[1]

(2]
(3]

[4]

Security Service Specification 15

This chapter incorporates material that was adopted in three separate specifications
related to security:

® CORBA Security Rev 1.1 (formal/97-12-22)
® Common Secure Interoperability 1.0 (orbos/96-06-20)
® CORBAsecurity/SSL Interoperability (orbos/97-02-04)

All these documents are therefore superseded by this chapter.

Associated with this document, are documents ptc/98-01-03, and ptc/98-01-04, which
contain associated changes to the CORBA Core that have been recommended jointly
by the Security RTF and the Core RTF. Also associated with this document are the
outputs of the C++ and Java language mapping RTFs that had co-terminus delivery
dates with the Security 1.2 RTF.

Contents

See “Introduction to the Specification” on page 15-8.

15.1 Introduction to Security

(5]

15.1.1 Why Security?

Security Servicevl.7

Enterprises are increasingly dependent on their information systems to support their
business activities. Compromise of these systems either in terms of loss or inaccuracy
of information or competitors gaining access to it can be extremely costly to the
enterprise.

15 December 1999 [DRAFT] 15-1

15

(€]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

15-2

Security breaches, which compromise information systems, are becoming more
frequent and varied. These may often be due to accidental misuse of the system, such
as users accidentally gaining unauthorized access to information. Commercial as well
as government systems may also be subject to malicious attacks (for example, to gain
access to sensitive information).

Distributed systems are more vulnerable to security breaches than the more traditional
systems, as there are more places where the system can be attacked. Therefore,
security is needed in CORBA systems, which takes account of their inherent
distributed nature.

15.1.2 What Is Security?

Security protects an information system from unauthorized attempts to access
information or interfere with its operation. It is concerned with:

® Confidentiality. Information is disclosed only to users authorized to access it.

® |ntegrity. Information is modified only by users who have the right to do so, and
only in authorized ways. It is transferred only between intended users and in
intended ways.

® Accountability. Users are accountable for their security-relevant actions. A
particular case of this is non-repudiation, where responsibility for an action cannot
be denied.

® Availability. Use of the system cannot be maliciously denied to authorized users.

Availability is often the responsibility of other OMA components such as archive/
restore services, or of underlying network or operating systems services. Therefore,
this specification does not address all availability requirements.

Security is enforced using security functionality as described below. In addition, there
are constraints on how the system is constructed. For example, to ensure adequate
separation of objects so that they don't interfere with each other and separation of
users duties so that the damage an individual user can do is limited.

Security is pervasive, affecting many components of a system, including some that are
not directly security related. Also, specialist components, such as an authentication
service, provide services that are specific to security.

The assets of an enterprise need to be protected against perceived threats. The amount
of protection the enterprise is prepared to pay for depends on the value of the assets,
and the threats that need to be countered. The security policy needed to protect against
these threats may also depend on the environment and how vulnerable the assets are in
this environment. This document specifies a security architecture which can support a
variety of security policies to meet different needs.

15.1.3 Threatsin a Distributed Object System

The CORBA security specification is designed to allow implementations to provide
protection against the following:

Security Servicevl.7 15 December 1999 [DRAFT]

15

[14]

[15]

[16]

[17]

® An authorized user of the system gaining access to information that should be
hidden from him.

® A user masquerading as someone else, and so obtaining access to whatever that user
is authorized to do, so that actions are being attributed to the wrong person. In a
distributed system, a user may delegate his rights to other objects, so they can act
on his behalf. This adds the threat of rights being delegated too widely, again
causing athreat of unauthorized access.

® Security controls being bypassed.
® Favesdropping on a communication line, so gaining access to confidential data.

® Tampering with communication between objects - modifying, inserting, and
deleting items.

® | ack of accountability due, for example, to inadequate identification of users.

Note that some of this protection is dependent on the CORBA security implementation
being constructed in the right way according to assurance criteria (as specified in
Appendix D, “ Guidelines for a Trustworthy System” on page 15-369) and using
security mechanisms with the right characteristics. Conformance to the CORBA
security interfaces is not enough to ensure that this protection is provided, just as
conformance to the transactional interfaces (for example) is not enough to guarantee
transactional semantics.

This specification does not attempt to counter all threats to a distributed system. For
example, it does not include facilities to counter breaches caused by analyzing the
traffic between machines.

More information about security threats and countermeasures is given in Appendix D,
“ Guidelines for a Trustworthy System” on page 15-369.

15.1.4 Summary of Key Security Features

The security functionality defined by this specification comprises:

® |dentification and authentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be.

® Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the principal
(such as role, groups, security clearance) and the control attributes of the target
object (stating which principals, or principals with which attributes) can access it.

® Security auditing to make users accountable for their security related actions. It is
normally the human user who should be accountable. Auditing mechanisms should
be able to identify the user correctly, even after a chain of calls through many
objects.

Security Service: v1.7 Introductionto Security 3 December 1999 [DRAFT] 15-3

15

[18]

[19]

[20]

[21]

[22]

154

15.1.5 Goals

® Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client and
target, which may require authentication of clients to targets and authentication
of targetsto clients. It also requires integrity protection and (optionally)
confidentiality protection of messages in transit between objects.

® Non-repudiation providesirrefutable evidence of actions such as proof of origin of
data to the recipient, or proof of receipt of data to the sender to protect against
subsequent attempts to falsely deny the receiving or sending of the data.

®* Administration of security information (for example, security policy) is also
needed.

This visible security functionality uses other security functionality such as
cryptography, which is used in support of many of the other functions but is not
visible outside the Security services. No direct use of cryptography by application
objects is proposed in this specification, nor are any cryptographic interfaces defined.

The security architecture and facilities described in this document were designed with
the following goals in mind. Not all implementations conforming to this specification
will meet all these goals.

Smplicity
The model should be simple to understand and administer. This means it should have
few concepts and few objects.

Consistency

It should be possible to provide consistent security across the distributed object system
and associated legacy systems. This includes:

® Support of consistent policies for determining who should be able to access what
sort of information within a security domain that includes heterogeneous systems.

® Fitting with existing permission mechanisms.

® Fitting with existing environments, for example, the ability to provide end-to-end
security even when using communication services, which are inherently insecure.

® Fitting with existing logons (so extra logons are not needed) and with existing user
databases (to reduce the user administration burden).

Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise ones. For larger systems, it should be
possible to:

Security Servicevl.7 15 December 1999 [DRAFT]

15

[23]

[24]

[25]

[26]

[27]

[28]

[29]

® Base access controls on the privilege attributes of users such as roles or groups
(rather than individual identities) to reduce administrative costs.

® Have a number of security domains, which enforce different security policy details
but support interworking between them subject to policy. (This specification
includes architecture, but not interfaces for such interdomain working.)

® Manage the distribution of cryptographic keys across large networks securely and
without undue administrative overheads.

Usability for End Users

Security should be available as transparently as possible, based on sensible,
configurable defaults.

Users should need to log on to the distributed system only once to access object
systems and other IT services.

Usability for Administrators

The model should be simple to understand and administer and should provide a single
system image. It should not be necessary for an administrator to specify controls for
individual objects or individual users of an object (except where security policy
demands this).

The system should provide good flexibility and fine granularity.

Usability for Implementors

Application developers must not need to be aware of security for their applications to
be protected. However, a developer who understands security should be able to protect
application specific actions.

Flexibility of Security Policy

The security policy required varies from enterprise to enterprise, so choices of security
features should be allowed. An enterprise should need to pay only for the level of
protection it requires, reducing the level (and therefore costs) for less sensitive
information or when the system is less vulnerable to threats. The enterprise should be
able to balance the costs of providing security, including the resources required to
implement, administer and run the system, against the perceived potential losses
incurred as the result of security breaches.

Particular types of flexibility required include:

® Choice of access control policy. The interfaces defined here allows for a choice of
mechanisms, ACLs using a range of privilege attributes such as identities, roles,
groups, or labels. Details are hidden except from some administrative functions and
security aware applications that want to choose their own mechanisms.

Security Service: v1.7 Introductionto Security 3 December 1999 [DRAFT] 155

15

[30]

[31]

[32]

[33]

15-6

® Choice of audit policy. The event types which are to be audited is configurable.
This makes it possible to control the size of the audit trail, and therefore the
resources required to store and manage it.

® Support for security functionality profiles as defined either in national or
international government criteria such as TCSEC (the US Trusted Computer
Evaluation Security Criteria) and ITSEC (the European Information Technology
Security Evaluation Criteria), or by more commercial groups such as X/Open, is
required.

Independence of Security Technology

The CORBA security model should be security technology neutral. For example,
interfaces specified for security of client-target object invocations should hide the
security mechanisms used from both the application objects and ORB (except for some
security administrative functions). It should be possible to use either symmetric or
asymmetric key technology.

It should be possible to implement CORBA security on a wide variety of existing
systems, reusing the security mechanisms and protocols native to those systems. For
example, the system should not require introduction of new cryptosystems, access
control repositories, or user registries. If the system isinstalled in an environment that
also includes a procedural security regime, the composite system should not require
dual administration of the user or authorization policy information.

Application Portability

An application object should not need to be aware of security, so it can be ported to
environments that enforce different security policies and use different security
mechanisms. If an object enforces security itself, interfaces to Security services should
hide the particular security mechanisms used (e.g., for authentication). The application
security policy (for example, to control access to its own functions and state) should be
consistent with the system security policy. For example, use should be made of the
same attributes for access control. Portability of applications enforcing their own
security depends on such attributes being available.

Interoperability

The security architecture should allow interoperability between objects including:

® Providing consistent security across a heterogeneous system where different
vendors may supply different ORBs.

® |nteroperating between secure systems and those without security.

® |nteroperating between domains of a distributed system where different domains
may support different security policies, for example, different access control attributes.

® |nteroperating across systems that support different security technology.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[34]

[35]

[36]

[37]

This specification includes an architecture that covers all of these, at least in outline,
but does not give specific interfaces and protocols for the last two. Interoperability
between domains is expected to have limited functionality in initial implementations,
and interoperability between security mechanisms is not expected to be supported.

Performance

Security should not impose an unacceptable performance overhead, particularly for
normal commercial levels of security, although a greater performance overhead may
occur as higher levels of security are implemented.

Object Orientation

The specification should be object-oriented:
® The security interfaces should be purely object-oriented.

® The model should use encapsulation to promote system integrity and to hide the
complexity of security mechanisms under simple interfaces.

® The model should alow polymorphic implementations of its objects based on
different underlying mechanisms.

Specific Security Goals

In addition to the security requirements listed above, there are more specific
reguirements that need to be met in some systems, so the architecture must take into
account:

® Regulatory requirements. The security model must conform to national
government regulations on the use of security mechanisms (cryptography, for
example). There are several types of controls, for example, controls on what can be
exported and controls on deployment and use such as limitations on encryption for
confidentiality. Details vary from country to country; examples of requirements to
satisfy a number of these are:

 Allowing use of different cryptographic algorithms.
» Keeping the amount of information encrypted for confidentiality to a minimum.
» Using identities for auditing which are anonymous, except to the auditor.

® Evaluation criteria for assurance. The security functionality and architecture must
allow implementations to conform to standard security evaluation criteria such as
TCSEC, ITSEC, or Common Criteria (CC)lfor security functionality and assurance
(which gives the required level of confidence in the correctness and effectiveness of
the security functionality). It should allow assurance and security functionality

1.Versionlor2.

Security Service: v1.7 Introductionto Security 3 December 1999 [DRAFT] 15-7

15

[38]

[39]

[40]

[41]

classes or profiles up to about the E3/B2 level. However, the specification also
allows systems with lower levels of security, where other requirements such as
performance are more important.

Security Architecture Goals

The security architecture should confine key security functionality to a trusted core,
which enforces the essential part of the security policy such as:

® Ensuring that object invocations are protected as required by the security policy.
® Requiring access control and auditing to be performed on object invocation.

® Preventing (groups of) application objects from interfering with each other or
gaining unauthorized access to each other’s state.

It must be possible to implement this trusted computing base so it cannot be bypassed,
and kept small to reduce the amount of code which needs to be trusted and evaluated
in more secure systems. This trusted core is distributed, so it must be possible for
different domains to have different levels of trust.

It should also be possible to construct systems where particular Security services can
be replaced by ones using different security mechanisms, or supporting different
security policies without changing the application objects or ORB when using them
(unless these objects have chosen to do this in a mechanism or policy-specific way).

The security architecture should be compatible with standard distributed security
frameworks such as those of POSIX and X/Open.

15.2 Introduction to the Specification

[42]

[43]

15-8

This document specifies how to provide security in stand-alone and distributed
CORBA-compliant systems. Introducing Object Security services does not in itself
provide security in an object environment; security is pervasive, so introducing it has
implications on the Object Request Broker and on most Object services, Common
Facilities and object implementations.

This document defines the core security facilities and interfaces required to ensure a
reasonable level of security of a CORBA-compliant system as a whole. The
specification includes:

® A security model and architecture which describe the security concepts and
framework, the security objects needed to implement them, and how this counters
security threats.

® The security facilities available to applications. This includes security provided
automatically by the system, protecting all applications, even those unaware of
security. The security facilities can also be used by security-aware applications
through OMG IDL interfaces defined in this specification.

® The security facilities and interfaces available for performing essential security
administration.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[44]

[45]

The security facilities and interfaces available to ORB implementors, to be used in
the production of secure ORBs.

A description of how Security services affect the CORBA 2 ORB interoperability
protocols.

A description of different levels of secure interoperability that are possible.

A description of how these levels of interoperability can be provided using a select
set of popular security mechanisms and protocols.

Items not included in this specification are:

Support for interoperability between ORBs using different security mechanisms,
though interoperability of different ORBs using the same security mechanism is
supported.

Audit analysis tools, though an audit service that both the system and applications
can use to record events is included.

Management interfaces other than essential security policy management interfaces,
as management services are beyond the scope of this chapter. The security policy

management interfaces were viewed as a hecessary feature of this specification as it
is not possible to deploy a secure system without defining and managing its policy.

Interfaces to allow applications to access cryptographic functions for use, for
example, in protecting their stored data. These interfaces are not provided for two
reasons: first, cryptography is generally a low-level primitive, used by Security
Service implementors but not needed by the majority of application developers; and
second, providing a cryptographic interface would require addressing a variety of
difficult regulatory and import/export issues.

Specific security policy profiles.

The security model and architecture specified is extensible, to allow addition of further
security facilities later.

Security Service: v1.7 Introduction to the Specification 3 December 1999 [DRAFT] 159

15

[46]

[47]

[48]

[49]

[50]

[51]

15-10

15.2.1 Specification Structure

Structure of the Chapter

The structure of the chapter is summarized in Figure 15-1.

Introduction
15.1, 15.2
l |
Protocols and
Ilrz_)t%rf_ai:?7 Mechanisms
’) 15.8-15.15
|
| Reference Model IOP based
15.3 Protocols
. 15.9-15.14
| Architecture)
154 Mechanisms
— seclop—— for SECIOP
| Application Developer’'s 15.9 15.10-15.13
Interfaces - 15.5
Common
| Administrator’'s — f?‘m Elements
Interfaces - 15.6 ’ SPKM
Kerberos
| Implementor’s DCE-CIOP
Interfaces - 15.7 15.15 CSI-ECMA

Figure 15-1 Structure of the Document

Nor mative and Non-normative Material

This specification contains normative and non-normative (explanatory) material. Only
15.5 through 15.15 and Appendices A, C, and E are normative.

Section Summaries

Section 15.1 and its subsections, which is an introduction to security, explains why
security is needed in distributed object systems, and enumerates the security
requirements for secure distributed object systems.

Section 15.2 and its subsections provide an introduction to and overview of the
specification.

Section 15.3 and its subsections describe the security reference model, which
provides the overall framework for CORBA security.

Section 15.4 and its subsections describe the security architecture, which underlies
this specification. This introduces different users’ views of security and gives an
outline of how secure CORBA-compliant systems are constructed. It also presents high
level models of the objects involved for different views, and describes how they are
used.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Section 15.5 and its subsections specify the security facilities and interfaces available
to application developers. Most functions can be implemented transparently to
application, though interfaces and additional functionality are available to security-
aware applications.

Section 15.6 and its subsections specify the administrator’s facilities and interfaces.
Only essential administration functions are defined by this specification; other
administrative capabilities are expected to be developed outside the Object Services
Program.

Section 15.7 and its subsections specify the implementors interfaces used to build
secure CORBA systems. This section specifies the IDL interfaces of the security
objects available to ORB implementors, and describes the relationship and
dependencies of these objects on the ORB core and also on external Security services,
where these are used.

Section 15.8 and its subsections specify the architecture for inter operability in a
secure, distributed object system. Further subsections lay the basic foundations for the
discussion of common secur e interoperability mechanisms in the subsequent
sections. It also describes how the common secur e interoperability mechanisms
relate to the security facilities and interfaces presented in section 15.3 through 15.7.

Section 15.9 specifies how security is layered onto the GIOP/I1OP in the form of the
SECIOP protocoal.

Section 15.10 and its subsections introduce the common elements in the secure
interoperability protocol mechanisms and how the common elements map to the
SECIOP protocoal.

Section 15.11 and its subsections describe how the SPKM protocol is used in
conjunction with the SECIOP protocol.

Section 15.12 and its subsections describe how the Kerberos V5 protocol is used in
conjunction with the SECIOP protocol.

Section 15.13 and its subsections describe the CSI-ECM A protocol and how it is used
in conjunction with the SECIOP protocol.

Section 15.14 and its subsections specify how SSL is used as a secure transport
mechanism with 110OP.

Section 15.15 and its subsections specifies how security is incorporated into the DCE-
CIOP using its Kerberos mechanism.

Appendix A, Consolidated OMG IDL, contains the complete OMG IDL
specification, including the module structure, of the interfaces defined in this
document.

Appendix B, Relationship to Other Services, describes the relationship of the
Security services to other object services and to the common facilities.

Appendix C, Conformance Details, describesin more detail what conformance to the
security functionality conformance levels and the security implementation
conformance points requires.

Security Service: v1.7 Introduction to the Specification 3 December 1999 [DRAFT] 15-11

15

[66]

[67]

[68]

[69]

[70]
[71]

[72]

15-12

Appendix D, Guidelines for a Trustworthy System, provides guidelines for
implementation of atrustworthy system, which provides protection against the security
threats in a distributed object system with the required assurance of its correctness and
effectiveness.

Appendix E, Conformance Statement, describes the conformance statement, which
must accompany a secure CORBA implementation and what this implementation must
contain.

Appendix F, Facilities Not in This Specification, outlines security facilities that have
not been included in this specification, but left for another phase of security
specifications.

Appendix G, Interoperability Guidelines, includes guidelines for defining security
mechanism tags in interoperable object references, and examples of the use of the
secure inter-ORB protocol SECIOP.

Appendix H, Glossary.

Appendix |, References.

15.2.2 CORBA Security and Secure Interoperability Feature Packages

CORBA security and Secure Interoperability is structured into several feature packages
which are enumerated below. These are used to structure the specification as well as to
specify the conformance requirements.

® Main Security Functionality Packages. There are two packages:

» Level 1: This provides afirst level of security for applications which are unaware
of security and for those having limited requirements to enforce their own
security in terms of access controls and auditing.

» Level 2: This provides more security facilities, and allows applications to control
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

An ORB must provide at least one of these packages before it can claim to be a
Secure ORB. For a definitive conformance requirement see Appendix C,
“ Conformance Details’ on page 15-356.

® Optional Security Functionality Packages. These provide functions that are
expected to be required in several ORBS, so are worth including in this
specification, but are not generally required enough to form part of one of the main
security functionality packages specified above. There is only one such option in
the specification.
» Non-repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

® Security Replaceability Packages. These packages specify if the ORB is
structured in away that allows incorporation of different Security services, and if so
how they can be incorporated. There are two possibilities:

Security Servicevl.7 15 December 1999 [DRAFT]

15

1. ORB Services replaceability package: The ORB uses interceptor interfaces to call
on object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming to
this does not include any significant security specific code, as that isin the
interceptors.

2. Security Service replaceability package: The ORB may or may not use
interceptors, but all calls on Security services are made via the replaceability
interfaces specified in Section 15.7, “Implementor’ s Security Interfaces,” on
page 15-168. These interfaces are positioned so that the Security services do not
need to understand how the ORB works (for example, how the required policy
objects are located), so they can be replaced independently of that knowledge.

An ORB can provide Security by directly implementing the Security feature
package 1 or 2 into it without making use of any of the facilities provided by the
Replaceability feature packages. But in that case, the standard security policies
defined in this specification cannot be replaced by others, nor can the
implementation of the Security services be replaced. For example, it would not be
possible to replace the standard access policy by a label-based policy if at least one
of the replaceability packages is not supported. Note that some replaceability of the
security mechanism used for security associations may still be provided if the
implementation uses some standard generic interface for Security services such as
GSS-API[11].

An ORB that supports one or both of these replaceability packages together with a
couple of basic ORB operations as discussed in Appendix C, “ Conformance
Details” on page 15-356 is said to be Security Ready2. Such an ORB does not in
itself support any security functionality but is ready to host security functionality
that is implemented to use the facilities of the Security Replaceability package to
hook Security into it.

® Common Secure Interoperability (CSl) Feature packages: These feature
packages each provide different levels of secure interoperability. There are three
functionality levels for Common Secure Interoperability (CSl). All levels can be
used in distributed secure CORBA compliant object systems where clients and
objects may run on different ORBs and different operating systems. At all levels,
security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity,
and when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSl level 2 can support all the security functionality
described in the CORBA Security specification. Facilities are more restricted at
levels 0 and 1. The three levels are:

2.Whilethismay sound strange, it is still truethat a Secure ORB need not be a Security Ready
ORB.

Security Service: v1.7 Introduction to the Specification 3 December 1999 [DRAFT] 15-13

15

1. Identity based policies without delegation (CSI level 0): At this level, only the
identity (no other attributes) of the initiating principal is transmitted from the client
to the target, and this cannot be delegated to further objects. If further objects are
called, the identity will be that of the intermediate object, not the initiator of the
chain of object calls.

2. ldentity based policies with unrestricted delegation (CSl level 1): At this level,
only the identity (no other attributes) of the initiating principal is transmitted from
the client to the target. The identity can be delegated to other objects on further
object invocations, and there are no restrictions on its delegation, so intermediate
objects can impersonate the user. (This is the impersonation form of simple
delegation defined in Section 15.3.6, “Delegation,” on page 15-29.)

3. ldentity & privilege based policies with controlled delegation (CSI level 2): At this
level, attributes of initiating principals passed from client to target can include
separate access and audit identities and a range of privileges such as roles and
groups. Delegation of these attributes to other objects is possible, but is subject to
restrictions, so the initiating principal can control their use. Optionally, composite
delegation is supported, so the attributes of more than one principal can be
transmitted. Therefore, it provides interoperability for ORBs conforming to all
CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSl packages.
For the definitive statement on conformance requirements see Appendix Section
C.2.

® SECIOP Interoperability package. An ORB with the SECIOP Interoperability
package can generate and use security information in the IOR and can send and
receive secure reguests to/from other ORBs using the GIOP/I1OP protocol with the
security (SECIOP) enhancements defined in Section 15.9, “ Secure Inter-ORB
Protocol (SECIOP),” on page 15-233 (if necessary), if they both use the same
underlying security technology.

® Security M echanism packages: The choice of mechanisms and protocol to use
depends on the mechanism type required and the facilities required by the range of
applications expected to use it. This specification defines how the following four
security protocols can be used as the medium for secure interoperability under
CORBA:

1.SPKM Protocol: This protocol supports identity based policies without delegation
(CSl level 0) using public key technology for keys assigned to both principals and
trusted authorities. The SPKM protocol is based on the definition in [20]. The use
of SPKM in CORBA interoperability is based on the SECIOP extensions to [1OP.

2.GSS Kerberos Protocol: This protocol supports identity based policies with
unrestricted delegation (CSI level 1) using secret key technology for keys
assigned to both principals and trusted authorities. It is possible to use it without
delegation (providing CSI level 0). The GSS Kerberos protocol is based on [12]
which itself is a profile of [13]. The use of Kerberos in CORBA interoperability
is based on the SECIOP extensions to [1OP.

15-14 Security Servicevl.7 15 December 1999 [DRAFT]

15

3.CSI-ECMA Protocol: This protocol supports identity and privilege based policies
with controlled delegation (CSI level 2). It can be used with identity, but no other
privileges and without delegation restrictions if the administrator permits this
(CSl level 1) and can be used without delegation (CSl level 0). For keys assigned
to principals, it has two options:
* It can use either secret or public key technology.
* It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as
defined in ECMA 235, but is a significant subset of this - the SESAME profile
asdefined in [16]. It is designed to allow the addition of new mechanism options
in the future; some of these are already defined in ECMA 235. The use of CSl-
ECMA in CORBA interoperability requires the SECIOP extensions to [1OP.

4.SSL protocol: This protocol supports identity based policies without delegation
(CSl level 0). The SSL protocol is based on the definition in [21]. The use of SSL
in CORBA interoperability does not depend on the SECIOP extensions to 11OP.

® SECIOP Plus DCE-CIOP Interoperability: An ORB with the Standard plus
DCE-CIOP secure interoperability package supports all functionality required by
standard secure interoperability package, and also provides secure interoperability
(using the DCE Security services) using the DCE-CIOP protocol.

An ORB that interoperates securely must do so using one of these protocol
packages. For the definitive statement on conformance requirements see Appendix
Section Appendix C, “ Conformance Details,” on page 15-356.

[73] The requirements that must be satisfied by a conformant ORB are enumerated in
Appendix Section Appendix C, “ Conformance Details,” on page 15-356. The
conformance statement required for a CORBA conformant security implementation is
defined in Appendix Section Appendix E, “ Conformance Statement,” on page 15-392.
This includes a table which can be filled to show what the ORB conforms to.

Security Service: v1.7 Introduction to the Specification 3 December 1999 [DRAFT] 15-15

15

15.2.3 Feature Packages and Modules

[74] The IDL specified in this chapter is partitioned into modules that closely reflect the
feature packaging scheme described above. The Security module holds definitions of
common data structures and constants that most other modules depend on. The
relationship is as shown in Table 15-1.

Table 15-1 Feature Packages and Modules

Feature Package Primary Module Also Depends on
Security Functionality Level 1 | SecurityLevell Security
CORBA, TimeBase
Security Functionality Level 2 | SecurityLevel2 Security, CORBA,
TimeBase
SecurityLevell
SecurityAdmin
Non Repudiation NRservice Security,
SecuritylL evel2
CORBA, TimeBase
Security Service SecurityReplaceable | Security, CORBA,
Replaceability TimeBase
SecuritylL evel2
ORB Service Replaceability Interceptor CORBA
CSl Level 0,1 and 2 SECIOP CORBA
SECIOP SECIOP Security, CORBA,
TimeBase, IOP
SPKM, Kerberos, SECIOP Security, CORBA,
CSI-ECMA TimeBase, IOP
SSL SSL Security, CORBA,
TimeBase, IOP
DCE-CIOP DCE_CIOPSecurity Security, CORBA,
TimeBase, IOP

The specification is based on ageneral three layer architecture as shown in Figure 15-2 on
page 15-17, with the interfaces defined in each module positioned as shown in the figure.

15-16 Security Servicevl.7 15 December 1999 [DRAFT]

15

[75]

Applications (clients of CORBA Security Service)

Interfaces provided b
the Security Service
and used by Application

CSecurityLeveIl, SecurityLevel2, SecurityAdmin, N Rservi(@

CORBA Security Services

the Infrastructure
and used by Security
Service Implementors

(SecurityRepIaceability > C CORBA >

Security Infrastructure ORB Infrastructure

Figure 15-2 Modules and Their Relation to Layers of the Architecture

The SecurityReplaceability module defines the interfaces that must be used, together
with certain interfaces defined in the SecuritylL evel2 module, to encapsulate the
underlying security infrastructure so as to enable components of the Security Service
to use them interchangeably.

15.3 Security Reference Mode

[76]

[77]

This section describes a security reference model that provides the overall framework
for CORBA security. The purpose of the reference model is to show the flexibility for
defining many different security policies that can be used to achieve the appropriate
level of functionality and assurance. As such, the security reference model functions as
a guide to the security architecture.

15.3.1 Definition of a Security Reference Model

A reference model describes how and where a secure system enforces security policies.
Security policies define:

® Under what conditions active entities (such as clients acting on behalf of users) may
access objects.

® What authentication of users and other principalsis required to prove who they are,
what they can do, and whether they can delegate their rights. (A principal is a
human user or system entity that is registered in and is authentic to the system.)

® The security of communications between objects, including the trust required
between them and the quality of protection of the data in transit between them.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-17

15

[78]

[79]

(8]

[81]

[82]

15-18

® What accountability of which security-relevant activities is needed.

Figure 15-3 depicts the model for CORBA secure object systems. All object
invocations are mediated by appropriate security functions to enforce policies such as
access controls. These functions should be tamper-proof, always be invoked when
required by security policy, and function correctly.

Target
Object
i request 4 request
user ORB l&

Security Implementation
enforcing security policy

Figure 15-3 A Security Model for Object Systems

Many application objects are unaware of the security policy and how it is enforced.
The user can be authenticated prior to calling the application client and then security is
subsequently enforced automatically during object invocations. Some applications will
need to control or influence what policy is enforced by the system on their behalf, but
will not do the enforcement themselves. Some applications will need to enforce their
own security, for example, to control access to their own data or audit their own
security-relevant activities.

The ORB cannot be completely unaware of security as this would result in insecure
systems. The ORB is assumed to at least handle requests correctly without violating
security policy, and to call Security Services as required by security policy.

A security model normally defines a specific set of security policies. Because the
OMG Object Management Architecture (OMA) must support a wide variety of
different security policies to meet the needs of many commercial markets, a single
instance of a security model is not appropriate for the OMA.. Instead, a security
reference model is defined that provides a framework for supporting many different
kinds of policies. The security reference model is a meta-policy because it is intended
to encompass all possible security policies supported by the OMA.

The meta-policy defines the abstract interfaces that are provided by the security
architecture defined in this document. The model enumerates the security functions
that are defined as well as the information available. In this manner, the meta-policy
provides guidance on the permitted flexibility of the policy definition. The remaining
sections describe the elements of the meta-model. The description is kept deliberately
general at this point.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[83]

[84]

[85]

[86]

(87]

[88]

[89]

15.3.2 Principals and Their Security Attributes

An active entity must establish its rights to access objects in the system. It must either
be a principal, or a client acting on behalf of a principal.

A principal is a human user or system entity that is registered in and authentic to the
system. I nitiating principals are the ones that initiate activities. An initiating principal
may be authenticated in a number of ways, the most common of which for human
users is a password. For systems entities, the authentication information such as its
long-term key, needs to be associated with the object.

An initiating principal has at least one, and possibly several identities (represented in
the system by attributes) which may be used as a means of:

® Making the principal accountable for its actions.

® Obtaining access to protected objects (though other privilege attributes of a
principal may also be required for access control).

® |dentifying the originator of a message.

¢ |dentifying who to charge for use of the system.

There may be several forms of identity used for different purposes. For example, the
audit identity may need to be anonymous to all but the audit administrator, but the
access identity may need to be understood so that it can be specified as an entry in an
access control list. The same value of the identity can be used for several of the above.

The principal may also have privilege attributes which can be used to decide what it
can access. A variety of privilege attributes may be available depending on access
policies (see “Access Policies” on page 15-25). The privilege attributes, which a
principal is permitted to take, are known by the system. At any one time, the principal
may be using only a subset of these permitted attributes, either chosen by the principal
(or an application running on its behalf), or by using a default set specified for the
principal. There may be limits on the duration for which these privilege attributes are
valid and may be controls on where and when they can be used.

Security attributes may be acquired in three ways:

1. Some attributes may be available, without authentication, to any principal. This
specification defines one such attribute, called Public.

2. Some attributes are acquired through authentication; identity attributes and privilege
attributes are in this category.

3. Some attributes are acquired through delegation from other principals.
When a user or other principal is authenticated, it normally supplies:
® |ts security name.

® The authentication information needed by the particular authentication method
used.

® Requested privilege attributes (though the principal may change these later).

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-19

15

[90]

[91]

[92]

15-20

A principal’s security attributes are maintained in secure CORBA systems in a
credential as shown in Figure 15-4.

Credentials - containing security attributes

unauthenticated authenticated attributes
attributes
- Public identity privilege
attributes attributes

Figure 15-4 Credential Containing Security Attributes

15.3.3 Secure Object Invocations

Most actions in the system are initiated by principals (or system entities acting on their
behalf). For example, after the user logs onto the system, the client invokes a target
object viaan ORB as shown in Figure 15-5.

Target
Object

request request
/| ORB |\

client-side security on invocatio) target-side security on invocation
trol

Security association, access con security association, access control
message protection, audit message protection, audit

Figure 15-5 Invocation of Target Object via ORB

What security functionality is needed on object invocation depends on security policy.
It may include:

® Establishing a security association between the client and target object so that each
has the required trust that the other iswho it claims to be. In many implementations,
associations will normally persist for many interactions, not just a single invocation.
(Within some environments, the trust may be achieved by local means, without use
of authentication and cryptography.)

® Deciding whether this client (acting for this principal) can perform this operation on
this object according to the access control policy, as described in Section 15.3.4,
“Access Control Model,” on page 15-23.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

® Auditing this invocation if required, as described in Section 15.3.5, “Auditing,” on
page 15-27.

® Protecting the request and response from modification or eavesdropping in transit,
according to the specified quality of protection.

For all these actions, security functions may be needed at the client and target object
sides of the invocation. For example, protecting a request may require integrity sealing
of the message before sending it, and checking the seal at the target.

The association is asymmetric. If the target object invokes operations on the client, a
new association is formed. It is possible for a client to have more than one association
with the same target object. The application is unaware of security associations; it sees
only requests and responses.

A secure system can also invoke objects in an insecure system. In this case, it will not
be possible to establish trust between the systems, and the client system may restrict
the requests passed to the target.

Establishing Security Associations

The client and target object establish a secure association by:

® Establishing trust in one another’s identities, which may involve the target
authenticating the client’ s security attributes and/or the client’s authenticating the
target’s security name.

® Making the client’s credentials (including its security attributes) available to the
target object.

® Establishing the security context which will be used when protecting requests and
responses in transit between client and target object.

The way of establishing a security association between client and object depends on
the security policies governing both the client and target object, whether they are in the
same domain, and the underlying security mechanism. For example, the type of
authentication and key distribution used.

The security policies define the choice of security association options such as whether
one-way or mutual authentication is wanted between client and target, and the quality
of protection of data in transit between them.

The security policy is enforced using underlying security mechanisms. This model
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key technology, asymmetric (public) key
technology, or a combination of these. The Key Distribution services, Certification
Authorities and other underlying Security services, which may be used, are not visible
in the model.

Message Protection

Requests and responses can be protected for:

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-21

15

® |ntegrity. This prevents undetected, unauthorized modification of messages and may
detect whether messages are received in the correct order and if any messages have
been added or removed.

® Confidentiality. This ensures that the messages have not been read in transit.

[101] A security association may in some environments be able to provide integrity and
confidentiality protection through mechanisms inherent in the environment, and so
avoid having to use encryption.

[102] The security policy specifies the strength of integrity and confidentiality protection
needed. Achieving this integrity protection may require sealing the message and
including sequence numbers. Confidentiality protection may require encrypting it.

[103] This security reference model allows a choice of cryptographic algorithms for
providing this protection.

[104] Performing arequest on aremote object using an ORB and associated services, such as
TP, might cause a message to be constructed to send to the target as shown in
Figure 15-6. At the target, this process is reversed, and results in the ORB invoking the
operation on the target passing it the parameters sent by the client. The reply returned
follows a similar path.

[105] M essage protection could be provided at different points in the message handling
functionality of an ORB, which would affect how much of the message is protected.

|
operation(parameters)

/‘ on target object reference fparameters [\
ORB/OA

always protected
parameters| ¢ any message protection is done

- always protected, so parameters can
operation | parameters) e ysed only in specified operations
protected, so operation is on the right
target id | operation | parameters| object (implies message must be back in
clear before routing to target object)
Service - - service info like GIOP service context
info | (@rgetid| operation \parameters| added by services such as TP.
service info should be protected

host service ; ; the host address cannot be encrypted
address info_| 1rget id] operation | parameters| s would prevent correct routing

N message header and protected message A M

Figure 15-6 Message Protection

15-22 Security Servicevl.7 15 December 1999 [DRAFT]

15

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Messages are protected according to the quality of protection required which may be
for integrity, but may also be for confidentiality. Both integrity and confidentiality
protection are applied to the same part of the message. The request and response may
be protected differently.

The CORBA security model can protect messages even when there is no security in
the underlying communications software. In this case, the message protected by
CORBA security includes the target id, operation and parameters, and any service
information included in the message.

In some systems, protection may be provided below the ORB message layer (for
example, using the secure sockets layer or even more physical means). In this case, an
ORB that knows such security is available will not need to provide its own message
protection.

Note that as messages will normally be integrity protected, this will limit the type of
interoperability bridge that can be used. Any bridge that changes the protected part of
the message after it has been integrity (or confidentiality) protected will cause the
security check at the target to fail unless a suitable security gateway is used to re-
protect the message.

15.3.4 Access Control Mode

The model depicted in Figure 15-7 on page 15-24 provides a simple framework for
many different access control security policies. This framework consists of two layers:
an object invocation access policy, which is enforced automatically on object
invocation, and an application access policy, which the application itself enforces.

The object invocation access policy governs whether this client, acting on behalf of the
current principal, can invoke the requested operation on this target object. This policy
is enforced by the ORB and the Security services it uses, for all applications, whether
they are aware of security or not.

The application object access policy is enforced within the client and/or the object
implementation. The policy can be concerned with controlling access to its internal
functions and data, or applying further controls on object invocation.

All instantiations of the security reference model place at least some trust in the ORB
to enforce the access policy. Even in architectures where the access control mediation
occurs solely within the client and target objects, the ORB is still required to validate
the request parameters and ensure message delivery as described above.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-23

15

[114]

[115]

[116]

[117]

[118]

15-24

target application
access decision

S —"

Glient-side invocation access decisiorD Qarget-side invocation access decisiorD

Figure 15-7 Access Control Model

The access control model shows the client invoking an operation as specified in the
request, and also shows application access decisions, which can be independent of this.

Object Invocation Access Policy

A client may invoke an operation on the target object as specified in the request only
if thisis allowed by the object invocation access policy. This is enforced by Access
Decision Functions.

Client side access decision functions define the conditions that allow the client to
invoke the specified operation on the target object. Target side access decision
functions define the conditions that allow the object to accept the invocation. One or
both of these may not exist. Some systems may support target side controls only, and
even then, only use them for some of the objects.

The access policy for object invocation is built into these access decision functions,
which just provide a yes/no answer when asked to check if access is allowed. A range
of access policies can be supported as described in Section 15.5.12, “Access Control,”
on page 15-126.

The access decision function used on object invocation to decide whether access is
allowed bases its decision on:

® The current privilege attributes of the principal (see Section 15.3.2, “Principals and
Their Security Attributes,” on page 15-19). Note that these can include capabilities.

® Any controls on these attributes, for example, the time for which they are valid.
® The operation to be performed.

® The control attributes of the target object (see Section 15.3.4, “Access Control
Model,” on page 15-23).

Security Servicevl.7 15 December 1999 [DRAFT]

15

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

The first three of these functions are available as part of the environment of the object
invocation.

The control attributes for the target object are associated with the object when it is
created (though may be changed later, if security policy permits).

Application Access Policy

Applications may also enforce access policies. An application access policy may
control who can invoke the application, extending the object invocation access policy
enforced by the ORB, and taking into account other items such as the value of the
parameters, or the data being accessed. As for standard object invocation access
controls, there may be client and target object access decision functions.

An application object may also control access to finer-grained functions and data
encapsulated within it, which are not separate objects.

In either case, the application will need its own access decision function to enforce the
required access control rules.

Access Policies

The general access control model described here can be used to support a wide range
of access policies including Access Control List schemes, label-based schemes, and
capability schemes. This section describes the overall authorization model used for all
types of access control.

The authorization model is based on the use of access decision functions, which decide
whether an operation or function can be performed by applying access control rules
using:

® Privilege attributes of the initiator (called initiator Access Control Information or
ACI in ISO/IEC 10181-3).

® Control attributes of the target (sometimes known as the target ACI).

® Other relevant information about the action such as the operation and data, and
about the context, such as the time.

Action and Initiator
context info privilege attributes

\ Y

access allowed?

Access Decision Function Target
- enforcing < control attributes
yesno access control rules

Figure 15-8 Authorization Model

The privilege and control attributes are the main variables used to control access;
therefore, the following sections focus on these.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-25

15

[127]

[128]

[129]

[130]

[131]

[132]

15-26

Privilege Attributes

A principal can have a variety of privilege attributes used for access control such as:
® The principal’s access identity.
® Roles, which are often related to the user’s job functions.

® Groups, which normally reflect organizational affiliations. A group could reflect the
organizational hierarchy, for example, the department to which the user belongs, or
a cross-organizational group, which has a common interest.

® Security clearance.

® Capabilities, which identify the target objects (or groups of objects), and their
operations on which the principal is allowed.

® Other privileges that an enterprise defines as being useful for controlling access.

In an object system, which may be large, using individual identities for access control
may be difficult if many sets of control attributes need to be changed when a user joins
or leaves the organization or changes his job. Where possible, controls should be based
on some grouping construct (such as arole or organizational group) for scalability.

The security reference model does not dictate the particular privilege attributes, that
any compliant secure system must support; however, this specification does define a
standard, extensible set of privilege attribute types.

Note — In this specification, privilege is often used as shorthand for privilege attribute.

Control Attributes

Control attributes are associated with the target. Examples are:

® Access control lists, which identify permitted users by name or other privilege
attributes, or

® [nformation used in label-based schemes, such as the classification of an object,
which identifies (according to rules) the security clearance of principals alowed to
perform particular operations on it.

An object system may have many objects, each of which may have many operations,
so it may not be practical to associate control attributes with each operation on each
object. This would impose too large an overhead on the administration of the system,
and the amount of storage needed to hold the information.

Control attributes are therefore expected to be shared by categories of objects,
particularly objects of the same type in the same security policy domain. However,
they could be associated with an individual object.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Rights

Control attributes may be associated with a set of operations on an object, rather than
each individual operation. Therefore, a user with specified privileges may have rights
to invoke a specific set of operations.

It is possible to define what rights give access to what operations.

Access Policies Supported by This Specification

The model allows a range of access policies using control attributes, which can group
subjects (using privileges), objects (using domains), and operations (using rights).

This specification defines a particular access policy type and associated management
interface as part of security functionality Level 2. Thisis defined in
DomainAccessPolicy Interface under Section 15.6.4, “Access Policies,” on

page 15-143.

Regardless of the access control policy management interface used (i.e., regardless of
whether the particular Level 2 access policy interfaces or other interfaces not defined
in this specification are used), all access decisions on object invocation are made via a
standard access decision interface, so the access control policy can be changed either
by administrative action on, or substitution of, the objects that define the policy and
implement the access decision. However, different management interfaces will
ordinarily be required for management of different types of control attributes.

15.3.5 Auditing

Security auditing assists in the detection of actual or attempted security violations.
This is achieved by recording details of security relevant eventsin the system.
(Depending on implementation, recording an audit event may involve writing event
information to alog, generating an alert or alarm, or some other action.) Audit policies
specify which events should be audited under what circumstances.

There are two categories of audit policies: system audit policies, which control what
events are recorded as the result of relevant system activities, and application audit
policies, which control which events are audited by applications.

System events, which should be auditable, include events such as authentication of
principals, changing privileges, success or failure of object invocation, and the
administration of security policies. These system events may occur in the ORB or in
security or other services, and these components generate the required audit records.

Application events may be security relevant, and therefore may need auditing
depending on the application. For example, an application that handles money transfers
might audit who transferred how much money to whom.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-27

15

[142]

[143]

[144]

[145]

[146]

[147]

15-28

Events can be categorized by event family (e.g., system, financial application service),
and event type within that family. For example, there are defined event types for
system events.

S N
client application
audit

ORB

security association ~ security association
invocation access control etc. invocation access control etc.

Figure 15-9 Auditing Model

Potentially a very large number of events could be recorded; audit policies are used to
restrict what types of events to audit under which circumstances. System audit policies
are enforced automatically for all applications, even security unaware ones.

The invocation audit policy is enforced at a point in the ORB where the target object
and operation for the request are known, and the reply status is known. The model
supports audit policies where the decision on whether to audit an event can be based
on the event type (such as method invocation complete, access control check done,
security association made), the success or failure of this event (only failures may be
audited), the object and the operation being invoked, the audit id of principal on whose
behalf the invocation is being done, and even the time of day.

This specification defines a particular invocation audit policy type and associated
management interfaces as part of security functionality Level 2. This allows decisions
on whether to audit an invocation to depend on the object type, operation, event type,
and success or failure of this.

The specification also defines a particular audit policy type for application auditing,
which allows decisions on whether to audit the event to be based on the event type and
its success or failure.

Events can either be recorded on audit trails for later analysis or, if they are deemed to
be serious, alarms can be sent to an administrator. Application audit trails may be
separate from system ones. This specification includes how audit records are generated

Security Servicevl.7 15 December 1999 [DRAFT]

15

[148]

[149]

[150]

[151]

[152]

and then written to audit channels, but not how these records are filtered later, how
audit trails and channels are kept secure, and how the records can be collected and
analyzed.

15.3.6 Delegation

In an object system, a client calls on an object to perform an operation, but this object
will often not complete the operation itself, so will call on other objects to do so. This
will usually result in a chain of calls on other objects as shown in Figure 15-10.

Figure 15-10 Delegation Model

This complicates the access model described in Section 15.3.4, “Access Control
Model,” on page 15-23, as access decisions may need to be made at each point in the
chain. Different authorization schemes require different access control information to
be made available to check which objects in the chain can invoke which further
operations on other objects.

In privilege delegation, the initiating principal’s access control information (i.e., its
security attributes) may be delegated to further objects in the chain to give the
recipient the rights to act on its behalf under specified circumstances.

Another authorization scheme is reference restriction where the rights to use an
object under specified circumstances are passed as part of the object reference to the
recipient. Reference restriction is not included in this specification, though described
as a potential future security facility in Appendix F, “Facilities Not in This
Specification” on page 15-398.

The following terms are used in describing delegation options:
® [|nitiator: the first client in a call chain.

® Final target: the final recipient in a call chain.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-29

15

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

15-30

®* Intermediate: an object in a call chain that is neither the initiator nor the final
target.

®* Immediate invoker: an object or client from which an object receives a call.

Privilege Delegation

In many cases, objects perform operations on behalf of the initiator of a chain of object
invocations. In such cases, the initiator needs to delegate some or all of its privilege
attributes to the intermediate objects which will act on its behalf.

Some intermediates in a chain may act on their own behalf (even if they have received
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that they can obtain
their own privileges to be transmitted to objects they invoke.

Some intermediates may need to use their own privileges at some times, and delegated
privileges at other times.

A target may wish to restrict which of its operations an invoker can perform. This
restriction may be based on the identity or other privilege attributes of the initiator.
The target may also want to verify that the request comes from an authorized
intermediate (or even check the whole chain of intermediates). In these cases, it must
be possible to distinguish the privileges of the initiator and those of each intermediate.

Some restrictions may or may not be placed by the initiator about the set of objects
which may be involved in a delegation chain.

When no restrictions are placed and only the initiator's privileges are being used, this
case is called impersonation.

When restrictions are placed, additional information is used so that objects can verify
whether or not their characteristics (e.g., their name or a part of their name) satisfy the
restrictions. In order to allow clients or initiating objects to specify this additional
information, objects can be (securely) associated with these characteristics (e.g., their
name).

Overview of Delegation Schemes

There are potentially a large number of delegation models. They can all be captured
using the following sentence.

An intermediate invoking a target object may perform:

1. one method on one object

2. several methods on one object

3. any method on: a. one object
b. some object(s) (target restrictions)
c. any object (no target restrictions)

Security Servicevl.7 15 December 1999 [DRAFT]

15

[162]

[163]

[164]

[165]

(no privileges
using (asubset of the initiator’s privileges (simple delegation)

(both the initiator’s and its own (composite delegation)
privileges (combined or traced delegation,
(received privileges and its own depending on whether privileges
privileges are combined or concatenated)
during some validity period (part of time constraints)
for a specified number of invocations (part of time constraints)

When delegating privileges through a chain of objects, the caller does not know which
objects will be used in completing the request, and therefore cannot easily restrict
privileges to particular methods on objects. It generally relies on the target’s control
attributes to do this.

A privilege delegation scheme may provide any of the other controls, though no one
scheme is likely to provide all of them.

Facilities Potentially Available

Different facilities are available to intermediates (or clients) before initiating object
invocations and to intermediate or target objects accepting an invocation.

ControlsUsed Before I nitiating Object I nvocations

A client or intermediate can specify restrictions on the use of the access control
information provided to another intermediate or to atarget object. Interfaces may allow
support of the following facilities.

® Control of privileges delegated. An initiator (or an intermediate) can restrict
which of its own privileges are delegated.

® Control of target restrictions. An initiator (or an intermediate) can restrict where
individual privileges can be used. This restriction may apply to particular objects, or
some grouping of objects. It may restrict the target objects, which may use some
privileges for access control, and the intermediates, which can also delegate them.

Control of privileges used. As previously described, there are several options for
deciding which privileges an intermediate object may use when invoking another
object. Note that delegated privileges are not actually delegated to a single target
object; they are available to any object running under the same identity as the target
object in the target object’ s address space (since any objects in the target’s address
space may retrieve the inbound Credentials and any object sharing the target’s
identity may successfully become the caller’s delegate).

The specified interfaces allow the following.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-31

15

15-32

®* No delegation

The client permits the intermediate to use its privileges for access control decisions,
but does not permit them to be delegated, so the intermediate object cannot use
these privileges when invoking the next object in the chain.

client credentials Intermediate intermediate

Client .
Object credentials

Figure 15-11 No Delegation
» Simple delegation

The client permits the intermediate to assume its privileges, both using them for
access control decisions and delegating them to others. The target object receives
only the client's privileges, and does not know who the intermediate is (when
used without target restrictions, this is known as impersonation).

Client client credentials Intermediate \client credential

Figure 15-12 Simple Delegation
» Composite delegation

The client permits the intermediate object to use its credentials and delegate them.
Both the client privileges and the immediate invoker’s privileges are passed to the
target, so that both the client privileges and the privileges from the immediate
source of the invocation can be individually checked.

_ client and
client credentials [Intermediate \ intermediate

Client :
Object credentials

Figure 15-13 Composite Delegation
» Combined privileges delegation

The client permits the intermediate object to use its privileges. The intermediate

Security Servicevl.7 15 December 1999 [DRAFT]

15

[166]

converts these privileges into credentials and combines them with its own
credentials. In that case, the target cannot distinguish which privileges come from
which principal.

client and
intermediate’s
privileges
inasingle
credential

Client client credentials / |ntermediate

Object

Figure 15-14 Combined Privileges Delegation

» Traced delegation

The client permits the intermediate object to use its privileges and delegate them.
However, at each intermediate object in the chain, the intermediate's privileges
are added to privileges propagated to provide atrace of the delegates in the chain.

intermediate
objects

client credentials chain of
credentials

Figure 15-15 Traced Delegation

A client application may not see the difference between the last three options, it
may just see them all as some form of “composite” delegation. However, the target
object can obtain the credentials of intermediates and the initiator separately if they
have been transmitted separately.

Control of timerestrictions. Time periods can be applied to restrict the duration of
the delegation. In some implementations, the number of invocations may also be
controllable.

Facilities Used on Accepting Object I nvocations
An intermediate or a target object should be able to:

® Extract received privileges and use them in local access control decisions.

Often only the privileges of the initiator are relevant. When thisis not the case, only
the privileges of the immediate invoker may be relevant. In some cases, both are
relevant. Finally, the most complex authorization scheme may require the full
tracing of the initiator and all the intermediates involved in a call chain.

In addition, some targets may need to obtain the miscellaneous security attributes
(such as audit identity, charging identity) and the associated target restrictions and
time constraints.

Extract credentials (when permitted) for use when making the next call as a
delegate.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-33

15

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

15-34

® Build (when permitted) new credentials from the received access control
information with changed (normally reduced) privileges and/or different target
restrictions or time constraints.

Specifying Delegation Options

The administrator may specify which delegation option should be used by default
when an object acts as an intermediate. For example, he may specify whether a
particular intermediate object normally delegates the initiating principal's privileges or
uses its own, or both if needed. Also, the access policy used at the target could permit
or deny access based on more than one of the privileges it received (e.g., the initiator's
and the intermediate's). This allows many applications to be unaware of the delegation
options in use, as many of the controls for delegation are done automatically by the
ORB when the intermediate invokes the next object in the chain.

However, a security-aware intermediate object may itself specify what delegation it
wants. For example, it may choose to use the original principal's privileges when
invoking some objects and its own when invoking others.

Technology Support for Delegation Options

Different security technologies support different delegation models. Currently, no one
security technology supports all the options described above.

In Security Functionality Level 1, all delegation is done automatically in the ORB
according to delegation policy, so the objects in the chain cannot change the mode of
delegation used, or restrict privileges passed and where or when they are used.

Of the options on which credentials are passed, only no delegation and impersonation
(simple delegation without any target restrictions) need to be supported.

In Security Functionality Level 2, applications may use any of the interfaces specified,
but may get a CORBA::NO_IMPLEMENT exception returned. Note that these
interfaces do not allow the application to set controls such as target restrictions.
Appendix F, “Facilities Not in This Specification” on page 15-398, includes potential
future advanced delegation facilities, which include such controls.

15.3.7 Non-repudiation

Non-repudiation services provide facilities to make users and other principals
accountable for their actions. Irrefutable evidence about a claimed event or action is
generated and can be checked to provide proof of the action. It can also be stored in
order to resolve later disputes about the occurrence or the nonoccurrence of the event
or action.

The non-repudiation services specified here are under the control of the applications
rather than used automatically on object invocation, so are only available to
applications aware of this service.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Depending on the non-repudiation policy in effect, one or more pieces of evidence
may be required to prove that some kind of event or action has taken place. The
number and the characteristics of each depends upon that non-repudiation policy. As
an example, evidence containing a timestamp from a trusted authority may be required
to validate evidence.

There are many types of non-repudiation evidence, depending on the characteristics of
the event or action. In order to distinguish between them, the types are defined and are
part of the evidence. Conceptually, evidence may thus be seen as being composed of
the following components:

® non-repudiation policy (or policies) applicable to the evidence
® type of action or event

® parameters related to the type of action or event

A date and time are also part of the evidence. This shows when an action or event took
place and allows recovery from some situations such as the compromise of a key.

The evidence includes some proof of the origin of data, so arecipient can check where
it came from. It also allows the integrity of the data to be verified.

Facilities included here allow an application to deal with evidence of a variety of types
of actions or events. Two common types of non-repudiation evidence are the evidence
of proof of creation of a message and proof of receipt of a message.

Non-repudiation of Creation protects against an originator's false denial of having
created a message. It is achieved at the originator by constructing and generating
evidence of Proof of Creation using non-repudiation services. This evidence may be
sent to arecipient to verify who created the message, and can be stored and then made
available for subsequent evidence retrieval.

Non-repudiation of Receipt protects against a recipient's false denial of having
received a message (without necessarily seeing its content). It is achieved at the
recipient by constructing and generating evidence of Proof of Receipt using the non-
repudiation services. Thisis shown in Figure 15-16.

evidence of creation —p»
(plus message)

Originator Recipient

< evidence of receipt

Figure 15-16 Proof of Receipt

One or more Trusted Third Parties need to be involved, depending on the choice of
mechanism or policy.

Non-repudiation services may include:

® Facilities to generate evidence of an action and verify that evidence later.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-35

15

[184]

[185]

[186]

15-36

A delivery authority which delivers the evidence (often with the message) from the
originator to the recipient. Such a delivery authority may generate proof of origin
(to protect against a sender's false denial of sending a message or its content) and
proof of delivery (to protect against a recipient's false denial of having received a
message or its content). Non-repudiation of Origin and Delivery are defined in ISO
7498-2.

An evidence storage and retrieval facility used when a dispute arises. An
adjudicator service may be required to settle the dispute, using the stored evidence.

Object T Object
A B -
Service Reg/Resp Dispute/Judgement

Non-repudiation service

Evidence Evidence . I
Generation | | Storage Delivery | | | Adjudicator

and and Authority
Verification| | Retrieval

Service Reg/Resp

Figure 15-17 Non-repudiation Services

The non-repudiation services illustrated in Figure 15-17 are based on the 1SO non-
repudiation model; as the shaded box in the diagram indicates, this specification
supports only Evidence Generation and V erification, which provides:

Generation of evidence of an action.

Verification of evidence of an action.

Generation of a request for evidence related to a message sent to a recipient.
Receipt of arequest for evidence related to a message received.

Analysis of details of evidence of an action.

Collection of the evidence required for long term storage. In this case, more
complete evidence may be needed.

The Non-repudiation Service allows an application to deal with a variety of types of
evidence, not just the non-repudiation of creation and receipt previously described.

No Non-repudiation Evidence Delivery Authority is defined by this specification; it is
anticipated that vendors will want to customize these authorities (which are responsible
for delivering messages and related non-repudiation evidence securely in accordance
with specific non-repudiation policies) to meet specialized market requirements. Also,
no evidence storage and retrieval services are specified, as other object services can be
used for this.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[187]

[188]

[189]

[190]

[191]

Note that this specification does not provide evidence that a request on an object was
successfully carried out; it does not require use of non-repudiation within the ORB.

15.3.8 Domains

A domain (as specified in the ORB Interoperability Architecture) is a distinct scope,
within which certain common characteristics are exhibited and common rules
observed. There are several types of domain relevant to security:

® Security policy domain. The scope over which a security policy is enforced. There
may be subdomains for different aspects of this policy.

® Security environment domain. The scope over which the enforcement of a policy
may be achieved by some means local to that environment, so does not need to be
enforced within the object system. For example, messages will often not need
cryptographic protection to achieve the required integrity when being transferred
between objects in the same machine.

® Security technology domain. Where common security mechanisms are used to
enforce the policies.

These can be independent of the ORB technology domains.

Security Policy Domains

A security policy domain is a set of objects to which a security policy applies for a
set of security related activities and is administered by a security authority. (Note that
this is often just called a security domain.) The objects are the domain members. The
policy represents the rules and criteria that constrain activities of the objects to make
the domain secure. Security policies concern access control, authentication, secure
object invocation, delegation and accountability. An access control policy applies to
the security policies themselves, controlling who may administer security-relevant
policy information.

Security Authority

security
O policy
management

Figure 15-18 Security Policy Domains

Security policy domains provide leverage for dealing with the problem of scale in
security policy management (by allowing application of policy at a domain granularity
rather than at an individual object instance granularity).

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-37

15

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

15-38

Security policy domains permit application of security policy information to security-
unaware objects without requiring changes to their interfaces (by associating the
security policy management interfaces with the domain rather than with the objects to
which policy is applied).

Domains provide a mechanism for delimiting the scope of administrators' authorities.

Policy Domain Hierarchies

A security authority must be identifiable and responsible for defining the policies to be
applied to the domain, but may delegate that responsibility to a number of
subauthorities, forming subdomains where the subordinate authorities’ policies are

applied.

Subdomains may reflect organizational subdivisions or the division of responsibility
for different aspects of security. Typically, organization-related domains will form the
higher-level superstructure, with the separation of different aspects of security forming
a lower-level structure.

For example, there could be:
® An enterprise domain, which sets the security policy across the enterprise.

® Subdomains for different departments, each consistent with the enterprise policy but
each specifying more specific security policies appropriate to that department.

With each department, authority may be further devolved:
® Authority for auditing could be the preserve of an audit administrator.

® Control of access to a set of objects could be the responsibility of a specific
administrator for those objects.

This supports what is recognized as good security practice (it separates administrators’
duties) while reflecting established organizational structures.

Security Policy
Manager

Figure 15-19 Policy Domain Hierarchies

Federated Policy Domains

As well as being structured into superior/subordinate relationships, security policy
domains may also be federated. In a federation, each domain retains most of its
authority while agreeing to afford the other limited rights. The federation agreement
records:

Security Servicevl.7 15 December 1999 [DRAFT]

15

[200]

[201]

[202]

[203]

® The rights given to both sides, such as the kind of access allowed.

® The trust each has in the other.

It includes an agreement as to how policy differences are handled, for example, the
mapping of roles in one domain to roles in the other.

Security Policy
Manager
o o]
D D o) o

Figure 15-20 Federated Policy Domains

System- and Application-Enforced Policies

In a CORBA system, the “system” security policy is enforced by the distributed ORB
and the Security services it uses and the underlying operating systems that support it.
This is the only policy that applies to objects unaware of security.

The application security policy is enforced by application objects, which have their
own security requirements. For example, they may want to control access to their own
functions and data at a finer granularity than the system security policy provides.

Security Policy
Manage

° o
application security ||
policy domain

0
0 o
system security policy domain

0

Figure 15-21 System- and Application-enforced Policies

Overlapping Policy Domains

Not all policies have the same scope. For example, an object may belong to one
domain for access control and a different domain for auditing.

e}

o o
access control o ©
domain i 0
audit domain

Figure 15-22 Overlapping Policy Domains

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-39

15

[204]

[205]

[206]
[207]

[208]

15-40

In some cases, there may even be overlapping policies of the same type (however, this
specification does not require implementations to support overlapping policy domains
of the same type).

Security Environment Domains

Security policy domains specify the scope over which a policy applies. Security
environment domains are the scope over which the enforcement of the policies may be
achieved by means local to the environment. The environment supporting the object
system may provide the required security, and the objects within a specific
environment domain may trust each other in certain ways. Environment domains are
by definition implementation-specific, as different implementations run in different
types of environments, which may have different security characteristics.

Environment domains are not visible to applications or Security services.

In an object system, the cost of using the security mechanisms to enforce security at
the individual object level in al environments would often be prohibitive and
unnecessary. For example:

® Preventing objects from interfering with each other might require them to execute
in separate system processes or virtual machines (assuming the generation
procedure could not ensure this protection) but, in most object systems, this would
be considered an unacceptable overhead, if applied to each object.

® Authenticating every object individually could also impose too large an overhead,
particularly where:

» Thereis alarge object population.
» There is high connectivity, and therefore a large number of secure associations.

» The object population is volatile, requiring objects to be frequently introduced to
the Security services.

This cost can be reduced by identifying security environment domains where
enforcement of one or more policies is not needed, as the environment provides
adequate protection. Two types of environment domains are considered:

1. Message protection domains. These are domains where integrity and/or
confidentiality is available by some specific means, for example, an underlying
secure transport service is used. An ORB, which knows such protection exists, can
exploit it, rather than provide its own message protection.

2. ldentity domains. Objects in an identity domain can share the same identity.
Objects in the same identity domain:

» when invoking each other, do not need authentication to establish who they are
communicating with.

« are equally trusted by others to handle credentials received from a client. For
example, if aclient is prepared to delegate its rights to one object in the domain,
it is prepared to delegate the same rights to all of them. If any object in the
identity domain invokes a further object, that target object is prepared to trust the
calling object based on the identity of its identity domain.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[209]

[210]

[211]

[212]

[213]

[214]

Note that neither of these affect what access controls apply to the object (except in that
if trust is required and is not established with this domain, then access will be denied).

Security Technology Domains

These are domains that use the same security technology for enforcing the security
policy. For example:

® The same methods are available for principal authentication and the same
Authentication services are used.

® Datain transit is protected in the same way, using common key distribution
technology with identical algorithms.

® The same types of access control are used. For example, a particular domain may
provide discretionary access control using ACL s using the same type of identity and
privilege attributes.

® The same audit services are used to collect audit records in a consistent way.

A particular security technology is normally used to authenticate principals and to
form security associations between client and object and handle message protection.
(Different technologies may be able to use the same privilege attributes, for example,
the same access id and also the same audit id.) An important part of thisis the security
technology used for key distribution. There are two main types of security technology
used for key distribution, both of which are available in commercial products:

® Symmetric key technology where a shared key is established using a trusted Key
Distribution Service.

* Asymmetric (or “public”) key technology where the client uses the public key of
the target (certified by a Certification Authority), while the target uses a related
private key.

Public key technology is also the most convenient technology upon which to
implement non-repudiation, which has led to its use in several electronic mail
products.

The CORBA security interfaces specified here are security mechanism neutral, so they
can be implemented using a wide variety of security mechanisms and protocols.

Domainsand Interoperability

Interoperability between objects depends on whether they are in the same:
® Security technology domain

® ORB technology domain

® Security policy domains

® Naming and other domains

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-41

15

[215]

[216]

[217]

[218]

[219]

15-42

The level of security interoperability fully defined in this CORBA security
specification is limited, though it includes an architecture that allows further
interoperability to be added.

The following diagram shows a framework of domains and is used to discuss the
interoperability goals of this specification.

Security Technology Domain 1

CORBA 2 Security Security
interoperability Technology Technology
Gateway Domain 2

Figure 15-23 Framework of Domains

| nter operating between Security Technology Domains

Sending a message across the boundary between two different security technology
domains is only possible if:

®* The communication between the objects does not need to be protected, so security
is not used between them, or

® A security technology gateway has been provided, which allows messages to pass
between the two security technology domains. A gateway could be as simple as a
physically secure link between the domains and an agreement between the
administrators of the two domains to turn off security on messages sent over the
link. On the other hand, it could be a very complicated affair including a protocol
translation service with complicated key management logic, for example.

It is not a goal of this specification to define interoperability across Security
Technology Domains, and hence to specify explicit support for security technology
gateways. Thisis mainly because the technology is immature and appropriate common
technology cannot yet be identified. However, where the security technology in the
domains can support more than one security mechanism, this specification allows an
appropriate matching mechanism to be identified and used.

| nteroperating between ORB Technology Domains

If different ORB implementations are in the same security technology domain, they
should be able to interoperate via a CORBA 2 interoperability bridge. However, there
may still be restrictions on interoperability when:

Security Servicevl.7 15 December 1999 [DRAFT]

15

® The objects are in different security policy domains, and the security attributes
controlling policy in one domain are not understood or trusted in the other domain.
As previously described, crossing a security policy boundary can be handled by a
security policy federation agreement. This can be enforced in either domain or by a
gateway.

® The ORBs are in different naming or other domains, and messages would normally
be modified by bridges outside the trusted code of either ORB environment.
Security protection prevents tampering with the messages (and therefore any
changes to object references in them). In general, crossing of such domains without
using a Security Technology gateway is not possible if policy requires even
integrity protection of messages.

15.3.9 Security Management and Administration

[220] Security administration is concerned with managing the various types of domains and
the objects within them.

Managing Security Policy Domains
[221] For security policy domains, the following is required:

® Managing the domains themselves - creating, deleting them including controlling
where they fit in the domain structure.

® Managing the members of the domain, including moving objects between domains.

® Managing the policies associated with the domains - setting details of the security
policies as well as specifying which policies apply to which domains.

[222] This specification focuses on management of the security policies. However, managing
policy domains and their members in general are expected to be part of the
Management Common Facilities, so only an outline specification is given here.

[223] This specification includes a framework for administering of security policies, and
details of how to administer particular types of policy. For example, it includes
operations to specify the default quality of protection for messages in this domain, the
policy for delegating credentials, and the events to be audited.

[224] General administration of all access control policies is not detailed, as the way of
administering access control policies is dependent on the type of policy. For example,
different administration is needed for ACL-based policies and label-based policies.
However, the administration of the standard DomainAccessPalicy is defined.

[225] Access policies may use rights to group operations for access control. Administration
of the mapping of rights to operations is included in this specification. Such mapping
of rights to operations is used by the standard DomainAccessPolicy, and can also be
used by other access policies.

[226] Interfaces for federation agreements allowing interaction with peer domainsis left to a
later security specification.

Security Service: v1.7 Security ReferenceModel 3 December 1999 [DRAFT] 15-43

15

[227]

[228]

[229]

[230]

[231]

Managing Security Environment Domains

For environment domains, an administrator may have to specify the characteristics of
the environment and which objects are members of the domain. Thiswill often be done
in an environment-specific way; therefore, no management interfaces for it are
specified here.

Managing Security Technology Domains

For security technology domains, administration may include:
® Setting up and maintaining the underlying Security services required in the domain.

® Setting up and maintaining trust between domains in line with the agreements
between their management.

* Administering entities in the way required by this security technology. Entities to
be administered include principals, which have identities, long-term keys, and
optionally privileged attributes.

Such administration is often security technology specific. Also, it may be done outside
the object system, asiit is a goal of this specification to allow common security
technology to be used, and even allow a single user logon to object, as well as other
applications. This specification does not include such security technology specific
administration.

15.3.10 Implementing the Mode

This reference model is sufficiently general to cover a very wide variety of security
policies and application domains to allow conformant implementations to be provided
to meet a wide variety of commercial and government secure systems in terms of both
security functionality and assurance. (Any implementation of this model will need to
identify the particular security policies it supports.)

The model also allows different ways of putting together the trusted core of a secure
object system to address different requirements. There are a number of implementation
choices on how to ensure that the security enforcement cannot be bypassed. This
enforcement could be performed by hardware, the underlying operating system, the
ORB core, or ORB services. Appendix D, “Guidelines for a Trustworthy System” on
page 15-369 describes some of these options. (It is important when instantiating this
architecture for a particular ORB product, or set of Security services supporting one or
more ORBSs, to identify what portions of the model must be trusted for what. This
should be included in a conformance statement as described in Appendix E,

“ Conformance Statement” on page 15-392.)

15.4 Security Architecture

[232]

15-44

This section explains how the security model isimplemented. It describes the complete
architecture as needed to support all feature packages described in Section 15.2.2,
“CORBA Security and Secure Interoperability Feature Packages,” on page 15-12. Not

Security Servicevl.7 15 December 1999 [DRAFT]

15

[233]

[234]

[235]

[236]

[237]

[238]

[239]

all of these packages are mandatory for all implementors to support. See Appendix C,
“ Conformance Details’ on page 15-356 for a definitive statement of conformance
requirements.

This section starts by reviewing the different views that different users have of security
in CORBA-compliant systems, as the security architecture must cater to these.

The structural model for security in CORBA-compliant systems is described. This
includes some expansion of the ORB service concept introduced into CORBA 2 to
support interoperability between ORBS.

The security object models for the three major views (application development,
administration, and object system implementors) are then described.

15.4.1 Different Users View of the Security Model

The security model can be viewed from the following users' perspectives:
® Enterprise management

® Theend user

® The application developer

® Administration of an operational system

® The object system implementors

Enterprise Management View

Enterprise management are responsible for business assets including IT systems;
therefore they have ultimate responsibility for protecting the information in the system.
The enterprise view of security is therefore mainly about protecting its assets against
perceived threats at an affordable cost. This requires assessing the risks to the assets
and the cost of countermeasures against them as described in Appendix E, Guidelines
for a Trustworthy System. It will require setting a security policy for protecting the
system, which the security administrators can implement and maintain.

Not all parts of an enterprise require the same type of protection of their assets.
Enterprise management may identify different domains where different security
policies should apply. Managers will need to agree how much they trust each other and
what access they will provide to their assets. For example, when a user in domain A
accesses objects in domain B, what rights should he have? One enterprise may also
interwork with domains in other enterprises.

Enterprise management therefore knows about the structure of the organization and the
security policies needed in different parts of it. Security policy options supported by
the model include:

® A choice of access control policies. For example, controls can be based on job roles
(or other attributes) and use ACL, capabilities, or label-based access controls.

* Different levels of auditing so choosing which events to be logged can be flexibly
chosen to meet the enterprise needs.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-45

15

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

15-46

® Different levels of protection of information communicated between objectsin a
distributed system. For example, integrity only or integrity plus confidentiality.

The enterprise manager is not a direct user of the CORBA security system.

End User View

The human user is an individual who is normally authenticated to the system to prove
who he or sheis.

The user may take on different job roles which allow use of different functions and
data, thereby allowing access to different objects in the system. A user may also
belong to one or more groups (within and across organizations) which again imply
rights to access objects. A user may also have other privileges such as a security
clearance that permits access to secret documents, or an authorization level that allows
the user to authorize purchases of a given amount.

The user is modeled in the system as an initiating principal who can have privilege
attributes such as roles and groups and others privileges valid to this organization.

The user invokes objects to perform business functions on his behalf, and his privilege
attributes are used to decide what he can access. His audit identity is used to make him
individually accountable throughout the system. He has no idea of what further objects
are required to perform the business function.

The user view is described further in the security model in Section 15.3, “ Security
Reference Model,” on page 15-17.

Application Developer View

The application developer is responsible for the business objects in the system: the
applications. His main concern is the business functions to be performed.

Many application developers can be unaware of the security in the system, though their
applications are protected by it. So much of the security in the system is hidden from
the applications. ORB security services are called automatically on object invocation,
and both protect the conversation between objects and control who can access them.

Some application objects need to enforce some security themselves. For example, an
application might want to control access based on the value of the data and the time as
well as the principal who initiated the operation. Also, an application may want to
audit particular security relevant activities.

The model includes a range of security facilities available for those applications that
want to use them. For example:

® The quality of protection for object invocations can be specified and used to protect
all communication with a particular target or just selected invocations.

® Audit can also be used independently of other security facilities and does not
reguire the application to understand other security issues.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

® Other functions, such as user authentication or handling privilege attributes for
access control generally require more security understanding and operations on the
objects, which represent the user in the system. However, thisis still done via
generic security interfaces, which hide the particular security technology used.

One special type of application developer is also catered for. The “application” that
provides the user interface (user sponsor or logon client) needs an authentication
interface capable of fitting with a range of authentication devices. However, the model
also allows authentication to be done before calling the object system.

The application view is described in Section 15.5, “ Application Developer’s
Interfaces,” on page 15-88.

Administrator’ sView

Administrators, like any other users, know about their job roles and other privileges,
and expect these to control what they can do. In many systems, there will be a number
of different administrators, each responsible for administering only part of the system.
This may be partly to reduce the load on individual administrators, but partly for
security reasons, for example to reduce the damage any one person can do.

Administrators and administrative applications see more of the system than other users
or normal application developers. For example, the application developers see
individual objects whereas the administrator knows how these are grouped, for
example, in policy domains.

In an operational system, administrators will be responsible for creating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be responsible for administering the security policies that
apply to objects in these domains.

An administrator may also be responsible for security attributes associated with
initiating principals such as human users, though this may be done outside the object
system. This would include administration of privilege attributes about users, but
might also include other controls. For example, they might constrain the extent to
which the user’s rights can be delegated.

The model does not include explicit management interfaces for managing domains or
security attributes of initiating principals, though it does describe the resultant
information. Note that the security facilities described here are also applicable to
management. For example, management information needs to be protected from
unauthorized access and protected for integrity in transit, and significant management
actions, particularly those changing security information, need to be audited.

The administrator’s view is further described in Section 15.6, “Administrator’s
Interfaces,” on page 15-140.

Object System Implementor’ sView

Secure object system developers must put together:

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-47

15

[250]
[260]

[261]

[262]

[263]

[264]

[265]

15-48

* An ORB.
® Other Object Services and/or Common Facilities.

® The security services these require to provide the security features.
The system must be constructed in such a way as to make it secure.

The ORB implementor in a secure object system may use ORB Security services
during object invocation, as defined in Section 15.4.2, “ Structural Model,” on

page 15-49. In addition, protection boundaries are required to prevent interference
between objects and will need controlling by the ORB and associated Object Adapter
and ORB services.

Certain interfaces are identified as L ocality Constrained. These interfaces are
intended to be accessible only from within the context (e.g., process or RM-ODP
capsule) in which they are instantiated (i.e., from within the protection boundary
around that context). No object reference to these interfaces can therefore be passed
meaningfully outside of that context. The exact details of how this protection boundary
is implemented is an implementation detail that the implementor of the service will
need to provide in order to establish that the implementation is secure. Locality
constrained objects may not be accessible through the DII/DSI facilities, and they may
not appear in the Interface Repository. Any attempt to pass a reference to a locality
constrained object outside its locality, or any attempt to externalize it using
ORB::object_to_string will result in the raising of the CORBA::NO_MARSHAL
exception.

Object Service and Common Facilities developers may need to be security aware if
they have particular security requirements (for example, functions whose use should be
limited or audited). However, like any application objects, most should depend on the
ORB and associated services to provide security of object invocations.

The Security services implementor has to provide ORB Security services (for security
of object invocations) and other security services to support applications’ view of
security as previously defined. The ORB Security services implementor shares some
application visible security objects such as a principal’s credentials, and also sees the
security objects used in making security associations. The Security services should use
the Security Policy and other security objects defined in this model to decide what
security to provide.

While these security objects may provide all the security required themselves, they
will often call on external security services, so that consistent security can be provided
for both object and other systems. The Security services defined in this specification
are designed to allow for convenient implementation using generic APIs for accessing
external security services so it is easier to link with a range of such services. Use of
such external security services may imply use of existing, nonobject databases for
users, certificates, etc. Such databases may be managed outside the object system.

The Implementor’s view is specified in Section 15.7, “Implementor’s Security
Interfaces,” on page 15-168. The implications of constructing the system securely to
meet threats are described in Appendix D, “ Guidelines for a Trustworthy System” on
page 15-369.

Security Servicevl.7 15 December 1999 [DRAFT]

15

15.4.2 Structural Mod€

[266] The architecture described in this section sets the major concepts on which the
subsequent specifications are based.

[267] The structural model has four major levels used during object invocation:
1. Application-level components, which may or may not be aware of security;

2. Components implementing the Security services, independently of any specific
underlying security technology. (This specification allows the use of an isolating
interface between this level and the security technology, allowing different security
technologies to be accommodated within the architecture.) These components are:

» The ORB core and the ORB services it uses.
* Security services.
* Policy objects used by these to enforce the Security Policy.

3. Components implementing specific security technology.

4. Basic protection and communication, generally provided by a combination of
hardware and operating system mechanisms.

Target
Object
request request *

Security ’
and other

ORB ORB
Services Services
Services
I ORB Core I

‘ security technology ‘

‘ Basic Protection and Communications ‘

Figure 15-24 Structural Model
[268] Figure 15-24 illustrates the major levels and components of the structural model,

indicating the relationships between them. The basic path of a client invocation of an
operation on a target object is shown.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-49

15

[269]

[270]

[271]

[272]

15-50

Application Components

Many application components are unaware of security and rely on the ORB to call the
required security services during object invocation. However, some applications
enforce their own security and therefore call on security services directly (see The
Model as Seen by Applications, under Section 15.4.5, “ Security Object Models,” on
page 15-57). As in the OMA, the client may, or may not, be an object.

ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB that
provides the basic representation of objects and the communication of requests.” The
ORB Core therefore supports the minimum functionality necessary to enable a client to
invoke an operation on atarget object, with the distribution transparencies required by
the CORBA architecture.

An object request may be generated within an implicit context, which affects the way
in which it is handled by the ORB, though not the way in which a client makes the
request. The implicit context may include elements such as transaction identifiers,
recovery data and, in particular, security context. All of these are associated with
elements of functionality, termed ORB Services, additional to that of the ORB Core
but, from the application view, logically present in the ORB.

Logical Object Request

e
Services
I

Figure 15-25 ORB Services

Target
Object

e
Services
Selection of ORB Services

The ORB Services used to handle an object request are determined by:

ORB Core

® The security policies that apply to the client and target object because of the
domains to which they belong, for example the access policies, default quality of
protection.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[273]

[274]

[275]

[276]

[277]

[278]

® Other static properties of the client and target object such as the security
mechanisms and protocols supported.

® Dynamic attributes, associated with a particular thread of activity or invocation; for
example, whether a request has integrity or confidentiality requirements, or is
transactional.

A client's ORB determines which ORB Services to use at the client when invoking
operations on atarget object. The target’s ORB determines which ORB Services to use
at the target. If one ORB does not support the full set of services required, then either
the interaction cannot proceed or it can only do so with reduced facilities, which may
be agreed to by a process of negotiation between ORBs.

Bindings and Object Referencesat the Client

Before a client can use an object reference to invoke an operation of the target object
in a secure way, a security association needs to be established associating the client to
the target object, through the particular object reference. This security association is
sometimes referred to as the binding. The creation and life-style of bindings are
implicitly managed by the ORBs and hence the only invariant that one can depend on
is that a binding is established before an invocation takes place.

The ORB determines how to establish the binding using the policies, static properties,
and dynamic properties associated with the client and target. At the client, the client
environment together with an object reference of the target object has associated with
it, those policies and static properties of the target object (e.g., the quality of protection
needed) that affect how the client's ORB establishes a binding to the object.

Associated with each binding is information specific to the particular usage by the
client of the object reference. A binding is uniquely associated with:

® Each object reference of the target object that is held by the client.

® State information that is unique to the association between the target object and the
client through the specific object reference (e.g., access policy domain, security
context).

® An ORB instance in a process or capsule (c.f. RM-ODP[15]) in which the client is
located.

A binding is distinct from the target object, though uniquely associated with it through
the object reference. The lifetime of a binding is limited to that of the process or
capsule that it is associated with, though it may be shorter (e.g., when the object
reference to the target object is destroyed, the binding associated with the object
reference is also destroyed).

There is state information associated with the binding at both the client and the server
ends. This state information is local to the process or capsule in which the client and
the server reside, and its lifetime is the same as that of the binding. The state
associated with a binding is not accessible on the client side, since the implicitness of
the binding and the uncertainty about its life-style makes such information of
guestionable value anyway. On the server side, some of this information is accessible
through operations of the Current object.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-51

15

[279]

[280]

[281]

[282]

15-52

Object Reference

target obj ref
> -
ing ‘e - bindin

g
7

o
X bind

I ORB Core I

Figure 15-26 Object Reference

If a client requires to invoke operations of the same target object with different
invocation policies, it can do so by using the Object::set_policy_overrides operation
to create new object references with the desired policies (that differ from those
associated with the client’s environment through the Current object) installed as
overrides, and then use those new object references to carry out the invocations,

Security Services

In a secure object system, the ORB Services called will include ORB Security Services
for secure invocation and access control.

ORB Security Services and applications may call on underlying security mechanisms
for authentication, access control, audit, non-repudiation, and secure invocations.
These security services form the Security Replaceability packages.

Security Policiesand Domain Objects

A security policy domain is the set of objects to which common security policies apply
as described in Security Policy Domains, under Section 15.3.8, “Domains,” on

page 15-37. The domain itself is not an object. However, there is a policy domain
manager for each security policy domain. This domain manager is used when finding
and managing the policies that apply to the domain. The ORB and security services use
these to enforce the security policies relevant to object invocation.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[283]

[284]

[285]

[286]

[287]

When an object reference is created by the ORB, it implicitly associates the object
reference with one or more Security Policy domains as described in Administrative
Model, under Section 15.4.5, “ Security Object Models,” on page 15-57. An
implementation may allow object references to be moved between domains later. Since
the only way to access objects is through object references, associating object
references with policy domains and associated policies, implicitly associates the said
policies with the object associated with the object reference. Care should be taken by
the applications that is creating object references using POA operations (See the
Portable Object Adaptor chapter of the Common Object Request Broker: Architecture
and Specification) to ensure that object references to the same object are not created by
the server of that object with different domain associations.

There may be several security policies associated with a domain, with a policy object
for each. There is at most one policy of each type associated with each policy domain.
(See “Administrative Model” on page 15-75, for alist of policy types.) These policy
objects are shared between objects in the domain, rather than being associated with
individual objects. (If an object needs to have an individual policy, then there must be
a domain manager for it.)

enclosing
domain managers

Figure 15-27 Domain Objects

Where an object reference is a member of more than one domain, for example, there is
a hierarchy of domains, the object reference is governed by all policies of its enclosing
domains. The domain manager can find the enclosing domain’s manager to see what
policies it enforces.

The reference model allows an object reference to be a member of multiple domains,
which may overlap for the same type of policy (for example, be subject to overlapping
access policies). This would require conflicts among policies defined by the multiple
overlapping domains to be resolved. The specification does not include explicit support
for such overlapping domains and, therefore, the use of policy composition rules
required to resolve conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

® The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own security policies.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-53

15

[288]

[289]

[290]

[291]

[292]

15-54

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy (as described in “ The
Model as Seen by the Objects Implementing Security” on page 15-79). The caller
finding a policy and then enforcing it does not see the domain manager objects and
the domain structure.

® The administrative interfaces used to set security policies (e.g., specifying which
events to audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so is aware of the scope of
what he is administering. (Administrative interfaces are described in
“Administrative Model” on page 15-75.)

Applications will often not be aware of security at all, but will still be subject to
security policy, as the ORB will enforce the policies for them. Security policy is
enforced automatically by the ORB both when an object invokes another and when it
creates another object.

An application that knows about security can also override certain default security
policy details. For example, a client can override the default quality of protection of
messages to increase protection for particular messages. (Application interfaces are
described in “The Model as Seen by Applications” on page 15-57.)

Note that this specification does not include any explicit interfaces for managing the

policy domains themselves: creating and deleting them, moving objects between them,
changing the domain structure and adding, changing and removing policies applied to
the domains. Such interfaces are expected to be the province of other object services

and facilities.

15.4.3 Security Technology

The object security services previously described insulate the applications and ORBs
from the security technology used. Security technology may be provided by existing
security components. These do not have domain managers or objects. Security
technology could be provided by the operating system. However, distributed,
heterogeneous environments are increasingly being used, and for these, security
technology is provided by a set of distributed security services. This architecture
identifies a separate layer containing those components which actually implement the
security services. It is envisaged that various technologies may be used to provide
these and, furthermore, that a (set of) generic security interface(s) such as the GSS-API
will be used to insulate the implementations of the security services from detailed
knowledge of the underlying mechanisms. The range of services (and corresponding
APIs) includes:

® The means of creating and handling the security information required to establish
security associations, including keys.

® Message protection services providing confidentiality and integrity.

The use of standard, generic APIs for interactions with external security services not
only allows interchangeability of security mechanisms, but also enables exploitation of
existing, proven implementations of such mechanisms.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[293]

[294]

[295]

[296]

[297]

15.4.4 Basc Protection and Communications

Environment Domains

As described in “ Security Environment Domains” on page 15-40, the way security
policies are enforced can depend on the security of the environment in which the
objects run. It may be possible to relax or even dispense with some security checks in
the object system on interactions between objects in the same environment domain.
For example, in a message protection domain where secure transport or lower layer
communications is provided, encryption is not needed at the ORB level. In an identity
domain, objects may share a security identity and so dispense with authenticating each
other. Environment domains are implementation concepts; they do not have domain
managers.

Environment domains can be exploited to optimize performance and resource usage.

Component Protection

The maintenance of integrity and confidentiality in a secure object system depends on
proper segregation of the objects, which may include the segregation of security
services from other components. At the lowest level of this architecture, Protection
Domains, supported by a combination of hardware and software, provide a means of
protecting application components from each other, as well as protecting the
components that support security services. Protection Domains can be provided by
various techniques, including physical, temporal, and logical separation.

The Security Architecture identifies various security services, which mediate
interactions between application level components: clients and target objects. The
Security Object Models show how these mechanisms can themselves be modeled and
implemented in terms of additional objects. However, security services can only be
effective if there is some means of ensuring that they are always invoked as required
by security policies: it must be possible to guarantee, to any required level of
assurance, that applications cannot bypass them. Moreover, security services
themselves, like other components, must be subject to security policies.

The general approach is to establish protection boundaries around groups of one or
more components which are said to belong to a protection domain. Components
belonging to a protection domain are assumed to trust each other, and interactions
between them need not be mediated by security services, whereas interactions across
boundaries may be subject to controls. In addition, it is necessary to provide a means
of establishing a trust relationship between components, allowing them to interact
across protection boundaries, in a controlled way, mediated by security services.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-55

15

[298]

[299]

[300]

[301]

[302]

15-56

Controlled
Relationship

@) Protection
Domain B 0O

O

@) Protection
Domain A O

@)

Figure 15-28 Controlled Relationship

In this architecture, the trusted components supporting security services are
encapsulated by objects, as described in “ The Model as Seen by the Objects
Implementing Security” on page 15-79. Clearly, objects that encapsulate sensitive
security information must be protected to ensure that they can only be accessed in an
appropriate way.

O Protection
DomainB @

Security Service

O O

O Protection
Domain A 0

0=

Figure 15-29 Object Encapsulation

Protection boundaries and the controlled relationships that cross those boundaries must
inevitably be supported by functionality more fundamental than that of the Security
Object Models, and invariably requires a combination of hardware and operating
system mechanisms. Whichever way it is provided, this functionality constitutes part
of the Trusted Computing Base.

Protection boundaries may be created by physical separation, interprocess boundaries,
or within process access control mechanisms (e.g., multilevel “onionskin” hardware-
supported access control). Less rigorous protection may be acceptable in some
circumstances, and in such cases protection boundaries can be provided, for example,
by using appropriate compilation tools to conceal protected interfaces and data.

The architecture is defined in a modular way so that, where necessary, it is possible for
implementations to create protection boundaries between:

® Application components, which do not trust each other;
® Components supporting security services and other components;

® Components supporting security services and each other.

In addition, controlled communication across protection boundaries may be required.
In such cases, it must be possible to constrain components within a protection
boundary to interact with components outside the protection boundary only via
controlled communications paths (it must not be possible to use alternative paths).
Such communication may take many forms, ranging from explicit message passing to
implicit sharing of memory.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[303]

[304]

[305]

[306]

[307]

15.4.5 Security Object Models

This section describes the objects required to provide security in a secure CORBA
system from three viewpoints:

1. The model as seen by applications.
2. The model as seen by administrators and administrative applications.
3. The model as seen by the objects implementing the secure object system.

For each viewpoint, the model describes the objects and the relationships between
them, and outlines the operations they support. A summary of all objectsis also given.

The Model as Seen by Applications

Many applications in a secure CORBA system are unaware of security, and therefore
do not call on the security interfaces. This subsection is therefore mainly relevant to
those applications that are aware of and utilize security. Facilities available to such
applications are:

® Finding what security features this implementation supports.

® Establishing a principal’s credentials for using the system. Authenticating the
principal may be necessary.

® Selecting various security attributes (particularly privileges) to affect later
invocations and access decisions.

® Making a secure invocation.

® Handling security at a target object and at intermediates in a chain of objects,
including use of credentials for application control of access and delegation.

® Auditing application activities.

®* Non-repudiation facility -- generation and verification of evidence so that actions
cannot be repudiated.

® Finding the security policies that apply to this object.

The Security Service interfaces that are available to the application writer are primarily
found in the SecuritylL evell, SecuritylL evel2, NRservice, and SecurityAdmin
modules.

Finding Security Features

An application can find out what security features are supported by this secure object
implementation. It does this by calling on the ORB to get_service information.
Information returned includes the security functionality level and options supported
and the version of the security specification to which it conforms. It also includes
security mechanisms supported (though the ORB Security Services, rather than
applications, need this).

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-57

15

[308]

[309]

[310]

[311]

[312]

[313]

[314]

15-58

Establishing Credentials

If the principal has already been authenticated outside the object system, then
Credentials can be obtained from Current.

If the principal has not been authenticated, but is only going to use public services
which do not require presentation of authenticated privileges, a Credentials object may
be created without any authenticated principal information.

If the principal has not been authenticated, but is going to use services that need him to
be, then authentication is needed as shown in Figure 15-30.

/ User
RN Sponsor |
-/
user
Principal -~ _ request
Authenticator create (Credentias)

Figure 15-30 Authentication

User sponsor

The user sponsor is the code that calls the CORBA Security interfaces for user
authentication. It need not be an object, and no interface to it is defined. It is described
here so that the process of Credentials acquisition may be understood.

The user provides identity and authentication data (such as a password) to the user
sponsor, and this calls on the Principal Authenticator object, which authenticates the
principal (in this case, the user) and obtains Credentials for it containing authenticated
identity and privileges.

The user sponsor represents the entry point for the user into the secure system. It may
have been activated, and have authenticated the user, before any client application is
loaded. This allows unmodified, security-unaware client applications to have
Credentials established transparently, prior to making invocations.

There is no concept of atarget object sponsor.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[315]

[316]

[317]

[318]

[319]

[320]

[321]

Principal Authenticator

ThePrincipal Authenticator object isthe application-visible object responsible for the
creation of Credentials for a given principal. This is achieved in one of two ways. If
the principal is to be authenticated within the object system, the user sponsor invokes
the aut hent i cat e operation of the Principal Authenticator object (and
continue_authentication if needed for multiexchange authentication dialogues).

Credentials

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated (or unauthenticated) identities and privileges and
information for establishing security associations. It provides operations to obtain and
set security attributes of the principal it represents.

There may be credentials for more than one principal, for example, the initiating
principal who requested some action and the principal for the current active object.
Credentials are used on invocations and for non-repudiation.

There is an is valid operation to check if the credentials are valid and a refresh
operation to refresh the credentials if possible.

Current

The Current object represents the current execution context at both client (both for
object or non-object clients) and target objects. In a secure environment, the interfaces
SecurityLevell::Current which is derived from CORBA::Current and

SecurityL evel2::Current which is derived from SecuritylL evel1::Current, give access
to security information associated with the execution context. Current gives access to
the Credentials associated with the execution environment. Object invocations use
Credentials in Surrent , unless they have been overridden, by a
security aware client, in the specific object reference being used for the invocation. If
auser sponsor is used, it should set the user’s credentials for subsequent invocationsin
Current. Thismay also be done as the result of initializing the ORB when the user has
been authenticated outside the object system. This allows a security-unaware
application to utilize the credentials without having to perform any explicit operation
on them.

At target and intermediate objects, other Credentials are also available via Current.

Handling Multiple Credentials

An application object may use different Credentials with different security
characteristics for different activities.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-59

15

[322]

324

[325]

15-60

Object
(client or
target)

set_credentials(invocation credentials)

InvocationCredentialsPolicy

Figure 15-31 Multiple Credentials

Credentials

Object
(client or
target)

Credentials

The Credentials::copy operation can be used to make a copy of the Credentials
object. The new Credentials object (i.e., the copy) can then be modified as necessary,
using its interface, before it is used in an invocation.

When all required changes have been made the credentials may be specified as the
credentials for all subsequent invocations by the setting of an
InvocationCredentialsPolicy on PolicyCurrent.

At any stage, a client or target object can find the default credentials for subsequent
invocations by calling SurrertPolicyCurrent::get—eredentialsget_policy overrides,
asking for the Hveeation—eredentials| nvocationCredentialsPolicy. These default
credentials will be used in al invocations using object references in which the
invocation credentials have not been overridden.

Security Servicevl.7 15 December 1999 [DRAFT]

15

Selecting Security Attributes

[326] A client may require different security for different purposes, for example, to enforce a
least privilege policy and so specify that limited privileges should be used when
calling particular objects, or collections of objects, and restrict the scope to which
these privileges are propagated. A client may also want to protect conversations with
different targets differently.

[327] There are two ways to change security attributes for a principal:

1. Setting attributes on the credentials for that principal. If attributes are set on the
credentials, these apply to subsequent object invocations using those credentials. It
can therefore apply to invocations of many target objects.

2. Overriding attributes- on the target object reference.
Attributes thus set apply to subsequent invocations, which this client
makes using this reference.

[328] In both cases, the change applies immediately to further object invocations associated
with these credentials or this object reference.

set_privileges
Client Credentials

set_policy_overrides Object
for QOP Policy and Invocation Credentials Policy
set_attributes
Client Credentials

set_policy_overrides Object
for QOP Policy and Invocation Credentials Policy

Figure 15-32 Changing Security Attributes

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-61

15

[330]

[331]

[332]

[333]

[334]

[335]

[336]

15-62

Setting any of these attributes may result in a new security association being needed
between this client and target.

Note — This specification does not contain an operation to restrict when and where
these privileges can be used in target objects or delegated, though this may be
specified in the future (see Section F.12, “ Target Control of Message Protection,” on
page 15-402).

A client may want to use different privileges or controls when invoking different
targets. It can do this by obtaining a new object reference using the
set_policy_overrides specifying the invocation credentials policy to be used with that
target, and then use the object reference thus obtained to carry out the invocation.

A client may want to specify that a particular quality of protection applies only to
selected invocations of atarget object. For example, it may want confidentiality of
selected messages. The client can do this by using set_policy_overrides, specifying a
QOP Policy on the new object reference. It can continue to use the original object
reference for those invocations where confidentiality is no longer required.

The set_policy_overrides operation returns a new object reference to the same target
object as the one on which this operation is invoked. This new reference has the policy
overrides set in it. Any invocations through this new reference will use the overrides
set in the reference. The creation of this newly annotated object reference has no effect
on the target object.

Equivalent get_ operations are also provided to permit an application to determine the
security specific options currently requested, for example get_attributes (privileges,
and other attributes such as audit id).

The security features, invocation credentials, gop, and mechanism related policies that
are in effect on a given object reference can be obtained by using the get_policy
operation asking for the appropriate type of policy object.

Making a Securelnvocation

A secure invocation is made in the same way as any other object invocation, but the
actual invocation is mediated by the ORB Security Services, invisibly to the
application, which enforce the security requirements, both in terms of policy and

Security Servicevl.7 15 December 1999 [DRAFT]

15

application preference. The following diagram shows an application making the
invocation, and the ORB Security Services utilizing the security information in
Current, and hence the Credentials there.

Target
Object

request request
target obj ref

I ORB Core

.

I — U

Figure 15-33 Making a Secure Invocation

Note — For any given invocation, it is target and client security policy that determines
which (if any) ORB Security Services mediate that invocation. If the policy for a given
invocation requires no security, then no services will be used. Similarly, if only access

control is required, then only the ORB Security Service responsible for the provision
of access control will be invoked.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-63

15

[337]

[338]

[339]

[340]

15-64

Security at the Target

At the target, as at the client, the Current object is the representative of the local
execution context within which the target object’s code is executing. The Current
object can be used by the target object, or by ORB and Object Service code in the
target object’ s execution context, to obtain security information about an incoming
security association and the principal on whose behalf the invocation was made.

application

access decision

get_attributes

request

(—

Figure 15-34 Target Object Security

Credentials

A security-aware target application may obtain information about the attributes of the
principal responsible for the request by invoking the Current::get_attributes
operation. The target normally uses get_attributes to obtain the privilege attributes it
needs to make its own access decisions.

When Current::get_attributesis invoked from the target object it returns the
attributes from the incoming Credentials from the client. When
Current::get_attributes is invoked by a client the attributes from the Credentials of
the user (e.g., the one that was created by the PrincipalAuthenticator) is returned.
Invoking Credentials:: get—attrHote- always returns the attributes
contained in that Credentials object.

| nter mediate Objectsin a Chain of Objects

When a client calls a target object to perform some operation, this target object often
calls another object to perform some function, which calls another object and so on.
Each intermediate object in such a chain acts first as a target, and then as a client, as
shown in Figure 15-35 on page 15-65.

Security Servicevl.7 15 December 1999 [DRAFT]

15

Intermediate Object
(acts as target, then client)

request

requeﬂ to next target
— Credentials —
(delegated and/or
object’s own)
Figure 15-35 Security-unaware Intermediate Object
[341] For a security-unaware intermediate object, Current has a reference to the security

context established with the incoming client. When this intermediate object invokes
another target, either the delegated credentials from the client or the credentials for the
intermediate object’s principal (or both) become the current ones for the invocation.
The security policy for this intermediate object governs which credentials to use, and
the ORB Security Services enforce the policy, passing the required credentials to the
target, subject to any delegation constraints. The intermediate object’ s principal will be
authenticated, if needed, by the ORB Security Services.

[342] A security-aware intermediate object can:
® Use the privileges of any delegated credentials for access control.
® Decide which credentials to use when invoking further targets.

® Restrict the privileges available via these credentials to further clients (where
security technology permits).

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-65

15

[343]

[344]

[345]

[346]

[347]

15-66

Intermediate Object
(acts as target, then client)

get_credentials Set_credentials
request
request to next target
I N

invocation
credentials

own
credentials

received
credentials

Figure 15-36 Security-aware Intermediate Object

After a chain of object calls, the target can call Current::get_attributes as previously
described. Note that this call always obtains the privilege and other attributes
associated with the first of the received credentials.

The target can use the received_credentials attribute of Current to get the incoming
credentials. After a composite delegation (see Section 15.3.6, “Delegation,” on

page 15-29), the credentials are of the initiator and immediate invoker. After traced
delegation, credentials for all intermediates in the chain will be present (as well as the
initiator). If atarget object receives a request which includes credentials for more than
one principal, it may choose which privileges to use for access control and which
credentials to delegate, subject to policy.

An intermediate object may wish to make a copy of the incoming credentials, modify
and then delegate them, though not all implementations will support this modification.
In this case, it must acquire a reference to the incoming credentials (using the
received_credentials attribute of Current), and then use Credentials::set—priviteges-
to modify them. Firathy-i+- can eal-
Gurrenrtset—credentialsto-make- the received credentials the-defaut-onesfor-
subsequent invocations—\Athen-the-

If the intermediate object wishes to change the association security defaults (for
example, the quality of protection) for subsequent invocations to a specific target
object, it can do so by using the Object::set_policy overrides operation to create a
copy of the object reference to the target with the required QOP set as override in the
object reference thus obtained. The overridden QOP will apply to subsequent
invocations through this new reference.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[348]

[349]

[351]

[352]

[353]

The intermediate object may be a principal and wish to use its own identity and some
specific privileges in further invocations, rather than delegating the ones received. In
this case, it can call authenticate operation of the Principal Authenticator to obtain
the appropriate credential, and then call Credentials::set—privHeges- to

establish the appropriate rights—-After-doingthisH-ecan-use-Currertrset—eredentialsto-
establish-its-eredential-as-the-defauit-for-future-Hvocations.

If the intermediate does not have its own individual Credential object (for example, as
it does not have an individual security name) but instead shares credentials with other
objects, it can us the own_credentials attribute of Current to get a copy of the
Credentials (which will have been set up automatically). It can then do a
Credentials::copy and then a Credentials:: set—prrHeges , €etc. on these,
as appropriate and then use it to obtain a new object reference for the object it intends
to invoke, with invocation credentials policy overridden using the Credentials
constructed above.

Security Mechanisms

Applications are normally aware of the security mechanism used to secure invocations.
The secure object system is aware of the mechanisms available to both client and
target object and can choose an acceptable mechanism. However, some security-
sophisticated applications may need to know about, or even control the choice of
mechanisms. They can get information on the currently in effect mechanism policy by
using the get_policy operation of the object reference. They can do invocations using a
different mechanism from the default by using set_policy_overrides operation of the
object reference to obtain a new object reference with the desired mechanism policy
set as override in it and use it for invocations that need the new mechanism.

Application Access Policies

Applications can enforce their own access policies. No standard application access
policy is defined, as different applications are likely to want different criteria for
deciding whether access is permitted. For example, an application may want to take
into account data values such as the amount of money involved in a funds transfer.

However, it is recommended that the application use an access decision object similar
to the one used for the invocation access policy. This is to isolate the application from
details of the policy. Therefore, the application should decide if access is needed as
shown in Figure 15-37 on page 15-68.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-67

15

[354]

[355]

[356]

[357]

[358]

[359]

15-68

access_allowed

Application

Figure 15-37 access_allowed Application

The application can specify the privileges of the initiating principal and a variety of
authorization data, which could include the function being performed, and the datait is
being performed on.

An application access policy can be used to supplement the standard invocation access
policy with an application-defined policy. Such a policy might, for example, take into
account the parameters to the request. In this case, the authorization data passed to the
application-defined policy would be likely to include the request’s operation,
parameters, and target object.

The application access policy could be associated with the domain, and managed using
the domain structure as for other policies (see Section, “Administrative Model,” on
page 15-75). In this case, the application obtains the Access Policy object as shown in
Figure 15-38.

et_polic lication access)
@ get_policy(app) @
et _security polic .
@ - — @
Manager

Figure 15-38 get—peliey- Application

However, the application could choose to manage its access policy differently.

Auditing Application Activities

Applications can enforce their own audit policies, auditing their own activities. Audit
policies specify the selection criteria for deciding whether to audit events.

As for application access policies, application audit policies can be associated with
domains and managed via the domain structure. No standard application level audit
policy is specified, as different applications may want to use different selectorsin
deciding which events to audit. Application events are generally not related to object
invocations. Applications can provide their own audit policies, which use different
criteria. The most common selectors for these audit policies to use are the event type
and its success or failure, the audit_id and the time. (Management of such policies can

Security Servicevl.7 15 December 1999 [DRAFT]

15

[360]

[361]

[362]

[363]

[364]

generally be done using the interfaces for audit policy administration defined in
Section 15.6.5, “Audit Policies,” on page 15-155, by specifying new selectors,
appropriate to the application concerned.)

Whether or not the application uses an audit policy, it uses an Audit Channel object to
write the audit records. One Audit Channel object is created at ORB initialization time,
and this is used for all system auditing. Applications can use different audit channels.
The way an Audit Channel object handles the audit records is not visible to the caller.
It may filter them, route them to appropriate audit trails, or cause event alarms.
Different Audit Channel objects may be used to send audit records to different audit
trails.

Applications and system components both invoke the audit_write operation to send
audit records to the audit trail.

Application audit_write Audit Channel

Figure 15-39 audit_write Application

If an application is using an audit policy administered via domains, it uses an Audit
Decision object (see Section 15.5.10, “Security Audit,” on page 15-123) to decide
whether to audit an event. It can find the appropriate Audit Decision object using the
audit_decision attribute of Current as follows.

audit_needed
audit_channel

Application

audit_decision

Figure 15-40 Audit Decision Object

The application invokes the audit_needed operation of the Audit Decision object,
passing the values required to decide whether auditing is needed. (This set of selectors
could include, for example, the type of event, its success or failure, the identity of the
caller, the time, etc. See administration of audit policies in Section 15.5.10, “ Security
Audit,” on page 15-123.)

The audit channel to be used in conjunction with an audit policy object can be
identified to the audit policy object with an audit channel id. The Audit Decision
object uses this Audit Channel I1d to gain access to the corresponding Audit Channel
and return it to the user. Thus the application can use an Audit Channel associated

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-69

15

[365]

[366]

[367]

[368]

[369]

15-70

with the application (and these can link into the system audit services). If so, the
application uses the audit_channe attribute of the Audit Decision object to find the
Audit Channel object to use. However, applications can create their own Audit
Channels with the help of the underlying audit service, and register their Audit
Channel Ids with the appropriate Audit Policy object. The association between the
Audit Channd Id and the audit channel is maintained by the underlying audit service,
which is not specified in this chapter.

Finding What Security Policies Apply

An application may want to find out what policies the system is enforcing on its
behalf. For example, it may want to know the default quality of protection to be used
by default for messages or for non-repudiation evidence.

To do this, it can call Surrent get—melay , and
then the appropriate get_ operation of the policy object obtained as defined in
Section 15.6, “Administrator’s Interfaces,” on page 15-140 (if permitted).

Non-repudiation

The non-repudiation services in this specification provide generation of evidence of
actions and later verification of this evidence, to prove that the action has occurred.
There is often data associated with the action, so the service needs to provide evidence
of the data used, as well as the type of action.

These core facilities can be used to build a range of non-repudiation services. It is
envisioned that delivery services will be implemented to deliver this evidence to where
it is needed and evidence stores will be built for use by adjudicators. As different
services may have different requirements for these, interfaces for them are not included
in this specification.

Non-repudiation Credentialsand Policies

Non-repudiation operations are performed on NRCredentials. As for any other
Credentials object, these hold the identity and attributes of a principal. However, in
this case, the attributes include whatever is needed for identifying the user for
generating and checking evidence. For example, it might include the principal’s key
(or provide access to it) as needed to sign the evidence.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[371]

[372]

[373]

[374]

[375]

[376]

[377]

[378]

[379]

An application can set security attributes related to non-repudiation using the
NRCredentials::set_ NR_features operation.

o set NR_features .
Application NRCredentials

Figure 15-41 set NR_features Operation

Theset_ NR_features can be used to specify, for example, the quality of protection and
the mechanism to be used when generating evidence using these credentials.

By default, the features are those associated with the non-repudiation policy obtained
by invoking Su+ent ige—petey- specifying
Security::SecNonRepudiation. However, non-repudiation policies may come from
other sources. For example, the policy to be used when generating evidence for a
particular recipient may be supplied by that recipient.

Thereisan NRCredentials::get_NR_features operation equivalent to
set NR_features.

Evidence generation and verification operations are also performed on NRCredentials
objects. These are described next.

Using Non-Repudiation Services

An application can generate evidence associated with an action so that it cannot be
repudiated at a later date. All evidence and related information is carried in non-
repudiation tokens. (The details of these are mechanism specific.)

The application decides that it wishes to generate some proof of an action and calls the
generate token operation of an NRCredentials object.

generate token

Application (e-g. proof of creation)

NRCredentials

Figure 15-42 generate_token Operation

This evidence is created in the form of a non-repudiation token rendered unforgeable.
Generation of the token uses the initiating principal’s security attributes in the
NRCredentials (normally a private key), for example, to sign the evidence.

Depending on the underlying cryptographic techniques used, the evidence is generated
as

® A secure envelope of data based on symmetric cryptographic algorithms requiring
what is termed to be a trusted third party as the evidence generating authority.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-71

15

[380]

[381]

[382]

[383]

[384]

[385]

[386]

15-72

® A digital signature of data based on asymmetric cryptographic algorithms which is
assured by public key certificates, issued by a Certification Authority.

Depending on the non-repudiation policy in effect for a specific application and the
legal environment, additional information (such as certificates or a counter digital
signature from a Time Stamping Authority) maybe required to complete the non-
repudiation information. A time reference is always provided with a non-repudiation
token. A Notary service may be required to provide assurance about the properties of
the data.

Complete Evidence

Non-repudiation evidence may have to be verified long after it is generated. While the
information necessary to verify the evidence (e.g., the public key of the signer of the
evidence, the public key of the trusted time service used to countersign the evidence,
the details of the policy under which the evidence was generated, etc.) will ordinarily
be easily accessible at the time the evidence is generated, that information may be
difficult or impossible to assemble a long time afterward.

The CORBA Non-repudiation Service provides facilities for incorporating all
information necessary for the verification of a piece of non-repudiation evidence inside
the evidence token itself. A token including both non-repudiation evidence and all
information necessary to verify that evidence is said to contain “complete” evidence.

There may be policy-related limitations on the time periods during which complete
evidence may be formed. For example, Non-repudiation policy may permit addition of
the signer’s public key to the evidence only after expiration of the interval, during
which the signer may permissibly declare that key to have been compromised.
Similarly, the policy may require application of the Trusted Time Service
countersignature within a specified interval after application of the signer’s signature.

To facilitate the generation of complete evidence, the information returned from the
calls which verify evidence and request formation of complete evidence, includes two
indicators (complete_evidence _before and complete_evidence after) indicating the
earliest time at which complete evidence may usefully be requested and the latest time
at which complete evidence can successfully be formed.

A call to verify_evidence before complete evidence can be formed may result in a
response declaring the evidence to be “conditionally valid.” This means that the
evidence is not invalid at the current time, but a future event (e.g., the signer declaring
his key compromised) might cause the evidence to be invalid when complete.

Figure 15-43 on page 15-73 illustrates the policy considerations relating to generation
of complete evidence, and the sequence of actions involved in generating and using
complete evidence.

Security Servicevl.7 15 December 1999 [DRAFT]

15

user key repudiation window

trusted time service

| |
| |
| countersignature |
| _window |
r— - - - — = 1
I | | :
! | | Time
(< > >
complete evidence before complete evidence after
event OK
data i
evidence evidence complete
token token evidence
A with token
trusted A
gerlerate timestamp form_complete_evidence verify
token evidence
form
conplete
evidence

Non-Repudiation Service

Figure 15-43 Non-repudiation Service

[387] An application may receive a token and need to know what sort of token it is. Thisis
done using get_token_details. When the token contains evidence, get_token_details
can be used to extract details such as the non-repudiation policy, the evidence type, the
originator’s name, and the date and time of generation. These details can be used to
select the appropriate non-repudiation policy and other features (using
set_NR_features), as necessary for verifying the evidence. When the token contains a
reguest to send back evidence to one or more recipients, then if appropriate, evidence
can be generated.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-73

15

[388]

[389]

[390]

15-74

An application verifies the evidence using the verify_evidence operation.

Application verify_evidence NRCredentials

Figure 15-44 verify_evidence operation

Verification of non-repudiation tokens uses information associated with the Non-
repudiation Policy applicable to the non-repudiation token and security information
about the recipient who is verifying the evidence (normally the public key from a
Certification Authority and a set of trust relationships between Certification
Authorities).

Using Non-Repudiation for Receipt of Messages

An application receiving a message with proof of origin may handle it as shown in
Figure 15-45.

Application
Object

<

incoming request deliver message get_token_details | generate evidence
with message plus and evidenceto & verify_evidence | g g proof of receipt
evidence e.g. proof originator e.g. e.g. proof of origin

of origin proof of receipt

NRCredentials NRCredentials
L

Figure 15-45 Proof of Origin Message

® The application receives the incoming message with a non-repudiation token that
has been generated by the originator.

® The application now wishes to know the type of token that it has received. It does
this by calling the NRCredentials::get_token_details operation. The token may be:

» A request that evidence be sent back (such as an acknowledge of receipt)
 Evidence of an action (such as a proof of creation)
» Both evidence and a request for further evidence.

® The application’s next action depends on which of the three cases applies.

* In the first case, the application verifies that it is appropriate to generate the
reguested evidence and, if so, generates that evidence using
NRCredentials::generate token.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[391]

[392]

[393]

[394]

[395]

* In the second case, the application retrieves the data associated with the evidence
if it is outside the token, and verifies the evidence using
NRCredentials::verify_evidence, presenting the token alone or the concatenation
of the token and the data.

* In the last case, the application verifies the received evidence by first calling
NRCredentials::verify_evidence, and then generating evidence if appropriate, as
in the first case.

® |f the application receives a token that contains valid evidence, and wishes to store
it for later use, it needs to make sure that it holds all the necessary information. It
may need to call NRCredentials::form_complete_evidence in order to get the
complete evidence needed when this could not be provided using the verify
operation.

® When the application has generated evidence as the result of a request from the
originator of the message, the application must send it to the various recipients as
indicated in the NR token received.

Using Non-repudiation Servicesfor Adjudication

Adjudication applications use the NRCredentials::verify_evidence operation, which
must return complete evidence to settle disputes.

Administrative Model

The administrative model described here is concerned with administering security
policies.

® Administration of security environment domains and security technology domains
may be implementation specific, so it is not covered here. This means
administrating security technology specific objects is out of the scope of this
specification.

® Explicit management of nonsecurity aspects of domains is not covered.
Administrative activities covered here are:

® Creating objects in a secure environment subject to the security policies
® Finding the domain managers that apply to this object.

® Finding the policies for which these domain managers are responsible.

® Setting security policy details for these policy objects.

® Specifying which rights give access to which operations in support of access
policies.

The model used here is not specific to security, though the specific policies described
are security policies.

Security Policies
Security policies may affect the security enforced:

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-75

15

[396]

[397]

15-76

By applications. In general, enforcing policy within applications is an application
concern, so it is not covered by this specification. However, where the application
uses underlying security services, it will be subject to their policies.

By the ORB Security Services during object invocation (the main focus of this
specification).

In other security object services, particularly authentication and audit.

In any underlying security services. (In general, this is not covered by this
specification, as these security services are often security technology specific.)

This specification defines the following security policy types:

Invocation access policy
The object that implements the access control policy for invocations of objects in
this domain.

Invocation audit policy
This controls which types of events during object invocation are audited, and the
criteria controlling auditing of these events.

Secure invocation policy

This specifies security policies associated with security associations and message

protection. For example, it specifies:

» Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

 Quality of protection of messages (integrity and confidentiality).

There may be separate invocation policies for applications acting as client and those
acting as target objects in this domain. This applies to access, audit, and secure
invocation policies. There may also be separate policies for different types of objects
in the domain.

Invocation delegation policy

This controls whether objects of the specified type in this domain, when acting as
an intermediate in a chain, by default delegate the received credentials, use their
own credentials, or pass both.

Application access policy

This policy type can be used by applications to control whether application
functions are permitted. Unlike invocation policies, it does not have to be managed
via the domain structure, but may be managed by the application itself.

Application audit policy
This policy type can be used by applications to control which types of application
events should be audited under what circumstances.

Non-repudiation policy
Where non-repudiation is supported, a non-repudiation policy has the rules for
generation and verification of evidence.

Construction policy
This controls whether a new domain is created when an object of a specific type is
created.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[398]

[399]

[400]

[401]

[402]

[403]

[404]

Domainsat Object Creation

Any object that is accessible through an ORB must have an object reference created
for it. Thisis often done as a part of the procedure for creating the object by a factory
object. When a new object reference is created in a secure environment, the ORB
implicitly associates the object reference, and hence the associated object, with the
following elements forming its environment.

® One or more Security Policy Domains, defining all the policies to which the object
is subject.

® The Security Technology Domains, characterizing the particular variants of security
mechanisms available in the ORB.

® Particular Security Environment Domains where relevant.

The application code involved in the creation of an object, and its reference may not
need to be aware of security to protect the objects it creates, if the details are
encapsulated in a Factory object. Automatically making an object reference and hence
the associated object a member of policy domains on creation ensures that mandatory
controls of enclosing domains are not bypassed.

The ORB will establish these associations when the creator of the object calls
PortableServer::POA::create reference or

PortableServer::POA::create referece with_id (see the Portable Object Adaptor
chapter of the Common Object Request Broker: Architecture and Specification) or an
equivalent. Some or al of these associations may subsequently be explicitly referenced
and modified by administrative or application activity, which might be specifically
security-related but could also occur as a side-effect of some other activity, such as
moving an object to another host machine.

In some cases, when a new object reference is created, a new domain is also needed.
For example, in a banking system, there may be a domain for each bank branch, which
provides policies for bank accounts at that branch. Therefore when a bank branch is
created, a new domain is needed. As for a newly created object’s domain membership,
if the application code creating the object and the object reference to it isto be
unaware of security, the domain manager must be created transparently to the
application. A construction policy specifies whether new objects reference of this type
in this domain require a new domain.

This construction policy is enforced at the same time as the domain membership, i.e.
by POA::create reference* or equivalent. For details, see the Portable Object Adaptor
chapter of the Common Object Request Broker: Architecture and Specification.

Other Domain and Policy Administration

Once an object reference has been created as a member of a policy domain, it may be
moved to other domains using the appropriate domain management facilities (not
specified in this chapter).

Once a domain manager has been created, new security policy objects can be
associated with it using the appropriate domain management facilities. These security
policy objects are administered as defined in this specification.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-77

15

[405]

[406]

[407]

[408]

[409]

[410]

15-78

The following diagram shows the operations needed by an administrative application
to manage security policies.

Application
Object

get_domain_managers set_policy_option

get_domain_managers get_domain_policy(policy type)

Object

Palic
Reference y

Object

Figure 15-46 Managing Security Policies

Finding Domain Managers

An application can invoke the get_domain_manager s operation on an object reference
to obtain a list of the immediately enclosing domain managers for that object (i.e., the
object associated with the object reference). If these do not have the type of policy
required, a call can be made to get_domain_managers on one of these domain
managers to find its immediately enclosing domains.

Finding thePolicies

Having found a domain manager, the administrative application can now find the
security policies associated with that domain by calling get_domain_policy on the
domain manager specifying the type of policy it wants (e.g., client secure invocation
policy, application audit policy). This returns the Policy object needed to administer
the policy associated with this domain. Each Policy object supports the operations
required to administer that policy.

In this specification, no facilities are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include default
rules for this. (Definition of such rules is a potential candidate for future security
specifications. See Appendix F, “Facilities Not in This Specification” on page
15-398.)

If the policy that applies to the domain manager’s own interface is required (rather
than the one for the objects in the domain), then get_policy (rather than
get_domain_poalicy) is used.

Setting Security Policy Details

Having found the required security Policy object, the application uses its interface to
set the policy.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[411]

[412]

[413]

[414]

[415]

[416]

[417]

[418]

The operations available through the interface depend on the type of policy. For
example, the delegation policy only requires a delegation mode to be set to specify
delegation mode used when the object acts as an intermediate in a chain of object
invocations, whereas an access policy will need to have an operation that makes it
possible to specify who can access the objects.

Administrative interfaces are defined in Section 15.6, “Administrator’s Interfaces,” on
page 15-140, for the standard policy types, which all ORBs supporting security
functionality Level 2 support.

Different administration may be needed if standard policies are replaced by different
policies. A supplier providing another policy may therefore have to specify its
administrative interfaces.

Specifying Use of Rightsfor Operation Access

The access policy is used to decide whether a user with specified privileges has
specified rights. A specific right may permit access to exactly one operation. More
often, the right permits access to a set of operations.

A RequiredRights object specifies which rights are required to use which operations
of an interface. The administrator can set_required_rights on this object.

TheModel as Seen by the Objects I mplementing Security

Security is provided for security-unaware applications by implementation level
security objects, which are not directly accessible to applications. These same
implementation objects are also used to support the application-visible security objects
and interfaces described in “The Model as Seen by Applications” on page 15-57 and
“Administrative Model” on page 15-75.

There are two places where security is provided for applications, which are unaware of
security. These are:

1. On object invocation when invocation time policies are automatically enforced.

2. On object creation, when an object automatically becomes a member of a domain,
and therefore subject to the domain’s policies.

I mplementor’s View of Secure I nvocations

Figure 15-47 on page 15-80 shows the implementation objects and services used to
support secure invocations.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-79

15

[419]

[420]

[421]

15-80

Client v
Policies

request -

target obyj ref

" Target
Policies

Binding Binding —

ORB Security
(and other)
Services

ORB Security‘

(and other) ’,

Services

Security
Services

Services

I ORB Core

Figure 15-47 Securing Invocations

ORB Security Services

ORB Security Services are interposed in the path between the client and target object
to handle the security of the object invocation. They may be interspersed with other
ORB services, though where message protection is used, this will be the last ORB
service at the client side, as the request cannot be changed after this.

The ORB services use the policy objects to find which policies to apply to the client
and target object, and hence the invocation. The ORB and ORB Services establish the
binding between client and target object as defined in ORB Services, under

Section 15.4.2, “ Structural Model,” on page 15-49. The ORB Security Services call on
the security services to provide the required security.

Security Policy
At the client, the security policies associated with it are accessed by the ORB Security
Services using the Su+ent gel—petey-

operation specifying the type of policy required. At the client, the invocation policies
that will be used for a specific invocation through a specific object reference can be

Security Servicevl.7 15 December 1999 [DRAFT]

15

inspected using the get_policy operation on that object reference. At the target,
Seeat getpeley isused in a similar way to
obtain the policy associated with the target object.

ORB manipulate policy
Security

Service

get_policy(type of policy)

Policy
Object
ORB manipulate policy
Security
Service
get_security_policy(type of policy)
Policy
Security Object
Manager
Figure 15-48 get—peliey- Operation
[422] Once the policy object has been obtained, the ORB Service uses it to enforce policy.

The operations used to enforce the policy depend on the type of policy. In some cases,
such as secure invocation or delegation, the ORB Service invokes a get_ operation of
the appropriate Policy object (e.g., Securel nvocationPolicy::get_association_options,
DelegationPolicy::get_delegation_mode) specifying the particular policy options
required (e.g., whether confidentiality is required, and the delegation mode,
respectively). It then uses this information to enforce the policy, for example, pass the
required policy options to the Vault to enforce.

[423] Decision objects corresponding to certain policy objects include rules, which enforce
the policy. For example, an access decision object corresponding to the access policy
object has the access allowed operation which responds with a yes or no.

Specific ORB Security Services and Replaceable Security Services

[424] The specific ORB Security Services and security services included in the CORBA
security object model are shown in Figure 15-49 on page 15-82.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-81

15

[425]

[426]

[427]

[428]

15-82

reply Security Services
request

Access | per request
Control

to set up -
security Security ||
asshciation Context

Secure

Access
Control

Secure
Invocation create create Invocation
per message / Security ¢ Vault —
to protect Context
message
x _ =
I 7\ ORB Core /4 I
=
[T

ORB Security Services

Figure 15-49 ORB Security Services

Two ORB Security Services are shown:

1. The access control service, which is responsible for checking if this operation is
permitted and enforcing the invocation audit policy for some event types.

2. The secure invocation service. On the client’s initial use of this object, it may need
to establish a security association between client and target object. It also protects
the application requests and replies between client and target object.

The security services they use are discussed next.

Access Policy

An Access Decision object is used to determine if a given operation on a specific
target object is permitted. It is obtained by the ORB service using the access decision
attribute of the Current object. Since the Access Decision objects are locality
constrained, of necessity the access decision objects at the client and target are
distinct.

The ORB service invokes the access allowed operation on the Access Decision object
specifying the operation required, the principal credentials to be used for deciding if
this access is allowed, etc. This is independent of the type of access control policy,
which may be discretionary using ACLs or capabilities, mandatory labels usage, etc.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[429]

[430]

[431]

[432]

[433]

[434]

The Access Decision object uses the access policy to decide what rights the principal
has by invoking the get_effective rights operations on the appropriate Access Policy
object.

If the access policies use rights (rather than directly identifying that this operation is
permitted), the Access Decision object now invokes get_required_rights on the
RequiredRights object to find what rights are needed for this operation. It compares
these rights with the effective rights granted by the policy objects, and if required
rights have been granted, it grants access. This model could be extended in the future
to handle overlapping access policy domains as described in Appendix Section
Appendix F, “Facilities Not in This Specification,” on page 15-398.

Required
Access Rights
Policy

get_effective rights™ get_required_rights

access _allowed

Figure 15-50 Access Decision Object

Vault

The Vault object is responsible for establishing the security association between client
and target. It isinvoked by the Secure Invocation ORB Service at the client and at the
target (using init_security_context and accept_security_context). The Vault creates
the security context objects, which are used for any further security operations for this
association.

Authentication of users (and some other principals) is done explicitly using the
authenticate operation described in Section 15.5.3, “Authentication of Principals,” on
page 15-90. Authentication of an intermediate object in a chain (or the principal
representing the object) may be done automatically by the Vault when an intermediate
object invokes another object.

The Vault, like the security context objects it creates, is invisible to all applications.

Security Context

For each security association, a pair of Security Context objects (one associated with
the client, and one with the target) provide the security context information.
Establishing the security contexts may require several exchanges of messages
containing security information, for example, to handle mutual authentication or
negotiation of security mechanisms.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-83

15

[435]

[436]

[437]

[438]

[439]

15-84

Security Context objects maintain the state of the association, such as the credentials
used, the target’s security name, and the session key. The is valid and refresh
operations are supported to check the validity of the context and refresh it if possible.

Security Context objects provide operations for protecting messages for integrity and
confidentiality such as protect_message, reclaim_message.

They aso have the received_credentials attribute, which is made available via the
Current object.

A security context can persist for many interactions and may be shared when a client
invokes several target objects in the same trusted identity domain. Although neither the
client nor target is aware of an “association,” it is an important optimizing concept for
the efficient provision of security services.

Relationship between | mplementation Objectsfor Associations

There is not always a one-for-one relationship between client-target object pairs and
security contexts. For example, if a client uses different privileges for different
invocations on that object, this will result in separate security contexts. Also, a security
context may be shared between this client’s calls on more than one target object. This
is normally the case if the target objects share a security name, as shown in

Figure 15-51. Note that the Vault decides whether to use the same or a different
security context based on the target security name (which may be the name of an
object or trusted identity domain).

Security Servicevl.7 15 December 1999 [DRAFT]

15

Object sharing
security name S1

obj ref
forT1

obj ref obj ref
for T2 for T3

Current

Current

Securit
context for

C-s1

context for
C-T3

context for
C-T3

T3 messages
T2 messages

T1 messages

[440]

[441]

[442]

Figure 15-51 Target Objects Sharing Security Names

I mplementor’s View of Secure Object Creation

When an object is created in a secure environment, it is associated with Security
Policy, Environment, and Technology domains as described in “ Administrative Model”
on page 15-75.

The way it is associated with Environment and Technology domains is ORB
implementation-specific, and therefore not described here.

For policy domains, the construction policy of the application or factory creating the
object is used as shown in Figure 15-52 on page 15-86.

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-85

15

[443]

[444]

[445]

[446]

[447]

15-86

Application

BOA::create or equivalent

use policy

ORB

get_policy(construction policy) construction

policy
application’s object
own object
reference

Figure 15-52 Object Created by Application or Factory

The application (which may be a generic factory) object calls POA::create reference
or equivalent to create the new object reference. The ORB obtains the construction
policy associated with the object reference to be created. If the application that is
attempting to create the object reference is itself a CORBA object, then the ORB
attempts to obtain the construction policy associated with it. If the ORB is unable to
obtain a construction policy for the object reference to be created, it uses a default
construction policy, which does not create a new domain.

The construction policy controls whether, in addition to creating the specified new
object reference, the ORB must also create a new domain. If a new domain is needed,
the ORB creates both the requested object reference and a domain manager object.

If anew domain is not needed and the application is itself not an object and hence has
no domain associated with it, the ORB uses a default domain to place the newly
created object reference. In all cases a reference to the domain manager associated
with the newly created object reference can be obtained by calling
get_domain_managers on the newly created object’s reference (See the ORB
Interface chapter of the Common Object Request Broker: Architecture and
Specification).

If anew domain is created, the policies initially applicable to it are the policies of the
enclosing domain, or an ORB specific default set of policies in the case that the object
reference was created in a situation where there is no enclosing domain (e.g., by an
application that is itself not a CORBA object and hence has no domain associated with
it).

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management operations. Please note:
these operations do not form a part of this specification.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[448]

[449]

[450]

[451]

Summary of Objectsin the Model

The previous sections have described the various security-related objects, which are
available to applications, administrators, and implementors.

Figure 15-53 shows the relationship between the main objects visible in different
views for three types of security functionality.

1. Authentication of principals and security associations (which includes
authentication between clients and targets) and message protection.

2. Authorization and access control (i.e., the principal being authorized to have
privileges or capabilities and control of access to objects).

3. Accountability -- auditing of security-related events and using non-repudiation to
generate and check evidence of actions.

authentication and authorization and

accountability

security association access control
application Princioal - :
visible objects rncip Current Application Audit Audit
Authenticator Access Decision Decision || Channel
| |
Credentials Non-repudiation

Credentials

implementation
ORB services

Secure Invocation Access Control

implementation
security objects

Audit Audit

Security Decision || Channel

Access Decision
Context

Vault

administration
objects

Access Policies Inx%%e;ttl o ﬁﬁcpjltn

Poli i
Delegation Policy oy Po‘hcy

Secure Invocation Policies

Domain Manager

Figure 15-53 Relationship Between Main Objects

Credentials are visible to the application after authentication, for setting or obtaining
privileges and capabilities, for access control, and are available to ORB service
implementors. Only the first of these usages is shown.

Palicy objects have management operations to allow policies to be maintained. These
operations depend on the type of policy. For example, management of a mandatory

access control policy using labels is different from management of an ACL. However,
at run-time, an access decision object is used, which has a standard “check if accessis

Security Service: v1.7 Security Architecture 3 December 1999 [DRAFT] 15-87

15

allowed” operation, whatever the access control policy used. The access policy object
has the management operations, whereas the access decision object has the runtime
decision operations.

[452] The diagram does not show:
® Application objects (client, target object, target object reference at the client).
® The ORB core (though the security ORB services it calls are shown).

® The construction policy object.
15.5 Application Developer’ sinterfaces

15.5.1 Introduction

[453] This section defines the security interfaces used by the application developer who
implements the business logic of the application. For an overview of how these
interfaces are used, see “Application Developer View” on page 15-46.

[454] Please note that applications may be completely unaware of security, and therefore not
need to use any of these interfaces. In general, applications may have different levels
of security awareness. For example:

® Applications unaware of security, so that an application object, which has not been
designed with security in mind, can participate in a secure object system and be
subject to its controls such as:

® Protection default quality of protection on object invocations.
 Control of who can perform which operations on which objects.
 Auditing of object invocations.

® Applications performing security-relevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

® Applications wanting some control of the security of its requests on other objects,
for example, the level of integrity protection of the request in transit.

® Applications that are more sophisticated in how they want to control their
distributed operations, for example, control whether their credentials can be
delegated.

® Applications using more specialist security facilities such as non-repudiation.

[455] Security operations use the standard CORBA exceptions. For example, any invocation
that fails because the security infrastructure does not permit it, will raise the standard
CORBA::NO_PERMISSION exception. A security operation that fails because the
feature requested is not supported in this implementation will raise a
CORBA::NO_IMPLEMENT exception. Any parameter that has inappropriate values
should be flagged by raising the CORBA::BAD_PARAM exception. No security-
specific exceptions are specified.

15-88 Security Servicevl.7 15 December 1999 [DRAFT]

15

[456]

[457]

[458]

[459]

[460]

[461]

[462]

[463]

[464]

Security Functionality Packages

Two security functionality packages and one optional security functionality package
are defined in this specification. In addition, the Security Ready functionality packages
are also described in this and the two following sections.

Security Functionality Level 1 Package

Security functionality Package 1 provides an entry level of security functionality that
applies to all applications running under a secure ORB, whether aware of security or
not. This includes security of invocations between client and target object, message
protection, some delegation, access control, and audit.

The security functionality is in general specified by administering the security policies
for the objects, and is mainly transparent to applications.

Security Functionality Level 1 Package includes operations for applications as follows:
Current::get_attributes allows an application to obtain the privileges and other
attributes of the principal on whose behalf it is operating. It can then use these to
control access to its own functions and data (see Section 15.5.4, “ The Credentials
Object,” on page 15-95, and Section 15.5.12, “Access Control,” on page 15-126).

Security Functionality Level 2 Package

This security functionality level provides further security functionality such as more
delegation options.

It also allows an application aware of security to have more control of the enforcement
of this security. Most of the interfaces specified in this section are only available as
part of this functionality level. Note that although implementations must support all
Level 2 interfaces in order to conform to Security Functionality Level 2, different
implementations of these interfaces may support different semantic extensions, while
maintaining the same core semantics; some implementations will therefore be capable
of enforcing a wider variety of policies than others.

Optional Functionality Package

The only specified optional facility specified here is non-repudiation. The interfaces
for this are specified in Section 15.5.14, “ Non-repudiation,” on page 15-130.

It is possible to add other security policies to this specification, for example, extra
access or delegation policies, but these are not part of this specification.

Introduction to the Interfaces

The interfaces specified here, as in other sections, are designed to allow a choice of
security policies and mechanisms. Where possible, they are based on international
standard interfaces. Several of the operations in the Credentials interface are based on
those of GSS-API.

Security Service: v1.7 Application Developer’sinterfaces 3 December 1999 [DRAFT] 15-89

15

[465]

[466]

[467]

[468]

[469]

[470]

15-90

Data Types

Many of the security data types used by applications are also used for implementation
interfaces; therefore, these are defined in a separate module called Security. See
Appendix Section A.2, “ General Security Data Module,” on page 15-315 for the details
of the data types used by the interfaces.

Some data types, such as security attributes and audit events, have an extensible set of
values, so the user can add values as required to meet user-specific security policies. In
these cases, a family is identified, and then a set of types or values for this family.
Family identifiers 0-7 are reserved for OMG-defined families, and therefore standard
values. More details of these families and associated data types are given in Appendix
Section A.11, “ Values for Standard Data Types’ on page 15-348.

In the interface specifications in the rest of this section, data types defined in module
Security are included without the qualifying Security:: for ease of readability. The full
definitions are included in Appendices A and B.

15.5.2 Finding Security Features

Description of Facilities

An application can find out what security facilities this implementation supports, for
example, which security functionality level and options it supports. It can also find out
what security technology is used to provide this implementation.

The CORBA::ORB::get_service _information operation is used to determine what
security features are supported by this ORB (see the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specification). To request
information about Security service the CORBA:: ServiceType constant value,
CORBA::Security should be used. To see what the definition of various service
options relevant to security are see the constant definitions of type
CORBA::SecurityOptionsin the IDL Security module in Appendix Section A.2,
“ General Security Data Module” on page 15-315.

15.5.3 Authentication of Principals

Description of Facilities

A principal must establish its credentials before it can invoke an object securely. For
many clients, there are default credentials, created when the user logs on. This may be
performed prior to using any object system client. These default credentials are
automatically used on object invocation without the client having to take specific
action. Even if user authentication is executed within the object system, it should
normally be done by a user sponsor/login client, which is separate from the business
application client, so that business applications can remain unaware of security.

Security Servicevl.7 15 December 1999 [DRAFT]

15

[471]

[472]

[473]

[474]

[475]

[476]

[477]

[478]

In most cases, principals must be authenticated to establish their credentials. However,
some services accept requests from unauthenticated users. In this case, if the principal
has no credentials at the time the request is made, unauthenticated credentials are
created automatically for it.

If the user (or other principal) requires authentication and has not been authenticated
prior to calling the object system, the (login) client must invoke the Principal
Authenticator object to authenticate, and optionally select attributes for, the principal
for this session. This creates the required Credentials object and makes it available as
the default credentials for this client. Its object reference is also returned so it can be
used for other operations on the Credentials. If the object system supports non-
repudiation, the credentials returned can be used for non-repudiation operations as
specified in “ Non-repudiation” on page 15-130.

Authentication of principals may require more than one step, for example, when a
challenge/response or other multistep authentication method is used. In this case, the
authentication service will return information to the caller, which may be used in
further interactions with the user before continuing the authentication. So there are
both authenticate and continue_authentication operations of the Principal
Authenticator object.

There is no need for an application to explicitly authenticate itself to act as an
initiating principal prior to invoking other objects, as this will be performed
automatically if needed. However, it does need to be performed explicitly if the object
wants to specify particular attributes.

The Principal Authenticator object creates a Credentials object and places it on the
Current object’s own_credentials list only after authenticate or
continue_authentication returns a value of ‘SecAuthSuccess.” The Principal
Authenticator always places new credentials at the beginning of the own_credentials
list. The application may remove Credentials objects from the own_credentials list
with the Surrent ::remove_own_credentials operation.

The Principal Authenticator object is a locality constrained object.

The SecurityLevel 2:: Principal Authenticator Interface

This section describes the Principal Authenticator interface that has following
operations.

get_supported authen_methods

This operation returns the authentication methods that are valid for a particular
mechanism that the Vault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.

Security Service: v1.7 Application Developer’sinterfaces 3 December 1999 [DRAFT] 15-91

15

[479]

[480]

15-92

AuthenticationMethodList get_supported_authen_methods(

in MechanismType mechanism
);
Parameters
mechanism Contains the mechanism for which the authentication methods
are valid.
Return Value

The list of authentication methods supported by this Principal Authenticator object for
the particular mechanism.

authenticate

This operation is called to authenticate the principal and optionally request privilege
attributes that the principal requires during its capsule specific session with the system.
It creates a capsule specific Credentials object including the required attributes and is
placed on the Surrert- object’s own_credentials list according to
the credential’ s mechanism type.

AuthenticationStatus authenticate(

in AuthenticationMethod method,

in MechanismType mechanism;

in SecurityName security_name,

in Dpasie- auth_data,

in AttributeList privileges,

out Credentials creds,

out Deagde continuation_data,
out Deagde auth_specific_data

Security Servicevl.7 15 December 1999 [DRAFT]

15

Parameters

method
mechanism
security_name

auth_data

privileges
creds

auth_specific_data

continuation_data

The identifier of the authentication method used
The security mechanism with which to create the Credentials.
The principa’s identification information (e.g., login name).

The principal’s authentication information such as password or
long term key.

The privilege attributes requested.

This parameter contains the locality constrained object
reference of the newly created Credentials object. It is usable
and placed on the Current object’sown_credentials list only if
the return value is ‘ SecAuthSuccess.’

Information specific to the particular authentication service used

If the return parameter from the authenticate operation is
‘SecAuthContinue,” then this parameter contains challenge
information for authentication continuation.

Return Value
[481] The return parameter is used to specify the result of the operation.
‘SecAuthSuccess' Indicates that the object reference of the newly created

‘SecAuthFailure’

‘SecAuthContinue

‘SecAuthExpired’

initialized credentials object is available in the creds
parameter.

Indicates that authentication was in some way inconsistent
or erroneous, and therefore credentials have not been
created.

Indicates that the authentication procedure uses a
challenge/response mechanism. The creds contains the
object reference of a partially initialized Credentials
object. The continuation_data indicates details of the
challenge.

Indicates that the authentication data contained some
information, the validity of which had expired (e.g., expired
password). Credentials have therefore not been created.

continue_authentication

[482] This operation continues the authentication process for authentication procedures that
cannot complete in a single operation. An example of this continuation is a
challenge/response type of authentication procedure.

Security Service: v1.7 Application Developer’sInterfaces

3 December 1999 [DRAFT] 15-93

15

AuthenticationStatus continue_authentication(

in Saagte- response_data,
in Credentials creds,
out Deagde continuation_data,
out Deagde auth_specific_data
);
Parameters
response_data The response data to the challenge.
creds Reference of the partially initialized Credentials object. The

Credentials object isfully initialized only when return parameter
is ‘ SecAuthSuccess.’

continuation_data If the return parameter from the continue_authentication
operation is ‘ SecAuthContinue,” then this parameter contains
challenge information for authentication continuation.

auth_specific data Information specific to the particular authentication service

used.
Return Value
[483] The return parameter is used to specify the result of the operation.

‘SecAuthSuccess' Indicates that the Credentials object whose reference was
identified by the creds parameter is now fully initialized.

‘SecAuthFailure’ Indicates that the response data was in some way
inconsistent or erroneous, and that therefore credentials
have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure reguires a
further challenge/response. The Credentials object whose
reference was identified in the creds parameter is still only
partially initialized. The continuation_data indicates
details of the next challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some

information whose validity had expired (e.g., expired
password). The Credentials object referred to by the creds
parameter is not valid.

Portability Implications

[484] The authenticate and continue_authentication operations allow different
authentication methods to be used. However, methods available are dependent on
availability of underlying authentication mechanisms. This specification does not
dictate that particular mechanisms should be used. However, use of some mechanisms,
(e.0., those involving hardware such as smart cards or finger print readers) may also
require use of device-specific objects so the client using such objects will not be

15-94 Security Servicevl.7 15 December 1999 [DRAFT]

15

[485]

[487]
[488]

[489]

portable to systems which do not support such devices. It is therefore recommended
that use of both the authenticate operations described here and any device-specific
ones be confined to a user sponsor or login client, or that such authentication is done
prior to calling the object system, where the credentials resulting from this can be used
in portable applications.

15.5.4 The Credentials Object

Description of Facilities

A Credentials object represents a particular principal’ s credential information specific
to the capsule. It includes information such as that principal’s privilege and identity
attributes, such as an audit id. (It also includes some security-sensitive data required
when this principal isinvolved in peer entity authentication. However, such datais not
visible to applications.)

The Credentials object is a locality constrained object.

An application may want to:

® Specify security invocation options to be used by default whenever these credentials
are used for object invocations.

* Modify the privilege and other attributes in the credentials, for example, specify a
new role or a capability. This can modify the current privileges in use, or the
application can make a copy of the Credentials object first, and then modify the
new copy.

® |nquire about the security attributes currently in the credentials, particularly the
privilege attributes.

® Check if the credentials are till valid or if they have timed out, and if so, refresh
them.

Credentials objects are created as the result of:
® Authentication (see “Authentication of Principals’ on page 15-90).
® Copying an existing Credentials object.

® Asking for a Credentials object via Current (see Section 15.5.9, “ Security
Operations on Current,” on page 15-116).

Security Service: v1.7 Application Developer’sinterfaces 3 December 1999 [DRAFT] 15-95

15

[490]

[491]

[492]

[493]

[494]

[495]

[496]

15-96

The way these credentials are made available for use in invocations is described in
Section 15.4, “ Security Architecture,” on page 15-44, and defined in detail in

Section 15.5.7, “ Operations on Object Reference,” on page 15-105, and Section 15.5.9,
“Security Operations on Current,” on page 15-116.

Credentials used for non-repudiation also support further facilities as described in
Section 15.5.14, “ Non-repudiation,” on page 15-130.

The SecurityLevel 2:: CredentialsInterface

The following operations are in the Credentials interface.

copy
This operation creates a new Credentials object, which is an exact duplicate (a “ deep

copy”) of the Credentials object which is the target of the invocation. The return value
is a reference to the newly created copy of the original Credentials object.

Credentials copy();

Parameters
None

Return Value
An object reference to a copy of the Credentials object, which was the target of the call.

destroy

This operation destroys the Credentials object that it is invoked on. In general, the
caller is always responsible for destroying its copy of the Credentials object after it is
done with it. When Credentials are used as “in” parameters the callee always makes a
copy if needed. Then onwards the callee is responsible for managing the life-style of
the copy that it makes. In case of Credentials objects that are returned as result, the
caller is responsible for destroying it. In case of “out” parameters, the callee is
responsible for creating it and the caller is responsible for destroying it. The caller is
responsible for providing thread safety for Credentials parameters that are passed as
“in” parameters. They must ensure that no other thread modifies the object until the
invoked operation is completed.

void destroy();

Parameters

None

Results
None. The Credentials object is destroyed.

Security Servicevl.7 15 December 1999 [DRAFT]

498

499

set_attributes
This operation is used to set the attributes for a Credentials object. The operation

set_attributesis used in conjunction with get_attributes to constrain the attributes
associated with a Credentials object.

Some attributes may be tightly bound to the Credentials object based on the
underlying mechanism. If the mechanism supports it, setting those attributes may cause
mechainsm specific communication with a credentialing party. If the operation fails
because the mechanism underlying the Credentials object does not support modifying
the attributes, a CORBA::BAD_OPERATION exception is raised.

boolean set—privitegesset_atiributes(

B —beelean foree—aerits
in AttributeList
requested—privitegesrequested _attributes,
out AttributeList actual—privilegesactual_attributes

);

Security Service: v1.7 Application Developer’sinterfaces 3 December 1999 [DRAFT] 15-97

15

Parameters

force_commit

requested privileges

actual_privileges

requested_attributes

actual_privileges

Return Value

TRUE

FALSE

get_attributes

If true, the attributes should be applied immediately;
otherwise, attribute acquisition may be deferred to when
required by the system

A set of (typed) privilege attribute values. One of these may
be a role name, which is an attribute set reference