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Preface

About the Object Management Group

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies, and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog 
is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)
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Platform Specific Model and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

This specification responds to the requirements set by “Request for Proposals for a Platform Independent Model (PIM) 
and CORBA Platform Specific Model (PSM)” (swradio/02-06-02) of radio infrastructure facilities that can be utilized in 
developing applications such as waveforms, which promotes the portability of applications across platforms such as 
Software Defined Radios (SDR). 

The Component Framework specification is physically partitioned into two major chapters: UML Profile for Component 
Framework and PSM for CORBA IDL and XML. UML Profile for Component Framework defines a language for 
modeling application, service, and domain management components by extending the UML language. The profile is 
specified independently from the underlying middleware technology and is applicable for other domains besides SDR.

This specification also provides a mechanism for transforming the elements of the profile model into the platform specific 
model for CORBA IDL and XML. This mapping definition is given in the PSM (Chapter 8).

Finally, the specification provides different compliance points depending on the role the implementer of this specification 
plays. Those different roles and respective partitioning of this document is given in the Conformance (Chapter 2).

2 Conformance

There are two kinds of conformance with respect to the profile: conformance on the part of a model of a specific 
application and conformance on the part of an MDA tool.

2.1 Conformance by a Model of a Specific Application
A UML model of a specific application either conforms to the profile or it does not. There are no categories of this kind 
of conformance. Such a UML model conforms to the profile if it satisfies all constraints imposed by the profile package.

2.2 Conformance by a Tool

2.2.1 Definition of Terms for Discussion of Tool Conformance
To support the discussion of conformance by a MDA tool, we define two terms: “identified subset of UML 2.0” and “all 
constructs defined by the profile.” The identified subset of UML 2.0 for the profile is the set of packages contained in the 
UML 2.0 Superstructure specification Part 1 (Structure). Part 1 includes the following packages and the transitive closure 
of all packages contained by these packages and of all packages upon which these packages depend:

• Classes

• Composite Structures

• Components

• Deployments
Component Framework Specification, v1.0        1



Hereafter we sometimes use the abbreviated term identified subset to refer to the identified subset of UML 2.0. The term 
all constructs defined by the profile is defined to mean all constructs that are part of the package’s identified subset of 
UML 2.0, plus all extensions to that subset that the profile defines. Thus this term includes UML constructs that are part 
of the identified subset but that are not extended by the profile.

2.2.2 Categories of Tool Conformance
A tool is considered to be a conformant simple modeling tool for the profile if it does both of the following:

•  Supports expression of all constructs defined by the profile, via UML 2.0 notation.

•  Supports the UML 2.0 XMI exchange mechanism for the identified subset and for UML 2.0 profiles.

A tool is considered to be a conformant CORBA/XML-based forward engineering tool for the profile if it does the 
following:

•  Supports the PIM-to-PSM Mapping defined in Chapter 8.

•  Produces applications PSMs that are conformant to the behavior defined in the PIM.

Alternately, if a tool only produces an application skeleton, the skeleton must not make it impossible for a full application 
based on the skeleton to qualify as a conformant application; in other words, the skeleton must be able to form the basis 
of a conformant application.

A forward engineering tool that targets a platform technology other than CORBA/XML can legitimately claim a degree of 
conformance to the profile and PIM derived from the Profile if it conforms to the PIM-to-PSM Mapping and produces 
applications PSMs that are conformant applications to the behavior defined in the PIM, or produces application skeletons 
that can form the basis of conformant applications. In practice this requires the definition of an alternate PIM-PSM 
mapping.

A forward engineering tool of this nature for the platform “X” is considered to be a conformant X-Based forward 
engineering tool for the profile.

2.3 Conformance on the part of a Component Framework PSM
The interfaces and components as defined in Section 7 of this specification are not required to be used for a given 
platform or application. A platform or application uses the interfaces and component definitions that meet their needs. 
Conformance is at the level of usage as follows:

• A PSM implementation (no matter what language) of an interface defined in this specification needs to be conformant 
to the interface definition as described in the specification.

• A PSM implementation (no matter what language) of a component defined in this specification needs to be conformant 
to the component definition (ports, interfaces realized, properties, etc.) as described in the specification.

A component is considered to be a conformant for Component Framework CORBA/XML platform if it does all of the 
following:

• Implements the CORBA interfaces that the component PSM defines

• Implements the XML serialization formats that the component PSM defines

• Implements the semantics that the component PIM defines
2                 Component Framework Specification, v1.0



Note that the component PIM essentially defines the semantics for the CORBA interfaces and XML serialization formats. 
The semantics for a CORBA interface defined in the component PSM are defined by the semantics of the corresponding 
element(s) in the component PIM. It is possible to deduce the corresponding elements in the PIM for such a CORBA 
interface by reversing the PIM-PSM Mapping.

3 References

3.1 Normative References

3.1.1 UML and Profile Specifications

3.1.1.1 UML Language Specification

Unified Modeling Language (UML) Superstructure Specification, Version 2.1.1 
Formal OMG Specification, document number: formal/07-02-03 
The Object Management Group, February 2007 
[http://www.omg.org]

Unified Modeling Language (UML) Infrastructure Specification, Version 2.1.1 
Formal OMG Specification, document number: formal/07-02-04 
The Object Management Group, February 2007 
[http://www.omg.org]

3.1.1.2 OCL Language Specification

Object Constraint Language (OCL) Specification, Version 2.0 
Formal OMG Specification, document number: formal/2006-05-01 
The Object Management Group, May 2006 
[http://www.omg.org]

3.1.1.3 UML Profile for CORBA Specification

UML Profile for CORBA Specification, Version 1.0 
Formal OMG Specification, document number: formal/2002-04-01 
The Object Management Group, April 2002 
[http://www.omg.org]

3.1.1.4 UML Profile for Modeling QoS and FT Characteristics and Mechanisms Specification

UML Profile for Modeling QoS and FT Characteristics and Mechanisms, Version 1.0 
Formal OMG Specification, document number: formal/06-05-02 
The Object Management Group, May 2006 
[http://www.omg.org]
Component Framework Specification, v1.0        3



3.1.1.5 MOF 2.0/XMI Mapping Specification

Meta Object Facility (MOF) 2.0 XMI Mapping Specification, Version 2.1 
Formal OMG Specification, document number: formal/05-09-01 
The Object Management Group, September 2005 
[http://www.omg.org]

3.1.2 CORBA Core Specifications

3.1.2.1 CORBA Specification

Common Object Request Broker (CORBA/IIOP), Version 3.0.3 
Formal OMG Specification, document number: formal/2004-03-01 
The Object Management Group, March 2004 
[http://www.omg.org]

3.1.2.2 Real-time CORBA Specification

Real-time - CORBA Specification, Version 1.2 
Formal OMG Specification, document number: formal/2005-01-04 
The Object Management Group, January 2005 
[http://www.omg.org]

3.1.2.3 CORBA/e Specification

CORBA/e Specification 
Draft Adopted OMG Specification, document number: ptc/06-05-01 
The Object Management Group, May 2006 
[http://www.omg.org]

3.1.3 UML Profile Models

3.1.3.1 UML Profile for Component Framework

UML Profile for Component Framework XMI File 
Formal OMG document number: dtc/2006-04-09 
The Object Management Group, December 2006 
[http://www.omg.org]

3.2 Non-normative References

3.2.1 Domain XML Profile

3.2.1.1 Domain XML Profile Files 

Domain DTDs XML Files 
Formal OMG document number:dtc/2006-04-13 
The Object Management Group, December 2006 
[http://www.omg.org]
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3.2.1.2 Component Document Type Definitions Specification 

Component Document Type Definitions Specification 
Formal OMG document number:dtc/2006-04-07 
The Object Management Group, December 2006 
[http://www.omg.org]

3.2.1.3 Properties SML Schema Definition 

Properties XML Schema File 
Formal OMG document number:dtc/2006-04-12 
The Object Management Group, December 2006 
[http://www.omg.org]

3.2.2 Component Framework IDL
Component Framework IDL Files 
Formal OMG document number:dtc/2006-04-16 
The Object Management Group, December 2006 
[http://www.omg.org]

3.2.3 Common and Data Link Layer Facilities Specification
Common and Data Link Layer Facilities Specification, Version 1.0 
Formal OMG document number: formal/07-03-05 
The Object Management Group, March 2007 
[http://www.omg.org]

3.2.4 UML Profile for Communication Channel and Equipment Specification
Communication Channel and Equipment Specification, Version 1.0 
Formal OMG document number: formal/07-03-02 
The Object Management Group, March 2007 
[http://www.omg.org]

4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

Common Object Request Broker Architecture (CORBA)

An OMG distributed computing platform specification that is independent of implementation languages.

Component

A component can always be considered an autonomous unit within a system or subsystem. It has one or more ports, and 
its internals are hidden and inaccessible other than as provided by its interfaces. A component represents a modular part 
of a system that encapsulates its contents and whose manifestation is replaceable within its environment. A component 
Component Framework Specification, v1.0        5



exposes a set of ports that define the component specification in terms of provided and required interfaces. As such, a 
component serves as a type, whose conformance is defined by these provided and required interfaces (encompassing both 
their static as well as dynamic semantics).

Facility

The realization of certain functionality through a set of well defined interfaces.

Interface Definition Language (IDL)

An OMG and ISO standard language for specifying interfaces and associated data structures.

Logical Device

A software component that is an abstraction of a hardware device it represents.

Mapping

The Specification of a mechanism for transforming the elements of a model conforming to a particular metamodel into 
elements of another model that conforms to another (possibly the same) metamodel.

Metadata

The Data that represents models. For example, a UML model; a CORBA object model expressed in IDL; and a relational 
database schema expressed using CWM.

Metamodel

A model of models.

Meta Object Facility (MOF)

An OMG standard, closely related to UML, that enables metadata management and language definition.

Model

A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA)

An approach to IT system specification that separates the specification of functionality from the specification of the 
implementation of that functionality on a specific technology platform.

Platform

A set of subsystems/technologies that provide a coherent set of functionality through interfaces and specified usage 
patterns that any subsystem that depends on the platform can use without concern for the details of how the functionality 
provided by the platform is implemented.

Platform Independent Model (PIM)

A model of a subsystem that contains no information specific to the platform, or the technology that is used to realize it.
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Platform Specific Model (PSM)

A model of a subsystem that includes information about the specific technology that is used in the realization of it on a 
specific platform, and hence possibly contains elements that are specific to the platform.

Request for Proposal (RFP)

A document requesting OMG members to submit proposals to the OMG's Technology Committee. Such proposals must 
be received by a certain deadline and are evaluated by the issuing task force.

Service

A set of functionality with common characteristics.

Unified Modeling Language (UML)

An OMG standard language for specifying the structure and behavior of systems. The standard defines an abstract syntax 
and a graphical concrete syntax.

UML Profile

A standardized set of extensions and constraints that tailors UML to particular use.
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5 Symbols and abbreviated terms

6 Additional Information

6.1 Changes to Adopted OMG Specifications
The specifications contained in this document require no changes to adopted OMG specifications.

Abbreviation Definition

API Application Program Interface

BIT Built-In Test

CORBA Common Object Request Broker Architecture

HCI Human-Computer Interface

ID Identification, Identifier

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IOR Interoperable Object Reference

ISO International Standards Organization

N/A Not Applicable

OE Operating Environment

OMG Object Management Group

ORB Object Request Broker

OS Operating System

OSI Open System Interconnection

PIM Platform Independent Model

POSIX Portable Operating System Interface

PSM Platform Specific Model

SDR Software Defined Radio

UML Unified Modeling Language

UUID Universally Unique Identifier

XML eXtensible Markup Language
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6.2 Guide to this Specification
This specification consists of two major parts, contained in the following chapters 7 and 8.

Chapter 7 defines the modeling language used in this specification in form of a UML profile for a generic component 
framework.

Chapter 8 contains a description of the mapping process from the Platform Independent Model (PIM) to a Platform 
Specific Model (PSM).

The normative UML profile referenced in Section 3.1.1 is used to generate the class diagrams shown throughout this 
specification.
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7 UML Profile for Component Framework

This non-normative section defines the UML Profile for Component Framework. This profile is an integral part of the 
“PIM and PSM for Software Radio Components.” The set of stereotypes defined in this profile constitutes the core 
language for the definition of the SWRadio PIM and PSM. The current UML Profile for Component Framework extends 
the UML 2.0 meta-language, with emphasis on extensions to the Components package and Deployment package of UML 
2.0.

The goal of the UML Profile for Component Framework is to enable the development of UML tools to support the 
development of applications and systems. The objectives are not only to facilitate the modeling of applications and 
systems, but also to enable the automatic generation of descriptor files (e.g., XML descriptor files) and code (or code 
skeletons) from UML models.

To address the issues of the different actors involved in product developments, the current profile has been developed 
with two main viewpoints in mind: the viewpoint of application and device developers and the viewpoint of 
infrastructure/middleware providers. These two viewpoints define distinct sets of concepts (and stereotypes) that are 
required in different contexts.

To be consistent with the two viewpoints introduced above, the UML Profile for Component Framework is partitioned in 
two main packages: the Applications and Devices package and the Infrastructure package. Each package defines the set of 
concepts and UML stereotypes required to perform a specific role in the development of a product.

The Applications and Devices package defines the set of concepts that are required to develop applications and devices. 
This package mainly contains a set of stereotypes that extends the UML 2.0 meta-classes Component and Interface. This 
set of stereotypes includes Resource and Device components.

The Infrastructure package defines the concepts that are required to deploy services and applications within a platform 
infrastructure, and to manage the domain, services, and devices. This package mainly contains a set of stereotypes that 
extends the UML 2.0 meta-classes Component, Artifact, and Interface. This set of stereotypes includes DomainManager, 
DeviceManager, ApplicationManager, and ApplicationFactory components.

The format for stereotype names (e.g., resourcecomponent) in the profile is all lower case letters. In this specification the 
stereotype names are shown with mixture of upper and lower case letters, where each word starts with an upper case letter 
(e.g., ResourceComponent). 

7.1 Application and Device Components
The Applications and Devices package provides a set of component and interface stereotype definitions that are used for 
the development of applications, logical devices, and components. For application developers all sections are applicable 
except for Device Components section and for device developers all sections are applicable except for Application 
Components section. Figure 7.1 depicts the relationships among the packages within the Application and Device 
Components, which are as follows:

• Base Types - defines basic types for applications, logical devices, and component definitions.

• Properties - defines stereotypes for configure, query, testable, service artifact (capability and capacity) and executable 
properties for components and executable code artifacts.

• Interface & Port Stereotypes - defines stereotypes for interfaces and components. 
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• Resource Components - defines stereotypes for the interfaces and components for the ResourceComponent, which is 
the basic component type for application and device components.

• Device Components - defines stereotypes for the logical device components that represent devices that components are 
deployed on or use within a platform.

• Application Components - defines stereotypes for the ResourceComponents for applications.

Figure 7.1 - Applications and Devices Overview

BaseTypes

Devic e 
Components

Properti es

Resource 
Components

Applicat ion 
Components
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7.1.1 Base Types
The Base Types defines the basic types and exceptions used by multiple components as shown in Figure 7.2.

Figure 7.2 - Base Types Overview

7.1.1.1 Any

Description

The Any data type represents a type that can take on any value.

7.1.1.2 BooleanSequence

Description

The BooleanSequence data type is an unbounded sequence of Boolean(s).

7.1.1.3 Character

Description

The Character primitive type is an 8-bit quantity that encodes a single-byte character from any byte-oriented code set.
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Constraints

The Character value is a LiteralCharacter. 

7.1.1.4 CharSequence

Description

The CharSequence data type is an unbounded sequence of Character(s).

7.1.1.5 Double

Description

The Double primitive type is an IEEE double-precision floating point number. See IEEE Standard for Binary Floating-
Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.

Constraints

The Double value is a LiteralDouble.

7.1.1.6 DoubleSequence

Description

The DoubleSequence data type is an unbounded sequence of Double(s).

7.1.1.7 ErrorNumberType

Description

The ErrorNumberType enumeration defines error number information used in various exceptions. 

Attributes

Those enumeration literal names starting with “CF_E” map to the POSIX definitions (starting with “E”) that can be found 
in IEEE Std. 1003.1 1996 Edition. CF_NOTSET is not defined in the POSIX specification. CF_NOTSET is a specific 
value that is applicable for any exception when the method specific or standard POSIX error values are not appropriate.

Enumeration Literal names are: 

CF_NOTSET, CF_E2BIG, CF_EACCES, CF_EAGAIN, CF_EBADF, CF_EBADMSG, CF_EBUSY, 
CF_ECANCELED, CF_ECHILD, CF_EDEADLK, CF_EDOM, CF_EEXIST, CF_EFAULT, CF_EFBIG, 
CF_EINPROGRESS, CF_EINTR, CF_EINVAL, CF_EIO, CF_EISDIR, CF_EMFILE, CF_EMLINK, CF_EMSGSIZE, 
CF_ENAMETOOLONG, CF_ENFILE, CF_ENODEV, CF_ENOENT, CF_ENOEXEC, CF_ENOLCK, CF_ENOMEM, 
CF_ENOSPC, CF_ENOSYS, CF_ENOTDIR, CF_ENOTEMPTY, CF_ENOTSUP, CF_ENOTTY, CF_ENXIO, 
CF_EPERM, CF_EPIPE, CF_ERANGE, CF_EROFS, CF_ESPIPE, CF_ESRCH, CF_ETIMEDOUT, CF_EXDEV
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7.1.1.8 Float

Description

The Float primitive type is an IEEE single-precision floating point number. See IEEE Standard for Binary Floating-Point 
Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.

Constraints

The Float value shall be a LiteralFloat that is an IEEE single-precision floating point number.

7.1.1.9 FloatSequence

Description

The FloatSequence data type is an unbounded sequence of Float(s).

7.1.1.10 InvalidFileName

Description

The InvalidFileName <<exception>>, type of SystemException, indicates an invalid file name. The errorNumber attribute 
indicates the type of error (e.g., CF_ENAMETOOLONG). The String msg attribute provides information describing why 
the filename was invalid.

7.1.1.11 InvalidObjectReference

Description

The InvalidObjectReference <<exception>> indicates an invalid object reference error. 

Attributes

• msg: String 
A msg attribute is supplied for further information on the exception being raised.

7.1.1.12 Long

Description

The Long primitive type, a specialization of Integer primitive type, is a signed integer with a range of –231.. 231 – 1.

Constraints

The Long value shall be a LiteralInteger with a range of –231.. 231 – 1. 

7.1.1.13 LongDouble

Description

The LongDouble primitive type is an IEEE double-extended floating-point number. See IEEE Standard for Binary 
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.
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Constraints

The LongDouble value shall be a LiteralLongDouble that is an IEEE double-extended floating-point number. 

7.1.1.14 LongDoubleSequence

Description

The LongDoubleSequence data type is an unbounded sequence of LongDouble(s).

7.1.1.15 LongLong

Description

The LongLong primitive type, a specialization of Integer primitive type, is a signed integer with a range of -263 .. 263 - 1.

Constraints

The LongLong value shall be a LiteralInteger with a range of -263 .. 263 - 1.

7.1.1.16 LongLongSequence

Description

The LongLongSequence data type is an unbounded sequence of LongLong(s).

7.1.1.17 LongSequence

Description

The LongSequence data type is an unbounded sequence of Long(s).

7.1.1.18 NameVersionCharacteristic

Description

The NameVersionCharacteristic, a StructProperty type, defines a characteristic that consists of a name and a version pair, 
which can be used for runtime, library, and os characteristic definitions.

Attributes

• name: String 
The name attribute identifies the element.

• version: String 
The version attribute identifies the version of the element.

7.1.1.19 Object

Description

The Object represents a type that is a reference to an object instance.
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7.1.1.20 Octet

Description

The Octet primitive type, a specialization of Integer primitive type, is an unsigned integer with a range of 0..255.

Constraints

The Octet value shall be a LiteralInteger with a range of 0..255. 

7.1.1.21 OctetSequence

Description

The OctetSequence data type is an unbounded sequence of octets.

7.1.1.22 ObjectReference

Description

The ObjectReference primitive type, a specialization of String primitive type, is a stringified object reference of an object.

Constraints

The ObjectReference value is a LiteralString. 

7.1.1.23 ObjectRefSequence

Description

The ObjectRefSequence data type is an unbounded sequence of ObjectReference(s).

7.1.1.24 Properties

Description

The Properties, as shown in Figure 7.2, is an unbounded sequence of PropertyValue(s), which is used in defining a 
sequence of id and value pairs.

7.1.1.25 PropertyValue

Description

The PropertyValue is used to hold a property’s value. 

Attributes

• id: String  
The id attribute identifies a specific property of the component.

• value: Any 
The value attribute contains the property's value.
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Constraints

The value attribute shall be either a primitive type (e.g., String, ULong, etc.), primitive sequence (e.g., StringSequence, 
ULongSequence, etc.) or a Properties type.

7.1.1.26 Short

Description

The Short primitive type, a specialization of Integer primitive type, is a signed integer with a range of –215.. 215 – 1.

Constraints

The Short value shall be a LiteralInteger with a range of –215.. 215 – 1. 

7.1.1.27 ShortSequence

Description

The ShortSequence data type is an unbounded sequence of Short(s).

7.1.1.28 StringSequence

Description

The StringSequence data type is an unbounded sequence of Strings.

7.1.1.29 SystemException

Description

The SystemException exception, as shown in Figure 7.2, denotes a type that is used when an exception is raised by an 
operation.

Attributes

• errorNumber: ErrorNumberType  
The errorNumber indicates the type of system error.

• msg: String  
The message attribute is used to add additional information on the error that occurred.

7.1.1.30 ULong

Description

The ULong primitive type, a specialization of Integer primitive type, is an unsigned integer with a range of 0.. 232 – 1.

Constraints

The ULong value shall be a LiteralInteger with a range of 0.. 232 – 1. 
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7.1.1.31 ULongLong

Description

The ULongLong primitive type, a specialization of Integer primitive type, is an unsigned integer with a range of 
0.. (264 - 1).

Constraints

The ULongLong primitive type, a specialization of Integer primitive type, is an unsigned integer with a range of  
0.. (264 - 1). 

7.1.1.32 ULongLongSequence

Description

The ULongLongSequence data type is an unbounded sequence of ULongLong(s).

7.1.1.33 ULongSequence

Description

The ULongSequence data type is an unbounded sequence of ULong(s).

7.1.1.34 UShort

Description

The UShort primitive type, a specialization of Integer primitive type, is an unsigned integer with a range of 0.. 216 – 1.

Constraints

The UShort value shall be a LiteralInteger with a range of 0.. 216 – 1. 

7.1.1.35 UShortSequence

Description

The UShortSequence data type is an unbounded sequence of UShort(s).

7.1.1.36 WChar

Description

The WChar primitive type represents a wide character that can be used for any character set. 

Constraints

The WChar value shall be a LiteralWChar. 
Component Framework Specification, v1.0        19



7.1.1.37 WCharSequence

Description

The WCharSequence data type is an unbounded sequence of WChar(s).

7.1.1.38 WString

Description

The WString primitive type represents a wide character sting that can be used for any character set. 

Constraints

The WString value is a LiteralWString. 

7.1.1.39 WStringSequence

Description

The WStringSequence data type is an unbounded sequence of WString(s).

7.1.1.40 TimeType

Description

The TimeType, as shown in Figure 7.2, denotes a type that represents time.

Attributes

• seconds: ULongLong  
Seconds

• nanoseconds: ULongLong  
Nanoseconds

 Semantics

The TimeType attribute is used to define time. Seconds in the future when an event should occur or in the past when an 
event has occurred. Seconds field is the seconds that have occurred since last synchronization epoch. (Epoch method will 
be defined by instantiating API.) In most cases, the epoch will occur one time when the box is initialized. Nanosecond 
offset from the seconds field (described above) when a future event will occur or past event has occurred.

7.1.2  Literal Specifications
A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled. 
The literal specifications identified in this section are extensions of the UML LiteralSpecification metaclass.
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7.1.2.1 LiteralCharacter

Description

A literal character, an extension of LiteralSpecification, contains a Character-valued attribute.

Attributes

• value : Character

Semantics

A LiteralCharacter specifies a constant Character value.

7.1.2.2 LiteralDouble

Description

A literal double, an extension of LiteralSpecification, contains a Double-valued attribute.

Attributes

• value : Double

Semantics

A LiteralDouble specifies a constant Double value.

7.1.2.3 LiteralFloat

Description

A literal float, an extension of LiteralSpecification, contains a Float-valued attribute.

Attributes

• value : Float

Semantics

A LiteralFloat specifies a constant Float value.

7.1.2.4 LiteralLongDouble

Description

A literal long double, an extension of LiteralSpecification, contains a LongDouble-valued attribute.

Attributes

• value : LongDouble
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Semantics

A LiteralLongDouble specifies a constant LongDouble value.

7.1.2.5 LiteralWChar

Description

A literal wide character, an extension of LiteralSpecification, contains a WChar-valued attribute.

Attributes

• value : WChar

Semantics

A LiteralWChar specifies a constant wide character value.

7.1.2.6 LiteralWString

Description

A literal wide string, an extension of LiteralSpecification, contains a WString-valued attribute.

Attributes

• value : WString

Semantics

A LiteralWString specifies a constant wide string value.

7.1.3 Properties
This section defines the property stereotypes for components. A property is a named value denoting an attribute of a class. 
The property types contained in this package are configure, query, simple, test, structure, and service. All properties are 
based upon primitive data type values (e.g., Character, ULong, string, etc.). The reason for this is two fold: 1) these 
primitive types are supported by distributed component middleware, and 2) the primitive types allow for a generic 
mechanism to be built such as deployment, component interaction, and Human Computer Interface (HCI). All the values 
of a sequence type (simple or structure sequence) are based upon the same property definition, in order to simplify 
processing within an embedded environment. Simple, Structure, and Sequence properties can be used for configuring and/
or querying a component's properties. Test properties are testable properties for a component. There are six subclasses of 
a SimpleProperty which are CapacityProperty, CharacteristicProperty, CharacteristicSelectionProperty, 
InputValueProperty, ResultValueProperty, and ExecutableProperty. The ServiceProperty is used to describe the 
characteristic capabilities and capacities of a Service. The ExecutableProperty is used to describe the executable 
parameters for an executable implementation (e.g., process, thread). The details of each property type are described in the 
following subsections.
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Table 7.1 - Properties Stereotypes

Stereotype Base Class Parent Tags Constraints Description

CapacityProperty Property ServiceProperty, 
SimpleProperty

See constraints 
in section below

Represents capacity 
property.

CharacteristicProperty Property ServiceProperty, 
SimpleProperty

See constraints 
in section below

Represents 
characteristic property.

CharacteristicSelection 
Property

Property ServiceProperty, 
SimpleProperty

See constraints 
in section below

Represents 
characteristic property 
that is a simple list.

CharacteristicSetProperty Property ServiceProperty, 
Property

See constraints 
in section below

Represents a set of 
characteristic properties 
that are of the same 
classification.

ConfigureProperty Property Property stepSize See constraints 
in section below

Represents a 
configurable and 
queryable property.

EnumerationProperty Data Type N/A See constraints 
in section below

Represents a 
enumeration property 
type where the 
enumeration literals 
have an integer value.

ExecutableProperty Property SimpleProperty queryable See constraints 
in section below

Represents an 
executable parameter 
property.

InputValueProperty Property SimpleProperty Represents an input 
value parameter 
property for a test.

<<abstract>>Property Property N/A ID, 
label, maxLatency, 
range, units

See constraints 
in section below

Represents the common 
attributes for all 
property types.

QueryProperty Property Property See constraints 
in section below

Represents a queryable 
property.

ResultValueProperty Property SimpleProperty Represents a result 
value for a test.

<<abstract>>Service 
Property

Property N/A capabilityModel, 
locallyManaged

See constraints 
in section below

Represents 
characteristic or 
capacity property for a 
service.

SimpleProperty Property Property See constraints 
in section below

Represents a Property 
that contains a 
primitive value type.
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7.1.3.1 CapacityProperty

Description

The CapacityProperty as shown in Figure 7.3 is a type of ServiceProperty and SimpleProperty that defines a managed or 
unmanaged dynamic capacity for a ServiceComponent. 

 Constraints

• The CapacityProperty’s locallyManaged attribute default value shall be True. The corresponding OCL is as follows: 
 context CapacityProperty::locallyManaged:Boolean  init: true

• Valid values for the CapacityProperty’s capabilityModel attribute value shall be: “counter” and “quantity.” The  
corresponding OCL is as follows: 

context CapacityProperty  inv validcapabilitymodel: self.capabilityModel = ‘counter’ or  
self.capabilityModel  = ‘quantity’

• CapacityProperty shall have an initial value of ‘quantity.’ The corresponding OCL is as follows:  
context CapacityProperty::capabilityModel:String  init: ‘quantity’

Semantics

CapacityProperty’s type is usually a numeric type (e.g., ULong, Float, etc.).

The meanings of the CapacityProperty's capabilityModel attribute values shall be:

• “counter” - This CapacityModel has a capacity of a counter. The capacity value is decremented by one until zero 
during allocation and incremented by one during deallocation. Allocation fails if the counter is at zero. Example: a 
sound card with 4 output channels.

• “quantity” - This CapacityModel has a certain capacity that can be consumed. The value of the deployment 
requirement value is subtracted from the capacity during allocation and added to the capacity during deallocation. The 
allocation is successful if the capacity has a value that equals or exceeds the value of the deployment requirement. 
Example: memory size.

Other capabilityModel attribute values can be specified. These other specified capabilityModel attribute values may be 
managed at the ManagedServiceComponent level or at an ApplicationFactory level. 

StructProperty Data Type N/A See constraints 
in section 
below.

Represents a struct of 
SimpleProperties.

TestDefProperty Data Type N/A See Constraints 
in section 
below.

Describes a test 
definition type and its 
associated inputs and 
expected results.

TestProperty Property Property See constraints 
in section 
below.

Describes a test 
property.

Table 7.1 - Properties Stereotypes

Stereotype Base Class Parent Tags Constraints Description
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7.1.3.2 CharacteristicProperty

Description

The CharacteristicProperty is a type of ServiceProperty and SimpleProperty that defines a static characteristic for a 
ServiceComponent. 

Constraints

• The CharacteristicProperty’s locallyManaged attribute default value shall be False. The corresponding OCL is as  
follows: 
context CharacteristicProperty::locallyManaged:Boolean init: false

• Valid values for the CharacteristicProperty’s capabilityModel attribute value shall be: “eq,” “ne,” “le,” “ge,” “lt,” “gt,” 
“maximum,” or “minimum.” The corresponding OCL is as follows: 
context CharacteristicProperty         inv validcapabilitymodel: self.capabilityModel in Set { ‘eq,’ ‘ne,’ ‘le,’ ‘ge,’ 
‘lt,’ ‘gt,’ ‘maximum,’ ‘minimum’ }

• CharacteristicProperty shall have an initial value of ‘eq.’ The corresponding OCL is as follows:  
context CharacteristicProperty::capabilityModel:String      init: ‘eq’

Semantics

The meanings of the CharacteristicProperty’s capabilityModel attribute values shall be:

• “eq” - is an equality comparison between the CharacteristicProperty's value attribute and a deployment requirement 
(Infrastructure:: Deployment:: Artifacts::BasicDeploymentRequirement). They are equal if the 
CharacteristicProperty's value equals the deployment requirement. If they are equal, then the CharacteristicProperty 
can satisfy a deployment requirement otherwise it cannot satisfy the deployment requirement.

• “ne” - is a not equal comparison between the CharacteristicProperty’s value attribute and a deployment requirement. 
They are not equal if CharacteristicProperty’s value does not equal the deployment requirement. If they are not equal, 
then the CharacteristicProperty can satisfy a deployment requirement otherwise it cannot satisfy the deployment 
requirement.

• “le” - is a less than or equal comparison between the CharacteristicProperty’s value attribute and a deployment 
requirement. If the deployment requirement is less than or equal to the CharacteristicProperty, then the 
CharacteristicProperty can satisfy a deployment requirement otherwise it cannot satisfy the deployment requirement.

• “ge” - is a greater than or equal comparison between the CharacteristicProperty’s value attribute and a deployment 
requirement. If the deployment requirement is greater than or equal to the CharacteristicProperty, then the 
CharacteristicProperty can satisfy a deployment requirement otherwise it cannot satisfy the deployment requirement 
deployment requirement otherwise it cannot satisfy the deployment requirement.

• “lt” - is a less than comparison between the CharacteristicProperty’s value attribute and a deployment requirement. If 
the deployment requirement is less than the CharacteristicProperty, then the CharacteristicProperty can satisfy a 
deployment requirement otherwise it cannot satisfy the deployment requirement.

• “gt” - is a greater than comparison between the CharacteristicProperty’s value attribute and a deployment requirement. 
If the deployment requirement is greater than the CharacteristicProperty, then the CharacteristicProperty can satisfy a 
deployment requirement otherwise it cannot satisfy the deployment requirement.

• “Minimum” - behaves as “ge”

• “Maximum” - behaves as “le”
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Other capabilityModel attribute values can be specified. These other specified capabilityModel attribute values may be 
managed at the ServiceComponent level or at an ApplicationFactory level. 

7.1.3.3 CharacteristicSelectionProperty

Description

The CharacteristicSelectionProperty is a type of ServiceProperty and SimpleProperty that defines a static characteristic 
for a ServiceComponent. The property contains a list of primitive characteristic values that can be selected from for a 
match.

Constraints

• The CharacteristicSelectionProperty’s locallyManaged attribute default value shall be False. The corresponding OCL 
is as follows: 
context CharacteristicSelectionProperty::locallyManaged:Boolean init: false

• Valid values for the CharacteristicSelectionProperty's capabilityModel attribute value shall be: “selection.” The 
corresponding OCL is as follows: 
context CharacteristicSelectionProperty     inv validcapabilitymodel: self.capabilityModel = ‘selection’

• CharacteristicSelectionProperty shall have an initial value of ‘selection.’ The corresponding OCL is as follows:  
context CharacteristicSelectionProperty::capabilityModel:String init: ‘selection’ 

Semantics

The meanings of the CharacteristicSelectionProperty’s capabilityModel attribute values are:

• “selection” - is an equality/match comparison between any CharacteristicSelectionProperty’s value attribute and a 
BasicDeploymentRequirement (Infrastructure:: Deployment:: Artifacts). They shall be equal/match if any 
SelectionCharacteristicProperty's value equals the deployment requirement. If they are equal/match, then the 
CharacteristicSelectionProperty can satisfy a deployment requirement otherwise it cannot satisfy the deployment 
requirement.

Other capabilityModel attribute values can be specified. These other specified capabilityModel attribute values may be 
managed at the ServiceComponent level or at an ApplicationFactory level. 

7.1.3.4 CharacteristicSetProperty

Description

The CharacteristicSetProperty is a type of ServiceProperty and Property that defines a characteristic that defines the same 
set of characteristics for a ServiceComponent.

 Constraints

• The CharacteristicSetProperty’s locallyManaged attribute default value shall be False. The corresponding OCL is as 
follows: 
context CharacteristicSetProperty::locallyManaged:Boolean init: false

• Valid values for the CharacteristicSetProperty’s capabilityModel attribute value shall be: “selection.”  
The corresponding OCL is as follows: 
context CharacteristicSetProperty        inv validcapabilitymodel: self.capabilityModel = ‘selection’
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• CharacteristicSetProperty shall have an initial value of ‘selection.’ The corresponding OCL is as follows: 
context CharacteristicSetProperty::capabilityModel:String init: ‘selection’

• Each CharacteristicSetProperty’s attribute type shall be a stereotyped as StructProperty.  
The corresponding OCL is as follows: 
context CharacteristicSetProperty          inv: self.allAttributes()->collect( a | a.type.stereotype =  
 ‘StructProperty’)

• Each CharacteristicSetProperty’s attribute type shall be the same type definition.  
The corresponding OCL is as follows: 
context CharacteristicSetProperty           inv: self.allAttributes()->collect( a | a.type)->size() = 1

Semantics

The meanings of the CharacteristicSetProperty’s capabilityModel attribute values are:

• “selection” - is an equality/match comparison between any CharacteristicSetProperty’s value attribute and a 
DeploymentRequirementQualifier (Infrastructure:: Deployment:: Artifacts). They shall be equal/match if any 
CharacteristicSetProperty’s characteristic equals the deployment requirement. If they are equal/match, then the 
CharacteristicSetProperty can satisfy a deployment requirement otherwise it cannot satisfy the deployment 
requirement.

Other capabilityModel attribute values can be specified. These other specified capabilityModel attribute values may be 
managed at the ServiceComponent level or at an ApplicationFactory level. 

7.1.3.5 ConfigureProperty

Description

The ConfigureProperty, a type of Property, indicates a configurable and queryable property. There are five types of 
ConfigureProperty, which are: primitive types, primitive sequence types, EnumerationProperty, StructProperty, and 
StructProperty sequences.

Attributes

•  stepSize: ULong [0..1] 
The stepSize attribute represents the fact that some properties have discrete increments. An example is a tunable 
duplexer, which uses a stepper motor to adjust the tuned frequency.

Constraints

• ConfigureProperty isReadOnly attribute shall be false. The corresponding OCL is as follows:  
 context ConfigureProperty    inv validisreadonly: self.isReadOnly = false 

• The type for ConfigureProperty shall be constrained to be primitive types (e.g., String, ULong, etc.), primitive 
sequence types (e.g., StringSequence, ULongSequence, etc.), EnumerationProperty, and StructProperty types.

Semantics

The ConfigureProperty defines properties associated with the PropertySet interface implementations. The properties 
supported by a component are described in a component’s descriptor.
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7.1.3.6 EnumerationProperty

Description

The EnumerationProperty, an extension of Data Type, as shown in Table 7.1 defines an enumeration type where the 
enumeration literals have an integer value.

Constraints

• The EnumerationProperty attributes’ type shall be of the same integer type (Octet, Short, UShort, Long, ULong, 
ULongLong, LongLong).

• Each EnumerationProperty’s attribute name shall be unique within the EnumerationProperty. The corresponding OCL 
is as follows:  
context EnumerationProperty inv: self.allAttributes()->isUnique(a | a.name)

• Each EnumerationProperty’s attribute values shall be unique within the EnumerationProperty.  
The corresponding OCL is as follows: 
context EnumerationProperty inv: self.allAttributes()->isUnique(a | a.value)

• Each EnumerationProperty’s attribute value shall be in the range of the EnumerationProperty Type. 

Semantics

The EnumerationProperty forms an enumeration type definition. EnumerationProperty is legal for integer type properties 
elements. The EnumerationProperty attributes are enumeration literals, which have an integer value. EnumerationProperty 
attribute values are implied; if not specified, the initial value is 0 and subsequent values are incremented by 1. This allows 
a configure, query, or characteristic property to be expressed as an enumeration with integer values.

7.1.3.7 ExecutableProperty

Description

The ExecutableProperty, a type of SimpleProperty as shown in Table 7.1, defines executable parameters for an 
ExecutableCode element such as a main process.

Attributes

• Queryable : Boolean = True 
The queryable attribute indicates whether or not the ExecutableProperty can be queried for its value. True means the 
property is queryable.

Constraints

• The ExecutableProperty’s value shall be specified.

7.1.3.8 InputValueProperty

Description

The InputValueProperty, a type of SimpleProperty as shown in Table 7.1, provides the capability to define an input 
property for a TestDefProperty. 
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7.1.3.9 Property

Description

The abstract Property is an extension of the UML Property that provides the basic attributes for all properties definitions.

Attributes

• ID : String [0..1]  
The optional ID attribute is a string that represents the identifier for the property.

• maxLatency: TimeType [0..1] 
The maxLatency attribute represents the time needed by an attribute to achieve its proper operating status. An example 
is the gain of an amplifier. The maxLatency indicates the time that the amplifier needs before it attains its operating 
gain. The latency is measured from power-up. 

• range: Range [0..1] 
The optional range attribute indicates the allowable min and max values for value attribute.

• units: String [0..1] 
The optional units attribute indicates the unit of measure for the value attribute.

Types and Exceptions

• Range (min: String, max: String) 
The Range type defines the min and max allowable values for a property. The String value represents a numerical 
value.

Constraints

• The ID attribute when specified shall have precedence over the name attribute for the identification of the Property. 

• The value for the name attribute shall be case sensitive.

Semantics

The name or ID attribute is used for property identification. The name attribute is also used for display purposes. The ID 
is usually not human readable or meaningful such as a Universal Unique IDentifier (UUID) value or an integer.

7.1.3.10 QueryProperty

Description

The QueryProperty, a type of Property as shown in Table 7.1, provides the capability to define a read-only property that 
can be queried at run-time by a control command. It cannot be modified by a control command.

Constraints

• The type for QueryProperty shall be constrained to be primitive types (e.g., String, ULong, etc.), primitive sequence 
types (e.g., StringSequence, ULongSequence, etc.), EnumerationProperty, and StructProperty types.

• The QueryProperty isReadOnly attribute value shall be always set to true. The corresponding OCL is as follows: 
context QueryProperty inv validisreadonly: self.isReadOnly = true.
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7.1.3.11 ResultValueProperty

Description

The ResultValueProperty, a type of SimpleProperty as shown in Table 7.1, provides the capability to define a result 
property for a TestDefProperty.

7.1.3.12 ServiceProperty

Description

The abstract ServiceProperty, as shown in Figure 7.3, defines capability and/or capacity characteristics for a 
ServiceComponent.

Figure 7.3 - ServiceProperty Definition

Attributes

• capabilityModel: String 
The capabilityModel attribute identifies the CapabilityModel to be used for this ServiceProperty. 

• locallyManaged: Boolean 
The locallyManaged attribute indicates whether a Service manages this capability or capacity. A value of True means a 
Service manages the capacity otherwise it does not.

Constraints

• ServiceProperty shall have a value (not null) when the locallyManaged attribute value is false. The corresponding 
OCL is as follows:  
context ServiceProperty      inv requiredValue: self.locallyManaged and self.value.nonEmpty()

ServiceProperty
capabilityModel : String
locallyManaged : Boolean

<<stereotype>>

CapacityProperty
<<stereotype>>

CharacteristicProperty
<<stereotype>>

CharacteristicSelectionProperty
<<stereotype>>

CharacteristicSetProperty
<<stereotype>>

Property
<<stereotype>>SimpleProperty

<<stereotype>>
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Semantics

The ServiceProperty’s capabilityModel attribute indicates the type of capabilityModel to be used to determine if the 
ServiceProperty can satisfy the deployment requirement. 

7.1.3.13 SimpleProperty

Description

The SimpleProperty is a type of Property that defines a primitive data type (e.g., character, ULong, string, etc.).

 Constraints

• The value shall comply with the property type.

• The type shall be limited to the primitive types (Boolean, Character, Float, Double, Long, LongDouble, LongLong, 
ObjectReference, Octet, Short, String, ULong, ULongLong, UShort, WChar, WString) and EnumerationProperty. The 
corresponding OCL is as follows: 
 
def: primTypes : Set = {Boolean, Character, Float, Double, Long, LongDouble, LongLong, ObjectReference, Octet, 
Short, String, ULong, ULongLong, UShort, WChar, WString} 

context SimpleProperty   inv validtype: primTypes->exists( t : self.oclIsTypeOf(t))

• The range attribute min and max values shall be compatible with the type and max is greater than or equal to min. The 
corresponding OCL is as follows: 

context simpleProperty       inv   validrange: self.range.max >= self.range.min                                                                                            
inv validmax: (self.oclIsTypeOf(Boolean) or self.oclIsTypeOf(Character) or self.oclIsTypeOf(ObjectReference) or 
self.oclIsTypeOf(String) or self.oclIsTypeOf(WString) or self.oclIsTypeOf(WChar)) or ((self.oclIsTypeOf(Float) 
and (self.range.max >= 0 or self.range.max <= 255)) or (self.oclIsTypeOf(Double) and (self.range.max >= 0 or 
self.range.max <= 255)) or (self.oclIsTypeOf (Long) and (self.range.max >= -231 or self.range.max <= 231 - 1)) or 
(self.oclIsTypeOf (LongDouble) and (self.range.max >= 0 or self.range.max <= 255)) or (self.oclIsTypeOf(Lon-
gLong) and (self.range.max >= -263 or self.range.max <= 263 - 1)) or (self.oclIsTypeOf(Octet) and (self.range.max 
>= 0 or self.range.max <= 255)) or (self.oclIsTypeOf(Short) and (self.range.max >= -215 or self.range.max <= 215 - 
1)) or (self.oclIsTypeOf(ULong) and (self.range.max >= 0 or self.range.max <= 232 - 1)) or (self.oclIsTy-
peOf(ULongLong) and (self.range.max >= 0 or self.range.max <= 264 - 1)) or (self.oclIsTypeOf(UShort) and 
(self.range.max >= 0 or self.range.max <= 216 - 1)))  
inv validmin: (self.oclIsTypeOf(Boolean) or self.oclIsTypeOf(Character) or self.oclIsTypeOf(ObjectReference) or 
self.oclIsTypeOf(String) or self.oclIsTypeOf(WString) or self.oclIsTypeOf(WChar)) or ((self.oclIsTypeOf(Float) 
and (self.range.min >= 0 or self.range.min <= 255)) or (self.oclIsTypeOf(Double) and (self.range.min >= 0 or 
self.range.min <= 255)) or (self.oclIsTypeOf (Long) and (self.range.min >= -231 or self.range.min <= 231 - 1)) or 
(self.oclIsTypeOf (LongDouble) and (self.range.min >= 0 or self.range.min <= 255)) or (self.oclIsTypeOf(Lon-
gLong) and (self.range.min >= -263 or self.range.min <= 263 - 1)) or (self.oclIsTypeOf(Octet) and (self.range.min 
>= 0 or self.range.min <= 255)) or (self.oclIsTypeOf(Short) and (self.range.min >= -215 or self.range.min <= 215 - 
1)) or (self.oclIsTypeOf(ULong) and (self.range.min >= 0 or self.range.min <= 232 - 1)) or (self.oclIsTy-
peOf(ULongLong) and (self.range.min >= 0 or self.range.min <= 264 - 1)) or (self.oclIsTypeOf(UShort) and 
(self.range.min >= 0 or self.range.min <= 216 - 1)))

• The value shall comply with the range when the type is a numeric. The corresponding OCL is as follows: 
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context SimpleProperty      inv validvaluerange: (self.oclIsTypeOf(Boolean) or self.oclIsTypeOf(Character) or 
self.oclIsTypeOf(ObjectReference) or self.oclIsTypeOf(String) or self.oclIsTypeOf(WString) or self.oclIsTy-
peOf(WChar)) or ((self.oclIsTypeOf(Float) or self.oclIsTypeOf(Double) or self.oclIsTypeOf (Long) or self.oclIsTy-
peOf (LongDouble) or self.oclIsTypeOf(LongLong) or self.oclIsTypeOf(Octet) or self.oclIsTypeOf(Short) or 
self.oclIsTypeOf(ULong) or self.oclIsTypeOf(ULongLong) or self.oclIsTypeOf(UShort)) and (self.value <= 
self.range.max and self.value >= self.range.min)) 

7.1.3.14 StructProperty

Description

The StructProperty is a type that contains a list of SimpleProperties.

Constraints

• Each StructProperty’s attribute name must be unique within the StructProperty. The corresponding OCL is as follows:  
context StructProperty     inv: self.allAttributes()->isUnique(a | a.name)

• Each StructProperty’s attribute shall be a SimpleProperty or primitive type. The corresponding OCL is as follows:  
context StructProperty     inv: self.allAttributes()->forAll(a | a.stereotype.name = ‘SimpleProperty’ or  
primTypes->exists( t : a.oclIsTypeOf(t)))

• The multiplicity for each StructProperty’s attribute shall be one. The corresponding OCL is as follows:  
context StructProperty      inv: self.allAttributes()->forAll(a | a.size = 1)

7.1.3.15 TestDefProperty

Description

The TestDefProperty, a type of Data Type as shown in Table 7.1, provides the capability to define the input parameters for 
the test and the results that can be returned for a test.

Constraints

• The attribute shall be InputValueProperty or ResultValuePoperty stereotypes. The corresponding OCL is as follows: 
context TestDefProperty   inv: self.all Attributes()->forAll(a | a.stereotype.name = ‘InputValueProperty’ or 
a.stereotype.name = ‘ResultValueProperty’)

• There shall be at least one ResultValueProperty attribute defined. The corresponding OCL is as follows: 
context TestDefProperty    inv: self.allAttributes()->exists(a | a.stereotype.name = ‘ResultValueProperty’)

• Each Attribute name shall be unique. The corresponding OCL is as follows: 
context TestDefProperty    inv: self.allAttributes()->isUnique(a | a.name)

• Each Attribute value shall be specified (not null). The corresponding OCL is as follows: 
context TestDefProperty    inv: self.allAttributes()->forAll(a | a.value->notEmpty())

7.1.3.16 TestProperty

Description

The TestProperty, a type of Property as shown in Table 7.1, provides the capability to define the input parameters for the 
test and the results that can be returned for a test.
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Constraints

• The type for a TestProperty shall be stereotype as TestDefProperty.

• The ID attribute is mandatory for a TestProperty.

• The ID attribute shall be an unsigned long string value.

7.1.4 Interface and Port Stereotypes
This section defines the port, property, and interface stereotypes for interfaces and components as depicted in Table 7.2. 
Port stereotypes categorize the function of the various ports within a component and the type of interfaces associated with 
these ports. Interface stereotypes categorize the type of interface provided by or used by components. Property stereotypes 
are defined for interface and component attributes to indicate the type of property visually and how the property is going 
to be managed. These stereotypes are used to define elements in the UML Profile for Component Framework, PIM 
Facilities, and by application and device component developers.

Table 7.2  - Interface & Port Stereotypes

Stereotype Base 
Class

Parent Tags Constraints Description

Constant Property N/A N/A isStatic is true. Represents a static property that is 
visible.

ControlPort Port Port Only associated with 
IControl interfaces.

Represents a port for control 
management.

DataControlPort Port Port Only associated with 
IDataControl interfaces.

Represents a port that sends or receives 
data with control using an 
IDataControl Interface

DataPort Port Port Only associated with IData 
interfaces.

Represents a port that sends or receives 
data using an IDATA interface

Exception Classifier Represents an exception type that is 
raised by an operation and defined in 
an interface or package.

IControl Interface   Provides the mechanism for sending or 
receiving control

IData Interface Provides the mechanism to send data.

IDataControl Interface Provides the mechanism to send data 
with control.

IStream Interface Provides the mechanism to manage 
streams

IStreamControl Interface Provides the mechanism to manage 
streams that contain control 
information in addition to user data

Oneway Operation The operation may not 
have any return parameters 
or exceptions.

Represents an asynchronous interaction 
between a caller and a receiver where 
the caller proceeds immediately after 
making the call.
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7.1.4.1 RequiresPort

Description

The RequiresPort defines a port that uses a specific service.

Attributes

• connectionThreshold: ULong 
The ConnectionThreshold attribute determines the number of connections allowed for a requires port.

7.1.4.2 StreamPort

Description

The StreamPort defines a streaming port that receives or sends continuous data.

Attributes

• sap: ULong 
The sap (Service Access Point) attribute contains a SAP identifier

• address: OctetSequence 
The address attribute contains address information.

Port Port N/A A port can only be 
associated with one 
interface type.

Represents a port with an interface 
type constraint.

ProvidesPort Port Port isService is true. Indicates a port that provides a specific 
type of service.

ReadOnly Property N/A IsReadOnly = True Represents a queryable property for an 
interface or component that has an 
associated get operation.

ReadWrite Property N/A IsReadOnly = False Represents a configurable and 
queryable property for an interface or 
component that has associated set and 
get operations.

RequiresPort Port Port connection
Threshold

isService is false. Indicates a port that requires a specific 
type of service.

ServicePort Port Port Represents a port that provides or uses 
a Service

StreamControl 
Port

Port Port SAP, 
Address

Only associated with 
IStreamControl interfaces.

Represents a port that sends or receives 
a continuous data stream, with 
occasional control information

StreamPort Port Port SAP, 
Address

Only associated with 
IStream interfaces.

Represents a port that sends or receives 
continuous streaming of data

Table 7.2  - Interface & Port Stereotypes

Stereotype Base 
Class

Parent Tags Constraints Description
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Constraints

•  The StreamPort shall only be associated with IStream interfaces.

7.1.5 Resource Components
This section defines the interfaces for a ResourceComponent along with component stereotypes. The Resource 
Component stereotypes are extensions of the UML 2.0 Component (UML2.0::Components::BasicComponents) classifiers 
as described in Section 7.1.5.2. Figure 7.4 depicts the base interfaces used in defining software components for 
applications and logical devices. The following subsection describe the details of these base interfaces (7.1.5.1), which are 
management interfaces for components along with the component stereotypes (7.1.5.2). 

7.1.5.1 Resource Components Interfaces

This section defines the resource component modelLibrary interfaces contained in the profile definition as shown in 
Figure 7.4, which are: ComponentIdentifier, ControllableComponent, LifeCycle, PortConnector, PortSupplier, 
PropertySet, Resource, ResourceFactory, and TestableObject that are described in the following subsections. These 
interfaces provide basic management interfaces for components.

Figure 7.4 - Resource Interfaces Overview

Types and Exceptions

• <<exception>>UnknownProperties (invalidProperties : Properties) 
The UnknownProperties <<exception>> indicates a set of properties unknown by a component.

7.1.5.1.1 ComponentIdentifier

Description

The ComponentIdentifier interface defines the identifier operation for a component.

Attributes

• <<readonly>>identifier: String 
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The unique identifier for a component.

7.1.5.1.2 ControllableComponent

Description

The ControllableComponent interface defines the generic operations for controlling a component.

Attributes

• <<readonly>>started: Boolean 
The started attribute indicates if a component has been started or not. A value of True indicates the start has been 
performed successfully. A value of False means stop mode of operation. 

Operations

• start(): {raises = (StartError)} 
The start operation is provided to command a component implementing this interface to start internal processing. The 
start operation puts the component in an operating condition. The behavior when entering into an operating condition 
is component implementation specific. The component implementation’s current internal state (e.g., current settings of 
data structures, memory allocations, hardware device configurations, etc.) is used as the operational starting point. 
This operation does not return a value. The start operation shall raise the StartError exception if an error occurs while 
starting the component. 

• stop(): {raises = (StopError)} 
The stop operation is provided to command a component implementing this interface to stop internal processing. The 
stop operation disables all current operations and puts a component in a non-operating condition. The behavior when 
exiting the operating state is component implementation specific. This operation does not return a value. The stop 
operation shall raise the StopError exception if an error occurs while stopping the component.

Types and Exceptions

• <<exception>>StartError 
The StartError, a type of SystemException, indicates that an error occurred during an attempt to start the Resource. The 
error number value (e.g., CF_EDOM, CF_EPERM, CF_ERANGE) and message is component-dependent, providing 
additional information describing the reason for the error.

• <<exception>>StopError 
The StopError, a type of SystemException, indicates that an error occurred during an attempt to stop the Resource. The 
error number (e.g., CF_ECANCELED, CF_EFAULT, CF_EINPROGRESS) and message is component-dependent, 
providing additional information describing the reason for the error.

7.1.5.1.3 LifeCycle

Description

The LifeCycle interface defines the generic operations for initializing or releasing instantiated component-specific data 
and/or processing elements.

Operations

• initialize(): {raises = (InitializeError)} 
The purpose of the initialize operation is to provide a mechanism to set a component to a known initial state (e.g., data 
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structures may be set to initial values, memory may be allocated, hardware devices may be configured to some state, 
etc.). The Initialization behavior is component implementation dependent.  This operation does not return a value. The 
initialize operation shall raise the InitializeError when an initialization error occurs.

• releaseObject(): {raises = (ReleaseError)} 
The purpose of releaseObject is to provide a means by which a component may be removed. The releaseObject 
operation shall release all internal memory allocated by the component. The releaseObject operation shall remove the 
component from the Operating Environment (OE). This operation does not return a value. The releaseObject operation 
shall raise the ReleaseError when a release error occurs.

Types and Exceptions

• <<exception>>InitializeError(errorMessage: StringSequence) 
The InitializeError exception indicates that an error occurred during component initialization. The errorMessage 
attribute is component-dependent and provides additional information describing why the error occurred.

• <<exception>>ReleaseError(errorMessage: StringSequence) 
The ReleaseError exception indicates that an error occurred during component releaseObject. The errorMessage 
attribute is component-dependent and provides additional information describing why the error occurred.

7.1.5.1.4 PortConnector

Description

The PortConnector interface provides operations for managing associations between ports. The PortConnector interface is 
used to connect a requires port to a provides port.

Operations

• connectPort(in requiredPortName: String, in connection: Object, in 
connectionId: String): {raises = (InvalidPort, OccupiedPort)} 
The connectPort operation shall make a connection to a component’s provides port identified by its input parameters. 
This operation does not return a value. The connectPort operation shall support all of the requires ports identified in the 
component’s descriptor. The connectPort operation shall raise InvalidPort when connection is an invalid connection 
for this Port. The connectPort operation shall raise OccupiedPort when unable to accept the connections because the 
Port is already fully occupied.

• disconnectPort (in requiredPortName: String, in connectionId: String): {raises = (InvalidPort)} 
The disconnectPort operation shall break the connection to the component. The connection is identified by 
requiredPortName and connectionId. The disconnectPort operation shall raise InvalidPort when the requiredPortName 
or connectionId passed to disconnectPort is not connected or associated with the component. This operation does not 
return a value.

Types and Exceptions

• <<exception>>InvalidPort ( errorCode: UShort, msg: String) 
The InvalidPort exception indicates one of the following errors has occurred in the specification of a Port association: 
errorCode 1 means the connection (Provides Port) component is invalid or illegal object reference 
errorCode 2 means the connectionId is not known (not used by this Port) 
errorCode 3 means the Requires Port name does not exist for this component

• <<exception>>OccupiedPort 
The OccupiedPort exception indicates the Port is unable to accept any additional connections. 
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Constraints

• The PortConnector interface shall support all the uses or requires ports as specified in the component’s descriptor that 
realizes this interface.

Semantics

A component realizes operations for transferring data and control. The component also establishes the meaning of its data 
and control values. Examples of how components may use ports include: push or pull, synchronous or asynchronous, 
mono- or bi-directional, and whether to use flow control (e.g., pause, start, stop). The nature of PortConnector, fan-in, 
fan-out, or one-to-one is component dependent. A requires port may support several connections. How components’ ports 
are connected is described in a component assembly descriptor. The input connectionId is a unique identifier used by 
disconnectPort when breaking this specific connection from the requires port identified by the input requiredPortName. 
The connectionId is unique at the requires port level.

7.1.5.1.5 PortSupplier

Description

This interface provides the getProvidesPorts operation for components that have provides ports.

Operations

• getProvidesPorts(inout ports: PortSequence): {raises = ( UnknownPorts )} 
The getProvidesPorts operation provides a mechanism to obtain a component’s provides ports in form of a sequence of 
name/value pairs, where each name corresponds to a provides port’s name and the corresponding value is the provides 
port reference to be returned. The getProvidesPorts operation shall return all the component provides ports if the ports 
argument is zero size. The getProvidesPorts operation shall return only those provides ports specified in the ports 
argument if the ports argument is not zero size. The getProvidesPorts operation shall support all of the provides ports 
identified in the component’s descriptor. The getProvidesPorts operation shall raise UnknownPorts when one or more 
provides port names being requested are not known by the component.

Types and Exceptions

• PortType (name: String, providesPort: Object) 
PortType defines a structure that associates a provides name with a provides port reference.

• PortSequence 
PortSequence provides an unbounded sequence of PortType.

• <<exception>>UnknownPorts (invalidPorts: StringSequence) 
The UnknownPorts exception is raised when one or more provides ports being requested are not known by the 
component. The invalidPorts attribute returned indicates the requested provides ports that were invalid.

Constraints

• The PortSupplier interface shall support all the provided interfaces as specified in the component’s descriptor that 
realizes this interface.
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7.1.5.1.6 PropertySet

Description

The PropertySet interface defines configure and query operations to access component properties/attributes.

Operations

• configure(in configProperties:Properties):{raises=(InvalidConfiguration, 
PartialConfiguration)} 
The configure operation allows id/value pair configuration properties to be assigned to components implementing this 
interface. The configure operation shall assign values to the component’s properties as indicated in the 
configProperties argument. This operation does not return a value. The configure operation shall raise 
PartialConfiguration when some configuration properties were successfully set and some configuration properties 
were not successfully set. The configure operation shall raise InvalidConfiguration when a configuration error occurs 
that prevents any property configuration on the component.

• query(inout configProperties: Properties): {raises = (UnknownProperties)} 
The query operation allows a component to be queried to retrieve its properties. The query operation shall return all the 
component queryable properties if the input configProperties are zero size. The query operation shall return only those 
id/value pairs specified in the input configProperties if the configProperties are not zero size. The query operation shall 
raise UnknownProperties when one or more properties being requested are not known by the component.

Types and Exceptions

• <<exception>>InvalidConfiguration (msg: String, invalidProperties: Properties) 
The InvalidConfiguration exception indicates the configuration of a component has failed (no configuration at all was 
done). The msg attribute is component-dependent, providing additional information describing the reason why the 
error occurred. The returned invalidProperties attribute indicates the properties that were not accepted by the 
component.

• <<exception>>PartialConfiguration (reasons: StringSequence,invalidProperties: 
Properties) 
The PartialConfiguration exception indicates the configuration of a Component was partially successful. The reasons 
attribute is component-dependent, providing additional information describing the reasons why the error occurred. The 
returned invalidProperties attribute indicates the properties that were not accepted by the component.

Constraints

Valid properties for the configure operation shall be ConfigureProperty(s).

Valid properties for the query operation shall be:

• ConfigureProperty and QueryProperty properties, or 

• ServiceProperty properties whose locallyManaged attribute value is True, or 

• ExecutableProperty properties whose queryable attribute value is True.

The value attribute for each PropertyValue in the Properties shall be in its native form as specified by the Property 
definition. 

The PropertySet interface shall support the configure and query type properties as specified in the component’s descriptor 
that realizes this interface.
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The mapping to the ConfigureProperty and QueryProperty types to the ResourceComponent’s configure and query’s 
operation properties parameter are:

1. A SimpleProperty or primitive type corresponds to a PropertyValue item in Properties list. The PropertyValue 
item’s id matches the Configure or Query Property’s name or ID attribute and the PropertyValue item’s value 
matches the Configure or Query Property’s value attribute but is converted to a format that agrees with the 
Configure or Query Property’s type attribute.

2. A SimpleProperty sequence or primitive type sequence corresponds to a PropertyValue item in Properties list. 
The PropertyValue item’s id matches the Configure or Query Property’s name or ID attribute and the 
PropertyValue item's value matches the Configure or Query Property’s values attribute that is converted to a 
primitive sequence type (as described in Section 7.1.1 “Base Types”), which agrees with the Configure or 
Query Property’s type attribute.

3. A StructProperty corresponds to a PropertyValue item in Properties list. The PropertyValue item’s id matches 
the Configure or Query Property’s name or ID attribute and the PropertyValue item’s value contains a 
Properties type, where each StructProperty’s SimpleProperty (id, value) corresponds to a Properties element in 
the list as described in item 1 above. The Properties element list size is based on the number of 
StructProperty’s SimpleProperty items.

4. StructProperty sequence corresponds to a PropertyValue item in Properties list. The PropertyValue item’s id 
matches the Configure or Query Property’s name or ID attribute and the PropertyValue item’s value contains a 
Properties type. The Properties element list size is based on the number of StructSequenceProperty’s 
structValues attribute. Each item in the Properties element also contains a Properties type that is used to 
contain a structValue (StructProperty) as described in item 3 above.

The ExecutableProperty, CapacityProperty, and CharacteristicProperty shall follow the SimpleProperty format for the 
query operation. The CharacteristicSelectionProperty shall follow the SimpleProperty sequence format for the query 
operation. The CharacteristicSetProperty shall follow the StuctProperty sequence format for the query operation.

Semantics

The type of property is known by its name or ID attribute.

7.1.5.1.7 Resource

Description

The Resource interface, as shown in Figure 7.5, provides a common API for the control and configuration of software 
components (applications and device). The Resource is a specialization of the ComponentIdentifier, ControllableObject, 
LifeCycle, PortSupplier, PortConnector, PropertySet, and TestableObject interfaces that are described in the following 
subsections. These interfaces provide basic management interfaces for a component.
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Constraints

Figure 7.5 - Resources Interfaces Overview

A realization of the Resource interface shall result in a specialized clarification of the inherited ControllableObject, 
Lifecycle, and PortConnector interface behaviors that is consistent with the following items and Figure 7.5:

• A StartError exception shall be generated if the start operation from ControllableObject is called before at least one 
call is made to the initialize operation from Lifecycle.

• An InitializeError shall be generated if initialize operation from Lifecycle is called while the Resource component’s 
ControllableObject started attribute is true.

• The behavior of the stop operation from ControllableObject shall maintain the component’s current configuration to 
allow subsequent start operations to resume from configuration present at stop, assuming no other LifeCycle, 
PortConnector, PropertySet, or TestableObject operations are exercised while stopped.

• The disconnectPort operation shall perform any cleanup associated with object being disconnected before completing 
the disconnect operation. The specific cleanup processing is Resource component implementation dependent.

• Use of the releaseObject operation from LifeCycle while the Resource component’s ControllableObject started 
attribute is true shall result in a behavior consistent with first initiating the Resource’s stop operation, then calls to 
disconnectPort on each of the Resource component’s ports, and then the releaseObject behavior itself.

Semantics

The Resource PropertySet implementation is not inhibited by the stop operation. However, the configure behavior impacts 
to the Resource while stopped are limited in scope to updating internal data structures, in preparation for the next start 
operation.

The Resource Port Supplier and Port Connector implementation is not inhibited nor impacted by the stop operation, all 
methods of these two interfaces are supported, behavior unchanged. However, the behavior of the provided ports 
themselves is impacted. The impact of the stop is port implementation specific. The usual case is that port behavior is 
halted upon being stopped (started attribute is false). Resource component usage of connected port capabilities will cease 
and any access to provided port capabilities would result in error notification. An example would be an IO port that, upon 
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being stopped, prevents further data from being pushed out and allows no further data to be pushed in. A notable 
exception would include status providing ports that would remain active even while stopped to maintain good standing 
with observing components.

7.1.5.1.8 ResourceFactory

Description

The ResourceFactory interface provides an optional mechanism for the management of ResourceComponents.

Operations

• createResource(in resourceId: String, in qualifiers: Properties, Return 
ResourceComponent): {raises = (CreateResourceFailure)} 
The createResource operation provides the capability to create a ResourceComponent or retrieve an existing 
ResourceComponent. The resourceId parameter is the identifier for ResourceComponent. The qualifiers are parameter 
values used by the ResourceFactory in creation of the ResourceComponent. The qualifiers may be used to identify, for 
example, specific subtypes of a ResourceComponent created by a ResourceFactory.  
 
If no ResourceComponent exists for the given resourceId, the createResource operation shall create a 
ResourceComponent. otherwise the createResource operation shall return an existing ResourceComponent whose 
identifier attribute matches the input resourceId.The createResource operation shall assign the given resourceId to a 
new ResourceComponent's identifier attribute.  
 
The createResource operation shall raise the CreateResourceFailure exception when it cannot create the 
ResourceComponent and cannot find an existing ResourceComponent that contains the resourceId. 

• releaseResource(in resourceId: String): {raises = (InvalidResourceId)} 
The releaseResource operation provides the mechanism of releasing the Resource in the environment on the server 
side. The releaseResource operation shall release the ResourceComponent from the ResourceFactory as identified by 
the input resourceId parameter when the number of create requests matches the number of release requests for the 
input resourceId. 
 
The releaseResource operation shall raise the InvalidResourceId exception if an invalid resourceId is received.

• Shutdown(): {raises = (ShutdownFailure)} 
The shutdown operation provides the mechanism for releasing the ResourceFactoryComponent from the environment 
on the server side. The shutdown operation results in the ResourceFactoryComponent being unavailable to any 
subsequent calls to its component reference (i.e., it is released from the environment). The shutdown operation shall 
raise the ShutdownFailure exception if unable to terminate the ResourceFactoryComponent.

Types and Exceptions

• <<exception>>CreateResourceFailure 
The CreateResourceFailure exception, a type of System Exception, indicates that the createResource operation failed 
to create the Resource. The error number indicates an ErrorNumberType value (e.g., CF_NOTSET, CF_EBADMSG, 
CF_EINVAL, CF_EMSGSIZE, CF_ENOMEM). The message is component-dependent, providing additional 
information describing the reason for the error.

• <<exception>>InvalidResourceId 
The InvalidResourceId exception indicates the resourceId does not exist in the ResourceFactoryComponent. 
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• <<exception>>ShutdownFailure (msg: String) 
The ShutdownFailure exception indicates that the shutdown method failed to release the ResourceFactoryComponent 
from the operating environment due to the fact the Factory still contains ResourceComponents. The message is 
component-dependent, providing additional information describing why the shutdown failed.

Constraints

The created ResourceComponent’s identifier attribute shall be the resourceId parameter value.

Semantics

A ResourceFactory interface is used to create and release a ResourceComponent.

7.1.5.1.9 TestableObject

Description

The TestableObject interface defines a set of operations that can be used to test component implementations.

Operations

• runTest(in testId:ULong, inout testValues:Properties):{raises=(UnknownTest, 
UnknownProperties)} 
The runTest operation allows components to be “blackbox” tested. This allows Built-In Test (BIT) to be implemented 
and this provides a means to isolate faults (both software and hardware) within the system. The runTest operation shall 
use the testId parameter to determine which of its predefined test implementations should be performed. The 
testValues parameter Properties (id/value pair(s)) shall be used to provide additional information to the 
implementation-specific test to be run. The runTest operation shall return the result(s) of the test in the testValues 
parameter.  
 
The runTest operation shall raise UnknownTest when there is no underlying test implementation associated with the 
input testId given.  
 
The runTest operation shall raise UnknownProperties when the input parameter testValues contains input test 
parameters that are invalid. The UnknownProperties’ invalidProperties attribute contains the invalid inputValues 
properties id(s) that are not known by the component or the value(s) that are out of range.

Types and Exceptions

• <<exception>>UnknownTest 
The UnknownTest exception indicates the requested testId for a test to be performed is not known by the component.

Constraints

The TestableObject interface shall support all the TestProperty(s) as stated in the component’s descriptor that realizes this 
interface. 

The format for a TestProperty’s InputValueProperty(s) and ResultValueProperty(s) for a test shall be as described for a 
SimpleProperty in the PropertySet (Section 7.1.5.1.6). 
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Semantics

The testid parameter corresponds to the name or ID attribute of the TestProperty. Each TestProperty’s InputValueProperty 
maps to the testValues parameter for input to the test. Each TestProperty’s ResultValueProperty maps to the testValues, 
which are the return values for the test being performed.

7.1.5.2 Resource Components Stereotypes

This section defines the resource component stereotypes contained in the profile definition as shown in Table 7.3, which 
are: ResourceComponent, ResourceFactoryComponent, and Component that are described in the following subsections. 
These stereotypes provide the basic component definitions for component developers.

7.1.5.2.1 Component

Description

The Component, as shown in Table 7.3, is extension of the UML component. Figure 7.6 depicts the relationships for any 
software component.

Figure 7.6 - Component M1 Illustration

Table 7.3 - Resource Components Stereotypes

Stereotype Base Class Parent Tags Constraints Description

Component Component N/A See constraints in 
section below

Represents the base definition 
for all Components.

ResourceComponent Component Component See constraints in 
section below

Represents a component of an 
application.

ResourceFactoryComponent Component Component See constraints in 
section below

Manages 
ResourceComponent(s)

ServiceCom ponent
<<servicecomponent>>

ComponentIdentifier
(from  Re sou rc e Co m p on en ts Inte rfa ces)

<< interface>>

ComponentDescriptor
<<descriptor>>

Component
<<component>>1

1+componentDescriptor

1 +spec ifiedComponent

1

*

*

+serviceProvider
*

+serviceUser *

<<requires>>
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M1 Associations

• componentDescriptor: ComponentDescriptor [1] 
A Component has at least one descriptor that describes the component’s characteristics such as ports and properties.

• serviceProvider: ComponentService [*] 
A Component can be optionally associated with zero to many Services.

Constraints

A Component shall realize the ComponentIdentifier interface.

If a component has test properties, then the component shall realize the TestableObject Interface.

If a component has configure and/or query properties, then the component shall realize the PropertySet interface.

If a component has provides ports, then the component shall realize the PortSupplier interface.

If a component has uses ports, then the component shall realize the PortConnector interface.

Semantics

Component shall implement a ConfigureProperty with a name of PRODUCER_LOG_LEVEL when connected to a log 
service. The PRODUCER_LOG_LEVEL ConfigureProperty provides the ability to “filter” the log message output of a 
Component. This property may be configured via the PropertySet interface to output only specific log levels. 

Components shall output only those log records to a LogService that correspond to enabled log level values in the 
PRODUCER_LOG_LEVEL attribute. Log levels that are not in the PRODUCER_LOG_LEVEL attribute are disabled. 
Components shall use their identifier attribute in the log record output to the LogService. Components shall operate 
normally in the case where the connections to a LogService are nil or an invalid reference.

A Component could also take on additional behavior for life cycle management by realizing the LifeCycle interface that 
would be used during deployment and teardown of a component. A Component may also realize the 
ControllableComponent interface to provide overall management control of the component.

7.1.5.2.2 ResourceComponent

Description

The ResourceComponent, as shown in Table 7.3, provides the component definition for software resource component. 
Figure 7.7 depicts the property associations for a ResourceComponent.
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Figure 7.7 - ResourceComponent M1 Illustration

M1 Associations

• configureQueryProperty: ConfigureProperty [*] 
A ResourceComponent may have zero to many configurable and queryable properties.

• readOnlyProperty: QueryProperty [*] 
A ResourceComponent may have zero to many query properties.

• testProperty: TestProperty [*] 
A ResourceComponent may have zero to many test properties.

Constraints

•  The ResourceComponent shall realize the Resource interface.

Semantics

The ResourceComponent configure, query, and start operations are not inhibited by the stop operation.

7.1.5.2.3 Resource Factory Component

Description

The ResourceFactory class, as shown in Table 7.3, provides an optional mechanism for the management of Resources. 
Figure 7.8 depicts the associations for a ResourceFactoryComponent, which are described below.
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Figure 7.8 - ResourceFactoryComponent M1 Illustration

M1 Associations

• createOptionsProperty: ConfigureProperty [*] 
These are the properties that a ResourceFactoryComponent understands and can be used when creating up a Resource.

• namedRegistrar: NamingService  
The NamingService that contains a named ResourceFactoryComponent reference.

• product: Resource [*] 
A ResourceComponent can be created from a ResourceFactoryComponent.

Constraints

The ResourceFactoryComponent shall realize the ResourceFactory interface.

Semantics

A ResourceFactoryComponent is used to create and release a ResourceComponent. When multiple clients have obtained 
a reference to the same ResourceComponent, the ResourceFactoryComponent must not release the ResourceComponent 
until release requests have been received from all the clients that issued the create request. Application and Waveform 
developers are not required to use ResourceFactoryComponents for their application definition. 
ResourceFactoryComponent provides the mechanism of creating separate process threads for each component created in 
the ResourceFactory.

7.1.6 Device Components
The Device Components sections define the set of interfaces and component stereotypes used to communicate and 
manage physical devices. The component stereotypes are depicted in Table 7.4, which are extensions of the UML 
Component. The following subsections describe the details of logical device interfaces (7.1.6.1) and component 
stereotypes (7.1.6.2).
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7.1.6.1 Device Component Interfaces

This section defines the modelLibrary device component interfaces contained in the profile definition as shown in Figure 
7.9, which are: DeviceComposition, Device, LoadableDevice, and ExecutableDevice that are described in the following 
subsections. These interfaces provide basic management interfaces for physical devices.

Figure 7.9 - Device Component Interfaces Definition

Types and Exceptions

• <<exception>>InvalidState (msg:String) 
The InvalidState exception indicates that the device is not capable of the operation being attempted due to its state(s), 
(e.g., admin, operational, or usage).

7.1.6.1.1 CapacityManager

Description

The CapacityManager, as shown in Figure 7.9, defines an interface that provides the mechanisms for managing capacities. 

Operations

• allocateCapacity (in capacities: Properties, return Boolean): {raises = ( 
InvalidCapacity, InvalidState )} 
The allocateCapacity operation provides the mechanism to request and allocate capacity from the DeviceComponent. 
The allocateCapacity operation shall reduce the current capacities of the DeviceComponent based upon the input 
capacities parameter. The allocateCapacity operation is valid when the adminState attribute is UNLOCKED, 
operationalState attribute is ENABLED, and usageState attribute is not BUSY. 
 
The allocateCapacity operation shall set the usageState attribute to BUSY, when the DeviceComponent determines that 
it is not possible to allocate any further capacity. The allocateCapacity operation shall set the usageState attribute to 
ACTIVE, when capacity is being used and any capacity is still available for allocation. 
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The allocateCapacity operation shall return “True” if the capacities have been allocated, or “False” if not allocated. 
 
The allocateCapacity operation shall raise the InvalidCapacity exception when the capacities are invalid or the 
capacity values are the wrong type or ID. 
 
The allocateCapacity operation shall raise the InvalidState exception if the Device’s adminState is not UNLOCKED or 
operationalState is DISABLED when invoked.

• deallocateCapacity (in capacities: Properties): {raises = ( InvalidCapacity, 
InvalidState )} 
The deallocateCapacity operation provides the mechanism to return capacities back to the Device, making them 
available to other users. 
 
The deallocateCapacity operation shall adjust the current capacities of the Device based upon the input capacities 
parameter. The deallocateCapacity operation is valid when the adminState is UNLOCKED or SHUTTING_DOWN 
and operationalState is ENABLED and usageState is not IDLE. 
 
The deallocateCapacity operation shall set the usageState attribute to ACTIVE when, after adjusting capacities, any of 
the Device’s capacities are still being used. 
 
The deallocateCapacity operation shall set the usageState attribute to IDLE when, after adjusting capacities, none of 
the Device’s capacities are being used. 
 
The deallocateCapacity operation does not return any value. 
 
The deallocateCapacity operation shall raise the InvalidCapacity exception when the capacity ID is invalid or the 
capacity value is the wrong type. The InvalidCapacity exception states the reason for the exception. 
 
The deallocateCapacity operation shall raise the InvalidState exception if the Devices adminState is LOCKED, or 
operationalState is DISABLED, or usageState is IDLE when invoked.

Types and Exceptions

• <<exception>>InvalidCapacity (msg: String, capacities: Properties) 
The InvalidCapacity exception indicates the capacities that are not valid for this device.

7.1.6.1.2 Device

Description

The Device, as shown in Figure 7.9, defines an interface that abstracts the underlying hardware. A Device (e.g., logical 
device) interface is a functional abstraction for a set (e.g., zero or more) of hardware devices and provides the following 
attributes and operations:

Attributes

• <<readonly>>label: String 
The readonly label attribute contains the Device’s label. The label attribute is the meaningful name given to a Device. 
The attribute could convey location information within the system (e.g., audio1, serial1, etc.).

• <<readonly>>softwareProfile: String 
The profile descriptor (data/command uses and provides ports, configure and query properties, capacity properties, 
status properties, etc.).
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7.1.6.1.3 DeviceComposition

Description

The DeviceComposition is an interface that provides the capability to construct a composite device definition.

Attributes

• <<readonly>>compositeParts: DeviceComponent [*] 
The readonly compositeParts attribute shall contain a list of DeviceComponents that have been added to 
DeviceComposition or a zero length sequence if the composition is empty (no devices have been added or all have 
been removed).

Operations

• addDevice (in associatedDevice: DeviceComponent):  {raises = ( 
InvalidObjectReference )} 
The addDevice operation provides the mechanism to associate a Device with a DeviceComposition. The addDevice 
operation shall add the input associatedDevice parameter to the compositeParts attribute when the associatedDevice 
does not already exist in the compositeParts attribute. The associatedDevice is ignored when duplicated. This 
operation does not return any value. The addDevice operation shall raise the InvalidObjectReference when the input 
associatedDevice is a nil DeviceComponent reference. 

• removeDevice (in associatedDevice: DeviceComponent): {raises = (  
InvalidObjectReference )} 
The removeDevice operation provides the mechanism to disassociate a DeviceComponent from a DeviceComposition. 
The removeDevice operation shall remove the input associatedDevice parameter from the compositeParts attribute. 
This operation does not return any value. The removeDevice operation shall raise the InvalidObjectReference when 
the input associatedDevice is a nil DeviceComponent reference or does not exist in the compositeParts attribute.

Semantics

The DeviceComposition interface provides composite behavior that can be used to add and remove DeviceComponents 
from a composite relationship. Composite part DeviceComponents use this interface to introduce or remove an 
association between themselves and a DeviceComponent that manages the composition. When the aggregating 
DeviceComponent that manages the DeviceComposition changes state or is being released by the releaseObject operation, 
its associated DeviceComponents are affected. (all DeviceComponents added to the DeviceComposition) 

7.1.6.1.4 ExecutableDevice

Description

The ExecutableDevice interface, as shown in Figure 7.9, extends the LoadableDevice interface by adding execute and 
terminate behavior. 

Attributes

• <<constant>>PRIORITY_ID : String = "PRIORITY" 
The PRIORITY_ID is the identifier for the Executable’s execute options parameters. The value for a priority option 
parameter shall be an unsigned long. 
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• <<constant>>STACK_SIZE_ID: String = "STACK_SIZE" 
The STACK_SIZE_ID is the identifier for the Executable’s execute options parameter. The value for a stack size 
option parameter shall be an unsigned long.

• <<constant>>CREATE_THREAD_REQUEST: String = "CREATE_THREAD" 
The CREATE_THREAD_REQUEST is the identifier for the Executable’s execute options parameter. The value for 
create thread request option shall be an unsigned long that indicates the thread ID to be collocated with. A zero valid 
indicates no thread ID collocation is indicated. A non-zero indicates the thread ID to be collocated with.

• <<constant>>RUNTIME_REQUEST: String = "RUNTIME_REQUEST" 
The RUNTIME_REQUEST is the identifier for the Executable’s execute options parameter. The value for runtime 
request option shall be a string of the runtime name to be executed.

• <<constant>>RUNTIME_OPTIONS: String = "RUNTIME_OPTIONS" 
The RUNTIME_OPTIONS is the identifier for the Executable’s execute options parameter. The value for runtime 
options option shall be a Base-Types::Properties. Each ID/value pair in the Properties represents a runtime option. The 
id indicates the option name and the value is the option value.

Operations

• execute(in name: String, in options: Properties, in parameters: Properties, 
return ProcessID_Type): {raises = (InvalidState, InvalidFunction, 
InvalidParameters, InvalidOptions, InvalidFileName, ExecuteFail)} 
The execute operation provides the mechanism for starting up and executing a software process or thread. A process or 
thread can be used to execute a runtime environment, function, or file. 

• terminate(in processId: ProcessID_Type): {raises = ( InvalidProcess, 
InvalidState )} 
The terminate operation provides the mechanism for terminating the execution of a process or thread on a specific 
device that was started up with the execute operation. The terminate operation shall terminate the execution of the 
process or thread designated by the processId input parameter on the Device. 
 
When the last thread is terminated from a process, the terminate operation should terminate the process. The terminate 
operation shall raise the InvalidState exception if the Device’s adminState is LOCKED or operationalState is 
DISABLED upon invocation. 
 
The terminate operation shall raise the InvalidProcess exception when the processId is not executing on the Device.

Types and Exceptions

• <<exception>>ExecuteFail 
The ExecuteFail exception, a type of SystemException, indicates that the Execute operation failed due to device 
dependent reasons. The ExecuteFail exception indicates that an error occurred during an attempt to invoke the execute 
function on the device. The error number indicates an ErrorNumberType value (e.g., CF_EACCES, CF_EBADF, 
CF_EINVAL, CF_EIO, CF_EMFILE, CF_ENAMETOOLONG, CF_ENOENT, CF_ENOMEM, CF_ENOTDIR). The 
message is component-dependent, providing additional information describing the reason for the error.

• <<exception>>InvalidFunction 
The InvalidFunction exception indicates that a function, as identified by the input name parameter, hasn’t been loaded 
on this device. 
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• <<exception>>InvalidProcess 
The InvalidProcess exception, a type of SystemException, indicates that a process, as identified by the processID 
parameter, is not executing on this device. The error number indicates an ErrorNumberType value (e.g., CF_ESRCH, 
CF_EPERM, CF_EINVAL). The message is component-dependent, providing additional information describing the 
reason for the error.

• <<exception>>InvalidParameters (  invalidParms: Properties ) 
The InvalidParameters exception indicates the input parameters are invalid on the execute operation. The 
InvalidParameters exception is raised when there are invalid execute parameters. Each parameter’s ID and value must 
be a valid string type. The invalidParms attribute is a list of invalid parameters specified in the execute operation.

• <<exception>>InvalidOptions ( invalidOpts: Properties) 
The InvalidOptions exception indicates the input options are invalid on the execute operation. The invalidOpts 
attribute is a list of invalid options specified in the execute operation.

• ProcessID_Type 
This type, a specialization of Long, defines a process number within the system. Process number is unique to the 
Processor operating system that created the process.

Semantics

The execute operation shall execute the function or file identified by the input name parameter using the input parameters 
and options parameters when no runtime or thread options are specified. Whether the input name parameter is a function 
or a file name is implementation-specific.

The execute operation shall pass the input parameters (ID/value string pairs) as arguments (array of strings) to the 
operating system “execute/thread” function, where argument (0) is the function name, argument (1) maps to input 
parameters (0) id and argument (2) maps to input parameters (0) value and so forth. 

The execute operation shall create a thread when the options parameter is CREATE_THREAD_REQUEST is specified. 
The execute operation shall create thread in the same process as the thread ID identified by the 
CREATE_THREAD_REQUEST value when the CREATE_THREAD_REQUEST value is not zero. 

The execute operation shall create a runtime process/thread when the RUNTIME_REQUEST options is specified in the 
options parameter. The execute operation creates the runtime process/thread using the RUNTIME_REQUEST value. The 
execute operation shall pass the RUNTIME_OPTIONS as specified in the input options parameter, the input name, and 
arguments in the form that is compliant with runtime parameters syntax.

The execute operation shall use STACK_SIZE_ID and PRIORITY_ID options, when specified, to set the process/thread 
stack size and priority for the target executable. The execute operation returns a unique processID for the process or 
thread that it created.

The execute operation shall raise the InvalidState exception, if the Device’s adminState is not UNLOCKED or 
operationalState is DISABLED when invoked. The execute operation shall raise the InvalidFunction exception when the 
function indicated by the input name parameter does not exist for the Device (e.g., not loaded on device). The execute 
operation shall raise the InvalidFileName exception when the file name indicated by the input name parameter does not 
exist for the Device (e.g., not loaded on device). The execute operation shall raise the InvalidParameters exception when 
the input parameters parameter item ID or value are not string types. The execute operation shall raise the InvalidOptions 
exception when the input options parameter does not comply with STACK_SIZE_ID, PRIORITY_ID, 
THREAD_CREATE_REQUEST, RUNTIME_CREATE_REQUEST, and RUNTIME_OPTIONS (described in Types 
section below). The execute operation shall raise the ExecuteFail exception when the operating system “execute” function 
for the device is not successful.
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7.1.6.1.5 LoadableDevice

Description

The LoadableDevice interface, as shown in Figure 7.9, extends the Device interface by adding software loading and 
unloading behavior.

Operations

• load(in fs: FileSystem, in filename: String , in loadKind: LoadType): {raises = 
(InvalidState, InvalidLoadKind, InvalidFileName, LoadFail )} 
The load operation provides the mechanism for loading software on a specific device.  
 
The load operation shall load a file on the specified device based upon the input loadKind and fileName parameters 
using the input FileSystem parameter to retrieve the file. 
 
Multiple loads of the same input fileName do not result in an exception or a duplicate load, however the load operation 
should account for this attempt so that the unload operation behavior can be performed. The load operation shall raise 
the InvalidState exception if the Device’s adminState is not UNLOCKED or operationalState is DISABLED upon 
invocation. 
 
The load operation shall raise the InvalidLoadKind exception if the input loadKind parameter is not supported. 
The load operation shall raise the InvalidFileName exception if the file designated by the input filename parameter 
cannot be found. 
 
The load operation shall raise the LoadFail exception if an attempt to load the device is unsuccessful.

• unload(in filename: String): {raises = ( InvalidState, InvalidFileName )} 
The unload operation provides the mechanism to unload software that is currently loaded. The unload operation shall 
unload the application software on the device based on the input fileName parameter. The unload operation shall 
perform the unload when the number of unload requests matches the number of load requests for the input filename. 
 
The unload operation shall raise the InvalidState exception if the adminState attribute is LOCKED or its 
operationalState attribute is DISABLED upon invocation. 
 
The unload operation shall raise the InvalidFileName exception if the file designated by the input filename parameter 
cannot be found.

Types and Exceptions

• <<enumeration>>LoadType ( KERNEL_MODULE,  DRIVER, DLL, EXECUTABLE,SHARED_LIBRARY) 
The LoadType defines the type of load to be performed which are:

• KERNEL_MODULE
• DRIVER
• DLL
• EXECUTABLE, 
• SHARED_LIBRARY 
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• <<exception>>InvalidLoadKind 
The InvalidLoadKind exception indicates that the LoadableDevice is unable to load the type of file designated by the 
loadKind parameter.

• <<exception>>LoadFail ( errorNumber : ErrorNumberType, msg : String) 
The LoadFail exception indicates that the Load operation failed due to device dependent reasons. The LoadFail 
exception indicates that an error occurred during an attempt to load the device. The error number indicates an 
ErrorNumberType value (e.g., EACCES, CF_EAGAIN, CF_EBADF, CF_EINVAL, CF_EMFILE, 
CF_ENAMETOOLONG, CF_ENOENT, CF_ENOMEM, CF_ENOSPC, CF_ENOTDIR ). The message is 
component-dependent, providing additional information describing the reason for the error.

7.1.6.2 Device Component Stereotypes

The component stereotypes are depicted in Table 7.4, which are extensions of the UML Component. The following 
subsections describe the details of logical device interfaces and component stereotypes.

Table 7.4  - Device Components Stereotypes

Stereotype Base Class Parent Tags Constraints Description

DeviceComponent Component Component, 
ServiceComponent

See constraints 
in section 
below

Represents a logical device that 
abstracts the underlying hardware.

DeviceComposition
Component

Component N/A See constraints 
in section 
below

Provides the capability to 
construct composite devices.

DeviceDriver Component N/A Represents a device driver that 
interfaces with the hardware.

ExecutableDevice 
Component

Component LoadableDeviceComponent See constraints 
in section 
below

Manages execution and 
termination of OS processes on a 
device.

LoadableDevice 
Component

Component DeviceComponent See constraints 
in section 
below

Represents a loadable device that 
manages loading behavior on a 
device.
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7.1.6.2.1 DeviceComponent

Description

The DeviceComponent, as shown in Figure 7.10, defines a component that abstracts the underlying hardware. The 
DeviceComponent is a type of Component and ServiceComponent. A DeviceComponent (e.g., logical device) is a 
functional abstraction for a set (e.g., zero or more) of hardware devices.

Figure 7.10 - DeviceComponent M1 Illustration

M1 Associations

• deviceDriver: DeviceDriver [*] 
The device drivers used by the logical device for communicating with the hardware.

Constraints

The DeviceComponent shall support the ServiceProperty capabilities and capacities properties as stated in the Device’s 
component descriptor as specified by the softwareProfile attribute.

If the DeviceComponent has managed service properties (ServiceProperty(s) whose locallyManged attribute value is 
True), then the component shall realize the PropertySet interface.

If the DeviceComponent manages service properties (ServiceProperty(s) whose locallyManged attribute value is True), 
then the component shall realize the CapacityManager interface.

The DeviceComponent shall realize the Device interface.
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Semantics

The managed capacity properties are managed by the logical device through its capacity operations and reflected by its 
state attributes.

The DeviceComponent contains CapacityModel(s) when the DeviceComponent contains ServiceProperty(s) whose 
locallyManaged attribute value is True.

The BasicDeploymentRequirement corresponds to a PropertyValue item in the allocateCapacity or deallocateCapacity 
capacities parameter. The PropertyValue item’s id matches the BasicDeploymentRequirement’s identification and the 
PropertyValue item’s value matches the BasicDeploymentRequirement’s value attribute but is converted into a format that 
agrees with the ServiceProperty’s type attribute.

The DeploymentRequirementQualifier (Infrastructure:: Deployment:: Artifacts) corresponds to a PropertyValue item in 
the allocateCapacity or deallocateCapacity capacities parameter. The PropertyValue item’s id matches the 
DeploymentRequirementQualifier’s identification and the PropertyValue item’s value contains a Properties type, where 
each DeploymentRequirementQualifier’s qualifier (id, value) corresponds to a Properties element in the list. The 
Properties element list size is based on the number of DeploymentRequirementQualifier’s qualifier items. 
DeploymentRequirementQualifier’s qualifier value attribute is converted into a format that agrees with the 
CharacteristicQuery value attribute.

A DeviceComponent can be extended with additional behavior such as the Resource interfaces. A DeviceComponent that 
manages IO communication equipment such as serial and audio would typically be extended by realizing the Resource 
interface. For DeviceComponents that are composite of DeviceComponents, the composite DeviceComponent would 
realize the DeviceComposition interface. For DeviceComponents that are managed they would also be stereotype as 
ManagedServiceComponent that realizes the StateManagement interface. Typically components who manage their 
capacities are managed components.

If the DeviceComponent realizes the StateManagement interface and the LifeCycle interface, then setAdminState 
operation shall become disabled when the releaseObject operation is invoked.

The following behavior is in addition to the LifeCycle releaseObject operation behavior when realized by a 
DeviceComponent.

If a DeviceComponent realizes the DeviceComposition interface, then the releaseObject operation shall call the 
releaseObject operation on all of the DeviceComponents managed by the DeviceComponent (i.e., those 
DeviceComponents that are contained within the DeviceComponent’s compositeParts attribute).

The releaseObject operation shall transition the DeviceComponent’s adminState to SHUTTING_DOWN state when the 
DeviceComponent’s adminState is UNLOCKED, and usageState is not IDLE or the DeviceComponent’s compositeParts 
attribute is not empty of devices.

The releaseObject operation shall transition the DeviceComponent’s adminState to LOCKED when the 
DeviceComponent’s adminState is SHUTTING_DOWN and usageState attribute is IDLE and the DeviceComponent’s 
compositeParts attribute is empty of devices; all composite parts have been removed.

The releaseObject operation shall transition the DeviceComponent’s adminState to LOCKED when the 
DeviceComponent’s adminState is UNLOCKED, and the usageState is IDLE and the DeviceComponent’s compositeParts 
attribute is empty of devices; all composite parts have been removed.

The releaseObject operation shall release the DeviceComponent, when the Device’s adminState transitions to LOCKED, 
ensuring that its usageState is IDLE and any composite parts have been removed.
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If the DeviceComponent is a composite part or child of another DeviceComponent then the releaseObject operation shall 
cause the DeviceComponent to remove itself from the composition DeviceComponent (using the DeviceComposition 
reference provided as an execute property at the construction of the DeviceComponent).

If the DeviceComponent is registered with a DeviceManager, then the releaseObject operation shall unregister the 
DeviceComponent from its DeviceManager.

7.1.6.2.2 DeviceCompositionComponent

Description

The DeviceCompositionComponent is a component that provides the capability to construct a composite device 
definition.

Constraints

The DeviceCompositionComponent shall realize the DeviceComposition interface. 

Semantics

The DeviceCompositionComponent component provides composite behavior that can be used to add and remove 
DeviceComponents from a composite relationship. Composite part DeviceComponents are provided with and use a 
reference to a DeviceCompositionComponent (as an instance of a DeviceComposition interface realization) to introduce 
or remove an association between themselves and a DeviceComponent that manages the composition. When the 
DeviceComponent that manages the DeviceComposition changes state or is being released by the releaseObject operation, 
its associated DeviceComponents are affected (all DeviceComponents added to the DeviceComposition).

7.1.6.2.3 DeviceDriver

Description

The DeviceDriver, as shown in Figure 7.11, represents a component that interfaces with the communication equipment.

Figure 7.11 - DeviceDriver M1 Illustration

M1 Associations

• CommEquipment: CommEquipment [1..*] 
The device element the device driver is managing and controlling.
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7.1.6.2.4 ExecutableDeviceComponent

Description

The ExecutableDeviceComponent, as shown in Figure 7.12, extends the LoadableDeviceComponent by adding execute 
and terminate process/thread behavior.

Figure 7.12 - ExecutableDeviceComponent M1 Illustration

M1 Associations

•  mainProcess: ExecutableCode [*] 
Zero to many MainProcesses may be executed and terminated on a device.

• resourceAdaptor: ResourceComponent [*] 
A ResourceComponent can take on the role of an adaptor that communicates with components that are not 
implemented with a distributive component middleware environment.

Constraints

The ExecutableDeviceComponent shall realize the ExecutableDevice interface.
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7.1.6.2.5 LoadableDeviceComponent

Description

The LoadableDeviceComponent, as shown in Figure 7.13, extends the DeviceComponent component by adding software 
loading and unloading behavior.

Figure 7.13 - LoadableDeviceComponent M1 Illustration

Attributes

• <<characteristicselectionproperty>> loadKind: LoadType[1..*] 
The <<characteristicselectionproperty>> (Application and Device Components::Properties) LoadKind defines the type 
of LoadTypes supported for the LoadableDevice load operation. Valid values are: DLL, DRIVER, EXECUTABLE, 
KERNEL MODULE, and SHARED LIBRARY. The valid values are device specific. 

• <<characteristicsetproperty>> os: NameVersionCharacteristic[1..*] 
The <<characteristicsetproperty>> (Application and Device Components::Properties) os defines the type of Operating 
Systems supported for the LoadableDevice load operation. The OS name values are case sensitive. The value attributes 
are device specific. 

• <<characteristicsetproperty>>runtime: NameVersionCharacteristic[*] 
The <<characteristicsetproperty>> (Application and Device Components::Properties) runtime defines the runtime 
environments supported for the LoadableDevice load operation. The value attributes are device specific.

• <<characteristicsetproperty>>library: NameVersionCharacteristic[*] 
The <<characteristicsetproperty>> (Application and Device Components::Properties) library defines the libraries 
supported for the LoadableDevice load operation. The value attributes are device specific.

M1 Associations

• ObjectCode: ObjectCode [*] 
Zero to many ObjectCodes may be loaded on a device.
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Constraints

The LoadableDeviceComponent shall support the load type capabilities identified in the Device’s component descriptor as 
specified in the softwareProfile attribute.

When a LoadKind characteristic property is not defined for the LoadableDeviceComponent, the load operation shall 
support all load kinds.

The LoadableDeviceComponent shall realize the LoadableDevice interface.

Semantics

The loaded software may be subsequently executed on the LoadableDeviceComponent, if the component is also an 
ExecutableDeviceComponent.

7.1.7 Application Components
This section defines the types (7.1.7.1) and component stereotypes (7.1.7.2) for application components.

7.1.7.1 Application Components Types

The Application Component Types define the types used by some of the Application stereotypes definitions.

Types and Exceptions

• DomainFinderType(name: String, type: String) 
The DomainFinderType is used to specify information about a ServiceComponent that a component such as 
DomainManagerComponent is aware of. The name attribute indicates the name of the ServiceComponent and type 
attribute indicates the type of ServiceComponent (e.g., log service, event service, etc.).

• ResourceFactoryType(resourceFactoryInstantiationRef: String, 
resourceFactoryCreateOptions: ResourceFactoryComponent) 
The ResourceFactoryType, a dataType, specifies the ResourceFactoryComponent instantiation element to use to obtain 
a ComponentInstantiation reference by the resourceFactoryInstantiationRef. The resourceFactoryCreateOptions are 
the options parameter values to be used for the ResourceFactoryComponent create operation.

7.1.7.2 Application Components Stereotypes

The Application Components Stereotypes section defines the set of components used to define applications and 
waveforms. The Application Components stereotypes are depicted in Table 7.5, which are extensions of the UML 
Component (UML2.0::Components::BasicComponents). The following subsections describe the details of these elements.
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Table 7.5  - Applications Stereotypes

Stereotype Base Class Parent Tags Constraints Description

Application Component N/A See 
constraints in 
section below

Represents an assembly of 
ApplicationResources and 
Components.

Application 
Resource 
Component

Component Resource 
Component

See 
constraints in 
section below

Provides a common definition 
for an application’s 
ResourceComponent.

Component 
Instantiation

Property N/A assembler 
Controller,
hostCollocation,
namingService,
process 
Collocation
resourcefactory,

See 
constraints in 
section below

Represents an Application Part.

LinkLayer 
ControlResource

Component WaveformLayer 
Resource

See 
constraints in 
section below

Represents a standard Link 
Layer Control component of the 
OSI layer model.

MediumAccess 
ControlResource

Component WaveformLayer 
Resource

See 
constraints in 
section below

Represents a standard Medium 
Access Control component of 
the OSI layer model.

NeworkLayer 
Resource

Component WaveformLayer 
Resource

See 
constraints in 
section below

Represents a standard Network 
Layer component of the OSI 
layer model.

PhysicalLayer 
Resource

Component WaveformLayer 
Resource

See 
constraints in 
section below

Represents a standard Physical 
Layer component of the OSI 
layer model.

ServiceConnector Connector N/A deviceThatLoaded 
Component 
Instantiation,
domainfinder,
namingService,
serviceComponent
UsedBy 
Component 
Instantiation

See 
constraints in 
section below

Represents a connector to a 
service, interface or 
ServiceComponent.

ServiceComponent 
Instatiation

Property N/A See 
constraints in 
section below

Represents a service component 
within an Application.

Waveform 
Application

Component Application Represents a waveform 
application.

WaveformLayer 
Resource

Component Application 
Resource 
Component

Represents a standard 
component of the OSI layer 
model.
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7.1.7.2.1 Application

Description

The Application, as shown in Figure 7.14, provides a component assembly definition for a set of 
ApplicationResourceComponent(s) and Component(s).

Figure 7.14 - Application M1 Illustration

M1 Associations

• appComponent: ApplicationResource [1..*] 
The set of ApplicationResources that are connected together to form the application assembly.

• loadableComponent: Component [*] 
The set of signal processing components that comprise the application assembly.

Constraints

The Application needs one ComponentInstantiation to be noted as an assembly controller.

The Application shall only be composed of ComponentInstantiations and ServiceComponentInstantiations.

The Application shall have at least one ComponentInstantiation and its type is other than a ResourceFactoryComponent 
type.

A ComponentInstantiation’s resourceFactory resourceFactoryCreateOptions attribute shall have an instance value that 
agrees with the attributes for the referenced ResourceFactoryComponent ComponentInstantiation’s type.

A ComponentInstantiation’s resourceFactory resourceFactoryInstantiationRef shall be to a valid 
ResourceFactoryComponent ComponentInstantiation reference within the Application.

A ServiceConnector is not depicted between ComponentInstantiations’ connections.
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*
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7.1.7.2.2 ApplicationResourceComponent

Description

The ApplicationResourceComponent, a specialization of ResourceComponents shown in Table 7.5, provides a common 
API for control and configuration of an application resource component. Figure 7.15 depicts the associations for an 
ApplicationResourceComponent.

Figure 7.15 - ApplicationResourceComponent M1 Illustration

M1 Associations

• namedRegistrar: NamingService [0..1] 
The optional NamingService that contains a named ApplicationComponent reference.

• loadableComponent: Component [*] 
A loadableComponent may be associated with an ApplicationResourceComponent when the component acts as a 
resourceAdaptor. In this case, the loabableComponent cannot be communicated with unless through the 
resourceAdaptor.

Constraints

An ApplicationResourceComponent shall be registered with a NamingService when a ResourceFactoryComponent does 
not create the ApplicationResourceComponent.

Semantics

ApplicationResourceComponent references are contained in NamingService so the deployment machinery (e.g., 
ApplicationFactory) can obtain the deployed component.

7.1.7.2.3 ComponentInstantiation

Description

The ComponentInstantiation, an extension of Property, defines a specific component type for an Application’s part.
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Attributes

• assemblyController: Boolean = False 
The assemblyController indicates whether or not the ComponentInstantiation is acting as the assembly controller for 
the assembly composition. A value of True means the ComponentInstantiation is an assembly controller.

• hostCollocation: String [0..1] 
The hostCollocation attribute identifies the requirement for a ComponentInstantiation on being deployed on the same 
device with other ComponentInstantiations that have the same hostCollocation attribute value.

• processCollocation: String [0..1] 
The processCollocation attribute identifies the requirement for a ComponentInstantiation on being deployed within the 
same process space with other componentInstantiations that have the same processCollocation attribute value.

• namingService: String [0..1] 
The namingService attribute specifies the simple name used by the deployment machinery such as 
ApplicationFactoryComponent in forming the naming context for where the ComponentInstantiation reference is 
placed in a naming service.

• resourceFactory: ResourceFactoryType [0..1] 
The resourceFactory attributes indicates to the deployment machinery such as ApplicationFactoryComponent that the 
ComponentInstantiation is obtained by a ResourceFactoryComponent. 

Constraints

The ComponentInstantiation’s assemblyController attribute value shall only be True when the ComponentInstantiation 
type is a ResourceComponent or Component type.

The ComponentInstantiation’s type shall be a ResourceFactoryComponent, ResourceComponent, Component, or 
Application.

The ComponentInstantiation shall have a value for either namingService or resourceFactory attribute.

The ComponentInstantiation’s value shall be an instance value that agrees with the attributes for the 
ComponentInstantiation’s type.

7.1.7.2.4 LinkLayerControlResource

Description

The LinkLayerControlResource, as shown in Table 7.5, specializes the WaveformLayerResource stereotype. The 
LinkLayerControlResource stereotype provides a mechanism to realize a standard Link Layer Control component of the 
OSI layer model. A LinkLayerControlResource is associated with a physical layer resource or a medium access control 
resource as shown in Figure 7.16. The standard facilities of a Link Layer Control API are defined in reference 3.2.3.
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Figure 7.16 - LinkLayerControlResource M1 Illustration

M1 Associations

• physicalLayerResource : WFPhysicalLayerResource [0..1] 
LinkLayerControlResource may communicate directly with PhysicalLayerResource, by-passing the Medium Access 
layer. This communication is only in the control plane. In other scenarios where a Medium Access layer is not present 
in the waveform, this association encompasses both control and data plane communication between those two 
components. (Vertical Communication)

• mediumAccessControlResource : WFMediumAccessControlResource [0..1] 
LinkLayerControlResource communicates with MediumAccessControlResource, and LinkLayerControlResource 
controls the transmission parameters related to the link establishment and quality. MediumAccessControlResource 
may perform some quality of service related measurements and communicate this to the Link controller. Also, protocol 
data is communicated bi-directionally between those two components. (Vertical Communication)

• networkLayerResource: NetworkLayerResource [1] 
NetworkLayerResource communicates with LinkLayerControlResources.

Constraints

The LinkLayerControlResource shall be associated with a NetworkLayerResource.

The LinkLayerControlResource shall be either associated with a PhysicalLayerResource or a 
MediumAccessControlResource.
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7.1.7.2.5 MediumAccessControlResource

Description

The MediumAccessControlResource, as shown in Table 7.5, specializes the WaveformLayerResource stereotype. The 
MediumAccessControlResource stereotype provides a mechanism to realize a standard Medium Access Control 
component of the OSI layer model. A MediumAccessControlResource is associated with a physical layer resource and 
link layer control resource as shown in Figure 7.17. The standard facilities of a Medium Access Control API are defined 
in reference 3.2.3.

Figure 7.17 - MediumAccessControlResource M1 Illustration 

M1 Associations

• physicalLayerResource : WFPhysicalLayerResource [1] 
PhysicalLayerResource communicates with MediumAccessControlResource, and MediumAccessControlResource 
controls the transmission parameters related to the physical medium. Also, protocol data is communicated bi-
directionally between those two components. (Vertical Communication)

• linkLayerControllerResource : WFLinkLayerControllerResource [1] 
MediumAccessControlResource communicates with LinkLayerControllerResource, and 
LinkLayerControllerResource controls the transmission parameters related to the link establishment and quality. 
MediumAccessController Resource may perform some quality of service related measurements and communicate this 
to the Link controller. Also, protocol data is communicated bi-directionally between those two components. (Vertical 
Communication)

Constraints

A MediumAccessControlResource shall be associated with a PhysicalLayerResource and a LinkLayerControlResource.
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7.1.7.2.6 NetworkLayerResource

Description

The NetworkLayerResource, as shown in Figure 7.18, specializes the WaveformLayerResource stereotype. The 
NetworkLayerResource stereotype provides a mechanism to realize a standard Network Layer component of the OSI layer 
model. A NetworkLayerResource is associated with one or more link layer control resources and can also play the role of 
a gateway/translator as shown in Figure 7.18. The facilities of a network layer component is out of the scope of this 
specification and is not included in the PIM.

Figure 7.18 - NetworkLayerResource M1 Illustration

Associations

• linkLayerControlResource : WFLinkLayerControlResource [1..*] 
A NetworkLayerResource may communicate with one or more Link Layer components within the waveform.

• Gateway/translator: NetworkLayerResource */[1..*] 
A platform may be programmed to act as a waveform bridge / repeater, and in the case the network layer resource 
communicates with other network layer resources to provide gateway/waveform translator functionality. (Horizontal 
Communication).

Constraints

A NeworkLayerResource shall be associated with one or more LinkLayerControlResources.

7.1.7.2.7 PhysicalLayerResource

Description

The PhysicalLayerResource, as shown in Table 7.5, specializes the WaveformLayerResource stereotype. The 
PhysicalLayerResource stereotype provides a mechanism to realize a standard Physical Layer component of the OSI layer 
model. A PhysicalLayerResource is associated with a medium access control or link layer control resource as shown in 
Figure 7.19. The standard facilities of a Physical Layer API are defined in references 3.2.3 and 3.2.4.
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Figure 7.19 - PhysicalLayerResource M1 Illustration

M1 Associations

• MediumAccessControlResource : WFMediumAccessControlResource [0..1] 
PhysicalLayerResource communicates with MediumAccessControlResource, and MediumAccessControlResource 
controls the transmission parameters related to the physical medium. Also, protocol data is communicated bi-
directionally between those two components. (Vertical Communication)

• linkLayerControllerResource : WFLinkLayerControllerResource [0..1] 
PhysicalLayerResource communicates with LinkLayerControllerResource, and LinkLayerControllerResource 
controls the transmission parameters related to the link establishment and quality. Also, protocol data is communicated 
bi-directionally between those two components. (Vertical Communication)

Constraints

A PhysicalLayerResource shall be associated with either a MediumAccessControlResource or a 
LinkLayerControlResource.

7.1.7.2.8 ServiceComponentInstantiation

Description

The ServiceComponentInstantiation, an extension of property, defines a ServiceComponent type for an Application’s part 
so one can show ComponentInstantiations connections to ServiceComponents. These components are not physical part of 
the Application but are platform ServiceComponents used by ComponentInstantiations.

Constraints

The ServiceComponentInstantiation’s type shall be a ServiceComponent stereotype.
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7.1.7.2.9 ServiceConnector

Description

The serviceconnector specifies to the deployment machinery such as ApplicationFactoryComponent on how to obtain the 
ServiceComponent reference that is participating in the connections. ServiceConnector is used for connection to platform 
ServiceComponents and their interfaces that an Application’s ComponentInstantiation is connected to.

Attributes

• deviceThatLoadedComponentInstantiation: String [0..1]

• DomainFinder: DomainFinderType  [0..1]

• namingService: String [0..1] 
The namingService attribute specifies a full naming context that identifies the location of the ServiceComponent 
reference in a naming service. 

• serviceUsedByComponentInstantiation: ServiceComponent [0..1]

Constraints

A ServiceConnector needs to have a value specified for one of its attributes.

7.1.7.2.10 WaveFormLayerResource

Description

The WaveformLayerResource, as shown in Table 7.5, specializes the ApplicationResource stereotype. The 
WaveformLayerResource stereotype provides a mechanism to realize a waveform layer component, should a non-OSI 
layer be required. For standard OSI layers, the stereotypes that specialize the WaveformLayerResource should be used. 

A WaveformLayerResource can perform two types of communication as shown in Figure 7.20. In the horizontal 
communication scenario, a waveform layer component communicates with one or more peer waveform layer components 
that are located in another platform. In the vertical communication scenario, a waveform component communicates with 
other waveform components within the same platform.

Figure 7.20 - WaveformLayerResource M1 Illustration
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 M1 Associations

• DomainA, DomainB: WaveformLayerResource [0..*] 
This association shows the data transfer between two WaveformLayerResources that reside in different platforms. This 
is an example of horizontal communication.

• serviceProvisionPoint, serviceAccessPoint: WaveformLayerResource [0..*] 
This association shows the data transfer between two or more WaveformLayerResources that are in the same 
platforms. This is an example of vertical communication. Service Access Point is defined as an interface or a port on 
the client waveform component through which the client uses a service. Service Provision Point is defined as a port or 
interface on a server providing a service. 

7.2 Infrastructure

7.2.1  Services
This section defines the interfaces and stereotypes for services. The following subsections provide the definitions for 
Services Interfaces, Services Stereotypes, and File Services.

7.2.1.1 Services Interfaces

The following subsections provide the definitions for StateManagement and CapabilityModel(s).

7.2.1.1.1 CapabilityModel

Description

The abstract CapabilityModel (Figure 7.21) provides the ability to determine if a ServiceProperty can satisfy a 
deployment requirement. As shown in Figure 7.21, there are two specializations of a CapabilityModel, which are: 
CharacteristicModel and CapacityModel.

Figure 7.21 - CapabilityModels Definition

M1 Associations

• serviceProperty: ServiceProperty [1..n] 
A ServiceProperty(s) is associated with a CapabilityModel that determines the feasibility of the ServiceProperty(s) 
satisfying a deployment requirement.
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Semantics

A CapabilityModel may be applicable for a set of ServiceProperty(s) depending on the ServiceProperty(s)’ value type. 
For example, a CapabilityModel that compares string types may be applicable for a number of ServiceProperty(s) that are 
of a String type. CapabilityModel(s) are implemented or used by the deployment machinery such as ApplicationFactory(s) 
and ManagedServiceComponent(s).

7.2.1.1.2 CapacityModel

Description

The CapacityModel, as shown in Figure 7.21, provides the ability to manage allocation and deallocation of a 
CapacityProperty. 

Operations

• allocateCapacity (in requiredCapacity: CapabilityType, return Boolean) 
The allocateCapacity operation provides the mechanism to request and allocate capacity. The allocateCapacity 
operation behavior is implementation specific.

• deallocateCapacity (in requiredCapacity: CapabilityType) 
The deallocateCapacity operation provides the mechanism to deallocate capacity. The deallocateCapacity operation 
behavior is implementation specific.

Constraints

A CapacityModel shall be associated with CapacityProperty.

Semantics

The types of CapacityProperty managed by a CapacityModel are usually numeric types. Examples of CapacityModel(s) 
are: decrement and increment counter types and quantity subtraction and addition types.

7.2.1.1.3 CharacteristicModel

Description

The CharacteristicModel, as shown in Figure 7.21, provides the ability to determine the feasibility of a characteristic 
property that is static characteristic property.

Operations

• compare (in requiredcharacteristic: CapabilityType, return Boolean) 
The compare operation provides a generic compare mechanism to determine whether a characteristic can satisfy a 
requiredcharacteristic request. The implementation of the compare operation is implementation specific.

Constraints

A CharacteristicModel shall be associated with characteristic property type.
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Semantics

The types of characteristic property compared by a CharacteristicModel can be any type (e.g., CharacteristicProperty, 
CharacteristicSelectionProperty, and CharacteristicSetProperty). Examples of types of CharacteristicModel(s) are equality 
operators: “eq,” “n,e” “le,” “ge,” “gt,” and “lt” and also selection/matching operators.

7.2.1.1.4 StateManagement

Description

The StateManagement interface, as shown in Figure 7.22, provides the ability to retrieve state information and 
administratively manage a component. The StateManagement interface incorporates aspects of the Administrative, 
Operational, and Usage states described in ISO/IEC International Standard 10164-2.

Attributes

• <<readonly>>adminState: AdminType [0..1] 
The administrative state indicates the permission to use or prohibition against using the component. The adminState 
attribute contains the admin state value. 

• <<readonly>>operationalState : OperationalType 
The readonly operationalState attribute contains the component’s operational state (ENABLED or DISABLED). The 
operational state indicates whether or not a component is functioning.

• <<readonly>>adminStateRequestSupportedCharacteristic : 
AdminRequestSupportedType  = UNLOCK 
The adminStateRequestSupportedCharacteristic attribute indicates the behavior requirement for the 
StateManagement’s setAdminState operation and adminState attribute, which indirectly affect the admin states that 
have to be supported.

• <<readonly>>states: StatesType 
The readonly states attribute contains the values for all three states: admin, operational, and usage.

• <<readonly>>usageState: UsageType 
The readonly usageState attribute contains the component’s usage state (IDLE, ACTIVE, or BUSY). UsageState 
indicates whether or not a component is in use, and if so, whether or not it has spare capacity for allocation. 

Operations

• setAdminState (in adminRequest: AdminRequestType):  {raises = ( 
UnsupportedRequest )} 
The setAdminState operation changes the adminState attribute based upon the input adminRequest parameter. 
 
The setAdminState operation shall set the adminState attribute to UNLOCKED upon receipt of an UNLOCK admin 
request. 
 
The setAdminState operation shall set the adminState to LOCKED and usageState to IDLE upon receipt of a LOCK 
admin request, when the adminStateRequestSupportedCharacteristic attribute value is LOCK or ALL. 
 
The setAdminState operation shall set the adminState to SHUTTING_DOWN upon receipt of a SHUTDOWN admin 
request, when the adminState attribute is UNLOCKED, and adminStateRequestSupportedCharacteristic attribute value 
is SHUTDOWN or ALL. 
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The setAdminState operation shall raise the UnsupportedRequest exception when the adminRequest is not supported.

Types and Exceptions

• <<enumeration>>AdminRequestType (LOCK, SHUTDOWN, UNLOCK) 
The AdminRequestType defines the administrative state request values for a component as follows:

• LOCK - requests a forceful state transition to the LOCKED state. 

• SHUTDOWN - makes a graceful lock request that results in a transition to the SHUTTING_DOWN state.

• UNLOCK - requests a transition to the UNLOCKED state.

• <<enumeration>>AdminRequestSupportedType (ALL, NOT_IMPLEMENED, LOCK, SHUTDOWN, 
UNLOCK) 
The AdminRequestSupportedType defines the valid administrative state request values for a component as follows:

• ALL - all requests are supported
• NOT_IMPLEMENTED - no requests are supported
• LOCK - only LOCK and UNLOCK
• SHUTDOWN - only SHUTDOWN and UNLOCK
• UNLOCK - only UNLOCK

• <<enumeration>>AdminType (LOCKED, SHUTTING_DOWN, UNLOCKED) 
The AdminType defines the administrative state values for a component as follows:

• LOCKED - The component is reserved for administrative usage only. For example, no capacity requests are 
granted by a component such as device. Transitions to this state may originate from either the 
SHUTTING_DOWN or UNLOCKED state.

• SHUTTING_DOWN - a transition state from UNLOCKED to LOCKED, this state does not allow capacity 
requests to be granted successfully and is maintained until all capacities are deallocated and the component is not 
in use.

• UNLOCKED - The component is available for full usage providing the operationalState is ENABLED. A state 
transition from SHUTTING_DOWN or LOCKED can occur.

• <<enumeration>>OperationalType 
The OperationalType defines the operational state values for a component as follows:

• ENABLED - the component is functional
• DISABLED - the component is non-functional

• StatesType( adminState : AdminType, operationalState : OperationalType, 
usageState : UsageType) 
The StatesType contains the state values for a component.

• <<enumeration>>UsageType 
The UsageType defines the usage state values for a component as follows:

• IDLE - not in use
• ACTIVE - in use, with capacity remaining for allocation, or
• BUSY - in use, with no capacity remaining for allocation
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Constraints

When the adminStateRequestSupportedCharacteristic value attribute is NOT_IMPLEMENTED, then a component that 
realizes this interface may not support setAdminState operation and adminState attribute. The NOT_IMPLEMENTED 
behavior is dependent of the PSM. 

The adminState attribute shall transition to the LOCKED state from SHUTTING_DOWN state when the component’s 
usageState attribute becomes IDLE and the adminStateRequestSupportedCharacteristic attribute value is SHUTDOWN or 
ALL.

Semantics

The interface is used by components that manage their own states and capacities, and provide administrative control. The 
relationships, values, and state transitions among the adminState, operationalState, usageState, and attributes are described 
in the ISO/IEC International Standard 10164-2. 

7.2.1.2 Services Stereotypes

The service stereotypes, which are extensions of the UML 2.0 Component (UML2.0::Components::BasicComponents) 
and Interface (UML2.0::Classes::Interfaces) classifiers are depicted in Table 7.6. 

Table 7.6  - Services Stereotypes

Stereotype Base Class Parent Tags Constraints Description

ManagedServiceComponent Component ServiceComponent See constraints 
in section 
below

Offers Service(s) within the 
environment, which can be used 
by components. 

Service Interface N/A Provides the parent interface 
definition for the services within 
the environment that can be used 
by components. 

ServiceComponent Component N/A Provides the parent component 
definition for the service 
components within the 
environment that can be used by 
components. 
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7.2.1.2.1 ManagedServiceComponent

Description

The ManagedServiceComponent is a type of ServiceComponent that provides state management behavior as shown in 
Table 7.6 and Figure 7.22.

Figure 7.22 - ManagedServiceComponent M1 Illustration

M1 Associations

• capacityModel: CapacityModel [*] 
The capacityModel used by a managed service depends on the set of capacities managed by the component.

• domainEventChannel: EventChannelService [0..1] 
The event channel used by a managed service for indicating state changes.

 Attributes

•  alarmStatusSupported: Boolean = false 
The alarmStatusSupported attribute is used to indicate if the <<configureproperty>>alarmStatus is 
supported. A value of true means supported by the component. An alarmStatus can have zero or more of the following 
values, not all of which are applicable to every class of managed component. When the value of this attribute is empty 
set, this implies that none of the status conditions described below are present. AlarmStatus Ushort values are: under 
repair = 2, critical = 4, major = 8, minor = 16, and alarm outstanding = 32.

• availabilityStatusSupported: Boolean = false 
The availabilityStatusSupported attribute is used to indicate if the <<queryproperty>>availabilityStatus 
is supported. A value of true means supported by the component. The availabilityStatus attribute can have zero or more 
of the following values, not all of which are applicable to every class of managed component. When the value of this 
attribute is empty set, this implies that none of the status conditions described below are present. AvailabilityStatus 
UShort values are: in test = 2, failed = 4, power off = 8, off line = 16, off duty = 32, dependency = 64, degraded = 128, 
not installed = 256, and log full = 512. 
 

StateManagement
(from Services Interfaces)

<<interface>>

EventServ ice
<<servicecomponent>>

CapabilityType

CapacityModel
(from Services Interfaces)

ManagedServiceComponent
alaramStatusSupported : Boolean = True
availabi lityStatusSupported : Boolean = True
controlStatusSupported : Boolean = True
proceduralStatusSupported : Boolean = True
standbyStatusSupported : Boolean = True
unknownStatusSupported : Boolean = True

<<managedservicecomponent>>

0..1
*

+domainEventChannel 0..1
*

*

+capacityModel

*
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• controlStatusSupported: Boolean = false 
The controlStatusSupported attribute is used to indicate if the <<configureproperty>>controlStatus is 
supported. A value of true means supported by the component. The controlStatus attribute that can have zero or more 
of the following values, not all of which are applicable to every class of managed component. When the value of this 
attribute is empty set, this implies that none of the status conditions described below are present. Control Status UShort 
values are: subject to test =2, part of services locked = 4, reserved for test = 8, and suspended = 16.

• proceduralStatusSupported: Boolean = false 
The proceduralStatusSupported attribute is used to indicate if the <<queryproperty>>procedualStatus is 
supported. A value of true means supported by the component. The proceduralStatus is supported only by those classes 
of managed components that represent some procedure (e.g., a test process) which progresses through a sequence of 
phases. Depending upon the managed component definition, the procedure may be required to reach certain phase for 
the resource to be operational and available for use (i.e., for the managed component to be enabled). Not all phases 
may be applicable to every class of managed component. If the value of this attribute is an empty set, the managed 
component is ready, for example, the initialization is complete. When the value of this attribute is empty set, this 
implies that none of the status conditions described below are present. ProceduralStatus UShort values are: initialized 
required = 2, not initialized = 4, initializing = 8, reporting = 16, and terminating = 32.

• standbyStatusSupported: Boolean = false 
The standbyStatusSupported attribute is used to indicate if the <<queryproperty>>standbyStatus is 
supported. A value of true means supported by the component. The standbyStatus attribute is single-valued and is only 
meaningful when the back-up relationship role exists. StandbyStatus UShort values are: standby hot = 2, standby cold 
= 4, and providing service = 8.

• unknownStatusSupported: Boolean = false 
The unknownStatusSupported attribute is used to indicate if the <<queryproperty>>unknownStatus is 
supported. A value of true means supported by the component. The unknownStatus attribute is used to indicate that the 
state of the resource represented by the managed component is unknown. When the unknownStatus attribute Boolean 
value is True, the value of the state attributes may not reflect the actual state of the resource.

Constraints

A ManagedServiceComponent shall at a minimum support the UNLOCKED adminState value.

A ManagedServiceComponent shall at a minimum support the ENABLED operationalState value.

A ManagedServiceComponent shall support the IDLE, and ACTIVE and/or BUSY usageState values. The supported 
usageState values depend on the component’s usage model.

A ManagedServiceComponent shall be associated with at least one CapacityProperty as described by the component’s 
descriptor.

When alarmStatusSupported attribute is true, then the ManagedServiceComponent shall support the configuring and 
querying of the alarmStatus property.

When availabilityStatusSupported attribute is true, then the ManagedServiceComponent shall support the querying of the 
availabilityStatus property.

When controlStatusSupported attribute is true, then the ManagedServiceComponent shall support the configuring and 
querying of the controlStatus property.

When proceduralStatusSupported attribute is true, then the ManagedServiceComponent shall support the querying of the 
proceduralStatus property.
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When standbyStatusSupported attribute is true, then the ManagedServiceComponent shall support the querying of the 
standbyStatus property.

When unknownStatusSupported attribute is true, then the ManagedServiceComponent shall support the querying of the 
unknownStatus property.

Semantics

A ManagedServiceComponent may be associated with one to many ServiceProperty(s) (Characteristic Properties and 
CapacityProperty). The CapacityModel(s) associated with a ManagedServiceComponent depends on the 
CapacityProperty(s) managed by the component. The capacities associated with a ManagedServiceComponent may be 
managed or not managed by the component.

The adminStateRequestSupportedCharacteristic attribute may be dynamically set at creation by a ConfigureProperty or 
ExecutableProperty.

Whenever the adminState attribute changes, a StateChangeEventType (Infrastructure::Domain Management::Event 
Channels) event may be issued to an event channel. The StateChangeEventType event data shall be populated as follows 
when issued:

1. The producerId field is the identifier attribute of the component.

2. The sourceId field is the identifier attribute of the component.

3. The stateChangeCategory field is ADMINISTRATIVE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the adminState attribute value before and after the state 
change, respectively.

Whenever the operationalState attribute changes, a StateChangeEventType event may be issued to an event channel. The 
event data shall be populated as follows when issued:

1. The producerId field is the identifier attribute of the component.

2. The sourceId field is the identifier attribute of the component.

3. The stateChangeCategory field is OPERATIONAL_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the operationalState attribute value before and after the 
state change, respectively.

Whenever the usageState attribute changes, a StateChangeEventType event may be issued to an event channel. The 
StateChangeEventType event data shall be populated as follows when issued:

1. The producerId field is the identifier attribute of the component.

2. The sourceId field is the identifier attribute of the component.

3. The stateChangeCategory field is USAGE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields reflect the usageState attribute value before and after the state 
change, respectively.
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7.2.1.2.2 ServiceComponent

Description

The ServiceComponent, as shown in Figure 7.23, offers service(s) within the environment, which can be used by 
Component(s). For example, the potential Service(s) offered by a ServiceComponent are log, event, and naming.

Figure 7.23 - ServiceComponent M1 Illustration

M1 Associations

• componentDescriptor: ComponentDescriptor [1] 
The Descriptor that provides the ServiceComponent definition.

• capabilityProperty: ServiceProperty [1..*] 
The capability properties that describe a Service's capabilities.

• offeredService: Service [1..*] 
An offeredService holds the set of Services that are provided by a ServiceComponent.

Semantics

ServiceComponent(s) are registered with DeviceManager(s). A DomainManagerComponent knows the 
ServiceComponent(s) when DeviceManagerComponent(s) registers to a DomainManagerComponent.

7.2.1.3 File Services

The FileServices consist of interfaces and components that are used to manage and access a distributed file system. The 
File Services are used for installation and removal of application and artifact files within the system, and for loading and 
unloading those files on the various processors that they execute upon. The File Services interfaces are described in 
Section 7.2.1.3.1 and the file services component stereotypes are described in Section 7.2.1.3.2. The relationships between 
the interfaces and components are graphically depicted in Figure 7.24.
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Figure 7.24 - File Services Overview

7.2.1.3.1 File Services Interfaces

This section defines the interfaces for File, FileSystem, and FileManager as shown in Figure 7.24. These interfaces 
provide basic file manipulation operations that are described in detail in the following subsections.

Types and Exceptions

• <<exception>>FileException 
The FileException, is a type of SystemException, that indicates a file-related error. The error number indicates an 
ErrorNumberType value (e.g., CF_EBADF, CF_EEXIST, CF_EISDIR, CF_EMFILE, CF_ENFILE, CF_ENOENT, 
CF_ENOSPC, CF_ENOTDIR, CF_ENOTEMPTY, CF_EROFS). The String msg attribute can provide information 
describing why the FileException occurred.
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7.2.1.3.1.1 File

Description

The File interface, as shown in Figure 7.24, provides the ability to read and write files residing within a potentially 
distributed FileSystem. A file can be thought of conceptually as a sequence of Octet(s) with a current filePointer 
describing where the next read or write will occur. This filePointer points to the beginning of the file upon construction 
of the file object.

Attributes

• <<readonly>>fileName: String 
The readonly fileName attributes shall contain the file name given to a file system open or create.

• <<readonly>>filePointer: ULong 
The readonly filePointer attribute shall contain the file position where the next read or write will occur.

Operations

• close(): {raises= ( FileException)}; 
The close operation shall close the file from the file system. The close operation shall remove the File component. The 
close operation shall raise the FileException when it cannot successfully close the file. 

• read(out data : OctetSequence, in length : ULong) :  {raises= ( IOException)}; 
The read operation shall read the number of Octet(s) specified by the input length parameter and advance the value of 
the filePointer attribute by the number of Octet(s) read. The read operation will read less than the number of octets 
specified if an end of file is encountered before the input length number of octets is read. 
 
The read operation shall return via the out data parameter an OctetSequence that equals the number of octets actually 
read from the File. If the filePointer attribute value is at the end of the File prior to a read, the read operation shall 
return a 0-length OctetSequence. The read operation shall raise the IOException when a read error occurs.

• setFilePointer(in filePointer : ULong) : {raises ( InvalidFilePointer, 
FileException )} 
The setFilePointer operation shall set the filePointer attribute value to the input filePointer. The setFilePointer 
operation shall raise the FileException when the file pointer for the referenced file cannot be set to the value of the 
input filePointer parameter. The setFilePointer operation shall raise the InvalidFilePointer exception when the value of 
the filePointer parameter exceeds the file size.

• sizeOf( return ULong) : }raises ( FileException )} 
The sizeOf operation shall return the number of octets stored in the file. The sizeOf operation shall raise the 
FileException when a file-related error occurs (e.g., file does not exist anymore).

• write(in data : OctetSequence) : {raises ( IOException)} 
The write operation shall write data to the file. If the write is successful, the write operation shall update the filePointer 
attribute to reflect the number of octets written. If the write is unsuccessful, the filePointer attribute value shall 
maintain or be restored to its value prior to the write operation call. The write operation shall raise the IOException 
when a write error occurs.

Types and Exceptions

• <<exception>>InvalidFilePointer  
The InvalidFilePointer exception indicates the file pointer is out of range based upon the current file size.
80                 Component Framework Specification, v1.0



• <<exception>>IOException 
The IOException exception, specialization of SystemException, indicates an error occurred during a read or writes 
operation to a File. The error number (e.g., CF_EFBIG, CF_ENOSPC, CF_EROFS and message is component-
dependent. The message provides additional information describing the reason for the error.

Constraints

The filePointer shall be set to the beginning of the file when a File is opened for read only or created for the first time. 
When a File already exists and is opened for write, the filePointer shall be set at the end of the File.

7.2.1.3.1.2 FileManager

Description

The FileManager, as shown in Figure 7.24, specializes the FileSystem interface and extends that interface by adding 
mount and unmount operations. This allows multiple, distributed FileSystems to be accessed through a FileManager. The 
FileManager appears as a single FileSystem although the actual file storage may span multiple physical file systems. This 
is called a federated file system. A federated file system is created using the mount and unmount operations.

Operations

• getMounts( return MountSequence) 
The getMounts operation shall return a sequence of Mount structures that describe the mounted FileSystems.

• mount(in string mountPoint, in FileSystemComponent file_System) : {raises( 
InvalidFileName, InvalidFileSystem, MountPointAlreadyExists )} 
The mount operation shall associate the specified FileSystem with the given mountPoint. A mountPoint name shall 
begin with a “/.” A mountPoint name is a logical directory name for a FileSystem. The mount operation shall raise the 
InvalidFileName exception when the input file name is invalid. The mount operation shall raise the 
MountPointAlreadyExists exception when the mountPoint already exists in the file manager. The mount operation 
shall raise the InvalidFileSystem exception when the input FileSystem is a null object reference.

• query(inout fileSystemProperties : Properties) : {raises( 
UnknownFileSystemProperties )} 
The query operation shall return the combined mounted file systems information to the calling client based upon the 
given input fileSystemProperties’ IDs. As a minimum, the query operation shall support the following input 
fileSystemProperties IDs:

• SIZE - a property item ID value of “SIZE” will cause the query operation to return the combined total size of all 
the mounted file system as an unsigned long long property value.

• AVAILABLE_SPACE - a property item ID value of “AVAILABLE_SPACE” will cause the query operation to 
return the combined total available space (in Octet(s)) of all the mounted file system as unsigned long long 
property value.

• unmount(in string mountPoint) : {raises( NonExistentMount )} 
The unmount operation shall remove a mounted FileSystemComponent from the FileManagerComponent whose 
mounted name matches the input mountPoint name. The unmount operation shall raise the NonExistentMount 
exception when the mountPoint does not exist.
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Types and Exceptions

• MountType ( MountPoint : String, fs : FileSystemComponent) 
The MountType structure identifies the FileSystems mounted within the FileManager.

• MountSequence 
The MountSequence is an unbounded sequence of MountTypes.

Figure 7.25 - MountSequence

• <<exception>>InvalidFileSystem 
The InvalidFileSystem exception indicates the FileSystemComponent is a null (nil) component reference.

• <<exception>>MountPointAlreadyExists 
The MountPointAlreadyExists exception indicates the mount point is already in use in the FileManagerComponent.

• <<exception>>NonExistentMount 
The NonExistentMount exception indicates a mount point does not exist within the FileManagerComponent.

Constraints

The FileManager’s operations shall remove the FileSystem mounted name from the input fileName before passing the 
fileName to an operation on a mounted FileSystem.

The FileManager shall use the mounted FileSystem operations based upon the mounted FileSystem name that exactly 
matches the input fileName to the lowest matching subdirectory.

The FileManager shall propagate exceptions raised by a mounted FileSystem’s operation.

Semantics

The FileManager’s FileSystem operations behavior implements the requirements of the FileSystem operations against the 
mounted file systems. The FileManager’s FileSystem operations ensure that the filename/directory arguments given are 
absolute pathnames relative to a mounted FileSystem. 

The system may support multiple FileSystem implementations. Some FileSystems will correspond directly to a physical 
file system within the system. The FileManager supports a federated, or distributed, file system that may span multiple 
file system components. From the client perspective, the File Manager may be used just like any other FileSystem 
component since the FileManager realizes the FileSystem interface.

M o u n tTy p e
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Based upon the pathname of a directory or file and the set of mounted FileSystems, the FileManager will delegate the 
FileSystem operations to the appropriate FileSystem. For example, if a FileSystem is mounted at /ppc2, an open operation 
for a file called /ppc2/profile.xml would be delegated to the mounted FileSystem. The mounted FileSystem will be given 
the filename relative to it. In this example the FileSystem’s open operation would receive /profile.xml as the fileName 
argument.

Another example of this concept can be shown using the copy operation. When a client invokes the copy operation, the 
FileManager will delegate operations to the appropriate FileSystems (based upon supplied pathnames) thereby allowing 
copy of files between FileSystems. 

7.2.1.3.1.3 FileSystem

Description

The FileSystem interface, as shown in Figure 7.24, defines common operations that enable access to a physical file 
system.

Attributes

• <<constant>>SIZE : String = "SIZE" 
Property name for file system’s total size.

• <<constant>>AVAILABLE_SPACE : String := "AVAILABLE_SPACE" 
Property name for file system’s available unused space.

• <<constant>>CREATED_TIME_ID : String = "CREATED_TIME" 
The CREATED_TIME_ID is the identifier for the created time file property. A created time property indicates the time 
the file was created.

• <<constant>>MODIFIED_TIME_ID : String = "MODIFIED_TIME" 
The MODIFIED_TIME_ID is the identifier for the modified time file property. The modified time property is the time 
the file data was last modified.

• <<constant>>LAST_ACCESS_TIME_ID : String = "LAST_ACCESS_TIME" 
The LAST_ACCESS_TIME_ID is the identifier for the last access time file property. The last access time property is 
the time the file was last accessed (e.g., read).

Operations

•  copy(in sourceFileName : String, in destinationFileName : String) : {raises = ( 
InvalidFileName, FileException )} 
The copy operation provides the ability to copy a regular file (non-directory) to another regular file. The copy 
operation shall copy the source file with the specified sourceFileName to the destination file with the specified 
destinationFileName. If the destination file already exists, and the sourceFileName and the destinationFileName are 
different, the copy operation shall overwrite the destination file. The copy operation shall raise the FileException when 
a file-related error occurs. The copy operation shall raise the InvalidFileName exception when the source or 
destination filename is not a valid file name or not an absolute pathname. The copy operation shall raise the 
InvalidFileName exception when the destination file name is identical to the source file name (i.e., attempting to copy 
on top of itself).

• create(in fileName : String, return FileComponent) : {raises = ( 
InvalidFileName, FileException )} 
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The create operation provides the ability to create a new file on the FileSystem. The create operation shall create a new 
File based upon the fileName attribute. The create operation shall return a File component reference to the opened file. 
The create operation shall raise the FileException if the file already exists or another file error occurred. The create 
operation shall raise the InvalidFileName exception when a fileName is not a valid file name or not an absolute 
pathname or path prefix does not exist.

• exists(in fileName : String, return Boolean) : {raises = ( InvalidFileName )} 
The exists operation checks to see if a file exists based on the fileName parameter. The exists operation shall return 
True if the file exists, or False if it does not. The exists operation shall raise the InvalidFileName exception when 
fileName is not a valid file name or not an absolute pathname.

• list(in pattern : String, return FileInformationSequence) : {raises = 
(FileException, InvalidFileName)} 
The list operation provides the ability to obtain a list of files along with their information in the FileSystem according 
to a given search pattern. The list operation can return information for one file or a set of files. The list operation shall 
return a FileInformationSequence for files that match the wildcard criteria specified in the input pattern parameter. The 
list operation shall return a zero length sequence when no files are located that match the input pattern parameter. The 
list operation shall raise the InvalidFileName exception when the input pattern does not start with a slash “/” or cannot 
be interpreted due to unexpected characters. The list operation shall raise the FileException when a file-related error 
occurs.

• open(in filename : String, in read_Only : Boolean, return : FileComponent) : 
{raises = ( InvalidFileName,  FileException )} 
The open operation provides the ability to open a file for read or write. The open operation shall open a file based upon 
the input fileName. The read_Only parameter indicates if the file should be opened for read access only. The open 
operation shall open the file for read only access when the read_Only parameter is True. The open operation shall 
return a File component parameter on successful completion. The returned File’s filePointer attribute shall be set to the 
beginning of the file when the read_Only parameter is true, otherwise the File’s filePointer attribute is set to the end of 
the file. If the file is opened with the read_Only flag set to true, then writes to the file will be considered an error. The 
open operation shall raise the FileException if the file does not exist or another file error occurred. The open operation 
shall raise the InvalidFileName exception when the filename is not a valid file name or not an absolute pathname.

• mkdir(in directoryName : String) : {raises( InvalidFileName, FileException )} 
The mkdir operation provides the ability to create a directory on the file system. The mkdir operation creates a 
FileSystem directory based on the directoryName given. The mkdir operation shall create all parent directories 
required to create the directoryName path given. The mkdir operation shall raise the FileException if a file-related 
error occurred during the operation. The mkdir operation shall raise the InvalidFileName exception when the 
directoryName is not a valid directory name.

• query(inout fileSystemProperties : Properties) : {raises( 
UnknownFileSystemProperties )} 
The query operation provides the ability to retrieve information about a file system. The query operation shall return 
file system information to the calling client based upon the given fileSystemProperties’ ID. At a minimum, the query 
operation shall support the following property Ids in the fileSystemProperties parameter: 

• SIZE - an ID value of “SIZE” causes query to return an unsigned long long containing the file system size (in 
octet(s) <<datatype>>).

• AVAILABLE SPACE - an ID value of “AVAILABLE SPACE” causes the query operation to return an unsigned 
long long containing the available space on the file system (in octet(s) <<datatype>>). The query operation shall 
raise the UnknownFileSystemProperties exception when the given file system property is not recognized. 
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• remove(in fileName : String) : {raises = ( FileException, InvalidFileName )} 
The remove operation provides the ability to remove a regular file (non-directory) from a file system. The remove 
operation shall remove the file with the given fileName. The remove operation shall raise the InvalidFileName 
exception when the fileName is not a valid fileName or not an absolute pathname. The remove operation shall raise the 
FileException when a file-related error occurs.

• rmdir(in directoryName : String) : {raises( InvalidFileName, FileException )} 
The rmdir operation provides the ability to remove a directory from the file system. The rmdir operation removes a 
FileSystem directory, based on the directoryName given, only if the directory is empty (no files exist in directory). The 
rmdir operation shall raise the FileException when the directory does not exist, if the directory is not empty, or another 
file-related error occurred. The rmdir operation shall raise the InvalidFileName exception when the directoryName is 
not a valid directory name. 

Types and Exceptions

• <<enumeration>>FileType (PLAIN, DIRECTORY, FILE_SYSTEM) 
The FileType indicates the type of file entry. A FILE_SYSTEM can have PLAIN or DIRECTORY files and mounted 
file systems contained in a FileSystem.

• FileInformationType ( name : String, kind : FileType, size : ULongLong, 
fileProperties : Properties) 
The FileInformationType indicates the information returned for a file. Not all the fields in the FileInformationType are 
applicable for all file systems. The FileInformationType attributes are:

• The name indicates the simple name of the file.

• The kind indicates the type of the file entry.

• The size indicates the size in Octet(s).

• The FileProperties indicates other optional File properties that could be given out.

• FileInformationSequence. 
The FileInformationSequence type defines an unbounded sequence of FileInformationTypes

Figure 7.26 - FileInformationSequence

• <<exception>>UnknownFileSystemProperties  
The UnknownFileSystemProperties exception, specialization of UnknownProperties, indicates a set of properties 
unknown by the component.
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Constraints

Valid characters for a file name and file absolute pathname shall adhere to POSIX compliant file naming conventions. At 
a minimum, a regular file name length of 40 characters shall be supported. At a minimum, a combined path prefix and 
ending regular file name length of 1024 characters shall be supported.

At a minimum, the FileSystem shall support the FileInformationType attributes: name, kind, and size information for a 
file. Examples of other file properties that may be specified for fileProperties are created time, modified time, and last 
access time as stated in Types and Exceptions above. The value for these properties shall be unsigned long long and 
measured in seconds since 00:00:00 UTC, Jan.1, 1970.

7.2.1.3.2 File Services Stereotypes

The File Services components are identified in Table 7.7. File services stereotypes and their relationship are graphically 
depicted in Figure 7.24.

7.2.1.3.2.1 FileComponent

Description

The FileComponent, as shown in Figure 7.24, provides the ability to read and write files residing within a potentially 
distributed FileSystemComponent. A file can be thought of conceptually as a sequence of Octet(s) with a current 
filePointer describing where the next read or write will occur. This filePointer points to the beginning of the file upon 
construction of the file object.

Constraints

A FileComponent shall realize the File interface.

7.2.1.3.2.2 FileManagerComponent

Description

The FileManagerComponent, as shown in Figure 7.24, realizes the FileManager interface and extends that interface by 
adding mount and unmount operations. This allows multiple, distributed FileSystemComponents to be accessed through a 
FileManagerComponent. The FileManagerComponent appears as a single file system although the actual file storage may 
span multiple physical file systems. This is called a federated file system. A federated file system is created using the 
mount and unmount operations.

Table 7.7  - File Services Stereotypes

Stereotype Base Class Parent Tags Constraints Description

FileComponent Component N/A See constraints 
in section 
below

Reads and writes a file within a 
FileSystem.

FileManagerComponent Component N/A See constraints 
in section 
below

Provides a single interface to 
multiple, distributed FileSystems 

FileSystemComponent Component N/A See constraints 
in section 
below

Remotely accesses a physical file 
system.
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M1 Associations

• mountedFileSystem:FileSystemComponent[*] 
MountedFileSystem(s) that are associated with a FileManagerComponent.

Constraints

The FileManagerComponent shall realize the FileManager interface.

7.2.1.3.2.3 FileSystemComponent

Description

A FileSystemComponent, as shown in Figure 7.24, realizes the FileSystem interface and may be associated with a File-
Manager and consist of many FileComponents.

Associations

• fileManager : FileManagerComponent[*] 
A file system can be associated with many FileManagerComponents.

Constraints

The FileSystemComponent shall realize the FileSystem interface.

7.2.2 Platform Management
This section defines the stereotypes for platform management. Platform management involves the management of the domain, 
inclusive of its devices and services. The platform management stereotypes are categorized by domain and device 
management. The details of these categories are described in the following Domain Management and Device Management 
subsections.

7.2.2.1 Domain Management

7.2.2.1.1 Domain Management Interfaces

This section defines the interfaces for Domain management. The types of capabilities offered by Domain management are 
categorized as follows:

1. Domain Registration Management - provides the mechanism for registering and unregistering 
DeviceManager’s services within a Domain.

2. Domain Installation Management - provides the mechanism for installing and nonstaining applications within 
a Domain.

3. Domain Manager - provides the mechanism for retrieving a domain’s components.

4. Domain Event Channels- provides the mechanism for managing Domain's event channels connections.

Types and Exceptions

• <<exception>>InvalidProfile 
The InvalidProfile exception indicates an invalid profile error. A profile error indicates an invalid Descriptor (e.g., 
component description, Application description, etc.).
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7.2.2.1.1.1 DomainEventChannels

Description

The DomainEventChannels interface, as shown in an association in Figure 7.28, provides domain event channel 
registration capabilities. The interface provides the capabilities of adding and removing connections to event channels in 
a domain. 

Operations

• registerWithEventChannel(in registeringObject: Object, in registeringId: 
String, in eventChannelName : String): {raises = (InvalidObjectReference, 
InvalidEventChannelName, AlreadyConnected)} 
The registerWithEventChannel operation shall connect a consumer (registeringObject input parameter) to a domain’s 
event channel as indicated by the input eventChannelName parameter. 
 
The registerWithEventChannel operation shall raise the InvalidObjectReference exception when the input 
registeringObject parameter contains an invalid reference to an event channel consumer type interface. The 
registerWithEventChannel operation shall raise the InvalidEventChannelName exception when the input 
eventChannelName parameter contains an invalid event channel name. The registerWithEventChannel operation shall 
raise the AlreadyConnected exception when the input eventChannelName parameter references an event channel that 
is connected to the consumer identified by the input registeringId parameter.

• unregisterFromEventChannel(in unregisteringId: String, in eventChannelName: 
String): { raises = (InvalidEventChannelName, NotConnected)} 
The unregisterFromEventChannel operation shall disconnect a consumer (unregisteringId input parameter) from a 
domain’s event channel as indicated by the eventChannelName parameter.  
 
The unregisterFromEventChannel operation shall raise the InvalidEventChannelName exception when the input 
eventChannelName parameter contains an invalid reference to an event channel. The unregisterFromEventChannel 
operation shall raise the NotConnected exception when the input parameter unregisteringId parameter is not connected 
to the specified input event channel. 

Types and Exceptions

• <<exception>>AlreadyConnected 
The AlreadyConnected exception indicates that a registering consumer is already connected to the specified event 
channel.

• <<exception>>InvalidEventChannelName 
The InvalidEventChannelName exception indicates that the event channel with that name does not exist within the 
domain.

• <<exception>> NotConnected 
The NotConnected exception indicates that the unregistering consumer was not connected to the specified event 
channel.

7.2.2.1.1.2 DomainInstallation

Description

The DomainInstallation interface, as shown in an association in Figure 7.28, defines domain application installation 
capabilities. The interface provides the capabilities of adding and removing applications from a domain.
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Operations

• installApplication(in profileFileName: String): {raises = ( InvalidProfile, 
InvalidFileName, ApplicationInstallationError, ApplicationAlreadyInstalled)} 
The installApplication operation is used to install new application artifacts and descriptors in the domain. A 
SWRadioDeployment::Application Deployment::ApplicationFactory is created in the domain as a result of successful 
installation. The profileFileName is the absolute path of the profile filename. The installApplication operation shall 
verify that the Application’s descriptor file exists in the domain and that all the files the Application depends on are 
also resident. 
 
The installApplication operation shall raise the ApplicationInstallationError exception when the installation of the 
Application file(s) is not successfully completed. The installApplication operation shall raise the 
ApplicationInstallationError exception when the to-be-installed application’s identifier (specified in the application’s 
descriptor referenced by the profileFileName input parameter) is the same as a previously registered application. The 
installApplication operation shall raise the InvalidFileName exception when the input file or any referenced file name 
does not exist in the file system as defined in the absolute path of the input profileFileName. The installApplication 
operation shall raise the InvalidProfile exception when the input file or any referenced descriptor file is not compliant 
with its descriptor definition. 
 
The installApplication operation shall raise the ApplicationAlreadyInstalled exception when the application descriptor 
element id attribute of the referenced application (as denoted by the input profileFileName) is the same as a previously 
registered application.

• uninstallApplication(in applicationId: String): {raises = (InvalidIdentifier, 
ApplicationUninstallationError)} 
The uninstallApplication operation is used to uninstall an application from the domain. The applicationId corresponds 
to the identifier in the SWRadioDeployment::Application Deployment::ApplicationFactory. The uninstallApplication 
operation shall remove the ApplicationFactory from the domain.  
 
The uninstallApplication operation shall raise the InvalidIdentifier exception when the applicationId is invalid. The 
uninstallApplication operation shall raise the ApplicationUninstallationError exception when an internal error causes 
an unsuccessful uninstallation of the Application.

Types and Exceptions

• <<exception>>ApplicationAlreadyInstalled 
The ApplicationAlreadyInstalled exception indicates that the application being installed is already installed.

• <<exception>>ApplicationInstallationError ( ErrorNumberType: errorNumber, msg: 
String ) 
The ApplicationInstallationError exception, a type of System Exception, is raised when an application installation has 
not completed correctly. The error number indicates the type of error (e.g., CF_EINVAL, CF_ENAMETOOLONG, 
CF_ENOENT, CF_ENOMEM, CF_ENOSPC, CF_ENOTDIR, CF_ENXIO). The message is component-dependent, 
providing additional information describing the reason for the error.

• <<exception>>ApplicationUninstallationError 
The ApplicationUninstallationError exception, a type of SystemException, is raised when an application uninstallation 
has not completed correctly.

• <<exception>> InvalidIdentifier 
The InvalidIdentifier exception indicates an application identifier is invalid.
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Semantics

An installer service typically invokes these operations when adding or removing an ApplicationFactory (installed 
Application) after creating or prior to deleting the associated files.

7.2.2.1.1.3 DeviceManagerRegistration

Description

The DeviceManagerRegistration interface, as shown in an association in Figure 7.28, defines domain service registration 
capabilities. The interface provides the capabilities of adding and removing DeviceManager’s services from a domain.

Operations

•  registerDeviceManager(in  deviceMgr: DeviceManagerComponent):  {raises = 
(InvalidObjectReference, InvalidProfile, RegisterError )} 
The registerDeviceManager operation shall add the input deviceMgr to the domain, if it does not already exist. The 
registerDeviceManager operation shall add each deviceMgr’s ServiceComponent attributes (e.g., identifier, name/
label, characteristic and capacity properties, etc.) to the domain as specified in the deviceMgr’s registeredServices 
attribute. The registerDeviceManager operation shall establish any connections specified in the DeviceManager’s 
descriptor that are possible with the current set of domain registered ServiceComponent(s)--others are left unconnected 
pending future ServiceComponent registrations. The registerDeviceManager operation shall establish any pending 
connections from previously registered DeviceManagers if any of the newly registered ServiceComponent(s) complete 
these connections. 
 
For connections established for an EventService's EventChannel, the registerDeviceManager operation shall connect 
to the event channel as specified in the deviceMgr’s descriptor. If the EventChannel does not exist, the 
registerDeviceManager operation shall create the EventChannel. 
 
The registerDeviceManager operation may obtain all the Descriptor(s) from the registering DeviceManager’s 
FileSystem. 
 
The registerDeviceManager operation shall mount the deviceMgr’s FileSystem to the domain. The mounted 
FileSystem name shall have the format, “/DomainName/HostName,” where DomainName is the name of the domain 
and HostName is the input deviceMgr’s label attribute. 
 
The registerDeviceManager operation shall raise the InvalidObjectReference exception when the input parameter 
deviceMgr contains an invalid reference to a DeviceManager interface. 
 
The registerDeviceManager operation shall raise the RegisterError exception when an internal error exists which 
causes an unsuccessful registration.

•  unregisterDeviceManager(in  deviceMgr: DeviceManagerComponent):  {raises  = 
(InvalidObjectReference, UnregisterError) } 
The unregisterDeviceManager operation is used to unregister a DeviceManager component from domain. The 
unregisterDeviceManager operation shall unregister input deviceMgr component and its ServiceComponent(s) from 
the domain. The unregisterDeviceManager operation shall disconnect the established connections (including those 
made to an EventService’s Event Channel) involving the unregistering DeviceManager. Any such broken connections 
to components remaining from other DeviceManager’s DCD files shall be considered as “pending” future connections. 
The unregisterDeviceManager operation may destroy the EventService EventChannel when no more consumers and 
producers are connected to it. 
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The unregisterDeviceManager operation shall unmount the deviceMgr’s FileSystem from the domain. 
 
The unregisterDeviceManager operation shall raise the InvalidObjectReference when the input parameter deviceMgr 
contains an invalid reference to a DeviceManager interface. The unregisterDeviceManager operation shall raise the 
UnregisterError exception when an internal error exists that causes an unsuccessful unregistration.

• registerService(in  registeringService: ServiceComponent, in  
registeredDeviceMgr: DeviceManagerComponent, in name: String): {raises = 
(InvalidObjectReference, DeviceManagerNotRegistered, RegisterError) } 
The registerService operation registers a DeviceManager’s ServiceComponent to a domain. 
The registerService operation shall add the registeringService and the registeringService’s attributes (e.g., identifier, 
name/label, descriptor’s characteristic and capacity properties, etc.) to the domain, if the registeringService does not 
already exist and registeredDeviceManager exists in the domain. 
 
The registerService operation shall establish any required port connections pending from any previously registered 
DeviceManagers that are satisfied by the newly registered ServiceComponent, using the PortConnector and 
PortSupplier interfaces.  
 
The registerService operation shall raise the InvalidProfile exception when registeringService’s descriptor is invalid. 
The registerService operation shall raise a DeviceManagerNotRegistered exception when the input 
registeredDeviceMger is not registered with the domain. The registerService operation shall raise the 
InvalidObjectReference exception when input parameters registeringService or registeredServiceMgr contain an 
invalid reference. The registerService operation shall raise the RegisterError exception when an internal error exists 
that causes an unsuccessful registration.

•  unregisterService(in unregisteringService: ServiceComponent, in name: String): 
{raises = ( InvalidObjectReference, UnregisterError)} 
The unregisterService operation shall remove a ServiceComponent entry from the domain. 
The unregisterService operation shall disconnect the unregisteringService’s port connections. Such connections to the 
remaining components shall then be considered as “pending” future connections. The unregisterService operation may 
destroy the EventService’s EventChannel when no more consumers and producers are connected to it. 
 
The unregisterService operation shall raise the InvalidObjectReference exception when the input parameter contains 
an invalid reference to a ServiceComponent interface. The unregisterService operation shall raise the UnregisterError 
exception when an internal error exists which causes an unsuccessful unregistration.

Types and Exceptions

• <<exception>>DeviceManagerNotRegistered 
The DeviceManagerNotRegistered exception indicates the registering Service’s DeviceManager is not registered in the 
domain. A Service’s DeviceManager has to be registered prior to a service registration to the domain.

• <<exception>>RegisterError 
The RegisterError exception, a type of System Exception, indicates that an internal error has occurred to prevent 
domain registration operations from successful completion. 

• <<exception>>UnregisterError 
The UnregisterError exception, a type of SystemException, indicates that an internal error has occurred to prevent 
domain unregistration operations from successful completion.
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Semantics

The DeviceManagerRegistration interface provides the mechanisms for components, such as DeviceManagers, to register 
their ServiceComponent(s) (e.g., ManagedServiceComponent or DeviceComponent) for a specific domain. As 
ServiceComponent(s) are removed from the environment, the interface provides the capability of removing them from the 
domain. Setting up connections for a registeringService is usually done for DeviceComponents that need an 
EventChannel, LogService, etc. As ServiceComponent(s) are made available to a domain, they become available for the 
domain’s Application(s) deployment usage.

The behavior for duplicated registering DeviceManager or ServiceComponent may result in a RegisterError exception 
being thrown or the duplicated registration may be ignored. The duplicated registration behavior is left up to PSMs, PIMs, 
or profiles that extend the profile.

7.2.2.1.1.4 DomainManager

Description

The DomainManager interface as shown in Figure 7.27 describes the definition and relationships that are common for all 
domain managers. The DomainManager provides the capabilities of retrieving a domain’s components and profile.

Figure 7.27 - Domain Manager Definition

Attributes

• <<readonly>>applications : ApplicationManager [*] 
The readonly applications attribute contains a sequence of instantiated applications in the domain. The applications 
attribute shall contain the list of Deployment::Application Deployment::Application Deployment 
Stereotypes::ApplicationManager(s) that have been instantiated (e.g., created by ApplicationFactory) within the 
domain.

• <<readonly>>applicationFactories : ApplicationFactoryComponent [*] 
The readonly applicationFactories attribute contains a list of ApplicationFactories in the domain. The 
applicationFactories attribute shall contain a list of one Deployment::Application Deployment::Application 
Deployment Stereotypes::ApplicationFactory per Application successfully installed (i.e., no exception raised by the 
DomainInstallation::install). 

PortSupplier
(from  Resource  Com ponen ts In te rfaces)

<< interface>>
PropertySet

(from  Resource  Com ponents In te rfaces)

<< int erface >>

DomainMan ager
<<readonly>> applications  : ApplicationManager[*]
<<readonly>> ApplicationFactories : ApplicationFactoryComponent [*]
<<readonly>> deviceManagers  : DeviceManagerComponent [*]
<<readonly>> domainProfile : S tring
<<readonly>> fileManager : FileManagerComponent

<< interface>>
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• <<readonly>>deviceManagers : DeviceManagerComponent [*] 
The readonly deviceManagers attribute contains a sequence of DeviceManagerComponents in the domain. The 
deviceManagers attribute shall contain a list of registered DeviceManagerComponents that have registered with the 
DomainManagerComponent.

• <<readonly>>domainManagerProfile : String 
The readonly domainManagerProfile attribute contains a file reference to the domain configuration descriptor. The 
descriptor provides configuration information for a domain. Files referenced within the descriptor will have to be 
obtained from the domain’s fileMgr attribute.

• <<readonly>>fileMgr : FileManagerComponent 
The readonly fileMgr attribute contains the DomainManager’s RadioServices::File Services::File Services 
Stereotypes::FileManagerComponent. 

7.2.2.1.2 Domain Management Stereotypes

This section defines the stereotypes for Domain management. The Domain management stereotypes are depicted in Table 
7.8, which are extensions of the UML 2.0 Component (UML2.0::Components::BasicComponents).

 

7.2.2.1.2.1 DomainManagerComponent

Description

The DomainManagerComponent as shown in Table 7.8 and Figure 7.28 describes the definition and relationships that are 
common for all domain managers. The DomainManagerComponent provides the capabilities of retrieving a domain’s 
components and profile.

Table 7.8  - DomainManagement Stereotypes

Stereotype Base Class Parent Tags Constraints Description

DomainManager 
Component

Component Component See constraints 
in section below

Provides Domain Retrieval 
capability and represents a 
component that manages a 
domain.
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Figure 7.28 - DomainManagerComponent M1 Illustration

M1 Associations

• domainEventChannel: EventChannel [*] 
A DomainManagerComponent may be associated with many event channels. Refer to Domain Event Channels section 
below for description of domain event channels and event types.

• namedRegistrar: NamingService [1] 
The NamingService that contains a named DomainManagerComponent reference.

• registeredServiceCapability: ServiceProperty [1..*] 
The registedServiceCapability(s) are the set of ServiceComponent’s ServiceProperty(s) registered and/or known by the 
DomainManagerComponent.

Constraints

The identifier attribute shall contain a unique identifier for a DomainManagerComponent. The identifier shall be identical 
to the id attribute of the DomainManagerComponent’s configuration descriptor as specified by the domainProfile 
attribute.

During component construction the DomainManagerComponent shall register itself with the NamingService. During 
NamingService registration the DomainManagerComponent shall create a “naming context” using “/DomainName” as its 
name.ID component and ““ (Null string) as its name.kind component, then create a “name binding” to the “/
DomainName” naming context using “/DomainManager” as its name.ID component, ““ (Null string) as its name.kind 
component, and the DomainManager’s object reference.

The DomainManagerComponent shall create its own FileManager component that consists of all registered 
DeviceManager’s FileSystems.

DomainManager
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The DomainManagerComponent shall restore ApplicationFactories after startup for Application(s) that were previously 
installed by the DomainManagerComponent installApplication operation. The DomainManagerComponent shall add the 
restored ApplicationFactories to the DomainManagerComponent’s applicationFactories attribute.

If the DomainManagerComponent has the association role of a domainEventChannelsRegistrar, then the 
DomainManagerComponent shall provide a port that provides the IDomainEventChannels service and the port name is 
DomainEventChannelsPort, and support the DomainOutgoingEventChannel and DomainIncomingEventChannel.

If the DomainManagerComponent has the association role of a domainRegistration, then the DomainManagerComponent 
shall provide a port that provides the DeviceManagerRegistration service and the port name is 
DomainDeviceMgrRegPort.

If the DomainManagerComponent has the association role of an applicationRegistrar, then the 
DomainManagerComponent shall provide a port that provides the ApplicationInstallation service and the port name is 
DomainInstallationPort.

If the DomainManagerComponent has a LogService required port, then the DomainManagerComponent shall provide a 
port that provides LogService admin service and the port name is DomainLogAdminPort.

If the DomainManagerComponent has a LogService required port, then the DomainManagerComponent shall provide a 
port that provides LogService consumer service and the port name is DomainLogConsumerPort.

Each registered ServiceProperty with the same identification shall be the same type within DomainManagerComponent. 

Semantics

The set of interfaces realized by a DomainManagerComponent depends on the system the DomainManagerComponent is 
built for. As shown in Figure 7.28, the DomainManagerComponent could realize PortSupplier and PropertySet interfaces 
and inherits from Component. The types of ServiceArtifactProperty(s) supported by a DomainManagerComponent are 
implementation specific. A DomainManagerComponent implementation may constrain the types of 
ServiceArtifactProperty(s) which would be reflected in its registration behavior.

The DomainManagerComponent may upon successful add of a component to its applications, applicationFactories, or 
deviceManagers attribute or registered Service send an event to the Outgoing Domain ManagementEventChannel with 
event data consisting of a DomainManagementObjectAddedEventType. The DomainManagementObjectAddedEventType 
event data shall be populated as follows when issued:

1. The producerId is the identifier attribute of the DomainManagerComponent.

2. The sourceId is the identifier attribute of the created (ApplicationManager), installed (ApplicationFactory), or 
registered (DeviceManager or Service) component to the domain.

3. The sourceName is the name attribute of the added component to the domain.

4. The sourceHandle is the component reference added to the domain.

5. The sourceCategory is the type of component added to the domain.

The DomainManagerComponent may upon successful removal of a component from its applications, 
applicationFactories, or deviceManagers attribute or unregistered Service send an event to the Outgoing Domain 
ManagementEventChannel with event data consisting of a DomainManagementObjectRemovedEventType. The 
DomainManagementObjectRemovedEventType event data shall be populated as follows when issued:

1. The producerId is the identifier attribute of the DomainManagerComponent.
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2. The sourceId is the identifier attribute of the component uninstalled (ApplicationFactory), released 
(ApplicationManager), or unregistered (DeviceManager or Service).

3. The sourceName is the name attribute of the removed component from the domain.

4. The sourceCategory is the type of component removed from the domain.

The DomainManagerComponent shall produce DomainManagementObjectRemovedEventType and 
DomainManagementObjectAddedEventType when the DomainManagerComponent has the association role of a 
domainEventChannelsRegistrar.

7.2.2.2 Device Management

This section defines the stereotypes and interfaces for device management, which are described in the two subsections: 
7.2.2.2.1 and .7.2.2.2.2. 

7.2.2.2.1 Device Management Interfaces

This section defines the interfaces for device management. The types of capabilities offered by device management are 
categorized as follows:

1. Service Registration Management - provides the mechanism for registering and unregistering services within a 
device.

2. DeviceManager - provides the mechanism for retrieving node’s services and information.

7.2.2.2.1.1 DeviceManager

Description

The DeviceManager interface as shown in Figure 7.29 defines the attributes and operations relationships that are common 
for all node managers. A DeviceManager interface is used to manage the ServiceComponent(s) on a node and to retrieve 
information about a node or device manager.

Figure 7.29 - DeviceManager Definition

DeviceManager
<<readonly>> registeredServices : ServiceType [*]
<<readonly>> deviceConfigurationProfile : String
<<readonly>> fileSys : FileSystem
<<readonly>> label : String

shutdown()
getComponentImplementationId()

<<interface>>

PropertySet
(from Resource Components Interfaces)

<<interface>>
PortConnector

(from Resource Components Interfaces)

<<interface>>
PortSupplier

(from Resource Components Interfaces)

<<interface>>
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Attributes

• <<readonly>>label: String 
The readonly label attribute contains a node’s meaningful name.

• <<readonly>>fileSys: FileSystemComponent 
The readonly fileSys attribute contains the FileSystem associated with this node or a nil component reference if no 
FileSystem is associated with this node.

• <<readonly>>deviceConfigurationProfile : String 
The readonly deviceConfigurationProfile attribute contains information on the initial configuration for the node. Files 
referenced within the profile are obtained using the fileSys attribute.

• <<readonly>>registeredServices : ServiceSequence 
The readonly registeredServices attribute contains a list of Services that have registered with a node or a sequence 
length of zero if no Services have registered with the node.

Operations

• getComponentImplementationId (in  componentInstantiationId: String, return 
String):  
The getComponentImplementationId operation shall return the implementation ID used to create the component 
identified by the input componentInstantiationId parameter. The implementation ID corresponds to the 
ServiceExecutableCode’s implementation id in a component implementation descriptor that was used to manifest a 
ServiceComponent. The getComponentImplementationId operation shall return an empty string when the input 
componentInstantiationId parameter does not match a ServiceExecutableCode's implementation ID deployed by the 
DeviceManager. This operation does not raise any exceptions.

•  shutdown () 
The shutdown operation provides the mechanism to terminate a DeviceManager. The shutdown operation shall 
unregister the DeviceManager from the DomainManagerComponent. 
 
The shutdown operation shall release all of the DeviceManager’s registered ServiceComponent(s) (DeviceManager’s 
registeredServices attribute) that support the Ilifecycle interface and started up by the DeviceManager.  
 
The shutdown operation shall terminate the execution of each ExecutableCode that was created as specified in the 
deviceConfigurationProfile attribute. For a released (releaseObject operation) ServiceComponent, the termination 
shall take place after the ServiceComponent has unregistered with the DeviceManager. 
 
The shutdown operation shall remove the DeviceManager from the environment when all of the released registered 
Services are unregistered from the DeviceManager. This operation does not return any value and does not raise any 
exceptions. 

Types and Exceptions

• ServiceSequence 
The ServiceSequence type defines an unbounded sequence of ServiceTypes.

• ServiceType( serviceObject: ServiceComponent, serviceName: String) 
This structure provides the Service reference and name of Service that have registered with the node.
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7.2.2.2.1.2 ServiceRegistration

Description

The ServiceRegistration interface defines node service registration capabilities. The interface provides the capabilities of 
adding and removing ServiceComponent(s) from a node.

Operations

• registerService(in  registeringService: ServiceComponent, in name: String): 
{raises = (InvalidObjectReference) } 
The registerService operation provides the mechanism to register a ServiceComponent with a node. The 
registeringService is ignored when duplicated. The registerService operation shall raise the InvalidObjectReference 
exception when the input registeringService is a nil component reference.

• unregisterService(in unregisteringService: ServiceComponent, in name: String): 
{raises = ( InvalidObjectReference)} 
The unregisterService operation provides the mechanism to unregister a ServiceComponent from a node. The 
unregisterService operation shall raise the InvalidObjectReference when the input registeredService is a nil component 
reference or does not exist in the node.

Semantics

The ServiceRegistration interface provides the mechanisms for ServiceComponent(s) started up on a node to register to a 
node or device manager that is managing a node. As ServiceComponent(s) are removed from node environment, the 
interface provides the capability of removing them from a node or device manager. ServiceComponents managed by a 
node manager can also include DeviceComponent(s).

7.2.2.2.2 Device Management Stereotypes

This section defines the stereotypes for device management. The device management stereotypes are depicted in Table 
7.9, which are extensions of UML 2.0 Component (UML2.0::Components::BasicComponents). The details of each 
classifier are described in the following subsections.

7.2.2.2.2.1 DeviceManagerComponent

Description

The DeviceManagerComponent a type of Component as shown in Table 7.9. Figure 7.30 denotes the relationships that are 
common for all node managers. A DeviceManagerComponent manages the ServiceComponent(s) on a node.

Table 7.9  - Node Management Stereotypes

Stereotype Base Class Parent Tags Constraints Description

DeviceManagerComponent Component Component See constraints 
in section 
below

Manages a node and its services.
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Figure 7.30 - DeviceManager M1 Illustration

M1 Associations

• node: Node[1..*] 
One to many nodes can be managed by a DeviceManagerComponent.

• domainNamedRegistrar: NamingService [0..1] 
A NamingService contains the named DomainManagerComponent’s component reference that is obtained by a 
DeviceManager that needs to register to a DomainManagerComponent.

• domainNodeRegistrar: DomainManagerComponent [0..1] 
A DomainManagerComponent harnesses all nodes’ services and capabilities within the domain.

• logicalDeviceMainProcess: LogicalDeviceExecutableCode [*] 
A logical device main process that manifests a DeviceComponent can be executed by a DeviceManagerComponent.

• registeredService: ServiceComponent[1..*] 
A set of ServiceComponent(s) (e.g., DeviceComponents, etc.) registered to a DeviceManagerComponent.

• serviceMainProcess: ServiceExecutableCode [*] 
A service component’s main process that manifests a ServiceComponent can be executed by a 
DeviceManagerComponent.
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Constraints

The registeredServices attribute shall contain a list of registered Services::ServiceComponent(s) that have registered with 
the DeviceManagerComponent. Each registeredservice in the registeredServices attribute shall be registered with the 
DeviceManagerComponent’s associated DomainManagerComponent when the DeviceManagerComponent registers with 
the DomainManagerComponent. 

Each unregistered ServiceComponent shall be unregistered from the DeviceManagerComponent’s associated 
DomainManagerComponent when the unregistered ServiceComponent is registered with the DeviceManagerComponent 
and the DeviceManagerComponent is not shutting down. If a Deployment:: Artifacts::ServiceExecutableCode was started 
up by the DeviceManagerComponent as specified in the deviceConfiguration attribute, then the 
DeviceManagerComponent shall terminate the ServiceExecutableCode and deallocate capacity to the device the 
ServiceExecutableCode was deployed on.

If the DeviceManagerComponent has the association role of a serviceRegistrar, then the DeviceManagerComponent shall 
provide a port that provides the ServiceRegistration service and the port name is ServiceRegistration.

The DeviceManagerComponent shall realize the DeviceManager interface.

Semantics

The DeviceManagerComponent provides the capability of starting up ServiceComponent(s)’ main processes on a given 
node by the deviceConfigurationDescriptor attribute. ServiceComponent(s) started up also include DeviceComponent(s) 
that are a type of ManagedServiceComponent. A DeviceManagerComponent registers to a DomainManagerComponent 
using the deviceConfigurationProfile descriptor information. 

The DeviceManagerComponent upon start up shall register itself with a DomainManagerComponent as specified in the 
deviceConfigurationProfile attribute. A DeviceManagerComponent shall use its deviceConfigurationProfile attribute for 
determining:

1. ServiceComponent(s) to be deployed for this DeviceManagerComponent (for example, LogService, 
DeviceComponent),

2. DeviceComponents to be created for this DeviceManagerComponent, 

3. ServiceComponent(s) to be deployed on (executing on) another Device,

4. DeviceComponents to be part of another DeviceComponent’s composition definition,

5. Mount point names for File Systems,

6. The DeviceManagerComponent’s identifier attribute value, and

7. The DeviceManagerComponent’s label attribute value.

The DeviceManagerComponent shall create file system components implementing the FileSystem interface. If multiple 
FileSystems are to be created, the DeviceManagerComponent shall mount created FileSystemComponents to a 
FileManagerComponent (widened to a FileSystem through the FileSys attribute). Each mounted FileSystemComponent 
name shall be unique within the DeviceManagerComponent.

If the DeviceManagerComponent deploys a ServiceComponent, the DeviceManagerComponent shall supply execute 
operation parameters as stated for Deployment:: Artifacts::ServiceExecutableCode. The ServiceComponent Name 
executable parameter shall be ServiceComponent’s usagename element as specified in the deviceManager’s DCD. The 
DeviceManagerComponent shall use a Deployment:: Artifacts::ExecutableCode’s user-defined executable parameters as 
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specified in the component’s implementation descriptor. The DeviceManagerComponent shall use an ExecutableCode’s 
stacksize, priority, runtime executable options when specified in the component’s implementation descriptor. The 
DeviceManagerComponent shall allocate the ExecutableCode’s capacity requirements against the device the 
ExecutableCode is deployed on.

If the DeviceManagerComponent deploys a DeviceComponent, the DeviceManagerComponent shall supply execute 
operation parameters as stated for Deployment:: Artifacts::LogicalDeviceExecutableCode. The following 
LogicalDeviceExecutableCode’s execute operation parameters values shall be:

• The Device Identifier executable parameter shall be ServiceComponent’s id element as specified in the 
DeviceManager’s DCD. 

• The Profile Name executable parameter shall be ServiceComponent’s component implementation descriptor as 
specified in the DeviceManagerComponent’s DCD. The file name shall be the DeviceManagerComponent’s full 
mounted file system file path name.

• Composite Device Component Reference executable parameter shall be a registered DeviceComponent’s 
compositeDevice attribute that corresponds to the composite part relationship as specified in the 
DeviceManagerComponent’s DCD. This parameter is only used when the composite part relationship is specified in 
the DeviceManagerComponent’s DCD.

The DeviceManagerComponent shall initialize and configure ServiceComponents that are started by the 
DeviceManagerComponent after they have registered with the DeviceManagerComponent provided they realize the 
Lifecycle and PropertySet interfaces. The DeviceManagerComponent shall configure a registered ServiceComponent, 
provided the registered ServiceComponent has ConfigureProperty(s). 

A ServiceComponent’s configuration property values shall only come from the deviceConfigurationProfile descriptor, not 
from the component’s implementation or component definition descriptors. 

7.2.2.3 Domain Event Channels

For domain management, a domain may support a number of event channels. Two event channels that a domain may 
support are:

• IncomingDomainEventChannel - This event channel receives events from the domain’s registered components.

• OutgoingDomainEventChannel - This event channel sends events from the domain out to registered domain event 
consumers.

The types of domain events that could be issued are depicted in the Figure 7.31 and described in the Types and 
Exceptions section below.
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Figure 7.31 - Domain Events Overview

Types and Exceptions

• DomainManagementObjectAddedEventType( sourceHandle: String) 
The DomainManagementObjectAddedEventType is a specialization of DomainManagementObjectEventType. This 
event type indicates a component has been added to the domain. The sourceHandle attribute indicates the component 
reference of the component added to the domain.

• DomainManagementObjectEventType ( sourceName: String, sourceCategory: 
SourceCategoryType, sourceId: String, producerId: String) 
The DomainManagementObjectRemovedEventType is a specialization of event, which contains information about the 
event that occurred in the domain. 

• SourceName attribute is the name of source that caused the event.

• SourceCategory attribute indicates the type of component that caused the event.

• SourceID is the identifier of the source that caused the event.

• ProducerId is the identifier of the producer of the event.

• DomainManagementObjectRemovedEventType 
The DomainManagementObjectRemovedEventType is a specialization of DomainManagementObjectEventType. This 
event type indicates a component has been removed from the domain.

• <<enumeration>>SourceCategoryType(  COMM_CHANNEL, DEVICE_MANAGER, DEVICE, 
DOMAIN_MANAGER,                                                                          
APPLICATION, APPLICATION_FACTORY, SERVICE)) 
The SourceCategoryType defines the types of components within the domain that can be added or removed. A 
ManagedService in the domain can also have its state changed. 
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• <<enumeration>>StateChangeCategoryType( Administrative_Event_State, 
Operational_Event_State, Usage_Event_State) 
The StateChangeCategoryType indicates either an admin, operational, or usage state change.

• <<enumeration>>StateChangeCategoryType(Administrative_Event_State,  
Operational_Event_State, Usage_Event_State) 
The StateChangeCategoryType indicates either an admin, operational, or usage state change.

• StateChangeEventType( stateChangeCategory:StateChangeCategoryType,  
stateChangeFrom:StateChangeType, stateChangeTo: StateChangeType, producerId: 
String, sourceId: String) 
The StateChangeEventType indicates either an admin, operational, or usage state change. The stateChangeCategory 
attribute indicates the type of state change. The sourceId attribute indicates the source component’s state change and 
the producerId indicates the component that produced the event.

• <<enumeration>>StateChangeType( LOCKED, UNLOCKED, SHUTTING_DOWN, ENABLED, 
DISABLED, IDLE, BUSY, ACTIVE) 
The StateChangeType indicates the values for state changes. LOCKED, UNLOCKED, and SHUTTING_DOWN 
values are associated with admin state changes. ENABLED and DISABLED values are associated with operational 
state changes. IDLE, BUSY, and ACTIVE values are associated with usage state changes.

7.2.3 Deployment
Deployment describes the executable artifacts that are involved in the deployment of applications (e.g., applications), 
logical devices, and services within an environment. This section also describes the components that are involved in the 
deployment of and management of Applications in the Application Deployment subsection.

7.2.3.1 Artifacts

This section defines the types and stereotypes for artifacts that are described in the following two subsections 
respectively, 7.2.3.1.1 and 7.2.3.1.2.

7.2.3.1.1 Artifacts Types

This section defines the types for artifacts that are depicted in Figure 7.5. These types are used to specify a deployment 
requirement on a device within a platform.

7.2.3.1.1.1 LoadKind

Description

The LoadKind defines the type of load to be performed.

Types and Exceptions

• <<enumeration>> LoadKind (KERNEL_MODULE, DLL, DRIVER, SHARED_LIBRARY, 
EXECUABLE)
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7.2.3.1.1.2 DeploymentRequirement

Description

The DeploymentRequirement abstraction, as shown in Figure 7.35 on page 110, is used to provide the common definition 
for deployment requirements. The DeploymentRequirement is used to define the deployment requirement against a 
ServiceProperty.

Attributes

• id: String 
The id attribute indicates the identity of the ServiceProperty the deployment requirement is against.

• value: ServiceProperty 
The value attribute contains deployment requirement values that go against a ServiceProperty.

Constraints

The values for the value attribute must agree with the ServiceProperty definition as identified by the id attribute.

Semantics

The deployment requirement is used to specify the type of service needed and/or the capacity needed from a 
ServiceComponent. These deployment requirements are evaluated against the registered ServiceComponent’s 
ServiceProperty(s) within a domain.

7.2.3.1.2 Artifacts Stereotypes

This section defines the stereotypes for artifacts. The artifacts stereotypes are depicted in Table 7.10 and Figure 7.32, 
which are extensions of the UML Artifact. The details of each artifact are described in the following subsections.
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Table 7.10  - Artifacts Stereotypes

Stereotype Base 
Class

Parent Tags Constraints Description

BITStream Artifact LoadableCode Indicates an artifact that is object 
code for a prologic device (e.g., 
Field Programmable Gate Array 
device).

ComponentExecutable 
Code

Artifact ExecutableCode Minimum 
Executable 
parameters 
supported: 
identifier, naming 
context 
component 
reference, name 
bindingSee 
constraints in 
section below

Indicates an artifact that is an 
executable operating system main 
process that manifests either an 
SWRadioResource or/and 
ResourceFactory component a 
Component, which is registered 
with a naming service.

depends on Association N/A Indicates an association that 
depicts a coding dependency 
where the code pointed needs to 
be loaded first.

Descriptor Artifact File Indicates an artifact that is a 
deployment or component 
specification that conveys 
information on the element to be 
deployed.

DeviceConfiguration 
Descriptor

Artifact Descriptor Indicates a descriptor that 
describes the service components 
configuration for a node.

DeviceDescriptor Artifact Descriptor Indicates a descriptor that 
describes a device.

DomainManager-
Descriptor

Artifact Descriptor Indicates a descriptor that 
describes a domain manager 
component.

ExecutableCode Artifact LoadableCode EntryPoint 
Name, 
Process 
Priority, 
stackSize

Executable 
parameters 
conform to argv 
of the POSIX 
exec family of 
functionsSee 
constraints in 
section below

Indicates an artifact that is an 
executable operating system main 
process or entry point.

executes Association N/A Indicates an association that 
denotes execution code on a 
device
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LibraryCode Artifact LoadableCode Indicates an artifact that is 
loadable static or dynamic object 
code.

LoadableCode Artifact File Indicates an artifact that defines 
the base code artifact definition 
and relationships for any type of 
component artifact.

loads Association N/A Indicates an association that 
denotes the loading of code on a 
device

LogicalDevice 
ExecutableCode

Artifact ServiceExecutable
Code

Minimum 
Executable 
parameters 
supported: 
Identifier, 
Software Profile, 
Composite 
Device IORSee 
constraints in 
section below

Indicates an artifact that is an 
executable operating system main 
process that manifest a 
LogicalDevice component.

PropertiesDescriptor Artifact Descriptor Indicates a descriptor that 
describes properties for a 
component definition or 
implementation.

ServiceExecutable 
Code

Artifact ExecutableCode Minimum 
Executable 
parameters 
supported: 
DeviceManager 
Registration 
Reference, 
Service NameSee 
constraints in 
section below

Indicates an artifact that is an 
executable operating system main 
process that manifests a Service.

SoftwareAssembly 
Descriptor

Artifact Descriptor Indicates a descriptor that 
describes an application assembly 
to be deployed.

SoftwareComponent 
Descriptor

Artifact Descriptor Indicates a descriptor that 
describes a component definition 
to be deployed.

Table 7.10  - Artifacts Stereotypes

Stereotype Base 
Class

Parent Tags Constraints Description
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Figure 7.32 - Artifacts Relationships

SoftwarePkg 
Descriptor

Artifact Descriptor Indicates a descriptor that 
describes a component 
implementation to be deployed.

terminates Association N/A Indicates an association that 
denotes termination executable 
code on a device

unloads Association N/A Indicates an association that 
denotes the unloading of code 
from a device

Table 7.10  - Artifacts Stereotypes

Stereotype Base 
Class

Parent Tags Constraints Description
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7.2.3.1.2.1 ExecutableCode

Description

The ExecutableCode artifact, as shown in Figure 7.33, defines the definition and relationships that are common for main 
process types.

Attributes

Figure 7.33 - ExecutableCode M1 Illustration

• entryPointName: String = main 
The entryPointName attribute indicates the name of the process to be created within the operating system.

• processPriority: Ushort [0..1] 
The processPriority attribute indicates the priority of the process to be created within the operating system.

• stackSize: Ulong [0..1] 
The stackSize attribute indicates the stack size of the process to be created within the operating system.

M1 Associations

• userDefinedExecParms: ExecutableProperty [*] 
For any main process or entry point, a user can specify executable parameters that are to be passed to the process upon 
creation.

Constraints

The ExecutableCode entry point’s input parameters (id/value string pairs) shall conform to the standard argv of the 
POSIX exec family of functions, where argv(0) is the function name followed by id/value string pairs. 

An ExecutableCode shall manifest a Component.

ExecutableCode properties shall be of type ExecutableProperty.

7.2.3.1.2.2 LibraryCode

Description

The LibraryCode artifact defines the LoadableCode artifact that is a loadable image.
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Attributes

• kind: LoadKind 
The kind attribute indicates the type of load to be performed.

• dynamic: Boolean = TRUE 
The dynamic attribute indicates if the library to be loaded is dynamic or static. TRUE means dynamic loadable.

7.2.3.1.2.3 LogicalDeviceExecutableCode

Description

The LogicalDeviceExecutableCode artifact, a type of ServiceExecutableCode (see Figure 7.34), defines the operating 
system main process that manifests a LogicalComponent component, which is a specific type of 
ManagerServiceComponent.

Figure 7.34 - LogicalDeviceExecutableCode M1 Illustration

Constraints

The LogicalDeviceExecutableCode shall accept the following executable parameters in addition to the 
ServiceExecutableCode parameters:

• Profile Name - The ID is “PROFILE_NAME” and the value is a string that is the full mounted file system file path 
name that is used for DeviceComponent profile attribute.

• Device Identifier - The ID is “DEVICE_ID” and the value is a string that is used for the Component’s identifier 
attribute.

• Composite Device Component Reference - The ID is “Composite_DEVICE_IOR” and the value is a string that is a 
DeviceCompositionComponent reference.

The LogicalDeviceExecutableCode Service Name executable parameter shall be used for the DeviceComponent’s label 
attribute value.

The LogicalDeviceExecutableCode shall add the DeviceComponent manifested by the process to the device composition 
using the Composite Device Component Reference executable parameter when specified.

The LogicalDeviceExecutableCode Device Identifier executable parameter shall be used for the DeviceComponent’s 
identifier attribute value.

The LogicalDeviceExecutableCode Profile Name executable parameter shall be used for the DeviceComponent’s 
softwareProfile attribute value.

A LogicalDeviceExecutableCode shall manifest a DeviceComponent.

VendorLogicalDeviceExecutableCode
<<logicaldeviceexecutablecode>>

VendorDeviceComponent
<<devicecomponent>> <<manifest>>
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7.2.3.1.2.4 LoadableCode

Description

The LoadableCode artifact, as shown in Figure 7.35, describes the definition and relationships that are common for all 
artifact types.

Figure 7.35 - LoadableCode M1 Illustration

M1 Attributes

• compiler: DeploymentRequirementQualifier [0..1] 
The compiler attribute indicates the compiler name and version used to create the loadable code.

• deployedOnRequirement: DeploymentRequirement [1..*] 
A LoadableCode artifact needs to specify “deployed on” deployment requirements in order for the artifact code gets 
deployed on the right communication channel’s device. The set of deployedOnRequirements specifies the device 
required and the capacity needed from the device.

• loadDependencyRequirement: DeploymentRequirement [*] 
A LoadableCode artifact can have dependency to other object code that requires loading and or execution first. The set 
of loadDependencyRequirements specifies the object code dependency.

• requiredUsageRequirement: DeploymentRequirement [*] 
A LoadableCode artifact requires usage of a service. The set of requiredUsageRequirements specifies the service 
required.

M1 Associations

• implementationDescriptor: Descriptor [1] 
LoadableCode artifacts are described by an implementation descriptor, which captures the deployment requirements 
and the type of artifact to be deployed

Semantics

A LoadableDevice manages the loading and unloading of LoadableCode on a loadable device.
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7.2.3.1.2.5 ComponentExecutableCode

Description

The ComponentExecutableCode artifact, defines the operating system main process that manifests a Component and 
registers it to a naming service.

Constraints

ComponentExecutableCode shall accept the following three executable parameters:

• NamingContext Component Reference - The ID is “NAMING_CONTEXT_IOR” and the value is a stringified naming 
context reference. The reference is used to obtain the NamingContext path. The format of a NamingContext path is 
sequence of NamingContext where each “slash” (/) represents a separate naming context. A NamingContext is made 
up of ID and kind pair, which is indicated by “id.kind” in the NamingContext string. The NamingContext kind is 
optional and when not specified a null string will be used. For example, the structure of the naming context path is “/ 
SomeName / [optional naming context sequences].” There is at least one “slash” (/) in the Naming Context string. 

• Name Binding - The ID is “NAME_BINDING” and the value is a string that corresponds to the name used to bind the 
manifested component to the naming service. 

• Identifier - The ID is “COMPONENT_IDENTIFIER” and the value is a string that is used for the Component’s 
identifier value.

ComponentExecutableCode shall register the Component manifested by the process to the NamingService as specified by 
the NamingContext Component Reference executable parameter. The name binding registered to the NamingService shall 
be as specified by the Name Binding executable parameter.

The ComponentExecutableCode Identifier executable parameter shall be used for the manifested Component’s identifier 
attribute value.

7.2.3.1.2.6 ServiceExecutableCode

Description

The ServiceExecutableCode artifact, as shown in Figure 7.36, defines the operating system main process that manifests a 
Service component.

Figure 7.36 - ServiceExecutableCode M1 Illustration

Constraints

The ServiceExecutableCode shall accept the following user-defined executable parameters:

• DeviceManager Registration Reference - The ID is “DEVICE_MGR_IOR” and the value is a string that is the 
INodeRegistration component reference.
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• Service Name - The ID is “SERVICE_NAME” and the value is a string that corresponds to the service name.

The ServiceExecutableCode shall register the ServiceComponent’s Service(s) manifested by the process to the 
DeviceManager using the DeviceManager Registration Reference executable parameter.

A ServiceExecutableCode shall manifest a ServiceComponent.

7.2.3.2 Applications Deployment

This section defines the interfaces (7.2.3.2.1) and components (7.2.3.2.2) that perform the deployment behavior within a 
platform.

7.2.3.2.1 Applications Deployment Interfaces

This section defines the interfaces that perform the deployment behavior within a platform. The deployments interfaces 
are Application and ApplicationFactory, which are described in the following subsections.

Types and Exceptions

• DeviceAssignmentType( componentId: String, assignedDeviceId: String) 
DeviceAssignmentType defines a structure that associates a component with the DeviceComponent upon which the 
component must execute.

• DeviceAssignmentSequence 
DeviceAssignmentSequence provides an unbounded sequence of DeviceAssignmentType.

7.2.3.2.1.1 Application

Description

The Application interface, as shown in Figure 7.37, provides for the control, configuration, and status of an instantiated 
application or waveform in the domain. The Application interface is specialization of the Resource interface that provides 
generic operations for controlling the deployed application. 

Figure 7.37 - Application Definition

Attributes

• <<readonly>>name: String 
The readonly name attribute contains the name of the created Application. The ApplicationFactory’s create operation 
name parameter provides the name content. 
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• <<readonly>>profile: String 
The readonly profile attribute contains the instantiated Application descriptor file reference. 

Operations

• getProvidedPorts (inout ports: PortSequenceType): {raises ( UnknownPorts )} 
The getProvidedPorts operation returns object references only for input port names that match the external provided 
port names that are in the Application’s component assembly descriptor. In the ports name/value pair sequence, each 
name corresponds to an external provided port name and each value corresponds to the object reference of the external 
provided port to be returned. The getProvidedPorts operation shall return all the external provided ports if the ports 
argument is zero size. The getProvidedPorts operation shall return only those provided ports specified in the ports 
argument if the ports argument is not zero size. The getProvidedPorts operation shall raise an UnknownPorts exception 
when one or more requested provided ports are invalid.

• releaseObject(): (raises (ReleaseError)} 
The releaseObject operation terminates execution of the ApplicationManager.

7.2.3.2.1.2 ApplicationDeploymentData

Description

The ApplicationDeploymentData is an interface, as shown in Figure 7.39, that provides detail information on Application 
instance deployment.

Figure 7.38 - ApplicationDeploymentData Definition

Attributes

• <<readonly>>componentDevices: DeviceAssignmentSequence 
The readonly componentDevices attribute contains a list of DeviceComponents, which each ApplicationAssembly’s 
component uses, is loaded on, or is executed on. 

• <<readonly>>componentImplementations: ComponentElementSequence 
The readonly componentImplementations attribute contains the list of components’ implementation IDs within the 
Application for those components created.

• <<readonly>>componentNamingContexts: ComponentElementSequence 
The readonly componentNamingContexts attribute contains the list of components’ Naming Context using Naming 
Service.

• <<readonly>>componentProcessIds: ComponentProcessIdSequence 
The readonly componentProcessIds attribute contains the list of components’ process IDs within the Application for 
components that are manifested within an ExecutableCode on an ExecutableDeviceComponent.
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Types and Exceptions

• ComponentProcessIdType( componentId: String, processId: long) 
The ComponentProcessIdType defines a type for associating a component with its process ID. This type can be used to 
retrieve a process ID for a specific component.

• ComponentProcessIdSequence 
The ComponentProcessIdSequence type defines an unbounded sequence of componentProcess IdTypes.

• ComponentElementType( componentId:String, elementId: String) 
The ComponentElementType defines a type for associating a component with an element (e.g., naming context, 
implementation ID).

• ComponentElementSequence 
The ComponentElementSequence defines an unbounded sequence of ComponentElementType. 

7.2.3.2.1.3 ApplicationFactory

Description

The ApplicationFactory interface, as shown in Figure 7.39, provides the dynamic mechanism to create instances of a 
specific type of Application (e.g., waveform) in the domain.

Figure 7.39 - ApplicationFactory Definition

Attributes

• <<characteristic>>capabilityManager: Boolean = False 
The characteristic capabilityManager attribute indicates the ApplicationFactory behavior in regards to 
CapacityProperty(s). A value of True means the ApplicationManager manages CapacityProperty(s), otherwise it does 
not.

• <<readonly>>name: 
The readonly name attribute contains the name of the installed Application.

• <<readonly>>softwareProfile: 
The readonly softwareProfile attribute contains the installed Application description file reference.

Operations

• create(in name: String, in initConfiguration: Properties, in deviceAssignments: 
DeviceAssignmentSequence, return ApplicationManager):{raises ( 
CreateApplicationError, CreateApplicationRequestError, InvalidInitConfiguration 
)}

ApplicationFactory
<<readonly>> name : String
<<readonly>> softwareProfile : String

create(name : in String, initConfiguration : in Properties, deviceAssignments : in DeviceAssignmentSequence) : ApplicationManager

<<interface>>
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The create operation provides the capability of creating an ApplicationManager instance.

Types and Exceptions

• <<exception>>CreateApplicationRequestError 
This exception is raised when the DeviceAssignmentSequence contains 1 or more invalid Application component-to-
device assignment(s).

• <<exception>>CreateApplicationError 
The CreateApplicationError exception, specialization of SystemException, is raised when the create operation is 
unsuccessful due to internal processing errors. The error number indicates an ErrorNumberType value (e.g., E2BIG, 
ENAMETOOLONG, ENFILE, ENODEV, ENOENT, ENOEXEC, ENOMEM, ENOTDIR, ENXIO, EPERM). The 
message is component-dependent, providing additional information describing the reason for the error.

• <<exception>> InvalidInitConfiguration 
The InvalidInitConfiguration exception is raised when the input initConfiguration parameter is invalid.

Semantics

The create operation provides the capability of deploying an instance of the Application by making dynamic decisions on 
which DeviceComponent(s) the Application’s components are deployed on and which Service(s) are used by an 
Application. 

The create operation determines which registered domain Services can satisfy the Application’s deployment requirements 
as stated in the installed Application descriptor. The create operation also provides the mechanism to direct which 
DeviceComponent(s) are to be used for Application deployment instead of the ApplicationFactoryComponent making the 
DeviceComponent decision.

The create operation shall use descriptor information as referenced by the softwareProfile to determine the Application 
deployment requirements. 

If input deviceAssignments (not zero length) are provided, the create operation verifies each device assignment for the 
specified component against the Application’s deployment requirements.

The create operation shall allocate the Application’s deployment requirements against candidate Service(s) to determine 
which candidate Service(s) satisfy all the Application’s deployment requirements and partitioning requirements (e.g., 
components HostCollocation, components process thread collocation, etc.). The create operation shall only use Service(s) 
whose capability and capacity characteristics (expressed in the Service(s)’ ServiceProperties) satisfy the allocation 
requirements (i.e., deployment and partitioning requirements) specified for the Application components. The create 
operation shall use the ServiceProperty’s CapabilityModel or delegate as specified by Service’s ServiceProperty’s 
capabilityModel and locallyManaged attributes for determining Service(s) that can satisfy an Application’s deployment 
requirement. The actual Service(s) chosen will reflect changes in capacity based upon component deployment 
requirements allocated to them, which may also cause state changes for the Service(s). 

The create operation shall load the Application components (including all of the Application-dependent components) to 
the chosen DeviceComponent(s).

The create operation shall execute the Application components (including all of the application-dependent components) as 
specified in the Application’s descriptor. The create operation shall use each component’s implementation stack size and 
priority attributes, when specified, for the ExecutableDevice’s execute options parameters. 

The create operation shall pass the mandatory execute parameters as specified for ResourceExecutableCode for each 
Application component’s implementation that has an entry point.
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The create operation shall pass ResourceExecutableCode’s executable parameters (NamingContext, Name Binding, 
Identifier) to an ExecutableDevice’s execute formal parameter named parameters. The create operation creates any 
naming contexts that do not exist to which the component will bind to. The structure of the naming context path shall be 
“/ DomainName / [optional naming context sequences].” In the naming context path, each “slash” (/) represents a separate 
naming context. 

The ResourceExecutableCode’s executable Name Binding parameter value shall be set to a string in the format of 
“ComponentName_UniqueIdentifier.” The ComponentName value shall be the component instantiation namingservice’s 
name attribute in the Application’s component assembly descriptor. The UniqueIdentifier is determined by the 
implementation.

The create operation uses “ComponentName_UniqueIdentifier” to retrieve the component’s object reference from the 
Naming Context. Due to the dynamics of bind and resolve to NamingService, the create operation should provide 
sufficient attempts to retrieve component object references from NamingService prior to generating an exception.

The ResourceExecutableCode’s executable Identifier parameter value shall be set to a string in the format of 
“Component_Instantiation_Identifier: Application_Name.” The Component_Instantiation_Identifier shall be the 
component’s instantiation id attribute in the Application’s component assembly descriptor. The Application_Name field 
shall be identical to the create operation’s input name parameter. The Application_Name field provides a specific instance 
qualifier for executed ResourceComponent(s).

The create operation shall pass a component’s implementation's ExecutableProperty(s) to an ExecutableDevice’s execute 
formal parameter named parameters. The create operation shall pass Executable Property values as string values.

The create operation shall, in order, initialize application components that support the LifeCycle interface, then establish 
connections for application components that support the PortConnector interface, and finally configure the application 
components that support the PropertySet interface and have ConfigureProperty(s) described in the application’s 
component assembly descriptor. The Application’s assemblyController shall be configured after the configuration of all 
application components.

The create operation uses the PortSupplier interface for obtaining provider interfaces for a connection.

The create operation input initConfiguration properties shall only apply to the assemblycontroller component of the 
deployed Application as defined in the Application’s descriptor. A deployed component’s configuration property values 
shall only come from the Application’s descriptor, not from the component’s implementation or component definition 
descriptors.

The create operation configures an Application’s assemblyController component provided the assemblyController has 
ConfigureProperty(s). The create operation shall use the union of the input initConfiguration properties of the create 
operation and the assemblyController’s ConfigureProperties. The input initConfiguration parameters shall have 
precedence over the assemblyController’s configure property values. 

The create operation shall, when creating a ResourceComponent from a ResourceFactory, pass the associated 
ResourceFactory’s ConfigureProperty(s) as qualifiers parameters to the referenced ResourceFactory component’s 
createResource operation.

The create operation shall interconnect ResourceComponent(s) (Application’s components or DeviceComponents’) ports 
in accordance with the Application’s component assembly descriptor. The create operation obtains provider ports in 
accordance with the Application’s component assembly via PortSupplier’s getProvidedPorts operation. 

The connections to domain Service(s) such as LogService, FileManager, FileSystem, Event Service, and NamingService 
are specified as component’s connections using domainfinder in the Application’s component assembly descriptor. 
Domain Service(s) are services that have been registered to the domain. 
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For connections established for an EventService’s event channel, the create operation shall connect a PushConsumer or 
PushSupplier object to the event channel as specified in the component’s connection in the Application’s component 
assembly descriptor. If the event channel does not exist, the create operation shall create the event channel. 

The create operation establishes connections to ResourceComponent(s) using the PortConnector::connectPort operation. 
The create operation shall use the connection id attribute as the unique identifier for a specific connection when provided 
in the Application’s component assembly descriptor. The create operation shall create a connection ID when no 
connection id is specified for a connection in the Application’s component assembly descriptor. 

If the Application is successfully created, the create operation returns an ApplicationManager component reference for the 
created Application. A sequence of created Application references can be obtained using the 
DomainManagerComponent’s readonly applications attribute (getApplications operation). No additional semantics.

The create operation shall raise the CreateApplicationRequestError exception when the DeviceAssignmentSequence 
parameter contains one (1) or more invalid Application component to device assignment(s).

The create operation shall raise the CreateApplicationError exception when the Application cannot be successfully 
instantiated due to internal processing error(s).

The create operation shall raise the InvalidInitConfiguration exception when the input initConfiguration parameter is 
invalid. The InvalidInitConfiguration invalidProperties identifies the properties that are invalid.

The created ApplicationManager’s name attribute shall be identical to the input name parameter.

7.2.3.2.2 Application Deployment Stereotypes

This section defines the components that perform the deployment behavior within a platform. The component stereotypes 
are depicted in the Table 7.11, which are extensions of the UML Component. The details of each component are described 
in the following subsections.

 

7.2.3.2.2.1 ApplicationManager

Description

The ApplicationManager is a type of ResourceComponent as shown in Figure 7.40. The ApplicationManager provides the 
interface for the control, configuration, and status of an instantiated application or waveform in the domain. The 
ApplicationManager is the proxy for the deployed Application component instance.

Table 7.11 - Applications Stereotypes

Stereotype Base 
Class

Parent Tags Constraints Description

ApplicationManager Component Resource Component See 
constraints in 
section below

Represents the proxy for deployed 
Application instance.

ApplicationFactory
Component

Component Component capability 
Manager

See 
constraints in 
section below

Represents the deployment 
machinery for Application’s 
Descriptor.
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Figure 7.40 - ApplicationManager Definition

M1 Associations

• assemblyController: ApplicationResourceComponent [1] 
The Application’s assemblyController that ApplicationManager delegates operations to.

• capacityDeallocator: VendorDeviceComponent [*] 
The DeviceComponents that were allocated capacities during the Application deployment are used to return capacities 
back to these devices.

• capabilityModel: CapabilityModel [*] 
The capabilityModels for ServiceProperty(s) used and managed by the Application.

• deployedComponent: DeployedComponent [1..*] 
The Application instance’s deployed Components that are deployed.

• eventChannelManager: EventService [1] 
The EventService that manages the creation and destruction of EventChannels.

• portDisonnector: VendorServiceComponent [1..*] 
The ServiceComponent(s) provide the capability to disconnect provided ports from their required ports.

• namedRegistrar: NamingService [1] 
The NamingService that has the deployed Application components references.

• releasableComponent: DeployedComponent [1..*] 
The deployed Component(s) that were manifested during the Application deployment are released. 
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• resourceReleaser: ResourceFactoryComponent [*] 
The ResourceFactory(s) that were used during the Application deployment are used to release 
ApplicationResourceComponent(s) from these ResourceFactory(s).

• processTerminator: VendorExecutableDevice [1..*] 
The ExecutableDevices that executed ExecutabeCode during Application deployment are used to terminate these 
processes.

• unloader: VendorLoadableDevice [1..*] 
The LoadableDevices that were loaded with ObjectCode during the Application deployment are used to unload the 
ObjectCode from these devices.

Constraints

The ApplicationManager shall be either associated with DeviceComponent(s) or CapabilityModel(s) for the deallocate 
capacity behavior. 

The ApplicationManager shall realize the Application interface.

Semantics

The ApplicationManager shall delegate the implementation of the inherited ResourceComponent operations (runTest, 
start, stop, configure, and query) to the Application instance’s assembly controller (e.g., ApplicationResourceComponent). 
The ApplicationManager shall propagate exceptions raised by these operations. The initialize operation is not propagated 
to the Application’s assembly controller. The initialize operation causes no action within an ApplicationManager.

The ApplicationManager releaseObject operation shall deallocate Application’s required capacities against the 
ServiceComponent(s) that were obtained from or associated with. The actual DeviceComponent(s) may reflect changes in 
capacity based upon component capacity requirements deallocated from them, which may also cause state changes for the 
DeviceComponent(s). The releaseObject operation shall release all references to the Application component instances. 
The releaseObject operation shall disconnect port connections to non-application component providers that have been 
connected based upon the Application’s component assembly descriptor. The releaseObject operation shall disconnect the  
Application instance’s components consumers and producers from an EventService’s event channel. The releaseObject 
operation may destroy an EventService’s event channel when no more consumers and producers are connected to it. For 
components (e.g., Resource, ResourceFactory) that are registered with Naming Service, the releaseObject operation 
unbinds those components and destroys the associated naming contexts as necessary from the NamingService. The 
releaseObject operation shall disconnect ports first, then release the Application instance’s ResourceComponent(s) and 
ResourceFactory(s), terminate the Application instance’s ExecutableCode, and lastly unload the Application instance’s 
LoadableCode from the DeviceComponent(s). The releaseObject operation shall raise a ReleaseError exception when the 
releaseObject operation unsuccessfully releases the Application instance due to internal processing errors.

An ApplicationManager implementation could realize the ApplicationDeploymentData interface to provide details on the 
deployment on the Application instance.
Component Framework Specification, v1.0        119



7.2.3.2.2.2 ApplicationFactoryComponent

Description

The ApplicationFactoryComponent provides the dynamic mechanism to create instances of a specific type of Application 
(e.g., waveform) in the domain. Figure 7.41 depicts the ApplicationFactory’s capacity constraints and Figure 7.42 depicts 
the relationships that are common for all ApplicationFactory(s).

Figure 7.41 – ApplicationFactory Capability Manager Relationships

Figure 7.42 - ApplicationFactory M1 Illustration

Attributes

• capabilityManager: Boolean = False 
The capabilityManager attribute indicates the ApplicationFactoryComponent behavior in regards to 
CapacityProperty(s). A value of True means the ApplicationManagerComponent manages CapacityProperty(s), 
otherwise it does not.

1..*

1

Capabil it yType

CapabilityModel
(from Services In te rfaces)

ServiceProperty
<<serviceproperty>>

+serviceProperty 1..*

+capabilityModel
1

ManagedServiceCom ponent
<<managedservicecomponent>>

CFApplicationFactory
capabilityManager :  Boolean

<<applicationfactorycomponent>>

*

*

+capabilityModel
*

*

*

+domainServiceProperty

*

*

+managedService

*

ApplicationFactory
<<interface>>

ResourceFactoryComponent
<<resourcefactorycomponent>>

VendorDeviceComponent
<<servicecomponent>>

VendorExecutableDevice
<<executabledevicecomponent>>

VendorLoadableDevice
<<loadabledevicecomponent>>

NamingService
<<servicecomponent>>

EventServ ice
<<servicecomponent>>

DeployedComponent
<<component>>

CFApplicationFactory
<<applicationfactorycomponent>>

1
*

+delegator
1

+resourceCreator

*

*

*

+appDeploymentManager
*

+capacityAllocator::CapacityManager

*

*

1..*

+appCreator

*

+processCreator
1..*

*

1..*

+applicationDeployer
*

+loader
1..*

1

*
+namedRegistrar

1

+deployedComponentRetrieval
*

1

*

+eventChannelCreator 1

+eventChannelRequestor
*

1..*

1

+ConnectableComponent::PortConnector
1..*

+connectionInitiator
1

1

*

+initialConfigurer
1

+configurableComponent::PropertySet

*

1

1..*

+initializer1

+initializableComponent::LifeCycle

1..*
CFApplication

<<applicationmanager>>

1

*

+applicationDeployer
1

+deployedApplication
*

120                 Component Framework Specification, v1.0



M1 Associations

• capabilityModel: CapabilityModel [*] 
The CapabilityModel(s) used for determining which domainServiceProperty(s) can satisfy the Application’s 
deployment requirements.

• configurableComponent: DeployedComponent [*] 
The deployed components that are configurable by the ApplicationFactoryComponent.

• deployedApplication: CFApplicationManager [*] 
The ApplicationManager that manages the instantiated Application.

• domainServiceProperty: ServiceProperty [1..*] 
The registered Services’ ServiceProperty(s) that are used for determining Services to be used for Application 
deployment.

• eventChannelCreator: EventService [1] 
The EventService that manages EventChannels.

• initializableComponent: DeployedComponent [*] 
The deployed Component(s) that are initializable (LifeCycle interface) by the ApplicationFactory component.

• loader: VendorLoadableDevice [1..*] 
The LoadableDeviceComponent(s) are used to load ObjectCode during the Application deployment.

• managedService: ManagedServiceComponent [*] 
A managedService manages its own CapacityModel(s).

• NamedRegistrar: NamingService[1] 
The NamingService that contains deployed component object references.

• portConnector: DeployedComponent [1..*] 
The deployed Component(s) that are connected to Services and to other Component(s) by the ApplicationFactory 
component.

• processCreator: VendorExecutableDevice [1..*] 
The ExecutableDeviceComponent(s) are used to execute Application main processes during Application deployment.

• resourceCreator: ResourceFactoryComponent [*] 
The ResourceFactory can be used during the Application deployment as an optional means of creating 
ApplicationResourceComponent(s). 

Constraints

The identifier attribute shall be identical to the installed Application’s descriptor id attribute.

The name attribute shall be identical to the installed Application’s descriptor name attribute.

When capabilityManager attribute is False the ApplicationFactoryComponent shall only use ServiceProperty(s) that are 
locally managed by a ServiceComponent, otherwise the ApplicationFactory manages the ServiceProperty(s). 
Characteristic properties can be either managed or unmanaged by the ApplicationFactoryComponent.

The ApplicationFactoryComponent shall realize the ApplicationFactory interface.

When the capabilityManager attribute is true, then the ApplicationFactory Component shall support the ServiceProperty’s 
capabilityModel for CapacityProperty.
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The ApplicationFactoryComponent shall support the ServiceProperty’s capabilityModels for CharacteristicProperty, 
CharacteristicSelectionProperty, and CharacteristicSetProperty. Characteristic properties can be either managed or 
unmanaged by a ServiceComponent.

The ApplicationFactoryComponent shall associate only one assemblyController to each Application instance.
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8 Platform Specific Model (PSM)

The PSM consists of CORBA and XML that are based upon the UML Profile for Component Framework. The PIM to 
PSM transformation rules are not universal rules for creating *any* PSM, but only used for the purpose of this 
specification. This section defines a non-normative reference PSM. Non-CORBA PSMs may also be fully compliant to 
this specification as a whole. 

The rule set for transforming UML packages, interfaces, types, and exceptions into CORBA constructs are as follows:

1. UML interfaces and interface extensions map to CORBA interfaces. The CORBA interface names are without 
the prefix “I” in the interface name as used in the UML profile for Component Framework and in the PIM 
Facilities.

2. UML attributes with readonly and readwrite map to CORBA attributes in CORBA interfaces. 

3. UML attributes with configureproperty, queryproperty and testproperty do not map to CORBA attributes in 
CORBA interfaces. Instead XML definitions are used that follow the Property types as defined in UML Profile 
for Component Framework::Application and Device Components::Properties section.

4. UML classes without operations that are not stereotyped and used for type definitions map to CORBAStruct 
stereotypes in the CORBA interfaces and modules. The parent classes do not get translated into CORBA types 
instead the parent class attributes are added to the subclass in the CORBA definition. 

5. UML <<datatype>> maps to CORBA basic types. Primitive types are mapped to CORBA primitive types and 
primitive sequence types are mapped to CORBA Typedef of primitive sequence types.

6. UML exceptions and exception extensions map to CORBA exceptions. There is no specializations of 
exceptions in CORBA so the (UML Profile for Component Framework::Application and Device 
Components::BaseTypes) SystemException definition does not appear in the generated CORBA interfaces but 
all the specialization exceptions of SystemException are in the CORBA interfaces with the same attributes as 
defined for SystemException. 

7. UML attributes that have a cardinality of many [*] map to a CORBA Typedef of sequence types.

8. UML operations map to operations in the CORBA interfaces.

9. Transformations are only performed for concrete classes, not for template classes. Concrete classes that bind 
to template classes are used in the PSM.

10. For Interfaces that reference a component stereotype for a type, the “component” qualifier is removed from the 
name. For Example, FileManagerComponent would become FileManager as the type for the parameter or 
attribute.

11. UML attributes with constant stereotype map to CORBA constants in CORBA interfaces.

12. Basic types (e.g., Any, Object) map to CORBA types.

The CORBA PSM corresponds to the UML Profile for Component Framework that maps to a CORBA module named CF 
(Component Framework). The CF CORBA module is an existing IDL definition used in industry, therefore the CF IDL 
does not follow all of the OMG CORBA guidelines (e.g., operation, attribute, and parameter names), in order to reduce 
impact on industry. The CF CORBA module is broken up into multiple files as shown in Table 8.1. The reason for the 
break-up into multiple files is a memory foot print size for the embedded environment. Specific interfaces are only used 
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and implemented on certain devices within the platform. The interfaces used vary by the type of developers (waveform, 
device, domain management) for a platform. These developers use different sets of interfaces for the components they are 
developing.

Table 8.1  - Component Framework CORBA Module Overview

UML Profile for Component Framework 
Specification Sections

IDL File CORBA Module

 
 
Application and Device 
Components

BaseTypes CFCommonTypes.idl CF

CFBaseTypes.idl CF

BaseTypes - each 
primitive sequence type 
is mapped to its own file

CFPortTypes_BooleanSequence.idl
CFPortTypes_CharSequence.idl
CFPortTypes_ShortSequence.idl
CFPortTypes_UshortSequence.idl
CFPortTypes_LongSequence.idl
CFPortTypes_UlongSequence.idl
CFPortTypes_LongLongSequence.idl
CFPortTypes_UlongLongSequence.idl
CFPortTypes_FloatSequence.idl
CFPortTypes_DoubleSequence.idl
CFPortTypes_LongDoubleSequence.idl
CFPortTypes_WcharSequence.idl
CFPortTypes_WstringSequence.idl
CFPortTypes.idl

PortTypes within CF

Resource Components 
Interfaces except for 
ResourceFactory

CFResources.idl CF

Resource Components 
Interfaces - 
ResourceFactory only

CFResourceFactory. idl CF

Device Components 
Interfaces

CFDevices.idl CF

 
 
 
 
 
 
 
Infrastructure

 
 
 
 
Domain 
Management

Device Management 
Interfaces - Each 
interface maps to its own 
IDL file.

CFServiceRegistration.idl, 
CFDeviceManager.idl

CF

Domain Management 
Interfaces - Each 
interface maps to its own 
IDL file

CFDomainEventChannels.idl, 
CFDomainInstallation.idl, 
CFDeviceManagerRegistration.idl, 
CFDomainManager.idl

CF

Domain Event Channels CF_SE_DomainEvent.idl
CF_SE_StateEvent.idl

CF

Services File Services Interfaces - 
Each interface maps to 
its own IDL file

CFFile.idl, 
CFFileSystem.idl, 
CFFileManager.idl

CF

Services Interfaces CFStateManagement.idl CF

Deployment Applications Deployment 
Interfaces

CFApplications.idl CF
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Other non-CORBA PSM transforms (e.g., XML) are as follows:

1. The UML Profile for Component Framework::Application and Device Components::Properties maps to 
Properties XML definitions. Each property definition maps to an XML element definition. Abstract classes are 
not directly transformed into XML, instead their attributes are used for the concrete subclass XML definitions. 
Attributes with default values are created as XML attributes. All other attributes are created as XML elements. 
The name and ID is a unique value for each property in an XML properties set. Only the properties attributes 
stated in the Properties section are used for the XML properties definition. Specific transformations of the 
properties are as follows:

• Primitive types are mapped to the corresponding enumeration literal in the SimpleType XML element.

• EnumerationProperty attributes map to the EnumerationLiteral XML element. The attribute name and value 
maps to the label and value xml elements.

• ConfigureProperty and QueryProperty that are primitive types maps to the XML 
ConfigureQuerySimpleProperty XML element.

• ConfigureProperty and QueryProperty that are primitive sequence types maps to the XML 
ConfigureQuerySimpleSeqProperty XML element.

• ConfigureProperty and QueryProperty that are a StructProperty type maps to the XML 
ConfigureQueryStructProperty XML element.

• ConfigureProperty and QueryProperty that are a StructProperty sequence type maps to the XML 
StructSequenceProperty XML element.

• TestProperty maps to the XML TestProperty element

• CharacteristicProperty maps to XML CharacteristicProperty

• CapacityProperty mapes to XML CapacityProperty

• CharacteristicSelectionProperty maps to XML CharacteristicSelectionProperty

• CharacteristicSetProperty maps to XML CharacteristicSetProperty

• ExecutableProperty maps to XML ExecutableProperty

2. In industry there are two sets of XML definitions that could be used for the deployment of components with a 
platform, which are the Document Type Definitions (DTDs) as described in reference 3.2.1.1 and CCM 
Schema XML as described in the COBRA Components Model (CCM). The relationships of these XML 
elements to the CF components are depicted in Table 8.2
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Table 8.2 

Component Type

Descriptors PSM

Document Type Definitions
XML CCM Schema XML

ApplicationManager Software Assembly Descriptor,
Software Package Descriptor, 
Software Component Descriptor, 
Properties Descriptor

ComponentPackageDescription,
ComponentInterfaceDescription,
ComponentAssemblyDescription, 
MonolithicImplementationDescription,
and Properties XML

ApplicationFactoryComponent

DeviceManagerComponent Device Configuration Descriptor

DomainManagerComponent Domain Configuration Descriptor

Component Software Assembly Descriptor,
Software Package Descriptor,
Software Component Descriptor,
Properties Descriptor

ComponentPackageDescription,
ComponentInterfaceDescription,
ComponentAssemblyDescription, 
MonolithicImplementationDescription,
and Properties XML

ServiceComponent
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Annex A Software Radio Reference Sheet

The Software Radio specification responds to the requirements set by “Request for Proposals for a Platform Independent 
Model (PIM) and CORBA Platform Specific Model (PSM)” (swradio/02-06-02). The original specification (dtc/05-10-02) 
has been reorganized into 5 volumes, as follows:

Volume 1.  Communication Channel and Equipment

This specification describes a UML profile for communication channel. The profile provides definitions for creating 
communication channel and communication equipment definitions. The specification also provides radio control facilities 
and physical layer facilities PIM for defining interfaces and components for managing communication channels and 
equipment for a radio set or radio system. Along with the profile and facilities is a platform specific model transformation 
rule set for transforming the communication channel into an XML representation and CORBA interfaces for the radio 
control facilities.

Volume 2.  Component Document Type Definitions

This specification defines the content of a standard set of Data Type Definition (DTD) files for applications, components, 
and domain and device management. The complete DTD set is contained in Section 7, Document Type Definitions. XML 
files that are compliant with these DTD files will contain information about the service components to be started up when 
a platform is power on and information for deploying installed applications. 

Volume 3.  Component Framework

This specification describes a UML profile for component framework. The profile provides definitions for applications, 
components (properties, ports, interfaces, etc.), services, artifacts, logical devices, and infrastructure domain management 
components. In the profile are also library packages that contain interfaces for application, service, logical device, and 
infrastructure domain management components. Along with the profile is a platform specific model transformation rule 
set for transforming the profile model library interfaces into CORBA interfaces.

Volume 4.  Common and Data Link Layer Facilities

This specification describes a set of facilities PIM for application and component definitions. The set of facilities are 
common layer facilities and data link layer facilities that can be utilized in developing waveforms and platform 
components, which promote the portability of waveforms across Software Defined Radios (SDR).

Volume 5.  POSIX Profiles

This specification defines the application environment profiles for embedded constraint systems, based on Standardized 
Application Environment Profile - POSIX® Realtime Application Support (AEP), IEEE Std 1003.13-1998. 
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