

Date: March 2007

Component Document Type Definitions Specification, v1.0

OMG Available Specification
formal/07-03-03

The PIM and PSM for Software Radio Components Specification (formal/07-03-01) is physically partitioned into 5
volumes:

Communication Channel and Equipment (formal/07-03-02)
Component Document Type Definitions (formal/07-03-03)
Component Framework (formal/07-03-04)
Common and Data Link Layer Facilities (formal/07-03-05)
POSIX Profiles (formal/07-03-06)

Copyright © 2005, BAE Systems
Copyright © 2005, The Boeing Company
Copyright © 2005, David Frankel Consulting
Copyright © 2005, École de technologie supérieure
Copyright © 2005, ISR Technologies, Inc.
Copyright © 2005, ITT Aerospace/Communications Division
Copyright © 2005, L-3 Communications Corporation
Copyright © 2005, Mercury Computer Systems, Inc.
Copyright © 2005, The MITRE Corporation
Copyright © 2005, Northrop Grumman
Copyright © 2007, Object Management Group
Copyright © 2006, PrismTech
Copyright © 2005, Raytheon Corporation
Copyright © 2005, Rockwell Collins
Copyright © 2005, SCA Technica, Inc.
Copyright © 2005, THALES
Copyright © 2005, Zeligsoft, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its

attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ and OMG Interface Definition Language (IDL)™ are trademarks of the Object
Management Group. All other products or company names mentioned are used for identification purposes only, and may be
trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this

specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ..iii
1 Scope .. 1
2 Conformance .. 1
3 References ... 1

3.1 Normative References ...1
3.2 Non-normative References ..1

 3.2.1 Domain XML Profile .. 1
 3.2.1.1 Domain XML Profile Files ..1

4 Terms and Definitions ... 1
5 Symbols and abbreviated terms 3
6 Additional Information ... 3

6.1 Changes to Adopted OMG Specifications ..3
6.2 Acknowledgements ..3

7 Document Type Definitions ... 5
7.1 Deployment Overview ..5
7.2 Software Package Descriptor ...6

 7.2.1 Software Package.. 6
 7.2.1.1 propertyfile ... 8
 7.2.1.2 title ...8
 7.2.1.3 author .. 9
 7.2.1.4 description ... 9
 7.2.1.5 descriptor ...9
 7.2.1.6 implementation .. 10
 7.2.1.7 compiler ... 12
 7.2.1.8 programminglanguage .. 12
 7.2.1.9 usesdevice ..16
 7.2.1.10 assemblyimplementation ... 16

7.3 Device Package Descriptor .. 17
 7.3.1 Device Package .. 17

 7.3.1.1 title ... 17
 7.3.1.2 author .. 18
 7.3.1.3 description ... 18
 7.3.1.4 hwdeviceregistration ..18

7.4 Properties Descriptor ... 21
 7.4.1 properties.. 21
Component Document Type Definitions Specification, v1.0 i

 7.4.1.1 simple ..21
 7.4.1.2 test ...27
 7.4.1.3 struct ..28
 7.4.1.4 structsequence ..29

7.5 Software Component Descriptor ..30
 7.5.1 softwarecomponent ... 30

 7.5.1.1 corbaversion ..31
 7.5.1.2 componentrepid ...31
 7.5.1.3 componenttype ..31
 7.5.1.4 componentfeatures ..32
 7.5.1.5 interfaces ...33
 7.5.1.6 propertyfile ...34

7.6 Software Assembly Descriptor ...34
 7.6.1 description ... 35
 7.6.2 componentfiles .. 35

 7.6.2.1 componentfile ..36
 7.6.3 partitioning .. 36

 7.6.3.1 componentplacement ..37
 7.6.3.2 hostcollocation ...41
 7.6.3.3 processcollocation ...41

 7.6.4 assemblycontroller .. 41
 7.6.5 connections ... 42

 7.6.5.1 connectinterface .. 42
 7.6.6 externalports ... 48

7.7 Device Configuration Descriptor ...49
 7.7.1 description ... 50
 7.7.2 devicemanagersoftpkg .. 50
 7.7.3 componentfiles .. 50
 7.7.4 partitioning .. 50
 7.7.5 componentplacement .. 50

 7.7.5.1 componentfileref .. 51
 7.7.6 connections ... 54
 7.7.7 domainmanager .. 54
 7.7.8 filesystemnames ... 54

7.8 DomainManager Configuration Descriptor ...55
 7.8.1 description ... 55
 7.8.2 domainmanagersoftpkg .. 55
 7.8.3 services ... 56

A Software Radio Reference Sheet 57
Index.. 59
ii Component Document Type Definitions Specification, v1.0

Preface

About the Object Management Group

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).
Component Document Type Definitions Specification, v1.0 v

Platform Specific Model and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi Component Document Type Definitions Specification, v1.0

1 Scope

This specification defines the content of a standard set of Data Type Definition (DTD) files for applications, components,
and domain and device management. The complete DTD set is contained in Section 7 Document Type Definitions and in
reference 3.2.1.1. XML files that are compliant with these DTD files will contain information about the service
components to be started up when a platform is power on and information for deploying installed applications. Examples
of the kind of information that could be found in a compliant XML files include things such as:

• A component’s properties, ports, interfaces, implementations

• An Application’s assembly of components and their interconnections

• A Node’s Service Components

2 Conformance

Conformance is at the level of usage. An XML file based upon one of the DTDs in this specification conforms if the
XML file is well formed, syntax and semantically correct.

3 References

3.1 Normative References

XML: Extensible Markup Language (XML) 1.0 (Second Edition)
W3C Recommendation, 6 October 2000
[http://www.w3.org/]

3.2 Non-normative References

3.2.1 Domain XML Profile

3.2.1.1 Domain XML Profile Files

Domain DTDs XML Files
Formal OMG document number: dtc/2006-04-13
The Object Management Group, December 2006
[http://www.omg.org]

4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.
Component Document Type Definitions Specification, v1.0 1

Common Object Request Broker Architecture (CORBA)

An OMG distributed computing platform specification that is independent of implementation languages.

Component

A component can always be considered an autonomous unit within a system or subsystem. It has one or more ports, and
its internals are hidden and inaccessible other than as provided by its interfaces. A component represents a modular part
of a system that encapsulates its contents and whose manifestation is replaceable within its environment. A component
exposes a set of ports that define the component specification in terms of provided and required interfaces. As such, a
component serves as a type, whose conformance is defined by these provided and required interfaces (encompassing both
their static as well as dynamic semantics).

Interface Definition Language (IDL)

An OMG and ISO standard language for specifying interfaces and associated data structures.

Platform

A set of subsystems/technologies that provide a coherent set of functionality through interfaces and specified usage
patterns that any subsystem that depends on the platform can use without concern for the details of how the functionality
provided by the platform is implemented.

Request for Proposal (RFP)

A document requesting OMG members to submit proposals to the OMG's Technology Committee. Such proposals must
be received by a certain deadline and are evaluated by the issuing task force.

Unified Modeling Language (UML)

An OMG standard language for specifying the structure and behavior of systems. The standard defines an abstract syntax
and a graphical concrete syntax.
2 Component Document Type Definitions Specification, v1.0

5 Symbols and abbreviated terms

6 Additional Information

6.1 Changes to Adopted OMG Specifications
The specifications contained in this document require no changes to adopted OMG specifications.

6.2 Acknowledgements
The following organizations (listed in alphabetical order) contributed to this specification:

• BAE Systems

Abbreviation Definition

CF Component Framework

CORBA Common Object Request Broker Architecture

DCD Device Configuration Descriptor

DMD DomainManagerComponent Configuration Descriptor

DPD Device Package Descriptor

DSP Digital Signal Processor

DTD Document Type Definition

FPGA Field Programmable Gate Array

I/O Input/Output

ID Identification, Identifier

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IOR Interoperable Object Reference

ISO International Standards Organization

N/A Not Applicable

OMG Object Management Group

ORB Object Request Broker

OS Operating System

SCD Software Component Descriptor

UML Unified Modeling Language

UUID Universally Unique Identifier

XML eXtensible Markup Language
Component Document Type Definitions Specification, v1.0 3

• The Boeing Company
• Blue Collar Objects
• Carleton University
• Communications Research Center Canada
• David Frankel Consulting
• École de Technologie Supérieure
• General Dynamics Decision Systems
• Harris
• ISR Technologies
• ITT Aerospace/Communications Division
• L-3 Communications Corporation
• Mercury Computer Systems
• The MITRE Corporation
• Mobile Smarts
• Northrup Grumman
• PrismTech
• Raytheon Corporation
• Rockwell Collins
• SCA Technica
• Space Coast Communication Systems
• Spectrum Signal Processing
• THALES
• Virginia Tech University
• Zeligsoft
• 88solutions
4 Component Document Type Definitions Specification, v1.0

7 Document Type Definitions

The specification provides architectural specifications for the deployment of communications software into a device. The
intent of a device is to provide a re-configurable platform, which can host software components written by various
vendors to support user functional services. The specification requires portable software components to provide common
information called a domain profile. The intent of this specification is to clearly define to the component developers the
requirements of information and format for the delivery of this information. The domain management functions use the
component deployment information expressed in the Domain Profile. The information is used to start, initialize, and
maintain the applications that are installed into a compliant system.

This specification defines the XML Document Type Definition (DTD) set for use in deploying components. The complete
DTD set is in reference 3.2.1.1 Domain XML Profile Files.

7.1 Deployment Overview
The hardware devices and software components that make up a platform are described by a set of XML descriptor files
that are collectively referred to as a Domain Profile. Descriptor files are Software Package, Device Package, Properties,
Software Component, Software Assembly, Device Configuration, and DomainManagerComponent Configuration. A
Software Profile is either a Software Assembly Descriptor (for applications) or a Software Package Descriptor (for all
other software components and hardware devices). These descriptor files describe the identity, capabilities, properties, and
inter-dependencies of the hardware devices and software components that make up the system. All of the descriptive data
about a system is expressed in the XML vocabulary. This document includes a UML diagram of each complex XML
element defined. That is, a UML diagram is provided for each element that makes use of more than one type of XML
element as a part of its definition. The UML diagram precedes the XML definition that it represents.

Figure 7.1 depicts the relationships between the descriptor files that are used to describe a system’s hardware and
software assets. The XML vocabulary within each of these files describes a distinct aspect of the hardware and software
assets.

A Software Assembly Descriptor file describes how multiple components of an assembly, i.e., an application, are
deployed and interconnected. A Software Assembly Descriptor file is associated with one or more Software Package
Descriptor files. Each component of the Software Assembly Descriptor is described in a Software Package Descriptor file.
Information about the interfaces that a component publishes and/or consumes is contained in a Software Component
Descriptor file. Each Software Component Descriptor file is associated with a Software Package Descriptor file that
describes one or more implementations of the software component. Software properties are described in a Properties
Descriptor file that may be applicable to all implementations of the component, i.e., associated at the Software Package
Descriptor level or applicable to a single implementation of the component.

Two types of files, a Device Package Descriptor, and a Device Configuration Descriptor, describe hardware devices and
are known collectively as a Device Profile. The hardware device is described by the Device Package Descriptor. The
logical device is described by the Software Package Descriptor. The Device Configuration Descriptor contains the
associations between hardware devices and logical devices. A Device Package Descriptor file identifies the class of the
device. Property files, associated with Device Package Descriptors, contain information about the properties of the
hardware device being deployed such as serial number, processor type, and allocation capacities.

A Device Configuration Descriptor file describes the components that are initially started up on the device and how to
find the DomainManagerComponent. Each component of the Device Configuration Descriptor is described in a Software
Package Descriptor file.
Component Document Type Definitions Specification, v1.0 5

The DomainManagerComponent Configuration Descriptor file contains a reference to the DomainManagerComponent
Software Package Descriptor file.

Figure 7.1 - Relationships Between DTD XML File Types

7.2 Software Package Descriptor
The Software Package Descriptor is used at deployment time to load a compliant component and its various
implementations. The information contained in the Software Package Descriptor will provide the basis for the
Management function to manage the component within a platform or domain.

The software package descriptor may contain various implementations of any given component. Within the specification
of a software package descriptor several other files are referenced including a component level propertyfile and a software
component descriptor file. Within any given implementation there may be additional propertyfiles.

7.2.1 Software Package
The softpkg element (see Figure 7.2) indicates a Software Package Descriptor (SPD) definition. The softpkg id uniquely
identifies the package. The version attribute specifies the version of the component. The name attribute is a user-friendly
label for the softpkg element. The name attribute is supplied when the id is not user-friendly such as a DCE UUID. The
DCE UUID format starts with the characters “DCE:” and is followed by the printable form of the UUID, a colon, and a
decimal minor version number, for example: “DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1.” The decimal minor
version number is optional. The type attribute indicates whether or not the component implementation is compliant (e.g.,
“compliant,” “non_compliant”). All files referenced by a Software Package are located in the same directory as the SPD
file or a directory that is relative to the directory where the SPD file is located. The type attribute is used to establish the
level of compliance with the spec.

Dom ainConfigurationDes c riptor
< < DTDE lem ent> >

S oft ware As s emb ly
Des c riptor

< < DTDE lem ent> >
Devic eConfigurat ion

Des c riptor

< < DTDE lem ent> >

Devic eP ac k ageDes c riptor
< < DTDE lem ent> >

0.. *0.. *

P ropert ies
< < DTDE lem ent> >

S oftwareP ac k ageDes c riptor
< < DTDE lem ent> >

1..*1..* 11 1..*1. .*

0. .*

S oftwareCom ponentDes c riptor
< < DTDE lem ent> >

0..*

0. .10..1 0..*

0. .*
6 Component Document Type Definitions Specification, v1.0

Figure 7.2 - softpkg Element Relationships

The set of properties for a Software Package come from the union of these properties sources using the following
precedence order:

1. SPD Implementation Properties - indicates the implementation values for properties that are specific to one
and only one implementation.

2. SPD level properties - indicates the implementation value for a property that is true for all implementations
unless over-ridden at the implementation element level.

3. SCD level properties - property definitions for all implementations.

Any duplicate properties having the same ID are ignored. Duplicated properties must be the same property type, only the
value can be over-ridden. The SPD-level and implementation-level properties only state what the values are for a
component implementation specified in SPD. These property values are not used by ApplicationFactoryComponent for
initial configuration of the deployed component and ExecutableProperty(s) for the deployed component main program.
ExecutableProperty(s) are used for component construction by the component’s main process. These properties are used
for the ExecutableDeviceComponent execute operation options parameter.

<!ELEMENT softpkg
(title?
, author+
, description?
, propertyfile?
, descriptor?

softpkg
id : ID
name : CDATA
type : CDATA
version : CDATA

<<DTDElement>>

title
<<DTDElement>>

author
<<DTDElement>>

description
<<DTDElement>>

propertyfile
type : CDATA

<<DTDElement>>
descriptor

name : CDATA

<<DTDElement>>

usesdevice
id : ID
type : CDATA

<<DTDElement>>

softpkg_grp1
<<DTDSequenceGroup>>

softpkg_grp1

0..1

{1}

0..1

title

1..n

{2}

1..n

author

0..1
{3}

0..1

description

0..1{4} 0..1

propertyfile

0..1
{5}

0..1

descriptor

0..n

{7}

0..nusesdevice

implementation
id : ID
aepcompliance : (aep_compliant | min_aep_compliant | aep_non_compliant) = aep_compliant

<<DTDElement>> assemblyimplementation
<<DTDElement>>

softpkg_grp1_grp6
<<DTDChoiceGroup>>

1..n{6} 1..n

softpkg_grp1_grp6

implementation assemblyimplementation
Component Document Type Definitions Specification, v1.0 7

, (implementation | assemblyimplementation)+
, usesdevice*

)>
!ATTLIST softpkg

id ID #REQUIRED
name CDATA #REQUIRED
type CDATA #IMPLIED
version CDATA #IMPLIED >

7.2.1.1 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file associated with the Software
Package. The intent of the propertyfile will be to provide the definition of properties elements common to all component
implementations being deployed in accordance with the Software Package (softpkg). Property Descriptor files may also
contain properties elements that are used in definition of command and control id value pairs used by the CF PropertySet
configure() and query() operations. The format of the properties element is described in the Properties Descriptor (see
Section 7.4, “Properties Descriptor,” on page 21).

<!ELEMENT propertyfile
(localfile
)>
<!ATTLIST propertyfile
type CDATA #IMPLIED>

7.2.1.1.1 localfile

The localfile element is used to reference a file in the same directory as the SPD file or a directory that is relative to the
directory where the SPD file is located. When the name attribute is a simple name, the file exists in the same directory as
the SPD file. A relative directory indication begins either with “../” meaning parent directory and “./” means current
directory in the name attribute. Multiple “../” and directory names can follow the initial “../” in the name attribute. All
name attributes must have a simple name at the end of the file name.

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile
name CDATA #REQUIRED>

7.2.1.2 title

The title element is used for indicating a title for the software component being installed in accordance with the softpkg
element.

<!ELEMENT title (#PCDATA)>
8 Component Document Type Definitions Specification, v1.0

7.2.1.3 author

The author element (see Figure 7.3) will be used to indicate the name of the person, the company, and the web page of
the developer producing the component being installed into the system.

Figure 7.3 - author Element Relationships

<!ELEMENT author
(name*
, company?
, webpage?

)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT company (#PCDATA)>
<!ELEMENT webpage (#PCDATA)>

7.2.1.4 description

The description element will be used to describe any pertinent information about the software component being delivered
to the system.

<!ELEMENT description (#PCDATA)>

7.2.1.5 descriptor

The descriptor element points to the local filename of the Software Component Descriptor (SCD) file used to document
the interface information for the component being delivered to the system. In the case of an SCA Component, the SCD
will contain information about three aspects of the component (the component type, message ports, and IDL interfaces).
The SCD file is optional, since some SCA components are non-CORBA components, like digital signal processor (DSP)
“c” code (see Section 7.5, “Software Component Descriptor,” on page 30).

<!ELEMENT descriptor
(localfile

)>

author
< < DTDE lem ent> >

nam e
< < DTDE lem ent> >

c om pany
< < DTDE lem ent> >

autho r_gr p
< < DTDS equenc eG roup> >

0..*0. .*
{1}

0..10..1{2}

webpage
< < DTDE l eme nt> >

0..10..1
{3}
Component Document Type Definitions Specification, v1.0 9

<!ATTLIST descriptor
name CDATA #IMPLIED>

7.2.1.6 implementation

The implementation element (see Figure 7.4) contains descriptive information about the particular implementation
template for a software component contained in the softpkg element. The implementation element is intended to allow
multiple component templates to be delivered to the system in one Software Package. Each implementation element is
intended to allow the same component to support different types of processors, operating systems, etc. The
implementation element will also allow definition of implementation-dependent properties for use in CF Device, CF
Application, or CF Resource creation. The implementation element’s id attribute uniquely identifies a specific
implementation of the component. The compiler, programminglanguage, humanlanguage, os, processor, and runtime
elements are optional dependency elements. The aepcompliance attribute is used to establish the level of compliance with
an Application Environment Profiles (AEPs). The aepcompliance indicates if an implementation is compliant with an
AEPs and to which one.

Figure 7.4 - implementation Element Relationships

<!ELEMENT implementation
(description?
, propertyfile?
, code
, compiler?
, programminglanguage?
, humanlanguage?
, runtime?
, (os

implementation
id : ID
aepcompliance : (aep_compliant | min_aep_compliant | aep_non_compliant) = aep_compliant

<<DTDElement>>

description
<<DTDElement>>

propertyfile
type : CDATA

<<DTDElement>>

code
type : CDATA

<<DTDElement>>

compiler
name : CDATA
version : CDATA

<<DTDElementEMPTY>>

programminglanguage
name : CDATA
version : CDATA

<<DTDElementEMPTY>>

humanlanguage
name : CDATA

<<DTDElementEMPTY>>

runtime
name : CDATA
version : CDATA

<<DTDElementEMPTY>>

usesdevice
id : ID
type : CDATA

<<DTDElement>>

implementation_grp
<<DTDSequenceGroup>>

0..10..1

{1}

0...0...

{2}

{3}

0..10..1
{4}

0..10..1

{5}

0..10..1

{6}

0..10..1

{7}

0..*0..*

{9}

os
name : CDATA
version : CDATA

<<DTDElementEMPTY>>

processor
name : CDATA

<<DTDElementEMPTY>>

implementat ion_grp1_grp
<<DTDChoiceGroup>>

1..*1..* {8}

dependency
type : CDATA

<<DTDElement>>
10 Component Document Type Definitions Specification, v1.0

 | processor
 | dependency
)+

, usesdevice*
)>

<!ATTLIST implementation
id ID #REQUIRED

aepcompliance (aep_compliant | lwaep_compliant |aep_non_compliant) “aep_compliant”>

7.2.1.6.1 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file associated with this
implementation element. Although the specification does not restrict the specific use of the Property Descriptor file based
on context, it is intended within the implementation element to provide component implementation specific properties
elements for use in command and control id value pair settings to the ResourceComponent configure() and query()
operations. See the description of the properties element format in the Properties Descriptor, Section 7.4, “Properties
Descriptor,” on page 21.

<!ELEMENT propertyfile
(localfile
)>

<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile

name CDATA #REQUIRED>

7.2.1.6.2 description

The description element will be used to describe any pertinent information about the software component implementation
that the software developer wishes to document within the software package profile.

<!ELEMENT description (#PCDATA)>

7.2.1.6.3 code

The code element (see Figure 7.5) will be used to indicate the local filename of the code that is described by the softpkg
element, for a specific implementation of the software component. The stack size and priority are option parameters used
by the ExecutableDeviceComponent execute() operation. Data types for the values of these options are unsigned long.
The type attribute for the code element will also indicate the type of file being delivered to the system. The entrypoint
element provides the means for providing the name of the entry point of the component being delivered. The valid values
for the type attribute are: “Executable,” “KernelModule,” “SharedLibrary,” and “Driver.”

The meaning of the code type attribute:

1. Executable means to use LoadableDeviceComponent load and ExecutableDeviceComponent execute. This is a
“main” process.

2. Driver and Kernel Module means load only.

3. SharedLibrary means dynamic linking.

• Without a code entrypoint element means load only.
Component Document Type Definitions Specification, v1.0 11

• With a code entrypoint element means load and ExecutableDeviceComponent execute.

Figure 7.5 - code Element Relationships

<!ELEMENT code
(localfile
, entrypoint?

, stacksize?
, priority?
)>

<!ATTLIST code
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<!ATTLIST localfile

name CDATA #REQUIRED>
<!ELEMENT entrypoint (#PCDATA)>
<!ELEMENT stacksize (#PCDATA)>
<!ELEMENT priority (#PCDATA)>

7.2.1.7 compiler

The compiler element will be used to indicate the compiler used to build the software component being described by the
softpkg element. The required name attribute will specify the name of the compiler used, and the version attribute will
contain the compiler version.

<!ELEMENT compiler EMPTY>
<!ATTLIST compiler

name CDATA #REQUIRED
version CDATA #IMPLIED>

7.2.1.8 programminglanguage

The programminglanguage element will be used to indicate the type of programming language used to build the
component implementation. The required name attribute will specify a language such as “c,” “c++,” or “java.”

c o d e
t y p e : C D A T A

< < D TD E le m e n t > >

lo c a lfi le
n a m e : C D A TA

< < D T D E le m e n t E M P TY > >

e n t ry p o in t
< < D TD E le m e n t > >

s t a c k s iz e
< < D TD E le m e n t > >

p rio r i t y
< < D TD E le m e n t > >

c o d e _ g rp
< < D TD S e q u e n c e G r ou p > >

{ 1}

0 .. 1
{2 }

0 .. 1
0 .. 1{3 } 0 .. 1 0 . . 1{ 4} 0 . . 1
12 Component Document Type Definitions Specification, v1.0

<!ELEMENT programminglanguage EMPTY>
<!ATTLIST programminglanguage

name CDATA #REQUIRED
version CDATA #IMPLIED>

7.2.1.8.1 humanlanguage

The humanlanguage element will be used to indicate the human language for which the software component was
developed.

<!ELEMENT humanlanguage EMPTY>
<!ATTLIST humanlanguage

name CDATA #REQUIRED>

7.2.1.8.2 os

The os element will be used to indicate the operating system on which the software component is capable of operating.
The required name attribute will indicate the name of the operating system and the version attribute will contain the
operating system. The os attributes will be defined in a DeviceComponent’s property file as an allocation property
(ServiceProperty) of string type and with names os_name and os_version and with an action element value other than
“external.” The os element is automatically interpreted as a dependency and compared against DeviceComponent’s
allocation property (struct sequence Property of struct NameVersionCharacteristic) with the name of os that contains a list
of os name and version pairs.

<!ELEMENT os EMPTY>
<!ATTLIST os

name CDATA #REQUIRED
version CDATA #IMPLIED>

7.2.1.8.3 processor

The processor element will be used to indicate the processor and/or processor family on which this software component
will operate. The processor name attribute will be defined in a DeviceComponent’s property file as an allocation property
(ServiceProperty) of string type and with a name of processor_name and with an action element value other than
“external.” The processor element is automatically interpreted as a dependency and compared against a
DeviceComponent’s allocation property with a name of processor_name.

<!ELEMENT processor EMPTY>
<!ATTLIST processor

name CDATA #REQUIRED>

7.2.1.8.4 dependency

The dependency element (see Figure 7.6) is used to indicate the dependent relationships between the components being
delivered and other components and devices, in a compliant system. The softpkgref element is used to specify a Software
Package file that must be resident within the system for the component, described by this softpkg element, to load without
errors. The propertyref or propertyvaluesref references a specific ServiceProperty (allocation property), by
ServiceProperty identifier, and provide the value that will be used by a ManagedServiceComponent CapabilityModel.
Component Document Type Definitions Specification, v1.0 13

The DomainManagerComponent will use these dependency definitions to assure that ServiceComponent(s) that are
necessary for proper operation of the implementation are present and available. The type attribute is descriptive
information indicating the type of dependency.

Figure 7.6 - dependency Element Relationships

<!ELEMENT dependency
 (softpkgref
 | propertyref
 | propertyvaluesref
)>
 <!ATTLIST dependency
 type CDATA #REQUIRED>

softpkgref
<<DTDElem ent>>

property ref
refid : CDATA
value : CDATA

<<DTDElementE MPTY>>
propertyvaluesref

<<DTDElem ent>>

dependenc y_grp1
<<DTDChoiceG rou p>>

softpk gref propertyref
propertyvaluesref

dependency
type : CDATA

<<DTDElement>>

dependency_grp1

refid
<<DTDEleme nt>>

value
<<DTDE lement>>

propertyvaluesref_grp1
<<DTDSeque nceGroup>>

propertyvaluesref_grp1

{1} refid
1..n

{2}
1..n

value
14 Component Document Type Definitions Specification, v1.0

7.2.1.8.5 softpkgref

The softpkgref element (see Figure 7.7) refers to a softpkg element contained in another Software Package Descriptor file
and indicates a file-load dependency on that file. The other file is referenced by the localfile element. An optional implref
element refers to a particular implementation-unique identifier, within the Software Package Descriptor of the other file.

Figure 7.7 - softpkgref Element Relationships

<!ELEMENT softpkgref
 (localfile
 , implref?
)>
<!ELEMENT implref EMPTY>
<!ATTLIST implref

refid CDATA #REQUIRED>

7.2.1.8.6 propertyref

The propertyref element is used to indicate a reference (refid attribute) to a ServiceProperty (allocation property), defined
in some ServiceComponent’s property file, and the requested value (value attribute) for the ServiceProperty (allocation
property). This deployment requirement is used by the ApplicationFactoryComponent to find the right ServiceComponent
or DeviceComponent that can meet the requirements as specified by the value attribute.

<!ELEMENT propertyref EMPTY>
<!ATTLIST propertyref

refid CDATA #REQUIRED
value CDATA #REQUIRED>

7.2.1.8.7 runtime

The runtime element specifies a runtime required by a component implementation. An example of the runtime is a Java
VM.

softpkgref
<<DTDE lem ent>>

localfile
nam e : CDA TA

<<DTDE lem ent EM PTY > >
im plref

refid : CDATA

<<DTDE lement EMP TY > >

softpkgref_grp
<<DTDS equenceGroup>>

{1} 0..1{2} 0..1
Component Document Type Definitions Specification, v1.0 15

<!ELEMENT runtime EMPTY>
<!ATTLIST runtime

name CDATA #REQUIRED>
version CDATA #IMPLIED>

7.2.1.8.8 propertyvaluesref

The propertyvaluesref element is used to indicate a reference (refid element) to a ServiceProperty (allocation property),
defined in some ServiceComponent’s property file, and the requested values (value element) for the ServiceProperty
(allocation property). This deployment requirement is used by the ApplicationFactoryComponent to find the right
ServiceComponent or DeviceComponent that can meet the requirements as specified by the value element.

 <!ELEMENT propertyvaluesref
 (refid

 ,value+)>
 <!ELEMENT refid (#PCDATA)>
 <!ELEMENT value (#PCDATA)>

7.2.1.9 usesdevice

The usesdevice element describes any “uses” relationships this component has with a ServiceComponent in the system.
The propertyref or propertyvaluesref element references ServiceProperty(s) (e.g., allocation properties), which indicate
the ServiceComponent to be used (characteristics), and/or the capacity(s) needed from the ServiceComponent.

 <!ELEMENT usesdevice
 ((propertyref
 | propertyvaluesref)+
)>
 <!ATTLIST usesdevice
 id ID #REQUIRED
 type CDATA #REQUIRED>

7.2.1.9.1 propertyref

See Section 7.2.1.8.6, “propertyref” for a definition of the propertyref element.

7.2.1.9.2 propertyvaluesref

See Section 7.2.1.8.8, “propertyvaluesref” for a definition of the propertyvaluesref element.

7.2.1.10 assemblyimplementation

The assemblyimplementation element references a Software Assembly Descriptor (SAD) file for implementation of a
component.

<!ELEMENT assemblyimplementation
(localfile
)>
16 Component Document Type Definitions Specification, v1.0

7.3 Device Package Descriptor
The Device Package Descriptor (DPD) is the part of a Device Profile that contains hardware device Registration
attributes, which are typically used by a Human Computer Interface application to display information about the device(s)
resident in a system. DPD information is intended to provide hardware configuration and revision information to a radio
operator or to radio maintenance personnel. A DPD may be used to describe a single hardware element residing in a radio
or it may be used to describe the complete hardware structure of a radio. In either case, the description of the hardware
structure should be consistent with hardware partitioning as described in UML Profile for communicaiton equipment and
communicaiton channel.

7.3.1 Device Package
The devicepkg element (see Figure 7.8) is the root element of the DPD. The devicepkg id attribute uniquely identifies the
package. The version attribute specifies the version of the devicepkg. The format of the version string is numerical major
and minor version numbers separated by commas (e.g., “1,0,0,0”). The name attribute is a user-friendly label for the
devicepkg.

Figure 7.8 - devicepkg Element Relationships

<!ELEMENT devicepkg
(title?
, author+
, description?
, hwdeviceregistration
)>
<!ATTLIST devicepkg
id ID #REQUIRED
name CDATA #REQUIRED
version CDATA #IMPLIED>

7.3.1.1 title

The title element is used for indicating a title for the hardware device being described by devicepkg.

devic e pk g
id : ID
na m e : C D AT A
vers ion : C D AT A

< < D TD E le m ent> >

t itl e
< < D TD E lem ent> >

author
< < D TD E lem ent> >

des c rip t ion
< < DT DE l em ent> >

devic epk g_grp
< < D TD S equenc eG roup> >

0. .10. .1
{1} 1 . . *1 . . *

{2} 0 . .10 . .1{3}
hw devic ereg is t ra t ion

id : ID
nam e : C D A TA
vers ion : C D A TA

< < D TD E lem ent> >
{4}
Component Document Type Definitions Specification, v1.0 17

<!ELEMENT title (#PCDATA)>

7.3.1.2 author

See Section 7.2.1.3, “author” for a definition of the author element.

7.3.1.3 description

The description element is used to describe any pertinent information about the device implementation that the hardware
developer wishes to document within the Device Package.

<!ELEMENT description (#PCDATA)>

7.3.1.4 hwdeviceregistration

The hwdeviceregistration element (see Figure 7.9) provides device-specific information for a hardware device. The
hwdeviceregistration id attribute uniquely identifies the device. The version attribute specifies the version of the
hwdeviceregistration element. The format of the version string is numerical major and minor version numbers separated
by commas (e.g., “1,0,0,0”). The name attribute is a user-friendlylabel for the hardware device being registered. The name
attribute is supplied when the id is not user-friendly such as a DCE UUID. At a minimum, the hwdeviceregistration
element must include a description, the manufacturer, the model number, and the device’s hardware class(es).

Figure 7.9 - hwdeviceregistration Element Relationships

<!ELEMENT hwdeviceregistration
(propertyfile?
, description
, manufacturer
, modelnumber
, deviceclass
, childhwdevice*
)>
<!ATTLIST hwdeviceregistration
id ID #REQUIRED

0..*

hwdeviceregis tration
id : ID
nam e : CDA TA
vers ion : CDA TA

<< DTDE lem ent>>

proper ty file
type : CDA TA

< <DTDE lem ent>>

des c ription
< <DTDE lem ent>>

m anufac turer
<<DTDE lem ent>>

m odelnum ber
<<DTDE lem ent>>

devi cecl ass
< <DTDE lem ent>>

hwdeviceregis trat ion_grp
<<DTDS equenc eGroup>>

0..10..1

{1}

{2}
{3} {4}

{5}

childhwdevice
<< DTDE lem ent> >

0..*

{6}
18 Component Document Type Definitions Specification, v1.0

name CDATA #REQUIRED
version CDATA #IMPLIED>

7.3.1.4.1 propertyfile

The propertyfile element is used to indicate the local filename of the property file associated with the
hwdeviceregistration element. The format of a property file is described Section 7.4, “Properties Descriptor,” on page 21.

The intent of the property file is to provide the definition of properties elements for the hardware device being deployed
and described in the Device Package (devicepkg) or hwdeviceregistration element.

<!ELEMENT propertyfile
(localfile

)>
<!ATTLIST propertyfile

 type CDATA #IMPLIED>
 <!ELEMENT localfile EMPTY>
<!ATTLIST localfile

name CDATA REQUIRED>

7.3.1.4.2 description

See Section 7.2.1.4, “description” for definition of the description element.

7.3.1.4.3 manufacturer

The manufacturer element is used to convey the name of the manufacturer of the device being installed.

<!ELEMENT manufacturer (#PCDATA)>

7.3.1.4.4 modelnumber

The modelnumber element is used to indicate the manufacture’s model number, for the device being installed.

<!ELEMENT modelnumber (#PCDATA)>

7.3.1.4.5 deviceclass

The deviceclass element is used to identify one or more hardware classes that make up the device being installed (as
defined in UML Profile for communicaiton equipment).

<!ELEMENT deviceclass
(class+

)>
<!ELEMENT class (#PCDATA)>
Component Document Type Definitions Specification, v1.0 19

7.3.1.4.6 childhwdevice

The childhwdevice element (see Figure 7.10) indicates additional device-specific information for hardware devices that
make up the root or parent hardware device registration. An example of childhwdevice would be a radio’s RF module that
has receiver and exciter functions within it. In this case, a CF Device representing the RF module itself would be a parent
Device with its DPD, and the receiver and exciter are child devices to the module. The parent / child relationship indicates
that when the RF module is removed from the system, the receiver and exciter devices are also removed.

Figure 7.10 - childhwdevice Element Relationships

<!ELEMENT childhwdevice
(hwdeviceregistration

 | devicepkgref
)>

7.3.1.4.7 hwdeviceregistration

The hwdeviceregistration element provides device-specific information for the child hardware device. See 7.3.1.4 for a
definition of the hwdeviceregistration element.

7.3.1.4.8 devicepkgref

The devicepkgref element is used to indicate the local filename of a Device Package Descriptor file pointed to by Device
Package Descriptor (e.g., a devicepkg within a devicepkg).

<!ELEMENT devicepkgref
(localfile
)>

<!ATTLIST devicepkgref
type CDATA #IMPLIED>

childhwdevice
<<DTDElement>>

hwdeviceregistration
id : ID
name : CDATA
version : CDATA

<<DTDElement>>

devicepkgref
type : CDATA

<<DTDElement>>

childhwdevice_grp
<<DTDChoiceGroup>>
20 Component Document Type Definitions Specification, v1.0

7.4 Properties Descriptor
The Properties Descriptor file details component and device attribute settings. For purposes of the Property Descriptor
files will contain simple, simplesequence, test, struct, or structsequence elements. These elements will be used to describe
attributes of a component that will be used for dependency checking. These elements will also be used for component
values used by a ResourceComponent’s configure(), query(), and runTest() operations.

7.4.1 properties
The properties element (see Figure 7.11) is used to describe property attributes that will be used in the configure() and
query() operations for CF ResourceComponents and for definition of attributes used for dependency checking. The
properties element can also be used in the TestableObject runTest() operation to configure tests and provide test results.

Figure 7.11 - properties Element Relationships

<!ELEMENT properties
(description?

, (simple
| simplesequence
| test
| struct
| structsequence
)+

)>

7.4.1.1 simple

The simple element (see Figure 7.12 and Table 7.1) provides for the definition of a property which includes a unique id,
type, name, and mode attributes of the property that will be used in the PropertySet configure() and query() operations, or
for indication of component capabilities. The simple element is specifically designed to support id-value pair definitions.
A simple property id attribute corresponds to the id of the id-value pair. The value and range of a simple property
correspond to the value of the id-value pair. The optional enumerations element allows for the definition of a label-to-
value for a particular property. The mode attribute defines whether the properties element is “readonly,” “writeonly,” or

1..*

properties
<<DTDElement>>

description
<<DTDElement>>

properties_grp
<<DTDSequenc eGroup>>

0..10..1
{1}

sim ple
<<DTDElement>>

simplesequence
<<DTDElement>>

tes t
<<DTDElement>>

struct
<<DTDElement>>

properties_grp_grp
<<DTDChoiceG roup>>

1..*{2}

structsequence
<<DTDElement>>
Component Document Type Definitions Specification, v1.0 21

“readwrite.” The id attribute is an identifier for the simple property element. The id attribute for all other simple property
elements can be any valid XML ID type. The mode attribute is only meaningful when the type of the kind element is
“configure.” The integerID attribute is used to specify an integer identifier for a simple property, which when used has
precedence over the ID attribute.

Figure 7.12 - simple Element Relationships

<!ELEMENT simple
(description?
, value?
, units?
, range?
, enumerations?
, kind*
, action?
)>

<!ATTLIST simple
id ID #REQUIRED
type (boolean | char | double | float

 | short | long | longlong | objref | octet
 | string | ulong |ushort | ulonglong |longdoudble | wchar | wstring)#REQUIRED

integerID CDATA #IMPLIED
 name CDATA #IMPLIED

mode(readonly | readwrite | writeonly) “readwrite”>

simple
id : ID
type : (boolean | char | double | float | short | long | longlong | objref | octet | string | ulong | ushort | ulonglong | longdoudble | wchar | wstring)
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

description
<<DTDElement>>

value
<<DTDElement>>

units
<<DTDElement>>

range
min : CDATA
max : CDATA

<<DTDElementEMPTY>>

enumerations
<<DTDElement>>

kind
kindtype : (allocation | configure | execparam | factoryparam) = configure

<<DTDElementEMPTY>>

action
type : CDATA

<<DTDElementEMPTY>>

simple_grp1
<<DTDSequenceGroup>>

simple_grp1

0..1

{1}

0..1

description

0..1

{2}

0..1

value

0..1

{3}

0..1

units

0..1
{4}

0..1

range
0..1

{5}
0..1

enumerations

0..n
{6}

0..n

kind

0..1
{7}

0..1

action
22 Component Document Type Definitions Specification, v1.0

Table Legend:

+ Is required and may contain any value, For ID only certain characters can be used.
Value must conform to type.

* Is optional and may contain any value

int value is integer characters

N/A Not Applicable, will be ignored if used

7.4.1.1.1 description

The description element is used to provide a description of the properties element that is being defined.

<!ELEMENT description (#PCDATA)>

7.4.1.1.2 value

The value element is used to provide a value setting to the properties element.

<!ELEMENT value (#PCDATA)>

Table 7.1 - Simple Elements & Attributes Summary

Simple
Properties

Id Type integer
ID

Name Mode Value Units Range Enum Kind Action

Configure &
Query

+ + int * RW
(default)

+ * * * configure N/A

Configure Only + + int * WO + * * * configure N/A

Query Only + + int * RO --- * * * configure N/A

Service
Component’s
ServiceProperty
(Locally
Managed=false)

+ + int * --- + * * * allocation Eq, ne
gt,
lt, ge,
le

Service
Component’s
ServiceProperty
(Locally
Managed=true)

+ + int * --- + * * * allocation External
(default
)

Execute
Property

+ + int * --- + * * * execparm N/A

ResourceFactoryC
omponent’s
Configure
Property

+ + int * --- + * * * factoryparm N/A

TestProperty’s
InputValue
Property or
ResultValue
Property

+ + int * --- + * * * test N/A
Component Document Type Definitions Specification, v1.0 23

7.4.1.1.3 units

The units element describes the intended practical data representation to be used for the properties element.

<!ELEMENT units (#PCDATA)>

7.4.1.1.4 range

The range element describes the specific min and max values that are legal for the simple element. The intent of the range
element is to provide a means to perform range validation. This element is not used by the CF ApplicationFactory or CF
Application implementations.

<!ELEMENT range EMPTY
<!ATTLIST range

min CDATA #REQUIRED
max CDATA #REQUIRED>

7.4.1.1.5 enumerations

The enumerations element is used to specify one or more enumeration elements.

<!ELEMENT enumerations
(enumeration+
)>

The enumeration element is used to associate a value attribute with a label attribute. Enumerations are legal for various
integer type properties elements. An Enumeration value is assigned to a property that implements the CORBA long type.
Enumeration values are implied; if not specified by a developer, the initial implied value is 0 and subsequent values are
incremented by 1.

<!ELEMENT enumeration EMPTY>
<!ATTLIST enumeration

label CDATA #REQUIRED
value CDATA #IMPLIED>

7.4.1.1.6 kind

The kind element’s kindtype attribute is used to specify the kind of property. The types of kindtype attributes are:

1. configure, which is used in the configure() and query () operations of the PropertySet interface. The
ApplicationFactoryComponent and DeviceManagerComponent will use the configure kind of properties to
build the Properties input parameter to the configure () operation that is invoked on the Component(s) during
application creation. When the mode is readonly, only the query() behavior is supported. When the mode is
writeonly, only the configure() behavior is supported. When the mode is readwrite, both configure() and
query() are supported.

2. test, which is used in the runTest() operation in the TestableObject interface. The test kind of properties will be
used as the testValues parameter to the runTest() operation.

3. allocation, which is used in the allocateCapacity() and deallocateCapacity() operations of the Device
interface. The ApplicationFactoryComponent and DeviceManagerComponent will use the allocation kind of
properties to build the capacities inout parameter to the allocateCapacity() operation that is invoked on the
DeviceComponent(s) during application creation when the simple property action element is external. The
24 Component Document Type Definitions Specification, v1.0

ApplicationFactoryComponent and DeviceManagerComponent (not DeviceComponent) manages an
Allocation property when the action value is not external. Allocation properties that are external can also be
queried using the PropertySet query() operation.

4. execparam,. which is used in the execute operations of the Device interface. The
ApplicationFactoryComponent and DeviceManagerComponent will use the execparam kind of properties to
build the Properties input parameter to the execute() operation that is invoked on the
ExecutableDevicecomponent(s) during component and/or application creation. Only simple elements can be
used as execparam types.

5. factoryparam, are properties that are only for the createResource() operation of the ResourceFactory interface.
The ApplicationFactoryComponent will use the factoryparam type of properties to build the Properties input
parameter to the createResource() operation.

A property can have multiple kind elements and the default kindtype is configure.

<!ELEMENT kind EMPTY>
<!ATTLIST kind

kindtype (allocation | configure | test |
 execparam | factoryparam) “configure”>

7.4.1.1.7 action

The action element is used to define the type of comparison used to compare an SPD property value to a
DeviceComponent property value, during the process of checking SPD dependencies. The type attribute, of the action
element, will determine the type of comparison to be made (e.g., equal, not equal, greater than, etc.). When the action’s
type is not external then the ApplicationFactoryComponent and DeviceManagerComponent performs the action
comparison, not the DeviceComponent. The default value for type is external when not specified.

When the action is “external” then the DeviceComponent is locally managing the allocation propery (e.g.,
ServiceProperty). The ApplicationFactoryComponent cannot manage these properties, instead it must use the
alllocateCapacity operation on a compatible DeviceComponent. For non-external action types, the allocateCapacity
operation is not called on a DeviceComponent.

In principle, the action element defines the operation executed during the comparison of the allocation property value,
provided by an SPD dependency element, to the associated allocation property value of a DeviceComponent. The
allocation property is on the left side of the action and the dependency value is on the right side of the action. This
process allows for the allocation of appropriate objects within the system based on their attributes, as defined by their
dependent relationships.

For example, if a DeviceComponent’s properties file defines a DeviceKind allocation property whose action element is set
to “equal,” then at the time of dependency checking a valid DeviceKind property is checked for equality. If a software
component implementation is dependent on a DeviceKind property with its value set to “NarrowBand,” then the
component’s SPD dependency propertyref element will reference the id of the DeviceKind allocation property with a
value of “NarrowBand.” At the time of dependency checking, the ApplicationFactoryComponent will check
DeviceComponent(s) whose properties kind element is set to “allocation” and property id is DeviceKind for equality
against a “NarrowBand” value.

<!ELEMENT action EMPTY>
<ATTLIST action

type CDATA #REQUIRED>
Component Document Type Definitions Specification, v1.0 25

7.4.1.1.8 simplesequence

The simplesequence element (see Figure 7.13) is used to specify a list of properties with the same characteristics (e.g.,
type, range, units, etc.). The simplesequence element definition is similar to the simple element definition except that it
has a list of values instead of one value. The simplesequence element maps to the basic primitive sequence types and CF
PortTypes CORBA modules, defined in UML Profile for CF, based upon the type attribute.

Figure 7.13 - simplesequence Element Relationships

<!ELEMENT simplesequence
(description?
, values?
, units?
, range?
, enumerations?
, kind*
, action?
)>

<!ATTLIST simplesequence
id ID #REQUIRED
type(boolean | char | double | float

 | short | long | longlong | objref | octet
 | string | ulong |ushort | ulonglong |longdoudble | wchar | wstring)#REQUIRED

integerID CDATA #IMPLIED
name CDATA #IMPLIED

mode(readonly | readwrite | writeonly) “readwrite”>
<!ELEMENT values

(value+
)>
26 Component Document Type Definitions Specification, v1.0

7.4.1.2 test

The test element (see Figure 7.14) is used to specify a list of test properties for executing the TestableObject runTest()
operation to perform a component specific test. This definition contains inputvalue and resultvalue elements and it has a
testid attribute for grouping test properties to a specific test. Inputvalues are used to configure the test to be performed
(e.g., frequency and RF power output level). When the test has completed, resultvalues contain the results of the testing
(e.g., Pass or a fault code/message).

Figure 7.14 - test Element Relationships

<!ELEMENT test
(description

 , inputvalue?
 , resultvalue
)>
<!ATTLIST test

Id CDATA #REQUIRED
name CDATA #IMPLIED

>

7.4.1.2.1 inputvalue

The inputvalue element is used to provide test configuration properties. The Simple properties it contains must be of kind
"test".

<!ELEMENT inputvalue
(simple+

)>

7.4.1.2.2 resultvalue

The resultvalue element is used to provide test result properties. The Simple properties it contains must be of kind "test".

<!ELEMENT resultvalue
(simple+

)>

tes t
id : CDATA
nam e : CDATA

<<DTDEleme nt> >

desc ription
<< DTDElem ent>>

inputvalue
<< DTDElem ent>> resultvalue

<<DTDE lem ent>>

&

tes t_grp1

t es t _grp1

{1}
description

0.. 1 {2}0.. 1

inputvalue {3}
resultvalue
Component Document Type Definitions Specification, v1.0 27

7.4.1.3 struct

The struct element (see Figure 7.15) is used to group properties with different characteristics (i.e., similar to a structure or
record entry). Each item in the struct element can be a different simple type (e.g., short, long, etc.). The struct element
corresponds to the Properties type where each struct item (ID, value) corresponds to a properties element list item. The
properties element list size is based on the number of struct items.

Figure 7.15 - struct Element Relationships

<!ELEMENT struct
(description?
, simple+
, configurationkind?
, action?

)>
<!ATTLIST struct

id ID #REQUIRED
integerID CDATA #IMPLIED
name CDATA #IMPLIED

mode(readonly | readwrite | writeonly)"readwrite">

7.4.1.3.1 configurationkind

The configurationkind element’s kindtype attribute is used to specify the kind of property. The kindtypes are:

1. configure, which is used in the configure() and query() operations of the CF Resource interface. The
ApplicationFactoryComponent and DeviceManagerComponent will use the configure kind of properties to
build the Properties input parameter to the configure() operation that is invoked on the ResourceComponent(s)

struct
id : ID
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

description
<<DTDElement>>

simple
id : ID
type : (boolean | char | double | float | short | long | longlong | objref | octet | string | ulong | ushort | ulonglong | longdoudble | wchar | wstring)
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

configurationkind
kindtype : (configure | factoryparam | allocation) = configure

<<DTDElementEMPTY>>

action
type : CDATA

<<DTDElementEMPTY>>

struct_grp1
<<DTDSequenceGroup>>

struct_grp1

0..1

{1}

0..1

description

1..n

{2}

1..n

simple

0..1
{3}

0..1

configurationkind

0..1

{4}

0..1

action
28 Component Document Type Definitions Specification, v1.0

during application creation. When the mode is readonly, only the query behavior is supported. When the mode
is writeonly, only the configure behavior is supported. When the mode is readwrite, both configure and query
are supported.

2. factoryparam, which is used in the createResource operations of the ResourceFactory interface. The
ApplicationFactoryComponent will use the factoryparam kind of properties to build the Properties input
parameter to the createResource() operation. A property can have multiple configurationkind elements and
their default kindtype is “configure”.

3. allocation, which is used in the allocateCapacity() and deallocateCapacity() operations of the Device
interface. The ApplicationFactoryComponent and DeviceManagerComponent will use the allocation kind of
properties to build the capacities inout parameter to the allocateCapacity() operation that is invoked on the
DeviceComponent(s) during application creation when the simple property action element is external. The
ApplicationFactoryComponent and DeviceManagerComponent (not DeviceComponent) manages an
Allocation property when the action value is not external. Allocation properties that are external can also be
queried using the PropertySet query() operation.

<!ELEMENT configurationkind EMPTY>
<!ATTLIST configurationkind
kindtype(configure | factoryparam | allocation) “configure”>

7.4.1.4 structsequence

The structsequence element (see Figure 7.16) is used to specify a list of properties with the same struct characteristics.
The structsequence element maps to a properties element having the Properties type. Each item in the Properties type will
be the same struct definition as referenced by the structrefid attribute.

Figure 7.16 - structsequence Element Relationships

structsequence
id : ID
structrefid : CDATA
integerID : CDATA
name : CDATA
mode : (readonly | readwrite | writeonly) = readwrite

<<DTDElement>>

descript ion
<<DTDElement>>

structvalue
<<DTDElement>>

configurationkind
kindt ype : (configure | fact orypa ram | a ll ocat ion) = configure

<<DTDElementEM PTY>>

action
type : CDATA

<<DTDElementEMPTY>>

structsequence_grp1
<<DTDSequenceG roup>>

structsequence_grp1

0..1

{1}

0..1

description

1.. n
{2}

1.. n

structvalue

0.. 1
{3}

0.. 1

configurationk ind

0..1

{4}

0..1

action
Component Document Type Definitions Specification, v1.0 29

<!ELEMENT structsequence
(description?
, structvalue+
, configurationkind?
, action?
)>

<!ATTLIST structsequence
id ID #REQUIRED
structrefid CDATA #REQUIRED
integerID CDATA #IMPLIED
name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT structvalue
(simpleref+

)>
<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref

refid CDATA #REQUIRED
value CDATA #REQUIRED>

7.5 Software Component Descriptor
The Software Component Descriptor (SCD) defines elements necessary for describing the ports, interfaces, and properties
for a component definition.

7.5.1 softwarecomponent
The softwarecomponent element (see Figure 7.17) is the root element of the software component descriptor file. The sub-
elements that are supported include:

• corbaversion – indicates which version of CORBA the component is developed for.

• componentrepid – is the repository id of the component

• componenttype – identifies the type of software component object

• componentfeatures – provides the supported message ports for the component

• interface – describes the component unique id and name for supported interfaces
30 Component Document Type Definitions Specification, v1.0

Figure 7.17 - softwarecomponent Element Relationships

<!ELEMENT softwarecomponent
(corbaversion
, componentrepid
, componenttype
, componentfeatures
, interfaces
, propertyfile?
)>

7.5.1.1 corbaversion

The corbaversion element is intended to indicate the version of CORBA that the delivered component supports.

<!ELEMENT corbaversion (#PCDATA)>

7.5.1.2 componentrepid

The componentrepid uniquely identifies the interface that the component is implementing. The componentrepid may be
referred to by the componentfeatures element. The componentrepid is derived from interfaces such as the Resource,
Device, or ResourceFactory.

<!ELEMENT componentrepid EMPTY>
<!ATTLIST componentrepid

repid CDATA #REQUIRED>

7.5.1.3 componenttype

The componenttype describes properties of the component. For CF components, the component types include elements
such as service, resource, device, resourcefactory, domainmanager, log, filesystem, filemanager, devicemanager,
namingservice, and eventservice.

softwarecomponent
<<DTDElement>>

corbaversion
<<DTDElement>>

componentrepid
repid : CDATA

<<DTDElementEMPTY>>

componenttype
<<DTDElement>>

componentfeatures
<<DTDElement>>

interfaces
<<DTDElement>>

softwarecomponent_grp
<<DTDSequenceGroup>>{1}

{2}

{3} {4}

{5}

propertyfile
type : CDATA

<<DTDElement>>

0..10..1

{6}
Component Document Type Definitions Specification, v1.0 31

<!ELEMENT componenttype (#PCDATA)>

7.5.1.4 componentfeatures

The componentfeatures element (see Figure 7.18) is used to describe a component with respect to the components that it
inherits from, the interfaces the component supports, and its’ provides and uses ports. The component interface is usually
Resource, ResourceFactory, or service interface such as Device, LoadableDevice, and ExecutableDevice. If a component
extends the Resource or Device interfaces, then all the inherited interfaces (e.g., Resource) are depicted as
supportsinterface elements.

Figure 7.18 - componentfeatures Element Relationships

<!ELEMENT componentfeatures
(supportsinterface*

, ports
)>

7.5.1.4.1 supportsinterface

The supportsinterface element is used to identify an IDL interface that the component supports. These interfaces are
distinct interfaces that were inherited by the component’s specific interface. One can widen the component’s interface to
be a supportsinterface. The repid is used to refer to the interface element (see section 7.5.1.5).

<!ELEMENT supportsinterface EMPTY>
<!ATTLIST supportsinterface

repid CDATA #REQUIRED
supportsname CDATA #REQUIRED>

7.5.1.4.2 ports

The ports element (see Figure 7.19) describes what interfaces a component provides and uses (or requires). The provides
elements are interfaces that are not part of a component’s interface but are independent interfaces known as facets (in
CORBA Components terminology) (i.e., a provides port at the end of a path, like I/O Device or Modem Device). The uses
element describes the interfaces needed by a component. These uses ports are connected to a provides or
supportinterfaces interface. Any number of uses and provides elements can be given in any order. Each ports element has
a name and references an interface by repid (see section 7.5.1.5). The port names are used in the Software Assembly

com ponentfeatures
<<DTDE lem ent>>

supports interface
repi d : CDA TA
sup port snam e : CDATA

<<DTDElem entEM PTY>>

com ponentfeatures_grp
<<DTDSequenceGroup>>

0..*0..*{1}

port s
<<DTDE lem ent>>

{2}
32 Component Document Type Definitions Specification, v1.0

Descriptor to connect ports together. A ports element also has an optional porttype element that allows for identification
of port classification. Values for porttype include “data,” “control,” “responses,” and “test.” If a porttype is not given,
then “control” is assumed.

Figure 7.19 - ports Element Relationships

<!ELEMENT ports
(provides
| uses
)*>

<!ELEMENT provides
(porttype*

)>
<!ATTLIST provides

repid CDATA #REQUIRED
providesname CDATA #REQUIRED>

<!ELEMENT uses
(porttype*
)>
<!ATTLIST uses

repid CDATA #REQUIRED
usesname CDATA #REQUIRED>

<!ELEMENT porttype EMPTY>
<!ATTLIST porttype
type (data | control | responses | test) #REQUIRED>

7.5.1.5 interfaces

The interfaces element is made up of one to many interface elements.

<!ELEMENT interfaces
(interface+

)>

0..*

port s
<<DTDElement>>

provides
repid : CDATA
providesname : CDATA

<<DTDElement>>

ports_grp
<<DTDChoiceGroup>>

0..*

uses
repid : CDATA
usesname : CDATA

<<DTDElement>>
Component Document Type Definitions Specification, v1.0 33

The interface element describes an interface that the component, either directly or through inheritance, provides, uses, or
supports. The name attribute is the character-based non-qualified name of the interface. The repid attribute is the unique
repository id of the interface, which has formats specified in the CORBA specification. The repid is also used to reference
an interface element elsewhere in the SCD, for example from the inheritsinterface element.

<!ELEMENT interface
(inheritsinterface*

)>
<!ATTLIST interface

repid CDATA #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface

repid CDATA #REQUIRED

7.5.1.6 propertyfile

Refer to section 7.2.1.1 propertyfile for definition of propertyfile. The properties defined at the SCD are the definition of
properties supported by all implementations, and be managed by the PropertySet interface as described in the UML
Profile for CF.

7.6 Software Assembly Descriptor
This section describes the XML elements of the Software Assembly Descriptor (SAD) XML file; the softwareassembly
element (see Figure 7.20). The SAD is based on the CORBA Components Specification Component Assembly Descriptor.
The intent of the software assembly is to provide the means of describing the assembled functional application and the
interconnection characteristics of the components within that application. The component assembly provides four basic
types of application information for Radio Management. The first is partitioning information that indicates special
requirements for collocation of components, the second is the assembly controller for the software assembly, the third is
connection information for the various components that make up the application assembly, and the fourth is the visible
ports for the application assembly.

The installation of an application into the system involves the installation of a SAD file. The SAD file references
component’s SPD files to obtain deployment information for these components. The softwareassembly element’s id
attribute uniquely identifies the assembly. The softwareassembly element’s name attribute is the user-friendly name for the
ApplicationFactoryComponent name attribute. The name attribute is supplied when the id is not user-friendly such as a
DCE UUID. The softwareassembly element’s version attribute is the version of the application.
34 Component Document Type Definitions Specification, v1.0

Figure 7.20 - softwareassembly Element Relationships

<!ELEMENT softwareassembly
(description?
, componentfiles
, partitioning
, assemblycontroller
, connections?
, externalports?
)>

<!ATTLIST softwareassembly
id ID #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED>

7.6.1 description
The description element of the component assembly may be used to describe any information the developer would like to
indicate about the assembly.

<!ELEMENT description (#PCDATA)>

7.6.2 componentfiles
The componentfiles element is used to indicate that an assembly is made up of 1..n component files. The componentfile
element contains a reference to a local file, which is a Software Package Descriptor file (see Section 7.2).

<!ELEMENT componentfiles
(componentfile+
)>

s oftwareas s em bly
id : ID
nam e : CDA TA
vers ion : CDA TA

< < DTDE lem ent> >

des c ript ion
< < DTDE lem ent> >

c om ponentfiles
< < DTDE lem ent> >

part it ioning
< < DTDE lem ent> >

as s em bly c o ntroller
< < DTDE lem ent> >

c onnec t ions
< < DTDE le ment> >

s oft warea s s emb ly _grp
< < DTDS equenc eG roup> >

0..10..1

{1}

{2}

{3} {4}

0.. .0.. .

{5}

ex ternalports
< < DTDE lem ent> >

0.. 10.. 1

{6}
Component Document Type Definitions Specification, v1.0 35

7.6.2.1 componentfile

The componentfile element is a reference to a local file. See Section 7.2.1.1.1 for the definition of the localfile element.
The type attribute is “Software Package Descriptor.

<!ELEMENT componentfile
(localfile
)>

<!ATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED>

7.6.3 partitioning
A component partitioning element (see Figure 7.21) specifies a deployment pattern of components and their components-
to-hosts and process relationships. A component instantiation is captured inside a componentplacement element. The
hostcollocation element allows the components to be placed on a common device. The processcollocation element allows
components to be placed within the same process space. When the componentplacement is by itself and not inside a
hostcollocation or processcollocation, it then has no collocation constraints.

Figure 7.21 - partitioning Element Relationships

<!ELEMENT partitioning
(componentplacement

| hostcollocation
| processcollocation
)+>

partitioning
<<DTDElement>>

componentplacement
<<DTDElement>> hostcollocation

id : ID
name : CDATA

<<DTDElement>>

processcollocat ion
id : ID
name : CDATA

<<DTDElement>>

I

part itionin
g_grp1

1..n1..n

partit ioning_grp1

componentplacement
hostcollocation

processcollocat ion
36 Component Document Type Definitions Specification, v1.0

7.6.3.1 componentplacement

The componentplacement element (see Figure 7.22) defines a particular deployment of a component. The component can
be deployed either directly or by using a ResourceFactoryComponent.

Figure 7.22 - componentplacement Element Relationships

<!ELEMENT componentplacement
(componentfileref
, componentinstantiation+
)>

7.6.3.1.1 componentfileref

The componentfileref element is used to reference a particular Software PackageDescriptor file. The componentfileref
element’s refid attribute corresponds to the componentfile element’s id attribute.

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref

refid CDATA #REQUIRED>

7.6.3.1.2 componentinstantiation

The componentinstantiation element (see Figure 7.23) is intended to describe a particular instantiation of a component
relative to a componentplacement element. The componentinstantiation’s id attribute uniquely identifies the component.
The componentinstantiation element’s id may be referenced by the usesport and providesport elements within the SAD
file.

The optional componentproperties element (see Figure 7.24) is a list of configure, factoryparam, and/or execparam
properties values that are used in creating the component or for the initial configuration of the component. The
componentproperty definitions as stated in the corresponding SCD.

The following sources will be searched in the given precedence order for initial values for “configure” kind of properties,
whose modes are “readwrite” or “writeonly” and “execparam” kind of properties:

1. The componentproperties element of the componentinstantiation element in SAD.

componentplacement
<<DTDElement>>

componentfileref
refid : CDATA

<<DTDElementEMPTY>>

componentplacem ent_g rp
<<DTDSequenceGroup>>

{1}

componentinstantiation
id : ID

<<DTDElement> >

1..*1..*{2}
Component Document Type Definitions Specification, v1.0 37

The following sources will be searched initial values for the “factoryparam” kind of properties in the given precedence
order:

1. The componentinstantiation element’s findcomponent element’s componentresourcefactoryref element’s
resourcefactoryproperties element in the SAD.

The findcomponent element (see Figure 7.25) is used to obtain the object reference for the component instance. The two
sources for obtaining an object reference are:

1. The componentresourcefactoryref element, which refers to a particular ResourceFactoryComponent
componentinstantiation element found in the SAD, which is used to obtain a ResourceComponent instance for
this componentinstantiation element. The refid attribute refers to a unique componentinstantiation id attribute.
The componentresourcefactoryref element contains an optional resourcefactoryproperties element (see Figure
7.26), which specifies the properties “qualifiers,” for the ResourceFactoryComponent create call.

2. The optional findcomponent element should be specified except when there is no object reference for the
component instance (e.g., non-CORBA code). The CORBA Naming Service, which is used to find the
component’s object reference. The name specified in the namingservice element is a partial name that is used
by the ApplicationFactoryComponent to form the complete context name.

Figure 7.23 - componentinstantiation Element Relationships

<!ELEMENT componentinstantiation
(usagename?
, componentproperties?
, findcomponent?
)>

<!ATTLIST componentinstantiation
id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

c om ponent inst ant ia t io n
id : ID

< < DTDE lem ent> >

us agenam e
< < DTDE lem ent> >

c om ponentpropert ies
< < DTDE lem ent> > findc om ponent

< < DTDE lem ent> >

c om ponent ins tant ia t ion_grp
< < DTDSe quenc eG rou p> >

0..1
{1}

0..1 0..1{2} 0. .1
0..1

{3}
0..1
38 Component Document Type Definitions Specification, v1.0

Figure 7.24 - componentproperties Element Relationships

<!ELEMENT componentproperties
 (simpleref
 | simplesequenceref
 | structref
 | structsequenceref
)+ >

Figure 7.25 - findcomponent Element Relationships

<!ELEMENT findcomponent
(componentresourcefactoryref

 | namingservice
)>

<!ELEMENT componentresourcefactoryref
(resourcefactoryproperties?
)>

<!ATTLIST componentresourcefactoryref
refid CDATA #REQUIRED>

1. .*

c ompon entpr oper ti es
< < D TD E lem ent> >

s im plere f
re fid : C D A TA
value : C D A TA

< < D TD El em entE M P TY > >

s im ples equenc ere f
re fid : C D A TA

< < D TD E lem ent> >
s t ruc tre f

re fid : C D A TA

< < D TD E lem ent>>

c om ponentp ropert ies _grp
< < D TD C ho ic eG roup> >

1. .*

s tr uc ts equenc er e f
re fid : C D A TA

< < D TD El em ent> >

findc om ponent
< < D TD E lem ent> >

c om ponentres ourc efac tory re f
ref id : C DA TA

< < D TD El em ent> >
nam ings ervic e

nam e : CD A TA

< < DTDE l ement E MP TY > >

findc om ponent_grp
< < DTDC ho ic eG roup> >
Component Document Type Definitions Specification, v1.0 39

Figure 7.26 - resourcefactoryproperties Element Relationships

<!ELEMENT resourcefactoryproperties
 (simpleref
 | simplesequenceref
 | structref
 | structsequenceref
)+ >
<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
 refid CDATA #REQUIRED
 value CDATA #REQUIRED>
<!ELEMENT simplesequenceref
 (values
)>
<!ATTLIST simplesequenceref
 refid CDATA #REQUIRED>
<!ELEMENT structref
 (simpleref+
)>
<!ATTLIST structref
 refidCDATA#REQUIRED>

<!ELEMENT structsequenceref
(structvalue+
)>
<!ATTLIST structsequenceref

refidCDATA#REQUIRED>

<!ELEMENT structvalue
 (simpleref+
)>

1.. *

res ourc efac tory propert ies
< < DTDE lem ent> >

s im pleref
refid : CDA TA
value : CDA TA

< < DTDEl em entE M P TY > >

s im ples equenc eref
refid : CDA TA

< < DTDE le ment> >
s truc tref

refid : CDA TA

< < DTDE lem ent> >

res ourc efac tory propert ies _grp
< < DTDChoic eG roup> >

1.. *

s truc ts equenceref
refid : CDA TA

< < DTDEl em ent> >
40 Component Document Type Definitions Specification, v1.0

<!ELEMENT values
 (value+
)>
<!ELEMENT value (#PCDATA)>

7.6.3.2 hostcollocation

The hostcollocation element specifies a group of component instances that are to be deployed together on a single host.
The componentplacement element will be used to describe the 1...n components that will be collocated on the same host
platform. The processcollocation element will be used to describe the processes that are to be collocated on the same host.
A host platform will be interpreted as a single device. The id and name attributes are optional but may be used to uniquely
identify a set of collocated components within a SAD file.

<!ELEMENT hostcollocation
(componentplacement
| processcollocation
)+>

<!ATTLIST hostcollocation
id ID #IMPLIED
name CDATA #IMPLIED>

7.6.3.2.1 componentplacement

See componentplacement, section 7.6.3.1.

7.6.3.3 processcollocation

The processcollocation element specifies a group of component instances that are to be deployed together in a single
process. The componentplacement element will be used to describe the 1...n components that will be collocated in the
process. The id and name attributes are optional but may be used to uniquely identify a set of collocated components
within a SAD file.

<!ELEMENT processcollocation
(componentplacement
)+>

<!ATTLIST processcollocation
id ID #IMPLIED
name CDATA #IMPLIED>

7.6.4 assemblycontroller
The assemblycontroller element indicates the component that is the main ResourceComponent controller for the assembly.
The ApplicationManager component delegates its Resource configure(), query(), start(), stop(), and runTest() operations
to the ResourceComponent’s Assembly Controller component.

<!ELEMENT assemblycontroller
(componentinstantiationref
)>
Component Document Type Definitions Specification, v1.0 41

7.6.5 connections
The connections element is a child element of the softwareassembly element. The connections element is intended to
provide the connection map between components in the assembly.

<!ELEMENT connections
(connectinterface*
)>

7.6.5.1 connectinterface

The connectinterface element (see Figure 7.27) is used when application components are being assembled to describe
connections between their port interfaces. The connectinterface element consists of a usesport element and a
providesport, componentsupportedinterface, or findby element. These elements are intended to connect two compatible
components.

Figure 7.27 - connectinterface Element Relationships

<!ELEMENT connectinterface
(usesport
, (providesport

 | componentsupportedinterface
 | findby

)
)>

<!ATTLIST connectinterface
id ID #IMPLIED>

c onnec tinterfac e
id : ID

< < DTDE lem ent> >

uses port
< < DTDE lem ent> >

c onnec tinterface_grp1
< < DTDS equence Group> >

{1}

providesport
< < DTDE lem ent> >

c om ponentsupportedinterface
< < DTDE lem ent> >

fi ndby
< < DTDE lem ent> >

connec tinterfac e_grp_grp
< < DTDChoiceG ro up> >

{2}
42 Component Document Type Definitions Specification, v1.0

7.6.5.1.1 usesport

The usesport element (see Figure 7.28) identifies, using the usesidentifier element, the component port that is using the
provided interface from the providesport element. A component may be referenced by one of four elements. One element
is the componentinstantiationref that refers to the componentinstantiation id attribute (see componentinstantiation) within
the assembly; the other elements are findby, devicethatloadedthiscomponentref, and deviceusedbythiscomponentref.

Figure 7.28 - usesport Element Relationships

<!ELEMENT usesport
(usesidentifier
, (componentinstantiationref

 | devicethatloadedthiscomponentref
 | deviceusedbythiscomponentref

 | findby
)

)>

7.6.5.1.1.1 usesidentifier

The usesidentifier element identifies which “uses port” on the component is to participate in the connection relationship.
This identifier will correspond with an id for one of the component ports specified in the Software Component Descriptor
(see Section 7.5).

<!ELEMENT usesidentifier (#PCDATA)>

usesport
<<DTDElement>>

us es ide ntifier
<<DTDElement>>

usesport_grp
<<DTDSequenceGroup>>

{1}

componentinstantiationref
refid : CDATA

<<DTDElementEMPTY>>

devicethatloadedthiscomponentref
refid : CDATA

<<DTDElementEMPTY>>
deviceusedby thiscom ponentref

refid : CDATA
usesrefid : CDATA

<<DTDElementEMPTY>>

findby
<<DTDElement>>

usesport_grp_grp
<<DTDChoiceGroup>>

{2}
Component Document Type Definitions Specification, v1.0 43

7.6.5.1.1.2 componentinstantiationref

The componentinstantiationref element refers to the id attribute of the componentinstantiation element within the
Software Assembly Descriptor file. The refid attribute will correspond to the unique componentinstantiation id attribute.

<!ELEMENT componentinstantiationref EMPTY>
<!ATTLIST componentinstantiationref

refid CDATA #REQUIRED>

7.6.5.1.1.3 findby

The findby element (see Figure 7.29) is used to resolve a connection between two components. It tells the Domain
Management function how to locate a component interface involved in a connection relationship. The namingservice
element specifies a naming service name to search for the desired component interface.

The domainfinder element specifies an element within the domain that is known to the Domain Management function.

Figure 7.29 - findby Element Relationships

<!ELEMENT findby
(namingservice
| domainfinder
)>

7.6.5.1.1.3.1 namingservice

The namingservice element is a child element of the findby element. The namingservice element is used to indicate to the
ApplicationFactoryComponent the requirement to find a component interface. The ApplicationFactoryComponent will
use the name attribute to search the CORBA Naming Service for the appropriate interface.

<!ELEMENT namingservice EMPTY
<!ATTLIST namingservice

name CDATA #REQUIRED>

7.6.5.1.1.3.2 domainfinder

The domainfinder element is a child element of the findby element. The domainfinder element is used to indicate to the
ApplicationFactoryComponent the necessary information to find an object reference that is of specific type and may also
be known by an optional name within the domain. At a minimum the following valid type attribute values need to be
supported “filemanager,” “log,” “eventchannel,” “namingservice,” “application,” and “service.” If a name attribute is not
supplied, then the component reference returned is the DomainManagerComponent’s FileManager or Naming Service

findby
< < D TD E le men t > >

na m i ngs e r vi c e
nam e : C D A TA

< < D TDE l em entE M PT Y> >

fi ndby _g r p
< < D TD C ho ic eG roup> >

dom a in finder
t ype : C DA TA
n am e : C DA TA

< < D TD E lem entE M P TY > >
44 Component Document Type Definitions Specification, v1.0

corresponding to the type attribute provided. If a name attribute is not supplied and the type attribute has a value of
“application,” “service,” or “log,” then a null reference is returned. The type attribute value of “eventchannel” is used to
specify the event channel to be used in the OE’s CORBA Event Service for producing or consuming events. If the name
attribute is not supplied and the type attribute has a value of “eventchannel,” then the Incoming Domain Management
event channel is used.

<!ELEMENT domainfinder EMPTY>
<!ATTLIST domainfinder

type CDATA #REQUIRED
name CDATA #IMPLIED>

7.6.5.1.1.4 devicethatloadedthiscomponentref

The devicethatloadedthiscomponentref element refers to a specific component found in the assembly, which is used to
obtain the DeviceComponent that was used to load the referenced component from the ApplicationFactoryComponent.
The DeviceComponent obtained is then associated with this component instance. This relationship is needed when a
component (e.g., modem adapter) is pushing data and/or commands to a non-CORBA capable device such as modem.

<!ELEMENT devicethatloadedthiscomponentref EMPTY>
<!ATTLIST devicethatloadedthiscomponentref

refidC DATA #REQUIRED>

7.6.5.1.1.5 deviceusedbythiscomponentref

The deviceusedbythiscomponentref element refers to a specific component, within the assembly, which is used to obtain
the DeviceComponent that is being used by the specific component from the ApplicationFactoryComponent. This
relationship is needed when a component is pushing or pulling data and/or commands to another component that exists in
the system such as an audio device.

<!ELEMENT deviceusedbythiscomponentref EMPTY>
<!ATTLIST deviceusedbythiscomponentref
refid CDATA #REQUIRED
usesrefid CDATA #REQUIRED>

7.6.5.1.2 providesport

The providesport element (see Figure 7.30) identifies, using the providesidentifier element, the component port that is
provided to the usesport interface within the connectinterface element. A component may be referenced by one of four
elements. One element is the componentinstantiationref that refers to the componentinstantiation id (see
componentinstantiation) within the assembly; the other elements are findby, devicethatloadedthiscomponentref, and
deviceusedbythiscomponentref. The findby element by itself is used when the object reference is not a
ResourceComponent type.
Component Document Type Definitions Specification, v1.0 45

Figure 7.30 - providesport Element Relationships

<!ELEMENT providesport
(providesidentifier

 , (componentinstantiationref
 | devicethatloadedthiscomponentref
 | deviceusedbythiscomponentref
 | findby
)

)>

7.6.5.1.2.1 providesidentifier

The providesidentifier element identifies which “provides port” on the component is to participate in the connection
relationship. This identifier will correspond with a repid attribute for one of the component ports elements, specified in
the Software Component Descriptor (see Section 7.5).

<!ELEMENT providesidentifier (#PCDATA)>

7.6.5.1.2.2 componentinstantiationref

See Section 7.6.3.1.2, “componentinstantiation,” on page 37 for a description of the componentinstantiationref element.

7.6.5.1.2.3 findby

See Section 7.6.5.1.1.3, “findby” for a description of the findby element. The namingservice element’s name attribute
denotes a complete naming context.

provides port
< < D TD E lem ent> >

provides iden t ifie r
< < D TD E lem ent> >

provides port_grp
< < D TD Se quenc eG roup> >

{1}

c om ponent ins tant ia t ion re f
re fid : C D A TA

< < D TD E lem entE M P TY > >

devic etha t loadedth is c om ponent re f
re fid : C D A TA

< < D TD E lem entE M P TY > > devic eus edby th is c om ponent re f
re fid : C D A TA
us es re fid : C D A TA

< < D TD E lem entE M P TY > >

findby
< < D TD E lem ent> >

provides port_grp_grp
< <D TD C ho i c eG roup >>

{2}
46 Component Document Type Definitions Specification, v1.0

7.6.5.1.2.4 devicethatloadedthiscomponentref

See Section 7.6.5.1.1.4, “devicethatloadedthiscomponentref” for a description of the devicethatloadedthiscomponentref
element.

7.6.5.1.2.5 deviceusedbythiscomponentref

See Section 7.6.5.1.1.5, “deviceusedbythiscomponentref” for a description of the deviceusedbythiscomponentref element.

7.6.5.1.2.6 componentsupportedinterface

The componentsupportedinterface element (see Figure 7.31) specifies a component, which has a supportsinterface
element, that can satisfy an interface connection to a port specified by the usesport element, within a connectinterface
element. This component is identified by a componentinstantiationref or a findby element. The componentinstantiationref
identifies a component within the assembly. The findby element points to an existing component that can be found within
a Naming Service.

Figure 7.31 - componentsupportedinterface Element Relationships

<!ELEMENT componentsupportedinterface
(supportedidentifier
, (componentinstantiationref

 | findby
)

)>

7.6.5.1.2.7 supportedidentifier

The supportedidentifier element identifies which supported interface on the component is to participate in the connection
relationship. This identifier will correspond with the repid attribute of one of the component’s supportsinterface elements,
specified in the Software Component Descriptor.

<!ELEMENT supportedidentifier (#PCDATA)>

com ponentsupportedinterface
<<DTDE lem ent>>

supportedidentif ier
<< DTDE lemen t>>

c ompone ntsuppo rt edint erface_g rp
<<DTDSequenceGroup>>

{1}

com ponentins tantiationref
refid : CDA TA

<<DTDE lem entEM P TY> >
fi ndby

<< DTDE lem ent>>

com ponentsupportedinterface_grp_grp
<<DTDChoiceGroup>>

{2}
Component Document Type Definitions Specification, v1.0 47

7.6.5.1.2.8 componentinstantiationref

See Section 7.6.3.1.2, “componentinstantiation,” on page 37 for a description of the componentinstantiationref element.

7.6.5.1.2.9 findby

See Section 7.6.5.1.1.3, “findby” for a description of the findby element.

7.6.6 externalports
The optional externalports element is a child element of the softwareassembly element (see Figure 7.32). The
externalports element is used to identify the visible ports for the software assembly. The ApplicationManager getport()
operation is used to access the assembly’s visible ports.

<!ELEMENT externalports
(port+
)>

Figure 7.32 - port Element Relationships

<!ELEMENT port
(description?
, (usesidentifier | providesidentifier |

 supportedidentifier)
, componentinstantiationref
)>

<!ELEMENT description (#PCDATA)>

port
<<DTDElement>>

description
<<DTDElem ent>> com ponentins tantiationref

refid : CDATA

<<DTDElementEMPTY>>

port_grp
<<DTDSeq uenceGroup >>

0.. 1
{1}

0.. 1

{3}

uses identifie r
<<DTDElement>>

provides identifier
<<DTDElem ent>>

supportedidentifier
<<DTDElement>>

port _grp_grp
<<DTDChoiceG ro up>>

{2}
48 Component Document Type Definitions Specification, v1.0

7.7 Device Configuration Descriptor
This section describes the XML elements of the Device Configuration Descriptor (DCD) XML file; the
deviceconfiguration element (see Figure 7.33). The DCD is based on the SAD (e.g., componentfiles, partitioning, etc.)
DTD. The intent of the DCD is to provide the means of describing the components that are initially started on the
DeviceManagerComponent node, how to obtain the DomainManagerComponent object reference, connections of services
to components (ServiceComponent(s), DeviceManagerComponent), and the characteristics (file system names, etc.) for a
DeviceManagerComponent. The componentfiles and partitioning elements are optional; if not provided, that means no
components are started up on the node, except for a DeviceManagerComponent. If the partitioning element is specified,
then a componentfiles element has to be specified also.

The deviceconfiguration element’s id attribute is a unique identifier within the domain for the device configuration. The
name attribute is the user-friendly name for the DeviceManagerComponent’s label attribute. The name attribute is
supplied when the id is not user-friendly such as a DCE UUID.

Figure 7.33 - deviceconfiguration Element Relationships

<!ELEMENT deviceconfiguration
(description?
, devicemanagersoftpkg
, componentfiles?
, partitioning?
, connections?
, domainmanager
, filesystemnames?
)>

<!ATTLIST deviceconfiguration
id ID #REQUIRED
name CDATA #IMPLIED>

deviceconfiguration
id : ID
nam e : CDA TA

<< DTDE lem ent>>

description
<<DTDE lem ent>>

devicem anagersoftpkg
<<DTDE l emen t>>

co mpon entfi les
<<DTDE lem ent>>

partit ioning
<< DTDE lem ent>>

connec tions
<<DTDE lem ent>>

dom ainm anager
<<DTDE lem ent>>

filesys tem nam es
<<DTDE lem ent>>

devi cecon figuration_grp
<<DTDSe quenceG roup>>

0..1

{1}

0..1

{2}

0 .. 1{3} 0 .. 1 0..1
{4}

0..1 0..1
{5}

0..1

{6}

0.. 1

{7}

0.. 1
Component Document Type Definitions Specification, v1.0 49

7.7.1 description
The optional description element, of the deviceconfiguration element, may be used to provide information about the
device configuration.

<!ELEMENT description (#PCDATA)>

7.7.2 devicemanagersoftpkg
The devicemanagersoftpkg element refers to the SPD for the DeviceManagerComponent that corresponds to this DCD.
The SPD file is referenced by a localfile element. The referenced file can be used to describe the
DeviceManagerComponent implementation and to specify the usesports for the services (Log(s), etc.) used by the
DeviceManagerComponent. See Section 7.2.1.1.1 for description of the localfile element.

<!ELEMENT devicemanagersoftpkg
(localfile
)>

7.7.3 componentfiles
The optional componentfiles element is used to reference deployment information for components that are started up on
the device. The componentfile element references a Software Package Descriptor (SPD). The SPD, for example, can be
used to describe ServiceComponents, DeviceManagerComponents, a DomainManagerComponent, a Naming Service, and
File Services. See Section 7.6.2 for the definition of the componentfiles element.

7.7.4 partitioning
The optional partitioning element consists of a set of componentplacement elements. A component instantiation is
captured inside a componentplacement element.

<!ELEMENT partitioning
(componentplacement

)*>

7.7.5 componentplacement
The componentplacement element (see Figure 7.34) is used to define a particular deployment of a component. The
componentfileref element identifies the component to be deployed. The componentinstantiation element identifies the
actual component created and its id attribute is a DCE UUID value with the format as specified in Section 7.2.1,
“Software Package.” Multiple components of the same kind can be created within the same componentplacement element.

The optional deployondevice element indicates the device on which the componentinstantiation element is deployed. The
optional compositepartofdevice element indicates the device that the componentinstantiation element is aggregated with
to form an aggregate relationship. When the component is a logical Device, the devicepkgfile element indicates the
hardware device information for the logical Device.
50 Component Document Type Definitions Specification, v1.0

Figure 7.34 - componentplacement Element Relationships

<!ELEMENT componentplacement
(componentfileref
, deployondevice?
, compositepartofdevice?
, devicepkgfile?
, componentinstantiation+
)>

7.7.5.1 componentfileref

The componentfileref element is used to reference a componentfile element within the componentfiles element. The
componentfileref element’s refid attribute corresponds to a componentfile element’s id attribute.

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref

refid CDATA #REQUIRED>

7.7.5.1.1 deployondevice

The deployondevice element is used to reference a componentinstantiation element on which this componentinstantiation
is deployed.

<!ELEMENT deployondevice EMPTY>
<!ATTLIST deployondevice

refid CDATA #REQUIRED>

7.7.5.1.2 devicepkgfile

The devicepkgfile element is used to refer to a device package file that contains the hardware device definition.

<!ELEMENT devicepkgfile
(localfile

c o m p o n e n tp la c e m e n t
< < D TD E le m e n t> >

c o m p o n e n t fi le re f
re fid : C D A TA

< < D TD E le m e n tE M P TY > >

d e p lo y o n d e vic e
r efid : C D A TA

< < D TD E le m e n tE M P TY > >
c o m p o s it e p a rto fd e vic e

re fid : C D A TA

< < D TD E l e m e n tE M P TY > >
d e vic e p k g fi le

t y p e : C D A TA

< < D TD E le m e n t> >

c o m p o n e n tp la c e m e n t_ g rp
< < D TD S e q u e n c e G r ou p > >

{1 }

0 . .10 . .1
{2 }

0 . . 10 . . 1
{3 }

0 . . 10 . . 1
{4}

c o m p o n e n t in s ta n t ia t io n
id : ID

< < D TD E le m e n t> >
1 .. *1 .. *

{5 }
Component Document Type Definitions Specification, v1.0 51

)>
<!ATTLIST devicepkgfile
type CDATA #IMPLIED>

7.7.5.1.2.1 localfile

See 7.2.1.1.1 for a definition of the localfile element.

7.7.5.1.3 compositepartofdevice

The compositepartofdevice element is used when an aggregate relationship exists to reference the componentinstantiation
element that describes the whole Device for which this Device’s componentinstantiation element describes a part of the
aggregate Device.

<!ELEMENT compositepartofdevice EMPTY>
<!ATTLIST compositepartofdevice

refid CDATA #REQUIRED>

7.7.5.1.4 componentinstantiation

The componentinstantiation element (see Figure 7.35) is intended to describe a particular instantiation of a component
relative to a componentplacement element. The componentinstantiation‘s id attribute is a DCE UUID that uniquely
identifier the component. The id is a DCE UUID value as specified in section Software Package. The
componentinstantiation contains a usagename element that is intended for an applicable name for the component. The
optional componentproperties element (see Figure 7.36) is a list of property values that are used in configuring the
component. Section 7.6.3.1.2, “componentinstantiation” defines the property list for the componentinstantiation element,
which contains initial properties values. For a component service type (e.g., Log), the usagename element needs to be
unique for each service type.

Figure 7.35 - componentinstantiation Element Relationships

<!ELEMENT componentinstantiation
(usagename?

 ,componentproperties?
)>

<!ATTLIST componentinstantiation
id ID #REQUIRED>

componentins tant iation
id : ID

<<DTDElement>>

usagename
<<DTDElement>>

componentproperties
<<DTDElement>>

componentinstantiation_grp
<<DTDS equenceGroup>>

0..1{1} 0..1 0.. 1{2} 0.. 1
52 Component Document Type Definitions Specification, v1.0

<!ELEMENT usagename (#PCDATA)>

Figure 7.36 - componentproperties Element Relationships

<!ELEMENT componentproperties
(simpleref
| simplesequenceref
| structref
| structsequenceref
)+ >

<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT simplesequenceref
(values
)>

<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>

<!ELEMENT structref
(simpleref+
)>

<!ATTLIST structref
refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+

)>
<!ATTLIST structsequenceref

refid CDATA #REQUIRED>

c om ponentpropert ies
< < D TD E lem ent> >

s im p le re f
r efid : CD A TA
va lue : C D AT A

< < D TD E lem entE M P TY > >

s im p les equenc ere f
r efid : CD A TA

< < D TD E lem ent> >

s truc t re f
re fid : C D A TA

< < D TD E lem ent> >

c om ponentpropert ies _grp
< < D TD C ho ic eG roup> >

1. .*1 . . *

s t ruc ts equenc ere f
r efid : CD A TA

< < D TD E lem ent> >
Component Document Type Definitions Specification, v1.0 53

<!ELEMENT structvalue
(simpleref+
)>

<!ELEMENT values
(value+
)>

<!ELEMENT value (#PCDATA)>

7.7.6 connections
The connections element in the DCD is the same as the connections element in the SAD in section D.6.5. The connections
element in the DCD is used to indicate the services (Log, etc.) instances that are used by the DeviceManagerComponent
and ServiceComponent(s) in the DCD. The DomainManagerComponent will parse the connections element and make the
connections when the DeviceManagerComponent registers with the DomainManagerComponent. To establish connections
to a DeviceManagerComponent, the DCD’s deviceconfiguration element’s id attribute value is used for the SAD’s
usesport element’s componentinstantiationref element’s refid attribute value.

7.7.7 domainmanager
The domainmanager element (see Figure 7.37) indicates how to obtain the DomainManagerComponent object reference.
See section 7.6.5.1.1.3.1 for description of the namingservice.

Figure 7.37 - domainmanager Element Relationships

<!ELEMENT domainmanager
(namingservice)>)>
<!ELEMENT namingservice EMPTY>
<!ATTLIST namingservice

name CDATA #REQUIRED>

7.7.8 filesystemnames
The optional filesystemnames element indicates the mounted file system names for DeviceManagerComponent’s
FileManager.

<!ELEMENT filesystemnames

domainmanager
<<DTDElement>>

namingservice
name : CDATA

<<DTDElement EM PTY>>

domainmanager_grp
<<DTDSequenceG roup>>
54 Component Document Type Definitions Specification, v1.0

(filesystemname+
)>

<!ELEMENT filesystemname EMPTY>
<!ATTLIST filesystemname

mountname CDATA #REQUIRED
deviceid CDATA #REQUIRED>

7.8 DomainManager Configuration Descriptor
This section describes the XML elements of the DomainManagerComponent Configuration Descriptor (DMD) XML file;
the domainmanagerconfiguration element (see Figure 7.38). The domainmanagerconfiguration element id attribute is a
DCE UUID that uniquely identifies the DomainManagerComponent. The id is a DCE UUID value as specified in section
Software Package.

Figure 7.38 - domainmanagerconfiguration Element Relationships

<!ELEMENT domainmanagerconfiguration
(description?
, domainmanagersoftpkg
, services?

)>
<!ATTLIST domainmanagerconfiguration

id ID #required
name #CDATA #required>

7.8.1 description
The optional description element of the DMD may be used to provide information about the configuration.

<!ELEMENT description (#PCDATA)>

dom ainm anagerc onfigurat ion
id : ID
nam e : CDA TA

< < DTDE lem ent> >

des c ript ion
< < DTDE lem ent> >

dom ainm a nagersoftpk g
< < DTDE lem ent> > s ervic e s

< < DTDE lem ent> >

doma inm anage rconfigura t ion_grp
< < DTDS equenc eG roup> >

0..1

{1}

0..1
{2}

{3}
Component Document Type Definitions Specification, v1.0 55

7.8.2 domainmanagersoftpkg
The domainmanagersoftpkg element refers to the SPD for the DomainManagerComponent. The SPD file is referenced by
a localfile element. This SPD can be used to describe the DomainManagerComponent implementation and to specify the
usesports for the services (Log(s), etc.) used by the DomainManagerComponent. See section 7.2.1.1.1 for description of
the localfile element.

<!ELEMENT domainmanagersoftpkg
(localfile
) >

7.8.3 services
The services element in the DMD is used by the DomainManagerComponent to determine which service (Log, etc.)
instances to use; it makes use of the service element (see Figure 7.39). See section 7.6.5.1.1.3 for a description of the
findby element. See section 7.6.5.1.1.1 for a description of the usesidentifier element.

<!ELEMENT services
(service+
) >

Figure 7.39 - service Element Relationships

<!ELEMENT service
(usesidentifier
, findby
)>

s ervic e
< < DTDE lem ent> >

us es ident ifier
< < DTDE lem ent> >

findby
< < DTDE le ment> >

s ervic e_grp
< < DTDS equenc eG roup> >

{1} {2}
56 Component Document Type Definitions Specification, v1.0

Annex A Software Radio Reference Sheet

The Software Radio specification responds to the requirements set by “Request for Proposals for a Platform Independent
Model (PIM) and CORBA Platform Specific Model (PSM)” (swradio/02-06-02). The original specification (dtc/ 05-10-
02) has been reorganized into 5 volumes, as follows:

Volume 1. Communication Channel and Equipment

This specification describes a UML profile for communication channel. The profile provides definitions for creating
communication channel and communication equipment definitions. The specification also provides radio control facilities
and physical layer facilities PIM for defining interfaces and components for managing communication channels and
equipment for a radio set or radio system. Along with the profile and facilities is a platform specific model transformation
rule set for transforming the communication channel into an XML representation and CORBA interfaces for the radio
control facilities.

Volume 2. Component Document Type Definitions

This specification defines the content of a standard set of Data Type Definition (DTD) files for applications, components,
and domain and device management. The complete DTD set is contained in Section 7, Document Type Definitions. XML
files that are compliant with these DTD files will contain information about the service components to be started up when
a platform is power on and information for deploying installed applications.

Volume 3. Component Framework

This specification describes a UML profile for component framework. The profile provides definitions for applications,
components (properties, ports, interfaces, etc.), services, artifacts, logical devices, and infrastructure domain management
components. In the profile are also library packages that contain interfaces for application, service, logical device, and
infrastructure domain management components. Along with the profile is a platform specific model transformation rule
set for transforming the profile model library interfaces into CORBA interfaces.

Volume 4. Common and Data Link Layer Facilities

This specification describes a set of facilities PIM for application and component definitions. The set of facilities are
common layer facilities and data link layer facilities that can be utilized in developing waveforms and platform
components, which promote the portability of waveforms across Software Defined Radios (SDR). Along with the
facilities PIM is a platform specific model transformation rule set for transforming the facilities into CORBA interfaces.

Volume 5. POSIX Profiles

This specification defines the application environment profiles for embedded constraint systems, based on Standardized
Application Environment Profile - POSIX® Realtime Application Support (AEP), IEEE Std 1003.13-1998.
Component Document Type Definitions Specification, v1.0 57

58 Component Document Type Definitions Specification, v1.0

INDEX

A
Abbreviated terms 3
Acknowledgements 3
action 25
ApplicationFactoryComponent 7
assemblycontroller 41
assemblyimplementation 16
author 9, 18

C
CF Application 10, 24
CF ApplicationFactory 24
CF Device 10
CF Resource 10
childhwdevice 20
code 11
compiler 12
componentfeatures 32
componentfile 36
componentfileref 37, 51
componentfiles 35, 50
componentinstantiation 52
componentinstantiationref 44, 46, 48
componentplacement 37, 50
componentrepid 31
componentsupportedinterface 47
componenttype 31
compositepartofdevice 52
configurationkind 28
Conformance 1
connectinterface 42
connections 42, 54
CORBA Naming Service 38
corbaversion 31

D
Data Type Definition (DTD) files 1
DCE UUID 6
Definitions 1
dependency 13
deployondevice 51
description 9, 11, 18, 19, 23, 35, 50, 55
descriptor 9
descriptor file 6
Device Configuration Descriptor 5
Device Package Descriptor 5
Device Package Descriptor (DPD) 17
Device Profile 5
deviceclass 19
deviceconfiguration 49
devicemanagersoftpkg 50
devicepkg 17
devicepkgfile 51
devicepkgref 20
devicethatloadedthiscomponentref 45, 47
deviceusedbythiscomponentref 45, 47

Document Type Definitions 5
Domain Profile 5
domainfinder 44
domainmanager 54
DomainManagerComponent Configuration Descriptor (DMD) 55
domainmanagersoftpkg 56

E
enumerations 24
ExecutableDeviceComponent 7
externalports 48

F
filesystemnames 54
findby 44, 46, 48

H
hostcollocation 41
humanlanguage 13
hwdeviceregistration 18, 20

I
implementation 10
inputvalue 27
interfaces 33
issues/problems vi

K
kind 24

L
localfile 8

M
manufacturer 19
modelnumber 19

N
namingservice 44, 46
Non-normative References 1
Normative References 1

O
Object Management Group, Inc. (OMG) v
OMG specifications v
os 13

P
partitioning 36, 50
ports 32
processcollocation 41
processor 13
programminglanguage 12
properties 21
Properties Descriptor file 5, 21
propertyfile 6, 8, 11, 19, 34
propertyref 15
propertyvaluesref 16
providesidentifier 46
providesport 45

R
range 24
Component Document Type Definitions Specification, v1.0 59

References 1
resultvalue 27
runtime 15

S
Scope 1
services 56
simple 21
simplesequence 26
softpkg element 6
softpkgref 15
Software Assembly Descriptor (SAD) 16, 34
Software Assembly Descriptor file 5
Software Component Descriptor file 5
Software Package Descriptor (SPD) 6
Software Package Descriptor file 5
Software Package Descriptor files 5
softwarecomponent 30
struct 28
structsequence 29
supportedidentifier 47
supportsinterface 32
Symbols 3

T
Terms 1
Terms and definitions 1
test 27
title 17
typographical conventions vi

U
units 24
usesdevice 16
usesidentifier 43
usesport 43

V
value 23
60 Component Document Type Definitions Specification, v1.0

	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Non-normative References
	3.2.1 Domain XML Profile
	3.2.1.1 Domain XML Profile Files

	4 Terms and Definitions
	5 Symbols and abbreviated terms
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgements

	7 Document Type Definitions
	7.1 Deployment Overview
	7.2 Software Package Descriptor
	7.2.1 Software Package
	7.2.1.1 propertyfile
	7.2.1.2 title
	7.2.1.3 author
	7.2.1.4 description
	7.2.1.5 descriptor
	7.2.1.6 implementation
	7.2.1.7 compiler
	7.2.1.8 programminglanguage
	7.2.1.9 usesdevice
	7.2.1.10 assemblyimplementation

	7.3 Device Package Descriptor
	7.3.1 Device Package
	7.3.1.1 title
	7.3.1.2 author
	7.3.1.3 description
	7.3.1.4 hwdeviceregistration

	7.4 Properties Descriptor
	7.4.1 properties
	7.4.1.1 simple
	7.4.1.2 test
	7.4.1.3 struct
	7.4.1.4 structsequence

	7.5 Software Component Descriptor
	7.5.1 softwarecomponent
	7.5.1.1 corbaversion
	7.5.1.2 componentrepid
	7.5.1.3 componenttype
	7.5.1.4 componentfeatures
	7.5.1.5 interfaces
	7.5.1.6 propertyfile

	7.6 Software Assembly Descriptor
	7.6.1 description
	7.6.2 componentfiles
	7.6.2.1 componentfile

	7.6.3 partitioning
	7.6.3.1 componentplacement
	7.6.3.2 hostcollocation
	7.6.3.3 processcollocation

	7.6.4 assemblycontroller
	7.6.5 connections
	7.6.5.1 connectinterface

	7.6.6 externalports

	7.7 Device Configuration Descriptor
	7.7.1 description
	7.7.2 devicemanagersoftpkg
	7.7.3 componentfiles
	7.7.4 partitioning
	7.7.5 componentplacement
	7.7.5.1 componentfileref

	7.7.6 connections
	7.7.7 domainmanager
	7.7.8 filesystemnames

	7.8 DomainManager Configuration Descriptor
	7.8.1 description
	7.8.2 domainmanagersoftpkg
	7.8.3 services

	Annex A Software Radio Reference Sheet

