
Security Service Specification

Version 1.7
March 2001

 paid up,
fied ver-
pyright in
g con-

ire use
 be

at are
r protect

 an
ent does

iable for
 profi
 Object

ze devel
 to indi-

-graphic,
hout
Copyright 1995 AT&T Global Information Solutions Company
Copyright 1995 Digital Equipment Corporation
Copyright 1995 Expersoft Corporation
Copyright 1995 Groupe Bull
Copyright 1995 Hewlett-Packard Company
Copyright 1995 IBM (in collaboration with Taligent, Inc.)
Copyright 1995 International Computers Limited
Copyright 2000 Object Management Group, Inc.
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom LImited
Copyright 1995 Novell, Inc.
Copyright 1995 Siemens Nixdorf Informationssysteme AG
Copyright 1995, 1997 SunSoft, Inc.
Copyright 1995 Tandem Computer Inc. (in collaboration with Odyssey Research Assoc., Inc.)
Copyright 1995 Tivoli Systems, Inc.
Copyright 1997 Visigenic Software, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the co
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo-
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be l
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss ofts,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authori-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means-
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--wit
permission of the copyright owner.

 in sub-
bject
B,

n is a

ers to
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
division (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG and O
Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, OR
CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Ope
trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
vii

1-1

1-2

-2
-2

-3
-3

1-4

1-8

-9

-10
-13

2-1

2-1
-1

-3
2-4

-7
11

-13
18

-21
27

28
Preface .

1. Service Description .

1.1 Introduction to Security .

1.1.1 Why Security? . 1
1.1.2 What Is Security? . 1

1.1.3 Threats in a Distributed Object System 1
1.1.4 Summary of Key Security Features 1

1.1.5 Goals .

1.2 Introduction to the Specification .

1.2.1 Normative and Non-normative Material 1
1.2.2 CORBA Security and Secure Interoperability

Feature Packages . 1
1.2.3 Feature Packages and Modules 1

2. Interfaces .

2.1 Security Reference Model .
2.1.1 Definition of a Security Reference Model 2

2.1.2 Principals and Their Security Attributes 2
2.1.3 Secure Object Invocations

2.1.4 Access Control Model 2
2.1.5 Auditing . 2-

2.1.6 Delegation . 2
2.1.7 Non-repudiation . 2-

2.1.8 Domains . 2
2.1.9 Security Management and Administration 2-

2.1.10 Implementing the Model. 2-
Security Service, v1.7 March 2001 i

Contents

-28
9

32
38

39
41

-71

71
-73

73
-77

-84
-85

-86
-93

-97
99

02
02

05
06

115

116
17

17
118

29
34

39

142

42

48
171

-1

3-1
-1

-2
3-7
2.2 Security Architecture . 2
2.2.1 Different Users’ View of the Security Model . . 2-2

2.2.2 Structural Model. 2-
2.2.3 Security Technology . 2-

2.2.4 Basic Protection and Communications 2-
2.2.5 Security Object Models 2-

2.3 Application Developer’s Interfaces 2

2.3.1 Introduction . 2-
2.3.2 Finding Security Features 2

2.3.3 Authentication of Principals 2-
2.3.4 The Credentials Object 2

2.3.5 The ReceivedCredentials Object. 2
2.3.6 The TargetCredentials Object 2

2.3.7 Operations on Object Reference 2
2.3.8 Operations on Security Manager 2

2.3.9 Security Operations on Current 2
2.3.10 Security Audit . 2-

2.3.11 Administering Security Policy 2-1
2.3.12 Access Control . 2-1

2.3.13 Delegation Facilities . 2-1
2.3.14 Non-repudiation . 2-1

2.4 Administrator’s Interfaces . 2-

2.4.1 Concepts . 2-
2.4.2 Domain Management . 2-1

2.4.3 Security Policies Introduction 2-1
2.4.4 Access Policies . 2-

2.4.5 Audit Policies . 2-1
2.4.6 Secure Invocation and Delegation Policies 2-1

2.4.7 Non-repudiation Policy Management 2-1

2.5 Implementor’s Security Interfaces 2-

2.5.1 Security Interceptors. 2-1
2.5.2 Implementation-Level Security

Object Interfaces . 2-1
2.5.3 Replaceable Security Services 2-

3. Protocols and Mechanisms . 3

3.1 Security Interoperability Protocols.
3.1.1 Introduction . 3

3.1.2 Interoperability Model 3
3.1.3 Protocol Enhancements
ii Security Service, v1.7 March 2001

Contents

-7

13
13

-14
5

15
-16

21

23
26

30

2

33

-34
35

-36
42

48

-55
-55

-56
57

57
-59

9

59

-61

-63
63

64
64

-65

66
66
3.1.4 CORBA Interoperable Object Reference
 with Security . 3

3.1.5 Common Secure Interoperability Levels 3-
3.1.6 Key Distribution Types 3-

3.1.7 Security Mechanisms Hosted on SECIOP 3
3.1.8 Security Mechanisms Hosted Directly on IIOP 3-1

3.1.9 Choices of Protocols, Cryptographic Profiles
and Key Technologies. 3-

3.1.10 Common Secure Interoperability Requirements 3

3.1.11 Relation to CORBA Security Facilities
and Interfaces . 3-

3.1.12 Security Functionality 3-
3.1.13 Model for Use and Contents of Credentials . . . 3-

3.1.14 CORBA Interfaces . 3-
3.1.15 Support for CORBA Security Facilities

and Extensibility. 3-3

3.1.16 Security Replaceability for ORB
Security Implementors 3-

3.2 Secure Inter-ORB Protocol (SECIOP) 3
3.2.1 Architectural Assumptions 3-

3.2.2 SECIOP Sequencing Layer. 3
3.2.3 SECIOP Context Management Layer 3-

3.2.4 SECIOP Context Management Finite State
Machine Tables. 3-

3.3 The SECIOP Hosted CSI Protocols 3
3.3.1 IOR. 3

3.3.2 Mechanism Tags . 3
3.3.3 Association Options . 3-

3.3.4 Cryptographic Profiles 3-
3.3.5 Security Name . 3

3.3.6 Security Administration Domains 3-5
3.3.7 Mapping of Common Elements to the

SECIOP Protocol . 3-

3.3.8 CSI Protocols . 3

3.4 SPKM Protocol . 3
3.4.1 Cryptographic Profiles 3-

3.4.2 IOR Encoding. 3-
3.4.3 Using SPKM for SECIOP 3-

3.5 GSS Kerberos Protocol . 3

3.5.1 Cryptographic Profiles 3-
3.5.2 Mandatory and Optional Cryptographic Profiles 3-
Security Service, v1.7 March 2001 iii

Contents

66
-67

-68

-69
69

-70
-70

71
2

74
74

75
75

-76
77

78
-81

-82
-83

-85
86

8
89

-89
-89

-90
91

-95
97

97
98

99
0

05

06

08

08
08

08
3.5.3 IOR Encoding. 3-
3.5.4 SECIOP Tokens . 3

3.6 CSI-ECMA Protocol . 3

3.6.1 Concepts . 3
3.6.2 Security Attributes . 3-

3.6.3 Target Access Enforcement Function 3
3.6.4 Basic and Dialogue Keys 3

3.6.5 Key Distribution Schemes 3-
3.6.6 Cryptographic Algorithms and Profiles 3-7

3.6.7 PAC Protection and Delegation - Outline 3-
3.6.8 PPID Method . 3-

3.6.9 PV/CV Delegation Method. 3-
3.6.10 Mechanism Identifiers and IOR Encoding 3-

3.6.11 Security Names. 3
3.6.12 SECIOP Tokens When Using CSI-ECMA 3-

3.6.13 Initial Context Token . 3-
3.6.14 TargetResultToken . 3

3.6.15 ErrorToken . 3
3.6.16 Per Message Tokens . 3

3.6.17 ContextDeleteToken . 3
3.6.18 Security Attributes . 3-

3.6.19 Privilege and Miscellaneous Attribute
Definitions . 3-8

3.6.20 Qualifier Attributes. 3-

3.6.21 Target Names . 3
3.6.22 PAC Format . 3

3.6.23 Common Contents fields 3
3.6.24 Specific Certificate Contents for PACs 3-

3.6.25 Check Value . 3
3.6.26 Basic Key Distribution 3-

3.6.27 Keying Information Syntax 3-
3.6.28 Summary of Key Distribution Schemes 3-

3.6.29 CSI-ECMA Secret Key Mechanism 3-
3.6.30 CSI-ECMA Hybrid Mechanism 3-10

3.6.31 CSI-ECMA Public Mechanism. 3-1

3.6.32 Dialogue Key Block . 3-1

3.7 Integrating SSL with CORBA Security 3-1

3.7.1 Introduction . 3-1
3.7.2 Cryptographic Profiles 3-1

3.7.3 IOR Encoding. 3-1
iv Security Service, v1.7 March 2001

Contents

09

09
09

09
14

-1

1

3.7.4 Relation to SECIOP . 3-1

3.8 DCE-CIOP with Security . 3-1
3.8.1 Goals of Secure DCE-CIOP 3-1

3.8.2 Secure DCE-CIOP Overview 3-1
3.8.3 DCE RPC Security Services 3-1

Appendix A - References. A

Appendix B - Consolidated OMG IDL B-1

Appendix C - Relationship to OtherServices. C-1

Appendix D - Conformance Details and Statement D-1

Appendix E - Guidelines for a Trustworthy System E-1

Appendix F - Facilities Not in This Specification F-1

Appendix G - Interoperability Guidelines G-1

Glossary .
Security Service, v1.7 March 2001 v

Contents
vi Security Service, v1.7 March 2001

Preface
d by
sers.

nol-
of
e-

 Con-
plica-

tion

ent
r of

ca-

c
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows appli
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specifi
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
Security Service, V1.7 March 2001 vii

w-

r
ct
is
up-
pro-
dels.

eir cor-

enable
ing
elop-

of
oth
ata

ten-
rm,
eta-

s the
chitec-
dures

jects.
t.
ent.
loper’s
 has

a,
OMG Documents

In addition to the CORBA Core Specification, OMG’s document set includes the follo
ing publications.

OMG Modeling

The Unified Modeling Language (UML) Specification defines a graphical language fo
visualizing, specifying, constructing, and documenting the artifacts of distributed obje
systems. The specification includes the formal definition of a common Object Analys
and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL facility that s
ports model interchange between OA&D tools and metadata repositories. The UML
vides the foundation for specifying and sharing CORBA-based distributed object mo

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and th
responding models. The MOF provides the infrastructure for implementing CORBA-
based design and reuse repositories. The MOF specifies precise mapping rules that
the CORBA interfaces for metamodels to be automatically generated, thus encourag
consistency in manipulating metadata in all phases of the distributed application dev
ment cycle.

The OMG XML Metadata Interchange (XMI) Specification supports the interchange
any kind of metadata that can be expressed using the MOF specification, including b
model and metamodel information. The specification supports the encoding of metad
consisting of both complete models and model fragments, as well as tool-specific ex
sion metadata. XMI has optional support for interchange of metadata in differential fo
and for metadata interchange with tools that have incomplete understanding of the m
data.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describe
conceptual models upon which OMG standards are based. It defines the umbrella ar
ture for the OMG standards. It also provides information about the policies and proce
of OMG, such as how standards are proposed, evaluated, and accepted.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA ob
The IDL definition is the contract between the implementor of an object and the clien
IDL is a strongly typed declarative language that is programming language-independ
Language mappings enable objects to be implemented and sent requests in the deve
programming language of choice in a style that is natural to that language. The OMG
an expanding set of language mappings, including Ada, C, C++, COBOL, IDL to Jav
Java to IDL, Lisp, and Smalltalk.
viii Security Service, V1.7 March 2001

ping
 uni-

liant
plica-
t can

ol-

 to
ies

t

main
oms,

tions

oints

,

tion
e
CORBAservices

Object Services are general purpose services that are either fundamental for develo
useful CORBA-based applications composed of distributed objects, or that provide a
versal-application domain-independent basis for application interoperability.

These services are the basic building blocks for distributed object applications. Comp
objects can be combined in many different ways and put to many different uses in ap
tions. They can be used to construct higher level facilities and object frameworks tha
interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include C
lection, Concurrency, Event, Externalization, Interoperable Naming, Licensing, Life
Cycle, Notification, Persistent Object, Property, Query, Relationship, Security, Time,
Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
most domains. Adopted OMG Common Facilities are collectively called CORBAfacilit
and include Internationalization and Time, and Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direc
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include Do
Interfaces for application domains such as Finance, Healthcare, Manufacturing, Telec
E-Commerce, and Transportation.

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the specifica
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these p
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if a vendor supports C++
their ORB must comply with the OMG IDL to C++ binding.

Interoperability and Interworking are separate compliance points. For detailed informa
about Interworking compliance, refer to the Common Object Request Broker: Architectur
and Specification, Interworking Architecture chapter.
Security Service V1.7 March 2001 ix

ith its
y when
 and

ge-
Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and, w
membership, evaluating the responses. Specifications are adopted as standards onl
representatives of the OMG membership accept them as such by vote. (The policies
procedures of the OMG are described in detail in the Object Management Architecture
Guide.)

OMG formal (published) specifications are available from the OMG website
http://www.omg.org/technology/documents/formal/index.htm. To obtain print-on-demand
books in the documentation set or other OMG publications, contact the Object Mana
ment Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted parts of this specification:

• Alcatel

• FUJITSU LIMITED

• International Business Machines Corporation

• IONA Technologies, Plc.

• NEC Corporation

• Nippon Telegraph and Telephone (NTT) Corporation
x Security Service, V1.7 March 2001

Service Description 1
ns

hich
intly
e
ry
This chapter incorporates material that was adopted in three separate specificatio
related to security:

• CORBA Security Rev 1.1 (formal/97-12-22)

• Common Secure Interoperability 1.0 (orbos/96-06-20)

• CORBAsecurity/SSL Interoperability (orbos/97-02-04)

All these documents are therefore superseded by this chapter.

Associated with this document, are documents ptc/98-01-03, and ptc/98-01-04, w
contain associated changes to the CORBA Core that have been recommended jo
by the Security RTF and the Core RTF. Also associated with this document are th
outputs of the C++ and Java language mapping RTFs that had co-terminus delive
dates with the Security 1.2 RTF.

Contents

This chapter contains the following topics, separated into sections.

Topic Page

“Introduction to Security” 1-2

“Introduction to the Specification” 1-8
Security Service, v1.7 March 2001 1-1

1

eir
uracy

 such
 well
 gain

tional
ecurity
ture.

d

not

rs.

re,

ere
te
f

t are
n

mount
sets,
gainst
1.1 Introduction to Security

1.1.1 Why Security?

Enterprises are increasingly dependent on their information systems to support th
business activities. Compromise of these systems either in terms of loss or inacc
of information or competitors gaining access to it can be extremely costly to the
enterprise.

Security breaches, which compromise information systems, are becoming more
frequent and varied. These may often be due to accidental misuse of the system,
as users accidentally gaining unauthorized access to information. Commercial as
as government systems may also be subject to malicious attacks (for example, to
access to sensitive information).

Distributed systems are more vulnerable to security breaches than the more tradi
systems, as there are more places where the system can be attacked. Therefore, s
is needed in CORBA systems, which takes account of their inherent distributed na

1.1.2 What Is Security?

Security protects an information system from unauthorized attempts to access
information or interfere with its operation. It is concerned with:

• Confidentiality - Information is disclosed only to users authorized to access it.

• Integrity - Information is modified only by users who have the right to do so, an
only in authorized ways. It is transferred only between intended users and in
intended ways.

• Accountability - Users are accountable for their security-relevant actions. A
particular case of this is non-repudiation, where responsibility for an action can
be denied.

• Availability - Use of the system cannot be maliciously denied to authorized use

Availability is often the responsibility of other OMA components such as archive/
restore services, or of underlying network or operating systems services. Therefo
this specification does not address all availability requirements.

Security is enforced using security functionality as described below. In addition, th
are constraints on how the system is constructed. For example, to ensure adequa
separation of objects so that they don't interfere with each other and separation o
users’ duties so that the damage an individual user can do is limited.

Security is pervasive, affecting many components of a system, including some tha
not directly security related. Also, specialist components, such as an authenticatio
service, provide services that are specific to security.

The assets of an enterprise need to be protected against perceived threats. The a
of protection the enterprise is prepared to pay for depends on the value of the as
and the threats that need to be countered. The security policy needed to protect a
1-2 Security Service, v1.7 March 2001

1

 are in
ort a

at user
 a

act on
ing a

.

tion
 the
with
ugh
l

For
e

d

al
et
 it.
these threats may also depend on the environment and how vulnerable the assets
this environment. This document specifies a security architecture which can supp
variety of security policies to meet different needs.

1.1.3 Threats in a Distributed Object System

The CORBA security specification is designed to allow implementations to provide
protection against the following:

• An authorized user of the system gaining access to information that should be
hidden from him.

• A user masquerading as someone else, and so obtaining access to whatever th
is authorized to do, so that actions are being attributed to the wrong person. In
distributed system, a user may delegate his rights to other objects, so they can
his behalf. This adds the threat of rights being delegated too widely, again caus
threat of unauthorized access.

• Security controls being bypassed.

• Eavesdropping on a communication line, so gaining access to confidential data

• Tampering with communication between objects - modifying, inserting, and
deleting items.

• Lack of accountability due, for example, to inadequate identification of users.

Note that some of this protection is dependent on the CORBA security implementa
being constructed in the right way according to assurance criteria (as specified in
"Guidelines for a Trustworthy System" appendix) and using security mechanisms
the right characteristics. Conformance to the CORBA security interfaces is not eno
to ensure that this protection is provided, just as conformance to the transactiona
interfaces (for example) is not enough to guarantee transactional semantics.

This specification does not attempt to counter all threats to a distributed system.
example, it does not include facilities to counter breaches caused by analyzing th
traffic between machines.

More information about security threats and countermeasures is given in the
"Guidelines for a Trustworthy System" appendix.

1.1.4 Summary of Key Security Features

The security functionality defined by this specification comprises:

• Identification and authentication of principals (human users and objects that nee
to operate under their own rights) to verify they are who they claim to be.

• Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the princip
(such as role, groups, security clearance) and the control attributes of the targ
object (stating which principals, or principals with which attributes) can access
Security Service, v1.7 Introduction to Security March 2001 1-3

1

t is
ould

 and
 of

lity

of
t

ible
s is

 with
n

have

stem

hat
ms.

d
re.

ser
• Security auditing to make users accountable for their security related actions. I
normally the human user who should be accountable. Auditing mechanisms sh
be able to identify the user correctly, even after a chain of calls through many
objects.

• Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client
target, which may require authentication of clients to targets and authentication
targets to clients. It also requires integrity protection and (optionally) confidentia
protection of messages in transit between objects.

• Non-repudiation provides irrefutable evidence of actions such as proof of origin
data to the recipient, or proof of receipt of data to the sender to protect agains
subsequent attempts to falsely deny the receiving or sending of the data.

• Administration of security information (for example, security policy) is also
needed.

This visible security functionality uses other security functionality such as
cryptography, which is used in support of many of the other functions but is not vis
outside the Security services. No direct use of cryptography by application object
proposed in this specification, nor are any cryptographic interfaces defined.

1.1.5 Goals

The security architecture and facilities described in this document were designed
the following goals in mind. Not all implementations conforming to this specificatio
will meet all these goals.

1.1.5.1 Simplicity

The model should be simple to understand and administer. This means it should
few concepts and few objects.

1.1.5.2 Consistency

It should be possible to provide consistent security across the distributed object sy
and associated legacy systems. This includes:

• Support of consistent policies for determining who should be able to access w
sort of information within a security domain that includes heterogeneous syste

• Fitting with existing permission mechanisms.

• Fitting with existing environments, for example, the ability to provide end-to-en
security even when using communication services, which are inherently insecu

• Fitting with existing logons (so extra logons are not needed) and with existing u
databases (to reduce the user administration burden).
1-4 Security Service, v1.7 March 2001

1

ps

ails

nd

ingle
 for

s to
rotect

urity
n it
hen
 the

ster
of
1.1.5.3 Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise ones. For larger systems, it should be
possible to:

• Base access controls on the privilege attributes of users such as roles or grou
(rather than individual identities) to reduce administrative costs.

• Have a number of security domains, which enforce different security policy det
but support interworking between them subject to policy. (This specification
includes architecture, but not interfaces for such interdomain working.)

• Manage the distribution of cryptographic keys across large networks securely a
without undue administrative overheads.

1.1.5.4 Usability for End Users

Security should be available as transparently as possible, based on sensible,
configurable defaults.

Users should need to log on to the distributed system only once to access object
systems and other IT services.

1.1.5.5 Usability for Administrators

The model should be simple to understand and administer and should provide a s
system image. It should not be necessary for an administrator to specify controls
individual objects or individual users of an object (except where security policy
demands this).

The system should provide good flexibility and fine granularity.

1.1.5.6 Usability for Implementors

Application developers must not need to be aware of security for their application
be protected. However, a developer who understands security should be able to p
application specific actions.

1.1.5.7 Flexibility of Security Policy

The security policy required varies from enterprise to enterprise, so choices of sec
features should be allowed. An enterprise should only pay for the level of protectio
requires, reducing the level (and therefore costs) for less sensitive information or w
the system is less vulnerable to threats. The enterprise should be able to balance
costs of providing security, including the resources required to implement, admini
and run the system, against the perceived potential losses incurred as the result
security breaches.

Particular types of flexibility required include:
Security Service, v1.7 Introduction to Security March 2001 1-5

1

of
s,
 and

.

is

some
r

. For
s
 that
ire

 to

ould
ation
ld be
e
• Choice of access control policy - The interfaces defined here allows for a choice
mechanisms, ACLs using a range of privilege attributes such as identities, role
groups, or labels. Details are hidden except from some administrative functions
security aware applications that want to choose their own mechanisms.

• Choice of audit policy - The event types which are to be audited is configurable
This makes it possible to control the size of the audit trail, and therefore the
resources required to store and manage it.

• Support for security functionality profiles as defined either in national or
international government criteria such as TCSEC (the US Trusted Computer
Evaluation Security Criteria) and ITSEC (the European Information Technology
Security Evaluation Criteria), or by more commercial groups such as X/Open,
required.

1.1.5.8 Independence of Security Technology

The CORBA security model should be security technology neutral. For example,
interfaces specified for security of client-target object invocations should hide the
security mechanisms used from both the application objects and ORB (except for
security administrative functions). It should be possible to use either symmetric o
asymmetric key technology.

It should be possible to implement CORBA security on a wide variety of existing
systems, reusing the security mechanisms and protocols native to those systems
example, the system should not require introduction of new cryptosystems, acces
control repositories, or user registries. If the system is installed in an environment
also includes a procedural security regime, the composite system should not requ
dual administration of the user or authorization policy information.

1.1.5.9 Application Portability

An application object should not need to be aware of security, so it can be ported
environments that enforce different security policies and use different security
mechanisms. If an object enforces security itself, interfaces to Security services sh
hide the particular security mechanisms used (e.g., for authentication). The applic
security policy (for example, to control access to its own functions and state) shou
consistent with the system security policy. For example, use should be made of th
same attributes for access control. Portability of applications enforcing their own
security depends on such attributes being available.

1.1.5.10 Interoperability

The security architecture should allow interoperability between objects including:

• Providing consistent security across a heterogeneous system where different
vendors may supply different ORBs.

• Interoperating between secure systems and those without security.
1-6 Security Service, v1.7 March 2001

1

s
utes.

ine,

s,

d.

or
ay

he

 into

.
rted

to

.

t
as

ss of
• Interoperating between domains of a distributed system where different domain
may support different security policies, for example, different access control attrib

• Interoperating across systems that support different security technology.

This specification includes an architecture that covers all of these, at least in outl
but does not give specific interfaces and protocols for the last two. Interoperability
between domains is expected to have limited functionality in initial implementation
and interoperability between security mechanisms is not expected to be supporte

1.1.5.11 Performance

Security should not impose an unacceptable performance overhead, particularly f
normal commercial levels of security, although a greater performance overhead m
occur as higher levels of security are implemented.

1.1.5.12 Object Orientation

The specification should be object-oriented:

• The security interfaces should be purely object-oriented.

• The model should use encapsulation to promote system integrity and to hide t
complexity of security mechanisms under simple interfaces.

• The model should allow polymorphic implementations of its objects based on
different underlying mechanisms.

1.1.5.13 Specific Security Goals

In addition to the security requirements listed above, there are more specific
requirements that need to be met in some systems, so the architecture must take
account:

• Regulatory requirements - The security model must conform to national
government regulations on the use of security mechanisms (i.e., cryptography)
There are several types of controls, for example, controls on what can be expo
and controls on deployment and use such as limitations on encryption for
confidentiality. Details vary from country to country; examples of requirements
satisfy a number of these are:

• Allowing use of different cryptographic algorithms.

• Keeping the amount of information encrypted for confidentiality to a minimum

• Using identities for auditing which are anonymous, except to the auditor.

• Evaluation criteria for assurance - The security functionality and architecture mus
allow implementations to conform to standard security evaluation criteria such
TCSEC, ITSEC, or Common Criteria (CC)1for security functionality and assurance
(which gives the required level of confidence in the correctness and effectivene
the security functionality). It should allow assurance and security functionality
Security Service, v1.7 Introduction to Security March 2001 1-7

1

e,

y.

ssed,
ted in

 can

m
ay).

f
as

n

e a

ters
classes or profiles up to about the E3/B2 level. However, the specification also
allows systems with lower levels of security, where other requirements such as
performance are more important.

1.1.5.14 Security Architecture Goals

The security architecture should confine key security functionality to a trusted cor
which enforces the essential part of the security policy such as:

• Ensuring that object invocations are protected as required by the security polic

• Requiring access control and auditing to be performed on object invocation.

• Preventing (groups of) application objects from interfering with each other or
gaining unauthorized access to each other’s state.

It must be possible to implement this trusted computing base so it cannot be bypa
and kept small to reduce the amount of code which needs to be trusted and evalua
more secure systems. This trusted core is distributed, so it must be possible for
different domains to have different levels of trust.

It should also be possible to construct systems where particular Security services
be replaced by ones using different security mechanisms, or supporting different
security policies without changing the application objects or ORB when using the
(unless these objects have chosen to do this in a mechanism or policy-specific w

The security architecture should be compatible with standard distributed security
frameworks such as those of POSIX and X/Open.

1.2 Introduction to the Specification

This document specifies how to provide security in stand-alone and distributed
CORBA-compliant systems. Introducing Object Security services does not in itsel
provide security in an object environment; security is pervasive, so introducing it h
implications on the Object Request Broker and on most Object services, Commo
Facilities and object implementations.

This document defines the core security facilities and interfaces required to ensur
reasonable level of security of a CORBA-compliant system as a whole. The
specification includes:

• A security model and architecture which describe the security concepts and
framework, the security objects needed to implement them, and how this coun
security threats.

1.Version 1 or 2.
1-8 Security Service, v1.7 March 2001

1

f

d in

y

lect

,
s

ions

aces,
olicy
 as it
licy.

two

 and
 of

ther

nly

• The security facilities available to applications. This includes security provided
automatically by the system, protecting all applications, even those unaware o
security. The security facilities can also be used by security-aware applications
through OMG IDL interfaces defined in this specification.

• The security facilities and interfaces available for performing essential security
administration.

• The security facilities and interfaces available to ORB implementors, to be use
the production of secure ORBs.

• A description of how Security services affect the CORBA 2 ORB interoperabilit
protocols.

• A description of different levels of secure interoperability that are possible.

• A description of how these levels of interoperability can be provided using a se
set of popular security mechanisms and protocols.

• Items not included in this specification are:

• Support for interoperability between ORBs using different security mechanisms
though interoperability of different ORBs using the same security mechanism i
supported.

• Audit analysis tools, though an audit service that both the system and applicat
can use to record events is included.

• Management interfaces other than essential security policy management interf
as management services are beyond the scope of this chapter. The security p
management interfaces were viewed as a necessary feature of this specification
is not possible to deploy a secure system without defining and managing its po

• Interfaces to allow applications to access cryptographic functions for use, for
example, in protecting their stored data. These interfaces are not provided for
reasons: first, cryptography is generally a low-level primitive, used by Security
Service implementors but not needed by the majority of application developers;
second, providing a cryptographic interface would require addressing a variety
difficult regulatory and import/export issues.

• Specific security policy profiles.

The security model and architecture specified is extensible, to allow addition of fur
security facilities later.

1.2.1 Normative and Non-normative Material

This specification contains normative and non-normative (explanatory) material. O
Section 2.3, “Application Developer’s Interfaces” through Section 3.8, “DCE-CIOP
with Security” and Appendices B and D are normative.
Security Service, v1.7 Introduction to the Specification March 2001 1-9

1

ages
l as to

re

rol

 a

worth
of
such

n of

r
to

,
ified
ces

 ORB
e
1.2.2 CORBA Security and Secure Interoperability Feature Packages

CORBA security and Secure Interoperability is structured into several feature pack
which are enumerated below. These are used to structure the specification as wel
specify the conformance requirements.

1.2.2.1 Main Security Functionality Packages

There are two packages:

• Level 1: This provides a first level of security for applications which are unawa
of security and for those having limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to cont
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

An ORB must provide at least one of these packages before it can claim to be
Secure ORB. For a definitive conformance requirement see the “Conformance
Details” appendix.

Optional Security Functionality Packages

These provide functions that are expected to be required in several ORBs, so are
including in this specification, but are not generally required enough to form part
one of the main security functionality packages specified above. There is only one
option in the specification.

• Non-repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

1.2.2.2 Security Replaceability Packages

These packages specify if the ORB is structured in a way that allows incorporatio
different Security services, and if so how they can be incorporated. There are two
possibilities:

1. ORB Services replaceability package: The ORB uses interceptor interfaces to call
on object services, including security ones. It must use the specified intercepto
interfaces and call the interceptors in the specified order. An ORB conforming
this does not include any significant security specific code, as that is in the
interceptors.

2. Security Service replaceability package: The ORB may or may not use interceptors
but all calls on Security services are made via the replaceability interfaces spec
in Section 2.5, “Implementor’s Security Interfaces,” on page 2-142. These interfa
are positioned so that the Security services do not need to understand how the
works (for example, how the required policy objects are located), so they can b
replaced independently of that knowledge.
1-10 Security Service, v1.7 March 2001

1

e
s

 be
t one
f the

h as

ith a

y
ted
 it.

here
an

, and

ed
 1.

nt
are

ject

ects

y
An ORB can provide Security by directly implementing the Security feature
package 1 or 2 into it without making use of any of the facilities provided by th
Replaceability feature packages. But in that case, the standard security policie
defined in this specification cannot be replaced by others, nor can the
implementation of the Security services be replaced. For example, it would not
possible to replace the standard access policy by a label-based policy if at leas
of the replaceability packages is not supported. Note that some replaceability o
security mechanism used for security associations may still be provided if the
implementation uses some standard generic interface for Security services suc
GSS-API[11].

An ORB that supports one or both of these replaceability packages together w
couple of basic ORB operations as discussed in the "Conformance Details"
appendix is said to be Security Ready2. Such an ORB does not in itself support an
security functionality but is ready to host security functionality that is implemen
to use the facilities of the Security Replaceability package to hook Security into

1.2.2.3 Common Secure Interoperability (CSI) Feature packages

These feature packages each provide different levels of secure interoperability. T
are three functionality levels for Common Secure Interoperability (CSI). All levels c
be used in distributed secure CORBA compliant object systems where clients and
objects may run on different ORBs and different operating systems. At all levels,
security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality describ
in the CORBA Security specification. Facilities are more restricted at levels 0 and
The three levels are:

1. Identity based policies without delegation (CSI level 0): At this level, only the
identity (no other attributes) of the initiating principal is transmitted from the clie
to the target, and this cannot be delegated to further objects. If further objects
called, the identity will be that of the intermediate object, not the initiator of the
chain of object calls.

2. Identity based policies with unrestricted delegation (CSI level 1): At this level, only
the identity (no other attributes) of the initiating principal is transmitted from the
client to the target. The identity can be delegated to other objects on further ob
invocations, and there are no restrictions on its delegation, so intermediate obj
can impersonate the user. (This is the impersonation form of simple delegation
defined in Section 2.1.6, “Delegation,” on page 2-13.)

2.While this may sound strange, it is still true that a Secure ORB need not be a Security Read
ORB.
Security Service, v1.7 Introduction to the Specification March 2001 1-11

1

d
ct to
ite

ges.

RBs
in
 if

 This

n
nd
se

P.

ned
tion
lf is
e

er
SI

3. Identity & privilege based policies with controlled delegation (CSI level 2): At this
level, attributes of initiating principals passed from client to target can include
separate access and audit identities and a range of privileges such as roles an
groups. Delegation of these attributes to other objects is possible, but is subje
restrictions, so the initiating principal can control their use. Optionally, compos
delegation is supported, so the attributes of more than one principal can be
transmitted. Therefore, it provides interoperability for ORBs conforming to all
CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSI packa
For the definitive statement on conformance requirements see Appendix D.

1.2.2.4 SECIOP Interoperability package

An ORB with the SECIOP Interoperability package can generate and use security
information in the IOR and can send and receive secure requests to/from other O
using the GIOP/IIOP protocol with the security (SECIOP) enhancements defined
Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34 (if necessary),
they both use the same underlying security technology.

1.2.2.5 Security Mechanism packages

The choice of mechanisms and protocol to use depends on the mechanism type
required and the facilities required by the range of applications expected to use it.
specification defines how the following four security protocols can be used as the
medium for secure interoperability under CORBA:

1. SPKM Protocol: This protocol supports identity based policies without delegatio
(CSI level 0) using public key technology for keys assigned to both principals a
trusted authorities. The SPKM protocol is based on the definition in [20]. The u
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIO

2. GSS Kerberos Protocol: This protocol supports identity based policies with
unrestricted delegation (CSI level 1) using secret key technology for keys assig
to both principals and trusted authorities. It is possible to use it without delega
(providing CSI level 0). The GSS Kerberos protocol is based on [12] which itse
a profile of [13]. The use of Kerberos in CORBA interoperability is based on th
SECIOP extensions to IIOP.

3. CSI-ECMA Protocol: This protocol supports identity and privilege based policies
with controlled delegation (CSI level 2). It can be used with identity, but no oth
privileges and without delegation restrictions if the administrator permits this (C
level 1) and can be used without delegation (CSI level 0). For keys assigned to
principals, it has two options:

• It can use either secret or public key technology.

• It uses public key technology for keys assigned to trusted authorities.
1-12 Security Service, v1.7 March 2001

1

le
ons
SI-

SI

rts

-

ages.

rity
o

e
s of
The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as
defined in ECMA 235, but is a significant subset of this - the SESAME profi
as defined in [16]. It is designed to allow the addition of new mechanism opti
in the future; some of these are already defined in ECMA 235. The use of C
ECMA in CORBA interoperability requires the SECIOP extensions to IIOP.

4. SSL protocol: This protocol supports identity based policies without delegation (C
level 0). The SSL protocol is based on the definition in [21]. The use of SSL in
CORBA interoperability does not depend on the SECIOP extensions to IIOP.

1.2.2.6 SECIOP Plus DCE-CIOP Interoperability

An ORB with the Standard plus DCE-CIOP secure interoperability package suppo
all functionality required by standard secure interoperability package, and also
provides secure interoperability (using the DCE Security services) using the DCE
CIOP protocol.

An ORB that interoperates securely must do so using one of these protocol pack
For the definitive statement on conformance requirements see Appendix D.

The requirements that must be satisfied by a conformant ORB are enumerated in
Appendix D. The conformance statement required for a CORBA conformant secu
implementation is defined in Appendix D. This includes a table that can be filled t
show what the ORB conforms to.

1.2.3 Feature Packages and Modules

The IDL specified in this chapter is partitioned into modules that closely reflect th
feature packaging scheme described above. The Security module holds definition
common data structures and constants that most other modules depend on. The
relationship is as shown in Table 1-1.

Table 1-1 Feature Packages and Modules

Feature Package Primary Module Also Depends on

Security Functionality Level 1 SecurityLevel1 Security
CORBA, TimeBase

Security Functionality Level 2 SecurityLevel2 Security, CORBA,
TimeBase
SecurityLevel1
SecurityAdmin

Non Repudiation NRservice Security,
SecurityLevel2
CORBA, TimeBase

Security Service
Replaceability

SecurityReplaceable Security, CORBA,
TimeBase
SecurityLevel2
Security Service, v1.7 Introduction to the Specification March 2001 1-13

1

e 1-1,

The specification is based on a general three layer architecture as shown in Figur
with the interfaces defined in each module positioned as shown in the figure.

Figure 1-1 Modules and Their Relation to Layers of the Architecture

The SecurityReplaceability module defines the interfaces that must be used,
together with certain interfaces defined in the SecurityLevel2 module, to encapsulate
the underlying security infrastructure so as to enable components of the Security
Service to use them interchangeably.

ORB Service Replaceability Interceptor CORBA

CSI Level 0, 1 and 2 SECIOP CORBA

SECIOP SECIOP Security, CORBA,
TimeBase, IOP

SPKM, Kerberos,
CSI-ECMA

SECIOP Security, CORBA,
TimeBase, IOP

SSL SSL Security, CORBA,
TimeBase, IOP

DCE-CIOP DCE_CIOPSecurity Security, CORBA,
TimeBase, IOP

Table 1-1 Feature Packages and Modules (Continued)

Feature Package Primary Module Also Depends on

Applications (clients of CORBA Security Service)

CORBA Security Services

Security Infrastructure ORB Infrastructure

CORBASecurityReplaceability

SecurityLevel1, SecurityLevel2, SecurityAdmin, NRservice

Interfaces provided by
the Security Service
and used by Application
Programmers

Interfaces provided by
the Infrastructure
and used by Security
Service Implementors
1-14 Security Service, v1.7 March 2001

Interfaces 2
work
for
te

ns as

licies.

 may
Contents

This chapter contains the following topics.

2.1 Security Reference Model

This chapter describes a security reference model that provides the overall frame
for CORBA security. The purpose of the reference model is to show the flexibility
defining many different security policies that can be used to achieve the appropria
level of functionality and assurance. As such, the security reference model functio
a guide to the security architecture.

2.1.1 Definition of a Security Reference Model

A reference model describes how and where a secure system enforces security po
Security policies define:

• Under what conditions active entities (such as clients acting on behalf of users)
access objects.

Topic Page

“Security Reference Model” 2-1

“Security Architecture” 2-28

“Application Developer’s Interfaces” 2-71

“Administrator’s Interfaces” 2-115

“Implementor’s Security Interfaces” 2-142
Security Service, v1.7 March 2001 2-1

2

 are,

.)

.

ions

d by

d.
ity is
 will
 but
eir

re
ting

 of a
el is
he

ns
icy
• What authentication of users and other principals is required to prove who they
what they can do, and whether they can delegate their rights. (A principal is a
human user or system entity that is registered in and is authentic to the system

• The security of communications between objects, including the trust required
between them and the quality of protection of the data in transit between them

• What accountability of which security-relevant activities is needed.

Figure 2-1 depicts the model for CORBA secure object systems. All object invocat
are mediated by appropriate security functions to enforce policies such as access
controls. These functions should be tamper-proof, always be invoked when require
security policy, and function correctly.

Figure 2-1 A Security Model for Object Systems

Many application objects are unaware of the security policy and how it is enforce
The user can be authenticated prior to calling the application client and then secur
subsequently enforced automatically during object invocations. Some applications
need to control or influence what policy is enforced by the system on their behalf,
will not do the enforcement themselves. Some applications will need to enforce th
own security, for example, to control access to their own data or audit their own
security-relevant activities.

The ORB cannot be completely unaware of security as this would result in insecu
systems. The ORB is assumed to at least handle requests correctly without viola
security policy, and to call Security Services as required by security policy.

A security model normally defines a specific set of security policies. Because the OMG
Object Management Architecture (OMA) must support a wide variety of different
security policies to meet the needs of many commercial markets, a single instance
security model is not appropriate for the OMA. Instead, a security reference mod
defined that provides a framework for supporting many different kinds of policies. T
security reference model is a meta-policy because it is intended to encompass all
possible security policies supported by the OMA.

The meta-policy defines the abstract interfaces that are provided by the security
architecture defined in this document. The model enumerates the security functio
that are defined as well as the information available. In this manner, the meta-pol

Client
Target
Object

request request

ORB

Security Implementation
enforcing security policy

user

�����

�����

�����
�����
�����
�����
�����
�����

�

�

�
�
�
�
�
�
�

..
2-2 Security Service, v1.7 March 2001

2

g
rately

ither

 the
al
users
-term

d in

the
e
 in an
bove.

t it
s
tes,

 the
y the
ed

ilege
provides guidance on the permitted flexibility of the policy definition. The remainin
sections describe the elements of the meta-model. The description is kept delibe
general at this point.

2.1.2 Principals and Their Security Attributes

An active entity must establish its rights to access objects in the system. It must e
be a principal, or a client acting on behalf of a principal.

A principal is a human user or system entity that is registered in and authentic to
system. Initiating principals are the ones that initiate activities. An initiating princip
may be authenticated in a number of ways, the most common of which for human
is a password. For systems entities, the authentication information such as its long
key, needs to be associated with the object.

An initiating principal has at least one, and possibly several identities (represente
the system by attributes) which may be used as a means of:

• Making the principal accountable for its actions.

• Obtaining access to protected objects (though other privilege attributes of a
principal may also be required for access control).

• Identifying the originator of a message.

• Identifying who to charge for use of the system.

There may be several forms of identity used for different purposes. For example,
audit identity may need to be anonymous to all but the audit administrator, but th
access identity may need to be understood so that it can be specified as an entry
access control list. The same value of the identity can be used for several of the a

The principal may also have privilege attributes, which can be used to decide wha
can access. A variety of privilege attributes may be available depending on acces
policies (see Section 2.1.4.3, “Access Policies,” on page 2-9). The privilege attribu
which a principal is permitted to take, are known by the system. At any one time,
principal may be using only a subset of these permitted attributes, either chosen b
principal (or an application running on its behalf), or by using a default set specifi
for the principal. There may be limits on the duration for which these privilege
attributes are valid and may be controls on where and when they can be used.

Security attributes may be acquired in three ways:

1. Some attributes may be available, without authentication, to any principal. This
specification defines one such attribute, called Public.

2. Some attributes are acquired through authentication; identity attributes and priv
attributes are in this category.

3. Some attributes are acquired through delegation from other principals.

When a user or other principal is authenticated, it normally supplies:

• Its security name.
Security Service, v1.7 Security Reference Model March 2001 2-3

2

used.

their
get

licy.

 each
ions,
ion.
 use
• The authentication information needed by the particular authentication method

• Requested privilege attributes (though the principal may change these later).

A principal’s security attributes are maintained in secure CORBA systems in a
credential as shown in Figure 2-2.

Figure 2-2 Credential Containing Security Attributes

2.1.3 Secure Object Invocations

Most actions in the system are initiated by principals (or system entities acting on
behalf). For example, after the user logs onto the system, the client invokes a tar
object via an ORB as shown in Figure 2-3.

Figure 2-3 Invocation of Target Object via ORB

What security functionality is needed on object invocation depends on security po
It may include:

• Establishing a security association between the client and target object so that
has the required trust that the other is who it claims to be. In many implementat
associations will normally persist for many interactions, not just a single invocat
(Within some environments, the trust may be achieved by local means, without
of authentication and cryptography.)

Credentials - containing security attributes

unauthenticated
attributes
- Public

authenticated attributes

identity
attributes

privilege
attributes

Client

request request

ORB

Target
Object

client-side security on invocation
security association, access control

message protection, audit

target-side security on invocation
security association, access control

message protection, audit
2-4 Security Service, v1.7 March 2001

2

 on
,

nsit,

ject
aling

t, a
ation
 sees

ll not
strict

he

and

 on
n the

ether
ality

l

sible
• Deciding whether this client (acting for this principal) can perform this operation
this object according to the access control policy, as described in Section 2.1.4
“Access Control Model,” on page 2-7.

• Auditing this invocation if required, as described in Section 2.1.5, “Auditing,” on
page 2-11.

• Protecting the request and response from modification or eavesdropping in tra
according to the specified quality of protection.

For all these actions, security functions may be needed at the client and target ob
sides of the invocation. For example, protecting a request may require integrity se
of the message before sending it, and checking the seal at the target.

The association is asymmetric. If the target object invokes operations on the clien
new association is formed. It is possible for a client to have more than one associ
with the same target object. The application is unaware of security associations; it
only requests and responses.

A secure system can also invoke objects in an insecure system. In this case, it wi
be possible to establish trust between the systems, and the client system may re
the requests passed to the target.

2.1.3.1 Establishing Security Associations

The client and target object establish a secure association by:

• Establishing trust in one another’s identities, which may involve the target
authenticating the client’s security attributes and/or the client’s authenticating t
target’s security name.

• Making the client’s credentials (including its security attributes) available to the
target object.

• Establishing the security context which will be used when protecting requests
responses in transit between client and target object.

The way of establishing a security association between client and object depends
the security policies governing both the client and target object, whether they are i
same domain, and the underlying security mechanism. For example, the type of
authentication and key distribution used.

The security policies define the choice of security association options such as wh
one-way or mutual authentication is wanted between client and target, and the qu
of protection of data in transit between them.

The security policy is enforced using underlying security mechanisms. This mode
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key technology, asymmetric (public) key
technology, or a combination of these. The Key Distribution services, Certification
Authorities and other underlying Security services, which may be used, are not vi
in the model.
Security Service, v1.7 Security Reference Model March 2001 2-5

2

d
sages

uch as
igure

urned

d.
2.1.3.2 Message Protection

Requests and responses can be protected for:

• Integrity - This prevents undetected, unauthorized modification of messages an
may detect whether messages are received in the correct order and if any mes
have been added or removed.

• Confidentiality - This ensures that the messages have not been read in transit.

A security association may in some environments be able to provide integrity and
confidentiality protection through mechanisms inherent in the environment, and so
avoid having to use encryption.

The security policy specifies the strength of integrity and confidentiality protection
needed. Achieving this integrity protection may require sealing the message and
including sequence numbers. Confidentiality protection may require encrypting it.

This security reference model allows a choice of cryptographic algorithms for
providing this protection.

Performing a request on a remote object using an ORB and associated services, s
TP, might cause a message to be constructed to send to the target as shown in F
2-4. At the target, this process is reversed, and results in the ORB invoking the
operation on the target passing it the parameters sent by the client. The reply ret
follows a similar path.

Message protection could be provided at different points in the message handling
functionality of an ORB, which would affect how much of the message is protecte

Figure 2-4 Message Protection

Client Target
Object

operation

parameters

operation(parameters)
on target object reference

parameters

parametersoperation

parametersoperationtarget id

parametersoperationtarget idservice
info

parametersoperationtarget idservice
info

host
address

always protected
if any message protection is done

always protected, so parameters can
be used only in specified operations

protected, so operation is on the right
object (implies message must be back in
clear before routing to target object)
service info like GIOP service context
added by services such as TP.
service info should be protected
the host address cannot be encrypted
as this would prevent correct routing

ORB/OA

message header and protected message
2-6 Security Service, v1.7 March 2001

2

 be

e may

in the
BA
tion

se, an
ge

of
rt of

-

any
n
ion,

f the
licy
ther

t
l

RB
iation
ate
Messages are protected according to the quality of protection required which may
for integrity, but may also be for confidentiality. Both integrity and confidentiality
protection are applied to the same part of the message. The request and respons
be protected differently.

The CORBA security model can protect messages even when there is no security
underlying communications software. In this case, the message protected by COR
security includes the target id, operation and parameters, and any service informa
included in the message.

In some systems, protection may be provided below the ORB message layer (for
example, using the secure sockets layer or even more physical means). In this ca
ORB that knows such security is available will not need to provide its own messa
protection.

Note that as messages will normally be integrity protected, this will limit the type
interoperability bridge that can be used. Any bridge that changes the protected pa
the message after it has been integrity (or confidentiality) protected will cause the
security check at the target to fail unless a suitable security gateway is used to re
protect the message.

2.1.4 Access Control Model

The model depicted in Figure 2-5 on page 2-8 provides a simple framework for m
different access control security policies. This framework consists of two layers: a
object invocation access policy, which is enforced automatically on object invocat
and an application access policy, which the application itself enforces.

The object invocation access policy governs whether this client, acting on behalf o
current principal, can invoke the requested operation on this target object. This po
is enforced by the ORB and the Security services it uses, for all applications, whe
they are aware of security or not.

The application object access policy is enforced within the client and/or the objec
implementation. The policy can be concerned with controlling access to its interna
functions and data, or applying further controls on object invocation.

All instantiations of the security reference model place at least some trust in the O
to enforce the access policy. Even in architectures where the access control med
occurs solely within the client and target objects, the ORB is still required to valid
the request parameters and ensure message delivery as described above.
Security Service, v1.7 Security Reference Model March 2001 2-7

2

he
of this.

ly if

 or
, and

s,
ange
trol,”

 is

nd
s.

.

Figure 2-5 Access Control Model

The access control model shows the client invoking an operation as specified in t
request, and also shows application access decisions, which can be independent

2.1.4.1 Object Invocation Access Policy

A client may invoke an operation on the target object as specified in the request on
this is allowed by the object invocation access policy. This is enforced by Access
Decision Functions.

Client side access decision functions define the conditions that allow the client to
invoke the specified operation on the target object. Target side access decision
functions define the conditions that allow the object to accept the invocation. One
both of these may not exist. Some systems may support target side controls only
even then, only use them for some of the objects.

The access policy for object invocation is built into these access decision function
which just provide a yes/no answer when asked to check if access is allowed. A r
of access policies can be supported as described in Section 2.3.12, “Access Con
on page 2-102.

The access decision function used on object invocation to decide whether access
allowed bases its decision on:

• The current privilege attributes of the principal (see Section 2.1.2, “Principals a
Their Security Attributes,” on page 2-3). Note that these can include capabilitie

• Any controls on these attributes, for example, the time for which they are valid

• The operation to be performed.

• The control attributes of the target object (see Section 2.1.4, “Access Control
Model,” on page 2-7).

Client

request request

ORB

Target
Object

client-side invocation access decision target-side invocation access decision

��
��
��
��

��
���
���
���

�

client application
access decision

target application
access decision
2-8 Security Service, v1.7 March 2001

2

bject

is

licy
e

e the

 range
nd

or all

ecide
les

d

;
The first three of these functions are available as part of the environment of the o
invocation.

The control attributes for the target object are associated with the object when it
created (though may be changed later, if security policy permits).

2.1.4.2 Application Access Policy

Applications may also enforce access policies. An application access policy may
control who can invoke the application, extending the object invocation access po
enforced by the ORB, and taking into account other items such as the value of th
parameters, or the data being accessed. As for standard object invocation access
controls, there may be client and target object access decision functions.

An application object may also control access to finer-grained functions and data
encapsulated within it, which are not separate objects.

In either case, the application will need its own access decision function to enforc
required access control rules.

2.1.4.3 Access Policies

The general access control model described here can be used to support a wide
of access policies including Access Control List schemes, label-based schemes, a
capability schemes. This section describes the overall authorization model used f
types of access control.

The authorization model is based on the use of access decision functions, which d
whether an operation or function can be performed by applying access control ru
using:

• Privilege attributes of the initiator (called initiator Access Control Information or
ACI in ISO/IEC 10181-3).

• Control attributes of the target (sometimes known as the target ACI).

• Other relevant information about the action such as the operation and data, an
about the context, such as the time.

Figure 2-6 Authorization Model

The privilege and control attributes are the main variables used to control access
therefore, the following sections focus on these.

Access Decision Function
enforcing

access control rules

Action and
context info

Initiator
privilege attributes

access allowed?

yes/no

Target
control attributes
Security Service, v1.7 Security Reference Model March 2001 2-9

2

as:

he
s, or

s.

trol
joins
based
y.

at
e a

ct,
 to

s, so

tem,

r,
2.1.4.4 Privilege Attributes

A principal can have a variety of privilege attributes used for access control such

• The principal’s access identity.

• Roles, which are often related to the user’s job functions.

• Groups, which normally reflect organizational affiliations. A group could reflect t
organizational hierarchy, for example, the department to which the user belong
a cross-organizational group, which has a common interest.

• Security clearance.

• Capabilities, which identify the target objects (or groups of objects), and their
operations on which the principal is allowed.

• Other privileges that an enterprise defines as being useful for controlling acces

In an object system, which may be large, using individual identities for access con
may be difficult if many sets of control attributes need to be changed when a user
or leaves the organization or changes his job. Where possible, controls should be
on some grouping construct (such as a role or organizational group) for Scalabilit

The security reference model does not dictate the particular privilege attributes, th
any compliant secure system must support; however, this specification does defin
standard, extensible set of privilege attribute types.

Note – In this specification, privilege is often used as shorthand for privilege attribute.

2.1.4.5 Control Attributes

Control attributes are associated with the target. Examples are:

• Access control lists, which identify permitted users by name or other privilege
attributes, or

• Information used in label-based schemes, such as the classification of an obje
which identifies (according to rules) the security clearance of principals allowed
perform particular operations on it.

An object system may have many objects, each of which may have many operation
it may not be practical to associate control attributes with each operation on each
object. This would impose too large an overhead on the administration of the sys
and the amount of storage needed to hold the information.

Control attributes are therefore expected to be shared by categories of objects,
particularly objects of the same type in the same security policy domain. Howeve
they could be associated with an individual object.
2-10 Security Service, v1.7 March 2001

2

 than

roup
.

ment

ss of
ined
 via a
either
d

.

t
cies

 of

 in
ords.

sfers
Rights

Control attributes may be associated with a set of operations on an object, rather
each individual operation. Therefore, a user with specified privileges may have rights
to invoke a specific set of operations.

It is possible to define what rights give access to what operations.

2.1.4.6 Access Policies Supported by This Specification

The model allows a range of access policies using control attributes, which can g
subjects (using privileges), objects (using domains), and operations (using rights)

This specification defines a particular access policy type and associated manage
interface as part of security functionality Level 2. This is defined in
DomainAccessPolicy Interface under Section 2.4.4, “Access Policies,” on
page 2-118.

Regardless of the access control policy management interface used (i.e., regardle
whether the particular Level 2 access policy interfaces or other interfaces not def
in this specification are used), all access decisions on object invocation are made
standard access decision interface, so the access control policy can be changed
by administrative action on, or substitution of, the objects that define the policy an
implement the access decision. However, different management interfaces will
ordinarily be required for management of different types of control attributes.

2.1.5 Auditing

Security auditing assists in the detection of actual or attempted security violations
This is achieved by recording details of security relevant events in the system.
(Depending on implementation, recording an audit event may involve writing even
information to a log, generating an alert or alarm, or some other action.) Audit poli
specify which events should be audited under what circumstances.

There are two categories of audit policies: system audit policies, which control what
events are recorded as the result of relevant system activities, and application audit
policies that control which events are audited by applications.

System events, which should be auditable, include events such as authentication
principals, changing privileges, success or failure of object invocation, and the
administration of security policies. These system events may occur in the ORB or
security or other services, and these components generate the required audit rec

Application events may be security relevant, and therefore may need auditing
depending on the application. For example, an application that handles money tran
might audit who transferred how much money to whom.
Security Service, v1.7 Security Reference Model March 2001 2-11

2

ice),

ed to
licies

ect
el
ed on

 be
ose

ions
type,

,
e and

ed to

rated
Events can be categorized by event family (e.g., system, financial application serv
and event type within that family. For example, there are defined event types for
system events.

Figure 2-7 Auditing Model

Potentially a very large number of events could be recorded; audit policies are us
restrict what types of events to audit under which circumstances. System audit po
are enforced automatically for all applications, even security unaware ones.

The invocation audit policy is enforced at a point in the ORB where the target obj
and operation for the request are known, and the reply status is known. The mod
supports audit policies where the decision on whether to audit an event can be bas
the event type (such as method invocation complete, access control check done,
security association made), the success or failure of this event (only failures may
audited), the object and the operation being invoked, the audit id of principal on wh
behalf the invocation is being done, and even the time of day.

This specification defines a particular invocation audit policy type and associated
management interfaces as part of security functionality Level 2. This allows decis
on whether to audit an invocation to depend on the object type, operation, event
and success or failure of this.

The specification also defines a particular audit policy type for application auditing
which allows decisions on whether to audit the event to be based on the event typ
its success or failure.

Events can either be recorded on audit trails for later analysis or, if they are deem
be serious, alarms can be sent to an administrator. Application audit trails may be
separate from system ones. This specification includes how audit records are gene

Client

request request

ORB

Target
Object

security association

��
��
��
��

��
���
���
���

���

client application
audit

target application
audit

invocation access control etc.
security association

invocation access control etc.

Audit Audit
2-12 Security Service, v1.7 March 2001

2

w
nd

bject
his

del,”
n.

tions

pient

bject

ed
and then written to audit channels, but not how these records are filtered later, ho
audit trails and channels are kept secure, and how the records can be collected a
analyzed.

2.1.6 Delegation

In an object system, a client calls on an object to perform an operation, but this o
will often not complete the operation itself, so will call on other objects to do so. T
will usually result in a chain of calls on other objects as shown in Figure 2-8.

Figure 2-8 Delegation Model

This complicates the access model described in Section 2.1.4, “Access Control Mo
on page 2-7, as access decisions may need to be made at each point in the chai
Different authorization schemes require different access control information to be
made available to check which objects in the chain can invoke which further opera
on other objects.

In privilege delegation, the initiating principal’s access control information (i.e., its
security attributes) may be delegated to further objects in the chain to give the reci
the rights to act on its behalf under specified circumstances.

Another authorization scheme is reference restriction where the rights to use an o
under specified circumstances are passed as part of the object reference to the
recipient. Reference restriction is not included in this specification, though describ
as a potential future security facility in the “Facilities Not in This Specification”
appendix.

The following terms are used in describing delegation options:

• Initiator - the first client in a call chain.

• Final target - the final recipient in a call chain.

Client

Client

Target

Target
Object

Client

Target

Client

Target

Target
Object

Target
Object

..
Security Service, v1.7 Security Reference Model March 2001 2-13

2

bject
ge

eived

btain

gated

The
diate
ble to

ts

 this

erify
y the

 their

red
• Intermediate - an object in a call chain that is neither the initiator nor the final
target.

• Immediate invoker - an object or client from which an object receives a call.

2.1.6.1 Privilege Delegation

In many cases, objects perform operations on behalf of the initiator of a chain of o
invocations. In such cases, the initiator needs to delegate some or all of its privile
attributes to the intermediate objects which will act on its behalf.

Some intermediates in a chain may act on their own behalf (even if they have rec
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that they can o
their own privileges to be transmitted to objects they invoke.

Some intermediates may need to use their own privileges at some times, and dele
privileges at other times.

A target may wish to restrict which of its operations an invoker can perform. This
restriction may be based on the identity or other privilege attributes of the initiator.
target may also want to verify that the request comes from an authorized interme
(or even check the whole chain of intermediates). In these cases, it must be possi
distinguish the privileges of the initiator and those of each intermediate.

Some restrictions may or may not be placed by the initiator about the set of objec
which may be involved in a delegation chain.

When no restrictions are placed and only the initiator's privileges are being used,
case is called impersonation.

When restrictions are placed, additional information is used so that objects can v
whether or not their characteristics (e.g., their name or a part of their name) satisf
restrictions. In order to allow clients or initiating objects to specify this additional
information, objects can be (securely) associated with these characteristics (e.g.,
name).

2.1.6.2 Overview of Delegation Schemes

There are potentially a large number of delegation models. They can all be captu
using the following sentence.

An intermediate invoking a target object may perform:

1. one method on one object

2. several methods on one object

3. any method on: a. one object
b. some object(s)
c. any object

(target restrictions)
(no target restrictions)
2-14 Security Service, v1.7 March 2001

2

hich
t
ol

ne

t

llow

, or
e

em.

r
er
get
arget
dress
When delegating privileges through a chain of objects, the caller does not know w
objects will be used in completing the request, and therefore cannot easily restric
privileges to particular methods on objects. It generally relies on the target’s contr
attributes to do this.

A privilege delegation scheme may provide any of the other controls, though no o
scheme is likely to provide all of them.

2.1.6.3 Facilities Potentially Available

Different facilities are available to intermediates (or clients) before initiating objec
invocations and to intermediate or target objects accepting an invocation.

Controls Used Before Initiating Object Invocations

A client or intermediate can specify restrictions on the use of the access control
information provided to another intermediate or to a target object. Interfaces may a
support of the following facilities.

• Control of privileges delegated - An initiator (or an intermediate) can restrict which
of its own privileges are delegated.

• Control of target restrictions - An initiator (or an intermediate) can restrict where
individual privileges can be used. This restriction may apply to particular objects
some grouping of objects. It may restrict the target objects, which may use som
privileges for access control, and the intermediates, which can also delegate th

• Control of privileges used - As previously described, there are several options fo
deciding which privileges an intermediate object may use when invoking anoth
object. Note that delegated privileges are not actually delegated to a single tar
object; they are available to any object running under the same identity as the t
object in the target object’s address space (since any objects in the target’s ad
space may retrieve the inbound Credentials and any object sharing the target’s
identity may successfully become the caller’s delegate).

The specified interfaces allow the following.

using

(no privileges
(a subset of the initiator’s privileges
(both the initiator’s and its own
privileges
(received privileges and its own
privileges

(simple delegation)
(composite delegation)
(combined or traced delegation,
depending on whether privileges
are combined or concatenated)

during some validity period (part of time constraints)

for a specified number of invocations (part of time constraints)
Security Service, v1.7 Security Reference Model March 2001 2-15

2

ns,
these

cess
he
t

.

ce of
No delegation

The client permits the intermediate to use its privileges for access control decisio
but does not permit them to be delegated, so the intermediate object cannot use
privileges when invoking the next object in the chain.

Figure 2-9 No Delegation

Simple delegation

The client permits the intermediate to assume its privileges, both using them for ac
control decisions and delegating them to others. The target object receives only t
client's privileges, and does not know who the intermediate is (when used withou
target restrictions, this is known as impersonation).

Figure 2-10 Simple Delegation

Composite delegation

The client permits the intermediate object to use its credentials and delegate them
Both the client privileges and the immediate invoker’s privileges are passed to the
target, so that both the client privileges and the privileges from the immediate sour
the invocation can be individually checked.

Figure 2-11 Composite Delegation

Client Intermediate
Object

Target
Object

client credentials intermediate
credentials

Client Intermediate
Object

Target
Object

client credentials client credentials

Client Intermediate
Object

Target
Object

client credentials
client and

intermediate

credentials
2-16 Security Service, v1.7 March 2001

2

tials.
al.

.
e

 it
rget
they

of
be

n
the

on,
 audit
Combined privileges delegation

The client permits the intermediate object to use its privileges. The intermediate
converts these privileges into credentials and combines them with its own creden
In that case, the target cannot distinguish which privileges come from which princip

Figure 2-12 Combined Privileges Delegation

Traced delegation

The client permits the intermediate object to use its privileges and delegate them
However, at each intermediate object in the chain, the intermediate's privileges ar
added to privileges propagated to provide a trace of the delegates in the chain.

Figure 2-13 Traced Delegation

A client application may not see the difference between the last three options,
may just see them all as some form of “composite” delegation. However, the ta
object can obtain the credentials of intermediates and the initiator separately if
have been transmitted separately.

• Control of time restrictions - Time periods can be applied to restrict the duration
the delegation. In some implementations, the number of invocations may also
controllable.

Facilities Used on Accepting Object Invocations

An intermediate or a target object should be able to:

• Extract received privileges and use them in local access control decisions. Ofte
only the privileges of the initiator are relevant. When this is not the case, only
privileges of the immediate invoker may be relevant. In some cases, both are
relevant. Finally, the most complex authorization scheme may require the full
tracing of the initiator and all the intermediates involved in a call chain. In additi
some targets may need to obtain the miscellaneous security attributes (such as
identity, charging identity) and the associated target restrictions and time
constraints.

• Extract credentials (when permitted) for use when making the next call as a
delegate.

Client Intermediate
Object

Target
Object

client credentials

client and
intermediate’s

privileges

in a single
credential

Client Target
Object

intermediate
objects

client credentials chain of

credentials
Security Service, v1.7 Security Reference Model March 2001 2-17

2

hen
lar

its
deny
d the

tions
hen

it

one

e of

fied,

he

 is
d in

 event

ons
• Build (when permitted) new credentials from the received access control
information with changed (normally reduced) privileges and/or different target
restrictions or time constraints.

2.1.6.4 Specifying Delegation Options

The administrator may specify which delegation option should be used by default w
an object acts as an intermediate. For example, he may specify whether a particu
intermediate object normally delegates the initiating principal’s privileges or uses
own, or both if needed. Also, the access policy used at the target could permit or
access based on more than one of the privileges it received (e.g., the initiator's an
intermediate's). This allows many applications to be unaware of the delegation op
in use, as many of the controls for delegation are done automatically by the ORB w
the intermediate invokes the next object in the chain.

However, a security-aware intermediate object may itself specify what delegation
wants. For example, it may choose to use the original principal's privileges when
invoking some objects and its own when invoking others.

2.1.6.5 Technology Support for Delegation Options

Different security technologies support different delegation models. Currently, no
security technology supports all the options described above.

In Security Functionality Level 1, all delegation is done automatically in the ORB
according to delegation policy, so the objects in the chain cannot change the mod
delegation used, or restrict privileges passed and where or when they are used.

Of the options on which credentials are passed, only no delegation and impersonation
(simple delegation without any target restrictions) need to be supported.

In Security Functionality Level 2, applications may use any of the interfaces speci
but may get a CORBA::NO_IMPLEMENT exception returned. Note that these
interfaces do not allow the application to set controls such as target restrictions. t
“Facilities Not in This Specification” appendix, includes potential future advanced
delegation facilities, which include such controls.

2.1.7 Non-repudiation

Non-repudiation services provide facilities to make users and other principals
accountable for their actions. Irrefutable evidence about a claimed event or action
generated and can be checked to provide proof of the action. It can also be store
order to resolve later disputes about the occurrence or the non-occurrence of the
or action.

The non-repudiation services specified here are under the control of the applicati
rather than used automatically on object invocation, so are only available to
applications aware of this service.
2-18 Security Service, v1.7 March 2001

2

 may
r and
ple,
ate

ics of
d are

ed of

t took
.

here

pes
ence

be
 made

ived
 by
n

of
Depending on the non-repudiation policy in effect, one or more pieces of evidence
be required to prove that some kind of event or action has taken place. The numbe
the characteristics of each depends upon that non-repudiation policy. As an exam
evidence containing a timestamp from a trusted authority may be required to valid
evidence.

There are many types of non-repudiation evidence, depending on the characterist
the event or action. In order to distinguish between them, the types are defined an
part of the evidence. Conceptually, evidence may thus be seen as being compos
the following components:

• non-repudiation policy (or policies) applicable to the evidence

• type of action or event

• parameters related to the type of action or event

A date and time are also part of the evidence. This shows when an action or even
place and allows recovery from some situations such as the compromise of a key

The evidence includes some proof of the origin of data, so a recipient can check w
it came from. It also allows the integrity of the data to be verified.

Facilities included here allow an application to deal with evidence of a variety of ty
of actions or events. Two common types of non-repudiation evidence are the evid
of proof of creation of a message and proof of receipt of a message.

Non-repudiation of Creation protects against an originator's false denial of having
created a message. It is achieved at the originator by constructing and generating
evidence of Proof of Creation using non-repudiation services. This evidence may
sent to a recipient to verify who created the message, and can be stored and then
available for subsequent evidence retrieval.

Non-repudiation of Receipt protects against a recipient's false denial of having rece
a message (without necessarily seeing its content). It is achieved at the recipient
constructing and generating evidence of Proof of Receipt using the non-repudiatio
services. This is shown in Figure 2-14.

Figure 2-14 Proof of Receipt

One or more Trusted Third Parties need to be involved, depending on the choice
mechanism or policy.

Non-repudiation services may include:

• Facilities to generate evidence of an action and verify that evidence later.

 (plus message)
 evidence of creation

RecipientOriginator

 evidence of receipt
Security Service, v1.7 Security Reference Model March 2001 2-19

2

the

) and
a
ISO

ence.

-

of
d.

 is
sible
nce
lso,
can be
• A delivery authority which delivers the evidence (often with the message) from
originator to the recipient. Such a delivery authority may generate proof of origin
(to protect against a sender's false denial of sending a message or its content
proof of delivery (to protect against a recipient's false denial of having received
message or its content). Non-repudiation of Origin and Delivery are defined in
7498-2.

• An evidence storage and retrieval facility used when a dispute arises. An
adjudicator service may be required to settle the dispute, using the stored evid

Figure 2-15 Non-repudiation Services

The non-repudiation services illustrated in Figure 2-15 are based on the ISO non
repudiation model; as the shaded box in the diagram indicates, this specification
supports only Evidence Generation and Verification, which provides:

• Generation of evidence of an action.

• Verification of evidence of an action.

• Generation of a request for evidence related to a message sent to a recipient.

• Receipt of a request for evidence related to a message received.

• Analysis of details of evidence of an action.

• Collection of the evidence required for long term storage. In this case, more
complete evidence may be needed.

The Non-repudiation Service allows an application to deal with a variety of types
evidence, not just the non-repudiation of creation and receipt previously describe

No Non-repudiation Evidence Delivery Authority is defined by this specification; it
anticipated that vendors will want to customize these authorities (which are respon
for delivering messages and related non-repudiation evidence securely in accorda
with specific non-repudiation policies) to meet specialized market requirements. A
no evidence storage and retrieval services are specified, as other object services
used for this.

Object
A

Object
B

Service Req/Resp Dispute/Judgement

Non-repudiation service

Evidence
Generation

and
Adjudicator

Service Req/Resp

Evidence
Storage

and
RetrievalVerification

Delivery
Authority
2-20 Security Service, v1.7 March 2001

2

 was
.

e,

ere

cy
to be

d

 set
 this

ake
re
 the
icy

rity
Note that this specification does not provide evidence that a request on an object
successfully carried out; it does not require use of non-repudiation within the ORB

2.1.8 Domains

A domain (as specified in the ORB Interoperability Architecture) is a distinct scop
within which certain common characteristics are exhibited and common rules
observed. There are several types of domain relevant to security:

• Security policy domain. The scope over which a security policy is enforced. Th
may be subdomains for different aspects of this policy.

• Security environment domain. The scope over which the enforcement of a poli
may be achieved by some means local to that environment, so does not need
enforced within the object system. For example, messages will often not need
cryptographic protection to achieve the required integrity when being transferre
between objects in the same machine.

• Security technology domain. Where common security mechanisms are used to
enforce the policies.

These can be independent of the ORB technology domains.

2.1.8.1 Security Policy Domains

A security policy domain is a set of objects to which a security policy applies for a
of security related activities and is administered by a security authority. (Note that
is often just called a security domain.) The objects are the domain members. The
policy represents the rules and criteria that constrain activities of the objects to m
the domain secure. Security policies concern access control, authentication, secu
object invocation, delegation and accountability. An access control policy applies to
security policies themselves, controlling who may administer security-relevant pol
information.

Figure 2-16 Security Policy Domains

Security policy domains provide leverage for dealing with the problem of scale in
security policy management (by allowing application of policy at a domain granula
rather than at an individual object instance granularity).

security
policy

management

Security Authority
Security Service, v1.7 Security Reference Model March 2001 2-21

2

y-

ts to

ies.

 be

e

ty
he
ing

y but

ators’

nt
Security policy domains permit application of security policy information to securit
unaware objects without requiring changes to their interfaces (by associating the
security policy management interfaces with the domain rather than with the objec
which policy is applied).

Domains provide a mechanism for delimiting the scope of administrators’ authorit

Policy Domain Hierarchies

A security authority must be identifiable and responsible for defining the policies to
applied to the domain, but may delegate that responsibility to a number of
subauthorities, forming subdomains where the subordinate authorities’ policies ar
applied.

Subdomains may reflect organizational subdivisions or the division of responsibili
for different aspects of security. Typically, organization-related domains will form t
higher-level superstructure, with the separation of different aspects of security form
a lower-level structure.

For example, there could be:

• An enterprise domain, which sets the security policy across the enterprise.

• Subdomains for different departments, each consistent with the enterprise polic
each specifying more specific security policies appropriate to that department.

With each department, authority may be further devolved:

• Authority for auditing could be the preserve of an audit administrator.

• Control of access to a set of objects could be the responsibility of a specific
administrator for those objects.

This supports what is recognized as good security practice (it separates administr
duties) while reflecting established organizational structures.

Figure 2-17 Policy Domain Hierarchies

Federated Policy Domains

As well as being structured into superior/subordinate relationships, security policy
domains may also be federated. In a federation, each domain retains most of its
authority while agreeing to afford the other limited rights. The federation agreeme
records:

Security Policy
Manager
2-22 Security Service, v1.7 March 2001

2

he

RB
ort it.

r
 own
• The rights given to both sides, such as the kind of access allowed.

• The trust each has in the other.

It includes an agreement as to how policy differences are handled, for example, t
mapping of roles in one domain to roles in the other.

Figure 2-18 Federated Policy Domains

System- and Application-Enforced Policies

In a CORBA system, the “system” security policy is enforced by the distributed O
and the Security services it uses and the underlying operating systems that supp
This is the only policy that applies to objects unaware of security.

The application security policy is enforced by application objects, which have thei
own security requirements. For example, they may want to control access to their
functions and data at a finer granularity than the system security policy provides.

Figure 2-19 System- and Application-enforced Policies

Overlapping Policy Domains

Not all policies have the same scope. For example, an object may belong to one
domain for access control and a different domain for auditing.

Figure 2-20 Overlapping Policy Domains

Security Policy
Manager

application security
policy domain

system security policy domain

Security Policy
Manager

audit domain

access control
domain
Security Service, v1.7 Security Reference Model March 2001 2-23

2

r, this
ains

ay be
ect

re by
es

y at

e in
edure

d,

ns.

 to

, can

are

r
ain,

 the
In some cases, there may even be overlapping policies of the same type (howeve
specification does not require implementations to support overlapping policy dom
of the same type).

2.1.8.2 Security Environment Domains

Security policy domains specify the scope over which a policy applies. Security
environment domains are the scope over which the enforcement of the policies m
achieved by means local to the environment. The environment supporting the obj
system may provide the required security, and the objects within a specific
environment domain may trust each other in certain ways. Environment domains a
definition implementation-specific, as different implementations run in different typ
of environments, which may have different security characteristics.

Environment domains are not visible to applications or Security services.

In an object system, the cost of using the security mechanisms to enforce securit
the individual object level in all environments would often be prohibitive and
unnecessary. For example:

• Preventing objects from interfering with each other might require them to execut
separate system processes or virtual machines (assuming the generation proc
could not ensure this protection) but, in most object systems, this would be
considered an unacceptable overhead, if applied to each object.

• Authenticating every object individually could also impose too large an overhea
particularly where:

• There is a large object population.

• There is high connectivity, and therefore a large number of secure associatio

• The object population is volatile, requiring objects to be frequently introduced
the Security services.

This cost can be reduced by identifying security environment domains where
enforcement of one or more policies is not needed, as the environment provides
adequate protection. Two types of environment domains are considered:

1. Message protection domains - These are domains where integrity and/or
confidentiality is available by some specific means, for example, an underlying
secure transport service is used. An ORB, which knows such protection exists
exploit it, rather than provide its own message protection.

2. Identity domains - Objects in an identity domain can share the same identity.
Objects in the same identity domain:

• when invoking each other, do not need authentication to establish who they
communicating with.

• are equally trusted by others to handle credentials received from a client. Fo
example, if a client is prepared to delegate its rights to one object in the dom
it is prepared to delegate the same rights to all of them. If any object in the
identity domain invokes a further object, that target object is prepared to trust
calling object based on the identity of its identity domain.
2-24 Security Service, v1.7 March 2001

2

 that
ied).

ity

may
 and

tion.
ple,
curity
logy

ey

the
ate

ucts.

 they
Note that neither of these affect what access controls apply to the object (except in
if trust is required and is not established with this domain, then access will be den

2.1.8.3 Security Technology Domains

These are domains that use the same security technology for enforcing the secur
policy. For example:

• The same methods are available for principal authentication and the same
Authentication services are used.

• Data in transit is protected in the same way, using common key distribution
technology with identical algorithms.

• The same types of access control are used. For example, a particular domain
provide discretionary access control using ACLs using the same type of identity
privilege attributes.

• The same audit services are used to collect audit records in a consistent way.

A particular security technology is normally used to authenticate principals and to
form security associations between client and object and handle message protec
(Different technologies may be able to use the same privilege attributes, for exam
the same access id and also the same audit id.) An important part of this is the se
technology used for key distribution. There are two main types of security techno
used for key distribution, both of which are available in commercial products:

• Symmetric key technology where a shared key is established using a trusted K
Distribution Service.

• Asymmetric (or “public”) key technology where the client uses the public key of
target (certified by a Certification Authority), while the target uses a related priv
key.

Public key technology is also the most convenient technology upon which to
implement non-repudiation, which has led to its use in several electronic mail prod

The CORBA security interfaces specified here are security mechanism neutral, so
can be implemented using a wide variety of security mechanisms and protocols.

2.1.8.4 Domains and Interoperability

Interoperability between objects depends on whether they are in the same:

• Security technology domain

• ORB technology domain

• Security policy domains

• Naming and other domains

The level of security interoperability fully defined in this CORBA security
specification is limited, though it includes an architecture that allows further
interoperability to be added.
Security Service, v1.7 Security Reference Model March 2001 2-25

2

gy

curity

ass
s a

he
ol

y
mon

e
 an

y
ere

ain.
y a
by a

ally
The following diagram shows a framework of domains and is used to discuss the
interoperability goals of this specification.

Figure 2-21 Framework of Domains

Interoperating between Security Technology Domains

Sending a message across the boundary between two different security technolo
domains is only possible if:

• The communication between the objects does not need to be protected, so se
is not used between them, or

• A security technology gateway has been provided, which allows messages to p
between the two security technology domains. A gateway could be as simple a
physically secure link between the domains and an agreement between the
administrators of the two domains to turn off security on messages sent over t
link. On the other hand, it could be a very complicated affair including a protoc
translation service with complicated key management logic, for example.

It is not a goal of this specification to define interoperability across Security
Technology Domains, and hence to specify explicit support for security technolog
gateways. This is mainly because the technology is immature and appropriate com
technology cannot yet be identified. However, where the security technology in th
domains can support more than one security mechanism, this specification allows
appropriate matching mechanism to be identified and used.

Interoperating between ORB Technology Domains

If different ORB implementations are in the same security technology domain, the
should be able to interoperate via a CORBA 2 interoperability bridge. However, th
may still be restrictions on interoperability when:

• The objects are in different security policy domains, and the security attributes
controlling policy in one domain are not understood or trusted in the other dom
As previously described, crossing a security policy boundary can be handled b
security policy federation agreement. This can be enforced in either domain or
gateway.

• The ORBs are in different naming or other domains, and messages would norm
be modified by bridges outside the trusted code of either ORB environment.
Security protection prevents tampering with the messages (and therefore any

ORB
Technology
Domain A

ORB
Technology
Domain B

CORBA 2
interoperability

bridge

Security Technology Domain 1

Security
Technology

Gateway

Security
Technology

Domain 2
2-26 Security Service, v1.7 March 2001

2

thout
rity

 and

g

ains.

rity

ging

, the

ple,
.

n

 to a

s of
one
changes to object references in them). In general, crossing of such domains wi
using a Security Technology gateway is not possible if policy requires even integ
protection of messages.

2.1.9 Security Management and Administration

Security administration is concerned with managing the various types of domains
the objects within them.

2.1.9.1 Managing Security Policy Domains

For security policy domains, the following is required:

• Managing the domains themselves - creating, deleting them including controllin
where they fit in the domain structure.

• Managing the members of the domain, including moving objects between dom

• Managing the policies associated with the domains - setting details of the secu
policies as well as specifying which policies apply to which domains.

This specification focuses on management of the security policies. However, mana
policy domains and their members in general are expected to be part of the
Management Common Facilities, so only an outline specification is given here.

This specification includes a framework for administering of security policies, and
details of how to administer particular types of policy. For example, it includes
operations to specify the default quality of protection for messages in this domain
policy for delegating credentials, and the events to be audited.

General administration of all access control policies is not detailed, as the way of
administering access control policies is dependent on the type of policy. For exam
different administration is needed for ACL-based policies and label-based policies
However, the administration of the standard DomainAccessPolicy is defined.

Access policies may use rights to group operations for access control. Administratio
of the mapping of rights to operations is included in this specification. Such mapping
of rights to operations is used by the standard DomainAccessPolicy , and can also be
used by other access policies.

Interfaces for federation agreements allowing interaction with peer domains is left
later security specification.

2.1.9.2 Managing Security Environment Domains

For environment domains, an administrator may have to specify the characteristic
the environment and which objects are members of the domain. This will often be d
in an environment-specific way; therefore, no management interfaces for it are
specified here.
Security Service, v1.7 Security Reference Model March 2001 2-27

2

ain.

 be

side

ther

y
ded
 both
to

ure
tation
s
he

e for
s, to
ded

ent”

plete
,
ot

urity
2.1.9.3 Managing Security Technology Domains

For security technology domains, administration may include:

• Setting up and maintaining the underlying Security services required in the dom

• Setting up and maintaining trust between domains in line with the agreements
between their management.

• Administering entities in the way required by this security technology. Entities to
administered include principals, which have identities, long-term keys, and
optionally privileged attributes.

Such administration is often security technology specific. Also, it may be done out
the object system, as it is a goal of this specification to allow common security
technology to be used, and even allow a single user logon to object, as well as o
applications. This specification does not include such security technology specific
administration.

2.1.10 Implementing the Model

This reference model is sufficiently general to cover a very wide variety of securit
policies and application domains to allow conformant implementations to be provi
to meet a wide variety of commercial and government secure systems in terms of
security functionality and assurance. (Any implementation of this model will need
identify the particular security policies it supports.)

The model also allows different ways of putting together the trusted core of a sec
object system to address different requirements. There are a number of implemen
choices on how to ensure that the security enforcement cannot be bypassed. Thi
enforcement could be performed by hardware, the underlying operating system, t
ORB core, or ORB services. The “Guidelines for a Trustworthy System” appendix
describes some of these options. (It is important when instantiating this architectur
a particular ORB product, or set of Security services supporting one or more ORB
identify what portions of the model must be trusted for what. This should be inclu
in a conformance statement as described in the “Conformance Details and Statem
appendix.

2.2 Security Architecture

This section explains how the security model is implemented. It describes the com
architecture as needed to support all feature packages described in Section 1.2.2
“CORBA Security and Secure Interoperability Feature Packages,” on page 1-10. N
all of these packages are mandatory for all implementors to support. See the
“Conformance Details” appendix for a definitive statement of conformance
requirements.

This section starts by reviewing the different views that different users have of sec
in CORBA-compliant systems, as the security architecture must cater to these.
2-28 Security Service, v1.7 March 2001

2

o

em.
inst
ssets
r a
g

r and
n A
lso

d the
by

roles

ly

The structural model for security in CORBA-compliant systems is described. This
includes some expansion of the ORB service concept introduced into CORBA 2 t
support interoperability between ORBs.

The security object models for the three major views (application development,
administration, and object system implementors) are then described.

2.2.1 Different Users’ View of the Security Model

The security model can be viewed from the following users’ perspectives:

• Enterprise management

• The end user

• The application developer

• Administration of an operational system

• The object system implementors

2.2.1.1 Enterprise Management View

Enterprise management is responsible for business assets including IT systems;
therefore they have ultimate responsibility for protecting the information in the syst
The enterprise view of security is therefore mainly about protecting its assets aga
perceived threats at an affordable cost. This requires assessing the risks to the a
and the cost of countermeasures against them as described in the “Guidelines fo
Trustworthy System” appendix. It will require setting a security policy for protectin
the system, which the security administrators can implement and maintain.

Not all parts of an enterprise require the same type of protection of their assets.
Enterprise management may identify different domains where different security
policies should apply. Managers will need to agree how much they trust each othe
what access they will provide to their assets. For example, when a user in domai
accesses objects in domain B, what rights should he have? One enterprise may a
interwork with domains in other enterprises.

Enterprise management therefore knows about the structure of the organization an
security policies needed in different parts of it. Security policy options supported
the model include:

• A choice of access control policies. For example, controls can be based on job
(or other attributes) and use ACL, capabilities, or label-based access controls.

• Different levels of auditing so choosing which events to be logged can be flexib
chosen to meet the enterprise needs.

• Different levels of protection of information communicated between objects in a
distributed system. For example, integrity only or integrity plus confidentiality.

The enterprise manager is not a direct user of the CORBA security system.
Security Service, v1.7 Security Architecture March 2001 2-29

2

rove

d
elong
 to
e that

r to

e
.

ilege
e him
jects

he

 their
rom
ion,
em.

e, an
e as

hat

tect

n the
2.2.1.2 End User View

The human user is an individual who is normally authenticated to the system to p
who he or she is.

The user may take on different job roles which allow use of different functions an
data, thereby allowing access to different objects in the system. A user may also b
to one or more groups (within and across organizations) which again imply rights
access objects. A user may also have other privileges such as a security clearanc
permits access to secret documents, or an authorization level that allows the use
authorize purchases of a given amount.

The user is modeled in the system as an initiating principal who can have privileg
attributes such as roles and groups and others privileges valid to this organization

The user invokes objects to perform business functions on his behalf, and his priv
attributes are used to decide what he can access. His audit identity is used to mak
individually accountable throughout the system. He has no idea of what further ob
are required to perform the business function.

The user view is described further in the security model in Section 2.1, “Security
Reference Model,” on page 2-1.

2.2.1.3 Application Developer View

The application developer is responsible for the business objects in the system: t
applications. His main concern is the business functions to be performed.

Many application developers can be unaware of the security in the system, though
applications are protected by it. So much of the security in the system is hidden f
the applications. ORB security services are called automatically on object invocat
and both protect the conversation between objects and control who can access th

Some application objects need to enforce some security themselves. For exampl
application might want to control access based on the value of the data and the tim
well as the principal who initiated the operation. Also, an application may want to
audit particular security relevant activities.

The model includes a range of security facilities available for those applications t
want to use them. For example:

• The quality of protection for object invocations can be specified and used to pro
all communication with a particular target or just selected invocations.

• Audit can also be used independently of other security facilities and does not
require the application to understand other security issues.

• Other functions, such as user authentication or handling privilege attributes for
access control generally require more security understanding and operations o
objects, which represent the user in the system. However, this is still done via
generic security interfaces, which hide the particular security technology used.
2-30 Security Service, v1.7 March 2001

2

t

odel

s,”

s,
mber

tem.

users

that

bject
ight
 the

s or

ment
One special type of application developer is also catered for. The “application” tha
provides the user interface (user sponsor or logon client) needs an authentication
interface capable of fitting with a range of authentication devices. However, the m
also allows authentication to be done before calling the object system.

The application view is described in Section 2.3, “Application Developer’s Interface
on page 2-71.

2.2.1.4 Administrator’s View

Administrators, like any other users, know about their job roles and other privilege
and expect these to control what they can do. In many systems, there will be a nu
of different administrators, each responsible for administering only part of the sys
This may be partly to reduce the load on individual administrators, but partly for
security reasons, for example to reduce the damage any one person can do.

Administrators and administrative applications see more of the system than other
or normal application developers. For example, the application developers see
individual objects whereas the administrator knows how these are grouped, for
example, in policy domains.

In an operational system, administrators will be responsible for creating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be responsible for administering the security policies
apply to objects in these domains.

An administrator may also be responsible for security attributes associated with
initiating principals such as human users, though this may be done outside the o
system. This would include administration of privilege attributes about users, but m
also include other controls. For example, they might constrain the extent to which
user’s rights can be delegated.

The model does not include explicit management interfaces for managing domain
security attributes of initiating principals, though it does describe the resultant
information. Note that the security facilities described here are also applicable to
management. For example, management information needs to be protected from
unauthorized access and protected for integrity in transit, and significant manage
actions, particularly those changing security information, need to be audited.

The administrator’s view is further described in Section 2.4, “Administrator’s
Interfaces,” on page 2-115.

2.2.1.5 Object System Implementor’s View

Secure object system developers must put together:

• An ORB.

• Other Object Services and/or Common Facilities.

• The security services these require to provide the security features.
Security Service, v1.7 Security Architecture March 2001 2-31

2

-32.
jects

ssed
ary

ll

y

 if
ld be
 the

urity

me
s the
d use
t

 will
d for
 are

 of
or
m.

to
.

The system must be constructed in such a way as to make it secure.

The ORB implementor in a secure object system may use ORB Security services
during object invocation, as defined in Section 2.2.2, “Structural Model,” on page 2
In addition, protection boundaries are required to prevent interference between ob
and will need controlling by the ORB and associated Object Adapter and ORB
services.

Certain interfaces are identified as Locality Constrained . These interfaces are
intended to be accessible only from within the context (e.g., process or RM-ODP
capsule) in which they are instantiated (i.e., from within the protection boundary
around that context). No object reference to these interfaces can therefore be pa
meaningfully outside of that context. The exact details of how this protection bound
is implemented is an implementation detail that the implementor of the service wi
need to provide in order to establish that the implementation is secure. Locality
Constrained objects may not be accessible through the DII/DSI facilities, and the
may not appear in the Interface Repository. Any attempt to pass a reference to a
locality constrained object outside its locality, or any attempt to externalize it using
ORB::object_to_string will result in the raising of the CORBA::NO_MARSHAL
exception.

Object Service and Common Facilities developers may need to be security aware
they have particular security requirements (for example, functions whose use shou
limited or audited). However, like any application objects, most should depend on
ORB and associated services to provide security of object invocations.

The Security services implementor has to provide ORB Security services (for sec
of object invocations) and other security services to support applications’ view of
security as previously defined. The ORB Security services implementor shares so
application visible security objects such as a principal’s credentials, and also see
security objects used in making security associations. The Security services shoul
the Security Policy and other security objects defined in this model to decide wha
security to provide.

While these security objects may provide all the security required themselves, they
often call on external security services, so that consistent security can be provide
both object and other systems. The Security services defined in this specification
designed to allow for convenient implementation using generic APIs for accessing
external security services so it is easier to link with a range of such services. Use
such external security services may imply use of existing, non-object databases f
users, certificates, etc. Such databases may be managed outside the object syste

The Implementor’s view is specified in Section 2.5, “Implementor’s Security
Interfaces,” on page 2-142. The implications of constructing the system securely
meet threats are described in the “Guidelines for a Trustworthy System” appendix

2.2.2 Structural Model

The architecture described in this section sets the major concepts on which the
subsequent specifications are based.
2-32 Security Service, v1.7 March 2001

2

g
rity
 are:

f an

l the

e

The structural model has four major levels used during object invocation:

1. Application-level components, which may or may not be aware of security.

2. Components implementing the Security services, independently of any specific
underlying security technology. (This specification allows the use of an isolatin
interface between this level and the security technology, allowing different secu
technologies to be accommodated within the architecture.) These components

• The ORB core and the ORB services it uses.

• Security services.

• Policy objects used by these to enforce the Security Policy.

3. Components implementing specific security technology.

4. Basic protection and communication, generally provided by a combination of
hardware and operating system mechanisms.

Figure 2-22 Structural Model

Figure 2-22 illustrates the major levels and components of the structural model,
indicating the relationships between them. The basic path of a client invocation o
operation on a target object is shown.

2.2.2.1 Application Components

Many application components are unaware of security and rely on the ORB to cal
required security services during object invocation. However, some applications
enforce their own security and therefore call on security services directly (see Th
Model as Seen by Applications, under Section 2.2.5, “Security Object Models,” on
page 2-41). As in the OMA, the client may, or may not, be an object.

Client

request request

ORB Core

Target
Object

��
��

��
��

ORB
Services

ORB
Services

Security
and other
Services

security technology

Basic Protection and Communications

���
���
���
���

��
��
��
��
��
���
���
���
���
Security Service, v1.7 Security Architecture March 2001 2-33

2

t
 The
nt to
d by

ay

,

re

 of

 for
2.2.2.2 ORB Services

The ORB Core is defined in the CORBA architecture as “that part of the ORB tha
provides the basic representation of objects and the communication of requests.”
ORB Core therefore supports the minimum functionality necessary to enable a clie
invoke an operation on a target object, with the distribution transparencies require
the CORBA architecture.

An object request may be generated within an implicit context, which affects the w
in which it is handled by the ORB, though not the way in which a client makes the
request. The implicit context may include elements such as transaction identifiers
recovery data and, in particular, security context. All of these are associated with
elements of functionality, termed ORB Services, additional to that of the ORB Co
but, from the application view, logically present in the ORB.

Figure 2-23 ORB Services

Selection of ORB Services

The ORB Services used to handle an object request are determined by:

• The security policies that apply to the client and target object because of the
domains to which they belong, for example the access policies, default quality
protection.

• Other static properties of the client and target object such as the security
mechanisms and protocols supported.

• Dynamic attributes, associated with a particular thread of activity or invocation;
example, whether a request has integrity or confidentiality requirements, or is
transactional.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

Logical Object Request
2-34 Security Service, v1.7 March 2001

2

o use
ither
ay

bject
ient to
 is

d on

rties,
ent
 with
tion

d the
y

t is

gh

erver
and

ss of

sible
A client’s ORB determines which ORB Services to use at the client when invoking
operations on a target object. The target’s ORB determines which ORB Services t
at the target. If one ORB does not support the full set of services required, then e
the interaction cannot proceed or it can only do so with reduced facilities, which m
be agreed to by a process of negotiation between ORBs.

Bindings and Object References at the Client

Before a client can use an object reference to invoke an operation of the target o
in a secure way, a security association needs to be established associating the cl
the target object, through the particular object reference. This security association
sometimes referred to as the binding. The creation and life-style of bindings are
implicitly managed by the ORBs and hence the only invariant that one can depen
is that a binding is established before an invocation takes place.

The ORB determines how to establish the binding using the policies, static prope
and dynamic properties associated with the client and target. At the client, the cli
environment together with an object reference of the target object has associated
it, those policies and static properties of the target object (e.g., the quality of protec
needed) that affect how the client's ORB establishes a binding to the object.

Associated with each binding is information specific to the particular usage by the
client of the object reference. A binding is uniquely associated with:

• Each object reference of the target object that is held by the client.

• State information that is unique to the association between the target object an
client through the specific object reference (e.g., access policy domain, securit
context).

• An ORB instance in a process or capsule (cf., RM-ODP[15]) in which the clien
located.

A binding is distinct from the target object, though uniquely associated with it throu
the object reference. The lifetime of a binding is limited to that of the process or
capsule that it is associated with, though it may be shorter (e.g., when the object
reference to the target object is destroyed, the binding associated with the object
reference is also destroyed).

There is state information associated with the binding at both the client and the s
ends. This state information is local to the process or capsule in which the client
the server reside, and its lifetime is the same as that of the binding. The state
associated with a binding is not accessible on the client side, since the implicitne
the binding and the uncertainty about its life-style makes such information of
questionable value anyway. On the server side, some of this information is acces
through operations of the Current object.
Security Service, v1.7 Security Architecture March 2001 2-35

2

ices

sms

ply

ding
s use

Figure 2-24 Object Reference

If a client requires to invoke operations of the same target object with different
invocation policies, it can do so by using the Object::set_policy_overrides
operation to create new object references with the desired policies (that differ from
those associated with the client’s environment through the Current object) installed as
overrides, and then use those new object references to carry out the invocations.

2.2.2.3 Security Services

In a secure object system, the ORB Services called will include ORB Security Serv
for secure invocation and access control.

ORB Security Services and applications may call on underlying security mechani
for authentication, access control, audit, non-repudiation, and secure invocations.
These security services form the Security Replaceability packages.

2.2.2.4 Security Policies and Domain Objects

A security policy domain is the set of objects to which common security policies ap
as described in Security Policy Domains, under Section 2.1.8, “Domains,” on
page 2-21. The domain itself is not an object. However, there is a policy domain
manager for each security policy domain. This domain manager is used when fin
and managing the policies that apply to the domain. The ORB and security service
these to enforce the security policies relevant to object invocation.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

 Request

binding binding

target obj ref

Current

Object Reference
2-36 Security Service, v1.7 March 2001

2

ct
e

ince

aid
n by

d by

ject
ain.

s.)

then

ere is
sing
hat

ins,
ing
le
port

ay
When an object reference is created by the ORB, it implicitly associates the obje
reference with one or more Security Policy domains as described in Administrativ
Model, under Section 2.2.5, “Security Object Models,” on page 2-41. An
implementation may allow object references to be moved between domains later. S
the only way to access objects is through object references, associating object
references with policy domains and associated policies, implicitly associates the s
policies with the object associated with the object reference. Care should be take
the application that is creating object references using POA operations (See the
Portable Object Adapter chapter of the Common Object Request Broker: Architecture
and Specification) to ensure that object references to the same object are not create
the server of that object with different domain associations.

There may be several security policies associated with a domain, with a policy ob
for each. There is at most one policy of each type associated with each policy dom
(See Section 2.2.5.2, “Administrative Model,” on page 2-58, for a list of policy type
These policy objects are shared between objects in the domain, rather than being
associated with individual objects. (If an object needs to have an individual policy,
there must be a domain manager for it.)

Figure 2-25 Domain Objects

Where an object reference is a member of more than one domain, for example, th
a hierarchy of domains, the object reference is governed by all policies of its enclo
domains. The domain manager can find the enclosing domain’s manager to see w
policies it enforces.

The reference model allows an object reference to be a member of multiple doma
which may overlap for the same type of policy (for example, be subject to overlapp
access policies). This would require conflicts among policies defined by the multip
overlapping domains to be resolved. The specification does not include explicit sup
for such overlapping domains and, therefore, the use of policy composition rules
required to resolve conflicts at policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects m
also be used by applications, which enforce their own security policies.

policy
object

domain
manager

enclosing
domain managers
Security Service, v1.7 Security Architecture March 2001 2-37

2

nd

n

h
The
e of

n it

of
are
)

he
hem,
ed to
ices

RBs
ng

t the
 these
I will

ing

lish

not
n of
The caller asks for the policy of a particular type (e.g., the delegation policy), a
then uses the policy object returned to enforce the policy (as described in
Section 2.2.5.3, “The Model as Seen by the Objects Implementing Security,” o
page 2-62). The caller finding a policy and then enforcing it does not see the
domain manager objects and the domain structure.

• The administrative interfaces used to set security policies (e.g., specifying whic
events to audit or who can access objects of a specified type in this domain).
administrator sees and navigates the domain structure, so is aware of the scop
what he is administering. (Administrative interfaces are described in
Section 2.2.5.2, “Administrative Model,” on page 2-58.)

Applications will often not be aware of security at all, but will still be subject to
security policy, as the ORB will enforce the policies for them. Security policy is
enforced automatically by the ORB both when an object invokes another and whe
creates another object.

An application that knows about security can also override certain default security
policy details. For example, a client can override the default quality of protection
messages to increase protection for particular messages. (Application interfaces
described in Section 2.2.5.1, “The Model as Seen by Applications,” on page 2-41.

Note that this specification does not include any explicit interfaces for managing t
policy domains themselves: creating and deleting them, moving objects between t
changing the domain structure and adding, changing, and removing policies appli
the domains. Such interfaces are expected to be the province of other object serv
and facilities.

2.2.3 Security Technology

The object security services previously described insulate the applications and O
from the security technology used. Security technology may be provided by existi
security components. These do not have domain managers or objects. Security
technology could be provided by the operating system. However, distributed,
heterogeneous environments are increasingly being used, and for these, security
technology is provided by a set of distributed security services. This architecture
identifies a separate layer containing those components, which actually implemen
security services. It is envisaged that various technologies may be used to provide
and, furthermore, that a (set of) generic security interface(s) such as the GSS-AP
be used to insulate the implementations of the security services from detailed
knowledge of the underlying mechanisms. The range of services (and correspond
APIs) includes:

• The means of creating and handling the security information required to estab
security associations, including keys.

• Message protection services providing confidentiality and integrity.

The use of standard, generic APIs for interactions with external security services
only allows interchangeability of security mechanisms, but also enables exploitatio
existing, proven implementations of such mechanisms.
2-38 Security Service, v1.7 March 2001

2

he
 in
urity
ent

lower
n

y do

ge.

s on

n
s of

y

d and
e
ed by
nce,
e

 or

s

cross
eans
t
2.2.4 Basic Protection and Communications

2.2.4.1 Environment Domains

As described in Section 2.1.8.2, “Security Environment Domains,” on page 2-24, t
way security policies are enforced can depend on the security of the environment
which the objects run. It may be possible to relax or even dispense with some sec
checks in the object system on interactions between objects in the same environm
domain. For example, in a message protection domain where secure transport or
layer communications is provided, encryption is not needed at the ORB level. In a
identity domain, objects may share a security identity and so dispense with
authenticating each other. Environment domains are implementation concepts; the
not have domain managers.

Environment domains can be exploited to optimize performance and resource usa

2.2.4.2 Component Protection

The maintenance of integrity and confidentiality in a secure object system depend
proper segregation of the objects, which may include the segregation of security
services from other components. At the lowest level of this architecture, Protectio
Domains, supported by a combination of hardware and software, provide a mean
protecting application components from each other, as well as protecting the
components that support security services. Protection Domains can be provided b
various techniques, including physical, temporal, and logical separation.

The Security Architecture identifies various security services, which mediate
interactions between application level components: clients and target objects. The
Security Object Models show how these mechanisms can themselves be modele
implemented in terms of additional objects. However, security services can only b
effective if there is some means of ensuring that they are always invoked as requir
security policies: it must be possible to guarantee, to any required level of assura
that applications cannot bypass them. Moreover, security services themselves, lik
other components, must be subject to security policies.

The general approach is to establish protection boundaries around groups of one
more components, which are said to belong to a protection domain. Components
belonging to a protection domain are assumed to trust each other, and interaction
between them need not be mediated by security services, whereas interactions a
boundaries may be subject to controls. In addition, it is necessary to provide a m
of establishing a trust relationship between components, allowing them to interac
across protection boundaries, in a controlled way, mediated by security services.
Security Service, v1.7 Security Architecture March 2001 2-39

2

 the

 must
ty

rt of

aries,
re-

mple,

le for

red.

).
g to

Figure 2-26 Controlled Relationship

In this architecture, the trusted components supporting security services are
encapsulated by objects, as described in Section 2.2.5.3, “The Model as Seen by
Objects Implementing Security,” on page 2-62. Clearly, objects that encapsulate
sensitive security information must be protected to ensure that they can only be
accessed in an appropriate way.

Figure 2-27 Object Encapsulation

Protection boundaries and the controlled relationships that cross those boundaries
inevitably be supported by functionality more fundamental than that of the Securi
Object Models, and invariably requires a combination of hardware and operating
system mechanisms. Whichever way it is provided, this functionality constitutes pa
the Trusted Computing Base.

Protection boundaries may be created by physical separation, interprocess bound
or within process access control mechanisms (e.g., multilevel “onionskin” hardwa
supported access control). Less rigorous protection may be acceptable in some
circumstances, and in such cases protection boundaries can be provided, for exa
by using appropriate compilation tools to conceal protected interfaces and data.

The architecture is defined in a modular way so that, where necessary, it is possib
implementations to create protection boundaries between:

• Application components, which do not trust each other;

• Components supporting security services and other components;

• Components supporting security services and each other.

In addition, controlled communication across protection boundaries may be requi
In such cases, it must be possible to constrain components within a protection
boundary to interact with components outside the protection boundary only via
controlled communications paths (it must not be possible to use alternative paths
Such communication may take many forms, ranging from explicit message passin
implicit sharing of memory.

Protection
Domain A

Protection
Domain B

Controlled
Relationship

Protection
Domain A

Protection
Domain B

Security Service
2-40 Security Service, v1.7 March 2001

2

A

n
iven.

fore
 to
h

s

arily

ject

d
2.2.5 Security Object Models

This section describes the objects required to provide security in a secure CORB
system from three viewpoints:

1. The model as seen by applications.

2. The model as seen by administrators and administrative applications.

3. The model as seen by the objects implementing the secure object system.

For each viewpoint, the model describes the objects and the relationships betwee
them, and outlines the operations they support. A summary of all objects is also g

2.2.5.1 The Model as Seen by Applications

Many applications in a secure CORBA system are unaware of security, and there
do not call on the security interfaces. This subsection is therefore mainly relevant
those applications that are aware of and utilize security. Facilities available to suc
applications are:

• Finding what security features this implementation supports.

• Establishing a principal’s credentials for using the system. Authenticating the
principal may be necessary.

• Selecting various security attributes (particularly privileges) to affect later
invocations and access decisions.

• Making a secure invocation.

• Handling security at a target object and at intermediates in a chain of objects,
including use of credentials for application control of access and delegation.

• Auditing application activities.

• Non-repudiation facility -- generation and verification of evidence so that action
cannot be repudiated.

• Finding the security policies that apply to this object.

The Security Service interfaces that are available to the application writer are prim
found in the SecurityLevel1 , SecurityLevel2 , NRservice , and SecurityAdmin
modules.

Finding Security Features

An application can find out what security features are supported by this secure ob
implementation. It does this by calling on the ORB to get_service_information .
Information returned includes the security functionality level and options supporte
and the version of the security specification to which it conforms. It also includes
security mechanisms supported (though the ORB Security Services, rather than
applications, need this).
Security Service, v1.7 Security Architecture March 2001 2-41

2

s

im to

ribed

ser

It may
n is
Establishing Credentials

If the principal has already been authenticated outside the object system, then
Credentials can be obtained from Current .

If the principal has not been authenticated, but is only going to use public service
which do not require presentation of authenticated privileges, a Credentials object
may be created without any authenticated principal information.

If the principal has not been authenticated, but is going to use services that need h
be, then authentication is needed as shown in Figure 2-28.

Figure 2-28 Authentication

User sponsor

The user sponsor is the code that calls the CORBA Security interfaces for user
authentication. It need not be an object, and no interface to it is defined. It is desc
here so that the process of Credentials acquisition may be understood.

The user provides identity and authentication data (such as a password) to the u
sponsor, and this calls on the Principal Authenticator object, which authenticates
the principal (in this case, the user) and obtains Credentials for it containing
authenticated identity and privileges.

The user sponsor represents the entry point for the user into the secure system.
have been activated, and have authenticated the user, before any client applicatio
loaded. This allows unmodified, security-unaware client applications to have
Credentials established transparently, prior to making invocations.

There is no concept of a target object sponsor.

user

..

Principal
Authenticator Credentials Current

���
����������������

��������������
���

���
���������������
���������������

create

User
Sponsor Client

�� ����������
request

ORB
2-42 Security Service, v1.7 March 2001

2

r
.

nd
 and

t.

r
faces

,

quent

curity-
it
Principal Authenticator

The Principal Authenticator object is the application-visible object responsible fo
the creation of Credentials for a given principal. This is achieved in one of two ways
If the principal is to be authenticated within the object system, the user sponsor
invokes the authenticate operation of the Principal Authenticator object (and
continue_authentication if needed for multi-exchange authentication dialogues).

Credentials

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated (or unauthenticated) identities and privileges a
information for establishing security associations. It provides operations to obtain
set security attributes of the principal it represents.

There may be credentials for more than one principal, for example, the initiating
principal who requested some action and the principal for the current active objec
Credentials are used on invocations and for non-repudiation.

There is an is_valid operation to check if the credentials are valid and a refresh
operation to refresh the credentials if possible.

Current

The Current object represents the current execution context at both client (both fo
object or non-object clients) and target objects. In a secure environment, the inter
SecurityLevel1::Current , which is derived from CORBA::Current and
SecurityLevel2::Current , which is derived from SecurityLevel1::Current , give
access to security information associated with the execution context. Current gives
access to the Credentials associated with the execution environment. Object
invocations use Credentials in SecurityManager , unless they have been overridden
by a security aware client, in the specific object reference being used for the
invocation. If a user sponsor is used, it should set the user’s credentials for subse
invocations in Current . This may also be done as the result of initializing the ORB
when the user has been authenticated outside the object system. This allows a se
unaware application to utilize the credentials without having to perform any explic
operation on them.

At target and intermediate objects, other Credentials are also available via Current .

Handling Multiple Credentials

An application object may use different Credentials with different security
characteristics for different activities.
Security Service, v1.7 Security Architecture March 2001 2-43

2

ry,

the

ent

een

e a

with

e
als. It

 this

Figure 2-29 Multiple Credentials

The Credentials::copy operation can be used to make a copy of the Credentials
object. The new Credentials object (i.e., the copy) can then be modified as necessa
using its interface, before it is used in an invocation.

When all required changes have been made the credentials may be specified as
credentials for all subsequent invocations by the setting of an
InvocationCredentialsPolicy on PolicyCurrent .

At any stage, a client or target object can find the default credentials for subsequ
invocations by calling PolicyCurrent::get_policy_overrides , asking for the
InvocationCredentialsPolicy . These default credentials will be used in all
invocations using object references in which the invocation credentials have not b
overridden.

Selecting Security Attributes

A client may require different security for different purposes, for example, to enforc
least privilege policy and so specify that limited privileges should be used when
calling particular objects, or collections of objects, and restrict the scope to which
these privileges are propagated. A client may also want to protect conversations
different targets differently.

There are two ways to change security attributes for a principal:

1. Setting attributes on the credentials for that principal. If attributes are set on th
credentials, these apply to subsequent object invocations using those credenti
can therefore apply to invocations of many target objects.

2. Overriding InvocationCredentialsPolicy on the target object reference. The
policies thus set apply to subsequent invocations, which this client makes using
reference.

��� ���������������������������������������
���

��������������������
������������������
������������������

����
���

�������������������
�������������������

copyCredentials Credentials Current

Object
(client or
target)

InvocationCredentialsPolicy

Copy
2-44 Security Service, v1.7 March 2001

2

iated

ded

e
cified

ation.

ct

s the

e has

 the
In both cases, the change applies immediately to further object invocations assoc
with these credentials or this object reference.

Figure 2-30 Changing Security Attributes

Setting any of these attributes may result in a new security association being nee
between this client and target.

Note – This specification does not contain an operation to restrict when and wher
these privileges can be used in target objects or delegated, though this may be spe
in the future (see “Target Control of Message Protection” in Appendix F).

A client may want to use different privileges or controls when invoking different
targets. It can do this by obtaining a new object reference using the
set_policy_overrides specifying the invocation credentials policy to be used with
that target, and then use the object reference thus obtained to carry out the invoc

A client may want to specify that a particular quality of protection applies only to
selected invocations of a target object. For example, it may want confidentiality of
selected messages. The client can do this by using set_policy_overrides , specifying
a QOP Policy on the new object reference. It can continue to use the original obje
reference for those invocations where confidentiality is no longer required.

The set_policy_overrides operation returns a new object reference to the same
target object as the one on which this operation is invoked. This new reference ha
policy overrides set in it. Any invocations through this new reference will use the
overrides set in the reference. The creation of this newly annotated object referenc
no effect on the target object.

Equivalent get_ operations are also provided to permit an application to determine
security specific options currently requested, for example get_attributes (privileges,
and other attributes such as audit id).

The security features, invocation credentials, qop, and mechanism related policies that
are in effect on a given object reference can be obtained by using the get_policy
operation asking for the appropriate type of policy object.

Client Credentials

Object

set_attributes

set_policy_overrides

for QOP Policy and Invocation Credentials Policy
Security Service, v1.7 Security Architecture March 2001 2-45

2

the

es
en
ess

ion

e

Making a Secure Invocation

A secure invocation is made in the same way as any other object invocation, but
actual invocation is mediated by the ORB Security Services, invisibly to the
application, which enforce the security requirements, both in terms of policy and
application preference. The following diagram shows an application making the
invocation, and the ORB Security Services utilizing the security information in
Current , and hence the Credentials there.

Figure 2-31 Making a Secure Invocation

Note – For any given invocation, it is target and client security policy that determin
which (if any) ORB Security Services mediate that invocation. If the policy for a giv
invocation requires no security, then no services will be used. Similarly, if only acc
control is required, then only the ORB Security Service responsible for the provis
of access control will be invoked.

Security at the Target

At the target, as at the client, the Current object is the representative of the local
execution context within which the target object’s code is executing. The Current
object can be used by the target object, or by ORB and Object Service code in th
target object’s execution context, to obtain security information about an incoming
security association and the principal on whose behalf the invocation was made.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

target obj ref

Current
2-46 Security Service, v1.7 March 2001

2

 the

t

ften
on.
nt, as
Figure 2-32 Target Object Security

A security-aware target application may obtain information about the attributes of
principal responsible for the request by invoking the Current::get_attributes
operation. The target normally uses get_attributes to obtain the privilege attributes it
needs to make its own access decisions.

When Current::get_attributes is invoked from the target object it returns the
attributes from the incoming Credentials from the client. When
Current::get_attributes is invoked by a client the attributes from the Credentials
of the user (e.g., the one that was created by the PrincipalAuthenticator) is returned.
Invoking Credentials::get_attributes always returns the attributes contained in tha
Credentials object.

Intermediate Objects in a Chain of Objects

When a client calls a target object to perform some operation, this target object o
calls another object to perform some function, which calls another object and so
Each intermediate object in such a chain acts first as a target, and then as a clie
shown in Figure 2-33 on page 2-48.

Target
Object

request

application
access decision

Current Credentials

get_attributes

���� ��������������������������
Security Service, v1.7 Security Architecture March 2001 2-47

2

s
r the
n.
and
 the
ll be
Figure 2-33 Security-unaware Intermediate Object

For a security-unaware intermediate object, Current has a reference to the security
context established with the incoming client. When this intermediate object invoke
another target, either the delegated credentials from the client or the credentials fo
intermediate object’s principal (or both) become the current ones for the invocatio
The security policy for this intermediate object governs which credentials to use,
the ORB Security Services enforce the policy, passing the required credentials to
target, subject to any delegation constraints. The intermediate object’s principal wi
authenticated, if needed, by the ORB Security Services.

A security-aware intermediate object can:

• Use the privileges of any delegated credentials for access control.

• Decide which credentials to use when invoking further targets.

• Restrict the privileges available via these credentials to further clients (where
security technology permits).

incoming request

Current

Credentials
(delegated and/or

object’s own)

Intermediate Object
(acts as target, then client)

to next targetrequest
2-48 Security Service, v1.7 March 2001

2

,” on

 the

than

dify
ion.

n the
Figure 2-34 Security-aware Intermediate Object

After a chain of object calls, the target can call Current::get_attributes as
previously described. Note that this call always obtains the privilege and other
attributes associated with the first of the received credentials.

The target can use the received_credentials attribute of Current to get the
incoming credentials. After a composite delegation (see Section 2.1.6, “Delegation
page 2-13), the credentials are of the initiator and immediate invoker. After traced
delegation, credentials for all intermediates in the chain will be present (as well as
initiator). If a target object receives a request which includes credentials for more
one principal, it may choose which privileges to use for access control and which
credentials to delegate, subject to policy.

An intermediate object may wish to make a copy of the incoming credentials, mo
and then delegate them, though not all implementations will support this modificat
In this case, it must acquire a reference to the incoming credentials (using the
received_credentials attribute of Current), and then use
Credentials::set_attributes to modify them. Finally, the intermediate object can
place the received credentials in an InvocationCredentialsPolicy for use in making
subsequent invocations.

If the intermediate object wishes to change the association security defaults (for
example, the quality of protection) for subsequent invocations to a specific target
object, it can do so by using the Object::set_policy_overrides operation to create a
copy of the object reference to the target with the required QOP set as override i
object reference thus obtained. The overridden QOP will apply to subsequent
invocations through this new reference.

incoming request

Current

received

Intermediate Object
(acts as target, then client)

to next targetrequest

credentials own
credentials

invocation
credentials

get_credentials set_credentials

���

���

���
���
���
���
Security Service, v1.7 Security Architecture March 2001 2-49

2

ome
. In

other

ds to

ions.
target
ticated
They

.

ss

ke
r.

imilar
from
 as

f
 it is
The intermediate object may be a principal and wish to use its own identity and s
specific privileges in further invocations, rather than delegating the ones received
this case, it can call authenticate operation of the PrincipalAuthenticator to obtain
the appropriate credential, and then call Credentials::set_attributes to establish the
appropriate rights.

If the intermediate does not have its own individual Credential object (for example, as
it does not have an individual security name) but instead shares credentials with
objects, it can us the own_credentials attribute of Current to get a copy of the
Credentials (which will have been set up automatically). It can then do a
Credentials::copy and then a Credentials::set_attributes , etc. on these, as
appropriate and then use it to obtain a new object reference for the object it inten
invoke, with invocation credentials policy overridden using the Credentials
constructed above.

Security Mechanisms

Applications are normally aware of the security mechanism used to secure invocat
The secure object system is aware of the mechanisms available to both client and
object and can choose an acceptable mechanism. However, some security-sophis
applications may need to know about, or even control the choice of mechanisms.
can get information on the currently in effect mechanism policy by using the
get_policy operation of the object reference. They can do invocations using a
different mechanism from the default by using set_policy_overrides operation of
the object reference to obtain a new object reference with the desired mechanism
policy set as override in it and use it for invocations that need the new mechanism

Application Access Policies

Applications can enforce their own access policies. No standard application acce
policy is defined, as different applications are likely to want different criteria for
deciding whether access is permitted. For example, an application may want to ta
into account data values such as the amount of money involved in a funds transfe

However, it is recommended that the application use an access decision object s
to the one used for the invocation access policy. This is to isolate the application
details of the policy. Therefore, the application should decide if access is needed
shown in Figure 2-35 on page 2-50.

Figure 2-35 access_allowed Application

The application can specify the privileges of the initiating principal and a variety o
authorization data, which could include the function being performed, and the data
being performed on.

Access
Application

access_allowed

Object
Decision
2-50 Security Service, v1.7 March 2001

2

ccess
to
 to the

 using
el,”

it

th
dit

ject

type

in

o

An application access policy can be used to supplement the standard invocation a
policy with an application-defined policy. Such a policy might, for example, take in
account the parameters to the request. In this case, the authorization data passed
application-defined policy would be likely to include the request’s operation,
parameters, and target object.

The application access policy could be associated with the domain, and managed
the domain structure as for other policies (see Section 2.2.5.2, “Administrative Mod
on page 2-58). In this case, the application obtains the Access Policy object as shown
in Figure 2-36.

Figure 2-36 get_security_policy Application

However, the application could choose to manage its access policy differently.

Auditing Application Activities

Applications can enforce their own audit policies, auditing their own activities. Aud
policies specify the selection criteria for deciding whether to audit events.

As for application access policies, application audit policies can be associated wi
domains and managed via the domain structure. No standard application level au
policy is specified, as different applications may want to use different selectors in
deciding which events to audit. Application events are generally not related to ob
invocations. Applications can provide their own audit policies, which use different
criteria. The most common selectors for these audit policies to use are the event
and its success or failure, the audit_id , and the time. (Management of such policies
can generally be done using the interfaces for audit policy administration defined
Section 2.4.5, “Audit Policies,” on page 2-129, by specifying new selectors,
appropriate to the application concerned.)

Whether or not the application uses an audit policy, it uses an Audit Channel object
to write the audit records. One Audit Channel object is created at ORB initialization
time, and this is used for all system auditing. Applications can use different audit
channels. The way an Audit Channel object handles the audit records is not visible t
the caller. It may filter them, route them to appropriate audit trails, or cause event
alarms. Different Audit Channel objects may be used to send audit records to
different audit trails.

SecurityApplication
get_security_policy()

Manager
Security Service, v1.7 Security Architecture March 2001 2-51

2

ectors
 the
ity

nel
 with

ation

s
ith

Applications and system components both invoke the audit_write operation to send
audit records to the audit trail.

Figure 2-37 audit_write Application

If an application is using an audit policy administered via domains, it uses an Audit
Decision object (see Section 2.3.10, “Security Audit,” on page 2-99) to decide
whether to audit an event. It can find the appropriate Audit Decision object using the
audit_decision attribute of Current as follows.

Figure 2-38 Audit Decision Object

The application invokes the audit_needed operation of the Audit Decision object,
passing the values required to decide whether auditing is needed. (This set of sel
could include, for example, the type of event, its success or failure, the identity of
caller, the time, etc. See administration of audit policies in Section 2.3.10, “Secur
Audit,” on page 2-99.)

The audit channel to be used in conjunction with an audit policy object can be
identified to the audit policy object with an audit channel id. The Audit Decision
object uses this Audit Channel Id to gain access to the corresponding Audit Chan
and return it to the user. Thus the application can use an Audit Channel associated
the application (and these can link into the system audit services). If so, the applic
uses the audit_channel attribute of the Audit Decision object to find the Audit
Channel object to use. However, applications can create their own Audit Channel
with the help of the underlying audit service, and register their Audit Channel Ids w
the appropriate Audit Policy object. The association between the Audit Channel Id
and the audit channel is maintained by the underlying audit service, which is not
specified in this chapter.

Audit ChannelApplication
audit_write

Audit DecisionApplication
audit_needed

audit_channel Object

Current

audit_decision
2-52 Security Service, v1.7 March 2001

2

ed

of
d.
dence

s
e

luded

in

 (or

n
.

ined

a
Finding What Security Policies Apply

An application may want to find out what policies the system is enforcing on its
behalf. For example, it may want to know the default quality of protection to be us
by default for messages or for non-repudiation evidence.

To do this, it can call SecurityManager::get_security_policy , and then the
appropriate get_ operation of the policy object obtained as defined in Section 2.4,
“Administrator’s Interfaces,” on page 2-115 (if permitted).

Non-repudiation

The non-repudiation services in this specification provide generation of evidence
actions and later verification of this evidence, to prove that the action has occurre
There is often data associated with the action, so the service needs to provide evi
of the data used, as well as the type of action.

These core facilities can be used to build a range of non-repudiation services. It i
envisioned that delivery services will be implemented to deliver this evidence to wher
it is needed and evidence stores will be built for use by adjudicators. As different
services may have different requirements for these, interfaces for them are not inc
in this specification.

Non-repudiation Credentials and Policies

Non-repudiation operations are performed on NRCredentials . As for any other
Credentials object, these hold the identity and attributes of a principal. However,
this case, the attributes include whatever is needed for identifying the user for
generating and checking evidence. For example, it might include the principal’s key
provide access to it) as needed to sign the evidence.

An application can set security attributes related to non-repudiation using the
NRCredentials::set_NR_features operation.

Figure 2-39 set_NR_features Operation

The set_NR_features can be used to specify, for example, the quality of protectio
and the mechanism to be used when generating evidence using these credentials

By default, the features are those associated with the non-repudiation policy obta
by invoking SecurityManager::get_security_policy specifying
Security::SecNonRepudiation . However, non-repudiation policies may come from
other sources. For example, the policy to be used when generating evidence for
particular recipient may be supplied by that recipient.

NRCredentialsApplication
set_NR_features
Security Service, v1.7 Security Architecture March 2001 2-53

2

be

ls the

able.

rated

ring

h is

e

n
s of

 the
the
nce,
rily
e
There is an NRCredentials::get_NR_features operation equivalent to
set_NR_features .

Evidence generation and verification operations are also performed on
NRCredentials objects. These are described next.

Using Non-Repudiation Services

An application can generate evidence associated with an action so that it cannot
repudiated at a later date. All evidence and related information is carried in non-
repudiation tokens. (The details of these are mechanism specific.)

The application decides that it wishes to generate some proof of an action and cal
generate_token operation of an NRCredentials object.

Figure 2-40 generate_token Operation

This evidence is created in the form of a non-repudiation token rendered unforge
Generation of the token uses the initiating principal’s security attributes in the
NRCredentials (normally a private key), for example, to sign the evidence.

Depending on the underlying cryptographic techniques used, the evidence is gene
as:

• A secure envelope of data based on symmetric cryptographic algorithms requi
what is termed to be a trusted third party as the evidence generating authority.

• A digital signature of data based on asymmetric cryptographic algorithms whic
assured by public key certificates, issued by a Certification Authority.

Depending on the non-repudiation policy in effect for a specific application and th
legal environment, additional information (such as certificates or a counter digital
signature from a Time Stamping Authority) maybe required to complete the non-
repudiation information. A time reference is always provided with a non-repudiatio
token. A Notary service may be required to provide assurance about the propertie
the data.

Complete Evidence

Non-repudiation evidence may have to be verified long after it is generated. While
information necessary to verify the evidence (e.g., the public key of the signer of
evidence, the public key of the trusted time service used to countersign the evide
the details of the policy under which the evidence was generated, etc.) will ordina
be easily accessible at the time the evidence is generated, that information may b
difficult or impossible to assemble a long time afterward.

NRCredentialsApplication generate_token
(e.g., proof of creation)
2-54 Security Service, v1.7 March 2001

2

side
l
ce.

n of

re.

e
 two

 and

a

aring

n of

The CORBA Non-repudiation Service provides facilities for incorporating all
information necessary for the verification of a piece of non-repudiation evidence in
the evidence token itself. A token including both non-repudiation evidence and al
information necessary to verify that evidence is said to contain “complete” eviden

There may be policy-related limitations on the time periods during which complete
evidence may be formed. For example, Non-repudiation policy may permit additio
the signer’s public key to the evidence only after expiration of the interval, during
which the signer may permissibly declare that key to have been compromised.
Similarly, the policy may require application of the Trusted Time Service
countersignature within a specified interval after application of the signer’s signatu

To facilitate the generation of complete evidence, the information returned from th
calls which verify evidence and request formation of complete evidence, includes
indicators (complete_evidence_before and complete_evidence_after)
indicating the earliest time at which complete evidence may usefully be requested
the latest time at which complete evidence can successfully be formed.

A call to verify_evidence before complete evidence can be formed may result in
response declaring the evidence to be “conditionally valid.” This means that the
evidence is not invalid at the current time, but a future event (e.g., the signer decl
his key compromised) might cause the evidence to be invalid when complete.

Figure 2-41 on page 2-56 illustrates the policy considerations relating to generatio
complete evidence, and the sequence of actions involved in generating and using
complete evidence.
Security Service, v1.7 Security Architecture March 2001 2-55

2

s is

icy,
ese
tures

n
riate,
Figure 2-41 Non-repudiation Service

An application may receive a token and need to know what sort of token it is. Thi
done using get_token_details . When the token contains evidence,
get_token_details can be used to extract details such as the non-repudiation pol
the evidence type, the originator’s name, and the date and time of generation. Th
details can be used to select the appropriate non-repudiation policy and other fea
(using set_NR_features), as necessary for verifying the evidence. When the toke
contains a request to send back evidence to one or more recipients, then if approp
evidence can be generated.

(< >)

trusted time service
countersignature
window

user key repudiation window

Time

Non-Repudiation Service

event
data

evidence
token

evidence
token
with
trusted
timestamp

OK

complete_evidence_before complete_evidence_after

form_complete_evidence

form_
complete_
evidence

verify_
evidence

generate_
token

evidence
token

complete
2-56 Security Service, v1.7 March 2001

2

n

hat

oes
An application verifies the evidence using the verify_evidence operation.

Figure 2-42 verify_evidence operation

Verification of non-repudiation tokens uses information associated with the Non-
repudiation Policy applicable to the non-repudiation token and security informatio
about the recipient who is verifying the evidence (normally the public key from a
Certification Authority and a set of trust relationships between Certification
Authorities).

Using Non-Repudiation for Receipt of Messages

An application receiving a message with proof of origin may handle it as shown in
Figure 2-43.

Figure 2-43 Proof of Origin Message

• The application receives the incoming message with a non-repudiation token t
has been generated by the originator.

• The application now wishes to know the type of token that it has received. It d
this by calling the NRCredentials::get_token_details operation. The token may
be:

• A request that evidence be sent back (such as an acknowledge of receipt)

• Evidence of an action (such as a proof of creation)

• Both evidence and a request for further evidence.

• The application’s next action depends on which of the three cases applies.

• In the first case, the application verifies that it is appropriate to generate the
requested evidence and, if so, generates that evidence using
NRCredentials::generate_token .

Application NRCredentialsverify_evidence

NRCredentials NRCredentials

Application
Object

incoming request
with message plus
evidence (e.g., proof
of origin)

deliver message
and evidence to
originator (e.g.,
proof of receipt)

get_token_details
& verify_evidence
(e.g., proof of

generate_evidence
(e.g., proof of

origin)
receipt)
Security Service, v1.7 Security Architecture March 2001 2-57

2

dence

e,

store
. It

he
s as

ins

ibed
• In the second case, the application retrieves the data associated with the evi
if it is outside the token, and verifies the evidence using
NRCredentials::verify_evidence , presenting the token alone or the
concatenation of the token and the data.

• In the last case, the application verifies the received evidence by first calling
NRCredentials::verify_evidence , and then generating evidence if appropriat
as in the first case.

• If the application receives a token that contains valid evidence, and wishes to
it for later use, it needs to make sure that it holds all the necessary information
may need to call NRCredentials::form_complete_evidence in order to get the
complete evidence needed when this could not be provided using the verify
operation.

• When the application has generated evidence as the result of a request from t
originator of the message, the application must send it to the various recipient
indicated in the NR token received.

Using Non-repudiation Services for Adjudication

Adjudication applications use the NRCredentials::verify_evidence operation,
which must return complete evidence to settle disputes.

2.2.5.2 Administrative Model

The administrative model described here is concerned with administering security
policies.

• Administration of security environment domains and security technology doma
may be implementation specific, so it is not covered here. This means
administrating security technology specific objects is out of the scope of this
specification.

• Explicit management of nonsecurity aspects of domains is not covered.

Administrative activities covered here are:

• Creating objects in a secure environment subject to the security policies

• Finding the domain managers that apply to this object.

• Finding the policies for which these domain managers are responsible.

• Setting security policy details for these policy objects.

• Specifying which rights give access to which operations in support of access
policies.

The model used here is not specific to security, though the specific policies descr
are security policies.

Security Policies

Security policies may affect the security enforced:
2-58 Security Service, v1.7 March 2001

2

n
ion

)

this

e

ose

ts in

 an
n

ns

• By applications. In general, enforcing policy within applications is an applicatio
concern, so it is not covered by this specification. However, where the applicat
uses underlying security services, it will be subject to their policies.

• By the ORB Security Services during object invocation (the main focus of this
specification).

• In other security object services, particularly authentication and audit.

• In any underlying security services. (In general, this is not covered by this
specification, as these security services are often security technology specific.

This specification defines the following security policy types:

Invocation access policy

The object that implements the access control policy for invocations of objects in
domain.

Invocation audit policy

This controls which types of events during object invocation are audited, and the
criteria controlling auditing of these events.

Secure invocation policy

This specifies security policies associated with security associations and messag
protection. For example, it specifies:

• Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

• Quality of protection of messages (integrity and confidentiality).

There may be separate invocation policies for applications acting as client and th
acting as target objects in this domain. This applies to access, audit, and secure
invocation policies. There may also be separate policies for different types of objec
the domain.

Invocation delegation policy

This controls whether objects of the specified type in this domain, when acting as
intermediate in a chain, by default delegate the received credentials, use their ow
credentials, or pass both.

Application access policy

This policy type can be used by applications to control whether application functio
are permitted. Unlike invocation policies, it does not have to be managed via the
domain structure, but may be managed by the application itself.

Application audit policy

This policy type can be used by applications to control which types of application
events should be audited under what circumstances.
Security Service, v1.7 Security Architecture March 2001 2-59

2

is

ed for
y

he

y

not

ce
atory

r

nced

as

eded.
which
h is
rship,

ype
Non-repudiation policy

Where non-repudiation is supported, a non-repudiation policy has the rules for
generation and verification of evidence.

Construction policy

This controls whether a new domain is created when an object of a specific type
created.

Domains at Object Creation

Any object that is accessible through an ORB must have an object reference creat
it. This is often done as a part of the procedure for creating the object by a factor
object. When a new object reference is created in a secure environment, the ORB
implicitly associates the object reference, and hence the associated object, with t
following elements forming its environment.

• One or more Security Policy Domains, defining all the policies to which the object
is subject.

• The Security Technology Domains, characterizing the particular variants of securit
mechanisms available in the ORB.

• Particular Security Environment Domains where relevant.

The application code involved in the creation of an object, and its reference may
need to be aware of security to protect the objects it creates, if the details are
encapsulated in a Factory object. Automatically making an object reference and hen
the associated object a member of policy domains on creation ensures that mand
controls of enclosing domains are not bypassed.

The ORB will establish these associations when the creator of the object calls
PortableServer::POA::create reference or
PortableServer::POA::create_referece_with_id (see the Portable Object Adapte
chapter of the Common Object Request Broker: Architecture and Specification) or an
equivalent. Some or all of these associations may subsequently be explicitly refere
and modified by administrative or application activity, which might be specifically
security-related but could also occur as a side-effect of some other activity, such
moving an object to another host machine.

In some cases, when a new object reference is created, a new domain is also ne
For example, in a banking system, there may be a domain for each bank branch,
provides policies for bank accounts at that branch. Therefore when a bank branc
created, a new domain is needed. As for a newly created object’s domain membe
if the application code creating the object and the object reference to it is to be
unaware of security, the domain manager must be created transparently to the
application. A construction policy specifies whether new objects reference of this t
in this domain require a new domain.
2-60 Security Service, v1.7 March 2001

2

(i.e.,

ay be

urity

n to

bject
e of

on
This construction policy is enforced at the same time as the domain membership
by POA::create_reference * or equivalent). For details, see the Portable Object
Adapter chapter of the Common Object Request Broker: Architecture and
Specification.

Other Domain and Policy Administration

Once an object reference has been created as a member of a policy domain, it m
moved to other domains using the appropriate domain management facilities (not
specified in this chapter).

Once a domain manager has been created, new security policy objects can be
associated with it using the appropriate domain management facilities. These sec
policy objects are administered as defined in this specification.

The following diagram shows the operations needed by an administrative applicatio
manage security policies.

Figure 2-44 Managing Security Policies

Finding Domain Managers

An application can invoke the get_domain_managers operation on an object
reference to obtain a list of the immediately enclosing domain managers for that o
(i.e., the object associated with the object reference). If these do not have the typ
policy required, a call can be made to get_domain_managers on one of these
domain managers to find its immediately enclosing domains.

Finding the Policies

Having found a domain manager, the administrative application can now find the
security policies associated with that domain by calling get_domain_policy on the
domain manager specifying the type of policy it wants (e.g., client secure invocati
policy, application audit policy). This returns the Policy object needed to administer
the policy associated with this domain. Each Policy object supports the operations
required to administer that policy.

Application
Object

Object
Reference

Domain
Manager

Policy
Object

get_domain_managers

get_domain_managers
get_domain_policy(policy type)

set_policy_option
Security Service, v1.7 Security Architecture March 2001 2-61

2

ult

than

ify
ct
 it

n

ent

ns

rity
ation
aces
ive

re of

ain,
In this specification, no facilities are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include defa
rules for this. (Definition of such rules is a potential candidate for future security
specifications. See the “Facilities Not in This Specification” appendix.)

If the policy that applies to the domain manager’s own interface is required (rather
the one for the objects in the domain), then get_policy (rather than
get_domain_policy) is used.

Setting Security Policy Details

Having found the required security Policy object, the application uses its interface to
set the policy.

The operations available through the interface depend on the type of policy. For
example, the delegation policy only requires a delegation mode to be set to spec
delegation mode used when the object acts as an intermediate in a chain of obje
invocations, whereas an access policy will need to have an operation that makes
possible to specify who can access the objects.

Administrative interfaces are defined in Section 2.4, “Administrator’s Interfaces,” o
page 2-115, for the standard policy types, which all ORBs supporting security
functionality Level 2 support.

Different administration may be needed if standard policies are replaced by differ
policies. A supplier providing another policy may therefore have to specify its
administrative interfaces.

Specifying Use of Rights for Operation Access

The access policy is used to decide whether a user with specified privileges has
specified rights. A specific right may permit access to exactly one operation. More
often, the right permits access to a set of operations.

A RequiredRights object specifies which rights are required to use which operatio
of an interface. The administrator can set_required_rights on this object.

2.2.5.3 The Model as Seen by the Objects Implementing Security

Security is provided for security-unaware applications by implementation level secu
objects, which are not directly accessible to applications. These same implement
objects are also used to support the application-visible security objects and interf
described in “The Model as Seen by Applications” on page 2-41 and “Administrat
Model” on page 2-58.

There are two places where security is provided for applications, which are unawa
security. These are:

1. On object invocation when invocation time policies are automatically enforced.

2. On object creation, when an object automatically becomes a member of a dom
and therefore subject to the domain’s policies.
2-62 Security Service, v1.7 March 2001

2

re

bject
er
B

nt
h the

 the

urity

r a

Implementor’s View of Secure Invocations

Figure 2-45 shows the implementation objects and services used to support secu
invocations.

Figure 2-45 Securing Invocations

ORB Security Services

ORB Security Services are interposed in the path between the client and target o
to handle the security of the object invocation. They may be interspersed with oth
ORB services, though where message protection is used, this will be the last OR
service at the client side, as the request cannot be changed after this.

The ORB services use the policy objects to find which policies to apply to the clie
and target object, and hence the invocation. The ORB and ORB Services establis
binding between client and target object as defined in ORB Services, under
Section 2.2.2.2, “ORB Services,” on page 2-34. The ORB Security Services call on
security services to provide the required security.

Security Policy

At the client, the security policies associated with it are accessed by the ORB Sec
Services using the SecurityManager::get_security_policy operation specifying
the type of policy required. At the client, the invocation policies that will be used fo
specific invocation through a specific object reference can be inspected using the

Client

request
request

ORB Core

Target
Object

target obj ref

Current

ORB Security
(and other)
Services

ORB Security
(and other)
Services

Current

Target
Policies

Client
Policies

Security
Services

Security
Services

Binding

�������������������������������
�������������������������������
�������������������������������

���
Binding���

�

�������
�������
�������

� ������� ��� ����������
���

�

���������
���������
���������
Security Service, v1.7 Security Architecture March 2001 2-63

2

licy.
ases,

 the

rce
olicy

get_policy operation on that object reference. At the target,
SecurityManager::get_security_policy is used in a similar way to obtain the
policy associated with the target object.

Figure 2-46 get_security_policy Operation

Once the policy object has been obtained, the ORB Service uses it to enforce po
The operations used to enforce the policy depend on the type of policy. In some c
such as secure invocation or delegation, the ORB Service invokes a get_ operation of
the appropriate Policy object (e.g.,
SecureInvocationPolicy::get_association_options ,
DelegationPolicy::get_delegation_mode) specifying the particular policy options
required (e.g., whether confidentiality is required, and the delegation mode,
respectively). It then uses this information to enforce the policy, for example, pass
required policy options to the Vault to enforce.

Decision objects corresponding to certain policy objects include rules, which enfo
the policy. For example, an access decision object corresponding to the access p
object has the access_allowed operation, which responds with a yes or no.

Specific ORB Security Services and Replaceable Security Services

The specific ORB Security Services and security services included in the CORBA
security object model are shown in Figure 2-47 on page 2-65.

ORB
Security
Service

Security
Policy
Object

get_security_policy(type of policy)

manipulate policy

Manager
2-64 Security Service, v1.7 March 2001

2

is

eed
ects

c

ient
Figure 2-47 ORB Security Services

Two ORB Security Services are shown:

1. The access control service, which is responsible for checking if this operation
permitted and enforcing the invocation audit policy for some event types.

2. The secure invocation service. On the client’s initial use of this object, it may n
to establish a security association between client and target object. It also prot
the application requests and replies between client and target object.

The security services they use are discussed next.

Access Policy

An Access Decision object is used to determine if a given operation on a specifi
target object is permitted. It is obtained by the ORB service using the
access_decision attribute of the Current object. Since the Access Decision
objects are locality constrained, of necessity the access decision objects at the cl
and target are distinct.

Client

reply request

ORB Core

Target
Object

Access
Control

Secure
Invocation

Access
Control

Secure
Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message
to protect
message

��
���
���
���
���
���
���
���
���
���
���
��

����
����
����
����
����
����
����
����
����
����
����
����

������������������������������������
����
����
����
����
����
����
����
����
����
����
������������������������������������

����
����
����
����
����
����
����
����
����
����
����
����

����������������������������������
���
���
���
���
���
���
���
���
���
���
����������������������������������

����
����
����
����
����
����
����
����
����
����
����
����

����������������������������������
�
�
�
�
�
�
�
�
�
�
����������������������������������

�
�
�
�
�
�
�
�
�
�
�
�

create create

replyrequest

ORB Security Services

Security Services
Security Service, v1.7 Security Architecture March 2001 2-65

2

ntrol

res

uture
This

lient
t the

tions

n

diate

.

The ORB service invokes the access_allowed operation on the Access Decision
object specifying the operation required, the principal credentials to be used for
deciding if this access is allowed, etc. This is independent of the type of access co
policy, which may be discretionary using ACLs or capabilities, mandatory labels
usage, etc.

The Access Decision object uses the access policy to decide what rights the
principal has by invoking the get_effective_rights operations on the appropriate
Access Policy object.

If the access policies use rights (rather than directly identifying that this operation is
permitted), the Access Decision object now invokes get_required_rights on the
RequiredRights object to find what rights are needed for this operation. It compa
these rights with the effective rights granted by the policy objects, and if required
rights have been granted, it grants access. This model could be extended in the f
to handle overlapping access policy domains as described in the “Facilities Not in
Specification” appendix.

Figure 2-48 Access Decision Object

Vault

The Vault object is responsible for establishing the security association between c
and target. It is invoked by the Secure Invocation ORB Service at the client and a
target (using init_security_context and accept_security_context). The Vault
creates the security context objects, which are used for any further security opera
for this association.

Authentication of users (and some other principals) is done explicitly using the
authenticate operation described in Section 2.3.3, “Authentication of Principals,” o
page 2-73. Authentication of an intermediate object in a chain (or the principal
representing the object) may be done automatically by the Vault when an interme
object invokes another object.

The Vault, like the security context objects it creates, is invisible to all applications

Access
Policy

Required
Rights

Access
Decision

get_required_rightsget_effective_rights

access_allowed
2-66 Security Service, v1.7 March 2001

2

tials

ible.

nd

lient
r the
 for

nd

urity
 This
2-49

Security Context

For each security association, a pair of Security Context objects (one associated with
the client, and one with the target) provide the security context information.
Establishing the security contexts may require several exchanges of messages
containing security information, for example, to handle mutual authentication or
negotiation of security mechanisms.

Security Context objects maintain the state of the association, such as the creden
used, the target’s security name, and the session key. The is_valid and refresh
operations are supported to check the validity of the context and refresh it if poss

Security Context objects provide operations for protecting messages for integrity a
confidentiality such as protect_message , reclaim_message .

They also have the received_credentials attribute, which is made available via the
Current object.

A security context can persist for many interactions and may be shared when a c
invokes several target objects in the same trusted identity domain. Although neithe
client nor target is aware of an “association,” it is an important optimizing concept
the efficient provision of security services.

Relationship between Implementation Objects for Associations

There is not always a one-for-one relationship between client-target object pairs a
security contexts. For example, if a client uses different privileges for different
invocations on that object, this will result in separate security contexts. Also, a sec
context may be shared between this client’s calls on more than one target object.
is normally the case if the target objects share a security name, as shown in Figure
on page 2-68. Note that the Vault decides whether to use the same or a different
security context based on the target security name (which may be the name of an
object or trusted identity domain).
Security Service, v1.7 Security Architecture March 2001 2-67

2

he
Figure 2-49 Target Objects Sharing Security Names

Implementor’s View of Secure Object Creation

When an object is created in a secure environment, it is associated with Security
Policy, Environment, and Technology domains as described in Section 2.2.5.2,
“Administrative Model,” on page 2-58.

The way it is associated with Environment and Technology domains is ORB
implementation-specific, and therefore not described here.

For policy domains, the construction policy of the application or factory creating t
object is used as shown in Figure 2-50 on page 2-69.

Current

Client Target
Object

T3

Target
Object

T2

Target
Object

T1

obj ref
for T1

obj ref
for T2

obj ref
for T3

Current Current

Security
context for

C-S1

Security
context for

C-T3

Security
context for

C-T3

Security
context for

C-S1

Object sharing
security name S1

T3 messages

T2 messages

T1 messages
2-68 Security Service, v1.7 March 2001

2

B
If the

RB
ses a

eded,
ect.

e has

ted

the
bject
 an
ith

ains
ote:
Figure 2-50 Object Created by Application or Factory

The application (which may be a generic factory) object calls
POA::create_reference or equivalent to create the new object reference. The OR
obtains the construction policy associated with the object reference to be created.
application that is attempting to create the object reference is itself a CORBA object,
then the ORB attempts to obtain the construction policy associated with it. If the O
is unable to obtain a construction policy for the object reference to be created, it u
default construction policy, which does not create a new domain.

The construction policy controls whether, in addition to creating the specified new
object reference, the ORB must also create a new domain. If a new domain is ne
the ORB creates both the requested object reference and a domain manager obj

If a new domain is not needed and the application is itself not an object and henc
no domain associated with it, the ORB uses a default domain to place the newly
created object reference. In all cases a reference to the domain manager associa
with the newly created object reference can be obtained by calling
get_domain_managers on the newly created object’s reference (See the ORB
Interface chapter of the Common Object Request Broker: Architecture and
Specification).

If a new domain is created, the policies initially applicable to it are the policies of
enclosing domain, or an ORB specific default set of policies in the case that the o
reference was created in a situation where there is no enclosing domain (e.g., by
application that is itself not a CORBA object and hence has no domain associated w
it).

The calling application, or an administrative application later, can change the dom
to which this object belongs, using the domain management operations. Please n
these operations do not form a part of this specification.

Application

ORB

application’s
own object
reference

construction
policy
object

BOA::create or equivalent

get_policy(construction policy)

use policy
Security Service, v1.7 Security Architecture March 2001 2-69

2

are

ews

to

ing

hese
ry
ver,
ess is
2.2.5.4 Summary of Objects in the Model

The previous sections have described the various security-related objects, which
available to applications, administrators, and implementors.

Figure 2-51 shows the relationship between the main objects visible in different vi
for three types of security functionality.

1. Authentication of principals and security associations (which includes
authentication between clients and targets) and message protection.

2. Authorization and access control (i.e., the principal being authorized to have
privileges or capabilities and control of access to objects).

3. Accountability -- auditing of security-related events and using non-repudiation
generate and check evidence of actions.

Figure 2-51 Relationship Between Main Objects

Credentials are visible to the application after authentication, for setting or obtain
privileges and capabilities, for access control, and are available to ORB service
implementors. Only the first of these usages is shown.

Policy objects have management operations to allow policies to be maintained. T
operations depend on the type of policy. For example, management of a mandato
access control policy using labels is different from management of an ACL. Howe
at run-time, an access decision object is used, which has a standard “check if acc

Domain Manager

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�� ��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���� ��

���� ��

��� ��

���� ��

����

��������
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

administration
objects

implementation
ORB services

implementation
security objects

application
visible objects

authentication and
security association

authorization and
access control

accountability

Principal
Authenticator Current

Credentials

Secure Invocation

Vault Security
Context

Secure Invocation Policies

Delegation Policy

Access Policies

Access Decision

Access Control

Application
Access Decision

Invocation
Audit
Policy

Appl’n
Audit
Policy

Audit
Decision

Audit
Channel

Non-repudiation
Credentials

Audit
Decision

Audit
Channel
2-70 Security Service, v1.7 March 2001

2

bject
time

-30.

e not
els of

een
e

ts,

ation
dard
e
allowed” operation, whatever the access control policy used. The access policy o
has the management operations, whereas the access decision object has the run
decision operations.

The diagram does not show:

• Application objects (client, target object, target object reference at the client).

• The ORB core (though the security ORB services it calls are shown).

• The construction policy object.

2.3 Application Developer’s Interfaces

2.3.1 Introduction

This section defines the security interfaces used by the application developer who
implements the business logic of the application. For an overview of how these
interfaces are used, see Section 2.2.1.3, “Application Developer View,” on page 2

Please note that applications may be completely unaware of security, and therefor
need to use any of these interfaces. In general, applications may have different lev
security awareness. For example:

• Applications unaware of security, so that an application object, which has not b
designed with security in mind, can participate in a secure object system and b
subject to its controls such as:

• Protection default quality of protection on object invocations.

• Control of who can perform which operations on which objects.

• Auditing of object invocations.

• Applications performing security-relevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

• Applications wanting some control of the security of its requests on other objec
for example, the level of integrity protection of the request in transit.

• Applications that are more sophisticated in how they want to control their
distributed operations, for example, control whether their credentials can be
delegated.

• Applications using more specialist security facilities such as non-repudiation.

Security operations use the standard CORBA exceptions. For example, any invoc
that fails because the security infrastructure does not permit it, will raise the stan
CORBA::NO_PERMISSION exception. A security operation that fails because th
feature requested is not supported in this implementation will raise a
CORBA::NO_IMPLEMENT exception. Any parameter that has inappropriate
values should be flagged by raising the CORBA::BAD_PARAM exception. No
security-specific exceptions are specified.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-71

2

e
ges

at
y or
ge

ies

ws:

e

ent
s

ll

hile
pable

s

 of
al
2.3.1.1 Security Functionality Packages

Two security functionality packages and one optional security functionality packag
are defined in this specification. In addition, the Security Ready functionality packa
are also described in this and the two following sections.

Security Functionality Level 1 Package

Security functionality Package 1 provides an entry level of security functionality th
applies to all applications running under a secure ORB, whether aware of securit
not. This includes security of invocations between client and target object, messa
protection, some delegation, access control, and audit.

The security functionality is in general specified by administering the security polic
for the objects, and is mainly transparent to applications.

Security Functionality Level 1 Package includes operations for applications as follo
Current::get_attributes allows an application to obtain the privileges and other
attributes of the principal on whose behalf it is operating. It can then use these to
control access to its own functions and data (see Section 2.3.4, “The Credentials
Object,” on page 2-77, and Section 2.3.12, “Access Control,” on page 2-102).

Security Functionality Level 2 Package

This security functionality level provides further security functionality such as mor
delegation options.

It also allows an application aware of security to have more control of the enforcem
of this security. Most of the interfaces specified in this section are only available a
part of this functionality level. Note that although implementations must support a
Level 2 interfaces in order to conform to Security Functionality Level 2, different
implementations of these interfaces may support different semantic extensions, w
maintaining the same core semantics; some implementations will therefore be ca
of enforcing a wider variety of policies than others.

Optional Functionality Package

The only specified optional facility specified here is non-repudiation. The interface
for this are specified in Section 2.3.14, “Non-repudiation,” on page 2-106.

It is possible to add other security policies to this specification, for example, extra
access or delegation policies, but these are not part of this specification.

2.3.1.2 Introduction to the Interfaces

The interfaces specified here, as in other sections, are designed to allow a choice
security policies and mechanisms. Where possible, they are based on internation
standard interfaces. Several of the operations in the Credentials interface are based
on those of GSS-API.
2-72 Security Service, v1.7 March 2001

2

ation

ata

 set of
ies. In
.

ard

dule

r
out

t
e

For
ay be

ess
Data Types

Many of the security data types used by applications are also used for implement
interfaces; therefore, these are defined in a separate module called Security. See
Appendix B, “General Security Data Module,” on page B-1 for the details of the d
types used by the interfaces.

Some data types, such as security attributes and audit events, have an extensible
values, so the user can add values as required to meet user-specific security polic
these cases, a family is identified, and then a set of types or values for this family
Family identifiers 0-7 are reserved for OMG-defined families, and therefore stand
values. More details of these families and associated data types are given in the
“Values for Standard Data Types” in Appendix B.

In the interface specifications in the rest of this section, data types defined in mo
Security are included without the qualifying Security:: for ease of readability. The full
definitions are included in Appendices B and C.

2.3.2 Finding Security Features

2.3.2.1 Description of Facilities

An application can find out what security facilities this implementation supports, fo
example, which security functionality level and options it supports. It can also find
what security technology is used to provide this implementation.

The CORBA::ORB::get_service_information operation is used to determine wha
security features are supported by this ORB (see the ORB Interface chapter of th
Common Object Request Broker: Architecture and Specification). To request
information about Security service the CORBA::ServiceType constant value,
CORBA::Security should be used. To see what the definition of various service
options relevant to security are see the constant definitions of type
CORBA::SecurityOptions in the IDL Security module located in Appendix B.

2.3.3 Authentication of Principals

2.3.3.1 Description of Facilities

A principal must establish its credentials before it can invoke an object securely.
many clients, there are default credentials, created when the user logs on. This m
performed prior to using any object system client. These default credentials are
automatically used on object invocation without the client having to take specific
action. Even if user authentication is executed within the object system, it should
normally be done by a user sponsor/login client, which is separate from the busin
application client, so that business applications can remain unaware of security.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-73

2

ever,
ncipal
re

ated

pal

 be

as

e, the

re

ject
In most cases, principals must be authenticated to establish their credentials. How
some services accept requests from unauthenticated users. In this case, if the pri
has no credentials at the time the request is made, unauthenticated credentials a
created automatically for it.

If the user (or other principal) requires authentication and has not been authentic
prior to calling the object system, the (login) client must invoke the Principal
Authenticator object to authenticate, and optionally select attributes for, the princi
for this session. This creates the required Credentials object and makes it available as
the default credentials for this client. Its object reference is also returned so it can
used for other operations on the Credentials . If the object system supports non-
repudiation, the credentials returned can be used for non-repudiation operations
specified in Section 2.3.14, “Non-repudiation,” on page 2-106.

Authentication of principals may require more than one step, for example, when a
challenge/response or other multi-step authentication method is used. In this cas
authentication service will return information to the caller, which may be used in
further interactions with the user before continuing the authentication. So there a
both authenticate and continue_authentication operations of the Principal
Authenticator object.

There is no need for an application to explicitly authenticate itself to act as an
initiating principal prior to invoking other objects, as this will be performed
automatically if needed. However, it does need to be performed explicitly if the ob
wants to specify particular attributes.

The Principal Authenticator object creates a Credentials object and places it on
the Current object’s own_credentials list only after authenticate or
continue_authentication returns a value of ‘SecAuthSuccess .’ The Principal
Authenticator always places new credentials at the beginning of the own_credentials
list. The application may remove Credentials objects from the own_credentials list
with the SecurityManager::remove_own_credentials operation.

The Principal Authenticator object is a locality constrained object.

2.3.3.2 The SecurityLevel2::PrincipalAuthenticator Interface

This section describes the PrincipalAuthenticator interface that has following
operations.

get_supported_authen_methods

This operation returns the authentication methods that are valid for a particular
mechanism that the Vault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.

AuthenticationMethodList get_supported_authen_methods(
in MechanismType mechanism

);
2-74 Security Service, v1.7 March 2001

2

ge
tem.

s

s

g

of
Parameters

Return Value

The list of authentication methods supported by this PrincipalAuthenticator object
for the particular mechanism.

authenticate

This operation is called to authenticate the principal and optionally request privile
attributes that the principal requires during its capsule specific session with the sys
It creates a capsule specific Credentials object including the required attributes and i
placed on the SecurityManager object’s own_credentials list according to the
credential’s mechanism type.

AuthenticationStatus authenticate(
in AuthenticationMethod method,
in MechanismType mechanism;
in SecurityName security_name,
in any auth_data,
in AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Parameters

mechanism Contains the mechanism for which the authentication method
are valid.

method The identifier of the authentication method used.

mechanism The security mechanism with which to create the Credentials .

security_name The principal’s identification information (e.g., login name).

auth_data The principal’s authentication information such as password or lon
term key.

privileges The privilege attributes requested.

creds This parameter contains the locality constrained object reference
the newly created Credentials object. It is usable and placed on the
Current object’s own_credentials list only if the return value is
‘SecAuthSuccess .’

auth_specific_data Information specific to the particular authentication service used.

continuation_data If the return parameter from the authenticate operation is
‘SecAuthContinue ,’ then this parameter contains challenge
information for authentication continuation.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-75

2

 that

t
Return Value

The return parameter is used to specify the result of the operation.

continue_authentication

This operation continues the authentication process for authentication procedures
cannot complete in a single operation. An example of this continuation is a
challenge/response type of authentication procedure.

AuthenticationStatus continue_authentication(
in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Parameters

‘SecAuthSuccess’ Indicates that the object reference of the newly created
initialized credentials object is available in the creds
parameter.

‘SecAuthFailure’ Indicates that authentication was in some way inconsisten
or erroneous, and therefore credentials have not been
created.

‘SecAuthContinue’ Indicates that the authentication procedure uses a
challenge/response mechanism. The creds contains the
object reference of a partially initialized Credentials object.
The continuation_data indicates details of the challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information, the validity of which had expired (e.g., expired
password). Credentials have therefore not been created.

response_data The response data to the challenge.

creds Reference of the partially initialized Credentials object. The
Credentials object is fully initialized only when return parameter is
‘SecAuthSuccess .’

continuation_data If the return parameter from the continue_authentication operation
is ‘SecAuthContinue ,’ then this parameter contains challenge
information for authentication continuation.

auth_specific_data Information specific to the particular authentication service used.
2-76 Security Service, v1.7 March 2001

2

n

isms,
lso

ded
c ones
prior
 in

d
ta

ch

of
ty,

r
Return Value

The return parameter is used to specify the result of the operation.

2.3.3.3 Portability Implications

The authenticate and continue_authentication operations allow different
authentication methods to be used. However, methods available are dependent o
availability of underlying authentication mechanisms. This specification does not
dictate that particular mechanisms should be used. However, use of some mechan
(e.g., those involving hardware such as smart cards or finger print readers) may a
require use of device-specific objects so the client using such objects will not be
portable to systems which do not support such devices. It is therefore recommen
that use of both the authenticate operations described here and any device-specifi
be confined to a user sponsor or login client, or that such authentication is done
to calling the object system, where the credentials resulting from this can be used
portable applications.

2.3.4 The Credentials Object

2.3.4.1 Description of Facilities

A Credentials object represents a particular principal’s credential information
specific to the capsule. It includes information such as that principal’s privilege an
identity attributes, such as an audit id. (It also includes some security-sensitive da
required when this principal is involved in peer entity authentication. However, su
data is not visible to applications.)

Each Credentials object is mandated to carry at least one and only one attribute
type Public. The Public attribute has a defining authority of OMG, its value is emp
and it serves only to mark the Credentials with an attribute stipulating that the

‘SecAuthSuccess’ Indicates that the Credentials object whose reference was
identified by the creds parameter is now fully initialized.

‘SecAuthFailure’ Indicates that the response data was in some way
inconsistent or erroneous, and that therefore credentials
have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure requires a furthe
challenge/response. The Credentials object whose reference
was identified in the creds parameter is still only partially
initialized. The continuation_data indicates details of the
next challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some
information whose validity had expired (e.g., expired
password). The Credentials object referred to by the creds
parameter is not valid.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-77

2

ent
y as

ntials

 a

sh

.

in

,

p
principal, authenticated or not, is a member of the “general public.” This requirem
allows access policies to be specified for the general public in much the same wa
policies based on other attributes are specified.

The Credentials object is a locality constrained object.

An application may want to:

• Specify security invocation options to be used by default whenever these crede
are used for object invocations.

• Modify the privilege and other attributes in the credentials, for example, specify
new role or a capability. This can modify the current privileges in use, or the
application can make a copy of the Credentials object first, and then modify the
new copy.

• Inquire about the security attributes currently in the credentials, particularly the
privilege attributes.

• Check if the credentials are still valid or if they have timed out, and if so, refre
them.

Credentials objects are created as the result of:

• Authentication (see Section 2.3.3, “Authentication of Principals,” on page 2-73)

• Copying an existing Credentials object.

• Asking for a Credentials object via Current (see Section 2.3.9, “Security
Operations on Current,” on page 2-97).

The way these credentials are made available for use in invocations is described
Section 2.2, “Security Architecture,” on page 2-28, and defined in detail in
Section 2.3.7, “Operations on Object Reference,” on page 2-86, and Section 2.3.9
“Security Operations on Current,” on page 2-97.

Credentials used for non-repudiation also support further facilities as described in
Section 2.3.14, “Non-repudiation,” on page 2-106.

2.3.4.2 The SecurityLevel2::Credentials Interface

The following operations are in the Credentials interface.

copy

This operation creates a new Credentials object, which is an exact duplicate (a “dee
copy”) of the Credentials object which is the target of the invocation. The return
value is a reference to the newly created copy of the original Credentials object.

Credentials copy();

Parameters

None
2-78 Security Service, v1.7 March 2001

2

es
le of

e

r is
s
he

ause
s

Return Value

An object reference to a copy of the Credentials object, which was the target of the
call.

destroy

This operation destroys the Credentials object that it is invoked on. In general, the
caller is always responsible for destroying its copy of the Credentials object after it is
done with it. When Credentials are used as “in” parameters the callee always mak
a copy if needed. Then onwards the callee is responsible for managing the life-sty
the copy that it makes. In case of Credentials objects that are returned as result, th
caller is responsible for destroying it. In case of “out” parameters, the callee is
responsible for creating it and the caller is responsible for destroying it. The calle
responsible for providing thread safety for Credentials parameters that are passed a
“in” parameters. They must ensure that no other thread modifies the object until t
invoked operation is completed.

void destroy();

Parameters

None

Results

None. The Credentials object is destroyed.

set_attributes

This operation is used to set the attributes for a Credentials object. The operation
set_attributes is used in conjunction with get_attributes to constrain the attributes
associated with a Credentials object.

Some attributes may be tightly bound to the Credentials object based on the
underlying mechanism. If the mechanism supports it, setting those attributes may c
mechanism specific communication with a credentialing party. If the operation fail
because the mechanism underlying the Credentials object does not support modifying
the attributes, a CORBA::BAD_OPERATION exception is raised.

boolean set_attributes(
in AttributeList requested_attributes,
out AttributeList actual_attributes

);
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-79

2

e

the

Parameters

Return Value

get_attributes

This is used to get privilege and other attributes from the Credentials as follows:

• Privilege attributes, including capabilities, for use in access control decisions.

• Other attributes such as audit or charging identities, if available.

AttributeList get_attributes(
in AttributeTypeList attributes

);

Parameters

attributes - The set of security attributes (privilege attributes and identities) whos
values are desired. If this list is empty, all attributes are returned.

Return Value

The requested set of attributes reflecting the state of the Credentials .

is_valid

Credentials objects may have limited lifetimes. This operation is used to check if
Credentials are still valid.

requested_attributes The complete attribute list to be associated with the
Credentials object. Only the attributes in the
requested_attributes parameter will be associated with
the Credentials object upon successful completion of the
operation. Passing an empty list means that all attributes
that can be removed will be removed.

actual_privileges The list of attributes actually associated with the
Credentials object after attempting to set the requested
attributes. This list is equivalent to the result obtained if
get_attributes were called with an empty list of attribute
types as its parameter immediately after calling
set_attributes .

TRUE Indicates that requested_attributes and actual_attributes
are the same length and have the same values (All
requested attributes were accepted).

FALSE Indicates that one or more of the requested_attributes
could not be removed.
2-80 Security Service, v1.7 March 2001

2

e

, a

rity

urity

i.e.,
.

boolean is_valid(
out UtcT expiry_time

);

Parameters

Return Value

refresh

This operation allows the application to update Credentials . Depending on the
mechanism, some Credentials may need to be refreshed before they expire; may b
able to be refreshed after they expire; or may not be able to be refreshed.

• If Credentials cannot be refreshed due to the limitations of the implementation
CORBA::NO_IMPLEMENT exception is raised.

• If the Credentials object cannot be refreshed due to the limitations of the secu
mechanism, a CORBA::BAD_OPERATION exception is raised.

• If the Credentials object cannot be refreshed due to invalid refresh_data (i.e.,
stipulating a new expiry time beyond a legal limit), a CORBA::BAD_PARAM
exception is raised.

boolean refresh(
in Opaque refresh_data

);

Parameters

get_security_feature

This operation returns a boolean value that represents the value of the given sec
feature for the given communication direction that the Credentials object is
supporting.

The communication direction parameter indicates which set of security features (
those set for the request direction, the reply direction, or both) should be returned
Conforming implementations are not required to support the “request” and “reply”
directions. If an unsupported direction is passed to get_security_feature , the
CORBA::BAD_PARAM exception is raised.

The get_security_feature operation has the following definition:

expiry_time The time that the Credentials expire.

TRUE The Credentials are still valid.

FALSE The Credentials are not valid anymore.

refresh_data Data needed to refresh Credentials , which is specific to the
mechanism type.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-81

2

re

.

boolean get_security_feature(
 in CommuncationDirection direction,
 in SecurityFeature feature
);

Parameters

Return Value

The boolean value of the security feature supported by the Credentials object.

credentials_type

This readonly attribute specifies whether the Credentials object is of the “own”
credentials type (i.e., created by the PrincipalAuthenticator) or it is of the
“received” credentials type (i.e., established as the result of a thread specific secu
association with a client in the context of servicing a request). It has the following
definition:

readonly attribute Security::InvocationCredentialsType credentials_type;

authentication_state

This readonly attribute specifies the authentication state the Credentials object. For
Credentials that are created by the PrincipalAuthenticator this attribute tells
whether the Credentials are partially initialized. It has the following definition:

readonly attribute Security::AuthenticationStatus authentication_state;

Values

mechanism

This readonly attribute specifies the mechanism the Credentials object represents. It
has the following definition:

direction The communication direction (i.e., both, request, or reply) to
which the security feature is applicable. Normally set to both

feature The feature for which the value is sought.

’SecAuthSuccess’ Credentials are fully initialized. Credentials may be valid.

’SecAuthFailure’ Authentication has failed. Credentials are invalid. Credentials may
be in this state if they were partially initialized in a call to
PrincipalAuthenticator::authenticate and then failed in the
PrincipalAuthenticator::continue_authentication operation.

’SecAuthContinue’ Credentials are partially initialized. Credentials that are not yet
valid for use.

’SecAuthExpired’ Credentials initialization has expired. Credentials are invalid.
2-82 Security Service, v1.7 March 2001

2

s

d

n

n by

as the

ism
readonly attribute MechanismType mechanism;

accepting_options_supported and accepting_options_required

These two attributes are the options that the Credentials object support and require to
accept secure associations from clients. These two attributes can be thought of a
directly relating to the target_supports and target_requires association options
attributes that may be advertised in a security mechanism component in a target
object’s IOR. Section 3.1.4.1, “Security Components of the IOR,” on page 3-8.

Note – Not all mechanisms may use such a security component in IOR.

When the Credentials are created by the PrincipalAuthenticator these options will
be set to default values depending on the initialization scheme of the particular
mechanism. Authentication data may contain constraints on the supported/require
association options as well as constraints on the mechanism itself.

Setting these attributes to values that are invalid for the mechanism raises a
CORBA::BAD_PARAM exception. In general, the accepting_options_required
cannot be set to have “more” capability than the accepting_options_supported
and the accepting_options_supported cannot be set to have “less” capability tha
the accepting_options_required .

These attributes have the following definition:

attribute AssociationOptions accepting_options_supported;
attribute AssociationOptions accepting_options_required;

invocation_options_supported and invocation_options_required

This attribute is used to control the security characteristics of the secure associatio
which these Credentials are used to make an invocation on a target object. These
association options affect the characteristics of a secure association setup, such
delegation mode to use, whether trust in the target is needed, and the message
protection is required.

Setting this attribute to an invalid value, which may be constrained by the mechan
or the internal state of the Credentials , will raise a CORBA::BAD_PARAM
exception.

These attributes have the following definition:

attribute AssociationOptions invocation_options_supported;
attribute AssociationOptions invocation_options_required;
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-83

2

on
in an

n.

e

e a
ved
2.3.5 The ReceivedCredentials Object

2.3.5.1 Description of Facilities

A ReceivedCredentials object represents a remote principal’s credential informati
for a secure association and therefore includes much of the same information as
“own” type Credentials object, such as the principal’s privilege attributes and
identities. ReceivedCredentials may also be used for invocations (delegation).
Therefore, the ReceivedCredentials interface inherits from the Credentials
interface.

A ReceivedCredentials object represents the secure association to the applicatio
Therefore, the ReceivedCredentials object contains the properties of that
association, such as the Credentials local to the capsule used for the association, th
association options in effect, the delegation state of the remote principal, and the
delegation mode of the ReceivedCredentials .

A ReceivedCredentials object, since it represents a secure association, may hav
lifetime associated with a single thread of execution servicing a request. It is retrie
from the security Current object through the received_credentials attribute.

ReceivedCredentials object is a locality constrained object, and it contains a
credentials_type value of SecReceivedCredentials .

2.3.5.2 The SecurityLevel2::ReceivedCredentials Interface

The ReceivedCredentials interface is defined as follows:

interface ReceivedCredentials : Credentials { // Locality Constrained
readonly attribute Credentials accepting_credentials;
readonly attribute AssociationOptions association_options_used;
readonly attribute DelegationState delegation_state;
readonly attribute DelegationMode delegation_mode;

};

accepting_credentials

This readonly attribute contains the reference to the Credentials object that is used on
the accepting side of the negotiation of the secure association with the remote
principal.

association_options_used

This readonly attribute contains the association options in effect for the secure
association with the remote principal.

delegation_state

This readonly attribute tells the delegation state of the remote principal for these
credentials. It has the following values:
2-84 Security Service, v1.7 March 2001

2

is a

rted

ects

.
,
e

.

Values

Note – Not all security mechanisms may be able to indicate if the remote principal
delegate. For example, with unrestricted delegation, sometimes known as
impersonation, the value of this attribute would always be SecInitiator .

delegation_mode

This readonly attribute indicates the delegation mode of the credentials. It has the
following values.

Values

2.3.5.3 Portability Implications

The PrincipalAuthenticator::authenticate and Credentials::set_attributes
operations allow particular privilege attributes to be specified. The attributes suppo
by different systems may vary according to security policies supported. It is
recommended that use of these interfaces be limited, so business application obj
are not exposed to particular policy details (unless they need to be, as they are
enforcing compatible security policies directly).

2.3.6 The TargetCredentials Object

2.3.6.1 Description of Facilities

A TargetCredentials object is the dual of the ReceivedCredentials object as it
represents a remote principal’s authentication information for the client’s secure
association with a target. The TargetCredentials object may not be used for
invocations.

The TargetCredentials object represents the secure association to the application
Therefore, the TargetCredentials object contains the properties of that association
such as the Credentials local to the capsule used to initiate the association and th
association options in effect for the association.

’SecInitiator’ The remote principal is the acting in his own behalf.

’SecDelegate’ The remote principal is acting in behalf of another principal.

‘SecDelModeNoDelegation’ The credentials cannot be used to make invocations

‘SecDelModeSimpleDelegation’ The credentials can be used to make invocations
with no traced capability.

‘SecDelModeCompositeDelegation’ The credentials can be used to make invocations
with some composite delegation scheme.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-85

2

ipal.

RB

cified

s is

n

one

s it
ns
ing

nt

en
The TargetCredentials object is a locality constrained object, and it contains a
credentials_type value of SecTargetCredentials .

interface TargetCredentials : Credentials { // Locality Constrained
readonly attribute Credentials initiating_credentials;
readonly attribute AssociationOptions association_options_used;

};

initiating_credentials

This readonly attribute contains the reference to the Credentials object that is used on
the initiating side of the negotiation of the secure association with the remote princ

association_options_used

This readonly attribute contains the association options in effect for the secure
association with the remote principal.

2.3.7 Operations on Object Reference

2.3.7.1 Description of Facilities

If the client application is unaware of security (for example, was written to use an O
without security), the ORB services will enforce the relevant security policies
transparently to applications. As described elsewhere, the security enforced is spe
by:

• The security policy set at the client by administrative action.

• The credentials used by the client.

• The security policy for the target object. Relevant security information about thi
made available to the client in the target’s object reference.

These policies include association options, any controls on whether this client ca
perform this operation on this target, and the quality of protection of messages.

The only visibility of security to most applications is that some operations will now
fail because they would breach security controls.

An application client unaware of security can communicate with a security aware
and vice versa.

A client application aware of security can also specify what security policy option
wants to apply when communicating with this target object by performing operatio
on the target object’s reference and the binding object associated with it. The follow
operations are available on the target object reference.

• get_policy is used to find the policy of the specified type (including those releva
to security) for this object.

• get_domain_managers is used to obtain a list of domain managers that the giv
object is associated with.
2-86 Security Service, v1.7 March 2001

2

ect of
ts.

e
stion

g
’s
t of

n

ful

d

nes

d

f
• set_policy_overrides is used to set overrides of default policies on individual
object references.

Although these operations are on the target object reference, the scope of the eff
the operation is the use of that reference itself, and not the object that it represen
That is, the act of obtaining a copy of an object reference with new set of overrid
policies set on it in no way affects the target object that the object reference in que
is associated with.

A target object can influence the security policy for incoming invocations by settin
security policies using the administrative operations in Section 2.4, “Administrator
Interfaces,” on page 2-115. This will affect the security information exported as par
its object reference.

The default policies that can be overridden using the set_policy_overrides operation
are:

• QOP - the quality of protection that will be provided to any successful invocatio
using that object reference. The QOPPolicy object is the bearer of this policy.

• Invocation Credentials - the Credentials that will be used in invocations using
that object reference. The InvocationCredentialsPolicy object is the bearer of
this policy.

• Security Mechanisms - the mechanisms (one of) which must be used for success
invocation using the object reference. The MechanismsPolicy object is the bearer
of this policy.

• Establish Trust - the directive for the establishment of trust of client by target an
target by client. The EstablishTrustPolicy object is the bearer of this policy.

• Delegation Directive - the directive telling whether delegation should be used
during the invocation. The DelegationDirectivePolicy object is the bearer of this
policy.

The above policy objects can be created using the ORB::create_policy operation.
The above policy objects must be put in a PolicyList and given to the
set_policy_overrides operation on the target object reference. If successful, the
operation returns a new object reference that uses the new policy overrides for
subsequent invocations.

The policies currently associated with the object reference, including overridden o
can be accessed using the get_policy operation. This operation returns a Policy
object of the appropriate type containing the current policy, which can be extracte
from the readonly attribute in the Policy object interface.

Note – The application states its minimum security requirements. A higher level o
security may still be enforced as this may be required by security policy. Thus
operationally the default policies will actually be overridden only if the requested
overrides are consistent with the overall security policy.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-87

2

 the

 the

nce.
2.3.7.2 Client Side Invocation Policy Objects

There are a number of Policy objects that are bearers of the client side invocation
related policies. They are as follows:

QOP Policy

The QOP Policy object has a policy type of Security::SecQOPPolicy and has the
QOPPolicy interface, which is shown below.

interface QOPPolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::QOP qop;

};

This interface has a single readonly attribute qop which represents the policy in the
form of an enum value of type Security::QOP .

This object can be passed to set_policy_overrides to specify that a particular quality
of protection is required for messages sent using the object reference returned by
set_policy_overrides operation. When this object is returned by the get_policy
operation it contains the quality of protection policy associated with this object
reference.

Mechanism Policy

The Mechanism Policy object has a policy type of
Security::SecMechanismPolicy and has the MechanismPolicy interface, which
is shown below.

interface MechanismPolicy : CORBA::Policy {// Locality Constrained
readonly attribute Security::MechanismTypeList mechanisms;

};

This interface has a single readonly attribute, mechanisms , which represents the
policy in the form of a Security::MechanismTypeList .

This object can be passed to set_policy_overrides to request the use of one of a
specific set of mechanisms in invocation through the object reference returned by
set_policy_overrides operation. When this object is returned by get_policy it
contains the security association mechanisms available through this object refere

Invocation Credentials Policy

The Invocation Credentials Policy object has a policy type of
Security::SecInvocationCredentialsPolicy and has the
InvocationCredentialsPolicy interface, which is shown below.

interface InvocationCredentialsPolicy : CORBA::Policy {
// Locality Constrained

readonly attribute CredentialsList creds;
};
2-88 Security Service, v1.7 March 2001

2

.

s

y
This interface has a single readonly attribute creds , which returns a list of
Credentials objects which will be used as invocation credentials for invocations
through this object reference.

This object can be passed to set_policy_overrides to specify one or more
Credentials objects to be used when calling this target object using the object
reference returned by set_policy_overrides . For example, the client may want to
make different privileges available to different targets by choosing Credentials with
the required privileges. When this object is returned by get_policy it contains the
active credentials that will be used for invocations via this target object reference

Establish Trust Policy

The Establish Trust Policy object has a policy type of
Security::EstablishTrustPolicy and has the EstablishTrustPolicy interface,
which is shown below.

interface EstablishTrustPolicy : CORBA::Policy { // Locality Constrained
 readonly attribute EstablishTrust trust;

};

This interface has two readonly attributes:

This object can be passed to set_policy_overrides to specify that a particular trust
policy be followed for invocations using this object reference. When this object is
returned by the get_policy operation it contains the trust policy associated with thi
object reference.

Delegation Directive Policy

The Delegation Directive Policy object has a policy type of
Security::DelegationDirective and has the DelegationDirectivePolicy interface,
which is shown below.

interface DelegationDirectivePolicy : CORBA::Policy {
// Locality Constrained

readonly attribute Security::DelegationDirective delegation_directive;
};

trust This attribute is a structure that contains two attributes each
stipulating whether trust in client and trust in target is enabled. The
trust_in_client element of this attribute stipulates whether the
invocation must select credentials and mechanisms that will allow
the client to be authenticated to the target. (Some mechanisms ma
not support client authentication). The trust_in_target element of
this attribute stipulates whether the invocation must first establish
trust in the target.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-89

2

d by
ct

e
s a

ide
sible
 The

e

’s

r

ded

 a
B
This interface has a single readonly attribute delegation_directive that represents the
policy stating whether delegation should be used when making invocations on an
object. If the policy states that delegation should be used, then the Credentials object
selected for the invocation must support delegation.

This object can be passed to set_policy_overrides to specify that a delegation policy
be followed for invocations using this object reference. When this object is returne
the get_policy operation it contains the delegation policy associated with this obje
reference.

2.3.7.3 Semantics of Combined Client Policies

The client side policies that are defined for a particular object reference employ a
particular semantics in determining the security characteristics of invocations mad
with that object reference. When applied to an object reference, the ORB perform
decision procedure to determine the security characteristics that are compatible
between the security mechanisms that the target object supports and the client s
security policies that are attached to the target object’s reference. It is entirely pos
that the set of policies when applied to the object reference may be inconsistent.
basic thrust of this decision procedure is to select the proper Credentials object from
the list of credentials supplied in the InvocationCredentialsPolicy object.

The following decision procedure is applied by the security service to eliminate th
Credentials made available for invocation by list of Credentials objects in the
InvocationCredentialsPolicy . The decision procedure is used amongst this list of
Credentials objects, the other client side security policies, and the target objects
IOR. This decision procedure determines the security mechanism, a compatible
Credentials object, and a security component from the target’s IOR to use for the
invocations made on that object reference. It should be noted that Credentials are
selected from sequence of Credentials returned by the creds attribute selector of the
InvocationCredentialsPolicy object. These credentials are examined first by thei
mechanism by virtue of the MechanismPolicy object, then by the Credentials being
able to support other policies that may apply.

It is the goal of the decision procedure to select a single Credentials object with
which to make the invocation. However, it is entirely possible that constraints provi
by other client polices, (such as the MechanismsPolicy) and the target object’s IOR
eliminate all Credentials objects from the list, thereby raising a
CORBA::NO_RESOURCES exception. Also, it is possible that the elimination
procedure leaves more than one Credentials object. In this case, any of the
Credentials objects are viable for making the invocation. However, a selection of
single Credentials object still needs to be made. At this point, it is left up to the OR
to select a Credentials object from a list of remaining available credentials.

The elimination decision procedure is as follows:

For each mechanism type in the MechanismPolicy {

Select a matching security component in the target’s IOR by the mechanism
type.
If a matching component is found {
2-90 Security Service, v1.7 March 2001

2

cure

 and

and

e.

ect.
Find a Credentials object in the credentials list that supports the
mechanism.

If a Credentials object is found and it supports
the QOP Policy,
the Delegation Directive Policy,
and the Establish Trust Policy {

If the association options implied by all policies are supported
by the selected security component in the IOR and all the
required association options of security component are satisfied {

Use the selected Credentials and selected attributes to set up the se
association.

} else {
Find the next credentials object that supports the selected mechanism
continue.

}
} else {

Find the next credentials object that supports the selected mechanism
continue.

}
} else {

Get the next mechanism type from the MechanismPolicy and continue.
}

}
If no mechanism can be found {

A CORBA::NO_RESOURCES exception is raised with an informative messag
}

}

2.3.7.4 Security Relevant Operations in the CORBA::Object Interface

These operations are defined in detail in the ORB Interface chapter of the Common
Object Request Broker: Architecture and Specification. A brief description is included
here to help users of the Security Services.

get_policy

This gets the security policy object of the specified type, which applies to this obj

The get_policy operation is used on object references during administration. For
example, it may be used to get the policy for a domain.

CORBA::Policy get_policy(
in CORBA::PolicyType policy_type

);

Parameters

policy_type The type of policy to be obtained.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-91

2

ve

 one
ciated

ply

ed

irst

local

rence

cates
bject
 with
Return Value

Exceptions

get_domain_managers

get_domain_managers allows administration services (and applications) to retrie
the domain managers, and hence the security and other policies applicable to
individual objects that are members of the domain.

DomainManagersList get_domain_managers ();

Parameters

None.

Return Value

A list of immediately enclosing domain managers of this domain manager. At least
domain manager is always returned in the list since by default each object is asso
with at least one domain manager at creation.

set_policy_overrides

set_policy_overrides makes it possible to override a subset of the policies that ap
to a specific object reference. It takes two input parameters. The first parameter
policies is a sequence of references to Policy objects. The second parameter set_add
of type CORBA::SetOverrideType indicates whether these policies should be add
onto any other overrides that already exist (CORBA::ADD_OVERRIDE) in the object
reference, or they should be added to a clean override free object reference
(CORBA::SET_OVERRIDE). This operation associates the policies passed in the f
parameter with a newly created object reference that it returns.

The association of these overridden policies with the object reference is a purely
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. The associations last until the object refe
is destroyed or the process/capsule/ORB instance in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent dupli
of this new object reference apply to all invocations that are done through these o
references. The overridden policies apply even when the default policy associated

policy A policy object of the type specified by the policy_type
parameter.

CORBA::BAD_PARAM Raised when the value of policy type is not valid
either because the specified type is not supported
by this ORB or because a policy object of that type
is not associated with this Object.
2-92 Security Service, v1.7 March 2001

2

ence

n

f
 any
ecurity
y
ory

e

current is changed. It is always possible that the effective policy on an object refer
at any given time will fail to be successfully applied, in which case the invocation
attempt will fail and return a CORBA::NO_PERMISSION exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

);

Parameters

Return Value

A copy of the object reference with the overrides from policies associated with it i
accordance with the value of set_add .

2.3.7.5 Portability Implications

The security features that can be set are generally ones supported by a variety o
security mechanisms. Applications using them will therefore be portable between
systems where the security mechanisms support these features. However, some s
mechanisms will not support all features, for example, they may not provide repla
protection, or may not support confidentiality of application data (owing to regulat
controls). Applications should check the response when attempting to set security
features, and if a requested feature is not available, take suitable action.

2.3.8 Operations on Security Manager

2.3.8.1 Description

The Security Manager object represents capsule specific security information. Th
attributes and operation of the SecurityManager object are relevant to the capsule
regardless of the thread of execution.

A reference to the SecurityManager object is retrieved using the
ORB::resolve_initial_references("SecurityManager") operation.

The attributes and operations on the SecurityManager object are described in this
section and provide access to the following information:

policies A sequence of Policy objects that are to be associated with the
new copy of the object reference returned by this operation.

set_add Whether the association is in addition to (ADD_OVERRIDE) or
as replacement of (SET_OVERRIDE) any existing overrides
already associated with the object reference.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-93

2

he

e

orted

• supported_mechanisms - A sequence of security mechanisms supported by t
security service.

• principal_authenticator - A reference to the PrincipalAuthenticator object,
which is used to authenticate principals and thus obtain Credentials objects for
them.

• own_credentials - The list of Credentials objects associated with the active
application (capsule). A capsule’s own credentials are set up as the result of th
application being initialized or explicitly by calling on the
PrincipalAuthenticator object.

The operations provided on the Security Manager are the following:

• remove_own_credentials - This operation allows the application to perform
credentials management of the own_credentials list.

• get_target_credentials - This operation allows the application to discover the
principal of a target object.

2.3.8.2 The SecurityLevel2::SecurityManager Interface

The following attributes and operations are available on the
SecurityLevel2::SecurityManager interface.

supported_mechanisms

This readonly attribute returns the list of supported mechanisms and options supp
by the ORB security service. It has the following definition:

readonly attribute MechandOptionsList supported_mechanisms;

principal_authenticator

This readonly attribute is a reference to the PrincipalAuthenticator that can be used
by the application to authenticate principals and obtain Credentials .

readonly attribute PrincipalAuthenticator principal_authenticator;

Return Value

The object reference to a PrincipalAuthenticator object. The operations in the
interface of this object are defined in Section 2.1.2, “Principals and Their Security
Attributes,” on page 2-3.

required_rights_object

This readonly attribute is the RequiredRights object available in the environment.
This object is rarely used by applications directly. It could be used directly by the
application if it wishes to do all its own access control based on rights.
2-94 Security Service, v1.7 March 2001

2

f

d for

her
is

ut on
readonly attribute RequiredRights required_rights_object;

Return Value

An object references to a RequiredRights object. The operations in the interface of
this object are defined in Section 2.4.4, “Access Policies,” on page 2-118.

access_decision

This capsule specific read only attribute is the AccessDecision object available in
the environment. It can be used by the application to obtain decisions regarding
accessibility of specific objects from this environment.

readonly attribute AccessDecision access_decision;

Return Value

An object references to an AccessDecision object. The operations in the interface o
this object are defined in Section 2.3.12, “Access Control,” on page 2-102.

audit_decision

This readonly attribute is the AuditDecision object available in the environment. It
can be used by the application to obtain information about what needs to be audite
the specified object/interface in this environment.

readonly attribute AuditDecision audit_decision;

Return Value

An object references to an AuditDecision object. The operations in the interface of
this object are defined in Section 2.3.10, “Security Audit,” on page 2-99.

own_credentials

Any application owns a set of credentials which it obtains through the process of
authentication of the principal that initiates the execution of the program, and furt
from other credentials that such a principal might bestow upon the application. Th
attribute returns this set of credentials.

readonly attribute CredentialsList own_credentials;

Return Value

A sequence of Credentials object references owned by the application.

remove_own_credentials

This operation is used by applications that wish to remove credentials that were p
the own_credentials list by virtue of the PrincipalAuthenticator . This operation
does not manipulate or destroy the objects in any way. The given Credentials object
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-95

2

” the

with
(as opposed to one produced by a copy operation) must reside on the list of the
Current object’s own_credentials , otherwise a CORBA::BAD_PARAM
exception is raised.

void remove_own_credentials(
in Credentials creds

),

Parameters

Return Value

None.

get_target_credentials

This operation is used by applications that wish to authenticate a principal “behind
object reference.

TargetCredentials get_target_credentials(
in Object target;

};

Parameters

Return Value

The TargetCredentials object that represents the secure association established
the remote principal.

get_security_policy

This operation returns the security policy object of the specified policy_type in effect
for the capsule.

Policy get_security_policy(
in CORBA::PolicyType policy_type

);

Parameters

creds The Credentials object to be removed from the list.

target The object reference in question.

policy_type The type of policy to be obtained.
2-96 Security Service, v1.7 March 2001

2

he
his

he

ll as

 that is

hich
te

ns in

h

t

ss

Return Value

A policy object, which can be used to interrogate the policy in force as defined in
Section 2.4, “Administrator’s Interfaces,” on page 2-115. For example, the secure
invocation policy would give the secure associations defaults for this object, and t
delegation policy would say which credentials were delegated on invocations by t
object.

2.3.9 Security Operations on Current

2.3.9.1 Description

The Current object represents service specific state information associated with t
current execution context (see the ORB Interface chapter of the Common Object
Request Broker: Architecture and Specification); both clients and targets have Current
objects representing state associated with the thread of execution and the
process/capsule in which the thread is executing (their execution contexts).

The operations of the Current object is intended to return information pertaining to
the state associated with the current execution context. This includes information
specific to both the thread of execution that is used to invoke the operation, as we
the process or capsule to which the thread belongs. State changes affecting state
associated purely with the thread and not with any broader execution context like
capsule (i.e., thread specific) is lost, once the operation within the execution of w
this was done completes its execution, thus returning the thread to the ORB. Sta
changes to state associated with a broader execution context like a capsule (i.e.,
capsule specific) on the other hand persists across multiple invocation of operatio
the target object, until it is further modified through operations of the Current object
or by other means.

The SecurityLevel1::Current and the SecurityLevel2::Current interfaces
described in this section contains operations of both types. In this section, each
operation is identified to be either thread specific or process specific to distinguis
their behavior.

Note that a reference to the Current object representing the active execution contex
can be retrieved using the ORB::resolve_initial_references(“SecurityCurrent”)
operation (see the ORB Interface chapter of the Common Object Request Broker:
Architecture and Specification). In a secure ORB, the Current object includes
operations relevant to Security. The CORBA::Current object returned by the
resolve_initial_references operation can be narrowed to
SecurityLevel1::Current or SecurityLevel2::Current as desired.

The operations on the Current object are described in this section and provide acce
to information about one or more of the following credentials:

• received credentials: the credentials received from the client of the invocation as
seen at the target object.

The operations provided are the following:
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-97

2

ce

 the
ce.

es

e
• get_attributes (thread specific) obtain privilege and other attributes associated
with received credentials (which should be the user’s privileges when at the
workstation).

It should be noted that if the policies associated with any individual object referen
has been overridden using the Object::set_policy_overrides operation, then the
overridden policies take precedence over the corresponding thread policies, when
said thread is used to carry out an object invocation using the said object referen

2.3.9.2 The SecurityLevel1::Current Interface

The following operations are available in the SecurityLevel1::Current interface.

get_attributes

This is a thread specific operation that is used to get privilege (and other) attribut
from the client’s credentials. It is available in the security functionality Level 1 to
allow applications to enforce their own security policies without these applications
having to perform operations on credentials.

This operation can be used to get:

• Privilege attributes for use in access control decisions.

• Other attributes, such as audit or charging identities, if available.

At the client, this generally gets the user’s (or other principal’s) privileges. At the
target, it gets the received privileges.

AttributeList get_attributes(
in AttributeTypeList attributes

);

Parameters

Return Value

The set of attributes or identities reflecting the state of the Credentials .

2.3.9.3 The SecurityLevel2::Current Interface

The following operations are to be found in the SecurityLevel2::Current interface.

received_credentials

At a target object, this thread specific attribute is the credentials received from th
client.They are the credentials of the principal identified that made the invocation.

attributes The set of security attributes (privilege attributes and
identities) whose values are desired. if this list is empty, all
attributes are returned.
2-98 Security Service, v1.7 March 2001

2

 on

udit

g

y. It

 the

 the

d in
In the case of a pure client (e.g., an application that is not servicing an invocation
one of its objects (if any)), accessing the received_credentials attribute causes a
CORBA::BAD_OPERATION exception to be raised.

readonly attribute ReceivedCredentials received_credentials;

Return Value

The ReceivedCredentials object reference received from the requestor.

2.3.10 Security Audit

2.3.10.1 Description of Facilities

Auditing of object invocations is done automatically by the ORB according to the a
invocation policies (Security::SecClientInvocationAudit and
Security::SecTargetInvocationAudit) for this application.

Applications can also audit their own security relevant activities, where the auditin
performed by the ORB does not audit the required activities and/or data.

In this case, the application is responsible for enforcing the application audit polic
uses an audit_needed operation on the Audit Decision object for the policy to
decide which activities to audit.

Audit information is passed to an Audit Channel object in the form of an audit
record. The audit record must contain, or be sufficient to identify:

• The type of event.

• The principal responsible for the action, identified by its credentials.

• Event-specific data associated with the event type. This will vary, depending on
event type.

• The time. This may or may not be secure.

It may also want to record some of the values used for selecting whether to audit
event, for example, its success or failure.

An application audit policy will specify the event families and event types as define
Section 2.4.5, “Audit Policies,” on page 2-129.

2.3.10.2 The SecurityLevel2::AuditDecision Interface

The Audit Decision object has the SecurityLevel2::AuditDecision interface. Its
operations described below help specify what to audit. It is a locality constrained
object.

The Audit Decision object is a locality constrained object.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-99

2

rd
 be
 the
ing

e

th

fore,
s be

the

er to
audit_needed

This operation on the Audit Decision object is used to decide whether an audit reco
should be written to the audit channel. The application specifies the event type to
checked and the values for the selectors, which the audit policy requires to make
decision. This operation identifies the interface associated with the audit event us
the InterfaceName selector value within value_list , if defined. If the
InterfaceName selector value is the empty string, the most derived interface in th
ObjectRef selector value is used. ObjectRef is also used to find the domain
containing the relevant audit policy. If ObjectRef is not defined, audit_needed will
not be able to match any AuditPolicy and will return false. To ensure that
audit_needed can match against any potential AuditPolicy , the caller must supply
all selector values (ObjectRef , Operation , Initiator , and SuccessFailure) in
value_list .

boolean audit_needed(
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

Return Value

audit_channel

This attribute of the Audit Decision object provides the audit channel associated wi
this audit decision object.

readonly attribute AuditChannel audit_channel;

Return Value

The Audit Channel object associated with the Audit Decision object.

A standard audit policy is specified in Section 2.4, “Administrator’s Interfaces,” on
page 2-115, but if this is to be replaceable without ORB/interceptor changes, a
standard interface needs to be available for the ORB or interceptor to call. There
for replaceability, the selectors used on audit needed during invocation must alway
the same (see value_list above), though not all of these need to be used in taking
decision to audit, depending on policy. Note that the time is not passed over this
interface. If the selectors specified in the audit policy use time to decide on wheth
audit the event, the Audit Decision object should obtain the current time itself.

event_type Event type associated with the operation.

value_list List of zero or more selector id value pairs.

TRUE If an audit record should be created and sent to the audit
channel.

FALSE If an audit record is not needed.
2-100 Security Service, v1.7 March 2001

2

ent

d to
audit

.

n

2.3.10.3 The SecurityLevel2::AuditChannel Interface

The single operation in the SecurityLevel2::AuditChannel interface is used to write
the audit records. The Audit Channel object is a locality constrained object.

audit_write

This operation writes an audit record to the Audit Channel object, and hence the
audit trail. The audit trail is implementation-specific and outside the scope of this
chapter. It is expected to be an event service of some sort, such as a CORBA Ev
Service.

void audit_write(
in AuditEventType event_type,
in CredentialsList creds,
in UtcT time,
in SelectorValueList descriptors,
in Opaque event_specific_data

);

Parameters

Return Value

None.

audit_channel_id

This is a readonly attribute that contains the id of this audit channel, which is use
identify it in the corresponding audit policy object. This is necessary because the
channel object itself has to be a locality constrained object by virtue of the fact that the
audit_write operation passes a list of Credentials , a locality constrained object, as a
parameter, while the audit policy object needs to be not thus constrained.

The audit channel identified by the audit_channel_id in the Audit Policy object is
actually associated with the Audit Channel interface by the Audit Decision object
when its audit_channel attribute is accessed.

event_type The type of event being audited.

creds The credentials of the principal responsible for the event
If no credentials are specified, the own_credentials
attribute associated with SecurityManager are used.

time The time the event occurred.

descriptors A set of values to be recorded associated with the event i
the audit trail. These are often the same values as those
used to select whether to audit the event.

event_specific_data Data specific to a particular type of event, to be recorded
in the audit trail.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-101

2

ed

dit
. For

the

ify
ally
s, so
readonly attribute AuditChannelId audit_channel_id;

Return Value

2.3.10.4 Portability Implications

An application relying on the system audit policies enforced at invocation time is
portable to different environments, although the audit policies themselves may ne
changing.

Applications with their own application audit policies are portable, providing the au
policy itself is portable and the selectors used are available in these environments
example, if selectors use privileges, the same ones must be available.

2.3.11 Administering Security Policy

When an object is created, it automatically becomes a member of one or more
domains, and therefore is subject to the security policies of those domains.

Security aware applications can administer security policies (providing they are
authorized to do so) using the interfaces described in Section 2.4, “Administrator’s
Interfaces,” on page 2-115.

2.3.12 Access Control

2.3.12.1 Description of Facilities

Access policies for applications may be enforced the following ways:

• Automatically by the ORB services on object invocation, to determine whether
caller has the right to invoke an operation on an object.

• By the application itself, to enforce further controls on who can invoke it to do
what.

• By the application to control access to its own internal functions and state.

This section is concerned with applications that wish to enforce their own access
controls, either supplementing the automatic controls on invocation or controlling
internal functions.

As explained in Access Policies under Section 2.1.4, “Access Control Model,” on
page 2-7, the decision on whether to allow such access may use the following:

• The principal’s credentials (which either contain its privilege attributes, or ident
the principal so these can be obtained). Using only the principal’s identity gener
requires that identity to be known at all targets, and leads to scalability problem

audit_channel_id The channel id of the audit channel.
2-102 Security Service, v1.7 March 2001

2

give
-

ify

sion

an

ver
eck.

hes
t in
s, and

 be

ould

on
its use is depreciated. Use of the principal’s role or group(s) are more likely to
easier administration in large systems, as would security clearance. Enterprise
defined attributes can also be used when supported.

• The target’s control attributes such as an ACL or security classification.

• Other relevant information about the action such as the operation (on object
invocation) and parameters, and also context information such as time.
The application can use rights associated with an interface (as described in
Section 2.4.3, “Security Policies Introduction,” on page 2-117) rather than spec
controls for individual operations.

• The security policy rules using this information as enforced by the access deci
function.

The access policies enforced automatically by the ORB during object invocation c
take into account the principal’s credentials, the target’s control attributes, the
operation and the time (though the time is not used in the standard access policy
defined in Section 2.4, “Administrator’s Interfaces,” on page 2-115). However, the
ORB does not use the parameters to the operation for controlling access. So, for
example, if there is a rule that only senior managers can authorize expenditure o
$5000, the application is likely to need its own function to perform the required ch

Where an application enforces its own access decisions, it will be responsible for
maintaining its own control information about operations, functions, and data it wis
to protect. It can do this in a way specific to its own particular functions or data, bu
some cases, it is possible to have a more generic way of handling access decision
in these cases, it may be possible to use a common access decision object with
common administration of the ACLs or other control attributes.

2.3.12.2 The Access Decision Object

The access decision functionality is encapsulated in Access Decision objects. These
may require different information depending on, for example, the action or data to
controlled and the security policy rules as previously described. The Access
Decision object is a locality constrained object.

The Access Decision object has the access_allowed operation as is used for
enforcing access policies in the ORB (see below). The input parameters to this sh
normally specify:

• The privileges of the initiator of the action. The form of these depends on the
specific policy. Some options are:

• The privileges of the initiator as supplied by a get_attributes operation on
Current (see Section 2.3.9.2, “The SecurityLevel1::Current Interface,” on
page 2-98).

• A credentials object, which represents principal.

• Other information required by the access decision function, including:

• Application-level decisions on whether an invocation is permitted, the operati
and parameters passed in the request, and the object reference.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-103

2

tual
er an

t.

• Control of access to internal functions and data, the action, and relevant
parameters.

The return value from the access_allowed operation is either TRUE signifying
access is permitted, or FALSE signifying that it is not.

It is recommended that where possible, access decisions are made by such Access
Decision objects (or at least separate internal functions) that hide details of the ac
security policy used, so the application does not need to know, for example, wheth
ACL or label-based policy is used.

2.3.12.3 The SecurityLevel2::AccessDecision Interface

The Access Decision object is a locality constrained object. The AccessDecision
interfaces have the following single operation:

access_allowed

boolean access_allowed(
in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);

Parameters

cred_list The list of Credentials associated with the request. The
list may be empty (in the case of unauthenticated
requests), it may contain only a single credential, or it
may contain several credentials (in the case of
delegated or otherwise cascaded requests). The Access
Decision object is presumed to have rules for dealing
with all these cases.

target The reference used to invoke the target object. The
method invoked.

operation_name The name of the operation being invoked on the targe

target_interface_name The name of the interface to which the operation being
invoked belongs. This may not be required in some
implementations and will only be required in cases in
which the operation being invoked does not belong to
the interface of which the target object is a direct
instance.
2-104 Security Service, v1.7 March 2001

2

of
eed
pes
 the

e
hose

ribed
of

y be

 in

into

r
obtain
ple,
Return Value

2.3.12.4 Portability Implications

Portability of applications enforcing their own access controls is improved by use
Access Decision objects as previously described. The application then does not n
to know the particular rules used, and even which principal and object attribute ty
are used to decide whether access should be permitted. It can also hide whether
principal’s credentials include all privilege attributes needed, or whether these are
obtained dynamically when needed.

Different systems may need to support different access control policies. By hiding
details of the access control rules used to enforce the policy behind a standard
interface, the application will generally be portable to environments with different
policies.

Applications that use their own specific code to make access decisions will only b
portable to systems that support the identity and privilege attribute types used in t
decisions with the same syntax.

2.3.13 Delegation Facilities

2.3.13.1 Description of Facilities

An operation on a target object may result in calls on many other objects as desc
in Section 2.1.6, “Delegation,” on page 2-13. An intermediate object in this chain
objects may:

• Delegate the credentials received (often containing the initiating principal’s
privileges) to the next object in the chain, so access decisions at the target ma
based on that principal’s privileges.

• Act on its own behalf, so use its own credentials when invoking another object
the chain.

• Supply privileges from both, so access decisions at the target object can take
account both the initiating principal’s privileges and where these came from.

Which of these delegation modes should be used depends on the application. Fo
example, a user might call a database object asking for some data, and this may
the data from a file that also contains data belonging to other users. In this exam
the database object would control access to the data using the user’s privileges,
whereas the filestore object would use the database’s privileges.

boolean A return value of TRUE indicates that the request should
be allowed, otherwise FALSE.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-105

2

ation
n
des

ibes

 are

the

t

faces
ny

),
om

tes
kely
ble.
In general, the delegation mode used is specified by the administrator in the deleg
policy for objects of this type in this domain. However, a security aware applicatio
can also specify the delegation mode it wants to use, as it may want different mo
when invoking different objects.

2.3.13.2 Operations

All the operations used for delegation are specified elsewhere. This section descr
how they are used during delegation.

The way the received and intermediate’s own credentials are combined in
SecCompositeDelegation is not defined. Depending on the implementation:

• The initiating principal’s and the intermediate’s own credentials are passed, and
available separately at the target.

• The received credentials and intermediate’s own credentials are combined, so
target sees only a single credentials object with privileges from each of these.

• Credentials from all objects in the delegation chain are passed and are available
separately to the target.

None of these particular composite delegation modes are part of the Security
Functionality Level 2. They are described here because of the effect on the
Current::received_credentials (see Section 2.3.9.3, “The SecurityLevel2::Curren
Interface,” on page 2-98), which a target object uses to find out who called it. The
target normally uses this to get privileges for use in access control decisions.

2.3.13.3 Portability Implications

Where possible, the delegation mode should be set using the administrative inter
to the delegation policy, so applications may delegate privileges (or not) without a
application level code, and so be portable.

If an application sets its own delegation mode, it should be able to handle a
CORBA::NO_IMPLEMENT exception if SecCompositeDelegation is specified,
as this may not be supported.

If the application wants to enforce its own access policy, it should use an Access
Decision object (as described in Section 2.3.12, “Access Control,” on page 2-102
which hides whether access decisions utilize the initiator’s privileges separately fr
the delegate’s privileges.

However, where an application wants to provide specific checks which intermedia
have been involved in performing the original user’s operation, such checks are li
to depend on the delegation scheme and its implementation, and so not be porta

2.3.14 Non-repudiation

Non-repudiation is an optional facility.
2-106 Security Service, v1.7 March 2001

2

at
ple,

a).

tion
iation

.

will

ing a

ng

s

and

on-

he
.
2.3.14.1 Description of Facilities

The Non-repudiation Service provides evidence of application actions in a form th
cannot be repudiated later. This evidence is associated with some data (for exam
the amount field of a funds transfer document).

Non-repudiation evidence is provided in the form of a token. Two token types are
supported:

• Token including the associated data.

• Token without included data (but with a unique reference to the associated dat

Non-repudiation tokens may be freely distributed. Any possessor of a non-repudia
token (and the associated data, if not included in the token) can use the non-repud
Service to verify the evidence. Any holder of a non-repudiation token may store it
(along with the associated data, if not included in the token) for later adjudication

The non-repudiation interfaces support generation and verification of tokens
embodying several different types of evidence. It is anticipated that the following
be the most commonly used non-repudiation evidence token types:

• Non-repudiation of Creation prevents a message creator's false denial of creat
message.

• Non-repudiation of Receipt prevents a message recipient's false denial of havi
received a message.

Generation and verification of non-repudiation tokens require as context a non-
repudiation credential, which encapsulates a principal's security information
(particularly keys) needed to generate and/or verify the evidence. Most operation
provided by the Non-repudiation Service are performed on NRCredentials objects.

Non-repudiation Service operations supported by the NRCredentials interface are as
follows.

• set_NR_features specifies the features to apply to future evidence generation
verification operations.

• get_NR_features returns the features which will be applied to future evidence
generation and verification operations.

• generate_token generates a non-repudiation token using the current non-
repudiation features. The generated token may contain:

• Non-repudiation evidence.

• A request, containing information describing how a partner should use the N
repudiation Service to generate an evidence token.

• Both evidence and a request.

• verify_evidence verifies the evidence token using the current non-repudiation
features.

• get_token_details returns information about an input non-repudiation token. T
information returned depends upon the type of the token (evidence or request)
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-107

2

 the
en
n.

 any

If a

e
• form_complete_evidence is used when the evidence token itself does not
contain all the data required for its verification, and it is anticipated that some of
data not stored in the token may become unavailable during the interval betwe
generation of the evidence token and verification unless it is stored in the toke
The form_complete_evidence operation gathers the “missing” information and
includes it in the token so that verification can be guaranteed to be possible at
future time.

The verify_evidence operation returns an indicator (evid_complete), which can
be used to determine whether the evidence contained in a token is complete.
token’s evidence is not complete, the token can be passed to
form_complete_evidence to complete it.

If complete evidence is always required, the call to form_complete_evidence
can, in some cases, be avoided by setting the form_complete request flag on the
call to verify_evidence ; this will result in a complete token being returned via th
evid_out parameter.

2.3.14.2 Non-repudiation Service Data Types

The following data types are used in the Non-repudiation Service interfaces:

module NRservice {
typedef MechanismType NRMech;
typedef ExtensibleFamily NRPolicyId;
enum EvidenceType {

SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

};
enum NRVerificationResult {

SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};
typedef unsigned long DurationInMinutes;
const DurationInMinutes DURATION_HOUR = 60;
const DurationInMinutes DURATION_DAY = 1440;
const DurationInMinutes DURATION_WEEK = 10080;
const DurationInMinutes DURATION_MONTH = 43200;// 30 days
const DurationInMinutes DURATION_YEAR = 525600;//365 days
typedef long TimeOffsetInMinutes;
struct NRPolicyFeatures {

NRPolicyId policy_id;
unsigned long policy_version;
NRMech mechanism;
2-108 Security Service, v1.7 March 2001

2

y the

ce

 NR
};
typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;
// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};
};

2.3.14.3 The NRservice::NRCredentials Interface

This section describes the Non-repudiation Service operations that are provided b
NRCredentials interface.

set_NR_features

When an NRCredentials object is created, it is given a default set of NR features,
which determine what NR policy will be applied to evidence generation and
verification requests.

Security-aware applications may set NR features to specify policy affecting eviden
generation and verification. The interface for setting NR features is:

boolean set_NR_features(
in NRPolicyFeaturesList requested_features,
out NRPolicyFeaturesList actual_features

);

Parameters

Return Value

get_NR_features

This operation is provided to allow security-aware applications to determine what
policy is currently in effect:

requested_features The non-repudiation features required.

actual_features The NR features that were set (may differ from those
requested depending on implementation).

TRUE The requested features were equivalent.

FALSE If the actual features differ from the requested features.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-109

2

 in an
 is

NRPolicyFeaturesList get_NR_features ();

Parameters

None

Return Value

The current set of NR features in use in this NRCredentials object.

generate_token

This operation generates a non-repudiation token associated with the data passed
input buffer. Environmental information (for example, the calling principal’s name)
drawn from the NRCredentials object.

If the data for which non-repudiation evidence is required is larger than can
conveniently fit into a single buffer, it is possible to issue multiple calls, passing a
portion of the data on each call. Only the last call (i.e., the one on which
input_buffer_complete = true) will return an output token and (optionally) an
evidence check.

void generate_token(
in Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Opaque nr_token,
out Opaque evidence_check

);

Parameters

input_buffer Data for which evidence should be generated.

generate_evidence_type Type of evidence token to generate (may be SecNoEvidence).

include_data_in_token If set TRUE, data provided in input_buffer will be included in
generated token; otherwise FALSE.

generate_request The output token should include a request, as described in the
request_features parameter.

request_features A structure describing the request. Its fields are listed below:
2-110 Security Service, v1.7 March 2001

2

lling
est as

r fail;

s

.

 to

to

.

.

request_features Fields:

Return Value

None.

verify_evidence

Verifies the validity of evidence contained in an input NR token.

If the token containing the evidence to be verified was provided to the calling
application by a partner responding to the calling application’s request, then the ca
application should pass the evidence check it received when it generated the requ
a parameter to verify_evidence along with the token it received from the partner.

It is possible to request the generation of complete evidence. This may succeed o
if it fails, a subsequent call to form_complete_evidence can be made. Output
indicators are provided, which give guidance about the time or times at which
form_complete_evidence should be called; see the parameter descriptions for
explanations of these indicators and their use. Note that the time specified by
complete_evidence_before may be earlier than that specified by
complete_evidence_after ; in this case it will be necessary to call
form_complete_evidence twice.

Because keys can be revoked or declared compromised, the return from
verify_evidence cannot in all cases be a definitive “SecNRValid ” or
“SecNRInvalid ”; sometimes “SecNRConditionallyValid ” may be returned,
depending upon the policy in use. “SecNRConditionallyValid ” will be returned if:

requested_policy Non-repudiation policy to use when generating evidence token
in response to this request

requested_evidence Type of evidence to be generated in response to this request

requested_evidence_generators Names of partners who should generate evidence in response
this request.

requested_evidence_recipients Names of partners to whom evidence generated in response
this request should be sent.

include_this_token_in_evidence If set true, the evidence token incorporating the request will be
included in the data for which partners will generate evidence
If set false, evidence will be generated using only the
associated data (and not the token incorporating the request)

input_buffer_complete True if the contents of the input buffer complete the data for
which evidence is to be generated; false if more data will be
passed on a subsequent call.

nr_token The returned NR token.

evidence_check Data to be used to verify the requested token(s) (if any) when
they are received.
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-111

2

 his
y be

not

e

y
• the interval during which the generator of the evidence may permissibly declare
key invalid has not yet expired (and therefore it is possible that the evidence ma
declared invalid in the future), or

• trusted time is required for verification, and the time obtained from the token is
trusted.

NRVerificationResult verify_evidence(
in Opaque input_token_buffer,
in Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Opaque output_token,
out Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after

);

Parameters

input_token_buffer Buffer containing (possibly a portion, possibly all of) evidence token
to be verified; buffer may also contain data associated with evidenc
token (parsing of buffer in this case is understood only by NR
mechanism, see get_token_details).

evidence_check The evidence check.

form_complete_evidence Set TRUE if complete evidence is required; otherwise FALSE.

token_buffer_complete Set TRUE if the input_token_buffer completes the input token;
FALSE if more input token data remains to be passed on a
subsequent call.

output_token If form_complete_evidence was set to TRUE, this parameter will
contain complete evidence (and the Return Value will be
SecNRValid) or an “augmented” but still incomplete evidence token,
in which case SecNRConditionallyValid is returned.

data_included_in_token Data associated with the evidence, extracted from input token (ma
be a zero length sequence).

evidence_is_complete TRUE if evidence in input token is complete, otherwise FALSE.
2-112 Security Service, v1.7 March 2001

2

t).

ion
te and
nce,

iated

 to

f the
names
een

input

d
s
e

e
e

s
Return Value

get_token_details

The information returned depends upon the type of the token (evidence or reques
The mechanism that created the token is always returned.

• If the input token contains evidence, the following is returned: the non-repudiat
policy under which the evidence has been generated, the evidence type, the da
time when the evidence was generated, the name of the generator of the evide
the size of the associated data, and an indicator specifying whether the assoc
data is included in the token.

• If the input token contains a request, the following is returned: the name of the
requester of the evidence, the non-repudiation policy under which the evidence
send back should be generated, the evidence type to send back, the names o
recipients who should generate and distribute the requested evidence, and the
of the recipients to whom the requested evidence should be sent after it has b
generated.

• If the input token contains both evidence and a request, an indicator describing
whether the partner’s evidence should be generated using only the data in the
token, or using both the data and the evidence in the input token.

trusted_time_used TRUE if the evidence token contains a time considered to be truste
according to the rules of the non-repudiation policy. FALSE indicate
that the security policy mandates trusted time and that the time in th
token is not considered to be trusted.

complete_evidence_before If evidence_is_complete is FALSE and the return value from
verify_evidence is SecNRConditionallyValid , the caller should call
form_complete_evidence with the returned output token before this
time. This may be required, for example, in order to ensure that th
time skew between the evidence generation time and the trusted tim
service’s countersignature on the evidence falls within the interval
allowed by the current NR policy.

complete_evidence_after If evidence_is_complete is FALSE and the return value from
verify_evidence is SecNRConditionallyValid , the caller should call
form_complete_evidence with the returned output token after this
time. This may be required, for example, to ensure that all authoritie
involved in generating the evidence have passed the last time at
which the current NR policy allows them to repudiate their keys.

SecNRInvalid Evidence is invalid.

SecNRValid Evidence is valid.

SecNRConditionallyValid Evidence cannot yet be determined to be invalid
Security Service, v1.7 Application Developer’s Interfaces March 2001 2-113

2

fied

.

void get_token_details(
in Opaque token_buffer,
in boolean token_buffer_complete,
out string token_generator_name,
out NRPolicyFeatures policy_features,
out EvidenceType evidence_type,
out UtcT evidence_generation_time,
out UtcT evidence_valid_start_time,
out DurationInMinutes evidence_validity_duration,
out boolean data_included_in_token,
out boolean request_included_in_token,
out RequestFeatures request_features

);

Parameters

Return Value

None.

form_complete_evidence

form_complete_evidence is used to generate an evidence token that can be veri
successfully with no additional data at any time during its validity period.

boolean form_complete_evidence(
in Opaque input_token,
out Opaque output_token,
out boolean trusted_time_used,

token_buffer Evidence token to parse.

token_buffer_complete Indicator when the token has been fully
provided.

token_generator_name Principal name of token generator.

policy_features Describes the policy used to generate the token

evidence_type Type of evidence contained in the token (may be
SecNoEvidence).

evidence_generation_time Time when evidence was generated.

evid_validity_start_time Beginning of evidence validity interval.

evidence_validity_duration Length of evidence validity interval.

data_included_in_token TRUE if the token includes the data for which it
contains evidence, otherwise FALSE.

request_included_in_token TRUE if the token includes a request, otherwise
FALSE.

evidence_generation_time Time when evidence was generated.
2-114 Security Service, v1.7 March 2001

2

tion
se

nal

rity

.

out TimeT complete_evidence_before,
out TimeT complete_evidence_after

);

Parameters

Return Value

2.4 Administrator’s Interfaces

This section describes the administrative features of the specification. Administra
specifies the policies that control the security-related behavior of the system. The
features form an ‘Administrator’s View,’ encompassing the interfaces that a human
administrator would need to use, but the facilities may also be used by conventio
applications that wish to be involved in administrative actions. ‘Administrator’ may
therefore refer to a human or system agent.

Most interfaces defined here are in Security Functionality Level 2, as Level 1 secu
does not include administration interfaces.

token_buffer Evidence token to be completed..

output_token The “augmented” evidence token may be complete

trusted_time_used TRUE if the token’s generation time can be trusted,
otherwise FALSE. If trusted time is required by the
policy under which the evidence will be verified,
and if this indicator is not set, the evidence will not
be considered complete.

complete_evidence_before If the return value is FALSE,
form_complete_evidence should be called before
this time.

complete_evidence_after If the return value is FALSE,
form_complete_evidence should be called after this
time.

TRUE Evidence is now complete.

FALSE Evidence is not yet complete.
Security Service, v1.7 Administrator’s Interfaces March 2001 2-115

2

ng
 that
tate
cess

em. It

 and
the

ment
ation

y

ans to

y.
s
erent

y a
2.4.1 Concepts

2.4.1.1 Administrators

This specification imposes no constraints on how responsibilities are divided amo
security administrators, but in many cases an enterprise will have a security policy
restricts the responsibilities of any one individual. Also, legal requirements may dic
a separation of roles so that, for example, there are different administrators for ac
control and auditing functions.

Administrators are subject to the same security controls as other users of the syst
is expected that an enterprise will define roles (or other privileges) that certain
administrators will adopt. Administrative operations are subject to access controls
auditing in the same way as other object invocations, so only administrators with
required administrative privileges will be able to invoke administrative operations.

This specification does not define administrative functions concerning the manage
of underlying mechanisms supporting the security services, such as an Authentic
Service, Key Distribution Service, or Certification Authority.

2.4.1.2 Policy Domains

Security administrators specify security policies for particular security policy
domains (for brevity, only the words in bold are used for the remainder of this
section).

A domain includes an object, called the domain manager, which has associated with
it the policy objects for this domain, and notionally contains zero or more other
objects, which are domain members and subject to the policies specified by the polic
objects associated with the domain manager.

The domain manager records the membership of the domain and provides the me
add and remove members. The domain manager is itself a member of a domain,
possibly the domain it manages.

There are different types of policy objects for administering different types of polic
As described in Section 2.1.8.1, “Security Policy Domains,” on page 2-21, domain
may be members of other domains, forming containment hierarchies. Because diff
kinds of policy affect different groups of objects, objects (and domains) may be
members of multiple domains.

The policies that apply to an object are those of all its enclosing domains.

2.4.1.3 Security Policies

This specification covers administration of security policies, which are enforced b
secure object system in either of the following ways:
2-116 Security Service, v1.7 March 2001

2

ies,

ting

ject

he

• Automatically on object invocation. This covers system policies for security
communications between objects, control of whether this client can use this
operation on this target object, whether the invocation should be audited, and
whether an original principal’s credentials can be delegated.

• By the application. This covers security policies enforced by applications.
Applications may enforce access, audit, and non-repudiation policies. The
application policies may be managed using domains as for other security polic
or the application can choose to manage its own policies in its own way.

Invocation time policies for an object can be applicable only when this object is ac
as a client, only when it is a target object, or whenever it is acting as either.

Security policies may be administered by any application with the right to use the
security administrative interfaces. This is subject to the invocation access control
policy for the administrative interface.

2.4.2 Domain Management

The Domain Management facilities (defined in the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specification) are used by the
Security Service as described in the following sections.

2.4.3 Security Policies Introduction

Invocation security policies are enforced automatically by ORB services during ob
invocation. These are:

• Invocation access policies (Security::SecClientInvocationAccess and
Security::SecTargetInvocationAccess , interface
SecurityAdmin::AccessPolicy) for controlling access to objects.

• Invocation audit policies (Security::SecClientInvocationAudit and
Security::SecTargetInvocationAudit , interface SecurityAdmin::AuditPolicy)
control which operations on which objects are to be audited.

• Invocation delegation policies (Security::SecDelegation , interface
SecurityAdmin::DelegationPolicy) for controlling the delegation of privileges.

• Secure invocation policies (Security::SecClientSecureInvocation and
Security::SecTargetSecureInvocation , interface
SecurityAdmin::SecureInvocationPolicy) for security associations, including
controlling the delegation of client’s credentials, and message protection.

Different policies generally apply when an object acts as a client from when it is t
target of an invocation.

In addition to these invocation policies, there are a number of policy types, which
apply independently of object invocation. These are:

• Application access policy (Security::SecApplicationAccess , interface
SecurityAdmin::AccessPolicy), which applications may use to manage and
enforce their access policies.
Security Service, v1.7 Administrator’s Interfaces March 2001 2-117

2

ce

rced
e

rface

or

ed.
licy
ible
d in

ent

ive

,

xt

d
• Application audit policy (Security::SecApplicationAudit , interface
SecurityAdmin::AuditPolicy), which applications can use to manage and enfor
their audit policies.

• Non-repudiation policies (Security::SecNonRepudiation , interface
SecurityAdmin::NRPolicy) determine the rules for the generation and use of
evidence.

There is also a policy concerned with creation of object references, which is enfo
by POA::create_reference and variants thereof or equivalent operation. This is th
construction policy (CORBA::SecConstruction), which controls whether a new
domain is created when an object of a specified type is created. (See the ORB Inte
chapter of the Common Object Request Broker: Architecture and Specification.)

Note – Policies associated with underlying security technology are not included. F
example, there are no policies for principal authentication as this is often done by
specific security services.

Operations are provided for setting all the types of security policies previously list
In each case, these management operations permit administration of standard po
semantics supported by the interfaces defined in this specification. It is also poss
for implementors to replace the policy objects, the operations of which are define
this specification, with different policy objects supporting different semantics. In
general, such policy objects will also have management operations that are differ
from those defined in this specification.

2.4.4 Access Policies

There are two types of invocation access policies:

1. The Client Invocation Access policy (Security::SecClientInvocationAccess),
which is used at the client side of an invocation, and

2. The Target Invocation Access policy (Security::SecTargetInvocationAccess),
which is used at the target side.

There is one policy type for application access. However, no standard administrat
interface to this is specified, as different applications have different requirements.

Access Policies control access by subjects (possessing Privilege Attributes), to objects
using rights. Privilege Attributes have already been discussed (in Section 2.3,
“Application Developer’s Interfaces,” on page 2-71); rights are described in the ne
section.

2.4.4.1 Rights

The standard Access Policy objects in a secure CORBA system implement access
policy using rights (though implementations may define alternative, non-rights-base
Access Policy objects).
2-118 Security Service, v1.7 March 2001

2

ion.

tions
t

ons.

ce’s

der

t
re

ts

tories
 the

hts

of
ies
In rights-based systems, Access Policy objects grant rights to PrivilegeAttributes. For
each operation in the interface of a secure object, some set of rights is required. Callers
must be granted these required rights in order to be allowed to invoke the operat

Secure CORBA systems provide a RequiredRights interface, which allows:

• Object interface developers to express the “access control types” of their opera
using standard rights, which are likely to be understood by administrators, withou
requiring administrators to be aware of the detailed semantics of those operati

• Access-control checking code to retrieve the rights required to invoke an interfa
operations.

Note that required rights are characteristics of interfaces, not of instances. All instances
of an interface, therefore, will always have the same required rights.

Note also that because required rights are defined and retrieved through the
RequiredRights interface, no change to existing object interfaces is required in or
to assign required rights to their operations.

Rights Families

This specification provides a standard set of rights for use with the
DomainAccessPolicy interface defined later in this section. These rights may no
satisfy all access control requirements. However; to allow for extensibility, rights a
grouped into Rights Families. The RightsFamily containing the standard rights is
called “corba,” and contains four rights: “g” (interpreted to mean “get”), “ s”
(interpreted to mean “set”), “ m” (interpreted to mean “manage”) and “u” (interpreted
to mean “use”). Implementations may define additional Rights Families. Rights are
always qualified by the RightsFamily to which they belong.

2.4.4.2 The SecurityLevel2::RequiredRights Interface

A Required Rights object can be thought of as a table (an example Required Righ
table appears later in this section). Note that implementations need not manage
required rights on an interface-by-interface basis. Required Rights objects should be
thought of as databases of policy information, in the same way as Interface Reposi
are databases of interface information. Thus in many implementations, all calls to
RequiredRights interface will be handled by a single Required Rights object
instance, or by one of a number of replicated instances of a master Required Rig
object instance.

The value returned for a particular operation in a Required Rights object is a list of
rights and a rights combinator. The rights combinator specifies the interpretation
multiple rights in conjunction with a list of granted rights. This specification specif
two rights combinators, SecAllRights and SecAnyRights . Each combinator defines
a predicate on a list of required rights and a list of granted rights.

Given a list of granted rights, G, and a list of required rights, R, the definition of the
SecAllRights combinator forms the following predicate:

r r R∈ r G∈⇒∋∀
Security Service, v1.7 Administrator’s Interfaces March 2001 2-119

2

s is
ghts,

rights
ins

t
The definition of the SecAnyRights combinator forms the following predicate:

These definitions have important ramifications when an empty list of required right
specified with each combinator. Regardless of the granted rights, if the required ri
R, is empty, then the predicate formed with the SecAllRights combinator results in
true, and the predicate formed with the SecAnyRights combinator results in false.

Note that the following behaviors of systems conforming to CORBA Security are
unspecified and therefore may be implementation-dependent:

• Assignment of initial required rights to newly created interfaces.

• Inheritance of required rights by newly created derived interfaces.

get_required_rights

This operation retrieves the rights required to execute the operation specified by
operation_name of the interface specified by obj . The obj ’s interface will be
determined and used to retrieve required rights. The returned values are a list of
and a combinator describing how the list of rights should be interpreted if it conta
more than one entry.

void get_required_rights(
in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out RightsList rights,
out RightsCombinator rights_combinator

);

Parameters

Return Value

None.

obj The object for which required rights are to be returned.

operation_name The name of the operation for which required rights are to
be returned.

interface_name The CORBA RepositoryId of the interface implemented by
the object, which is used as a default only if the ORB canno
determine the name of the most derived interface
implemented by the object in the obj parameter.

rights The returned list of required rights.

rights_combinator The returned rights combinator.

r r R∈ r G∈∧∋∃
2-120 Security Service, v1.7 March 2001

2

he

his
y an

list

set_required_rights

This operation updates the rights required to execute the operation specified by t
operation_name of the interface specified by interface_name . The caller must
provide a list of rights and a combinator describing the interpretation of multiple
rights.

void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
in RightsList rights,
in RightsCombinator rights_combinator

);

Parameters

Return Value

None.

2.4.4.3 The SecurityAdmin::AccessPolicy Interface

This is the root interface for the various kinds of invocation access control policy. T
interface supports querying of the effective access granted by a set of attributes b
invocation access policy. It inherits the CORBA::Policy interface and has a single
operation, get_effective_rights .

get_effective_rights

This operation returns the current effective rights (of family RightsFamily) granted
by this Access Policy object to the subject possessing all privilege attributes in the
of attributes attrib_list .

RightsList get_effective_rights(
in AttributeList attrib_list,
in ExtensibleFamily rights_family

);

operation_name The name of the operation for which required rights are to
be updated.

interface_name The name of the interface whose required rights are to be
updated.

rights The desired new list of required rights.

rights_combinator The desired new RightsCombinator .
Security Service, v1.7 Administrator’s Interfaces March 2001 2-121

2

y
 of

ore
 call
s

rn

h
Parameters

Return Value

A list of effective rights that are consistent with the attrib_list and the access policy,
of the family specified by rights_family . If the rights cannot be mapped from one or
more attributes, the attribute is silently ignored.

get_all_effective_rights

This operation returns the current effective rights (for all rights families) granted b
this Access Policy object to the subject possessing all privilege attributes in the list
attributes attrib_list .

RightsList get_all_effective_rights(
 in AttributeList attrib_list

);

Parameters

Return Value

A list of effective rights that are consistent with the attrib_list and the access policy.

Note that this specification does not define how an Access Policy object combines
rights granted through different Privilege Attribute entries, in case a subject has m
than one Privilege Attribute to which the Access Policy grants rights. However, this
will cause the Access Policy object to combine rights granted to all privilege attribute
in the input AttributeList (using whatever operation it has implemented), and retu
the result of the combination.

Access Decision objects, and applications that check whether access is permitted
without using an Access Decision object, should use this operation to retrieve rights
granted to subjects.

2.4.4.4 Specific Invocation Access Policies

This specification allows different Invocation Access policies to be provided throug
specialization of the AccessPolicy interface.

attrib_list A list of attributes obtained from one or more Credentials
using the get_attributes operation.

rights_family The family of rights to be affected, filtering rights that do
not that match rights_family .

attrib_list A list of attributes obtained from one or more Credentials
using the get_attributes operation.
2-122 Security Service, v1.7 March 2001

2

its
cess
This

in
cts in
r of at

ed

nted
 with
that

ts in
cy’s
The provider of each specific Invocation Access policy is responsible for defining
own administrative operations. This specification defines a standard Invocation Ac
policy interface, including administrative operations, presented in the next section.
standard policy may of course be replaced by, or augmented with, other policies.

2.4.4.5 The Domain AccessPolicy Object

The Domain Access Policy object with the SecurityAdmin::DomainAccessPolicy
interface provides discretionary access policy management semantics. CORBA
implementations with policy requirements, which cannot be met by the Domain Access
Policy abstraction, may choose to implement different Access Policy objects. For
example, they may choose to implement access control policy management using
capabilities.

Domains

This specification defines interfaces for administration of access policy on a doma
basis. Each domain may be assigned an access policy, which is applied to all obje
the domain. Each access-controlled object in a CORBA system must be a membe
least one domain.

A Domain Access Policy object defines the access policy, which grants a set of nam
“subjects” (e.g., users), a specified set of “rights” (e.g., g, s, m, u) to perform
operations on the “objects” in the domain. A Domain Access Policy can be represe
by a table whose row labels are the names of subjects, and whose cells are filled
the rights granted to the subject named in that row’s label, as in Table 2-1. Note
the use of the Delegation State is discussed in “Delegation State” on page 2-124.

This Domain Access Policy grants the rights “g” and “s” to Alice and Zeke, and the
right “g” to Bob and Cathy. (The annotation “corba” prefixing the granted rights
indicates which Rights Family, as defined in the previous section, each of the righ
the table is drawn from. In this case, all rights are drawn from Domain Access Poli
standard “corba” Rights Family. The delegation state column is described under
“Delegation State” on page 2-124.

Table 2-1 DomainAccessPolicy

Subject Delegation State Granted Rights

alice initiator corba:gs--

bob initiator corba:g---

cathy initiator corba:g---

...

zeke initiator corba:gs--
Security Service, v1.7 Administrator’s Interfaces March 2001 2-123

2

.

tities”

tes;

tor

ivilege
 the
ot

Domain Access Policy Use of Privilege Attributes

Administration of principals by individual identity is costly, so the Domain Access
Policy aggregates principals for access control. A common aggregation is called a
“user group.” This specification generalizes the way users are aggregated, using
“Privilege Attributes” (as defined in Section 2.1.4.3, “Access Policies,” on page 2-9)
Users may have many kinds of privilege attributes, including groups, roles, and
clearances (note that user access identities, often referred to simply as “user iden
or “userids,” are considered to be a special case of privilege attributes). The Domain
Access Policy object uses Privilege Attributes as its subject entries.

This specification does not provide an interface for managing user privilege attribu
an implementation of this specification might provide a “User Privilege Attribute
Table” enumerating the set of users granted each Privilege Attribute. An implemen
might provide a user privilege attribute table, shown next.

Given the definitions in this table, we can simplify our Domain Access Policy as
follows (note that, for convenience, each PrivilegeAttribute entry is annotated in the
table with its PrivilegeAttribute type).

Delegation State

The Domain Access Policy abstraction allows administrators to grant different rights
when a Privilege attribute is used by a delegate than those granted to the same Pr
attribute when used by an initiator (note that “initiator” means the principal issuing
first call in a delegated call chain; that is, the only client in the call chain that is n
also a target object). The Domain Access Policy shown next illustrates the use of this
feature.

Table 2-2 User Privilege Attributes (not defined by this specification)

Users Privilege Attributes

bob, cathy group:programmers

zeke group:administrators

Table 2-3 Domain Access Policy (with Privilege Attributes)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--

group:programmers initiator corba:g---

group:administrators initiator corba:gs--

Table 2-4 Domain Access Policy (with Delegate Entry)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--
2-124 Security Service, v1.7 March 2001

2

es

ces.

 of
This Domain Access Policy grants Alice the “g” and “s” rights when she accesses an
object as an initiator, but only the “g” right when a delegate using her identity access
the same object.

Domain Access Policy Use of Rights and Rights Families

The rights granted to a Privilege Attribute by a Domain Access Policy entry must each
be “tagged” with the RightsFamily to which they belong. Each Domain Access Policy
entry can grant its row’s PrivilegeAttribute rights from any number of different Rights
Families.

Implementations may define new Rights Families in addition to the standard “corba”
family, though this should be done only if absolutely necessary, since new Rights
Families complicate the administrator’s model of the system.

Access Decision Use of AccessPolicy and RequiredRights

The Access Decision object is described in Section 2.3.12.2, “The Access Decision
Object,” on page 2-103. It is used at run-time to perform access control checks. Access
Decision objects rely upon Access Policy objects to provide the policy information
upon which their decisions are based.

To complete the example, imagine that we have the following set of object instan

The Domain Access Policy object illustrated next has been updated to include a list
rights of type “other” granted to each of the Privilege attributes.

access_id:alice delegate corba:g---

group:programmers initiator corba:g---

group:administrators initiator corba:gs--

Table 2-5 Interface Instances

Objects Interface

obj_1, obj_8, obj_n c1

obj_2, obj_5 c2

obj_12 c3

Table 2-6 Domain Access Policy

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba: gs--
other: -u-m-s

Table 2-4 Domain Access Policy (with Delegate Entry)
Security Service, v1.7 Administrator’s Interfaces March 2001 2-125

2

g the
t

olicy.

 an

iator,

ay

s an

ator,

d

ator,
Table 2-7 shows Required Rights for three object interfaces (c1, c2, and c3), usin
standard Rights Family “corba” and a second Rights Family, “other,” whose rights se
is assumed to be {g, u, o, m, t, s}.

Using this, we can calculate the effective access granted by this Domain Access P

• alice can execute operations m1 and m2 of objects obj_1, obj_8, and obj_n as
initiator, but may execute only m2 as a delegate.

• alice can execute operations m3 and m4 of objects obj_2, and obj_5 as an init
but may execute no operations of obj_2 and obj_5 as a delegate.

• alice can execute operations m5 and m6 of object obj_12 as an initiator, but m
execute no operations as a delegate.

• “programmers” can execute operation m2 of objects obj_1, obj_8, and obj_n a
initiator, but no operations as a delegate.

• “programmers” can execute operation m3 of objects obj_2 and obj_5 as an initi
but no operations as a delegate.

• “administrators” can execute operations m1 and m2 of objects obj_1, obj_8, an
obj_n as an initiator, but no operations as a delegate.

• “administrators” can execute operations m5 and m6 of object obj_12 as an initi
but no operations as a delegate.

access_id:alice delegate corba: g---
other: ------

group:programmers initiator corba: g---
other: -u----

group:administrators initiator corba: gs--
other: ------

Table 2-7 Required Rights for Interfaces c1, c2, and c3

Required Rights Rights
Combinator

Operation Interface

corba:s all m1 c1

corba:gs any m2

other:u all m3 c2

other:ms all m4

other: s all m5 c3

corba:gs all m6

Table 2-6 Domain Access Policy
2-126 Security Service, v1.7 March 2001

2

e

ingle

ed to
2.4.4.6 The SecurityAdmin::DomainAccessPolicy Interface

The Domain Access Policy object provides operations for managing access policy
through the DomainAccessPolicy interface.

Each domain manager may have at most one Access Policy object, and therefore at
most one Domain Access Policy (though an object instance may have more than on
domain manager, and therefore, more than one Domain Access Policy). The
DomainAccessPolicy interface inherits the AccessPolicy interface and defines
operations to specify which subjects can have which rights as follows.

grant_rights

This operation grants the specified rights to the privilege attribute priv_attr in
delegation state del_state .

Utilities that manage access policy should use this operation to grant rights to a s
privilege attribute.

void grant_rights(
in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

Parameters

Return Value

None.

revoke_rights

This operation revokes the specified rights of the privilege attribute priv_attr in
delegation state del_state .

Utilities that manage access policy should use this operation to revoke rights grant
a single privilege attribute.

void revoke_rights(
in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be granted.
Security Service, v1.7 Administrator’s Interfaces March 2001 2-127

2

nted

e in

nted
Parameters

Return Value

None.

replace_rights

This operation replaces the current rights of the privilege attribute priv_attr in
delegation state del_state with the rights provided as input.

Utilities that manage access policy should use this operation to replace rights gra
to a single privilege attribute in cases where using grant_rights and revoke_rights
is inappropriate. For example, replace_rights might be used to change an
access_id ’s authorizations to reflect a change in job description (since the chang
authorization in this case is related to the duties of the new job rather than to the
current authorizations granted to the user owning the access_id).

void replace_rights(
in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

Parameters

Return Value

None.

get_rights

This operation returns the current rights (of type RightsList) of the privilege attribute
priv_attr in delegation state del_state .

Utilities that manage access policy should use this operation to retrieve rights gra
to an individual privilege attribute.

RightsList get_rights(
in SecAttribute priv_attr,
in DelegationState del_state,

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be revoked.

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be replaced.
2-128 Security Service, v1.7 March 2001

2

ily
e

nted

n
in ExtensibleFamily rights_family
);

Parameters

Return Value

A list of rights granted to the specified privilege attribute of the specified rights fam
in the specified delegation state. If the rights cannot be mapped from one or mor
attributes, the attribute is silently ignored.

get_all_rights

This operation returns the current rights (for all rights families) of the privilege
attribute priv_attr in delegation state del_state .

Utilities that manage access policy should use this operation to retrieve rights gra
to an individual privilege attribute.

RightsList get_all_rights(
 in SecAttribute priv_attr,
 in DelegationState del_state

);

Parameters

Return Value

A list of rights granted to the specified privilege attribute in the specified delegatio
state.

2.4.5 Audit Policies

There are two invocation audit policies:

1. The SecClientInvocationAudit policy, which is used at the client side of an
invocation.

2. The SecTargetInvocationAudit policy, which is used at the target side.

priv_attr Privilege attributes to which the requested rights are
granted.

del_state Delegation state to be set.

rights_family The family of rights to be affected, filtering rights that
do not that match rights_family .

priv_attr Privilege attributes to which the requested rights are
granted.

del_state Delegation state to be set.
Security Service, v1.7 Administrator’s Interfaces March 2001 2-129

2

r
for
ich

s of
useful

 in a

r

n

tion

pes,
There is also an application audit policy type.

Audit policy administration interfaces are used to specify the circumstances unde
which object invocations and application activities in this domain are audited. As
access policies, this specification allows different audit policies to be specified, wh
may have different administrative interfaces.

Different audit policies are potentially possible, which allow a great range of option
what to audit. Some of these are needed to respond to the problem of getting the
information, without generating huge quantities of audit information.

Examples of what events could be audited during invocation include:

• Specified operations on objects.

• Failed operations (i.e., those that raise an exception) on specified object types
domain.

• Use of certain operations during certain time intervals (e.g., overnight).

• Access control failures on specified operations.

• Operations done by a specified principal.

• Combinations of these.

Note that many of these events may be related to the business application. For
example, an operation of update_bank_account is a business, rather than system,
operation. However, some events are mainly of interest to a Privilege administrato
(e.g., access failures to systems objects).

Application audit policies may audit similar types of events, though these are ofte
related to application functions, not object invocations.

2.4.5.1 The SecurityAdmin::AuditPolicy Interface

The AuditPolicy interface can be used to administer both client and target invoca
audit policies.

This standard audit policy is used to specify, for a set of event families and event ty
the selectors to be used to define which events are to be audited.
2-130 Security Service, v1.7 March 2001

2

f

it

dit

 a

cified

e

ed

e

These are related to the selectors used in audit_needed (of Audit Decision object,
interface AuditDecision) and audit_write (of Audit Channel object, interface
AuditChannel) as follows..

Note that audit policy is managed on an audit policy domain basis. Assignment o
initial audit selectors to newly created domains is unspecified and hence may be
implementation-dependent.

The audit policy also specifies an Audit Combinator for each event type. The Aud
Combinator defines how, for a given event type, audit_needed matches its selector
value list against the selectors in an audit policy. This specification defines two Au
Combinators: SecAllSelectors (which means that if all selectors in an audit policy
match the selectors supplied to audit_needed , audit_needed will return TRUE),
and SecAnySelector (which means that if any selector in the audit policy matches
selector in audit_needed , audit_needed will return TRUE).

The following operations are available on the Audit Policy object.

set_audit_selectors

This operation defines the selectors to be used to decide whether to audit the spe
event families and types.

void set_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events,
in SelectorValueList selectors,
in AuditCombinator audit_combinator

);

Table 2-8 Standard Audit Policy

Selector Type Value on audit_needed
and audit_write

Value Administered

InterfaceName interface name CORBA::RepositoryId

ObjectRef object reference none - the policy applies to all objects in th
domain

Operation op_name operation

Initiator credential list security attributes (audit_id and privileges)

Success
Failure

boolean boolean

Time utc when event occurred time interval during which auditing is need

DayOfWeek DayOfTheWeek day of the week on which audit is to be don
Security Service, v1.7 Administrator’s Interfaces March 2001 2-131

2

s
Parameters

Return Value

None.

clear_audit_selectors

This clears all audit selectors for the specified event families and types.

void clear_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events

);

Parameters

Return Value

None.

replace_audit_selectors

This replaces the specified selectors.

void replace_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events,

object_type The type of objects for which an audit policy is being set.
If this is the empty string, the default policy for all object
types is implied.

events Event types are specified as family and type ids. If the type
id is zero (AuditAll), the selectors apply to all event types
in that family.

selectors The values for the selectors to be set for the specified
events. Selectors replaces the old selector list for each of
the specified events. (Selectors for all other events remain
unchanged.)

audit_combinator The value for the combinator to be set for the specified
events.

object_type The type of objects for which an audit policy is being cleared. If
this is the empty string, the default policy for all object types is
implied.

events Event types are specified as family and type ids. If the type id i
zero (AuditAll), the selectors apply to all event types in that
family.
2-132 Security Service, v1.7 March 2001

2

vent.

in SelectorValueList selectors
in AuditCombinator audit_combinator

);

Parameters

Return Value

None.

get_audit_selectors

This obtains the current values of the selectors for the specified event family or e

void get_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventType event_type
out SelectorValueList selectors
out AuditCombinator audit_combinator

);

Parameters

Return Value

None.

object_type The type of objects for which an audit policy is being
replaced. If this is the empty string, the default policy for
all object types is implied.

events Event types are specified as family and type ids. If the type
id is zero (AuditAll), the selectors apply to all event types in
that family.

selectors The values for the selectors to be set for the specified
events. Selectors replaces the old selector list for each of
the specified events. Selectors for all events not in the
specified events list are reset to empty lists.

audit_combinator The value for the combinator to be set for the specified
events.

object_type The type of objects for which an audit policy is being
obtained. If this is the empty string, the default policy for
all object types is implied.

event_type The requested event type.

selectors The list of selector values for the specified event_type .

audit_combinator The audit combinator for the specified event_type .
Security Service, v1.7 Administrator’s Interfaces March 2001 2-133

2

he

re set

een

icy
licy

et of
w:

d
the

rity
set_audit_channel

This specifies the identity of the audit channel to be used with this audit policy. T
actual audit channel object corresponding to this id is provided to the user by the
corresponding Audit Decision object.

void set_audit_channel(
in AuditChannelId audit_channel_id

);

Parameters

Return Value

None.

2.4.6 Secure Invocation and Delegation Policies

These policies affect the way secure communications between client and target a
up, and then used. There are three policies here:

1. Security::SecClientSecureInvocation policy, which specifies the client policy
in terms of trust in the target’s identity and protection requirements of the
communications between them.

2. Security::SecTargetSecureInvocation policy, which specifies the target policy
in terms of trust in the client’s identity and protection requirements of the
communications between them.

3. Security::SecDelegation policy, which specifies whether credentials are
delegated for use by the target when a security association is established betw
client and target. This is a client side policy.

In all of these cases, there is a standard policy interface for administering the pol
options. Unlike access and audit policies, this is not replaceable. The standard po
administration operations allow support of a range of policies.

2.4.6.1 Secure Invocation Policies

These are used to set client and target invocation policies, which specify both a s
required secure association options and a set of supported options that control ho

• The security association is made, for example, whether trust between client an
target is established (implying authentication if the client and target are not in
same identity domain).

• Messages using that association are protected, for example, the levels of integ
and confidentiality.

audit_channel_id A unique identifier associated with an audit channel.
2-134 Security Service, v1.7 March 2001

2

ot
the
at is

tion
ing

, the

 are

ate

.

The administrator should specify the required association options, but will often n
need to specify the supported options as these default to the ones supported by
security mechanism used. However, the administrator could choose to restrict wh
supported, and in this case, should specify supported options.

Some implementations may support separate sets of association options for
communications in the request direction and the reply direction (e.g., for an applica
that requires no protection on the request, but confidentiality on the reply). Conform
implementations are not required to support this unidirectional feature. Some
selectable policy options may not be meaningful to set for a certain direction (e.g.
EstablishTrustInTarget option is not meaningful for a reply).

Both SecClientSecureInvocation and SecTargetSecureInvocation type policy
objects support the same interface, though not all of the selectable policy options
meaningful to both client and target.

Required and Supported Secure Invocation Policy

For both the SecClientSecureInvocation and SecTargetSecureInvocation
policies, a separate set of secure association options may be established to indic
required policy and supported policy. The required policy indicates the options that
an object requires for communications with a peer. The supported policy specifies the
options that an object can support if requested by a communicating peer.

The required options indicate the minimum requirements of the object, stronger
protection is not precluded.

2.4.6.2 Secure Association Options

The selectable secure association options (Security::AssociationOptions) are listed
next with a description of their semantics for required policy and supported policy.

NoProtection
• Required semantics: the object’s minimal protection requirement is unprotected

invocations.

• Supported semantics: the object supports unprotected invocations.

Integrity
• Required semantics: the object requires at least integrity-protected invocations

• Supported semantics: the object supports integrity-protected invocations.

Confidentiality
• Required semantics: the object requires at least confidentiality-protected

invocations.

• Supported semantics: the object supports confidentiality-protected invocations.
Security Service, v1.7 Administrator’s Interfaces March 2001 2-135

2

es.

ages.

s of

nts of

te its

trust

s by

olicy
DetectReplay
• Required semantics: the object requires replay detection on invocation messag

• Supported semantics: the object supports replay detection on invocation mess

DetectMisordering
• Required semantics: the object requires sequence error detection on fragment

invocation messages.

• Supported semantics: the object supports sequence error detection on fragme
invocation messages.

EstablishTrustInTarget
• Required semantics: On client policy, the client requires the target to authentica

identity to the client. On target policy, this option is not meaningful.

• Supported semantics: On client policy, the client supports having the target
authenticate its identity to the client. On target policy, the target is prepared to
authenticate its identity to the client.

EstablishTrustInClient
• Required semantics: On client policy, this option is not meaningful. On target

policy, the target requires the client to authenticate its privileges to the target.

• Supported semantics: On client policy, the client is prepared to authenticate its
privileges to the target. On target policy, the target supports having the client
authenticate its privileges to the target.

Note that on an invocation, if both the client and target policies specify that peer
is needed, mutual authentication of client and target is generally required.

If the target accepts unauthenticated users as well as authenticated ones, the
EstablishTrustInClient option may be set for supported policy, but not for required
policy. This allows unauthenticated clients to use this target (subject to access
controls); the target can still insist on only authenticated users for certain operation
using access controls.

2.4.6.3 The SecurityAdmin::SecureInvocationPolicy Interface

The SecureInvocationPolicy interface provides the following operations:

set_association_options

This operation of the SecurityAdmin::SecureInvocationPolicy interface
(PolicyType SecClientSecureInvocation and SecTargetSecureInvocation) is
used to set the secure association options for objects in the domain to which the p
applies. Separate options may be set for particular object types by using the
object_type parameter.
2-136 Security Service, v1.7 March 2001

2

n in
ions

ple,

nly a

n or

y

e
This call allows requesting a different set of association options for communicatio
the request direction versus the reply direction, although conforming implementat
are not required to support this feature. The “request” and “reply” options sets are
treated as overrides to the “both” options set when evaluating policy for a single
communication direction. Implementations should raise the CORBA::BAD_PARAM
exception if an unsupported direction is requested on this call.

Not all selectable association options are meaningful for every policy set. For exam
EstablishTrustInClient , which is meaningful for the SecTargetSecureInvocation
policy, is not meaningful as a requirement for the SecClientSecureInvocation
policy. Likewise, certain association options do not make sense when applied to o
single direction (e.g., EstablishTrustInTarget is not meaningful for communication
in the reply direction). An implementation may choose whether to raise an exceptio
silently ignore requests for invalid association options.

void set_association_options(
in CORBA::RepositoryId object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction,
in AssociationOptions options

);

Parameters

Return Value

None.

get_association_options

This is used to find what secure association options apply on
SecClientSecureInvocation and SecTargetSecureInvocation policy objects for
the required or supported policy, for the indicated direction, and for the specified
object type.

Implementations should raise the CORBA::BAD_PARAM exception if an
unsupported direction is requested on this call.

object_type The type of objects that the association options apply to. If
this parameter is an empty string, all object types are
implied.

requires_supports Indicates whether the operation applies to the required
options or the supported options.

direction Indicates whether the options apply to only the request, onl
the reply, or to both directions of the invocation.

options Indicates requested secure association options by setting th
corresponding options flags.
Security Service, v1.7 Administrator’s Interfaces March 2001 2-137

2

ain

his

f
AssociationOptions get_association_options(
in CORBA::RepositoryId object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction

);

Parameters

Return Values

The association options flags set for this policy.

2.4.6.4 The SecurityAdmin::DelegationPolicy Interface

The Delegation Policy object, which has the SecurityAdmin::DelegationPolicy
interface, controls which credentials are used when an intermediate object in a ch
invokes another object.

set_delegation_mode

The set_delegation_mode operation specifies which credentials are delegated by
default at an intermediate object in a chain where objects invoke other objects. T
default can be overridden by the object at run time.

void set_delegation_mode(
in CORBA::RepositoryId object_type,
in DelegationMode mode

);

Parameters

object_type The type of objects that the association options apply to. I
this parameter is an empty string, all object types are
implied.

requires_supports Indicates whether the operation applies to the required
options or the supported options.

direction Indicates whether the options apply to only the request,
only the reply, or to both directions of the invocation.

object_type The type of objects to which this delegation policy applies.

mode The delegation mode. Options are listed below:
2-138 Security Service, v1.7 March 2001

2

y be
 the

or

te

Return Value

None.

get_delegation_mode

This returns the delegation mode associated with the object.

DelegationMode get_delegation_mode(
in CORBA::RepositoryId object_type

);

Parameters

Return Value

The delegation mode of the object type specified by the object_type parameter.

2.4.7 Non-repudiation Policy Management

This section defines interfaces for management of non-repudiation policy.

Non-repudiation policies define the following:

• Rules for the generation of evidence, such as the trusted third parties which ma
involved in evidence generation and the roles in which they may be involved and
duration for which the generated evidence is valid.

• Rules for the verification of evidence, for example, the interval during which a
trusted third party may legitimately declare its key to have been compromised
revoked.

• Rules for adjudication, for example, which authorities may be used to adjudica
disputes.

SecDelModeNoDelegation The intermediate’s own credentials are used
for future invocations.

SecDelModeSimpleDelegation The initiating principal credentials are
delegated.

SecDelModeCompositeDelegation Both the received credentials and the
intermediate object’s own credentials are
passed (if the underlying security mechanism
supports this). The requester’s credentials
and the intermediate’s own credentials may
be combined into a single credential, or kept
separate, depending on the underlying
security mechanism.

object_type The type of object for which delegation mode is requested.
Security Service, v1.7 Administrator’s Interfaces March 2001 2-139

2

time

ties
ach

l
ered

time
ime
 or

e the

the
The non-repudiation policy itself may be used by the adjudicator when resolving a
dispute. For example, the adjudicator might refer to the non-repudiation policy to
determine whether the rules for generation of evidence have been complied with.

For each type of evidence, a policy defines a validity duration and whether trusted
must be used to generate the evidence.

For each non-repudiation mechanism, a policy defines the set of trusted third par
(“authorities”), which may be used by the mechanism. A policy also defines, for e
mechanism, the maximum allowable “skew” between the time of generation of
evidence and the time of countersignature by a trusted time service; if the interva
between these two times is larger than the maximum skew, the time is not consid
to be trusted.

For each authority, a policy defines which roles the authority may assume, and a
offset, relative to evidence generation time, which allows computation of the last t
at which the authority can legitimately declare its key to have been compromised
revoked. For example, if an authority has a defined last_revocation_check_offset
of negative one hour, then all revocations taking effect earlier than one hour befor
generation of a piece of evidence will render that evidence invalid; no revocation
taking place later than one hour before the generation of the evidence will affect
evidence’s validity. Note that the last_revocation_check_offset is inclusive, in the
sense that all revocations occurring up to and including the time defined by
generation_time + offset are considered effective.

2.4.7.1 Data Types for Non-repudiation Policy Management Interfaces

The following data types are used by the NR policy management operations.

module NRservice {

struct EvidenceDescriptor {
EvidenceType evidence_type,
DurationInMinutes evidence_validity_duration,
boolean must_use_trusted_time

};
typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;
struct AuthorityDescriptor {

string authority_name,
string authority_role,
TimeOffsetInMinutes last_revocation_check_offset
// may be >0 or <0; add this to evid. gen. time to
// get latest time at which mech. will check to see
// if this authority’s key has been revoked.

};
typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
NRMech mech_type,
AuthorityDescriptorList authority_list,
2-140 Security Service, v1.7 March 2001

2

r
TimeOffsetInMinutes max_time_skew
// max permissible difference between evid. gen. time
// and time of time service countersignature
// ignored if trusted time not reqd.

};
typedef sequence <MechanismDescriptor> MechanismDescriptorList;

};

2.4.7.2 The NRservice::NRPolicy Interface

The NRPolicy interface has the get_NR_policy_info and set_NR_policy_info
operations, and like all other Policy interfaces it derives from the CORBA::Policy
interface.

get_NR_policy_info

Returns information from a non-repudiation policy object.

void get_NR_policy_info(
out ExtensibleFamily NR_policy_id,
out unsigned long policy_version,
out TimeT policy_effective_time,
out TimeT policy_expiry_time,
out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

Parameters

Return Value

None.

set_NR_policy_info

Updates non-repudiation policy information.

NR_policy_id The identifier of this non-repudiation policy.

policy_version The version number of this non-repudiation
policy.

policy_effective_time The time at which this policy came into effect.

policy_expiry_time The time at which this policy expires.

supported_evidence_types The types of evidence that can be generated unde
this policy.

supported_mechanisms The non-repudiation mechanisms which can be
used to generate and verify evidence under this
policy.
Security Service, v1.7 Administrator’s Interfaces March 2001 2-141

2

curity

e
for

es to

n

 to
rms

e

tor's
,

urity

r

r
boolean set_NR_policy_info(
in MechanismDesciptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);

Parameters

Return Value

2.5 Implementor’s Security Interfaces

This section addresses Security Service replaceability. This section defines the se
service interfaces that allow different security service implementations to be
substituted, whether or not the generic ORB service interfaces are supported (se
Section 2.5.2, “Implementation-Level Security Object Interfaces,” on page 2-148,
details).

The "Guidelines for a Trustworthy System" appendix offers additional guidance to
implementors of secure ORBs, including a discussion of using protection boundari
separate components, depending on the level of security required.

The description of security interceptors in Section 2.5.1, “Security Interceptors,” o
page 2-142 (particularly that in Invocation Time Policies), specifies how client and
target side policies and client preferences are used to decide what policy options
enforce. This definition of how the options are used applies whether the ORB confo
to the replaceability options or not. The interceptor facility that this is based on is
defined in the Interceptors chapter of the Common Object Request Broker: Architectur
and Specification.

None of the interfaces defined in this section affect the application and administra
views described in Section 2.3, “Application Developer’s Interfaces,” on page 2-71
and Section 2.4, “Administrator’s Interfaces,” on page 2-115.

2.5.1 Security Interceptors

This section describes the interceptors that can be used for implementing the sec
services.

requested_mechanisms The non-repudiation mechanisms to be supported unde
this policy.

actual_mechanisms The non-repudiation mechanisms now supported unde
this policy.

TRUE The requested mechanisms were all set.

FALSE If the actual mechanisms returned differ from those
requested.
2-142 Security Service, v1.7 March 2001

2

hen

g of
enial

ptors’
ces

le

 of
The ORB Services replaceability package requires implementation of two security
interceptors (see the Interceptors chapter of the Common Object Request Broker:
Architecture and Specification):

• Secure Invocation Interceptor: This is a message-level interceptor. At bind time,
this establishes the security context required to support message protection. W
processing a request, it is a message-level interceptor that uses cryptographic
services to provide message protection and verification. It is able to check and
protect messages (requests and replies) for both integrity and confidentiality.

• Access Control Interceptor: This is a request-level interceptor, which determines
whether an invocation should be permitted. This interceptor also handles auditin
general invocation failures, but not related to denial of access (access-control d
failures are audited within the Access Decision object, which is called by this
interceptor to check access control).

This specification does not define a separate audit interceptor, as the other interce
implementations or the security service implementations call Audit Service interfa
directly if the events for which they are responsible are to be audited.

The security interceptors implement security functionality by calling the replaceab
security service objects (defined later in this section) as shown in Figure 2-52.

Figure 2-52 Security Functionality Implemented by Security Service Objects

The diagram shows the order in which security interceptors are called. Other
interceptors may also be used during the invocation. The order in which other
interceptors are called in relationship to security interceptors depends on the type
interceptor.

At the client:

reply request

ORB Core

Client

Control

Client

Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message

create create

replyrequest

Secure

Interceptors

 Access

Interceptors

Target

Control

Target

Invocation
Secure

Interceptors

 Access

Interceptors
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-143

2

ssary
e

fore
sage-

ed

in
d

get

ind
cols

ent

d by

o

 at

orted,
. If
• In general, the access control interceptor should be called first (to avoid unnece
processing of the request by other interceptors when permission to perform th
request is denied).

• All request level interceptors (e.g., transaction or replication ones) are called be
the secure invocation interceptor, as the secure invocation interceptor is a mes
level interceptor.

The secure invocation interceptor should ordinarily be the last interceptor invok
(because message protection may encrypt the request, so that the code
implementing a further interceptor will not understand it). Even if only integrity
protection is used, the integrity check will fail if the message has been altered
any way. Note that data compression and data fragmentation should be applie
before the message-protection interceptor is called.

At the target, analogous rules apply to the interceptors in the reverse order.

2.5.1.1 Invocation Time Policies

Interceptors decide what security policies to enforce on an invocation as follows:

• They call the SecurityLevel2::SecurityManager::get_security_policy
operation defined in Section 2.3, “Application Developer’s Interfaces,” on
page 2-71, to find what policies apply to this client (at the client side) or this tar
(at the target side).

• At the client side, the security hints in the target object reference are used to f
what policies apply to the target object and what security mechanisms and proto
are supported. This uses operations on the object reference.

• At the client, the overrides set by the client on the credentials or target object
reference and the security supported by the mechanism in the client’s environm
are taken into account.

The SecurityManager::get_security_policy operation may be used to get any of
the following policies:

• The invocation access policies of the current execution context. These are use
the access control interceptor to check whether access is permitted.

• The invocation audit policy. This is used by interceptors and security services t
check whether to audit events during an invocation.

• The secure invocation policy. This is used by the secure invocation interceptor
bind time. It uses SecureInvocationPolicy::get_association_options as
defined in Section 2.4, “Administrator’s Interfaces,” on page 2-115. The secure
invocation policies (and hints in the object reference) specify required and
supported values. The interceptor checks that the required values can be supp
and will not continue with the invocation if the client’s requirements are not met
the target’s requirements are not met, the invocation may optionally proceed,
allowing policy enforcement at the target.
2-144 Security Service, v1.7 March 2001

2

tor

h the
 by
e

get

are

rity
ly

hich
 a
ty

ct of
e

t

s
ble
t and
-5).

nd
t
also

• The invocation delegation policy. This is used by the secure invocation intercep
at bind time. The interceptor calls
SecureInvocationPolicy::get_delegation_mode to retrieve this information.

2.5.1.2 Secure Invocation Interceptor

At bind time, the secure invocation interceptor establishes a security context, whic
client initiating the binding can use to securely invoke the target object designated
the object reference used in establishing the binding. At object invocation time, th
secure invocation interceptor is called to use the (previously established) security
context to protect the message data transmitted from the client to the invoked tar
object.

Please note that the remainder of this section assumes that security interceptors
implemented using the security services replaceability interfaces defined in this
specification; interceptors built for implementations which do not provide the secu
services replaceability interfaces will have similar responsibilities, but will obvious
make different calls.

It should also be noted that binding takes place implicitly and the exact point at w
it occurs can vary from one ORB to another. All that one can be certain of is that
binding exists when an invocation of an operation takes place. There is no certain
that the same binding will be used in subsequent invocations. Consequently, the
discussion that follows is about binding states and what must happen when the a
implicit binding is executed by the ORB. All reference to the term “Bind” should b
interpreted as such.

Bind Time - Client Side

The Secure Invocation interceptor’s client bind time functions are used to:

• Find what security policies apply.

• Establish a security association between client and target. This is done on first
invoking the object, but may be repeated when changes to the security contex
occur.

Security policies relevant to this interceptor are the client secure invocation and
delegation policies. To retrieve the invocation policy objects, the Secure Invocation
interceptor calls the SecurityManager::get_security_policy operation.

The interceptor checks if there is already a suitable security context object for thi
client’s use of this target. If a suitable context already exists, it is used. If no suita
context exists, the interceptor establishes a security association between the clien
target object (see Section 2.1.3.1, “Establishing Security Associations,” on page 2

The client interceptor calls Vault::init_security_context to request the security
features (such as QOP, delegation) required by the client policy, client overrides a
target (as defined in its object reference). The Vault returns a security token to be sen
to the target, and indicates whether a continuation of the exchange is needed. It
returns a reference to the newly-created Security Context object for this client-target
security association. (The way trust is established depends on policy, the security
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-145

2

tity
 of

e

he

e

 not

ther
alls

his.

ge.

ssage

curity

e and

sult

otect
technology used, and whether both client and target objects are in the same iden
domain. It may involve mutual authentication between the objects and negotiation
mechanisms and/or algorithms.)

The interceptor constructs the association establishment message (including the
security token, which must be transferred to the target to permit it to establish the
target-side Security Context object). The association establishment message may b
constructed in one of two ways:

1. When only the initial security token is needed to establish the association, the
association establishment message may also include the object invocation in t
buffer (i.e., the request) supplied to the interceptor when it was invoked by
send_message . After constructing the association establishment message, the
interceptor invokes send , which results in the ORB sending the message to the
target. After receipt at the target, the association establishment message is
intercepted by the Secure Invocation Interceptor in the target, which at bind tim
calls Vault::accept_security_context to create the target Security Context
object (if needed).

2. When several exchanges are required to establish the security association, the
association establishment message is sent separately, in a message that does
include the object invocation in the buffer (i.e., the request), again using send . This
message is intercepted in the target and the Vault called to create the Security
Context object. However, in this case, the target interceptor must generate ano
security token and send it back to the client interceptor. The client interceptor c
the Security Context object with a continue_security_context operation
passing the token returned from the target to check if trust has now been
established. There may be several exchanges of security tokens to complete t
Once the security association has been established, the original client object
invocation (i.e., request) is sent in a separate association establishment messa

Details of the transformation to the request and the association establishment me
formats appear in Section 3.1, “Security Interoperability Protocols,” on page 3-1.

Bind Time - Target Side

The secure invocation interceptor’s target bind functions:

• Find the target secure invocation policies.

• Respond to association establishment messages from the client to establish se
associations.

On receiving an association establishment message, the target secure invocation
interceptor separates it (if needed) into the security token and the request messag
uses the Vault (if there is no security context object yet) or the appropriate Security
Context object to process the security token. As previously described, this may re
in exchanges with the client. Once the association is established, the message
protection function described next is used to reclaim the request message and pr
the reply.
2-146 Security Service, v1.7 March 2001

2

n in

ccess
icy.
 to

stem
l

does
kes
ded

e
Message Protection (Client and Target Sides)

The Secure Invocation Interceptor is used after bind time for message protection,
providing integrity and/or confidentiality protection of requests and responses,
according to quality of protection requirements specified for this security associatio
the active Security Context object.

The Secure Invocation Interceptor’s send_message method calls
SecurityContext::protect_message , and its receive_message method calls
SecurityContext::reclaim_message , in each case using the appropriate Security
Context object.

2.5.1.3 Access Control Interceptor

Bind Time

At bind time, the client access control interceptor uses
SecurityManager::get_security_policy to get the SecClientInvocationAccess
policy and SecClientInvocationAudit policy. The target access control interceptor
uses the SecurityManager::get_security_policy operation to get the
SecTargetInvocationAccessPolicy and SecTargetInvocationAudit policy.

Access Decision Time

The Access Control Interceptor decides whether a request should be allowed or
disallowed.

Access control decisions may be made at the client side, depending on the client a
control policy, and at the target side depending on the target’s access control pol
Target side access controls are the norm; client-side access controls can be used
reduce needless network traffic in distributed ORBs. Note that in some ORBs, sy
integrity considerations may make exclusive reliance on client-side access contro
enforcement undesirable.

The Access Control Interceptor client_invoke and target_invoke methods invoke the
access_allowed method of the Access Decision object, specifying the appropriate
authorization data. The access decision returns a boolean specifying whether the
request should be allowed or disallowed.

The Access Control Interceptor does not know what sort of policy this Access Decision
object supports. It may be ACL-based, capability-based, label-based, etc. It also
not know if the Access Decision object uses the credentials exactly as passed, or ta
the identity from the credentials and uses these to find further valid privileges if nee
for this principal from a trusted source.

The Access Control Interceptor may also check if this invocation attempt should b
audited, by calling the audit_needed operation on the Audit Decision object; if this
call indicates that the invocation attempt should be audited, the Access Control
Interceptor uses the AuditChannel interface to write the appropriate audit record.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-147

2

anged

e the
e

ces

y

ide

ns.

 when
e

This interceptor does not transform the request. It either passes the request unch
to continue processing the request, or it aborts the request by returning with an
appropriate exception (e.g., CORBA::NO_PERMISSION if AccessDecision::
access_allowed returns False).

2.5.2 Implementation-Level Security Object Interfaces

The interfaces described in this section are all provided by the underlying security
infrastructure and the Object Security Service is a client of these interfaces. Sinc
interfaces are internal to the ORB Security implementation, all these interfaces ar
locality constrained.

This specification defines the following implementation-level security object interfa
to support security service replaceability:

• Vault is used to create a security context for a client/target-object association.

• Security Context objects hold security information about the client-target securit
association and are used to protect messages.

• Credentials object is used for passing Credentials information between the
security infrastructure and the ORB Security Services.

• Access Decision objects are used (usually by Access Control Interceptors) to dec
if requests should be allowed or disallowed.

• Audit Decision objects are used to decide if events are to be audited.

• Audit Channel objects are used to write audit records to the audit trail.

• Principal Authenticator object is used for authenticating a principal.

• NRCredentials object is used for passing non repudiation credentials informatio

2.5.2.1 The Vault Object

The Vault object with the SecurityReplaceable::Vault interface facilitates creating
credentials objects and establishing security contexts between clients and targets
they are in different trust domains. Authentication is required to establish trust. Th
Vault is a locality constrained object. Implementations of the Vault are responsible for
calling AuditDecision::audit_needed to determine whether the audit policy
requires auditing of successful and/or failed access control checks, and for calling
AuditChannel::audit_write whenever audit is needed.

2.5.2.2 The SecurityReplaceable::Vault Interface

The Vault operations are described below. Note that if an invocation of a Vault
operation results in an incomplete Security Context (i.e., one that requires continued
dialogue to complete), the continuation of the dialogue is accomplished using the
interface of the incomplete Security Context object rather than the Vault interface.
2-148 Security Service, v1.7 March 2001

2

ge
tem.

ls
acquire_credentials

This operation is called to authenticate the principal and optionally request privile
attributes that the principal requires during its capsule specific session with the sys
It creates a capsule specific Credentials object including the required attributes.

AuthenticationStatus acquire_credentials(
in AuthenticationMethod method,
in MechanismType mechanism,
in SecurityName security_name,
in any auth_data,
in AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Parameters

Return Value

The return parameter is used to specify the result of the operation.

method Contains the identifier of the authentication method used.

mechanism Contains the security mechanism with which to create the Credentials .

security_name Contains the principal’s identification information (e.g., login name).

auth_data Contains the principal’s authentication information such as password or
long term key.

privileges Contains the privilege attributes requested.

creds Contains the locality constrained object reference of the newly created
Credentials object. It is usable and placed on the Current object’s
own_credentials list only if the return value is ‘SecAuthSuccess.’

auth_specific_data Information specific to the particular authentication service used.

continuation_data If the return parameter from the authenticate operation is
‘SecAuthContinue ,’ then this parameter contains challenge information
for authentication continuation.

‘SecAuthSuccess’ Indicates that the object reference of the newly created initialized credentia
object is available in the creds parameter.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-149

2

ot
 type

nd

d

ity
continue_credentials_acquistion

This continues the authentication process for authentication procedures that cann
complete in a single operation. An example of this might be a challenge/response
of authentication procedure.

AuthenticationStatus continue_credentials_acquisition(
in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Parameters

Return Value

The return parameter is used to specify the result of the operation.

‘SecAuthFailure’ Indicates that authentication was in some way inconsistent or erroneous, a
therefore credentials have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure uses a challenge/response
mechanism. The creds contains the object reference of a partially initialize
Credentials object. The continuation_data indicates details of the challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some information, the valid
of which had expired (e.g., expired password). Credentials have therefore not
been created.

response_data Contains the response data to the challenge.

creds Contains the reference of the partially initialized Credentials
object. The Credentials object is fully initialized only when return
parameter is ‘SecAuthSuccess .’

continuation_data If the return parameter from the continue_authentication
operation is ‘SecAuthContinue ,’ then this parameter contains
challenge information for authentication continuation.

auth_specific_data Contains information specific to the particular authentication
service used.
2-150 Security Service, v1.7 March 2001

2

urity

init_security_context

This operation is used by the association interceptor (or the ORB if separate
interceptors are not implemented) at the client to initiate the establishment of a sec
association with the target. This operation creates the ClientSecurityContext object
that represents the client’s view of the shared security context.

AssociationStatus init_security_context(
in Credentials creds,
in SecurityName target_security_name,
in Object target,
in DelegationMode delegation_mode,
in OptionsDirectionPairList association_options,
in MechanismType mechanism,
in Opaque comp_data,
in ChannelBindings chan_bindings,
out OpaqueBuffer security_token,
out ClientSecurityContext security_context

);

Parameters

‘SecAuthSuccess’ Indicates that the Credentials object whose reference was identified
by the creds parameter is now fully initialized.

‘SecAuthFailure’ Indicates that the response data was in some way inconsistent or
erroneous, and that therefore credentials have not been created.

‘SecAuthContinue’ Indicates that the authentication procedure requires a further
challenge/response. The Credentials object whose reference was
identified in the creds parameter is still only partially initialized. The
continuation_data indicates details of the next challenge.

‘SecAuthExpired’ Indicates that the authentication data contained some information
whose validity had expired (e.g., expired password). The Credentials
object referred to by the creds parameter is not valid.

creds The credentials to be used to establish the security association.

target_security_name The security name of the target as set in its object reference.

target The target object reference.

delegation_mode The mode of delegation to employ. The value is obtained by combining
client policy and application preferences as described in Invocation Time
Policies under Section 2.5.1, “Security Interceptors,” on page 2-142.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-151

2

ept a
the
rity

r

he

y
ed.

re

d
Return Value

The return value is used to specify the result of the operation.

accept_security_context

This operation is used by the association interceptor (or ORB) at the target to acc
request from the client to establish a security association. This operation creates
ServerSecurityContext object that represents the target’s view of the shared secu
context.

AssociationStatus accept_security_context(
in CredentialsList creds_list,
in ChannelBindings chan_bindings,
in OpaqueBuffer in_token,
out OpaqueBuffer out_token,

association_options A sequence of one or more pairs of secure association options and
direction. The options include such things as required peer trust and
message protection. Normally, one pair will be specified, for the “both”
direction. Implementations that support separate association options fo
requests and replies may supply an additional options set for each
direction supported. These values are obtained from a combination of t
client’s security policy, the hints in the target object reference, and any
requests made by the application.

mechanism Normally the empty string, meaning use default mechanism for securit
associations. Otherwise, it contains the security mechanism(s) request
(These may have been obtained from the target object reference.)

comp_data The component data from the specific IOP::TaggedComponent the ORB
has selected from a target’s object reference..

chan_binding The channel bindings for the security context. These are the channel
bindings defined for the GSS-API.

security_token The token to be transmitted to the target to establish the security
association. Note that this may take several exchanges, but operations
required at the client to continue the establishment of the association a
on the Security Context object.

security_context The initialized security context.

SecAssocSuccess Indicates that the security context has been successfully
created and that no further interactions with it are neede
to establish the security association.

SecAssocFailure Indicates that there was some error, which prevents
establishment of the association.

SecAssocContinue Indicates that the association procedure needs more
exchanges.
2-152 Security Service, v1.7 March 2001

2

,
t

n

out ServerSecurityContext security_context
);

Parameters

Return Value

get_supported_mechs

This operation returns the mechanism types supported by this Vault object and the
association options these support.

MechandOptionsList get_supported_mechs ();

Parameters

None.

Return Value

The list of mechanism types supported by this Vault object and the association options
they support.

creds_list The credentials of the target. Note that this may be the
credentials of the trust domain, not the individual object.

chan_bindings The channel bindings for the security context. They are the
channel bindings as specified for the GSS-API.

in_token The security token transmitted from the client.

out_token If establishment of the security association is not yet complete
this contains the security token to be transmitted to the clien
to continue the security dialogue. Note that any further
operations needed to complete the security association are o
the security context object.

security_context The Security Context object at the target which represents the
shared security context between client and target.

SecAssocSuccess Indicates that the security context has been successfully
created and no further interactions with it are needed to
establish the security association.

SecAssocFailure Indicates that there was some error that prevents
establishment of the association.

SecAssocContinue The first stage of establishing the security association has
been successful, but it is not complete. The out_token
contains the token to be returned to continue it.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-153

2

is a

s

in
supported_mech_oids

This readonly attribute contains a sequence of OIDs each of which identifies a
particular GSS mechanism that the Vault supports.

get_supported_authen_methods

This operation returns the authentication methods that are valid for a particular
mechanism that the Vault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.

AuthenticationMethodList get_supported_authen_methods(
in MechanismType mechanism

);

Parameters

Return Value

The list of authentication methods supported by this Vault object for the particular
mechanism.

create_ior_components

This operation is called to create a set of security related Tagged Components that
indicate the security mechanisms supported by the Vault and the given set of
Credentials objects.

IOP::TaggedComponentSeq create_ior_components(
in CredentialsList creds_list

);

Parameters

Return Value

This operation returns the Tagged Components.

2.5.2.3 The Security Context Object

A Security Context object with the SecurityReplaceable::SecurityContext
interface represents the shared security context between a client and a target. It
locality constrained object. It is used as follows:

mechanism Contains the mechanism for which the authentication method
are valid.

creds_list This argument lists the credentials that are to be considered
creating the Tagged Components .
2-154 Security Service, v1.7 March 2001

2

urity

d/or

ased
ed on

ans

.

• By the security association interceptors to complete the establishment of a sec
association between client and target after the Vault has initiated this.

• By the message protection interceptors in protecting messages for integrity an
confidentiality.

• In response to a target object’s request to Current for privileges and other
information (sent from the client) about the initiating principal.

• In response to a target object’s request to Current to supply one (or more)
credentials object(s) from incoming information about principal(s).

• To check if the security context is valid, and if not, try and refresh it.

The Security Context object is a stateful object that goes through state transitions b
on the result of calls on its operations. It also may go through state transitions bas
environmental concerns such as an amount of time that has expired. An
implementation of a Security Context must model the following states:

Initial - Initial state of any Security Context.

Continued - The Security Context is in the process of negotiation and not yet
established. This state corresponds to SECIOP state S1 and S3.

ClientEstablished - The Security Context is established on the client side. This me
evidence from the target may not need to be processed before messages can be
protected and sent to the target side. This state corresponds to SECIOP state S2

Established -The Security Context is fully established. It is able to process all
messages. This state corresponds to SECIOP state S3.

EstablishExpired - The negotiation has expired.

Expired - The Security Context has expired.

Invalid - The Security Context is invalid.

The state transitions are modeled by the following diagram:
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-155

2

be
Figure 2-53 Security Context State Transition Diagram

An implementation of a Security Context that transitions into the ClientEstablished
state, which must only be on the client side of the context, must allow successful
processing of protect_message operations.

From any state, a context may enter the Expired or Invalid (not pictured) states due to
environmental events or bad operations. Contexts in the ClientEstablished, Established,
and Expired state may be refreshed, although, it is not a requirement that refresh
successful for all those states (i.e., some mechanisms may only allow refresh of
unexpired contexts). If refresh is not supported for this context, then the
supports_refresh attribute must be false.

2.5.2.4 The SecurityReplaceable::SecurityContext Interface

The SecurityReplaceable::SecurityContext interface has the following attributes
and operations:

context_type

The context_type readonly attribute returns the orientation type of the security
association. It has the following definition:

Initial

Continued
Client
Established

Established

Establish
Expired

Expired

Invalid
init_security_context
accept_security_context

init_security_context

continue_security_context

discard_security_context

Operation Transition

Environmental Transition

refresh_security_context

ExpiredEstablishedClient
EstablishedContinued
2-156 Security Service, v1.7 March 2001

2

t and

t

readonly attribute SecurityContextType context_type;

Return Value

context_state

The context_state readonly attribute returns state of the security association. A
security context goes through a number of different states during the establishmen
use of the secure association. It has the following definition:

readonly attribute SecurityContextState context_state;

Return Value

mechanism

The mechanism readonly attribute returns security mechanism used by security
association. It has the following definition:

readonly attribute MechanismType mechanism;

‘SecClientSecurityContext’ This security context has a client orientation. It
was created by the Vault::init_security_context
operation.

‘SecServerSecurityContext’ This security context has a server orientation. It
was created by the
Vault::accept_security_context operation.

‘SecContextInitialized’ This security context has been initialized.

‘SecContextContinued’ This security context is awaiting more negotiation to
become established.

‘SecContextClientEstablished’ This security context is established on the client side
and the client has the ability to send protected
messages to the server side. However, the context is
still waiting for the server side to complete the
establishment of the association.

‘SecContextEstablished’ This security context is fully established.

‘SecContextEstablishExpired’ This security context has expired during establishmen
negotiation.

‘SecContextExpired’ This security context has expired. It may be possible to
refresh it

‘SecContextInvalid’ This security context is invalid. It cannot be used or
refreshed.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-157

2

en

 of
n the
Return Value

The value of the mechanism that created the security context.

supports_refresh

The supports_refresh readonly attribute returns whether the mechanism and the
implementation of this SecurityReplaceable::SecurityContext object can support
refreshment of the security context.

readonly attribute boolean supports_refresh;

Return Value

chan_binding

The chan_binding readonly attribute returns channel bindings that were used wh
the security context was created. It has the following definition:

readonly attribute ChannelBindings chan_binding;

Return Value

The channel binding that was used when the security context was created.

received_credentials

The received_credentials readonly attribute returns the ReceivedCredentials that
are received from the invoker.

readonly attribute ReceivedCredentials received_credentials;

Return Value

Object reference to received credentials.

continue_security_context

This operation is invoked by the association interceptor to continue establishment
the security association. It can be called by either the client or target interceptor o
local security context object.

AssociationStatus continue_security_context(
in OpaqueBuffer in_token,
out OpaqueBuffer out_token

);

FALSE Refresh is not supported.

TRUE Refresh is supported.
2-158 Security Service, v1.7 March 2001

2

t
and/or

ssary.

t

.

Parameters

Return Value

protect_message

The protect_message operation of the Security Context object provides the
means whereby the client message protection interceptor may protect the reques
message, or the target interceptor may protect the response message for integrity
confidentiality according to the Quality of Protection required.

void protect_message(
in OpaqueBuffer message,
in QOP qop,
out OpaqueBuffer text_buffer,
out OpaqueBuffer token

);

Parameters

Return Value

None.

reclaim_message

The reclaim_message operation on the SecurityContext object provides the means
whereby a protected message may be checked for integrity and decrypted if nece

in_token The security token generated by the other one of the client-targe
pair and sent to this Security Context object to be used to continue
the dialogue between client and target to establish the security
association.

out_token If required, a further security token to be returned to the other
Security Context object to continue the dialogue.

SecAssocSuccess The security association has been successfully established

SecAssocFailure The attempt to establish a security association has failed.

SecAssocContinue The context is only partially initialized and further
operations are required to complete authentication.

message The message for which protection is required.

qop Required message protection options.

text_buffer The protected message, optionally encrypted.

token The integrity checksum, if any.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-159

2

te a
site

boolean reclaim_message(
in OpaqueBuffer text_buffer,
in OpaqueBuffer token,
out QOP qop,
out OpaqueBuffer message

);

Parameters

Return Value

If the reclaim_message operation returns a value of FALSE, then the message has
failed its integrity check. If TRUE, the integrity of the message can be assured.

is_valid

The is_valid operation of the Security Context object allows a caller to determine
whether the context is currently valid.

boolean is_valid(
out UtcT expiry_time

);

Parameters

Return Value

refresh_security_context

This operation may extend the useful lifetime of the SecurityContext . It takes one
input argument of data specific to the mechanism that may be needed to comple
refresh of the context. The output token should be given as evidence to the oppo
side of the refresh. The refresh_security_context operation may be called on both
valid and expired contexts.

text_buffer The message for which the check is required and optionally the
message to be decrypted.

token The integrity checksum, if any. Will typically be zero length if
QOP indicates that confidentiality was applied.

qop The quality of protection that was applied to the protected
message.

message The unprotected message, decrypted if required.

expiry_time The time at which this context is no longer valid.

FALSE The context is no longer valid.

TRUE The context is still valid.
2-160 Security Service, v1.7 March 2001

2

he

he

Note – Refreshing a security context may possibly reopen the context for possible
renegotiation of the security context. Implementations should check the state of t
security context to determine if calls to continue_security_context may be needed
to complete refreshment of the security context.

boolean refresh_security_context (
in any refresh_data,
out OpaqueBuffer out_token

);

Parameters

Return Value

process_refresh_token

This operation may extend the useful lifetime of the SecurityContext based on a
token from the opposite side of the shared association. The
refresh_security_context operation may be called on both valid and expired
contexts provided that they have not yet been destroyed or discarded.

Note – Refreshing a security context may possibly reopen the context for possible
renegotiation of the security context. Implementations should check the state of t
security context to determine if calls to continue_security_context may be needed
to complete refreshment of the security context.

boolean process_refresh_token (
in OpaqueBuffer refresh_token,

);

Parameters

refresh_data Data specific to the mechanism that may be needed to
refresh the security context.

out_token Evidence of the refresh request that is to be delivered to
the opposite side of the context.

FALSE The context has not been successfully refreshed. The
parameter out_token does not contain a valid value.

TRUE The context has been successfully refreshed, or it has been
opened up for renegotiation that may need subsequent
calls to continue_security_context . The parameter
out_token contains the evidence token.

refresh_token Evidence token supporting refresh of this context.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-161

2

ay be

Return Value

discard_security_context

This operation is invoked by the association interceptor to discard a security
association. It takes one input argument of data specific to the mechanism that m
needed to discard the context. The output token may be given as evidence to the
opposite side of the discard.

boolean discard_security_context (
in Opaque discard_data,
out OpaqueBuffer out_token

);

Parameters

Return Value

process_discard_token

This operation may discard the SecurityContext based on a token from the opposite
side of the shared association. The process_discard_token operation may be called
on both valid and expired contexts.

boolean process_discard_token (
in OpaqueBuffer discard_token,

);

Parameters

FALSE The context has not been successfully refreshed.

TRUE The context has been successfully refreshed, or it has been
opened up for renegotiation that may need subsequent
calls to continue_security_context .

refresh_data Data specific to the mechanism that may be needed to
discard the security context.

out_token Evidence of the discard to be delivered to the opposite
side.

FALSE The context has not been discarded. The parameter
out_token does not have a valid value.

TRUE The context has been discarded. The parameter out_token
contains the evidence token.

discard_token Evidence token supporting discard of this context.
2-162 Security Service, v1.7 March 2001

2

t
tes:

 the

 to
ity

Return Value

2.5.2.5 The Client Security Context Object

A Client Security Context object with the
SecurityReplaceable::ClientSecurityContext interface represents the client’s
view of a shared security context between a client and a target. It implements the
SecurityReplaceable::SecurityContext interface by inheritance and is a locality
constrained object.

2.5.2.6 The SecurityReplaceable::ClientSecurityContext Interface

The SecurityReplaceable::ClientSecurityContext interface extends the
SecurityReplaceable::SecurityContext interface with attributes that concern clien
side initialization arguments and target side information. It has the following attribu

association_options_used

The association_options_used readonly attribute returns the association options
used and to create the security context with Vault::init_security_context . These
options may also have been negotiated during set up to something other than the
association options supplied to Vault::init_security_context . Nonetheless, it is the
current state of the security context that is reflected in this attribute.

readonly attribute AssociationOptions association_options_used;

Return Value

The association options that reflects the current state of the security context.

delegation_mode

The delegation readonly attribute returns the delegation mode used and to create
security context with Vault::init_security_context . This option may have been
negotiated during set up to something other than the association options supplied
Vault::init_security_context . Nonetheless, it is the delegation mode of the secur
context that is reflected in this attribute.

readonly attribute Security::DelegationMode delegation_mode;

Return Value

The delegation mode that reflects the current state of the security context.

FALSE The context has not been discarded. Discard token may be
invalid for context.

TRUE The context has been successfully discarded.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-163

2

at
mech_data

The mech_data readonly attribute returns the value of the mech_data argument
used to create the security context with Vault::init_security_context .

readonly attribute Opaque mech_data;

Return Value

The mechanism data used to create the context.

client_credentials

The client_credentials readonly attribute returns the Credentials object used to
create the security context with Vault::init_security_context .

readonly attribute Credentials client_credentials;

Return Value

The credentials used to create the security context.

target_credentials

The target_credentials readonly attribute returns the Credentials object used to
create the security context with the target.

readonly attribute TargetCredentials target_credentials;

Return Value

The credentials representing authentication of the principal of the target.

server_options_supported

The server_options_supported readonly attribute returns the association options
that the server side of the security context supported.

readonly attribute AssociationOptions server_options_supported;

Return Value

The association options that the server supports.

server_options_required

The server_options_required readonly attribute returns the association options th
the server side of the security context required.

readonly attribute AssociationOptions server_options_required;

Return Value

The association options that the server requires.
2-164 Security Service, v1.7 March 2001

2

t
tes:

s
server_security_name

The server_security_name readonly attribute returns the security name that the
server side of the security context represents.

readonly attribute Opaque server_security_name;

Return Value

The security name of the target side.

2.5.2.7 The Server Security Context Object

A Server Security Context object with the
SecurityReplaceable::ServerSecurityContext interface represents the target’s
view of a shared security context between a client and a target. It implements the
SecurityReplaceable::SecurityContext interface by inheritance and is a locality
constrained object.

2.5.2.8 The SecurityReplaceable::ServerSecurityContext Interface

The SecurityReplaceable::ServerSecurityContext interface extends the
SecurityReplaceable::SecurityContext interface with attributes that concern targe
side initialization arguments and target side information. It has the following attribu

association_options_used

The asscociation_options_used readonly attribute returns the association option
that have been negotiated during set up via Vault::accept_security_context .

readonly attribute AssociationOptions association_options_used;

Return Value

The association options that reflects the current state of the security context.

delegation_mode

The delegation readonly attribute returns the delegation mode in effect for this
security context.

readonly attribute Security::DelegationMode delegation_mode;

Return Value

The delegation mode that reflects the current state of the security context.

server_credentials

The server_credentials readonly attribute returns the server credentials selected
from the list of credentials used to create the security context with
Vault::accept_security_context .
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-165

2

at

text.

readonly attribute Credentials server_credentials;

Return Value

The credentials used to create the security context.

server_options_supported

The server_options_supported readonly attribute returns the association options
that this server side of the security context supported.

readonly attribute AssociationOptions server_options_supported;

Return Value

The association options that this server supported for negotiation of this security
context.

server_options_required

The server_options_required readonly attribute returns the association options th
this server side of the security context required.

readonly attribute AssociationOptions server_options_required;

Return Value

The association options that this server required for negotiation of this security con

server_security_name

The server_security_name readonly attribute returns the security name for which
this server used to accept and negotiate the security context.

readonly attribute Opaque server_security_name;

Return Value

The target security name of the security context.

2.5.2.9 The Credentials Object

The Credentials object with the SecurityLevel2::Credentials interface, as defined
in Section 2.3.4, “The Credentials Object,” on page 2-77, is used to pass Credentials
information between the underlying security mechanisms and the ORB Security
Services.
2-166 Security Service, v1.7 March 2001

2

es,
e

.
2.5.2.10 The Access Decision Object

The Access Decision object is responsible for determining whether the specified
credentials allow this operation to be performed on a target object. It uses access
control attributes for the target object to determine whether the principal’s privileg
obtained from the Security Context are sufficient to meet the access criteria for th
requested operation.

2.5.2.11 The SecurityReplaceable::AccessDecision Interface

The SecurityReplaceable::AccessDecision object is a locality constrained object
This object has the following interface:

interface AccessDecision {
boolean access_allowed(

in SecurityLevel2::ReceivedCredentials creds,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId target_interface_name

);
};

Parameters

Return Value

2.5.2.12 The Required Rights Object

The Required Rights object has an operation for retrieving and setting the rights
required for operations on interfaces. It is replaceable since the replaceable Access
Decision depends upon its implementation, if the access Decision object uses
RequiredRights .

2.5.2.13 The SecurityReplaceable::RequiredRights Interface

The SecurityReplaceable::RequiredRights object has the following operations:

creds The credentials of the client principal.

operation_name The name of the requested operation.

target_interface_name The name of the interface.

FALSE Access is to be denied.

TRUE Access is to be allowed.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-167

2

y

le

y
get_required_rights

This operation retrieves the rights required for access to the operation specified b
operation_name from the interface specified by interface_name . The returned
values are a list of rights and a combinator describes the interoperation of multip
rights.

get_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId target_interface_name,
out RightsList rights,
out RightsCombinator rights_combinator

);

Parameters

Return Value

None.

set_required_rights

This operation updates the rights required for access to the operation specified b
operation_name from the interface specified by interface_name . The caller must
provide a list of rights and a combinator describing the interpretation of multiple
rights.

set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId target_interface_name,
in RightsList rights,
in RightsCombinator rights_combinator

);

Parameters

operation_name The name of the operation for which required rights
are returned.

target_interface_name The CORBA Repository identifier which names the
interface to which the operation belongs.

rights The returned list of rights.

rights_combinator The returned rights combinator.

operation_name The name of the operation for which required rights
are set.
2-168 Security Service, v1.7 March 2001

2

e

:

Return Value

None.

2.5.2.14 The Audit Decision Object

The Audit Decision object is used to determine if an event needs to be audited.

2.5.2.15 The SecurityReplaceable::AuditDecision Interface

The AuditDecision object has the following attributes and operations:

audit_needed

This operation is used to determine if an audit record is to be written to the audit
channel. The caller specifies an event type and values for the selectors. It has th
following definition:

boolean audit_needed(
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

Return Value

audit_channel

This attribute provides the audit channel associated with the audit decision object

readonly attribute AuditChannel audit_channel;

Return Value

The audit channel object.

target_interface_name The CORBA Repository identifier which name the
interface to which the operation belongs.

rights The list of rights.

rights_combinator The rights combinator.

event_type The event type.

value_list A list of zero or more selector value pairs.

FALSE An audit record need not be written to the audit channel.

TRUE An audit record needs to be written to the audit channel.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-169

2

ords.

lar
2.5.2.16 The Audit Channel Object

The Audit Channel object contains the operations necessary to generate audit rec

2.5.2.17 The SecurityReplaceable::AuditChannel Interface

The AuditChannel object has the following attributes and operations:

audit_channel_id

This attribute provides the contains an identifier with which to identifiy the particu
audit channel object:

readonly attribute AuditChannelId audit_channel_id;

Return Value

The audit channel identifier.

audit_write

This operation writes an audit record to the audit channel.

void audit_write(
in AuditEventType event_type,
in CredentialsList creds_list,
in UtcT time,
in SelectorValueList descriptors,
in any event_specific_data

);

Parameters

Return Value

None.

event_type The type of event.

creds_list The list of Credentials objects of the principal
responsible for the event.

time The time the event occured

descriptors The set of values to be recorded that are associated
with the event.

event_specific_data Data specific to the particular type of event.
2-170 Security Service, v1.7 March 2001

2

 a

d by

minor
ough
tion

ss
be

n
olicy
2.5.2.18 Principal Authentication

The Principal Authenticator object with the
SecurityLevel2::PrincipalAuthenticator interface, defined in Section 2.3.3,
“Authentication of Principals,” on page 2-73, provides the facility for authenticating
principal. It may also be used by implementation security objects, specifically the
Vault.

2.5.2.19 Non-repudiation

The Non-repudiation services are accessible through the NRservice::NRCredentials
interface. Its functionality and operations are defined in Section 2.3.14, “Non-
repudiation,” on page 2-106.

2.5.3 Replaceable Security Services

It is possible to replace some security services independently of others.

2.5.3.1 Replacing Authentication and Security Association Services

Replacement of the authentication, security context management, and message
protection services underlying a secure ORB implementation can be accomplishe
replacing the Principal Authenticator , Vault, Credentials, and Security Context
objects with implementations using the new underlying technology.

Note that if the Vault uses GSS-API to link to external security services, it may be
substantially security technology independent, and so may require no changes or
changes in order to accommodate a new underlying authentication technology (th
it may also have to use technology independent interfaces for principal authentica
in some circumstances, as this is not always hidden under GSS-API).

The Vault is replaced by changing the version in the environment.

2.5.3.2 Replacing Access Control Policies

Access control policies can be changed by replacing the Access Policy and Access
Decision objects, which define and enforce access control policies (for example,
substituting another Access Policy object for DomainAccessPolicy).

Applications may also change their access control policies. If the application acce
policy object(s) is similar to the invocation access policy object(s), then they can
replaced in a similar way.

2.5.3.3 Replacing Audit Services

Audit policies may be replaced, for example, to support certain types of invocatio
audit policy not supported by the standard audit policy objects. In this case, the p
objects are replaced in a similar way to the access policy objects.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-171

2

ted

the

y.

ated
t

using
tric

n and
other

s on

 as:

n
Also, Audit Channel objects may be replaced to change how audit records are rou
to a collection point or filtered.

The Audit Channel object used for object system auditing is replaced by replacing
Audit Channel object in the environment. Other Audit Channel objects may be
replaced by associating a different channel object with the appropriate audit polic

Application auditing objects can be replaced by the application.

2.5.3.4 Replacing Non-repudiation Services

The Non-repudiation Service is a stand-alone replaceable security service associ
with NRCredentials and NRPolicy objects. Different NR services may use differen
mechanisms and support different policies. For example, it may be that a service
symmetric encipherment techniques may be replaced by a service using asymme
encipherment techniques.

The same credentials and authentication method may be used for non-repudiatio
for other secure invocations, so when replacing either of these, the effect on the
should be considered.

2.5.3.5 Other Replaceability

No other replaceability points are defined as part of this specification. However,
individual implementations may permit replacement of other security services or
technologies.

2.5.3.6 Linking to External Security Services

The security service interfaces specified in this section may encapsulate calls to
external security services via APIs.

The external services used may include:

• Authentication Services to authenticate principals.

• Privilege (Attribute) Services for selecting and certifying privilege attributes for
authenticated principals (if access control can be based on privileges as well a
individual identity).

• Security Association Services for establishing secure associations between
applications. These services may themselves use other security services such

• Key Distribution Services (if secret keys are used),

• Certification Authority for certifying public keys, and

• Interdomain Services for handling communications between security policy
domains.

• Audit (and Event) Services

• Cryptographic Support Facilities to perform cryptographic operations (perhaps in a
algorithm-independent way).
2-172 Security Service, v1.7 March 2001

2

l

nt.

e

 to

Open
This specification does not mandate which interfaces are used to access externa
security services, but notes the following possibilities:

• The GSS-API is used for security associations and for the majority of Credentials
and Security Context operations, as this allows easy security service replaceme
With this in mind, several interfaces in this specification have been designed to
allow easy mapping to GSS-API functions, and the Credentials and Security
Context objects are consistent with GSS-API credentials and contexts.

• IDUP GSS-API may be used for independent data unit protection and evidenc
generation and verification.

• Cryptographic operations performed by a Cryptographic Support Facility (CSF)
ease replacement of cryptographic algorithms. No specific interface is
recommended for this yet, as such interfaces are being actively discussed in X/
and other international bodies, and standards are not yet stable.
Security Service, v1.7 Implementor’s Security Interfaces March 2001 2-173

2

2-174 Security Service, v1.7 March 2001

Protocols and Mechanisms 3

Contents

This chapter contains the following topics.

3.1 Security Interoperability Protocols

3.1.1 Introduction

This section specifies a model for secure interoperability between ORBs, which
conforms to the CORBA 2 interoperability specification and employ a common
security technology.

The interoperability model also describes other interoperability cases, such as the
effect on interoperability of crossing security policy domains. However, detailed
definitions of these are not given in this specification.

Topic Page

“Security Interoperability Protocols” 3-1

“Secure Inter-ORB Protocol (SECIOP)” 3-34

“The SECIOP Hosted CSI Protocols” 3-55

“SPKM Protocol” 3-63

“GSS Kerberos Protocol” 3-65

“CSI-ECMA Protocol” 3-68

“Integrating SSL with CORBA Security” 3-108

“DCE-CIOP with Security” 3-109
Security Service, v1.7 March 2001 3-1

3

This

rity

neral

his

dent
ols
ver,

rity
age
e
ecify
It then defines the extensions required to the interoperability protocol for security.
includes:

• Specification of tags in the CORBA 2 Interoperable Object Reference (IOR) so this
can carry information about the security policy for the target object and the secu
technology, which can be used to communicate securely with it.

• A security interoperability protocol to support the establishment of a security
association between client and target object and the protection of CORBA 2 Ge
Inter-ORB Protocol (GIOP) messages between them for integrity and/or
confidentiality. This is independent of the security technology used to provide t
protection.

• Security when using the DCE-CIOP protocol.

As the security information needed by a security mechanism is generally indepen
of which ORB interoperability protocol is used, other Environment-Specific Protoc
(ESIOPs) may support security in a similar way to that described for GIOP. Howe
the specification only addresses DCE-CIOP, which supports only DCE security.

The security protocol specified does not define details of the contents of the secu
tokens exchanged to establish a security association, the integrity seals for mess
integrity, or the details of encryption used for confidentiality of messages, as thes
depend on the particular security mechanism used. This specification does not sp
mechanisms.

3.1.2 Interoperability Model

This section describes secure interoperability when:

• the ORBs share a common interoperability protocol,

• consistent security policies are in force at the client and target objects, and

• the same security mechanism is used.

All other options build from this.
3-2 Security Service, v1.7 March 2001

3

 is
e

ween
ate

ciated
urity
ate

:

tity.

 it.
d
The model for secure interoperability is shown in the following diagram.

Figure 3-1 Model for Secure Interoperability

When the target object registers its object reference, this contains extra security
information to assist clients in communicating securely with it.

The protocol between client and target object on object invocations is as follows:

• If there is not already a security association between the client and target, one
established by transmitting security token(s) between them (transparently to th
application).

• Requests and responses between client and target are protected in transit bet
them. Protection includes not only ensuring that individual messages are inviol
and private, but that message streams are as well.

3.1.2.1 Security Information in the Object Reference

When an object is created in a secure object system, the security attributes asso
with it depend on the security policies for its domain and object type and the sec
technology available. A client needs to know some of this information to communic
securely with this object in a way the object will accept. So the object reference
transferred between two interoperating systems includes the following information

• A security name or names for the target so the client can authenticate its iden

• Any security policy attributes of the target relevant to a client wishing to invoke
This covers policies such as the required quality of protection for messages an
whether the target requires authentication of the clients identity and supports
authentication of its identity.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

security token at association setup

protected message

reply reply
Security Service, v1.7 Security Interoperability Protocols March 2001 3-3

3

n
t to

e

 used.

ens

een
sages

le,

 the

arget

 read

wever,
t be

re

data
frame.
),
ocol
 not
• Identification of the security technology used for secure communication betwee
objects this target supports and any associated attributes. This allows the clien
use the right security mechanism and cryptographic algorithms to communicat
with the target.

3.1.2.2 Establishing a Security Association

The contents of the security tokens exchanged depend on the security mechanism

A particular security mechanism may itself have options on how many security tok
are used. The minimum is an initial context token (a term used in GSS-API), sent from
the client to the target object to establish the security association. This typically
contains:

• an identification of the security mechanism used,

• security information used by this mechanism to establish the required trust betw
client and target and to set up the security context necessary for protecting mes
later,

• the principal’s credentials, and

• information for protecting this security data in transit.

In addition to this token, subsequent security tokens may be needed if:

• mutual authentication of client and target object is required, or

• some negotiation of security options for this mechanism is required (for examp
the choice of cryptographic algorithms).

3.1.2.3 Protecting Messages

The invocation may be protected for integrity and/or confidentiality. In either case,
messages forming the request and reply are first wrapped in a sequencing layer
envelope and then cryptographically protected by the ORB security services. For
integrity, extra information (e.g., an integrity seal) is added to the message so the t
ORB security services can check that the message has not been changed.

For confidentiality, the message itself is encrypted so it cannot be intercepted and
in transit.

Details of how messages are protected are again mechanism-dependent. Note, ho
that messages cannot be changed once they have been protected, as they canno
understood once confidentiality protected and the integrity check will fail if they a
altered in any way.

In SECIOP message stream protection is provided by encapsulating all SECIOP
payloads (e.g., IIOP messages or message fragments) in a sequencing protocol
The sequencing protocol ensures that data payloads are not duplicated (replayed
dropped (deleted), or received out-of-sequence (reordered). The sequencing prot
frame is protected by the ORB security services to ensure the state it contains is
modified by an intruder.
3-4 Security Service, v1.7 March 2001

3

by all
ats

curity

and a
key

duct.

e
logy

on,
n

y is

ism,
ient

g the
ct

tra
3.1.2.4 Security Mechanisms for Secure Object Invocations

The interoperability model above can be supported using different security
mechanisms.

This specification does not define a standard security mechanism to be supported
secure ORBs. It therefore does not specify a particular set of security token form
and message protection details for a particular security mechanism.

3.1.2.5 Security Mechanism Types

There are two major types of security mechanisms used in existing systems for se
associations. They are those using:

• Symmetric (secret) key technology where a shared key is used by both sides,
trusted third party (a Key Distribution Service) is used by the client to obtain a
to talk to the target.

• Asymmetric (public) key technology where the keys used by the two sides are
different, though linked. In this case, long term, public keys are normally freely
available in certificates that have been certified by a Certification Authority.

Several existing systems use symmetric key technology for key distribution when
establishing security associations. These are usually based on MIT’s Kerberos pro
Such systems normally include no public key technology.

Other security mechanisms use public key technology for authentication and key
distribution as this has advantages for scalability and inter-enterprise working. Th
number of public key based systems are growing and the use of public key techno
is standard for non-repudiation, which is an optional component in this specificati
and increasingly needed in commercial systems so any OMG security specificatio
must not preclude its use. Also, the use of smart cards with public key technolog
increasing. However, non-repudiation is not a service required for secure
interoperability.

Interoperating with Multiple Security Mechanisms

The current specification allows a client to identify the security mechanism(s)
supported by the target. Where a client or target supports more than one mechan
and there is at least one mechanism in common between client and target, the cl
can choose one which they both support.

Some security mechanisms may support a number of options, for example:

• a choice of cryptographic algorithms for protecting messages,

• a choice of using public or secret key technology for key distribution.

The appropriate options can be chosen by the client in the same way as choosin
basic mechanism, via the client security policy and information in the target’s obje
reference. However, some mechanisms will be able to negotiate options using ex
exchanges at association establishment, which are specific to the particular
mechanisms.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-5

3

s for

 may

 this

e

,

pal’s

ed on
:

oes

n
 this

s in

ns
fect

 the
is
y can
Interoperating between Underlying Security Services

Security mechanisms for secure object invocations use underlying security service
authentication, privilege acquisition, key distribution, certificate management, and
audit. Under some circumstances, these need to inter-operate. For example, key
distribution services may need to communicate with each other, and audit services
need to transmit audit records between systems.

Interoperability of such underlying security services is considered out of scope of
specification, as they are mechanism dependent.

3.1.2.6 Interoperating between Security Policy Domains

The sections above consider interoperability within a security policy domain wher
consistent security policies apply to access control, audit and other aspects of the
system. These rely on information about the principal, including its identity and
privilege attributes, being trusted and having a consistent meaning throughout the
policy domain.

Where a large distributed system is split into a number of security policy domains
interoperation between security policy domains is needed. This requires the
establishment of trust between these domains. For example, an ORB security
association service at a target system will need to identify the source of the princi
credentials so it can decide how much to trust them.

Once the identity of the client domain has been established, interdomain security
policies need to be enforced. For example, access control policies are mainly bas
the principal’s certified identity and privilege attributes. The policy for this could be

1. The target domain trusts the client domain to identify principals correctly, but d
not trust their privilege attributes, so treats all principals from other domains as
guest users.

2. The administrators of the two domains have agreed some privilege attributes i
common, and trust each other to give these only to suitably authorized users. In
case, the target system will give principals from the client domain with these
privileges the same rights as principals from the target domain.

3. The administrators of the two domains agree what particular privilege attribute
the client domain are equivalent to particular privilege attributes in the target
domain, and so grant corresponding access rights.

For the first two of these, the target domain security policy could enforce restrictio
about which privilege attributes may be used there. This would not necessarily af
the interoperability protocols - the get_attributes operation will simply not return all
of the privileges. But even in this case, some security mechanisms will choose to
modify the principal’s credentials to exclude unwanted attributes.

In the third case, the privilege attributes need to be translated to the ones used in
target domain. If this translation is to be done only once, an interdomain service
likely to be used which both translates the credentials and reprotects them so the
be delegated between nodes in the target domain.
3-6 Security Service, v1.7 March 2001

3

ay
ked

e.

ture,
tems.

o be
rity

7

ith

 to
tag

ay

his

re
Such an interdomain service may be invoked by the ORB Security Services, but m
be invoked by a separate interoperability bridge between the ORB domains. If invo
by an ORB service, it extends the implementation of the Vault object described
previously and this will probably call on a mechanism specific Interdomain Servic

3.1.2.7 Secure Interoperability Bridges

Secure Interoperability Bridges between ORB domains are relevant to this architec
as in future, they may be specified as part of some secure CORBA compliant sys
However, this section does not describe how to build such bridges.

Secure interoperability bridges may be needed for:

• ORB-mediated bridges, where data marshalling is done outside the ORB and
associated ORB services.

• Translating between security mechanisms (technology domains).

• Mapping between security policy domains.

In all these cases, both the system and application data being passed will need t
altered, affecting its protected status. This needs to be re-established using secu
services trusted by both client and target domains.

3.1.3 Protocol Enhancements

The following sections detail the enhancements required to the CORBA 2
interoperability specification for security.

Section 3.1.4, “CORBA Interoperable Object Reference with Security,” on page 3-
defines the enhancements needed to the Interoperable Object Reference (IOR).

Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34 defines the
enhancements needed to secure GIOP messages and Section 3.8, “DCE-CIOP w
Security,” on page 3-109 defines the DCE-CIOP with security.

3.1.4 CORBA Interoperable Object Reference with Security

The CORBA 2 Interoperable Object Reference (IOR) comprises a sequence of ‘tagged
profiles.’ A profile identifies the characteristics of the object necessary for a client
invoke an operation on it correctly, including naming/addressing information. The
is a standard, OMG-allocated identifier for the profile which allows the client to
interpret the profile data, but although the tag is OMG-allocated, the profile itself m
not be OMG-specified.

A multi-component profile is a profile that itself consists of tagged components. T
specification defines TAGS for use in such multi-component profiles as follows.

The following TAGs are defined:

• IIOP components , which can be used in a multi component profile (see “Secu
Inter-ORB Protocol (SECIOP)” in Appendix B).
Security Service, v1.7 Security Interoperability Protocols March 2001 3-7

3

verall

ity
mple,

ty of
an
of

more
ent

 for
lity
o the

s can

rity

n is:
• Security components that identify security mechanism types, one for each
mechanism supported. Each security mechanism component can also include
mechanism specific data.

• Aspects of the target object policy that cover the dependencies between and o
use of components (for example, the quality of protection required) may be
specified in separate policy components. This avoids establishing unnecessary
dependencies between other (technology) components.

Use of tagged components within the multi component profile to carry IIOP, secur
and other data may cause performance degradations in certain situations. For exa
if an IOR carries many tagged components that are unrecognized by a client
implementation, it must process these when they appear before those that it does
recognize. Some, such as the components describing IIOP, have a high probabili
being recognized and used by many clients. Consequently, implementations with
objective to optimize IOR processing will place such components at the beginning
the tagged component sequence.

3.1.4.1 Security Components of the IOR

The following new tags are used to define the security information required by the
client to establish a security association with the target. Note that a tag may occur
than once, denoting that the target allows the client some choice. All tag compon
data must be encapsulated using CDR encoding.

TAG_x_SEC_MECH

This is the prototype TAG definition for OMG registered security association
mechanisms. The mechanism is identified by the TAG value. The component data
TAGs of this kind is defined by the person who registers the TAG. The confidentia
and integrity algorithms to be used with the mechanism may either be encoded int
TAG value or in mechanism specific data (see “Guidelines for Mechanism TAG
Definition in IORs” in Appendix G).

If this definition includes,

sequence <TaggedComponent> components;

the components field can contain any of the other component TAGs, whose value
be specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi component level.

Multiple TAG_x_SEC_MECH components may be present to enumerate the secu
mechanisms available at the target.

TAG_GENERIC_SEC_MECH

This TAG enables mechanisms not registered with the OMG, but common to both
client and target to be used with the standard interoperability protocol. Its definitio
3-8 Security Service, v1.7 March 2001

3

d

s can

he

the
struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <TaggedComponent> components;

};

The first part of this TAG is the security_mechanism_type , which identifies the
type of underlying security mechanism supported by the target including
confidentiality and integrity algorithm definition. It is an ASN.1 Object Identifier
(OID) as described for use with the GSS-API in IETF RFC 1508.

The mech_specific_data field allows mechanism specific information to be passe
by the target to the client.

The components field can contain any of the other component TAGs, whose value
be specific to the mechanism.

If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi component level.

Multiple TAG_GENERIC_SEC_MECH components may be present to enumerate t
security mechanisms available at the target.

TAG_ASSOCIATION_OPTIONS

This TAG is used to define the association properties supported and required by
target. Its definition is:

struct TargetAssociationOptions{
AssociationOptions target_supports;
AssociationOptions target_requires;

};

The following table gives the definition of the options.

target_supports Gives the functionality supported by the target.

target_requires Defines the minimum that the client must use
when invoking the target, although it may use
additional functionality supported by the target.

Table 3-1 Definition of Association Options

Association Options target_supports target_requires

NoProtection The target supports unprotected
messages.

The target’s minimal protection
requirement is unprotected invocations.

Integrity The target supports integrity
protected messages.

The target requires messages to be
integrity protected.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-9

3

and
s
n the

ot
TAG_SEC_NAME

The target security name component contains the security name used to identify
authenticate the target. It is an octet sequence, the content and syntax of which i
defined by the authentication service in use at the target. The security name is ofte
name of the environment domain rather than the particular target object.

The TAG_SEC_NAME component is not needed if the target does not need to be
authenticated.

Confidentiality The target supports confidentiality
protected invocation.

The target requires invocations to be
protected for confidentiality.

DetectReplay The target can detect replay of
requests (and request fragments)

The target requires security associations
to detect message replay

DetectMisordering Target can detect sequence errors
of requests and request fragments.

The target requires security associations
to detect message mis-sequencing.

EstablishTrustInTarget The target is prepared to
authenticate its identity to the
client.

This option is not defined.

EstablishTrustInClient The target is capable of
authenticating the client.

The target requires establishment of
trust in the client’s identity.

NoDelegation Target supports no delegation. The target states that delegation will n
be supported.

SimpleDelegation The target supports simple
delegation.

This option is not defined.

CompositeDelegation The target supports composite
delegation.

This option is not defined.

Table 3-1 Definition of Association Options (Continued)

Association Options target_supports target_requires
3-10 Security Service, v1.7 March 2001

3

1”
ism
o

 IOR

ents

,
3.1.4.2 IOR Example

In this example, if mechanism “mech 1” is used, the target security name is “MBn
while the association must use integrity replay and misordering options. If mechan
“mech 2” is used, no mechanism specific security name has been specified and s
“Manchester branch” is used as the security name. The association options are
EstablishTrustInClient and Integrity.

3.1.4.3 Operational Semantics

This section describes how an ORB and associated ORB services should use the
security components to provide security for invocations and how the target object
information should be provided.

Client Side

During a request invocation, the non-security tagged components in the IOR multi-
component profile indicate whether the target supports IIOP and/or some other
environment specific protocol such as DCE-CIOP. Security mechanism tag compon
specify the security mechanisms (and associated integrity and confidentiality
algorithms) this target can use. The ORB selects a combination of interoperability
protocol and security mechanism that it can support.

If there is a common interoperability protocol, but no common security mechanism
then a secure request on this IOR cannot be assured.

Table 3-2 IOR Example

tag value mech specific tag value

tag_sec_name “Manchester branch”

tag_association_options Supports and requires
integrity and to establish
trust in the clients
privileges.

tag_generic_sec_mech mech 1 oid

tag_sec_name “MBn1”

tag_association_options Supports and requires
integrity, replay detection,
misordering detection, and
to establish trust in the
client’s security attributes.

tag_generic_sec_mech mech 2 oid

tag_association_options Target requires and
supports confidentiality
and to establish trust in the
client’s security attributes.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-11

3

o
and
tected

e the

, and

uires

et
ng

lar
e is

,”

ne.
If the same security mechanism is supported at the client and the target, but the
TAG_ASSOCIATION_OPTIONS component specifies no protection is needed or n
SEC_MECH is specified, then unprotected requests are supported by the target,
the request can be made without using security services. If the target requires pro
requests, then the ORB must choose an alternative transport and/or security
mechanism.

The IOR tags and the client’s policies and preferences are used together to choos
security for this client’s conversation with the target.

The specific security service used may not understand the CORBA security values
so may require them to be mapped into values it can understand.

Determining Association Options

The Association Options in Table 3-1 on page 3-9, lists possible association options
such as NoProtection , Integrity , DetectReplay .

The actual association options used when a client invokes a target object via an IOR
depend on:

• The client-side secure invocation policy and environment.

• Client preferences as specified by set_association_options on the Credentials
or set_policy_overrides of the object reference invoked with a QOPPolicy
object as one of the Policies to be overridden.

• The target-side secure invocation policy and environment (as indicated by
information in the TAG_ASSOCIATION_OPTIONS component).

An association option should be enforced by the security services if the client req
it and the target supports it, or the target requires it and the client supports it.

If the target cannot support the client’s requirements, then a
CORBA::NO_PERMISSION exception should be raised. If the client cannot me
the requirements of the target, then the invocation may optionally proceed, allowi
policy enforcement on the target side.

Target Side

The security information required in the IOR for this target must be supplied from the
target (or its environment). This specification does not define exactly when particu
information is added, as some of it may only be needed when the object referenc
exported from its own environment.

The security information may come from a combination of:

• The object’s own credentials (see Section 2.3.9, “Security Operations on Current
on page 2-97). This includes for example, the target’s security name. It could
include mechanism specific information such as the target’s public key if it has o

• Policy associated with the object. This includes, for example, the QOP.

• The environment. This includes, for example, the mechanism types supported.
3-12 Security Service, v1.7 March 2001

3

r

lues

rget

ion

nd
in

ion.

ion

 of
f key

d
The target object does not need to supply this information itself. This is done
automatically by the ORB when required. For example, much of the information fo
the target’s own credentials are set up on object creation.

As at the client, the specific security service used may require CORBA security va
to be mapped into those it understands.

If when the client invokes the target identified by the IOR, an Invoke Response
message is returned for the request with the status
INVOKE_LOCATION_FORWARD , then the returned multiple component profile
must contain security information as well as the new binding information for the ta
specified in the original Invoke Request message.

Any security information in the returned profile applies to the new binding informat
and replaces all security information in the original profile. This
INVOKE_LOCATION_FORWARD behavior can be used to inform the client of
updated security information (even if the address information hasn’t changed).

3.1.5 Common Secure Interoperability Levels

Three Common Secure Interoperability Levels are defined to help in classifying a
positioning the various interoperability facilities that are defined, and also to help
concisely stating the conformance requirements. The three CSI levels are:

CSI Level 0 - supports only identity based policies without delegation.

CSI Level 1 - supports identity based policies with or without unrestricted delegat

CSI Level 2 - supports identity and privilege based policies with controlled
delegation.

A complete description of the these CSI levels of interoperability can be found in
“Common Secure Interoperability Levels” in Appendix D.

3.1.6 Key Distribution Types

Security mechanisms use cryptography in the establishment of a secure associat
between a client and target and in protecting the data between them. Security
mechanisms differ in the type of cryptography they use, particularly for distribution
keys. (Keys are assigned to clients, targets, and trusted authorities). Three types o
distribution are defined in this specification:

• Secret keys - use secret key technology for distribution of keys for principals.

• Public keys - use public key technology for distribution of keys for principals,
though may use secret key technology for message protection.

• Hybrid - use secret key technology for key distribution for principals within an
administration domain, and public key technology for key distribution for truste
authorities, and hence between domains.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-13

3

 for

isms
ified.

cret

l 2).
ions
CSI

in
6].
 of
All types of key distribution can be used to support all the facilities in CORBA
Security for secure object invocations (though public key is almost universally used
non-repudiation). The choice of mechanism to use depends on a customer’s
requirements. For example, to fit with other systems and for scalability to inter-
enterprise working.

3.1.7 Security Mechanisms Hosted on SECIOP

The choice of protocol to use depends on the mechanism type required and the
facilities required by the range of applications expected to use it. How the mechan
underlying the following three security protocols are hosted on SECIOP are spec

1. SPKM Protocol

Supports identity based policies without delegation (CSI level 0) using public key
technology for keys assigned to both principals and trusted authorities. The SPKM
protocol is based on the definition in [20].

2. GSS Kerberos Protocol

Supports identity based policies with unrestricted delegation (CSI level 1) using se
key technology for keys assigned to both principals and trusted authorities. It is
possible to use it without delegation (providing CSI level 0).

The GSS Kerberos protocol is based on the [12] which itself is a profile of [13].

3. CSI-ECMA protocol

Supports identity and privilege based policies with controlled delegation (CSI leve
It can be used with identity, but no other privileges and without delegation restrict
if the administrator permits this (CSI level 1) and can be used without delegation (
level 0).

For keys assigned to principals, it has two options:

• It can use either secret or public key technology.

• It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as defined
ECMA 235, but is a significant subset of this - the SESAME profile as defined in [1
It is designed to allow the addition of new mechanism options in the future; some
these are already defined in ECMA 235.
3-14 Security Service, v1.7 March 2001

3

ls.

osted

s

tside
hat

A

ere

e

ion

ing
The following table shows which CSI functionality is supported with which protoco

3.1.8 Security Mechanisms Hosted Directly on IIOP

The SSL [21] protocol, which provides for confidentiality and integrity within the IP
sockets paradigm can be used to provide interoperability based on this protocol h
directly on IIOP. How this is done is specified in Section 3.7, “Integrating SSL with
CORBA Security,” on page 3-108. It supports identity based policies without
delegation.

3.1.9 Choices of Protocols, Cryptographic Profiles and Key Technologie

What combination of Security Protocols, Key Technologies, and Cryptographic
Profiles are the most desirable has been the subject of debate both inside and ou
OMG. In this specification, certain choices have been made based on the belief t
these choices best meet OMG’s current needs given the other constraints.

3.1.9.1 Choice of Protocol and Key Technology

GSS Kerberos is specified as the mandatory protocol for common secure
interoperability, as Kerberos is widely available and most vendors can support it.
However, it does not provide all facilities required and is secret key only.

Several other protocols are specified as non-mandatory options, as follows:

• CSI-ECMA is specified as a protocol to provide support for the full set of CORB
security facilities using public key or secret key technology.

• SPKM is specified as a simpler public key protocol suitable for applications wh

• access and audit policies are static, and

• at each stage in a chain of object invocations, the policies depend only on th
identity of the immediate invoker, not the initiator of the chain.

• SSL is specified for use in the web market.

3.1.9.2 Cryptographic Profiles

Security mechanisms use cryptography in the establishment of a secure associat
between a client and target and in protecting the data between them. Different
cryptographic algorithms are used to support particular security functions depend

Table 3-3 CSI Functionality and Protocols

Protocol
CSI Level

SPKM GSSKerberos CSI-ECMA

0 Supported Supported Supported

1 Not supported Supported (Mandatory) Supported

2 Not supported Not supported Supported
Security Service, v1.7 Security Interoperability Protocols March 2001 3-15

3

The

ired
es

they
lar

n
t.

 be

t to
e

tors

to

pdate
ese

ard
on
n the
ents.

te
on the type of mechanism used and also the regulations on use of cryptography.
combination of algorithms used to provide particular security using a particular
mechanism is called a cryptographic profile.

Currently, different cryptographic algorithms, and/or different key lengths are requ
to meet export controls and regulations on use of cryptography in various countri
(see Section 3.1.10.2, “International Deployment,” on page 3-17). Although some
vendors produce more than one version of secure products for different markets,
are increasingly reluctant to do this. For common secure interoperability, a particu
cryptographic profile is needed. Some options are to standardize:

• Integrity only for user data, not confidentiality. If done using MD5, this is likely to
be exportable and generally deployable, but doesn’t provide confidentiality whe
interoperating. This does not provide the functionality that some users will wan

• Integrity and confidentiality using weak keys only. This provides the required
functionality in a way that can generally be exported, but does not provide the
strength of protection needed by some customers. Also, products using it may
subject to import controls or other regulations in some countries.

• On strong confidentiality and integrity, which customers want, but will be subjec
export controls in most countries and to deployment regulations in some. Leav
vendors and customers to sort out the problems.

This chapter makes only the first of these options mandatory; however, implemen
of all profiles may choose to support other profiles also.

3.1.9.3 Conformance to External Security Mechanisms

This specification uses protocols defined in other standards documents. It refers
particular versions of these standards, which is needed for interoperability. If the
versions of these external documents change in future, there may be a need to u
this specification so that it is in line with the most accepted external version of th
standards.

3.1.10 Common Secure Interoperability Requirements

This section describes the requirements that Common Secure Interoperability is
expected to meet.

The Common Secure Interoperability specification is required to provide for stand
security mechanisms, simple delegation, and international deployment. This secti
discusses the key requirements for common secure interoperability that have drive
design of this specification and how this specification responds to these requirem

3.1.10.1 CORBA Standard Security Mechanisms

Standard CORBA security mechanisms are required so that ORBs can interopera
securely at all.
3-16 Security Service, v1.7 March 2001

3

bove,
 in

ity

 of

ays

Bs,
one
and

osen
y

t

 a
ata

 CSI
kens
es

itor.
rent.

s
.
he
y

are

Four popular security mechanisms to meet different circumstances, as described a
can be used to host CORBAsecurity in a standard way. One of the four described
this chapter is mandatory and all conformant ORBs must support it. Interoperabil
between conformant ORBs is always possible using this; however, the facilities
supported when using it are limited.

Interoperability also requires common use of cryptographic algorithms. A number
cryptographic profiles are specified to meet the needs of different markets and
countries. One is mandatory and interoperability between conformant ORBs is alw
possible using this; however, it provides data integrity but not confidentiality.

Where multiple mechanisms and cryptographic profiles are supported by both OR
the client and target object must agree which to use. In this specification, this is d
by the client looking at the security mechanism tag in the target object reference
choosing an appropriate mechanism and profile that both support. (In future,
negotiation of mechanisms may be supported.)

3.1.10.2 International Deployment

International deployment requires that the security mechanisms and algorithms ch
can be used worldwide in countries that are subject to different national regulator
controls on the use of cryptography. It also requires that they can be used across
international boundaries. International deployment may also be affected by expor
control regulations and other issues.

Requirements distilled from the key regulations affecting international deployment
include:

• Keeping the amount of information that must be encrypted for confidentiality to
minimum. In general, encryption of keys is acceptable, but encryption of other d
may not be. For this reason, encryption of security attributes is undesirable. At
level 2, where more attributes are generally needed, the part of the security to
concerned with key distribution is separated from the part used to carry privileg
(e.g., in CSI-ECMA); therefore, the latter part does not have to be encrypted.

• Being able to use identities for auditing that are anonymous, except to the aud
For this reason, identities used for access control and audit may need to be diffe
A separate AuditId can be transmitted at level 2.

• Allowing use of different cryptographic algorithms, with different lengths of key
for specified functions to meet export and use regulations in different countries
The specification defines cryptographic profiles that allow for different cases. T
mandatory one provides data integrity only, as this is generally easier to deplo
internationally.

There may be further requirements on secure ORB products to ensure that they
exportable. For example, they must not allow easy/uncontrolled replacement of
cryptographic algorithms. This affects the construction of the system, but not this
interoperability standard, so is not considered further here.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-17

3

ed in
le,

s

stem

 sort

mant
f
ystem

r

Also,

blic

BA
ate

urity
h
te

 be

ps
ion
Other restrictions on the use of algorithms and security mechanisms are highlight
Section 3.1.10.9, “Identifying Encumbered Technology,” on page 3-20. For examp
the DES algorithm is subject to export controls, while RSA requires licensing in some
countries. The MIT version of the Kerberos technology, widely used in the USA, i
also subject to export controls.

3.1.10.3 Consistency

It should be possible to provide consistent security across the distributed object sy
and with associated legacy and other non-object systems. This includes:

• Support of consistent policies for which principals should be able to access the
of information, within a security domain, that includes heterogeneous systems.

For this specification, it requires the ability to transmit consistent privilege and
other attributes between ORBs to support these policies. Level 0 and 1 confor
ORBs can transmit identities, level 2 conformant ORBs can transmit a range o
privilege attributes. These can be the ones used in existing systems, though s
specific ones will not be usable in other systems.

• Fit with existing logons (so extra logons are not needed) and with existing use
databases (to reduce the user administration burden).

Log on needs to result in credentials, which include the information required to
support the specified security mechanisms. Note that single logon with secure
messaging, web, etc. generally requires use of public key based mechanisms.
if non-repudiation is supported, they will also need to include the security
information required to support the non-repudiation mechanism (normally, a pu
key mechanism).

Also, interoperating with non-object systems may require, for example, a COR
object implementation, which calls a non-CORBA application to be able to deleg
incoming credentials (assuming compatible security mechanisms.)

• Fit with all non-object systems is clearly not possible if such a system uses sec
mechanisms that are incompatible with the one used in the object system. Suc
systems may be able to use CORBA Security, but will not be able to interopera
using the common secure interoperability standard.

This specification includes an interoperability level that supports privileges and a
public key (as well as a secret key) mechanism to support these requirements.

3.1.10.4 Scalability

It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise systems. For larger systems, it should
possible to:

• Base access controls on the privilege attributes of users such as roles or grou
(rather than individual identities) to reduce administrative costs. This specificat
includes the transmission of such privilege attributes in CSI level 2.
3-18 Security Service, v1.7 March 2001

3

 but
s
ot

nd

ld be

r

uch

s. If
get.

other

hat

s
they
• Have a number of security domains that enforce different security policy details,
support interworking between them subject to policy. (This specification include
the architecture for such inter-domain working, though this specification does n
define interface for this.) Use of public key technology helps large scale,
particularly inter-enterprise interoperability.

• Manage the distribution of cryptographic keys across large networks securely a
without undue administrative overheads.

3.1.10.5 Flexibility of Security Policy

The security policies required varies from enterprise to enterprise, so choices shou
allowed, though standard policies should be supported for common secure
interoperability.

Access Policies

At CSI levels 0 and 1, the AccessId is the only privilege attribute supported. The
standard DomainAccessPolicy defined in “Access Policies” on page 3-19 (or othe
access policies) can be used with only this privilege.

At CSI level 2, conformant ORBs are able to transmit further privilege attributes (s
as role and group), so the DomainAccessPolicy (and other access policies) can be
used with these privileges also.

CSI level 2 is designed to allow transmission of further privileges, including user
defined privileges and security clearances as needed for multi-level secure system
received by a conformant ORB, they will be available for access control at the tar
However, conformant ORBs need not transmit them, so use of such privileges is
subject to the agreement between the systems.

The mechanisms defined here also allow a wider range of privileges, etc. to be
supported and other access policies to be used. However, interoperability with all
conformant ORBs is not guaranteed in this case.

Audit Policies

All CSI levels provide an AuditId that can be used in audit policies. CSI level 2 can
transmit an AuditId that is anonymous to all but audit administrators.

3.1.10.6 Application Portability

Application portability is an important OMG requirement. The many applications t
are unaware of security will continue to be portable.

Applications that enforce their own security policies should still be portable acros
ORBs supporting common secure interoperability if the access and audit policies
use rely only on security attributes that are mandatory in the chosen CSI level.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-19

3

n.

sed.

sing
ocal

or
ay

ns

eros

, the

as
lude

Applications should be unaware of the security mechanism used to enforce the
security, unless they specifically ask what it is (e.g., using get_service_information ,
see Section 2.3.2, “Finding Security Features,” on page 2-73).

3.1.10.7 Security Services Portability/Replaceability

The CORBA Security specification includes replaceability conformance options.

The objects supporting the security mechanism (PrincipalAuthenticator , Vault , and
Security Context) can be replaced to support the mechanisms in this specificatio
However, if logon outside the object system is supported, this will need to provide
credentials including the security information needed by the CSI mechanism(s) u

If the invocation access policy is replaced, this can utilize privileges transmitted u
CSI protocols. However, if an ORB wishes to control access on invocations using l
(e.g., operating system) attributes, then mapping of attributes prior to calling the
Access Decision object is needed.

3.1.10.8 Performance

Security should not impose an unacceptable performance overhead, particularly f
normal commercial levels of security, although a greater performance overhead m
occur as higher levels of security are implemented.

Details of the performance overhead depend on the mechanism used and its
implementation; however, in this specification:

• Sufficient information can be carried in the IOR so that the client knows what
security the target supports and does not have to negotiate protocols and optio
with it.

• The mechanisms used allow the initial_context_token to be transmitted with first
message, if mutual authentication is not required.

3.1.10.9 Identifying Encumbered Technology

This specification includes technology that is encumbered to some extent.

• The Kerberos V5 technology is licensable from the Massachusetts Institute of
Technology without cost and is widely deployed within the USA. However, it is
subject to export control from the USA; therefore, [12] is the definition of the
protocol used here, as this can be implemented independently of the MIT Kerb
code.

• SPKM implementations are available, though not free. As for other mechanisms
(draft) standard is the basis of this specification.

• SESAME implementation is available, but is not free for commercial use, and h
restrictions on cryptography for export reasons (the public version does not inc
commercial cryptographic profiles - it has the secret key algorithm replaced by
XOR for export control reasons).
3-20 Security Service, v1.7 March 2001

3

ble

lly

s
re it
ely

, as

s 2.3
 at:

o

utes

 in

ses
r

e

teed
• There are two patents associated with the CSI-ECMA protocol. These are usa
free of charge for implementations conformant with this specification under fair
conditions (formal definition of these are available from Bull and ICL).

• The DES algorithm is widely deployed internationally, but is subject to export
controls. Export with key lengths that provide strong confidentiality is not genera
permitted.

• Increasingly, the RSA algorithm is widely deployed internationally; however, it i
subject to licensing in the USA. It is also subject to export controls, though whe
can be shown that it is not used for confidentiality, products using it are more lik
to be exportable.

• Any other cryptographic algorithms used are generally subject to export controls
is any interface that makes it easy to replace algorithms.

3.1.11 Relation to CORBA Security Facilities and Interfaces

This section describes how the security facilities and interfaces defined in Section
through 2.5 map to various elements of security protocol mechanisms. It is aimed

• Object implementors developing applications using a secure object system wh
need to know what security is available.

• Implementors of security policies who may be constrained by the security attrib
available when interoperating according to this standard.

• ORB implementors supporting replaceable security policies.

3.1.11.1 Functionality

The security information that is transmitted between ORBs, and which security
facilities and policies are supported in an interoperable environment, is described
these sections. Three levels of secure interoperability are defined specifying the
particular security attributes that conformant ORBs must support.

Note that the interoperability defined here is for interoperability of requests/respon
between ORBs. It does not include interoperability of the evidence tokens used fo
non-repudiation.

3.1.11.2 Replaceability

In replaceability, options that allow ORB implementors to support a wide range of
security policies and mechanisms is defined. For example, the standard
DomainAccessPolices can be replaced by other policies where ORBs support th
appropriate replaceability option. This specification still allows this replaceability,
though the policy being added may be restricted by the security information guaran
to be available.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-21

3

 the
an
gle

tely

 they

to

use
r a

ages.

the
d

ject
y to

s
t
l 0
n

e
ty

 the

n.
2.3
 and
This specification allows replaceability of security mechanisms by replacement of
Vault and Security Context objects. It specifies mechanisms and protocols that c
be implemented via a GSS-API interface. This adds the potential for having a sin
implementation of the Vault and Security Context objects, which by using GSS-
API, would be able to use different security mechanisms.

3.1.11.3 Levels of Interoperability

This specification includes three interoperability levels, as described more comple
in “Common Secure Interoperability Levels” in Appendix C. This section gives
information about these levels and an example showing the difference in the way
handle a particular problem.

Common Secure Interoperability Level 0

CSI level 0 supports identity based policies without delegation. It requires ORBs
support the following:

• Authentication of principals using security functions under one ORB, and then
of the resultant credentials when making a secure invocation to an object unde
different ORB.

• Secure associations to establish trust between client, target, and protect mess

• As part of the secure association, the security name of the client is passed to
target and used to set both AccessId and AuditId so that identity based access an
audit policies can be supported.

The identity is always that of the immediate invoker of an object in a chain of ob
invocations, this is only the same as the initiator of the chain at the point of entr
the chain.

Common Secure Interoperability Level 1

CSI level 1 supports identity based policies with unrestricted delegation. It require
ORBs to support the mandatory part of the CORBA Security when two conforman
ORBs interoperate (using the same security mechanism). It provides the CSI leve
facilities plus security information (in particular, the security name) of a principal i
the call chain can be delegated to objects (subject to security policy).

Once this security information has been delegated, the intermediate object has th
choice of acting under its own identity or delegating the initiating principal’s identi
when invoking another object. When delegating another principal’s identity, the
delegated identity (rather than the immediate invoker’s identity) is used to set both
AccessId and AuditId at the target.

Common Secure Interoperability Level 2

CSI level 2 supports identity and privilege based policies with controlled delegatio
ORBs supporting this level must support interoperability of all facilities in Sections
through 2.5 concerned with object invocation. CSI level 2 provides the CSI level 0
level 1 facilities plus:
3-22 Security Service, v1.7 March 2001

3

 of

ned
lude
pe

oth
nt

ix

em,
o

 at

e,
ey to

and

f
e
’s

;
d
not
cted

ifies
• The security information of the immediate invoker or the delegated information
the initiating principal can include more security attributes, as follows:

• an extensible range of privilege attributes (e.g., roles, groups, enterprise defi
attributes) to support a wider range of policies. Generally, these attributes inc
an AccessId that is independent of the security name (and the mechanism ty
used) and is used to set the AccessId at the target. Interoperability using
particular types of privileges depends on these privileges being common to b
ORBs. This CSI specification defines which privileges a CSI level 2 conforma
ORB must support (see “Common Secure Interoperability Levels” in Append
D).

• a separate AuditId can be transmitted. This may be anonymous (except to the
audit administrator). It will always represent the actual principal using the syst
even when the AccessId represents someone who has allowed another user t
access the system on his behalf.

• The delegation of a principal’s attributes can be controlled (for example, usable
only identified (groups of) targets). Intermediate receiving delegated security
attributes of a principal will not always be able to delegate them.

• Composite delegation is allowed for, but support for this is not mandatory.

Example

This section looks at an example of a secure object system, which highlights the
difference between the delegation facilities of the three CSI levels. In this exampl
Bob wants to close his bank account and is prepared to give Dan power of attorn
do this.

• At CSI level 0, no delegation is possible; therefore, Bob has to go to the bank
close the account himself.

• At CSI level 1, Bob gives Dan unlimited power of attorney to act for him (as
delegation is unrestricted). Dan can close Bob’s bank account. As the power o
attorney is unlimited, Dan can also read Bob’s medical records and pass on th
power of attorney to Mark - who can also close Bob’s bank account, read Bob
medical records, etc.

• At CSI level 2, Bob gives Dan the power of attorney to close his bank account
therefore, Dan can close the account. But this does not include the right to rea
Bob’s medical records (as only limited privileges were given to Dan) and does
include the right to give the power of attorney to Mark (as delegation was restri
to Dan).

3.1.12 Security Functionality

This section reviews the security functionality in Section 2.3 through 2.5 and spec
which functionality is supported interoperably at which CSI level. Some security
functionality is supported at all CSI levels, some only at CSI level 1 or 2.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-23

3

lt of
 the

mant

n of

ore,

e

ned

t all
SI

ons

art of

ths
3.1.12.1 Authentication

The CSI mechanisms do not specify authentication of principals, but use the resu
such authentication. Principal authentication must result in credentials that contain
security information needed by the security mechanisms supported by this confor
ORB.

CSI mechanisms require authenticated principals (see Section 2.3.3, “Authenticatio
Principals,” on page 2-73).

3.1.12.2 Access Control

Access controls depend upon the privileges of the principal.

At CSI levels 0 and 1, only the principal’s identity is available at the target; theref
Access Policies using this level must either:

• use only the principal’s identity for access control, or

• retrieve other attributes for that principal prior to taking the access decision (th
“pull” model).

The standard DomainAccessPolicy assumes all privileges required have been
“pushed” from the client; therefore, they will be restricted to using identity only.
Access policies using the pull model will not be portable, if the source of such
attributes is system dependent.

At CSI level 2, the AccessPolicies can use any of the privileges supported by both
ORBs. All CSI level 2 conformant ORBs support AccessId , GroupId , and Role .
They may also transmit user defined privileges, where the user enterprise concer
has a CORBA attribute family definer, and defines its own families of attributes.
However, some attribute types defined outside the object system may not be
understood at all targets; therefore, portability of these may not be possible to all
environments.

3.1.12.3 Audit

Auditing is as defined in Section 2.1.5, “Auditing,” on page 2-11, and is possible a
CSI levels. A separate AuditId (which may be anonymous) can be transmitted at C
level 2.

3.1.12.4 Secure Invocation

Conformant implementations (all CSI levels) must support all the association opti
defined in Table 3-1 on page 3-9.

Channel bindings, as defined in GSS-API and all protocols defined here, are not p
the mandatory specification.

Conformant implementations at level 2 allow use of algorithms with different streng
for integrity and confidentiality.
3-24 Security Service, v1.7 March 2001

3

t is

ts to

ever,

ame
 be

it is
both
isms
ms.

 and
 For

B
3.1.12.5 Delegation Facilities

• At CSI level 0, no delegation is supported.

• At CSI level 1, the initiating principal’s identity can be delegated to the target. I
either delegated or not - there are no other restrictions on delegation.

• At CSI level 2, the initiating principal’s privileges, as well as identity, can be
delegated to the target. Delegation can be controlled further, restricting the targe
which the attributes can be delegated. These restrictions must be specified by
administrative action, as there are no interfaces specified in to do this in this
specification.

Level 2 protocols are also defined that allow support of composite delegation; how
support of this is not required by conformant ORBs.

3.1.12.6 Non repudiation

Non-repudiation relies on NR credentials for handling NR evidence tokens. The s
credentials can be used for secure invocations and non-repudiation. This will only
possible if compatible security technology is used for non-repudiation and secure
invocation. While no specific security technology is mandated for non-repudiation,
expected that this will use public key technology. Common credentials usable for
purposes are expected to use public key technology, to fit with public key mechan
(SPKM or the CSI-ECMA public key option), rather than with secret key mechanis

3.1.12.7 Security Policies

Security policies are potentially sharable between ORBs if they use only identities
privileges that are available at both ORBs and can be transmitted between them.
example, a DomainAccessPolicy that uses roles must receive requests from an OR
that can generate them via a CSI level 2 protocol that can transmit roles.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-25

3

ng.

ust
e
 have
e

lling

cess
3.1.13 Model for Use and Contents of Credentials

The CORBA Security model includes security functionality enforced during object
invocations and by applications, as shown in Figure 3-2.

Figure 3-2 Security Functionality Enforced During Object Invocations and Applications

Most of the security services utilize the principal’s credentials either at the client
(before invoking the target object) or at the target. For example, the ORB security
services use these credentials for secure associations, access control, and auditi

To fit with the standard CSI security mechanisms, user/principal authentication m
produce credentials suitable for both client side security controls and to fit with th
security mechanisms used for secure invocations. A single credential’s object may
security context information for more than one mechanism. Security services at th
client application use these credentials to enforce security there.

Access control policies at the target generally depend on the initiating principal’s
privilege attributes (which generally includes an identity). Normally they rely on
information from the credentials being passed from the client to the target. Other
access policies may use the pull model for obtaining privileges at the target. For
example, an access policy at the target could obtain the access identity using the
get_attributes function. It could then call, in a non-standard way, on whatever
service provides privileges in this case. Alternatively, an attribute Mapper (see
Section 3.1.13.3, “Attributes at the Target,” on page 3-27) could be used before ca
the access policy (if this optional facility is supported).

Audit policies generally require an audit id, though this may be derived like the ac
id from a single identifier.

This specification allows unauthenticated and authenticated users.

Client

request request

Target
Object

ORB

Services
Security

ORB

Services
Security

Credentials
Credentials

��
�
�
��

����
����
����
����

application
security
controls

��
��
��
��

�
�
�
�

application
security
controls

������������������������������������
��
������������������������������������

���
���
���

logon
authentication

user

..

credentials info in token
3-26 Security Service, v1.7 March 2001

3

 may

er (or

rget

e

d for

re

A
g
The privilege and other attributes, as seen by the AccessDecision object at the
target, may not be those passed from the client because the security mechanism
have moderated what is available to the object system.

3.1.13.1 Credential Content at the Client

Credentials are made available to the client as the result of authenticating the us
other principal), though they may be modified later. Authenticated users have two
types of attributes visible to applications and relevant to secure interoperability.

1. Privilege attributes used for access control. These include the AccessId (the
principal’s identity as used for access control); other standard CORBA security
attributes such as GroupId , Role , Clearance , and enterprise defined attributes.

2. Identity attributes used for purposes other than access control. Only the audit
identity is relevant here.

At CSI levels 0 and 1, the only attributes that must be visible to the client and ta
are the AccessId and AuditId . These will normally be the user’s security name.

At CSI level 2, a wider range of privilege attributes is supported:

• All conformant ORBs can generate (via security services) credentials with th
following privilege attributes:

• AccessId
• AuditId
• Role
• GroupIds - a primary group and other groups

• There may be a single identity (e.g., the access identity) that can also be use
auditing, or separate AccessId and AuditId may be generated. AuditId may be
anonymous.

• Optionally, there may also be other privilege attributes including user defined
attributes.

3.1.13.2 Attributes During Transmission

At levels 0 and 1, only the principal’s identity is transmitted. No other attributes a
transmitted.

At level 2, a wide range of privileges can be transmitted including standard CORB
attributes and optionally user defined ones. Attributes may have individual definin
authorities, as at the IDL interface, or share a defining authority.

3.1.13.3 Attributes at the Target

At CSI levels 0 and 1, when only a single identity (e.g., the security name) is
transmitted, that single identity is used to generate the AccessId and the AuditId at
the target. When using the CSI-ECMA protocol at level 0 or 1, principal identity
attributes are transmitted separately from the security name; therefore, the AccessId
and AuditId do not have to be generated from the security name.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-27

3

nd

se
rget

tes,”

t the
,

e

 valid

ch as
At CSI level 2, all conformant ORBs can accept:

• Separate access and audit ids or a single identity used for both purposes.

• Transmission of any privileges defined in “Security Attributes” in Appendix B, a
any privileges with Object Identifiers that can be mapped to SecurityAttributes .

This range of privileges can be used in access decisions at the target. Even if the
privileges are not used by the invocation access policy to control access to the ta
object, they may be obtained by the application using Current::get_attributes or
Credentials::get_attribute and used in application access decisions.

The attributes at the target appear as defined in Section 3.6.2.1, “Privilege Attribu
on page 3-69. For example, they have:

• an Attribute type (family definer, family, and the type within this family),

• a defining authority, and

• the attribute value.

The attributes may need to be mapped from their form in transit to the form used a
IDL interface in response to get_attribute calls. An attribute mapper may be needed
as shown in Figure 3-3.

Figure 3-3 Attribute Mapper Diagram

This mapping depends on:

• Which functionality level is supported. At levels 0 and 1, a single name must b
mapped to provide both AccessId and AuditId . This will be the security name if
the protocol does not carry a separate AccessId or AuditId ; both the SPKM and
GSS-Kerberos protocols use the security name.

• Whether the access control decisions at the target use attribute values that are
externally from the ORB/operating system (for example, in a domain of
heterogeneous systems), or whether the Access policies use local attributes (su

ORB Security Services

Access
Decision
Object

Credentials
as seen at the

target

Target
Object

Optional
Attribute Mapper

Client

Credentials
as

generated request request

application
security
controls
3-28 Security Service, v1.7 March 2001

3

he

).
s

RBs
h

 a

 slash

. This

e

e

SI-

and
IDL

in

licy
operating system ids).

In line with the OMG requirement for portability, externally valid attributes are t
norm, and must be supported in conformant ORBs (so that an application that
includes administration of its access policy is portable between unlike systems
Mapping to local attributes may also be provided, but is not standardized in thi
specification.

3.1.13.4 Mapping Security Names to Externally Valid Identities

Where the only client attribute transmitted is the security name, CSI conformant O
map this onto both the AccessId and AuditId in the received credentials. These bot
have the same value.

When using the GSS-Kerberos, the security name protocol has two components:
realm name and a principal name. The security name is of the form principal@realm.
The principal name may be a multi-component name with components separated by
(/) - see [12] section 2.1.1.

When using a public key based mechanism, the security name is a directory name
is a multi-part name (e.g., country, organization, organization unit, surname, and
common name). The security name is returned from the security mechanism in th
form of a string complying with [4] for the string representation of distinguished
names. The separators between components of the name may be commas or
semicolons.

In both cases, the full Security name is used as the value for the AccessId and
AuditId in the IDL SecurityAttributes . This means the form of these attributes ar
dependent on the security mechanism used, as Kerberos and X.500 names have
different forms.

3.1.13.5 Mapping Other Attributes to Externally Valid IDL Attributes

Other security attributes may also be transmitted from the client when using the C
ECMA protocol. For example, at level 2, there could be a Role , GroupId , and
enterprise specific attributes as well as AccessId and/or AuditId . Also, separate
AccessId and AuditIds may be transmitted.

In general, these will already have values that are valid outside a particular ORB
operating system; therefore, the mapping is mainly to put these in the form of an
SecurityAttribute . However, if a separate AuditId has not been transmitted, the
AuditId value will be copied from the AccessId . Also, if a separate defining
authority is not transmitted for an attribute, the defining authority for the attribute
IDL is set from the issuer Domain of the authority who generated the Privilege
Attribute Certificate containing the privileges. Note also that the target security po
may restrict which of the attributes are available to the application.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-29

3

d

y

ot be
y an

e
n
f

dard
o it,

s

Attribute types in transmission are identified by Object Identifiers. For the standar
attribute types such as Role or GroupId (as defined in “Security Attributes” in
Appendix B), the type is automatically translated to the appropriate CORBA famil
and attribute type. The value is also re-encoded, if needed, from ASN.1 to the
equivalent IDL type.

We propose that OMG should register itself in the ISO Object Identifier space. A
SecurityAttribute type where there is a family definer registered with OMG (see
“Values for Standard Data Types” in Appendix B) can then be transmitted with an
Object Identifier of:

<iso>..<omg>.<security>.<family_definer>.<family>.<attribute type>

which then can be mapped automatically onto the CORBA SecurityAttribute
structure.

Attributes other than the standard attributes and those with CORBA family Object
Identifiers are not guaranteed to be understood at the target; therefore, they may n
automatically mapped to CORBA families and types. Such mapping can be done b
optional attribute mapper that understands these attribute types.

3.1.13.6 Mapping to Local Attribute Values

An ORB can support mapping of the security name and other attributes to local
operating system values such as UNIX uids and gids. This mapper could generat
different AccessIds and AuditIds . Note that when using local values, the applicatio
(particularly the access policy administration) will not be portable to other types o
system.

Mapping of these values is specific to the ORB and/or operating system. This stan
does not specify how this mapping is done, whether it calls on other software to d
or what types of values it generates. However, the defining authority in the IDL
SecurityAttribute must identify the local environment responsible for the meaning
of these values, so the application can determine where these values are valid.

Mapping to local attributes may be done by an optional attribute mapper (see
Section 3.1.16.1, “Attribute Mapping,” on page 3-33).

3.1.14 CORBA Interfaces

In this section:

• Profiles of the interfaces defined in sections 2.3 through 2.5 are defined.

• Values of certain IDL constants relevant to these profiles are defined.

• Restrictions that application that use the Security interfaces must adhere to for
conforming to this Common Secure Interoperability standard are identified.
3-30 Security Service, v1.7 March 2001

3

 for
B.

rated

e:

.

y

in

e

e

t:
3.1.14.1 Service Options for Common Secure Interoperability

The following Service Options are returned by ORB::get_service_information
representing the level of CSI that is supported by the ORB:

module Security {
const CORBA::ServiceOption CommonInteroperabilityLevel0 = 10;
const CORBA::ServiceOption CommonInteroperabilityLevel1 = 11;
const CORBA::ServiceOption CommonInteroperabilityLevel2 = 12;

};

The common interoperability protocols supported are identified using a ServiceDetail
structure with a ServiceDetailType of Security::SecurityMechanismType , as
described in Section 2.3.2, “Finding Security Features,” on page 2-73. The values
the CSI mechanisms are defined in “General Security Data Module” in Appendix

3.1.14.2 Mechanism Types

The mechanism at the application interface is defined as Security::MechanismType
(a string). CSI mechanisms are encoded in the MechanismType string by
concatenating a mechanism id and zero, one, or more cryptographic profiles sepa
by commas.

The mechanisms supported by an object are identified by tags in its IOR. In the
MechanismType , the mechanism is identified by a “stringified” form (e.g., the
integer value 123 represented as the string “123”) of the TAG_x_SEC_MECH id
value for that mechanism. Mechanisms supported by SECIOP based protocols ar

• SPKM_1 or SPKM_2: the level 0 public key mechanisms using the SPKM
protocol.

• KerberosV5 : the level 1 secret key mechanism using GSS Kerberos protocol.

• CSI_ECMA_Secret : the CSI-ECMA secret key mechanism, using Kerberos V5

• CSI_ECMA_Hybrid : the CSI-ECMA mechanism that uses secret key technolog
for key distribution within a domain, but public key between domains.

• CSI_ECMA_Public : the CSI-ECMA public key mechanism.

Cryptographic profiles are identified by a “stringified” form of the
CryptographicProfile value as used in the IOR.

Mechanism tags in the IOR and mechanism type Object Identifiers (as in GSS-API)
SECIOP messages are also used as appropriate.

A MechanismType identifier for a generic security mechanism is the stringified valu
of SECIOP::TAG_GENERIC_SEC_MECH concatenated with a colon ":",
concatenated with the stringified hexadecimal encoding of the octet sequence of th
security_mechanism_type field in the component’s associated
SECIOP::GenericMechanismInfo structure.

MechanismType is used in a number of operations. These include operations tha
Security Service, v1.7 Security Interoperability Protocols March 2001 3-31

3

 all
that

file
.

m,

ence
.13,

y
 by

hes
 for

ity

,
used

ss

ple,

el 2
• Deal with the mechanisms and cryptographic profiles in MechanismsPolicy
object for use with get_policy and set_policy_overrides on an object reference.
In this case, the mechanisms attribute of the MechanismPolicy object (see
Section 2.3.7.2, “Client Side Invocation Policy Objects,” on page 2-88), contains
the Cryptographic profiles available with that mechanism to communicate with
target.

• Specify a security mechanism to use when talking to a target (e.g., using the
MechanismPolicy object with the set_policy_overrides on an object reference
and Vault::Init_security_context on the Vault). In this case, either just the
mechanism name may be specified (in which case, a default cryptographic pro
will be used) or a mechanism name and cryptographic profile may be specified

The get_service_information operation on the ORB can also return the mechanis
though in this case, it is in the form of a sequence<octet> .

3.1.14.3 Delegation Related Interfaces

Interfaces to handle no delegation, simple delegation, and composite delegation (h
delegation interfaces for CSI levels 0, 1, and part of 2) are defined in Section 2.3
“Delegation Facilities,” on page 2-105).

CSI level 2 also supports controls on the delegation of credentials. How to specif
these controls is not included in this specification. It is assumed that it is handled
administrative action. For example, it may be done by associating the delegation
controls with a user or an attribute set selected when the user logs on or selects
attributes at other times. Management of attributes associated with a principal is
considered out-of-scope of this specification.

No facilities are currently defined for an application object to specify controls it wis
to apply on delegating its credentials. In future, such facilities may be considered
CORBA Security - see “Advanced Delegation Features” in Appendix F.

3.1.15 Support for CORBA Security Facilities and Extensibility

This CSI specification assumes that the ORB conforms to at least CORBA Secur
mandatory facilities (except for delegation at CSI level 0), and requires that this
functionality can be supported across different ORBs using any of the CSI level
specified here.

The CORBA Security specification allows use of a wide range of security policies
facilities, and mechanisms. Conformant ORBs can restrict which of these can be
during interoperability, as follows:

• The protocol may not carry the privileges the target needs for some of its acce
policies. For example, at CSI levels 0 and 1 only an identity is supported.

• It may not carry the type of audit identity needed for the audit policy. For exam
it may not be able to carry an anonymous AuditId .

• It may not support composite delegation. (CSI levels 0 and 1 do not; in CSI lev
it is not mandatory).
3-32 Security Service, v1.7 March 2001

3

sponse

s as

ents
se

 of
ty

le to
n

ined
f

n for
• There are restrictions on the SECIOP exchanges (e.g., separate request and re
protection is not supported).

• Unauthenticated users may not be supported (All CSI levels).

3.1.16 Security Replaceability for ORB Security Implementors

Security policy implementations could be replaced to provide new security policie
discussed in Section 2.5.3, “Replaceable Security Services,” on page 2-171.

This common Interoperability specification affects replaceability in two areas:

1. Mapping of attributes as described in Section 3.1.13, “Model for Use and Cont
of Credentials,” on page 3-26 affects replaceable security policies that use the
attributes.

2. Use of the Generic Security Services API (GSS-API) within the Vault and
Security Context implementation objects described in Section 2.5.2,
“Implementation-Level Security Object Interfaces,” on page 2-148, should make
these objects independent of the particular security mechanisms used.

3.1.16.1 Attribute Mapping

As described in Section 3.1.13.3, “Attributes at the Target,” on page 3-27, the form
attributes may need to be mapped before being made available to a target securi
policy (AccessPolicy or AuditPolicy) or to the target object.

No interface for an attribute mapper is currently defined; therefore, it is not possib
replace attribute mapping independently of the ORB/security mechanism. Such a
interface may be defined in the future.

3.1.16.2 Use of GSS-API

The choice of security mechanism is not visible outside the Vault and Security
Context objects, except for the identification of the Mechanism (and associated
cryptographic profiles) in the IOR and in the MechanismPolicy object (see
Section 2.3.7.2, “Client Side Invocation Policy Objects,” on page 2-88).

The Vault and Security Context can use GSS-API to implement their security
functions, and so remain independent of security mechanism.

If only CSI level 0 or 1 facilities are used, the standard GSS-API interface (as def
in RFC 1508) can be used. If CSI level 2 facilities are needed, this requires use o
attributes other than the security name, and may also use delegation controls.
Therefore, it requires use of an extended GSS-API, such as [12].

Use of GSS-API is a recommendation, but is not proposed as a conformance optio
this CSI specification or for the CORBA Security specification.
Security Service, v1.7 Security Interoperability Protocols March 2001 3-33

3

ocol
w
sage

to be

.

tation

nts to
on.
3.2 Secure Inter-ORB Protocol (SECIOP)

To provide a flexible means of securing interoperability between ORBs, a new prot
is introduced into the CORBA Interoperability Architecture. This protocol sits belo
the GIOP protocol and provides a means of transmitting GIOP messages (or mes
fragments) securely.

Figure 3-4 Position of SECIOP Protocol

SECIOP messages support the establishment of Security Context objects and
protected message passing. Independence from GIOP allows the GIOP protocol
revised independently of SECIOP (e.g., to support request fragmentation). A
synchronized pair of Security Context objects and their corresponding sequencing
state is called a security association.

SECIOP is sub-layered into a Sequencing Layer and Context Management Layer

Figure 3-5 Sublayers of SECIOP

This specification assumes that SECIOP provides services to the GIOP Fragmen
Layer. Providing the interface to GIOP fragmentation is the SECIOP Sequencing
Layer. It has responsibility to securely and reliably deliver GIOP fragments to the
correspondent. It encapsulates GIOP fragments into frames for protection by the
SECIOP Context Management Layer. It also uses frames that do not carry fragme
coordinate the distributed sequence number state bound to the security associati
SECIOP frames are encoded in CDR and delivered to the SECIOP Context
Management Layer.

��������������������������������������
�������������������������������������

����
����

GIOP
fragmentation

IIOP SECIOP SSLIOPSECIOP

����������������������������������
����������������������������������

���
���

GIOP
fragmentation

IIOP SECIOP SSLIOPSECIOP

transport

GIOP

GIOP Fragmentation

SECIOP Sequencing Layer

SECIOP Context Management
Layer

Transport Data Protection
3-34 Security Service, v1.7 March 2001

3

yer
e
n

ons

ent.

sumes

is
alies.
sport

ction.

is
layer
ber
The SECIOP Context Management Layer accepts frames from the Sequencing la
and encapsulates them in a Context Management message. These messages ar
cryptographically protected by tokens, which are the product of the Data Protectio
layer, normally GSSAPI. The Context Management Layer carries Data Protection
tokens in SECIOP messages for the purpose of both managing security associati
and for securing frames moving between it and the correspondent. The Context
Management layer uses the Transport layer to communicate with the correspond
The Context Management layer is driven by the finite state machine defined in
Table 3-4 on page 3-49 and Table 3-5 on page 3-52.

3.2.1 Architectural Assumptions

SECIOP is designed to support a rich variety of different software implementation
architectures. In order to operate in the most sophisticated of these, the design as
both clients and targets are multi-threaded and that a single TCP connection can
support multiple security associations.

Figure 3-6 Architectural Assumptions

This specification assumes the following environmental and implementation
characteristics:

• Each SECIOP secure association is bound to a single transport connection. Th
ensures that GIOP fragments are not reordered due to thread scheduling anom
It also guarantees that a response to a GIOP request returns on the same tran
connection as the request, which is required by the GIOP specification.

• SECIOP may use multiple security associations over the same transport conne
This allows implementations to multiplex SECIOP traffic, which can improve
performance.

• SECIOP ensures that fragments are sent over transport connections in their
sequence number order. This means that once an SECIOP sequence number
assigned to a fragment, the fragment will be processed by the Data Protection
and sent over transport before any other fragment with a larger sequence num
protected by the same security association.

GIOP

SECIOP

...

GIOP

SECIOP

Multiple Security
Associations

TCP Connection

Thread Thread Thread Thread Thread Thread

...
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-35

3

it are
r
 since
 as
des

cess
ation

. This

 the
 a
alid

ould

/2 the
scard

 the
s in
efore

space
rded

hin
vide
yers,

encing,
e
• When a transport connection is closed, all SECIOP secure associations using
closed as well. This may require discarding fragments on the Sequencing laye
retransmission queue that have not yet been acknowledged. This is acceptable,
closing a transport connection forces GIOP to mark any outstanding Requests
MAYBE. Furthermore, closing a transport connection must be visible to both si
of the connection, so both sides of the security association will follow this rule.

• There is always a listener at the client and server prepared to receive and pro
SECIOP messages. This is necessary, since the loss of security context inform
by one side or the other requires a re-establishment of the security association
in turn requires both client and server to be listening for security context
management messages.

• Both the client and server may initiate security context establishment (i.e., send
EstablishContext message). This is necessary when a server needs to return
response to the client but discovers that the security association is no longer v
(e.g., it has timed out).

• SECIOP sequence numbers should never wrap around to zero. If they did, it w
introduce a replay threat. Consequently, when the SECIOP Sequencing Layer
receives an acknowledgment to a fragment with a sequence number equal to 1
precision of an unsigned long (the type used for sequence numbers), it must di
the existing security association and establish a new one. This rule derives from
sequencing algorithm property that up to 1/2 of the possible sequence number
the higher 1/2 of the sequence number space may be used for new fragments b
the fragment associated with the last sequence number in the lower 1/2 of the
is acknowledged. Note that the SECIOP sequencing state should not be disca
when a new security context is established.

• There is Data Protection protocol information (e.g., GSSAPI tokens) carried wit
SECIOP messages. This protocol should be configured so it does not itself pro
sequencing services. Otherwise, there could be interference between the two la
causing unnecessary lost service.

3.2.2 SECIOP Sequencing Layer

SECIOP sequencing uses a modified data link layer protocol based on one in
production at Lawrence Livermore National Laboratory for over 10 years. This
protocol, called modified ALP, is described below.

SECIOP Sequencing layer frames are carried in MessageInContext messages (see
“Message Definitions” on page 3-44). The message_protection_token in this
message is defined to be an opaque sequence of octets. In order to support sequ
however, the Sequencing layer defines the structure of these octets as follows (th
definition of MessageInContext is repeated here for completeness):

struct MessageInContext {
ContextIdDefn message_context_id_defn;
TokenType message_protection_token_type;
ContextId message_context_id;
sequence<octet> message_protection_token;
3-36 Security Service, v1.7 March 2001

3

 in

e

yer
ategy
d

liar

ocol

 the
};

message_protection_token is obtained by processing the frame header encoded
CDR as a SequencingHeader followed by the octets of the frame data. The
combination of frame header and frame data is called a SequencedDataFrame .

The frame_header field is always present in a SequencedDataFrame ; however,
the frame_data field may or may not be present. If not present, the length of the
MessageInContext message includes only the octets up to and including the fram
header.

The SequencingHeader has the following definition:

struct SequencingHeader {
octet control_state;
unsigned long direct_sequence_number;
unsigned long reverse_sequence_number;
unsigned long reverse_window;

};

The control_state field contains information necessary for the reliable delivery of
frame data between the correspondents. It is encoded as follows (control_state[x] is
bit x in the octet, where bit 0 is the least significant bit):

control_state[0] : direct_phase
control_state[1] : direct_fragment
control_state[2] : direct_reply
control_state[3] : reverse_phase

3.2.2.1 Protocol State

The new version of SECIOP uses a variant of ALP (A Link Protocol), a data link-la
protocol. Its design relies on the principal of state-exchange, a coherent design str
that produces protocols that are easy to understand, clearly documented, and len
themselves to rigorous analysis.

It is assumed that the reader is familiar with this link-layer protocol. Those unfami
with it are referred to the paper [18]. The main body of this paper establishes the
rationale for the state-exchange model, while Appendix A documents the ALP prot
itself.

To embed ALP within SECIOP, each participant in a security association maintains
state used for sequencing. This state is embodied in several variables that the
participant manages as well as a queue of data fragments.
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-37

3

n

ly

s is
These variables are:

In addition to these variables, the SECIOP Sequencing layer has available the
following functions and procedures:

Finally, the value M is defined to be the number of values that can be carried by a
unsigned long .

output_queue A queue of fragments. SECIOP is responsible for securely and reliab
moving them to the correspondent.

output_phase A boolean indicating a stream of transmissions.

output_sequence_number The sequence number associated with the oldest fragment on
output_queue .

output_count The number of fragments in output_queue that have been transmitted
but not yet accepted or rejected.

output_window The window size for output fragments.

output_length The length of the output_queue .

input_phase The phase expected with the next input fragment.

input_sequence_number The sequence number expected for the next fragment.

input_window The window size for input fragments.

input_reply A boolean, which if set indicates at least one frame should be sent.

receive() Returns a received frame.

newframe() Returns an empty frame buffer (i.e., a SequencedDataFrame struct).

send(f) Sends the frame f.

discard(f) Discards the frame f.

pop(q) Removes and discards the leading element q[0] of the queue q. The index of
the remaining elements is decremented by one.

forward(d) Forwards the fragment d to the GIOP fragmentation layer.

mod(n,m) Returns the remainder from the division of the integer n by the positive integer
m.

min(n1,n2,..., nx) Returns the smallest of the integers n1 through nx.

resync() Signals the SECIOP Context Management layer to discard the old security
association bound to the sequencing state and establish a new one. [NB: thi
not included in the original ALP definition, since the notion of a security
context is not germane to its original purpose].

frame_data(f) The frame_data field of a SequencedDataFrame message f.
3-38 Security Service, v1.7 March 2001

3

ithms

ing
and

o
e in
ch a
 first

he
 so
t
tion,
not

the
3.2.2.2 Protocol Initialization

The next three sections describe the operation of the Sequencing layer. The algor
are expressed in a pseudo-ALGOL syntax (with slight modifications from the C
programming language to facilitate writing conditional expressions).

When the GIOP fragmentation layer requests the transport of a fragment to a
destination for which no SECIOP secure association exists, the SECIOP Sequenc
layer creates a state record consisting of the variables defined in the last section
initializes them as follows:

output_queue := empty;

output_phase := 0;

output_sequence_number := 0;

output_count := 0;

output_window := 0;

output_length := 0;

input_phase := 0;

input_sequence_number := 0;

input_window := [an implementation defined value < M/2];

input_reply := 1;

In the original definition of ALP, the initial values of some of these variables were
unspecified. This specification defines these initial values so that there need be n
handshaking activity between the correspondent's SECIOP Sequencing layer cod
order to move the first fragment. This facilitates transaction style operations in whi
security association is established without mutual authentication, thus allowing the
fragment to be sent without waiting for an SECIOP reply.

Another slight change from the original definition of ALP is the requirement that t
window size must never be set greater than (M/2)-1. This restriction is necessary
that two acknowledgments carrying equal sequence numbers referring to differen
fragments are never protected using the same security context. Without this restric
there is a hazard that an intruder could replay an acknowledgment to a fragment
received, thereby causing the fragment to be dropped.

Once a security context is established, the SECIOP Sequencing layer processes
information in a SequencedDataFrame according to the algorithms given in the
next two sections.
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-39

3

t it
lid

CIOP

s;

count

M);

ts

ith

ity

the

nts
3.2.2.3 Upon Receipt of a SequencedDataFrame

Note – This text is taken directly from the cited paper and slightly modified to adap
to using security contexts. The code that has been modified is called out by a so
black line on the left side.

The receiver code below is called on both the target and client sides when the SE
Finite State Machine (FSM) is in state S3 and a MessageInContext arrives.

begin comment This algorithm should be executed after receipt of each non-

erroneous frame;

f := receive();

if direct_sequence_number(f) == input_sequence_number

and

 direct_phase(f) == input_phase

then

 if direct_fragment(f) == 1 and input_window > 0

then comment An input fragment has arrived in sequence. Accept it;

input_sequence_number := mod(input_sequence_number + 1, M);

forward(frame_data(f));

fi ;

else comment An input fragment has been lost. Prepare to accept retransmission

input_phase := 1 - direct_phase(f);

fi ;

if mod(reverse_sequence_number(f)-output_sequence_number, M) <= output_

then comment The received reverse sequence number is not anomalous;

while reverse_sequence_number(f) != output_sequence_number

do comment Discard accepted output fragments;

 pop(output_queue);

output_sequence_number := mod(output_sequence_number + 1,

if mod(output_sequence_number, M/2) == 0

then comment all fragments up to and including (M/2)-1 have been

acknowledged. Use a new security context for future fragmen

to avoid replays. Resynchronizing the security context when

exactly half of the sequence number space has been “used”

achieves two objectives : 1) it ensures that no two fragments w

the same sequence number are protected by the same secur

context, and 2) it ensures that two acknowledgments carrying

same sequence number, but acknowledging different fragme

are not protected using the same security context. The latter
3-40 Security Service, v1.7 March 2001

3

yer
use
 the
objective requires the further limitation that the window size is

never set greater than (M/2)-1;

resync();

fi ;

output_count := output_count - 1;

output_length := output_length - 1;

od;

output_window := reverse_window(f);

fi ;

if reverse_phase(f) != output_phase

then comment Prepare to retransmit rejected output packets;

output_phase := reverse_phase(f);

output_sequence_number := reverse_sequence_number;

output_count := 0;

fi ;

if direct_reply(f) == 1 or output_length > 0

then comment State is unsatisfactory;

input_reply := 1;

fi ;

discard(f)

end;

3.2.2.4 Sending a SequencedDataFrame

This sending code is called on the target and client side when the Sequencing La
caller has a fragment to send. Certain events within the Sequencing layer also ca
this algorithm to be executed. Specifically, the sending algorithm is executed when
receiving code in the previous section is executed and a non-erroneous frame is
received. Also, input_reply should be set to 1 and the sending code executed:

1. when an erroneous frame is received;

2. when a new security context is established;

3. when an EstablishContext message is sent with messages allowed;

4. when input_window is changed by the implementation; and

5. upon initialization of the Sequencing state.

begin
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-41

3

iation
ected

IOP

 is

is 1
while output_count < min(output_window, output_length) or input_reply == 1

 do comment A frame should be sent;

f := newframe();

input_reply := 0;

direct_phase(f) := output_phase;

direct_sequence_number(f) := mod(output_sequence_number +

output_count, M);

if output_count < min(output_window, output_length)

then comment A fragment could be included in the frame.

direct_fragment(f) := 1;

frame_data(f) := output_queue[output_count];

output_count := output_count + 1;

fi ;

if output_length > 0)

then comment Not all packets have as yet been accepted;

direct_reply(f) := 1

fi ;

reverse_phase(f) := input_phase;
reverse_sequence_number(f) := output_sequence_number;

 reverse_window(f) := output_window;
send(f);

od

end

3.2.3 SECIOP Context Management Layer

The SECIOP Context Management Layer establishes and controls a secure assoc
between a client and target. It also provides a means for the transmission of prot
messages between clients and targets.

3.2.3.1 SECIOP Context Management Layer Message Header

SECIOP Context Management messages share a common header format with G
messages defined in the Common Object Request Broker: Architecture and
Specification. The fields of this header have the following definition.

• magic - identifies the protocol of the message. Each protocol (GIOP, SECIOP)
allocated a unique identifier by the OMG. The value for SECIOP is “SECP.”

• protocol_version - this contains the major and minor protocol versions of the
protocol identified by magic. The value for the version of SECIOP defined here
major version, 1 minor version. This field is called GIOP_version in
GIOP::MessageHeader_1_1 .
3-42 Security Service, v1.7 March 2001

3

ssages
en the
sage).

age.
 the
, the
 reply

rity
• byte_order - as in the GIOP header definition.

• message_type - this is the protocol specific identifier for the message.

• message_size - as in the GIOP header definition.

3.2.3.2 SECIOP Context Management Layer Protocol

Where possible, SECIOP Context Management messages are sent with GIOP me
rather than as separate exchanges. However this is not always possible (e.g., wh
client wishes to authenticate the target before it is prepared to send a GIOP mes

The SECIOP Context Management Layer has the following message types:

module SECIOP
enum MsgType {

MTEstablishContext, MTCompleteEstablishContext,
MTContinueEstablishContext, MTDiscardContext,
MTMessageError, MTMessageInContext

};
typedef unsigned long long ContextId;
enum ContextIdDefn {

CIDClient,
CIDPeer,
CIDSender

};
enum ContextTokenType {

SecTokenTypeWrap,
SecTokenTypeMIC

};
};

3.2.3.3 ContextId

This type is used to define the identifiers allocated by the client and target for the
association.

3.2.3.4 ContextIdDefn

This enum is used to define the kind of context identifier held in an SECIOP mess
The context identifier will either be the one specified by the client that established
context or it will be the identifier associated with the receiver of the message (i.e.
request target for request or request fragment messages or the request client for
or reply fragment messages). The value must equal Client if the value of
target_context_id_valid in the CompleteEstablishContext was false or the
message has not yet been exchanged. It must equal Peer if the value of
target_context_id_valid in the CompleteEstablishContext was true. The use of
peer identifiers allows the recipient of the message to more efficiently find its secu
context. The values are defined as:

• CIDClient - the context id is that of the association’s client.
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-43

3

sed

e

ext. It

s

• CIDPeer - the context id is that of the recipient of the message.

• CIDSender - the context id is that of the sender of the message. This is only u
with the DiscardContext message when the sender of the DiscardContext
message has no context and has received a message that it cannot process.

3.2.3.5 TokenType

This type is used to indicate the type of message_protection_token carried by a
MessageInContext message. The value SecTokenTypeWrap indicates the token
was returned by a GSS_Wrap() call, while the value SecTokenTypeMIC indicates
the token was returned by a GSS_GetMIC() call.

3.2.3.6 Message Definitions

EstablishContext

This message is passed by the client to the target when a new association is to b
established. Its definition is:

struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

CompleteEstablishContext

This message is returned by the target to indicate that the association has been
established. It is sent as a reply to an establish context or continue establish cont
may be sent with a GIOP reply or reply fragment. Its definition is:

struct CompleteEstablishContext {
ContextId client_context_id;

client_context_id This is the client’s identifier for the security
association. It is passed by the target to the client with
subsequent messages within the association. It enable
the client to link the message with the appropriate
security context.

initial_context_token This is the token required by the target to establish the
security association. It contains a mechanism version
number, mech type identifier and mechanism specific
information required by the target to establish the
context. It may be sent with a protected message (for
example if the client does not wish to authenticate the
target).
3-44 Security Service, v1.7 March 2001

3

urther
to an

boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;

};

ContinueEstablishContext

This message is used by the client or target during context establishment to pass f
messages to its peer as part of establishing the context. It may be the response
establish context or to another continue establish context. It is defined as:

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

client_context_id This is the client’s identifier for the security
association. It is returned by the target to the client to
enable the client to link the message with the
appropriate security context.

target_context_id_valid This indicates whether the target has supplied a
target_context_id for use by the client. True indicates
that the following field is valid.

target_context_id The targets identifier for the association. It is passed by
the client to the target with subsequent messages. It
enables the target to associate a local identifier with the
context to allow the target to identify the context
efficiently.

final_context_token This is the token required by the client to complete the
establishment of the security association. It may be
zero length.

client_context_id The client’s identifier for the association. It is
used by both client and target to identify the
association during the establishment sequence.

continuation_context_token This is the security information required to
continue establishment of the security
association.
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-45

3

has
l not
le

e
DiscardContext

This message is used to indicate to the receiver that the sender of the message
discarded the identified context. Once the message has been sent the sender wil
send further messages within the context. The message is used as a hint to enab
contexts to be closed tidily. Its definition is:

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

MessageError

This message is used to indicate an error detected in attempting to establish an
association either due to a message protocol error or a context creation error. Th
message is also used to indicate errors in use of the context.

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

message_context_id_defn The type of context identifier supplied in the
message_context_id field.

message_context_id The context identifier to be used by the recipient
of the message to identify the context to which
the message applies.

discard_context_token Optional token provided by the sender to assist
the receiver in cleaning up its security context
state.
3-46 Security Service, v1.7 March 2001

3

MessageInContext

Once established messages are sent within the context using the MessageInContext
message. Its definition is:

struct MessageInContext {
ContextIdDefn message_context_id_defn;
TokenType message_protection_token_type;
ContextId message_context_id;
sequence <octet> message_protection_token;

};

message_context_id_defn The type of context identifier supplied in the
message_context_id field.

message_context_id The context identifier to be used by the recipient
of the message to identify the context to which
the message applies. It is either the client’s
identifier for the context (type client) or the
receiver of the messages identifier (type peer).

major_status The reason for rejecting the context. The values
used are those defined by the GSS API (RFC
1508) for fatal error codes.

minor_status This field allows mechanism specific error status
to further define the reason for rejecting the
context. It is not defined further here.

message_context_id_defn The type of context identifier supplied in the
message_context_id field.

message_protection_token_type Indicates whether the
message_protection_token is a
SecTokenTypeWrap or SecTokenTypeMIC
token.

message_context_id The context identifier to be used by the
recipient of the message to identify the
context to which the message applies.

message_protection_token The sign or seal token for the message. This
is a self defining token that indicates how the
message is protected. If the message is not
protected the token will be zero length.
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-47

3

i.e.,
ssage
he

es for
ables

sage

with
hout

y be
For signed and unprotected messages, the MessageInContext message is followed
by the higher level protocol message being transmitted within a security context (
GIOP message or message fragment). The length of the higher level protocol me
is included in the length of the MessageInContext message. For sealed messages t
length of the higher level protocol message is zero.

3.2.4 SECIOP Context Management Finite State Machine Tables

Table 3-4 on page 3-49 and Table 3-5 on page 3-52 present the state transition rul
the Context Management Layer of SECIOP. The state transitions given in these t
are intended to operate in an environment satisfying the following assumptions:

• Each FSM is associated with a unique pair of principals. When an SECIOP mes
arrives it is delivered to the FSM associated with the principal from which the
message was sent and to which the message is delivered.

• There always exists a sequencing state machine (SSM) in the initialized state
an FSM in state 0 at each end of a TCP connection for those principal pairs wit
an active SSM/FSM.

• Each SSM is associated with exactly one FSM at a time, although an SSM ma
associated with multiple FSMs during its lifetime.

• Each TCP connection can be associated with multiple SSMs.

• Each FSM is associated with exactly one ContextId during its lifetime.

3.2.4.1 SECIOP Context Management Protocol State Tables

Note that some mechanisms may start in state S3.
3-48 Security Service, v1.7 March 2001

3

Table 3-4 SECIOP Context Management Finite State Machine -Table 1

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message not
allowed (S2)

Association exists (S3)

EstablishContext
arrives

If create context = OK &
context complete,

Send CompleteEstablish-
Context.

input_reply := 1.

Execute send algorithm.

S3.

Else if create context =
OK & context incomplete.

Send ContinueEstablish-
Context.

S2.

Else

Send MessageError.

Terminate SSM.

Terminate.

[Target sent Estab-
lishContext at same
time Client did. Cli-
ent’s has precedence]

S1.

[Target sent Establish-
Context at same time
Client did. Client’s has
precedence]

S2.

[Target discarded context
without telling client]

Create a new FSM in state
S0.

Deliver EstablishContext
message to it.

Terminate.

CompleteEstablish-
Context arrives

[A CompleteEstablish-
Context arriving in S0 is
illegal]

Send MessageError.

Terminate SSM.

Terminate

Complete context
with target’s context
id.

If OK,

S3.

Else,

send MessageError.

Terminate SSM.

Terminate

Complete context with
target’s context id.

If OK,

input_reply := 1.

Execute send algorithm.

S3.

Else,

send MessageError.

Terminate SSM.

Terminate

[A CompleteEstablishCon-
text arriving in S3 is illegal]

Send MessageError.

Terminate SSM.

Terminate
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-49

3

ContinueEstablish-
Context arrives

[A ContinueEstablishCon-
text arriving in S0 is ille-
gal]

Send MessageError.

Terminate SSM.

Terminate

[A ContinueEstab-
lishContext arriving
in S1 is illegal]

Send MessageError.

Terminate SSM.

Terminate

update context state.

If OK & context com-
plete,

Send CompleteEstab-
lishContext.

input_reply := 1.

Execute send algorithm.

S3.

Else If OK & context
incomplete,

Send ContinueEstab-
lishContext.

S2.

Else,

Send MessageError.

Terminate SSM.

Terminate

[A ContinueEstablishCon-
text arriving in S3 is illegal]

Send MessageError.

Terminate SSM.

Terminate

MessageError arrives [A MessageError arriving
in S0 is illegal]

Terminate SSM.

Terminate

Terminate SSM.

Terminate

Terminate SSM.

Terminate

[target had trouble using its
security context and couldn’t
reestablish it]

Terminate SSM.

Terminate.

Send Frame

[Normal send case.]

If create context = OK,

 Send EstablishContext

 message.

 If Message allowed,

 Send the frame.

 S1.

 Else

 S2.

Else

Terminate SSM.

Terminate

Send the frame.

S1.

S2. If context valid,

Send the frame.

S3.

Else

Create a new FSM in state
S0.

Attach it to SSM.

Deliver SendFrame to FSM

Terminate

Table 3-4 SECIOP Context Management Finite State Machine -Table 1 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message not
allowed (S2)

Association exists (S3)
3-50 Security Service, v1.7 March 2001

3

MessageInContext
arrives

[Normal receive
case.]

[Client has discarded con-
text, but target doesn’t
know it.]

Send DiscardContext.

S0

[MessageInContext
arriving in state S1 is
illegal]]

Send MessageError.

Terminate SSM.

Terminate

[MessageInContext
arriving in state S2 is
illegal]]

Send MessageError.

Terminate SSM.

Terminate

If message OK,

Execute receive algorithm.

Else If context timed out,

Send DiscardContext.

Create a new FSM in state
S0.

Attach it to SSM.

input_reply := 1.

Execute send algorithm.

Terminate.

Else If message bad, but
context OK, drop message.

input_reply := 1.

Execute send algorithm.

Else

Send MessageError.

Terminate SSM.

Terminate.

DiscardContext
arrives

[ignore]

S0

[Target doesn’t want
to create a security
association]

Terminate SSM.

Terminate

[Target doesn’t want to
create a security associ-
ation]

Terminate SSM.

Terminate

[target’s context is no longer
valid]

Create a new FSM in state
S0.

Attach it to SSM.

input_reply := 1.

Execute send algorithm.

Terminate.

Resync Requested [ignore. Resync will occur
on next SendFrame
request]

S0

Terminate SSM.

Terminate

Terminate SSM.

Terminate

Send DiscardContext.

Create a new FSM in state
S0.

Attach it to SSM.

Execute send algorithm.

Terminate.

Table 3-4 SECIOP Context Management Finite State Machine -Table 1 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message not
allowed (S2)

Association exists (S3)
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-51

3

Table 3-5 SECIOP Context Management Finite State Machine - Table 2

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

EstablishContext
arrives

If create context = OK &
context complete,

Send CompleteEstablish-
Context.

input_reply := 1.

Execute send algorithm.

S3.

Else if create context =
OK & context incomplete,

Send ContinueEstablish-
Context.

S2.

Else

Send MessageError.

Terminate SSM.

Terminate

[illegal state at Target
Side]

[Client wants to start
over. Always allow
this.]

discard partial con-
text.

Create a new FSM in
state S0.

Deliver Establish-
Context frame to it.

Terminate.

[Client discarded context
without telling target.]

Create a new FSM in state
S0.

Deliver EstablishContext
frame to it.

Terminate.

CompleteEstablish-
Context arrives

[A CompleteEstablish-
Context arriving in S0 is
illegal]

 Send MessageError.

Terminate SSM.

Terminate

[illegal state at Target
Side]

Complete context
with context id.

If OK,

input_reply := 1.

Execute send algo-
rithm.

S3.

Else,

send MessageError.

Terminate SSM.

Terminate

[A CompleteEstablish-
Context arriving in S3 is
illegal]

Send MessageError.

Terminate SSM.

Terminate
3-52 Security Service, v1.7 March 2001

3

ContinueEstablish-
Context arrives

A ContinueEstablishCon-
text arriving in S0 is ille-
gal]

Send MessageError.

Terminate SSM.

Terminate

[illegal state at Target
Side]

update context state.

If OK & context
complete,

Send CompleteEstab-
lishContext.

input_reply := 1.

Execute send algo-
rithm.

S3.

Else If OK & context
incomplete,

Send ContinueEstab-
lishContext.

S2.

Else,

Send MessageError.

Terminate SSM.

Terminate

[A ContinueEstablishCon-
text arriving in S3 is ille-
gal]

Send MessageError.

Terminate SSM.

Terminate

MessageError arrives [A MessageErrort arriv-
ing in S0 is illegal]

Terminate SSM.

Terminate

[illegal state at Target
Side]

Terminate SSM.

Terminate

[target had trouble using
its security context and
couldn’t reestablish it]

Terminate SSM.

Terminate.

Send Frame

[Normal send case.]

If create context = OK,

Send EstablishContext

message.

S2.

Else

Terminate SSM.

Terminate

[illegal state at Target
Side]

S2. If context valid

Send the frame (if not
already sent).

S3.

Else Create a new FSM in
state S0.

Attach it to SSM.

Deliver SendFrame to
FSM

Terminate.

Table 3-5 SECIOP Context Management Finite State Machine - Table 2 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
Security Service, v1.7 Secure Inter-ORB Protocol (SECIOP) March 2001 3-53

3

MessageInContext
arrives

[Normal receive
case.]

[Target has discarded con-
text, but client doesn’t
know it.]

Send DiscardContext.

S0

[illegal state at Target
Side]

[MessageInContext
arriving in state S2 is
illegal]]

Send MessageError.

Terminate SSM.

Terminate

If message OK,

Execute receive algorithm.

Else If context timed out,

Send DiscardContext.

Create a new FSM in state
S0

Attach it to SSM.

input_reply := 1.

Execute send algorithm.

Terminate

Else If message bad, but
context OK, drop mes-
sage.

input_reply := 1.

Execute send algorithm.

Else

Send MessageError.

Terminate SSM.

Terminate

DiscardContext
arrives

[ignore]

S0

[illegal state at Target
Side]

[Client doesn’t want
to create a security
association]

Terminate SSM.

Terminate

[client’s context is no
longer valid.]

Create a new FSM in state
S0.

Attach it to SSM.

input_reply := 1.

Execute send algorithm.

Terminate.

Resync Requested [ignore. Resync will occur
on next SendFrame
request]

S0

[illegal state at Target
Side]

Terminate SSM.

Terminate

Send DiscardContext.

Create a new FSM in state
S0.

Attach it to SSM.

Execute send algorithm.

Terminate.

Table 3-5 SECIOP Context Management Finite State Machine - Table 2 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
3-54 Security Service, v1.7 March 2001

3

ocols

hms
e

s and

ublic

s) are

l 2
pes”

n
other

is tag

he
fied
IOP

y
.
3.3 The SECIOP Hosted CSI Protocols

All the SECIOP hosted Common Secure Interoperable (CSI) protocols and
mechanisms use common elements as far as possible.

• All mechanisms use IOR tags of the form TAG_x_SEC_MECH as defined in
Section 3.1.4.1, “Security Components of the IOR,” on page 3-8.

• The component data structure associated with these tags is common for all prot
and mechanisms in this specification.

• Cryptographic profiles are defined in all cases that allow use of relevant algorit
for confidentiality, integrity, etc. Different mechanisms support some of the sam
algorithms and one way functions.

• The MechanismType as seen at the IDL interface also reflect the mechanism id
cryptographic profile values in the IOR tags.

• Privilege attributes when CSI level 2 is used are the same whether a secret or p
key mechanism is used.

• The basic SECIOP token format and some details (such as token types and id
common for all protocols.

• All tag components must be encapsulated using CDR encoding.

These protocols are designed to allow use of GSS-API mechanisms. Use of leve
facilities such as handling of privileges, as defined in “Values for Standard Data Ty
in Appendix B, imply use of an extended GSS-API such as [23].

3.3.1 IOR

The IOR TAG_INTERNET_IOP profile contains the security tags needed for commo
secure interoperability using GIOP/IIOP. These security tags may be shared with
(non IIOP) protocols, including DCE-CIOP.

The IIOP tag identifying the SECIOP security transport is
TAG_SECIOP_INET_SEC_TRANS . The tagged component data described below
must be encapsulated using CDR encoding. The data structure associated with th
is as follows:

struct SECIOP_INET_SEC_TRANS {
unsigned short port;

};

The port field contains the port number to be used instead of the port defined in t
encompassing IIOP profile body. It contains the TCP/IP port number on the speci
host where the target agent is listening for TCP/IP connection requests for the SEC
protocol.

The security tags describe what the security target supports and requires, and an
mechanism specific data required for secure interoperability using this mechanism
Security Service, v1.7 The SECIOP Hosted CSI Protocols March 2001 3-55

3

e

rity

st be

iation
vel. If
 these
For common secure interoperability and for all CSI mechanisms and protocols, th
IOR must contain at least one appropriate TAG_x_SEC_MECH tag.

The IOR may also contain the following tags, as defined in Section 3.1.4.1, “Secu
Components of the IOR,” on page 3-8:

• TAG_SEC_NAME provides the security name and may be shared between
mechanisms that use the same form of name. Conformant implementation mu
able to accept security names shared between such mechanisms.

• TAG_ASSOCIATION_OPTIONS may be shared between mechanisms.

• TAG_GENERIC_SEC_MECH whose component definition includes a sequence
<TaggedComponents> includes a security_mechanism_type and can include
a security name and association options.

If a mechanism is selected for use, and has a defined security name and/or assoc
option, these values are used in preference to any values defined at the higher le
no name or association options are defined for the mechanism, then the values of
tags in the IIOP profile are used.

3.3.2 Mechanism Tags

The TAG_x_SEC_MECH tags for all the CSI mechanisms defined in this
specification have an associated component data structure of the same form:

struct <mechanism name> {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence <octet> security_name;

};

Names for the CSI mechanisms are:

SPKM_1
SPKM_2
KerberosV5
CSI_ECMA_Secret
CSI_ECMA_Hybrid
CSI_ECMA_Public

Tag ids for the mechanisms are:

TAG_SPKM_1_SEC_MECH
TAG_SPKM_2_SEC_MECH
TAG_KerberosV5_SEC_MECH
TAG_CSI_ECMA_Secret_SEC_MECH
TAG_CSI_ECMA_Hybrid_SEC_MECH
TAG_CSI_ECMA_Public_SEC_MECH

• The association options required/supported by the target are defined in
Section 3.3.3, “Association Options,” on page 3-57.
3-56 Security Service, v1.7 March 2001

3

must
BA

 a

are
will
ture

opted
is not

ed.

),

sed

hy is
• The sequence of crypto_profiles defines one or more cryptographic profile
supported by this target using this mechanism as defined in Section 3.3.4,
“Cryptographic Profiles,” on page 3-57.

• The security name is defined in Section 3.3.5, “Security Name,” on page 3-59.

3.3.3 Association Options

With all CSI protocols and mechanisms, a secure ORB supporting a target object
be able to put in the IOR any or all of the association options defined in the COR
Security specification, as required by the target.

All compliant secure ORBs supporting clients must be able to accept all the
target_supports and target_requires association options, and act on these
correctly, as defined in “TAG_ASSOCIATION_OPTIONS” on page 3-9.

Two of the association options are replay and misordering detection. While all the
protocols in this specification include facilities to detect replay and misordering, in
multi-threading CORBA environment, the calls on the security mechanism are not
guaranteed to be made in the same order that the messages they are protecting
transmitted. The facilities in the security mechanisms cannot guarantee that they
correctly detect replay and misordering. An extension to SECIOP is expected in fu
to provide these checks. Until this change to SECIOP has been specified and ad
(although these association options may be set) replay and misordering detection
a mandatory part of this specification.

If no association options are specified in the IOR, a CSI defined default is assum

3.3.4 Cryptographic Profiles

Cryptographic algorithms are used for:

• integrity and confidentiality protection of messages,

• establishing the security association between client and target (including peer
authentication and establishing session keys),

• deriving dialogue keys for message protection (both confidentiality and integrity
and

• protecting systems security data such as PACs (Privilege Attribute Certificates).

The security mechanisms defined here allow a choice of algorithms that can be u
for the different functions, depending on:

• the needs of the functions, and

• the requirements for international deployment in countries that constrain how
cryptography can be used and exported from countries where use of cryptograp
controlled.
Security Service, v1.7 The SECIOP Hosted CSI Protocols March 2001 3-57

3

se
key
the

rity

l,

same

d.

, but

t

ts
In some cases, export controls may require international versions of products to u
shorter key lengths; therefore, a large number of combinations of algorithms and
lengths may be possible. For interoperability, both client and target must support
same algorithms and key lengths for these functions.

This specification defines a number of cryptographic profiles, where each profile
identifies a set of algorithms with specified key lengths used by a mechanism for
specified functions.

For example, the CSI-ECMA protocol defines a NoDataConfidentiality
cryptographic profile, which can use DES and RSA for protecting the security
mechanism, but does not encrypt the ORB request/reply. (The profile for full secu
would use DES/64 for data confidentiality.)

Cryptographic profiles are identified by a value, represented in IORs as an unsigned
short:

 typedef unsigned short CryptographicProfile;

3.3.4.1 Key Establishment Algorithms

The algorithms used to establish the cryptographic session keys during security
associations depend on the type of mechanism.

• Where the secret key (Kerberos based) mechanism is used, either via the GSS
Kerberos or CSI-ECMA protocol, the DES algorithm is used.

• When a public key mechanism is used, either via SPKM or CSI-ECMA protoco
the RSA algorithm is used.

3.3.4.2 Common Message Protection Algorithms

Even if different mechanisms and algorithms are used for key establishment, the
algorithms can be used for message protection.

• All CSI mechanisms have cryptographic profiles that include an MD5 hash of the
data for integrity, though the hash, in some profiles may be signed or encrypte

• All CSI mechanisms can use DES in CBC mode for message confidentiality.

3.3.4.3 Cryptographic Profiles Supported by CSI Protocols

A number of cryptographic profiles are defined for each CSI protocol. Further
cryptographic profiles using different algorithms can be used with these protocols
these are not part of this interoperability standard. A target may support several
cryptographic profiles for a particular mechanism.

In all cases, support of a CSI protocol requires support for a cryptographic profile tha
provides integrity of user data, but not confidentiality, as such a profile is easier to
deploy internationally. For example, the GSS Kerberos protocol always supports i
MD5 cryptographic profile. Other profiles may also be supported.
3-58 Security Service, v1.7 March 2001

3

mple,
 the

 in

 set
and

other
d

y

ain
. (The
may

eros

ent

vel
)

orm

on.
3.3.5 Security Name

The form of the security name depends on the security mechanism used. For exa
it can be a Kerberos name or a Directory style name. Directory names conform to
string representation defined in [4].

The security name may be at the component level of the IOR or higher if shared
between mechanisms. If a security mechanism tag, but no security name is present
the IOR, the IOR is improperly formatted and a CORBA::INV_OBJREF exception
shall be raised when the IOR is used to specify the target of an operation.

3.3.6 Security Administration Domains

As defined in Section 2.1.8, “Domains,” on page 2-21, a security policy domain is a
of objects to which a security policy applies for a set of security related activities
is administered by a security authority.

Security mechanisms are concerned with the security domains where users and
principals are administered, often by on-line authorities such as Authentication an
Privilege Attribute Services. Often, this domain will be the enclosing domain
encompassing secure invocation, access control, and other policy domains.

Note that some authorities may be off-line. For example, the Certification Authorit
used to issue certificates is often off-line.

The security mechanisms specified in this document allow requests to cross dom
boundaries. At the boundary, trust between the domains needs to be established
way this is done depends on the mechanism used.) Also, the scope of privileges
not always cross the domain boundary. This specification does not define how
privileges are mapped on crossing domain boundaries, as this does not affect the
protocol.

While all security mechanisms here include the concept of such domains, in Kerb
(used here as the secret key mechanism) these are known as realms. In this
specification, the term realm is used in tokens using this mechanism.

3.3.7 Mapping of Common Elements to the SECIOP Protocol

The SECIOP protocol includes the tokens for context establishment and managem
and per message tokens.

The context establishment tokens contain:

• Information associated with a principal, including at least an identity. (At CSI Le
2, there may be a range of privileges and a separate audit identity, if required.

• Associated delegation information. Only simple delegation is mandatory to conf
to this specification.

• Security information used to establish the client-target object security associati

• Security information used to establish the keys for message protection.
Security Service, v1.7 The SECIOP Hosted CSI Protocols March 2001 3-59

3

with
d
set of

 CSI
 the

cols
ip

low:
3.3.7.1 Basic Token Format

SECIOP messages include context and message protection tokens.

All CSI mechanisms are usable inside and outside the object environment. In line
standard practice outside the object environment, tokens are defined in ASN.1 an
encoded for transmission using BER (in some cases, constrained to the DER sub
these). The token appears as a sequence<octet> in CDR encoded SECIOP
messages.

These tokens are enclosed within framing as follows:

[APPLICATION 0] IMPLICIT SEQUENCE {
thisMech MechType

-- MechType is OBJECT IDENTIFIER
innerContextToken ANY DEFINED BY thisMech

-- contents mechanism-specific;
}

Note – For conformance to GSS-API, only the initial context token has to use this
token framing; however, in the CSI protocols, it applies to all tokens.

The initial context token should include a mechanism version, as well as type. For
mechanisms, version numbers are in the mechanism specific information such as
Kerberos ticket or CSI-ECMA PAC.

3.3.7.2 Inner Context Tokens

The same token types are used in the different CSI protocols, though not all proto
support all token types. The token types are defined below showing the relationsh
with GSS-API calls, as all CSI protocols can be implemented using GSS-API.

The inner context tokens used for security association establishment are listed be

InitialContextToken Sent by the initiator to a target, to start establishment of a security
association in an SECIOP EstablishContext message. The token id is 01
00 (hex) . If GSS-API is being used, it is the value returned by the
GSS_Init_sec_context call.
3-60 Security Service, v1.7 March 2001

3

d in

, and

xt

nt

 in

e

ut
The inner context token for message protection is the message_protection_token in
the SECIOP MessageInContext message. This can take one of the following forms:

This specification always uses MIC tokens for integrity and Wrap tokens for
confidentiality. This may ease national use and export problems where only MIC tokens
are supported.

The inner context token in the DiscardContext SECIOP message may optionally
contain a DeleteContextToken .

3.3.8 CSI Protocols

This specification includes three protocols for different circumstances, as describe
Section 3.1.6, “Key Distribution Types,” on page 3-13.

In all cases, the appropriate section specifies the cryptographic profiles supported
the contents of the SECIOP security tokens.

TargetResultToken Sent to the initiator by the target to complete establishment of the conte
in an SECIOP CompleteEstablishContext message. The token id is 02
00 (hex). It is returned by GSS_Accept_sec_context .

ContinueEstablishToken Sent either by the initiator or the target to continue context establishme
in an SECIOP ContinueEstablishContext message. The token id is 03
00 (hex) (in SPKM). It is returned by either the GSS_Init_sec_context
call or the GSS_Accept_sec_context call.

ErrorToken Sent on detection of an error during security association establishment
an SECIOP CompleteEstablishContext or ContinueEstablishContext
message. The token id is 03 00 (hex) (except in SPKM where it is 04 00
(hex)). It is returned by either the GSS_Init_sec_context call or the
GSS_Accept_sec_context call.

MICToken Sent either by the initiator or the target to verify the integrity of
the user data sent in the following GIOP message (or messag
fragment). The token id is 01 01 (hex) . It is returned by
GSS_GetMIC.

WrapToken Sent either by the initiator or the target. Encapsulates the inp
user data (optionally encrypted) along with integrity check
values. The token id is 02 01 (hex) . It is returned by
GSS_Wrap .

ContextDeleteToken Sent either by the initiator, or the target in an SECIOP
DiscardContext message to release a Security
Association. It is returned by GSS_Delete_sec_context .
Security Service, v1.7 The SECIOP Hosted CSI Protocols March 2001 3-61

3

d in
in

s are
of

SI-

only
ol,”

ocol.
S

ree

. The

te
er

nds

In all cases, the protocol as supported by OMG is a subset of the protocol define
the source document. For example, in all protocols, channel bindings as defined
GSS-API (and specified in the underlying protocols) are not supported. This is
because IP addresses cannot be trusted in current implementations; IP addresse
spoofable. Including the channel binding information would lead to a false sense
security about the source of the transmission.

The protocols described in this specification include SPKM, GSS Kerberos, and C
ECMA.

3.3.8.1 SPKM Protocol

The SPKM protocol supports CSI level 0. This is a public key based protocol. The
client information transmitted is its security name. See Section 3.4, “SPKM Protoc
on page 3-63.

3.3.8.2 GSS Kerberos Protocol

The GSS Kerberos protocol supports CSI level 1. This is a secret key based prot
The only client information transmitted is its security name. See Section 3.5, “GS
Kerberos Protocol,” on page 3-65.

3.3.8.3 CSI-ECMA Protocol

The CSI-ECMA protocol also supports the privilege handling, separate Auditid , and
delegation controls of CSI level 2. Subschemes within this protocol support the th
key distribution options: secret, public, and hybrid. See Section 3.6, “CSI-ECMA
Protocol,” on page 3-68 for additional information.

To support this flexibility, the initial_context_token is split into three parts;
therefore, the attributes for access control are independent of the key distribution
method, and this is independent of the cryptography used for message protection
token contains:

• Authorization information - attributes of a principal are held in a Privilege Attribu
Certificate (PAC) with any associated information needed for delegation and oth
controls. This is independent of the way the communications are protected;
therefore, it is usable with different key distribution methods.

• Security information needed to establish the association. The form of this depe
on the key distribution method used. It is a Kerberos ticket if this is secret key
based; it is a profile of the SPKM_REQ token for public key mechanisms. In both
cases, there is a link between this and the PAC. Changing the security mechanism
mainly just requires replacing this part of the token.

• Dialogue key packages to establish confidentiality and integrity keys.
3-62 Security Service, v1.7 March 2001

3

. It

he

ile

lity

y

ing
nt

ing

e
3.4 SPKM Protocol

This section specifies the SPKM protocol, a simple public-key GSS-API mechanism
is based on SPKM as defined in [20]. SPKM protocol provides CSI level 0
functionality only and the purpose is to allow the adoption of a simple security
infrastructure without undue complexity or overhead.

SPKM has two separate GSS-API mechanisms, SPKM_1 and SPKM_2, whose
primary difference is that SPKM_2 requires the presence of secure timestamps for t
purpose of replay detection during context establishment and SPKM_1 does not.
SPKM_1 is the mandatory mechanism for conformance to the SPKM protocol wh
SPKM_2 is the optional mechanism.

Specifically, it defines the required information for encoding a secure interoperabi
IOR and defines the token formats used by the SECIOP protocol.

3.4.1 Cryptographic Profiles

The following cryptographic profiles are supported with this mechanism.

3.4.1.1 MD5_RSA

Specifies use of the SPKM mechanism to provide data integrity and authenticity b
computing an RSA signature on the MD5 hash of that data. The default SPKM key
establishment algorithm is used (i.e., the context key is generated by the initiator,
encrypted with the RSA public key of the target, and sent to the target). Note that
MD5_RSA is a mandatory integrity and authenticity algorithm for SPKM.

3.4.1.2 MD5_DES_CBC

Specifies use of the SPKM mechanism to provide data integrity by encrypting, us
DES in CBC mode, the MD5 hash of that data. The default SPKM key establishme
algorithm is used.

3.4.1.3 DES_CBC

Specifies use of the SPKM mechanism to provide data confidentiality by using DES in
CBC mode. The default key establishment algorithm is used.

3.4.1.4 MD5_DES_CBC_SOURCE

Specifies use of the SPKM mechanism to provide data integrity by encrypting, us
DES in CBC mode, the MD5 hash of that data. The default key establishment
algorithm is used plus source authentication information is also encrypted with th
target's public key.
Security Service, v1.7 SPKM Protocol March 2001 3-63

3

ation

ith

. For

ject,
ol is

 of

ence
3.4.1.5 DES_CBC_SOURCE

Specifies use of SPKM mechanism to provide data confidentiality by using DES in
CBC mode. The default key establishment algorithm is used plus source authentic
information is also encrypted with the target's public key.

Values for these cryptographic profiles are assigned in “General Security Data
Module” in Appendix B.

3.4.2 IOR Encoding

The security tags in the IOR are encoded. The component data member associated w
the SPKM_1 and SPKM_2 mechanism tags is a struct , defined as follows:

struct <mechanism_name> {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence<octet> security_name;

};

mechanism_name can be either SPKM_1 or SPKM_2 and security_name must
contain a valid X.500 distinguished name represented as a string conforming to [4]
example, it could be “cn=Andrew Rust, ou=Home Office, o=Acme Widgets Inc.,
c=CA.”

All tag components must be encapsulated using CDR encoding.

3.4.3 Using SPKM for SECIOP

When the SPKM protocol is chosen as the security mechanism for invoking an ob
the SECIOP protocol carries the information described in this section. This protoc
a profile of the SPKM GSS-API mechanism as defined in [20].

All SPKM tokens are encoded according to the general format described in
Section 3.3.7, “Mapping of Common Elements to the SECIOP Protocol,” on
page 3-59.

The innerContextTokens are described in the following sections. All
innerContextTokens are encoded using ASN.1 BER (constrained, in the interests
parsing simplicity, to the DER subset defined in [22]).

The SPKM GSS-API “mechanism is identified by an OBJECT IDENTIFIER
representing “SPKM_1” or “SPKM_2.” SPKM_1 uses random numbers for replay
detection during context establishment and SPKM_2 uses timestamps (note that for
both mechanisms, sequence numbers are used to provide replay and out-of-sequ
detection during the context, if this has been requested by the application). SPKM_1
OBJECT IDENTIFIER is 1.3.6.1.5.5.1.1 and SPKM_2 OBJECT IDENTIFIER is
1.3.6.1.5.5.1.2.
3-64 Security Service, v1.7 March 2001

3

os

3.4.3.1 The Initial Context Token

The initial_context_token carried within an EstablishContext SECIOP message is
encoded according to the general framework and conforms to the SPKM-REQ token
as described in [20] Section 3.1.1.

In the initial_context_token , channel bindings are required to be ZERO
(GSS_C_NO_BINDINGS).

The GSS_C_DELEG_FLAG is required to be FALSE (no delegation is supported).

The GSS_C_MUTUAL_FLAG is TRUE if it requires both parties to authenticate
itself and FALSE (the default) if only one party is required to authenticate itself.

3.4.3.2 The Final Context Token

The final_context_token carried within a CompleteEstablishContext SECIOP
message is encoded according to the SPKM-REP-TI token as defined in [20] Section
3.1.2 or the SPKM-ERROR token as defined in [20] Section 3.1.4.

3.4.3.3 The Continuation Context Token

The continuation_context_token carried within a ContinueEstablishContext
SECIOP message is encoded according to the SPKM-REP-TI token or the SPKM-
REP-IT token as defined in [20] Section 3.1.3 or the SPKM-ERROR token.

3.4.3.4 The Message Protection Token

The message_protection_token carried within a SECIOP MessageInContext
message is encoded according to the SPKM-MIC token (for integrity) or SPKM-
WRAP token (for confidentiality) as defined in [20] Section 3.2.

3.4.3.5 The Context Delete Token

The context_delete_token carried within a SECIOP DiscardContext message is
encoded according to the SPKM-DEL token as defined in [20] Section 3.2.3.

3.5 GSS Kerberos Protocol

This section specifies the GSS Kerberos protocol. It is based on the GSS Kerber
specification [12] which itself is based on Kerberos V5 as defined in [13]. This
specification refers to, rather than repeats, information in [12] and [13].

This section defines the required information for encoding the mechanism specific
information in the IOR and the token formats used by the SECIOP protocol.
Security Service, v1.7 GSS Kerberos Protocol March 2001 3-65

3

ns

 struct
3.5.1 Cryptographic Profiles

The following cryptographic profiles are supported with this mechanism:

3.5.1.1 DES_CBC_DES_MAC

Specifies use of the Kerberos V5 mechanism with DES MAC message digest for
integrity and DES in CBC mode for confidentiality.

3.5.1.2 DES_CBC_MD5

Specifies use of the Kerberos V5 mechanism with MD5 message digest for integrity
and DES in CBC mode for confidentiality.

3.5.1.3 DES_MAC

Specifies use of the Kerberos V5 mechanism with DES MAC message digest for
integrity.

3.5.1.4 MD5

Specifies use of the Kerberos V5 mechanism with a DES encrypted MD5 message
digest for integrity.

Values for these cryptographic profiles are assigned in “General Security Data
Module” in Appendix B.

3.5.2 Mandatory and Optional Cryptographic Profiles

ORB implementations claiming conformance to the GSS Kerberos protocol must
implement at least the MD5 profile. Conformant ORBs may, but are not required to,
implement the remaining cryptographic profiles defined in this specification.

3.5.3 IOR Encoding

The security tags in the IOR are encoded. Both security name and association optio
tags may appear in the IOR and be shared between mechanisms.

The component data member associated with the KerberosV5 mechanism tag is a
defined as follows:

struct KerberosV5 {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence<CryptographicProfile> crypto_profiles;
sequence<octet> security_name;

};
3-66 Security Service, v1.7 March 2001

3

g an

e
T)

security_name shall contain a valid Kerberos Principal Name of type
GSS_KRBV5_NT_PRINCIPAL_NAME , which is defined in [12].

All tag components must be encapsulated using CDR encoding.

3.5.4 SECIOP Tokens

When the GSS-Kerberos protocol is chosen as the security mechanism for invokin
object, the SECIOP protocol carries the information described in this section. All
Kerberos tokens are encoded according to the general format.

The OBJECT IDENTIFIER for Kerberos V5 is 1.3.5.1.2 until [12] is advanced to a
Proposed Standard RFC when it will be changed to 1.2.840.113554.1.2.2.

Each individual token is distinguished by the data carried in the ANY field of this
general framework.

3.5.4.1 The Initial Context Token

The initial_context_token carried within an EstablishContext SECIOP message is
encoded according to the general framework and conforms to the unencrypted
authenticator message as described in [12] Section 1.1.1.

Note that channel bindings are required to be ZERO (GSS_C_NO_BINDINGS) in
this specification (see Section 3.3.8, “CSI Protocols,” on page 3-61).

The GSS_C_DELEG_FLAG is set when either the client has called
set_security_features specifying SecDelModeSimpleDelegation or when an
administrator has called set_delegation_mode with a value of
SecDelModeSimpleDelegation on a domain to which the target object belongs. Th
optional “Deleg” field, if present, includes a forwardable Ticket Granting Ticket (TG
representing the delegated credentials of the client sending the EstablishContext
message.

The GSS_C_MUTUAL_FLAG is set when either the client has called
set_association_options specifying a value of EstablishTrustInTarget or an
administrator has called set_association_options with a value of
EstablishTrustInTarget on the domain to which the target belongs.

The GSS_C_REPLAY_FLAG and GSS_C_SEQUENCE_FLAG are generally clear
as they can cause incorrect replay and misordering detection in a multi-threaded
environment (see Section 3.3.3, “Association Options,” on page 3-57).

Note – The current GSS Kerberos implementation available without cost from MIT
does not support replay detection.

3.5.4.2 The Final Context Token

The final_context_token carried within a CompleteEstablishContext SECIOP
message is encoded according to the formats defined in [12] Section 1.1.2.
Security Service, v1.7 GSS Kerberos Protocol March 2001 3-67

3

f the
he

orts

ut

in

A

are
d to

he

on.
3.5.4.3 The Continuation Context Token

Kerberos V5 does not use the ContinueEstablishContext message and therefore
does not define the continuation_context_token format. If the Kerberos V5
mechanism is amended in the future to support mechanism negotiation, support o
ContinueEstablishContext message would be necessary and thus definition of t
continuation_context_token would be required.

3.5.4.4 The Message Protection Token

The message_protection_token carried within an SECIOP MessageInContext
message is encoded according to the formats defined in [12] section 1.2.

3.6 CSI-ECMA Protocol

This section defines the CSI-ECMA protocol. It is based on the ECMA GSS-API
mechanism as defined in ECMA-235, though is a significant subset of that. It supp
all CSI levels (0, 1, and 2). It provides three options for key distribution:

1. A secret key option using Kerberos data structures.

2. A hybrid option where secret keys are used within an administrative domain, b
public keys are used between domains.

3. A public key option that uses public key technology for key distribution both with
and between domains.

This section includes the full definition of the CSI-ECMA protocol so that it can be
read without reference to ECMA 235. The CSI-ECMA protocol is a subset of ECM
235. It is very similar to the SESAME profile as described in [16].

The CSI-ECMA protocol supports the CORBA Security Level 2 facilities. It is
designed to be extensible as new facilities (for example, new delegation options)
agreed in future, and further key distribution options. It is also designed to respon
the requirements of international deployment such as minimal confidentiality (only
keying information needs to be encrypted), use of anonymous audit (a separate
audit_id can be transmitted), and choice of cryptography for message protection
(including strong integrity, weak confidentiality).

The structure of the initial context token is key to providing this flexibility. It is
separated into three parts:

1. Authorization information.

2. Information concerned with establishing the security association using one of t
supported key distribution options.

3. Information concerned with generating the dialogue keys for message protecti
3-68 Security Service, v1.7 March 2001

3

een
. The

.
rned
 key

tory

urity
ome

is
 can
on

rived

te
s
3.6.1 Concepts

3.6.1.1 Separation of Concerns

The initial context token transmitted in the SECIOP EstablishContext message on
setting up a security association contains a number of parts with limited links betw
them. This is so that the different parts can be varied independently of each other
three main parts are:

1. Authorization information - the Privilege Attribute Certificate (PAC) that contains
the privileges used for access control and other attributes such as the audit id
Associated with this are delegation and other controls. Therefore, this is conce
with the access control and delegation policies, but is mainly independent of the
establishment and message protection mechanisms. The PAC can be updated to
affect these policies independently of mechanisms. (The size of the PAC may be
significant; therefore, it is not confidentiality protected, as this may cause regula
problems.) Privilege and other attributes in PACs are described in Section 3.6.2,
“Security Attributes,” on page 3-69.

2. Target key block - used to provide the information needed to establish the sec
association between client and target. Secret key or public key technology (or s
hybrid of these) may be used. The result is always a “basic” key from which
dialogue keys to protect application messages can be derived. Therefore, this
concerned with the mechanism for establishing trust and distributing keys. This
be varied independently of the authorization policies and the message protecti
methods. Key establishment methods are described in Section 3.6.5, “Key
Distribution Schemes,” on page 3-71.

3. Dialogue key packages - control how dialogue keys to protect messages are de
from the basic key. Note that this is largely independent of the key distribution
method (i.e., public key technology may be used to establish secret keys for
dialogue protection).

3.6.2 Security Attributes

3.6.2.1 Privilege Attributes

The CSI-ECMA protocol allows a range of privilege attributes in a Privilege Attribu
Certificate (PAC) transmitted between the client and target object. These privilege
then can be used for access control.

Privilege attributes that can be carried in the PAC at level 2 are defined in “Security
Attributes” in Appendix B and include all those defined in the CORBA Security
specification.

A vendor or user enterprise may also define its own privilege attributes (if the
particular implementation allows this) and use them for access control.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-69

3

ing
he
the
e.

e of

tion,

hen

me in

y, the

 used
d for
to
In line with the CORBA Security specification, each privilege attribute has a defin
authority, which identifies the authority responsible for defining the semantics of t
value of the security attribute. This can be included for each privilege attribute in
PAC and in this case, there could be a different defining authority for each privileg

It is often the case that most attributes in the PAC come under the same defining
authority, which is the authority that issued the PAC. If the PAC, as transmitted, does
not have defining authorities for some attributes, then the issuing authority of the PAC
is considered to be the defining authority.

3.6.2.2 Miscellaneous Attributes

This specification allows other types of security attributes to be carried in the PAC
under the general heading of miscellaneous attributes. In CSI-ECMA, the only typ
miscellaneous attribute supported is the audit identity.

3.6.3 Target Access Enforcement Function

The security processing functionality at the target is split between the target
application and the target access enforcement function (targetAEF). ISO (ISO/IEC
10181-3) defines an access enforcement function collocated with the target applica
which controls access to a target application. This has a number of advantages
including:

• The security critical code is isolated, which makes security evaluation simpler.

• Long term keys can be shared between applications/objects. This can simplify
administration (as there are less keys) and allow re-use of keying information w
accessing another application/object sharing this targetAEF .

The targetAEF is responsible for setting up the security association, including
validating the PAC and releasing the keys for message protection.

3.6.4 Basic and Dialogue Keys

The exchanges between client and target are secured using a two level key sche
which a distinction is made between basic and dialogue keys.

A basic key is a temporary key established between a client and the target (actuall
targetAEF). The basic key is used for integrity protection of the PAC and associated
information, its own key establishment information, and the information used to
establish the dialogue keys. The basic key is established by the client sending
information to the target in the targetKeyBlock . This can take different forms,
depending on the key distribution method used.

A dialogue key is a temporary key established between the client and target and is
to protect the requests and responses. Separate dialogue keys can be establishe
integrity and confidentiality protection, enabling different strengths of mechanism
3-70 Security Service, v1.7 March 2001

3

 in
key

g a

keys.
en

and

ult of

.

e Key

y

s a

 key

e
be configured. The information required to derive the dialogue keys is transmitted
the Dialogue key package. Typically, dialogue keys are constructed from the basic
using a one way algorithm.

3.6.5 Key Distribution Schemes

The CSI-ECMA protocol allows a choice of key distribution methods for establishin
client-target security association including the basic key. The content of the
targetKeyBlock depends on the scheme used.

The key distribution schemes depend on the existence of long term cryptographic
Both secret (symmetric) and public (asymmetric) key technology can be used. Wh
secret keys are used, a key is shared between the target and its Key Distribution
Service (KDS). When public keys are used, the private key is kept by the principal
the public key held in a certificate, in a directory or elsewhere.

Initiators may also possess symmetric or asymmetric keys established as the res
an earlier authentication.

This CSI-ECMA specification defines three key distribution schemes. These are
described below and are identified by a name and an architectural option number
Other schemes are possible as extensions to this as described in ECMA-235.

3.6.5.1 Basic Symmetric Key Distribution Scheme

In this scheme, the client and target each share different secret keys with the sam
Distribution Server. The scheme name for this is: symmIntradomain . The
architectural option number is 2.

To establish the association between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the target’s
long term key. On receipt of the targetKeyBlock , the target can extract the basic ke
from it.

In this case, the targetKeyBlock is a Kerberos ticket.

3.6.5.2 Symmetric Key Distribution with Asymmetric KDS

In this scheme, the initiator shares a secret key with its KDS and the target share
secret key with its KDS (which is different). In addition, each KDS possesses a
private/public key pair. The scheme name for this is: hybridInterdomain . The
architectural option number is 3.

To establish the client-target association, the client gets a targetKeyBlock from its
KDS containing the basic key encrypted under a temporary key and the temporary
encrypted under the target’s KDS public key. The targetKeyBlock is also signed
using the initiator’s KDS private key.

On receipt of the targetKeyBlock , the target transmits it to its KDS and gets back th
basic key encrypted under the long term secret key it shares with its KDS.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-71

3

KDS.

ck is

n
rmine
.
ted
3.6.5.3 Full Public Key Scheme

In this scheme, both client and target possess private/public keys. Neither use a
The scheme name for this is: asymmetric. The architectural option number is 6.

To establish the client-target association, the client constructs a targetKeyBlock
containing a basic key encrypted under the target’s public key. The target key blo
signed with the client’s private key. On receipt of the targetKeyBlock , the target
directly establishes a basic key from it.

3.6.6 Cryptographic Algorithms and Profiles

Cryptographic and hashing algorithms are used for various purposes. This sectio
categorizes the algorithms according to usage so that client and targets can dete
more easily if they have the cryptographic support required to allow interoperation
The categorization then is refined into cryptographic profiles that can be incorpora
into specific mechanism identifiers. The mechanism identifiers with cryptographic
profiles then can be carried in the IOR. Table 3-6 summarizes the different uses to
which algorithms are put.

Table 3-6 Summary of Algorithm Usage

Use
Reference Description of Use Type of Algorithm

2 PAC protection using signature OWF + asymmetric
signature

3 basic key usage confidentiality and
integrity

4 integrity dialogue key derivation OWF

5 integrity dialogue key usage symmetric integrity

6 CA public keys OWF + asymmetric
signature

7 encryption using shared long term
symmetric key

symmetric confidentiality

8 name hash to prevent ciphertext
stealing

OWF

9 asymmetric basic key distribution asymmetric encryption

10 key establishment within
SPKM_REQ

(fixed value)

11 confidentiality dialogue key
derivation

OWF

12 confidentiality dialogue key use symmetric confidentiality
3-72 Security Service, v1.7 March 2001

3

 the

his
The algorithms can now be further categorized into broader classes, as shown in
following table.

Use 10 is a fixed value and does not contribute to mechanism use options.

Based on these classes, the following cryptographic algorithm usage profiles are
defined. Other profiles are possible and can be defined as required. Note that
symmetric algorithm key sizes are included in this profiling, thus DES/64 indicates
DES with a 64 bit key.

Table key:

• Profile 1 provides full security, using standard cryptographic algorithms with
common accepted key sizes.

• Profile 2 is the same, but without supporting any confidentiality of user data.

• Profile 3 provides low grade confidentiality. In some countries, products using t
are exportable without restriction; in others, they are more easily
exportable/importable.

Table 3-7 Summary of Algorithm Classes

Class 1: symmetric for security of mechanism: uses 3, 5, 7

Class 2: all OWFs: uses 2, 4, 6, 8, 11

Class 3: internal mechanism asymmetric, encrypting: use 9

Class 4: internal mechanism asymmetric, non encrypting: use 2

Class 5: CA’s asymmetric non-encrypting: use 6

Class 6: data confidentiality, symmetric: use 12

Table 3-8 Cryptographic Algorithm Usage Profiles

Profile 1
Full

Profile 2
no data
confidentiality

Profile 3
low grade
confidentiality

Profile 5
defaulted

Class 1 DES/64 DES/64 RC4/128 separately
agreed default

Class 2 MD5 MD5 MD5 separately
agreed default

Class 3 RSA RSA RSA separately
agreed default

Classes 4
and 5

RSA RSA RSA separately
agreed default

Class 6 DES/64 None RC4/40 separately
agreed default
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-73

3

ded

, as
em
 on

ges

is

r, a

the

ne

t

• Profile 5 uses algorithms identified by a separately specified default. It is inten
for use by organizations who wish to use their own proprietary or government
algorithms by separate agreement or negotiation.

3.6.7 PAC Protection and Delegation - Outline

The ECMA protocol provides a number of ways to protect a principal’s credentials
held in a PAC. In CSI-ECMA, a digital signature is used, as this allows a target syst
to check what Security Authority authorized use of these privileges, without relying
the transitive trust needed for sealed PACs crossing domain boundaries. Encrypted
PACs are not included in this profile.

There may also be controls on where the PAC may be delegated and used.

Protection method fields in the PAC specify where this PAC can be used and whether
it can be used by the specified targets only (for example, allowing use of the privile
for access control) or whether that target can also delegate it.

Protection method fields are grouped together into method groups. The protection
method check is passed if all the method fields in any one of the method groups
passed.

3.6.8 PPID Method

This method protects the PAC from being stolen, by restricting the initiators who can
use the PAC.

When no other method group is present, it permits the PAC to be used only by the
client entity to which it was originally issued (i.e., it prevents delegation). Howeve
PAC with a PPID will be delegatable if delegation is permitted by a PV/CV method.

A PPID identifying the initiating principal is put in the PAC by the Privilege Attribute
(or other security) Service, according to policy or client request. The same/related
information is also supplied as part of the targetKeyBlock so that the target can
check that the entity that sent this token is the same entity that is entitled to use
PAC.

The PPID is a security attribute whose value in the CSI-ECMA protocol can take o
of two forms, depending on the key distribution scheme used by the initiator.

• When the initiator has a secret key, the PPID is a random bit string that is also sen
in the authorization field of the Kerberos ticket. This ticket is sent as part of the
targetKeyBlock and can be checked to come from this client.

• For the public key scheme, the PPID contains the certificate serial number and CA
name for the initiator’s X.509 public key certificate. The targetKeyBlock sent to
the target is signed using this initiator’s private key.
3-74 Security Service, v1.7 March 2001

3

er

 by

 to

trict

s:

e

ve.
3.6.9 PV/CV Delegation Method

This method prevents the PAC from being stolen and at the same time controls wheth
(and where) it can be delegated. The method field in the PAC contains a protection
value (PV), which is a one way function of a Control Value (CV).

A PAC will be accepted by the target (subject to other controls in the PV’s method
group) if the client proves knowledge of the CV by passing it (encrypted) as part of the
initial context token. A method group contains at most one PV value.

In the simplest case, the method group contains just the PV and the target can delegate
the PAC if it receives the CV.

The PV/CV method can be used for more selective targeting of the PAC also. A
method group can include qualifier attributes, which specify where the PAC can be
used. Qualifier attributes can specify which principals can receive the PAC as a target
and which can act as both delegate and target. These principals can be specified
their identities (though the protocol is extensible for other options such as a
group/domain to which they belong).

For the simpler case, delegation can be prevented by setting the delegation mode
Security::SecDelModeNoDelegation . This will cause the client to send the PAC
without the CV.

Note – The protocol allows more than one method group in the PAC, each with its own
PV/CV. This can be used by a client or intermediate object in a chain to further res
who can use the PAC, by failing to send some of the CVs. However, this specification
does not include any operations for restricting delegation in this way, so it is not
possible to exploit this capability.

3.6.9.1 Restrictions

Other restrictions may be included in the PAC. An ORB conforming to this
specification does not have to generate these restrictions, but will reject PACs with
mandatory restrictions that it does not understand or cannot process.

3.6.10 Mechanism Identifiers and IOR Encoding

All tag component data in the IOR must be encapsulated using CDR encoding.

Mechanism identifiers for the CSI-ECMA protocol have up to three parts, as follow

1. The protocol identifier. This is CSI-ECMA.

2. The architectural option. This identifies the architectural option (i.e., the key
distribution method used when establishing security associations). If absent, th
default option is used.

3. The cryptographic profile. This identifies the cryptographic profile as defined abo
If absent, a default is used.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-75

3

e,

heme

s the

rm of

e
n the
h no
cter

are
s,
ed
In the IOR, the mechanism name in the struct of the TAG_x_SEC_MECH is:

CSI-ECMA_<architectural option>

where the architectural options supported are Secret, Hybrid, and Public; therefor
mechanism names are CSI_ECMA_Secret , CSI_ECMA_Hybrid , and
CSI_ECMA_Public .

These values could also be negotiated using a generic mechanism negotiation sc
such as that in [19] in future, but are in the IOR for the current CSI specification.

3.6.11 Security Names

This protocol uses two forms of security names:

1. Directory names (DNs) are used where public key technology is used, as this i
form of name used in X509 certificates.

2. Kerberos names are used where secret key technology is used, as this is the fo
name used by Kerberos.

3.6.11.1 Kerberos Naming

An entity that uses the normal Kerberos V5 authentication is given a printable
Kerberos principal name of the form:

<principal_name>@realm_name>

Note – Components of a name can be separated by “/”.

The separator @ signifies that the remainder of the string following the @ is to b
interpreted as a realm identifier. If no @ is encountered, the name is interpreted i
context of the local realm. Once an @ is encountered, a non-null realm name, wit
embedded “/” separators must follow. The “/” character is used to quote the chara
that follows immediately.

3.6.11.2 Directory Naming

Where public key technology supported by Directory Certificates is used, entities
given DNs. Such names are normally transmitted as directoryNames. At interface
they are strings built from components separated by a semicolon. The standardiz
keywords supported are:

CN (common-name)
S (surname)
OU (organization unit)
O (organization)
C (country)
3-76 Security Service, v1.7 March 2001

3

eros
te
 to

ism.

file

 in

An example of a supported DN is:

CN=Martin;OU=Sesame;O=Bull;C=fr

There is no general rule for mapping the Directory name of an entity onto its Kerb
principal name. An explicit mapping is provided in a principal’s Directory Certifica
using the extensions field of the extended Directory Certificate syntax (version 3)
carry the principal’s Kerberos name.

The syntax of the login name is imported from the Kerberos V5 GSS-API mechan
The form of name is referred to using the symbolic name:
GSS_KRB5_NT_PRINCIPAL . Syntax details are given in [12].

3.6.12 SECIOP Tokens When Using CSI-ECMA

All SECIOP security tokens conform to the basic token format defined in
Section 3.3.7.1, “Basic Token Format,” on page 3-60. The object identifier for the
MechType is of the form:

{generic_CSI_ECMA_mech (y) (z)}

where the value for generic_CSI_ECMA_mech is 1.3.12.0.235.4 and the values of y
and z, if present, represent the architectural option number and cryptographic pro
numbers. Both y and z can be defaulted.

The innerContextToken of the SECIOP message may be any of the tokens defined
Section 3.3.7.2, “Inner Context Tokens,” on page 3-60. For context establishment,
tokens are:

The per-message tokens are:

A ContextDeleteToken may also be used either by the initiator or the target to
release a Security Association.

InitialContextToken Sent by the initiator to a target, to start the process of
establishing a Security Association.

TargetResultToken Sent by the target on detection of an error during
Security Association establishment.

ErrorToken Sent by the target on detection of an error during
Security Association establishment.

MICToken Sent either by the initiator or the target to verify the
integrity of the user data sent separately.

WrapToken Sent either by the initiator or the target. Encapsulates
the input user data (optionally encrypted) along with
integrity check values.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-77

3

 a

.

This definition uses ASN.1 types from other standards (e.g., the ISO definition of
Certificate). These types are detailed in Annex E of ECMA-235.

3.6.13 Initial Context Token

The initial context token contains:

• General information such as the token id, contextFlags (i.e., delegation , replay-
detect), utcTime , seq-number , etc.

• A targetAEF part to be passed to the target access enforcement function. This
includes the PAC and associated CVs, target key block, and dialogue key package

• A seal.

Figure 3-7 Initial Context Token

InitialContextToken ::= SEQUENCE{
ictContents[0] ICTContents,
ictSeal [1] Seal

}

ICTContents ::= SEQUENCE {
tokenId [0] INTEGER, -- shall contain X'0100'
SAId [1] OCTET STRING,
targetAEFPart [2] TargetAEFPart,
targetAEFPartSeal[3] Seal,
contextFlags [4] BIT STRING {

delegation (0),

ictContents Body of the initial context token.

ictSeal Seal of ictContents computed with the integrity dialogue key.
Only the sealValue field of the Seal data structure is present.
The cryptographic algorithms that apply are specified by
integDKUseInfo in the dialogueKeyBlock field of the initial
context token.

target AEF part

token id. pac & CVs target Key Block dialogue Key Block seal

(used by target to enforce policy)

etc. (initiating and/or
delegate principal’s

authorization
and delegation
information)

(information
needed to

establish the
association)

(information used
to establish

message protection
key - integrity and

confidentiality)
3-78 Security Service, v1.7 March 2001

3

d

r

s
mutual-auth (1),
replay-detect (2),
sequence (3),
conf-avail (4),
integ-avail (5)

}
utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,
initiatorAddress[8]HostAddress OPTIONAL,
targetAddress [9] HostAddress OPTIONAL

}

tokenId Identifies the initial-context token. Its value is 01 00 (hex) .

SAId A random number for identifying the Security Association being
formed; it is one which (with high probability) has not been used
previously. This random number is generated by the initiator an
processed by the target as follows:

• If no targetResultToken is expected, the SAId value is taken
to be the identifier of the Security Association being
established (if this is unacceptable to the target, then an erro
token with etContents value of
gss_ses_s_sg_sa_already_established must be generated).

• If a targetResultToken is expected, the target generates its
random number and concatenates it to the end on the
initiator's random number. The concatenated value is then
taken to be the identifier of the Security Association being
established.

targetAEFPart Part of the initial-context token to be passed to the target acces
enforcement function. This is defined below and includes PAC,
basic, and dialogue key packages.

targetAEFPartSeal Seal of the targetAEFPart computed with the basic key. Only the
sealValue field of the Seal data structure is present. The
cryptographic algorithms that apply are specified by algorithm
profile in the mechanism option.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-79

3

 to

3.6.13.1 TargetAEF Part

TargetAEFPart ::= SEQUENCE {
pacAndCVs [0] SEQUENCE OF CertandECV OPTIONAL,
targetKeyBlock [1] TargetKeyBlock,
dialogueKeyBlock [2] DialogueKeyBlock,
targetIdentity [3] Identifier,

contextFlags Combination of flags that indicates context-level functions
requested by the initiator, as follows:

• delegation - indicates that when set to 0, the initiator
explicitly forbids delegation of the PAC in the
targetAEFPart .

• mutual-auth - indicates that mutual authentication is
requested.

• replay-detect - indicates that replay detection features are
requested to be applied to messages transferred on the
established Security Association.

• sequence - indicates that sequencing features are requested
be enforced to messages transferred on the established
Security Association.

• conf-avail - indicates that a confidentiality service is
available on the initiator side for the established Security
Association.

• integ-avail - indicates that an integrity service is available on
the initiator side for the established Security Association.

utcTime The initiator's UTC time.

usec Micro second part of the initiator's time stamp. This field along
with utcTime are used together to specify a reasonably accurate
time stamp.

seq-number When present, specifies the initiator's initial sequence number;
otherwise, the default value of 0 is to be used as an initial
sequence number.

initiatorAddress Initiator's network address part of the channel bindings. This field
is present only when channel bindings are transmitted by the
caller to the mechanism implementation. Conformant ORBs do
not need to generate this field.

targetAddress Target's network address part of the channel bindings. This field
is present only when channel bindings are transmitted by the
caller to the implementation.
3-80 Security Service, v1.7 March 2001

3

xt
arget

s
flags [4] BIT STRING {
 delegation (0)

 }
}

3.6.14 TargetResultToken

This token is returned by the target if the mutual-req flag is set in the Initial Conte
Token. It serves to authenticate the target to the initiator since only the genuine t
could derive the integrity dialogue key needed to seal the TargetResultToken .

TargetResultToken ::= SEQUENCE{
trtContents [0] TRTContents,
trtSeal [1] Seal

}

TRTContents ::= SEQUENCE {

tokenId [0] INTEGER, -- shall contain X'0200'
SAId [1] OCTET STRING,

pacAndCVs The initiator ACI to be used for this Security Association. This
field is not present when the association does not require any
ACI. This field contains the PAC together with associated PAC
protection information. When only simple delegation is
supported, exactly one of these should be present.

If composite delegation options are supported, this field will
contain more than one PAC. For example, for the initiator plus
immediate invoker case, the initiator’s PAC would be present
(with CVs) and the immediate invoker’s (with a PPID).

targetKeyBlock The targetKeyBlock carrying the basic key to be used for the
Security Association being established.

dialogueKeyBlock A dialogue key block used by the targetAEF along with the basic
key to establish an integrity dialogue key and a confidentiality
dialogue key for per-message protection over the Security
Association being established.

targetIdentity The identity of the intended target of the Security Association.
Used by the targetAEF to validate the PAC. Can also be used by
the targetAEF to help protect the delivery of dialogue keys.

flags Flags required by the targetAEF for its validation process.
Contains only a delegation flag, the value of which is the same a
the value of delegation flag in contextFlag field of ictContents .
When the flag is set, all ECVs sent in pacAndCV s are made
available to the target. Other bits are reserved for future use.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-81

3

uch
ism
utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,

}

Note – There is no field for returning certification data here. This is because any s
data that may be required is assumed to be returned at the conclusion of mechan
negotiation.

3.6.15 ErrorToken

An error token may be returned, as follows:

ErrorToken ::= {
tokenType [0] OCTET STRING VALUE X'0400',
etContents [1] ErrorArgument,

}

ErrorArgument ::= ENUMERATED {
gss_ses_s_sg_server_sec_assoc_open (1),
gss_ses_s_sg_incomp_cert_syntax (2),
gss_ses_s_sg_bad_cert_attributes (3),
gss_ses_s_sg_inval_time_for_attrib (4),
gss_ses_s_sg_pac_restrictions_prob (5),
gss_ses_s_sg_issuer_problem (6),
gss_ses_s_sg_cert_time_too_early (7),
gss_ses_s_sg_cert_time_expired (8),

trtContents This contains only administrative fields, identifying the token
type, the context, and providing exchange integrity.

seq-number When present, specifies the target's initial sequence number;
otherwise, the default value of 0 is to be used as an initial
sequence number.

The other administrative fields are as described previously.

trtSeal Seal of trtContents computed with the integrity dialogue key.
Only the sealValue field of the Seal data structure is present. The
cryptographic algorithms that apply are specified by
integDKUseInfo in the dialogueKeyBlock field of the initial
context token.

etContents Contains the reason for the creation of the error token. The
different reasons are given as minor status return values.
3-82 Security Service, v1.7 March 2001

3

gss_ses_s_sg_invalid_cert_prot (9),
gss_ses_s_sg_revoked_cer (10),
gss_ses_s_sg_key_constr_not_supp (11),
gss_ses_s_sg_init_kd_server_ unknown (12),
gss_ses_s_sg_init_unknown (13),
gss_ses_s_sg_alg_problem_in_dialogue_key_block (14),
gss_ses_s_sg_no_basic_key_for_dialogue_key_block (15),
gss_ses_s_sg_key_distrib_prob (16),
gss_ses_s_sg_invalid_user_cert_in_key_block (17),
gss_ses_s_sg_unspecified (18),
gss_ses_s_g_unavail_qop (19),
gss_ses_s_sg_invalid_token_format (20)

}

3.6.16 Per Message Tokens

The syntax of the message_protection_token in SECIOP messages has the same
general structure for both MIC and Wrap tokens:

PMToken ::= SEQUENCE{
pmtContents [0] PMTContents,
pmtSeal [1] Seal

-- seal over the pmtContents being protected
}

PMTContents ::= SEQUENCE {
tokenId [0] INTEGER, -- shall contain X'0101'
SAId [1] OCTET STRING,
seq-number [2] INTEGER OPTIONAL
userData [3] CHOICE {

plaintext BIT STRING,
ciphertext OCTET STRING OPTIONAL

}
directionIndicator[4]BOOLEANOPTIONAL

}

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-83

3

;
s
t as

f

ve

nted

in

nd

 the

er,
pmtContents

pmtSeal

See specific token type narratives below.

tokenId
SAID

A random number for identifying the Security Association being formed
it is one which (with high probability) has not been used previously. Thi
random number is generated by the initiator and processed by the targe
follows:

• If no targetResultToken is expected, the SAId value is taken to be the
identifier of the Security Association being established (if this is
unacceptable to the target, then an error token with etContents value
of gss_ses_s_sg_sa_already_established must be generated).

• If a targetResultToken is expected, the target generates its random
number and concatenates it to the end on the initiator's random
number. The concatenated value is then taken to be the identifier o
the Security Association being established.

seq-number This field must be present if replay detection or message sequencing ha
been specified as being required at Security Association initiation time.
The field contains a message sequence number whose value is increme
by one for each message in a given direction, as specified by
directionIndicator . The first message sent by the initiator following the
InitialContextToken shall have the message sequence number specified
that token, or if this is missing, the value 0. The first message returned by
the target shall have the message sequence number specified in the
TargetReplyToken if present, or failing this, the value 0.

The receiver of the token will verify the sequence number field by
comparing the sequence number with the expected sequence number a
the direction indicator with the expected direction indicator. If the
sequence number in the token is higher than the expected number, then
expected sequence number is adjusted and GSS_S_GAP_TOKEN is
returned. If the token sequence number is lower than the expected numb
then the expected sequence number is not adjusted and
GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN is returned,
whichever is appropriate. If the direction indicator is wrong, then the
expected sequence number is not adjusted and GSS_S_UNSEQ_TOKEN is
returned.

userData See specific token type narratives below.

directionIndicator FALSE indicates that the sender is the context initiator, TRUE that the
sender is the target.
3-84 Security Service, v1.7 March 2001

3

d,
ssed

ody
:

3.6.16.1 MICToken

A MICToken is a per-message token, separate from the user data being protecte
which can be used to verify the integrity of that data as received. The token is pa
in the message_protection_token in SECIOP messages, and the protected data
follows as a GIOP message or message fragment. The syntax of the token is:

MICToken ::= PMToken

The overall structure and field contents of the token are described above. Fields
specific to the MICToken are:

3.6.16.2 WrapToken

A WrapToken encapsulates the input user data (optionally encrypted) along with
associated integrity check values. It consists of an integrity header followed by a b
portion that contains either the plaintext or encrypted data. The syntax of the token is

WrapToken ::= PMToken

The overall structure and field contents of the token are described above. Fields
specific to the WrapToken are:

3.6.17 ContextDeleteToken

The ContextDeleteToken is issued by either the context initiator or the target to
indicate to the other party that the context is to be deleted.

ContextDeleteToken ::= SEQUENCE {
cdtContents[0] CDTContents,
cdtSeal [1] Seal

-- seal over cdtContents, encrypted under the Integrity
-- Dialogue Key. Contains only the sealValue field

userData Not present for MICToken s.

pmtSeal The Checksum is calculated over the DER encoding of the
pmtContents field with the user data temporarily placed in the
userData field. The userData field is not transmitted.

userData Present either in plain text form or encrypted. If the data is
encrypted, it is performed using the Confidentiality Dialogue
Key, and as in [13], an 8-byte random confounder is first
prepended to the data to compensate for the fact that an IV of
zero is used for encryption.

wtSeal The Checksum is calculated over the pmtContents field,
including the userData . If the userData field is to be encrypted,
the seal value is computed prior to the encryption.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-85

3

at

e.
}

CDTContents ::= SEQUENCE {
tokenType [0] OCTET STRING VALUE X'0301',
SAId [1] OCTET STRING,
utcTime [2] UTCTime OPTIONAL,
usec [3] INTEGER OPTIONAL,
seq-number[4] INTEGER OPTIONAL,

}

3.6.18 Security Attributes

3.6.18.1 Data Structures

The security attribute is a basic construct for privilege and other attributes in PACs.

SecurityAttribute ::= SEQUENCE{
attributeType Identifier,
attributeValue SET OF SEQUENCE {

definingAuthority [0] Identifier OPTIONAL,
securityValue [1] SecurityValue

}
}

Identifier ::= CHOICE{
objectId [0] OBJECT IDENTIFIER,
directoryName [1] Name,

-- imported from the Directory Standard
printableName [2] PrintableString,
octets [3] OCTET STRING,
intVal [4] INTEGER,
bits [5] BIT STRING,
pairedName [6] SEQUENCE{

printableName [0] PrintableString,
uniqueName [1] OCTET STRING

}
}

cdtContents This contains only administrative fields, identifying the token
type, the context, and providing exchange integrity.

seq-number When present, this field contains a value one greater than th
of the seq-number field of the last token issued from this
issuer. The other administrative fields are as described abov

trtSeal See above for a general description of the use of this
construct.
3-86 Security Service, v1.7 March 2001

3

s

 a

SecurityValue ::= CHOICE{
directoryName [0] Name,
printableName [1] PrintableString,
octets [2] OCTET STRING,
intVal [3] INTEGER,
bits [4] BIT STRING,
any [5] ANY -- defined by attributeType

}

Only one set member is permitted in AttributeValue . Multivalue attributes are
effected in the securityValue field, where the “SEQUENCE OF” construct can be
used. (Including “SET OF” in the syntax enables security attributes to be stored a
normal in a Directory whenever the choice made within Identifier is OBJECT
IDENTIFIER.)

A directory name is translated into a string format as defined in Section 3.6.11,
“Security Names,” on page 3-76. The sequence<octet> attribute value returned at
the IDL interface is a representation of this string, not the more complex ASN.1
definition of this.

3.6.18.2 Attribute Types

An attribute type in this standard is formally defined as an Identifier that provides
choice of syntax; however, all standard attribute types are defined as OBJECT
IDENTIFIERs. Three types of attributes are defined:

1. Privilege attributes (e.g., AccessId , GroupId , Role).

2. Miscellaneous attributes, mainly the AuditId .

3. Qualifier attributes used within the PV/CV delegation scheme to say where
credentials can be used/delegated.

For standard attributes, the OBJECT IDENTIFIER includes:

• first, a standard part with the value 1.3.12.1.46,

attributeType Defines the type of the attribute. Attributes of the same type
have the same semantics when used in Access Decision
Functions, though they may have different defining
authorities.

definingAuthority The authority responsible for the definition of the semantics
of the value of the security attribute. This optional field of
the attributeValue can be used to resolve potential value
clashes. It is defined as an Identifier that has a choice of
syntax. For CSI-ECMA, it is always a directoryName .

securityValue The value of the security attribute. Its syntax can be either
one of the basic syntaxes for attributes or a more complex
one determined by the attribute type.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-87

3

it,

d in

lly

are
ily

iers

tory

in

s

p
• then the “family” for privilege, miscellaneous, or qualifier attributes (4, 3, or 5),
and

• then the value for that particular attribute type.

All standard attributes, which conformant ORBs must be able to generate/transm
have this form.

In addition, conformant ORBs must be able to handle other attribute types define
this chapter. They must also be able to handle attribute types with “OMG” object
identifiers, as described in Section 3.1.13.5, “Mapping Other Attributes to Externa
Valid IDL Attributes,” on page 3-29. In this case, the Object Identifier is:

<iso>..<omg>.<security><family definer>.<family>.<attribute type>

where the values of the CORBA family definer, CORBA family and attribute type
as defined in “Security Attributes” in Appendix B. For standard attributes, the fam
definer is 0 and the family is 0 for privileges and 1 for miscellaneous attributes.

OMG Object Identifiers can also be used for privilege attributes defined by other
organizations, who have registered a family definer with OMG.

3.6.19 Privilege and Miscellaneous Attribute Definitions

Privilege and miscellaneous attribute types are normally identified by Object Identif
that have a standard part, then family and attribute type parts.

The following privilege and miscellaneous attributes are defined in the CORBA
Security specification and have defined attribute types. Some of these are manda
for a CSI level 2 conformant ORB to generate (see Section 3.1.15, “Support for
CORBA Security Facilities and Extensibility,” on page 3-32). The Object Identifier
the privilege attribute set for that type is listed in the following table.

Table 3-9 Privilege and Miscellaneous Attributes

Type of
Attribute

oid family
& type

Syntax Meaning

access-identity 4.2 printableString The access identity represents the principal'
identity to be used for access control purposes.

primary-group 4.3 printableString The primary group represents a unique grou
to which a principal belongs. A security
context must not contain more than one
primary group for a given principal.
3-88 Security Service, v1.7 March 2001

3

et

ute
t.

 is

3.6.20 Qualifier Attributes

When a targetQualification or delegateTargetQualification method is present in
the PAC, the syntax used for the method parameters is securityAttribute . Object
Identifiers for qualifier attributes have the value 1.3.12.1.46.5.<qualifier attribute
type> .

Currently, only one form of qualifier attribute is defined, and this identifies the targ
by security name. This is usually the name of an identity domain as defined in
Section 2.1.8, “Domains,” on page 2-21, not an individual object.

In future, other forms of qualifier attributes may be added. For example, the attrib
could identify an invocation delegation domain, rather than particular named targe

3.6.21 Target Names

Within a PAC protection method, a target name is indicated using the OID:

target-name-qualifier OBJECT IDENTIFIER ::= {qualifier-attribute 1 }
Its syntax in the PAC is:
TargetNameValueSyntax ::= Identifier

3.6.22 PAC Format

The PAC is in the form of a generalized certificate. A Generalized Certificate is
composed of three main structural components:

1. The “commonContents ” fields collectively serve to provide generally required
management and control over the use of the PAC.

2. The “specificContents ” fields are different for different types of certificate, and
contain a type identifier to indicate the type. In this specification, only one type
defined - the Privilege Attribute Certificate (PAC).

group 4.4 SEQUENCE OF
printableString

A group represents a characteristic common to
several principals. A PAC may contain more
than one group for this principal.

role 4.1 printableString A role attribute represents one of the
principal's organizational responsibilities.

audit_id 3.2 printableString The identity of the principal as used for
auditing.

Table 3-9 Privilege and Miscellaneous Attributes

Type of
Attribute

oid family
& type

Syntax Meaning
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-89

3

 is
s in

lized

 the
3. The “checkValue ” fields are used to guarantee the origin of the certificate. This
a signature in the CSI-ECMA specification. (though a seal would be possible a
ECMA 235).

Figure 3-8 Generalized Certificate’s Structural Components

GeneralizedCertificate ::= SEQUENCE{
certificateBody[0] CertificateBody,
checkValue [1] CheckValue

}

CertificateBody ::= CHOICE{
encryptedBody[0] BIT STRING,
normalBody [1] SEQUENCE{

commonContents[0] CommonContents,
specificContents[1] SpecificContents

}
}

The next sections describe these three main structural components of the Genera
Certificate.

3.6.23 Common Contents fields

CommonContents ::= SEQUENCE{
comConSyntaxVersion[0]INTEGER { version1 (1) }DEFAULT 1,
issuerDomain [1] Identifier OPTIONAL,
issuerIdentity [2] Identifier,
serialNumber [3] INTEGER,
creationTime [4] UTCTime OPTIONAL,
validity [5] Validity,
algId [6] AlgorithmIdentifier,
hashAlgId [7] AlgorithmIdentifierOPTIONAL

}

In the imported definition of AlgorithmIdentifier , ISO currently permits both a hash
and a cryptographic algorithm to be specified. If this is done, they must appear in
algId field. The hashAlgId field is present for those cases where a separate hash
algorithm specification is required.

Validity ::= SEQUENCE {
notBefore UTCTime,
notAfter UTCTime

PAC specific contents
Common
Certificate
Contents protection/

delegation
methods

privilege
and other
attributes

restrictions

Check
Value
3-90 Security Service, v1.7 March 2001

3

} -- as in [ISO/IEC 9594-8]
 -- Note: Validity is not tagged, for compatibility with the
-- Directory Standard.

The certificate can be uniquely identified by a combination of the issuerDomain ,
issuerIdentity , and serialNumber .

3.6.24 Specific Certificate Contents for PACs

SpecificContents ::= CHOICE{
pac [1] PACSpecificContents
-- only the PAC is used here

}

PACSpecificContents ::= SEQUENCE{
pacSyntaxVersion [0] INTEGER{ version1 (1)} DEFAULT 1,
protectionMethods [2]SEQUENCE OF MethodGroupOPTIONAL,
pacType [4] ENUMERATED{

primaryPrincipal (1),
temperedSecPrincipal (2),
untemperedSecPrincipal(3)

 } DEFAULT 3,

comConFieldsSyntaxVersion Identifies the version of the syntax of the combination of
the commonContents and the checkValue fields parts of
the certificate.

issuerDomain The security domain of the issuing authority. Not required
if the form of issuerIdentity is a full distinguished name,
but required if other forms of naming are in use. In CSI-
ECMA, this is always a directoryName .

issuerIdentity The identity of the issuing authority for the certificate.

serialNumber The serial number of the certificate (PAC) as allocated by
the issuing authority.

creationTime The UTCtime that the certificate was created, according to
the authority that created it.

validity A pair of start and end times within which the certificate is
deemed to be valid.

algId The identifier of the secret or of the public cryptographic
algorithm used to seal or to sign the certificate. If there is a
single identifier for both the encryption algorithm and the
hash function, it appears in this field.

hashAlgId The identifier of the hash algorithm used in the seal or in
the signature.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-91

3

privileges [5] SEQUENCE OF PrivilegeAttribute,
restrictions [6] SEQUENCE OF RestrictionOPTIONAL,
miscellaneousAtts [7] SEQUENCE OF SecurityAttributeOPTIONAL,
timePeriods [8] TimePeriods OPTIONAL

}

PrivilegeAttribute ::= SecurityAttribute

Restriction ::= SEQUENCE {
howDefined [0] CHOICE {

included [3] BIT STRING
},

-- the actual restriction in a form undefined here
type [2] ENUMERATED {

mandatory (1),
optional (2)

} DEFAULT mandatory,
targets [3] SEQUENCE OF SecurityAttribute OPTIONAL

} -- applies to all targets if this is omitted

pacSyntaxVersion Syntax version of the PAC.

protectionMethods A sequence of optional groups of Method fields used to protect
the certificate from being stolen or misused. For a full description
see below.

pacType Indicates whether the privileges contained in the PAC are those of
a Primary Principal (e.g., the client) or of a Secondary Principal
(e.g., the user). In this specification, it is always a PAC of a
secondary principal untempered by the privileges of a Primary
Principal.

privileges Privilege Attributes of the principal.
3-92 Security Service, v1.7 March 2001

3

e
3.6.24.1 Protection Methods

A method consists of a method id and parameters (methodParams). The method id
determines the syntax for the type of methodParams .

Method ::= SEQUENCE{
methodId [0] MethodId,
methodParams [1] SEQUENCE OF MparmOPTIONAL

}
MethodId ::= CHOICE{

predefinedMethod[0] ENUMERATED {
controlProtectionValues (1),
ppQualification (2),
targetQualification (3),
delegateTargetQualification (4)

}
}

Mparm ::= CHOICE{
pValue [0] PValue,
securityAttribute[1] SecurityAttribute

}
PValue ::= SEQUENCE{

restrictions This field enables the original owner of the PAC to impose
constraints on the operations for which it is valid. There are two
types of restriction:

• Mandatory: If a target to which the restriction applies cannot
understand the bit string defining the restriction, access
should not be granted.

• Optional: If a target application to which the restriction
applies cannot understand the bit string, it is expected to
ignore it.

For CSI-ECMA, it is not mandatory to generate restrictions, but
mandatory restrictions cannot be ignored. If not understood, the
PAC cannot be accepted.

miscellaneousAtts Security attributes that are neither privileges attributes nor
restrictions attributes. In a PAC, this may include identity
attributes such as Audit Identity. For the CSI-ECMA
specification, this is the only miscellaneous attribute expected.

timePeriods This field adds further time restrictions to the validity field of the
commonContents . Either startTime or endTime can be optional.
The TimePeriods control is passed if the time now is within any
of the sequence periods, or if there is a period with a start befor
now and no endTime , or there is a period with an end after now
and no startTime .
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-93

3

lifier

ethod

rs
pv [0] BIT STRING
algorithmIdentifier[1]AlgorithmIdentifierOPTIONAL

}

CertandECV ::= SEQUENCE {
certificate [0] GeneralizedCertificate,
ecv [1] ECV OPTIONAL

}
- ECV is defined in later

For the Primary Principal Qualification Method, the MethodId is ppQualification
and the syntax of Mparm is securityAttribute . Its value is defined in Section 3.6.8,
“PPID Method,” on page 3-74.

For the PV/CV method, the MethodId is: controlProtectionValues and the syntax
of Mparm is: pValue .

For the Target Qualification protection method, the MethodId is targetQualification
and the syntax for Mparms is securityAttribute .

For the Delegate/Target Qualification protection method, the MethodId is
delegatetargetQualification and the syntax for Mparms is securityAttribute .

The security attribute in the target and delegate/target protection method is a qua
attribute as defined in Section 3.6.20, “Qualifier Attributes,” on page 3-89.

3.6.24.2 External Control Values Construct

When using the controlProtectionValues method a PAC protected under that
method may be accompanied by one or more control values and indices to the m
occurrences in the certificate to which they apply. Also, when such a certificate is
being issued to a requesting client, the CV values it will need in order to use that
certificate may need to be returned with it.

ECV ::= SEQUENCE {
crypAlgIdentifier [0] AlgorithmIdentifierOPTIONAL,
cValues [1] CHOICE {

encryptedCvalueList[0] BIT STRING,
individualCvalues [1] CValues

methodId Identifies a protection method. Methods can be used in any
combination, and except where stated otherwise, multiple
occurrences of the same method are permitted. The choice of
methodId determines the permitted choices of method paramete
in the methodParams construct as described below.

methodParams Parameters for a protection method. The semantics of each
protection method is described in section Section 3.1.9.2,
“Cryptographic Profiles,” on page 3-15.
3-94 Security Service, v1.7 March 2001

3

t

ent

}
}

CValues ::= SEQUENCE OF SEQUENCE {
index [0] INTEGER,
value [1] BIT STRING

}

If the encryptedCvalueList choice is made, the whole list is encrypted in bulk, bu
the in-clear contents of this field are expected to have the syntax CValues . If the
individualCvalues choice is made, values are individually encrypted in the value
fields of the list. Encryption is always done under the basic key protecting the
operation.

In the case of the controlProtectionValues method, value is a CV, and index is then
the index of the method occurrence in the certificate, starting at 1.

3.6.25 Check Value

In this specification, a PAC is protected by being digitally signed by the issuer.

A signature may be accompanied by information identifying the Certification
Authority under which the signature can be verified, and with an optional conveni
reference to or the actual value of the user certificate for the private key that the
signing authority used to sign the certificate.

CheckValue ::= CHOICE{
signature [0] Signature
-- only signature supported here

}

Signature ::= SEQUENCE{
signatureValue [0] BIT STRING,
publicAlgId [1] AlgorithmIdentifier OPTIONAL,
hashAlgId [2] AlgorithmIdentifier OPTIONAL,
issuerCAName [3] Identifier OPTIONAL,
caCertInformation [4] CHOICE {

caCertSerialNumber[0] INTEGER,
certificationPath [1] CertificationPath

} OPTIONAL
}
--CertificationPath is imported from [22]

crypAlgIdentifier This specifies the encryption algorithm of the control values.

cValues An ECV construct can contain either an encrypted list of control
values in the encryptedCvalueList field, or a list of individual
control values in individualCvalues .
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-95

3

r

a

The Seal structure is used in the Tokens defined above.

Seal ::= SEQUENCE{
sealValue [0] BIT STRING,
secretAlgId [1] AlgorithmIdentifierOPTIONAL,
hashAlgId [2] AlgorithmIdentifierOPTIONAL,
targetName [3] Identifier OPTIONAL,
keyId [4] INTEGER OPTIONAL

}

signatureValue The value of the signature. It is the result of a public encryption
of a hash value of the certificateBody .

publicAlgId Only present if the certificate body is encrypted, then it is a
duplication of the algId value in “commonContents .” This is not
required in CSI-ECMA.

hashAlgId Only present if the certificate body is encrypted, then it is a
duplication of the hashAlgId value in “commonContents .” This
is not required in CSI-ECMA.

issuerCAName The identity of the Certification Authority that has signed the use
certificate corresponding to the private key used to sign this
certificate.

caCertInformation Contains either just a certificate serial number that together with
the issuerCAName uniquely identifies the user certificate
corresponding to the private key used to sign this certificate, or
full specification of a certification path via which the validity of
the signature can be verified. The latter option follows the
approach used in [22].

sealValue The value of the seal. It is the result of a secret encryption of a
hash value of a set of octets (which are the DER encoding of
some ASN.1 type).

secretAlgId An optional indicator of the sealing algorithm.

hashAlgId Only present if the secretAlgId does not specify which hashing
algorithm is used.

targetName This field identifies the targetAEF or target with which the secret
key used for the seal is shared.

keyId This serial number together with the targetName uniquely
identifies the secret key used in the seal.
3-96 Security Service, v1.7 March 2001

3

so

y

.

3.6.26 Basic Key Distribution

The TargetKeyBlock is structured as follows:

• An identifier (kdSchemeOID) for the key distribution scheme being used, which
takes the form of an OBJECT IDENTIFIER.

• A part that, if present, the target AEF needs to pass on to its KDS (targetKDSPart
- will be present only when the target AEF 's KDS is different from the initiator's).

• A part that, if present, can be used directly by the targetAEF (targetPart).

When a targetAEF using a separate KDS receives the targetKeyBlock , it first
checks whether it supports the key distribution scheme indicated in kdsSchemeOID .
Two different cases need to be considered:

1. Only the targetPart is present. The target AEF computes the basic key directly,
using the information present in the targetPart . The syntax of targetPart is
scheme dependent. Expiry information optionally can be present in targetPart . If
supported by the scheme, the Primary Principal attributes of the initiator will al
be present for PAC protection under the Primary Principal Qualification method
(see above).

2. Only the targetKDSPart is present. The targetAEF forwards the
TargetKeyBlock to its KDS. In return, it receives a scheme dependent data
structure that allows the target AEF to determine the basic key and, if supported b
the scheme, the Primary Principal attributes of the initiator for PAC protection
purposes. Expiry information can optionally be present in the targetKDSPart .

The form of this information depends on the key distribution configuration in place

3.6.27 Keying Information Syntax

TargetKeyBlock ::= SEQUENCE {
kdSchemeOID [2] OBJECT IDENTIFIER,
targetKDSpart [3] ANY OPTIONAL,

-- depending on kdSchemeOID
targetPart [4] ANY OPTIONAL

-- depending on kdSchemeOID
}

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-97

3

e,

d
3.6.28 Summary of Key Distribution Schemes

This specification defines three key distribution schemes. These are:

1. symmIntradomain : using a secret key technology within a domain. In this cas
the targetKDSpart of the TargetKeyBlock is not supplied and the targetPart
contains a Kerberos ticket.

2. hybridInterdomain : In this case, the targetPart field is not supplied. The
PublicTicket contains a Kerberos ticket.

3. asymmetric : the targetKDSpart is not supplied and the targetPart contains an
SPKM_REQ.

kdSchemeOID Identifies the key distribution scheme used. Allows the targetAEF
to determine rapidly whether or not the scheme is supported. It
also allows for the easy addition of future schemes.

targetKDSpart Part of the Target Key Block that is processable only by the KDS
of the target AEF. This part is sent by the target AEF to its local
KDS, in order to get the basic key that is in it. It must always
contain the name of a target “served” by the targetAEF in
question. The mapping between the name of the application an
the name of the target AEF is known to the target AEF 's KDS,
which is able to authenticate which targetAEF is issuing the
request for translating the targetKDSpart . It can then verify that
the AEF is one that is responsible for the application name
contained in the targetKDSpart . If it is, the key is released and is
sent protected back to the requesting AEF. TargetKDSpart should
include data that enables the KDS of the target AEF to
authenticate the KDS of the initiator. When the “Primary
Principal Qualification” protection method needs to be used for
the PAC, unless there is an accompanying targetPart ,
targetKDSpart must contain the appropriate primary principal
security attributes (which is always true in this specification).

targetPart A part of the Target Key Block that is processed only by the
target AEF. When there is no targetKDSpart it is processable
directly; otherwise, it can only be processed after the target
KDSpart has been processed by the KDS of the target AEF, and
the appropriate Keying Information has been returned to the AEF.
The targetPart construct should include data that enables the
target AEF to authenticate the KDS of the initiator. When the
“Primary Principal Qualification” protection method needs to be
used for the PAC, targetPart must contain the primary principal
security attributes.
3-98 Security Service, v1.7 March 2001

3

ant

 235

e Key

y

s
The following table shows the different syntaxes used for targetKDSpart and
targetPart for the defined KD-schemes. “Missing” in the table means that the relev
construct is not supplied.

Further options are possible by defining further kd-schemes. For example, ECMA
also defines options for:

• Initiators with public keys and targets with secret keys.

• Initiators with secret keys and targets with public keys.

3.6.29 CSI-ECMA Secret Key Mechanism

In this scheme, the client and target each share different secret keys with the sam
Distribution Server.

To establish the association, between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the target’s
long term key. On receipt of the targetKeyBlock , the target can extract the basic ke
from it.

The symmIntradomain key distribution scheme

• has a mechanism id of CSI_ECMA_Secret , and

• uses a Kerberos ticket in the targetKeyBlock of the initial_context_token .
An unmodified Kerberos TGS can be used as the KDS in this case.

3.6.29.1 Profile of Ticket as Used in SymmIntradomain Scheme

The following table indicates which optional fields must be present in the Kerbero
ticket for the CSI_ECMA_Secret mechanism and indicates the values which are
required to be present in all fields.

Table 3-10 Syntaxes Used for targetKDSpart and targetPart

KD-Scheme name kdSchemeOID targetKDSpart targetPart

symmIntradomain {kd-schemes 1} Missing Ticket

hybridInterdomain {kd-schemes 3} PublicTicket Missing

asymmetric {kd-schemes 6} Missing SPKM_REQ

Table 3-11 Kerberos Ticket’s Mechanism Fields

Field Value/Constraint

tkt-vno 5

realm ticket issuer's domain name in Kerberos realm name form

sname target application name including the realm of the target

- EncTicketPart encrypted with long term key of target AEF
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-99

3

 key

f

The Kerberos Ticket’s authorization_data field contains the PPID of the context
initiator, as formally defined below.

ECMA-AUTHORIZATION-DATA-TYPE ::= INTEGER { ECMA-ADATA (65) }
ECMA-AUTHORIZATION-DATA ::= SEQUENCE {

ecma-ad-type [0] ENUMERATED {ppidType (0)},
ecma-ad-value [1] CHOICE {ppidValue [0]SecurityAttribute

}
}

3.6.30 CSI-ECMA Hybrid Mechanism

In this scheme, the initiator shares a secret key with its KDS and the target shares a
secret key with its KDS (which is different). In addition, each KDS possesses a
private/public key pair.

To establish the client-target association, the client gets a targetKeyBlock from its
KDS containing the basic key encrypted under a temporary key and the temporary
encrypted under the target’s KDS public key. The targetKeyBlock is also signed
using the initiator’s KDS private key.

-- flags only bits 6, 10 and 11 can be meaningful in the context o
the CSI-ECMA protocol, the rest are ignored

-- key the basic key

-- crealm initiator domain name in Kerberos realm name form

-- cname principal name of the initiator (in the case of delegation
the cname will be that of the delegate)

-- transited not used

-- authtime the time at which the initiator was authenticated

-- starttime not used

-- endtime the time at which the ticket becomes invalid

-- renew-till not used

-- caddr not used

-- authorization-data contains the PPID corresponding to cname

ppidType Indicates the type of the authorization data that is included in the
Ticket .

ppidValue This value is used in the ppQualification PAC protection
method, as described above.

Table 3-11 Kerberos Ticket’s Mechanism Fields (Continued)

Field Value/Constraint
3-100 Security Service, v1.7 March 2001

3

On receipt of the targetKeyBlock , the target transmits it to its KDS and gets back the
basic key encrypted under the long term secret key it shares with its KDS.

The hybridInterdomain key distribution scheme:

• has a mechanism id of CSI_ECMA_Hybrid in the IOR, and

• uses a Public ticket in the targetKeyBlock of the initial_context_token , as
described below.

A modified Kerberos TGS can be used as the KDS in this case.

3.6.30.1 Hybrid Inter-domain Key Distribution Scheme Data Elements

PublicTicket ::= SEQUENCE{
krb5Ticke [0] Ticket,
publicKeyBlock[1] PublicKeyBlock

}

PublicKeyBlock ::= SEQUENCE{
signedPKBPart [0] SignedPKBPart,
signature [1] Signature OPTIONAL,
certificate [2] Certificate OPTIONAL

}

SignedPKBPart ::= SEQUENCE{
keyEstablishmentData[0]KeyEstablishmentData,
encryptionMethod [1] AlgorithmIdentifier OPTIONAL,
issuingKDS [2] Identifier,
uniqueNumber [3] UniqueNumber,

validityTime [4] TimePeriods,
creationTime [5] UTCTime

}

UniqueNumber ::= SEQUENCE{
timeStamp [0] UTCTime,
random [1] BIT STRING

}

Security Service, v1.7 CSI-ECMA Protocol March 2001 3-101

3

3.6.30.2 Key Establishment Data Elements

These are used in public key establishment mechanisms.

KeyEstablishmentData ::= SEQUENCE {
encryptedPlainKey[0]BIT STRING,-- encrypted PlainKey
targetName [1] Identifier OPTIONAL,
nameHashingAlg[2]AlgorithmIdentifierOPTIONAL

}

HashedNameInput ::= SEQUENCE {
hniPlainKey [0] BIT STRING,-- same as plainKey
hniIssuingKDS[1] Identifier

PlainKey ::= SEQUENCE {
plainKey [0] BIT STRING, -- The cleartext key

krb5Ticket The Kerberos Ticket that contains the basic key. The encrypted
part of this ticket is encrypted using the key found within the
encryptedPlainKey field of the KeyEstablishmentData in the
PublicKeyBlock .

publicKeyBlock Contains the key used to protect the krb5Ticket encrypted using
the public key of the recipient and signed by the encryptor (i.e.,
the context initiator's KD-Server).

signedPKBPart The part of the publicKeyBlock that is signed. The
keyEstablishmentData field contains the
KeyEstablishmentData (i.e., the actual encrypted temporary
key).

• The encryptionMethod indicates the algorithm used to
encrypt the encryptedKey .

• The issuingKDS is the name of the KD-Server that produced
the PublicTicket .

• The uniqueNumber is a value (containing a timestamp and a
random number) that prevents replay of the PublicTicket .

• validityTime specifies the times for which the PublicTicket
is valid.

• creationTime contains the time at which the PublicTicket
was created.

signature Contains the signature calculated by the issuingKDS on the
signedPKBPart field.

certificate If present, contains the public key certificate of the issuing KDS.
3-102 Security Service, v1.7 March 2001

3

 be

 the

lt
hashedName [1] BIT STRING
}

3.6.30.3 Key Establishment Algorithm

The PublicKeyBlock in this mechanism and the SPKM_REQ construct used in
scheme 6 requires a sequence of key establishment algorithm identifier values to
inserted into the key_estb_set field. The OBJECT IDENTIFIER below is defined as
the (single) key establishment “algorithm” for ECMA mechanisms:

gss-key-estb-alg AlgorithmIdentifier ::= {kd-schemes, NULL }

This algorithm is used to establish a symmetric key for use by both the initiator and
target AEF as part of the context establishment. The corresponding key_estb_req
field of the SPKM_REQ will be a BIT STRING the content of which is a DER
encoding of the KeyEstablishmentData element.

encryptedPlainKey Contains the encrypted key. The BIT STRING contains the resu
of encrypting a PlainKey structure.

targetName If present, contains the name of the target application. This is
necessary for some of the KD-schemes.

nameHashingAlg Specifies the algorithm that is used to calculate the hashedName
field of the PlainKey .

hniPlainKey
hniIssuingKDS

Used as input to a hashing algorithm as a general means to
prevent ciphertext stealing attacks.

plainKey Contains the actual bits of the plaintext key that is to be
established.

hashedName A hash of the name of the encrypting KDS calculated using the
plainkey and KDS name as input (within the HashedNameInput
structure). The algorithm identified in nameHashingAlg is used
to calculate this value.

targetName If present, contains the name of the target for which the
PublicTicket was originally produced. This may be different from
the targetIdentity field of the initialContextToken if caching of
PublicTickets has been implemented.

gss-key-estb-alg This AlgorithmIdentifier identifies the key establishment
algorithm value to be used within the key_estb_set field
of an SPKM_REQ data element as the one defined by
ECMA.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-103

3

et

t

3.6.30.4 Profile of Ticket as Used in Hybrid Interdomain Scheme

Note that the krb5Ticket part of this is identical to that used in the
CSI_ECMA_Secret key mechanism except that the EncTicketPart is encrypted with
the temporary key used between KDS rather than the target’s key.

Table 3-12 Ticket as Used in Hybrid Interdomain Scheme

Field Value/Constraint

krb5Ticket

- tkt-vno 5

- realm initiator domain name in Kerberos realm name form

- sname target application name including the realm of the targ

-- EncTicketPart encrypted with temporary key (which is in turn
encrypted within the keyEstablishmentData field)

--- flags only bits 6, 10 and 11 can be meaningful in the contex
of the CSI-ECMA protocol, the rest are ignored

--- key the basic key

--- crealm initiator domain name in Kerberos realm name form

--- cname principal name of the initiator (in the case of delegation
the cname will be that of the delegate)

--- transited not used

--- authtime the time at which the initiator was authenticated

--- starttime not used

--- endtime the time at which the ticket becomes invalid

--- renew-till not used

--- caddr not used

--- authorization-data contains the PPID corresponding to cname

publicKeyBlock

- signedPKBPart

-- encryptedKey KeyEstablishmentData structure

-- encryptionMethod gss-key-estb-alg

-- issuingKDS X.500 name of initiator's KDS (the signer)

-- uniqueNumber creation time of publicKeyBlock plus a random bit
string

-- validityTime only one period allowed
3-104 Security Service, v1.7 March 2001

3

r use

ck is
3.6.31 CSI-ECMA Public Mechanism

In this scheme, both client and target possess a private/public key pair and neithe
a KDS.

To establish the client-target association, the client constructs a targetKeyBlock
containing a basic key encrypted under the target’s public key. The target key blo
signed with the client’s private key. On receipt of the targetKeyBlock , the target
directly establishes a basic key from it.

The asymmetric key distribution scheme:

• has a mechanism id of CSI_ECMA_Public , and

• uses an SPKM_REQ in the targetKeyBlock of the initial_context_token .

This mechanism has only a profile of the SPKM_REQ as defined below.

3.6.31.1 Profile of SPKM_REQ Used in Public Key Mechanism

The following table indicates which optional fields must be present in the
SPKM_REQ in the targetKeyBlock for the CSI_ECMA_Public mechanism and
indicates the values that are required to be present in all fields.

 -- creationTime creation time of publicKeyBlock

- signature contains all the signing information as well as the
actual signature bits

- certificate optional

Table 3-13 SPKM-REQ Used in Public Key Mechanism

Field Value/Constraint

 requestToken

- tok_id not used - fixed value of ‘0'

- context_id not used - fixed value of bit string containing one zero bit

- pvno not used - fixed value of bit string containing one zero bit

- timestamp creation time of SPKM_REQ - required

- randSrc random bit string

- targ_name X.500 Name of target AEF

- src_name X.500 Name of initiator

- req_data

-- channelId not used - octet string of length one value ‘00'H

Table 3-12 Ticket as Used in Hybrid Interdomain Scheme (Continued)

Field Value/Constraint
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-105

3

and

Definitions of KeyEstablishmentData and gss-key-estb-alg are given in
Section 3.6.30, “CSI-ECMA Hybrid Mechanism,” on page 3-100.

3.6.32 Dialogue Key Block

Dialogue Key Block constructs are used to specify how the integrity dialogue key
confidentiality dialogue key should be derived from the basic key, and specify the
cryptographic algorithms with which the keys should be used. Dialogue keys are
explained above. The syntax is as follows:

DialogueKeyBlock ::= SEQUENCE {
integKeySeed [0] SeedValue,
confKeySeed [1] SeedValue,
integKeyDerivationInfo[2] KeyDerivationInfo OPTIONAL,
confKeyDerivationInfo [3] KeyDerivationInfo OPTIONAL,
integDKuseInfo [4] DKuseInfo OPTIONAL,
confDKuseInfo [5] DKuseInfo OPTIONAL

}

SeedValue ::= SEQUENCE {
timeStamp [0] UTCTime OPTIONAL,
random [1] BIT STRING

}

KeyDerivationInfo::= SEQUENCE {
owfId [0] AlgorithmIdentifier,
keySize [1] INTEGER

}

-- seq_number missing

-- options not used - all bits set to zero

-- conf_alg not used - use NULL CHOICE

-- intg_alg not used - use a SEQUENCE OF with zero elements

- validity mandatory

- key_estb_set only one element supplied containing gss-key-estb-alg

- key_estb_req contains KeyEstablishmentData with targetApplication field
missing

- key_src_bind missing

req_integrity sig_integ mandatory

certif_data only userCertificate field supported

 auth_data missing

Table 3-13 SPKM-REQ Used in Public Key Mechanism (Continued)

Field Value/Constraint
3-106 Security Service, v1.7 March 2001

3

d

d
DKuseInfo ::= SEQUENCE {
useAlgId [0] AlgorithmIdentifier,
useHashAlgId [1] AlgorithmIdentifierOPTIONAL

}

integKeySeed A random number, optionally concatenated with a time value to
ensure uniqueness, used as input to the one way function
specified in integKeyDerivationInfo .

confKeySeed A random number, optionally concatenated with a time value to
ensure uniqueness, used as input to the one way function
specified in confKeyDerivationInfo .

integKeyDerivationInfo Key derivation information for the integrity dialogue key, as
follows:

• owfId - The one way algorithm that takes the basic key
XOR the seed as input, resulting in the integrity dialogue
key.

• keySize - The size of the key in bits. If the algorithm
identified by owfId produces a larger key, it is reduced by
masking to this length, losing its most significant end.

confKeyDerivationInfo Key derivation information for the confidentiality dialogue key.
The fields in this construct have the same meanings as define
above for the integrity dialogue key.

integDKuseInfo Information describing how the integrity dialogue key is to be
used, as follows:

• useAlgId - The secret or public reversible encryption
algorithm with which the integrity dialogue key is to be
used.

• useHashAlgId - The one way function with which the
integrity dialogue key is to be used. It is the hash produce
by this algorithm on the data to be protected that is
encrypted using useAlgId .

confDKuseInfo Information describing how the confidentiality key is to be
used. The useHashAlgId construct is not used here.
Security Service, v1.7 CSI-ECMA Protocol March 2001 3-107

3

es

 for

he
rity.

. The

ly
es of

or the

he

ections

y
e
3.7 Integrating SSL with CORBA Security

3.7.1 Introduction

This section defines how SSL [21] is integrated with CORBA Security. SSL provid
CSI level 0 (see “Common Secure Interoperability Levels” in Appendix D)
functionality only. This level of functionality is achieved only if the optional
authentication features of SSL are used.

3.7.2 Cryptographic Profiles

All of the cryptographic profiles defined by SSL may be used by ORBs using SSL
Security.

3.7.3 IOR Encoding

A new kind of security tag is defined, for use in the component tag sequence in t
IIOP IOR profile body, to describe the use of Secure Transports with CORBA Secu
This enables the future use of combinations of security mechanisms and secure
transports.

The IIOP TAG identifying the SSL secure transport is TAG_SSL_SEC_TRANS . The
tag component data described below must be encapsulated using CDR encoding
data structure associated with this tag is as follows:

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

};

The definition of association options is the same as for the CSI protocols. SSL on
supports client and target authentication if the optional certificate exchanger featur
SSL are supported.

Unlike the CSI mechanism TAGs, the SSL TAG does not include cryptographic
profiles as cryptography is negotiated as part of the SSL session establishment. F
same reason the TAG does not include a security name for the target.

The port field contains the port number to be used instead of the port defined in t
accompanying IIOP profile body, if SSL is selected by the client. It contains the
TCP/IP port number (at the specified host) where the target agent is listening for
connection requests. The agent must be ready to process IIOP messages on conn
accepted at this port.

As with the other secure interoperability options, if the client invokes the target
without the appropriate level of security (e.g., if the client is not secure and simpl
invokes the target ignoring all security TAGs in the profile) the target shall raise th
CORBA::NO_PERMISSION exception.
3-108 Security Service, v1.7 March 2001

3

ol is
eral

 use
OP
urity
nd

:

curity
-
tion

e
e

ted

of a
3.7.4 Relation to SECIOP

As SSL provides a secure transport layer over TCP/IP, the CORBA SECIOP protoc
not required when using SSL. Instead, the connection rules of IIOP (see the Gen
Inter-ORB Protocol chapter of the Common Object Request Broker: Architecture and
Specification) are applied to SSL (which itself uses TCP).

3.8 DCE-CIOP with Security

This section describes how to provide secure interoperability between ORBs that
the DCE Common Inter-ORB Protocol (DCE-CIOP). It describes how the DCE-CI
transport layer should handle security (for example, how it should interpret the sec
components of the IOR profile when selecting DCE Security Services for a request a
secure invocation).

3.8.1 Goals of Secure DCE-CIOP

The original goals of DCE-CIOP, documented in the Common Object Request Broker:
Architecture and Specification, are maintained and enhanced by Secure DCE-CIOP

• Support multi-vendor, mission critical, enterprise-wide, secure ORB-based
applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

• Preserve ORB implementation freedom.

Secure DCE-CIOP achieves these goals by taking advantage of the integrated se
services provided by DCE Authenticated RPC. It is not a goal of the Secure DCE
CIOP specification to support the use of arbitrary security mechanisms for protec
of DCE-CIOP messages.

3.8.2 Secure DCE-CIOP Overview

Secure interoperability between ORBs using the DCE-CIOP transport relies on th
DCE Security Services and the DCE Authenticated RPC runtime that utilizes thos
services.

The DCE Security Services (specified in [6]), as employed by the DCE Authentica
RPC runtime (specified in [7] and the [8]), provide the following security features:

• cryptographically secured mutual authentication of a client and target,

• ability to pass client identity and authorization credentials to the target as part
request,

• protection against undetected, unauthorized modification of request data,

• cryptographic privacy of data, and

• protection against replay of requests and data.
Security Service, v1.7 DCE-CIOP with Security March 2001 3-109

3

reats

t-
 flow

e

ure

E-

P is

port

rt

ic
ribed

B

s

ay,
st be
The RPC runtime provides the communication conduit for exchanging security
credentials between communicating parties. It protects its communications from th
such as message replay, message modification, and eavesdropping.

The DCE-CIOP uses DCE RPC APIs to request security features for a given clien
target communication binding. Subsequent DCE-CIOP messages on that binding
over RPC and thus are protected at the requested levels.

This Secure DCE-CIOP specification defines the IOR Profile components required to
support Secure DCE-CIOP. Each component is identified by a unique tag, and th
encoding and semantics of the associated component_data are specified. Client
secure association requirements, as indicated by client-side policy, and target sec
association requirements, as specified in the target IOR Profile security components,
are mapped to DCE Security Services. Finally, the use of DCE APIs to protect DC
CIOP messages is described.

3.8.2.1 IOR Security Components for DCE-CIOP

The information necessary to invoke secure operations on objects using DCE-CIO
encoded in an IOR in a profile identified by TAG_MULTIPLE_COMPONENTS . The
profile_data for this profile is a CDR encapsulation (see “CDR Transfer Syntax” in
the General Inter-ORB Protocol chapter of the Common Object Request Broker:
Architecture and Specification) of the MultipleComponentProfile type, which is a
sequence of TaggedComponent structures. These types are described in the ORB
Interoperability Architecture chapter of the Common Object Request Broker:
Architecture and Specification.

The Multiple Component Profile contains the tagged components required to sup
DCE-CIOP, described in the DCE ESIOP chapter of the Common Object Request
Broker: Architecture and Specification, as well as the components required to suppo
security for DCE-CIOP. The general security components are described in
Section 3.1.4.1, “Security Components of the IOR,” on page 3-8. The DCE-specif
security component and semantics for the common security components are desc
here.

Although a conforming implementation of Secure DCE-CIOP is only required to
generate and recognize the components defined here and in the General Inter-OR
Protocol chapter of the Common Object Request Broker: Architecture and
Specification, the profile may also contain components used by other kinds of ORB
transports and services. Implementations should be prepared to encounter profile
identified by TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP.
Unrecognized components should be preserved but ignored. Although an
implementation may choose to order the components in a profile in a particular w
other implementations are not required to preserve that order. Implementations mu
prepared to handle profiles whose components appear in any order.
3-110 Security Service, v1.7 March 2001

3

rt
e.

ure

nt

TAG_DCE_SEC_MECH

For a profile to support Secure DCE-CIOP, it must include exactly one
TAG_DCE_SEC_MECH component. Presence of this component indicates suppo
for the (non-GSSAPI) “DCE Security with Kerberos V5 with DES” mechanism typ
The component_data field contains an authorization service identifier and an
optional sequence of tagged components.

Future versions of DCE Security that require different information than what is
provided by the component_data structure described below are expected to be
supported with a new component tag, rather than with revisions to the data struct
associated with the TAG_DCE_SEC_MECH tag.

The DCE Security Mechanism component is defined by the following OMG IDL:

module DCE_CIOPSecurity {
const IOP::ComponentId TAG_DCE_SEC_MECH = 103
// CORBA IDL doesn't (yet) support const octet
//
// const octet DCEAuthorizationNone = 0;
// const octet DCEAuthorizationName = 1;
// const octet DCEAuthorizationDCE = 2;
typedef unsigned short DCEAuthorization;
const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;

// since consts of type octet are not allowed in IDL the constant
// values that can be assigned to the authorization_service field
// in the DCESecurityMechanismInfo is declared as unsigned shorts.
// when they actually get assigned to the authorization_service field
// they should be assigned as octets.
struct DCESecurityMechanismInfo {

octet authorization_service;
sequence <TaggedComponent> components;

};
};

A TaggedComponent structure is built for the DCE Security Mechanism compone
by setting the tag member to TAG_DCE_SEC_MECH , and setting the
component_data member to a CDR encapsulation of a
DCESecurityMechanismInfo structure.

The authorization_service Field

The authorization_service field is used to indicate what authorization service is
required by the target, and therefore must be supported by the authenticated RPC
runtime for invocations on this IOR. Two authorization models are supported:
DCEAuthorizationName and DCEAuthorizationDCE with a third identifier,
DCEAuthorizationNone , to indicate that no authorization is required.
Security Service, v1.7 DCE-CIOP with Security March 2001 3-111

3

one

he

hared
nents
y
at the

and
 is
sent.

C

The components Field

The components field contains a sequence of zero or more tagged components, n
of which may appear more than once, from the following list of common security IOR
components: TAG_ASSOCIATION_OPTIONS and TAG_SEC_NAME .

Each of these components, defined in Section 3.1.4.1, “Security Components of t
IOR,” on page 3-8, may be present either in the components field of the
DCESecurityMechanismInfo structure, or at the top level of the IOR profile. When
one of these components appears at the top level of the profile, its data may be s
by other security mechanisms in the profile. When it appears in the nested compo
field of DCESecurityMechanismInfo , its data is available only to the DCE Securit
mechanism and overrides the data of an identically-tagged component, if present,
top level of the profile.

3.8.2.2 TAG_ASSOCIATION_OPTIONS

The association options component, described in Section 3.1.4.1, “Security
Components of the IOR,” on page 3-8, contains flags indicating which protection
authentication services the target supports and which it requires. This component
optional for Secure DCE-CIOP; defaults are used when the component is not pre

The way in which association options are interpreted for use with DCE security is
reflected in Table 3-14 shows how an association option is mapped to a DCE RP
protection level and authentication service.

If the TAG_ASSOCIATION_OPTIONS component is not present, then the target is
assumed both to support and to require rpc_c_protect_level_default and
rpc_c_authn_dce_secret . (The value of rpc_c_protect_level_default is defined
by the DCE implementation or by a site administrator.)

Table 3-14 Association Option Mapping to DCE Security

Association Option DCE RPC Protection Level DCE RPC Authentication Service

NoProtection rpc_c_protect_level_none rpc_c_authn_none

Integrity rpc_c_protect_level_pkt_integrity rpc_c_authn_dce_secret

Confidentiality rpc_c_protect_level_pkt_privacy rpc_c_authn_dce_secret

DetectReplay rpc_c_protect_level_pkt rpc_c_authn_dce_secret

DetectMisordering rpc_c_protect_level_pkt rpc_c_authn_dce_secret

EstablishTrustInTarget rpc_c_protect_level_connect rpc_c_authn_dce_secret

EstablishTrustInClient rpc_c_protect_level_connect rpc_c_authn_dce_secret

tag not present rpc_c_protect_level_default rpc_c_authn_dce_secret
3-112 Security Service, v1.7 March 2001

3

-14.

port

 RPC
 the

ed in

nd is
ired

ich
l
al

The target_supports Field

When an association option is set in the target_supports field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
supports invocations that use Secure DCE-CIOP with the protection level and
authentication service that correspond to the selected option, as shown in Table 3
Any or all of the association options may be set in the target_supports field. The
options set in the target_supports field will be compared with client-side policy
required options to determine if the target can support the client’s requirements.

Although, for the DCE security mechanism, a single selected option may imply
support for several other options (e.g., selection of the Integrity option implies sup
for DetectReplay , DetectMisordering , and EstablishTrustInClient) it is
recommended that every supported option be explicitly set in the target_supports
field to facilitate comparison with client requirements.

The target_requires Field

When an association option is set in the target_requires field of the
TAG_ASSOCIATION_OPTIONS component_data , it indicates that the target
requires invocations secured with at least the protection level and authentication
service that correspond to the selected option, as shown in Table 3-14. Since DCE
supports a range of protection levels, each of which provides all the protection of
level below it and also some additional protection, selecting multiple target_requires
options does not make sense. For DCE, no more than one option need be select
the target_requires field.

If a TAG_ASSOCIATION_OPTIONS component is contained within the
DCESecurityMechanismInfo structure, the target_requires field may conform to
the DCE semantics (i.e., no more than one option selected). If other security
mechanisms are sharing the TAG_ASSOCIATION_OPTIONS component, and
perhaps using different rules for interpreting the target_requires field, then the
target_requires field may have several options selected. The “DCE Association
Options Reduction” algorithm, described in section 3.8.3.1, handles both cases a
used to select the appropriate DCE secure invocation services given a set of requ
association options.

The EstablishTrustInTarget option in the target_requires field is meaningless,
and is therefore ignored.

3.8.2.3 TAG_SEC_NAME

The security name component contains the DCE principal name of the target.
Generally, this is a global principal name that includes the name of the cell in wh
the target principal’s account resides. If a cell-relative principal name (i.e., the cel
prefix does not appear) is specified, the local cell is assumed. Cell-relative princip
names are only appropriate for use in IORs that are consumed by clients in the same
cell in which the target resides. When an IOR containing a cell-relative principal name
in the TAG_SEC_NAME component crosses a cell boundary, the cell-relative
principal name should be replaced with a global name.
Security Service, v1.7 DCE-CIOP with Security March 2001 3-113

3

 of
me

ieve

RPC

.

n

 on
ion
The format of a “human-friendly” DCE principal name is described in section 1.13
[6]. It is a string containing a concatenated cell name and cell-relative principal na
that looks like:

/.../cell-name/cell-relative-principal-name

For example, the principal with the cell-relative name “printserver ” in the
“mis.prettybank.com” cell has the global principal name:

/.../mis.prettybank.com/printserver

The component_data member of the TAG_SEC_NAME component is set to the
string value of the DCE principal name. The string is represented directly in the
sequence of octets, including the terminating NULL .

If the TAG_SEC_NAME component is not present, then a value of NULL is assumed,
indicating that the client will depend on the DCE authenticated RPC runtime to retr
the DCE principal name of the target, identified in the IOR by the DCE-CIOP string
binding and binding name components. This case indicates that the client is not
interested in authentication of the target identity.

3.8.3 DCE RPC Security Services

This section provides details about the protection provided by DCE Authenticated
authorization services, protection levels, and authentication services. See the
rpc_binding_set_auth_info() man page in [9] for more information about using
these protection parameters to secure an association between a client and target

DCE RPC Authorization Services

This section describes the DCE authorization service indicated by the
authorization_service member of the DCESecurityMechanismInfo structure in
the component_data field of the TAG_DCE_SEC_MECH component.

DCEAuthorizationName indicates that the target performs authorization based o
the client security name. The DCE RPC authorization service
DCEAuthorizationName asserts the principal name (without cryptographic
protection if the association option NoProtection is chosen, or with cryptographic
protection otherwise).

DCEAuthorizationDCE indicates that the target performs authorization using the
client’s Privilege Attribute Certificate (for OSF DCE 1.0.3 or previous versions), or the
client’s Extended Privilege Attribute Certificate (for DCE 1.1). The authorization
service DCEAuthorizationDCE asserts the principal name and appropriate
authorization data (without cryptographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

DCEAuthorizationNone indicates that the target performs no authorization based
privilege information carried by the RPC runtime. This is valid only if the associat
option NoProtection is chosen.
3-114 Security Service, v1.7 March 2001

3

ng

ribed

dy of

o

d

y

The authorization_service identifiers defined here for Secure DCE-CIOP
correspond to DCE RPC authorization service identifiers and are defined to have
identical values. The relationship between these identifiers is shown in the followi
table.

DCE RPC Protection Levels

The meanings of the DCE RPC protection levels referenced in Table 3-15 are desc
below. For the purposes of evaluating the protection levels, it is interesting to
remember that a single DCE-CIOP message is transferred over the wire in the bo
one or more DCE RPC PDUs.

Table 3-15 Relation between DCE-CIOP and DCE RPC Authorization Service Identifiers

Secure DCE-CIOP
authorization_service

DCE RPC
Authorization Service Shared Value

DCEAuthorizationNone rpc_c_authz_none 0

DCEAuthorizationName rpc_c_authz_name 1

DCEAuthorizationDCE rpc_c_authz_dce 2

rpc_c_protect_level_none Indicates that no authentication or message protection is t
be performed, regardless of the authentication service
chosen. Depending on target policy, the client may be
granted access as an unauthenticated principal.

rpc_c_protect_level_connect Indicates that the client and server identities are exchange
and cryptographically verified at the time the binding is set
up between them. Strong mutual authentication and repla
detection for the binding set-up only is provided. There are
no protection services per DCE RPC PDU.

rpc_c_protect_level_pkt Indicates that the rpc_c_protect_level_connect services
are provided plus detection of misordering or replay of
DCE RPC PDUs. There is no protection against PDU
modification.

rpc_c_protect_level_pkt_integrity Offers the rpc_c_protect_level_pkt services plus detection
of DCE RPC PDU modification.

rpc_c_protect_level_pkt_privacy Offers the rpc_c_protect_level_pkt_integrity services plus
privacy of RPC arguments, which means the DCE-CIOP
message in its entirety is privacy protected.

rpc_c_protect_level_default Indicates the default protection level, as defined by the
DCE implementation or by a site administrator (should be
one of the above defined values).
Security Service, v1.7 DCE-CIOP with Security March 2001 3-115

3

are

 for

e

e

ese

el

t”

ltant
el

he

DCE RPC Authentication Services

The meanings of the DCE RPC authentication services referenced in Table 3-15
described below.

3.8.3.1 Secure DCE-CIOP Operational Semantics

This section describes how the DCE-CIOP transport layer should provide security
invocation and locate requests.

During a request invocation, if the IOR components indicate support for the DCE-
CIOP transport and the TAG_DCE_SEC_MECH component is present, then a Secur
DCE-CIOP request can be made.

Deriving DCE Security Parameters from Association Options

The client-side secure invocation policy and the target-side policy expressed in th
TAG_ASSOCIATION_OPTIONS component are used to derive the actual options
using the method described in “Determining Association Options” on page 3-12. Th
options are then reduced to a single required_option using the algorithm described
in “The DCE Association Options Reduction Algorithm” on page 3-116 below. The
resultant required_option is used to select a DCE RPC protection level and
authentication service using Table 3-14 on page 3-112. The derived protection lev
and authentication service are used to secure the association via the
rpc_binding_set_auth_info() call (see “Securing the Binding Handle to the Targe
on page 3-117).

The DCE Association Options Reduction Algorithm

The “DCE Association Options Reduction” algorithm is used to select a single
association option, required_option , given the value required by client and target
derived as described in “Determining Association Options” on page 3-12. The resu
required_option indicates, via Table 3-14 on page 3-112, the DCE protection lev
and authentication service to use for invocations.

The association option names used in the following algorithm refer to options in t
negotiated-required options set.

The “DCE Association Options Reduction” algorithm is expressed as:

If Confidentiality is set, then required_option = Confidentiality;
else if Integrity is set, then required_option = Integrity;
else if DetectReplay is set, OR
 if DetectMisordering is set,

rpc_c_authn_none Indicates no authentication. If this is selected, then
no authorization, DCEAuthorizationNone, must be
chosen as well.

rpc_c_authn_dce_secret Indicates the DCE shared-secret key authentication
service.
3-116 Security Service, v1.7 March 2001

3

d of

ns

irs.

d

r if

d the
 not

 then required_option = DetectReplay;
 (alternatively, the same results are obtained with:
 then required_option = DetectMisordering;)
else if EstablishTrustInClient is set,
 then required_option = EstablishTrustInClient;
else required_option = NoProtection.

Behavior When TAG_ASSOCIATION_OPTIONS Not Present

As described earlier, if the TAG_ASSOCIATION_OPTIONS component is not
present, then the target is assumed to support and require
rpc_c_protect_level_default and rpc_c_authn_dce_secret . Since these
protection parameters are not expressed as association options, the usual metho
deriving a single required_option by combining client and target policy (see
“Determining Association Options” on page 3-12 and “The DCE Association Optio
Reduction Algorithm” on page 3-116“above) cannot be used. Instead, use the
following alternative method to derive the required DCE RPC protection level and
authentication service:

• Translate the client-side secure invocation policy from a set of client supported
association options to a single client_supported_option and from a set of client
required association options to a single client_required_option , using in each
case the algorithm described in “The DCE Association Options Reduction
Algorithm” on page 3-116.

• Using Table 3-14 “Association Option Mapping to DCE Security” translate the
client_supported_option and client_required_option to corresponding
“supported” and “required” DCE RPC protection level/authentication service pa

• If the target principal is a member of the local cell, determine the target require
protection level implied by rpc_c_protect_level_default by calling
rpc_mgmt_inq_dflt_protect_level() passing rpc_c_authn_dce_secret as the
authn_svc parameter. If the target principal is not a member of the local cell o
it’s difficult to determine, then assume a target required protection level of
rpc_c_protect_level_pkt_integrity .

• If the client supports rpc_c_authn_dce_secret , then choose the strongest
protection level that both the client and target support and that does not excee
strongest protection level required by either the client or target. If the client does
support rpc_c_authn_dce_secret , then choose rpc_c_authn_none and
rpc_c_protect_level_none . Use the protection level and authentication service
thus derived to secure the association between this client and target.

Securing the Binding Handle to the Target

The DCE-CIOP protocol engine acquires an rpc_binding_handle to the target using
its normal procedure. The DCE_CIOP sets authentication and authorization
information on that binding handle with the rpc_binding_set_auth_info() call using
data from the IOR profile security components in the following way:
Security Service, v1.7 DCE-CIOP with Security March 2001 3-117

3

e

.

• The target security name string from the TAG_SEC_NAME component (or NUL, if
the component is not present) is passed to rpc_binding_set_auth_info() via the
server_princ_name parameter.

• If the TAG_ASSOCIATION_OPTIONS component is present in the IOR, see
“Deriving DCE Security Parameters from Association Options” on page 3-116
above to select a DCE RPC protection level and authentication service for this
invocation.

If the TAG_ASSOCIATION_OPTIONS component is not present in the IOR, se
“Behavior When TAG_ASSOCIATION_OPTIONS Not Present” on page 3-117
above to select a DCE RPC protection level and authentication service for this
invocation.

The selected protection level is passed to rpc_binding_set_auth_info() via the
protect_level parameter. The selected authentication service is passed via the
authn_svc parameter to rpc_binding_set_auth_info() .

• The auth_identity parameter is set to NULL to use the DCE default login context

• The authorization service identifier from the authorization_service field of the
DCESecurityMechanismInfo component_data is mapped to the
corresponding DCE RPC authorization service identifier (using Table 3-15 on
page 3-115) which is then passed via the authz_svc parameter.

After a successful call to rpc_binding_set_auth_info() , the authenticated binding
handle will be used by the DCE-CIOP protocol engine to make secure requests.
3-118 Security Service, v1.7 March 2001

References A
ent.

95.

uced

rry

93).
Note that these references are to definitions which are sometimes a set of docum

[1] CORBA/IIOP 2.2.

[2] Common Secure IIOP Request for Proposals (orb/96-01-03)

[3] CORBA Time Service, Chapter 16 of CORBAservices specification, also
available at the URL http://www.omg.org/docs/formal/97-02-22.pdf.

[4] IETF RFC 1779 A String Representation of Distinguished Names. March 19

[5] X/Open Application Environment Specification for Distributed Computing.

[6] X/Open Preliminary Specification X/Open DCE: Authentication and Security
Services.

[7] X/OPEN CAE Specification C309

[8] OSF AES/Distributed Computing RPC Volume.

[9] OSF DCE 1.1 Application Development Reference

[10] The ECMA GSS-API mechanism specified in ECMA-235. See also related
standard ECMA-219 (Authentication and Privilege Attribute Security
Application with related key distribution functions).

[11] GSS-APIThe Generic Security Services API as defined in IETF RFC 1508
(September 1993) and X/Open P308.An update to RFC 1508 has been prod
by the IETF cat group.

[12] The IETF GSS Kerberos V5 definition which specifies details of the use of
Kerberos V5 with GSS-API. It includes updates to RFC 1510 (e.g., how to ca
delegation information). It is specified in RFC 1964.

[13] The Kerberos V5 mechanism as defined in IETF RFC 1510 (September 19
Security Service, v1.7 March 2001 A-1

A

oc

-

m,

-

 in
[14] The ORB Portability Specification - CORBA V2.3 Chapter 9.

[15] Open Distributed Processing - Reference Model Parts 1 through 3, OMG d
#om/96-10-02, 03, 04.

[16] The SESAME gss-api mechanism. This is a subset of the ECMA GSS
Mechanism and is specified in draft-ietf-cat-sesamemech-00.txt.

[17] The SESAME V4 Overview. This can be found via the web at
www.esat.kuleuven.ac.be/cosic/sesame.html

[18] John G. Fletcher, “Serial Link Protocol Design: A Critique of the X.25
Standard, Level 2,” Proceedings of SIGCOMM '84, ACM SIGCOMM, pp.26
33, June 6-8, 1984.

[19] IETF RFC 2478, The Simple and Protected GSS-API Negotiation Mechanis
December 1998.

[20] IETF RFC 2025, The Simple Public-Key GSS-API Mechanism (SPDM),
October 1996.

[21] Secure Socket Layer [http://home.netscape.com/eng/ssl3/ssl-toc.html]

[22] ISO/IEC 9594-8, “Information Technology - Open Systems Interconnection
The Directory: Authentication Framework”, CCITT/ITU Recommendation
X.509, 1993.

[23] The extended gss-api supporting access control and delegation extensions
defined in draft-ietf-cat-xgssapi-acc-cntrl-00.txt. This interface is also defined
the ECMA GSS-API Mechanism standard - ECMA-235.
A-2 Security Service, v1.7 March 2001

 Consolidated OMG IDL B
 2.

on

urity

r

B.1 Introduction

The OMG IDL for CORBA security is split into modules as follows:

• A module containing the common data types used by all security modules.

• A module for application interfaces for each Security Functionality Levels 1 and

• A module for Security Level 2 security policy administration.

• A module for non-repudiation, including the non-repudiation policy administrati
interface.

• A module for the Replaceable Security Service, as described in Section 2.5,
“Implementor’s Security Interfaces,” on page 2-142.

• A module for elements of the SECure Inter Orb Protocol (SECIOP)l.

• A module for elements of the SSL Protocol.

• A module for elements related to Security that are added to the DCE_CIOPSec
module.

B.2 General Security Data Module

This subsection defines the OMG IDL for security data types common to the othe
security modules, which is the module Security. The Security module depends on the
TimeBase module and the CORBA module.

#if !defined(_SECURITY_IDL_)
#define _SECURITY_IDL_
#include <orb.idl>
#include <TimeBase.idl>
#pragma prefix "omg.org"
Security Service, v1.7 March 2001 B-1

B

module Security {

pragma version Security 1.7

typedef string SecurityName;
typedef sequence <octet> Opaque;

// Constant declarations for Security Service Options

const CORBA::ServiceOption SecurityLevel1 = 1;
const CORBA::ServiceOption SecurityLevel2 = 2;
const CORBA::ServiceOption NonRepudiation = 3;
const CORBA::ServiceOption SecurityORBServiceReady = 4;
const CORBA::ServiceOption SecurityServiceReady = 5;
const CORBA::ServiceOption ReplaceORBServices = 6;
const CORBA::ServiceOption ReplaceSecurityServices = 7;
const CORBA::ServiceOption StandardSecureInteroperability = 8;
const CORBA::ServiceOption DCESecureInteroperability = 9;

// Service options for Common Secure Interoperability

const CORBA::ServiceOption CommonInteroperabilityLevel0 = 10;
const CORBA::ServiceOption CommonInteroperabilityLevel1 = 11;
const CORBA::ServiceOption CommonInteroperabilityLevel2 = 12;

// Security mech types supported for secure association
const CORBA::ServiceDetailType SecurityMechanismType = 1;

// privilege types supported in standard access policy
const CORBA::ServiceDetailType SecurityAttribute = 2;

// extensible families for standard data types

struct ExtensibleFamily {
unsigned short family_definer;
unsigned short family;

};

typedef sequence<octet> OID;

typdef sequence<OID> OIDList;

// security attributes

typedef unsigned long SecurityAttributeType;

// other attributes; family = 0

const SecurityAttributeType AuditId = 1;
const SecurityAttributeType AccountingId = 2;
const SecurityAttributeType NonRepudiationId = 3;
B-2 Security Service, v1.7 March 2001

B

// privilege attributes; family = 1

const SecurityAttributeType _Public = 1;
const SecurityAttributeType AccessId = 2;
const SecurityAttributeType PrimaryGroupId = 3;
const SecurityAttributeType GroupId = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeType attribute_type;

};

typedef sequence<AttributeType> AttributeTypeList;

struct SecAttribute {
AttributeType attribute_type;
OID defining_authority;
Opaque value;
// the value of this attribute can be
// decoded only with knowledge of defining_authority

};

typedef sequence <SecAttribute> AttributeList;

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

};

// Association return status

enum AssociationStatus {
SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

};

// Authentication method
typedef unsigned long AuthenticationMethod;

typedef sequence<AuthenticationMethod> AuthenticationMethodList;
Security Service, v1.7 March 2001 B-3

B

// Credential types

enum InvocationCredentialsType {
SecOwnCredentials,
SecReceivedCredentials,
SecTargetCredentials

};

// Declarations related to Rights

struct Right {
ExtensibleFamily rights_family;
string right;

};

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

};

// Delegation related

enum DelegationState {
SecInitiator,
SecDelegate

};

enum DelegationDirective {
Delegate,
NoDelegate

};

// pick up from TimeBase

typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT;

// Security features available on credentials.

enum SecurityFeature {
SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
SecIntegrity,
SecConfidentiality,
SecIntegrityAndConfidentiality,
SecDetectReplay,
B-4 Security Service, v1.7 March 2001

B

SecDetectMisordering,
SecEstablishTrustInTarget,
SecEstablishTrustInClient

};

// Quality of protection which can be specified
// for an object reference and used to protect messages

enum QOP {
SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality

};

// Type of SecurityContext

enum SecurityContextType {
SecClientSecurityContext,
SecServerSecurityContext

};

// Operational State of a Security Context

enum SecurityContextState {
SecContextInitialized,
SecContextContinued,
SecContextClientEstablished,
SecContextEstablished,
SecContextEstablishExpired,
SecContextExpired,
SecContextInvalid

};

struct ChannelBindings {
unsigned long initiator_addrtype;
sequence<octet> initiator_address;
unsigned long acceptor_addrtype;
sequence<octet> acceptor_address;
sequence<octet> application_data;

};

// For use with SecurityReplaceable

struct OpaqueBuffer {
Opaque buffer;
unsigned long startpos;
unsigned long endpos;
// startpos <= endpos
// OpaqueBuffer is said to be empty if startpos == endpos

};
Security Service, v1.7 March 2001 B-5

B

// Association options which can be administered
// on secure invocation policy and used to
// initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
const AssociationOptions NoDelegation = 128;
const AssociationOptions SimpleDelegation = 256;
const AssociationOptions CompositeDelegation = 512;

// Flag to indicate whether association options being
// administered are the “required” or “supported” set

enum RequiresSupports {
SecRequires,
SecSupports

};

// Direction of communication for which
// secure invocation policy applies

enum CommunicationDirection {
SecDirectionBoth,
SecDirectionRequest,
SecDirectionReply

};

// security association mechanism type

typedef string MechanismType;

typedef sequence<MechanismType> MechanismTypeList;

// AssociationOptions-Direction pair

struct OptionsDirectionPair {
AssociationOptions options;
CommunicationDirectiondirection;

};

typedef sequence <OptionsDirectionPair> OptionsDirectionPairList;

// Delegation mode which can be administered
B-6 Security Service, v1.7 March 2001

B

enum DelegationMode {
SecDelModeNoDelegation, // i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received credentials
SecDelModeCompositeDelegation // delegate both;

};

// Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;
AssociationOptions options_supported;

};

typedef sequence <MechandOptions> MechandOptionsList;

// Attribute of the SecurityLevel2::EstablishTrustPolicy

struct EstablishTrust {
boolean trust_in_client;
boolean trust_in_target;

};

// Audit

typedef unsigned long AuditChannelId;

typedef unsigned short EventType;

const EventType AuditAll = 0;
const EventType AuditPrincipalAuth = 1;
const EventType AuditSessionAuth = 2;
const EventType AuditAuthorization = 3;
const EventType AuditInvocation = 4;
const EventType AuditSecEnvChange = 5;
const EventType AuditPolicyChange = 6;
const EventType AuditObjectCreation = 7;
const EventType AuditObjectDestruction = 8;
const EventType AuditNonRepudiation = 9;

enum DayOfTheWeek {
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

enum AuditCombinator {
SecAllSelectors,
SecAnySelector

};

struct AuditEventType {
ExtensibleFamily event_family;
EventType event_type;
Security Service, v1.7 March 2001 B-7

B

};
typedef sequence <AuditEventType> AuditEventTypeList;

typedef unsigned long SelectorType;

const SelectorType InterfaceName = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;
const SelectorType DayOfWeek = 7;

// values defined for audit_needed and audit_write are:
// InterfaceName: CORBA::RepositoryId
// ObjectRef: object reference
// Operation: op_name
// Initiator: Credentials
// SuccessFailure: boolean
// Time: utc time on audit_write; time picked up from
// environment in audit_needed if required
// DayOfWeek: DayOfTheWeek

struct SelectorValue {
SelectorType selector;
any value;

};
typedef sequence <SelectorValue> SelectorValueList;

// Constant declaration for valid Security Policy Types

// General administrative policies
const CORBA::PolicyType SecClientInvocationAccess = 1;
const CORBA::PolicyType SecTargetInvocationAccess = 2;
const CORBA::PolicyType SecApplicationAccess = 3;
const CORBA::PolicyType SecClientInvocationAudit = 4;
const CORBA::PolicyType SecTargetInvocationAudit = 5;
const CORBA::PolicyType SecApplicationAudit = 6;
const CORBA::PolicyType SecDelegation = 7;
const CORBA::PolicyType SecClientSecureInvocation = 8;
const CORBA::PolicyType SecTargetSecureInvocation = 9;
const CORBA::PolicyType SecNonRepudiation = 10;

// Policies used to control attributes of a binding to a target
const CORBA::PolicyType SecMechanismsPolicy = 12;
const CORBA::PolicyType SecInvocationCredentialsPolicy = 13;
const CORBA::PolicyType SecFeaturePolicy = 14; // obsolete
const CORBA::PolicyType SecQOPPolicy = 15;

const CORBA::PolicyType SecDelegationDirectivePolicy = 38;
const CORBA::PolicyType SecEstablishTrustPolicy = 39;
B-8 Security Service, v1.7 March 2001

B

ly
};
#endif /* _SECURITY_IDL_ */

B.3 Application Interfaces - Level 1

This subsection defines those interfaces available to application objects using on
Security Functionality Level 1, and consists of a single module, SecurityLevel1. This
module depends on the CORBA module, and on the Security module.

#if !defined(_SECURITY_LEVEL_1_IDL_)
#define _SECURITY_LEVEL_1_IDL_
#include <Security.idl>
#pragma prefix "omg.org"

module SecurityLevel1 {

pragma version SecurityLevel1 1.5
interface Current : CORBA::Current {// Locality Constrained

// thread specific operations

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
};

};
#endif /* _SECURITY_LEVEL_1_IDL_ */

B.4 Application Interfaces - Level 2

This subsection defines the interfaces available to applications using Security
Functionality Level 2, all of which are declared in the SecurityLevel2 module. This
module depends on the CORBA, SecurityLevel1 and Security modules. The interfaces
are described in Section 2.3, “Application Developer’s Interfaces,” on page 2-71.

#if !defined(_SECURITY_LEVEL_2_IDL_)
#define _SECURITY_LEVEL_2_IDL_
#include <SecurityLevel1.idl>
#pragma prefix "omg.org"

module SecurityLevel2 {

pragma version SecurityLevel2 1.7

// Forward declaration of interfaces
interface PrincipalAuthenticator;
interface Credentials;
interface Current;
Security Service, v1.7 March 2001 B-9

B

// Interface PrincipalAuthenticator
interface PrincipalAuthenticator { // Locality Constrained

pragma version PrincipalAuthenticator 1.5

Security::AuthenticationMethodList
get_supported_authen_methods(

in Security::MechanismType mechanism
);

Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod method,
in Security::MechanismType mechanism,
in Security::SecurityName security_name,
in any auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Security::AuthenticationStatus continue_authentication (
in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data

);
};

// Interface Credentials
interface Credentials { // Locality Constrained

pragma version Credentials 1.7

Credentials copy ();

void destroy();

readonly attribute Security::InvocationCredentialsType
credentials_type;

readonly attribute Security::AuthenticationStatus
authentication_state;

readonly attribute Security::MechanismType mechanism;

attribute Security::AssociationOptions
accepting_options_supported;

attribute Security::AssociationOptions
accepting_options_required;

attribute Security::AssociationOptions
B-10 Security Service, v1.7 March 2001

B

invocation_options_supported;

attribute Security::AssociationOptions
invocation_options_required;

boolean get_security_feature(
in Security::CommunicationDirection direction,
in Security::SecurityFeature feature

);

boolean set_attributes (
in Security::AttributeList requested_attributes,
out Security::AttributeList actual_attributes

);

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh(
in any refresh_data

);
};

typedef sequence <Credentials> CredentialsList;

interface ReceivedCredentials : Credentials { // Locality Constrained

pragma version ReceivedCredentials 1.5

readonly attribute Credentials accepting_credentials;

readonly attribute Security::AssociationOptions
association_options_used;

readonly attribute Security::DelegationState
delegation_state;

readonly attribute Security::DelegationMode
delegation_mode;

};

interface TargetCredentials : Credentials { // Locality Constrained

readonly attribute Credentials initiating_credentials;
Security Service, v1.7 March 2001 B-11

B

readonly attribute Security::AssociationOptions
association_options_used;

};

// RequiredRights Interface

interface RequiredRights{
void get_required_rights(

in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator

);

void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
in Security::RightsList rights,
in Security::RightsCombinator rights_combinator

);
};

// interface audit channel
interface AuditChannel { // Locality Constrained

void audit_write (
in Security::AuditEventType event_type,
in CredentialsList creds,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in Security::Opaque event_specific_data

);

readonly attribute Security::AuditChannelId audit_channel_id;
};

// interface for Audit Decision

interface AuditDecision { // Locality Constrained

boolean audit_needed (
in Security::AuditEventType event_type,
in Security::SelectorValueList value_list

);

readonly attribute AuditChannel audit_channel;
};

interface AccessDecision { // Locality Constrained
B-12 Security Service, v1.7 March 2001

B

boolean access_allowed (

in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);
};

// Policy interfaces to control bindings

interface QOPPolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::QOP qop;

};

interface MechanismPolicy : CORBA::Policy {// Locality Constrained
readonly attribute Security::MechanismTypeList mechanisms;

};

interface InvocationCredentialsPolicy : CORBA::Policy {
// Locality Constrained

readonly attribute CredentialsList creds;
};

interface EstablishTrustPolicy : CORBA::Policy { // Locality Constrained
readonly attribute Security::EstablishTrust trust;

};

interface DelegationDirectivePolicy : CORBA::Policy {
// Locality Constrained

readonly attribute Security::DelegationDirective
delegation_directive;

};

interface SecurityManager {

// Process/Capsule/ORB Instance specific operations
readonly attribute Security::MechandOptionsList

supported_mechanisms;

readonly attribute CredentialsList own_credentials;

readonly attribute RequiredRights required_rights_object;

readonly attribute PrincipalAuthenticator
principal_authenticator;

readonly attribute AccessDecision access_decision;

readonly attribute AuditDecision audit_decision;
Security Service, v1.7 March 2001 B-13

B

ated
RB
TargetCredentials get_target_credentials (
in Object obj_ref

);

void remove_own_credentials(
in Credentials creds

);

CORBA::Policy get_security_policy (
in CORBA::PolicyType policy_type

);
};
};

// Interface Current derived from SecurityLevel1::Current providing
// additional operations on Current at this security level.
// This is implemented by the ORB

interface Current : SecurityLevel1::Current { // Locality Constrained

pragma version Current 1.7

// Thread specific

readonly attribute ReceivedCredentials received_credentials;
};

#endif /* _SECURITY_LEVEL_2_IDL_ */

B.5 Security Administration Interfaces

This section covers interfaces concerned with querying and modifying security
policies, and comprises the module SecurityAdmin. The SecurityAdmin module
depends on CORBA , Security, and SecurityLevel2 modules. The interfaces are
described in Section 2.4, “Administrator’s Interfaces,” on page 2-115. There are rel
interfaces for finding domain managers and policies. They are to be found in the O
Interface chapter of the Common Object Request Broker: Architecture and
Specification.

#if !defined(_SECURITY_ADMIN_IDL_)
#define _SECURITY_ADMIN_IDL_
#include <SecurityLevel2.idl>
#pragma prefix "omg.org"

module SecurityAdmin {

pragma version SecurityAdmin 1.5

// interface AccessPolicy
interface AccessPolicy : CORBA::Policy {
B-14 Security Service, v1.7 March 2001

B

pragma version AccessPolicy 1.5

Security::RightsList get_effective_rights (
in Security::AttributeList attrib_list,
in Security::ExtensibleFamily rights_family

);

Security::RightsList get_all_effective_rights(
 in Security::AttributeList attrib_list

);
};

// interface DomainAccessPolicy
interface DomainAccessPolicy : AccessPolicy {

pragma version DomainAccessPolicy 1.5

void grant_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

void revoke_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

void replace_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

Security::RightsList get_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family

);

Security::RightsList get_all_rights(
 in Security::SecAttribute priv_attr,
 in Security::DelegationState del_state

);
};

// interface AuditPolicy
interface AuditPolicy : CORBA::Policy {

pragma version AuditPolicy 1.5

void set_audit_selectors (
Security Service, v1.7 March 2001 B-15

B

in CORBA::RepositoryId object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors,
in Security::AuditCombinator audit_combinator

);

void clear_audit_selectors (
in CORBA::RepositoryId object_type,
in Security::AuditEventTypeList events

);

void replace_audit_selectors (
in CORBA::RepositoryIdf object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors,
in Security::AuditCombinator audit_combinator

);

void get_audit_selectors (
in CORBA::RepositoryId object_type,
in Security::AuditEventType event_type
out Security::SelectorValueList selectors,
out Security::AuditCombinator audit_combinator

);

void set_audit_channel (
in Security::AuditChannelId audit_channel_id

);
};

// interface SecureInvocationPolicy
interface SecureInvocationPolicy : CORBA::Policy {

pragma version SecureInvocationPolicy 1.5

void set_association_options(
in CORBA::RepositoryId object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection

direction,
in Security::AssociationOptions options

);

Security::AssociationOptions get_association_options(
in CORBA::RepositoryId object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection

direction
);

};

// interface DelegationPolicy
B-16 Security Service, v1.7 March 2001

B

s
d
interface DelegationPolicy : CORBA::Policy {
pragma version DelegationPolicy 1.5

void set_delegation_mode(
in CORBA::RepositoryId object_type,
in Security::DelegationMode mode

);

Security::DelegationMode get_delegation_mode(
in CORBA::RepositoryId object_type

);
};

};

#endif /* _SECURITY_ADMIN_IDL_ */

B.6 Interfaces for Non-repudiation

This subsection defines the optional application interface for non-repudiation. Thi
module depends on SecurityLevel2 and CORBA modules. The interfaces are describe
in Section 2.3.14.2, “Non-repudiation Service Data Types,” on page 2-108.

#if !defined(_NR_SERVICE_IDL_)
#define _NR_SERVICE_IDL_
#include <SecurityLevel2.idl>
#pragma prefix "omg.org"

module NRService {

pragma version NRService 1.5

typedef Security::MechanismType NRMech;
typedef Security::ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};
Security Service, v1.7 March 2001 B-17

B

// the following are used for evidence validity duration
typedef unsigned long DurationInMinutes;

const DurationInMinutes DurationHour = 60;
const DurationInMinutes DurationDay = 1440;
const DurationInMinutes DurationWeek = 10080;
const DurationInMinutes DurationMonth = 43200;// 30 days;
const DurationInMinutes DurationYear = 525600;//365 days;

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
 NRPolicyId policy_id;
 unsigned long policy_version;
 NRMech mechanism;
};

typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};

struct EvidenceDescriptor {
EvidenceType evidence_type;
DurationInMinutes evidence_validity_duration;
boolean must_use_trusted_time;

};

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name;
string authority_role;
TimeOffsetInMinutes last_revocation_check_offset;

 // may be >0 or <0; add this to evid. gen. time to
 // get latest time at which mech. will check to see
 // if this authority’s key has been revoked.
};

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;

struct MechanismDescriptor {
NRMech mech_type;
AuthorityDescriptorList authority_list;
TimeOffsetInMinutes max_time_skew;
B-18 Security Service, v1.7 March 2001

B

// max permissible difference between evid. gen. time
// and time of time service countersignature
// ignored if trusted time not reqd.

};

typedef sequence <MechanismDescriptor> MechanismDescriptorList;

interface NRCredentials : SecurityLevel2::Credentials{

boolean set_NR_features (
in NRPolicyFeaturesList requested_features,

 out NRPolicyFeaturesList actual_features
);

NRPolicyFeaturesList get_NR_features ();

void generate_token (
in Security::Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Security::Opaque nr_token,
out Security::Opaque evidence_check

);

NRVerificationResult verify_evidence (
in Security::Opaque input_token_buffer,
in Security::Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Security::Opaque output_token,
out Security::Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);

void get_token_details (
in Security::Opaque token_buffer,
in boolean token_buffer_complete,
out string token_generator_name,
out NRPolicyFeatures policy_features,
out EvidenceType evidence_type,
out Security::UtcT evidence_generation_time,
out Security::UtcT evidence_valid_start_time,
out DurationInMinutes evidence_validity_duration,
out boolean data_included_in_token,
out boolean request_included_in_token,
Security Service, v1.7 March 2001 B-19

B

ty

out RequestFeatures request_features
);

boolean form_complete_evidence (
in Security::Opaque input_token,
out Security::Opaque output_token,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);
};

interface NRPolicy : CORBA::Policy{

void get_NR_policy_info (
out Security::ExtensibleFamily

NR_policy_id,
out unsigned long policy_version,
out Security::TimeT policy_effective_time,
out Security::TimeT policy_expiry_time,
out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList

supported_mechanisms
);

boolean set_NR_policy_info (
in MechanismDescriptorList

requested_mechanisms,
out MechanismDescriptorList

actual_mechanisms
);

};
};
#endif /* _NR_SERVICE_IDL_ */

B.7 Security Replaceable Service Interfaces

This section defines the IDL interfaces to the Security objects, which should be
replaced if there is a requirement to replace the Security services used for securi
associations (i.e., the Vault and Security Context). The IDL provided here is for those
interfaces that have not already been covered by the SecurityLevel2 module. This
section comprises the module SecurityReplaceable. This module depends on the
CORBA, Security, and SecurityLevel2 modules. The interfaces are described in
Section 2.5, “Implementor’s Security Interfaces,” on page 2-142.

#if !defined(_SECURITY_REPLACEABLE_IDL_)
#define _SECURITY_REPLACEABLE_IDL_
#include <SecurityLevel2.idl>
#include <IOP.idl>
#pragma prefix "omg.org"
B-20 Security Service, v1.7 March 2001

B

module SecurityReplaceable {

pragma version SecurityReplacable 1.7

interface SecurityContext;
interface ClientSecurityContext;
interface ServerSecurityContext;

interface Vault { // Locality Constrained

pragma version Vault 1.7

Security::AuthenticationMethodList
get_supported_authen_methods(

in Security::MechanismType mechanism;
);

readonly attribute Security::OIDList supported_mech_oids;

Security::AuthenticationStatus acquire_credentials(
in Security::AuthenticationMethod method,
in Security::MechanismType mechanism,
in Security::SecurityName security_name,
in any auth_data,
in Security::AttributeList privileges,
out SecurityLevel2::Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Security::AuthenticationStatus continue_credentials_acquisition(
in any response_data,
in SecurityLevel2::Credentials creds,
out any continuation_data,
out any auth_specific_data

);

IOP::TaggedComponentSeq create_ior_components(
in SecurityLevel2::Credentials creds_list

);

Security::AssociationStatus init_security_context (
in SecurityLevel2::Credentials creds,
in Security::SecurityName target_security_name,
in Object target,
in Security::DelegationMode delegation_mode,
in Security::OptionsDirectionPairList

association_options,
in Security::MechanismType mechanism,
in Security::Opaque comp_data, //from IOR
Security Service, v1.7 March 2001 B-21

B

in Security::ChannelBindings chan_binding,
out Security::OpaqueBuffer security_token,
out ClientSecurityContext security_context

);

Security::AssociationStatus accept_security_context (
in SecurityLevel2::CredentialsList creds_list,
in Security::ChannelBindings chan_bindings,
in Security::OpaqueBuffer in_token,
out Security::OpaqueBuffer out_token,
out ServerSecurityContext security_context

);

Security::MechandOptionsList get_supported_mechs ();
};

interface SecurityContext { // Locality Constrained

pragma version SecurityContext 1.5

readonly attribute Security::SecurityContextType
context_type;

readonly attribute Security::SecurityContextState
context_state;

readonly attribute Security::MechanismType
mechanism;

readonly attribute boolean supports_refresh;

readonly attribute Security::ChannelBindings
 chan_binding;

readonly attribute SecurityLevel2::ReceivedCredentials
 received_credentials;

Security::AssociationStatus continue_security_context (
in Security::OpaqueBuffer in_token,
out Security::OpaqueBuffer out_token

);

void protect_message (
in Security::OpaqueBuffer message,
in Security::QOP qop,
out Security::OpaqueBuffer text_buffer,
out Security::OpaqueBuffer token

);

boolean reclaim_message (
in Security::OpaqueBuffer text_buffer,
in Security::OpaqueBuffer token,
out Security::QOP qop,
B-22 Security Service, v1.7 March 2001

B

out Security::OpaqueBuffer message
);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh_security_context (
in any refresh_data,
out Security::OpaqueBuffer out_token

);

boolean process_refresh_token (
in Security::OpaqueBuffer refresh_token

);

boolean discard_security_context (
in Security::Opaque discard_data,
out Security::OpaqueBuffer out_token

);

boolean process_discard_token (
in Security::OpaqueBuffer discard_token,

);
};

interface ClientSecurityContext : SecurityContext {
// Locality Constrained

readonly attribute Security::AssociationOptions
association_options_used;

readonly attribute Security::DelegationMode
delegation_mode;

readonly attribute Security::Opaque comp_data;
readonly attribute SecurityLevel2::Credentials

client_credentials;
readonly attribute Security::AssociationOptions

server_options_supported;
readonly attribute Security::AssociationOptions

server_options_required;
readonly attribute Security::Opaque server_security_name;

};

interface ServerSecurityContext : SecurityContext {
// Locality Constrained

readonly attribute Security::AssociationOptions
association_options_used;

readonly attribute Security::DelegationMode
delegation_mode;

readonly attribute SecurityLevel2::Credentials
server_credentials;

readonly attribute Security::AssociationOptions
Security Service, v1.7 March 2001 B-23

B

server_options_supported;
readonly attribute Security::AssociationOptions

server_options_required;
readonly attribute Security::Opaque server_security_name;

};

interface RequiredRights{
void get_required_rights(

in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator

);

void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
in Security::RightsList rights,
in Security::RightsCombinator rights_combinator

);
};

interface AuditChannel { // Locality Constrained

void audit_write (
in Security::AuditEventType event_type,
in SecurityLevel2::CredentialsList creds_list,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in Security::Opaque event_specific_data

);

readonly attribute Security::AuditChannelId audit_channel_id;
};

interface AuditDecision { // Locality Constrained

boolean audit_needed (
in Security::AuditEventType event_type,
in Security::SelectorValueList value_list

);

readonly attribute AuditChannel audit_channel;
};

interface AccessDecision { // Locality Constrained

boolean access_allowed (
in SecurityLevel2::CredentialsList cred_list,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name
B-24 Security Service, v1.7 March 2001

B

);
};

};

#endif /* _SECURITY_REPLACEABLE_IDL_ */

B.8 Secure Inter-ORB Protocol (SECIOP)

The SECIOP module holds structure declarations related to the layout of message
fields in the Secure Inter-ORB protocol. This module depends on the IOP and Security
modules.

#if !defined(_SECIOP_IDL_)
#define _SECIOP_IDL
#include <IOP.idl>
#include <Security.idl>
#pragma prefix "omg.org"

module SECIOP {
const IOP::ComponentId TAG_GENERIC_SEC_MECH = 22;

const IOP::ComponentId TAG_ASSOCIATION_OPTIONS = 13;

const IOP::ComponentId TAG_SEC_NAME = 14;

const IOP::ComponentId TAG_SECIOP_INET_SEC_TRANS = 123;

struct SECIOP_INET_SEC_TRANS {
unsigned short port;

};

struct TargetAssociationOptions{
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

};

struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <IOP::TaggedComponent> components;

};

enum MsgType {
MTEstablishContext,
MTCompleteEstablishContext,
MTContinueEstablishContext,
MTDiscardContext,
MTMessageError,
Security Service, v1.7 March 2001 B-25

B

MTMessageInContext
};

typedef unsigned long long ContextId;

enum ContextIdDefn {
CIDClient,
CIDPeer,
CIDSender

};

struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;

};

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};

struct MessageInContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
ContextTokenType message_context_type;
sequence <octet> message_protection_token;
B-26 Security Service, v1.7 March 2001

B

};

// message_protection_token is obtained by CDR encoding
// the following SequencingHeader followed by the octets of the
// frame data. SequencingHeader + Frame Data is called a
// SequencedDataFrame

struct SequencingHeader {
octet control_state;
unsigned long direct_sequence_number;
unsigned long reverse_sequence_number;
unsigned long reverse_window;

};

typedef sequence <octet> SecurityName;
typedef unsigned short CryptographicProfile;
typedef sequence <CryptographicProfile> CryptographicProfileList;

// Cryptographic profiles for SPKM

const CryptographicProfile MD5_RSA = 20;
const CryptographicProfile MD5_DES_CBC = 21;
const CryptographicProfile DES_CBC = 22;
const CryptographicProfile MD5_DES_CBC_SOURCE = 23;
const CryptographicProfile DES_CBC_SOURCE = 24;

// Security Mechanism SPKM_1

const IOP::ComponentId TAG_SPKM_1_SEC_MECH = 15;

struct SPKM_1 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism SPKM_1

const IOP::ComponentId TAG_SPKM_2_SEC_MECH = 16;

struct SPKM_2 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Cryptographic profiles for GSS Kerberos Protocol

const CryptographicProfile DES_CBC_DES_MAC = 10;
Security Service, v1.7 March 2001 B-27

B

const CryptographicProfile DES_CBC_MD5 = 11;
const CryptographicProfile DES_MAC = 12;
const CryptographicProfile MD5 = 13;

// Security Mechanism KerberosV5

const IOP::ComponentId TAG_KerberosV5_SEC_MECH = 17;

struct KerberosV5 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Cryptographic profiles for CSI-ECMA Protocol

const CryptographicProfile FullSecurity = 1;
const CryptographicProfile NoDataConfidentiality = 2;
const CryptographicProfile LowGradeConfidentiality = 3;
const CryptographicProfile AgreedDefault = 5;

// Security Mechanism CSI_ECMA_Secret

const IOP::ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;

struct CSI_ECMA_Secret {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism CSI_ECMA_Hybrid

const IOP::ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;

struct CSI_ECMA_Hybrid {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism CSI_ECMA_Public

const IOP::ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;

struct CSI_ECMA_Public {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
B-28 Security Service, v1.7 March 2001

B

 as
CryptographicProfileList crypto_profile;
SecurityName security_name;

};
};
#endif /* _SECIOP_IDL */

B.9 SSL

The SSLIOP module holds the structure and TAG definitions needed for using SSL
the secure transport under CORBA Security. This module depends on the Security and
the IOP modules.

#if !defined(_SSLIOP_IDL)
#define _SSLIOP_IDL
#pragma prefix "omg.org"
#include <IOP.idl>
#include<Security.idl>

module SSLIOP {
// Security mechanism SSL

const IOP::ComponentId TAG_SSL_SEC_TRANS = 20;

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

};
};
#endif /* _SSLIOP_IDL */

B.10 Secure DCE CIOP

The DCE_CIOP_Security module extension holds structures and TAG definitions
needed for using DCE-CIOP Security. This module depends on Security and IOP
modules.

#if !defined(_DCE_CIOP_SECURITY_IDL)
#define _DCE_CIOP_SECURITY_IDL
#pragma prefix "omg.org"
#include <IOP.idl>
#include <Security.idl>

module DCE_CIOPSecurity {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103;

typedef unsigned short DCEAuthorization;
Security Service, v1.7 March 2001 B-29

B

the
users
ed.

e the

ily
ues

e

lies
const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;

// since consts of type octet are not allowed in IDL the constant
// values that can be assigned to the authorization_service field
// in the DCESecurityMechanismInfo is declared as unsigned shorts.
// when they actually get assigned to the authorization_service field
// they should be assigned as octets.

struct DCESecurityMechanismInfo {
octet authorization_service;
sequence<IOP::TaggedComponent> components;

};
};
#endif /* _DCE_CIOP_SECURITY_IDL */

B.11 Values for Standard Data Types

A number of data types in this specification allow an extensible set of values, so
user can add values as required to meet his own security policies. However, if all
defined their own values, portability and interoperability would be seriously restrict

Therefore, some standard values for certain data types are defined. These includ
values that identify:

• Security attributes (privilege and other attribute types)

• Rights families

• Audit event families and types

• Security mechanism types as used in the IOR (and Vault , etc.)

Rights families and audit event families are defined as an ExtensibleFamily type. This
has a family definer value registered with OMG and a family id defined by the fam
definer. Security attribute types also have family definers. Family definers with val
0 - 7 are reserved for OMG. The family value 0 is used for defining standard types
(e.g., of security attributes).

 B.11.1 Security Attributes

Section 2.3, “Application Developer’s Interfaces,” on page 2-71 defines an attribut
structure for privilege and other attributes. This includes:

• A family, as previously described.

• An attribute type. Users may add new attribute types. Two standard OMG fami
are defined: the family of privilege attributes (family = 1), and the family of other
attributes (family = 0). Types in these families are listed in Table B-1.
B-30 Security Service, v1.7 March 2001

B

e
 an
nced

tets

urity

and

ol.

.

• A defining authority. The field indicates the authority responsible for defining th
encoding of the value field of the attribute. The defining authority is defined as
octet sequence that is a standard ASN.1 encoding of an OID. The entity refere
by the OID defines the value’s encoding to/from a sequence of octets. If the
defining authority field is empty (i.e., octet sequence of length 0), the defining
authority is the OMG. The OMG defines all attribute values to be UTF-8 byte
encodings of a string value.

• An attribute value. The attribute value is encoded as an octet sequence. The
encoding is specified by the defining_authority field.

Attributes used in the CORBA realm or CORBA based security mechanisms have
values of UTF-8 encoded strings, which is stipulated by an empty sequence of oc
for the defining_authority field. A defining authority field stipulating different
encodings for values is meant for the representation of security attributes from sec
mechanism other than CORBA such that the values of these attributes cannot be
represented as the standard UTF-8 encoding of a string, or if such a mapping to
from a string is not defined. Equality for attributes is defined as structural equality
based on structural equality on the attribute type, octet sequence equality on the
defining authority, and octet sequence equality of the value.

Table B-1 Attribute Values

Attribute Type Value Meaning

Privilege Attributes (family = 1) All privilege attributes are used for access contr

Public 1 The principal is a member of the general public
(always present).

AccessId 2 The identity of the principal used for access
control.

PrimaryGroupId 3 The primary group to which the principal belongs

GroupId 4 A group to which the principal belongs.

Role 5 A role the principal takes.

AttributeSet 6 An identifier for a set of related attributes, which a
user or application can obtain.

Clearance 7 The principal’s security clearance.

Capability 8 A capability.

Other Attributes (family = 0)

AuditId 1 The identity of the principal used for auditing.

AccountingId 2 The id of the account to be charged for resource
use.

NonRepudiationId 3 The id of the principal used for non-repudiation.
Security Service, v1.7 March 2001 B-31

B

er

on.

n

ecure
s,

from
d in

 B.11.2 Rights Families and Values

Administration is simplified by defining rights that provide access to a set of
operations, so the administrator only needs to know what rights are required, rath
than the semantics of particular operations.

Rights are grouped into families. Only one rights family is defined in this specificati
The family definer is OMG (value 0) and the family id is CORBA (value 1). Other
families may be added by vendors or users.

Three values are specified for the standard CORBA rights family.

Table B-2 CORBA Rights Family Values

 B.11.3 Audit Event Families and Types

Events, like rights, are grouped into families as defined in Section 2.3, “Applicatio
Developer’s Interfaces,” on page 2-71.

Only one event family is defined in this specification. This has a family definer of
OMG (value 0) and family of SYSTEM (value 1) and is used for auditing system
events. All events of this type are audited by the object security services, or the
underlying security services they use. Some of these events must be audited by s
object systems conforming to Security Functionality Level 1 (though in some case
the event may be audited by underlying security services). Other event types are
identified so that, if produced, a standard record is generated, so that audit trails
different systems can more easily be combined. System audit events are specifie
Table B-3 on page B-32.
Table B-3 System Audit Events

Right Meaning

“get” Used for any operation on the object that does not change its state.

“set” For operations on an object that changes its state.

“manage” For operations on the attributes of the object, not its state.

“use” For operations on an object that may change the overall state of the
system, but not the state of the object itself.

Event Name Value Whether
Mandatory

Meaning and Event Specific Data

AuditPrincipalAuth 1 Yes Authentication of principals, either via the principal
authentication interface or underlying security
services.

AuditSessionAuth 2 Yes Security association/peer authentication.

AuditAuthorization 3 Yes Authorization of an object invocation (normally using
an Access Decision object).
B-32 Security Service, v1.7 March 2001

B

ions.
o the

ing
M_1

r

e
Application audit policies are expected to use application audit families.

 B.11.4 Security Mechanisms

The security specification allows use of different mechanisms for security associat
These are used in the Interoperable Object Reference and also on the interface t
Vault.

Mechanism ids that are formed by stringifying the integer value of the correspond
mechanism tag value. So, for example the mechanism id of mechanism type SPK
is the string “15”, which is the string representation of the mechanism tag value
defined in the SECIOP module above as TAG_SPKM_1_SEC_MECH.

Following this rule, the currently defined mechanism ids are:

AuditInvocation 4 No Object invocation (i.e., the request/reply).

AuditSecEnvChange 5 No Change to the security environment for this client o
object (e.g., override_default_credentials).

AuditPolicyChange 6 Yes Change to a security policy (using the administrativ
interfaces in the Administrator’s Interfaces section).

AuditObjectCreation 7 No Creation of an object.

AuditObjectDestruction 8 No Destruction of an object.

AuditNonRepudiation 9 No Generation or verification of evidence.

Table B-4 Mechanism Ids

Mechanism Name Mechanism Tag Mech Id Base Mech

SPKM_1 TAG_SPKM_1_SEC_MECH “15” SPKM

SPKM_2 TAG_SPKM_2_SEC_MECH “16” SPKM

KerberosV5 TAG_KerberosV5_SEC_MECH “17” KerberosV5

CSI_ECMA_Secret TAG_CSI_ECMA_Secret_SEC_MECH “18” CSI_ECMA

CSI_ECMA_Hybrid TAG_CSI_ECMA_Hybrid_SEC_MECH “19” CSI_ECMA

CSI_ECMA_Public TAG_CSI_ECMA_Public_SEC_MECH “21” CSI_ECMA

Event Name Value Whether
Mandatory

Meaning and Event Specific Data
Security Service, v1.7 March 2001 B-33

B

Cryptographic profile ids are the stringified form of the value of the cryptographic
profile constant. For example the id of the cryptographic profile MD5_RSA is the
string “20”. The cryptographic profile ids currently defined are:

A complete mechanism type (used for MechanismType parameters) consists of a
mechanism id with zero, one or more comma separated cryptographic profiles
appended to it. For example the mechanism type “15, 20” represents SPKM_1
mechanism with MD5_RSA cryptographic profile.

Table B-5 Cryptographic Profile Ids

Profile Name Profile Id Base Mech

MD5_RSA “20” SPKM

MD5_DES_CBC “21” SPKM

DES_CBC “22” SPKM

MD5_DES_CBC_SOURCE “23” SPKM

DES_CBC_SOURCE “24” SPKM

DES_CBC_DES_MAC “10” KerberosV5

DES_CBC_MD5 “11” KerberosV5

DES_MAC “12” KerberosV5

MD5 “13” KerberosV5

FullSecurity “1” CSI_ECMAS

NoDataConfidentiality “2” CSI_ECMA

LowGradeConfidentaility “3” CSI_ECMA

AgreedDefault “5” CSI_ECMA
B-34 Security Service, v1.7 March 2001

 Relationship to OtherServices C
ay

d by
2-1,

 data
 way
1.
diting

 even
on

 in a
n the
 the
ked
C.1 Introduction

This appendix describes the relationship between Object Services and Common
Facilities and the security architecture components, if they are to participate in a
consistent, secure object system.

C.2 General Relationship to Object Services and Common Facilities

In general, Object Services and Common Facilities, like any application objects, m
be unaware of security, and rely on the security enforced automatically on object
invocations. As for application objects, access to their operations can be controlle
access policies as described in Section 2.1, “Security Reference Model,” on page
Section 2.3, “Application Developer’s Interfaces,” on page 2-71, and elsewhere.

An Object Service or Common Facility needs to be aware of security if it needs to
enforce security itself. For example, it may need to control access to functions and
at a finer granularity than at object invocation, or need to audit such activities. The
it can do this is described in Section 2.1, “Security Reference Model,” on page 2-
Existing Object Services should be reviewed to see if such access control and au
is required.

If an Object Service or Common Facility is required to be part of a more secure
system, some assurance of its correct functioning, if security relevant, is needed,
if it is not responsible for enforcing security itself. See Appendix E for guidelines
this matter.

Where an Object Service is called by an ORB service as part of object invocation
secure system, there is a need to ensure security of all the information involved i
invocation. This requires ORB Services to be called in the order required to provide
specified quality of protection. For example, the Transaction Service must be invo
first to obtain the transaction context information before the whole message is
protected for integrity and/or confidentiality.
Security Service, v1.7 March 2001 C-1

C

en

ted
here
d.
s

ion

vice

 the

e, in
 data
is

 as
e

ime

that
In the following sections, we provide an initial estimation of the relationship betwe
Security Service and other existing services and facilities.

C.3 Relationship with Specific Object Services

C.3.1 Naming Service

For security, the object must be correctly identified wherever it is within the distribu
object system. The Naming Service must do this successfully in an environment w
an object name is unique within a naming context, and name spaces are federate
(However, to provide the required proof of identity, objects, and/or the gatekeeper
which give access to them will be authenticated using a separate Authentication
Service.) See Section E.3.2, “Basis of Trust,” on page E-9, for additional informat
about the relationship between security and names.

C.3.2 Event Service

The implementation of a Security Audit Service may involve the use of Event Ser
objects for the routing of both audits and alarms.

However, this is only possible if the Event Service itself is secure in that it protects
audit trail from modification and deletion. It must also be able to guard against
recursion if it audits its own activities.

C.3.3 Persistent Object Service

No explicit use is made of this service. Audit trails may be saved using this servic
which case the implementation of the Persistent Object Service must ensure that
stored and retrieved through it is not tampered with by unauthorized entities. If it
used in the implementation of Security Service or by a secure application, it must
follow the guidelines in Appendix E.

C.3.4 Time Service

The Security Service uses the data types for time, timestamps, and time intervals
defined by the Time Service, so that applications can readily use the Time Servic
defined interfaces to manipulate the time data that the Security Service uses. The
interfaces of Security Service do not explicitly pass any interfaces defined in the T
Service.

C.3.5 Other Services

The other services are not used explicitly. If any of them are used in the
implementation of Security Service or by a secure application, it must be verified
the service used follows the guidelines in Appendix E.
C-2 Security Service, v1.7 March 2001

C

nd
l

or
n
.

C.4 Relationship with Common Facilities

Because Management Services have been identified as Common Facilities in the
Object Management Architecture, only minimal, security-specific administration
interfaces are specified here. When Common Facilities Management services are
specified, they will need to take into account the need for security management a
administration identified in this specification. Also, such management services wil
themselves need to be secure.

This specification adds certain basic interfaces to CORBA, which form the basis f
the minimal policy administration related interfaces and functionality that has bee
provided. Future management facilities are expected to build upon this foundation
Security Service, v1.7 March 2001 C-3

C

C-4 Security Service, v1.7 March 2001

 Conformance Details and Statement D
rol

ng in
ain

the

nal
D.1 Conformance Details

CORBA Security Feature Packages include the following.

 D.1.1 Main Security Functionality

There are two possible levels.

• Level 1: This provides a first level of security for applications unaware of
security, and for those that have limited requirements to enforce their own
security in terms of access controls and auditing.

• Level 2: This provides more security facilities, and allows applications to cont
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

Security Functionality Options

These are functions expected to be required in several ORBs, so are worth includi
this specification, but are not generally required enough to form part of one of the m
security functionality levels previously specified. There is only one such option in
specification.

• Non-Repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

 D.1.2 Security Replaceability

This specification is designed to allow security policies to be replaced. The additio
policies must also conform to this specification. This includes, for example, new
Access Polices. Security Replaceability specifies if and how the ORB fits with
different security services. There are two possibilities.
Security Service, v1.7 March 2001 D-1

D

 to

d in
ces

he

urity

s
 for

ith

ing

here

ere
t all

, and

ed
 1.

nt
are

• ORB Services replaceability: The ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming
this does not include any significant security-specific code, as that is in the
interceptors.

• Security Service replaceability: The ORB may or may not use interceptors, but
all calls on security services are made via the replaceability interfaces specifie
Section 2.5, “Implementor’s Security Interfaces,” on page 2-142. These interfa
are positioned so that the security services do not need to understand how t
ORB works, so they can be replaced independently of that knowledge.

An ORB that supports one or both of these replaceability options is said to be Sec
Ready (i.e., support no security functionality itself, but be ready to have security
added).

Note – Some replaceability of the security mechanism used for secure association
may still be provided if the implementation uses some standard generic interface
security services such as GSS-API.

 D.1.3 Secure Interoperability using SECIOP

An ORB supporting this can generate/use security information in the IOR and can
send/receive secure requests to/from other ORBs using the GIOP/IIOP protocol w
the security (SECIOP) enhancements defined in Section 3.2, “Secure Inter-ORB
Protocol (SECIOP),” on page 3-34, providing they can both use the same underly
security mechanism and algorithms for security associations.

 D.1.4 Common Secure Interoperability (CSI) Feature packages

These feature packages each provide different levels of secure interoperability. T
are three functionality levels for Common Secure Interoperability (CSI).

All levels can be used in distributed secure CORBA compliant object systems wh
clients and objects may run on different ORBs and different operating systems. A
levels, security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality describ
in the CORBA Security specification. Facilities are more restricted at levels 0 and
The three levels are:

1. Identity based policies without delegation (CSI level 0): At this level, only the
identity (no other attributes) of the initiating principal is transmitted from the clie
to the target, and this cannot be delegated to further objects. If further objects
called, the identity will be that of the intermediate object, not the initiator of the
chain of object calls.
D-2 Security Service, v1.7 March 2001

D

m
r

ate

d
ct to
ite

s.

ity

n
nd
se

P.

ned
tion

d

er
SI

2. Identity based policies with unrestricted delegation (CSI level 1): At this level,
only the identity (no other attributes) of the initiating principal is transmitted fro
the client to the target. The identity can be delegated to other objects on furthe
object invocations, and there are no restrictions on its delegation, so intermedi
objects can impersonate the user. (This is the impersonation form of simple
delegation defined in Section 2.1.6.2, “Overview of Delegation Schemes,” on
page 2-14.)

3. Identity & privilege based policies with controlled delegation (CSI level 2): At this
level, attributes of initiating principals passed from client to target can include
separate access and audit identities and a range of privileges such as roles an
groups. Delegation of these attributes to other objects is possible, but is subje
restrictions, so the initiating principal can control their use. Optionally, compos
delegation is supported, so the attributes of more than one principal can be
transmitted. Therefore, it provides interoperability for ORBs conforming to all
CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSI package

 D.1.5 Common Security Protocol Packages

The choice of protocol to use depends on the mechanism type required and the
facilities required by the range of applications expected to use it. Common Secur
Protocols define the details of the tokens in the IIOP and SECIOP messages as
applicable. Four protocols are defined:

1. SPKM Protocol: This protocol supports identity based policies without delegatio
(CSI level 0) using public key technology for keys assigned to both principals a
trusted authorities. The SPKM protocol is based on the definition in [20]. The u
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIO

2. GSS Kerberos Protocol: This protocol supports identity based policies with
unrestricted delegation (CSI level 1) using secret key technology for keys assig
to both principals and trusted authorities. It is possible to use it without delega
(providing CSI level 0). The GSS Kerberos protocol is based on the [12] which
itself is a profile of [13]. The use of Kerberos in CORBA interoperability is base
on the SECIOP extensions to IIOP.

3. CSI-ECMA protocol: This protocol supports identity and privilege based policies
with controlled delegation (CSI level 2). It can be used with identity, but no oth
privileges and without delegation restrictions if the administrator permits this (C
level 1) and can be used without delegation (CSI level 0). For keys assigned to
principals, it has the following options:

• It can use either secret or public key technology.

• It uses public key technology for keys assigned to trusted authorities.
Security Service, v1.7 March 2001 D-3

D

ed
 in

e;
BA

ng

SL
.

ages.

BA

o the
ces,
er in

ix
ch
 A

ng
 The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as defin
in ECMA 235, but is a significant subset of this - the SESAME profile as defined
[16]. It is designed to allow the addition of new mechanism options in the futur
some of these are already defined in ECMA 235. The use of CSI-ECMA in COR
interoperability use the SECIOP extensions to IIOP.

DCE-CIOP: An ORB supporting this option provides secure interoperability usi
DCE Security together with the Security extensions to DCE-CIOP.

4. SSL protocol: This protocol supports identity based policies without delegation
(CSI level 0). The SSL protocol is based on the definition in [21]. The use of S
in CORBA interoperability does not depend on the SECIOP extensions to IIOP

An ORB that interoperates securely must do so using one of these protocol pack
For the definitive statement on conformance requirements see below.

D.2 Conformance Requirements

An ORB must meet the following requirements to claim conformance to the COR
Security specification:

• To claim conformance to the CORBA Security interfaces it must support the
following feature packages:

• Security Functionality Level 1.

• To claim conformance to CORBA Secure Interoperability it must support the
following feature packages:

• Secure Interoperability using SECIOP.

• CSI Level 1.

• GSS Kerberos Protocol using MD5 Cryptographic profile.

• Conformance to any of the other feature packages may be claimed in addition t
base conformance specified in the previous bullet item, by providing the interfa
facilities and support for protocols specified in that package, as described furth
the following sections.

The conformance statement required for a CORBA Security conformant
implementation is defined in Section , “Facilities Not in This Specification. Append
includes two checklists, one for functionality and the other for interoperability, whi
can be completed to show what the ORB conforms to; they are reproduced next.
main security functionality level must always be specified. Functional Options,
Security Replaceability, and Secure Interoperability should be indicated by checki
the boxes corresponding to the function supported by the ORB.

Table D-1 CORBA Security Functionality Checklist

Main Functionality
Functionality
Options Security Replaceability

Level 1 Level 2
Non
Repudiation

ORB
Services

Security
Services

Security
Ready
D-4 Security Service, v1.7 March 2001

D

l

ity

cure

trols
ss

gate

may
urity
D.3 Security Functionality Level 1

Security Functionality Level 1 provides:

• A level of security functionality available to applications unaware of security. (It
will, of course, also provide this functionality to applications aware of security.)
This level includes security of the invocation between client and target object,
simple delegation of client security attributes to targets, ORB-enforced access
control checks, and auditing of security-relevant system events.

• An interface through which a security-aware application can retrieve security
attributes, which it may use to enforce its own security policies (e.g., to contro
access to its own attributes and operations).

 D.3.1 Security Functionality Required

An ORB supporting Level 1 security functionality must provide the following secur
features for all applications, whether they are security-aware or not.

• Allow users and other principals to be authenticated, though this may be done
outside the object system.

• Provide security of the invocation between client and target object including:

• Establishment of trust between them, where needed. At Level 1, this may be
supported by ORB level security services or can be achieved in any other se
way. For example, it could use secure lower-layer communications. Mutual
authentication need not be supported.

• Integrity and/or confidentiality of requests and responses between them.

• Control of whether this client can access this object. At this level, access con
can be based on “sets” of subjects and “sets” of objects. Details of the Acce
Policy and how this is administered are not specified.

• At an intermediate object in a chain of calls, the ability to be able to either dele
the incoming credentials or use those of the intermediate object itself.

• Auditing of the mandatory set of system’s security-relevant events specified in
Appendix A, Consolidated OMG IDL. In some cases, the events to be audited
occur, and be audited, outside the object system (for example, in underlying sec

Table D-2 CORBA Secure Interoperability Checklist

Interop IIOP DCE-

Level
SECIOP

SSL CIOPSPKM

Kerberos

CSI-ECMA

SPKM
1

SPKM
2

Privat
e

Public Hybri
d

Level 0

Level 1 XXXX XXXX XXX

Level 2 XXXX XXXX XXXXX XXX
Security Service, v1.7 March 2001 D-5

D

r

ust
it

trol

or

,

ns

ity

ty
l

d in
tive
services). In this case, the conformance statement must identify the product
responsible for generating the record of such an event (or choice of product, fo
example, when the ORB is portable to different authentication services).

At this level, auditing of object invocations need not be selectable. However, it m
be possible to ensure that certain events are audited (see Section B.11.3, “Aud
Event Families and Types,” on page B-32, for the list of mandatory events).

Note – For security aware applications, it must also make the privileges of
authenticated principals available to applications for use in application access con
decisions.

These facilities require the ORB and security services to be initialized correctly. F
example, the Current object at the client must be initialized with a reference to a
credentials object for the appropriate principal.

 D.3.2 Security Interfaces Supported

Security interfaces available to applications may be limited to:

• get_service_information providing security options and details (see Section 2.3.2
“Finding Security Features,” on page 2-73).

• get_attributes on Current (see Interfaces under Section 2.3.9, “Security Operatio
on Current,” on page 2-97).

No administrative interfaces are mandatory at this level.

 D.3.3 Other Security Conformance

An ORB providing Security Functionality Level 1 may also conform to other secur
options. For example, it may also:

• Support some of the Security Functionality Options specified in, Section D.5,
“Security Functionality Optional Packages,” on page D-8.

• Provide security replaceability using either of the replaceability options.

• Provide secure interoperability, though in this case, will need to provide securi
associations at the ORB level (not lower-layer communications) as the protoco
assumes security tokens are at this level.

D.4 Security Functionality Level 2

This is the functionality level that supports most of the application interfaces define
Section 2.3, “Application Developer’s Interfaces,” on page 2-71, and the administra
interfaces defined in Section 2.4, “Administrator’s Interfaces,” on page 2-115. It
provides a competitive level of security functionality for most situations.
D-6 Security Service, v1.7 March 2001

D

l, so

n of

rols).

) or

tems

The

rd

y to
curity

g on

ed
D.4.1 Security Functionality Required

An ORB that supports Security Functionality Level 2 supports the functionality in
Security Level 1 previously defined, and also:

• Principals can be authenticated outside or inside the object system.

• Security of the invocation between client and target objects is enhanced.

• Establishment of trust and message protection can be done at the ORB leve
security below this (for example, in the lower layer communications) is not
required (though may be used for some functions).

• Further integrity options can be requested (e.g., replay protection and detectio
messages out of sequence) but need not be supported.

• The standard DomainAccessPolicy is supported for control of access to
operations on objects.

• Selective auditing of methods on objects is supported.

• Applications can control the options used on secure invocations. It can:

• Choose the quality of protection of messages required (subject to policy cont

• Change the privileges in credentials.

• Choose which credentials are to be used for object invocation.

• Specify whether these can just be used at the target (e.g. for access control
whether they can also be delegated to further objects.

• No further delegation facilities are mandatory, but the application can request
“composite” delegation, and the target can obtain all credentials passed, in sys
that support this. Note that “composite” here just specifies that both received
credentials and the intermediate’s own credentials should be used. It does not
specify whether this is done by combining the credentials or linking them.

• Administrators can specify security policies using domain managers and policy
objects as specified in Section 2.4, “Administrator’s Interfaces,” on page 2-115.
security policy types supported at Level 2 are all those defined in Section 2.4,
“Administrator’s Interfaces,” on page 2-115 except non-repudiation. The standa
policy management interfaces for each of the Level 2 policies is supported.

• Applications can find out what security policies apply to them. This includes
policies they enforce themselves (e.g., which events types to audit) and some
policies the ORB enforces for them (e.g., default qop, delegation mode).

• ORBs (and ORB Services, if supported) can find out what security policies appl
them. They can then use these policy objects to make decisions about what se
is needed (check if access is permitted, check if auditing is required) or get the
information needed to enforce policy (get QOP, delegation mode, etc.) dependin
policy type.

As at Level 1, these facilities require the ORB and security services to be initializ
correctly.
Security Service, v1.7 March 2001 D-7

D

r’s

f all

ity

ing
D.4.2 Security Interfaces Supported

Interfaces supported at this level are:

• All application interfaces defined in Section 2.3, “Application Developer’s
Interfaces,” on page 2-71, except those in Section 2.1.7, “Non-repudiation,” on
page 2-18.

• All security policy administration interfaces defined in Section 2.4, “Administrato
Interfaces,” on page 2-115 (except those for the non-repudiation policy).

Note that some of these interfaces may raise a CORBA::NO-IMPLEMENT exception,
as not ORBs conforming to Level 2 Security need implement all possible values o
parameters. This will happen when:

• A privilege attribute is requested of a type that is not supported (attribute types
supported are defined in Section B.2, “General Security Data Module,” on
page B-1).

• A delegation mode is requested, which is not supported.

• A communication direction for association options is requested, which is not
supported.

D.4.3 Other Security Conformance

An ORB providing Security Functionality Level 2 may also conform to other secur
options. For example, it may also:

• Support some of the Security Functionality Options specified in Section D.6,
“Security Replaceability,” on page D-10.

• Provide security replaceability, using either of the replaceability options.

• Provide secure interoperability.

D.5 Security Functionality Optional Packages

An ORB may also conform to optional security functionality defined in this
specification. Only one optional facilities is specified: non-repudiation.

Also, some requirements on conformance of additional facilities are specified.

D.5.1 Non-repudiation

D.5.1.1 Security Functionality

An ORB conforming to this must support the non-repudiation facilities for generat
and verifying evidence described in Section 2.2.5.3, “The Model as Seen by the
Objects Implementing Security,” on page 2-62. Note that these use NRCredentials, the
attributes in which may be the same as in the credentials used for other security
D-8 Security Service, v1.7 March 2001

D

non-

y

8.

d

hich

n

on-

onal
re
.

used

aced
 one
facilities. Where non-repudiation is supported, the credentials acquired from the
environment or generated by the authenticate operation must be able to support
repudiation.

D.5.1.2 Security Operations Supported

The following operations must be supported. All are available to applications. The
are:

• set_/get_NR_features as defined in Section 2.1.7, “Non-repudiation,” on page 2-1

• generate_token, verify_evidence, form_complete_evidence and get_token_details
of NRCredentials object as defined in Section 3.1.12.6, “Non repudiation,” on
page 3-25.

• Use of set/get_credentials on Current specifying the type of credentials to be use
is NRCredentials.

• NRPolicy object with associated interfaces as in Section 3.1.12.6, “Non
repudiation,” on page 3-25.

D.5.1.3 Fit with Other Security Conformance

Non-repudiation requires use of credentials; thus it can only be used with ORBs, w
support some of the interfaces defined in Security Functionality level 2. However,
conformance to all of Security Functionality Level 2 is not a prerequisite for
conformance to the non-repudiation security functionality option.

Secure interoperability as defined in Section D.7, “Secure Interoperability,” on
page D-11, is not affected by non-repudiation. The evidence may be passed on a
invocation as a parameter to a request, but the ORB need not be aware of this.

The current specification does not specify interoperability of evidence (i.e., one n
repudiation service handling evidence generated by another).

D.5.2 Conformance of Additional Policies

This specification is designed to allow security policies to be replaced. The additi
policies must also conform to some of the interfaces in this specification if they a
used to replace the standard policies automatically enforced on object invocation

The case described next is for the addition of a new Access Policy which can be
for controlling access to objects automatically, replacing the standard
DomainAccessPolicy.

Clearly, other policies can be replaced. For example, the audit policy could be repl
by one that used different selectors, or the delegation policy could be replaced by
that supported more advanced features.
Security Service, v1.7 March 2001 D-9

D

m
s can

e
 to
ing

s) to

s,”

n be

ent

s. It
trol

 as

n
ges,
D.6 Security Replaceability

This specifies how an ORB can fit with security services, which may not come fro
the same vendor as the ORB. As explained above, there are two levels where thi
be done (apart from any underlying APIs used by an implementation).

D.6.1 Security Features Replaceability

Conformance to this allows security features to be replaced.

If it is provided without conformance to the ORB Service replaceability option (se
Section D.6.2, “ORB Services Replaceability,” on page D-10), it requires the ORB
have a reasonable understanding of security, handling credentials, etc. and know
when and how to call on the right security services.

Support for this replaceability option requires an ORB (or the ORB Services it use
use the implementation-level security interfaces as defined in Section 2.5,
“Implementor’s Security Interfaces,” on page 2-142. This includes:

• The Vault , Security Context, Access Decision, Audit and Principal Authentication
objects defined in Section 2.5.2, “Implementation-Level Security Object Interface
on page 2-148.

• Certain features of the CORBA Core needed for ORB Service Replaceability ca
found in the Common Object Request Broker: Architecture and Specification.

D.6.2 ORB Services Replaceability

Conformance to this allows an ORB to know little about security except which
interceptors to call in what order. This is intended for ORBs, which may use differ
ORB services from different vendors, and require these to fit together. It therefore
provides a generic way of calling a variety of ORB Services, not just security one
also assumes that any of these services may have associated policies, which con
some of their actions.

Support for this replaceability option requires an ORB to:

• Use the Interceptor interfaces defined in the Interceptor chapter of the Common
Object Request Broker: Architecture and Specification to call security interceptors
defined in Section 2.5.1, “Security Interceptors,” on page 2-142, in the order
defined there.

• Use the get_policy operation (and the associated security policy operations such
access_allowed, audit_needed defined in Section 2.3.12, “Access Control,” on
page 2-102 and Section 2.3.10, “Security Audit,” on page 2-99 respectively, for
access control and audit and also get_association_options and
get_delegation_mode defined in Section 2.4.6, “Secure Invocation and Delegatio
Policies,” on page 2-134, for association options, quality of protection of messa
and delegation).
D-10 Security Service, v1.7 March 2001

D

y,

 the

y
ity,
lls on

ant

Rs),
e

ions,
nce the
3.2,

by

,
urity
D.6.3 Security Ready for Replaceability

An ORB is Security Ready for Replaceability if it does not provide any security
functionality itself, but does support one of the security replaceability options.

D.6.3.1 Security Functionality Required

An ORB that is Security Ready does not have to provide any security functionalit
though must correctly respond to a request for the security features supported.

D.6.3.2 Security Interfaces Supported

• get_service_information operation providing security options and details (see
Section 2.3.2, “Finding Security Features,” on page 2-73).

• get_current operation to obtain the Current object for the execution context (see
ORB Interface chapter of the Common Object Request Broker: Architecture and
Specification).

D.6.3.3 Other Security Conformance

An ORB that is Security Ready for replaceability supports one of the replaceabilit
options. This should be done in such a way that the ORB can work without secur
but can take advantage of security services when they become available. So it ca
the replaceability interfaces correctly (using dummy routines to replace security
services when these are needed, but not available).

D.7 Secure Interoperability

The definition of secure interoperability in this document specifies that a conform
ORB can:

• Generate, and take appropriate action on, Interoperable Object References (IO
which include security tags as specified in Section 3.1.4, “CORBA Interoperabl
Object Reference with Security,” on page 3-7.

• Transmit and receive the security tokens needed to establish security associat
and also the protected messages used for protected requests and responses o
association has been established according to the protocol defined in Section
“Secure Inter-ORB Protocol (SECIOP),” on page 3-34.

Note that a Security Ready ORB (i.e., with no built-in security functionality) may,
additions of appropriate security services, conform to secure interoperability.

For ORBs to interoperate securely, they must choose to use the same mechanism
algorithms, etc. (or use a bridge between them, if available). A set of standard sec
mechanisms and algorithms are described in subsections.
Security Service, v1.7 March 2001 D-11

D

7,

er,
 may
sed.

ere
t all

, and

ed
icted.

jects.
 the

e

ot in

ed to

funds
D.7.1 Standard Secure Interoperability

An ORB that conforms to this must support the security-enhanced IOR defined in
Section 3.1.4, “CORBA Interoperable Object Reference with Security,” on page 3-
and also GIOP/IIOP protocol with the SECIOP enhancements as defined in
Section 3.2, “Secure Inter-ORB Protocol (SECIOP),” on page 3-34.

As for CORBA 2, this may be done by immediate bridges or half bridges. (Howev
use of half bridges implies more complex trust relationships, which some systems
not be able to support.) This allows a large range of security mechanisms to be u

D.7.2 Common Secure Interoperability Levels

There are three functionality levels for Common Secure Interoperability (CSI). An
example of the difference in use of the three levels is explained in Section D.7.2,
“Common Secure Interoperability Levels,” on page D-12.

All levels can be used in distributed secure CORBA compliant object systems wh
clients and objects may run on different ORBs and different operating systems. A
levels, security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity
when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality describ
in this specification. Facilities that are supportable at levels 0 and 1 are more restr
The three levels are:

1. Identity based policies without delegation (CSI level 0)
At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target, and this cannot be delegated to further ob
If further objects are called, the identity will be that of the intermediate object, not
initiator of the chain of object calls.

Access and audit policies at this level are based on the identity of the immediate
invoker. So access and audit policies in encapsulated objects which depend on th
initiator of the chain, can only be used at the point of entry to the object system, n
further objects encapsulated by it.

As the attributes of principals are not delegated, environments should not be trust
pass on principal information which should be controlled.

Examples of applications which can use level 0 facilities are wrapped legacy
applications and telephone switches. If a CSI level 0 ORB also supports non-
repudiation, it can also be used for other types of applications such as electronic
transfer.
D-12 Security Service, v1.7 March 2001

D

jects

g

trust
ice,

k

de
roups.
ions,

re, it

.

is
s and

ts
te the
d to

er-
2. Identity based policies with unrestricted delegation (CSI level 1)
At this level, only the identity (no other attributes) of the initiating principal is
transmitted from the client to the target. The identity can be delegated to other ob
on further object invocations, and there are no restrictions on its delegation, so
intermediate objects can impersonate the user. (This is the impersonation form of
simple delegation defined in Section 2.1.6, “Delegation,” on page 2-13.)

Access and audit policies at this level can be based on the identity of the initiatin
principal or immediate invoker, depending on the delegation policy.

As delegation is not restricted, once an initiator has delegated his identity, it must
the objects it calls not to abuse its delegated rights to act as the initiator. In pract
this will limit the type of environment in which level 1 should be used to relatively
closed environments.

An example of an application environment which can use level 1 facilities is a bac
office system protected by firewalls where identity based policies are acceptable.

3. Identity & privilege based policies with controlled delegation (CSI
level 2)
At this level, attributes of initiating principals passed from client to target can inclu
separate access and audit identities and a range of privileges such as roles and g
Delegation of these attributes to other objects is possible, but is subject to restrict
so the initiating principal can control their use. Optionally, composite delegation is
supported, so the attributes of more than one principal can be transmitted. Therefo
provides interoperability for ORBs conforming to all CORBA Security functionality

Access and audit policies are based on the attributes of initiating principals. At th
level, a wider range of policies can be supported (e.g., role based access control
mandatory access controls using the initiating principal’s security clearance).

At this level, an initiator needs to trust those targets which it has allowed to use i
attributes not to abuse these. It does not have to trust these targets not to delega
attributes outside the trusted set of targets, as the delegation controls can be use
prevent this.

This level can be used for a wide range of applications in large enterprise and int
enterprise networks.
Security Service, v1.7 March 2001 D-13

D

os

m

ing

he

rts.

I
ed

sing

n

ted

lude
D.7.3 SECIOP Hosted Interoperability Mechanisms

The following conformance can be claimed:

• SPKM at level 0 by providing the specified CSI level using the SPKM protocol
(mechanism SPKM_1 and optionally also SPKM_2).

• KerberosV5 at level 0 or 1 by providing the specified CSI level using the Kerber
protocol.

• CSI-ECMA Public Key at level 0, 1, or 2 by providing the specified level of CSI
functionality using the CSI-ECMA protocol with the public key option (mechanis
CSI_ECMA_Public).

• CSI-ECMA Secret Key at level 0, 1, or 2 by providing the specified CSI level us
the CSI-ECMA protocol with the secret key option (mechanism
CSI_ECMA_Secret).

• CSI-ECMA Hybrid at level 0, 1, or 2 by providing the specified CSI level using t
CSI-ECMA protocol with the hybrid key option (mechanism CSI_ECMA_Hybrid).

In addition, a conformant ORB must specify all the cryptographic profiles it suppo

D.7.4 Secure Interoperability with SSL

Conformance can be claimed for CORBA Security based on SSL by providing CS
level 0 functionality using SSL on IIOP using any of the cryptographic profiles defin
in[21]. A conformant ORB must specify which of the cryptographic profiles are
supported by it.

D.7.5 Secure Interoperability with DCE-CIOP

An ORB that conforms to this must conform to Standard Secure Interoperability u
GIOP/IIOP as described in Section D.7.1, “Standard Secure Interoperability,” on
page D-12, and also support secure interoperability using DCE-CIOP as defined i
Section 3.8, “DCE-CIOP with Security,” on page 3-109.

Both the Kerberos V5 based SECIOP Security and DCE Security must be suppor
for this option. Any version of DCE up to and including DCE 1.1 is supported; the
DCE interfaces and protocols are specified in [5]

D.8 Conformance Statement

A secure object system, like any secure system, should not only provide security
functionality, but should also provide some assurance of the correctness and
effectiveness of that functionality.

Each OMG-compliant secure or security ready implementation must therefore inc
in its documentation a conformance statement describing:

• The product’s supported security functionality levels and options, security
replaceability, and security interoperability, as described in Appendix G.
D-14 Security Service, v1.7 March 2001

D

ct

can

-
a
inds
e

ile
r a

ed by

nes
not
tion,

al
with

nce
• The vendor’s assurance argument that demonstrates how effectively the produ
provides its specified security functionality and security policies.

• Constraints on the use of the product to ensure security conformance.

The vendor provides the conformance statement so that a potential product user
make an informed decision on whether a product is appropriate for a particular
application. Ordinary descriptive documentation is not required as part of an OMG
compliant product. However, because the CORBA security specification provides
general security framework rather than a single model, there are many different k
of secure ORB implementations that conform to the framework. For example, som
systems may have greater flexibility and support customized security policies, wh
other systems may come with a single built-in policy. Some systems may strive fo
high level of security assurance, while others provide minimal assurance. The
conformance statement will help the user understand the security features provid
the product.

Some products will undergo an independent formal security evaluation (such as o
meeting the ITSEC or TCSEC). The OMG security conformance statement does
take the place of a formal evaluation, but may refer to formal assurance documenta
if it exists. When formal evaluations are not required (often the case in commerci
systems), it is expected that the product’s security conformance statement along
supporting product documentation will provide an adequate description of security
functionality and assurance.

D.9 Conformance Template Overview

The following template specifies the contents for CORBA security conformance
statements. Guidelines for using this template are provided in Section, Conforma
Guidelines.

CORBA Security Conformance Statement

<date>

<product identification>

<vendor identification>

1. Introduction

1.1 Summary of Security Conformance

1.2 Scope of Product

1.3 Security Overview

2. Security Conformance
Security Service, v1.7 March 2001 D-15

D

e

f the

 the
2.1 Main Security Functionality Level

2.2 Security Functionality Options

2.3 Security Replaceability

2.4 Secure Interoperability

3. Assurance

3.1 Philosophy of Protection

3.2 Threats

3.3 Security Policies

3.4 Security Protection Mechanisms

3.5 Environmental Support

3.6 Configuration Constraints

3.7 Security Policy Extensions

4. Supplemental Product Information

D.10 Conformance Guidelines

The guidelines in this section are intended to help the ORB implementor determin
which information belongs in each section of the conformance statement. The
statement will often be accompanied by product documentation to provide some o
information needed.

1. Introduction

1.1 Summary of Security Conformance

This section should give a summary of the security conformance provided by the
product. The summary is in the form of a table with boxes that are ticked to show
relevant conformance.

Table E-3 CORBA Security Functionality Checklist

Main Functionality
Functionality

Options Security Replaceability

Level 1 Level 2
Non

Repudiation
ORB

Services
Security
Services

Security
Ready
D-16 Security Service, v1.7 March 2001

D

r
s not

s are:

tting

lls
his
For the main security functionality level, one of the boxes must be selected (eithe
Level 1 or Level 2), though note that an ORB can be just Security Ready, so doe
support either of the main security functionality levels. For security functionality
options, security replaceability, and secure interoperability, the appropriate boxes
should be selected.

1.2 Scope of Product

This section should define what security components this product offers. Example

• ORB plus all security services needed to support it plus other object services fi
with it and meeting the assurance criteria.

• Security-ready ORB.

• Security Services, which can be used with a security-ready ORB.

1.3 Security Overview

This section should give an overview of the product’s security features.

2. Security Conformance

2.1 Main Security Functionality Level

This section should define which main security functionality level this product
supports, Level 1 or Level 2.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any be
and whistles around the published interfaces, and any limitations on support for t
level.

As in the conformance level descriptions, the description should be divided into:

• The security functionality provided by the product

• The application developer’s interfaces

• The administrative interfaces

Table E-4 CORBA Secure Interoperability Checklist

Interop IIOP DCE-

Level
SECIOP

SSL CIOPSPKM

Kerberos

CSI-ECMA

SPKM
1

SPKM
2

Privat
e

Public Hybri
d

Level 0

Level 1 XXXX XXXX XXX

Level 2 XXXX XXXX XXXXX XXX
Security Service, v1.7 March 2001 D-17

D

he

 be

rity

ort

f the

 As
BA

use it
to

 trust
2.2 Security Functionality Options

This section should define which functionality options are provided, in particular t
support for non-repudiation.

For non-repudiation, as this is a published interface in this specification, it should
accompanied by a qualification statement if needed, as for the main security
functionality level.

2.3 Security Replaceability

This section should define whether the product supports replaceability of secu
services, ORB services, or neither.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any
bells and whistles around the published interfaces, and any limitations on supp
for this conformance option.

2.4 Secure Interoperability

This section should define whether the product supports SECIOP based secure
interoperability, DCE-CIOP based interoperability, SSL based interoperability, or
none. As with the previous sections, qualifications of the support, interpretations o
CORBA specification, and limitations should be included as needed.

2.5 Level of Interoperability

This section should specify what level of interoperability is supported by the ORB.
with the previous sections, qualifications of the support, interpretations of the COR
specification, and limitations should be included as needed.

2.6 Mechanism Profiles

This section should specify what mechanism and cryptographic profiles for
interoperability are supported by the ORB. As with the previous sections,
qualifications of the support, interpretations of the CORBA specification, and
limitations should be included as needed.

3. Assurance

If the product already has supporting assurance documentation (for example, beca
is being formally evaluated), much of this section may be satisfied by references
such documentation. Appendix E, Guidelines for a Trustworthy System, provides
general discussions of many of the topics described here, particularly the basis of
needed for each of the architecture object models.

3.1 Philosophy of Protection

Overview of supported security policies, security mechanisms and supporting
mechanisms.
D-18 Security Service, v1.7 March 2001

D

olicy,

jects

 to

mper-

are
3.2 Threats

Description of specific threats intended to be addressed by the system security p
as well as those not addressed.

3.3 Security Policies

Description of any predefined policies, including:

• Classes of entities (such as clients, objects) controlled by security policy

• Modes of access (conditions that allow active entities to access objects)

• Use of domains (policy, trust, technology)

• Requirements for authentication of principal, client and target objects

• Requirements for trusted path between principals, clients, ORBs, and target ob

• Delegation model

• Security of communications

• Accountability requirements (audit, non-repudiation)

• Environmental assumptions of the policy (e.g., classes of users, LAN/WAN,
physical protection)

3.4 Security Protection Mechanisms

• Rationale for approach

• Identification of components, which must function properly for security policies
be enforced

• Description of mechanisms used to enforce security policy

• How protection mechanisms are distributed in the architecture

• Why security mechanisms (such as access control) are always invoked and ta
proof

3.5 Environmental Support

• How the underlying environment (such as operating systems, generation tools,
hardware, network services, time services, security technology) are used in
providing assurance

• How installation tools ensure secure configuration

• How security management and administration maintains secure configuration

3.6 Configuration Constraints

Constraints to ensure that system security assurance is preserved, for example:

• Requirements on use and development of: clients, target objects, legacy softw

• Limitations on interoperability

• Required software and hardware configuration
Security Service, v1.7 March 2001 D-19

D

sions

sed
3.7 Security Policy Extensions

• Supported security policy extensions, if applicable

• Limitations of extensions

• Requirements imposed on developers to ensure trustworthiness of policy exten

• Supported interactions and compositions of security policies

4. Supplemental Product Information

Supplemental product information is included at the vendor’s discretion. It can be u
to describe, for example:

• Additional security features, not covered by the CORBA Security specification

• The impact of security mechanisms on existing applications
D-20 Security Service, v1.7 March 2001

 Guidelines for a Trustworthy System E
as
ant

s and

tion

-28.

en to
an

ons
urity

lier in

e
rms
E.1 Introduction

This appendix provides some general guidelines for helping ORB implementors
produce a trustworthy system. The intention is to have all information related to
trustworthiness and assurance in this appendix, to explain how the specification h
taken into account the requirements for assurance, and also to show how conform
implementations can have different levels of assurance.

The remainder of the introduction first provides the rationale for including these
guidelines in the specification, and then gives some background on trustworthines
assurance. Section E.2, “Protecting Against Threats,” on page E-3, describes the
threats and countermeasures relevant to a CORBA security implementation. Sec
E.3 through E.6 provide the architecture and implementation guidelines for each
security object model described in Section 2.2, “Security Architecture,” on page 2

E.1.1 Purpose of Guidelines

The security standards proposed in this specification have been deliberately chos
allow flexibility in the security features, which can be provided. The specification c
support significantly different security policies and mechanisms for security functi
such as access control, audit and authentication. However, there is an overall sec
model which applies whatever the security policy. This is described in the earlier
sections of the document.

There is also flexibility in the level of security assurance, which can be provided,
conforming to this model and these standards. This appendix describes the
trustworthiness issues underlying the security model and interfaces described ear
the document, and provides implementation guidance on what components of the
architecture need to be trusted and why. Note that trust requirements assume
conformance to all of the security models, including the implementor’s view, as th
implementation affects trustworthiness. If a CORBA security implementation confo
to the security features replaceability level, but not the ORB services one, any
Security Service, v1.7 March 2001 E-1

E

rise

is

tems
t
ents

y
utual

 that
eans
f
,

ds.

losed

 a set

ce

s

asis
r
y
requirements on ORB services will apply to the ORB. Trustworthiness will also
depend on several other implementation choices, such as the particular security
technology used.

E.1.2 Trustworthiness

Before an enterprise places valuable business assets within an IT system, enterp
management must decide whether the assets will be adequately protected by the
system. Management must be convinced that the particular system configuration
sufficiently trustworthy to meet the security needs of the enterprise environment.
Security trustworthiness is thus the ability of a system to protect resources from
exposure to misuse through malicious or inadvertent means.

The basis for trust in distributed systems differs from host-centric stand-alone sys
largely for two reasons. First, the assignment of trust in a distributed system is no
isolated to a single global system mechanism. Second, the degree of trust in elem
of distributed systems (particularly distributed object systems) may change
dynamically over time, whereas in host-centric systems trustworthiness is typicall
static. In many cases, trust in distributed systems must be seen in the context of m
suspicion.

E.1.3 Assurance

Assurance is a qualitative measure of trustworthiness; assurance is the confidence
a system meets enterprise security needs. The qualitative nature of assurance m
that enterprises may have different assurance guidelines for an equivalent level o
confidence in security. Some organizations may need extensive evaluation criteria
while other organizations need very little evidence of trustworthiness.

It is necessary to set a context by which CORBA developers and end-users of the
CORBA Security specification may evaluate the level of security to meet their nee
A single overall trust model that underlies the security reference model and
architecture (as described elsewhere in this specification) can set this context for c
systems, but it is unlikely that a single trust model exists for the diversity of open
distributed systems likely to populate the distributed object technology world.

To support a balanced approach, assurance arguments should be assembled from
of system building blocks. Concepts of system composition and integration should
allow the assurance analysis to be tailored to specific user requirements. Assuran
evidence should be carefully packaged to best support enterprise decision-maker
during the security trade-off process.

The security object models defined by the CORBA Security specification are the b
for the necessary building blocks. The trust guidelines described in “Guidelines fo
Structural Model” on page E-8, provide constraints on how these components ma
relate.
E-2 Security Service, v1.7 March 2001

E

verall
he use
m

stem.
ter

iate
s, so

 the
est

is

ific
The
ut

re.

.1,

 are
me
oals

y
The relationship between assurance and security provides the foundation for the o
security model. The key characteristic is balance. Balanced assurance promotes t
of assurance arguments and evidence appropriate to the level of risk in the syste
components.

Basic system building blocks, such as those in the CORBA Security specification
previously noted, are critical to developing balanced assurance. For example,
confidentiality is of most importance to a classified intelligence or military system,
whereas data integrity may be of more importance in a computer patient record sy
The former relies on assurance in the underlying operating system, where the lat
focuses security in application software.

E.2 Protecting Against Threats

An enterprise needs to protect its assets against perceived threats using appropr
security measures. This document addresses security in distributed object system
focuses on the threats to assets, software, and data, in such systems.

An enterprise may want to assess the risk of a security breach occurring, against
damage which will be done if it does occur. The enterprise can then decide the b
trade-off between the cost of providing protection from such threats and any
performance degradation this causes, against the probability of loss of assets. Th
specification allows options in how security is provided to counter the threats.
However, it is expected that many enterprises will not undertake a formal risk
assessment, but rely on a standard level of protection for most of their assets, as
identified by industry or government criteria. This section describes CORBA-spec
security goals, the main distributed system threats, and protection against them.
discussion does not emphasize generic issues of threats and countermeasures, b
instead concentrates on issues that are unique to the CORBA security architectu

E.2.1 Goals of CORBA Security

The overall goals of the CORBA security architecture were described in Section 1
“Introduction to Security,” on page 1-2. CORBA security is based on the four
fundamental objectives of any secure system:

• Maintain confidentiality of data and/or system resources.

• Preserve data and/or system integrity.

• Maintain accountability.

• Assure data/system availability.

Many of the goals described in Section 1.1, “Introduction to Security,” on page 1-2
relevant to any IT system that is targeted at large-scale applications. However, so
security goals described are specific to the CORBA security architecture. These g
deserve special attention because they surface potential threats that may not be
encountered in typical architectures. CORBA-specific security goals include:

• Providing security across a heterogeneous system where different vendors ma
supply different ORBs.
Security Service, v1.7 March 2001 E-3

E

to
rity

l

ing
ity,”
m.

l

ed

r

the

n in
y
er new
• Providing purely object-oriented security interfaces.

• Using encapsulation to promote system integrity and to hide the complexity of
security mechanisms under simple interfaces.

• Allowing polymorphic implementations of objects based on different underlying
mechanisms.

• Ensuring object invocations are protected as required by the security policy.

• Ensuring that the required access control and auditing is performed on object
invocation.

The discussion of the architecture and implementation guidelines in Section E.3,
“Guidelines for Structural Model,” on page E-8, addresses the mechanisms used
ensure these CORBA-specific security goals, as well as many other generic secu
issues.

E.2.2 Threats

The CORBA security model needs to take into account all potential threats to a
distributed object system. It must be possible to set a security policy and choose
security services and mechanisms that can protect against the threats to the leve
required by a particular enterprise.

A security threat is a potential system misuse that could lead to a failure in achiev
the system security goals previously described. Section 1.1, “Introduction to Secur
on page 1-2, provided an overview of security threats in a distributed object syste
These threats and related attacks include:

• Information compromise - the deliberate or accidental disclosure of confidentia
data (e.g., masquerading, spoofing, eavesdropping).

• Integrity violations - the malicious or inadvertent modification or destruction of
data or system resources (e.g., trapdoor, virus).

• Denial of service - the curtailment or removal of system resources from authoriz
users (e.g., network flooding).

• Repudiation of some action - failure to verify the actual identity of an authorized
user and to provide a method for recording the fact (e.g., audit modification).

• Malicious or inadvertent misuse - active or passive bypassing of controls by eithe
authorized or unauthorized users (e.g., browsing, inference, harassment).

The threats described above give rise to a wide variety of attacks. Most if not all
threats that pertain to host-centric systems are pertinent to distributed systems.
Furthermore, it appears likely that the wide distribution of resources and mediatio
truly distributed systems will not only exacerbate the strain on host-centric securit
services and mechanisms in use today on client/server systems, but also engend
forms of threat.
E-4 Security Service, v1.7 March 2001

E

 is
tion
 be

is

tion.

of the

em
s

ould
ntrols
n

at user
 a

act on
sing

ting

hey

rget
 and it
lse
Threats may be of different strengths. For example, accidental misuse of a system
easier to protect against than malicious attacks by a skilled hacker. This specifica
does not attempt to counter all threats to a distributed system. Those that should
countered by measures outside the scope of this specification include:

• Denial of service, which may be caused by flooding the communications with
traffic. It is assumed that the underlying communications software deals with th
threat.

• Traffic analysis.

• Inclusion of rogue code in the system, which gives access to sensitive informa
(This affects the build and change control process.)

E.2.3 Vulnerabilities of Distributed Object-Oriented Systems

Vulnerabilities are system weaknesses that leave the system open to one or more
threats previously described. Information systems are subject to a wide range of
vulnerabilities, a number of which are compounded in distributed systems. These
vulnerabilities often result from deliberate or unintentional trade-offs made in syst
design and implementation, usually to achieve other more desirable goals such a
increased performance or additional functionality.

Classes of vulnerabilities include:

• An authorized user of the system gaining access to some information which sh
be hidden from that user, but has not been properly protected (e.g., access co
have not been properly set up or the store occupied by one object has not bee
cleared out when another reuses the space).

• A user masquerading as someone else, and so obtaining access to whatever th
is authorized to do, resulting in actions being attributed to the wrong person. In
distributed system, a user may delegate his rights to other objects, so they can
his behalf. This adds the threat of rights being delegated too widely, again, cau
a threat of unauthorized access.

• Controls that enforce security being bypassed.

• Eavesdropping on a communication line giving access to confidential data.

• Tampering with communication between objects: modifying, inserting, and dele
items.

• Lack of accountability due, for example, to inadequate identification of users.

• System data as well as business data must be protected. For example:

• If a principal’s credentials are successfully obtained by an unauthorized user, t
could be used to masquerade as that principal.

• If the security sensitive information in the security context between client and ta
object is available to an unauthorized user, confidential messages can be read,
may be possible to modify and resend integrity-protected messages or send fa
messages without this being detected.
Security Service, v1.7 March 2001 E-5

E

istics

es
e
in a

y.

ill

ntial
ng a

rity
ys

ne
rity

ain
e a

ll.
 is
use

he

l of
nt
As described earlier, system threats and vulnerabilities are compounded by the
complexities of distributed object-based systems. Some of the inherent character
of distributed object systems that make them particularly vulnerable include:

• Dynamic Systems -- Distributed object systems are always changing. New
components are constantly being added, deleted, and modified. Security polici
also may be dynamically modified as enterprises change. Dynamic systems ar
inherently complex, and thus security may be difficult to ensure. For example,
large distributed object system it will be difficult to update a security policy
atomically. While an administrator installs a new policy on some parts of the
system, other parts of the system still may be using the old version of the polic
These potential inconsistencies in policy enforcement could lead to a security
failure.

• Mutual Suspicion -- In a large distributed system, some system components w
not trust others. Mistrust could occur at many layers within the architecture:
principals, objects, administrators, ORBs, and operating systems may all have
varying degrees of trustworthiness. In this environment, there is always the pote
to inadvertently place unjustified trust in some system component, thus exposi
vulnerability. Although there are many mechanisms (e.g., cryptographic
authentication) to ensure the identity of a remote component, the system secu
architecture must be carefully structured to ensure that these checks are alwa
performed.

• Multiple Policy Domains -- Distributed object systems that interconnect many
enterprises are likely to require many different security policy domains, each o
enforcing the security requirements of its organization. There is no single secu
policy and enforcement mechanism that is appropriate for all businesses. As a
result, security policies must be able to address interactions across policy dom
boundaries. Defining the appropriate policies to enforce across domains may b
difficult job. Mismatched policies could lead to vulnerabilities.

• Layering of Security Mechanisms -- Distributed object systems are highly
layered, and the security mechanisms for those systems will be layered as we
Complex, potentially nondeterministic interactions at the boundary of the layers
another area for vulnerabilities to occur. A hardware error, for example, could ca
security checking code in the ORB to be bypassed, thus violating the policy. T
complexity of the layering is further compounded in systems where security
enforcement is widely distributed; that is, there is no clear security perimeter
containing only a small amount of simple functionality.

• Complex Administration -- Finally, large geographically distributed object
systems may be difficult to administer. Security administration requires the
cooperation of all the administrators, who even may be mutually suspicious. Al
the issues listed above lead to complex, error-prone administration. An innoce
change to a principal’s access rights, for example, could expose a serious
vulnerability.
E-6 Security Service, v1.7 March 2001

E

on is
el of
e and

odels

t
et

y are

sit
play,

d

CB,
rity

ple

 on
es.

cess

 to
ic

n
E.2.4 Countermeasures

Some threats are common across most distributed secure systems, so should be
countered by standard security features of any OMA-compliant secure systems.
However, the level of protection against these threats may vary. Complete protecti
almost impossible to achieve. Most enterprises will want a balance between a lev
protection against threats which are important to them, and the cost in performanc
use of other resources of providing that level of protection.

A number of measures exist for countering or mitigating the effects of the above
threats/attacks. Countering these threats requires the use of the security object m
described in this specification. Relevant features of the object models include the
following:

• Authentication of principals proves who they are, so it is possible to check wha
they should be able to do. This check can be performed at both client and targ
object, as the client principal’s credentials can be passed to the server.

• Authentication between clients and target objects allows them to check that the
communicating with the right entities.

• Security associations can protect the integrity of the security information in tran
between client and target object (e.g., credentials, keys) to prevent theft and re
and keep the keys used for protecting business data confidential.

• Business data can be integrity-protected in transit so any tampering is detecte
using the message protection ORB services. (This includes detecting extra or
missing messages, and messages out of sequence.)

• Unauthorized access to objects is protected using access controls.

• Misuse of the system can be detected using auditing.

• Segregating (groups of) applications from each other and security services from
applications can prevent unauthorized access between them.

• Bypassing of security controls is deterred by use of a Trusted Computing Base
(TCB), where security is automatically enforced during object invocation.

Assurance arguments and evidence are frequently founded on the concept of a T
which mediates security by segregating the security-relevant functions into a secu
kernel or reference monitor.

A traditional monolithic TCB approach is not suitable for the open, multiuser, multi
environment situations in which most CORBA users reside. In many cases, for
example, secure interoperability of CORBA applications and ORBs may be based
mutual suspicion. TCB scalability issues also argue against typical TCB approach
Given the complexity of distributed systems, it is not clear whether centralized ac
mediation is possible in the presence of distributed data and program logic.

Traditional TCB approaches also do not adequately address application security
requirements, particularly for many commercial applications. Applications common
the CORBA world such as general purpose DBMSs, financial accounting, electron
commerce, or horizontal common facilities will have many security requirements i
addition to those that can be enforced by a central underlying TCB.
Security Service, v1.7 March 2001 E-7

E

B is

ding
itive

s.

l
to
 for

ple
rvice
 and
Despite the limitations of the traditional TCB, we use the concept of a distributed TCB
in the assurance discussions of the next section. The concept of a distributed TC
the collection of objects and mechanisms that must be trusted so that end-to-end
security between client and target object is maintained. However, note that depen
on the assurance requirements of a particular CORBA security architecture, sens
data may still be handled by “entrusted” ORB code. Thus, our informal use of the
distributed TCB concept may not correspond to other existing models for network
TCBs, particularly for minimal assurance commercial CORBA security application

E.3 Guidelines for Structural Model

This section provides architecture and implementation guidelines for the structura
model of the CORBA security architecture described in Section 1.1, “Introduction
Security,” on page 1-2. The security functions provided in the model and the basis
trust are described.

E.3.1 Security Functions

Figure E-1 outlines interactions during a normal use of the system. It gives a sim
case, where the application is unaware of security except for calling a security se
such as audit. The security interactions include those seen by application objects
secure object system implementors.

Figure E-1 Normal System Interactions

This diagram is the basis for the discussions of security functions in each of the
security object models described next.

Client

ORB

Target
Object

Security

Services
ORB

Services

Clientnon-repud

Credentials

audit etc.

ORB
Security

user

.. object reference

CurrentObj RefCredentials

Application View

System
Implementor’s

View

security tokens

transformed request
E-8 Security Service, v1.7 March 2001

E

rts the

 will

d
.

tion
are.

curity

d on
lity
n of

the

her.

ted.

rs.

e

tions

E.3.2 Basis of Trust

Enterprise management is responsible for setting the overall security policies and
ensuring system enforcement of the policies.

The system developer and systems integrators must provide a system that suppo
required level of assurance in the core security functionality. Generally application
developers cannot be expected to be aware of all the threats to which the system
be subject, and to put the right countermeasures in place.

Higher levels of security may require the code enforcing it to be formally evaluate
according to security criteria such as those of the US TCSEC or European ITSEC

Distributed Trusted Computing Base

The key security functionality in the system is enforced transparently to the applica
objects so that it can be provided for application objects, which are security unaw
This key functionality is contained in the distributed TCB of the system. It is therefore
responsible for ensuring that:

• Users cannot invoke objects unless they have been authenticated (unless the se
policy supports unauthenticated, guest access for some services).

• Security policies on access control, audit, and security association are enforce
object invocation. This includes policies for message protection, both confidentia
(ensuring confidential data cannot be read) and integrity (ensuring any corruptio
data in transit is detected).

• A principal’s credentials are automatically transferred on object invocation if
required, so the access control and other security policies can be enforced at
server object.

• Application objects which do not trust each other cannot interfere with each ot

• The security policy between different security policy domains is suitably media

• The security mechanisms themselves cannot be tampered with.

• The security policy data cannot be changed except by authorized administrato

• The system cannot be put into an undefined or insecure state as a result of th
operation of nonprivileged code.

The distributed TCB also needs to provide the required information so that applica
can enforce their own security policies in a way that is consistent with the domain
security policy.
Security Service, v1.7 March 2001 E-9

E

s

s

the
olicy.

ity

ity is

,
.

Figure E-2 Distributed TCB

The TCB in an OMA-compliant secure system is normally distributed and include
components as follows.

• The distributed core ORBs and associated Object Adapters
Core ORBs are trusted to function correctly and call the ORB Security Service
correctly in the right order, but do not need to understand what these do.
Object Adapters are trusted to utilize the operating system facilities to provide
required protection boundaries between components in line with the security p

• The associated ORB Services
ORB Services other than security are trusted similarly to the ORB. ORB Secur
Services are used to provide the required security on object invocation.

• Related objects
ORB Services use objects such as the binding and Current to find which secur
required.

• Security objects
Security objects include those available to applications such as Principal
Authentication and Credentials and those called by security interceptors (Vault

��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Core ORBS and OAs

Binding

Application

Current

lower layer
communications

External Security Services

Operating System, Hardware

Security Objects
(Principal Authentication, Credentials, Security policies,

Vault, Security Context, Access Decision)

(Distributes) Trusted Computing Base

ORB
Services
E-10 Security Service, v1.7 March 2001

E

g the

rfere
sure
and
ch

ally

n

ies.
t.
en

ese

 of

e
cts

nd
ctions
s are

ction
Security Context, Access Decision, and Security Audit). These are trusted to
function correctly to enforce security in line with the security policy and other
requirements.

• Any external security services used by the security services, as part of enforcin
security policy.

• The supporting operating systems.
These are trusted to ensure that objects (in different trust domains) cannot inte
with each other (using protection domains). The security services should also en
that the security information driving the security policy (such as the credentials
security contexts) is adequately protected from the application objects using su
features.

• Optionally, lower layer communications software. However, this does not gener
need to be particularly secure (at least for normal commercial security) as
protection of data in transit is done by the security association and message
protection interceptors, which are independent of the underlying communicatio
software.

A distributed system may be split into domains, which have different security polic
These domains may include ORBs and ORB Services with different levels of trus
Trust between domains needs to be established, and an interdomain policy betwe
them enforced. The ORB security services (and external security services that th
call) to provide this interdomain working are part of the distributed TCB. Note,
therefore, that the parts of this TCB in different domains may have different levels
trust.

Note that application objects may enforce their own security polices, if these are
consistent with the policy of the security domain. However, failure to enforce thes
securely will affect only the applications concerned and any other application obje
that trusted them to perform this function.

Protection Boundaries

The general approach is to establish protection boundaries around groups of one or
more components, which are said to belong to a corresponding protection domain.
Components belonging to a protection domain are assumed to trust each other, a
interactions between them need not be protected from each other, whereas intera
across boundaries may be subject to controls. Protection Boundaries and Domain
a lower level concept than Environment Domains; they are the fundamental prote
mechanism on which higher levels are built.

At a minimum, it must be possible to create protection boundaries between:

• Application components that do not trust each other.

• Components that support security services and other components.

• Components that support security services and each other.
Security Service, v1.7 March 2001 E-11

E

 (for

ing

ts

es
f

e
,
ce as)

level

mple,

onents
Controlled Communications

As well as providing protection boundaries, it is necessary to provide a controlled
means of allowing particular components to interact across protection boundaries
example, an application invoking a Security Object (explicitly), or an interceptor
(implicitly).

It must not be possible for applications to bypass security services which enforce
security policies. It is therefore necessary to ensure that the components support
those services are always invoked when required. This is achieved by using both
protection boundaries and controlled communications to ensure that client reques
(and server responses) are routed via the components (interceptors and Security
Objects), which implement the security services.

Figure E-3 illustrates the segregation of components implementing security servic
into separate protection domains from application components; the only means o
communication between components is via controlled communication paths.

Figure E-3 Base Protection and Communications

In implementation terms, components could, for example, be executed in separat
processes, with process boundaries acting as protection boundaries. Alternatively
security services could be executed in-process with (i.e., in the same address spa
corresponding client and server application components, provided that they are
adequately protected from each other -- for example, by hardware-supported multi
access control mechanisms).

Figure E-4 shows two examples of protection boundaries. In the first example, the
boundaries between components might be process boundaries. In the second exa
ORB and security components might be protected from applications by memory
protection mechanisms (e.g., kernel and user spaces) and client and server comp
might be protected from each other by physical separation.

Client Server
Logical Object Request

Security Services

Base Protection and Communications
E-12 Security Service, v1.7 March 2001

E

eet
 and

nce.

rity
ied

ot to
ed to
Figure E-4 Protection Boundaries

E.3.3 Construction Options

For some systems, the TCB in domains of the distributed system may need to m
security evaluation criteria for both functionality and assurance (in the correctness
effectiveness of the security functionality) as defined in TCSEC, ITSEC, or other
security evaluation criteria.

The split into components previously described allows a choice over the way the
system is constructed to meet different requirements for assurance and performa

This section describes three options for how the system may be constructed, as
follows:

• A commercial system where all applications are generated using trusted tools.

• A commercial system with limited security requirements.

• A higher security system.

Note – These are just examples to show the type of flexibility provided by the secu
model. It is not expected that any implementation will provide all the options impl
by these.

Example Using Trusted Generation Tools and ORBs

If all applications are generated using trusted tools, applications can be trusted n
interfere with other components in the same environment. Therefore there is no ne
provide protection boundaries between different application objects or between
application objects and the underlying ORB.

��
����
��

���
���
��� Hardware and Operating System

��
���
��

��
��
�� Hardware and Operating System

Client ClientServer ServerApplications

Security etc.

ORB
Security Service, v1.7 March 2001 E-13

E

vide a

 the

e
ess to
ts.

s may

at
t to

tion

en
vices.

t of
n the

o can

 as
tions

e

rity
 of

ss

cts,

sed.
ory (set
If the ORB and ORB Services are also trusted, there may need be no need to pro
protection boundary between the ORB and the underlying security services and
objects. It may well be acceptable to run them all in the same process, relying on
trust between the components, rather than more rigidly enforced boundaries.

However, if the application generation tools and the ORB are less trusted than th
security services, then there may need to be a protection boundary to prevent acc
security-sensitive information in the Credentials, Security Context, and Vault objec

Commercial System with Limited Security Requirements

Some systems may not contain very sensitive business information, so enterprise
not be prepared to pay for a high level of security. They may also know that the
probability of serious malicious attempts to break the system is low, and decide th
protecting against such attempts is not worth the cost. They may also choose no
sacrifice performance for better levels of security.

In many systems, applications are generated using tools that are not particularly
trusted. For example, using a C compiler, it would be possible to write an applica
that can read, or even alter, any information within the same protection domain.
Theoretically, providing good security implies putting protection boundaries betwe
each application object, and between applications and the ORB and Security Ser

The security model allows environment domains to be defined, where enforcemen
policy can be achieved by means local to the environment. For example, objects i
same identity domain can share a security identity. Applications belonging to
environment domains may trust each other not to interfere with each other, and s
be put in the same protection domain.

It may also be acceptable to run (part of) the ORB in the same protection domain
the application objects. This assumes that an interface boundary between applica
and the ORB is sufficient protection from accidental damage (the probability of an
application corrupting an ORB being low in a commercial system). Even if the
application does corrupt the ORB, damage is limited, as the ORB does not handl
security-sensitive data.

In some commercial systems, it may also be acceptable to run some of the secu
services in the same protection domain as the application and ORB. The chance
these being accidentally (or maliciously) corrupted may be low, so it may be
acceptable to risk a failure to enforce the access control policy because the Acce
Decision object is corrupt.

However, it will often be desirable to protect the state information of security obje
which contain very sensitive security information from the applications.

Higher Security System

In a security system requiring high assurance, different security policies may be u
For example, label-based access controls may be used and these may be mandat
under administrator’s controls) and not changeable by application objects.
E-14 Security Service, v1.7 March 2001

E

keys

m
o

tion
ide a
n

tors
e

event
tity,

ir
n

fore
.

e
Stronger protection boundaries are also likely to be needed, allowing:

• Individual applications to be protected from each other. Even if environment
domains are used, the size of the domain is likely to be smaller.

• The ORB and ORB Services to be protected from the application.

• The core security objects, which contain security-sensitive information such as
to be protected from applications and ORBs, etc.

• Particular secure objects (e.g., the Access Decision objects) to be separate fro
others, as they may have been written by someone less trusted than those wh
wrote, for example, the Security Context objects.

E.3.4 Integrity of Identities (Trojan Horse Protection)

In traditional procedural systems, protecting the integrity of an identity is
straightforward; programs are stored in files, which are protected against modifica
by operating system access control mechanisms. When invoked, programs run ins
process whose address space is protected by operating system memory protectio
mechanisms. Programs load code in fairly predictable ways.

Since this specification does not mandate which entities have identities, implemen
have a wide variety of choices; identities may be associated, for example, with th
following:

• Object instances

• Servers

• Object adapters

• Address spaces

If identities are associated with object instances, precautions are necessary to pr
object instance code from being modified by other code (which may have no iden
or a different identity) in the instance’s address space.

Servers may permit dynamic instantiations of previously unknown classes into the
address spaces. This makes it difficult to determine what code is running under a
identity if identities are associated with servers; this in turn makes it difficult to
determine whether a server identity can be “trusted.” Identified servers must there
be provided with some way of controlling what code can run under their identities

Observing the following guidelines will help to ensure integrity of identities.

• Code running under one identity must not be permitted to modify code running
under another identity without passing an authorization check.

• It must be possible for an identified “entity” to control which code runs within th
scope of its identity.
Security Service, v1.7 March 2001 E-15

E

on
rity

tes

cipal
rity

ject.

ices
ation
ties

e

of.
 that
they

ll as
t

ntrol

bject,
t. This
so
d
t
E.4 Guidelines for Application Interface Model

This section provides architecture and implementation guidelines for the applicati
interface model of the CORBA security architecture described in Section 2.2, “Secu
Architecture,” on page 2-28. The security functions provided in the model and the
basis for trust are described.

E.4.1 Security Functions

Logging onto the System

When a user or other principal wants to use a secure object system, it authentica
itself and obtains credentials. These contain its certified identity and (optionally)
privilege attributes, and also controls where and when they can be used. This prin
information is integrity-protected and it should be possible to ascertain what secu
service certified them.

Walkthrough of Secure Object Invocation

The following is a walkthrough of what happens when a client invokes a target ob

• The client invokes the object using its object reference. The ORB Security Serv
are transparent to the client and application object and use the security inform
with the object reference and the security policy to decide on the security facili
required. There are separate ORB Services for security associations, message
protection, and access control on object invocation, but the audit service can b
called by any or none of these according to security policy.

The client and target object establish the required level of trust in each other,
transmitting security tokens to each other to provide the required degree of pro
For example, they may or may not require mutual authentication. It is expected
most security mechanisms will provide options here, though the details of how
do this, and the form of tokens used, is mechanism dependent.

The principal’s credentials are normally passed from client to target object
transparently. These should be protected in transit from theft and replay as we
for integrity of the information itself (though some security mechanisms may no
support this). The Vault object will validate these, checking that it trusts who
certified them, as well as whether they are still intact.

Different ORB services may be called at the target end. For example, access co
is normally called at the server, rather than the client.

• Once the security association has been established between client and target o
the request can be passed using the message protection interceptor to protect i
should be able to provide integrity and/or confidentiality protection. It should al
be able to provide continuous authentication, as the messages will be protecte
using keys only known to this client and server (or the trust group for the targe
object).
E-16 Security Service, v1.7 March 2001

E

udit.
ify

y be

 a
ects.

ust in

o

alf,

curity

tion

ciated
,
ntrol

ol is

• The application object may also call security services for access control and a
These will use the security information available from the environment to ident
the initiating principal and its privileges.

• This application object may now act as a client, and call further objects. It may
delegate the client’s credentials or use its own (or use both). However, there ma
constraints on whether the client’s credentials can be delegated. For example,
particular principal’s credentials may be constrained to particular groups of obj

E.4.2 Basis of Trust

Users have some trust in application objects, and application objects have some tr
other objects. Both may:

• Trust application objects to perform the business functions.

• Have limited trust in some applications, or domains of the distributed system, s
restrict which of their privilege attributes are available to these objects.

• Want to restrict the extent that their credentials can be propagated at all.

• Have to prove their identity to the system so it can enforce access on their beh
unless they are only going to access publicly available services.

Both users and applications trust the underlying system to enforce the system se
policy, and therefore protect their information from unauthorized access and
corruption.

E.5 Guidelines for Administration Model

This section provides architecture and implementation guidelines for the administra
model of the CORBA security architecture described in Section 2.2, “Security
Architecture,” on page 2-28. The security functions provided in the model and the
basis for trust are described.

E.5.1 Security Functions

Object and Object Reference Creation

When an object is created in a secure object system, the security attributes asso
with it depend on the security policies associated with its domain and object type
though the object may be permitted to change some of these. These attributes co
what security is enforced on object invocation (or example, whether access contr
needed and, if so, the Access Decision object to be used; the minimum quality of
protection required).

The object reference for a such an object is extended to include some security
information. For example, it may contain:
Security Service, v1.7 March 2001 E-17

E

ect
to be
be a

as

ific

cting.

elves,
re
d, it

te

n.

 in
• An extended identity. This includes the object identity as normal in an object
reference. However, it will also contain the identity of the trust domain, if the obj
belongs to one. Small objects, which are dynamically created and do not need
protected from each other, will normally share a trust domain. There could also
node identity.

• Security policy attributes required by the object when invoked by a client such
the minimum quality of protection of data in transit.

• The security technology it supports. It may also contain some mechanism-spec
information such as its public key, if public key technology is being used, and
particular algorithms used.

Much of the information is just “hints” about which security is required, and will be
verified by the ORB services supporting the target object, so does not need prote

E.5.2 Basis of Trust

Authorization Policy Information

Domain objects may store policy information inside their own encapsulation
boundaries, or they may store it elsewhere (for example, authorization policy
information could be encapsulated in the state data of the protected objects thems
or it could be stored in a procedural Access Control Manager whose interfaces a
accessible to Domain objects). Wherever authorization policy information is store
must be protected against modification by unauthorized users.

Authorization policy information must be modifiable only by authorized
administrators.

Audit Policy Information and Audit Logs

Audit policy information is security sensitive and must be protected against
unauthorized modification. Audit logs are security sensitive and may contain priva
information; they should be viewed and changed only by authorized auditors.

• Audit policy information must be modifiable only by authorized audit
administrators.

• Audit logs must be protected against unauthorized examination and modificatio

E.6 Security Object Implementation Model

E.6.1 Guidelines

This section provides architecture and implementation guidelines for the security
object implementation model of the CORBA security architecture described in
Section 2.2, “Security Architecture,” on page 2-28. The security functions provided
the model and the basis for trust are described.
E-18 Security Service, v1.7 March 2001

E

re
stem,

hat it
ed to

ame

tion
an
on.

d

ith

gns

 to
r
ons
ever,
y

in, the
E.6.2 Security Functions

The distributed core ORBs, object adapters, ORB security services, and security
objects provide the underlying implementation to support the application and
administration interfaces.

E.6.3 Basis of Trust

Target Object Identities

CORBA objects do not have unique identities; for this reason, when objects that a
not associated with a human user authenticate themselves in a secure CORBA sy
they use “security names.” Successful authentication to a target object indicates t
possesses the authentication data (perhaps a cryptographic key), which is presum
be known only to the legitimate owner of the security name. An object’s security n
may be included in references to that object as a “hint.” The question “how do
applications know that the security-name hint is reliable?” naturally arises.

The answer is as follows:

• If the EstablishTrustinTarget security feature is specified, then the security
services defined in this specification will authenticate the target security name
found in the target object reference. The semantics of this authentication opera
include an assumption that the security name in the reference corresponds to
identity that the user is willing to trust to provide the target object’s implementati
There is no way for the security services to test this assumption.

• If your implementation provides a trusted source of object references, then
everything will work properly. If you do not have a source of trusted object
references, the specification provides a get_security_names operation on the object
reference through which applications can retrieve the target’s security name an
perform any tests, which may help satisfy them of its validity.

CORBA object references can circulate very widely; for example, they can be
“stringified” and then (potentially) copied onto a piece of paper. Implementations w
very high integrity requirements could ensure that references are trustworthy by
providing a trustworthy service that generates references and cryptographically si
the contents, including the target security name.

Assumptions about Security Association Mechanisms

Implementation of a secure CORBA system requires use of security mechanisms
enforce the security with the required degree of protection against the threats. Fo
example, cryptographic keys are normally used in implementing security, for functi
such as authenticating users and protecting data in transit between objects. How
different security mechanisms may use different types of cryptographic technolog
(e.g., secret or public key) and may use it in different ways when, for example,
protecting data in transit. These cryptographic keys have to be managed, and aga
way this is done is mechanism specific.
Security Service, v1.7 March 2001 E-19

E

dge
t a

.2.4,
r of
.

these

 will

y

es

ing
s
ce

ing

e
A full analysis of how well an implementation counters the threats requires knowle
of the security mechanisms used. However, this specification does not dictate tha
particular mechanism is used.

It does assume that the security mechanisms used for authentication and security
associations can provide the relevant security countermeasures listed in Section E
“Countermeasures,” on page E-7. These are expected to be provided by a numbe
security mechanisms, which will be available for protecting secure object systems
Therefore, the analysis of threats and the trust model assume this facility level.

It would be possible to use a security mechanism that does not provide some of
facilities (for example, mutual authentication, or even to switch this off to improve
performance in systems that can provide it). However, if such a system is used, it
be vulnerable to more threats.

Invoking Special Objects

Some of the objects described in this document are locality constrained objects, which
bypass the normal invocation process and therefore are not subject to the securit
enforced by the ORB services. The Current object (used, for example, by the target
object to obtain security information about the client) is of this type. Protection of
these objects is provided by other means, for example, using protection boundari
previously described.

E.6.4 Basis For ORB Assurance

The ORB must function correctly (e.g., when enforcing security policy on object
invocation and object creation as defined in this specification). Likewise the underly
host platforms must function correctly in their provision of the security mechanism
employed, and relied upon, by the ORB. Both must do this to the level of assuran
specified in its Conformance Statement (which is described in Appendix D). This
section identifies many of the most critical design considerations related to provid
these assurances in a DOC system.

Isolating Security Mechanisms

Figure E-5 depicts how security functionality and trust is distributed throughout th
architecture.
E-20 Security Service, v1.7 March 2001

E

unt of

ords,

e

 the

 is
rget
 the

ts are
 the

but

e
ol
ntrol
ion
 and
Figure E-5 Distribution of Security Functionality and Trust

The split of security objects is designed to reduce (as much as possible) the amo
security-sensitive information, which must be visible to applications and ORBs.

• Only log-in applications (where provided) need to handle secrets such as passw
and then only briefly during authentication.

• Cryptographic keys and other security-sensitive information about principals ar
held with Credentials objects. References to Credentials objects are visible to
applications so they can invoke operations on them to, for example, reduce
privileges in the credentials before calling an object. However, no operations on
Credentials provide visibility of security information such as keys.

• Security information used to protect application data in transit between objects
held in Security Context objects, which are not visible to applications at all. (Ta
applications can ask for attributes associated with an incoming invocation using
Current object.)

Security objects such as Credentials, Security Context, and Access Decision objec
also not used directly by the core ORB, only by the security interceptors. Therefore
core ORB needs to be trusted to call the interceptors correctly in the right order,
does not need to understand security or have access to the security-sensitive
information in them.

The split also is intended to isolate components which may be replaced to chang
security policy or security mechanisms. For example, to replace the access contr
policy, the Access Decision objects need to be changed. However, the access co
interceptor will remain responsible for finding and invoking the right Access Decis
object. To replace the security mechanisms for security association, only the Vault
associated Security Context objects need to be replaced.

��
����
����
����
����
����
����
��

�
�
�
�
�
�
�
�

Application
may be security unaware

may enforce application security policy

core ORB and OA

must function correctly e.g.
invoke required interceptors

in the right order

ORB security interceptors

must function correctly
ensure security enforced

core security objects - must enforce security
Principal

Authentication

Credentials Vault Security
Context

Access
Decision

Audit
Non-

repudiation
Security Service, v1.7 March 2001 E-21

E

nd
g

nt’s

 ORB

ption

stem
s

n

g a
e

ted
ants
d to

ple,
ne
Integrity of the ORB and Security Service Objects

Security in a CORBA environment depends on the correct operation of the ORB a
Security Services. In order for these mechanisms to operate correctly, the followin
rules must be followed:

• The ORB and Vault code must not be modifiable by unauthorized users or
processes.

• The ORB must protect all messages, according to policy, using the message
protection interfaces.

• The ORB must always check the client’s authorization before dispatching a clie
message to a protected object.

Safeguarding the Object Environment

To guard against unauthorized modification of the ORB and security services,
implementors should use Operating System protection mechanisms to isolate the
and Security Service objects from untrusted applications and user code.

Note that some modifications of ORB or Vault code may not compromise system
integrity. For example, in a CORBA implementation, which relies on third-party
authentication and does not share Vault or ORB objects between processes, corru
of the client-side Vault (or ORB) by user-written code may not compromise system
security. (This is because the client-side ORB and Vault in a third-party-based sy
may, depending upon the implementation, contain only information that the user i
entitled to know and change anyway. In this case, nothing the user can do to
information on his machine will enable him to deceive the third-party authenticatio
server about his identity and credentials.)

Safeguarding the Dispatching Mechanism

To ensure that the ORB always checks the client’s authorization before dispatchin
client’s message to a protected object, ORB implementors should follow one of th
following rules:

• Eliminate “direct dispatching” mechanisms (which permit clients to dispatch
messages directly to target objects without going through the ORB).

• Permit “direct dispatching” only after checking authorization and issuing “restric
object references” to client objects. A “restricted object reference” is one that gr
access only to those methods of the target object, which the client is authorize
invoke.

Safeguarding Information in Shared Vault Objects

Vault objects encapsulate identity-specific, security-sensitive information (for exam
cryptographic keys associated with Security Context objects). If code owned by o
principal can penetrate a Vault object and examine or modify another principal’s
information, security can be compromised.
E-22 Security Service, v1.7 March 2001

E

 and
be

xts,
’s

hat
In an implementation that does not permit sharing of Vault objects by multiple
identities, this problem does not arise. However, if Vault objects are accessible to
encapsulate information about multiple identities, the following guidelines should
observed:

• Do not permit a Vault object, which encapsulates one principal’s Security Conte
to exist in the same address space as code running under a different principal
identity.

• If a Vault object contains Security Contexts for two different principals, ensure t
no principal is able to obtain or use another principal’s Security Contexts.
Security Service, v1.7 March 2001 E-23

E

E-24 Security Service, v1.7 March 2001

Facilities Not in This Specification F
ct
ine

he
y or

ome

ion,
ct

.) for
rity

ions
F.1 Introduction

Security in CORBA systems is a big subject, which affects many parts of the Obje
Management Architecture. It was therefore decided to phase the specification in l
with the priorities agreed as part of the security evaluation criteria by the Security
Working Group prior to the production of this specification.

This specification therefore includes the core security facilities and the security
architecture to allow further facilities to be added. Priority has been given to those
requirements most needed by commercial systems. Even with these limitations, t
size of the specification is larger than desirable for OMG members to review easil
for vendors to implement.

Some of the facilities omitted from this specification are agreed to be required in s
secure CORBA systems, and so are expected to be added later, using the usual OMG
process of RFPs to request their specification.

This appendix lists those security facilities which are not included in the specificat
but left to later specifications, which may be in response to further RFPs for Obje
Services or Common Facilities.

F.2 Interoperability Limitations between Unlike Domains

Secure interoperability is included in this specification. This allows applications
running under different ORBs in different domains to interoperate providing that:

• Both support and can use the same security mechanisms (and algorithms, etc
authentication and secure associations (an ORB may support a choice of secu
mechanisms).

• Use of these between the domains will not contravene any government regulat
on the use of cryptography.
Security Service, v1.7 March 2001 F-1

F

types

 a
ific

s
how
utes.

.

ty

bject

),”
ted.
e key
ge

e

ich
as
is

imed
s, for
t for

ty
• The security policies they support are consistent -- for example, use the same
for privileges which can be understood in both places.

Limitations in the specification which affect this type of interoperability are:

• The standard policies defined do not include specifying different policies when
client communicates with different domains (though it is possible to define spec
policies to do this).

• There is no specification of the mapping policies required to translate attribute
when crossing a domain boundary where these policies are inconsistent, and
these must be positioned, for example, to allow delegation of the mapped attrib
Again, such mapping policies are not prevented.

• In general, there is no specification of how federated policies are implemented

• There is no specification of gateways to handle interoperability between securi
mechanisms. It is expected that only limited interoperability between particular
security mechanisms will ever be provided, so this is not expected to be the su
of an RFP in the foreseeable future.

F.3 Non-Session-Oriented SECIOP Protocol

The SECIOP protocol defined in Section 3.2, “Secure Inter-ORB Protocol (SECIOP
on page 3-34, assumes that all underlying security mechanisms are session-orien
The current specification does not support security mechanisms, which encapsulat
distribution and other security context management information in a single messa
along with the data being protected (examples of such mechanisms include those
accessed through the proposed internet IDUP-GSS-API interface). Changes to th
SECIOP protocol would be required to support non-session-oriented protocols.

F.4 Mandatory Security Mechanisms

The current specification does not mandate any particular security mechanism wh
all secure ORBs must implement. This is because the submitters did not think it w
possible to specify out-of-the-box interoperability adequately in the timescale of th
submission.

F.5 Specific Security Policies

This specification includes some standard types of security policies for security
functionality such as access control, audit, and security of invocations. These are a
at general commercial users. Some enterprises may require other types of policie
example, support of mandatory access controls. Where there is a sufficient marke
such policies, new policies may be defined, providing they fit with the replaceabili
interfaces defined in this specification.
F-2 Security Service, v1.7 March 2001

F

f

ting
g the

o
t.

 the
e

ublic
rt of
ology

.

can
re a

 It
 the
F.6 Other Audit Services

This specification only contains limited audit facilities, which allow audit records o
security relevant events to be collected. It does not include:

• Filtering of records after generation to further reduce the size of the audit trail.

• Routing audit records to a collection point for consolidation and analysis or rou
some as alarms to security administrators. (However, routing may be done usin
OMG Event Service, if that is secure enough.)

• Audit reporting or analysis tools to use the audit trails to track down problems.

F.7 Possible Enhancements

F.7.1 SECIOP Mechanism and Option Negotiation

This specification assumes the mechanism identifiers in the IOR allow the client t
choose what mechanisms and options to use when communicating with this targe
Therefore, it does not define protocol exchanges to allow the client and target to
negotiate either mechanisms or options.

However, if the target supports a number of mechanisms and options, the size of
IOR could become larger than desirable. So in future, it may be desirable to defin
protocol exchanges for mechanism negotiation, for example, using [19].

F.7.2 Further Key Distribution Options

The current CSI-ECMA protocol defines secret and public key options for key
distribution and a hybrid option where secret keys are used within a domain, but p
keys are used between domains. It does not define the protocol for use in the so
hybrid system where the initiator uses secret key and target uses public key techn
and vice versa.

This may be needed for interoperation between unlike domains. If so, further
architectural options from ECMA 235 may need to be included in the specification

 F.7.3 Further Delegation Options at/above Level 2

The current level 2 specification supports restricting where an initiator’s attributes
be used to targets identified by security name. Further options for restricting whe
PAC may be delegated could be added (e.g., to restrict delegation to particular
delegation policy domain). This would require definition of further “qualifier
attributes” in the CSI-ECMA protocol (see application trust groups in ECMA 235).
would also require administration of this, which would best be done by extending
security policy administration in Section 2.4, “Administrator’s Interfaces,” on
page 2-115.
Security Service, v1.7 March 2001 F-3

F

he
s,

tes
ese

ire a

OR
 they
ed
s not

t
with

ws
ice

t

rom

r
ects.

ed

is
Composite delegation of the initiator plus immediate invoker kind is described in t
CSI protocol, but is not mandatory at level 2. Further composite delegation option
including traced delegation, could be added.

F.8 Interoperability when using Non-Repudiation

The optional Non-repudiation service in the CORBA Security specification genera
NR tokens. This specification does not specify the technology used to generate th
tokens or a standard form for them. Interoperability of evidence tokens would requ
standard specification for such tokens.

This CSI specification is focused at inter-ORB interoperability, and therefore the I
and SECIOP protocol. So it also does not specify the format of evidence tokens as
do not affect the SECIOP protocol. However, these evidence tokens may be pass
between ORBs as parameters, and will not be understood by an ORB which doe
use the same security technology.

In future, a mandatory interoperability evidence token format should be defined, a
least for a limited number of types of evidence. This is expected to be compatible
the public key mechanism specified in this document and use X.509 version 3
certificates.

F.9 Audit Trail Interoperability

The CORBA Security specification includes an Audit Channel interface which allo
applications and ORBs to write records to the audit trail. The way this Audit Serv
routes the audit records is not defined. This could be done using the OMG Event
Service or other means. Also, the stored/on-the-wire format of audit records is no
defined.

So there is no standard OMG defined method of bringing together audit records f
different Audit Services.

F.10 Management

This specification contains only the management interfaces which are essential fo
security policy management. It specifies how to obtain and use security policy obj
However, it does not contain:

• Specification of facilities for handling domains, policies other than those requir
for security policy administration.

• Specification of facilities for the management of some aspects of security. For
example, it does not specify how to create and install permanent keys, as this
implementation specific.
F-4 Security Service, v1.7 March 2001

F

 from
se of

ce
tion

alf of
th a

al.

ence.

se

a

ked.
 in
chain
n to
vide
d

ion

ked.
 in
chain
F.11 Reference Restriction

This specification requires the movement of credentials to delegate access rights
one object to another. Another technique of access rights delegation restricts the u
an object reference according to a set of criteria. This approach, know as referen
restriction, is under study by a number of vendors, but is not ready for standardiza
at this time. The criteria used to restrict references could include:

• Whether an object has the right to assert certain privileges, such as act on beh
a principal, act on behalf of a group of principals, act in a particular role, act wi
particular clearance, etc.

• Whether the object reference has been limited to use within a given time interv

• Whether a particular method can be used by an object holding the object refer

Various techniques for restricting object references have been developed. Some u
cryptographic methods, while others store state in the object associated with the
restricted reference, allowing the object to decide if a method request meets the
restricted reference use criteria.

It is anticipated that vendors will explore this type of access rights delegation and
move towards the standardization of an interface supporting it in a submission to
future RFP.

F.12 Target Control of Message Protection

In the current specification, message protection can be specified by policy
administration at both the client and the target object.

Requesting an operation on an object may result in many other objects being invo
The CORBA security specification in this document allows an intermediate object
such a chain of objects to delegate received credentials to the next object in the
(subject to policy). However, the current specification does not allow the applicatio
control when and where these credentials are used. A later specification may pro
such controls to ride the default quality of protection selectively. Therefore, it coul
cause some messages to have different qualities of protection during a security
association.

The target has no equivalent interface to request the quality of protection for a
particular response. There are cases where this could be useful.

A future security specification should consider adding control of quality of protect
by the target for individual responses.

F.13 Advanced Delegation Features

Requesting an operation on an object may result in many other objects being invo
The CORBA security specification in this document allows an intermediate object
such a chain of objects to delegate received credentials to the next object in the
(subject to policy).
Security Service, v1.7 March 2001 F-5

F

and

ls

eriod.

ns
se a

he
l
However, the current specification does not allow the application to control when
where these credentials are used.

A later specification may provide such controls.

If so, it is expected that a set_controls operation on the Credentials object will be
added to enable the application to set the controls, and a matching get_controls
operation to enable it to see what controls apply (see the set_attributes and
get_attributes operations defined in Interfaces under Section 2.3.4, “The Credentia
Object,” on page 2-77).

The set_controls operation would allow the application to specify a set of required
control values such as delegation mode (allowing for richer forms of delegation),
restrictions on where the credentials may be used and/or delegated, and validity p

Note – These operations were not included in the specification because of concer
about portability of applications using them. Current delegation implementations u
wide variety of delegation controls, and some use similar controls in semantically
different ways. Further implementation experience and investigation may make it
possible to define a portable, standard set.

F.14 Overlapping and Hierarchical Domains

This specification does not require support for overlapping or hierarchical security
policy domains. However, it is possible to implement both using the interfaces
provided.

Recall from Section 2.4, “Administrator’s Interfaces,” on page 2-115, that the
DomainAccessPolicy for each domain defines which rights are granted to subjects
when they attempt to access objects in the domain. In order to make an access
decision, the AccessDecision logic also needs to know which rights are required to
execute the operations of an object, which is a member of the relevant domain. T
RequiredRights interface provides this information; the AccessDecision object wil
probably use this interface in most implementations.
F-6 Security Service, v1.7 March 2001

F

 be
 of

nly

re
ccess

to
olve
Note
assed
A RequiredRights instance can be queried to determine which rights a user must
granted in order to be allowed to invoke an object’s operations. The intended use
DomainAccessPolicy and RequiredRights objects by the AccessDecision object is
illustrated next, in Figure F-1.

Figure F-1 Intended Use by AccessDecision

AccessDecision retrieves the relevant policy object by calling get_domain_managers
on the target object reference, and then calling get_domain_policy(access) on the
returned domain manager (assuming for purposes of this example that there is o
one). It then calls get_effective_rights on the returned policy object. AccessDecision
then calls get_required_rights on RequiredRights and compares the returned list of
required rights with the effective rights. If all required rights have been granted, it
grants the access.

Figure F-2 illustrates how the specification could be implemented to support
overlapping access policy domains (i.e., to allow an object to be a member of mo
than one domain, such that each domain has an access policy and all domains’ a
policies are applied). In the diagram, the AccessDecision object must have logic
combine the policies asserted by the various AccessPolicy objects (which may inv
evaluating which AccessPolicy object’s policy takes precedence over the others).
that the AccessDecision object knows the target object reference, because it is p
as an input parameter to the access_allowed operation.

AccessDecision

RequiredRights

access_allowed

DomainAccessPolicy

get_effective_rights get_required_rights
Security Service, v1.7 March 2001 F-7

F

on
Figure F-2 Supporting Overlapping Access Policy Domains

Hierarchical domains can be handled in a similar way as illustrated in Figure F-3
page F-8 (note that once again the AccessDecision object’s implementation is
responsible for reconciling the various retrieved policies).

.

Figure F-3 Hierarchical domains

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

DomainManager AccessPolicy

get_superior_domain_managers
F-8 Security Service, v1.7 March 2001

F

ssed
ith

es

is

nd
sing
e
F.15 Capability-Based Access Control

Capability-based systems store access policy information in tokens, which are pa
from sender to receiver along with a message, rather than in tables associated w
target objects or domains. In such systems, the DomainAccessPolicy object will
generally not be used in resolving target-side access control checks. Instead, a
CapabilityAccessPolicy object might be returned from a call to Object::get_policy in
a capability-based system. This object could retrieve the granted rights from the
capability (which will be associated with the requester’s credentials), illustrated in
Figure F-4 on page F-9.

Figure F-4 Retrieving Granted Rights

Note that neither the CapabilityAccessPolicy interfaces nor the Capability interfac
are defined in this specification (the get_granted_rights call to the capability in the
previous diagram is printed in italics, to indicate that no IDL is provided for it in th
specification). The diagram assumes that CapabilityAccessPolicy inherits the
get_effective_rights operation from AccessPolicy.

F.16 Non-repudiation Services

This specification contains Non-repudiation Services for evidence handling. It is
anticipated that future service offerings could include data protection processing a
the specification of a delivery service. In addition, it is expected that policy proces
interfaces will emerge to cover the broad range of non-repudiation policy coverag
within the service.

AccessDecision

RequiredRights

access_allowed

get_required_rights

CapabilityAccessPolicy

get_effective_rights

Capability

get_granted_rights
Security Service, v1.7 March 2001 F-9

F

hing
,

 and
rse

 be
It is anticipated that the data protection and delivery service functions will be reac
a level of maturity within other standards domains (such as IETF and ISO SC27)
which should allow a richer definition of these services to be enabled in future
revisions of this specification.

The absence of these services in this specification means that application writers
manipulators will need to consult local implementation practice for the correct cou
of action to be taken when writing or porting their software.

This specification also does not include a standard format of evidence token for
interoperability. In the future, a token format based on public key certificates may
specified.
F-10 Security Service, v1.7 March 2001

 Interoperability Guidelines G

ines

t
rd. Its

e

for
),

n
G.1 Introduction

This appendix includes:

• Guidelines for defining Security Mechanism TAGs in Interoperable Object
References (IORs).

• Examples of the secure inter-ORB protocol, SECIOP.

G.2 Guidelines for Mechanism TAG Definition in IORs

Section 3.1, “Security Interoperability Protocols,” on page 3-1, defined a prototype
TAG definition for security association mechanisms. This appendix provides guidel
that specifiers of mechanism TAGs (called authors here) should follow.

In addition to registering TAGs with the OMG, authors must lodge a document tha
explains how the mechanism (and its associated options) is mapped to this standa
document should:

• Identify the “security mechanism tagged component” being described. It may b
either:

• A new component TAG for the mechanism with a set of options it can have (
example, a separate TAG for each combination of mechanism and algorithm

or

• Use TAG_GENERIC_SEC_MECH and specify the mechanism OID (for use i
the security_mechanism_type field) being described by this specification.

It may not be both.

• Specify the scope implied by the above mechanism identifier. This should not
exceed:

• Security association mechanism
Security Service, v1.7 March 2001 G-1

G

ng of

fined

fined

the

ition
 a

s
it and

rget.
d its
ves
d

s part
d the
s the
sses
rned
xt
• Negotiation protocols

• Cryptographic algorithms

• Authentication method (e.g., public key)

• For the first example under the first bullet, describe the format, contents, and
encoding of the component_data field for the TAG-specific components. For the
second example under the first bullet, describe the format, contents, and encodi
the data in the mech_specific_data and components fields of the TAG specific
components. In each case, this may include:

• Allocating new component TAGs and describing the format, contents, and
encoding of their data.

• Specifying the use of these new tagged components, as well as other prede
tagged components within TAG-specific components.

• Specifying the use of these new tagged components, as well as other prede
tagged components that may or should appear at the top level of the
multicomponent profile.

• Describe a model that should be followed when defining future extensions or
variations using the same mechanism.

• The author must define either by reference to another document, or explicitly,
format of the context tokens used by the mechanism in the SECIOP protocol.

G.3 SECIOP Examples

 G.3.1 Mutual Authentication

In this example, the client wishes to authenticate the identity of the target (in add
to the targets requirement to authenticate the client) before it is prepared to send
request to the target.

The client sends an EstablishContext message to the target containing the client’
context id for the association, and the token required by the target to authenticate
define the options chosen by the client for the association. The target verifies the
client’s token and generates the token required by the client to authenticate the ta
The target sends this token (along with the client’s context id for the association an
own) to the client in a CompleteEstablishContext message. When the client recei
this message, it authenticates the target using the token supplied by the target an
establishes the peer id as part of the context.

Having completed the establishment of the context, the client sends the request a
of a MessageInContext message, which includes the target’s context identifier an
integrity token for the message. When the target receives the message, it identifie
context by its identifier, checks the integrity of the message with the token, and pa
the message to GIOP. When the reply is returned, it is sealed for integrity and retu
to the client in a SECIOP MessageInContext with the client identifier for the conte
and the generated integrity token.
G-2 Security Service, v1.7 March 2001

G

sion
te the

uest
tifier

ssage,
n

 to the
rn its

letes
en
Figure G-1 Mutual Authentication

 G.3.2 Confidential Message with Context Establishment

This example describes how context establishment is combined with the transmis
of a confidentiality protected message when the client does not wish to authentica
target before passing it a message.

The client establishes its context object with identifier c_id_1. This identifier is
included with the token (token_1) in an EstablishContext message. The GIOP req
is transformed into the message seal (ms_1) and sent with the client’s context iden
in a MessageInContext.

When the target receives the message, it first processes the EstablishContext me
authenticating the client and allowing the target to create its context object. It the
unseals the message in ms_1 and passes it to GIOP.

When GIOP sends the reply, SECIOP adds a CompleteEstablishContext message
MessageInContext message, which protects the reply, to enable the target to retu
context identifier to the client. When the client receives the message, it first comp
its view of the context (adding the targets id to the state for the context). It can th
unseal the reply from ms_2 and passes the reply message up the protocol stack.

Client establishes
context object id = c_od_1
token = token_1 EstablishContext(c_id_1, token_1)

Target establishes
context objectid = c_id_69
token = token_2

CompleteEstablishContext(c_id_1, c_id_69, token_2)

Client completes context
and transmits signed GIOP
request with sign = ms_1

MessageInContext(peer, c_id_69, ms_1)(GIOP request)

Target checks sign and
processes request, signs
reply and transmits reply
with sign = ms_2

MessageInContext(peer, c_id_1, ms_2)(GIOP reply)

Client checks sign
and processes reply.
Security Service, v1.7 March 2001 G-3

G

he

with
quire
 with

It then
,
ge, it

s the
 its

he
o

Figure G-2 Confidential Message with Context Establishment

 G.3.3 Fragmented GIOP Request with Context Establishment

In this example, the security context is established as part of the processing of a
fragmented GIOP request (note that the current GIOP protocol does not support
fragmentation, but this example indicates the independence of SECIOP from the
current GIOP protocol and explains how the SECIOP protocol would handle a
fragmented GIOP request). The sequence described reflects the requirement of t
target to authenticate the client’s privileges.

The client establishes its context object (with id c_id_1) and passes this identifier
the authentication token in an EstablishContext message. As the client does not re
authenticating the target, this message is sent with a MessageInContext message
the integrity sign (ms_1) and the GIOP fragment (as the message field of the
MessageInContext).

When the target receives the messages, it authenticates the client using token_1.
creates a context object with c_id_69, and then processes the MessageInContext
checking the integrity of the message using sign ms_1. Having checked the messa
passes the fragment up the protocol stack.

The client sends the final fragment as a MessageInContext with sign ms_2, but a
target has not yet passed its identifier for the context to the client, the client uses
own identifier for the context.

The target finds its context object from the client’s identifier (c_id_1) and checks t
integrity of the message. It then passes the final fragment up the protocol stack t
GIOP.

Client establishes context
object id = c_id_1
token id = token_1
Seals GIOP request into
seal = ms_1 Establish Context(c_id_1, token_1)

MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
Target unseals and
processes request, seals
reply and transmits
reply in
seal = ms_2

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply
G-4 Security Service, v1.7 March 2001

G

ss

l
, a

ntifier

et’s
s the
GIOP now has a complete request and can invoke the object (subject to the acce
decision function).

GIOP generates a single fragment reply, which is passed to the SECIOP protoco
machine. The reply is sent within a MessageInContext with sign ms_3. In addition
CompleteEstablishContext message is generated to allow the target to pass its ide
for the context (c_id_69) to the client for use in future messages.

The client receives the message and updates its context object to record the targ
context identifier. It then checks the integrity of the MessageInContext and passe
reply up the protocol stack (to GIOP).

Figure G-3 Fragmented GIOP Request with Context Establishment

Client establishes context
object id = c_id_1
token id = token_1
Client signs GIOP

sign = ms_1
Establish Context(c_id_1, token_1)
MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
and checks the fragment

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply

fragment with

(GIOP fragment)

sign.

Client signs final
fragment with
sign = ms_2 MessageInContext(client, c_id_1, ms_2)

(GIOP fragment)

Target checks sign and
processes request, signs
reply and transmits
reply with
sign = ms_2

(GIOP reply)
Security Service, v1.7 March 2001 G-5

G

G-6 Security Service, v1.7 March 2001

 Glossary
5

se.

s

ss
he
nd

ess

d

tem.

 a
rder
Definitions

absolute time: Time relative to the time base of 0 hours 0 minutes 0 seconds of 1
October 1582 (c.f. CORBA Time Service [3]), accurate within a known margin of
error.

access control: The restriction of access to resources to prevent its unauthorized u

access control information (ACI): Information about the initiator of a resource acces
request, used to make an access control enforcement decision.

access control list: A list of entities, together with their access rights, which are
authorized to have access to a resource.

access decision function: The function which is evaluated in order to make an acce
control enforcement decision. The inputs to an access decision function include t
requester’s access control information (q.v.), the resource’s control information, a
context data.

ADO: Access Decision Object: The CORBA security object which implements acc
decision functions.

accountability: The property that ensures that the action of an entity may be trace
uniquely to the entity.

active threat: The threat of a deliberate unauthorized change to the state of a sys

adjudicator : An authority that resolves disputes among parties in accordance with
policy. In CORBA security, an adjudicator evaluates non-repudiation evidence in o
to resolve disputes.

anonymous user: A user of the system operating under a distinguished “public”
identity corresponding to no specific user.
Security Service, v1.7 March 2001 1

 that

: (i)
r

udit

y

to
d).

sed

ion.

blic

y
e of
rity.

d
assurance: 1. Justified confidence in the security of a system. 2. Development,
documentation, testing, procedural, and operational activities carried out to ensure
a system’s security services do in fact provide the claimed level of protection.

asymmetric key: One half of a key pair used in an asymmetric (“public-key”)
encryption system. Asymmetric encryption systems have two important properties
the key used for encryption is different from the one used for decryption (ii) neithe
key can feasibly be derived from the other.

audit: See security audit.

audit event: The data collected about a system event for inclusion in the system a
log.

audit trail : See security audit trail.

authentication: The verification of a claimant’s entitlement to use a claimed identit
and/or privilege set.

authentication information : Information used to establish a claimant’s entitlement
a claimed identity (a common example of authentication information is a passwor

authorization: The granting of authority, which includes the granting of access ba
on access rights.

availabilit y: The property of being accessible and usable upon demand by an
authorized user.

call chain: The series of client to target object calls required to complete an operat
Used in this specification in conjunction with delegation.

certification authority : A party trusted to vouch for the binding between names or
identities and public keys. In some systems, certification authorities generate pu
keys.

ciphertext: The result of applying encryption to input data; encrypted text.

cleartext: Intelligible data; text which has not been encrypted or which has been
decrypted using the correct key. Also known as “plaintext”.

confidentiality : The property that information is not made available or disclosed to
unauthorized individuals, entities, or processes.

conformance level: A graduated sequence of defined sets of functionality defined b
the CORBA Security specification. An implementation must implement at least on
these defined sets of functionality in order to claim conformance to CORBA Secu

conformance option: A defined set of functionality which implementations may
optionally provide in order to claim CORBA Security conformant functionality over
and above the minimum required by the defined conformance levels.

conformance statement: A written document describing the conformance levels an
conformance options to which an implementation of the OMG CORBA Security
specification conforms.
2 Security Service, v1.7 March 2001

es

s)

rity
pal,

.

yed

r her

g of

nit
a

 set
licy

 of
control attributes : The set of characteristics which restrict when and where privileg
can be invoked or delegated.

counter-measures: Action taken in response to perceived threats.

credentials: Information describing the security attributes (identity and/or privilege
of a user or other principal. Credentials are claimed through authentication or
delegation (q.v.) and used by access control (q.v.).

current object: An object representing the current execution context; CORBA Secu
associates security state information, including the credentials of the active princi
with the current object.

DAC : Discretionary Access Control - an access control policy regime wherein the
creator of a resource is permitted to manage its access control policy information

data integrity : The property that data has not been undetectably altered or destro
in an unauthorized manner or by unauthorized users.

DCE: Distributed Computing Environment (of OSF).

DCE CIOP: DCE Common Inter-ORB Protocol - the protocol specified in the OMG
CORBA 2.0/ Interoperability specification which uses the DCE RPC for
interoperability.

decipherment: Generation of cleartext from ciphertext by application of a
cryptographic algorithm with the correct key.

decryption: See decipherment.

delegation: The act whereby one user or principal authorizes another to use his (o
or its) identity or privileges, perhaps with restrictions.

denial of service: The prevention of authorized access to resources or the delayin
time-critical operations.

digital signature: Data appended to, or a cryptographic transformation of a data u
that allows a recipient of the data unit to prove the source and integrity of the dat
against forgery (e.g., by the recipient).

domain: A set of objects sharing a common characteristic or abiding by a common
of rules. CORBA Security defines several types of domains, including security po
domains, security environment domains, and security technology domains.

domain manager: A CORBA Security object through whose interfaces the
characteristics of a security policy domain are administered.

encipherment: Generation of ciphertext from corresponding cleartext by application
a cryptographic algorithm and a key.

encryption: See encipherment.

ESIOP: Environment-Specific Inter-ORB Protocol (specified in the OMG CORBA
2.0/ Interoperability specification).
Security Service, v1.7 March 2001 3

ve

et of
her.

d

d by

ay
ity

ing

s,
a
ot be

tly

 of
 of

ll

ely

B
evidence: Data generated by the CORBA Security Non-Repudiation service to pro
that a specific principal initiated a specific action.

evidence token: A data structure containing CORBA Security Non-Repudiation
evidence.

federated domains: Separate domains whose policy authorities have agreed to a s
shared policies governing access by users from one domain to resources in anot

GSS-API: Generic Security Services- Application Programming Interface - specifie
by RFC 1508 issued by the Internet IETF. An update to this interface is near
completion as this is written, and it is anticipated that RFC 1508 will be supersede
a revised specification soon.

GIOP: General Inter-ORB Protocol (specified in the OMG CORBA 2.0/
Interoperability specification.)

group: A CORBA Security privilege attribute. Many users (and other principals) m
be assigned the same group attribute; this allows administrators to simplify secur
administration by granting rights to groups rather than to individual principals.

granularity : The relative fineness or coarseness by which a mechanism may be
adjusted.

hierarchical domains: A set of domains together with a precedence hierarchy defin
the relationships among their policies.

identity : A security attribute with the property of uniqueness; no two principals’
identities may be identical. Principals may have several different kinds of identitie
each unique (for example, a principal may have both a unique audit identity and
unique access identity). Other security attributes (e.g., groups, roles, etc.) need n
unique.

IETF : Internet Engineering Task Force. Reviews and issues Internet standards.

IIOP : Internet Interoperable Object Protocol (specified in the OMG CORBA 2.0/
Interoperability specification).

immediate invoker: In a delegated call chain, the client from which an object direc
receives a call.

impersonation: The act whereby one principal assumes the identity and privileges
another principal without restrictions and without any indication visible to recipients
the impersonator’s calls that delegation has taken place.

initiator : The first principal in a delegation “call chain”; the only participant in the ca
chain which is not the recipient of a call.

integrity : In security terms, the property that a system always faithfully and effectiv
enforces all of its stated security policies.

interceptor: An object which provides one or more specialized services, at the OR
invocation boundary, based upon the context of the object request. The OMG
CORBAsecurity specification define the security interceptors.
4 Security Service, v1.7 March 2001

r

BA

).

cess
s of

ls
ment

h

he
uest.

ng

ces

intermediate: An object in a delegation “call chain” which is neither the initiator no
the ultimate (final) target.

IOR : Interoperable Object Reference - a data structure specified in the OMG COR
2.0/ Interoperability specification.

ITSEC: Information Technology Security Evaluation Criteria (of ECSC-EEC-EAEC
Harmonized Criteria.

MAC : Mandatory Access Control - an access control regime wherein resource ac
control policy information is always managed by a designated authority, regardles
who creates the resources.

locality constrained: an object is locality constrained if it cannot be accessed from
outside a specific locality. references to the object cannot be meaningfully passed
outside the boundaries of the locality of concern.

mechanism: A specific implementation of security services, using particular
algorithms, data structures, and protocols.

message protection: Security protection applied to a message to protect it against
unauthorized access or modification in transit between a client and a target.

mutual authentication: The process whereby each of two communicating principa
authenticates the other’s identity. Frequently this is a prerequisite for the establish
of a secure association between a client and a target.

Non-Repudiation: The provision of evidence which will prevent a participant in an
action from convincingly denying his responsibility for the action.

ORB Core: The functionality provided by the CORBA Object Request Broker whic
provides the basic representations of objects and the communication of requests.

ORB Services: Elements of functionality provided transparently to applications by t
CORBA Object Request Broker in response to the implicit context of an object req

ORB technology domain: A set of objects or entities that share a common ORB
implementation technology.

originator : The entity in an object request which creates the request.

passive threat: The threat of unauthorized disclosure of information without changi
the state of the system.

physical security: The measures used to provide physical protection of resources
against deliberate and accidental threats.

POSIX: Portable Open System Interfaces (for) UNIX - A set of standardized interfa
to UNIX systems specified by IEEE Standard 1003.

principal : A user or programmatic entity with the ability to use the resources of a
system.
Security Service, v1.7 March 2001 5

at
tion

air

ss,

 has

or

has

 a

from

ata

ir

v.)

ed

G

s
 in
 rights
privacy: 1. See confidentiality. 2. The right of individuals to control or influence wh
information related to them may be collected and stored and by whom that informa
may be disclosed.

private key: In a public-key (asymmetric) cryptosystem, the component of a key p
which is not divulged by its owner.

privilege: A security attribute (q.v.) which need not have the property of uniquene
and which thus may be shared by many users and other principals. Examples of
privileges include groups, roles, and clearances.

proof of delivery: Non-repudiation evidence demonstrating that a message or data
been delivered.

proof of origin : Non-repudiation evidence identifying the originator of a message
data.

proof of receipt: Non-repudiation evidence demonstrating that a message or data
been received by a particular party.

protection boundary: The domain boundary within which security services provide
known level of protection against threats.

PDU: Protocol Data Unit. The data fields of a protocol message, as distinguished
the protocol header and trailer fields.

POA: Portable Object Adapter

proof of submission: Non-repudiation evidence demonstrating that a message or d
has been submitted to a particular principal or service.

public key: In a public-key (asymmetric) cryptosystem, the component of a key pa
which is revealed.

public-key cryptosystem: An encryption system which uses an asymmetric-key (q.
cryptographic algorithm.

QOP: Quality of Protection. The type and strength of protection provided by a
message-protection service.

RPC: Remote Procedure Call.

replaceability: The quality of an implementation which permits substitution of one
security service for another semantically similar service.

repudiation: Denial by one of the entities involved in an action of having participat
in all or part of the action.

RFP: Request for Proposal. An OMG procedure for soliciting technology from OM
members.

right : A named value conferring the ability to perform actions in a system. Acces
control policies grant rights to principals (on the basis of their security attributes);
order to make an access control decision, access decision functions compare the
granted to a principal against the rights required to perform an operation.
6 Security Service, v1.7 March 2001

d

est
d
s in

es
licy,

ss

e
rights type: A defined set of rights.

role: A privilege attribute representing the position or function a user represents in
seeking security authentication. A given human being may play multiple roles and
therefore require multiple role privilege attributes.

RSA: An asymmetric encryption algorithm invented by Ron Rivest, Adi Shamir, an
Len Adelman.

seal: To encrypt data for the purpose of providing confidentiality protection.

secret-key cryptosystem: A cryptosystem which uses a symmetric-key (q.v.)
cryptographic algorithm.

secure time: A reliable Time service that has not been compromised, and whose
messages can be authenticated by their recipients.

security association: The shared security state information which permits secure
communication between two entities.

security attributes: Characteristics of a subject (user or principal) which form the
basis of the system’s policies governing that subject.

security audit: The facility of a secure system which records information about
security-relevant events in a tamper-resistant log. Often used to facilitate an
independent review and examination of system records and activities in order to t
for adequacy of system controls, to ensure compliance with established policy an
operational procedures, to detect breaches in security, and to recommend change
control, policy and procedures.

 security features: Operational information which controls the security protection
applied to requests and responses in a CORBA Security conformant system.

security context: The CORBA Security object which encapsulates the shared state
information representing a security association.

security policy: The data which defines what protection a system’s security servic
must provide. There are many kinds of security policy, including access control po
audit policy, message protection policy, non-repudiation policy, etc.

security policy domain: A domain whose objects are all governed by the same
security policy. There are several types of security policy domain, including acce
control policy domains and audit policy domains.

security service: Code that implements a defined set of security functionality.
Security services include Access Control, Audit, Non-repudiation, and others.

security technology domain: A set of objects or entities whose security services ar
all implemented using the same technology.

subject: An active entity in the system; either a human user principal or a
programmatic principal.

symmetric key: The key used in a symmetric (“secret-key”) encryption system. In
such systems, the same key is used for encryption and decryption.
Security Service, v1.7 March 2001 7

or

 a

em is

ctly

ld

nse

y

them

a
tagged profile: The data element in an IOR which provides the profile information f
each protocol supported.

target: The final recipient in a delegation “call chain.” The only participant in such
call chain which is not the originator of a call.

target ACI : The Access Control Information for the target object.

target object: The recipient of a CORBA request message.

threat: A potential violation of security.

traced delegation: Delegation wherein information about the initiator and all
intervening intermediates is available to each recipient in the call chain, or to the
authorization subsystem controlling access to each recipient.

trust model: A description of which components of the system and which entities
outside the system must be trusted, and what they must be trusted for, if the syst
to remain secure.

trusted code: Code assumed to always perform some specified set of operations
correctly.

TCB : Trusted Computing Base. The portion of a system which must function corre
in order for the system to remain secure. A TCB should be tamper-proof and its
enforcement of policy should be noncircumventable. Ideally a system’s TCB shou
also be as small as possible, to facilitate analysis of its integrity.

TCSEC: Trusted Computer System Evaluation Criteria (a U.S. Department of Defe
Standard specifying requirements for secure systems).

unauthenticated principal: A user or other principal who has not authenticated an
identity or privilege.

UNO: Universal Networked Objects (an OMG Specification, now obsolete).

UTC : Coordinated Universal Time.

unsecure time: Time obtained from an unsecure time services.

UTO: Universal Time Object (c.f. CORBA Time Service [3]).

user: A human being using the system to issue requests to objects in order to get
to perform functions in the system on his behalf.

user sponsor: The interactive user interface to the system which acts as the
authenticating authority (e.g., validating passwords) which validate the identity of
user.

vault : The CORBA Security object which creates security context objects.

X/Open: X/Open Company Ltd., U.K.
8 Security Service, v1.7 March 2001

References

The following sources were used in the preparation of this glossary:

Applied Cryptography, 2nd edition by Bruce Schneier, John Wiley and Sons, New
York, 1996.

ISO Standard 7498-2, “Information Processing Systems -- Open Systems
Interconnection -- Basic Reference Model -- Part 2:Security Architecture”,
International Standards Organization,1989.

ECMA TR/46 “Security in Open Systems: A Security Framework”, European
Computer Manufacturers Association, 1988.

ITSEC “Information Technology Security Evaluation Criteria ” European
Commission, 1991.

DoD Standard 5200.28-STD “Department of Defense Trusted Computer System
Evaluation Criteria”, US Department of Defense, 1985.

X/Open Snapshot: “Distributed Security Framework: Company Review Draft”,
X/Open Company Ltd.,U.K. 1994.

Computer Related Risks: Peter G. Neuman, The ACM Press, 1995
Security Service, v1.7 March 2001 9

10 Security Service, v1.7 March 2001

Index
A
Access Control Model 2-7
Access Policies 2-9
Access Policies Supported by This Specification 2-11
accountability 1-2
Administration Model

Basis of Trust E-18
Guidelines E-17
Security Functions E-17

Administrator’s Interfaces
Access Policies 2-118
Audit Policies 2-129
Concepts 2-116
Domain Management 2-117
Non-repudiation Policy Management 2-139
Secure Invocation and Delegation Policies 2-134
Security Policies Introduction 2-117

Advanced Delegation Features F-5
Application Access Policy 2-9
Application Developer’s Interfaces

Access Control 2-102
Authentication of Principals 2-73
Delegation Facilities 2-105
Finding Security Features 2-73
Introduction 2-71
Non-repudiation 2-106
Operations on Object Reference 2-86
Operations on Security Manager 2-93
Portablility Implications 2-77
Security Audit 2-99
Security Operations on Current 2-97
The Credentials Object 2-77
The ReceivedCredentials Object 2-84
The TargetCredentials Object 2-85

Application Interface Model
Basis of Trust E-17
Guidelines E-16
Security Functions E-16

Application Interfaces - Level 1 B-9
Application Interfaces - Level 2 B-9
Audit Trail Interoperability F-4
Auditing 2-11
availability 1-2

C
Capability-Based Access Control F-9
compliance iii
confidentiality 1-2
Conformance Guidelines D-16
Conformance Requirements D-4
Conformance Template Overview D-15
Control Attributes 2-10
Controls Used Before Initiating Object Invocations 2-15
CORBA

contributors iv
CORBA Security 1-10

Goals E-3
Countermeasures E-7
CSI-ECMA Protocol

Basic and Dialogue Keys 3-70
Basic Key Distribution 3-97

Check Value 3-95
Common Contents fields 3-90
Concepts 3-69
ContextDeleteToken 3-85
Cryptographic Algorithms and Profiles 3-72
CSI-ECMA Hybrid Mechanism 3-100
CSI-ECMA Public Mechanism 3-105
CSI-ECMA Secret Key Mechanism 3-99
Dialogue Key Block 3-106
ErrorTaken 3-82
Initial Context Token 3-78
Key Distribution Schemes 3-71
Keying Information Syntax 3-97
Mechanism Identifiers and IOR Encoding 3-75
PAC Format 3-89
PAC Protein and Delegation - Outline 3-74
Per Message Tokens 3-83
PPID Method 3-74
Privilege and Miscellaneous Attribute Definitions 3-88
PV/CV Delegation Method 3-75
Qualifier Attributes 3-89
SECIOP Tokens When Using CSI-ECMA 3-77
Security Attributes 3-69, 3-86
Security Names 3-76
Specific Certificate Contents for PACs 3-91
Summary of Key Distribution Schemes 3-98
Target Access Enforcement Function 3-70
Target Names 3-89
TargetResultToken 3-81

D
DCE-CIOP with Security

DCE RPC Security Services 3-114
Goals of Secure DCE-CIOP 3-109
Secure DCE-CIOP Overview 3-109

Definitions 1
Delegation 2-13
Delegation Options F-3
Delegation Schemes 2-14
Distributed Object-Oriented Systems

Vulnerabilities E-5
Domains

Domains and Interoperability 2-25
Security Environment Domains 2-24
Security Policy Domains 2-21
Security Technology Domains 2-25

E
Event Service C-2

F
Feature Packages and Modules 1-13

G
General Security Data Module B-1
GSS Kerberos Protocol

Cryptographic Profiles 3-66
IOR Encoding 3-66
Mandatory and Optional Cryptographic Profiles 3-66
SECIOP Tokens 3-67
Security Service, v1.7 March 2001 Index-1

Index

-48
H
Hierarchical Domains F-6

I
Implementor’s Security Interfaces

Implementation-Level Security Object Interfaces 2-148
Replaceable Security Services 2-171
Security Interceptors 2-142

Integrating SSL with CORBASecurity
Cryptographic Profiles 3-108
Introduction 3-108
IOR Encoding 3-108
Relation to SECIOP 3-109

integrity 1-2
Interfaces for Non-repudiation B-17
Interoperability

when using Non-Repudiation F-4
Interoperability Limitations F-1

K
Key Distribution Options F-3
Key Security Features 1-3

M
Management F-4
Mandatory Security Mechanisms F-2
Mechanism TAG Definition

Guidelines G-1
Message Protection 2-6

N
Naming Service C-2
Non-repudiation Services F-9
Non-repudiation services 2-18
Non-Session-Oriented SECIOP Protocol F-2

O
Object Invocation Access Policy 2-8
Object Management Group i

address of iv
Option Negotiation F-3
Other Services C-2
Overlapping Domains F-6

P
Persistent Object Service C-2
Principals 2-3
Privilege Attributes 2-10
Privilege Delegation 2-14

R
Reference Restriction F-5
References 9
Relationship with Common Facilities C-3

S
SECIOP Examples

Confidential Message with Context Establishment G-3
Fragmented GIOP Request with Context Establishment G-4
Mutual Authentication G-2

SECIOP Mechanism F-3
Secure DCE CIOP B-29

Secure Interoperability D-11
Common Secure Interoperability Levels D-12
SECIOP Hosted Interoperability Mechanisms D-14
Secure Interoperability with DCE-CIOP D-14
Secure Interoperability with SSL D-14
Standard Secure Interoperability D-12

Secure Interoperability Feature Packages 1-10
Secure Inter-ORB Protocol (SECIOP) B-25

SECIOP Context Management Finite State Machine Tables 3
SECIOP Context Management Layer 3-42

Secure Object Invocations 2-4
Security

Introduction 1-2
Security Administration Interfaces B-14
Security and Administration

Managing Security Policy Domains 2-27
Security Architecture

Administrative Model 2-58
Administrator’s View 2-31
Application Components 2-33
Application Developer View 2-30
Basic Protection and Communications 2-39
Component Protection 2-39
Different Users’ View of the Security Model 2-29
End User View 2-30
Enterprise Management View 2-29
Environment Domains 2-39
Object System Implementor’s View 2-31
ORB Services 2-34
Security Object Models 2-41
Security Policies and Domain Objects 2-36
Security Services 2-36
Security Technology 2-38
Structural Model 2-32

Security Architecture Goals 1-8
Security Associations 2-5
Security Functionality Level 1 D-5

Other Security Conformance D-6
Security Functionality Required D-5
Security Interfaces Supported D-6

Security Functionality Level 2 D-6
Other Security Conformance D-8
Security Functionality Required D-7
Security Interfaces Supported D-8

Security Functionality Optional Packages D-8
Conformance of Additional Policies D-9
Non-repudiation D-8

Security Interoperability Protocols
Introduction 3-1

Security Management and Administration
Managing Security Environment Domains 2-27
Managing Security Technology Domains 2-28

Security Management and Adminstration
Implementing the Model 2-28

Security Object Implementation Model
Basis For ORB Assurance E-20
Basis of Trust E-19
Guidelines E-18
Security Functions E-19

Security Reference Model 2-1
Security Replaceability D-10
Index-2 Security Service, v1.7 March 2001

Index
ORB Services Replaceability D-10
Security Features Replaceability D-10
Security Ready for Replaceability D-11

Security Replaceable Service Interfaces B-20
Security Service B-1, C-1, D-1, E-1
security specification 1-3
Specific Security Policies F-2
SPKM Protocol

Cryptographic Profiles 3-63
IOR Encoding 3-64
Using SPKM for SECIOP 3-64

SSL B-29
Structural Model

Basis of Trust E-9
Construction Options E-13
Guidelines E-8
Integrity of Identities (Trojan Horse Protection) E-15
Security Functions E-8

T
Target Control F-5
The SECIOP Hosted CSI Protocols

Association Options 3-57
Cryptographic Profiles 3-57
CSI Protocols 3-61
IOR 3-55
Mapping of Common Elements to the SECIOP Protocol 3-59
Mechanism Tags 3-56
Security Administration Domains 3-59
Security Name 3-59

Threats E-4
Time Service C-2

V
Values for Standard Data Types B-30

Audit Event Families and Types B-32
Rights Families and Values B-32
Security Attributes B-30
Security Mechanisms B-33
Security Service, v1.7 March 2001 Index-3

Index
Index-4 Security Service, v1.7 March 2001

	Preface
	1. Service Description
	1.1 Introduction to Security
	1.1.1 Why Security?
	1.1.2 What Is Security?
	1.1.3 Threats in a Distributed Object System
	1.1.4 Summary of Key Security Features
	1.1.5 Goals

	1.2 Introduction to the Specification
	1.2.1 Normative and Non-normative Material
	1.2.2 CORBA Security and Secure Interoperability Feature Packages
	1.2.3 Feature Packages and Modules

	2. Interfaces
	2.1 Security Reference Model
	2.1.1 Definition of a Security Reference Model
	2.1.2 Principals and Their Security Attributes
	2.1.3 Secure Object Invocations
	2.1.4 Access Control Model
	2.1.5 Auditing
	2.1.6 Delegation
	2.1.7 Non-repudiation
	2.1.8 Domains
	2.1.9 Security Management and Administration
	2.1.10 Implementing the Model

	2.2 Security Architecture
	2.2.1 Different Users’ View of the Security Model
	2.2.2 Structural Model
	2.2.3 Security Technology
	2.2.4 Basic Protection and Communications
	2.2.5 Security Object Models

	2.3 Application Developer’s Interfaces
	2.3.1 Introduction
	2.3.2 Finding Security Features
	2.3.3 Authentication of Principals
	2.3.4 The Credentials Object
	2.3.5 The ReceivedCredentials Object
	2.3.6 The TargetCredentials Object
	2.3.7 Operations on Object Reference
	2.3.8 Operations on Security Manager
	2.3.9 Security Operations on Current
	2.3.10 Security Audit
	2.3.11 Administering Security Policy
	2.3.12 Access Control
	2.3.13 Delegation Facilities
	2.3.14 Non-repudiation

	2.4 Administrator’s Interfaces
	2.4.1 Concepts
	2.4.2 Domain Management
	2.4.3 Security Policies Introduction
	2.4.4 Access Policies
	2.4.5 Audit Policies
	2.4.6 Secure Invocation and Delegation Policies
	2.4.7 Non-repudiation Policy Management

	2.5 Implementor’s Security Interfaces
	2.5.1 Security Interceptors
	2.5.2 Implementation-Level Security Object Interfaces
	2.5.3 Replaceable Security Services

	3. Protocols and Mechanisms
	3.1 Security Interoperability Protocols
	3.1.1 Introduction
	3.1.2 Interoperability Model
	3.1.3 Protocol Enhancements
	3.1.4 CORBA Interoperable Object Reference with Security
	3.1.5 Common Secure Interoperability Levels
	3.1.6 Key Distribution Types
	3.1.7 Security Mechanisms Hosted on SECIOP
	3.1.8 Security Mechanisms Hosted Directly on IIOP
	3.1.9 Choices of Protocols, Cryptographic Profiles and Key Technologies
	3.1.10 Common Secure Interoperability Requirements
	3.1.11 Relation to CORBA Security Facilities and Interfaces
	3.1.12 Security Functionality
	3.1.13 Model for Use and Contents of Credentials
	3.1.14 CORBA Interfaces
	3.1.15 Support for CORBA Security Facilities and Extensibility
	3.1.16 Security Replaceability for ORB Security Implementors

	3.2 Secure Inter-ORB Protocol (SECIOP)
	3.2.1 Architectural Assumptions
	3.2.2 SECIOP Sequencing Layer
	3.2.3 SECIOP Context Management Layer
	3.2.4 SECIOP Context Management Finite State Machine Tables

	3.3 The SECIOP Hosted CSI Protocols
	3.3.1 IOR
	3.3.2 Mechanism Tags
	3.3.3 Association Options
	3.3.4 Cryptographic Profiles
	3.3.5 Security Name
	3.3.6 Security Administration Domains
	3.3.7 Mapping of Common Elements to the SECIOP Protocol
	3.3.8 CSI Protocols

	3.4 SPKM Protocol
	3.4.1 Cryptographic Profiles
	3.4.2 IOR Encoding
	3.4.3 Using SPKM for SECIOP

	3.5 GSS Kerberos Protocol
	3.5.1 Cryptographic Profiles
	3.5.2 Mandatory and Optional Cryptographic Profiles
	3.5.3 IOR Encoding
	3.5.4 SECIOP Tokens

	3.6 CSI-ECMA Protocol
	3.6.1 Concepts
	3.6.2 Security Attributes
	3.6.3 Target Access Enforcement Function
	3.6.4 Basic and Dialogue Keys
	3.6.5 Key Distribution Schemes
	3.6.6 Cryptographic Algorithms and Profiles
	3.6.7 PAC Protection and Delegation - Outline
	3.6.8 PPID Method
	3.6.9 PV/CV Delegation Method
	3.6.10 Mechanism Identifiers and IOR Encoding
	3.6.11 Security Names
	3.6.12 SECIOP Tokens When Using CSI-ECMA
	3.6.13 Initial Context Token
	3.6.14 TargetResultToken
	3.6.15 ErrorToken
	3.6.16 Per Message Tokens
	3.6.17 ContextDeleteToken
	3.6.18 Security Attributes
	3.6.19 Privilege and Miscellaneous Attribute Definitions
	3.6.20 Qualifier Attributes
	3.6.21 Target Names
	3.6.22 PAC Format
	3.6.23 Common Contents fields
	3.6.24 Specific Certificate Contents for PACs
	3.6.25 Check Value
	3.6.26 Basic Key Distribution
	3.6.27 Keying Information Syntax
	3.6.28 Summary of Key Distribution Schemes
	3.6.29 CSI-ECMA Secret Key Mechanism
	3.6.30 CSI-ECMA Hybrid Mechanism
	3.6.31 CSI-ECMA Public Mechanism
	3.6.32 Dialogue Key Block

	3.7 Integrating SSL with CORBA Security
	3.7.1 Introduction
	3.7.2 Cryptographic Profiles
	3.7.3 IOR Encoding
	3.7.4 Relation to SECIOP

	3.8 DCE-CIOP with Security
	3.8.1 Goals of Secure DCE-CIOP
	3.8.2 Secure DCE-CIOP Overview
	3.8.3 DCE RPC Security Services

	A. References
	B. Consolidated OMG IDL
	C. Relationship to OtherServices
	D. Conformance Details and Statement
	E. Guidelines for a Trustworthy System
	F. Facilities Not in This Specification
	G. Interoperability Guidelines
	Glossary
	Index

