting platform. This increases the ease and speed at which waveform applications can be
developed.

Note – Issue 7656 Typos & Acronyms

4.ITU-T Recommendation X.200 p.49

dtc/2005-09-04

9.5.2 Control

270 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Two functionally separate facilities are part of the Physical Layer Facilities. The first set of facilities is responsi-
ble for modem operation. The modem includes all signal processing components involved in the translation of
bits into symbols and vice-versa. In this context, bits are composed of data and any and all overhead information.
Symbols are defined as the points of any n dimensional constellation. This definition applies on both the sub-
scriber-side and the RF-side. Common subscriber-side modulations include Manchester, Non-Return to Zero
(NRZ), Non-Return to Zero Inverted (NRZI), Return-to Zero (RZ) etc. Common RF-side modulations include
Amplitude Modulation (AM), Frequency Modulation (FM), Quadriture Amplitude Modulation (QAM), Phase
Shift Keying (PSK), Continuous Phase Modulation (CPM) etc. Channel coding also equally applies to both sides.

The second set of facilities is used to control the basic devices of the channel adaptation chain. This is called the
Radio Frequency/Intermediate Frequency (RF/IF) chain. The chain's purpose it to adapt the symbol stream to the
transmission channel by adjusting the frequency response, power, and centre frequency of the signal. In subscrib-
er-side applications this may translate in adjusting the pitch, doing echo cancellation, and setting the volume. On
the subscriber-side the center frequency is Direct Current (DC) or 'close' to DC. On the RF-side this can be pulse
shaping, equalization and power control. On the RF-side the center frequency is normally not DC.

9.5.2.1 Modem Facilities

The modem facilities include all digital signal processing elements required to convert bits into symbols and vice
versa. None of these elements perform pulse shaping or any filtering required to meet the mask. In addition, they
do not perform equalization or any other form of channel estimation. These functions are view as part of the
RF/IF facilities described in the Section 9.5.2.2.

Note – Issue 7656

The modem is not concerned with the functionalities of the Medium Access Control (MAC) layer. It will, in
some cases (CDMA), provide services (i.e. PN sequence generator), which can be used by the various MACs to
achieve their objectives.

The modem should have the facilities to implement all of today's baseband and passband digital modulation
schemes: RZ, NRZ, Manchester, Direct sequence spread spectrum, QAM, PSK, Frequency Shift Keying (FSK),
Amplitude Shift Keying (ASK), CPM, Gaussian Minimum Shift Keying (GMSK), Orthogonal Frequency Divi-
sion Multiplex (OFDM), and Multiple-Input/Multiple-Output (MIMO) as well as digitally represented analog
modulation schemes: Amplitude Modulation (AM), Frequency Modulation (FM), and Phase Modulation (PM).
The preceding list is not exhaustive and is not indented to limit the scope of the modem functionality.

The modem facilities include more than just simple modulation; they also provide support for Forward Error
Correction (FEC), differential encoding, interleaving, direct sequence spreading, scrambling, and Fourier Trans-
forms. In the implementation of a particular modulation scheme, some or even all of these interfaces may be re-
quired. Furthermore, the order is flexible. For example, Trellis Coded Modulation (TCM) is viewed as a special
arrangement of modulation and FEC.

dtc/2005-09-04

 9.5.2 Control

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 271

.

Figure 9-81 – Modem Facilities Overview

IBlockInterleaver
<<icontrol>>

IChannelCoding
<<icontrol>>

IConvolutionalInterleaver
<<icontrol>>

IHelicalInterleaver
<<icontrol>>

IMapper
<<icontrol>>

IPNSequenceGenerator
<<icontrol>>

ISourceCoding
<<icontrol>>

ITransform
<<icontrol>>

MapperDevice
<<resourcecomponent>>

ChannelCoderDevice
<<resourcecomponent>>

ModemComponent
<<resourcecomponent>>

SourceCoderDevice
<<resourcecomponent>>

BlockInterleaverDevice
<<resourcecomponent>>

HelicalInterleaverDevice
<<resourcecomponent>>

ConvolutionalInterleaverDevice
<<resourcecomponent>>

PNSequenceGeneratorDevice
<<resourcecomponent>>

TransformDevice
<<resourcecomponent>>

ILatency
<<icontrol>>

dtc/2005-09-04

9.5.2 Control

272 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.5.2.1.1 ModemComponent

Description

The ModemComponent component is an abstract component that realizes the ILatency interface. All components
in the modem facilities inherit from this component. Components are stereotyped as <<resourcecomponent>> to
indicate that they could either be implemented purely in software or in hardware via a <<devicecomponent>>
component.

Note – Issue 7584 - Specify which interfaces are mandatory

Constraints

Note – Issue 7586

ModemComponent shall provide one ControlPort and at least one DataControlPort or DataPort.

9.5.2.1.2 ILatency

Description

The ILatency interface is used for specifying the processing latency of all digital signal processing components.

Attributes

● <<querypropoerty>>processingLatency: Seconds

The processingLatency attribute represents the time it takes for an input data el-
ement to be carried out to the output of the component.

9.5.2.1.3 IBlockInterleaver

Description

This interface is used to control a block interleaver / deinterleaver. An interleaver permutes the incoming bit
stream. It does not change the bit rate. Interleavers can be found after any component of the modulation chain.
This can be at the input, after forward error correction, spreading, mapping, and even after having applied a
transformation.

Attributes

Note – Issue 7895, fix types

● <<configureproperty>>columns: UShort

The columns attribute is the number of columns of the block interleaver.
● <<configureproperty>>rows: UShort

The rows attribute is the number of rows of the block interleaver.

dtc/2005-09-04

 9.5.2 Control

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 273

9.5.2.1.4 IConvolutionalInterleaver

Description

This interface is used to control a convolutional interleaver / deinterleaver. An interleaver permutes the incoming
bit stream. It does not change the bit rate. Interleavers can be found after any component of the modulation
chain. This can be at the input, after forward error correction, spreading, mapping, and even after having applied
a transformation.

Attributes

Note – Issue 7895, fix types

● <<configureproperty>>delays: UShort [1..*]

The delays attribute is the delays applied by the convolutional interleaver to the
bit stream.

9.5.2.1.5 IHelicalInterleaver

Description

This interface is used to control a helical interleaver / deinterleaver. An interleaver permutes the incoming bit
stream. It does not change the bit rate. Interleavers can be found after any component of the modulation chain.
This can be at the input, after forward error correction, spreading, mapping, and even after having applied a
transformation.

Attributes

Note – Issue 7895, fix types

● <<configureproperty>>columns: UShort

The columns attribute is the number of columns of the helical interleaver.
● <<configureproperty>>groupSize: UShort

The groupSize attribute is the size of each group of input symbols.
● <<configureproperty>>stepSize: UShort

The stepSize attribute is the number of rows between consecutive input groups
in their respective columns.

9.5.2.1.6 IMapper

Description

This interface is used to control a mapper. The mapper executes the transformation from bits, coded or not, to
symbols. This transformation can be described completely by a mathematical expression relating the bit input
pattern to the corresponding output symbol. It is important to note the units representing the location of the out-
put symbols need not always be amplitudes e.g. (X, Y) coordinates. For example, an FSK mapper would have
frequencies as output.

The output of the mapper is at the baud rate.

Attributes

Note – Issue 7895, fix types

dtc/2005-09-04

9.5.2 Control

274 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● <<configureproperty>>baudRate: UShort

The baudRate attribute represents the current baud rate.
● <<configureproperty>>constellation: String

The constellation attribute is the constellation type used by the mapper.
● <<configureproperty>>bitPatternMapping: BitsToSymbolsMapping [1..*]

The bitPatternMapping attribute represents the actual definition of the constel-
lation. Each input bit pattern is mapped to one or more dimensional quantities.

Types and Exceptions

Note – Issue 7895, fix types

● BitsToSymbolsMapping (bitPattern: ULong,dimensions: UShort [1..*])

bitPattern: The actual bit pattern as an UShort.
dimensions: The quantity to which the bit pattern is mapped.

9.5.2.1.7 IPNSequenceGenerator

Description

This interface is used to control a Pseudo Noise (PN) Sequence Generator. PN sequences are commonly used in
scramblers, spreaders and data sources. The output rate of the PN sequence will be called chip rate. Note that
when used as a scrambler, the chip rate matches the data rate + overhead rate, when used as a data source, then
it is simply the data rate.

The interface assumes that the PN sequence generated multiplies another incoming 'data' stream to produce the
output 'data' stream.

There are many techniques used to generate PN sequences. Much like interleavers, each technique has its own
mathematical description method. The generic formula for describing a random sequence generator is5:

Note – Issue 7656 (formula above)

Attributes

Note – Issue 7895, fix types

● <<configureproperty>>chipRate: Float

The chipRate attribute represents the rate of encoding of the spreader. In other
words, the chip rate is the rate at which the information bits are transmitted as a
pseudo-random sequence of chips.

Xn = (a1Xn-1
j1 + a2Xn-2

j2 …+ akXn-k
jk) mod m

Figure 9-82 – Sequence number generator formula

5.Knuth, Donald E., The Art of Computer Programming, Volume 2

dtc/2005-09-04

 9.5.2 Control

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 275

● <<configureproperty>>polynomial: Polynomial [1..*]

The polynomial attribute is the polynomial used to generate the pseudo-random
sequence.

Note – Issue 7895, fix types

● <<configureproperty>>modulus: UShort

The modulus attribute represents the value by which the polynomial is divided
i.e. m in Figure 9-82 - Sequence number generator formula.

● <<configureproperty>>seed: ULongLong

The seed attribute is the first value (X0) used to calculate the remaining pseudo-
random sequence.

Types and Exceptions

Note – Issue 7895, fix types

● Polynomial (multiplier: ULongLong, exponent: ULongLong)

(refer to Figure 9-82 - Sequence number generator formula)
multiplier: a
exponent: j

9.5.2.1.8 ITransform

Description

Note – Issue 7656

This interface is used to control the transform. The transformations included at this point are Fast Fourier Trans-
form (FFT) and Inverse Fourier TRansform (IFFT). These transformations are commonly used for the generation
and reception of OFDM and Coded OFDM (COFDM) waveforms as well as for frequency domain filtering.

Attributes

Note – Issue 7895, fix types

● <<configureproperty>>blockSize: ULong

The blockSize attribute is the block size used by the transform.
● <<configureproperty>>transform: TransformType

The transform type attribute indicates which type of transform is performed by
the implementation.

Note – Issue 7895, fix types

● <<configureproperty>>overlap: ULong

The overlap attribute is the amount of overlap of the transform in number of
points.

Types and Exceptions

● <<enumeration>>TransformType (FFT, IFFT, OTHER)

FFT: Fast Fourier Transform
IFFT: Inverse Fast Fourier Transform

dtc/2005-09-04

9.5.2 Control

276 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.5.2.1.9 IChannelCoding

Description

This interface is used to represent a channel coder or decoder. A coder applies some transformation on the in-
coming data. Common examples of coders are differential encoders, and Forward Error Correction (FEC) encod-
ers. Decoders reverse the transformation. The output of the coder is a coded sequence. In differential encoders
the output rate is usually the same as in input rate where as in FEC coders, the output rate is higher than the input
rate. The code rate is the ratio of the input rate over the output rate.

Channel coders and decoders have very different structures and mathematical formulas that describe them. Due
to these differences, the interface provided here is not sufficient for a waveform developer. The goal of the inter-
face is to provide system simulator with the minimum number of parameters to be able to model the communi-
cation path.

Attributes

Note – Issue 7895, fix types

● <<configureproperty>>codeRate: Float

The code rate attribute, R, represents the ratio of the input rate, N, over the out-
put rate K. R = N / K.

9.5.2.1.10 ISourceCoding

Description

This interface is used to control a source coder or decoder. Source coding essentially represents the compression
of input data for better efficiency during transmission.

Source coders and decoders have very different structures and mathematical formulas that describe them. Due to
these differences, the interface provided here is not sufficient for a waveform developer. The goal of the interface
is to provide system simulator with the minimum number of parameters to be able to model the communication
path.

Attributes

Note – Issue 7895, fix types

● <<configureproperty>>codeRate: Float

The code rate attribute, R, represents the ratio of the input rate, N, over the out-
put rate K. R = N / K.

9.5.2.2 RF/IF Facilities

The RF/IF Facility is used to configure and control the basic devices of the communication channel. The granu-
larity at which these interfaces are implemented is not specified. For example, at the highest granularity level, the
IFrequencyResponse interface can be implemented by a single component for the whole communication channel.
The underlying API implementation could then break-up the frequency parameter into smaller frequency re-
sponses for configuring individual devices. The waveform application is unaware of the individual devices that
make up the communication channel. The interaction point between the waveform and the platform is via this
single interface. On the other hand, at the lowest granularity, each device that makes up the communication chan-

dtc/2005-09-04

 9.5.2 Control

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 277

nel could implement the interface. In this case, the waveform could elect to configure each device with the cor-
rect frequency response. These design choices are left to the implementer. The same scenario could be applied to
all interface defined in this package.

The components of the RF/IF Facilities maps to the concepts defined in the CommEquipment package. Compo-
nents stereotyped as <<resourcecomponent>> indicates that they are either implemented in software or via hard-
ware devices. Components stereotyped as <<devicecomponent>> indicates that they are implemented via
hardware devices.

.

.

Figure 9-83 – RequiredTypes

dtc/2005-09-04

9.5.2 Control

278 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

.

9.5.2.2.1 RFIFComponent

Description

The RFIFComponent component is an abstract component that realizes the IFrequencyResponse interface. All
components in the RF/IF Facilities inherit from this component.

Note – Issue 7584 - Specify which interfaces are mandatory

Figure 9-84 – RF/IF Facilities Overview

AmplifierDevice
<<devicecomponent>>

FilterDevice
<<resourcecomponent>>

AntennaDevice
<<devicecomponent>>

FrequencyConverterDevice
<<devicecomponent>>

DigitalConverterDevice
<<devicecomponent>>

HoppingFrequencyConverterDevice
<<devicecomponent>>

IAveragePower
<<iconfiguration>>

IPolarization
<<icontrol>>

IRadiationPattern
<<icontrol>>

IFrequencyConverter
<<icontrol>>

ISampleRate
<<icontrol>>

SwitchDevice
<<devicecomponent>>

ISwitch
<<icontrol>>

RFIFComponent
<<resourceomponent>>

IHoppingFrequencyConverter
<<icontrol>>

IFrequencyResponse
<<icontrol>>

dtc/2005-09-04

 9.5.2 Control

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 279

Constraints

Note – Issue 7586

RFIFComponent shall provide one ControlPort and at least one DataControlPort or DataPort.

9.5.2.2.2 IFrequencyResponse

Description

This interface is used to configure the frequency response of a specific component. There are multiple ways of
specifying the frequency response. For example, a 1-point frequency response could indicate the 3 dB cut-off of
a symmetric spectrum. A 2-point frequency response could be the upper and lower 3 dB cut-off locations for a
non-symmetric spectrum. The number of points, the location of the points, and the attenuation and / or phase
vary from filter to filter. In some cases, it is the pass band of the filter which is critical while in others it is the
stop band. It is left to the designer to specify the key points of each filter with the degree of precision required.

Examples of components whose frequency response could be set with this API are pulse shaping filters and
equalizers.

Attributes

● <<configureproperty>>frequencyResponse: FrequencyResponsePoint [1..*]

The frequencyResponse attribute is the frequency response of the device. The
frequency response specified is centered at 0 Hz.

● <<configureproperty>>tunedFrequency: Hertz

The tunedFrequency attribute is the frequency at which the frequency response
is centered.

Types and Exceptions

● FrequencyResponsePoint (frequency: Hertz, amplitude: dB, phase: Degrees)

A frequency response is the relation between signal amplitude or gain with fre-
quency. A frequency response with only one point represents a single-sided 3
dB bandwidth. A frequency response with more than one point is an arbitrary
frequency response with an arbitrary resolution. A given frequency response
has 0 dB gain and is centered at 0 Hz (it does not have to be symmetric).

● Hertz

Hertz, a specialization of Double, denotes the number of cycles per second of a
given signal.

Note – Issue 7895, fix types

● Degrees

Degrees, a specializtion of Float, notes a degree value.
● dB

dB, a specialization of Float, denotes the ratio between two voltage, current, or
signal power levels.

dtc/2005-09-04

9.5.2 Control

280 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.5.2.2.3 IRadiationPattern

Description

This interface is used to configure and/or control the radiation pattern of an antenna. The radiation pattern of an
antenna is usually represented by the azimuth plane and elevation plane plots. The radiation pattern is represent-
ed with respect to the True North (0 degree) and 0 degree elevation. The orientation of the antenna is also repre-
sented with those same measurements.

Attributes

● <<configureproperty>>radiationPattern: RadiationPattern

The radiationPattern attribute represents the radiation pattern of the device.
● <<configureproperty>>patternOrientation: PatternOrientation

The patternOrientation attribute is the actual pattern orientation, which is repre-
sented by an azimuth angle and an elevation angle. The antenna can be moved
without having to change the radiation pattern.

Types and Exceptions

● RadiationPattern (azimuthPlane: RadiationPatternPoint [0..*],

elevationPlane: RadiationPatternPoint [0..*])

Field intensity variation of an antenna as an angular function with respect to the
azimuth and elevation axis.

● RadiationPatternPoint (gain: dB, angle: Degrees)

A single point in the radiation pattern is made of a gain value and an angle value.
● PatternOrientation (elevation: Degrees, azimuth: Degrees)

The pattern orientation is represented by an elevation angle which gives the ver-
tical orientation and an azimuth angle which gives the horizontal orientation.

Note – Issue 7895, fix types

● Degrees

Degrees, a specializtion of Float, notes a degree value.

9.5.2.2.4 IPolarization

Description

This interface is used to configure and / or control the polarization parameters of an antenna.

Attributes

● <<configureproperty>>orientation: PolarizationKind

The orientation attribute represents the polarization of the antenna.

Note – Issue 7895, fix types

● <<configureproperty>>ellipticity: Float

The ellipticity attribute is the ratio between the minor and major axis of the el-
lipse. In the case of right hand or left hand circular. If the ellipticity is 1, this
means that the polarization is a perfect circle.

dtc/2005-09-04

 9.5.2 Control

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 281

Types and Exceptions

● <<enumeration>>PolarizationKind (VERTICAL, HORIZONTAL, RIGHT_CIRCULAR_POLARIZE,

LEFT_CIRCULAR_POLARIZE)

The orientation of the RF energy radiated from the device.

9.5.2.2.5 IFrequencyConverter

Description

This interface is used to configure and / or control a frequency converter. The frequency converter can either be
an up converter or a down converter.

Attributes

● <<configureproperty>>nextInputFrequency: Hertz

The nextInputFrequency attribute is the input frequency that the device will se-
lect after the next triggering event. This attribute is used for instantaneous fre-
quency changes. Typically in the context of frequency hoping and frequency
scanning algorithms.

● <<configureproperty>>nextOutputFrequency: Hertz

The nextOutputFrequency attribute is the output frequency that the device will
select after the next triggering event. This attribute is used for instantaneous fre-
quency changes. Typically in the context of frequency hoping and frequency
scanning algorithms.

● <<configureproperty>>currentInputFrequency: Hertz

The currentInputFrequency attribute is the frequency of the signal currently at
the input of the device.

● <<configureproperty>>currentOutputFrequency: Hertz

The currentOutputFrequency attribute is the frequency of the signal currently at
the output of the device,

Types and Exceptions

● Hertz

Hertz, a specialization of Double, denotes the number of cycles per second of a
given signal.

9.5.2.2.6 ISampleRate

Description

This interface is used to configure and /or control the sample rate of a specific device. Typically, the device is ei-
ther an analog to digital converter (ADC) or a digital to analog converter (DAC.)

Attributes

● <<configureproperty>>sampleRate: Hertz

The sampleRate attribute represents the number of samples the device takes per
second.

dtc/2005-09-04

9.5.2 Control

282 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Types and Exceptions

● Hertz

Hertz, a specialization of Double, denotes the number of cycles per second of a
given signal.

9.5.2.2.7 IAveragePower

Description

Note – Issue 7656

This interface is used to configure and / or control the power of a specific device. Typically, the device will be
either the power amplifier or a variable gain amplifier used as part of an Automatic Gain Control (AGC) loop.
Note that it is assumed that all other devices are average power neutral (i.e. they have a gain of 0 dB.)

Attributes

Note – Issue 7895 - Changed unit from dBW to Power

● <<configureproperty>>averagePower: Power

The averagePower attribute represents the average power of the device.

9.5.2.2.8 ISwitch

Description

This interface is used to control a switch device. A switch simply connects ports together. Although the ports of
the switch are considered to be bidirectional, the physical hardware used may only support unidirectional com-
munications. The interface permits one to none, one to one, and one to many interconnection schemes. In the
case of one to many, it is preferable to consider the links as unidirectional only because no rules are given for
conflict resolution.

Attributes

Note – Issue 7895, fix types

● <<configureproperty>>numberOfPorts: UShort

The numberOfPorts attribute represents the number of ports of the switch.
● <<configureproperty>>switchSetting: SwitchMapping [0..*]

The switchSetting attribute represents the current configuration of the switch
(i.e. which ports are connected together).

Types and Exceptions

Note – Issue 7895, fix types

● SwitchMapping (inputPortNumber: UShort, outputPortNumber: UShort)

A SwitchMapping is the association of an input port with an output port. Thus
creating a connection inside the switch.

dtc/2005-09-04

 9.6 Radio Control Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 283

Radio Control Facilities . Page283
Radio Set Facilities . Page 283
CommChannel . Page 284
ChannelFactory . Page 285
ManagedCommChannel. Page 286
ManagedRadioManager . Page 287
ManagedSecureCommChannel. Page 288
ManagedSecureRtadioManager . Page 289
RadioManager . Page 289
SecureRadioManager. Page 289
SecureCommChannel . Page 290
WaveformCommChannel . Page 290
WaveformInstantiation. Page 290
XmitControl . Page 291
ZeroizeControl . Page 291

9.6 Radio Control Facilities
This section defines the facilities for radio control. Radio Control Facilities consist of facilities that are used to
manage the control of a RadioSet such as audio alarms, Radio Set configuration, and Radio Set channel manage-
ment. Only Radio Set channel facilities, in the section below, are defined for Radio Control Facilities.

9.6.1 Radio Set Facilities

This section defines the facilities for RadioSet channel management as depicted in Figure 9-85. The facilities de-
fined for a RadioSet extends the component definitions as defined in the UML Profile for SWRadio::Infrastruc-
ture::Radio Management. The types of facilities offered by RadioSet are as follows:

1. Zeroize Control - provides the mechanism for zeroizing the RadioSet's classified or secure
information.

2. Transmission Control - provides the mechanism for the controlling the transmission of the RadioSet's
transmission or communication channel.

3. Communication Channel Control - provides the mechanism for managing a RadioSet's
communication channel (unmanaged, managed, secure, and managed secure).

4. ChannelFactory - provides the mechanism for creating a communication channel.

5. RadioSet Control - provides the mechanism for managing a RadioSet (unmanaged, managed, secure,
and managed secure).

6. Waveform Instantiation - provides the mechanism of instantiation a waveform on a channel.

Note – Issues 7959 and 7985, updated figure

dtc/2005-09-04

9.6.1 Radio Set Facilities

284 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7895, fix types

9.6.1.1 CommChannel

Description

The <<commchannel>> CommChannel component takes on the definition as described in the UML Profile for
SWRadio::Infrastructure::Radio Management in addition to the interfaces realized by this component and pro-
vides additional attributes and operations.

Attributes

Note – Issue 7985 stereotype name

● <<readonlyonly>>channelDevices : DeviceSequence

The channelDevices attribute contains the devices associated with this Com-

Figure 9-85 – Radio Set Facilities Overview

CommChannel
<<readonly>> instantiatedWF : WaveformCommChannel
<<readonly>> channelDevices : DeviceSequence
<<queryproperty>> channelMode : Ushort
<<queryproperty>> staticChannel : Boolean
<<readonly>> keyProperties : Properties [*]

releaseChannel()

<<commchannel>>

T estableObject
(f rom Resource Componen...)

<<interface>>

Zeroize Co nt rol
<<queryproperty>> zeroized : Boolean

zeroize()

<<ico ntrol>>

Xmi tContro l
<<configureproperty>> xm itInhibi t : Boolean

<<icontrol>>

PropertySet
(f rom Resource Components.. .)

<<interface>>

ComponentIdenti fier
(f ro m Resource Components Inter f aces)

<<interface>>

Ma na ged Co mmC han ne l
<<managedservicecompone nt>>

Waveform Instantiation

instantia te Wave form ()

<<icontrol>>

RadioManager
< <rea don ly>> av ai lableWaveforms : St ring Sequ ence
< <rea don ly>> co mmChan nels : C ommCha nn el [*]

<<radiomanager>>

ManagedRadioManager
<<m ana gedservicec ompo ne nt>> SecureCommCh annel

<<co mch ann el >>

Mana ge dSercureCom mCh ann el
<<commchannel>>

SecureRadioManager
<<radiomanager>>

ZeroizeControl
<<queryproperty>> zeroized : Boolean

zeroize()

<<icontrol>>

Ma na ged Se cure Ra di oMa nag er
< <radio manage r>>

WaveformCommChannel
<<readonly>> in sta ntiatedCommChannel : CommChannel

<<a pp li ca ti on man age r>>

ChannelFactory

createChannel()

<<icontrol>>

dtc/2005-09-04

 9.6.1 Radio Set Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 285

mChannel. The devices could vary depending on the type of channel (static or
not) and if instantiated.

Note – Issue 7895 - fix types

● <<queryproperty>>channelMode: Ushort

The channelMode attribute indicates the capability of the channel. The values
for channelMode are:
1 means FULL_DUPLEX
2 means RECEPTION_ONLY (half duplex)
3 means XMIT_ONLY (half duplex)

● <<readonly>>keyProperties: Properties

The keyProperties attribute contains information about each key associated with
the channel.

● <<readonly>>instantiatedWF: WaveformCommChannel

The instantiatedWF attribute contains the deployed waveform application asso-
ciated with the instantiated channel. The instantiatedWF is a nil reference when
the channel is not instantiated.

● <<queryproperty>>staticChannel: Boolean

The staticChannel attribute indicates if the channel is static. A static channel
means the channelDevices does not change and the communication path from
baseband I/O to antenna is completely defined.

Operations

● releaseChannel(): {raises = (releaseError)}

The releaseChannel operation provides the mechanism of uninstantiating the
channel. The releaseChannel operation shall remove the deployed waveform as
specified in the instantiatedWF attribute from the channel. The releaseChannel
operation shall destroy the deployed waveform as specified in the instantiated-
WF attribute. The releaseChannel operation shall raise the ReleaseError excep-
tion when the channel cannot be successfully released due to internal processing
error(s).

Types and Exceptions

● <<exception>>ReleaseError

The ReleaseError exception, specialization of SystemException, is raised when
the releaseChannel operation is unsuccessfully due to internal processing errors.
The error number indicates an ErrorNumberType value (e.g., E2BIG, ENAM-
ETOOLONG, ENFILE, ENODEV, ENOENT, ENOEXEC, ENOMEM,
ENOTDIR, ENXIO, EPERM). The message is component-dependent, provid-
ing additional information describing the reason for the error.

9.6.1.2 ChannelFactory

Description

The ChannelFactory interface provides the mechanisms for creating a communication channel.

dtc/2005-09-04

9.6.1 Radio Set Facilities

286 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Operations

● createChannel(in channelProperties: in Properties, return CommChannel): {raises = (CreateError,

InvalidChannelProperties}

The createChannel operation creates a channel based upon the input channel
properties. parameter.

Types and Exceptions

● <<exception>>CreateError

The CreateError exception, specialization of SystemException, is raised when
the createChannel operation is unsuccessfully due to internal processing errors.
The error number indicates an ErrorNumberType value (e.g., E2BIG, ENAM-
ETOOLONG, ENFILE, ENODEV, ENOENT, ENOEXEC, ENOMEM,
ENOTDIR, ENXIO, EPERM). The message is component-dependent, provid-
ing additional information describing the reason for the error.

● <<exception>>InvalidChannelParameters (invalidProperties: Properties)

The InvalidChannelParameters exception is raised when the input channelPa-
rameters parameter is invalid.

Semantics

The instantiateChannel operation shall deploy the waveform as specified by the input waveformName parameter
onto a CommChannel. The instantiateChannel operation shall return a CommChannel when the instantiateChan-
nel operation successfully instantiated with the waveform application onto the channel. The instantiateChannel
operation shall use the input wfParameters for the initial configuration of the deployed waveform. The instantiat-
eChannel shall use the channelParameters for the initial setup of the instantiated CommChannel.

The instantiateChannel operation shall raise the UnknownWaveform exception when the input waveformName is
not known. The instantiateChannel operation shall raise the InstantiateError exception when the CommChannel
cannot be successfully instantiated due to internal processing error(s). The instantiateChannel operation shall
raise the InvalidChannelProperties exception when the input channelParameters parameter is invalid. The In-
validChannelProperties invalidProperties identifies the properties that are invalid. The instantiateChannel opera-
tion shall raise the InvalidWFProperties exception when the input channelParameters parameter is invalid. The
InvalidWFlProperties invalidProperties identifies the properties that are invalid.

9.6.1.3 ManagedCommChannel

Description

Note – Issue 7959 1st sentence

The <<managedservicecomponent>> ManagedCommChannel component takes on the definition as described in
the UML Profile for SWRadio::Infrastructure::Radio Services in addition to the specialization of the Com-
mChannel. The ManagedCommChannel provides the mechanism of a managed CommChannel with state behav-
ior.

Semantics

The ManagedCommChannel's operational state is based upon the operational state of its communication chan-
nel's devices. The ManagedCommChannel's usage state is IDLE when the communication channel has not been
instantiated with a waveform. The ManagedCommChannel's usage state becomes BUSY when a waveform is in-

dtc/2005-09-04

 9.6.1 Radio Set Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 287

stantiated on the communication channel. The ManagedCommChannel's administrative state is
SHUTTING_DOWN or LOCKED then the communication channel is unavailable for waveform instantiation.
This administrative state of the communication channel's devices may also be affected upon ManagedCom-
mChannel admin state changes. Some devices may be shareable across communication channels, which may not
affect their admin states when communication channel admin state changes. While other devices are only associ-
ated with one communication channel, which will effect their admin states.

Whenever the adminState attribute changes, a StateChangeEventType (Infrastructure::Radio Management::Event
Channels) event may be issued to an event channel. The StateChangeEventType event data shall be populated as
follows when issued:

1. The producerId field is the identifier attribute of the RadioManager component.

2. The sourceId field is the identifier attribute of the CommChannel component.

3. The stateChangeCategory field is ADMINISTRATIVE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the adminState attribute value before and after
the state change, respectively.

Whenever the operationalState attribute changes, a StateChangeEventType event may be issued to an event chan-
nel. The event data shall be populated as follows when issued:

1. The producerId field is the identifier attribute of the RadioManager component.

2. The sourceId field is the identifier attribute of the CommChannel component.

3. The stateChangeCategory field is OPERATIONAL_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the operationalState attribute value before and
after the state change, respectively.

Whenever the usageState attribute changes, a StateChangeEventType event may be issued to an event channel.
The StateChangeEventType event data shall be populated as follows when issued:

1. The producerId field is the identifier attribute of the RadioManager.

2. The sourceId field is the identifier attribute of the CommChannel.

3. The stateChangeCategory field is USAGE_STATE_EVENT.

The stateChangeFrom and stateChangeTo fields reflect the usageState attribute value before and after the state
change, respectively.

9.6.1.4 ManagedRadioManager

Description

Note – Issue 7959

The <<managedservicecomponent>> ManagedRadioManager component takes on the definition as described in
the UML Profile for SWRadio::Infrastructure::Radio Services in addition to the specialization of the RadioMan-
ager. The ManagedRadioManager provides the mechanism for a managed RadioManager with state behavior.

dtc/2005-09-04

9.6.1 Radio Set Facilities

288 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Semantics

The ManagedRadioManager's operational state shall be based upon the operational state of its communication
channels and devices. The ManagerRadioManager's usage state shall be IDLE when all of its communication
channels are IDLE. The ManagedRadioManager's usage state becomes ACTIVE when any of its communication
channel is not IDLE. The ManagedRadioManager's usage state shall be BUSY when all of its communication
channels are not IDLE. The ManagedRadioManager's administrative state is SHUTTING_DOWN or LOCKED
then its communication channels shall be unavailable for waveform instantiation.

Whenever the adminState attribute changes, a StateChangeEventType (Infrastructure::Radio Management::Event
Channels) event may be issued to an event channel. The StateChangeEventType event data shall be populated as
follows when issued:

1. The producerId field is the identifier attribute of the ManagedRadioManager component.

2. The sourceId field is the identifier attribute of the ManagedRadioManager component.

3. The stateChangeCategory field is ADMINISTRATIVE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the adminState attribute value before and after
the state change, respectively.

Whenever the operationalState attribute changes, a StateChangeEventType event may be issued to an event chan-
nel. The event data shall be populated as follows when issued:

1. The producerId field is the identifier attribute of the ManagedRadioManager component.

2. The sourceId field is the identifier attribute of the ManagedRadioManager component.

3. The stateChangeCategory field is OPERATIONAL_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the operationalState attribute value before and
after the state change, respectively.

Whenever the usageState attribute changes, a StateChangeEventType event may be issued to an event channel.
The StateChangeEventType event data shall be populated as follows when issued:

1. The producerId field is the identifier attribute of the ManagedRadioManager.

2. The sourceId field is the identifier attribute of the ManagedRadioManager.

3. The stateChangeCategory field is USAGE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the usageState attribute value before and after
the state change, respectively.

9.6.1.5 ManagedSecureCommChannel

Description

The <<commchannel>> ManagedSecureCommChannel component takes on the definition as described in the
UML Profile for SWRadio::Infrastructure::Radio Management in addition to the specializations of the Secure-
CommChannel and ManagedCommChannel.

Semantics

This type of communication channel provides both managed and secure capability.

dtc/2005-09-04

 9.6.1 Radio Set Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 289

9.6.1.6 ManagedSecureRtadioManager

Description

The <<radiomanager>> ManagedSecureRadioManager component takes on the definition as described in the
UML Profile for SWRadio::Infrastructure::Radio Management in addition to the specializations of the SecureRa-
dioManager and ManagedRadioManager.

Semantics

This type of radio manager provides both managed and secure capability.

9.6.1.7 RadioManager

Description

The <<radiomanager>> RadioManager component takes on the definition as described in the UML Profile for
SWRadio::Infrastructure::Radio Management in addition to the interfaces realized by this component and pro-
vides additional attributes and operations.

Attributes

● <<readonly>>availableWaveforms: StringSequence

The availableWaveforms attribute shall contain the names of the installed
waveforms in the RadioSet.

● <<readonly>>commChannels: CommChannel [1..*]

The commChannels attribute shall contain the set of communication channels
for a RadioSet that this RadioManager is managing.

Semantics

The RadioManager's instantiateChannel operation instantiates one of its CommChannels using the input parame-
ters.

9.6.1.8 SecureRadioManager

Description

The <<radiomanager>> SecureRadioManager component takes on the definition as described in the UML Profile
for SWRadio::Infrastructure::Radio Management in addition to the specializations of the RadioManager and the
interfaces realized by this component. The SecureRadioManager provides the mechanism of managing a secure
radio manager.

Semantics

The usage of a radio manager after it has been zeroized is unspecified.

dtc/2005-09-04

9.6.1 Radio Set Facilities

290 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

9.6.1.9 SecureCommChannel

Description

The <<commchannel>> SecureCommChannel component takes on the definition as described in the UML Pro-
file for SWRadio::Infrastructure::Radio Management in addition to the specializations of the CommChannel and
the interfaces realized by this component. The SecureCommChannel provides the mechanism of managing a se-
cure communication channel.

Semantics

The usage of a communication channel after it has been zeroized is unspecified.

9.6.1.10 WaveformCommChannel

Description

The <<applicationmanager>> WaveformCommChannel component takes on the definition as described in the
UML Profile for SWRadio::Infrastructure::SWRadio Deployment::Application Deployment in addition to its at-
tributes.

Attributes

● <<readonly>>instantiatedCommChannel : CommChannel

The instantiatedCommChannel is the CommChannel associated with the de-
ployed waveform application.

9.6.1.11 WaveformInstantiation

Description

The WaveformInstantiation interface provides the mechanisms for instantiation a waveform application onto a
communication channel.

Operations

● instantiateWaveform (in waveformName: String, in instanceWFName: String, in wfProperties : Prop-

erties, in channelProperties: in Properties, return WaveformCom-

mChannel): {raises = (InstantiationError,

InvalidChannelProperties, InvalidWFProperties, UnknownWaveform)}

The instantiateWavform operation deploys a waveform application onto a chan-
nel.

Types and Exceptions

● <<exception>>InstantiationError

The InstantiationError exception, specialization of SystemException, is raised
when the instantiateWaveform operation is unsuccessfully due to internal
processing errors. The error number indicates an ErrorNumberType value (e.g.,
E2BIG, ENAMETOOLONG, ENFILE, ENODEV, ENOENT, ENOEXEC,
ENOMEM, ENOTDIR, ENXIO, EPERM). The message is component-de-
pendent, providing additional information describing the reason for the error.

dtc/2005-09-04

 9.6.1 Radio Set Facilities

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 291

● <<exception>>InvalidChannelParameters (invalidProperties: Properties)

The InvalidChannelParameters exception is raised when the input channelPa-
rameters parameter is invalid.

● <<exception>>InvalidWFParameters (invalidProperties: Properties)

The InvalidWFParameters exception is raised when the input wfParameters pa-
rameter is invalid.

● <<exception>>UnknownWaveform

The UnknownWaveform exception indicates the waveform is not known.

Semantics

The instantiateWaveform operation shall deploy the waveform as specified by the input waveformName parame-
ter onto a CommChannel. The instantiateChannel operation shall return a WaveformCommChannel when the in-
stantiateWaveform operation successfully instantiated with the waveform application onto the channel. The
instantiateWaveform operation shall use the input wfParameters for the initial configuration of the deployed
waveform. The instantiateChannel shall use the channelParameters for the initial setup of the instantiated Com-
mChannel.

The instantiateWaveform operation shall raise the UnknownWaveform exception when the input waveformName
is not known. The instantiateWaveform operation shall raise the InstantiateError exception when the Com-
mChannel cannot be successfully instantiated due to internal processing error(s). The instantiateWaveform oper-
ation shall raise the InvalidChannelProperties exception when the input channelParameters parameter is invalid.
The InvalidChannelProperties invalidProperties identifies the properties that are invalid. The instantiateWave-
form operation shall raise the InvalidWFProperties exception when the input channelParameters parameter is in-
valid. The InvalidWFProperties invalidProperties identifies the properties that are invalid.

9.6.1.12 XmitControl

Description

The XmitControl interface provides the mechanism to control a component's transmission such as transmission
of radio frequencies.

Attributes

Note – Issue 7985

● <<configureproperty>>xmitInhibit: Boolean

The xmitInhibit attribute is used to control and return the status of the transmis-
sion state of a component.

Semantics

The xmitInhibit attribute when a configuration value of “True” means the component shall inhibit transmission,
otherwise the component can transmit.

9.6.1.13 ZeroizeControl

Description

The ZeroizeControl interface provides the mechanism to zeroize a component's environment or information.

dtc/2005-09-04

9.6.1 Radio Set Facilities

292 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Attributes

Note – Issue 7985

● <<queryproperty>>zeroized: Boolean

The zeroize attribute is used to return the status of the zeroized state of a com-
ponent. A True value indicates the component is zeroized, otherwise the com-
ponent is not zeroized.

Operations

● zeroize ()

The zeroize operation is used to command the component to zeroize its environ-
ment. The information that gets zeroized is component dependent.

dtc/2005-09-04

10 Platform Specific Model (PSM) 10 Platform Specific Model (PSM)

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 293

10 Platform Specific Model (PSM)

Note – Issue 7845

The SWRadio PSM consists of CORBA and XML that are based upon the PIM and UML Profile for SWRadio.
The PIM to PSM transformation rules are not universal rules for creating *any* PSM, but only used for the pur-
pose of this specification. This section defines a non-normative reference PSM. Non-CORBA PSMs may also be
fully compliant to this specification as a whole.

Note – Issue 7742 updated CORBA transformations.

The rule set for transforming UML packages, interfaces, types, and exceptions into CORBA constructs are as fol-
lows:

1. UML interfaces and interface extensions are map to CORBA interfaces. The CORBA interface names
are without the prefix “I” in the interface name as used in the UML profile for SWRadio and in the
PIM Facilities.

2. UML attributes with readonly and readwrite map to CORBA attributes in CORBA interfaces.

3. UML attributes with configureproperty, queryproperty and testproperty do not map to CORBA
attributes in CORBA interfaces. Instead XML definitions are used that follow the Property types as
defined in UML Profile for SWRadio::Application and Device Components::Properties section.

4. UML classes without operations that are not stereotyped and used for type definitions map to
CORBAStruct stereotypes in the CORBA interfaces and modules. The parent classes do not get
translated into CORBA types instead the parent class attributes are added to the subclass in the
CORBA definition.

5. UML <<datatype>> map to CORBA basic types. Primitive types are mapped to CORBA primitive
types and primitive sequence types are mapped to CORBA Typedef of primitive sequence types.

6. UML exceptions and exception extensions map to CORBA exceptions. There is no specializations of
exceptions in CORBA so the (UML Profile for SWRadio::Application and Device
Components::BaseTypes) SystemException definition does not appear in the generated SWRadio
CORBA interfaces but all the specialization exceptions of SystemException are in the SWRadio
CORBA interfaces with the same attributes as defined for SystemException.

7. UML attributes that have a cardinality of many [*] map to a CORBA Typedef of sequence types.

8. UML operations and <<optional>> operations map to operations in the SWRadio CORBA interfaces.

9. Transformations are only performed for concrete classes, not for template classes. Concrete classes
that bind to template classes are used in the PSM.

10. For Interfaces that reference a component stereotype for a type, the "component" qualifier is removed
from the name. For Example, FileManagerComponent would become FileManager as the type for the
parameter or attribute.

The SWRadio CORBA PSM corresponds to:

1. PIM Facilities: The top most CORBA is called DfSWRadio which maps to the PIM Facilities
package. The packages (e.g., Common Layer Facilities) directly beneath PIM Facilities map to
CORBA modules but without facilities in their. In some case these packages have further CORBA

dtc/2005-09-04

10 Platform Specific Model (PSM) 10 Platform Specific Model (PSM)

294 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

modules. This occurs when a package has more than one interface. The DfSWRadio maps to existing
IDL definition used in industry, therefore the IDL does not follow all of the OMG CORBA guidelines
(e.g., operation, attribute, and parameter names), in order to reduce impact on industry.

● Common Layer Facilities (Annex B)

Note – Issue 8201 Resolution (Common Radio Facilities now covers Lightweight Services and
the Lightweight Log Service, instead of File Services which used to be in Annex C

● Common Radio Facilities (Section 3.3 CORBA Services Specifications)

● Data Link Layer Facilities (Annex D)

● Physical Layer Facilities (Annex E and F). Annex E contains the Physical layer interfaces and
Annex F contains the Physical Layer properties that were identified as configquery or query in
the interface.

● I/O Facilities

● RF Facilities

● Radio Control Facilities (Annex G)

Note – Issue 7742 Updated text and table below

2. The UML Profile for SWRADIO maps to a CORBA module named CF (Core Framework). The CF
CORBA module is an existing IDL definition used in industry, therefore the CF IDL does not follow
all of the OMG CORBA guidelines (e.g., operation, attribute, and parameter names), in order to
reduce impact on industry. The CF CORBA IDL is depicted in Annex A and Annex C (File Services).
The CF CORBA module is broken up into multiple files as shown in Table 1. The reason for the
break-up into multiple files is a memory foot print size for the embedded radio environment. Specific

dtc/2005-09-04

10 Platform Specific Model (PSM) 10 Platform Specific Model (PSM)

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 295

interfaces are only used and implemented on certain devices within the swradio. The interfaces used
vary by the type of developers (waveform, device, radio management) for a swradio radio. These
developers use different set of interfaces for the components they are developing.

Table 10-18 – Core Framework CORBA Module Overview

UML Profile for SWRadio Specification Sections IDL File CORBA Module

Application and Device
Components

BaseTypes CFCommonTypes.idl CF

CFBaseTypes.idl CF

BaseTypes - each
primitive sequence
type is mapped to its
own file

CFPortTypes_BooleanSequence.idl
CFPortTypes_CharSequence.idl
CFPortTypes_ShortSequence.idl
CFPortTypes_UshortSequence.idl
CFPortTypes_LongSequence.idl
CFPortTypes_UlongSequence.idl
CFPortTypes_LongLongSequence.i
dl
CFPortTypes_UlongLongSequence.
idl
CFPortTypes_FloatSequence.idl
CFPortTypes_DoubleSequence.idl
CFPortTypes_LongDoubleSequenc
e.idl
CFPortTypes_WcharSequence.idl
CFPortTypes_WstringSequence.idl
CFPortTypes.idl

PortTypes within CF

Resource Components
Interfaces except for
ResourceFactory

CFResources.idl CF

Resource Components
Interfaces -
ResourceFactory only

CFResourceFactory. idl CF

Device Components
Interfaces

CFDevices.idl CF

dtc/2005-09-04

10 Platform Specific Model (PSM) 10 Platform Specific Model (PSM)

296 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7581 updated File Service name in table above, Issue 8291 properties PSM

Other non-CORBA PSM transforms (e.g., XML) are as follows:

1. The UML Profile for SWRadio::Application and Device Components::Properties maps to a SWRadio
Properties XML definitions as specified in Annex I. Each property definition maps to an XML
element definition. Abstract classes are not directly transformed into XML, instead their attributes are
used for the concrete subclass XML definitions. Attributes with default values are created as XML
attributes. All other attributes are created as XML elements. The name and integerId is a unique value
for each property in a XML properties set. Only the properties attributes stated in the Properties
section are used for the XML properties definition. Specific transformstions of the properties are as
follows:

● Primitive types are mapped to the corresponding enumeration literal in the SimpleType XML
element

● EnumerationProperty attributes map to the EnumerationLiteral XML element. The attribute
name and value maps to the label and value xml elements.

● ConfigureProperty and QueryProperty that are primitive types maps to the XML
ConfigureQuerySimpleProperty XML element.

● ConfigureProperty and QueryProperty that are primitive sequence types maps to the XML
ConfigureQuerySimpleSeqProperty XML element.

● ConfigureProperty and QueryProperty that are a StructProperty type maps to the XML
ConfigureQueryStructProperty XML element.

Infrastructure

Radio
Management

Device Management
Interfaces - Each
interface maps to its
own IDL file.

CFServiceRegistration.idl,
CFDeviceManager.idl

CF

RadioSet
Management
Interfaces - Each
interface maps to its
own IDL file

CFDomainEventChannels.idl,
CFDomainInstallation.idl,
CFDeviceManagerRegistration.idl,
CFDomainManager.idl

CF

Domain Event
Channels

CF_SE_DomainEvent.idl
CF_SE_StateEvent.idl

CF

Radio
Services

File Services
Interfaces - Each
interface maps to its
own IDL file

CFFile.idl,
CFFileSystem.idl,
CFFileManager.idl

CF
in Annex C

Radio Services
Interfaces

CFStateManagement.idl CF

SWRadio
Deployment

Applications
Deployment
Interfaces

CFApplications.idl CF

Table 10-18 – Core Framework CORBA Module Overview

UML Profile for SWRadio Specification Sections IDL File CORBA Module

dtc/2005-09-04

10 Platform Specific Model (PSM) 10 Platform Specific Model (PSM)

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 297

● ConfigureProperty and QueryProperty that are a StructProperty sequence type maps to the
XML StructSequenceProperty XML element.

● TestProperty maps to the XML TestProperty element

● CharacteristicProperty maps to XML CharacteristicProperty

● CapacityProperty mapes to XML CapacityProperty

● CharacteristicSelectionProperty maps to XML CharacteristicSelectionProperty

● CharacteristicSetProperty maps to XML CharacteristicSetProperty

● ExecutableProperty maps to XML ExecutableProperty

Note – Issue 7582, changed wording for communication equipment item 2

2. The UML Profile for SWRadio::Communication Equipment and UML Profile for
SWRadio::Infrastructure::Communication Channel map to SWRadio Channel and Communication
Equipment XML definitions as specified in Annex J. The mappings follow the transformation rules
for components in item 1, above, and the following:

● Communication Equipment

● Each CommEquipment stereotype or UML Device definition maps to the CommEquipment
XML element definition. The CommEquipment name and stereotype names map to the name
and stereotypeName elements of the CommEquipment XML element.

● All properties of the CommEquipment map to the properties of the CommEquipment XML
element as specified in item 1 (Properties) above.

● All ports (AnalogInputPort, AnalogOutputPort, and DigitalPort map to the ports element of the
CommEquipment XML element.

● The properties of all communication equipment ports map to the properties of the Port
XML element as specified in item 1 (Properties) above.

● The Port name and stereotype name map to the name and stereotypeName elements of
the Port XML element.

● Communication Channel

● All Channel stereotypes map to the Channel XML element.

● The properties of a Channel map to the properties element of the Channel XML element as
specified in item 1 (Properties) above.

● The Channel name and stereotype name map to the name and stereotypeName elements of the
Channel XML element.

● Associated Channels (LogicalPhysicalChannel, LogicalIOChannel, LogicalProcessingChannel,
LogicalSecurityChannel) map to the subchannels XML element of the Channel XML element
as references to their Channel XML element.

● Associated CommEquipments map to the commEquipments element of the Channel XML
element as references to their CommEquipment XML element.

dtc/2005-09-04

10 Platform Specific Model (PSM) 10 Platform Specific Model (PSM)

298 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

● Channel Connections map to connections element of the Channel XML element. A
CommEquipmentConnector maps to the CommEquipmentConnector XML element.

3. Operating System Profile (Annex H)

Note – Issue 8868

4. Descriptors

In industry there are two sets of XML definitions that could be used for the deployment of components with an
SWRadio RadioSet or RadioSystem, which are the Document Type Definitions (DTDs) as described in Annex L
and CCM Schema XML as described in the COBRA Components Model (CCM). The relationships of these
XML elements to the SWRadio components are depicted in Table TBD below.

Table 10-1

SWRadio Component Type Descriptors PSM

Document Type Definitions
XML CCM Schema XML

ApplicationManager Software Assembly Descriptor,
Software Package Descriptor,
Software Component Descriptor,
Properties Descriptor

ComponentPackageDescription,
ComponentInterfaceDescription,
ComponentAssemblyDescription,
MonolithicImplementationDescription,
and SWRadio Properties XML

ApplicationFactoryComponent

DeviceManagerComponent Device Configuration Descriptor

DomainManagerComponent Domain Configuration Descriptor

SWRadioComponent Software Assembly Descriptor,
Software Package Descriptor,
Software Component Descriptor,
Properties Descriptor

ComponentPackageDescription,
ComponentInterfaceDescription,
ComponentAssemblyDescription,
MonolithicImplementationDescription,
and SWRadio Properties XML

ServiceComponent

dtc/2005-09-04

 A.1 Base Types Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 299

Annex A Core Framework CORBA IDL (non-normative)

Note – Issue 7845 - Section changed to non-normative

Base Types Interfaces. Page299
CF Common Types Interface. Page 299
CF Base Types Interface . Page 301
CF Resource Interfaces . Page302
CF ResourceFactory Interfaces . Page305
CF Devices Interfaces . Page306
CF DeviceManager Interfaces. Page309
CF Service Registration Interface. Page 309
CF DeviceManager Interface . Page 310
CF DomainManager Interfaces . Page311
CF Domain Event Channels Interface . Page 311
CF Domain Installation Interface . Page 312
CF Device Manager Registration Interface . Page 313
CF DomainManager Interface . Page 314
CF Application Interfaces . Page315
CF StateManagement Interface . Page316
CF Port Types . Page318
Boolean Sequence Port Type . Page 318
Char Sequence Port Type . Page 318
Short Sequence Port Type . Page 319
Ushort Sequence Port Type . Page 319
Long Sequence Port Type . Page 320
Ulong Sequence Port Type . Page 320
LongLong Sequence Port Type . Page 321
UlongLong Sequence Port Type . Page 321
Float Sequence Port Type . Page 321
Double Sequence Port Type . Page 322
LongDouble Sequence Port Type . Page 322
Wchar Sequence Port Type. Page 323
Wstring Sequence Port Type . Page 323
CF Port Types CORBA Module . Page 324
CF Event Types . Page324
Domain Event . Page 324
State Event . Page 325

A.1 Base Types Interfaces

A.1.1 CF Common Types Interface

//File: CFCommonTypes.idl

dtc/2005-09-04

A.1.1 CF Common Types Interface

300 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

#ifndef __CFOMMONTYPES_DEFINED
#define __CFCOMMONTYPES_DEFINED

#pragma prefix "omg.org"

module CF {

typedef sequence <octet> OctetSequence;
typedef sequence <string> StringSequence;

struct DataType {
string id;

any value;
};

typedef sequence <DataType> Properties;
typedef DataType PropertyValue;

enum ErrorNumberType {
CF_NOTSET,
CF_E2BIG,
CF_EACCES,
CF_EAGAIN,
CF_EBADF,
CF_EBADMSG,
CF_EBUSY,
CF_ECANCELED,
CF_ECHILD,
CF_EDEADLK,
CF_EDOM,
CF_EEXIST,
CF_EFAULT,
CF_EFBIG,
CF_EINPROGRESS,
CF_EINTR,
CF_EINVAL,
CF_EIO,
CF_EISDIR,
CF_EMFILE,
CF_EMLINK,
CF_EMSGSIZE,
CF_ENAMETOOLONG,
CF_ENFILE,
CF_ENODEV,
CF_ENOENT,
CF_ENOEXEC,
CF_ENOLCK,
CF_ENOMEM,
CF_ENOSPC,
CF_ENOSYS,
CF_ENOTDIR,

dtc/2005-09-04

 A.1.2 CF Base Types Interface

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 301

CF_ENOTEMPTY,
CF_ENOTSUP,
CF_ENOTTY,
CF_ENXIO,
CF_EPERM,
CF_EPIPE,
CF_ERANGE,
CF_EROFS,
CF_ESPIPE,
CF_ESRCH,
CF_ETIMEDOUT,
CF_EXDEV

};

Note – Issue 7895, added TimeType

struct TimeType {
unsigned long seconds;
unsigned long nanoseconds;

};

exception InvalidFileName {
ErrorNumberType errorNumber;
string msg;

};

};

#endif

A.1.2 CF Base Types Interface

//File: CFBaseTypes.idl

#ifndef __CFBASETYPES_DEFINED
#define __CFBASETYPES_DEFINED

#pragma prefix "omg.org"

module CF {

exception InvalidObjectReference {
string msg;

};

exception InvalidProfile {};

typedef Object Service;

dtc/2005-09-04

A.2 CF Resource Interfaces

302 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

};

#endif

A.2 CF Resource Interfaces

//File: CFResources.idl

#ifndef __CFRESOURCES_DEFINED
#define __CFRESOURCES_DEFINED

#include "CFBaseTypes.idl"
#include "CFCommonTypes.idl"

#pragma prefix "omg.org"

module CF {

interface ComponentIdentifier {
readonly attribute string identifier;

};

exception UnknownProperties {
Properties invalidProperties;

};

interface ControllableComponent {

exception StartError {
ErrorNumberType errorNumber;
string msg;

};

exception StopError {
ErrorNumberType errorNumber;
string msg;

};

readonly attribute boolean started;

void start ()
raises (StartError);

void stop ()
raises (StopError);

};

interface LifeCycle {

dtc/2005-09-04

 A.2 CF Resource Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 303

exception InitializeError {
StringSequence errorMessages;

};

exception ReleaseError {
StringSequence errorMessages;

};

void initialize ()
raises (InitializeError);

void releaseObject ()
raises (ReleaseError);

};

interface PortConnector {

exception InvalidPort {
string msg;
unsigned short errorCode;

};

exception OccupiedPort {};

void connectPort (
in string requiredPortName,
in Object connection,
in string connectionId
)
raises (InvalidPort,OccupiedPort);

Note – Issue 7580 Resolution

void disconnectPort (
in string requiredPortName,
in string connectionId
)
raises (InvalidPort);

};

Note – Issue 7579 Resolution

interface PortSupplier {

dtc/2005-09-04

A.2 CF Resource Interfaces

304 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

struct PortType {
string name;
Object objectRef;

};

typedef sequence <PortType> PortSequence;

exception UnknownPorts {
StringSequence invalidPorts;

};

void getProvidedPorts (
inout PortSequence ports
)
raises (UnknownPorts);

};

interface PropertySet {

exception InvalidConfiguration {
Properties invalidProperties;
string msg;

};

exception PartialConfiguration {
StringSequence reasons;
Properties invalidProperties;

};

void configure (
in Properties configProperties
)
raises (InvalidConfiguration,PartialConfiguration);

void query (
inout Properties configProperties
)
raises (UnknownProperties);

};

interface TestableObject {

exception UnknownTest {};

void runTest (
in string testid,
inout Properties testValues
)
raises (UnknownTest,UnknownProperties);

dtc/2005-09-04

 A.3 CF ResourceFactory Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 305

};

interface Resource : LifeCycle, TestableObject, PropertySet,
PortSupplier, ControllableComponent,
PortConnector, ComponentIdentifier {};

};

#endif

A.3 CF ResourceFactory Interfaces

//File: CFResourceFactory.idl

#ifndef __CFRESOURCEFACTORY_DEFINED
#define __CFRESOURCEFACTORY_DEFINED

#include "CFResources.idl"
#include "CFCommonTypes.idl"

#pragma prefix "omg.org"

module CF {

interface ResourceFactory : ComponentIdentifier {

exception InvalidResourceId {};

exception ShutdownFailure {
string msg;

};

exception CreateResourceFailure {
ErrorNumberType errorNumber;
string msg;

};

Resource createResource (
in string resourceId,
in Properties qualifiers
)
raises (CreateResourceFailure);

void releaseResource (
in string resourceId
)
raises (InvalidResourceId);

dtc/2005-09-04

A.4 CF Devices Interfaces

306 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

void shutdown ()
raises (ShutdownFailure);

};

};

#endif

A.4 CF Devices Interfaces

Note – Issue 7581

//File: CFDevices.idl

#ifndef __CFDEVICES_DEFINED
#define __CFDEVICES_DEFINED

#include "CFResources.idl

Note – Issue 7581

#include "CFFileSystem.idl"
#include "CFStateManagement.idl"
#include "CFBaseTypes.idl"
#include "CFCommonTypes.idl"

#pragma prefix "omg.org"

module CF {

Note – Issue 8842

interface DeviceComposition;
interface Device;

typedef sequence <Device> DeviceSequence;

interface DeviceComposition {

readonly attribute DeviceSequence compositeParts;

void addDevice (
in Device associatedDevice
)
raises (InvalidObjectReference);

dtc/2005-09-04

 A.4 CF Devices Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 307

void removeDevice (
in Device associatedDevice
)
raises (InvalidObjectReference);

};

interface Device : Resource, StateManagement {

exception InvalidState {
string msg;

};

exception InvalidCapacity {
string msg;
Properties capacities;

};

readonly attribute string softwareProfile;
readonly attribute string label;
readonly attribute DeviceComposition compositeDevice;

boolean allocateCapacity (
in Properties capacities
)
raises (InvalidCapacity,InvalidState);

void deallocateCapacity (
in Properties capacities
)
raises (InvalidCapacity,InvalidState);

};

interface LoadableDevice : Device {

enum LoadType {
SHARED_LIBRARY,
EXECUTABLE,
KERNEL_MODULE,
DRIVER

};

exception InvalidLoadKind {};

exception LoadFail {
ErrorNumberType errorNumber;
string msg;

};

dtc/2005-09-04

A.4 CF Devices Interfaces

308 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 7581

void load (
in FileSystem fs,
in string fileName,
in LoadType loadKind
)
raises (InvalidState,InvalidLoadKind,InvalidFileName,LoadFail);

void unload (
in string fileName
)
raises (InvalidState,InvalidFileName);

};

interface ExecutableDevice : LoadableDevice {

exception InvalidProcess {
ErrorNumberType errorNumber;
string msg;

};

exception InvalidFunction {);

Note – Issue 8949, change unsigned long to long

typedef long ProcessID_Type;

exception InvalidParameters {
Properties invalidParms;

};

exception InvalidOptions {
Properties invalidOpts;

};

const string STACK_SIZE = "STACK_SIZE";
const string PRIORITY_ID = "PRIORITY";

exception ExecuteFail {
ErrorNumberType errorNumber;
string msg;

};

dtc/2005-09-04

 A.5 CF DeviceManager Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 309

const string THREAD_CREATE_REQUEST = "CREATE_THREAD";
const string RUNTIME_OPTIONS = "RUNTIME_OPTIONS";
const string RUNTIME_REQUEST = "RUNTIME_REQUEST";

void terminate (
in ProcessID_Type processId
)
raises (InvalidProcess,InvalidState);

ProcessID_Type execute (
in string name,
in Properties options,
in Properties parameters
)
raises (InvalidState,InvalidFunction,InvalidParameters,

InvalidOptions,InvalidFileName,ExecuteFail);

};

};

#endif

A.5 CF DeviceManager Interfaces

A.5.1 CF Service Registration Interface

//File: CFServiceRegistration.idl

#ifndef __CFSERVICEREGISTRATION_DEFINED
#define __CFSERVICEREGISTRATION_DEFINED

#include "CFBaseTypes.idl"

#pragma prefix "omg.org"

module CF {

interface ServiceRegistration {

void registerService (
in Service registeringService,
in string name
)
raises (InvalidObjectReference);

void unregisterService (
in Service registeredService,
in string name
)
raises (InvalidObjectReference);

dtc/2005-09-04

A.5.2 CF DeviceManager Interface

310 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

};

};

#endif

A.5.2 CF DeviceManager Interface

//Source file: CFDeviceManager.idl

#ifndef __CFDEVICEMANAGER_DEFINED
#define __CFDEVICEMANAGER_DEFINED

#include "CFBaseTypes.idl"
#include "CFCommonTypes.idl"
#include "CFResources.idl"

Note – Issue7581

#include "CFFileSystem.idl"

#pragma prefix "omg.org"

module CF {

interface DeviceManager : PropertySet, PortConnector,
ComponentIdentifier, PortSupplier {

struct ServiceType {
Service serviceObject;
string serviceName;

};

typedef sequence <ServiceType> ServiceSequence;

readonly attribute string deviceConfigurationProfile;

Note – Issue 7581

readonly attribute FileSystem fileSys;
readonly attribute string label;
readonly attribute ServiceSequence registeredServices;

void shutdown ();

dtc/2005-09-04

 A.6 CF DomainManager Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 311

string getComponentImplementationId (
in string componentInstantiationId
);

Note – Issue 7905 Resolution - Deleted portExists operation

};

};

#endif

A.6 CF DomainManager Interfaces

A.6.1 CF Domain Event Channels Interface

//Source file: CFDomainEventChannels.idl

#ifndef __CFDOMAINEVENTCHANNELS_DEFINED
#define __CFDOMAINEVENTCHANNELS_DEFINED

#include "CFBaseTypes.idl"

#pragma prefix "omg.org"

module CF {

interface DomainEventChannels {

exception AlreadyConnected {};
exception InvalidEventChannelName {};
exception NotConnected {};

void registerWithEventChannel (
in Object registeringObject,
in string registeringId,
in string eventChannelName
)
raises (InvalidObjectReference,
 InvalidEventChannelName,AlreadyConnected);

void unregisterFromEventChannel (
in string unregisteringId,
in string eventChannelName
)
raises (InvalidEventChannelName,NotConnected);

};

dtc/2005-09-04

A.6.2 CF Domain Installation Interface

312 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

};

#endif

A.6.2 CF Domain Installation Interface

//File: CFDomainInstallation.idl

#ifndef __CFDOMAININSTALLATION_DEFINED
#define __CFDOMAININSTALLATION_DEFINED

#include "CFCommonTypes.idl"
#include "CFBaseTypes.idl"

#pragma prefix "omg.org"

module CF {

interface DomainInstallation {

exception ApplicationInstallationError {
ErrorNumberType errorNumber;
string msg;

};

exception InvalidIdentifier {};

exception ApplicationUninstallationError {
ErrorNumberType errorNumber;
string msg;

};

void installApplication (
in string profileFileName
)
raises (InvalidProfile,InvalidFileName,
 ApplicationInstallationError);

void uninstallApplication (
in string applicationId
)
raises (InvalidIdentifier,ApplicationUninstallationError);

};

};

#endif

dtc/2005-09-04

 A.6.3 CF Device Manager Registration Interface

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 313

A.6.3 CF Device Manager Registration Interface

//File: CFDeviceManagerRegistration.idl

#ifndef __CFDEVICEMANAGERREGISTRATION_DEFINED
#define __CFDEVICEMANAGERREGISTRATION_DEFINED

#include "CFDeviceManager.idl"
#include "CFBaseTypes.idl"

#pragma prefix "omg.org"

module CF {

interface DeviceManagerRegistration {

exception DeviceManagerNotRegistered {};

exception RegisterError {
ErrorNumberType errorNumber;
string msg;

};

exception UnregisterError {
ErrorNumberType errorNumber;
string msg;

};

void registerDeviceManager (
in DeviceManager deviceMgr
)
raises (InvalidObjectReference,InvalidProfile,RegisterError);

void unregisterDeviceManager (
in DeviceManager deviceMgr
)
raises (InvalidObjectReference,UnregisterError);

void registerService (
in Object registeringService,
in DeviceManager registeredDeviceMgr,
in string name
)
raises (InvalidObjectReference,InvalidProfile,
 DeviceManagerNotRegistered,RegisterError);

dtc/2005-09-04

A.6.4 CF DomainManager Interface

314 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

void unregisterService (
in Object unregisteringService,
in string name
)
raises (InvalidObjectReference,UnregisterError);

};

};

#endif

A.6.4 CF DomainManager Interface

//File: CFDomainManager.idl

#ifndef __CFDOMAINMANAGER_DEFINED
#define __CFDOMAINMANAGER_DEFINED

#include "CFDeviceManager.idl"

Note – Issue 7581

#include "CFFileManager.idl"
#include "CFResources.idl"
#include "CFApplications.idl"

#pragma prefix "omg.org"

module CF {

interface DomainManager : PropertySet, PortSupplier {

typedef sequence <Application> ApplicationSequence;
typedef sequence <ApplicationFactory> ApplicationFactorySequence;
typedef sequence <DeviceManager> DeviceManagerSequence;

readonly attribute DeviceManagerSequence deviceManagers;
readonly attribute ApplicationSequence applications;
readonly attribute ApplicationFactorySequence applicationFactories;

Note – Issue 7581

readonly attribute FileManager fileMgr;
readonly attribute string domainManagerProfile;

dtc/2005-09-04

 A.7 CF Application Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 315

Note – Issue 7905 Resolution - Deleted portExists operation

};

};

#endif

A.7 CF Application Interfaces

//File: CFApplications.idl

#ifndef __CFAPPLICATIONS_DEFINED
#define __CFAPPLICATIONS_DEFINED

#include "CFResources.idl"
#include "CFCommonTypes.idl"

#pragma prefix "omg.org"

module CF {

interface Application;

struct DeviceAssignmentType {
string componentId;
string assignedDeviceId;

};

typedef sequence <DeviceAssignmentType> DeviceAssignmentSequence;

interface Application : Resource {

struct ComponentProcessIdType {
string componentID;
unsigned long processId;

};

typedef sequence <ComponentProcessIdType> ComponentProcessIdSequence;

struct ComponentElementType {
string componentId;
string elementId;

};

typedef sequence <ComponentElementType> ComponentElementSequence;

dtc/2005-09-04

A.8 CF StateManagement Interface

316 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

readonly attribute ComponentElementSequence componentNamingContexts;
readonly attribute ComponentProcessIdSequence componentProcessIds;
readonly attribute DeviceAssignmentSequence componentDevices;
readonly attribute ComponentElementSequence componentImplementations;
readonly attribute string profile;
readonly attribute string name;

};

interface ApplicationFactory : ComponentIdentifier {

exception CreateApplicationRequestError {
DeviceAssignmentSequence invalidAssignments;

};

exception CreateApplicationError {
ErrorNumberType errorNumber;
string msg;

};

exception InvalidInitConfiguration {
Properties invalidProperties;

};

readonly attribute string name;
readonly attribute string softwareProfile;

Application create (
in string name,
in Properties initConfiguration,
in DeviceAssignmentSequence deviceAssignments
)
raises (CreateApplicationError,CreateApplicationRequestError,
 InvalidInitConfiguration);

};

};

#endif

A.8 CF StateManagement Interface

//File: CFStateManagement.idl

#ifndef __CFSTATEMANAGEMENT_DEFINED
#define __CFSTATEMANAGEMENT_DEFINED

#pragma prefix "omg.org"

dtc/2005-09-04

 A.8 CF StateManagement Interface

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 317

module CF {

interface StateManagement {

enum AdminType {
SHUTTING_DOWN,
UNLOCKED,
LOCKED

};

enum OperationalType {
ENABLED,
DISABLED

};

enum UsageType {
IDLE,
ACTIVE,
BUSY

};

enum AdminRequestSupportedType {
ALL,
NOT_IMPLEMENTED,
LOCK_REQUEST,
SHUTDOWN_REQUEST,
UNLOCK_REQUEST

};

struct StatesType {
AdminType adminState;
OperationalType operationalState;
UsageType usageState;

};

exception UnsupportedRequest {};

enum AdminRequestType {
LOCK,
SHUTDOWN,
UNLOCK

};

readonly attribute UsageType usageState;
readonly attribute AdminType adminState;
readonly attribute OperationalType operationalState;
readonly attribute StatesType states;
readonly attribute AdminRequestSupportedType

 adminStateRequestSupportedCharacterisitic;

dtc/2005-09-04

A.9 CF Port Types

318 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

void setAdminState (
in AdminRequestType adminRequest
)
raises (UnsupportedRequest);

};

};

#endif

A.9 CF Port Types

A.9.1 Boolean Sequence Port Type

//File: CFPortTypes_BooleanSequence.idl

#ifndef __PORTTYPES_BOOLEANSEQUENCE_DEFINED
#define __PORTTYPES_BOOLEANSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <boolean> BooleanSequence;

};

};

#endif

A.9.2 Char Sequence Port Type

//File: CFPortTypes_CharSequence.idl

#ifndef __PORTTYPES_CHARSEQUENCE_DEFINED
#define __PORTTYPES_CHARSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

dtc/2005-09-04

 A.9.3 Short Sequence Port Type

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 319

typedef sequence <char> CharSequence;

};

};

#endif

A.9.3 Short Sequence Port Type

//File: CFPortTypes_ShortSequence.idl

#ifndef __PORTTYPES_SHORTSEQUENCE_DEFINED
#define __PORTTYPES_SHORTSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <short> ShortSequence;

};

};

#endif

A.9.4 Ushort Sequence Port Type

//File: CFPortTypes_UshortSequence.idl

#ifndef __PORTTYPES_USHORTSEQUENCE_DEFINED
#define __PORTTYPES_USHORTSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <unsigned short> UshortSequence;

};

};

dtc/2005-09-04

A.9.5 Long Sequence Port Type

320 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

#endif

A.9.5 Long Sequence Port Type

//File: CFPortTypes_LongSequence.idl

#ifndef __PORTTYPES_LONGSEQUENCE_DEFINED
#define __PORTTYPES_LONGSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <long> LongSequence;

};

};

#endif

A.9.6 Ulong Sequence Port Type

//File: CFPortTypes_UlongSequence.idl

#ifndef __PORTTYPES_ULONGSEQUENCE_DEFINED
#define __PORTTYPES_ULONGSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <unsigned long> UlongSequence;

};

};

#endif

dtc/2005-09-04

 A.9.7 LongLong Sequence Port Type

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 321

A.9.7 LongLong Sequence Port Type

//File: CFPortTypes_LongLongSequence.idl

#ifndef __PORTTYPES_LONGLONGSEQUENCE_DEFINED
#define __PORTTYPES_LONGLONGSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <long long> LongLongSequence;

};

};

#endif

A.9.8 UlongLong Sequence Port Type

//File: CFPortTypes_UlongLongSequence.idl

#ifndef __PORTTYPES_ULONGLONGSEQUENCE_DEFINED
#define __PORTTYPES_ULONGLONGSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <unsigned long long> UlongLongSequence;

};

};

#endif

A.9.9 Float Sequence Port Type

//File: CF_PortTypes_FloatSequence.idl

dtc/2005-09-04

A.9.10 Double Sequence Port Type

322 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

#ifndef __PORTTYPES_FLOATSEQUENCE_DEFINED
#define __PORTTYPES_FLOATSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <float> FloatSequence;

};

};

#endif

A.9.10 Double Sequence Port Type

//File: CFPortTypes_DoubleSequence.idl

#ifndef __PORTTYPES_DOUBLESEQUENCE_DEFINED
#define __PORTTYPES_DOUBLESEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <double> DoubleSequence;

};

};

#endif

A.9.11 LongDouble Sequence Port Type

//File: CFPortTypes_LongDoubleSequence.idl

#ifndef __PORTTYPES_LONGDOUBLESEQUENCE_DEFINED
#define __PORTTYPES_LONGDOUBLESEQUENCE_DEFINED

#pragma prefix "omg.org"

dtc/2005-09-04

 A.9.12 Wchar Sequence Port Type

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 323

module CF {

module PortTypes {

typedef sequence <long double> LongDoubleSequence;

};

};

#endif

A.9.12 Wchar Sequence Port Type

//File: CFPortTypes_WcharSequence.idl

#ifndef __PORTTYPES_WCHARSEQUENCE_DEFINED
#define __PORTTYPES_WCHARSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <wchar> WcharSequence;

};

};

#endif

A.9.13 Wstring Sequence Port Type

//File: CFPortTypes_WstringSequence.idl

#ifndef __PORTTYPES_WSTRINGSEQUENCE_DEFINED
#define __PORTTYPES_WSTRINGSEQUENCE_DEFINED

#pragma prefix "omg.org"

module CF {

module PortTypes {

typedef sequence <wstring> WstringSequence;

dtc/2005-09-04

A.9.14 CF Port Types CORBA Module

324 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

};

};

#endif

Note – Issue 7587

A.9.14 CF Port Types CORBA Module

//File: CFPortTypes.idl

#ifndef __CFPORTTYPES_DEFINED
#define __CFPORTTYPES_DEFINED

#include "CFPortTypes_UlongLongSequence.idl"
#include "CFPortTypes_LongDoubleSequence.idl"
#include "CFPortTypes_BooleanSequence.idl"
#include "CFPortTypes_UlongSequence.idl"
#include "CFPortTypes_LongLongSequence.idl"
#include "CFPortTypes_CharSequence.idl"
#include "CFPortTypes_UshortSequence.idl"
#include "CFPortTypes_LongSequence.idl"
#include "CFPortTypes_DoubleSequence.idl"
#include "CFPortTypes_ShortSequence.idl"
#include "CFPortTypes_WcharSequence.idl"
#include "CFPortTypes_FloatSequence.idl"
#include "CFPortTypes_WstringSequence.idl"

#endif

A.10 CF Event Types

A.10.1 Domain Event

//File: CF_SE_DomainEvent.idl

#ifndef __SE_DOMAINEVENT_DEFINED
#define __SE_DOMAINEVENT_DEFINED

#pragma prefix "omg.org"

#include "CF_SE_StateEvent.idl"

module CF {

dtc/2005-09-04

 A.10.2 State Event

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 325

module StandardEvent {

struct DomainManagementObjectRemovedEventType {
string producerId;
string sourceId;
string sourceName;
SourceCategoryType sourceCategory;

};

struct DomainManagementObjectAddedEventType {
string producerId;
string sourceId;
string sourceName;
SourceCategoryType sourceCategory;
Object sourceReference;

};

};

};

#endif

A.10.2 State Event

//File: CF_SE_StateEvent.idl

#ifndef __SE_STATEEVENT_DEFINED
#define __SE_STATEEVENT_DEFINED

#pragma prefix "omg.org"

module CF {

module StandardEvent {

enum StateChangeCategoryType {
ADMINISTRATIVE_STATE_EVENT,
OPERATIONAL_STATE_EVENT,
USAGE_STATE_EVENT

};

enum StateChangeType {
LOCKED,
UNLOCKED,
SHUTTING_DOWN,
ENABLED,

dtc/2005-09-04

A.11 Core Framework CORBA Module

326 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

DISABLED,
IDLE,
ACTIVE,
BUSY

};

typedef unsigned short SourceCategoryType;

struct StateChangeEventType {
string producerId;
string sourceId;
StateChangeCategoryType stateChangeCategory;
StateChangeType stateChangeFrom;
StateChangeType stateChangeTo;

};

const SourceCategoryType APPLICATION = 1;
const SourceCategoryType APPLICATION_FACTORY = 2;
const SourceCategoryType COMM_CHANNEL = 3;
const SourceCategoryType DEVICE = 4;
const SourceCategoryType DEVICE_MANAGER = 5;
const SourceCategoryType DOMAIN_MANAGER = 6;
const SourceCategoryType SERVICE = 7;

};

};

#endif

Note – Issue 7587

A.11 Core Framework CORBA Module

//File: CF.idl

#ifndef __CF_DEFINED
#define __CF_DEFINED

#include "CFPortTypes.idl"
#include "CFDevices.idl"
#include "CFResourceFactory.idl"
#include "CFServiceRegistration.idl"
#include "CF_SE_DomainEvent.idl"

dtc/2005-09-04

 A.11 Core Framework CORBA Module

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 327

#include "CFDomainEventChannels.idl"
#include "CFDomainManager.idl"
#include "CFDeviceManagerRegistration.idl"
#include "CFDomainInstallation.idl"

#endif

dtc/2005-09-04

A.11 Core Framework CORBA Module

328 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 B.1 Common Layer Basic Types

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 329

Annex B Common Layer Facilities CORBA IDL (non-
normative)

Note – Issue 7845 - Section changed to non-normative

Common Layer Basic Types. Page329
Error Control Interfaces . Page330
Flow Control Interfaces. Page331
Measurement Interfaces . Page334
PDU Interfaces . Page340
Quality of Service Interface . Page341
Stream Interface . Page342
DfSWRadio Common Layer Module . Page343

B.1 Common Layer Basic Types

//File: DfSWRadioCommonLayerBasicTypes.idl

#ifndef __DFSWRADIOCOMMONLAYERBASICTYPES_DEFINED
#define __DFSWRADIOCOMMONLAYERBASICTYPES_DEFINED

#include "CFCommonTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

typedef CF::OctetSequence AddressType;

Note – Issue 7895 - moved TimeType to A.1.1

struct SduSizeType {
unsigned long maxSduSize;
unsigned long minSduSize;

};

};

};

#endif

dtc/2005-09-04

B.2 Error Control Interfaces

330 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

B.2 Error Control Interfaces

B.2.1 Error Control Management Interface

//File: DfSWRadioErrorControlManagement.idl

#ifndef __DFSWRADIOERRORCONTROLMANAGEMENT_DEFINED
#define __DFSWRADIOERRORCONTROLMANAGEMENT_DEFINED

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module ErrorControl {

struct ErrorControlParamsType {
boolean errorControl;
boolean slidingWindowARQ;
boolean ARQStopWait;
boolean forwardErrorCorrection;

};

Note – Issue 7878 Resolution (Renamed “ErrorControl” interface to “Error_Control”)

interface Error_Control {
attribute ErrorControlParamsType errorControlParams;
void estimateSequenceNumber ();
void checkSequenceNumber ();
void requestRetransmit ();
void reportReceptionError ();
void checkFrameError ();
void forwardErrorCorrection ();

};

};

};

};

#endif

B.2.2 Signal Interface

//File: DfSWRadioErrorControlSignal.idl

dtc/2005-09-04

 B.2.3 DfSWRadio Error Control CORBA Module

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 331

#ifndef __DFSWRADIOERRORCONTROLSIGNAL_DEFINED
#define __DFSWRADIOERRORCONTROLSIGNAL_DEFINED

#pragma prefix "omg.org"

#include "CFCommonTypes.idl"

module DfSWRadio {

module CommonLayer {

module ErrorControl {

interface Signal {

oneway void signalStatus (
in CF::Properties status
);

};

};

};

};

#endif

Note – Issue 7587

B.2.3 DfSWRadio Error Control CORBA Module

//Source file: DfSWRadioErrorControl.idl

#ifndef __DFSWRADIOERRORCONTROL_DEFINED
#define __DFSWRADIOERRORCONTROL_DEFINED

#include "DfSWRadioErrorControlManagement.idl"
#include "DfSWRadioErrorControlSignal.idl"

#endif

B.3 Flow Control Interfaces

B.3.1 Flow Control Management Interface

//File: DfSWRadioFlowControlManagement.idl

dtc/2005-09-04

B.3.1 Flow Control Management Interface

332 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

#ifndef __DFSWRADIOFLOWCONTROLMANAGEMENT_DEFINED
#define __DFSWRADIOFLOWCONTROLMANAGEMENT_DEFINED

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module FlowControl {

interface FlowControlManagement {

attribute boolean priorityHandling;
attribute boolean flowControlSignaling;
attribute double dataRate;
attribute boolean emptySignalling;

void negotiateFlowControl ();
void tearDownFlowControl ();

};

interface PriorityFlowControl : FlowControlManagement {

readonly attribute unsigned short numPriorityQueues;

octet createPriorityQueue (
in long priority,
in long queueSize,
in long highWaterMarkThreshold,
in long lowWaterMarkThreshold
);

void destroyPriorityQueue (
in octet priorityQueueID
);

octet createWindowedPriorityQueue (
in long priority,
in long queueSize,
in long highWaterMarkThreshold,
in long lowWaterMarkThreshold
);

};

};

};

dtc/2005-09-04

 B.3.2 Flow Control Signaling Interface

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 333

};

#endif

B.3.2 Flow Control Signaling Interface

//File: DfSWRadioFlowControlSignaling.idl

#ifndef __DFSWRADIOFLOWCONTROLSIGNALING_DEFINED
#define __DFSWRADIOFLOWCONTROLSIGNALING_DEFINED

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module FlowControl {

interface FlowControlSignalling {

oneway void signalCongestion (
in octet priorityQueueID
);

oneway void signalHighWatermark (
in octet priorityQueueID
);

oneway void signalLowWatermark (
in octet priorityQueueID
);

oneway void signalEmpty (
in octet priorityQueueID
);

oneway void signalACK (
in octet priorityQueueID
);

oneway void signalNAK (
in octet priorityQueueID
);

};

};

dtc/2005-09-04

B.3.3 DfSWRadio Flow Control CORBA Module

334 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

};

};

#endif

Note – Issue 7587

B.3.3 DfSWRadio Flow Control CORBA Module

//File: DfSWRadioFlowControl.idl

#ifndef __DFSWRADIOFLOWCONTROL_DEFINED
#define __DFSWRADIOFLOWCONTROL_DEFINED

#include "DfSWRadioFlowControlManagement.idl"
#include "DfSWRadioFlowControlSignaling.idl"

#endif

B.4 Measurement Interfaces

B.4.1 Measurement Types

//File: DfSWRadioMeasurementTypes.idl

#ifndef __DFSWRADIOMEASUREMENTTYPES_DEFINED
#define __DFSWRADIOMEASUREMENTTYPES_DEFINED

Note – Issue 8980 - Remove “#include "DfSWRadioCommonLayerBasicTypes.idl" statement

#include "CFCommonTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module Measurement {

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

struct MeasurementType {
string sourceId;
string pointId;

dtc/2005-09-04

 B.4.2 Measurement Management Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 335

Note – Issue 7895, move TimeType to CF Common Types

CF::TimeType timeStamp;
CF::Properties data;

};

};

};

};

#endif

B.4.2 Measurement Management Interfaces

//File: DfSWRadioMeasurementManagement.idl

#ifndef __DFSWRADIOMEASUREMANAGEMENT_DEFINED
#define __DFSWRADIOMEASUREMANAGEMENT_DEFINED

Note – Issue 7895 - moved TimeType CFCommonTypes.idl

Note – Issue 8980 - Remove “#include "DfSWRadioCommonLayerBasicTypes.idl" statement

#include "CFCommonTypes.idl"

#include "DfSWRadioMeasurementPoint.idl"
#include "DfSWRadioMeasurementStorage.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module Measurement {

typedef sequence <MeasurementPoint> MeasurementPointSequence;
typedef sequence <MeasurementStorage> MeasurementStorageSequence;

interface MeasurementPlan {

dtc/2005-09-04

B.4.2 Measurement Management Interfaces

336 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

attribute string name;
readonly attribute boolean activated;

Note – Issue 7895 - moved TimeType CFCommonTypes.idl

attribute CF::TimeType deferred;

MeasurementStorageSequence listStorages ();

MeasurementStorage createStorage (
in string fileName
);

void setStorage (
in MeasurementStorage storage
);

MeasurementPointSequence listPoints ();

void addPoint (
in MeasurementPoint point
);

void removePoint (
in string pointId
);

void removeStorage (
in string storageId
);

};

typedef sequence <MeasurementPlan> MeasurementPlanSequence;

interface MeasurementPlanManager {

readonly attribute boolean activated;
attribute string planId;

Note – Issue 7895 - moved TimeType CFCommonTypes.idl

attribute CF::TimeType startTime;

MeasurementPlan createPlan (
in string name
);

dtc/2005-09-04

 B.4.3 Measurement Point Interface

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 337

MeasurementPlanSequence listPlans ();

void start ();
void suspend ();
void stop ();

};

};

};

};

#endif

B.4.3 Measurement Point Interface

//File: DfSWRadioMeasurementPoint.idl

#ifndef __DFSWRADIOMEASUREMENTPOINT_DEFINED
#define __DFSWRADIOMEASUREMENTPOINT_DEFINED

Note – Issue 8980 - Replace “#include "DfSWRadioCommonLayerBasicTypes.idl" statement
with “#include "CFCommonTypes.idl" statement

#include "CFCommonTypes.idl"
#include "DfSWRadioMeasurementStorage.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module Measurement {

interface MeasurementPoint {

readonly attribute string identifier;

Note – Issue 7895 - moved TimeType CFCommonTypes.idl

dtc/2005-09-04

B.4.4 Measurement Recorder Interface

338 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

attribute CF::TimeType delay;
attribute MeasurementStorage storage;
readonly attribute string dataType;
readonly attribute boolean activated;

void activate ();
void deactivate ();

};

};

};

};

#endif

B.4.4 Measurement Recorder Interface

//File: DfSWRadioMeasurementRecorder.idl

#ifndef __DFSWRADIOMEASUREMENTRECORDER_DEFINED
#define __DFSWRADIOMEASUREMENTRECORDER_DEFINED

#include "DfSWRadioMeasurementTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module Measurement {

interface MeasurementRecorder {

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

oneway void record (
in MeasurementType in_measurement
);

};

};

};

dtc/2005-09-04

 B.4.5 Measurement Storage Interface

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 339

};

#endif

B.4.5 Measurement Storage Interface

//File: DfSWRadioMeasurementStorage.idl

#ifndef __DFSWRADIOMEASUREMENTSTORAGE_DEFINED
#define __DFSWRADIOMEASUREMENTSTORAGE_DEFINED

#include "CFCommonTypes.idl"

#include "DfSWRadioMeasurementTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module Measurement {

enum StoragePolicyType {
ONESHOT,
CIRCULAR

};

Note – Issue 7878 Resolution (Renamed “Measurement” type to “MeasurementType”)

typedef sequence <MeasurementType> MeasurementSequence;

interface MeasurementStorage {

attribute string fileName;
attribute StoragePolicyType storagePolicy;
attribute unsigned long maxSize;

MeasurementSequence query (
in CF::Properties queryProperties
);

void clear ();

void truncate (
in long size
);

dtc/2005-09-04

B.4.6 DfSWRadio Measurement CORBA Module

340 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

void remove ();

};

};

};

};

#endif

Note – Issue 7587

B.4.6 DfSWRadio Measurement CORBA Module

//File: DfSWRadioMeasurement.idl

#ifndef __DFSWRADIOMEASUREMENT_DEFINED
#define __DFSWRADIOMEASUREMENT_DEFINED

#include "DfSWRadioMeasurementManagement.idl"
#include "DfSWRadioMeasurementRecorder.idl"

#endif

B.5 PDU Interfaces

//File: DfSWRadioPDU.idl

#ifndef __DFSWRADIOPDU_DEFINED
#define __DFSWRADIOPDU_DEFINED

Note – Issue 8296

#include "DfSWRadioCommonLayerBasicTypes.idl"
#include "CFCommonTypes.idl"
#include "DfSWRadioFlowControl.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module PDUFacilities {

dtc/2005-09-04

 B.6 Quality of Service Interface

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 341

struct ControlHeaderType {
DfSWRadio::CommonLayer::AddressType sourceAddress;
DfSWRadio::CommonLayer::AddressType destinationAddress;
DfSWRadio::CommonLayer::SduSizeType sduSize;
long priority;
long sequenceNumber;

};

interface BasePdu {

attribute DfSWRadio::CommonLayer::SduSizeType sduSize;

};

interface ConcretePdu : BasePdu {

oneway void pushPDU (
in ControlHeaderType control,
in CF::OctetSequence sdu
);

};

interface ConcreteDataPdu : BasePdu {

oneway void pushPDU (
in CF::OctetSequence sdu
);

};

};

};

};

#endif

B.6 Quality of Service Interface

//File: DfSWRadioQoSManagement.idl

#ifndef __DFSWRADIOQOSMANAGEMENT_DEFINED
#define __DFSWRADIOQOSMANAGEMENT_DEFINED

#pragma prefix "omg.org"

module DfSWRadio {

dtc/2005-09-04

B.7 Stream Interface

342 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

module CommonLayer {

module QosManagement {

interface QualityOfService {

void transmitQoSParameters ();
void negotiateQoSParameters ();

};

};

};

#endif

B.7 Stream Interface

//File: DfSWRadioStreamControl.idl

#ifndef __DFSWRADIOSTREAMCONTROL_DEFINED
#define __DFSWRADIOSTREAMCONTROL_DEFINED

#include "DfSWRadioCommonLayerBasicTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module CommonLayer {

module StreamControl {

interface Stream {

octet establishStream (
 in AddressType sourceAddress,
 in AddressType destinationAddress,
 in long priority
);

void releaseStream (
 in octet streamID
);

void localSetup ();

};

dtc/2005-09-04

 B.8 DfSWRadio Common Layer Module

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 343

};

};

};

#endif

Note – Issue 7587

B.8 DfSWRadio Common Layer Module

//File: DfSWRadioCommonLayer.idl

#ifndef __DFSWRADIOCOMMONLAYER_DEFINED
#define __DFSWRADIOCOMMONLAYER_DEFINED

#include "DfSWRadioErrorControl.idl"
#include "DfSWRadioMeasurement.idl"
#include "DfSWRadioPDU.idl"
#include "DfSWRadioQoSManagement.idl"
#include "DfSWRadioStreamControl.idl"
#include "DfSWRadioFlowControl.idl"

#endif

dtc/2005-09-04

B.8 DfSWRadio Common Layer Module

344 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 C.1 CF File Services Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 345

Annex C Common Radio Facilities CORBA IDL (non-
normative)

Note – Issue 7845 - Section changed to non-normative

CF File Services Interfaces. Page345
CF File Interface . Page 345
FileSystem . Page 346
FileManager . Page 348
DF SWRadio Common Radio . Page349
Managed Component Statuses Interface . Page 349

Note – Issue 7581 CORBA module name changed to CF

C.1 CF File Services Interfaces

C.1.1 CF File Interface

//Source file: CFFile.idl
#ifndef __CFFILE_DEFINED
#define __CFFILE_DEFINED
#include "CFCommonTypes.idl"
#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#endif
module CF {

exception FileException {
ErrorNumberType errorNumber;
string msg;

};
interface File {

exception IOException {
ErrorNumberType errorNumber;
string msg;

};
exception InvalidFilePointer {
};

readonly attribute string fileName;
readonly attribute unsigned long filePointer;

void read (
out OctetSequence data,
in unsigned long length
)
raises (IOException);

dtc/2005-09-04

C.1.2 FileSystem

346 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

void write (
in OctetSequence data
)
raises (IOException);

unsigned long sizeOf ()
raises (FileException);

void close ()
raises (FileException);

void setFilePointer (
in unsigned long filePointer
)
raises (InvalidFilePointer,FileException);

};
};
#endif

C.1.2 FileSystem

//Source file: CFFileSystem.idl

#ifndef __CFFILESYSTEM_DEFINED
#define __CFFILESYSTEM_DEFINED
#include "CFFile.idl"
#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#endif

module CF {
interface FileSystem {

exception UnknownFileSystemProperties {
Properties invalidProperties;

};
const string SIZE = "SIZE";
const string AVAILABLE_SIZE = "AVAILABLE_SPACE";
enum FileType {

PLAIN,
DIRECTORY,
FILE_SYSTEM

};

struct FileInformationType {
string name;
FileType kind;
unsigned long long size;
Properties fileProperties;

};

dtc/2005-09-04

 C.1.2 FileSystem

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 347

typedef sequence <FileInformationType> FileInformationSequence;

const string CREATED_TIME_ID = "CREATED_TIME";
const string MODIFIED_TIME_ID = "MODIFIED_TIME";
const string LAST_ACCESS_TIME_ID = "LAST_ACCESS_TIME";

void remove (
in string fileName
)
raises (FileException,InvalidFileName);

void copy (
in string sourceFileName,
in string destinationFileName
)
raises (InvalidFileName,FileException);

boolean exists (
in string fileName
)
raises (InvalidFileName);

FileInformationSequence list (
in string pattern
)
raises (FileException,InvalidFileName);

File create (
in string fileName
)
raises (InvalidFileName,FileException);

File open (
in string fileName,
in boolean read_Only
)
raises (InvalidFileName,FileException);

void mkdir (
in string directoryName
)
raises (InvalidFileName,FileException);

void rmdir (
in string directoryName
)
raises (InvalidFileName,FileException);

void query (
inout Properties fileSystemProperties
)
raises (UnknownFileSystemProperties);

dtc/2005-09-04

C.1.3 FileManager

348 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

};
};
#endif

C.1.3 FileManager

//Source file: CFFileManager.idl

#ifndef __CFFILEMANAGER_DEFINED
#define __CFFILEMANAGER_DEFINED

#include "CFFileSystem.idl"

#ifdef _PRE_3_0_COMPILER_

#pragma prefix "omg.org"

#endif

module CF {

interface FileManager : FileSystem {
struct MountType {

FileSystem fs;
string mountPoint;

};

typedef sequence <MountType> MountSequence;

exception NonExistentMount {
};

exception InvalidFileSystem {
};

exception MountPointAlreadyExists {
};

void mount (
in string mountPoint,
in FileSystem file_System
)
raises

(InvalidFileName,InvalidFileSystem,MountPointAlreadyExists);

void unmount (
in string mountPoint
)

dtc/2005-09-04

 C.2 DF SWRadio Common Radio

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 349

raises (NonExistentMount);

MountSequence getMounts ();

};

};

#endif

C.2 DF SWRadio Common Radio

C.2.1 Managed Component Statuses Interface

//File: DfSWRadioManagedComponentStatuses.idl

#ifndef __DFSWRADIOMANAGEDCOMPONENTSTATUSES_DEFINED
#define __DFSWRADIOMANAGEDCOMPONENTSTATUSES_DEFINED

#pragma prefix "omg.org"

module DfSWRadio {

module CommonRadio {

interface DfSwrManagedComponentStatuses {
const unsigned short ALARM_UNDER_REPAIR = 2;
const unsigned short ALARM_CRITICAL = 4;
const unsigned short ALARM_MAJOR = 8;
const unsigned short ALARM_MINOR = 16;
const unsigned short ALARM_OUTSTANDING = 32;
const unsigned short PROCEDURAL_INITIALIZATION = 2;
const unsigned short PROCEDURAL_NOT_INITIALIZED = 4;
const unsigned short PROCEDURAL_INITIALIZING = 8;
const unsigned short PROCEDURAL_REPORTING = 16;
const unsigned short PROCEDURAl_TERMINATING = 32;
const unsigned short AVAILABILITY_IN_TEST = 2;
const unsigned short AVAILABILITY_FAILED = 4;
const unsigned short AVAILABILITY_POWER_OFF = 8;
const unsigned short AVAILABILITY_OFFLINE = 16;
const unsigned short AVAILABILITY_OFFDUTY = 32;
const unsigned short AVAILABILITY_DEPENDENCY = 64;
const unsigned short AVAILABILITY_DEGRADED = 128;
const unsigned short AVAILABILITY_NOT_INSTALLED = 256;
const unsigned short AVAILABILITY_LOG_FULL = 512;
const unsigned short CONTROL_SUBJECT_TO_TEST = 2;
const unsigned short CONTROL_PART_OF_SERVICES_LOCKED = 4;
const unsigned short CONTROL_RESERVED_FOR_TEST = 8;

dtc/2005-09-04

C.2.1 Managed Component Statuses Interface

350 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

const unsigned short CONTROL_SUSPENDED = 16;
const unsigned short STANDBY_HOT = 2;
const unsigned short STANDBY_COLD = 4;
const unsigned short STANDBY_PROVIDING_SERVICE = 8;

};

};

};

#endif

dtc/2005-09-04

 D.1 Data Link Layer Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 317

Annex D Data Link Layer Facilities CORBA IDL (non-
normative)

Note – Issue 7845 - Section changed to non-normative

Data Link Layer Interfaces . Page317
Data Link Layer Types . Page 317
Data Link Layer Ack Connectionless Interfaces Page 318
Data Link Layer Connection Interface . Page 320
Data Link Layer Connectionless Interfaces. Page 321
Data Link Layer Local Management . Page 322
MAC Interfaces . Page325
DfSWRadio Data Link Layer Module . Page326

D.1 Data Link Layer Interfaces

D.1.1 Data Link Layer Types

//File: DfSWRadioDataLinkLayerTypes.idl

#ifndef __DFSWRADIODATALINKLAYERTYPES_DEFINED
#define __DFSWRADIODATALINKLAYERTYPES_DEFINED

#include "DfSWRadioCommonLayerBasicTypes.idl"
#include "CFCommonTypes.idl"
#pragma prefix "omg.org"

module DfSWRadio {

module DataLinkLayer {

enum LinkServiceType {
CONNECTION,
CONNECTIONLESS,
ACKCONNECTIONLESS

};

struct SAPAddressType {
unsigned long sap;
CF::OctetSequence address;

};

dtc/2005-09-04

D.1.2 Data Link Layer Ack Connectionless Interfaces

318 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

struct ConnectionIDType {
DfSWRadio::CommonLayer::AddressType sourceAddress;
DfSWRadio::CommonLayer::AddressType destinationAddress;
long priority;
SAPAddressType sapAddress;
LinkServiceType linkService;

};

};

};

#endif

D.1.2 Data Link Layer Ack Connectionless Interfaces

//File: DfSWRadioDataLinkLayerAckConnectionless.idl

#ifndef __DFSWRADIODATALINKLAYERACKCONNECTIONLESS_DEFINED
#define __DFSWRADIODATALINKLAYERACKCONNECTIONLESS_DEFINED

#include "DfSWRadioCommonLayerBasicTypes.idl"
#include "DfSWRadioFlowControlManagement.idl"
#include "DfSWRadioPDU.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module DataLinkLayer {

module LinkAckConnectionless {

enum PacketIndicatorType {
PI_ONEWAY,
PI_TWOWAY

};

struct IndicatorHeaderType {
PacketIndicatorType packetIndicator;
boolean useAckServiceInMAC;
DfSWRadio::CommonLayer::AddressType sourceAddress;
DfSWRadio::CommonLayer::AddressType destinationAddress;
long priority;
DfSWRadio::CommonLayer::SduSizeType sduSize;
long sequenceNumber;

};

dtc/2005-09-04

 D.1.2 Data Link Layer Ack Connectionless Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 319

struct ReplyHeaderType {
unsigned long correlationID;
DfSWRadio::CommonLayer::AddressType sourceAddress;
DfSWRadio::CommonLayer::AddressType destinationAddress;
long priority;
DfSWRadio::CommonLayer::SduSizeType sduSize;
long sequenceNumber;

};

struct RequestHeaderType {
PacketIndicatorType packetIndicator;
unsigned long correlationID;
boolean useAckServiceInMAC;
DfSWRadio::CommonLayer::AddressType sourceAddress;
DfSWRadio::CommonLayer::AddressType destinationAddress;
long priority;
DfSWRadio::CommonLayer::SduSizeType sduSize;
long sequenceNumber;

};

interface AckConnectionlessLink {

void ackReception (
in octet sequenceNumber

);

void nakreception (
in octet sequenceNumber

);

};

Note – Issue 8296

interface AckIndicatorPdu :
 DfSWRadio::CommonLayer::FlowControl::PriorityFlowControl,
 CommonLayer::PDUFacilities::BasePdu {

oneway void pushPDU (
in octet priority,
in IndicatorHeaderType control,
in CF::OctetSequence sdu

);

};

interface AckReplyPdu :
 DfSWRadio::CommonLayer::FlowControl::PriorityFlowControl,
 CommonLayer::PDU::BasePdu {

dtc/2005-09-04

D.1.3 Data Link Layer Connection Interface

320 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

oneway void pushPDU (
in octet priority,
in ReplyHeaderType control,
in CF::OctetSequence sdu

);

};

Note – Issue 8296

interface AckRequestPdu :

 DfSWRadio::CommonLayer::FlowControl::PriorityFlowControl,
 DfSWRadio::CommonLayer::PDUFacilities::BasePdu {

oneway void pushPDU (
in octet priority,
in RequestHeaderType control,
in CF::OctetSequence sdu

);

};

};

};

};

#endif

D.1.3 Data Link Layer Connection Interface

//File: DfSWRadioDataLinkLayerConnection.idl

#ifndef __DFSWRADIODATALINKLAYERCONNECTION_DEFINED
#define __DFSWRADIODATALINKLAYERCONNECTION_DEFINED

#include "DfSWRadioDataLinkLayerTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module DataLinkLayer {

typedef sequence <ConnectionIDType> ConnectionIdSequence;

dtc/2005-09-04

 D.1.3 Data Link Layer Connection Interface

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 321

interface ConnectionLink {

Note – Issue 8296

/* BEGIN UPDATE: Change parameters to AddressType, return
ConnectionIDType

NOTE: Update UML
*/

ConnectionIDType establishStream (
in DfSWRadio::CommonLayer::AddressType sourceAddress,
in DfSWRadio::CommonLayer::AddressType destinationAddress
);

void startStream (
in ConnectionIDType streamID
);

void stopStream (
in ConnectionIDType streamID
);

void releaseStream (
in ConnectionIDType streamID
);

Note – Issues 7787, 8296

/* BEGIN UPDATE: Change return type to 'ConnectionIDType'
NOTE: Update UML
QUESTION: Should parameter be 'Sequence' or 'Type'?

*/

ConnectionIDType muxStreams (
in ConnectionIdSequence streamIDs
);

/* END UPDATE: Issue 7787 */

/* BEGIN UPDATE: Change return type to 'ConnectionIDType'
NOTE: Update UML
QUESTION: Should parameter be 'Sequence' or 'Type'?

*/
ConnectionIDType demuxStream (

in ConnectionIDType streamID
);

/* END UPDATE: Issue 7787 */

};

dtc/2005-09-04

D.1.4 Data Link Layer Connectionless Interfaces

322 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

};

};

#endif

D.1.4 Data Link Layer Connectionless Interfaces

//File: DfSWRadioDataLinkLayerConnectionless.idl

#ifndef __DFSWRADIODATALINKLAYERCONNECTIONLESS_DEFINED
#define __DFSWRADIODATALINKLAYERCONNECTIONLESS_DEFINED

#include "DfSWRadioPDU.idl"
#include "DfSWRadioFlowControlManagement.idl"
#include "DfSWRadioCommonLayerBasicTypes.idl"
#include "CFCommonTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module DataLinkLayer {

module LinkConnectionless {

struct IndicatorHeaderType {
boolean isGroupAddress;
DfSWRadio::CommonLayer::AddressType sourceAddress;
DfSWRadio::CommonLayer::AddressType destinationAddress;
long priority;
DfSWRadio::CommonLayer::SduSizeType sduSize;
long sequenceNumber;

};

Note – Issue 8296

typedef DfSWRadio::CommonLayer::PDUFacilities::ControlHeaderType
 RequestHeaderType;

interface IndicatorPdu :
 DfSWRadio::CommonLayer::FlowControl::PriorityFlowControl,
 DfSWRadio::CommonLayer::PDUFacilities::BasePdu {

oneway void pushPDU (
in octet priority,
in IndicatorHeaderType control,
in CF::OctetSequence sdu
);

dtc/2005-09-04

 D.1.5 Data Link Layer Local Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 323

};

Note – Issue 8296

interface RequestPdu :
 DfSWRadio::CommonLayer::FlowControl::PriorityFlowControl,
 DfSWRadio::CommonLayer::PDUFacilities::BasePdu {

oneway void pushPDU (
in octet priority,
in RequestHeaderType control,
in CF::OctetSequence sdu
);

};

};

};

};

#endif

D.1.5 Data Link Layer Local Management

//File: DfSWRadioDataLinkLayerLocalManagement.idl

#ifndef __DFSWRADIODATALINKLAYERLOCALMANAGEMENT_DEFINED
#define __DFSWRADIODATALINKLAYERLOCALMANAGEMENT_DEFINED

#include "DfSWRadioDataLinkLayerTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module DataLinkLayer {

struct BindRequestType {
SAPAddressType sapAddress;
unsigned long maxConnectionInd;
LinkServiceType linkService;
boolean isListenStream;
boolean autoXID;
boolean autoTest;

};

dtc/2005-09-04

D.1.5 Data Link Layer Local Management

324 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

struct BindResponseType {
SAPAddressType sapAddress;
unsigned long maxConnectionInd;
boolean autoXID;
boolean autoTest;

};

enum PromiscuousModeType {
PHYSICAL,
SAP,
MULTI

};

enum ServiceErrorType {
ERROR_INVALID_STATE,
ERROR_UNSUPPORTED,
ERROR_BAD_ADDRESS,
ERROR_BAD_CORRELATION,
ERROR_NOT_ENABLED,
ERROR_TOO_MANY,
ERROR_NO_ACCESS,
ERROR_BOUND,
ERROR_NO_AUTO,
ERROR_NO_XIDAUTO,
ERROR_NO_TESTAUTO,
ERROR_BAD_DATA,
ERROR_NO_ADDRESS,
ERROR_BAD_SAP,
ERROR_BAD_QOS_PARAMETERS,
ERROR_UNDELIVERABLE

};

interface LocalLinkManagement {

exception SystemError {
unsigned long errNo;

};

exception ServiceUsageError {
ServiceErrorType qualifier;

};

exception InvalidPort {};

attribute DfSWRadio::CommonLayer::SduSizeType sduSize;

void getInfo (
in ConnectionIDType connectionID
)
raises (InvalidPort,SystemError);

dtc/2005-09-04

 D.1.5 Data Link Layer Local Management

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 325

BindResponseType bindStream (
in ConnectionIDType connectionID,
in BindRequestType bindRequest
)
raises (InvalidPort,ServiceUsageError,SystemError);

Note – Issue 8296, 7725

BindResponseType unbindStream (
in ConnectionIDType connectionID

) raises (InvalidPort,ServiceUsageError,SystemError);

BindResponseType bindSubsequentStream(
in ConnectionIDType connectionID,
in BindRequestType bindRequest
)
raises (InvalidPort,ServiceUsageError,SystemError);

Note – Issue 8296

BindResponseType unbindSubsequentStream (
in ConnectionIDType connectionID,
)
raises (InvalidPort,ServiceUsageError,SystemError);

void enableMulticast (
in ConnectionIDType connectionID
);

void disableMulticast (
in ConnectionIDType connectionID
);

void enablePromiscuousMode (
in ConnectionIDType connectionID,
in PromiscuousModeType promiscouosMode
);

void disablePromiscuousMode (
in ConnectionIDType connectionID
);

};

};

};

dtc/2005-09-04

D.2 MAC Interfaces

326 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

#endif

D.2 MAC Interfaces

//File: DfSWRadioDataLinkLayerMAC.idl

#ifndef __DFSWRADIODATALINKLAYERMAC_DEFINED
#define __DFSWRADIODATALINKLAYERMAC_DEFINED

#include "CFCommonTypes.idl"
#include "DfSWRadioCommonLayerBasicTypes.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module DataLinkLayer {

module MACControl {

struct MediumAccessControlHeaderType {
DfSWRadio::CommonLayer::AddressType receiverAddress;
DfSWRadio::CommonLayer::AddressType transmitterAddress;
CF::OctetSequence CRC;
long frameType;
long frameSubType;
boolean moreFlag;
boolean retryFlag;
CF::OctetSequence powerManagementCommands;
CF::OctetSequence privacyKey;

};

interface MediumAccessControl {

boolean determineMediumAccessParameters ();

boolean activateChannel (
 in long presetNum
);

};

interface MacPdu {

oneway void pushPDU (
in MediumAccessControlHeaderType control,
in CF::OctetSequence sdu
);

dtc/2005-09-04

 D.3 DfSWRadio Data Link Layer Module

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 327

};

};

};

};

#endif

Note – Issue 7587

D.3 DfSWRadio Data Link Layer Module

//File: DfSWRadioDataLinkLayer.idl

#ifndef __DFSWRADIODATALINKLAYER_DEFINED
#define __DFSWRADIODATALINKLAYER_DEFINED

#include "DfSWRadioDataLinkLayerAckConnectionless.idl"
#include "DfSWRadioDataLinkLayerConnection.idl"
#include "DfSWRadioDataLinkLayerConnectionless.idl"
#include "DfSWRadioDataLinkLayerLocalManagement.idl"
#include "DfSWRadioDataLinkLayerMAC.idl"

#endif

dtc/2005-09-04

D.3 DfSWRadio Data Link Layer Module

328 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 E.1 Physical Layer Input/Output Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 361

Annex E Physical Layer CORBA IDL (non-normative)

Note – Issue 7845 - Section changed to non-normative

Physical Layer Input/Output Interfaces Page361

E.1 Physical Layer Input/Output Interfaces

Note – Issue 7868

//Source file: DfSWRadioPhysicalLayer.idl

#ifndef __DFSWRADIOPHYSICALLAYER_DEFINED

#define __DFSWRADIOPHYSICALLAYER_DEFINED

#ifdef _PRE_3_0_COMPILER_

#pragma prefix "omg.org"

#endif

module DfSWRadio {

module PhysicalLayer {

interface IOSignals {

oneway void signalRTS (

in boolean rts

);

};

module SerialIO {

interface SerialIOSignals : IOSignals {

};

interface SerialIOControl

void enableRTS_CTS (

in boolean enable

dtc/2005-09-04

E.1 Physical Layer Input/Output Interfaces

362 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

);

void setCTS (

in boolean cts

);

};

};

module AudioIO {

interface PTTSignals : IOSignals {

};

};

};

};

#endif

dtc/2005-09-04

 F.1 I/O XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 363

Annex F Physical Layer Properties (non-normative)

Note – Issue 7845 - Section changed to non-normative

I/O XML Properties . Page363
Audio XML Properties . Page 363
Serial XML Properties . Page 373

Note – Issue 7583 replace section with I/O XML Properties

F.1 I/O XML Properties

F.1.1 Audio XML Properties

<?xml version="1.0" encoding="UTF-8"?>

<!--Sample XML file generated by XMLSpy v2005 sp2 U
(http://www.altova.com)-->

<SWRadio:Properties xmlns:SWRadio="http://schema.omg.org/SWRadio"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schema.omg.org/SWRadio

D:\\SWRadio\Properties.xsd">

<SWRadio:ConfigureQuerySimpleProperty>

<description>Width of frequency band.</description>

<label>Band Width</label>

<name>bandWidth</name>

<integerId>30</integerId>

<type>ulong</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<label>Delat Group Delay</label>

<name>deltaGroupDelay</name>

dtc/2005-09-04

F.1.1 Audio XML Properties

364 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<integerId>31</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<label>Gain Controller Dynamic</label>

<name>gainControllerDynamic</name>

<integerId>32</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<label>Gain Controller Step</label>

<name>gainControllerStep</name>

<integerId>33</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>High bound sampling frequency in order to satisfy the Shannon
sampling criterion.</description>

<label>High Bound Frequency</label>

<name>highBoundFrequency</name>

<integerId>34</integerId>

<type>ushort</type>

<value></value>

dtc/2005-09-04

 F.1.1 Audio XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 365

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Defines the high bound rejection limit in low frequencies to
avoid continuous component (pass band).</description>

<label>High Bound Frequency Pass Band</label>

<name>highBoundFrequencyPB</name>

<integerId>35</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>High bound of rejection gain.</description>

<label>High Bound Rejection Gain</label>

<name>highBoundRejectionGain</name>

<integerId>36</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>High bound of rejection slope.</description>

<label>High Bound Rejection Slope</label>

<name>highBoundRejectionSlope</name>

<integerId>4</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

dtc/2005-09-04

F.1.1 Audio XML Properties

366 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<SWRadio:ConfigureQuerySimpleProperty>

<description>High bound of transition band.</description>

<label>High Bound Transition Band</label>

<name>highBoundTransitionBand</name>

<integerId>37</integerId>

<type>ulong</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>capability of the gain.</description>

<label>Level Adjustment Dynamic</label>

<name>levelAdjustmentDynamic</name>

<integerId>38</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>granularity of the gain.</description>

<label>Level Adjustment Step</label>

<name>levelAdjustmentStep</name>

<integerId>39</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

dtc/2005-09-04

 F.1.1 Audio XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 367

<description>Low bound sampling frequency in order to satisfy the Shannon
sampling criterion.</description>

<label>Low Bound Frequency</label>

<name>lowBoundFrequency</name>

<integerId>40</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Defines the low bound rejection limit in low frequencies to
avoid continuous component (pass band).</description>

<label>Low Bound Frequency Pass Band</label>

<name>lowBoundPB</name>

<integerId>41</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Low bound of rejection gain.</description>

<label>Low Bound Rejection Gain</label>

<name>lowBoundRejectionGain </name>

<integerId>42</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Low bound of rejection slope.</description>

dtc/2005-09-04

F.1.1 Audio XML Properties

368 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<label>Low Bound Rejection Slope</label>

<name>lowBoundRejectionSlope</name>

<integerId>43</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<label>Low Bound Rejection Slope</label>

<name>lowBoundRejectionSlope</name>

<integerId>44</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Low bound of transition band.</description>

<label>Low Bound Transition Band</label>

<name>lowBoundTransitionBand </name>

<integerId>45</integerId>

<type>ulong</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Maximum allowed latency.</description>

<label>Max Latency</label>

<name>maxLatency</name>

<integerId>46</integerId>

dtc/2005-09-04

 F.1.1 Audio XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 369

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Defines maximum bound of nominal level.</description>

<label>Max Nominal Level</label>

<name>maxNominalLevel</name>

<integerId>47</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Defines minimal bound of nominal level.</description>

<label>Min Nominal Level</label>

<name>minNominalLevel</name>

<integerId>48</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Defines the instruction for output analog signal nominal
level.</description>

<label>Nominal Level</label>

<name>NominalLevel</name>

<integerId>49</integerId>

<type>long</type>

dtc/2005-09-04

F.1.1 Audio XML Properties

370 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Defines the level of noise (assumed white) present in audio
frequency samples as inputting inside (resp. being output from) Audio.
Expressed in dBFS/Hz. Possible spurious are integrated in this
value.</description>

<label>NoiseFloor</label>

<name>noiseFloor</name>

<integerId>50</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Defines the level of quantification noise present in digital
samples as inputting inside (resp. being output from) ADC. Expressed in
dBFS.</description>

<label>Quantification Noise Floor</label>

<name>QuantificationNoiseFloor</name>

<integerId>51</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<label>Ripple</label>

<name>ripple</name>

<integerId>52</integerId>

<type>long</type>

dtc/2005-09-04

 F.1.1 Audio XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 371

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<label>Quantification Noise Floor</label>

<name>QuantificationNoiseFloor</name>

<integerId>53</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Defines the sampling frequency of the audio frequency
signal.</description>

<label>Sampling Frequency</label>

<name>SamplingFrequency</name>

<integerId>54</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Avoid gain saturation (in dBfs).</description>

<label>Saturation Merge</label>

<name>saturationMerge</name>

<integerId>55</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

dtc/2005-09-04

F.1.1 Audio XML Properties

372 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<SWRadio:ConfigureQuerySimpleProperty>

<description>Expresses the expected variations of signal magnitude around
the nominal level.</description>

<label>Signal Dynamicr</label>

<name>SignalDynamic</name>

<integerId>56</integerId>

<type>long</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:CharacteristicProperty>

<capabilityModel>eq</capabilityModel>

<locallyManaged>false</locallyManaged>

<description>Defines the type of device.</description>

<label>Device Type</label>

<name>DeviceType</name>

<type>string</type>

<value>AudioDevice</value>

</SWRadio:CharacteristicProperty>

<SWRadio:CharacteristicProperty>

<capabilityModel>"eq"</capabilityModel>

<locallyManaged>false</locallyManaged>

<description>Defines if the device is on red (unencrypted boundary) or
black side (encrypted boundary) of an encryption boundary (Black/Encrypted
= 0, Red/Unencrypted = 1).</description>

<name>location</name>

<type>ushort</type>

<enumerations>

dtc/2005-09-04

 F.1.2 Serial XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 373

<enumerationLiteral>

<label>Black/Encrypted</label>

<value>0</value>

</enumerationLiteral><enumerationLiteral>

<label>Red/Unencrypted</label>

<value>1</value>

</enumerationLiteral>

</enumerations>

</SWRadio:CharacteristicProperty>

<SWRadio:CapacityProperty>

<capabilityModel>"counter"</capabilityModel>

<locallyManaged>true</locallyManaged>

<description>Specifies the number of audio ports for a
device.</description>

<label>Ports Capacity</label>

<name>portsCapacity</name>

<type>ushort</type>

<value>1</value>

</SWRadio:CapacityProperty>

</SWRadio:Properties>

F.1.2 Serial XML Properties

<?xml version="1.0" encoding="UTF-8"?>

<!--Sample XML file generated by XMLSpy v2005 sp2 U
(http://www.altova.com)-->

<SWRadio:Properties xmlns:SWRadio="http://schema.omg.org/SWRadio"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schema.omg.org/SWRadio

D:\\SWRadio\Properties.xsd">

dtc/2005-09-04

F.1.2 Serial XML Properties

374 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<SWRadio:ConfigureQuerySimpleProperty>

<description>(Asynchronous protocol only) Number of bits in character (5,
6, 7, or 8).</description>

<label>Character Width</label>

<name>characterWidth</name>

<integerId>13</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty isReadOnly="true">

<description>Indicates the CTS status.</description>

<label>CTS Status</label>

<name>ctsStatus</name>

<integerId>1</integerId>

<type>boolean</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Controls whether flow Control signals should be generated.
True means Xon and False means Xoff.</description>

<label>Flow Control Xon Xoff</label>

<name>flowControlXonXoff</name>

<integerId>2</integerId>

<type>boolean</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

dtc/2005-09-04

 F.1.2 Serial XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 375

<description>To enable/disable use of RTS/CTS hardware signals used for
flow control.</description>

<label>Hardware Control</label>

<name>hardwareFlowControl</name>

<integerId>11</integerId>

<type>boolean</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty isReadOnly="true">

<description>Maximum size of payload for the pushPDU() method in
ConcreteDataPDU interface.</description>

<label>Max Payload Size</label>

<name>maxPayloadSize</name>

<integerId>4</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty isReadOnly="true">

<description>Minimum size of payload for the pushPDU() method in
ConcreteDataPDU interface.</description>

<label>Min Payload Size</label>

<name>minPayloadSize</name>

<integerId>3</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

dtc/2005-09-04

F.1.2 Serial XML Properties

376 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<description>Asynchronous protocol only) Number of start bits (0 or
1).</description>

<label>Number of Start Bits</label>

<name>numberStartBits</name>

<integerId>15</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>(Asynchronous protocol only) Number of stop bits (1 or
2).</description>

<label>Number of Stop Bits</label>

<name>numberStopBits</name>

<integerId>16</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Optional, used only for receive flow control. IDLE time that
Serial I/O waits before data received through the serial port must be
forwarded to the component connected to the DataOutPort. IDLE time in number
of not received characters unit.</description>

<label>On Threshold</label>

<name>onThreshold</name>

<integerId>14</integerId>

<type>ulong</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

dtc/2005-09-04

 F.1.2 Serial XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 377

<SWRadio:ConfigureQuerySimpleProperty>

<description>ype of parity checking (Even = 0, odd = 1).</description>

<label>Parity Checking</label>

<name>parityChecking</name>

<integerId>12</integerId>

<type>ushort</type><enumerations>

<enumerationLiteral>

<label>Even</label>

<value>0</value>

</enumerationLiteral><enumerationLiteral>

<label>Odd</label>

<value>1</value>

</enumerationLiteral>

</enumerations>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Sets asynchronous serial data protocol (Asynchronous=0 and
Synchronous = 1).</description>

<label>Protocol</label>

<name>protocol</name>

<integerId>7</integerId>

<type>ushort</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

dtc/2005-09-04

F.1.2 Serial XML Properties

378 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<description>Baud rate for Receive data</description>

<label>Receive Baud Rate</label>

<name>receiveBaudRate</name>

<integerId>8</integerId>

<type>ulong</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Size of packets to buffer before any data is written to device
caller.</description>

<label>Receive Buffer Size</label>

<name>receiveBufferSize</name>

<integerId>17</integerId>

<type>ulong</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Clock source for Receive data: internal Receive baud rate
generator, external clock line, and Transmit clock source, respectively.
Predefined values for coding scheme are 0=Internal Receive and 1=External
clock.</description>

<label>Receive Clock Source</label>

<name>receiveClockSource</name>

<integerId>10</integerId>

<type>ushort</type>

<enumerations>

<enumerationLiteral>

<label>Internal Receive</label>

dtc/2005-09-04

 F.1.2 Serial XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 379

<value>0</value>

</enumerationLiteral><enumerationLiteral>

<label>External clock</label>

<value>1</value>

</enumerationLiteral>

</enumerations>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Sets the encoding method for Transmission of serial data to
NRZ, NRZI Mark, FM0, Manchester, and Differential Manchester, respectively.
Predefined values for coding scheme are 0=NRZ, 1=NRZI Mark, 2=FM0,
3=Manchester, and 4=Differential Manchester, respectively.</description>

<label>Receive Encoding</label>

<name>receiveEncoding</name>

<integerId>9</integerId>

<type>ushort</type>

<enumerations>

<enumerationLiteral>

<label>"NRZ"</label>

<value>0</value>

</enumerationLiteral>

<enumerationLiteral>

<label>"NRZI Mark"</label>

<value>1</value>

</enumerationLiteral>

<enumerationLiteral>

dtc/2005-09-04

F.1.2 Serial XML Properties

380 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<label>"FM0"</label>

<value>2</value>

</enumerationLiteral>

<enumerationLiteral>

<label>"Manchester"</label>

<value>3</value>

</enumerationLiteral>

<enumerationLiteral>

<label>"Differential Manchester"</label>

<value>4</value>

</enumerationLiteral>

</enumerations>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty isReadOnly="true">

<description>Retrieves the RTS/CTS mode.</description>

<label>RTS CTS Mode</label>

<name>rts_cts_mode</name>

<integerId>5</integerId>

<type>boolean</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Baud rate for transmit data.</description>

<label>Transmit Baud Rate</label>

<name>transmitBaudRate</name>

dtc/2005-09-04

 F.1.2 Serial XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 381

<integerId>19</integerId>

<type>ulong</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Clock source for Transmission of data: internal Transmit baud
rate generator, external clock line, Receive clock source, and clock
recovery, respectively. Predefined values for coding scheme are 0=Internal
Receive and 1=External clock.</description>

<label>Transmit Clock Source</label>

<name>transmitClockSource</name>

<integerId>20</integerId>

<type>ushort</type>

<enumerations>

<enumerationLiteral>

<label>Internal Receive</label>

<value>0</value>

</enumerationLiteral><enumerationLiteral>

<label>External clock</label>

<value>1</value>

</enumerationLiteral>

</enumerations>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Sets the encoding method for Transmission of serial data to
NRZ, NRZI Mark, FM0, Manchester, and Differential Manchester, respectively.
Predefined values for coding scheme are 0=NRZ, 1=NRZI Mark, 2=FM0,
3=Manchester, and 4=Differential Manchester, respectively.</description>

dtc/2005-09-04

F.1.2 Serial XML Properties

382 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<label>Transmit Encoding</label>

<name>transmitEncoding</name>

<integerId>18</integerId>

<type>ushort</type>

<enumerations>

<enumerationLiteral>

<label>"NRZ"</label>

<value>0</value>

</enumerationLiteral>

<enumerationLiteral>

<label>"NRZI Mark"</label>

<value>1</value>

</enumerationLiteral>

<enumerationLiteral>

<label>"FM0"</label>

<value>2</value>

</enumerationLiteral>

<enumerationLiteral>

<label>"Manchester"</label>

<value>3</value>

</enumerationLiteral>

<enumerationLiteral>

<label>"Differential Manchester"</label>

<value>4</value>

</enumerationLiteral>

</enumerations>

dtc/2005-09-04

 F.1.2 Serial XML Properties

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 383

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:ConfigureQuerySimpleProperty>

<description>Set if on-going transmission..</description>

<label>Transmit Active</label>

<name>txActive</name>

<integerId>21</integerId>

<type>boolean</type>

<value></value>

</SWRadio:ConfigureQuerySimpleProperty>

<SWRadio:CharacteristicProperty>

<capabilityModel>"eq"</capabilityModel>

<locallyManaged>false</locallyManaged>

<label>Device Type</label>

<name>DeviceType</name>

<type>string</type>

<value>SerialDevice</value>

</SWRadio:CharacteristicProperty>

<SWRadio:CharacteristicProperty>

<capabilityModel>"eq"</capabilityModel>

<locallyManaged>false</locallyManaged>

<name>location</name>

<type>ushort</type>

<enumerations>

<enumerationLiteral>

<label>Black/Encrypted</label>

dtc/2005-09-04

F.1.2 Serial XML Properties

384 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<value>0</value>

</enumerationLiteral><enumerationLiteral>

<label>Red/Unencrypted</label>

<value>1</value>

</enumerationLiteral>

</enumerations>

</SWRadio:CharacteristicProperty>

<SWRadio:CapacityProperty>

<capabilityModel>"counter"</capabilityModel>

<locallyManaged>true</locallyManaged>

<label>Ports Capacity</label>

<name>portsCapacity</name>

<type>ushort</type>

<value>1</value>

</SWRadio:CapacityProperty>

</SWRadio:Properties>

dtc/2005-09-04

 G.1 Radio Set Management Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 385

Annex G Radio Control Facilities CORBA IDL (non-
normative)

Note – Issue 7845 - Section changed to non-normative

Radio Set Management Interfaces . Page385

G.1 Radio Set Management Interfaces

//File: DfSWRadioControlRadioSetManagement.idl

#ifndef __DFSWRADIOCONTROLRADIOSETMANAGEMENT_DEFINED
#define __DFSWRADIOCONTROLRADIOSETMANAGEMENT_DEFINED

#include "CFCommonTypes.idl"
#include "CFApplications.idl"
#include "CFResources.idl"
#include "CFDevices.idl"
#include "CFStateManagement.idl"
#include "CFDomainManager.idl"

#pragma prefix "omg.org"

module DfSWRadio {

module RadioControl {

module RadioSetManagement {

interface CommChannel;

interface ZeroizeControl {
void zeroize ();

};

interface ChannelFactory {
CommChannel createChannel (

in CF::Properties channelProperties
);

};

interface WaveformCommChannel : CF::Application {
attribute CommChannel instantiatedCommChannel;

};

dtc/2005-09-04

G.1 Radio Set Management Interfaces

386 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

interface WaveformInstantiation {
WaveformCommChannel instantiateWaveform (

in string waveformName,
in string instanceWFName,
in CF::Properties wfConfigProperties,
in CF::Properties channelConfigProperties

);
};

interface CommChannel : CF::PropertySet, CF::TestableObject,
CF::ComponentIdentifier, WaveformInstantiation {

readonly attribute WaveformCommChannel instantiatedWF;
readonly attribute CF::DeviceSequence channelDevices;
readonly attribute CF::Properties keyProperties;

void releaseChannel ();

};

interface ManagedCommChannel : CF::StateManagement, CommChannel{};

interface SecureCommChannel : CommChannel, ZeroizeControl {};

interface ManagedSercureCommChannel : ManagedCommChannel,
 SecureCommChannel, ZeroizeControl {};

interface RadioManager: CF::DomainManager, WaveformInstantiation {

typedef sequence <CommChannel> CommChannelSequence;
attribute CommChannelSequence commChannels;
attribute CF::StringSequence availableWaveforms;

};

interface ManagedRadioManager:CF::StateManagement, RadioManager{};

interface SecureRadioManager : RadioManager, ZeroizeControl {};

interface ManagedSecureRadioManager : SecureRadioManager,
 ManagedRadioManager {

};

};

};

};

#endif

dtc/2005-09-04

 G.1 Radio Set Management Interfaces

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 387

dtc/2005-09-04

G.1 Radio Set Management Interfaces

388 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 H.1 SCA Application Environment Profile

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 389

Annex H Operating System Profiles (non-normative)
SCA Application Environment Profile Page389
Scope . Page 389
Standards . Page 389
Constraints . Page 390
POSIX.1. . Page 390
POSIX.1b. Page 403
POSIX.1c . Page 406

Note – Issue 7845 - annex non-normative

H.1 SCA Application Environment Profile

H.1.1 Scope

Note – Issue 8934

This appendix defines the application environment profiles for the SWRadio, based on Standardized Application
Environment Profile - POSIX® Realtime Application Support (AEP), IEEE Std 1003.13-1998.

The appendix includes two specific profiles, which are characterized as follows:

1. The application environment profile (AEP), which is the SWRadio wide profile. The AEP is the
preferred profile for the SWRadio and its utilization is encouraged for all processing environments.

2. The lightweight application environment profile (LwAEP). LwAEP is more constrained than the AEP
and is targeted towards environments with limited computing support. Examples of embedded
processors include Digital Signal Processors (DSPs), processor cores within Field Programmable Gate
Arrays (FPGA's) and micro-controllers. Mandatory application of LwAEP shall apply only to DSPs.
Use of LwAEP in an FPGA-based processor core is encouraged but not required."

H.1.2 Standards

Note – Issue 8934

The following standards are required in whole or in part by the SWRadio AEPs.

Table H-19 – Required Standards

Standard AEP LwAEP

C Standard (ISO/IEC 9899:1990 PRT PRT

POSIX.1 (ISO/IEC 9945 -1):1996 PRT PRT

POSIX.1b (ISO/IEC 9945 -1):1996 PRT PRT

POSIX.1c (ISO/IEC 9945 -1):1996 PRT PRT

POSIX.5b (IEEE 1003.5 - 1992) OPT OPT

dtc/2005-09-04

H.1.3 Constraints

390 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 8836 - Table above, changed references POSIX 1.x references from 1997 to 1996

NOTE:

PRT - Partial, only the subset or options or Units of Functionality called out in A.3.

MAN - Mandatory, complete with all options.

OPT - Optional, may be included in the environment.

H.1.3 Constraints

Note – Issue 8838 - Shall ==> Must

The real-time profile defined in this standard requires only specific Units of Functionality of the required stan-
dards. The absence of particular elements of these standards introduces constraints on the use of some of the fea-
tures of particular functions. This clause defines the constraints that an application strictly conforming to one of
the profiles must observe when using each of the functions required by that profile.

An Ada AEP has not been explicitly defined. Any Ada application shall be restricted to using the equivalent Ada
functionality, as defined in POSIX.5b, designated as mandatory by this profile or may use the C interface.

Note – Issue 8934

Key considerations in selection of functions for the embedded processor are as follows:

● Of late, DSP development environments include operating systems that offer a rich and scaleable
feature set - pre-emptive multitasking, installable interrupt handlers and inter-process
communications.

● Current DSP technology does not employ Memory Management Units (MMU's).

● Different DSP environments sometimes offer extensions or services that target specific market
segments - optimizations for video processing, power savings features and kernel support for real-
time debugging.

● Current embedded state-of-the-art does not exploit loadable modules. Entire FPGA and DSP images
containing infrastructure and application software are loaded simultaneously as part of waveform
instantiation.

Ultimately the presence of a full-featured RTOS in the embedded processor is a relatively new practice and yet
one that is recognized as offering life cycle software cost benefit. The state-of-the-art will continue to advance
and this Appendix shall not disallow the migration of new design paradigms as they become matured and prac-
ticed.

H.1.3.1 POSIX.1.

Note – Issue 7586, Issue 8934

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 391

Note – Issue 7586, Issue 8934

NOTE:

NRQ - Not required for this profile.

PRI - The primary file system shall generate an error for pathname components longer than NAME_MAX. The
user is responsible for semantics of other file systems that may be mounted.

Embedded processor C/C++ run-time libraries typically do not support stdio.h or iostream.h

H.1.3.1.1 Single Process Function Behavior

The functions in Table H-21 shall behave as described in the referenced clauses.

Note – Issue 8934 table above

NRQ - Not required for this profile.

MAN - Mandatory for this profile.

Table H-20 – POSIX.1 Option Requirements

Option AEP LwAEP

{NGROUPS_MAX} - -

{_POSIX_CHOWN_RESTRICTED} NRQ NRQ

{_POSIX_JOB_CONTROL} NRQ NRQ

{_POSIX_NO_TRUNC} PRI NRQ

{_POSIX_SAVED_IDS} NRQ NRQ

{_POSIX_VDISABLE} NRQ NRQ

Table H-21 – POSIX_SINGLE_PROCESS Functions

Function Reference in POSIX.1 AEP LwAEP

sysconf () 4.8.1 NRQ NRQ

uname() 4.4.1 NRQ NRQ

time() 4.5.1 MAN NRQ

dtc/2005-09-04

H.1.3 Constraints

392 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

H.1.3.1.2 Multi-Process Function Behavior

The functions listed in Table H-22 shall behave as described in the referenced clauses.

Note – Issue 8830 - pthread_atfork() added to the table above

MAN - Mandatory for this profile.

NRQ - Not Required for this profile

Note – Issue 8934 modifed table above and added text below

.setlocale() is a part of the AEP but not LwAEP because embedded processors do not support streaming character
oriented output.

Table H-22 – POSIX_MULTI_PROCESS Functions

Function Reference in POSIX.1 AEP LwAEP

execl () 3.1.2 NRQ NRQ

execv () 3.1.2 NRQ NRQ

execle () 3.1.2 NRQ NRQ

execve () 3.1.2 NRQ NRQ

execlp () 3.1.2 NRQ NRQ

execvp () 3.1.2 NRQ NRQ

_exit () 3.2.2 NRQ NRQ

fork() 3.1.1 NRQ NRQ

getenv () 4.6.1 NRQ NRQ

getpid () 4.1.1 NRQ NRQ

getppid () 4.1.1 NRQ NRQ

pthread_atfork() 3.1.3 NRQ NRQ

sleep () 3.4.3 NRQ NRQ

times () 4.5.2 NRQ NRQ

wait() 3.2.1 NRQ NRQ

waitpid () 3.2.1 NRQ NRQ

assert () 8.1, 8.2, 8.3 NRQ NRQ

exit () 8.1, 8.2, 8.3 NRQ NRQ

setlocale () 8.1, 8.2, 8.3 MAN NRQ

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 393

H.1.3.1.3 Job Control Function Behavior

The functions listed in Table H-23 shall behave as described in the referenced clauses.

Note – Issue 8934 modified table above

NOTE:

NRQ - Not required for this profile.

 - Further functionality is also defined here.

H.1.3.1.4 Signals Function Behavior

Note – Issue 8934 added new 1st paragraph and modified table below

Operating systems on embedded processors typically support neither signaling nor exception handling. POSIX
does not define behaviors associated with divide by zero or overflow / underflow. Signaling methods introduced
as part of POSIX.1c are more consistent with the multi-threaded, single process model of the DSP environment

The functions listed in Table H-24 shall behave as described in the referenced clauses, except for the following
constraints:

(1) An application strictly conforming to the AEP shall be considered erroneous if any signal results in abnormal
termination of the process because these profiles do not support multiple processes.

(2) An application strictly conforming to the AEP shall not call the kill() function with a negative argument be-
cause these profiles do not require process group functionality.

Table H-23 – POSIX_JOB_CONTROL Functions

Function* Reference in POSIX.1 AEP LwAEP

setpgid() 4.3.3 NRQ NRQ

tcgetpgrp() 7.2.3 NRQ NRQ

tcsetpgrp() 7.2.4 NRQ NRQ

* 7.1.1.4 NRQ NRQ

Table H-24 – POSIX_SIGNALS Functions

Function Reference in POSIX.1 AEP LwAEP

alarm()* 3.4.1 NRQ NRQ

kill() 3.3.2 MAN NRQ

pause() 3.4.2 MAN NRQ

sigaction() 3.3.4 MAN NRQ

sigaddset() 3.3.3 MAN NRQ

sigdelset() 3.3.3 MAN NRQ

sigemptyset() 3.3.3 MAN NRQ

dtc/2005-09-04

H.1.3 Constraints

394 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

NOTE:

MAN - Mandatory for this profile.

NRQ - Not Required for this profile.

*Functionality provided through the POSIX timers.

abort() is used to support assert() which is widely supported.

.

H.1.3.1.5 User Group Function Behavior

The functions listed in Table H-25 shall behave as described in the referenced clauses.

Note – Issue 8934 modified table above

NOTE:

sigfillset() 3.2.3 MAN NRQ

sigismember() 3.3.3 MAN NRQ

sigpending() 3.3.6 MAN NRQ

sigprocmask() 3.3.5 MAN NRQ

sigsupend() 3.3.7 MAN NRQ

abort() 8.1,8.2,8.3 MAN MAN

siglongjmp() 8.1,8.2,8.3 NRQ NRQ

sigsetjmp() 8.1,8.2,8.3 NRQ NRQ

Table H-25 – POSIX_USER_GROUPS Functions

Function Reference in POSIX.1 AEP LwAEP

getegid() 4.2.1 NRQ NRQ

geteuid() 4.2.1 NRQ NRQ

getgid() 4.2.1 NRQ NRQ

getgroups() 4.2.3 NRQ NRQ

getlogin() 4.2.4 NRQ NRQ

getpgrp() 4.3.1 NRQ NRQ

getuid() 4.2.1 NRQ NRQ

setuid() 4.2.2 NRQ NRQ

setsid() 4.3.2 NRQ NRQ

setgid() 4.2.2 NRQ NRQ

Table H-24 – POSIX_SIGNALS Functions

Function Reference in POSIX.1 AEP LwAEP

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 395

NRQ - Not required for this profile.

H.1.3.1.6 File System Function Behavior

The functions listed in Table H-26 shall behave as described in the referenced clauses.

Note – Issue 8934 modified table aboveand footnote below

NOTE:

MAN - Mandatory for this profile.

POSIX file system not generally supported in embedded operating systems.

Table H-26 – POSIX_FILE_SYSTEM Functions

Function Reference in POSIX.1 AEP LwAEP

access() 5.6.3 MAN NRQ

chdir() 5.2.1 MAN NRQ

closedir() 5.1.2 MAN NRQ

creat() 5.3.2 MAN NRQ

fpathconf() 5.7.1 MAN NRQ

fstat() 5.6.2 MAN NRQ

getcwd() 5.2.2 MAN NRQ

link() 5.3.4 MAN NRQ

mkdir() 5.4.1 MAN NRQ

opendir() 5.1.2 MAN NRQ

pathconf() 5.7.1 MAN NRQ

readdir() 5.1.2 MAN NRQ

rename() 5.5.3 MAN NRQ

rewinddir() 5.1.2 MAN NRQ

rmdir() 5.5.2 MAN NRQ

stat() 5.6.2 MAN NRQ

unlink() 5.5.1 MAN NRQ

utime() 5.6.6 MAN NRQ

remove() 8.1, 8.2, 8.3 MAN NRQ

rename() 8.1, 8.2, 8.3 MAN NRQ

tmpfile() 8.1, 8.2, 8.3 MAN NRQ

tmpnam() 8.1, 8.2, 8.3 MAN NRQ

dtc/2005-09-04

H.1.3 Constraints

396 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

H.1.3.1.7 File Attributes Function Behavior

The functions listed in Table H-27 shall behave as described in the referenced clauses, except for the following
constraint:

Note – Issue 8833 - replaced SS--IIRRWWXXUU with S_IRWXU

(1) An application strictly conforming to the AEP shall be guaranteed that the file mode creation mask for any
object created by any process is S_IRWXU; that is, the object shall be fully accessible to the creator.

Note – Issue 8934 modified table above

NOTE:

NRQ - Not required for this profile.

POSIX file system not generally supported in embedded operating systems.

H.1.3.1.8 File and Directory Management Function Behavior

The functions listed in Table H-28 shall behave as described in the referenced clauses.

Note – Issue 8934 modified table below and adde footnote below

NOTE:

NRQ - Not required for this profile.

MAN - Mandatory for this profile.

Table H-27 – POSIX_FILE_ATTRIBUTES Functions

Function Reference in POSIX.1 AEP LwAEP

chmod() 5.6.4 NRQ NRQ

chown() 5.6.5 NRQ NRQ

umask() 5.3.3 NRQ NRQ

Table H-28 – POSIX_FD_MGMT Functions

Function Reference in POSIX.1 AEP LwAEP

dup() 6.2.1 NRQ NRQ

dup2() 6.2.1 NRQ NRQ

fcntl() 6.5.2 NRQ NRQ

lseek() 6.5.3 MAN NRQ

fseek() 8.1, 8.2, 8.3 MAN NRQ

ftell() 8.1, 8.2, 8.3 MAN NRQ

rewind() 8.1, 8.2, 8.3 MAN NRQ

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 397

POSIX file system not generally supported in embedded operating systems.

H.1.3.1.9 Device I/O Function Behavior

The functions listed in Table H-29 shall behave as described in the referenced clauses.

Table H-29 – POSIX_DEVICE_IO Functions

Function Reference in POSIX.1 AEP LwAEP

close() 6.3.1 MAN NRQ

open() 5.3.1 MAN NRQ

read() 6.4.1 MAN NRQ

write() 6.4.2 MAN NRQ

clearerr() 8.1, 8.2, 8.3 MAN NRQ

fclose() 8.1, 8.2, 8.3 MAN NRQ

fdopen() 8.1, 8.2, 8.3 MAN NRQ

feof() 8.1, 8.2, 8.3 MAN NRQ

ferror() 8.1, 8.2, 8.3 MAN NRQ

fflush() 8.1, 8.2, 8.3 MAN NRQ

fgetc() 8.1, 8.2, 8.3 MAN NRQ

fileno() 8.1, 8.2, 8.3 MAN NRQ

fgets() 8.1, 8.2, 8.3 MAN NRQ

fopen() 8.1, 8.2, 8.3 MAN NRQ

fprintf() 8.1, 8.2, 8.3 MAN NRQ

fputc() 8.1, 8.2, 8.3 MAN NRQ

fputs() 8.1, 8.2, 8.3 MAN NRQ

fread() 8.1, 8.2, 8.3 MAN NRQ

freopen() 8.1, 8.2, 8.3 MAN NRQ

fscanf() 8.1, 8.2, 8.3 MAN NRQ

fwrite() 8.1, 8.2, 8.3 MAN NRQ

getc() 8.1, 8.2, 8.3 MAN NRQ

getchar() 8.1, 8.2, 8.3 MAN NRQ

gets() 8.1, 8.2, 8.3 MAN NRQ

perror() 8.1, 8.2, 8.3 MAN NRQ

printf() 8.1, 8.2, 8.3 MAN NRQ

putc() 8.1, 8.2, 8.3 MAN NRQ

dtc/2005-09-04

H.1.3 Constraints

398 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Note – Issue 8934 modified table above and added footnote below

NOTE:

MAN - Mandatory for this profile.

POSIX streams not generally supported in embedded operating systems.

H.1.3.1.10 Device-Specific Function Behavior

The functions listed in Table H-30 shall behave as described in the referenced clauses.

Note – Issue 8934 modified table above

NOTE:

putchar() 8.1, 8.2, 8.3 MAN NRQ

puts() 8.1, 8.2, 8.3 MAN NRQ

scanf() 8.1, 8.2, 8.3 MAN NRQ

setbuf() 8.1, 8.2, 8.3 MAN NRQ

sprintf() 8.1, 8.2, 8.3 MAN NRQ

sscanf() 8.1, 8.2, 8.3 MAN NRQ

ungetc() 8.1, 8.2, 8.3 MAN NRQ

Table H-30 – POSIX_DEVICE_SPECIFIC Functions

Function Reference in POSIX.1 AEP LwAEP

cfgetispeed() 7.1.3 NRQ NRQ

cfgetospeed() 7.1.3 NRQ NRQ

cfsetispeed() 7.1.3 NRQ NRQ

cfsetospeed() 7.1.3 NRQ NRQ

ctermid() 4.7.1 NRQ NRQ

isatty() 4.7.2 NRQ NRQ

tcdrain() 7.2.2 NRQ NRQ

tcflush() 7.2.2 NRQ NRQ

tcflow() 7.2.2 NRQ NRQ

tcgetattr() 7.2.1 NRQ NRQ

tcsendbreak() 7.2.2 NRQ NRQ

tcsetattr() 7.2.1 NRQ NRQ

ttyname() 4.7.2 NRQ NRQ

Table H-29 – POSIX_DEVICE_IO Functions

Function Reference in POSIX.1 AEP LwAEP

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 399

NRQ - Not required for this profile

H.1.3.1.11System Database Function Behavior

The functions listed in Table H-31 shall behave as described in the referenced clauses.

Note – Issue 8934 modified table above

NOTE:

NRQ - Not required for this profile.

H.1.3.1.12Pipe Function Behavior

The function listed in Table H-32 shall behave as described in the referenced clause.

Note – Issue 8934 modified table above

NOTE:

NRQ - Not required for this profile.

H.1.3.1.13FIFO Function Behavior

The functions listed in Table H-33 shall behave as described in the referenced clauses.

Note – Issue 8934 modified table above

Table H-31 – POSIX_SYSTEM_DATABASE Functions

Function Reference in POSIX.1 AEP LwAEP

getgrgid() 9.2.1 NRQ NRQ

getgrnam() 9.2.1 NRQ NRQ

getpwnam() 9.2.2 NRQ NRQ

getpwuid() 9.2.2 NRQ NRQ

Table H-32 – POSIX_PIPE_Function

Function Reference in POSIX.1 AEP LwAEP

pipe() 6.1.1 NRQ NRQ

Table H-33 – POSIX_FIFO Function

Function Reference in POSIX.1 AEP LwAEP

mkfifo() 5.4.2 NRQ NRQ

dtc/2005-09-04

H.1.3 Constraints

400 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

NOTE:

NRQ - Not required for this profile.

H.1.3.1.14C Language-Specific Services Behavior

The functions listed in Table H-34, Table H-35, Table H-36 Table H-37, Table H-38, and Table H-39 shall be-
have as described in the referenced clauses.

Note – Issue 8934 added text below and mofiied tables below

LwAEP requires only a small subset of C Language specific functionality. There are many reasons for this con-
sideration, the most of which is recognition of the fact that many DSPs are fixed point and support for a POSIX
floating point math library is burdensome and unnecessary

NOTE:

MAN - Mandatory for this profile.

NRQ - Not required for this profile.

Table H-34 – POSIX_C_LANG_SUPPORT Character Handling Functions

Function Reference in the C Standard AEP LwAEP

isalnum() 4.3.1.1 MAN NRQ

isalpha() 4.3.1.2 MAN MAN

iscntrl() 4.3.1.3 MAN NRQ

isdigit() 4.3.1.4 MAN MAN

isgraph() 4.3.1.5 MAN NRQ

islower() 4.3.1.6 MAN NRQ

isprint() 4.3.1.7 MAN MAN

ispunct() 4.3.1.8 MAN NRQ

isspace() 4.3.1.9 MAN NRQ

isupper() 4.3.1.10 MAN NRQ

isxdigit() 4.3.1.11 MAN MAN

tolower() 4.3.2.1 MAN MAN

toupper() 4.3.2.2 MAN MAN

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 401

NOTE:

NRQ - Not required for this profile.

MAN - Mandatory for this profile

NOTE:

Table H-35 – POSIX_C_LANG_SUPPORT Mathematical Functions

Function Reference in the C Standard AEP LwAEP

acos() 4.5.2.1 MAN NRQ

asin() 4.5.2.2 MAN NRQ

atan() 4.5.2.3 MAN NRQ

atan2() 4.5.2.4 MAN NRQ

ceil() 4.5.6.1 MAN NRQ

cos() 4.5.2.5 MAN NRQ

cosh() 4.5.3.1 MAN NRQ

exp() 4.5.4.1 MAN NRQ

fabs() 4.5.6.2 MAN NRQ

floor() 4.5.6.3 MAN NRQ

fmod() 4.5.6.4 MAN NRQ

frexp() 4.5.4.2 MAN NRQ

ldexp() 4.5.4.3 MAN NRQ

log() 4.5.4.4 MAN NRQ

log10() 4.5.4.5 MAN NRQ

modf() 4.5.4.6 MAN NRQ

pow() 4.5.5.1 MAN NRQ

sin() 4.5.2.6 MAN NRQ

sinh() 4.5.3.2 MAN NRQ

sqrt() 4.5.5.2 MAN NRQ

tan() 4.5.2.7 MAN NRQ

tanh() 4.5.3.3 MAN NRQ

Table H-36 – POSIX_C_LANG_SUPPORT Non-Local Jump Functions

Function Reference in the C Standard AEP LwAEP

longjmp() 4.6.2.1 MAN NRQ

setjmp() 4.6.1.1 MAN NRQ

dtc/2005-09-04

H.1.3 Constraints

402 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

NRQ - Not required for this profile.

MAN - Mandatory for this profile.

A form of context switch used to support a non-local exit.

NOTE:

MAN - Mandatory for this profile.

NRQ - Not required for this profile

Support for dynamic memory allocation is essential to re-entrant object-oriented design

Table H-37 – POSIX_C_LANG_SUPPORT General Functions

Function Reference in the C Standard AEP LwAEP

abs() 4.10.6.1 MAN MAN

atof() 4.10.1.1 MAN NRQ

atoi() 4.10.1.2 MAN MAN

atol() 4.10.1.3 MAN MAN

bsearch() 4.10.5.1 MAN NRQ

calloc() 4.10.3.1 MAN MAN

free() 4.10.3.2 MAN MAN

malloc() 4.10.3.3 MAN MAN

qsort() 4.10.5.2 MAN NRQ

rand() 4.10.2.1 MAN MAN

realloc() 4.10.3.4 MAN MAN

srand() 4.10.2.2 MAN MAN

Table H-38 – POSIX_C_LANG_SUPPORT String Handling Functions

Function Reference in the C Standard AEP LwAEP

strcat() 4.11.3.1 MAN NRQ

strchr() 4.11.5.2 MAN NRQ

strcmp() 4.11.4.2 MAN NRQ

strcpy() 4.11.2.3 MAN NRQ

strcspn() 4.11.5.3 MAN NRQ

strlen() 4.11.6.3 MAN NRQ

strncpy() 4.11.2.4 MAN NRQ

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 403

NOTE:

MAN - Mandatory for this profile.

NRQ - Mandatory for this profile.

NOTE:

MAN - Mandatory for this profile.

NRQ - Mandatory for this profile.

H.1.3.2 POSIX.1b

Note – Issue 8838

The options, limits, and any other constraints on POSIX.1b shall be provided as described in Table H-40.

Note – Issue 8934 modified table and table footnotes below

strncat() 4.11.3.2 MAN NRQ

strncmp() 4.11.4.4 MAN MAN

strpbkr() 4.11.5.4 MAN NRQ

strrchr() 4.11.5.5 MAN NRQ

strspn() 4.11.5.6 MAN NRQ

strstr() 4.11.5.7 MAN NRQ

strtok() 4.11.5.8 MAN NRQ

Table H-39 – POSIX_C_LANG_SUPPORT Data and Time Functions

Function Reference in the C Standard AEP LwAEP

asctime() 4.12.3.1 MAN NRQ

ctime() 4.12.3.2 MAN NRQ

gmtime() 4.12.3.3 MAN NRQ

localtime() 4.12.3.4 MAN NRQ

mktime() 4.12.2.3 MAN NRQ

strftime() 4.12.3.5 MAN NRQ

time() 4.12.2.4 MAN NRQ

tzset() 4.12.2.4 NRQ NRQ

Table H-38 – POSIX_C_LANG_SUPPORT String Handling Functions

Function Reference in the C Standard AEP LwAEP

dtc/2005-09-04

H.1.3 Constraints

404 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

NOTE:

NRQ - Not required for this profile.

MAN - Mandatory for this profile.

PRT - Partial, only the subset or options or Units of Functionality called out in B.3.2

* fdatasync not required

** fsync not required Heavy weight processes are typically not supported in embedded operating systems. The
mandatory POSIX.1b options can be implemented without the use of heavy weight signaling.

Note – Issue 8934 added new subsections

H.1.3.2.1 POSIX Semaphores

The functions listed in Table H-41 shall behave as described in the referenced clauses.

Table H-41 – POSIX.1b Semaphore Requirements

Table H-40 – POSIX.1b Option Requirements

Option AEP LwAEP

{_POSIX_ASYNCHRONOUS_IO} MAN NRQ

{_POSIX_MAPPED_FILES} NRQ NRQ

{_POSIX_MEMLOCK} MAN NRQ

{_POSIX_MEMLOCK_RANGE} MAN NRQ

{_POSIX_MEMORY_PROTECTION} NRQ NRQ

{_POSIX_MESSAGE_PASSING} MAN NRQ

{_POSIX_PRIORITIZED_IO} NRQ NRQ

{_POSIX_PRIORITY_SCHEDULING} NRQ NRQ

{_POSIX_REALTIME_SIGNALS} MAN NRQ

{_POSIX_SEMAPHORES} MAN PRT

{_POSIX_SHARED_MEMORY_OBJECTS} NRQ NRQ

{_POSIX_SYNCHRONIZED_IO} PRT* NRQ

{_POSIX_TIMERS} MAN PRT

{_POSIX_FSYNC} PRT** NRQ

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 405

NOTE:

MAN - Mandatory for this profile

NRQ - Not required for this profile

H.1.3.2.2 POSIX Timers

The functions listed in Table H-42 shall behave as described in the referenced clauses.
Table H-42 – POSIX.1b Timer Requirementss

NOTE:

MAN - Mandatory for this profile

NRQ - Not required for this profile

Option
Reference in
POSIX.1b AEP LwAEP

sem_init() 11.2.1 MAN MAN

sem_close() 11.2.4 MAN NRQ

sem_destroy() 11.2.2 MAN MAN

sem_getvalue() 11.2.8 MAN MAN

sem_open() 11.2.3 MAN NRQ

sem_post() 11.2.7 MAN MAN

sem_unlink() 11.2.5 MAN NRQ

sem_wait() 11.2.6 MAN MAN

sem_trywait() 11.2.6 MAN MAN

Option
Reference in
POSIX.1b AEP LwAEP

clock_getres() 14.2.1 MAN MAN

clock_gettime() 14.2.1 MAN MAN

clock_settime() 14.2.1 MAN MAN

timer_create() 14.2.2 MAN MAN

timer_delete() 14.2.3 MAN MAN

timer_gettime() 14.2.4 MAN MAN

timer_settime() 14.2.4 MAN MAN

nanosleep() 14.2.5 MAN MAN

timer_getoverrun() 14.2.4 MAN NRQ

dtc/2005-09-04

H.1.3 Constraints

406 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

H.1.3.3 POSIX.1c

Note – Issue 8838

Table H-43, Table H-44, Table H-45, Table H-46, Table H-47 and Table H-48 contain the required options, lim-
its, and any other constraints on POSIX.1c. The options, limits and any other constraints on POSIC.1c as de-
scribed in Table H-41 shall be provided.

Note – Issue 8934 modified table below

NOTE:

NRQ - Not required for this profile.

MAN - Mandatory for this profile.

Note – Issue 8835 - Changed section reference to H 1.3.3

PRT - Partial, only the subset of units of functionality called out in H.1.3.3

H.1.3.3.1 Re-entrant User Group Function Behavior

The function listed in Tables H-44 and H-45 shall behave as described in the referenced clause.

Note – Issue 8934 modified tables below.

Table H-43 – POSIX.1c Option Requirements

Option AEP LwAEP

{_POSIX_THREADS} PRT PRT

{_POSIX_THREAD_ATTR_STACKADDR} MAN NRQ

{_POSIX_THREAD_ATTR_STACKSIZE} MAN MAN

{_POSIX_THREAD_PRIO_INHERIT} MAN NRQ

{_POSIX_THREAD_PRIO_PROTECT} MAN NRQ

{_POSIX_THREAD_PRIORITY_SCHEDULING} MAN PRT

{_POSIX_THREAD_PROCESS_SHARED} NRQ NRQ

{_POSIX_THREAD_SAFE_FUNCTIONS} PRT PRT

Table H-44 – POSIX_USER_GROUPS_R Function

Function Reference in POSIX.1c AEP LwAEP

getlogin_r() 4.2.4 NRQ NRQ

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 407

NOTE:

NRQ - Not required for this profile.

Note – Issue 8834 - Added Re-entrant device Specific Function Behavior section

H.1.3.3.2 Re-entrant Device Specific Function Behavior

The function listed in Table H-45shall behave as described in the referenced clause.

.

NOTE:

NRQ - Not required for this profile.

H.1.3.3.3 File Locking Function Behavior

The functions listed in Table H-46 shall behave as described in the referenced clauses.

Note – Issue 8934 Modified table below.

NOTE:

NRQ - Not required for this profile.

Table H-45 – POSIX_DEVICE_SPECIFIC_R Function

Function Reference in POSIX.1c AEP LwAEP

ttyname_r() 4.7.4 NRQ NRQ

Table H-46 – POSIX_FILE_LOCKING Functions

Function Reference in POSIX.1c AEP LwAEP

getc_unlocked() 8.2.7 NRQ NRQ

getchar_unlocked() 8.2.7 NRQ NRQ

flockfile() 8.2.6 NRQ NRQ

ftrylockfile() 8.2.6 NRQ NRQ

funlockfile() 8.2.6 NRQ NRQ

putc_unlocked() 8.2.7 NRQ NRQ

putchar_unlocked() 8.2.7 NRQ NRQ

dtc/2005-09-04

H.1.3 Constraints

408 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

H.1.3.3.4 Re-entrant C Language Support Function Behavior

The functions listed in Table H-47 shall behave as described in the referenced clauses.

Note – Issue 8934 Modified table below

Note – Issue 8832 - readdir_r() added to the table above

NOTE:

NRQ - Not required for this profile

MAN - Mandatory for this profile.

H.1.3.3.5 Re-entrant System Database Function Behavior

The functions listed in Table H-48 shall behave as described in the referenced clauses.

Note – Issue 8934 modified table below

NOTE:

NRQ - Not required for this profile.

Note – Issue 8934 added new POSIX Threads section

Table H-47 – POSIX_C_LANG_SUPPORT_R Functions

Function Reference in POSIX.1c AEP LwAEP

asctime_r() 8.3.5 MAN NRQ

ctime_r() 8.3.6 MAN NRQ

gmtime_r() 8.3.7 MAN NRQ

localtime_r() 8.3.8 MAN NRQ

rand_r() 8.3.9 MAN MAN

readdir_r() 5.1.2 MAN NRQ

strtok_r() 8.3.4 MAN NRQ

Table H-48 – POSIX_SYSTEM_DATABASE_R Functions

Function Reference in POSIX.1c AEP LwAEP

getgrgid_r() 9.2.1 NRQ NRQ

getgrnam_r() 9.2.1 NRQ NRQ

getpwnam_r() 9.2.2 NRQ NRQ

getwuid_r() 9.2.2 NRQ NRQ

dtc/2005-09-04

 H.1.3 Constraints

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 409

H.1.3.3.6 POSIX Threads

The functions listed in Table H-49 shall behave as described in the referenced clauses.

Table H-49 – POSIX.1c Thread Requirements

NOTE:

MAN - Mandatory for this profile.

NRQ - Not required for this profile.

PRT - Partial, only the following subset functionality is requred:
pthread_attr_getschedparam();pthread_attr_getstacksize();pthread_attr_init();pthread_attr_setschedparam();
pthread_attr_setstacksize(). And to implement these mandatory stack and schedule functions, it is necessary to
adequately define the unsigned integer type size_t and the struct sched_param.

Function
Reference in
POSIX.1c AEP LwAEP

pthread_atfork() 3.1.3 MAN NRQ
pthread_attr_xxx() 16.2.1 MAN PRT
pthread_cancel() 18.2.1 MAN MAN
pthread_cleanup_xxx() 18.2.3 MAN NRQ
pthread_cond_xxx() 11.4 MAN NRQ
pthread_condattr_xxx() 11.4.1 MAN NRQ
pthread_create() 16.2.2 MAN MAN
pthread_detach() 16.2.4 MAN NRQ
pthread_equal() 16.2.7 MAN MAN
pthread_exit() 16.2.5 MAN MAN
pthread_getschedparam() 13.5.2 MAN MAN
pthread_getspecific() 17.1.2 MAN NRQ
pthread_join() 16.2.3 MAN MAN
pthread_key_xxx() 17.1 MAN NRQ
pthread_kill() 3.3.10 MAN NRQ
pthread_mutex_xxx() 11.3 MAN NRQ
pthread_mutexattr_xxx() 11.3.1 MAN NRQ
pthread_once() 16.2.8 MAN NRQ
pthread_self() 16.2.6 MAN MAN
pthread_setcancelstate() 18.2.2 MAN NRQ
pthread_setcaceltype() 18.2.2 MAN NRQ
pthread_setschedparam() 13.5.2 MAN MAN
pthread_setspecific() 17.1.2 MAN NRQ
pthread_sigmask() 3.3.5 MAN NRQ
pthread_testcancel() 18.2.2 MAN NRQ

dtc/2005-09-04

H.1.3 Constraints

410 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 I.1 SWRadio Properties XML

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 411

Annex I SWRadio Properties XML (non-normative)

Note – Issue 7845 - Section changed to non-normative, Issue 7582 properties definition modi-
fied to accommodate comm cahnnel and comm equipement xml

SWRadio Properties XML . Page411

I.1 SWRadio Properties XML

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SWRadio="http://schema.omg.org/SWRadio"
targetNamespace="http://schema.omg.org/SWRadio">

<xsd:complexType name="ConfigureQuerySimpleProperty">

<xsd:sequence>

<xsd:element name="stepSize" type="xsd:string" minOccurs="0"/>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="type" type="SWRadio:SimpleType"/>

<xsd:element name="enumerations" type="SWRadio:Enumerations"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="value" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="isReadOnly" type="xsd:boolean" use="optional"
default="false"/>

</xsd:complexType>

dtc/2005-09-04

I.1 SWRadio Properties XML

412 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<xsd:element name="ConfigureQuerySimpleProperty"
type="SWRadio:ConfigureQuerySimpleProperty"/>

<xsd:complexType name="EnumerationLiteral">

<xsd:sequence>

<xsd:element name="label" type="xsd:string"/>

<xsd:element name="value" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="EnumerationLiteral"
type="SWRadio:EnumerationLiteral"/>

<xsd:complexType name="StructProperty">

<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="simple" type="SWRadio:SimpleProperty"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="StructProperty" type="SWRadio:StructProperty"/>

<xsd:complexType name="StructSequenceProperty">

<xsd:sequence>

<xsd:element name="stepSize" type="xsd:string" minOccurs="0"/>

dtc/2005-09-04

 I.1 SWRadio Properties XML

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 413

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="structValues" type="SWRadio:StructProperty"
maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="isReadOnly" type="xsd:boolean" use="optional"
default="false"/>

</xsd:complexType>

<xsd:element name="StructSequenceProperty"
type="SWRadio:StructSequenceProperty"/>

<xsd:complexType name="TestProperty">

<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="inputValue" type="SWRadio:SimpleProperty"
minOccurs="0" maxOccurs="unbounded"/>

dtc/2005-09-04

I.1 SWRadio Properties XML

414 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<xsd:element name="resultValue" type="SWRadio:SimpleProperty"
maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="TestProperty" type="SWRadio:TestProperty"/>

<xsd:complexType name="ExecutableProperty">

<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="type" type="SWRadio:SimpleType"/>

<xsd:element name="enumerations" type="SWRadio:Enumerations"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="value" type="xsd:string" minOccurs="0"/>

<xsd:element name="queryable" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="ExecutableProperty"
type="SWRadio:ExecutableProperty"/>

<xsd:complexType name="SimpleProperty">

<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

dtc/2005-09-04

 I.1 SWRadio Properties XML

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 415

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="type" type="SWRadio:SimpleType"/>

<xsd:element name="enumerations" type="SWRadio:Enumerations"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="value" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="SimpleProperty" type="SWRadio:SimpleProperty"/>

<xsd:complexType name="CapacityProperty">

<xsd:sequence>

<xsd:element name="capabilityModel" type="xsd:string"
minOccurs="0"/>

<xsd:element name="locallyManaged" type="xsd:boolean"
minOccurs="0"/>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="type" type="SWRadio:SimpleType"/>

dtc/2005-09-04

I.1 SWRadio Properties XML

416 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<xsd:element name="enumerations" type="SWRadio:Enumerations"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="value" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="CapacityProperty" type="SWRadio:CapacityProperty"/>

<xsd:complexType name="CharacteristicProperty">

<xsd:sequence>

<xsd:element name="capabilityModel" type="xsd:string"
minOccurs="0"/>

<xsd:element name="locallyManaged" type="xsd:boolean"
minOccurs="0"/>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="type" type="SWRadio:SimpleType"/>

<xsd:element name="enumerations" type="SWRadio:Enumerations"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="value" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="CharacteristicProperty"
type="SWRadio:CharacteristicProperty"/>

<xsd:complexType name="ConfigureQuerySimpleSeqProperty">

dtc/2005-09-04

 I.1 SWRadio Properties XML

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 417

<xsd:sequence>

<xsd:element name="stepSize" type="xsd:string" minOccurs="0"/>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="type" type="SWRadio:SimpleType"/>

<xsd:element name="enumerations" type="SWRadio:Enumerations"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="value" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="isReadOnly" type="xsd:boolean" use="optional"
default="false"/>

</xsd:complexType>

<xsd:element name="ConfigureQuerySimpleSeqProperty"
type="SWRadio:ConfigureQuerySimpleSeqProperty"/>

<xsd:complexType name="CharacteristicSelectionProperty">

<xsd:sequence>

<xsd:element name="capabilityModel" type="xsd:string"
minOccurs="0"/>

<xsd:element name="locallyManaged" type="xsd:boolean"
minOccurs="0"/>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

dtc/2005-09-04

I.1 SWRadio Properties XML

418 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="type" type="SWRadio:SimpleType"/>

<xsd:element name="enumerations" type="SWRadio:Enumerations"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="value" type="xsd:string"
maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="CharacteristicSelectionProperty"
type="SWRadio:CharacteristicSelectionProperty"/>

<xsd:complexType name="CharacteristicSetProperty">

<xsd:sequence>

<xsd:element name="capabilityModel" type="xsd:string"
minOccurs="0"/>

<xsd:element name="locallyManaged" type="xsd:boolean"
minOccurs="0"/>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

dtc/2005-09-04

 I.1 SWRadio Properties XML

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 419

<xsd:element name="characterisitics" type="SWRadio:StructProperty"
maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="CharacteristicSetProperty"
type="SWRadio:CharacteristicSetProperty"/>

<xsd:complexType name="Range">

<xsd:sequence>

<xsd:element name="min" type="xsd:string"/>

<xsd:element name="max" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Range" type="SWRadio:Range"/>

<xsd:complexType name="TimeType">

<xsd:sequence>

<xsd:element name="seconds" type="xsd:unsignedLong"/>

<xsd:element name="nanoseconds" type="xsd:unsignedLong"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="TimeType" type="SWRadio:TimeType"/>

<xsd:complexType name="ConfigureQueryStructProperty">

<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="label" type="xsd:string" minOccurs="0"/>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="integerId" type="xsd:long" minOccurs="0"/>

dtc/2005-09-04

I.1 SWRadio Properties XML

420 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<xsd:element name="maxLatency" type="SWRadio:TimeType"
minOccurs="0"/>

<xsd:element name="range" type="SWRadio:Range" minOccurs="0"/>

<xsd:element name="units" type="xsd:string" minOccurs="0"/>

<xsd:element name="simple" type="SWRadio:SimpleProperty"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="stepSize" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="isReadOnly" type="xsd:boolean" use="optional"
default="false"/>

</xsd:complexType>

<xsd:element name="ConfigureQueryStructProperty"
type="SWRadio:ConfigureQueryStructProperty"/>

<xsd:complexType name="Enumerations">

<xsd:sequence>

<xsd:element name="enumerationLiteral"
type="SWRadio:EnumerationLiteral" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Enumerations" type="SWRadio:Enumerations"/>

<xsd:simpleType name="SimpleType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="boolean"/>

<xsd:enumeration value="char"/>

<xsd:enumeration value="double"/>

<xsd:enumeration value="float"/>

<xsd:enumeration value="short"/>

<xsd:enumeration value="long"/>

dtc/2005-09-04

 I.1 SWRadio Properties XML

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 421

<xsd:enumeration value="longlong"/>

<xsd:enumeration value="objref"/>

<xsd:enumeration value="octet"/>

<xsd:enumeration value="string"/>

<xsd:enumeration value="ulong"/>

<xsd:enumeration value="ulonglong"/>

<xsd:enumeration value="ushort"/>

<xsd:enumeration value="wchar"/>

<xsd:enumeration value="wstring"/>

<xsd:enumeration value="longdouble"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="Properties">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="SWRadio:ConfigureQuerySimpleProperty"/>

<xsd:element ref="SWRadio:TestProperty"/>

<xsd:element ref="SWRadio:ExecutableProperty"/>

<xsd:element ref="SWRadio:CapacityProperty"/>

<xsd:element ref="SWRadio:CharacteristicProperty"/>

<xsd:element ref="SWRadio:ConfigureQuerySimpleSeqProperty"/>

<xsd:element ref="SWRadio:CharacteristicSelectionProperty"/>

<xsd:element ref="SWRadio:CharacteristicSetProperty"/>

<xsd:element ref="SWRadio:ConfigureQueryStructProperty"/>

</xsd:choice>

</xsd:complexType>

<xsd:element name="Properties" type="SWRadio:Properties"/>

dtc/2005-09-04

I.1 SWRadio Properties XML

422 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

</xsd:schema>

dtc/2005-09-04

 J.1 CommChannel XML

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 423

Annex J Communication Channel XML (non-
normative)

Note – Issue 7582, added XML for comm channel and equipment

CommChannel XML. Page423

J.1 CommChannel XML

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SWRadio="http://schema.omg.org/SWRadio"
targetNamespace="http://schema.omg.org/SWRadio">

<xsd:include schemaLocation="D:\\SWRadio\Properties.xsd"/>

<xsd:complexType name="CommEquipment">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="stereotypeName" type="xsd:string"/>

<xsd:element name="properties" type="SWRadio:Properties"/>

<xsd:element name="ports" type="SWRadio:Ports"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="CommEquipment" type="SWRadio:CommEquipment"/>

<xsd:complexType name="Port">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="stereotypeName" type="xsd:string"/>

<xsd:element name="properties" type="SWRadio:Properties"
maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

dtc/2005-09-04

J.1 CommChannel XML

424 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<xsd:element name="Port" type="SWRadio:Port"/>

<xsd:complexType name="CommEquipmentConnector">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="sinkPortName" type="xsd:string"/>

<xsd:element name="sinkCommEquipmentName" type="xsd:string"/>

<xsd:element name="sourcePortName" type="xsd:string"/>

<xsd:element name="sourceCommEquipmentName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="CommEquipmentConnector"
type="SWRadio:CommEquipmentConnector"/>

<xsd:complexType name="Channel">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="stereotypeName" type="xsd:string"/>

<xsd:element name="properties" type="SWRadio:Properties"/>

<xsd:element name="subchannels" type="SWRadio:References"
minOccurs="0"/>

<xsd:element name="commEquipments" type="SWRadio:References"
minOccurs="0"/>

<xsd:element name="connections" type="SWRadio:Connections"
minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Channel" type="SWRadio:Channel"/>

<xsd:complexType name="Ports">

<xsd:sequence>

dtc/2005-09-04

 J.1 CommChannel XML

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 425

<xsd:element name="port" type="SWRadio:Port"
maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Ports" type="SWRadio:Ports"/>

<xsd:complexType name="References">

<xsd:sequence>

<xsd:element name="nameRef" type="xsd:string"
maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="References" type="SWRadio:References"/>

<xsd:complexType name="Connections">

<xsd:sequence>

<xsd:element name="connection"
type="SWRadio:CommEquipmentConnector" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Connections" type="SWRadio:Connections"/>

<xsd:complexType name="CommChannel">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="SWRadio:CommEquipment"/>

<xsd:element ref="SWRadio:Channel"/>

</xsd:choice>

</xsd:complexType>

<xsd:element name="CommChannel" type="SWRadio:CommChannel"/>

</xsd:schema>

dtc/2005-09-04

J.1 CommChannel XML

426 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

 K.1 Domain Facility Software Radio Module

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 427

Annex K SWRadio CORBA IDL (non-normative)
Domain Facility Software Radio Module . Page 427

K.1 Domain Facility Software Radio Module

//File: DfSWRadio.idl

#ifndef __DFSWRADIO_DEFINED
#define __DFSWRADIO_DEFINED

#include "DfSWRadioManagedComponentStatuses.idl"
#include "DfSWRadioCommonLayer.idl"
#include "DfSWRadioPhysicalLayer.idl"
#include "DfSWRadioDataLinkLayer.idl"
#include "DfSWRadioControlRadioSetManagement.idl"

#endif

dtc/2005-09-04

K.1 Domain Facility Software Radio Module

428 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

dtc/2005-09-04

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 429

Annex L SWRadio Document Type Definitions (non-
normative)

Deployment Overview. Page 430

Software Package Descriptor. Page 431

Device Package Descriptor. . Page 447

Properties Descriptor. Page 455

Software Component Descriptor. Page 471

Software Assembly Descriptor. . Page 477

Device Configuration Descriptor. Page 499

DomainManager Configuration Descriptor. Page 510

Document Type Definitions. . Page 513

dtc/2005-09-04

L.1 Deployment Overview.

430 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The SWRadio specification provides architectural specifications for the deployment of communications software
into a Software Definable Radio (SDR) device. The intent of the SDR device is to provide a re-configurable
platform, which can host software components written by various vendors to support user functional services.
The SWRadio specification requires portable software components to provide common information called a do-
main profile. The intent of this appendix is to clearly define to the component developers the requirements of in-
formation and format for the delivery of this information. The radio management functions use the component
deployment information expressed in the Domain Profile. The information is used to start, initialize, and main-
tain the applications that are installed into the SWRadio-compliant system.

This specification defines the XML Document Type Definition (DTD) set for use in deploying SWRadio compo-
nents. The complete DTD set is contained in Attachment 1 to this Appendix.

L.1 Deployment Overview.
The hardware devices and software components that make up an SWRadio Radio Set or Radio System are de-
scribed by a set of XML descriptor files that are collectively referred to as a Radio Domain Profile. Descriptor
files are Software Package, Device Package, Properties, Software Component, Software Assembly, Device Con-
figuration, and DomainManagerComponent Configuration. A Software Profile is either a Software Assembly De-
scriptor (for applications) or a Software Package Descriptor (for all other software components and hardware
devices). These descriptor files describe the identity, capabilities, properties, and inter-dependencies of the hard-
ware devices and software components that make up the system. All of the descriptive data about a system is ex-
pressed in the XML vocabulary. This document includes a UML diagram of each complex XML element
defined. That is, a UML diagram is provided for each element that makes use of more than one type of XML el-
ement as a part of its definition. The UML diagram precedes the XML definition that it represents.

Figure L-86 depicts the relationships between the descriptor files that are used to describe a system's hardware
and software assets. The XML vocabulary within each of these files describes a distinct aspect of the hardware
and software assets.

A Software Assembly Descriptor file describes how multiple components of an assembly, i.e., an application, are
deployed and interconnected. A Software Assembly Descriptor file is associated with one or more Software
Package Descriptor files. Each component of the Software Assembly Descriptor is described in a Software Pack-
age Descriptor file. Information about the interfaces that a component publishes and/or consumes is contained in
a Software Component Descriptor file. Each Software Component Descriptor file is associated with a Software
Package Descriptor file that describes one or more implementations of the software component. Software prop-
erties are described in a Properties Descriptor File that may be applicable to all implementations of the compo-
nent, i.e., associated at the Software Package Descriptor level or applicable to a single implementation of the
component.

Two types of files, a Device Package Descriptor, and a Device Configuration Descriptor, describe hardware de-
vices and are known collectively as a Device Profile. The hardware device is described by the Device Package
Descriptor. The logical device is described by the Software Package Descriptor. The Device Configuration De-
scriptor contains the associations between hardware devices and logical devices. A Device Package Descriptor
file identifies the class of the device. Property files, associated with Device Package Descriptors, contain infor-
mation about the properties of the hardware device being deployed such as serial number, processor type, and al-
location capacities.

A Device Configuration Descriptor file describes the components that are initially started up on the device and
how to find the DomainManagerComponent. Each component of the Device Configuration Descriptor is de-
scribed in a Software Package Descriptor file.

dtc/2005-09-04

 L.2 Software Package Descriptor.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 431

The DomainManagerComponent Configuration Descriptor file contains a reference to the DomainManagerCom-
ponent Software Package Descriptor file.

Figure L-86 – Relationships Between SWRadio DTD XML File Types

L.2 Software Package Descriptor.
The SWRadio Software Package Descriptor is used at deployment time to load an SWRadio compliant compo-
nent and its various implementations. The information contained in the Software Package Descriptor will pro-
vide the basis for the Radio Management function to manage the component within the SWRadio architecture.

The software package descriptor may contain various implementations of any given component. Within the
specification of a software package descriptor several other files are referenced including a component level
propertyfile and a software component descriptor file. Within any given implementation there may be additional
propertyfiles.

L.2.1 Software Package.

The softpkg element (see Figure L-87) indicates a Software Package Descriptor (SPD) definition. The softpkg id
uniquely identifies the package. The version attribute specifies the version of the component. The name attribute
is a user-friendly label for the softpkg element. The name attribute is supplied when the id is not user-friendly
such as a DCE UUID. The DCE UUID format starts with the characters "DCE:" and is followed by the printable
form of the UUID, a colon, and a decimal minor version number, for example: "DCE:700dc518-0110-11ce-ac8f-
0800090b5d3e:1". The decimal minor version number is optional. The type attribute indicates whether or not the
component implementation is SWRadio compliant (e.g., “swradio_compliant”, “swradio_non_compliant”). All

DomainConfigurationDescriptor
<<DTDElement>>

SoftwareAssembly
Descriptor

<<DTDElement>>
DeviceConfiguration

Descriptor

<<DTDElement>>

DevicePackageDescriptor
<<DTDElement>>

0..*0..*

Properties
<<DTDElement>>

SoftwarePackageDescriptor
<<DTDElement>>

1..*1..* 11 1..*1..*

0..*

SoftwareComponentDescriptor
<<DTDElement>>

0..*

0..10..1 0..*

0..*

dtc/2005-09-04

L.2.1 Software Package.

432 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

files referenced by a Software Package are located in the same directory as the SPD file or a directory that is rel-
ative to the directory where the SPD file is located. The type attribute is used to establish the level of compliance
with the SWRadio spec.

Figure L-87 – softpkg Element Relationships

The set of properties for a Software Package come from the union of these properties sources using the following
precedence order:

3. SPD Implementation Properties - indicates the implementation values for a properties that are
specific to one and only one one implementation.

4. SPD level properties - indicates the implementation value for a property that is true for all
implementations unless over-ridden at the implementation element level.

5. SCD level properties - property definitions for all implementations

Any duplicate properties having the same ID are ignored. Duplicated properties must be the same property type,
only the value can be over-ridden. The SPD-level and implementation-level properties only state what the values
are for a component implementation specified in SPD. These property values are not used by ApplicationFacto-
ryComponent for initial configuration of the deployed component and ExecuableProperty(s) for the deployed
component main program. ExecutableProperty(s) are usually only defined at the SDP-level and implementation
level. These properties are used for the ExecutableDeviceComponent execute operation options parameter.

softpkg
id : ID
name : CDATA
type : CDATA
version : CDATA

<<DTDElement>>

title
<<DTDElement>>

author
<<DTDElement>>

description
<<DTDElement>>

propertyfi le
type : CDATA

<<DTDElement>>
descriptor

name : CDATA

<<DTDElement>>

usesdevice
id : ID
type : CDATA

<<DTDElement>>

softpkg_grp1
<<DTDSequenceGroup>>

softpkg_grp1

0..1

{1}

0..1

title

1..n

{2}

1..n

author

0..1
{3}

0..1

description

0..1{4} 0..1

propertyfile

0..1
{5}

0..1

descriptor

0..n

{7}

0..nusesdevice

implementation
id : ID
aepcompliance : (aep_compliant | min_aep_compliant | aep_non_compliant) = aep_compliant

<<DTDElement>> assemblyimplementation
<<DTDElement>>

softpkg_grp1_grp6
<<DTDChoiceGroup>>

1..n{6} 1..n

softpkg_grp1_grp6

implementation assemblyimplementation

dtc/2005-09-04

 L.2.1 Software Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 433

<!ELEMENT softpkg

(title?

, author+

, description?

, propertyfile?

, descriptor?

, (implementation | assemblyimplementation)+

, usesdevice*

)>

!ATTLIST softpkg

id ID #REQUIRED

name CDATA #REQUIRED

type CDATA #IMPLIED

version CDATA #IMPLIED >

L.2.1.1 propertyfile.

The propertyfile element is used to indicate the local filename of the Property Descriptor file associated with the
Software Package. The intent of the propertyfile will be to provide the definition of properties elements com-
mon to all component implementations being deployed in accordance with the Software Package (softpkg).Prop-
erty Descriptor files may also contain properties elements that are used in definition of command and control id
value pairs used by the SWRadio PropertySet configure() and query() operations. The format of the properties
element is described in the Properties Descriptor (Section Properties Descriptor.).

<!ELEMENT propertyfile

(localfile

)>

<!ATTLIST propertyfile

type CDATA #IMPLIED>

dtc/2005-09-04

L.2.1 Software Package.

434 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.2.1.1.1 localfile.

The localfile element is used to reference a file in the same directory as the SPD file or a directory that is relative
to the directory where the SPD file is located. When the name attribute is a simple name, the file exists in the
same directory as the SPD file. A relative directory indication begins either with “../” meaning parent directory
and “./” means current directory in the name attribute. Multiple “../” and directory names can follow the initial
“../” in the name attribute. All name attributes must have a simple name at the end of the file name.

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA #REQUIRED>

L.2.1.2 title.

The title element is used for indicating a title for the software component being installed in accordance with the
softpkg element.

<!ELEMENT title (#PCDATA)>

L.2.1.3 author.

The author element (see Figure L-88) will be used to indicate the name of the person, the company, and the web
page of the developer producing the component being installed into the system.

dtc/2005-09-04

 L.2.1 Software Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 435

Figure L-88 – author Element Relationships

<!ELEMENT author

(name*

, company?

, webpage?

)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT webpage (#PCDATA)>

L.2.1.4 description.

The description element will be used to describe any pertinent information about the software component being
delivered to the system.

author
<<DTDElement>>

name
<<DTDElement>>

company
<<DTDElement>>

author_grp
<<DTDSequenceGroup>>

0..*0..*
{1}

0..10..1{2}

webpage
<<DTDElement>>

0..10..1
{3}

dtc/2005-09-04

L.2.1 Software Package.

436 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT description (#PCDATA)>

L.2.1.5 descriptor.

The descriptor element points to the local filename of the Software Component Descriptor (SCD) file used to
document the interface information for the component being delivered to the system. In the case of an SCA
Component, the SCD will contain information about three aspects of the component (the component type, mes-
sage ports, and IDL interfaces). The SCD file is optional, since some SCA components are non-CORBA compo-
nents, like digital signal processor (DSP) “c” code (see section on software component descriptor file, section
Software Component Descriptor.).

<!ELEMENT descriptor

(localfile

)>

<!ATTLIST descriptor

name CDATA #IMPLIED>

L.2.1.6 implementation.

The implementation element (see Figure L-89) contains descriptive information about the particular implementa-
tion template for a software component contained in the softpkg element. The implementation element is intended
to allow multiple component templates to be delivered to the system in one Software Package. Each implemen-
tation element is intended to allow the same component to support different types of processors, operating sys-
tems, etc. The implementation element will also allow definition of implementation-dependent properties for use
in CF Device, CF Application, or CF Resource creation. The implementation element’s id attribute uniquely
identifies a specific implementation of the component. The compiler, programminglanguage, humanlanguage,
os, processor, and runtime elements are optional dependency elements. The aepcompliance attribute is used to es-
tablish the level of compliance with the SWRadio Application Environment Profiles (AEPs) (refer to Annex H).
The aepcompliance indicates if an implementation is compliant with an AEPs and to which one.

dtc/2005-09-04

 L.2.1 Software Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 437

Figure L-89 – implementation Element Relationships

<!ELEMENT implementation

(description?

, propertyfile?

, code

, compiler?

, programminglanguage?

, humanlanguage?

, runtime?

, (os

 | processor

 | dependency

implementation
id : ID
aepcompliance : (aep_compliant | min_aep_compliant | aep_non_compliant) = aep_compliant

<<DTDElement>>

description
<<DTDElement>>

propertyfile
type : CDATA

<<DTDElement>>

code
type : CDATA

<<DTDElement>>

compiler
name : CDATA
version : CDATA

<<DTDElementEMPTY>>

programminglanguage
name : CDATA
version : CDATA

<<DTDElementEMPTY>>

humanlanguage
name : CDATA

<<DTDElementEMPTY>>

runtime
name : CDATA
version : CDATA

<<DTDElementEMPTY>>

usesdevice
id : ID
type : CDATA

<<DTDElement>>

implementation_grp
<<DTDSequenceGroup>>

0..10..1

{1}

0...0...

{2}

{3}

0..10..1
{4}

0..10..1

{5}

0..10..1

{6}

0..10..1

{7}

0..*0..*

{9}

os
name : CDATA
version : CDATA

<<DTDElementEMPTY>>

processor
name : CDATA

<<DTDElementEMPTY>>

implementat ion_grp1_grp
<<DTDChoiceGroup>>

1..*1..* {8}

dependency
type : CDATA

<<DTDElement>>

dtc/2005-09-04

L.2.1 Software Package.

438 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

)+

, usesdevice*

)>

<!ATTLIST implementation

id ID #REQUIRED

aepcompliance (aep_compliant | lwaep_compliant |aep_non_compliant)
“aep_compliant”>

L.2.1.6.1 propertyfile.

The propertyfile element is used to indicate the local filename of the Property Descriptor file associated with this
implementation element. Although the specification does not restrict the specific use of the Property Descriptor
file based on context, it is intended within the implementation element to provide component implementation
specific properties elements for use in command and control id value pair settings to the ResourceComponent
configure() and query() operations. See the description of the properties element format in the Properties De-
scriptor, section L.4.

<!ELEMENT propertyfile

(localfile

)>

<!ATTLIST propertyfile

type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA #REQUIRED>

L.2.1.6.2 description.

The description element will be used to describe any pertinent information about the software component imple-
mentation that the software developer wishes to document within the software package profile.

<!ELEMENT description (#PCDATA)>

dtc/2005-09-04

 L.2.1 Software Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 439

L.2.1.6.3 code.

The code element (see Figure L-90) will be used to indicate the local filename of the code that is described by
the softpkg element, for a specific implementation of the software component. The stack size and priority are op-
tions parameters used by the ExecutableDeviceComponent execute() operation. Data types for the values of
these options are unsigned long. The type attribute for the code element will also indicate the type of file being
delivered to the system. The entrypoint element provides the means for providing the name of the entry point of
the component being delivered. The valid values for the type attribute are: “Executable”, “KernelModule”,
“SharedLibrary”, and “Driver.”

The meaning of the code type attribute:

1. Executable means to use LoadableDeviceComponent load and ExecutableDeviceComponent execute.
This is a “main” process.

2. Driver and Kernel Module means load only.

3. SharedLibrary means dynamic linking.

● Without a code entrypoint element means load only.

● With a code entrypoint element means load and
ExecutableDeviceComponent execute.

Figure L-90 – code Element Relationships

code
type : CDATA

<<DTDElement>>

localfile
name : CDATA

<<DTDElementEMPTY>>

entrypoint
<<DTDElement>>

stacksize
<<DTDElement>>

priority
<<DTDElement>>

code_grp
<<DTDSequenceGroup>>

{1}

0..1
{2}

0..1
0..1{3} 0..1 0..1{4} 0..1

dtc/2005-09-04

L.2.1 Software Package.

440 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT code

(localfile

, entrypoint?

, stacksize?

, priority?

)>

<!ATTLIST code

type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA #REQUIRED>

<!ELEMENT entrypoint (#PCDATA)>

<!ELEMENT stacksize (#PCDATA)>

<!ELEMENT priority (#PCDATA)>

L.2.1.6.4 compiler.

The compiler element will be used to indicate the compiler used to build the software component being described
by the softpkg element. The required name attribute will specify the name of the compiler used, and the version
attribute will contain the compiler version.

<!ELEMENT compiler EMPTY>

<!ATTLIST compiler

name CDATA #REQUIRED

version CDATA #IMPLIED>

dtc/2005-09-04

 L.2.1 Software Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 441

L.2.1.6.5 programminglanguage.

The programminglanguage element will be used to indicate the type of programming language used to build the
component implementation. The required name attribute will specify a language such as “c”, “c++”, or “java”.

<!ELEMENT programminglanguage EMPTY>

<!ATTLIST programminglanguage

name CDATA #REQUIRED

version CDATA #IMPLIED>

L.2.1.6.6 humanlanguage.

The humanlanguage element will be used to indicate the human language for which the software component was
developed.

<!ELEMENT humanlanguage EMPTY>

<!ATTLIST humanlanguage

name CDATA #REQUIRED>

L.2.1.6.7 os.

The os element will be used to indicate the operating system on which the software component is capable of op-
erating. The required name attribute will indicate the name of the operating system and the version attribute will
contain the operating system. The os attributes will be defined in a DeviceComponent’s property file as an allo-
cation property (SWRadio ServiceProperty) of string type and with names os_name and os_version and with an
action element value other than “external”. The os element is automatically interpreted as a dependency and
compared against DeviceComponent’s allocation properties (SWRadio ServiceProperty) with names of os_name
and os_version. Legal os_name attribute values are listed in Attachment 2 to this appendix.

<!ELEMENT os EMPTY>

<!ATTLIST os

name CDATA #REQUIRED

version CDATA #IMPLIED>

dtc/2005-09-04

L.2.1 Software Package.

442 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.2.1.6.8 processor.

The processor element will be used to indicate the processor and/or processor family on which this software
component will operate. The processor name attribute will be defined in a DeviceComponent’s property file as
an allocation property (SWRadio ServiceProperty) of string type and with a name of processor_name and with an
action element value other than “external”. The processor element is automatically interpreted as a dependency
and compared against a DeviceComponent’s allocation property with a name of processor_name. Legal
processor_name attribute values are listed in Attachment 2 to this appendix.

<!ELEMENT processor EMPTY>

<!ATTLIST processor

name CDATA #REQUIRED>

L.2.1.6.9 dependency.

The dependency element (see Figure L-91) is used to indicate the dependent relationships between the compo-
nents being delivered and other components and devices, in a SWRadio compliant system. The softpkgref ele-
ment is used to specify a Software Package file that must be resident within the system for the component,
described by this softpkg element, to load without errors. The propertyref or propertyvaluesref references a spe-
cific ServiceProperty (allocation property), by ServiceProperty identifier, and provide the value that will be used
by a ManagedServiceComponent CapabilityModel. The DomainManagerComponent will use these dependency
definitions to assure that ServiceComponent(s) that are necessary for proper operation of the implementation are
present and available. The type attribute is descriptive information indicating the type of dependency.

dtc/2005-09-04

 L.2.1 Software Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 443

Figure L-91 – dependency Element Relationships

<!ELEMENT dependency

 (softpkgref

 | propertyref

 | propertyvaluesref

)>

 <!ATTLIST dependency

 type CDATA #REQUIRED>

softpkgref
<<DTDElement>>

propertyref
refid : CDATA
value : CDATA

<<DTDElementE MPTY>>
propertyvaluesref

<<DTDElement>>

dependenc y_grp1
<<DTDChoiceGroup>>

softpk gref propertyref
propertyvaluesref

dependency
type : CDATA

<<DTDElement>>

dependency_grp1

refid
<<DTDElement>>

value
<<DTDElement>>

propertyvaluesref_grp1
<<DTDSequenceGroup>>

propertyvaluesref_grp1

{1} refid
1..n

{2}
1..n

value

dtc/2005-09-04

L.2.1 Software Package.

444 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.2.1.6.10 softpkgref.

The softpkgref element (see Figure L-92) refers to a softpkg element contained in another Software Package De-
scriptor file and indicates a file-load dependency on that file. The other file is referenced by the localfile element.
An optional implref element refers to a particular implementation-unique identifier, within the Software Package
Descriptor of the other file.

Figure L-92 – softpkgref Element Relationships

<!ELEMENT softpkgref

 (localfile

 , implref?

)>

<!ELEMENT implref EMPTY>

<!ATTLIST implref

refid CDATA #REQUIRED>

softpkgref
<<DTDElement>>

localfile
name : CDATA

<<DTDElementEMPTY>>
implref

refid : CDATA

<<DTDElementEMPTY>>

softpkgref_grp
<<DTDSequenceGroup>>

{1} 0..1{2} 0..1

dtc/2005-09-04

 L.2.1 Software Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 445

L.2.1.6.11propertyref.

The propertyref element is used to indicate a reference (refid attribute) to a ServiceProperty (allocation proper-
ty), defined in some ServiceComponent’s property file, and the requested value (value attribute) for the Service-
Property (allocation property). This deployment requirement is used by the ApplicationFactoryComponent to
find the right ServiceComponent or DeviceComponent that can met the requirements as specified by the value at-
tribute.

<!ELEMENT propertyref EMPTY>

<!ATTLIST propertyref

refid CDATA #REQUIRED

value CDATA #REQUIRED>

L.2.1.6.12 runtime.

The runtime element specifies a runtime required by a component implementation. An example of the runtime is
a Java VM.

<!ELEMENT runtime EMPTY>

<!ATTLIST runtime

name CDATA#REQUIRED>

version CDATA #IMPLIED>

L.2.1.6.13propertyvaluesref.

The propertyvaluesref element is used to indicate a reference (refid element) to a ServiceProperty (allocation
property), defined in some ServiceComponent’s property file, and the requested values (value element) for the
ServiceProperty (allocation property). This deployment requirement is used by the ApplicationFactoryCompo-
nent to find the right ServiceComponent or DeviceComponent that can met the requirements as specified by the
value element.

 <!ELEMENT propertyvaluesref

 (refid

 ,value+)>

 <!ELEMENT refid (#PCDATA)>

dtc/2005-09-04

L.2.1 Software Package.

446 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

 <!ELEMENT value (#PCDATA)>

L.2.1.7 usesdevice.

The usesdevice element describes any “uses” relationships this component has with a ServiceComponent in the
system. The propertyref or propertyvaluesref element references ServiceProperty(s) (e.g., allocation properties),
which indicate the ServiceComponent to be used (characteristics), and/or the capacity(s) needed from the Ser-
viceComponent.

 <!ELEMENT usesdevice
 ((propertyref
 | propertyvaluesref)+
)>
 <!ATTLIST usesdevice
 id ID #REQUIRED
 type CDATA #REQUIRED>

L.2.1.7.1 propertyref.

SeeL.2.1.7.1 for a definition of the propertyref element.

L.2.1.7.2 propertyvaluesref.

See L.2.1.6.13 for a definition of the propertyvaluesref element.

L.2.1.8 assemblyimplementation

The assemblyimplementation element references a Software Assembly Descriptor (SAD) file for implementation
of a component.

<!ELEMENT assemblyimplementation

(localfile

)>

dtc/2005-09-04

 L.3 Device Package Descriptor.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 447

L.3 Device Package Descriptor.
The SWRadio Device Package Descriptor (DPD) is the part of a Device Profile that contains hardware device
Registration attributes, which are typically used by a Human Computer Interface application to display informa-
tion about the device(s) resident in an SWRadio-compliant radio system. DPD information is intended to pro-
vide hardware configuration and revision information to a radio operator or to radio maintenance personnel. A
DPD may be used to describe a single hardware element residing in a radio or it may be used to describe the
complete hardware structure of a radio. In either case, the description of the hardware structure should be con-
sistent with hardware partitioning as described in UML Profile for SWRadio for communicaiton equipment and
communicaiton channel.

L.3.1 Device Package.

The devicepkg element (see Figure L-93) is the root element of the DPD. The devicepkg id attribute uniquely
identifies the package. The version attribute specifies the version of the devicepkg. The format of the version
string is numerical major and minor version numbers separated by commas (e.g., "1,0,0,0"). The name attribute
is a user-friendly label for the devicepkg.

Figure L-93 – devicepkg Element Relationships

<!ELEMENT devicepkg

devicepkg
id : ID
name : CDATA
version : CDATA

<<DTDElement>>

title
<<DTDElement>>

author
<<DTDElement>>

description
<<DTDElement>>

devicepkg_grp
<<DTDSequenceGroup>>

0..10..1
{1} 1..*1..*

{2} 0..10..1{3}
hwdeviceregistration

id : ID
name : CDATA
version : CDATA

<<DTDElement>>
{4}

dtc/2005-09-04

L.3.1 Device Package.

448 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

(title?

, author+

, description?

, hwdeviceregistration

)>

<!ATTLIST devicepkg

id ID #REQUIRED

name CDATA #REQUIRED

version CDATA #IMPLIED>

L.3.1.1 title.

The title element is used for indicating a title for the hardware device being described by devicepkg.

<!ELEMENT title (#PCDATA)>

L.3.1.2 author.

See L.2.1.3 for a definition of the author element.

L.3.1.3 description.

The description element is used to describe any pertinent information about the device implementation that the
hardware developer wishes to document within the Device Package.

<!ELEMENT description (#PCDATA)>

L.3.1.4 hwdeviceregistration.

The hwdeviceregistration element (see Figure L-94) provides device-specific information for a hardware device.
The hwdeviceregistration id attribute uniquely identifies the device. The version attribute specifies the version of
the hwdeviceregistration element. The format of the version string is numerical major and minor version num-
bers separated by commas (e.g., "1,0,0,0"). The name attribute is a user-friendlylabel for the hardware device

dtc/2005-09-04

 L.3.1 Device Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 449

being registered. The name attribute is supplied when the id is not user-friendly such as a DCE UUID. At a min-
imum, the hwdeviceregistration element must include a description, the manufacturer, the model number and the
device’s hardware class(es).

dtc/2005-09-04

L.3.1 Device Package.

450 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Figure L-94 – hwdeviceregistration Element Relationships

<!ELEMENT hwdeviceregistration

(propertyfile?

, description

, manufacturer

, modelnumber

, deviceclass

, childhwdevice*

)>

<!ATTLIST hwdeviceregistration

id ID #REQUIRED

0..*

hwdeviceregistration
id : ID
name : CDATA
version : CDATA

<<DTDElement>>

propertyfile
type : CDATA

<<DTDElement>>

description
<<DTDElement>>

manufacturer
<<DTDElement>>

modelnumber
<<DTDElement>>

deviceclass
<<DTDElement>>

hwdeviceregistration_grp
<<DTDSequenceGroup>>

0..10..1

{1}

{2}
{3} {4}

{5}

childhwdevice
<<DTDElement>>

0..*

{6}

dtc/2005-09-04

 L.3.1 Device Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 451

name CDATA #REQUIRED

version CDATA #IMPLIED>

L.3.1.4.1 propertyfile.

The propertyfile element is used to indicate the local filename of the property file associated with the hwdevice-
registration element. The format of a property file is described in the Properties Descriptor (Section D.4).

The intent of the property file is to provide the definition of properties elements for the hardware device being
deployed and described in the Device Package (devicepkg) or hwdeviceregistration element.

<!ELEMENT propertyfile

(localfile

)>

<!ATTLIST propertyfile

 type CDATA #IMPLIED>

 <!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA REQUIRED>

L.3.1.4.2 description.

See L.2.1.4 for definition of the description element.

L.3.1.4.3 manufacturer.

The manufacturer element is used to convey the name of manufacturer of the device being installed.

<!ELEMENT manufacturer (#PCDATA)>

L.3.1.4.4 modelnumber.

The modelnumber element is used to indicate the manufacture's model number, for the device being installed.

dtc/2005-09-04

L.3.1 Device Package.

452 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT modelnumber (#PCDATA)>

L.3.1.4.5 deviceclass.

The deviceclass element is used to identify one or more hardware classes that make up the device being installed
(as defined in UML Profile for SWRadio communicaiton equipment).

<!ELEMENT deviceclass

(class+

)>

<!ELEMENT class (#PCDATA)>

L.3.1.4.6 childhwdevice.

The childhwdevice element (see Figure L-95) indicates additional device-specific information for hardware de-
vices that make up the root or parent hardware device registration. An example of childhwdevice would be a ra-
dio's RF module that has receiver and exciter functions within it. In this case, a CF Device representing the RF
module itself would be a parent Device with its DPD, and the receiver and exciter are child devices to the mod-
ule. The parent / child relationship indicates that when the RF module is removed from the system, the receiver
and exciter devices are also removed.

dtc/2005-09-04

 L.3.1 Device Package.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 453

Figure L-95 – childhwdevice Element Relationships

<!ELEMENT childhwdevice

(hwdeviceregistration

 | devicepkgref

)>

L.3.1.4.7 hwdeviceregistration.

The hwdeviceregistration element provides device-specific information for the child hardware device. See
L.3.1.4 for definition of the hwdeviceregistration element.

L.3.1.4.8 devicepkgref.

The devicepkgref element is used to indicate the local filename of a Device Package Descriptor file pointed to by
Device Package Descriptor (e.g., a devicepkg within a devicepkg).

<!ELEMENT devicepkgref

(localfile

childhwdevice
<<DTDElement>>

hwdeviceregistration
id : ID
name : CDATA
version : CDATA

<<DTDElement>>

devicepkgref
type : CDATA

<<DTDElement>>

childhwdevice_grp
<<DTDChoiceGroup>>

dtc/2005-09-04

L.3.1 Device Package.

454 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

)>

<!ATTLIST devicepkgref

type CDATA #IMPLIED>

dtc/2005-09-04

 L.4 Properties Descriptor.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 455

L.4 Properties Descriptor.
The Properties Descriptor file details component and device attribute settings. For purposes of the SWRadio
Property Descriptor files will contain simple, simplesequence, test, struct or structsequence elements. These ele-
ments will be used to describe attributes of a component that will be used for dependency checking. These ele-
ments will also be used for SWRadio component values used by a ResourceComponent’s configure(), query(),
and runTest() operations.

L.4.1 properties.

The properties element (see Figure L-96) is used to describe property attributes that will be used in the config-
ure() and query() operations for SWRadio ResourceComponents and for definition of attributes used for depen-
dency checking. The properties element can also used in the TestableObject runTest() operation to configure
tests and provide test results.

Figure L-96 – properties Element Relationships

<!ELEMENT properties

(description?

, (simple

1..*

properties
<<DTDElement>>

description
<<DTDElement>>

properties_grp
<<DTDSequenceGroup>>

0..10..1
{1}

simple
<<DTDElement>>

simplesequence
<<DTDElement>>

test
<<DTDElement>>

struct
<<DTDElement>>

properties_grp_grp
<<DTDChoiceGroup>>

1..*{2}

structsequence
<<DTDElement>>

dtc/2005-09-04

L.4.1 properties.

456 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

| simplesequence

| test

| struct

| structsequence

)+

)>

L.4.1.1 simple.

The simple element (see Figure L-97 and table L-50) provides for the definition of a property which includes a
unique id, type, name and mode attributes of the property that will be used in the PropertySet configure() and
query() operations, or for indication of component capabilities. The simple element is specifically designed to
support id-value pair definitions. A simple property id attribute corresponds to the id of the id-value pair. The
value and range of a simple property correspond to the value of the id-value pair. The optional enumerations el-
ement allows for the definition of a label-to-value for a particular property. The mode attribute defines whether
the properties element is “readonly”, “writeonly” or “readwrite”. The id attribute is an identifier for the simple
property element. The id attribute for all other simple property elements can be any valid XML ID type. The
mode attribute is only meaningful when the type of the kind element is “configure”. The integerID attribute is
used to specify a integer identifier for a simple property, which when used has precedence over the ID attribute.

dtc/2005-09-04

 L.4.1 properties.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 457

Figure L-97 – simple Element Relationships

<!ELEMENT simple

(description?

, value?

, units?

, range?

, enumerations?

, kind*

, action?

)>

<!ATTLIST simple

id ID #REQUIRED

simple
id : ID
type : (boolean | char | double | float | short | long | longlong | objref | octet | string | ulong | ushort | ulonglong | longdoudble | wchar | wstring)
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

description
<<DTDElement>>

value
<<DTDElement>>

units
<<DTDElement>>

range
min : CDATA
max : CDATA

<<DTDElementEMPTY>>

enumerat ions
<<DTDElement>>

kind
kindtype : (allocation | configure | execparam | factoryparam) = configure

<<DTDElementEMPTY>>

action
type : CDATA

<<DTDElementEMPTY>>

simple_grp1
<<DTDSequenceGroup>>

simple_grp1

0..1

{1}

0..1

description

0..1

{2}

0..1

value

0..1

{3}

0..1

units

0..1
{4}

0..1

range
0..1

{5}
0..1

enumerat ions

0..n
{6}

0..n

kind

0..1
{7}

0..1

action

dtc/2005-09-04

L.4.1 properties.

458 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

type (boolean | char | double | float

 | short | long | longlong | objref | octet

 | string | ulong |ushort | ulonglong |longdoudble | wchar | wstring
) #REQUIRED

integerID CDATA #IMPLIED

 name CDATA #IMPLIED

mode(readonly | readwrite | writeonly) “readwrite”>

Simple
Properties Id Type

intege
rID Name Mode Value Units Range Enum Kind Action

Configure
& Query

+ + int * RW
(defa
ult)

+ * * * configure N/A

Configure
Only

+ + int * WO + * * * configure N/A

Query Only + + int * RO --- * * * configure N/A

ServiceCom
ponent’s
ServicePro
perty
(Locally
Managed=fa
lse)

+ + int * --- + * * * allocatio
n

Eq,
ne
gt,
lt,
ge,
le

ServiceCom
ponent’s
ServicePro
perty
(Locally
Managed=tr
ue)

+ + int * --- + * * * allocatio
n

Exter
nal(d
efaul
t)

dtc/2005-09-04

 L.4.1 properties.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 459

 Legend:
+ : Is required and may contain any value, For ID only certain

characters can be used. Value must conform to type.
* : Is optional and may contain any value
int : value is integer characters
N/A : Not Applicable, will be ignored if used

Table L-50 – Simple Elements & Attributes Summary

L.4.1.1.1 description.

The description element is used to provide a description of the properties element that is being defined.

<!ELEMENT description (#PCDATA)>

L.4.1.1.2 value.

The value element is used to provide a value setting to the properties element.

<!ELEMENT value (#PCDATA)>

L.4.1.1.3 units.

The units element describes the intended practical data representation to be used for the properties element.

<!ELEMENT units (#PCDATA)>

ExecutePro
perty

+ + int * --- + * * * execpar
m

N/A

ResourceFa
ctoryCompo
nent’s
ConfigureP
roperty

+ + int * --- + * * * factorypa
rm

N/A

TestProper
ty’s
InputValue
Property
or
ResultValu
eProperty

+ + int * --- + * * * test N/A

Simple
Properties Id Type

intege
rID Name Mode Value Units Range Enum Kind Action

dtc/2005-09-04

L.4.1 properties.

460 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.4.1.1.4 range.

The range element describes the specific min and max values that are legal for the simple element. The intent of
the range element is to provide a means to perform range validation. This element is not used by the CF Appli-
cationFactory or CF Application implementations.

<!ELEMENT range EMPTY

<!ATTLIST range

min CDATA #REQUIRED

max CDATA #REQUIRED>

L.4.1.1.5 enumerations.

The enumerations element is used to specify one or more enumeration elements.

<!ELEMENT enumerations

(enumeration+

)>

The enumeration element is used to associate a value attribute with a label attribute.. Enumerations are legal for
various integer type properties elements. An Enumeration value is assigned to a property that implements the
CORBA long type. Enumeration values are implied; if not specified by a developer, the initial implied value is
0 and subsequent values are incremented by 1.

<!ELEMENT enumeration EMPTY>

<!ATTLIST enumeration

label CDATA #REQUIRED

value CDATA #IMPLIED>

dtc/2005-09-04

 L.4.1 properties.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 461

L.4.1.1.6 kind.

The kind element’s kindtype attribute is used to specify the kind of property. The types of kindtype attributes
are:

1. configure, which is used in the configure() and query () operations of the PropertySet interface. The
ApplicationFactoryComponent and DeviceManagerComponent will use the configure kind of
properties to build the Properties input parameter to the configure () operation that is invoked on the
Component(s) during application creation. When the mode is readonly, only the query() behavior is
supported. When the mode is writeonly, only the configure() behavior is supported. When the mode
is readwrite, both configure() and query() are supported.

2. test, which is used in the runTest() operation in the TestableObject interface. The test kind of
properties will be used as the testValues parameter to the runTest() operation.

3. allocation, which is used in the allocateCapacity() and deallocateCapacity() operations of the Device
interface. The ApplicationFactoryComponent and DeviceManagerComponent will use the allocation
kind of properties to build the capacities inout parameter to the allocateCapacity() operation that is
invoked on the DeviceComponent(s) during application creation when the simple property action
element is external. The ApplicationFactoryComponent and DeviceManagerComponent (not
DeviceComponent) manages an Allocation property when the action value is not external. Allocation
properties that are external can also be queried using the PropertySet query() operation.

4. execparam,. which is used in the execute operations of the Device interface. The
ApplicationFactoryComponent and DeviceManagerComponent will use the execparam kind of
properties to build the Properties input parameter to the execute() operation that is invoked on the
ExecutableDevicecomponent(s) during component and/or application creation. Only simple elements
can be used as execparam types.

5. factoryparam, are properties that are only for the createResource() operation of the ResourceFactory
interface. The ApplicationFactoryComponent will use the factoryparam type of properties to build
the Properties input parameter to the createResource() operation.

A property can have multiple kind elements and the default kindtype is configure.

<!ELEMENT kind EMPTY>

<!ATTLIST kind

kindtype(allocation | configure | test |

 execparam| factoryparam) “configure”>

L.4.1.1.7 action.

The action element is used to define the type of comparison used to compare an SPD property value to a De-
viceComponent property value, during the process of checking SPD dependencies. The type attribute, of the ac-
tion element, will determine the type of comparison to be made (e.g., equal, not equal, greater than, etc.). When
the action’s type is not external then the ApplicationFactoryComponent and DeviceManagerComponent performs
the action comparison, not the DeviceComponent. The default value for type is external when not specified.

dtc/2005-09-04

L.4.1 properties.

462 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

When the action is “external” then the DeviceComponent is locally managing the allocation propery (e.g., Servi-
ceProperty). The ApplicationFactoryComponent cannot managed these properties, instead it must use the alllo-
cateCapacity operation on a compatible DeviceComponents. For non-external action types, the allocateCapacity
operation is not called on a DeviceComponent.

In principle, the action element defines the operation executed during the comparison of the allocation property
value, provided by an SPD dependency element, to the associated allocation property value of a DeviceCompo-
nent. The allocation property is on the left side of the action and the dependency value is on the right side of the
action. This process allows for the allocation of appropriate objects within the system based on their attributes,
as defined by their dependent relationships.

For example, if a DeviceComponent’s properties file defines a DeviceKind allocation property whose action ele-
ment is set to "equal", then at the time of dependency checking a valid DeviceKind property is checked for
equality. If a software component implementation is dependent on a DeviceKind property with its value set to
"NarrowBand", then the component's SPD dependency propertyref element will reference the id of the Device-
Kind allocation property with a value of "NarrowBand". At the time of dependency checking, the Application-
FactoryComponent will check DeviceComponent(s) whose properties kind element is set to “allocation” and
property id is DeviceKind for equality against a "NarrowBand" value.

<!ELEMENT action EMPTY>

<ATTLIST action

type CDATA #REQUIRED>

L.4.1.1.8 simplesequence.

The simplesequence element (see Figure L-98) is used to specify a list of properties with the same characteristics
(e.g., type, range, units, etc.). The simplesequence element definition is similar to the simple element definition
except that it has a list of values instead of one value. The simplesequence element maps to the basic primitive
sequence types and CF PortTypes CORBA modules, defined in UML Profile for SWRadio, based upon the type
attribute.

dtc/2005-09-04

 L.4.1 properties.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 463

Figure L-98 – simplesequence Element Relationships

<!ELEMENT simplesequence

(description?

, values?

, units?

, range?

, kind*

, action?

)>

<!ATTLIST simplesequence

id ID #REQUIRED

type(boolean | char | double | float

 | short | long | longlong | objref | octet

s implesequence
id : ID
type : (boolean | char | double | float | short | long | longlong | objref | octet | string | ulong | ushort | ulonglong | longdoudble | wchar | wstring)
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

description
<<DTDElement>>

values
<<DTDElement>>

units
<<DTDElement>>

range
min : CDATA
max : CDATA

<<DTDElementEMPTY>>

kind
kindtype : (allocation | configure | execparam | factoryparam) = configure

<<DTDElementEMPTY>>

action
type : CDATA

<<DTDElementEMPTY>>

s implesequence_grp1
<<DTDSequenceGroup>>

simplesequence_grp1

0..1

{1}

0..1

description

0..1

{2}

0..1

values

0..1

{3}

0..1

units

0..1

{4}

0..1

range

0..n {5}0..n

kind

0..1

{6}

0..1

action

dtc/2005-09-04

L.4.1 properties.

464 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

 | string | ulong |ushort | ulonglong |longdoudble | wchar | wstring
) #REQUIRED

integerID CDATA #IMPLIED

name CDATA #IMPLIED

mode(readonly | readwrite | writeonly) “readwrite”>

<!ELEMENT values

(value+

)>

L.4.1.2 test.

The test element (see Figure L-99) is used to specify a list of test properties for executing the TestableObject
runTest() operation to perform a component specific test. This definition contains inputvalue and resultvalue el-
ements and it has a testid attribute for grouping test properties to a specific test. Inputvalues are used to config-
ure the test to be performed (e.g., frequency and RF power output level). When the test has completed,
resultvalues contain the results of the testing (e.g., Pass or a fault code/message).

dtc/2005-09-04

 L.4.1 properties.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 465

Figure L-99 – test Element Relationships

<!ELEMENT test

(description

 , inputvalue?

 , resultvalue

)>

<!ATTLIST test

id CDATA #REQUIRED

integerID CDATA #IMPLIED

>

test
id : CDATA
integerID : CDATA

<<DTDElement>>

description
<<DTDElement>>

inputvalue
<<DTDElement>>

resultvalue
<<DTDElement>>

test_grp1
<<DTDSequenceGroup>>

test_grp1

{1}

description

0..1 {2}0..1

inputvalue

{3}

resultvalue

dtc/2005-09-04

L.4.1 properties.

466 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.4.1.2.1 inputvalue.

The inputvalue element is used to provide test configuration properties. The Simple properties it contains must
be of kind "test".

<!ELEMENT inputvalue

(simple+

)>

L.4.1.2.2 resultvalue.

The resultvalue element is used to provide test result properties. The Simple properties it contains
must be of kind "test".

<!ELEMENT resultvalue

(simple+

)>

L.4.1.3 struct.

The struct element (see Figure L-100) is used to group properties with different characteristics (i.e., similar to a
structure or record entry). Each item in the struct element can be a different simple type (e.g., short, long, etc.).
The struct element corresponds to the Properties type where each struct item (ID, value) corresponds to a prop-
erties element list item. The properties element list size is based on the number of struct items.

dtc/2005-09-04

 L.4.1 properties.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 467

Figure L-100 – struct Element Relationships

<!ELEMENT struct

(description?

, simple+

, configurationkind?

, action?

)>

<!ATTLIST struct

id ID #REQUIRED

integerID CDATA #IMPLIED

name CDATA #IMPLIED

mode(readonly | readwrite | writeonly)"readwrite">

struct
id : ID
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

description
<<DTDElement>>

simple
id : ID
type : (boolean | char | double | float | short | long | longlong | objref | octet | string | ulong | ushort | ulonglong | longdoudble | wchar | wstring)
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

configurationkind
kindtype : (configure | factoryparam | allocation) = configure

<<DTDElementEMPTY>>

action
type : CDATA

<<DTDElementEMPTY>>

struct_grp1
<<DTDSequenceGroup>>

struct_grp1

0..1

{1}

0..1

description

1..n

{2}

1..n

simple

0..1
{3}

0..1

configurationk ind

0..1

{4}

0..1

action

dtc/2005-09-04

L.4.1 properties.

468 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.4.1.3.1 configurationkind.

The configurationkind element’s kindtype attribute is used to specify the kind of property. The kindtypes are:

1. configure, which is used in the configure() and query() operations of the SWRadio Resource
interface. The ApplicationFactoryComponent and DeviceManagerComponent will use the configure
kind of properties to build the Properties input parameter to the configure() operation that is invoked
on the ResourceComponent(s) during application creation. When the mode is readonly, only the
query behavior is supported. When the mode is writeonly, only the configure behavior is supported.
When the mode is readwrite, both configure and query are supported.

2. factoryparam, which is used in the createResource operations of the ResourceFactory interface. The
ApplicationFactoryComponent will use the factoryparam kind of properties to build the Properties
input parameter to the createResource() operation. A property can have multiple configurationkind
elements and their default kindtype is “configure”.

3. allocation, which is used in the allocateCapacity() and deallocateCapacity() operations of the Device
interface. The ApplicationFactoryComponent and DeviceManagerComponent will use the allocation
kind of properties to build the capacities inout parameter to the allocateCapacity() operation that is
invoked on the DeviceComponent(s) during application creation when the simple property action
element is external. The ApplicationFactoryComponent and DeviceManagerComponent (not
DeviceComponent) manages an Allocation property when the action value is not external. Allocation
properties that are external can also be queried using the PropertySet query() operation.

<!ELEMENT configurationkind EMPTY>

<!ATTLIST configurationkind

kindtype(configure | factoryparam | allocation) “configure”>

L.4.1.4 structsequence.

The structsequence element (see Figure L-101) is used to specify a list of properties with the same struct charac-
teristics. The structsequence element maps to a properties element having the Properties type. Each item in the
Properties type will be the same struct definition as referenced by the structrefid attribute.

dtc/2005-09-04

 L.4.1 properties.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 469

Figure L-101 – structsequence Element Relationships

<!ELEMENT structsequence

(description?

, structvalue+

, configurationkind?

, action?

)>

structsequence
id : ID
structrefid : CDATA
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

descript ion
<<DTDElement>>

structvalue
<<DTDElement>>

configurationkind
kindtype : (configure | factoryparam | allocat ion) = configure

<<DTDElementEMPTY>>

action
type : CDATA

<<DTDElementEMPTY>>

structsequence_grp1
<<DTDSequenceGroup>>

structsequence_grp1

0..1

{1}

0..1

description

1..n
{2}

1..n

structvalue

0..1
{3}

0..1

configurationk ind

0..1

{4}

0..1

action

dtc/2005-09-04

L.4.1 properties.

470 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ATTLIST structsequence

id ID #REQUIRED

structrefid CDATA #REQUIRED

integerID CDATA #IMPLIED

name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT structvalue

(simpleref+

)>

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

refid CDATA #REQUIRED

value CDATA #REQUIRED>

dtc/2005-09-04

 L.5 Software Component Descriptor.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 471

L.5 Software Component Descriptor.
The Software Component Descriptor (SCD) defines elements necessary for describing the ports, interfaces, and
properties for a component definition.

L.5.1 softwarecomponent.

The softwarecomponent element (see Figure L-102) is the root element of the software component descriptor file.
For use within the SWRadio the sub-elements that are supported include:

● corbaversion – indicates which version of CORBA the component is developed for.

● componentrepid – is the repository id of the component

● componenttype – identifies the type of software component object

● componentfeatures – provides the supported message ports for the component

● interface – describes the component unique id and name for supported interfaces.

Figure L-102 – softwarecomponent Element Relationships

<!ELEMENT softwarecomponent

softwarecomponent
<<DTDElement>>

corbaversion
<<DTDElement>>

componentrepid
repid : CDATA

<<DTDElementEMPTY>>

componenttype
<<DTDElement>>

componentfeatures
<<DTDElement>>

interfaces
<<DTDElement>>

softwarecomponent_grp
<<DTDSequenceGroup>>{1}

{2}

{3} {4}

{5}

propertyfile
type : CDATA

<<DTDElement>>

0..10..1

{6}

dtc/2005-09-04

L.5.1 softwarecomponent.

472 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

(corbaversion

, componentrepid

, componenttype

, componentfeatures

, interfaces

, propertyfile?

)>

L.5.1.1 corbaversion.

The corbaversion element is intended to indicate the version of CORBA that the delivered component supports.

<!ELEMENT corbaversion (#PCDATA)>

L.5.1.2 componentrepid.

The componentrepid uniquely identifies the interface that the component is implementing. The componentrepid
may be referred to by the componentfeatures element. The componentrepid is derived from interfaces such as
the Resource, Device, or ResourceFactory.

<!ELEMENT componentrepid EMPTY>

<!ATTLIST componentrepid

repid CDATA #REQUIRED>

L.5.1.3 componenttype.

The componenttype describes properties of the component. For SWRadio components, the component types in-
clude elements such as service, resource, device, resourcefactory, domainmanager, log, filesystem, filemanager,
devicemanager, namingservice and eventservice.

<!ELEMENT componenttype (#PCDATA)>

dtc/2005-09-04

 L.5.1 softwarecomponent.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 473

L.5.1.4 componentfeatures.

The componentfeatures element (see Figure L-103) is used to describe a component with respect to the compo-
nents that it inherits from, the interfaces the component supports, and its provides and uses ports. The compo-
nent interface is usually Resource, ResourceFactory, or service interface such as Device, LoadableDevice, and
ExecutableDevice. If a component extends the Resource or Device interfaces then all the inherited interfaces
(e.g., Resource) are depicted as supportsinterface elements.

Figure L-103 – componentfeatures Element Relationships

<!ELEMENT componentfeatures

(supportsinterface*

, ports

)>

L.5.1.4.1 supportsinterface.

The supportsinterface element is used to identify an IDL interface that the component supports. These interfaces
are distinct interfaces that were inherited by the component’s specific interface. One can widen the component’s
interface to be a supportsinterface. The repid is used to refer to the interface element (see section L.5.1.5).

<!ELEMENT supportsinterface EMPTY>

componentfeatures
<<DTDElement>>

supportsinterface
repid : CDATA
supportsname : CDATA

<<DTDElementEMPTY>>

componentfeatures_grp
<<DTDSequenceGroup>>

0..*0..*{1}

ports
<<DTDElement>>

{2}

dtc/2005-09-04

L.5.1 softwarecomponent.

474 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ATTLIST supportsinterface

repid CDATA #REQUIRED

supportsname CDATA #REQUIRED>

L.5.1.4.2 ports.

The ports element (see Figure L-104) describes what interfaces a component provides and uses (or requires).
The provides elements are interfaces that are not part of a component’s interface but are independent interfaces
known as facets (in CORBA Components terminology) (i.e. a provides port at the end of a path, like I/O Device
or Modem Device). The uses element desribes the interfaces needed by a component. These uses ports are con-
nected to a provides or supportinterfaces interface. Any number of uses and provides elements can be given in
any order. Each ports element has a name and references an interface by repid (see section L.5.1.5). The port
names are used in the Software Assembly Descriptor to connect ports together. A ports element also has an op-
tional porttype element that allows for identification of port classification. Values for porttype include “data”,
“control”, “responses”, and “test”. If a porttype is not given then “control” is assumed.

Figure L-104 – ports Element Relationships

<!ELEMENT ports

(provides

| uses

0..*

ports
<<DTDElement>>

provides
repid : CDATA
providesname : CDATA

<<DTDElement>>

ports_grp
<<DTDChoiceGroup>>

0..*

uses
repid : CDATA
usesname : CDATA

<<DTDElement>>

dtc/2005-09-04

 L.5.1 softwarecomponent.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 475

)*>

<!ELEMENT provides

(porttype*

)>

<!ATTLIST provides

repid CDATA #REQUIRED

providesname CDATA #REQUIRED>

<!ELEMENT uses

(porttype*

)>

<!ATTLIST uses

repid CDATA #REQUIRED

usesname CDATA #REQUIRED>

<!ELEMENT porttype EMPTY>

<!ATTLIST porttype

type (data | control | responses | test) #REQUIRED>

L.5.1.5 interfaces.

The interfaces element is made up of one to many interface elements.

<!ELEMENT interfaces

(interface+

)>

dtc/2005-09-04

L.5.1 softwarecomponent.

476 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

The interface element describes an interface that the component, either directly or through inheritance, provides,
uses, or supports. The name attribute is the character-based non-qualified name of the interface. The repid at-
tribute is the unique repository id of the interface, which has formats specified in the CORBA specification. The
repid is also used to reference an interface element elsewhere in the SCD, for example from the inheritsinterface
element.

<!ELEMENT interface

(inheritsinterface*

)>

<!ATTLIST interface

repid CDATA #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>

<!ATTLIST inheritsinterface

repid CDATA #REQUIRED

L.5.1.6 propertyfile.

Refer to section L.2.1.1 propertyfile for definition of propertyfile. The properties defined at the SCD are the def-
inition of properties supported by all implementations, and be managed by the PropertySet interface as described
in the UML Profile for SWRadio.

dtc/2005-09-04

 L.6 Software Assembly Descriptor.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 477

L.6 Software Assembly Descriptor.
This section describes the XML elements of the Software Assembly Descriptor (SAD) XML file; the softwareas-
sembly element (see Figure L-105). The SAD is based on the CORBA Components Specification Component
Assembly Descriptor. The intent of the software assembly is to provide the means of describing the assembled
functional application and the interconnection characteristics of the SWRadio components within that applica-
tion. The component assembly provides four basic types of application information for Radio Management. The
first is partitioning information that indicates special requirements for collocation of components, the second is
the assembly controller for the software assembly, the third is connection information for the various components
that make up the application assembly, and the fourth is the visible ports for the application assembly.

The installation of an application into the system involves the installation of a SAD file. The SAD file references
component’s SPD files to obtain deployment information for these components.The softwareassembly element’s
id attribute uniquely identifies the assembly. The softwareassembly element’s name attribute is the user-friendly
name for the ApplicationFactoryComponent name attribute. The name attribute is supplied when the id is not
user-friendly such as a DCE UUID. The softwareassembly element's version attribute is the version of the appli-
cation.

Figure L-105 – softwareassembly Element Relationships

softwareassembly
id : ID
name : CDATA
version : CDATA

<<DTDElement>>

description
<<DTDElement>>

componentfiles
<<DTDElement>>

partitioning
<<DTDElement>>

assemblycontroller
<<DTDElement>>

connections
<<DTDElement>>

softwareassembly_grp
<<DTDSequenceGroup>>

0..10..1

{1}

{2}

{3} {4}

0.. .0.. .

{5}

externalports
<<DTDElement>>

0..10..1

{6}

dtc/2005-09-04

L.6.1 description.

478 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT softwareassembly

(description?

, componentfiles

, partitioning

, assemblycontroller

, connections?

, externalports?

)>

<!ATTLIST softwareassembly

id ID #REQUIRED

name CDATA #IMPLIED

version CDATA #IMPLIED>

L.6.1 description.

The description element of the component assembly may be used to describe any information the developer
would like to indicate about the assembly.

<!ELEMENT description (#PCDATA)>

L.6.2 componentfiles.

The componentfiles element is used to indicate that an assembly is made up of 1..n component files. The com-
ponentfile element contains a reference to a local file, which is a Software Package Descriptor file (see section
L.2).

<!ELEMENT componentfiles

(componentfile+

)>

dtc/2005-09-04

 L.6.3 partitioning.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 479

L.6.2.1 componentfile.

The componentfile element is a reference to a local file. See section L.2.1.1.1 for the definition of the localfile
element. The type attribute is “Software Package Descriptor.

<!ELEMENT componentfile

(localfile

)>

<!ATTLIST componentfile

id ID #REQUIRED

type CDATA #IMPLIED>

L.6.3 partitioning.

A component partitioning element (see Figure L-106) specifies a deployment pattern of components and their
components-to-hosts relationships. A component instantiation is captured inside a componentplacement element.
The hostcollocation element allows the components to be placed on a common device. When the component-
placement is by itself and not inside a hostcollocation, it then has no collocation constraints.

Figure L-106 – partitioning Element Relationships

partitioning
<<DTDElement>>

componentplacement
<<DTDElement>>

partit ioning_grp
<<DTDChoiceGroup>>

1..*1..*

hostcollocation
id : ID
name : CDATA

<<DTDElement>>

dtc/2005-09-04

L.6.3 partitioning.

480 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT partitioning

(componentplacement

| hostcollocation

)+>

L.6.3.1 componentplacement.

The componentplacement element (see Figure L-107) defines a particular deployment of a component. The com-
ponent can be deployed either directly or by using a ResourceFactoryComponent.

Figure L-107 – componentplacement Element Relationships

<!ELEMENT componentplacement

(componentfileref

, componentinstantiation+

)>

componentplacement
<<DTDElement>>

componentfileref
refid : CDATA

<<DTDElementEMPTY>>

componentplacement_grp
<<DTDSequenceGroup>>

{1}

componentinstantiation
id : ID

<<DTDElement>>

1..*1..*{2}

dtc/2005-09-04

 L.6.3 partitioning.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 481

L.6.3.1.1 componentfileref.

The componentfileref element is used to reference a particular Software PackageDescriptor file. The component-
fileref element’s refid attribute corresponds to the componentfile element’s id attribute.

<!ELEMENT componentfileref EMPTY>

<!ATTLIST componentfileref

refid CDATA #REQUIRED>

L.6.3.1.2 componentinstantiation.

The componentinstantiation element (see Figure L-108) is intended to describe a particular instantiation of a
component relative to a componentplacement element. The componentinstantiation’s id attribute uniquely iden-
tifies the component. The componentinstantiation element’s id may be referenced by the usesport and pro-
videsport elements within the SAD file. It is the component name for the instantiation not the application name.

The optional componentproperties element (see Figure L-109) is a list of configure, factoryparam, and/or exec-
param properties values that are used in creating the component or for the initial configuration of the component.
The “configure” or “factoryparm” kinds of property definitions as stated in the corresponding SCD. The “exec-
parm” kind of property definitions as stated in the corresponding SPD.

The following sources will be searched in the given precedence order for initial values for “configure” kind of
properties, whose modes are “readwrite” or “writeonly”:

1. The componentproperties element of the componentinstantiation element in SAD

The following sources will be searched in the given precedence order for initial values for the "execparam" kind
of properties:

1. The componentproperties element of the componentinstantiation element in SAD or the
componentinstantiation element’s findcomponent element’s componentresourcefactoryref element’s
resourcefactoryproperties element in the SAD

The following sources will be searched initial values for the “factoryparam” kind of properties in the given pre-
cedence order:

1. The componentinstantiation element’s findcomponent element’s componentresourcefactoryref
element’s resourcefactoryproperties element in the SAD

The optional findcomponent element (see Figure L-110) is used to obtain the object reference for the component
instance. The two sources for obtaining an object reference are:

1. The componentresourcefactoryref element, which refers to a particular ResourceFactoryComponent
componentinstantiation element found in the SAD, which is used to obtain a ResourceComponent
instance for this componentinstantiation element. The refid attribute refers to a unique

dtc/2005-09-04

L.6.3 partitioning.

482 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

componentinstantiation id attribute. The componentresourcefactoryref element contains an optional
resourcefactoryproperties element (see Figure L-111), which specifies the properties “qualifiers”, for
the ResourceFactoryComponent create call.

2. The optional findcomponent element should be specified except when there is no object reference for
the component instance (e.g., DSP code). The CORBA Naming Service, which is used to find the
component’s object reference. The name specified in the namingservice element is a partial name
that is used by the ApplicationFactoryComponent to form the complete context name.

Figure L-108 – componentinstantiation Element Relationships

<!ELEMENT componentinstantiation

(usagename?

, componentproperties?

, findcomponent?

)>

<!ATTLIST componentinstantiation

id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

componentinstantiation
id : ID

<<DTDElement>>

usagename
<<DTDElement>>

componentproperties
<<DTDElement>> findcomponent

<<DTDElement>>

componentinstantiation_grp
<<DTDSequenceGroup>>

0..1
{1}

0..1 0..1{2} 0..1
0..1

{3}
0..1

dtc/2005-09-04

 L.6.3 partitioning.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 483

Figure L-109 – componentproperties Element Relationships

<!ELEMENT componentproperties

 (simpleref

 | simplesequenceref

 | structref

 | structsequenceref

)+ >

1..*

componentproperties
<<DTDElement>>

simpleref
refid : CDATA
value : CDATA

<<DTDElementEMPTY>>

simplesequenceref
refid : CDATA

<<DTDElement>>
structref

refid : CDATA

<<DTDElement>>

componentproperties_grp
<<DTDChoiceGroup>>

1..*

structsequenceref
refid : CDATA

<<DTDElement>>

dtc/2005-09-04

L.6.3 partitioning.

484 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Figure L-110 – findcomponent Element Relationships

<!ELEMENT findcomponent

(componentresourcefactoryref

 | namingservice

)>

<!ELEMENT componentresourcefactoryref

(resourcefactoryproperties?

)>

<!ATTLIST componentresourcefactoryref

refid CDATA #REQUIRED>

findcomponent
<<DTDElement>>

componentresourcefactoryref
refid : CDATA

<<DTDElement>>
namingservice

name : CDATA

<<DTDElementEMPTY>>

findcomponent_grp
<<DTDChoiceGroup>>

dtc/2005-09-04

 L.6.3 partitioning.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 485

Figure L-111 – resourcefactoryproperties Element Relationships

<!ELEMENT resourcefactoryproperties

 (simpleref

 | simplesequenceref

 | structref

 | structsequenceref

)+ >

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

 refid CDATA #REQUIRED

 value CDATA #REQUIRED>

1..*

resourcefactoryproperties
<<DTDElement>>

simpleref
refid : CDATA
value : CDATA

<<DTDElementEMPTY>>

simplesequenceref
refid : CDATA

<<DTDElement>>
structref

refid : CDATA

<<DTDElement>>

resourcefactoryproperties_grp
<<DTDChoiceGroup>>

1..*

structsequenceref
refid : CDATA

<<DTDElement>>

dtc/2005-09-04

L.6.3 partitioning.

486 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT simplesequenceref

 (values

)>

<!ATTLIST simplesequenceref

 refid CDATA #REQUIRED>

<!ELEMENT structref

 (simpleref+
)>

<!ATTLIST structref
 refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+

)>
<!ATTLIST structsequenceref

refid CDATA #REQUIRED>

<!ELEMENT structvalue
 (simpleref+
)>

<!ELEMENT values

 (value+

)>

<!ELEMENT value (#PCDATA)>

L.6.3.2 hostcollocation.

The hostcollocation element specifies a group of component instances that are to be deployed together on a sin-
gle host. For purposes of the SWRadio, the componentplacement element will be used to describe the 1...n com-
ponents that will be collocated on the same host platform. Within the SWRadio specification, a host platform
will be interpreted as a single device. The id and name attributes are optional but may be used to uniquely iden-
tify a set of collocated components within a SAD file.

<!ELEMENT hostcollocation

dtc/2005-09-04

 L.6.4 assemblycontroller.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 487

(componentplacement

)+>

<!ATTLIST hostcollocation

id ID #IMPLIED

name CDATA #IMPLIED>

L.6.3.2.1 componentplacement.

See componentplacement, section L.6.3.1.

L.6.4 assemblycontroller.

The assemblycontroller element indicates the component that is the main ResourceComponent controller for the
assembly. The ApplicationManager component delegates its Resource configure(), query(), start(), stop(), and
runTest() operations to the ResourceComponent’s Assembly Controller component.

<!ELEMENT assemblycontroller

(componentinstantiationref

)>

L.6.5 connections.

The connections element is a child element of the softwareassembly element. The connections element is intend-
ed to provide the connection map between components in the assembly.

<!ELEMENT connections

(connectinterface*

)>

dtc/2005-09-04

L.6.5 connections.

488 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.6.5.1 connectinterface.

The connectinterface element (see Figure L-112) is used when application components are being assembled to
describe connections between their port interfaces. The connectinterface element consists of a usesport element
and a providesport, componentsupportedinterface, or findby element. These elements are intended to connect
two compatible components.

Figure L-112 – connectinterface Element Relationships

<!ELEMENT connectinterface

(usesport

, (providesport

 | componentsupportedinterface

 | findby

)

connectinterface
id : ID

<<DTDElement>>

usesport
<<DTDElement>>

connectinterface_grp1
<<DTDSequenceGroup>>

{1}

providesport
<<DTDElement>>

componentsupportedinterface
<<DTDElement>>

findby
<<DTDElement>>

connectinterface_grp_grp
<<DTDChoiceGroup>>

{2}

dtc/2005-09-04

 L.6.5 connections.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 489

)>

<!ATTLIST connectinterface

id ID #IMPLIED>

L.6.5.1.1 usesport.

The usesport element (see Figure L-113) identifies, using the usesidentifier element, the component port that is
using the provided interface from the providesport element. A SWRadio component may be referenced by one
of four elements. One element is the componentinstantiationref that refers to the componentinstantiation id at-
tribute (see componentinstantiation) within the assembly; the other elements are findby, devicethatloadedthis-
componentref, and deviceusedbythiscomponentref.

Figure L-113 – usesport Element Relationships

usesport
<<DTDElement>>

usesidentifier
<<DTDElement>>

usesport_grp
<<DTDSequenceGroup>>

{1}

componentinstantiationref
refid : CDATA

<<DTDElementEMPTY>>

devicethatloadedthiscomponentref
refid : CDATA

<<DTDElementEMPTY>>
deviceusedbythiscomponentref

refid : CDATA
usesrefid : CDATA

<<DTDElementEMPTY>>

findby
<<DTDElement>>

usesport_grp_grp
<<DTDChoiceGroup>>

{2}

dtc/2005-09-04

L.6.5 connections.

490 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT usesport

(usesidentifier

, (componentinstantiationref

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby

)

)>

L.6.5.1.1.1usesidentifier.

The usesidentifier element identifies which “uses port” on the component is to participate in the connection rela-
tionship. This identifier will correspond with an id for one of the component ports specified in the Software
Component Descriptor (see section L.5).

<!ELEMENT usesidentifier (#PCDATA)>

L.6.5.1.1.2componentinstantiationref.

The componentinstantiationref element refers to the id attribute of the componentinstantiation element within the
Software Assembly Descriptor file. The refid attribute will correspond to the unique componentinstantiation id
attribute.

<!ELEMENT componentinstantiationref EMPTY>

<!ATTLIST componentinstantiationref

refid CDATA #REQUIRED>

dtc/2005-09-04

 L.6.5 connections.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 491

L.6.5.1.1.3findby.

The findby element (see Figure L-114) is used to resolve a connection between two components. It tells the Do-
main Management function how to locate a component interface involved in a connection relationship. The
namingservice element specifies a naming service name to search for the desired component interface.

The domainfinder element specifies an element within the domain that is known to the Domain Management
function.

Figure L-114 – findby Element Relationships

<!ELEMENT findby

(namingservice

| domainfinder

)>

L.6.5.1.1.3.1namingservice.

The namingservice element is a child element of the findby element. The namingservice element is used to indi-
cate to the ApplicationFactoryComponent the requirement to find a component interface. The ApplicationFacto-
ryComponent will use the name attribute to search the CORBA Naming Service for the appropriate interface.

<!ELEMENT namingservice EMPTY

findby
<<DTDElement>>

namingservice
name : CDATA

<<DTDElementEMPTY>>

findby_grp
<<DTDChoiceGroup>>

domainfinder
type : CDATA
name : CDATA

<<DTDElementEMPTY>>

dtc/2005-09-04

L.6.5 connections.

492 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ATTLIST namingservice

name CDATA #REQUIRED>

L.6.5.1.1.3.2domainfinder.

The domainfinder element is a child element of the findby element. The domainfinder element is used to indicate
to the ApplicationFactoryComponent the necessary information to find an object reference that is of specific type
and may also be known by an optional name within the domain. At a minimum the following valid type attribute
values need to be supported “filemanager”, “log”, “eventchannel”, “namingservice”, “application”, and “ser-
vice”. If a name attribute is not supplied, then the component reference returned is the DomainManagerCompo-
nent’s FileManager or Naming Service corresponding to the type attribute provided. If a name attribute is not
supplied and the type attribute has a value of “application”, “service”, or “log” then a null reference is returned.
The type attribute value of “eventchannel” is used to specify the event channel to be used in the OE’s CORBA
Event Service for producing or consuming events. If the name attribute is not supplied and the type attribute has
a value of “eventchannel” then the Incoming Domain Management event channel is used.

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

type CDATA #REQUIRED

name CDATA #IMPLIED>

L.6.5.1.1.4devicethatloadedthiscomponentref.

The devicethatloadedthiscomponentref element refers to a specific component found in the assembly, which is
used to obtain the DeviceComponent that was used to load the referenced component from the ApplicationFacto-
ryComponent. The DeviceComponent obtained is then associated with this component instance. This relationship
is needed when a component (e.g., modem adapter) is pushing data and/or commands to a non-CORBA capable
device such as modem.

<!ELEMENT devicethatloadedthiscomponentref EMPTY>

<!ATTLIST devicethatloadedthiscomponentref

refidC DATA #REQUIRED>

dtc/2005-09-04

 L.6.5 connections.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 493

L.6.5.1.1.5deviceusedbythiscomponentref.

The deviceusedbythiscomponentref element refers to a specific component, within the assembly, which is used to
obtain the DeviceComponent that is being used by the specific component from the ApplicationFactoryCompo-
nent. This relationship is needed when a component is pushing or pulling data and/or commands to another com-
ponent that exists in the system such as an audio device.

<!ELEMENT deviceusedbythiscomponentref EMPTY>

<!ATTLIST deviceusedbythiscomponentref

refid CDATA #REQUIRED

usesrefid CDATA #REQUIRED>

L.6.5.1.2 providesport.

The providesport element (see Figure L-115) identifies, using the providesidentifier element, the component port
that is provided to the usesport interface within the connectinterface element. A SWRadio component may be
referenced by one of four elements. One element is the componentinstantiationref that refers to the compo-
nentinstantiation id (see componentinstantiation) within the assembly; the other elements are findby, devicethat-
loadedthiscomponentref, and deviceusedbythiscomponentref. The findby element by itself is used when the
object reference is not a ResourceComponent type.

dtc/2005-09-04

L.6.5 connections.

494 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Figure L-115 – providesport Element Relationships

<!ELEMENT providesport

(providesidentifier

 , (componentinstantiationref

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby

)

providesport
<<DTDElement>>

providesidentifier
<<DTDElement>>

providesport_grp
<<DTDSequenceGroup>>

{1}

componentinstantiationref
refid : CDATA

<<DTDElementEMPTY>>

devicethatloadedthiscomponentref
refid : CDATA

<<DTDElementEMPTY>> deviceusedbythiscomponentref
refid : CDATA
usesrefid : CDATA

<<DTDElementEMPTY>>

findby
<<DTDElement>>

providesport_grp_grp
<<DTDChoiceGroup>>

{2}

dtc/2005-09-04

 L.6.5 connections.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 495

)>

L.6.5.1.2.1providesidentifier.

The providesidentifier element identifies which “provides port” on the component is to participate in the connec-
tion relationship. This identifier will correspond with a repid attribute for one of the component ports elements,
specified in the Software Component Descriptor (see section L.5).

<!ELEMENT providesidentifier (#PCDATA)>

L.6.5.1.2.2componentinstantiationref.

See componentinstantiationref. for a description of the componentinstantiationref element.

L.6.5.1.2.3findby.

See section findby. for a description of the findby element. The namingservice element’s name attribute denotes
a complete naming context.

L.6.5.1.2.4devicethatloadedthiscomponentref.

See section TBD for a description of the devicethatloadedthiscomponentref element.

L.6.5.1.2.5deviceusedbythiscomponentref.

See TBD for a description of the deviceusedbythiscomponentref element.

L.6.5.1.3 componentsupportedinterface.

The componentsupportedinterface element (see Figure L-116) specifies a component, which has a supportsinter-
face element, that can satisfy an interface connection to a port specified by the usesport element, within a con-
nectinterface element. This component is identified by a componentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. The findby element points to an existing
component that can be found within a Naming Service.

dtc/2005-09-04

L.6.5 connections.

496 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Figure L-116 – componentsupportedinterface Element Relationships

<!ELEMENT componentsupportedinterface

(supportedidentifier

, (componentinstantiationref

 | findby

)

)>

L.6.5.1.3.1supportedidentifier.

The supportedidentifier element identifies which supported interface on the component is to participate in the
connection relationship. This identifier will correspond with the repid attribute of one of the component’s sup-
portsinterface elements, specified in the Software Component Descriptor.

componentsupportedinterface
<<DTDElement>>

supportedidentifier
<<DTDElement>>

componentsupportedinterface_grp
<<DTDSequenceGroup>>

{1}

componentinstantiationref
refid : CDATA

<<DTDElementEMPTY>>
findby

<<DTDElement>>

componentsupportedinterface_grp_grp
<<DTDChoiceGroup>>

{2}

dtc/2005-09-04

 L.6.6 externalports.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 497

<!ELEMENT supportedidentifier (#PCDATA)>

L.6.5.1.3.2componentinstantiationref.

See section componentinstantiationref. for a description of the componentinstantiationref element.

L.6.5.1.3.3findby.

See section findby. for a description of the findby element.

L.6.6 externalports.

The optional externalports element is a child element of the softwareassembly element (see Figure L-117). The
externalports element is used to identify the visible ports for the software assembly. The ApplicationManager
getport() operation is used to access the assembly’s visible ports.

<!ELEMENT externalports

(port+

)>

dtc/2005-09-04

L.6.6 externalports.

498 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Figure L-117 – port Element Relationships

<!ELEMENT port

(description?

, (usesidentifier | providesidentifier |

 supportedidentifier)

, componentinstantiationref

)>

<!ELEMENT description (#PCDATA)>

port
<<DTDElement>>

description
<<DTDElement>> componentinstantiationref

refid : CDATA

<<DTDElementEMPTY>>

port_grp
<<DTDSequenceGroup>>

0..1
{1}

0..1

{3}

usesidentifier
<<DTDElement>>

providesidentifier
<<DTDElement>>

supportedidentifier
<<DTDElement>>

port_grp_grp
<<DTDChoiceGroup>>

{2}

dtc/2005-09-04

 L.7 Device Configuration Descriptor.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 499

L.7 Device Configuration Descriptor.
This section describes the XML elements of the Device Configuration Descriptor (DCD) XML file; the device-
configuration element (see Figure L-118). The DCD is based on the SAD (e.g., componentfiles, partitioning,
etc.) DTD. The intent of the DCD is to provide the means of describing the components that are initially started
on the DeviceManagerComponent node, how to obtain the DomainManagerComponent object reference, connec-
tions of services to components (ServiceComponent(s), DeviceManagerComponent), and the characteristics (file
system names, etc.) for a DeviceManagerComponent. The componentfiles and partitioning elements are option-
al; if not provided, that means no components are started up on the node, except for a DeviceManagerCompo-
nent. If the partitioning element is specified then a componentfiles element has to be specified also.

The deviceconfiguration element’s id attribute is a unique identifier within the domain for the device configura-
tion. The name attribute is the user-friendly name for the DeviceManagerComponent’s label attribute. The name
attribute is supplied when the id is not user-friendly such as a DCE UUID.

Figure L-118 – deviceconfiguration Element Relationships

<!ELEMENT deviceconfiguration

deviceconfiguration
id : ID
name : CDATA

<<DTDElement>>

description
<<DTDElement>>

devicemanagersoftpkg
<<DTDElement>>

componentfi les
<<DTDElement>>

partitioning
<<DTDElement>>

connections
<<DTDElement>>

domainmanager
<<DTDElement>>

filesystemnames
<<DTDElement>>

deviceconfiguration_grp
<<DTDSequenceGroup>>

0..1

{1}

0..1

{2}

0..1{3} 0..1 0..1
{4}

0..1 0..1
{5}

0..1

{6}

0..1

{7}

0..1

dtc/2005-09-04

L.7.1 description.

500 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

(description?

, devicemanagersoftpkg

, componentfiles?

, partitioning?

, connections?

, domainmanager

, filesystemnames?

)>

<!ATTLIST deviceconfiguration

id ID #REQUIRED

name CDATA #IMPLIED>

L.7.1 description.

The optional description element, of the deviceconfiguration element, may be used to provide information about
the device configuration.

<!ELEMENT description (#PCDATA)>

L.7.2 devicemanagersoftpkg.

The devicemanagersoftpkg element refers to the SPD for the DeviceManagerComponent that corresponds to this
DCD. The SPD file is referenced by a localfile element. The referenced file can be used to describe the Device-
ManagerComponent implementation and to specify the usesports for the services (Log(s), etc.) used by the De-
viceManagerComponent. See (section L.2.1.1.1) for description of the localfile element.

<!ELEMENT devicemanagersoftpkg

(localfile

)>

dtc/2005-09-04

 L.7.3 componentfiles.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 501

L.7.3 componentfiles.

The optional componentfiles element is used to reference deployment information for components that are started
up on the device. The componentfile element references a Software Package Descriptor (SPD). The SPD, for
example, can be used to describe ServiceComponents, DeviceManagerComponents, a DomainManagerCompo-
nent, a Naming Service, and File Services. See section L.6.2 for the definition of the componentfiles element.

L.7.4 partitioning.

The optional partitioning element consists of a set of componentplacement elements. A component instantiation
is captured inside a componentplacement element.

<!ELEMENT partitioning

(componentplacement

)*>

L.7.5 componentplacement.

The componentplacement element (see Figure L-119) is used to define a particular deployment of a component.
The componentfileref element identifies the component to be deployed. The componentinstantiation element
identifies the actual component created and its id attribute is a DCE UUID value with the format as specified in
section Software Package.. Multiple components of the same kind can be created within the same component-
placement element.

The optional deployondevice element indicates the device on which the componentinstantiation element is de-
ployed. The optional compositepartofdevice element indicates the device that the componentinstantiation ele-
ment is aggregated with to form an aggregate relationship. When the component is a logical Device, the
devicepkgfile element indicates the hardware device information for the logical Device.

dtc/2005-09-04

L.7.5 componentplacement.

502 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Figure L-119 – componentplacement Element Relationships

<!ELEMENT componentplacement

(componentfileref

, deployondevice?

, compositepartofdevice?

, devicepkgfile?

, componentinstantiation+

)>

componentplacement
<<DTDElement>>

componentfileref
refid : CDATA

<<DTDElementEMPTY>>

deployondevice
refid : CDATA

<<DTDElementEMPTY>>
compositepartofdevice

refid : CDATA

<<DTDElementEMPTY>>
devicepkgfile

type : CDATA

<<DTDElement>>

componentplacement_grp
<<DTDSequenceGroup>>

{1}

0..10..1
{2}

0..10..1
{3}

0..10..1
{4}

componentinstantiation
id : ID

<<DTDElement>>
1.. *1.. *

{5}

dtc/2005-09-04

 L.7.5 componentplacement.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 503

L.7.5.1 componentfileref.

The componentfileref element is used to reference a componentfile element within the componentfiles element.
The componentfileref element’s refid attribute corresponds to a componentfile element’s id attribute.

<!ELEMENT componentfileref EMPTY>

<!ATTLIST componentfileref

refid CDATA #REQUIRED>

L.7.5.1.1 deployondevice.

The deployondevice element is used to reference a componentinstantiation element on which this componentin-
stantiation is deployed.

<!ELEMENT deployondevice EMPTY>

<!ATTLIST deployondevice

refid CDATA #REQUIRED>

L.7.5.1.2 devicepkgfile.

The devicepkgfile element is used to refer to a device package file that contains the hardware device definition.

<!ELEMENT devicepkgfile

(localfile

)>

<!ATTLIST devicepkgfile

type CDATA #IMPLIED>

L.7.5.1.2.1localfile.

See L.2.1.1.1 for a definition of the localfile element.

dtc/2005-09-04

L.7.5 componentplacement.

504 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.7.5.1.3 compositepartofdevice.

The compositepartofdevice element is used when an aggregate relationship exists to reference the componentin-
stantiation element that describes the whole Device for which this Device's componentinstantiation element de-
scribes a part of the aggregate Device.

<!ELEMENT compositepartofdevice EMPTY>

<!ATTLIST compositepartofdevice

refid CDATA #REQUIRED>

L.7.5.1.4 componentinstantiation.

The componentinstantiation element (see Figure L-120) is intended to describe a particular instantiation of a
component relative to a componentplacement element. The componentinstantiation‘s id attribute is a DCE UUID
that uniquely identifier the component. The id is a DCE UUID value as specified in section Software Package..
The componentinstantiation contains a usagename element that is intended for an applicable name for the com-
ponent. The optional componentproperties element (see Figure L-121) is a list of property values that are used in
configuring the component. D.6.3.1.2 defines the property list for the componentinstantiation element, which
contains initial properties values. For a component service type (e.g,, Log), the usagename element needs to be
unique for each service type.

Figure L-120 – componentinstantiation Element Relationships

<!ELEMENT componentinstantiation

componentins tant iation
id : ID

<<DTDElement>>

usagename
<<DTDElement>>

componentproperties
<<DTDElement>>

componentinstantiation_grp
<<DTDSequenceGroup>>

0..1{1} 0..1 0..1{2} 0..1

dtc/2005-09-04

 L.7.5 componentplacement.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 505

(usagename?

 ,componentproperties?

)>

<!ATTLIST componentinstantiation

id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

Figure L-121 – componentproperties Element Relationships

<!ELEMENT componentproperties

(simpleref

| simplesequenceref

componentproperties
<<DTDElement>>

simpleref
refid : CDATA
value : CDATA

<<DTDElementEMPTY>>

simplesequenceref
refid : CDATA

<<DTDElement>>

structref
refid : CDATA

<<DTDElement>>

componentproperties_grp
<<DTDChoiceGroup>>

1..*1..*

structsequenceref
refid : CDATA

<<DTDElement>>

dtc/2005-09-04

L.7.5 componentplacement.

506 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

| structref

| structsequenceref

)+ >

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

refid CDATA #REQUIRED

value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

(values

)>

<!ATTLIST simplesequenceref

refid CDATA #REQUIRED>

<!ELEMENT structref

(simpleref+

)>

<!ATTLIST structref

refid CDATA #REQUIRED>

<!ELEMENT structsequenceref

(structvalue+

)>

<!ATTLIST structsequenceref

refid CDATA #REQUIRED>

dtc/2005-09-04

 L.7.6 connections.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 507

<!ELEMENT structvalue

(simpleref+

)>

<!ELEMENT values

(value+

)>

<!ELEMENT value (#PCDATA)>

L.7.6 connections.

The connections element in the DCD is the same as the connections element in the SAD in section D.6.5. The
connections element in the DCD is used to indicate the services (Log, etc…) instances that are used by the De-
viceManagerComponent and ServiceComponent(s) in the DCD. The DomainManagerComponent will parse
the connections element and make the connections when the DeviceManagerComponent registers with the Do-
mainManagerComponent. To establish connections to a DeviceManagerComponent, the DCD’s deviceconfigu-
ration element’s id attribute value is used for the SAD’s usesport element’s componentinstantiationref element’s
refid attribute value.

L.7.7 domainmanager

The domainmanager element (see Figure L-122) indicates how to obtain the DomainManagerComponent object
reference. See sections L.6.5.1.1.3.1 for description of the namingservice.

dtc/2005-09-04

L.7.8 filesystemnames.

508 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Figure L-122 – domainmanager Element Relationships

<!ELEMENT domainmanager

(namingservice)>)>

<!ELEMENT namingservice EMPTY>

<!ATTLIST namingservice

name CDATA #REQUIRED>

L.7.8 filesystemnames.

The optional filesystemnames element indicates the mounted file system names for DeviceManagerComponent's
FileManager.

<!ELEMENT filesystemnames

(filesystemname+

)>

domainmanager
<<DTDElement>>

namingservice
name : CDATA

<<DTDElementEMPTY>>

domainmanager_grp
<<DTDSequenceGroup>>

dtc/2005-09-04

 L.7.8 filesystemnames.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 509

<!ELEMENT filesystemname EMPTY>

<!ATTLIST filesystemname

mountname CDATA #REQUIRED

deviceid CDATA #REQUIRED>

dtc/2005-09-04

L.8 DomainManager Configuration Descriptor.

510 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

L.8 DomainManager Configuration Descriptor.
This section describes the XML elements of the DomainManagerComponent Configuration Descriptor (DMD)
XML file; the domainmanagerconfiguration element (see Figure L-123). The domainmanagerconfiguration ele-
ment id attribute is a DCE UUID that uniquely identifies the DomainManagerComponent. The id is a DCE
UUID value as specified in section Software Package..

Figure L-123 – domainmanagerconfiguration Element Relationships

<!ELEMENT domainmanagerconfiguration

(description?

, domainmanagersoftpkg

, services?

)>

<!ATTLIST domainmanagerconfiguration

id ID #required

name #CDATA #required>

domainmanagerconfiguration
id : ID
name : CDATA

<<DTDElement>>

description
<<DTDElement>>

domainmanagersoftpkg
<<DTDElement>> services

<<DTDElement>>

domainmanagerconfiguration_grp
<<DTDSequenceGroup>>

0..1

{1}

0..1
{2}

{3}

dtc/2005-09-04

 L.8.1 description.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 511

L.8.1 description.

The optional description element of the DMD may be used to provide information about the configuration.

<!ELEMENT description (#PCDATA)>

L.8.2 domainmanagersoftpkg.

The domainmanagersoftpkg element refers to the SPD for the DomainManagerComponent. The SPD file is ref-
erenced by a localfile element. This SPD can be used to describe the DomainManagerComponent implementa-
tion and to specify the usesports for the services (Log(s), etc…) used by the DomainManagerComponent. See
section L.2.1.1.1 for description of the localfile element.

<!ELEMENT domainmanagersoftpkg

(localfile

) >

L.8.3 services.

The services element in the DMD is used by the DomainManagerComponent to determine which service (Log,
etc.) instances to use; it makes use of the service element (see Figure L-124). See section L.6.5.1.1.3 for a de-
scription of the findby element. See section L.6.5.1.1.1 for a description of the usesidentifier element.

<!ELEMENT services
(service+
) >

dtc/2005-09-04

L.8.3 services.

512 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

Figure L-124 – service Element Relationships

<!ELEMENT service
(usesidentifier
, findby
)>

service
<<DTDElement>>

usesidentifier
<<DTDElement>>

findby
<<DTDElement>>

service_grp
<<DTDSequenceGroup>>

{1} {2}

dtc/2005-09-04

 L.9 Document Type Definitions.

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 513

L.9 Document Type Definitions.

L.9.1 Software Package Descriptor DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT softpkg

 (title?

, author+

, description?

, propertyfile?

, descriptor?

, (implementation | assemblyimplementation)+

 , usesdevice*

)>

<!ATTLIST softpkg

id ID #REQUIRED

name CDATA #REQUIRED

type CDATA #IMPLIED

version CDATA #IMPLIED >

<!ELEMENT propertyfile

(localfile

)>

<!ATTLIST propertyfile

type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

dtc/2005-09-04

L.9.1 Software Package Descriptor DTD

514 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ATTLIST localfile

name CDATA #REQUIRED>

<!ELEMENT assemblyimplementation

(localfile

)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author

(name*

, company?

, webpage?

)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT webpage (#PCDATA)>

<!ELEMENT descriptor

(localfile

)>

<!ATTLIST descriptor

name CDATA #IMPLIED>

<!ELEMENT implementation

dtc/2005-09-04

 L.9.1 Software Package Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 515

(description?

, propertyfile?

, code

, compiler?

, programminglanguage?

, humanlanguage?

, runtime?

, (os

 | processor

 | dependency

)+

, usesdevice*

)>

<!ATTLIST implementation

id ID #REQUIRED

aepcompliance (aep_compliant | min_aep_compliant | aep_non_compliant)
"aep_compliant">

<!ELEMENT description (#PCDATA)>

<!ELEMENT code

(localfile

, entrypoint?

, stacksize?

, priority?

)>

<!ATTLIST code

type CDATA #IMPLIED>

dtc/2005-09-04

L.9.1 Software Package Descriptor DTD

516 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT entrypoint (#PCDATA)>

<!ELEMENT stacksize (#PCDATA)>

<!ELEMENT priority (#PCDATA)>

<!ELEMENT compiler EMPTY>

<!ATTLIST compiler

name CDATA #REQUIRED

version CDATA #IMPLIED>

<!ELEMENT programminglanguage EMPTY>

<!ATTLIST programminglanguage

name CDATA #REQUIRED

version CDATA #IMPLIED>

<!ELEMENT humanlanguage EMPTY>

<!ATTLIST humanlanguage

name CDATA #REQUIRED>

<!ELEMENT os EMPTY>

<!ATTLIST os

name CDATA #REQUIRED

versionCDATA #IMPLIED>

dtc/2005-09-04

 L.9.1 Software Package Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 517

<!ELEMENT processor EMPTY>

<!ATTLIST processor

name CDATA #REQUIRED>

<!ELEMENT dependency

 (softpkgref

 | propertyref

 | propertyvaluesref

)>

 <!ATTLIST dependency

 type CDATA #REQUIRED>

<!ELEMENT softpkgref

 (localfile

 , implref?

)>

<!ELEMENT implref EMPTY>

<!ATTLIST implref

refid CDATA #REQUIRED>

<!ELEMENT propertyref EMPTY>

<!ATTLIST propertyref

 refid CDATA #REQUIRED

 value CDATA #REQUIRED>

dtc/2005-09-04

L.9.2 Software Component Descriptor DTD

518 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT propertyvaluesref

 (refid

 ,value+)>

 <!ELEMENT refid (#PCDATA)>

 <!ELEMENT value (#PCDATA)>

<!ELEMENT runtime EMPTY>

<!ATTLIST runtime

name CDATA #REQUIRED

version CDATA #IMPLIED>

<!ELEMENT usesdevice
 ((propertyref
 | propertyvaluesref)+
)>
 <!ATTLIST usesdevice
 id ID #REQUIRED

 type CDATA #REQUIRED>

L.9.2 Software Component Descriptor DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT softwarecomponent

(corbaversion

, componentrepid

, componenttype

, componentfeatures

, interfaces

, propertyfile?

)>

dtc/2005-09-04

 L.9.2 Software Component Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 519

<!ELEMENT corbaversion (#PCDATA)>

<!ELEMENT componentrepid EMPTY>

<!ATTLIST componentrepid

repid CDATA #REQUIRED>

<!ELEMENT componenttype (#PCDATA)>

<!ELEMENT componentfeatures

(supportsinterface*

, ports

)>

<!ELEMENT supportsinterface EMPTY>

<!ATTLIST supportsinterface

repid CDATA #REQUIRED

 supportsname CDATA #REQUIRED>

<!ELEMENT ports

(provides

| uses

)*>

<!ELEMENT provides

(porttype*)>

dtc/2005-09-04

L.9.2 Software Component Descriptor DTD

520 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ATTLIST provides

repid CDATA #REQUIRED

providesname CDATA #REQUIRED>

<!ELEMENT uses

(porttype*)>

<!ATTLIST uses

repid CDATA #REQUIRED

usesnameCDATA #REQUIRED>

<!ELEMENT porttype EMPTY>

<!ATTLIST porttype

 type(data| control|

 responses| test) #REQUIRED>

<!ELEMENT interfaces

(interface+

)>

<!ELEMENT interface

(inheritsinterface*)>

<!ATTLIST interface

repid CDATA #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>

dtc/2005-09-04

 L.9.3 Device Package Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 521

<!ATTLIST inheritsinterface

repid CDATA#REQUIRED>

<!ELEMENT propertyfile

(localfile

)>

<!ATTLIST propertyfile

type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA #REQUIRED>

L.9.3 Device Package Descriptor DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT devicepkg

 (title?

 , author+

 , description?

 , hwdeviceregistration

)>

<!ATTLIST devicepkg

 id ID #REQUIRED

 name CDATA #REQUIRED

version CDATA #IMPLIED>

<!ELEMENT title (#PCDATA)>

dtc/2005-09-04

L.9.3 Device Package Descriptor DTD

522 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT author

 (name*

 , company?

 , webpage?

)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT webpage (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT hwdeviceregistration

 (propertyfile?

 , description

 , manufacturer

 , modelnumber

 , deviceclass

 , childhwdevice*

)>

<!ATTLIST hwdeviceregistration

 id ID #REQUIRED

 name CDATA #REQUIRED

dtc/2005-09-04

 L.9.3 Device Package Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 523

 version CDATA #IMPLIED>

<!ELEMENT propertyfile

(localfile

)>

<!ATTLIST propertyfile

type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

<!ELEMENT manufacturer (#PCDATA)>

<!ELEMENT modelnumber (#PCDATA)>

<!ELEMENT deviceclass

 (class+

)>

<!ELEMENT class (#PCDATA)>

<!ELEMENT childhwdevice

 (hwdeviceregistration

 |devicepkgref

)>

dtc/2005-09-04

L.9.4 Properties Descriptor DTD

524 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT devicepkgref

 (localfile

)>

<!ATTLIST devicepkgref

 type CDATA #IMPLIED>

L.9.4 Properties Descriptor DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT properties

 (description?

 , (simple

| simplesequence

 | test

 | struct

 | structsequence

)+

)>

<!ELEMENT simple

(description?

, value?

, units?

, range?

, enumerations?

, kind*

dtc/2005-09-04

 L.9.4 Properties Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 525

, action?

)>

<!ATTLIST simple

id ID #REQUIRED

type(boolean | char | double | float

 | short | long | longlong | objref | octet

 | string | ulong |ushort | ulonglong |longdoudble | wchar | wstring
) #REQUIRED

integerID CDATA #IMPLIED

 name CDATA #IMPLIED

mode(readonly| readwrite | writeonly)"readwrite">

<!ELEMENT description (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT units (#PCDATA)>

<!ELEMENT range EMPTY>

<!ATTLIST range

min CDATA #REQUIRED

max CDATA #REQUIRED>

<!ELEMENT enumerations

(enumeration+

)>

dtc/2005-09-04

L.9.4 Properties Descriptor DTD

526 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT enumeration EMPTY>

<!ATTLIST enumeration

label CDATA #REQUIRED

value CDATA #IMPLIED>

<!ELEMENT kind EMPTY>

<!ATTLIST kind

kindtype(allocation | configure | execparam | factoryparam)

"configure">

<!ELEMENT action EMPTY>

<!ATTLIST action

type CDATA #REQUIRED>

<!ELEMENT simplesequence

(description?

, values?

, units?

, range?

, kind*

, action?

)>

<!ATTLIST simplesequence

id ID #REQUIRED

type (boolean | char | double | float

dtc/2005-09-04

 L.9.4 Properties Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 527

 | short | long | longlong | objref | octet

 | string | ulong |ushort | ulonglong |longdoudble | wchar | wstring
) #REQUIRED

integerID CDATA #IMPLIED

 name CDATA #IMPLIED

mode(readonly | readwrite | writeonly)"readwrite">

<!ELEMENT values

(value+

)>

<!ELEMENT test

 (description

 , inputvalue?

, resultvalue

)>

<!ATTLIST test

id CDATA #REQUIRED

integerID CDATA #IMPLIED>

<!ELEMENT inputvalue

(simple+

)>

<!ELEMENT resultvalue

(simple+

dtc/2005-09-04

L.9.4 Properties Descriptor DTD

528 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

)>

<!ELEMENT struct

(description?

, simple+

, configurationkind?

, action?

)>

<!ATTLIST struct

id ID #REQUIRED

integerID CDATA #IMPLIED

 name CDATA #IMPLIED

 mode(readonly | readwrite | writeonly) "readwrite">

<!ELEMENT configurationkind EMPTY>

<!ATTLIST configurationkind

kindtype(configure | factoryparam | allocation)"configure">

<!ELEMENT structsequence

(description?

, structvalue+

, configurationkind?

, action?

)>

<!ATTLIST structsequence

id ID #REQUIRED

dtc/2005-09-04

 L.9.5 Software Assembly Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 529

structrefid CDATA #REQUIRED

integerID CDATA #IMPLIED

 name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT structvalue

(simpleref+

)>

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

refid CDATA #REQUIRED

value CDATA #REQUIRED>

L.9.5 Software Assembly Descriptor DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT softwareassembly

(description?

, componentfiles

, partitioning

, assemblycontroller

, connections?

, externalports?

)>

<!ATTLIST softwareassembly

dtc/2005-09-04

L.9.5 Software Assembly Descriptor DTD

530 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

id ID #REQUIRED

name CDATA #IMPLIED

version CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT componentfiles

(componentfile+

)>

<!ELEMENT componentfile

(localfile

)>

<!ATTLIST componentfile

id ID #REQUIRED

type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA #REQUIRED>

<!ELEMENT partitioning

 (componentplacement

| hostcollocation

)+>

<!ELEMENT componentplacement

dtc/2005-09-04

 L.9.5 Software Assembly Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 531

(componentfileref

, componentinstantiation+

)>

<!ELEMENT componentfileref EMPTY>

<!ATTLIST componentfileref

refid CDATA #REQUIRED>

<!ELEMENT componentinstantiation

(usagename?

, componentproperties?

, findcomponent?

)>

<!ATTLIST componentinstantiation

id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

<!ELEMENT componentproperties

(simpleref

| simplesequenceref

| structref

| structsequenceref

)+ >

<!ELEMENT findcomponent

dtc/2005-09-04

L.9.5 Software Assembly Descriptor DTD

532 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

(componentresourcefactoryref

| namingservice

)>

<!ELEMENT componentresourcefactoryref

(resourcefactoryproperties?

)>

<!ATTLIST componentresourcefactoryref

refid CDATA #REQUIRED>

<!ELEMENT resourcefactoryproperties

(simpleref

| simplesequenceref

| structref

| structsequenceref

)+ >

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

refid CDATA #REQUIRED

value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

(values

)>

<!ATTLIST simplesequenceref

dtc/2005-09-04

 L.9.5 Software Assembly Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 533

refid CDATA #REQUIRED>

<!ELEMENT structref

(simpleref+

)>

<!ATTLIST structref

refid CDATA #REQUIRED>

<!ELEMENT structsequenceref

(structvalue+

)>

<!ATTLIST structsequenceref

refid CDATA #REQUIRED>

<!ELEMENT structvalue

(simpleref+

)>

<!ELEMENT values

(value+

)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT hostcollocation

(componentplacement

dtc/2005-09-04

L.9.5 Software Assembly Descriptor DTD

534 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

)+>

<!ATTLIST hostcollocation

id ID #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT assemblycontroller

(componentinstantiationref

)>

<!ELEMENT connections

 (connectinterface*

)>

<!ELEMENT connectinterface

(usesport

, (providesport

 | componentsupportedinterface

 | findby

)

)>

<!ATTLIST connectinterface

id ID #IMPLIED>

<!ELEMENT usesport

(usesidentifier

, (componentinstantiationref

dtc/2005-09-04

 L.9.5 Software Assembly Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 535

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby

)

)>

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT componentinstantiationref EMPTY>

<!ATTLIST componentinstantiationref

refid CDATA #REQUIRED>

<!ELEMENT findby

(namingservice

| domainfinder

)>

<!ELEMENT namingservice EMPTY>

<!ATTLIST namingservice

name CDATA #REQUIRED>

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

type CDATA #REQUIRED

name CDATA #IMPLIED>

<!ELEMENT devicethatloadedthiscomponentref EMPTY>

<!ATTLIST devicethatloadedthiscomponentref

refid CDATA #REQUIRED>

dtc/2005-09-04

L.9.5 Software Assembly Descriptor DTD

536 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT deviceusedbythiscomponentref EMPTY>

<!ATTLIST deviceusedbythiscomponentref

refid CDATA #REQUIRED

usesrefid CDATA #REQUIRED>

<!ELEMENT providesport

(providesidentifier

, (componentinstantiationref

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby

)

)>

<!ELEMENT providesidentifier (#PCDATA)>

<!ELEMENT componentsupportedinterface

(supportedidentifier

, (componentinstantiationref

 | findby

)

)>

<!ELEMENT supportedidentifier (#PCDATA)>

<!ELEMENT externalports

(port+

)>

<!ELEMENT port

dtc/2005-09-04

 L.9.6 Device Configuration Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 537

(description?

, (usesidentifier | providesidentifier | supportedidentifier)

, componentinstantiationref

)>

L.9.6 Device Configuration Descriptor DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT deviceconfiguration

(description?

, devicemanagersoftpkg

, componentfiles?

, partitioning?

, connections?

, domainmanager

, filesystemnames?

)>

<!ATTLIST deviceconfiguration

id ID #REQUIRED

name CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT devicemanagersoftpkg

(localfile

)>

<!ELEMENT componentfiles

dtc/2005-09-04

L.9.6 Device Configuration Descriptor DTD

538 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

(componentfile+

)>

<!ELEMENT componentfile

(localfile

)>

<!ATTLIST componentfile

id ID #REQUIRED

type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

name CDATA #REQUIRED>

<!ELEMENT partitioning

 (componentplacement

)*>

<!ELEMENT componentplacement

(componentfileref

, deployondevice?

, compositepartofdevice?

, devicepkgfile?

, componentinstantiation+

)>

dtc/2005-09-04

 L.9.6 Device Configuration Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 539

<!ELEMENT componentfileref EMPTY>

<!ATTLIST componentfileref

refid CDATA #REQUIRED>

<!ELEMENT deployondevice EMPTY>

<!ATTLIST deployondevice

refid CDATA #REQUIRED>

<!ELEMENT compositepartofdevice EMPTY>

<!ATTLIST compositepartofdevice

refid CDATA #REQUIRED>

<!ELEMENT devicepkgfile

(localfile

)>

<!ATTLIST devicepkgfile

type CDATA #IMPLIED>

<!ELEMENT componentinstantiation

(usagename?

 ,componentproperties?

)>

<!ATTLIST componentinstantiation

id ID #REQUIRED>

dtc/2005-09-04

L.9.6 Device Configuration Descriptor DTD

540 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT usagename (#PCDATA)>

<!ELEMENT componentproperties

(simpleref

| simplesequenceref

| structref

| structsequenceref

)+ >

<!ELEMENT simpleref EMPTY>

<!ATTLIST simpleref

refid CDATA #REQUIRED

value CDATA #REQUIRED>

<!ELEMENT simplesequenceref

(values

)>

<!ATTLIST simplesequenceref

refid CDATA #REQUIRED>

<!ELEMENT structref

(simpleref+

)>

<!ATTLIST structref

refid CDATA #REQUIRED>

dtc/2005-09-04

 L.9.6 Device Configuration Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 541

<!ELEMENT structsequenceref

(structvalue+

)>

<!ATTLIST structsequenceref

refid CDATA #REQUIRED>

<!ELEMENT structvalue

(simpleref+

)>

<!ELEMENT values

(value+

)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT connections

 (connectinterface*

)>

<!ELEMENT connectinterface

(usesport

, (providesport

 | componentsupportedinterface

 | findby

)

dtc/2005-09-04

L.9.6 Device Configuration Descriptor DTD

542 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

)>

<!ATTLIST connectinterface

id ID #IMPLIED>

<!ELEMENT usesport

(usesidentifier

, (componentinstantiationref

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby

)

)>

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT componentinstantiationref EMPTY>

<!ATTLIST componentinstantiationref

refid CDATA #REQUIRED>

<!ELEMENT devicethatloadedthiscomponentref EMPTY>

<!ATTLIST devicethatloadedthiscomponentref

 refid CDATA #REQUIRED>

<!ELEMENT deviceusedbythiscomponentref EMPTY>

<!ATTLIST deviceusedbythiscomponentref

 refid CDATA #REQUIRED

dtc/2005-09-04

 L.9.6 Device Configuration Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 543

 usesrefid CDATA #REQUIRED>

<!ELEMENT providesport

(providesidentifier

, (componentinstantiationref

 | devicethatloadedthiscomponentref

 | deviceusedbythiscomponentref

 | findby

)

)>

<!ELEMENT providesidentifier (#PCDATA)>

<!ELEMENT componentsupportedinterface

(supportedidentifier

, (componentinstantiationref

 | findby

)

)>

<!ELEMENT supportedidentifier (#PCDATA)>

<!ELEMENT domainmanager

(namingservice)>

<!ELEMENT namingservice EMPTY>

dtc/2005-09-04

L.9.7 Domain Configuration Descriptor DTD

544 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ATTLIST namingservice

name CDATA #REQUIRED>

<!ELEMENT findby

(namingservice

| domainfinder

)>

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

type CDATA #REQUIRED

name CDATA #IMPLIED>

<!ELEMENT filesystemnames

(filesystemname+

)>

<!ELEMENT filesystemname EMPTY>

<!ATTLIST filesystemname

mountname CDATA #REQUIRED

deviceid CDATA #REQUIRED>

L.9.7 Domain Configuration Descriptor DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT domainmanagerconfiguration

 (description?

dtc/2005-09-04

 L.9.7 Domain Configuration Descriptor DTD

PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars) 545

 , domainmanagersoftpkg

 , services?

)>

<!ATTLIST domainmanagerconfiguration

id ID #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT domainmanagersoftpkg

(localfile

)>

<!ELEMENT localfile EMPTY>

<!ATTLIST localfile

 name CDATA #REQUIRED>

<!ELEMENT services

(service+

)>

<!ELEMENT service

(usesidentifier

, findby

)>

dtc/2005-09-04

L.9.7 Domain Configuration Descriptor DTD

546 PIM and PSM for Software Radio Components
2nd FTF Convenience Document (Change Bars)

<!ELEMENT usesidentifier (#PCDATA)>

<!ELEMENT findby

(namingservice

| domainfinder

)>

<!ELEMENT namingservice EMPTY>

<!ATTLIST namingservice

name CDATA #REQUIRED>

<!ELEMENT domainfinder EMPTY>

<!ATTLIST domainfinder

type CDATA #REQUIRED

name CDATA #IMPLIED>

