

 Security Service Specification 15
[1] This chapter incorporates material that was adopted in three separate specifications
related to security:

¥ CORBA Security Rev 1.1 (formal/97-12-22)

¥ Common Secure Interoperability 1.0 (orbos/96-06-20)

¥ CORBAsecurity/SSL Interoperability (orbos/97-02-04)

[2] All these documents are therefore superseded by this chapter.

[3] Associated with this document, are documents ptc/98-01-03, and ptc/98-01-04, which
contain associated changes to the CORBA Core that have been recommended jointly
by the Security RTF and the Core RTF. Also associated with this document are the
outputs of the C++ and Java language mapping RTFs that had co-terminus delivery
dates with the Security 1.2 RTF.

Contents

[4] See ÒIntroduction to the SpecificationÓ on page 15-8.

15.1 Introduction to Security

15.1.1 Why Security?

[5] Enterprises are increasingly dependent on their information systems to support their
business activities. Compromise of these systems either in terms of loss or inaccuracy
of information or competitors gaining access to it can be extremely costly to the
enterprise.
Security Service v1.8 September 2000 [DRAFT] 15-1

[6] Security breaches, which compromise information systems, are becoming more
frequent and varied. These may often be due to accidental misuse of the system, such
as users accidentally gaining unauthorized access to information. Commercial as well
as government systems may also be subject to malicious attacks (for example, to gain
access to sensitive information).

[7] Distributed systems are more vulnerable to security breaches than the more traditional
systems, as there are more places where the system can be attacked. Therefore,
security is needed in CORBA systems, which takes account of their inherent
distributed nature.

15.1.2 What Is Security?

[8] Security protects an information system from unauthorized attempts to access
information or interfere with its operation. It is concerned with:

¥ Confidentiality. Information is disclosed only to users authorized to access it.

¥ Integrity. Information is modified only by users who have the right to do so, and
only in authorized ways. It is transferred only between intended users and in
intended ways.

¥ Accountability. Users are accountable for their security-relevant actions. A
particular case of this is non-repudiation, where responsibility for an action cannot
be denied.

¥ Availability. Use of the system cannot be maliciously denied to authorized users.

[9] Availability is often the responsibility of other OMA components such as archive/
restore services, or of underlying network or operating systems services. Therefore,
this specification does not address all availability requirements.

[10] Security is enforced using security functionality as described below. In addition, there
are constraints on how the system is constructed. For example, to ensure adequate
separation of objects so that they don't interfere with each other and separation of
usersÕ duties so that the damage an individual user can do is limited.

[11] Security is pervasive, affecting many components of a system, including some that are
not directly security related. Also, specialist components, such as an authentication
service, provide services that are specific to security.

[12] The assets of an enterprise need to be protected against perceived threats. The amount
of protection the enterprise is prepared to pay for depends on the value of the assets,
and the threats that need to be countered. The security policy needed to protect against
these threats may also depend on the environment and how vulnerable the assets are in
this environment. This document specifies a security architecture which can support a
variety of security policies to meet different needs.

15.1.3 Threats in a Distributed Object System

[13] The CORBA security specification is designed to allow implementations to provide
protection against the following:
15-2 Security Service v1.8 September 2000 [DRAFT]

15

¥ An authorized user of the system gaining access to information that should be
hidden from him.

¥ A user masquerading as someone else, and so obtaining access to whatever that user
is authorized to do, so that actions are being attributed to the wrong person. In a
distributed system, a user may delegate his rights to other objects, so they can act
on his behalf. This adds the threat of rights being delegated too widely, again
causing a threat of unauthorized access.

¥ Security controls being bypassed.

¥ Eavesdropping on a communication line, so gaining access to confidential data.

¥ Tampering with communication between objects - modifying, inserting, and
deleting items.

¥ Lack of accountability due, for example, to inadequate identification of users.

[14] Note that some of this protection is dependent on the CORBA security implementation
being constructed in the right way according to assurance criteria (as specified in
Appendix D, ÒGuidelines for a Trustworthy SystemÓ on page 15-348) and using
security mechanisms with the right characteristics. Conformance to the CORBA
security interfaces is not enough to ensure that this protection is provided, just as
conformance to the transactional interfaces (for example) is not enough to guarantee
transactional semantics.

[15] This specification does not attempt to counter all threats to a distributed system. For
example, it does not include facilities to counter breaches caused by analyzing the
traffic between machines.

[16] More information about security threats and countermeasures is given in Appendix D,
ÒGuidelines for a Trustworthy SystemÓ on page 15-348.

15.1.4 Summary of Key Security Features

[17] The security functionality defined by this specification comprises:

¥ Identification and authentication of principals (human users and objects which
need to operate under their own rights) to verify they are who they claim to be.

¥ Authorization and access control - deciding whether a principal can access an
object, normally using the identity and/or other privilege attributes of the principal
(such as role, groups, security clearance) and the control attributes of the target
object (stating which principals, or principals with which attributes) can access it.

¥ Security auditing to make users accountable for their security related actions. It is
normally the human user who should be accountable. Auditing mechanisms should
be able to identify the user correctly, even after a chain of calls through many
objects.
15.1 Introduction to Security 15-3

¥ Security of communication between objects, which is often over insecure lower
layer communications. This requires trust to be established between the client and
target, which may require authentication of clients to targets and authentication
of targets to clients. It also requires integrity protection and (optionally)
confidentiality protection of messages in transit between objects.

¥ Non-repudiation provides irrefutable evidence of actions such as proof of origin of
data to the recipient, or proof of receipt of data to the sender to protect against
subsequent attempts to falsely deny the receiving or sending of the data.

¥ Administration of security information (for example, security policy) is also
needed.

[18] This visible security functionality uses other security functionality such as
cryptography, which is used in support of many of the other functions but is not
visible outside the Security services. No direct use of cryptography by application
objects is proposed in this specification, nor are any cryptographic interfaces defined.

15.1.5 Goals

[19] The security architecture and facilities described in this document were designed with
the following goals in mind. Not all implementations conforming to this specification
will meet all these goals.

Simplicity

[20] The model should be simple to understand and administer. This means it should have
few concepts and few objects.

Consistency

[21] It should be possible to provide consistent security across the distributed object system
and associated legacy systems. This includes:

¥ Support of consistent policies for determining who should be able to access what
sort of information within a security domain that includes heterogeneous systems.

¥ Fitting with existing permission mechanisms.

¥ Fitting with existing environments, for example, the ability to provide end-to-end
security even when using communication services, which are inherently insecure.

¥ Fitting with existing logons (so extra logons are not needed) and with existing user
databases (to reduce the user administration burden).

Scalability

[22] It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise ones. For larger systems, it should be
possible to:
15-4 Security Service v1.8 September 2000 [DRAFT]

15

¥ Base access controls on the privilege attributes of users such as roles or groups
(rather than individual identities) to reduce administrative costs.

¥ Have a number of security domains, which enforce different security policy details
but support interworking between them subject to policy. (This specification
includes architecture, but not interfaces for such interdomain working.)

¥ Manage the distribution of cryptographic keys across large networks securely and
without undue administrative overheads.

Usability for End Users

[23] Security should be available as transparently as possible, based on sensible,
configurable defaults.

[24] Users should need to log on to the distributed system only once to access object
systems and other IT services.

Usability for Administrators

[25] The model should be simple to understand and administer and should provide a single
system image. It should not be necessary for an administrator to specify controls for
individual objects or individual users of an object (except where security policy
demands this).

[26] The system should provide good flexibility and fine granularity.

Usability for Implementors

[27] Application developers must not need to be aware of security for their applications to
be protected. However, a developer who understands security should be able to protect
application specific actions.

Flexibility of Security Policy

[28] The security policy required varies from enterprise to enterprise, so choices of security
features should be allowed. An enterprise should need to pay only for the level of
protection it requires, reducing the level (and therefore costs) for less sensitive
information or when the system is less vulnerable to threats. The enterprise should be
able to balance the costs of providing security, including the resources required to
implement, administer and run the system, against the perceived potential losses
incurred as the result of security breaches.

[29] Particular types of flexibility required include:

¥ Choice of access control policy. The interfaces defined here allows for a choice of
mechanisms, ACLs using a range of privilege attributes such as identities, roles,
groups, or labels. Details are hidden except from some administrative functions and
security aware applications that want to choose their own mechanisms.
15.1 Introduction to Security 15-5

¥ Choice of audit policy. The event types which are to be audited is configurable.
This makes it possible to control the size of the audit trail, and therefore the
resources required to store and manage it.

¥ Support for security functionality profiles as defined either in national or
international government criteria such as TCSEC (the US Trusted Computer
Evaluation Security Criteria) and ITSEC (the European Information Technology
Security Evaluation Criteria), or by more commercial groups such as X/Open, is
required.

Independence of Security Technology

[30] The CORBA security model should be security technology neutral. For example,
interfaces specified for security of client-target object invocations should hide the
security mechanisms used from both the application objects and ORB (except for some
security administrative functions). It should be possible to use either symmetric or
asymmetric key technology.

[31] It should be possible to implement CORBA security on a wide variety of existing
systems, reusing the security mechanisms and protocols native to those systems. For
example, the system should not require introduction of new cryptosystems, access
control repositories, or user registries. If the system is installed in an environment that
also includes a procedural security regime, the composite system should not require
dual administration of the user or authorization policy information.

Application Portability

[32] An application object should not need to be aware of security, so it can be ported to
environments that enforce different security policies and use different security
mechanisms. If an object enforces security itself, interfaces to Security services should
hide the particular security mechanisms used (e.g., for authentication). The application
security policy (for example, to control access to its own functions and state) should be
consistent with the system security policy. For example, use should be made of the
same attributes for access control. Portability of applications enforcing their own
security depends on such attributes being available.

Interoperability

[33] The security architecture should allow interoperability between objects including:

¥ Providing consistent security across a heterogeneous system where different
vendors may supply different ORBs.

¥ Interoperating between secure systems and those without security.

¥ Interoperating between domains of a distributed system where different domains
may support different security policies, for example, different access control attributes.

¥ Interoperating across systems that support different security technology.
15-6 Security Service v1.8 September 2000 [DRAFT]

15

[34] This specification includes an architecture that covers all of these, at least in outline,
but does not give specific interfaces and protocols for the last two. Interoperability
between domains is expected to have limited functionality in initial implementations,
and interoperability between security mechanisms is not expected to be supported.

Performance

[35] Security should not impose an unacceptable performance overhead, particularly for
normal commercial levels of security, although a greater performance overhead may
occur as higher levels of security are implemented.

Object Orientation

[36] The specification should be object-oriented:

¥ The security interfaces should be purely object-oriented.

¥ The model should use encapsulation to promote system integrity and to hide the
complexity of security mechanisms under simple interfaces.

¥ The model should allow polymorphic implementations of its objects based on
different underlying mechanisms.

Specific Security Goals

[37] In addition to the security requirements listed above, there are more specific
requirements that need to be met in some systems, so the architecture must take into
account:

¥ Regulatory requirements. The security model must conform to national
government regulations on the use of security mechanisms (cryptography, for
example). There are several types of controls, for example, controls on what can be
exported and controls on deployment and use such as limitations on encryption for
confidentiality. Details vary from country to country; examples of requirements to
satisfy a number of these are:

¥ Allowing use of different cryptographic algorithms.

¥ Keeping the amount of information encrypted for confidentiality to a minimum.

¥ Using identities for auditing which are anonymous, except to the auditor.

¥ Evaluation criteria for assurance. The security functionality and architecture must
allow implementations to conform to standard security evaluation criteria such as
TCSEC, ITSEC, or Common Criteria (CC)1for security functionality and assurance
(which gives the required level of confidence in the correctness and effectiveness of
the security functionality). It should allow assurance and security functionality

1.Version 1 or 2.
15.1 Introduction to Security 15-7

classes or profiles up to about the E3/B2 level. However, the specification also
allows systems with lower levels of security, where other requirements such as
performance are more important.

Security Architecture Goals

[38] The security architecture should confine key security functionality to a trusted core,
which enforces the essential part of the security policy such as:

¥ Ensuring that object invocations are protected as required by the security policy.

¥ Requiring access control and auditing to be performed on object invocation.

¥ Preventing (groups of) application objects from interfering with each other or
gaining unauthorized access to each otherÕs state.

[39] It must be possible to implement this trusted computing base so it cannot be bypassed,
and kept small to reduce the amount of code which needs to be trusted and evaluated
in more secure systems. This trusted core is distributed, so it must be possible for
different domains to have different levels of trust.

[40] It should also be possible to construct systems where particular Security services can
be replaced by ones using different security mechanisms, or supporting different
security policies without changing the application objects or ORB when using them
(unless these objects have chosen to do this in a mechanism or policy-specific way).

[41] The security architecture should be compatible with standard distributed security
frameworks such as those of POSIX and X/Open.

15.2 Introduction to the Specification

[42] This document specifies how to provide security in stand-alone and distributed
CORBA-compliant systems. Introducing Object Security services does not in itself
provide security in an object environment; security is pervasive, so introducing it has
implications on the Object Request Broker and on most Object services, Common
Facilities and object implementations.

[43] This document defines the core security facilities and interfaces required to ensure a
reasonable level of security of a CORBA-compliant system as a whole. The
specification includes:

¥ A security model and architecture which describe the security concepts and
framework, the security objects needed to implement them, and how this counters
security threats.

¥ The security facilities available to applications. This includes security provided
automatically by the system, protecting all applications, even those unaware of
security. The security facilities can also be used by security-aware applications
through OMG IDL interfaces defined in this specification.

¥ The security facilities and interfaces available for performing essential security
administration.
15-8 Security Service v1.8 September 2000 [DRAFT]

15
¥ The security facilities and interfaces available to ORB implementors, to be used in
the production of secure ORBs.

¥ A description of how Security services affect the CORBA 2 ORB interoperability
protocols.

¥ A description of different levels of secure interoperability that are possible.

¥ A description of how these levels of interoperability can be provided using a select
set of popular security mechanisms and protocols.

[44] Items not included in this specification are:

¥ Support for interoperability between ORBs using different security mechanisms,
though interoperability of different ORBs using the same security mechanism is
supported.

¥ Audit analysis tools, though an audit service that both the system and applications
can use to record events is included.

¥ Management interfaces other than essential security policy management interfaces,
as management services are beyond the scope of this chapter. The security policy
management interfaces were viewed as a necessary feature of this specification as it
is not possible to deploy a secure system without defining and managing its policy.

¥ Interfaces to allow applications to access cryptographic functions for use, for
example, in protecting their stored data. These interfaces are not provided for two
reasons: first, cryptography is generally a low-level primitive, used by Security
Service implementors but not needed by the majority of application developers; and
second, providing a cryptographic interface would require addressing a variety of
difficult regulatory and import/export issues.

¥ Specific security policy profiles.

[45] The security model and architecture specified is extensible, to allow addition of further
security facilities later.
15.2 Introduction to the Specification 15-9

15.2.1 Specification Structure

Structure of the Chapter

[46] The structure of the chapter is summarized in Figure 15-1.

Figure 15-1 Structure of the Document

Normative and Non-normative Material

[47] This specification contains normative and non-normative (explanatory) material. Only
15.5 through 15.15 and Appendices A, C, and E are normative.

Section Summaries

[48] Section 15.1 and its subsections, which is an introduction to security, explains why
security is needed in distributed object systems, and enumerates the security
requirements for secure distributed object systems.

[49] Section 15.2 and its subsections provide an introduction to and overview of the
specification.

[50] Section 15.3 and its subsections describe the security reference model, which
provides the overall framework for CORBA security.

[51] Section 15.4 and its subsections describe the security architecture, which underlies
this specification. This introduces different usersÕ views of security and gives an
outline of how secure CORBA-compliant systems are constructed. It also presents high
level models of the objects involved for different views, and describes how they are
used.

Introduction
15.1, 15.2

Interfaces
15.3 - 15.7

Protocols and
Mechanisms
15.8 - 15.15

Reference Model
15.3
Architecture
15.4

Application DeveloperÕs
Interfaces - 15.5

AdministratorÕs

Mechanisms

15.10 - 15.13
SECIOP
15.9

DCE-CIOP
15.15

SSL
15.14

Common

SPKM

Kerberos

CSI-ECMA

Interfaces - 15.6

ImplementorÕs
Interfaces - 15.7

for SECIOP

Elements

IIOP based
Protocols
15.9 - 15.14
15-10 Security Service v1.8 September 2000 [DRAFT]

15
[52] Section 15.5 and its subsections specify the security facilities and interfaces available
to application developers. Most functions can be implemented transparently to
application, though interfaces and additional functionality are available to security-
aware applications.

[53] Section 15.6 and its subsections specify the administratorÕs facilities and interfaces.
Only essential administration functions are defined by this specification; other
administrative capabilities are expected to be developed outside the Object Services
Program.

[54] Section 15.7 and its subsections specify the implementors interfaces used to build
secure CORBA systems. This section specifies the IDL interfaces of the security
objects available to ORB implementors, and describes the relationship and
dependencies of these objects on the ORB core and also on external Security services,
where these are used.

[55] Section 15.8 and its subsections specify the architecture for interoperability in a
secure, distributed object system. Further subsections lay the basic foundations for the
discussion of common secure interoperability mechanisms in the subsequent
sections. It also describes how the common secure interoperability mechanisms
relate to the security facilities and interfaces presented in section 15.3 through 15.7.

[56] Section 15.9 specifies how security is layered onto the GIOP/IIOP in the form of the
SECIOP protocol.

[57] Section 15.10 and its subsections introduce the common elements in the secure
interoperability protocol mechanisms and how the common elements map to the
SECIOP protocol.

[58] Section 15.11 and its subsections describe how the SPKM protocol is used in
conjunction with the SECIOP protocol.

[59] Section 15.12 and its subsections describe how the Kerberos V5 protocol is used in
conjunction with the SECIOP protocol.

[60] Section 15.13 and its subsections describe the CSI-ECMA protocol and how it is used
in conjunction with the SECIOP protocol.

[61] Section 15.14 and its subsections specify how SSL is used as a secure transport
mechanism with IIOP.

[62] Section 15.15 and its subsections specifies how security is incorporated into the DCE-
CIOP using its Kerberos mechanism.

[63] Appendix A, Consolidated OMG IDL, contains the complete OMG IDL
specification, including the module structure, of the interfaces defined in this
document.

[64] Appendix B, Relationship to Other Services, describes the relationship of the
Security services to other object services and to the common facilities.

[65] Appendix C, Conformance Details, describes in more detail what conformance to the
security functionality conformance levels and the security implementation
conformance points requires.
15.2 Introduction to the Specification 15-11

[66] Appendix D, Guidelines for a Trustworthy System, provides guidelines for
implementation of a trustworthy system, which provides protection against the security
threats in a distributed object system with the required assurance of its correctness and
effectiveness.

[67] Appendix E, Conformance Statement, describes the conformance statement, which
must accompany a secure CORBA implementation and what this implementation must
contain.

[68] Appendix F, Facilities Not in This Specification, outlines security facilities that have
not been included in this specification, but left for another phase of security
specifications.

[69] Appendix G, Interoperability Guidelines, includes guidelines for defining security
mechanism tags in interoperable object references, and examples of the use of the
secure inter-ORB protocol SECIOP.

[70] Appendix H, Glossary.

[71] Appendix I, References.

15.2.2 CORBA Security and Secure Interoperability Feature Packages

[72] CORBA security and Secure Interoperability is structured into several feature packages
which are enumerated below. These are used to structure the specification as well as to
specify the conformance requirements.

¥ Main Security Functionality Packages. There are two packages:

¥ Level 1: This provides a first level of security for applications which are unaware
of security and for those having limited requirements to enforce their own
security in terms of access controls and auditing.

¥ Level 2: This provides more security facilities, and allows applications to control
the security provided at object invocation. It also includes administration of
security policy, allowing applications administering policy to be portable.

An ORB must provide at least one of these packages before it can claim to be a
Secure ORB. For a definitive conformance requirement see Appendix C,
ÒConformance DetailsÓ on page 15-335.

¥ Optional Security Functionality Packages. These provide functions that are
expected to be required in several ORBs, so are worth including in this
specification, but are not generally required enough to form part of one of the main
security functionality packages specified above. There is only one such option in
the specification.

¥ Non-repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

¥ Security Replaceability Packages. These packages specify if the ORB is
structured in a way that allows incorporation of different Security services, and if so
how they can be incorporated. There are two possibilities:
15-12 Security Service v1.8 September 2000 [DRAFT]

15
1. ORB Services replaceability package: The ORB uses interceptor interfaces to call
on object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming to
this does not include any significant security specific code, as that is in the
interceptors.

2. Security Service replaceability package: The ORB may or may not use
interceptors, but all calls on Security services are made via the replaceability
interfaces specified in Section 15.7, ÒImplementorÕs Security Interfaces,Ó on
page 15-159. These interfaces are positioned so that the Security services do not
need to understand how the ORB works (for example, how the required policy
objects are located), so they can be replaced independently of that knowledge.

An ORB can provide Security by directly implementing the Security feature
package 1 or 2 into it without making use of any of the facilities provided by the
Replaceability feature packages. But in that case, the standard security policies
defined in this specification cannot be replaced by others, nor can the
implementation of the Security services be replaced. For example, it would not be
possible to replace the standard access policy by a label-based policy if at least one
of the replaceability packages is not supported. Note that some replaceability of the
security mechanism used for security associations may still be provided if the
implementation uses some standard generic interface for Security services such as
GSS-API[11].

An ORB that supports one or both of these replaceability packages together with a
couple of basic ORB operations as discussed in Appendix C, ÒConformance
DetailsÓ on page 15-335 is said to be Security Ready2. Such an ORB does not in
itself support any security functionality but is ready to host security functionality
that is implemented to use the facilities of the Security Replaceability package to
hook Security into it.

¥ Common Secure Interoperability (CSI) Feature packages: These feature
packages each provide different levels of secure interoperability. There are three
functionality levels for Common Secure Interoperability (CSI). All levels can be
used in distributed secure CORBA compliant object systems where clients and
objects may run on different ORBs and different operating systems. At all levels,
security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity,
and when using an appropriate cryptographic profile, also for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality
described in the CORBA Security specification. Facilities are more restricted at
levels 0 and 1. The three levels are:

2.While this may sound strange, it is still true that a Secure ORB need not be a Security Ready
ORB.
15.2 Introduction to the Specification 15-13

1. Identity based policies without delegation (CSI level 0): At this level, only the
identity (no other attributes) of the initiating principal is transmitted from the client
to the target, and this cannot be delegated to further objects. If further objects are
called, the identity will be that of the intermediate object, not the initiator of the
chain of object calls.

2. Identity based policies with unrestricted delegation (CSI level 1): At this level,
only the identity (no other attributes) of the initiating principal is transmitted from
the client to the target. The identity can be delegated to other objects on further
object invocations, and there are no restrictions on its delegation, so intermediate
objects can impersonate the user. (This is the impersonation form of simple
delegation defined in Section 15.3.6, ÒDelegation,Ó on page 15-29.)

3. Identity & privilege based policies with controlled delegation (CSI level 2): At this
level, attributes of initiating principals passed from client to target can include
separate access and audit identities and a range of privileges such as roles and
groups. Delegation of these attributes to other objects is possible, but is subject to
restrictions, so the initiating principal can control their use. Optionally, composite
delegation is supported, so the attributes of more than one principal can be
transmitted. Therefore, it provides interoperability for ORBs conforming to all
CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSI packages.
For the definitive statement on conformance requirements see Appendix Section
C.2.

¥ SECIOP Interoperability package. An ORB with the SECIOP Interoperability
package can generate and use security information in the IOR and can send and
receive secure requests to/from other ORBs using the GIOP/IIOP protocol with the
security (SECIOP) enhancements defined in Section 15.9, ÒSecure Inter-ORB
Protocol (SECIOP),Ó on page 15-222 (if necessary), if they both use the same
underlying security technology.

¥ Security Mechanism packages: The choice of mechanisms and protocol to use
depends on the mechanism type required and the facilities required by the range of
applications expected to use it. This specification defines how the following four
security protocols can be used as the medium for secure interoperability under
CORBA:

1.SPKM Protocol: This protocol supports identity based policies without delegation
(CSI level 0) using public key technology for keys assigned to both principals and
trusted authorities. The SPKM protocol is based on the definition in [20]. The use
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIOP.

2.GSS Kerberos Protocol: This protocol supports identity based policies with
unrestricted delegation (CSI level 1) using secret key technology for keys
assigned to both principals and trusted authorities. It is possible to use it without
delegation (providing CSI level 0). The GSS Kerberos protocol is based on [12]
which itself is a profile of [13]. The use of Kerberos in CORBA interoperability
is based on the SECIOP extensions to IIOP.
15-14 Security Service v1.8 September 2000 [DRAFT]

15
3.CSI-ECMA Protocol: This protocol supports identity and privilege based policies
with controlled delegation (CSI level 2). It can be used with identity, but no other
privileges and without delegation restrictions if the administrator permits this
(CSI level 1) and can be used without delegation (CSI level 0). For keys assigned
to principals, it has two options:

¥ It can use either secret or public key technology.

¥ It uses public key technology for keys assigned to trusted authorities.

The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as
defined in ECMA 235, but is a significant subset of this - the SESAME profile
as defined in [16]. It is designed to allow the addition of new mechanism options
in the future; some of these are already defined in ECMA 235. The use of CSI-
ECMA in CORBA interoperability requires the SECIOP extensions to IIOP.

4.SSL protocol: This protocol supports identity based policies without delegation
(CSI level 0). The SSL protocol is based on the definition in [21]. The use of SSL
in CORBA interoperability does not depend on the SECIOP extensions to IIOP.

¥ SECIOP Plus DCE-CIOP Interoperability: An ORB with the Standard plus
DCE-CIOP secure interoperability package supports all functionality required by
standard secure interoperability package, and also provides secure interoperability
(using the DCE Security services) using the DCE-CIOP protocol.

An ORB that interoperates securely must do so using one of these protocol
packages. For the definitive statement on conformance requirements see Appendix
Section Appendix C, ÒConformance Details,Ó on page 15-335.

[73] The requirements that must be satisfied by a conformant ORB are enumerated in
Appendix Section Appendix C, ÒConformance Details,Ó on page 15-335. The
conformance statement required for a CORBA conformant security implementation is
defined in Appendix Section Appendix E, ÒConformance Statement,Ó on page 15-371.
This includes a table which can be filled to show what the ORB conforms to.
15.2 Introduction to the Specification 15-15

15.2.3 Feature Packages and Modules

[74] The IDL specified in this chapter is partitioned into modules that closely reflect the
feature packaging scheme described above. The Security module holds definitions of
common data structures and constants that most other modules depend on. The
relationship is as shown in Table 15-1.

The specification is based on a general three layer architecture as shown in Figure 15-2 on
page 15-17, with the interfaces defined in each module positioned as shown in the figure.

Table 15-1 Feature Packages and Modules

Feature Package Primary Module Also Depends on

Security Functionality Level 1 SecurityLevel1 Security
CORBA, TimeBase

Security Functionality Level 2 SecurityLevel2 Security, CORBA,
TimeBase
SecurityLevel1
SecurityAdmin

Non Repudiation NRservice Security,
SecurityLevel2
CORBA, TimeBase

Security Service
Replaceability

SecurityReplaceable Security, CORBA,
TimeBase
SecurityLevel2

ORB Service Replaceability Interceptor CORBA

CSI Level 0, 1 and 2 SECIOP CORBA

SECIOP SECIOP Security, CORBA,
TimeBase, IOP

SPKM, Kerberos,
CSI-ECMA

SECIOP Security, CORBA,
TimeBase, IOP

SSL SSL Security, CORBA,
TimeBase, IOP

DCE-CIOP DCE_CIOPSecurity Security, CORBA,
TimeBase, IOP
15-16 Security Service v1.8 September 2000 [DRAFT]

15

Figure 15-2 Modules and Their Relation to Layers of the Architecture

[75] The SecurityReplaceability module defines the interfaces that must be used, together
with certain interfaces defined in the SecurityLevel2 module, to encapsulate the
underlying security infrastructure so as to enable components of the Security Service
to use them interchangeably.

15.3 Security Reference Model

[76] This section describes a security reference model that provides the overall framework
for CORBA security. The purpose of the reference model is to show the flexibility for
defining many different security policies that can be used to achieve the appropriate
level of functionality and assurance. As such, the security reference model functions as
a guide to the security architecture.

15.3.1 Definition of a Security Reference Model

[77] A reference model describes how and where a secure system enforces security policies.
Security policies define:

¥ Under what conditions active entities (such as clients acting on behalf of users) may
access objects.

¥ What authentication of users and other principals is required to prove who they are,
what they can do, and whether they can delegate their rights. (A principal is a
human user or system entity that is registered in and is authentic to the system.)

¥ The security of communications between objects, including the trust required
between them and the quality of protection of the data in transit between them.

Applications (clients of CORBA Security Service)

CORBA Security Services

Security Infrastructure ORB Infrastructure

CORBASecurityReplaceability

SecurityLevel1, SecurityLevel2, SecurityAdmin, NRservice

Interfaces provided by
the Security Service
and used by Application
Programmers

Interfaces provided by
the Infrastructure
and used by Security
Service Implementors
15.3 Security Reference Model 15-17

¥ What accountability of which security-relevant activities is needed.

[78] Figure 15-3 depicts the model for CORBA secure object systems. All object
invocations are mediated by appropriate security functions to enforce policies such as
access controls. These functions should be tamper-proof, always be invoked when
required by security policy, and function correctly.

Figure 15-3 A Security Model for Object Systems

[79] Many application objects are unaware of the security policy and how it is enforced.
The user can be authenticated prior to calling the application client and then security is
subsequently enforced automatically during object invocations. Some applications will
need to control or influence what policy is enforced by the system on their behalf, but
will not do the enforcement themselves. Some applications will need to enforce their
own security, for example, to control access to their own data or audit their own
security-relevant activities.

[80] The ORB cannot be completely unaware of security as this would result in insecure
systems. The ORB is assumed to at least handle requests correctly without violating
security policy, and to call Security Services as required by security policy.

[81] A security model normally defines a specific set of security policies. Because the
OMG Object Management Architecture (OMA) must support a wide variety of
different security policies to meet the needs of many commercial markets, a single
instance of a security model is not appropriate for the OMA. Instead, a security
reference model is defined that provides a framework for supporting many different
kinds of policies. The security reference model is a meta-policy because it is intended
to encompass all possible security policies supported by the OMA.

[82] The meta-policy defines the abstract interfaces that are provided by the security
architecture defined in this document. The model enumerates the security functions
that are defined as well as the information available. In this manner, the meta-policy
provides guidance on the permitted flexibility of the policy definition. The remaining
sections describe the elements of the meta-model. The description is kept deliberately
general at this point.

Client
Target
Object

request request

ORB

Security Implementation
enforcing security policy

user

..
15-18 Security Service v1.8 September 2000 [DRAFT]

15
15.3.2 Principals and Their Security Attributes

[83] An active entity must establish its rights to access objects in the system. It must either
be a principal, or a client acting on behalf of a principal.

[84] A principal is a human user or system entity that is registered in and authentic to the
system. Initiating principals are the ones that initiate activities. An initiating principal
may be authenticated in a number of ways, the most common of which for human
users is a password. For systems entities, the authentication information such as its
long-term key, needs to be associated with the object.

[85] An initiating principal has at least one, and possibly several identities (represented in
the system by attributes) which may be used as a means of:

¥ Making the principal accountable for its actions.

¥ Obtaining access to protected objects (though other privilege attributes of a
principal may also be required for access control).

¥ Identifying the originator of a message.

¥ Identifying who to charge for use of the system.

[86] There may be several forms of identity used for different purposes. For example, the
audit identity may need to be anonymous to all but the audit administrator, but the
access identity may need to be understood so that it can be specified as an entry in an
access control list. The same value of the identity can be used for several of the above.

[87] The principal may also have privilege attributes which can be used to decide what it
can access. A variety of privilege attributes may be available depending on access
policies (see ÒAccess PoliciesÓ on page 15-25). The privilege attributes, which a
principal is permitted to take, are known by the system. At any one time, the principal
may be using only a subset of these permitted attributes, either chosen by the principal
(or an application running on its behalf), or by using a default set specified for the
principal. There may be limits on the duration for which these privilege attributes are
valid and may be controls on where and when they can be used.

[88] Security attributes may be acquired in three ways:

1. Some attributes may be available, without authentication, to any principal. This
specification defines one such attribute, called Public.

2. Some attributes are acquired through authentication; identity attributes and privilege
attributes are in this category.

3. Some attributes are acquired through delegation from other principals.

[89] When a user or other principal is authenticated, it normally supplies:

¥ Its security name.

¥ The authentication information needed by the particular authentication method
used.

¥ Requested privilege attributes (though the principal may change these later).
15.3 Security Reference Model 15-19

[90] A principalÕs security attributes are maintained in secure CORBA systems in a
credential as shown in Figure 15-4.

Figure 15-4 Credential Containing Security Attributes

15.3.3 Secure Object Invocations

[91] Most actions in the system are initiated by principals (or system entities acting on their
behalf). For example, after the user logs onto the system, the client invokes a target
object via an ORB as shown in Figure 15-5.

Figure 15-5 Invocation of Target Object via ORB

[92] What security functionality is needed on object invocation depends on security policy.
It may include:

¥ Establishing a security association between the client and target object so that each
has the required trust that the other is who it claims to be. In many implementations,
associations will normally persist for many interactions, not just a single invocation.
(Within some environments, the trust may be achieved by local means, without use
of authentication and cryptography.)

¥ Deciding whether this client (acting for this principal) can perform this operation on
this object according to the access control policy, as described in Section 15.3.4,
ÒAccess Control Model,Ó on page 15-23.

Credentials - containing security attributes

unauthenticated
attributes
- Public

authenticated attributes

identity
attributes

privilege
attributes

Client

request request

ORB

Target
Object

client-side security on invocation
security association, access control

message protection, audit

target-side security on invocation
security association, access control

message protection, audit
15-20 Security Service v1.8 September 2000 [DRAFT]

15
¥ Auditing this invocation if required, as described in Section 15.3.5, ÒAuditing,Ó on
page 15-27.

¥ Protecting the request and response from modification or eavesdropping in transit,
according to the specified quality of protection.

[93] For all these actions, security functions may be needed at the client and target object
sides of the invocation. For example, protecting a request may require integrity sealing
of the message before sending it, and checking the seal at the target.

[94] The association is asymmetric. If the target object invokes operations on the client, a
new association is formed. It is possible for a client to have more than one association
with the same target object. The application is unaware of security associations; it sees
only requests and responses.

[95] A secure system can also invoke objects in an insecure system. In this case, it will not
be possible to establish trust between the systems, and the client system may restrict
the requests passed to the target.

Establishing Security Associations

[96] The client and target object establish a secure association by:

¥ Establishing trust in one anotherÕs identities, which may involve the target
authenticating the clientÕs security attributes and/or the clientÕs authenticating the
targetÕs security name.

¥ Making the clientÕs credentials (including its security attributes) available to the
target object.

¥ Establishing the security context which will be used when protecting requests and
responses in transit between client and target object.

[97] The way of establishing a security association between client and object depends on
the security policies governing both the client and target object, whether they are in the
same domain, and the underlying security mechanism. For example, the type of
authentication and key distribution used.

[98] The security policies define the choice of security association options such as whether
one-way or mutual authentication is wanted between client and target, and the quality
of protection of data in transit between them.

[99] The security policy is enforced using underlying security mechanisms. This model
allows a range of such mechanisms for security associations. For example, the
mechanism may use symmetric (secret) key technology, asymmetric (public) key
technology, or a combination of these. The Key Distribution services, Certification
Authorities and other underlying Security services, which may be used, are not visible
in the model.

Message Protection

[100] Requests and responses can be protected for:
15.3 Security Reference Model 15-21

¥ Integrity. This prevents undetected, unauthorized modification of messages and may
detect whether messages are received in the correct order and if any messages have
been added or removed.

¥ Confidentiality. This ensures that the messages have not been read in transit.

[101] A security association may in some environments be able to provide integrity and
confidentiality protection through mechanisms inherent in the environment, and so
avoid having to use encryption.

[102] The security policy specifies the strength of integrity and confidentiality protection
needed. Achieving this integrity protection may require sealing the message and
including sequence numbers. Confidentiality protection may require encrypting it.

[103] This security reference model allows a choice of cryptographic algorithms for
providing this protection.

[104] Performing a request on a remote object using an ORB and associated services, such as
TP, might cause a message to be constructed to send to the target as shown in
Figure 15-6. At the target, this process is reversed, and results in the ORB invoking the
operation on the target passing it the parameters sent by the client. The reply returned
follows a similar path.

[105] Message protection could be provided at different points in the message handling
functionality of an ORB, which would affect how much of the message is protected.

Figure 15-6 Message Protection

Client Target
Object

operation

parameters

operation(parameters)
on target object reference

parameters

parametersoperation

parametersoperationtarget id

parametersoperationtarget idservice
info

parametersoperationtarget idservice
info

host
address

always protected
if any message protection is done

always protected, so parameters can
be used only in specified operations

protected, so operation is on the right
object (implies message must be back in
clear before routing to target object)
service info like GIOP service context
added by services such as TP.
service info should be protected
the host address cannot be encrypted
as this would prevent correct routing

ORB/OA

message header and protected message
15-22 Security Service v1.8 September 2000 [DRAFT]

15
[106] Messages are protected according to the quality of protection required which may be
for integrity, but may also be for confidentiality. Both integrity and confidentiality
protection are applied to the same part of the message. The request and response may
be protected differently.

[107] The CORBA security model can protect messages even when there is no security in
the underlying communications software. In this case, the message protected by
CORBA security includes the target id, operation and parameters, and any service
information included in the message.

[108] In some systems, protection may be provided below the ORB message layer (for
example, using the secure sockets layer or even more physical means). In this case, an
ORB that knows such security is available will not need to provide its own message
protection.

[109] Note that as messages will normally be integrity protected, this will limit the type of
interoperability bridge that can be used. Any bridge that changes the protected part of
the message after it has been integrity (or confidentiality) protected will cause the
security check at the target to fail unless a suitable security gateway is used to re-
protect the message.

15.3.4 Access Control Model

[110] The model depicted in Figure 15-7 on page 15-24 provides a simple framework for
many different access control security policies. This framework consists of two layers:
an object invocation access policy, which is enforced automatically on object
invocation, and an application access policy, which the application itself enforces.

[111] The object invocation access policy governs whether this client, acting on behalf of the
current principal, can invoke the requested operation on this target object. This policy
is enforced by the ORB and the Security services it uses, for all applications, whether
they are aware of security or not.

[112] The application object access policy is enforced within the client and/or the object
implementation. The policy can be concerned with controlling access to its internal
functions and data, or applying further controls on object invocation.

[113] All instantiations of the security reference model place at least some trust in the ORB
to enforce the access policy. Even in architectures where the access control mediation
occurs solely within the client and target objects, the ORB is still required to validate
the request parameters and ensure message delivery as described above.
15.3 Security Reference Model 15-23

Figure 15-7 Access Control Model

[114] The access control model shows the client invoking an operation as specified in the
request, and also shows application access decisions, which can be independent of this.

Object Invocation Access Policy

[115] A client may invoke an operation on the target object as specified in the request only
if this is allowed by the object invocation access policy. This is enforced by Access
Decision Functions.

[116] Client side access decision functions define the conditions that allow the client to
invoke the specified operation on the target object. Target side access decision
functions define the conditions that allow the object to accept the invocation. One or
both of these may not exist. Some systems may support target side controls only, and
even then, only use them for some of the objects.

[117] The access policy for object invocation is built into these access decision functions,
which just provide a yes/no answer when asked to check if access is allowed. A range
of access policies can be supported as described in Section 15.5.12, ÒAccess Control,Ó
on page 15-119.

[118] The access decision function used on object invocation to decide whether access is
allowed bases its decision on:

¥ The current privilege attributes of the principal (see Section 15.3.2, ÒPrincipals and
Their Security Attributes,Ó on page 15-19). Note that these can include capabilities.

¥ Any controls on these attributes, for example, the time for which they are valid.

¥ The operation to be performed.

¥ The control attributes of the target object (see Section 15.3.4, ÒAccess Control
Model,Ó on page 15-23).

Client

request request

ORB

Target
Object

client-side invocation access decision target-side invocation access decision

client application
access decision

target application
access decision
15-24 Security Service v1.8 September 2000 [DRAFT]

15
[119] The first three of these functions are available as part of the environment of the object
invocation.

[120] The control attributes for the target object are associated with the object when it is
created (though may be changed later, if security policy permits).

Application Access Policy

[121] Applications may also enforce access policies. An application access policy may
control who can invoke the application, extending the object invocation access policy
enforced by the ORB, and taking into account other items such as the value of the
parameters, or the data being accessed. As for standard object invocation access
controls, there may be client and target object access decision functions.

[122] An application object may also control access to finer-grained functions and data
encapsulated within it, which are not separate objects.

[123] In either case, the application will need its own access decision function to enforce the
required access control rules.

Access Policies

[124] The general access control model described here can be used to support a wide range
of access policies including Access Control List schemes, label-based schemes, and
capability schemes. This section describes the overall authorization model used for all
types of access control.

[125] The authorization model is based on the use of access decision functions, which decide
whether an operation or function can be performed by applying access control rules
using:

¥ Privilege attributes of the initiator (called initiator Access Control Information or
ACI in ISO/IEC 10181-3).

¥ Control attributes of the target (sometimes known as the target ACI).

¥ Other relevant information about the action such as the operation and data, and
about the context, such as the time.

Figure 15-8 Authorization Model

[126] The privilege and control attributes are the main variables used to control access;
therefore, the following sections focus on these.

Access Decision Function
enforcing

access control rules

Action and
context info

Initiator
privilege attributes

access allowed?

yes/no

Target
control attributes
15.3 Security Reference Model 15-25

Privilege Attributes

[127] A principal can have a variety of privilege attributes used for access control such as:

¥ The principalÕs access identity.

¥ Roles, which are often related to the userÕs job functions.

¥ Groups, which normally reflect organizational affiliations. A group could reflect the
organizational hierarchy, for example, the department to which the user belongs, or
a cross-organizational group, which has a common interest.

¥ Security clearance.

¥ Capabilities, which identify the target objects (or groups of objects), and their
operations on which the principal is allowed.

¥ Other privileges that an enterprise defines as being useful for controlling access.

[128] In an object system, which may be large, using individual identities for access control
may be difficult if many sets of control attributes need to be changed when a user joins
or leaves the organization or changes his job. Where possible, controls should be based
on some grouping construct (such as a role or organizational group) for scalability.

[129] The security reference model does not dictate the particular privilege attributes, that
any compliant secure system must support; however, this specification does define a
standard, extensible set of privilege attribute types.

Note Ð In this specification, privilege is often used as shorthand for privilege attribute.

Control Attributes

[130] Control attributes are associated with the target. Examples are:

¥ Access control lists, which identify permitted users by name or other privilege
attributes, or

¥ Information used in label-based schemes, such as the classification of an object,
which identifies (according to rules) the security clearance of principals allowed to
perform particular operations on it.

[131] An object system may have many objects, each of which may have many operations,
so it may not be practical to associate control attributes with each operation on each
object. This would impose too large an overhead on the administration of the system,
and the amount of storage needed to hold the information.

[132] Control attributes are therefore expected to be shared by categories of objects,
particularly objects of the same type in the same security policy domain. However,
they could be associated with an individual object.
15-26 Security Service v1.8 September 2000 [DRAFT]

15
Rights
[133] Control attributes may be associated with a set of operations on an object, rather than

each individual operation. Therefore, a user with specified privileges may have rights
to invoke a specific set of operations.

[134] It is possible to define what rights give access to what operations.

Access Policies Supported by This Specification

[135] The model allows a range of access policies using control attributes, which can group
subjects (using privileges), objects (using domains), and operations (using rights).

[136] This specification defines a particular access policy type and associated management
interface as part of security functionality Level 2. This is defined in
DomainAccessPolicy Interface under Section 15.6.4, ÒAccess Policies,Ó on
page 15-135.

[137] Regardless of the access control policy management interface used (i.e., regardless of
whether the particular Level 2 access policy interfaces or other interfaces not defined
in this specification are used), all access decisions on object invocation are made via a
standard access decision interface, so the access control policy can be changed either
by administrative action on, or substitution of, the objects that define the policy and
implement the access decision. However, different management interfaces will
ordinarily be required for management of different types of control attributes.

15.3.5 Auditing

[138] Security auditing assists in the detection of actual or attempted security violations.
This is achieved by recording details of security relevant events in the system.
(Depending on implementation, recording an audit event may involve writing event
information to a log, generating an alert or alarm, or some other action.) Audit policies
specify which events should be audited under what circumstances.

[139] There are two categories of audit policies: system audit policies, which control what
events are recorded as the result of relevant system activities, and application audit
policies, which control which events are audited by applications.

[140] System events, which should be auditable, include events such as authentication of
principals, changing privileges, success or failure of object invocation, and the
administration of security policies. These system events may occur in the ORB or in
security or other services, and these components generate the required audit records.

[141] Application events may be security relevant, and therefore may need auditing
depending on the application. For example, an application that handles money transfers
might audit who transferred how much money to whom.
15.3 Security Reference Model 15-27

[142] Events can be categorized by event family (e.g., system, financial application service),
and event type within that family. For example, there are defined event types for
system events.

Figure 15-9 Auditing Model

[143] Potentially a very large number of events could be recorded; audit policies are used to
restrict what types of events to audit under which circumstances. System audit policies
are enforced automatically for all applications, even security unaware ones.

[144] The invocation audit policy is enforced at a point in the ORB where the target object
and operation for the request are known, and the reply status is known. The model
supports audit policies where the decision on whether to audit an event can be based
on the event type (such as method invocation complete, access control check done,
security association made), the success or failure of this event (only failures may be
audited), the object and the operation being invoked, the audit id of principal on whose
behalf the invocation is being done, and even the time of day.

[145] This specification defines a particular invocation audit policy type and associated
management interfaces as part of security functionality Level 2. This allows decisions
on whether to audit an invocation to depend on the object type, operation, event type,
and success or failure of this.

[146] The specification also defines a particular audit policy type for application auditing,
which allows decisions on whether to audit the event to be based on the event type and
its success or failure.

[147] Events can either be recorded on audit trails for later analysis or, if they are deemed to
be serious, alarms can be sent to an administrator. Application audit trails may be
separate from system ones. This specification includes how audit records are generated

Client

request request

ORB

Target
Object

security association

client application
audit

target application
audit

invocation access control etc.
security association

invocation access control etc.

Audit Audit
15-28 Security Service v1.8 September 2000 [DRAFT]

15
and then written to audit channels, but not how these records are filtered later, how
audit trails and channels are kept secure, and how the records can be collected and
analyzed.

15.3.6 Delegation

[148] In an object system, a client calls on an object to perform an operation, but this object
will often not complete the operation itself, so will call on other objects to do so. This
will usually result in a chain of calls on other objects as shown in Figure 15-10.

Figure 15-10 Delegation Model

[149] This complicates the access model described in Section 15.3.4, ÒAccess Control
Model,Ó on page 15-23, as access decisions may need to be made at each point in the
chain. Different authorization schemes require different access control information to
be made available to check which objects in the chain can invoke which further
operations on other objects.

[150] In privilege delegation, the initiating principalÕs access control information (i.e., its
security attributes) may be delegated to further objects in the chain to give the
recipient the rights to act on its behalf under specified circumstances.

[151] Another authorization scheme is reference restriction where the rights to use an
object under specified circumstances are passed as part of the object reference to the
recipient. Reference restriction is not included in this specification, though described
as a potential future security facility in Appendix F, ÒFacilities Not in This
SpecificationÓ on page 15-377.

[152] The following terms are used in describing delegation options:

¥ Initiator: the first client in a call chain.

¥ Final target: the final recipient in a call chain.

Client

Client

Target

Target
Object

Client

Target

Client

Target

Target
Object

Target
Object

..
15.3 Security Reference Model 15-29

¥ Intermediate: an object in a call chain that is neither the initiator nor the final
target.

¥ Immediate invoker: an object or client from which an object receives a call.

Privilege Delegation

[153] In many cases, objects perform operations on behalf of the initiator of a chain of object
invocations. In such cases, the initiator needs to delegate some or all of its privilege
attributes to the intermediate objects which will act on its behalf.

[154] Some intermediates in a chain may act on their own behalf (even if they have received
delegated credentials) and perform operations on other objects using their own
privileges. Such intermediates must be (or represent) principals so that they can obtain
their own privileges to be transmitted to objects they invoke.

[155] Some intermediates may need to use their own privileges at some times, and delegated
privileges at other times.

[156] A target may wish to restrict which of its operations an invoker can perform. This
restriction may be based on the identity or other privilege attributes of the initiator.
The target may also want to verify that the request comes from an authorized
intermediate (or even check the whole chain of intermediates). In these cases, it must
be possible to distinguish the privileges of the initiator and those of each intermediate.

[157] Some restrictions may or may not be placed by the initiator about the set of objects
which may be involved in a delegation chain.

[158] When no restrictions are placed and only the initiator's privileges are being used, this
case is called impersonation.

[159] When restrictions are placed, additional information is used so that objects can verify
whether or not their characteristics (e.g., their name or a part of their name) satisfy the
restrictions. In order to allow clients or initiating objects to specify this additional
information, objects can be (securely) associated with these characteristics (e.g., their
name).

Overview of Delegation Schemes

[160] There are potentially a large number of delegation models. They can all be captured
using the following sentence.

[161] An intermediate invoking a target object may perform:

1. one method on one object

2. several methods on one object

3. any method on: a. one object
b. some object(s)
c. any object

(target restrictions)
(no target restrictions)

15-30 Security Service v1.8 September 2000 [DRAFT]

15
[162] When delegating privileges through a chain of objects, the caller does not know which
objects will be used in completing the request, and therefore cannot easily restrict
privileges to particular methods on objects. It generally relies on the targetÕs control
attributes to do this.

[163] A privilege delegation scheme may provide any of the other controls, though no one
scheme is likely to provide all of them.

Facilities Potentially Available

[164] Different facilities are available to intermediates (or clients) before initiating object
invocations and to intermediate or target objects accepting an invocation.

Controls Used Before Initiating Object Invocations
[165] A client or intermediate can specify restrictions on the use of the access control

information provided to another intermediate or to a target object. Interfaces may allow
support of the following facilities.

¥ Control of privileges delegated. An initiator (or an intermediate) can restrict
which of its own privileges are delegated.

¥ Control of target restrictions. An initiator (or an intermediate) can restrict where
individual privileges can be used. This restriction may apply to particular objects, or
some grouping of objects. It may restrict the target objects, which may use some
privileges for access control, and the intermediates, which can also delegate them.

Control of privileges used. As previously described, there are several options for
deciding which privileges an intermediate object may use when invoking another
object. Note that delegated privileges are not actually delegated to a single target
object; they are available to any object running under the same identity as the target
object in the target objectÕs address space (since any objects in the targetÕs address
space may retrieve the inbound Credentials and any object sharing the targetÕs
identity may successfully become the callerÕs delegate).

The specified interfaces allow the following.

using

(no privileges
(a subset of the initiatorÕs privileges
(both the initiatorÕs and its own
privileges
(received privileges and its own
privileges

(simple delegation)
(composite delegation)
(combined or traced delegation,
depending on whether privileges
are combined or concatenated)

during some validity period (part of time constraints)

for a specified number of invocations (part of time constraints)
15.3 Security Reference Model 15-31

¥ No delegation

The client permits the intermediate to use its privileges for access control decisions,
but does not permit them to be delegated, so the intermediate object cannot use
these privileges when invoking the next object in the chain.

Figure 15-11 No Delegation

¥ Simple delegation

The client permits the intermediate to assume its privileges, both using them for
access control decisions and delegating them to others. The target object receives
only the client's privileges, and does not know who the intermediate is (when
used without target restrictions, this is known as impersonation).

Figure 15-12 Simple Delegation

¥ Composite delegation

The client permits the intermediate object to use its credentials and delegate them.
Both the client privileges and the immediate invokerÕs privileges are passed to the
target, so that both the client privileges and the privileges from the immediate
source of the invocation can be individually checked.

Figure 15-13 Composite Delegation

¥ Combined privileges delegation

The client permits the intermediate object to use its privileges. The intermediate

Client Intermediate
Object

Target
Object

client credentials intermediate
credentials

Client Intermediate
Object

Target
Object

client credentials client credentials

Client Intermediate
Object

Target
Object

client credentials
client and

intermediate

credentials
15-32 Security Service v1.8 September 2000 [DRAFT]

15
converts these privileges into credentials and combines them with its own
credentials. In that case, the target cannot distinguish which privileges come from
which principal.

Figure 15-14 Combined Privileges Delegation

¥ Traced delegation

The client permits the intermediate object to use its privileges and delegate them.
However, at each intermediate object in the chain, the intermediate's privileges
are added to privileges propagated to provide a trace of the delegates in the chain.

Figure 15-15 Traced Delegation

A client application may not see the difference between the last three options, it
may just see them all as some form of ÒcompositeÓ delegation. However, the target
object can obtain the credentials of intermediates and the initiator separately if they
have been transmitted separately.

¥ Control of time restrictions. Time periods can be applied to restrict the duration of
the delegation. In some implementations, the number of invocations may also be
controllable.

Facilities Used on Accepting Object Invocations
[166] An intermediate or a target object should be able to:

¥ Extract received privileges and use them in local access control decisions.
Often only the privileges of the initiator are relevant. When this is not the case, only
the privileges of the immediate invoker may be relevant. In some cases, both are
relevant. Finally, the most complex authorization scheme may require the full
tracing of the initiator and all the intermediates involved in a call chain.
In addition, some targets may need to obtain the miscellaneous security attributes
(such as audit identity, charging identity) and the associated target restrictions and
time constraints.

¥ Extract credentials (when permitted) for use when making the next call as a
delegate.

Client Intermediate
Object

Target
Object

client credentials

client and
intermediateÕs

privileges

in a single
credential

Client Target
Object

intermediate
objects

client credentials chain of

credentials
15.3 Security Reference Model 15-33

¥ Build (when permitted) new credentials from the received access control
information with changed (normally reduced) privileges and/or different target
restrictions or time constraints.

Specifying Delegation Options

[167] The administrator may specify which delegation option should be used by default
when an object acts as an intermediate. For example, he may specify whether a
particular intermediate object normally delegates the initiating principal's privileges or
uses its own, or both if needed. Also, the access policy used at the target could permit
or deny access based on more than one of the privileges it received (e.g., the initiator's
and the intermediate's). This allows many applications to be unaware of the delegation
options in use, as many of the controls for delegation are done automatically by the
ORB when the intermediate invokes the next object in the chain.

[168] However, a security-aware intermediate object may itself specify what delegation it
wants. For example, it may choose to use the original principal's privileges when
invoking some objects and its own when invoking others.

Technology Support for Delegation Options

[169] Different security technologies support different delegation models. Currently, no one
security technology supports all the options described above.

[170] In Security Functionality Level 1, all delegation is done automatically in the ORB
according to delegation policy, so the objects in the chain cannot change the mode of
delegation used, or restrict privileges passed and where or when they are used.

[171] Of the options on which credentials are passed, only no delegation and impersonation
(simple delegation without any target restrictions) need to be supported.

[172] In Security Functionality Level 2, applications may use any of the interfaces specified,
but may get a CORBA::NO_IMPLEMENT exception returned. Note that these
interfaces do not allow the application to set controls such as target restrictions.
Appendix F, ÒFacilities Not in This SpecificationÓ on page 15-377, includes potential
future advanced delegation facilities, which include such controls.

15.3.7 Non-repudiation

[173] Non-repudiation services provide facilities to make users and other principals
accountable for their actions. Irrefutable evidence about a claimed event or action is
generated and can be checked to provide proof of the action. It can also be stored in
order to resolve later disputes about the occurrence or the nonoccurrence of the event
or action.

[174] The non-repudiation services specified here are under the control of the applications
rather than used automatically on object invocation, so are only available to
applications aware of this service.
15-34 Security Service v1.8 September 2000 [DRAFT]

15
[175] Depending on the non-repudiation policy in effect, one or more pieces of evidence
may be required to prove that some kind of event or action has taken place. The
number and the characteristics of each depends upon that non-repudiation policy. As
an example, evidence containing a timestamp from a trusted authority may be required
to validate evidence.

[176] There are many types of non-repudiation evidence, depending on the characteristics of
the event or action. In order to distinguish between them, the types are defined and are
part of the evidence. Conceptually, evidence may thus be seen as being composed of
the following components:

¥ non-repudiation policy (or policies) applicable to the evidence

¥ type of action or event

¥ parameters related to the type of action or event

[177] A date and time are also part of the evidence. This shows when an action or event took
place and allows recovery from some situations such as the compromise of a key.

[178] The evidence includes some proof of the origin of data, so a recipient can check where
it came from. It also allows the integrity of the data to be verified.

[179] Facilities included here allow an application to deal with evidence of a variety of types
of actions or events. Two common types of non-repudiation evidence are the evidence
of proof of creation of a message and proof of receipt of a message.

[180] Non-repudiation of Creation protects against an originator's false denial of having
created a message. It is achieved at the originator by constructing and generating
evidence of Proof of Creation using non-repudiation services. This evidence may be
sent to a recipient to verify who created the message, and can be stored and then made
available for subsequent evidence retrieval.

[181] Non-repudiation of Receipt protects against a recipient's false denial of having
received a message (without necessarily seeing its content). It is achieved at the
recipient by constructing and generating evidence of Proof of Receipt using the non-
repudiation services. This is shown in Figure 15-16.

Figure 15-16 Proof of Receipt

[182] One or more Trusted Third Parties need to be involved, depending on the choice of
mechanism or policy.

[183] Non-repudiation services may include:

¥ Facilities to generate evidence of an action and verify that evidence later.

 (plus message)
 evidence of creation

RecipientOriginator

 evidence of receipt
15.3 Security Reference Model 15-35

¥ A delivery authority which delivers the evidence (often with the message) from the
originator to the recipient. Such a delivery authority may generate proof of origin
(to protect against a sender's false denial of sending a message or its content) and
proof of delivery (to protect against a recipient's false denial of having received a
message or its content). Non-repudiation of Origin and Delivery are defined in ISO
7498-2.

¥ An evidence storage and retrieval facility used when a dispute arises. An
adjudicator service may be required to settle the dispute, using the stored evidence.

Figure 15-17 Non-repudiation Services

[184] The non-repudiation services illustrated in Figure 15-17 are based on the ISO non-
repudiation model; as the shaded box in the diagram indicates, this specification
supports only Evidence Generation and Verification, which provides:

¥ Generation of evidence of an action.

¥ Verification of evidence of an action.

¥ Generation of a request for evidence related to a message sent to a recipient.

¥ Receipt of a request for evidence related to a message received.

¥ Analysis of details of evidence of an action.

¥ Collection of the evidence required for long term storage. In this case, more
complete evidence may be needed.

[185] The Non-repudiation Service allows an application to deal with a variety of types of
evidence, not just the non-repudiation of creation and receipt previously described.

[186] No Non-repudiation Evidence Delivery Authority is defined by this specification; it is
anticipated that vendors will want to customize these authorities (which are responsible
for delivering messages and related non-repudiation evidence securely in accordance
with specific non-repudiation policies) to meet specialized market requirements. Also,
no evidence storage and retrieval services are specified, as other object services can be
used for this.

Object
A

Object
B

Service Req/Resp Dispute/Judgement

Non-repudiation service

Evidence
Generation

and
Adjudicator

Service Req/Resp

Evidence
Storage

and
RetrievalVerification

Delivery
Authority
15-36 Security Service v1.8 September 2000 [DRAFT]

15
[187] Note that this specification does not provide evidence that a request on an object was
successfully carried out; it does not require use of non-repudiation within the ORB.

15.3.8 Domains

[188] A domain (as specified in the ORB Interoperability Architecture) is a distinct scope,
within which certain common characteristics are exhibited and common rules
observed. There are several types of domain relevant to security:

¥ Security policy domain. The scope over which a security policy is enforced. There
may be subdomains for different aspects of this policy.

¥ Security environment domain. The scope over which the enforcement of a policy
may be achieved by some means local to that environment, so does not need to be
enforced within the object system. For example, messages will often not need
cryptographic protection to achieve the required integrity when being transferred
between objects in the same machine.

¥ Security technology domain. Where common security mechanisms are used to
enforce the policies.

[189] These can be independent of the ORB technology domains.

Security Policy Domains

[190] A security policy domain is a set of objects to which a security policy applies for a
set of security related activities and is administered by a security authority. (Note that
this is often just called a security domain.) The objects are the domain members. The
policy represents the rules and criteria that constrain activities of the objects to make
the domain secure. Security policies concern access control, authentication, secure
object invocation, delegation and accountability. An access control policy applies to
the security policies themselves, controlling who may administer security-relevant
policy information.

Figure 15-18 Security Policy Domains

[191] Security policy domains provide leverage for dealing with the problem of scale in
security policy management (by allowing application of policy at a domain granularity
rather than at an individual object instance granularity).

security
policy

management

Security Authority
15.3 Security Reference Model 15-37

[192] Security policy domains permit application of security policy information to security-
unaware objects without requiring changes to their interfaces (by associating the
security policy management interfaces with the domain rather than with the objects to
which policy is applied).

[193] Domains provide a mechanism for delimiting the scope of administratorsÕ authorities.

Policy Domain Hierarchies
[194] A security authority must be identifiable and responsible for defining the policies to be

applied to the domain, but may delegate that responsibility to a number of
subauthorities, forming subdomains where the subordinate authoritiesÕ policies are
applied.

[195] Subdomains may reflect organizational subdivisions or the division of responsibility
for different aspects of security. Typically, organization-related domains will form the
higher-level superstructure, with the separation of different aspects of security forming
a lower-level structure.

[196] For example, there could be:

¥ An enterprise domain, which sets the security policy across the enterprise.

¥ Subdomains for different departments, each consistent with the enterprise policy but
each specifying more specific security policies appropriate to that department.

[197] With each department, authority may be further devolved:

¥ Authority for auditing could be the preserve of an audit administrator.

¥ Control of access to a set of objects could be the responsibility of a specific
administrator for those objects.

[198] This supports what is recognized as good security practice (it separates administratorsÕ
duties) while reflecting established organizational structures.

Figure 15-19 Policy Domain Hierarchies

Federated Policy Domains
[199] As well as being structured into superior/subordinate relationships, security policy

domains may also be federated. In a federation, each domain retains most of its
authority while agreeing to afford the other limited rights. The federation agreement
records:

Security Policy
Manager
15-38 Security Service v1.8 September 2000 [DRAFT]

15
¥ The rights given to both sides, such as the kind of access allowed.

¥ The trust each has in the other.

[200] It includes an agreement as to how policy differences are handled, for example, the
mapping of roles in one domain to roles in the other.

Figure 15-20 Federated Policy Domains

System- and Application-Enforced Policies
[201] In a CORBA system, the ÒsystemÓ security policy is enforced by the distributed ORB

and the Security services it uses and the underlying operating systems that support it.
This is the only policy that applies to objects unaware of security.

[202] The application security policy is enforced by application objects, which have their
own security requirements. For example, they may want to control access to their own
functions and data at a finer granularity than the system security policy provides.

Figure 15-21 System- and Application-enforced Policies

Overlapping Policy Domains
[203] Not all policies have the same scope. For example, an object may belong to one

domain for access control and a different domain for auditing.

Figure 15-22 Overlapping Policy Domains

Security Policy
Manager

application security
policy domain

system security policy domain

Security Policy
Manager

audit domain

access control
domain
15.3 Security Reference Model 15-39

[204] In some cases, there may even be overlapping policies of the same type (however, this
specification does not require implementations to support overlapping policy domains
of the same type).

Security Environment Domains

[205] Security policy domains specify the scope over which a policy applies. Security
environment domains are the scope over which the enforcement of the policies may be
achieved by means local to the environment. The environment supporting the object
system may provide the required security, and the objects within a specific
environment domain may trust each other in certain ways. Environment domains are
by definition implementation-specific, as different implementations run in different
types of environments, which may have different security characteristics.

[206] Environment domains are not visible to applications or Security services.

[207] In an object system, the cost of using the security mechanisms to enforce security at
the individual object level in all environments would often be prohibitive and
unnecessary. For example:

¥ Preventing objects from interfering with each other might require them to execute
in separate system processes or virtual machines (assuming the generation
procedure could not ensure this protection) but, in most object systems, this would
be considered an unacceptable overhead, if applied to each object.

¥ Authenticating every object individually could also impose too large an overhead,
particularly where:

¥ There is a large object population.

¥ There is high connectivity, and therefore a large number of secure associations.

¥ The object population is volatile, requiring objects to be frequently introduced to
the Security services.

[208] This cost can be reduced by identifying security environment domains where
enforcement of one or more policies is not needed, as the environment provides
adequate protection. Two types of environment domains are considered:

1. Message protection domains. These are domains where integrity and/or
confidentiality is available by some specific means, for example, an underlying
secure transport service is used. An ORB, which knows such protection exists, can
exploit it, rather than provide its own message protection.

2. Identity domains. Objects in an identity domain can share the same identity.
Objects in the same identity domain:

¥ when invoking each other, do not need authentication to establish who they are
communicating with.

¥ are equally trusted by others to handle credentials received from a client. For
example, if a client is prepared to delegate its rights to one object in the domain,
it is prepared to delegate the same rights to all of them. If any object in the
identity domain invokes a further object, that target object is prepared to trust the
calling object based on the identity of its identity domain.
15-40 Security Service v1.8 September 2000 [DRAFT]

15
[209] Note that neither of these affect what access controls apply to the object (except in that
if trust is required and is not established with this domain, then access will be denied).

Security Technology Domains

[210] These are domains that use the same security technology for enforcing the security
policy. For example:

¥ The same methods are available for principal authentication and the same
Authentication services are used.

¥ Data in transit is protected in the same way, using common key distribution
technology with identical algorithms.

¥ The same types of access control are used. For example, a particular domain may
provide discretionary access control using ACLs using the same type of identity and
privilege attributes.

¥ The same audit services are used to collect audit records in a consistent way.

[211] A particular security technology is normally used to authenticate principals and to
form security associations between client and object and handle message protection.
(Different technologies may be able to use the same privilege attributes, for example,
the same access id and also the same audit id.) An important part of this is the security
technology used for key distribution. There are two main types of security technology
used for key distribution, both of which are available in commercial products:

¥ Symmetric key technology where a shared key is established using a trusted Key
Distribution Service.

¥ Asymmetric (or ÒpublicÓ) key technology where the client uses the public key of
the target (certified by a Certification Authority), while the target uses a related
private key.

[212] Public key technology is also the most convenient technology upon which to
implement non-repudiation, which has led to its use in several electronic mail
products.

[213] The CORBA security interfaces specified here are security mechanism neutral, so they
can be implemented using a wide variety of security mechanisms and protocols.

Domains and Interoperability

[214] Interoperability between objects depends on whether they are in the same:

¥ Security technology domain

¥ ORB technology domain

¥ Security policy domains

¥ Naming and other domains
15.3 Security Reference Model 15-41

[215] The level of security interoperability fully defined in this CORBA security
specification is limited, though it includes an architecture that allows further
interoperability to be added.

[216] The following diagram shows a framework of domains and is used to discuss the
interoperability goals of this specification.

Figure 15-23 Framework of Domains

Interoperating between Security Technology Domains
[217] Sending a message across the boundary between two different security technology

domains is only possible if:

¥ The communication between the objects does not need to be protected, so security
is not used between them, or

¥ A security technology gateway has been provided, which allows messages to pass
between the two security technology domains. A gateway could be as simple as a
physically secure link between the domains and an agreement between the
administrators of the two domains to turn off security on messages sent over the
link. On the other hand, it could be a very complicated affair including a protocol
translation service with complicated key management logic, for example.

[218] It is not a goal of this specification to define interoperability across Security
Technology Domains, and hence to specify explicit support for security technology
gateways. This is mainly because the technology is immature and appropriate common
technology cannot yet be identified. However, where the security technology in the
domains can support more than one security mechanism, this specification allows an
appropriate matching mechanism to be identified and used.

Interoperating between ORB Technology Domains
[219] If different ORB implementations are in the same security technology domain, they

should be able to interoperate via a CORBA 2 interoperability bridge. However, there
may still be restrictions on interoperability when:

ORB
Technology
Domain A

ORB
Technology
Domain B

CORBA 2
interoperability

bridge

Security Technology Domain 1

Security
Technology

Gateway

Security
Technology

Domain 2
15-42 Security Service v1.8 September 2000 [DRAFT]

15
¥ The objects are in different security policy domains, and the security attributes
controlling policy in one domain are not understood or trusted in the other domain.
As previously described, crossing a security policy boundary can be handled by a
security policy federation agreement. This can be enforced in either domain or by a
gateway.

¥ The ORBs are in different naming or other domains, and messages would normally
be modified by bridges outside the trusted code of either ORB environment.
Security protection prevents tampering with the messages (and therefore any
changes to object references in them). In general, crossing of such domains without
using a Security Technology gateway is not possible if policy requires even
integrity protection of messages.

15.3.9 Security Management and Administration

[220] Security administration is concerned with managing the various types of domains and
the objects within them.

Managing Security Policy Domains

[221] For security policy domains, the following is required:

¥ Managing the domains themselves - creating, deleting them including controlling
where they fit in the domain structure.

¥ Managing the members of the domain, including moving objects between domains.

¥ Managing the policies associated with the domains - setting details of the security
policies as well as specifying which policies apply to which domains.

[222] This specification focuses on management of the security policies. However, managing
policy domains and their members in general are expected to be part of the
Management Common Facilities, so only an outline specification is given here.

[223] This specification includes a framework for administering of security policies, and
details of how to administer particular types of policy. For example, it includes
operations to specify the default quality of protection for messages in this domain, the
policy for delegating credentials, and the events to be audited.

[224] General administration of all access control policies is not detailed, as the way of
administering access control policies is dependent on the type of policy. For example,
different administration is needed for ACL-based policies and label-based policies.
However, the administration of the standard DomainAccessPolicy is defined.

[225] Access policies may use rights to group operations for access control. Administration
of the mapping of rights to operations is included in this specification. Such mapping
of rights to operations is used by the standard DomainAccessPolicy, and can also be
used by other access policies.

[226] Interfaces for federation agreements allowing interaction with peer domains is left to a
later security specification.
15.3 Security Reference Model 15-43

Managing Security Environment Domains

[227] For environment domains, an administrator may have to specify the characteristics of
the environment and which objects are members of the domain. This will often be done
in an environment-specific way; therefore, no management interfaces for it are
specified here.

Managing Security Technology Domains

[228] For security technology domains, administration may include:

¥ Setting up and maintaining the underlying Security services required in the domain.

¥ Setting up and maintaining trust between domains in line with the agreements
between their management.

¥ Administering entities in the way required by this security technology. Entities to
be administered include principals, which have identities, long-term keys, and
optionally privileged attributes.

[229] Such administration is often security technology specific. Also, it may be done outside
the object system, as it is a goal of this specification to allow common security
technology to be used, and even allow a single user logon to object, as well as other
applications. This specification does not include such security technology specific
administration.

15.3.10 Implementing the Model

[230] This reference model is sufficiently general to cover a very wide variety of security
policies and application domains to allow conformant implementations to be provided
to meet a wide variety of commercial and government secure systems in terms of both
security functionality and assurance. (Any implementation of this model will need to
identify the particular security policies it supports.)

[231] The model also allows different ways of putting together the trusted core of a secure
object system to address different requirements. There are a number of implementation
choices on how to ensure that the security enforcement cannot be bypassed. This
enforcement could be performed by hardware, the underlying operating system, the
ORB core, or ORB services. Appendix D, ÒGuidelines for a Trustworthy SystemÓ on
page 15-348 describes some of these options. (It is important when instantiating this
architecture for a particular ORB product, or set of Security services supporting one or
more ORBs, to identify what portions of the model must be trusted for what. This
should be included in a conformance statement as described in Appendix E,
ÒConformance StatementÓ on page 15-371.)

15.4 Security Architecture

[232] This section explains how the security model is implemented. It describes the complete
architecture as needed to support all feature packages described in Section 15.2.2,
ÒCORBA Security and Secure Interoperability Feature Packages,Ó on page 15-12. Not
15-44 Security Service v1.8 September 2000 [DRAFT]

15
all of these packages are mandatory for all implementors to support. See Appendix C,
ÒConformance DetailsÓ on page 15-335 for a definitive statement of conformance
requirements.

[233] This section starts by reviewing the different views that different users have of security
in CORBA-compliant systems, as the security architecture must cater to these.

[234] The structural model for security in CORBA-compliant systems is described. This
includes some expansion of the ORB service concept introduced into CORBA 2 to
support interoperability between ORBS.

[235] The security object models for the three major views (application development,
administration, and object system implementors) are then described.

15.4.1 Different UsersÕ View of the Security Model

[236] The security model can be viewed from the following usersÕ perspectives:

¥ Enterprise management

¥ The end user

¥ The application developer

¥ Administration of an operational system

¥ The object system implementors

Enterprise Management View

[237] Enterprise management are responsible for business assets including IT systems;
therefore they have ultimate responsibility for protecting the information in the system.
The enterprise view of security is therefore mainly about protecting its assets against
perceived threats at an affordable cost. This requires assessing the risks to the assets
and the cost of countermeasures against them as described in Appendix E, Guidelines
for a Trustworthy System. It will require setting a security policy for protecting the
system, which the security administrators can implement and maintain.

[238] Not all parts of an enterprise require the same type of protection of their assets.
Enterprise management may identify different domains where different security
policies should apply. Managers will need to agree how much they trust each other and
what access they will provide to their assets. For example, when a user in domain A
accesses objects in domain B, what rights should he have? One enterprise may also
interwork with domains in other enterprises.

[239] Enterprise management therefore knows about the structure of the organization and the
security policies needed in different parts of it. Security policy options supported by
the model include:

¥ A choice of access control policies. For example, controls can be based on job roles
(or other attributes) and use ACL, capabilities, or label-based access controls.

¥ Different levels of auditing so choosing which events to be logged can be flexibly
chosen to meet the enterprise needs.
15.4 Security Architecture 15-45

¥ Different levels of protection of information communicated between objects in a
distributed system. For example, integrity only or integrity plus confidentiality.

[240] The enterprise manager is not a direct user of the CORBA security system.

End User View

[241] The human user is an individual who is normally authenticated to the system to prove
who he or she is.

[242] The user may take on different job roles which allow use of different functions and
data, thereby allowing access to different objects in the system. A user may also
belong to one or more groups (within and across organizations) which again imply
rights to access objects. A user may also have other privileges such as a security
clearance that permits access to secret documents, or an authorization level that allows
the user to authorize purchases of a given amount.

[243] The user is modeled in the system as an initiating principal who can have privilege
attributes such as roles and groups and others privileges valid to this organization.

[244] The user invokes objects to perform business functions on his behalf, and his privilege
attributes are used to decide what he can access. His audit identity is used to make him
individually accountable throughout the system. He has no idea of what further objects
are required to perform the business function.

[245] The user view is described further in the security model in Section 15.3, ÒSecurity
Reference Model,Ó on page 15-17.

Application Developer View

[246] The application developer is responsible for the business objects in the system: the
applications. His main concern is the business functions to be performed.

[247] Many application developers can be unaware of the security in the system, though their
applications are protected by it. So much of the security in the system is hidden from
the applications. ORB security services are called automatically on object invocation,
and both protect the conversation between objects and control who can access them.

[248] Some application objects need to enforce some security themselves. For example, an
application might want to control access based on the value of the data and the time as
well as the principal who initiated the operation. Also, an application may want to
audit particular security relevant activities.

[249] The model includes a range of security facilities available for those applications that
want to use them. For example:

¥ The quality of protection for object invocations can be specified and used to protect
all communication with a particular target or just selected invocations.

¥ Audit can also be used independently of other security facilities and does not
require the application to understand other security issues.
15-46 Security Service v1.8 September 2000 [DRAFT]

15
¥ Other functions, such as user authentication or handling privilege attributes for
access control generally require more security understanding and operations on the
objects, which represent the user in the system. However, this is still done via
generic security interfaces, which hide the particular security technology used.

[250] One special type of application developer is also catered for. The ÒapplicationÓ that
provides the user interface (user sponsor or logon client) needs an authentication
interface capable of fitting with a range of authentication devices. However, the model
also allows authentication to be done before calling the object system.

[251] The application view is described in Section 15.5, ÒApplication DeveloperÕs
Interfaces,Ó on page 15-87.

AdministratorÕs View

[252] Administrators, like any other users, know about their job roles and other privileges,
and expect these to control what they can do. In many systems, there will be a number
of different administrators, each responsible for administering only part of the system.
This may be partly to reduce the load on individual administrators, but partly for
security reasons, for example to reduce the damage any one person can do.

[253] Administrators and administrative applications see more of the system than other users
or normal application developers. For example, the application developers see
individual objects whereas the administrator knows how these are grouped, for
example, in policy domains.

[254] In an operational system, administrators will be responsible for creating and
maintaining the domains, specifying who should be members of the domain, its
location, etc. They will also be responsible for administering the security policies that
apply to objects in these domains.

[255] An administrator may also be responsible for security attributes associated with
initiating principals such as human users, though this may be done outside the object
system. This would include administration of privilege attributes about users, but
might also include other controls. For example, they might constrain the extent to
which the userÕs rights can be delegated.

[256] The model does not include explicit management interfaces for managing domains or
security attributes of initiating principals, though it does describe the resultant
information. Note that the security facilities described here are also applicable to
management. For example, management information needs to be protected from
unauthorized access and protected for integrity in transit, and significant management
actions, particularly those changing security information, need to be audited.

[257] The administratorÕs view is further described in Section 15.6, ÒAdministratorÕs
Interfaces,Ó on page 15-132.

Object System ImplementorÕs View

[258] Secure object system developers must put together:
15.4 Security Architecture 15-47

¥ An ORB.

¥ Other Object Services and/or Common Facilities.

¥ The security services these require to provide the security features.

[259] The system must be constructed in such a way as to make it secure.

[260] The ORB implementor in a secure object system may use ORB Security services
during object invocation, as defined in Section 15.4.2, ÒStructural Model,Ó on
page 15-48. In addition, protection boundaries are required to prevent interference
between objects and will need controlling by the ORB and associated Object Adapter
and ORB services.

[261] Certain interfaces are declared to be local. The locality properties required of them are
described in CORBA Core 2.4 Chapter 3, IDL Syntax and Semantics.

[262] Object Service and Common Facilities developers may need to be security aware if
they have particular security requirements (for example, functions whose use should be
limited or audited). However, like any application objects, most should depend on the
ORB and associated services to provide security of object invocations.

[263] The Security services implementor has to provide ORB Security services (for security
of object invocations) and other security services to support applicationsÕ view of
security as previously defined. The ORB Security services implementor shares some
application visible security objects such as a principalÕs credentials, and also sees the
security objects used in making security associations. The Security services should use
the Security Policy and other security objects defined in this model to decide what
security to provide.

[264] While these security objects may provide all the security required themselves, they
will often call on external security services, so that consistent security can be provided
for both object and other systems. The Security services defined in this specification
are designed to allow for convenient implementation using generic APIs for accessing
external security services so it is easier to link with a range of such services. Use of
such external security services may imply use of existing, nonobject databases for
users, certificates, etc. Such databases may be managed outside the object system.

[265] The ImplementorÕs view is specified in Section 15.7, ÒImplementorÕs Security
Interfaces,Ó on page 15-159. The implications of constructing the system securely to
meet threats are described in Appendix D, ÒGuidelines for a Trustworthy SystemÓ on
page 15-348.

15.4.2 Structural Model

[266] The architecture described in this section sets the major concepts on which the
subsequent specifications are based.

[267] The structural model has four major levels used during object invocation:

1. Application-level components, which may or may not be aware of security;
15-48 Security Service v1.8 September 2000 [DRAFT]

15
2. Components implementing the Security services, independently of any specific
underlying security technology. (This specification allows the use of an isolating
interface between this level and the security technology, allowing different security
technologies to be accommodated within the architecture.) These components are:

¥ The ORB core and the ORB services it uses.

¥ Security services.

¥ Policy objects used by these to enforce the Security Policy.

3. Components implementing specific security technology.

4. Basic protection and communication, generally provided by a combination of
hardware and operating system mechanisms.

Figure 15-24 Structural Model

[268] Figure 15-24 illustrates the major levels and components of the structural model,
indicating the relationships between them. The basic path of a client invocation of an
operation on a target object is shown.

Application Components

[269] Many application components are unaware of security and rely on the ORB to call the
required security services during object invocation. However, some applications
enforce their own security and therefore call on security services directly (see The
Model as Seen by Applications, under Section 15.4.5, ÒSecurity Object Models,Ó on
page 15-57). As in the OMA, the client may, or may not, be an object.

Client

request request

ORB Core

Target
Object

ORB
Services

ORB
Services

Security
and other
Services

security technology

Basic Protection and Communications
15.4 Security Architecture 15-49

ORB Services

[270] The ORB Core is defined in the CORBA architecture as Òthat part of the ORB that
provides the basic representation of objects and the communication of requests.Ó The
ORB Core therefore supports the minimum functionality necessary to enable a client to
invoke an operation on a target object, with the distribution transparencies required by
the CORBA architecture.

[271] An object request may be generated within an implicit context, which affects the way
in which it is handled by the ORB, though not the way in which a client makes the
request. The implicit context may include elements such as transaction identifiers,
recovery data and, in particular, security context. All of these are associated with
elements of functionality, termed ORB Services, additional to that of the ORB Core
but, from the application view, logically present in the ORB.

Figure 15-25 ORB Services

Selection of ORB Services
[272] The ORB Services used to handle an object request are determined by:

¥ The security policies that apply to the client and target object because of the
domains to which they belong, for example the access policies, default quality of
protection.

¥ Other static properties of the client and target object such as the security
mechanisms and protocols supported.

¥ Dynamic attributes, associated with a particular thread of activity or invocation; for
example, whether a request has integrity or confidentiality requirements, or is
transactional.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

Logical Object Request
15-50 Security Service v1.8 September 2000 [DRAFT]

15
[273] A client's ORB determines which ORB Services to use at the client when invoking
operations on a target object. The targetÕs ORB determines which ORB Services to use
at the target. If one ORB does not support the full set of services required, then either
the interaction cannot proceed or it can only do so with reduced facilities, which may
be agreed to by a process of negotiation between ORBs.

Bindings and Object References at the Client
[274] Before a client can use an object reference to invoke an operation of the target object

in a secure way, a security association needs to be established associating the client to
the target object, through the particular object reference. This security association is
sometimes referred to as the binding. The creation and life-style of bindings are
implicitly managed by the ORBs and hence the only invariant that one can depend on
is that a binding is established before an invocation takes place.

[275] The ORB determines how to establish the binding using the policies, static properties,
and dynamic properties associated with the client and target. At the client, the client
environment together with an object reference of the target object has associated with
it, those policies and static properties of the target object (e.g., the quality of protection
needed) that affect how the client's ORB establishes a binding to the object.

[276] Associated with each binding is information specific to the particular usage by the
client of the object reference. A binding is uniquely associated with:

¥ Each object reference of the target object that is held by the client.

¥ State information that is unique to the association between the target object and the
client through the specific object reference (e.g., access policy domain, security
context).

¥ An ORB instance in a process or capsule (c.f. RM-ODP[15]) in which the client is
located.

[277] A binding is distinct from the target object, though uniquely associated with it through
the object reference. The lifetime of a binding is limited to that of the process or
capsule that it is associated with, though it may be shorter (e.g., when the object
reference to the target object is destroyed, the binding associated with the object
reference is also destroyed).

[278] There is state information associated with the binding at both the client and the server
ends. This state information is local to the process or capsule in which the client and
the server reside, and its lifetime is the same as that of the binding. The state
associated with a binding is not accessible on the client side, since the implicitness of
the binding and the uncertainty about its life-style makes such information of
questionable value anyway. On the server side, some of this information is accessible
through operations of the Current object.
15.4 Security Architecture 15-51

Figure 15-26 Object Reference

[279] If a client requires to invoke operations of the same target object with different
invocation policies, it can do so by using the Object::set_policy_overrides operation
to create new object references with the desired policies (that differ from those
associated with the clientÕs environment through the Current object) installed as
overrides, and then use those new object references to carry out the invocations,

Security Services

[280] In a secure object system, the ORB Services called will include ORB Security Services
for secure invocation and access control.

[281] ORB Security Services and applications may call on underlying security mechanisms
for authentication, access control, audit, non-repudiation, and secure invocations.
These security services form the Security Replaceability packages.

Security Policies and Domain Objects

[282] A security policy domain is the set of objects to which common security policies apply
as described in Security Policy Domains, under Section 15.3.8, ÒDomains,Ó on
page 15-37. The domain itself is not an object. However, there is a policy domain
manager for each security policy domain. This domain manager is used when finding
and managing the policies that apply to the domain. The ORB and security services use
these to enforce the security policies relevant to object invocation.

Client

ORB Core

Target
Object

ORB
Services

ORB
Services

 Request

binding binding

target obj ref

Current

Object Reference
15-52 Security Service v1.8 September 2000 [DRAFT]

15
[283] When an object reference is created by the ORB, it implicitly associates the object
reference with one or more Security Policy domains as described in Administrative
Model, under Section 15.4.5, ÒSecurity Object Models,Ó on page 15-57. An
implementation may allow object references to be moved between domains later. Since
the only way to access objects is through object references, associating object
references with policy domains and associated policies, implicitly associates the said
policies with the object associated with the object reference. Care should be taken by
the applications that is creating object references using POA operations (See the
Portable Object Adaptor chapter of the Common Object Request Broker: Architecture
and Specification) to ensure that object references to the same object are not created by
the server of that object with different domain associations.

[284] There may be several security policies associated with a domain, with a policy object
for each. There is at most one policy of each type associated with each policy domain.
(See ÒAdministrative ModelÓ on page 15-74, for a list of policy types.) These policy
objects are shared between objects in the domain, rather than being associated with
individual objects. (If an object needs to have an individual policy, then there must be
a domain manager for it.)

Figure 15-27 Domain Objects

[285] Where an object reference is a member of more than one domain, for example, there is
a hierarchy of domains, the object reference is governed by all policies of its enclosing
domains. The domain manager can find the enclosing domainÕs manager to see what
policies it enforces.

[286] The reference model allows an object reference to be a member of multiple domains,
which may overlap for the same type of policy (for example, be subject to overlapping
access policies). This would require conflicts among policies defined by the multiple
overlapping domains to be resolved. The specification does not include explicit support
for such overlapping domains and, therefore, the use of policy composition rules
required to resolve conflicts at policy enforcement time.

[287] Policy domain managers and policy objects have two types of interfaces:

¥ The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own security policies.

policy
object

domain
manager

enclosing
domain managers
15.4 Security Architecture 15-53

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy (as described in ÒThe
Model as Seen by the Objects Implementing SecurityÓ on page 15-78). The caller
finding a policy and then enforcing it does not see the domain manager objects and
the domain structure.

¥ The administrative interfaces used to set security policies (e.g., specifying which
events to audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so is aware of the scope of
what he is administering. (Administrative interfaces are described in
ÒAdministrative ModelÓ on page 15-74.)

[288] Applications will often not be aware of security at all, but will still be subject to
security policy, as the ORB will enforce the policies for them. Security policy is
enforced automatically by the ORB both when an object invokes another and when it
creates another object.

[289] An application that knows about security can also override certain default security
policy details. For example, a client can override the default quality of protection of
messages to increase protection for particular messages. (Application interfaces are
described in ÒThe Model as Seen by ApplicationsÓ on page 15-57.)

[290] Note that this specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them, moving objects between them,
changing the domain structure and adding, changing and removing policies applied to
the domains. Such interfaces are expected to be the province of other object services
and facilities.

15.4.3 Security Technology

[291] The object security services previously described insulate the applications and ORBs
from the security technology used. Security technology may be provided by existing
security components. These do not have domain managers or objects. Security
technology could be provided by the operating system. However, distributed,
heterogeneous environments are increasingly being used, and for these, security
technology is provided by a set of distributed security services. This architecture
identifies a separate layer containing those components which actually implement the
security services. It is envisaged that various technologies may be used to provide
these and, furthermore, that a (set of) generic security interface(s) such as the GSS-API
will be used to insulate the implementations of the security services from detailed
knowledge of the underlying mechanisms. The range of services (and corresponding
APIs) includes:

¥ The means of creating and handling the security information required to establish
security associations, including keys.

¥ Message protection services providing confidentiality and integrity.

[292] The use of standard, generic APIs for interactions with external security services not
only allows interchangeability of security mechanisms, but also enables exploitation of
existing, proven implementations of such mechanisms.
15-54 Security Service v1.8 September 2000 [DRAFT]

15
15.4.4 Basic Protection and Communications

Environment Domains

[293] As described in ÒSecurity Environment DomainsÓ on page 15-40, the way security
policies are enforced can depend on the security of the environment in which the
objects run. It may be possible to relax or even dispense with some security checks in
the object system on interactions between objects in the same environment domain.
For example, in a message protection domain where secure transport or lower layer
communications is provided, encryption is not needed at the ORB level. In an identity
domain, objects may share a security identity and so dispense with authenticating each
other. Environment domains are implementation concepts; they do not have domain
managers.

[294] Environment domains can be exploited to optimize performance and resource usage.

Component Protection

[295] The maintenance of integrity and confidentiality in a secure object system depends on
proper segregation of the objects, which may include the segregation of security
services from other components. At the lowest level of this architecture, Protection
Domains, supported by a combination of hardware and software, provide a means of
protecting application components from each other, as well as protecting the
components that support security services. Protection Domains can be provided by
various techniques, including physical, temporal, and logical separation.

[296] The Security Architecture identifies various security services, which mediate
interactions between application level components: clients and target objects. The
Security Object Models show how these mechanisms can themselves be modeled and
implemented in terms of additional objects. However, security services can only be
effective if there is some means of ensuring that they are always invoked as required
by security policies: it must be possible to guarantee, to any required level of
assurance, that applications cannot bypass them. Moreover, security services
themselves, like other components, must be subject to security policies.

[297] The general approach is to establish protection boundaries around groups of one or
more components which are said to belong to a protection domain. Components
belonging to a protection domain are assumed to trust each other, and interactions
between them need not be mediated by security services, whereas interactions across
boundaries may be subject to controls. In addition, it is necessary to provide a means
of establishing a trust relationship between components, allowing them to interact
across protection boundaries, in a controlled way, mediated by security services.
15.4 Security Architecture 15-55

Figure 15-28 Controlled Relationship

[298] In this architecture, the trusted components supporting security services are
encapsulated by objects, as described in ÒThe Model as Seen by the Objects
Implementing SecurityÓ on page 15-78. Clearly, objects that encapsulate sensitive
security information must be protected to ensure that they can only be accessed in an
appropriate way.

Figure 15-29 Object Encapsulation

[299] Protection boundaries and the controlled relationships that cross those boundaries must
inevitably be supported by functionality more fundamental than that of the Security
Object Models, and invariably requires a combination of hardware and operating
system mechanisms. Whichever way it is provided, this functionality constitutes part
of the Trusted Computing Base.

[300] Protection boundaries may be created by physical separation, interprocess boundaries,
or within process access control mechanisms (e.g., multilevel ÒonionskinÓ hardware-
supported access control). Less rigorous protection may be acceptable in some
circumstances, and in such cases protection boundaries can be provided, for example,
by using appropriate compilation tools to conceal protected interfaces and data.

[301] The architecture is defined in a modular way so that, where necessary, it is possible for
implementations to create protection boundaries between:

¥ Application components, which do not trust each other;

¥ Components supporting security services and other components;

¥ Components supporting security services and each other.

[302] In addition, controlled communication across protection boundaries may be required.
In such cases, it must be possible to constrain components within a protection
boundary to interact with components outside the protection boundary only via
controlled communications paths (it must not be possible to use alternative paths).
Such communication may take many forms, ranging from explicit message passing to
implicit sharing of memory.

Protection
Domain A

Protection
Domain B

Controlled
Relationship

Protection
Domain A

Protection
Domain B

Security Service
15-56 Security Service v1.8 September 2000 [DRAFT]

15
15.4.5 Security Object Models

[303] This section describes the objects required to provide security in a secure CORBA
system from three viewpoints:

1. The model as seen by applications.

2. The model as seen by administrators and administrative applications.

3. The model as seen by the objects implementing the secure object system.

[304] For each viewpoint, the model describes the objects and the relationships between
them, and outlines the operations they support. A summary of all objects is also given.

The Model as Seen by Applications

[305] Many applications in a secure CORBA system are unaware of security, and therefore
do not call on the security interfaces. This subsection is therefore mainly relevant to
those applications that are aware of and utilize security. Facilities available to such
applications are:

¥ Finding what security features this implementation supports.

¥ Establishing a principalÕs credentials for using the system. Authenticating the
principal may be necessary.

¥ Selecting various security attributes (particularly privileges) to affect later
invocations and access decisions.

¥ Making a secure invocation.

¥ Handling security at a target object and at intermediates in a chain of objects,
including use of credentials for application control of access and delegation.

¥ Auditing application activities.

¥ Non-repudiation facility -- generation and verification of evidence so that actions
cannot be repudiated.

¥ Finding the security policies that apply to this object.

[306] The Security Service interfaces that are available to the application writer are primarily
found in the SecurityLevel1, SecurityLevel2, NRservice, and SecurityAdmin
modules.

Finding Security Features
[307] An application can find out what security features are supported by this secure object

implementation. It does this by calling on the ORB to get_service_information.
Information returned includes the security functionality level and options supported
and the version of the security specification to which it conforms. It also includes
security mechanisms supported (though the ORB Security Services, rather than
applications, need this).
15.4 Security Architecture 15-57

Establishing Credentials
[308] If the principal has already been authenticated outside the object system, then

Credentials can be obtained from Current.

[309] If the principal has not been authenticated, but is only going to use public services
which do not require presentation of authenticated privileges, a Credentials object may
be created without any authenticated principal information.

[310] If the principal has not been authenticated, but is going to use services that need him to
be, then authentication is needed as shown in Figure 15-30.

Figure 15-30 Authentication

User sponsor
[311] The user sponsor is the code that calls the CORBA Security interfaces for user

authentication. It need not be an object, and no interface to it is defined. It is described
here so that the process of Credentials acquisition may be understood.

[312] The user provides identity and authentication data (such as a password) to the user
sponsor, and this calls on the Principal Authenticator object, which authenticates the
principal (in this case, the user) and obtains Credentials for it containing authenticated
identity and privileges.

[313] The user sponsor represents the entry point for the user into the secure system. It may
have been activated, and have authenticated the user, before any client application is
loaded. This allows unmodified, security-unaware client applications to have
Credentials established transparently, prior to making invocations.

[314] There is no concept of a target object sponsor.

user

..

Principal
Authenticator Credentials Currentcreate

User
Sponsor Client

request

ORB
15-58 Security Service v1.8 September 2000 [DRAFT]

15
Principal Authenticator
[315] The Principal Authenticator object is the application-visible object responsible for the

creation of Credentials for a given principal. This is achieved in one of two ways. If
the principal is to be authenticated within the object system, the user sponsor invokes
the authenticate operation of the Principal Authenticator object (and
continue_authentication if needed for multiexchange authentication dialogues).

Credentials
[316] A Credentials object holds the security attributes of a principal. These security

attributes include its authenticated (or unauthenticated) identities and privileges and
information for establishing security associations. It provides operations to obtain and
set security attributes of the principal it represents.

[317] There may be credentials for more than one principal, for example, the initiating
principal who requested some action and the principal for the current active object.
Credentials are used on invocations and for non-repudiation.

[318] There is an is_valid operation to check if the credentials are valid and a refresh
operation to refresh the credentials if possible.

Current
[319] The Current object represents the current execution context at both client (both for

object or non-object clients) and target objects. In a secure environment, the interfaces
SecurityLevel1::Current which is derived from CORBA::Current and
SecurityLevel2::Current which is derived from SecurityLevel1::Current, give access
to security information associated with the execution context. Current gives access to
the Credentials associated with the execution environment. Object invocations use
Credentials in SecurityManager, unless they have been overridden, by a security
aware client, in the specific object reference being used for the invocation. If a user
sponsor is used, it should set the userÕs credentials for subsequent invocations in
Current. This may also be done as the result of initializing the ORB when the user has
been authenticated outside the object system. This allows a security-unaware
application to utilize the credentials without having to perform any explicit operation
on them.

[320] At target and intermediate objects, other Credentials are also available via Current.

Handling Multiple Credentials
[321] An application object may use different Credentials with different security

characteristics for different activities.
15.4 Security Architecture 15-59

Figure 15-31 Multiple Credentials

[322] The Credentials::copy operation can be used to make a copy of the Credentials
object. The new Credentials object (i.e., the copy) can then be modified as necessary,
using its interface, before it is used in an invocation.

[323] When all required changes have been made the credentials may be specified as the
credentials for all subsequent invocations by the setting of an
InvocationCredentialsPolicy on PolicyCurrent.

[324] At any stage, a client or target object can find the default credentials for subsequent
invocations by calling PolicyCurrent::get_policy_overrides, asking for the
InvocationCredentialsPolicy. These default credentials will be used in all invocations
using object references in which the invocation credentials have not been overridden.

Selecting Security Attributes
[325] A client may require different security for different purposes, for example, to enforce a

least privilege policy and so specify that limited privileges should be used when
calling particular objects, or collections of objects, and restrict the scope to which
these privileges are propagated. A client may also want to protect conversations with
different targets differently.

[326] There are two ways to change security attributes for a principal:

1. Setting attributes on the credentials for that principal. If attributes are set on the
credentials, these apply to subsequent object invocations using those credentials. It
can therefore apply to invocations of many target objects.

2. Overriding InvocationCredentialsPolicy on the target object reference. The policy
thus set apply to subsequent invocations, which this client makes using this
reference.

copyCredentials Credentials Current

Object
(client or
target)

InvocationCredentialsPolicy

Copy
15-60 Security Service v1.8 September 2000 [DRAFT]

15
[327] In both cases, the change applies immediately to further object invocations associated
with these credentials or this object reference.

Figure 15-32 Changing Security Attributes

[328] Setting any of these attributes may result in a new security association being needed
between this client and target.

Note Ð This specification does not contain an operation to restrict when and where
these privileges can be used in target objects or delegated, though this may be
specified in the future (see Section F.12, ÒTarget Control of Message Protection,Ó on
page 15-381).

[329] A client may want to use different privileges or controls when invoking different
targets. It can do this by obtaining a new object reference using the
set_policy_overrides specifying the invocation credentials policy to be used with that
target, and then use the object reference thus obtained to carry out the invocation.

[330] A client may want to specify that a particular quality of protection applies only to
selected invocations of a target object. For example, it may want confidentiality of
selected messages. The client can do this by using set_policy_overrides, specifying a
QOP Policy on the new object reference. It can continue to use the original object
reference for those invocations where confidentiality is no longer required.

[331] The set_policy_overrides operation returns a new object reference to the same target
object as the one on which this operation is invoked. This new reference has the policy
overrides set in it. Any invocations through this new reference will use the overrides
set in the reference. The creation of this newly annotated object reference has no effect
on the target object.

[332] Equivalent get_ operations are also provided to permit an application to determine the
security specific options currently requested, for example get_attributes (privileges,
and other attributes such as audit id).

[333] The security features, invocation credentials, qop, and mechanism related policies that
are in effect on a given object reference can be obtained by using the get_policy
operation asking for the appropriate type of policy object.

Client Credentials

Object

set_attributes

set_policy_overrides

for QOP Policy and Invocation Credentials Policy
15.4 Security Architecture 15-61

Making a Secure Invocation
[334] A secure invocation is made in the same way as any other object invocation, but the

actual invocation is mediated by the ORB Security Services, invisibly to the
application, which enforce the security requirements, both in terms of policy and
application preference. The following diagram shows an application making the
invocation, and the ORB Security Services utilizing the security information in
Current, and hence the Credentials there.

Figure 15-33 Making a Secure Invocation

Note Ð For any given invocation, it is target and client security policy that determines
which (if any) ORB Security Services mediate that invocation. If the policy for a given
invocation requires no security, then no services will be used. Similarly, if only access
control is required, then only the ORB Security Service responsible for the provision
of access control will be invoked.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

target obj ref

Current
15-62 Security Service v1.8 September 2000 [DRAFT]

15
Security at the Target
[335] At the target, as at the client, the Current object is the representative of the local

execution context within which the target objectÕs code is executing. The Current
object can be used by the target object, or by ORB and Object Service code in the
target objectÕs execution context, to obtain security information about an incoming
security association and the principal on whose behalf the invocation was made.

Figure 15-34 Target Object Security

[336] A security-aware target application may obtain information about the attributes of the
principal responsible for the request by invoking the Current::get_attributes
operation. The target normally uses get_attributes to obtain the privilege attributes it
needs to make its own access decisions.

[337] When Current::get_attributes is invoked from the target object it returns the
attributes from the incoming Credentials from the client. When
Current::get_attributes is invoked by a client the attributes from the Credentials of
the user (e.g., the one that was created by the PrincipalAuthenticator) is returned.
Invoking Credentials::get_attributes always returns the attributes contained in that
Credentials object.

Intermediate Objects in a Chain of Objects
[338] When a client calls a target object to perform some operation, this target object often

calls another object to perform some function, which calls another object and so on.
Each intermediate object in such a chain acts first as a target, and then as a client, as
shown in Figure 15-35 on page 15-64.

Target
Object

request

application
access decision

Current Credentials

get_attributes
15.4 Security Architecture 15-63

Figure 15-35 Security-unaware Intermediate Object

[339] For a security-unaware intermediate object, Current has a reference to the security
context established with the incoming client. When this intermediate object invokes
another target, either the delegated credentials from the client or the credentials for the
intermediate objectÕs principal (or both) become the current ones for the invocation.
The security policy for this intermediate object governs which credentials to use, and
the ORB Security Services enforce the policy, passing the required credentials to the
target, subject to any delegation constraints. The intermediate objectÕs principal will be
authenticated, if needed, by the ORB Security Services.

[340] A security-aware intermediate object can:

¥ Use the privileges of any delegated credentials for access control.

¥ Decide which credentials to use when invoking further targets.

¥ Restrict the privileges available via these credentials to further clients (where
security technology permits).

incoming request

Current

Credentials
(delegated and/or

objectÕs own)

Intermediate Object
(acts as target, then client)

to next targetrequest
15-64 Security Service v1.8 September 2000 [DRAFT]

15
[341]

Figure 15-36 Security-aware Intermediate Object

[342] After a chain of object calls, the target can call Current::get_attributes as previously
described. Note that this call always obtains the privilege and other attributes
associated with the first of the received credentials.

[343] The target can use the received_credentials attribute of Current to get the incoming
credentials. After a composite delegation (see Section 15.3.6, ÒDelegation,Ó on
page 15-29), the credentials are of the initiator and immediate invoker. After traced
delegation, credentials for all intermediates in the chain will be present (as well as the
initiator). If a target object receives a request which includes credentials for more than
one principal, it may choose which privileges to use for access control and which
credentials to delegate, subject to policy.

[344] An intermediate object may wish to make a copy of the incoming credentials, modify
and then delegate them, though not all implementations will support this modification.
In this case, it must acquire a reference to the incoming credentials (using the
received_credentials attribute of Current), and then use Credentials::set_attributes
to modify them. Finally, the intermediate object can place the received credentials in
an InvocationCredentialsPolicy for use in making subsequent invocations.

[345] If the intermediate object wishes to change the association security defaults (for
example, the quality of protection) for subsequent invocations to a specific target
object, it can do so by using the Object::set_policy_overrides operation to create a
copy of the object reference to the target with the required QOP set as override in the
object reference thus obtained. The overridden QOP will apply to subsequent
invocations through this new reference.

incoming request

Current

received

Intermediate Object
(acts as target, then client)

to next targetrequest

credentials own
credentials

invocation
credentials

get_credentials set_credentials
15.4 Security Architecture 15-65

[346] The intermediate object may be a principal and wish to use its own identity and some
specific privileges in further invocations, rather than delegating the ones received. In
this case, it can call authenticate operation of the PrincipalAuthenticator to obtain
the appropriate credential, and then call Credentials::set_attributes to establish the
appropriate rights.

[347] If the intermediate does not have its own individual Credential object (for example, as
it does not have an individual security name) but instead shares credentials with other
objects, it can us the own_credentials attribute of Current to get a copy of the
Credentials (which will have been set up automatically). It can then do a
Credentials::copy and then a Credentials::set_attributes, etc. on these, as
appropriate and then use it to obtain a new object reference for the object it intends to
invoke, with invocation credentials policy overridden using the Credentials
constructed above.

Security Mechanisms
[348] Applications are normally aware of the security mechanism used to secure invocations.

The secure object system is aware of the mechanisms available to both client and
target object and can choose an acceptable mechanism. However, some security-
sophisticated applications may need to know about, or even control the choice of
mechanisms. They can get information on the currently in effect mechanism policy by
using the get_policy operation of the object reference. They can do invocations using a
different mechanism from the default by using set_policy_overrides operation of the
object reference to obtain a new object reference with the desired mechanism policy
set as override in it and use it for invocations that need the new mechanism.

Application Access Policies
[349] Applications can enforce their own access policies. No standard application access

policy is defined, as different applications are likely to want different criteria for
deciding whether access is permitted. For example, an application may want to take
into account data values such as the amount of money involved in a funds transfer.

[350] However, it is recommended that the application use an access decision object similar
to the one used for the invocation access policy. This is to isolate the application from
details of the policy. Therefore, the application should decide if access is needed as
shown in Figure 15-37 on page 15-66.

Figure 15-37 access_allowed Application

Access
Application

access_allowed

Object
Decision
15-66 Security Service v1.8 September 2000 [DRAFT]

15
[351] The application can specify the privileges of the initiating principal and a variety of
authorization data, which could include the function being performed, and the data it is
being performed on.

[352] An application access policy can be used to supplement the standard invocation access
policy with an application-defined policy. Such a policy might, for example, take into
account the parameters to the request. In this case, the authorization data passed to the
application-defined policy would be likely to include the requestÕs operation,
parameters, and target object.

[353] The application access policy could be associated with the domain, and managed using
the domain structure as for other policies (see Section , ÒAdministrative Model,Ó on
page 15-74). In this case, the application obtains the Access Policy object as shown in
Figure 15-38.

Figure 15-38 get_security_policy Application

[354] However, the application could choose to manage its access policy differently.

Auditing Application Activities
[355] Applications can enforce their own audit policies, auditing their own activities. Audit

policies specify the selection criteria for deciding whether to audit events.

[356] As for application access policies, application audit policies can be associated with
domains and managed via the domain structure. No standard application level audit
policy is specified, as different applications may want to use different selectors in
deciding which events to audit. Application events are generally not related to object
invocations. Applications can provide their own audit policies, which use different
criteria. The most common selectors for these audit policies to use are the event type
and its success or failure, the audit_id and the time. (Management of such policies can
generally be done using the interfaces for audit policy administration defined in
Section 15.6.5, ÒAudit Policies,Ó on page 15-147, by specifying new selectors,
appropriate to the application concerned.)

[357] Whether or not the application uses an audit policy, it uses an Audit Channel object to
write the audit records. One Audit Channel object is created at ORB initialization time,
and this is used for all system auditing. Applications can use different audit channels.
The way an Audit Channel object handles the audit records is not visible to the caller.
It may filter them, route them to appropriate audit trails, or cause event alarms.
Different Audit Channel objects may be used to send audit records to different audit
trails.

SecurityApplication
get_security_policy()

Manager
15.4 Security Architecture 15-67

[358] Applications and system components both invoke the audit_write operation to send
audit records to the audit trail.

Figure 15-39 audit_write Application

[359] If an application is using an audit policy administered via domains, it uses an Audit
Decision object (see Section 15.5.10, ÒSecurity Audit,Ó on page 15-116) to decide
whether to audit an event. It can find the appropriate Audit Decision object using the
audit_decision attribute of Current as follows.

Figure 15-40 Audit Decision Object

[360] The application invokes the audit_needed operation of the Audit Decision object,
passing the values required to decide whether auditing is needed. (This set of selectors
could include, for example, the type of event, its success or failure, the identity of the
caller, the time, etc. See administration of audit policies in Section 15.5.10, ÒSecurity
Audit,Ó on page 15-116.)

[361] The audit channel to be used in conjunction with an audit policy object can be
identified to the audit policy object with an audit channel id. The Audit Decision
object uses this Audit Channel Id to gain access to the corresponding Audit Channel
and return it to the user. Thus the application can use an Audit Channel associated
with the application (and these can link into the system audit services). If so, the
application uses the audit_channel attribute of the Audit Decision object to find the
Audit Channel object to use. However, applications can create their own Audit
Channels with the help of the underlying audit service, and register their Audit
Channel Ids with the appropriate Audit Policy object. The association between the
Audit Channel Id and the audit channel is maintained by the underlying audit service,
which is not specified in this chapter.

Audit ChannelApplication
audit_write

Audit DecisionApplication
audit_needed

audit_channel Object

Current

audit_decision
15-68 Security Service v1.8 September 2000 [DRAFT]

15
Finding What Security Policies Apply
[362] An application may want to find out what policies the system is enforcing on its

behalf. For example, it may want to know the default quality of protection to be used
by default for messages or for non-repudiation evidence.

[363] To do this, it can call SecurityManager::get_security_policy, and then the appropriate
get_ operation of the policy object obtained as defined in Section 15.6,
ÒAdministratorÕs Interfaces,Ó on page 15-132 (if permitted).

Non-repudiation
[364] The non-repudiation services in this specification provide generation of evidence of

actions and later verification of this evidence, to prove that the action has occurred.
There is often data associated with the action, so the service needs to provide evidence
of the data used, as well as the type of action.

[365] These core facilities can be used to build a range of non-repudiation services. It is
envisioned that delivery services will be implemented to deliver this evidence to where
it is needed and evidence stores will be built for use by adjudicators. As different
services may have different requirements for these, interfaces for them are not included
in this specification.

Non-repudiation Credentials and Policies

[366] Non-repudiation operations are performed on NRCredentials. As for any other
Credentials object, these hold the identity and attributes of a principal. However, in
this case, the attributes include whatever is needed for identifying the user for
generating and checking evidence. For example, it might include the principalÕs key
(or provide access to it) as needed to sign the evidence.

[367] An application can set security attributes related to non-repudiation using the
NRCredentials::set_NR_features operation.

Figure 15-41 set_NR_features Operation

[368] The set_NR_features can be used to specify, for example, the quality of protection and
the mechanism to be used when generating evidence using these credentials.

[369] By default, the features are those associated with the non-repudiation policy obtained
by invoking SecurityManager::get_security_policy specifying
Security::SecNonRepudiation. However, non-repudiation policies may come from
other sources. For example, the policy to be used when generating evidence for a
particular recipient may be supplied by that recipient.

NRCredentialsApplication
set_NR_features
15.4 Security Architecture 15-69

[370] There is an NRCredentials::get_NR_features operation equivalent to
set_NR_features.

[371] Evidence generation and verification operations are also performed on NRCredentials
objects. These are described next.

Using Non-Repudiation Services

[372] An application can generate evidence associated with an action so that it cannot be
repudiated at a later date. All evidence and related information is carried in non-
repudiation tokens. (The details of these are mechanism specific.)

[373] The application decides that it wishes to generate some proof of an action and calls the
generate_token operation of an NRCredentials object.

Figure 15-42 generate_token Operation

[374] This evidence is created in the form of a non-repudiation token rendered unforgeable.
Generation of the token uses the initiating principalÕs security attributes in the
NRCredentials (normally a private key), for example, to sign the evidence.

[375] Depending on the underlying cryptographic techniques used, the evidence is generated
as:

¥ A secure envelope of data based on symmetric cryptographic algorithms requiring
what is termed to be a trusted third party as the evidence generating authority.

¥ A digital signature of data based on asymmetric cryptographic algorithms which is
assured by public key certificates, issued by a Certification Authority.

[376] Depending on the non-repudiation policy in effect for a specific application and the
legal environment, additional information (such as certificates or a counter digital
signature from a Time Stamping Authority) maybe required to complete the non-
repudiation information. A time reference is always provided with a non-repudiation
token. A Notary service may be required to provide assurance about the properties of
the data.

Complete Evidence

[377] Non-repudiation evidence may have to be verified long after it is generated. While the
information necessary to verify the evidence (e.g., the public key of the signer of the
evidence, the public key of the trusted time service used to countersign the evidence,
the details of the policy under which the evidence was generated, etc.) will ordinarily
be easily accessible at the time the evidence is generated, that information may be
difficult or impossible to assemble a long time afterward.

NRCredentialsApplication generate_token
(e.g. proof of creation)
15-70 Security Service v1.8 September 2000 [DRAFT]

15
[378] The CORBA Non-repudiation Service provides facilities for incorporating all
information necessary for the verification of a piece of non-repudiation evidence inside
the evidence token itself. A token including both non-repudiation evidence and all
information necessary to verify that evidence is said to contain ÒcompleteÓ evidence.

[379] There may be policy-related limitations on the time periods during which complete
evidence may be formed. For example, Non-repudiation policy may permit addition of
the signerÕs public key to the evidence only after expiration of the interval, during
which the signer may permissibly declare that key to have been compromised.
Similarly, the policy may require application of the Trusted Time Service
countersignature within a specified interval after application of the signerÕs signature.

[380] To facilitate the generation of complete evidence, the information returned from the
calls which verify evidence and request formation of complete evidence, includes two
indicators (complete_evidence_before and complete_evidence_after) indicating the
earliest time at which complete evidence may usefully be requested and the latest time
at which complete evidence can successfully be formed.

[381] A call to verify_evidence before complete evidence can be formed may result in a
response declaring the evidence to be Òconditionally valid.Ó This means that the
evidence is not invalid at the current time, but a future event (e.g., the signer declaring
his key compromised) might cause the evidence to be invalid when complete.

[382] Figure 15-43 on page 15-72 illustrates the policy considerations relating to generation
of complete evidence, and the sequence of actions involved in generating and using
complete evidence.
15.4 Security Architecture 15-71

Figure 15-43 Non-repudiation Service

[383] An application may receive a token and need to know what sort of token it is. This is
done using get_token_details. When the token contains evidence, get_token_details
can be used to extract details such as the non-repudiation policy, the evidence type, the
originatorÕs name, and the date and time of generation. These details can be used to
select the appropriate non-repudiation policy and other features (using
set_NR_features), as necessary for verifying the evidence. When the token contains a
request to send back evidence to one or more recipients, then if appropriate, evidence
can be generated.

(< >)

trusted time service
countersignature
window

user key repudiation window

Time

Non-Repudiation Service

event
data

evidence
token

evidence
token
with
trusted
timestamp

OK

complete_evidence_before complete_evidence_after

form_complete_evidence

form_
complete_
evidence

verify_
evidence

generate_
token

evidence
token

complete
15-72 Security Service v1.8 September 2000 [DRAFT]

15
[384] An application verifies the evidence using the verify_evidence operation.

Figure 15-44 verify_evidence operation

[385] Verification of non-repudiation tokens uses information associated with the Non-
repudiation Policy applicable to the non-repudiation token and security information
about the recipient who is verifying the evidence (normally the public key from a
Certification Authority and a set of trust relationships between Certification
Authorities).

Using Non-Repudiation for Receipt of Messages

[386] An application receiving a message with proof of origin may handle it as shown in
Figure 15-45.

Figure 15-45 Proof of Origin Message

¥ The application receives the incoming message with a non-repudiation token that
has been generated by the originator.

¥ The application now wishes to know the type of token that it has received. It does
this by calling the NRCredentials::get_token_details operation. The token may be:

¥ A request that evidence be sent back (such as an acknowledge of receipt)

¥ Evidence of an action (such as a proof of creation)

¥ Both evidence and a request for further evidence.

¥ The applicationÕs next action depends on which of the three cases applies.

¥ In the first case, the application verifies that it is appropriate to generate the
requested evidence and, if so, generates that evidence using
NRCredentials::generate_token.

Application NRCredentialsverify_evidence

NRCredentials NRCredentials

Application
Object

incoming request
with message plus
evidence e.g. proof
of origin

deliver message
and evidence to
originator e.g.
proof of receipt

get_token_details
& verify_evidence
e.g. proof of origin

generate_evidence
e.g. proof of receipt
15.4 Security Architecture 15-73

¥ In the second case, the application retrieves the data associated with the evidence
if it is outside the token, and verifies the evidence using
NRCredentials::verify_evidence, presenting the token alone or the concatenation
of the token and the data.

¥ In the last case, the application verifies the received evidence by first calling
NRCredentials::verify_evidence, and then generating evidence if appropriate, as
in the first case.

¥ If the application receives a token that contains valid evidence, and wishes to store
it for later use, it needs to make sure that it holds all the necessary information. It
may need to call NRCredentials::form_complete_evidence in order to get the
complete evidence needed when this could not be provided using the verify
operation.

¥ When the application has generated evidence as the result of a request from the
originator of the message, the application must send it to the various recipients as
indicated in the NR token received.

Using Non-repudiation Services for Adjudication

[387] Adjudication applications use the NRCredentials::verify_evidence operation, which
must return complete evidence to settle disputes.

Administrative Model

[388] The administrative model described here is concerned with administering security
policies.

¥ Administration of security environment domains and security technology domains
may be implementation specific, so it is not covered here. This means
administrating security technology specific objects is out of the scope of this
specification.

¥ Explicit management of nonsecurity aspects of domains is not covered.

[389] Administrative activities covered here are:

¥ Creating objects in a secure environment subject to the security policies

¥ Finding the domain managers that apply to this object.

¥ Finding the policies for which these domain managers are responsible.

¥ Setting security policy details for these policy objects.

¥ Specifying which rights give access to which operations in support of access
policies.

[390] The model used here is not specific to security, though the specific policies described
are security policies.

Security Policies
[391] Security policies may affect the security enforced:
15-74 Security Service v1.8 September 2000 [DRAFT]

15
¥ By applications. In general, enforcing policy within applications is an application
concern, so it is not covered by this specification. However, where the application
uses underlying security services, it will be subject to their policies.

¥ By the ORB Security Services during object invocation (the main focus of this
specification).

¥ In other security object services, particularly authentication and audit.

¥ In any underlying security services. (In general, this is not covered by this
specification, as these security services are often security technology specific.)

[392] This specification defines the following security policy types:

¥ Invocation access policy
The object that implements the access control policy for invocations of objects in
this domain.

¥ Invocation audit policy
This controls which types of events during object invocation are audited, and the
criteria controlling auditing of these events.

¥ Secure invocation policy
This specifies security policies associated with security associations and message
protection. For example, it specifies:

¥ Whether mutual trust between client and target is needed (i.e., mutual
authentication if the communications path between them is not trusted).

¥ Quality of protection of messages (integrity and confidentiality).

[393] There may be separate invocation policies for applications acting as client and those
acting as target objects in this domain. This applies to access, audit, and secure
invocation policies. There may also be separate policies for different types of objects
in the domain.

¥ Invocation delegation policy
This controls whether objects of the specified type in this domain, when acting as
an intermediate in a chain, by default delegate the received credentials, use their
own credentials, or pass both.

¥ Application access policy
This policy type can be used by applications to control whether application
functions are permitted. Unlike invocation policies, it does not have to be managed
via the domain structure, but may be managed by the application itself.

¥ Application audit policy
This policy type can be used by applications to control which types of application
events should be audited under what circumstances.

¥ Non-repudiation policy
Where non-repudiation is supported, a non-repudiation policy has the rules for
generation and verification of evidence.

¥ Construction policy
This controls whether a new domain is created when an object of a specific type is
created.
15.4 Security Architecture 15-75

Domains at Object Creation
[394] Any object that is accessible through an ORB must have an object reference created

for it. This is often done as a part of the procedure for creating the object by a factory
object. When a new object reference is created in a secure environment, the ORB
implicitly associates the object reference, and hence the associated object, with the
following elements forming its environment.

¥ One or more Security Policy Domains, defining all the policies to which the object
is subject.

¥ The Security Technology Domains, characterizing the particular variants of security
mechanisms available in the ORB.

¥ Particular Security Environment Domains where relevant.

[395] The application code involved in the creation of an object, and its reference may not
need to be aware of security to protect the objects it creates, if the details are
encapsulated in a Factory object. Automatically making an object reference and hence
the associated object a member of policy domains on creation ensures that mandatory
controls of enclosing domains are not bypassed.

[396] The ORB will establish these associations when the creator of the object calls
PortableServer::POA::create reference or
PortableServer::POA::create_referece_with_id (see the Portable Object Adaptor
chapter of the Common Object Request Broker: Architecture and Specification) or an
equivalent. Some or all of these associations may subsequently be explicitly referenced
and modified by administrative or application activity, which might be specifically
security-related but could also occur as a side-effect of some other activity, such as
moving an object to another host machine.

[397] In some cases, when a new object reference is created, a new domain is also needed.
For example, in a banking system, there may be a domain for each bank branch, which
provides policies for bank accounts at that branch. Therefore when a bank branch is
created, a new domain is needed. As for a newly created objectÕs domain membership,
if the application code creating the object and the object reference to it is to be
unaware of security, the domain manager must be created transparently to the
application. A construction policy specifies whether new objects reference of this type
in this domain require a new domain.

[398] This construction policy is enforced at the same time as the domain membership, i.e.
by POA::create_reference* or equivalent. For details, see the Portable Object Adaptor
chapter of the Common Object Request Broker: Architecture and Specification.

Other Domain and Policy Administration
[399] Once an object reference has been created as a member of a policy domain, it may be

moved to other domains using the appropriate domain management facilities (not
specified in this chapter).

[400] Once a domain manager has been created, new security policy objects can be
associated with it using the appropriate domain management facilities. These security
policy objects are administered as defined in this specification.
15-76 Security Service v1.8 September 2000 [DRAFT]

15
[401] The following diagram shows the operations needed by an administrative application
to manage security policies.

Figure 15-46 Managing Security Policies

Finding Domain Managers
[402] An application can invoke the get_domain_managers operation on an object reference

to obtain a list of the immediately enclosing domain managers for that object (i.e., the
object associated with the object reference). If these do not have the type of policy
required, a call can be made to get_domain_managers on one of these domain
managers to find its immediately enclosing domains.

Finding the Policies
[403] Having found a domain manager, the administrative application can now find the

security policies associated with that domain by calling get_domain_policy on the
domain manager specifying the type of policy it wants (e.g., client secure invocation
policy, application audit policy). This returns the Policy object needed to administer
the policy associated with this domain. Each Policy object supports the operations
required to administer that policy.

[404] In this specification, no facilities are provided to specify the rules for combining
policies for overlapping domains, though some implementations may include default
rules for this. (Definition of such rules is a potential candidate for future security
specifications. See Appendix F, ÒFacilities Not in This SpecificationÓ on page
15-377.)

[405] If the policy that applies to the domain managerÕs own interface is required (rather
than the one for the objects in the domain), then get_policy (rather than
get_domain_policy) is used.

Setting Security Policy Details
[406] Having found the required security Policy object, the application uses its interface to

set the policy.

Application
Object

Object
Reference

Domain
Manager

Policy
Object

get_domain_managers

get_domain_managers
get_domain_policy(policy type)

set_policy_option
15.4 Security Architecture 15-77

[407] The operations available through the interface depend on the type of policy. For
example, the delegation policy only requires a delegation mode to be set to specify
delegation mode used when the object acts as an intermediate in a chain of object
invocations, whereas an access policy will need to have an operation that makes it
possible to specify who can access the objects.

[408] Administrative interfaces are defined in Section 15.6, ÒAdministratorÕs Interfaces,Ó on
page 15-132, for the standard policy types, which all ORBs supporting security
functionality Level 2 support.

[409] Different administration may be needed if standard policies are replaced by different
policies. A supplier providing another policy may therefore have to specify its
administrative interfaces.

Specifying Use of Rights for Operation Access
[410] The access policy is used to decide whether a user with specified privileges has

specified rights. A specific right may permit access to exactly one operation. More
often, the right permits access to a set of operations.

[411] A RequiredRights object specifies which rights are required to use which operations
of an interface. The administrator can set_required_rights on this object.

The Model as Seen by the Objects Implementing Security

[412] Security is provided for security-unaware applications by implementation level
security objects, which are not directly accessible to applications. These same
implementation objects are also used to support the application-visible security objects
and interfaces described in ÒThe Model as Seen by ApplicationsÓ on page 15-57 and
ÒAdministrative ModelÓ on page 15-74.

[413] There are two places where security is provided for applications, which are unaware of
security. These are:

1. On object invocation when invocation time policies are automatically enforced.

2. On object creation, when an object automatically becomes a member of a domain,
and therefore subject to the domainÕs policies.

ImplementorÕs View of Secure Invocations
[414] Figure 15-47 on page 15-79 shows the implementation objects and services used to

support secure invocations.
15-78 Security Service v1.8 September 2000 [DRAFT]

15

Figure 15-47 Securing Invocations

ORB Security Services
[415] ORB Security Services are interposed in the path between the client and target object

to handle the security of the object invocation. They may be interspersed with other
ORB services, though where message protection is used, this will be the last ORB
service at the client side, as the request cannot be changed after this.

[416] The ORB services use the policy objects to find which policies to apply to the client
and target object, and hence the invocation. The ORB and ORB Services establish the
binding between client and target object as defined in ORB Services, under
Section 15.4.2, ÒStructural Model,Ó on page 15-48. The ORB Security Services call on
the security services to provide the required security.

Security Policy
[417] At the client, the security policies associated with it are accessed by the ORB Security

Services using the SecurityManager::get_security_policy operation specifying the
type of policy required. At the client, the invocation policies that will be used for a
specific invocation through a specific object reference can be inspected using the

Client

request
request

ORB Core

Target
Object

target obj ref

Current

ORB Security
(and other)
Services

ORB Security
(and other)
Services

Current

Target
Policies

Client
Policies

Security
Services

Security
Services

Binding Binding
15.4 Security Architecture 15-79

get_policy operation on that object reference. At the target,
SecurityManager::get_security_policy is used in a similar way to obtain the policy
associated with the target object.

Figure 15-48 get_security_policy Operation

[418] Once the policy object has been obtained, the ORB Service uses it to enforce policy.
The operations used to enforce the policy depend on the type of policy. In some cases,
such as secure invocation or delegation, the ORB Service invokes a get_ operation of
the appropriate Policy object (e.g., SecureInvocationPolicy::get_association_options,
DelegationPolicy::get_delegation_mode) specifying the particular policy options
required (e.g., whether confidentiality is required, and the delegation mode,
respectively). It then uses this information to enforce the policy, for example, pass the
required policy options to the Vault to enforce.

[419] Decision objects corresponding to certain policy objects include rules, which enforce
the policy. For example, an access decision object corresponding to the access policy
object has the access_allowed operation which responds with a yes or no.

Specific ORB Security Services and Replaceable Security Services
[420] The specific ORB Security Services and security services included in the CORBA

security object model are shown in Figure 15-49 on page 15-81.

ORB
Security
Service

Security
Policy
Object

get_security_policy(type of policy)

manipulate policy

Manager
15-80 Security Service v1.8 September 2000 [DRAFT]

15
Figure 15-49 ORB Security Services

[421] Two ORB Security Services are shown:

1. The access control service, which is responsible for checking if this operation is
permitted and enforcing the invocation audit policy for some event types.

2. The secure invocation service. On the clientÕs initial use of this object, it may need
to establish a security association between client and target object. It also protects
the application requests and replies between client and target object.

[422] The security services they use are discussed next.

Access Policy
[423] An Access Decision object is used to determine if a given operation on a specific

target object is permitted. It is obtained by the ORB service using the access_decision
attribute of the Current object. Since the Access Decision objects are local, of
necessity the access decision objects at the client and target are distinct.

[424] The ORB service invokes the access_allowed operation on the Access Decision object
specifying the operation required, the principal credentials to be used for deciding if
this access is allowed, etc. This is independent of the type of access control policy,
which may be discretionary using ACLs or capabilities, mandatory labels usage, etc.

Client

reply request

ORB Core

Target
Object

Access
Control

Secure
Invocation

Access
Control

Secure
Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message
to protect
message

create create

replyrequest

ORB Security Services

Security Services
15.4 Security Architecture 15-81

[425] The Access Decision object uses the access policy to decide what rights the principal
has by invoking the get_effective_rights operations on the appropriate Access Policy
object.

[426] If the access policies use rights (rather than directly identifying that this operation is
permitted), the Access Decision object now invokes get_required_rights on the
RequiredRights object to find what rights are needed for this operation. It compares
these rights with the effective rights granted by the policy objects, and if required
rights have been granted, it grants access. This model could be extended in the future
to handle overlapping access policy domains as described in Appendix Section
Appendix F, ÒFacilities Not in This Specification,Ó on page 15-377.

Figure 15-50 Access Decision Object

Vault
[427] The Vault object is responsible for establishing the security association between client

and target. It is invoked by the Secure Invocation ORB Service at the client and at the
target (using init_security_context and accept_security_context). The Vault creates
the security context objects, which are used for any further security operations for this
association.

[428] Authentication of users (and some other principals) is done explicitly using the
authenticate operation described in Section 15.5.3, ÒAuthentication of Principals,Ó on
page 15-89. Authentication of an intermediate object in a chain (or the principal
representing the object) may be done automatically by the Vault when an intermediate
object invokes another object.

[429] The Vault, like the security context objects it creates, is invisible to all applications.

Security Context
[430] For each security association, a pair of Security Context objects (one associated with

the client, and one with the target) provide the security context information.
Establishing the security contexts may require several exchanges of messages
containing security information, for example, to handle mutual authentication or
negotiation of security mechanisms.

Access
Policy

Required
Rights

Access
Decision

get_required_rightsget_effective_rights

access_allowed
15-82 Security Service v1.8 September 2000 [DRAFT]

15
[431] Security Context objects maintain the state of the association, such as the credentials
used, the targetÕs security name, and the session key. The is_valid and refresh
operations are supported to check the validity of the context and refresh it if possible.

[432] Security Context objects provide operations for protecting messages for integrity and
confidentiality such as protect_message, reclaim_message.

[433] They also have the received_credentials attribute, which is made available via the
Current object.

[434] A security context can persist for many interactions and may be shared when a client
invokes several target objects in the same trusted identity domain. Although neither the
client nor target is aware of an Òassociation,Ó it is an important optimizing concept for
the efficient provision of security services.

Relationship between Implementation Objects for Associations
[435] There is not always a one-for-one relationship between client-target object pairs and

security contexts. For example, if a client uses different privileges for different
invocations on that object, this will result in separate security contexts. Also, a security
context may be shared between this clientÕs calls on more than one target object. This
is normally the case if the target objects share a security name, as shown in
Figure 15-51. Note that the Vault decides whether to use the same or a different
security context based on the target security name (which may be the name of an
object or trusted identity domain).
15.4 Security Architecture 15-83

Figure 15-51 Target Objects Sharing Security Names

ImplementorÕs View of Secure Object Creation
[436] When an object is created in a secure environment, it is associated with Security

Policy, Environment, and Technology domains as described in ÒAdministrative ModelÓ
on page 15-74.

[437] The way it is associated with Environment and Technology domains is ORB
implementation-specific, and therefore not described here.

[438] For policy domains, the construction policy of the application or factory creating the
object is used as shown in Figure 15-52 on page 15-85.

Current

Client Target
Object

T3

Target
Object

T2

Target
Object

T1

obj ref
for T1

obj ref
for T2

obj ref
for T3

Current Current

Security
context for

C-S1

Security
context for

C-T3

Security
context for

C-T3

Security
context for

C-S1

Object sharing
security name S1

T3 messages

T2 messages

T1 messages
15-84 Security Service v1.8 September 2000 [DRAFT]

15
Figure 15-52 Object Created by Application or Factory

[439] The application (which may be a generic factory) object calls POA::create_reference
or equivalent to create the new object reference. The ORB obtains the construction
policy associated with the object reference to be created. If the application that is
attempting to create the object reference is itself a CORBA object, then the ORB
attempts to obtain the construction policy associated with it. If the ORB is unable to
obtain a construction policy for the object reference to be created, it uses a default
construction policy, which does not create a new domain.

[440] The construction policy controls whether, in addition to creating the specified new
object reference, the ORB must also create a new domain. If a new domain is needed,
the ORB creates both the requested object reference and a domain manager object.

[441] If a new domain is not needed and the application is itself not an object and hence has
no domain associated with it, the ORB uses a default domain to place the newly
created object reference. In all cases a reference to the domain manager associated
with the newly created object reference can be obtained by calling
get_domain_managers on the newly created objectÕs reference (See the ORB
Interface chapter of the Common Object Request Broker: Architecture and
Specification).

[442] If a new domain is created, the policies initially applicable to it are the policies of the
enclosing domain, or an ORB specific default set of policies in the case that the object
reference was created in a situation where there is no enclosing domain (e.g., by an
application that is itself not a CORBA object and hence has no domain associated with
it).

[443] The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management operations. Please note:
these operations do not form a part of this specification.

Application

ORB

applicationÕs
own object
reference

construction
policy
object

BOA::create or equivalent

get_policy(construction policy)

use policy
15.4 Security Architecture 15-85

Summary of Objects in the Model

[444] The previous sections have described the various security-related objects, which are
available to applications, administrators, and implementors.

[445] Figure 15-53 shows the relationship between the main objects visible in different
views for three types of security functionality.

1. Authentication of principals and security associations (which includes
authentication between clients and targets) and message protection.

2. Authorization and access control (i.e., the principal being authorized to have
privileges or capabilities and control of access to objects).

3. Accountability -- auditing of security-related events and using non-repudiation to
generate and check evidence of actions.

Figure 15-53 Relationship Between Main Objects

[446] Credentials are visible to the application after authentication, for setting or obtaining
privileges and capabilities, for access control, and are available to ORB service
implementors. Only the first of these usages is shown.

[447] Policy objects have management operations to allow policies to be maintained. These
operations depend on the type of policy. For example, management of a mandatory
access control policy using labels is different from management of an ACL. However,
at run-time, an access decision object is used, which has a standard Òcheck if access is

Domain Manager

administration
objects

implementation
ORB services

implementation
security objects

application
visible objects

authentication and
security association

authorization and
access control

accountability

Principal
Authenticator Current

Credentials

Secure Invocation

Vault Security
Context

Secure Invocation Policies

Delegation Policy

Access Policies

Access Decision

Access Control

Application
Access Decision

Invocation
Audit
Policy

ApplÕn
Audit
Policy

Audit
Decision

Audit
Channel

Non-repudiation
Credentials

Audit
Decision

Audit
Channel
15-86 Security Service v1.8 September 2000 [DRAFT]

15
allowedÓ operation, whatever the access control policy used. The access policy object
has the management operations, whereas the access decision object has the runtime
decision operations.

[448] The diagram does not show:

¥ Application objects (client, target object, target object reference at the client).

¥ The ORB core (though the security ORB services it calls are shown).

¥ The construction policy object.

15.5 Application DeveloperÕs Interfaces

15.5.1 Introduction

[449] This section defines the security interfaces used by the application developer who
implements the business logic of the application. For an overview of how these
interfaces are used, see ÒApplication Developer ViewÓ on page 15-46.

[450] Please note that applications may be completely unaware of security, and therefore not
need to use any of these interfaces. In general, applications may have different levels
of security awareness. For example:

¥ Applications unaware of security, so that an application object, which has not been
designed with security in mind, can participate in a secure object system and be
subject to its controls such as:

¥ Protection default quality of protection on object invocations.

¥ Control of who can perform which operations on which objects.

¥ Auditing of object invocations.

¥ Applications performing security-relevant activities. An application may control
access and audit its functions and data at a finer granularity than at object
invocation.

¥ Applications wanting some control of the security of its requests on other objects,
for example, the level of integrity protection of the request in transit.

¥ Applications that are more sophisticated in how they want to control their
distributed operations, for example, control whether their credentials can be
delegated.

¥ Applications using more specialist security facilities such as non-repudiation.

[451] Security operations use the standard CORBA exceptions. For example, any invocation
that fails because the security infrastructure does not permit it, will raise the standard
CORBA::NO_PERMISSION exception. A security operation that fails because the
feature requested is not supported in this implementation will raise a
CORBA::NO_IMPLEMENT exception. Any parameter that has inappropriate values
should be flagged by raising the CORBA::BAD_PARAM exception. No security-
specific exceptions are specified.
15.5 Application DeveloperÕs Interfaces 15-87

Security Functionality Packages

[452] Two security functionality packages and one optional security functionality package
are defined in this specification. In addition, the Security Ready functionality packages
are also described in this and the two following sections.

Security Functionality Level 1 Package
[453] Security functionality Package 1 provides an entry level of security functionality that

applies to all applications running under a secure ORB, whether aware of security or
not. This includes security of invocations between client and target object, message
protection, some delegation, access control, and audit.

[454] The security functionality is in general specified by administering the security policies
for the objects, and is mainly transparent to applications.

[455] Security Functionality Level 1 Package includes operations for applications as follows:
Current::get_attributes allows an application to obtain the privileges and other
attributes of the principal on whose behalf it is operating. It can then use these to
control access to its own functions and data (see Section 15.5.4, ÒThe Credentials
Object,Ó on page 15-94, and Section 15.5.12, ÒAccess Control,Ó on page 15-119).

Security Functionality Level 2 Package
[456] This security functionality level provides further security functionality such as more

delegation options.

[457] It also allows an application aware of security to have more control of the enforcement
of this security. Most of the interfaces specified in this section are only available as
part of this functionality level. Note that although implementations must support all
Level 2 interfaces in order to conform to Security Functionality Level 2, different
implementations of these interfaces may support different semantic extensions, while
maintaining the same core semantics; some implementations will therefore be capable
of enforcing a wider variety of policies than others.

Optional Functionality Package
[458] The only specified optional facility specified here is non-repudiation. The interfaces

for this are specified in Section 15.5.14, ÒNon-repudiation,Ó on page 15-123.

[459] It is possible to add other security policies to this specification, for example, extra
access or delegation policies, but these are not part of this specification.

Introduction to the Interfaces

[460] The interfaces specified here, as in other sections, are designed to allow a choice of
security policies and mechanisms. Where possible, they are based on international
standard interfaces. Several of the operations in the Credentials interface are based on
those of GSS-API.
15-88 Security Service v1.8 September 2000 [DRAFT]

15
Data Types
[461] Many of the security data types used by applications are also used for implementation

interfaces; therefore, these are defined in a separate module called Security. See
Appendix Section A.2, ÒGeneral Security Data Module,Ó on page 15-296 for the details
of the data types used by the interfaces.

[462] Some data types, such as security attributes and audit events, have an extensible set of
values, so the user can add values as required to meet user-specific security policies. In
these cases, a family is identified, and then a set of types or values for this family.
Family identifiers 0-7 are reserved for OMG-defined families, and therefore standard
values. More details of these families and associated data types are given in Appendix
Section A.11, ÒValues for Standard Data TypesÓ on page 15-328.

[463] In the interface specifications in the rest of this section, data types defined in module
Security are included without the qualifying Security:: for ease of readability. The full
definitions are included in Appendices A and B.

15.5.2 Finding Security Features

Description of Facilities

[464] An application can find out what security facilities this implementation supports, for
example, which security functionality level and options it supports. It can also find out
what security technology is used to provide this implementation.

[465] The CORBA::ORB::get_service_information operation is used to determine what
security features are supported by this ORB (see the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specification). To request
information about Security service the CORBA::ServiceType constant value,
CORBA::Security should be used. To see what the definition of various service
options relevant to security are see the constant definitions of type
CORBA::SecurityOptions in the IDL Security module in Appendix Section A.2,
ÒGeneral Security Data ModuleÓ on page 15-296.

15.5.3 Authentication of Principals

Description of Facilities

[466] A principal must establish its credentials before it can invoke an object securely. For
many clients, there are default credentials, created when the user logs on. This may be
performed prior to using any object system client. These default credentials are
automatically used on object invocation without the client having to take specific
action. Even if user authentication is executed within the object system, it should
normally be done by a user sponsor/login client, which is separate from the business
application client, so that business applications can remain unaware of security.
15.5 Application DeveloperÕs Interfaces 15-89

[467] In most cases, principals must be authenticated to establish their credentials. However,
some services accept requests from unauthenticated users. In this case, if the principal
has no credentials at the time the request is made, unauthenticated credentials are
created automatically for it.

[468] If the user (or other principal) requires authentication and has not been authenticated
prior to calling the object system, the (login) client must invoke the Principal
Authenticator object to authenticate, and optionally select attributes for, the principal
for this session. This creates the required Credentials object and makes it available as
the default credentials for this client. Its object reference is also returned so it can be
used for other operations on the Credentials. If the object system supports non-
repudiation, the credentials returned can be used for non-repudiation operations as
specified in ÒNon-repudiationÓ on page 15-123.

[469] Authentication of principals may require more than one step, for example, when a
challenge/response or other multistep authentication method is used. In this case, the
authentication service will return information to the caller, which may be used in
further interactions with the user before continuing the authentication. So there are
both authenticate and continue_authentication operations of the Principal
Authenticator object.

[470] There is no need for an application to explicitly authenticate itself to act as an
initiating principal prior to invoking other objects, as this will be performed
automatically if needed. However, it does need to be performed explicitly if the object
wants to specify particular attributes.

[471] The Principal Authenticator object creates a Credentials object and places it on the
Current objectÕs own_credentials list only after authenticate or
continue_authentication returns a value of ÔSecAuthSuccess.Õ The Principal
Authenticator always places new credentials at the beginning of the own_credentials
list. The application may remove Credentials objects from the own_credentials list
with the SecurityManager::remove_own_credentials operation.

[472] The Principal Authenticator object is a local object.

The SecurityLevel2::PrincipalAuthenticator Interface

[473] This section describes the PrincipalAuthenticator interface that has following
operations.

get_supported_authen_methods
[474] This operation returns the authentication methods that are valid for a particular

mechanism that the Vault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.
15-90 Security Service v1.8 September 2000 [DRAFT]

15
AuthenticationMethodList get_supported_authen_methods(
in MechanismType mechanism

);

Parameters

Return Value

[475] The list of authentication methods supported by this PrincipalAuthenticator object for
the particular mechanism.

authenticate
[476] This operation is called to authenticate the principal and optionally request privilege

attributes that the principal requires during its capsule specific session with the system.
It creates a capsule specific Credentials object including the required attributes and is
placed on the SecurityManager objectÕs own_credentials list according to the
credentialÕs mechanism type.

AuthenticationStatus authenticate(
in AuthenticationMethod method,
in MechanismType mechanism;
in SecurityName security_name,
in any auth_data,
in AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data

);

mechanism Contains the mechanism for which the authentication methods
are valid.
15.5 Application DeveloperÕs Interfaces 15-91

Parameters

Return Value

[477] The return parameter is used to specify the result of the operation.

continue_authentication
[478] This operation continues the authentication process for authentication procedures that

cannot complete in a single operation. An example of this continuation is a
challenge/response type of authentication procedure.

method The identifier of the authentication method used

mechanism The security mechanism with which to create the Credentials.

security_name The principalÕs identification information (e.g., login name).

auth_data The principalÕs authentication information such as password or
long term key.

privileges The privilege attributes requested.

creds This parameter contains a local object reference of the newly
created Credentials object. It is usable and placed on the
Current objectÕs own_credentials list only if the return value
is ÔSecAuthSuccess.Õ

auth_specific_data Information specific to the particular authentication service used

continuation_data If the return parameter from the authenticate operation is
ÔSecAuthContinue,Õ then this parameter contains challenge
information for authentication continuation.

ÔSecAuthSuccessÕ Indicates that the object reference of the newly created
initialized credentials object is available in the creds
parameter.

ÔSecAuthFailureÕ Indicates that authentication was in some way inconsistent
or erroneous, and therefore credentials have not been
created.

ÔSecAuthContinueÕ Indicates that the authentication procedure uses a
challenge/response mechanism. The creds contains the
object reference of a partially initialized Credentials
object. The continuation_data indicates details of the
challenge.

ÔSecAuthExpiredÕ Indicates that the authentication data contained some
information, the validity of which had expired (e.g., expired
password). Credentials have therefore not been created.
15-92 Security Service v1.8 September 2000 [DRAFT]

15
AuthenticationStatus continue_authentication(
in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Parameters

Return Value

[479] The return parameter is used to specify the result of the operation.

Portability Implications

[480] The authenticate and continue_authentication operations allow different
authentication methods to be used. However, methods available are dependent on
availability of underlying authentication mechanisms. This specification does not
dictate that particular mechanisms should be used. However, use of some mechanisms,
(e.g., those involving hardware such as smart cards or finger print readers) may also
require use of device-specific objects so the client using such objects will not be

response_data The response data to the challenge.

creds Reference of the partially initialized Credentials object. The
Credentials object is fully initialized only when return parameter
is ÔSecAuthSuccess.Õ

continuation_data If the return parameter from the continue_authentication
operation is ÔSecAuthContinue,Õ then this parameter contains
challenge information for authentication continuation.

auth_specific_data Information specific to the particular authentication service
used.

ÔSecAuthSuccessÕ Indicates that the Credentials object whose reference was
identified by the creds parameter is now fully initialized.

ÔSecAuthFailureÕ Indicates that the response data was in some way
inconsistent or erroneous, and that therefore credentials
have not been created.

ÔSecAuthContinueÕ Indicates that the authentication procedure requires a
further challenge/response. The Credentials object whose
reference was identified in the creds parameter is still only
partially initialized. The continuation_data indicates
details of the next challenge.

ÔSecAuthExpiredÕ Indicates that the authentication data contained some
information whose validity had expired (e.g., expired
password). The Credentials object referred to by the creds
parameter is not valid.
15.5 Application DeveloperÕs Interfaces 15-93

portable to systems which do not support such devices. It is therefore recommended
that use of both the authenticate operations described here and any device-specific
ones be confined to a user sponsor or login client, or that such authentication is done
prior to calling the object system, where the credentials resulting from this can be used
in portable applications.

15.5.4 The Credentials Object

Description of Facilities

[481] A Credentials object represents a particular principalÕs credential information specific
to the capsule. It includes information such as that principalÕs privilege and identity
attributes, such as an audit id. (It also includes some security-sensitive data required
when this principal is involved in peer entity authentication. However, such data is not
visible to applications.)

[482] Each Credentials object is mandated to carry at least one and only one attribute of type
Public. The Public attribute has a defining authority of OMG, its value is empty , and
it serves only to mark the Credentials with an attribute stipulating that the principal,
authenticated or not, is a member of the "general public". This requirement allows
access policies to be specified for the genral public in much the same way as policies
based on other attributes are specified.

[483] The Credentials object is a local object.

[484] An application may want to:

¥ Specify security invocation options to be used by default whenever these credentials
are used for object invocations.

¥ Modify the privilege and other attributes in the credentials, for example, specify a
new role or a capability. This can modify the current privileges in use, or the
application can make a copy of the Credentials object first, and then modify the
new copy.

¥ Inquire about the security attributes currently in the credentials, particularly the
privilege attributes.

¥ Check if the credentials are still valid or if they have timed out, and if so, refresh
them.

[485] Credentials objects are created as the result of:

¥ Authentication (see ÒAuthentication of PrincipalsÓ on page 15-89).

¥ Copying an existing Credentials object.

¥ Asking for a Credentials object via Current (see Section 15.5.9, ÒSecurity
Operations on Current,Ó on page 15-114).
15-94 Security Service v1.8 September 2000 [DRAFT]

15
[486] The way these credentials are made available for use in invocations is described in
Section 15.4, ÒSecurity Architecture,Ó on page 15-44, and defined in detail in
Section 15.5.7, ÒOperations on Object Reference,Ó on page 15-103, and Section 15.5.9,
ÒSecurity Operations on Current,Ó on page 15-114.

[487] Credentials used for non-repudiation also support further facilities as described in
Section 15.5.14, ÒNon-repudiation,Ó on page 15-123.

The SecurityLevel2::Credentials Interface

[488] The following operations are in the Credentials interface.

copy
[489] This operation creates a new Credentials object, which is an exact duplicate (a Òdeep

copyÓ) of the Credentials object which is the target of the invocation. The return value
is a reference to the newly created copy of the original Credentials object.

Credentials copy();

Parameters
None

Return Value
An object reference to a copy of the Credentials object, which was the target of the call.

destroy
[490] This operation destroys the Credentials object that it is invoked on. In general, the

caller is always responsible for destroying its copy of the Credentials object after it is
done with it. When Credentials are used as ÒinÓ parameters the callee always makes a
copy if needed. Then onwards the callee is responsible for managing the life-style of
the copy that it makes. In case of Credentials objects that are returned as result, the
caller is responsible for destroying it. In case of ÒoutÓ parameters, the callee is
responsible for creating it and the caller is responsible for destroying it. The caller is
responsible for providing thread safety for Credentials parameters that are passed as
ÒinÓ parameters. They must ensure that no other thread modifies the object until the
invoked operation is completed.

void destroy();

Parameters

[491] None

Results

[492] None. The Credentials object is destroyed.
15.5 Application DeveloperÕs Interfaces 15-95

set_attributes
[493] This operation is used to set the attributes for a Credentials object. The operation

set_attributes is used in conjunction with get_attributes to constrain the attributes
associated with a Credentials object.

[494] Some attributes may be tightly bound to the Credentials object based on the
underlying mechanism. If the mechanism supports it, setting those attributes may cause
mechainsm specific communication with a credentialing party. If the operation fails
because the mechanism underlying the Credentials object does not support modifying
the attributes, a CORBA::BAD_OPERATION exception is raised.

boolean set_attributes(
in AttributeList requested_attributes,
out AttributeList actual_attributes

);

Parameters

Return Value

get_attributes
[495] This operation is used to get attributes from the Credentials. It may be used to get the

following:

¥ Privilege attributes, including capabilities, for use in access control decisions.

¥ Other attributes such as audit or charging identities, if available.

requested_attributes The complete attribute list to be associated with the
Credentials object. Only the attributes in the
requested_attributes parameter will be associated with the
Credentials object upon successful completeion of the
operation. Passing an empty list means that all attributes
that can be removed will be removed.

actual_attributes The list of attributes actaully asssociated with the
Credentials object after attempting to set the requested
attributes. This list is equivalent to the result obtained if
get_attributes were called with an empty list of attribute
types as its parameter immediately after calling
set_attributes.

TRUE Indicates that requested_attributes and actual_attributes are
the same length and have the same values (All requested
attributes were accepted).

FALSE Indicates that one or more of the requested_attributes
could not be removed.
15-96 Security Service v1.8 September 2000 [DRAFT]

15
AttributeList get_attributes(
in AttributeTypeList attributes

);

Parameters

Return Value
The requested set of attributes reflecting the state of the Credentials.

is_valid
[496] Credentials objects may have limited lifetimes. This operation is used to check if the

Credentials are still valid.

boolean is_valid(
out UtcT expiry_time

);

Parameters

Return Value

refresh
[497] This operation allows the application to update Credentials. Depending on the

mechanism, some Credentials may need to be refreshed before they expire; may be
able to be refreshed after they expire; or may not be able to be refreshed. If
Credentials cannot be refreshed due to the limitations of the implementation a
CORBA::NO_IMPLEMENT exception is raised. If the Credentials object cannot be
refreshed due to the limitations of the security mechanism a
CORBA::BAD_OPERATION exception is raised. If the Credentials object cannot
be refreshed due to invalid refresh_data (i.e. stipulating a new expiry time beyond a
legal limit) a CORBA::BAD_PARAM exception is raised.

attributes The set of security attributes (privilege attributes and identities)
whose values are desired. If this list is empty, all attributes are
returned.

expiry_time The time that the Credentials expire.

TRUE The Credentials is still valid

FALSE The Credentials is not valid anymore
15.5 Application DeveloperÕs Interfaces 15-97

boolean refresh(
in Opaque refresh_data

);

Parameters

get_security_feature
[498] This operation returns a boolean value that represents the value of the given security

feature for the given communication direction that the Credentials object is
supporting.

[499] The communication direction parameter indicates which set of security features (i.e.
those set for the request direction, the reply direction, or both) should be returned.
Conforming implementations are not required to support the ÒrequestÓ and ÒreplyÓ
directions. If an unsupported direction is passed to get_security_feature, the
CORBA::BAD_PARAM exception is raised.

[500] The get_security_feature operation has the following definition:

boolean get_security_feature(
 in CommuncationDirection direction,
 in SecurityFeature feature
);

Parameters

Return Value

[501] The boolean value of the security feature supported by the Credentials object.

credentials_type
[502] This readonly attribute specifies whether the Credentials object is of the ÒownÓ

credentials type (i.e. created by the PrincipalAuthenticator) or it is of the ÒreceivedÓ
credentials type (i.e. established as the result of a thread specific secure association
with a client in the context of servicing a request). It has the following definition:

refresh_data Data needed to refresh Credentials, which is specific to the
mechanism type.

direction The communication direction (i.e. both, request, or reply) to
which the security feature is applicable. Normally set to both.

feature The feature for which the value is sought.
15-98 Security Service v1.8 September 2000 [DRAFT]

15
readonly attribute Security::InvocationCredentialsType credentials_type;

authentication_state
[503] This readonly attribute specifies the authentication state the Credentials object. For

Credentials that are created by the PrincipalAuthenticator this attribute tells whether
the Credentials are partially initialized. It has the following definition:

readonly attribute Security::AuthenticationStatus authentication_state;

Values

mechanism
[504] This readonly attribute specifies the mechanism the Credentials object represents. It

has the following definition:

readonly attribute MechanismType mechanism;

accepting_options_supported and accepting_options_required

[505] These two attributes are the options that the Credentials object support and require to
accept secure associations from clients. These two attributes can be thought of as
directly relating to the target_supports and target_requires association options
attributes that may be advertised in a security mechanism component in a target
objectÕs IOR. ÒSecurity Components of the IORÓ on page 15-196

Note Ð Not all mechanisms may use such a security component in IOR.

[506] When the Credentials are created by the PrincipalAuthenticator these options will
be set to default values depending on initialization scheme of the particular
mechanism. Authentication data may contain constraints on the supported/required
association options as well as constraints on the mechanism itself.

ÕSecAuthSuccessÕ Credentials are fully initialized. Credentials may be valid.

ÕSecAuthFailureÕ Authentication has failed. Credentials are invalid.
Credentials may be in this state if they were partially
initialized in a call to
PrincipalAuthenticator::authenticate and then failed in
the PrincipalAuthenticator::continue_authentication
operation.

ÕSecAuthContinueÕ Credentials are partially initialized. Credentials that are
not yet valid for use.

ÕSecAuthExpiredÕ Credentials initialization has expired. Credentials are
invalid.
15.5 Application DeveloperÕs Interfaces 15-99

[507] Setting these attributes to values that are invalid for the mechanism raises a
CORBA::BAD_PARAM exception. In general, the accepting_options_required
cannot be set to have ÒmoreÓ capability than the accepting_options_supported and
the accepting_options_supported cannot be set to have ÒlessÓ capability than the
accepting_options_required.

[508] These attributes have the following definition:

attribute AssociationOptions accepting_options_supported;
attribute AssociationOptions accepting_options_required;

invocation_options_supported and invocation_options_required
[509] This attribute is used to control the security characteristics of the secure association by

which these Credentials are used to make an invocation on a target object. These
association options affect the characteristics of a secure association setup, such as the
delegation mode to use, whether trust in the target is needed, and the message
protection is required.

[510] Setting this attribute to an invalid value, which may be constrained by the mechanism
or the internal state of the Credentials, will raise a CORBA::BAD_PARAM
exception.

[511] These attribute has the following definition:

attribute AssociationOptions invocation_options_supported;
attribute AssociationOptions invocation_options_required;

15.5.5 The ReceivedCredentials Object

Description of Facilities

[512] A ReceivedCredentials object represents a remote principalÕs credential information
for a secure association and therefore includes much of the same information as in an
ÒownÓ type Credentials object, such as the principalÕs privilege attributes and
identities. ReceivedCredentials may also be used for invocations (delegation).
Therefore, the ReceivedCredentials interface inherits from the Credentials interface.

[513] A ReceivedCredentials object represents the secure association to the application.
Therefore, the ReceivedCredentials object contains the properties of that association,
such as the Credentials local to the capsule used for the association, the association
options in effect, the delegation state of the remote principal, and the delegation mode
of the ReceivedCredentials.

[514] A ReceivedCredentials object, since it represents a secure association, may have a
lifetime associated with a single thread of execution servicing a request. It is retrieved
from the security Current object through the received_credentials attribute.

[515] ReceivedCredentials object is a local object, and it contains a credentials_type value
of SecReceivedCredentials.
15-100 Security Service v1.8 September 2000 [DRAFT]

15
The SecurityLevel2::ReceivedCredentials Interface

[516] The ReceivedCredentials interface is defined as follows:

local interface ReceivedCredentials : Credentials {
readonly attribute Credentials accepting_credentials;
readonly attribute AssociationOptions association_options_used;
readonly attribute DelegationState delegation_state;
readonly attribute DelegationMode delegation_mode;

};

accepting_credentials
[517] This readonly attribute contains the reference to the Credentials object that is used on

the accepting side of the negotiation of the secure association with the remote
principal.

association_options_used
[518] This readonly attribute contains the association options in effect for the secure

association with the remote principal.

delegation_state
[519] This readonly attribute tells the delegation state of the remote principal for these

credentials. It has the following values:

Values

Note Ð Not all security mechanisms may be able to indicate if the remote principal is a
delegate. For example, with unrestricted delegation, sometimes known as
impersonation, the value of this attribute would always be SecInitiator.

delegation_mode
[520] This readonly attribute indicates the delegation mode of the credentials. It has the

following values.

ÕSecInitiatorÕ The remote principal is the acting in his own behalf.

ÕSecDelegateÕ The remote principal is acting in behalf of another principal
15.5 Application DeveloperÕs Interfaces 15-101

Values

Portability Implications

[521] The PrincipalAuthenticator::authenticate and Credentials::set_attributes operations
allow particular privilege attributes to be specified. The attributes supported by
different systems may vary according to security policies supported. It is recommended
that use of these interfaces be limited, so business application objects are not exposed
to particular policy details (unless they need to be, as they are enforcing compatible
security policies directly).

15.5.6 The TargetCredentials Object

Description of Facilities

[522] A TargetCredentials object is the dual of the ReceivedCredentials object as it
represents a remote principalÕs authentication information for the clientÕs secure
association with a target. The TargetCredentials object may not be used for
invocations.

[523] The TargetCredentials object represents the secure association to the application.
Therefore, the TargetCredentials object contains the properties of that association,
such as the Credentials local to the capsule used to initiate the association and the
association options in effect for the association.

[524] The TargetCredentials object is a local object, and it contains a credentials_type
value of SecTargetCredentials.

local interface TargetCredentials : Credentials {
readonly attribute Credentials initiating_credentials;
readonly attribute AssociationOptions association_options_used;

};

initiating_credentials
[525] This readonly attribute contains the reference to the Credentials object that is used on

the initiating side of the negotiation of the secure association with the remote principal.

ÔSecDelModeNoDelegationÕ The credentials cannot be used to make
invocations.

ÔSecDelModeSimpleDelegationÕ The credentials can be used to make
invocations with no traced capability.

ÔSecDelModeCompositeDelegationÕ The credentials can be used to make
invocations with some composite delegation
scheme.
15-102 Security Service v1.8 September 2000 [DRAFT]

15
association_options_used
[526] This readonly attribute contains the association options in effect for the secure

association with the remote principal.

15.5.7 Operations on Object Reference

Description of Facilities

[527] If the client application is unaware of security (for example, was written to use an
ORB without security), the ORB services will enforce the relevant security policies
transparently to applications. As described elsewhere, the security enforced is specified
by:

¥ The security policy set at the client by administrative action.

¥ The credentials used by the client.

¥ The security policy for the target object. Relevant security information about this is
made available to the client in the targetÕs object reference.

[528] These policies include association options, any controls on whether this client can
perform this operation on this target, and the quality of protection of messages.

[529] The only visibility of security to most applications is that some operations will now
fail because they would breach security controls.

[530] An application client unaware of security can communicate with a security aware one
and vice versa.

[531] A client application aware of security can also specify what security policy options it
wants to apply when communicating with this target object by performing operations
on the target objectÕs reference and the binding object associated with it. The following
operations are available on the target object reference.

¥ get_policy is used to find the policy of the specified type (including those relevant
to security) for this object.

¥ get_domain_managers is used to obtain a list of domain managers that the given
object is associated with.

¥ set_policy_overrides is used to set overrides of default policies on individual
object references.

[532] Although these operations are on the target object reference, the scope of the effect of
the operation is the use of that reference itself, and not the object that it represents.
That is, the act of obtaining a copy of an object reference with new set of override
policies set on it in no way affects the target object that the object reference in
question is associated with.

[533] A target object can influence the security policy for incoming invocations by setting
security policies using the administrative operations in Section 15.6, ÒAdministratorÕs
Interfaces,Ó on page 15-132. This will affect the security information exported as part
of its object reference.
15.5 Application DeveloperÕs Interfaces 15-103

[534] The default policies that can be overridden using the set_policy_overrides operation
are:

¥ QOP - the quality of protection that will be provided to any successful invocation
using that object reference. The QOPPolicy object is the bearer of this policy.

¥ Invocation Credentials - the Credentials that will be used in invocations using that
object reference. The InvocationCredentialsPolicy object is the bearer of this
policy.

¥ Security Mechanisms - the mechanisms (one of) which must be used for successful
invocation using the object reference. The MechanismsPolicy object is the bearer
of this policy.

¥ Establish Trust - the directive for the establishment of trust of client by target and
target by client. The EstablishTrustPolicy object is the bearer of this policy.

¥ Delegation Directive - the directive telling whether delegation should be used
during the invocation. The DelegationDirectivePolicy object is the bearer of this
policy.

[535] The above policy objects can be created using the ORB::create_policy operation. The
above policy objects must be put in a PolicyList and given to the
set_policy_overrides operation on the target object reference. If successful, the
operation returns a new object reference that uses the new policy overrides for
subsequent invocations.

[536] The policies currently associated with the object reference, including overridden ones
can be accessed using the get_policy operation. This operation returns a Policy object
of the appropriate type containing the current policy, which can be extracted from the
readonly attribute in the Policy object interface.

Note Ð The application states its minimum security requirements. A higher level of
security may still be enforced as this may be required by security policy. Thus
operationally the default policies will actually be overridden only if the requested
overrides are consistent with the overall security policy.

Client Side Invocation Policy Objects

[537] There are a number of Policy objects that are bearers of the client side invocation
related policies. They are as follows:

QOP Policy
[538] The QOP Policy object has a policy type of Security::SecQOPPolicy and has the

QOPPolicy interface, which is shown below.

local interface QOPPolicy : CORBA::Policy {
readonly attribute Security::QOP qop;

};
15-104 Security Service v1.8 September 2000 [DRAFT]

15
[539] This interface has a single readonly attribute qop which represents the policy in the
form of an enum value of type Security::QOP.

[540] This object can be passed to set_policy_overrides to specify that a particular quality
of protection is required for messages sent using the object reference returned by the
set_policy_overrides operation. When this object is returned by the get_policy
operation it contains the quality of protection policy associated with this object
reference.

Mechanism Policy
[541] The Mechanism Policy object has a policy type of Security::SecMechanismPolicy

and has the MechanismPolicy interface, which is shown below.

local interface MechanismPolicy : CORBA::Policy {
readonly attribute Security::MechanismTypeList mechanisms;

};

[542] This interface has a single readonly attribute mechanisms which represents the
policy in the form of a Security::MechanismTypeList.

[543] This object can be passed to set_policy_overrides to request the use of one of a
specific set of mechanisms in invocation through the object reference returned by the
set_policy_overrides operation. When this object is returned by get_policy it contains
the security association mechanisms available through this object reference.

Invocation Credentials Policy
[544] The Invocation Credentials Policy object has a policy type of

Security::SecInvocationCredentialsPolicy and has the InvocationCredentialsPolicy
interface, which is shown below.

local interface InvocationCredentialsPolicy : CORBA::Policy {
readonly attribute CredentialsList creds;

};

[545] This interface has a single readonly attribute creds which returns a list of Credentials
objects which will be used as invocation credentials for invocations through this object
reference.

[546] This object can be passed to set_policy_overrides to specify one or more Credentials
objects to be used when calling this target object using the object reference returned by
set_policy_overrides. For example, the client may want to make different privileges
available to different targets by choosing Credentials with the required privileges.
When this object is returned by get_policy it contains the active credentials that will be
used for invocations via this target object reference.

Establish Trust Policy
[547] The Establish Trust Policy object has a policy type of Security::EstablishTrustPolicy

and has the EstablishTrustPolicy interface, which is shown below.
15.5 Application DeveloperÕs Interfaces 15-105

local interface EstablishTrustPolicy : CORBA::Policy {
 readonly attribute EstablishTrust trust;

};

[548] This interface has two readonly attributes:

[549] This object can be passed to set_policy_overrides to specify that a particular trust
policy be followed for invocations using this object reference. When this object is
returned by the get_policy operation it contains the trust policy associated with this
object reference.

Delegation Directive Policy
[550] The Delegation Directive Policy object has a policy type of

Security::DelegationDirective and has the DelegationDirectivePolicy interface,
which is shown below.

local interface DelegationDirectivePolicy : CORBA::Policy {
readonly attribute Security::DelegationDirective delegation_directive;

};

[551] This interface has a single readonly attribute delegation_directive that represents the
policy stating whether delegation should be used when making invocations on an
object. If the policy states that delegation should be used, then the Credentials object
selected for the invocation must support delegation.

[552] This object can be passed to set_policy_overrides to specify that a delegation policy
be followed for invocations using this object reference. When this object is returned by
the get_policy operation it contains the delegation policy associated with this object
reference.

Semantics of Combined Client Policies

[553] The client side policies that are defined for a particular object reference employ a
particular semantics in determining the security characteristics of invocations made
with that object reference. When applied to an object reference, the ORB performs a
decision procedure to determine the security characteristics that are compatible
between the security mechanisms that the target object supports and the client side
security policies that are attached to the target objectÕs reference. It is entirely possible

trust This attribute is a structure that contains two attributes each
stipulating whether trust in client and trust in target is
enabled. The trust_in_client element of this attribute
stipulates whether the invocation must select credentials
and mechanism that will allow the client to be authenticated
to the target. (Some mechanisms may not support client
authentication). The trust_in_target element of this
attribute stipulates whether the invocation must first
establish trust in the target.
15-106 Security Service v1.8 September 2000 [DRAFT]

15
that the set of policies when applied to the object reference may be inconsistent. The
basic thrust of this decision procedure is to select the proper Credentials object from
the list of credentials supplied in the InvocationCredentialsPolicy object.

[554] The following decision procedure is applied by the security service to eliminate the
Credentials made available for invocation by list of Credentials objects in the
InvocationCredentialsPolicy. The decision procedure is used amongst this list of
Credentials objects, the other client side security policies, and the target objectsÕs
IOR. This decision procedure determines the security mechanism, a compatible
Credentials object, and a security component from the targetÕs IOR to use for the
invocations made on that object reference. It should be noted that Credentials are
selected from sequence of Credentials returned by the creds attribute selector of the
InvocationCredentialsPolicy object. These credentials are examined first by their
mechanism by virtue of the MechanismPolicy object, then by the Credentials being
able to support other policies that may apply.

[555] It is the goal of the decision procedure to select a single Credentials object with which
to make the invocation. However, it is entirely possible that constraints provided by
other client polices, (such as the MechanismsPolicy) and the target objectÕs IOR
eliminate all Credentials objects from the list, thereby raising a
CORBA::NO_RESOURCES exception. Also, it is possible that the elimination
procedure leaves more than one Credentials object. In this case, any of the Credentials
objects are viable for making the invocation. However, a selection of a single
Credentials object still needs to be made. At this point, it is left up to the ORB to
select a Credentials object from a list of remaining available credentials.

[556] The elimination decision procedure is as follows:

For each mechanism type in the MechanismPolicy {

Select a matching security component in the targetÕs IOR by the mechanism
type.
If a matching component is found {

Find a Credentials object in the credentials list that supports the
mechanism.

If a Credentials object is found and it supports
the QOP Policy,
the Delegation Directive Policy,
and the Establish Trust Policy {

If the association options implied by all policies are supported
by the selected security component in the IOR and all the
required association options of security component are satisfied {

Use the selected Credentials and selected attributes to set up the secure
association.

} else {
Find the next credentials object that supports the selected mechansim and
continue.

}
} else {

Find the next credentials object that supports the selected mechanism and
continue.
15.5 Application DeveloperÕs Interfaces 15-107

}
} else {

Get the next mechanism type from the MechanismPolicy and continue.
}

}
If no mechanism can be found {

A CORBA::NO_RESOURCES exception is raised with an informative message.
}

}

Security Relevant Operations in the CORBA::Object Interface

[557] These operations are defined in detail in the ORB Interface chapter of the Common
Object Request Broker: Architecture and Specification. A brief description is included
here to help users of the Security Services.

get_policy
[558] This gets the security policy object of the specified type, which applies to this object.

[559] The get_policy operation is used on object references during administration. For
example, it may be used to get the policy for a domain.

CORBA::Policy get_policy(
in CORBA::PolicyType policy_type

);

Parameters

Return Value

Exceptions

get_domain_managers
[560] get_domain_managers allows administration services (and applications) to retrieve

the domain managers, and hence the security and other policies applicable to
individual objects that are members of the domain.

policy_type The type of policy to be obtained.

policy A policy object of the type specified by the policy_type
parameter.

CORBA::BAD_PARAM Raised when the value of policy type is not valid either
because the specified type is not supported by this ORB
or because a policy object of that type is not associated
with this Object.
15-108 Security Service v1.8 September 2000 [DRAFT]

15
DomainManagersList get_domain_managers ();

Parameters
None.

Return Value

[561] A list of immediately enclosing domain managers of this domain manager. At least one
domain manager is always returned in the list since by default each object is associated
with at least one domain manager at creation.

set_policy_overrides

[562] set_policy_overrides makes it possible to override a subset of the policies that apply to
a specific object reference. It takes two input parameters. The first parameter policies
is a sequence of references to Policy objects. The second parameter set_add of type
CORBA::SetOverrideType indicates whether these policies should be added onto any
other overrides that already exist (CORBA::ADD_OVERRIDE) in the object
reference, or they should be added to a clean override free object reference
(CORBA::SET_OVERRIDE). This operation associates the policies passed in the
first parameter with a newly created object reference that it returns.

[563] The association of these overridden policies with the object reference is a purely local
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. The associations last until the object reference
is destroyed or the process/capsule/ORB instance in which it exists is destroyed.

[564] The policies thus overridden in this new object reference and all subsequent duplicates
of this new object reference apply to all invocations that are done through these object
references. The overridden policies apply even when the default policy associated with
current is changed. It is always possible that the effective policy on an object reference
at any given time will fail to be successfully applied, in which case the invocation
attempt will fail and return a CORBA::NO_PERMISSION exception.
15.5 Application DeveloperÕs Interfaces 15-109

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

);

Parameters

Return Value

[565] A copy of the object reference with the overrides from policies associated with it in
accordance with the value of set_add.

Portability Implications

[566] The security features that can be set are generally ones supported by a variety of
security mechanisms. Applications using them will therefore be portable between any
systems where the security mechanisms support these features. However, some
security mechanisms will not support all features, for example, they may not provide
replay protection, or may not support confidentiality of application data (owing to
regulatory controls). Applications should check the response when attempting to set
security features, and if a requested feature is not available, take suitable action.

15.5.8 Operations on Security Manager

Description

[567] The Security Manager object represents capsule specific security information. The
attributes and operation of the SecurityManager object are relevant to the capsule
regardless of the thread of execution.

[568] A reference to the SecurityManager object is retrived using the
ORB::resolve_initial_references("SecurityManager") operation.

The attributes and operations on the SecurityManager object are described in this section
and provide access to the following information:

¥ supported_mechanisms: A sequence of security mechanisms supported by the
security service.

¥ principal_authenticator: A reference to the PrincipalAuthenticator object, which
is used to authenticate principals and thus obtain Credentials objects for them.

policies A sequence of Policy objects that are to be associated with the
new copy of the object reference returned by this operation.

set_add Whether the association is in addition to (ADD_OVERRIDE)
or as replacement of (SET_OVERRIDE) any existing overrides
already associated with the object reference.
15-110 Security Service v1.8 September 2000 [DRAFT]

15
¥ own_credentials: The list of Credentials objects associated with the active
application (capsule). A capsuleÕs own credentials are set up as the result of the
aplication being intialized or explicitly by callin on the PrincipalAuthenticator
object.

[569] The operations provided on the Security Manager are the following:

¥ remove_own_credentials: This operation allows the application to perform
credentials management of the own_credentials list.

¥ get_target_credentials: This operation allows the application to discover the
principal of a target object.

The SecurityLevel2::SecurityManager Interface

[570] The following attributes and operations are available on the
SecurityLevel2::SecurityManager interface.

supported_mechanisms
[571] This readonly attribute returns the list of supported mechanisms and options supported

by the ORB security service. It has the following definition:

readonly attribute MechandOptionsList supported_mechanisms;

principal_authenticator
[572] This readonly attribute is a reference to the PrincipalAuthenticator that can be used

by the application to authenticate principals and obtain Credentials.

readonly attribute PrincipalAuthenticator principal_authenticator;

Return Value

[573] The object reference to a PrincipalAuthenticator object. The operation in the
interface of this object are defined in Table 15.3.2, ÒPrincipals and Their Security
Attributes,Ó on page 19.

required_rights_object
[574] This readonly attribute is the RequiredRights object available in the environment.

This object is rarely used by applications directly. It could be used directly by the
application if it wishes to do all its own access control based on rights.

readonly attribute RequiredRights required_rights_object;

Return Value

[575] An object references to a RequiredRights object. The operations in the interface of
this object are defined in Section 15.6.4, ÒAccess Policies,Ó on page 15-135.
15.5 Application DeveloperÕs Interfaces 15-111

access_decision
[576] This capsule specific read only attribute is the AccessDecision object available in the

environment. It can be used by the application to obtain decisions regarding
accessibility of specific objects from this environment.

readonly attribute AccessDecision access_decision;

Return Value

[577] An object references to a AccessDecision object. The operations in the interface of this
object are defined in Section 15.5.12, ÒAccess Control,Ó on page 15-119.

audit_decision
[578] This readonly attribute is the AuditDecision object available in the environment. It can

be used by the application to obtain information about what needs to be audited for the
specified object/interface in this environment.

readonly attribute AuditDecision audit_decision;

Return Value

[579] An object references to an AuditDecision object. The operations in the interface of this
object are defined in Section 15.5.10, ÒSecurity Audit,Ó on page 15-116.

own_credentials
[580] Any applciation owns a set of credentials which it obtains through the process of

authentication of the principal that initiates the execution of the program, and further
from other credentials that such a principal might bestow upon the application. This
attribute returns this set of credentials.

readonly attribute CredentialsList own_credentials;

Return Value

[581] A sequence of Credentials object references owned by the application.

remove_own_credentials
[582] This operation is used by applications that wish to remove credentials that were put on

the own_credentials list by virtue of the PrincipalAuthenticator. This operation does
not manipulate or destroy the objects in any way. The given Credentials object (as
opposed to one produced by a copy operation) must reside on the list of the Current
objectÕs own_credentials, otherwise a CORBA::BAD_PARAM exception is raised.
15-112 Security Service v1.8 September 2000 [DRAFT]

15
void remove_own_credentials(
in Credentials creds

),

Parameters

Return Value

[583] None.

get_target_credentials
[584] This operation is used by applications that wish to authenticate a principal "behind" the

object reference..

TargetCredentials get_target_credentials(
in Object target;

};

Parameters

Return Value

[585] The TargetCredentials object that represents the secure association established with
the remote principal.

get_security_policy
[586] This operation returns the security policy object of the specified policy_type in effect

for the capsule.

Policy get_security_policy(
in CORBA::PolicyType policy_type

);

Parameters

Return Value

[587] A policy object which can be used to interrogate the policy in force as defined in
Section 15.6, ÒAdministratorÕs Interfaces,Ó on page 15-132. For example, the secure
invocation policy would give the secure associations defaults for this object, and the
delegation policy would say which credentials were delegated on invocations by this object.

creds The Credentials object to be removed from the list.

target The object reference in question.

policy_type The type of policy to be obtained.
15.5 Application DeveloperÕs Interfaces 15-113

15.5.9 Security Operations on Current

Description

[588] The Current object represents service specific state information associated with the
current execution context (see the ORB Interface chapter of the Common Object
Request Broker: Architecture and Specification); both clients and targets have Current
objects representing state associated with the thread of execution and the
process/capsule in which the thread is executing (their execution contexts).

[589] The operations of the Current object is intended to return information pertaining to
the state associated with the current execution context. This includes information
specific to both the thread of execution that is used to invoke the operation, as well as
the process or capsule to which the thread belongs. State changes affecting state that is
associated purely with the thread and not with any broader execution context like
capsule (i.e., thread specific) is lost, once the operation within the execution of which
this was done completes its execution, thus returning the thread to the ORB. State
changes to state associated with a broader execution context like a capsule (i.e.,
capsule specific) on the other hand persists across multiple invocation of operations in
the target object, until it is further modified through operations of the Current object
or by other means.

[590] The SecurityLevel1::Current and the SecurityLevel2::Current interfaces described
in this section contains operations of both types. In this section, each operation is
identified to be either thread specific or process specific to distinguish their behavior.

[591] Note that a reference to the Current object representing the active execution context
can be retrieved using the ORB::resolve_initial_references(ÒSecurityCurrentÓ)
operation (see the ORB Interface chapter of the Common Object Request Broker:
Architecture and Specification). In a secure ORB, the Current object includes
operations relevant to Security. The CORBA::Current object returned by the
resolve_initial_references operation can be narrowed to SecurityLevel1::Current or
SecurityLevel2::Current as desired.

[592] The operations on the Current object are described in this section and provide access
to information about one or more of the following credentials:

¥ received credentials: the credentials received from the client of the invocation as
seen at the target object.

[593] The operations provided are the following:

¥ get_attributes (thread specific) obtain privilege and other attributes associated with
received credentials (which should be the userÕs privileges when at the
workstation).

[594] It should be noted that if the policies associated with any individual object reference
has been overridden using the Object::set_policy_overrides operation, then the
overridden policies take precedence over the corresponding thread policies, when the
said thread is used to carry out an object invocation using the said object reference.
15-114 Security Service v1.8 September 2000 [DRAFT]

15
The SecurityLevel1::Current Interface

[595] The following operations are available in the SecurityLevel1::Current interface.

get_attributes
[596] This is thread specific operation that is used to get privilege (and other) attributes from

the clientÕs credentials. It is available in the security functionality Level 1 to allow
applications to enforce their own security policies without these applications having to
perform operations on credentials.

[597] This operation can be used to get:

¥ Privilege attributes for use in access control decisions.

¥ Other attributes, such as audit or charging identities, if available.

[598] At the client, this generally gets the userÕs (or other principalÕs) privileges. At the
target, it gets the received privileges.

AttributeList get_attributes(
in AttributeTypeList attributes

);

Parameters

Return Value

[599] The set of attributes or identities reflecting the state of the Credentials.

The SecurityLevel2::Current Interface

[600] The following operations are to be found in the SecurityLevel2::Current interface.

received_credentials
[601] At a target object, this thread specific attribute is the credentials received from the

client.They are the credentials of the principal identified that made the invocation.

[602] In the case of a pure client, e.g. an application that is not servicing an invocation on
one of its objects(if any), accessing the received_credentials attribute causes a
CORBA::BAD_OPERATION exception to be raised.

readonly attribute ReceivedCredentials received_credentials;

Return Value

[603] The ReceivedCredentials object reference received from the requestor.

attributes The set of security attributes (privilege attributes and identities)
whose values are desired. if this list is empty, all attributes are
returned.
15.5 Application DeveloperÕs Interfaces 15-115

15.5.10 Security Audit

Description of Facilities

[604] Auditing of object invocations is done automatically by the ORB according to the
audit invocation policies (Security::SecClientInvocationAudit and
Security::SecTargetInvocationAudit) for this application.

[605] Applications can also audit their own security relevant activities, where the auditing
performed by the ORB does not audit the required activities and/or data.

[606] In this case, the application is responsible for enforcing the application audit policy. It
uses an audit_needed operation on the Audit Decision object for the policy to decide
which activities to audit.

[607] Audit information is passed to an Audit Channel object in the form of an audit record.
The audit record must contain, or be sufficient to identify:

¥ The type of event.

¥ The principal responsible for the action, identified by its credentials.

¥ Event-specific data associated with the event type. This will vary, depending on the
event type.

¥ The time. This may or may not be secure.

[608] It may also want to record some of the values used for selecting whether to audit the
event, for example, its success or failure.

[609] An application audit policy will specify the event families and event types as defined
in Section 15.6.5, ÒAudit Policies,Ó on page 15-147.

The SecurityLevel2::AuditDecision Interface

[610] The Audit Decision object has the SecurityLevel2::AuditDecision interface. Its
operations described below, help specify what to audit. It is a local object.

audit_needed
[611] This operation on the Audit Decision object is used to decide whether an audit record

should be written to the audit channel. The application specifies the event type to be
checked and the values for the selectors, which the audit policy requires to make the
decision. This operation identifies the interface associated with the audit event using
the InterfaceName selector value within value_list, ifdefined. If the InterfaceName
selector value is the empty string, the most derived interface in the ObjectRef selector
value is used.ObjectRef is also used to find the domain containing the relevant audit
policy. If ObjectRef is not defined, audit_needed will not beable to match any
AuditPolicy and will return false. To ensure that audit_needed can match against any
potential AuditPolicy, thecaller must supply all selector values (ObjectRef,
Operation, Initiator, and SuccessFailure) in value_list.
15-116 Security Service v1.8 September 2000 [DRAFT]

15
boolean audit_needed(
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

Return Value

audit_channel
[612] This attribute of the Audit Decision object provides the audit channel associated with

this audit decision object.

readonly attribute AuditChannel audit_channel;

Return Value

[613] The Audit Channel object associated with the Audit Decision object.

[614] A standard audit policy is specified in Section 15.6, ÒAdministratorÕs Interfaces,Ó on
page 15-132, but if this is to be replaceable without ORB/interceptor changes, a
standard interface needs to be available for the ORB or interceptor to call. Therefore,
for replaceability, the selectors used on audit needed during invocation must always be
the same (see value_list above), though not all of these need to be used in taking the
decision to audit, depending on policy. Note that the time is not passed over this
interface. If the selectors specified in the audit policy use time to decide on whether to
audit the event, the Audit Decision object should obtain the current time itself.

The SecurityLevel2::AuditChannel Interface

[615] The single operation in the SecurityLevel2::AuditChannel interface is used to write
the audit records. The Audit Channel object is a local object.

audit_write
[616] This operation writes an audit record to the Audit Channel object, and hence the

audit trail. The audit trail is implementation-specific and outside the scope of this
chapter. It is expected to be an event service of some sort, such as a CORBA Event
Service.

event_type Event type associated with the operation.

value_list List of zero or more selector id value pairs.

TRUE If an audit record should be created and sent to the audit
channel.

FALSE If an audit record is not needed.
15.5 Application DeveloperÕs Interfaces 15-117

void audit_write(
in AuditEventType event_type,
in CredentialsList creds,
in UtcT time,
in SelectorValueList descriptors,
in any event_specific_data

);

Parameters

Return Value

[617] None.

audit_channel_id
[618] This is a readonly attribute that contains the id of this audit channel, which is used to

identify it in the corresponding audit policy object. This is necessary because the audit
channel object itself has to be a local object by virtue of the fact that the audit_write
operations passes a list of Credentials, a local object, as a parameter, while the audit
policy object need not be local.

[619] The audit channel identified by the audit_channel_id in the Audit Policy object is
actually associated with the Audit Channel interface by the Audit Decision object
when its audit_channel attribute is accessed.

readonly attribute AuditChannelId audit_channel_id;

Return Value

Portability Implications

[620] An application relying on the system audit policies enforced at invocation time is
portable to different environments, although the audit policies themselves may need
changing.

event_type The type of event being audited.

creds The credentials of the principal responsible for the event. If
no credentials are specified, the own_credentials attribute
associated with SecurityManager are used.

time The time the event occurred.

descriptors A set of values to be recorded associated with the event in
the audit trail. These are often the same values as those
used to select whether to audit the event.

event_specific_data Data specific to a particular type of event, to be recorded in
the audit trail.

audit_channel_id The channel id of the audit channel.
15-118 Security Service v1.8 September 2000 [DRAFT]

15
[621] Applications with their own application audit policies are portable, providing the audit
policy itself is portable and the selectors used are available in these environments. For
example, if selectors use privileges, the same ones must be available.

15.5.11 Administering Security Policy

[622] When an object is created, it automatically becomes a member of one or more
domains, and therefore is subject to the security policies of those domains.

[623] Security aware applications can administer security policies (providing they are
authorized to do so) using the interfaces described in Section 15.6, ÒAdministratorÕs
Interfaces,Ó on page 15-132.

15.5.12 Access Control

Description of Facilities

[624] Access policies for applications may be enforced the following ways:

¥ Automatically by the ORB services on object invocation, to determine whether the
caller has the right to invoke an operation on an object.

¥ By the application itself, to enforce further controls on who can invoke it to do
what.

¥ By the application to control access to its own internal functions and state.

[625] This section is concerned with applications that wish to enforce their own access
controls, either supplementing the automatic controls on invocation or controlling
internal functions.

[626] As explained in Access Policies under Section 15.3.4, ÒAccess Control Model,Ó on
page 15-23, the decision on whether to allow such access may use the following:

¥ The principalÕs credentials (which either contain its privilege attributes, or identify
the principal so these can be obtained). Using only the principalÕs identity generally
requires that identity to be known at all targets, and leads to scalability problems, so
its use is depreciated. Use of the principalÕs role or group(s) are more likely to give
easier administration in large systems, as would security clearance. Enterprise-
defined attributes can also be used when supported.

¥ The targetÕs control attributes such as an ACL or security classification.

¥ Other relevant information about the action such as the operation (on object
invocation) and parameters, and also context information such as time.
The application can use rights associated with an interface (as described in
Section 15.6.3, ÒSecurity Policies Introduction,Ó on page 15-134) rather than
specify controls for individual operations.

¥ The security policy rules using this information as enforced by the access decision
function.
15.5 Application DeveloperÕs Interfaces 15-119

[627] The access policies enforced automatically by the ORB during object invocation can
take into account the principalÕs credentials, the targetÕs control attributes, the
operation and the time (though the time is not used in the standard access policy
defined in Section 15.6, ÒAdministratorÕs Interfaces,Ó on page 15-132). However, the
ORB does not use the parameters to the operation for controlling access. So, for
example, if there is a rule that only senior managers can authorize expenditure over
$5000, the application is likely to need its own function to perform the required check.

[628] Where an application enforces its own access decisions, it will be responsible for
maintaining its own control information about operations, functions, and data it wishes
to protect. It can do this in a way specific to its own particular functions or data, but in
some cases, it is possible to have a more generic way of handling access decisions, and
in these cases, it may be possible to use a common access decision object with
common administration of the ACLs or other control attributes.

The Access Decision Object

[629] The access decision functionality is encapsulated in Access Decision objects. These
may require different information depending on, for example, the action or data to be
controlled and the security policy rules as previously described. The Access Decision
object is a local object.

[630] The Access Decision object has the access_allowed operation as is used for enforcing
access policies in the ORB (see below). The input parameters to this should normally
specify:

¥ The privileges of the initiator of the action. The form of these depends on the
specific policy. Some options are:

¥ The privileges of the initiator as supplied by a get_attributes operation on
Current (see ÒThe SecurityLevel1::Current InterfaceÓ on page 15-115).

¥ A credentials object, which represents principal.

¥ Other information required by the access decision function, including:

¥ Application-level decisions on whether an invocation is permitted, the operation
and parameters passed in the request, and the object reference.

¥ Control of access to internal functions and data, the action, and relevant
parameters.

[631] The return value from the access_allowed operation is either TRUE signifying access
is permitted, or FALSE signifying that it is not

[632] It is recommended that where possible, access decisions are made by such Access
Decision objects (or at least separate internal functions) that hide details of the actual
security policy used, so the application does not need to know, for example, whether
an ACL or label-based policy is used.

The SecurityLevel2::AccessDecision Interface

[633] The Access Decision object is a local object. The AccessDecision interfaces have the
following single operation:
15-120 Security Service v1.8 September 2000 [DRAFT]

15
access_allowed

boolean access_allowed(
in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);

Parameters

Return Value

Portability Implications

[634] Portability of applications enforcing their own access controls is improved by use of
Access Decision objects as previously described. The application then does not need to
know the particular rules used, and even which principal and object attribute types are
used to decide whether access should be permitted. It can also hide whether the
principalÕs credentials include all privilege attributes needed, or whether these are
obtained dynamically when needed.

[635] Different systems may need to support different access control policies. By hiding
details of the access control rules used to enforce the policy behind a standard
interface, the application will generally be portable to environments with different
policies.

[636] Applications that use their own specific code to make access decisions will only be
portable to systems that support the identity and privilege attribute types used in those
decisions with the same syntax.

cred_list The list of Credentials associated with the request. The list
may be empty (in the case of unauthenticated requests), it
may contain only a single credential, or it may contain
several credentials (in the case of delegated or otherwise
cascaded requests). The Access Decision object is
presumed to have rules for dealing with all these cases.

target The reference used to invoke the target object. The method
invoked.

operation_name The name of the operation being invoked on the target.

target_interface_
name

The name of the interface to which the operation being
invoked belongs. This may not be required in some
implementations and will only be required in cases in which
the operation being invoked does not belong to the interface
of which the target object is a direct instance.

boolean A return value of TRUE indicates that the request should
be allowed, otherwise FALSE.
15.5 Application DeveloperÕs Interfaces 15-121

15.5.13 Delegation Facilities

Description of Facilities

[637] An operation on a target object may result in calls on many other objects as described
in Section 15.3.6, ÒDelegation,Ó on page 15-29. An intermediate object in this chain of
objects may:

¥ Delegate the credentials received (often containing the initiating principalÕs
privileges) to the next object in the chain, so access decisions at the target may be
based on that principalÕs privileges.

¥ Act on its own behalf, so use its own credentials when invoking another object in
the chain.

¥ Supply privileges from both, so access decisions at the target object can take into
account both the initiating principalÕs privileges and where these came from.

[638] Which of these delegation modes should be used depends on the application. For
example, a user might call a database object asking for some data, and this may obtain
the data from a file that also contains data belonging to other users. In this example,
the database object would control access to the data using the userÕs privileges,
whereas the filestore object would use the databaseÕs privileges.

[639] In general, the delegation mode used is specified by the administrator in the delegation
policy for objects of this type in this domain. However, a security aware application
can also specify the delegation mode it wants to use, as it may want different modes
when invoking different objects.

Operations

[640] All the operations used for delegation are specified elsewhere. This section describes
how they are used during delegation.

[641] The way the received and intermediateÕs own credentials are combined in
SecCompositeDelegation is not defined. Depending on the implementation:

¥ The initiating principalÕs and the intermediateÕs own credentials are passed, and are
available separately at the target.

¥ The received credentials and intermediateÕs own credentials are combined, so the
target sees only a single credentials object with privileges from each of these.

¥ Credentials from all objects in the delegation chain are passed and are available
separately to the target.

[642] None of these particular composite delegation modes are part of the Security
Functionality Level 2. They are described here because of the effect on the
Current::received_credentials (see ÒThe SecurityLevel2::Current InterfaceÓ on
page 15-115), which a target object uses to find out who called it. The target normally
uses this to get privileges for use in access control decisions.
15-122 Security Service v1.8 September 2000 [DRAFT]

15
Portability Implications

[643] Where possible, the delegation mode should be set using the administrative interfaces
to the delegation policy, so applications may delegate privileges (or not) without any
application level code, and so be portable.

[644] If an application sets its own delegation mode, it should be able to handle a
CORBA::NO_IMPLEMENT exception if SecCompositeDelegation is specified, as
this may not be supported.

[645] If the application wants to enforce its own access policy, it should use an Access
Decision object (as described in Section 15.5.12, ÒAccess Control,Ó on page 15-119),
which hides whether access decisions utilize the initiatorÕs privileges separately from
the delegateÕs privileges.

[646] However, where an application wants to provide specific checks which intermediates
have been involved in performing the original userÕs operation, such checks are likely
to depend on the delegation scheme and its implementation, and so not be portable.

15.5.14 Non-repudiation

[647] Non-repudiation is an optional facility.

Description of Facilities

[648] The Non-repudiation Service provides evidence of application actions in a form that
cannot be repudiated later. This evidence is associated with some data (for example,
the amount field of a funds transfer document).

[649] Non-repudiation evidence is provided in the form of a token. Two token types are
supported:

¥ Token including the associated data

¥ Token without included data (but with a unique reference to the associated data)

[650] Non-repudiation tokens may be freely distributed. Any possessor of a non-repudiation
token (and the associated data, if not included in the token) can use the non-
repudiation Service to verify the evidence. Any holder of a non-repudiation token may
store it (along with the associated data, if not included in the token) for later
adjudication.

[651] The non-repudiation interfaces support generation and verification of tokens
embodying several different types of evidence. It is anticipated that the following will
be the most commonly used non-repudiation evidence token types:

¥ Non-repudiation of Creation prevents a message creator's false denial of creating a
message.

¥ Non-repudiation of Receipt prevents a message recipient's false denial of having
received a message.
15.5 Application DeveloperÕs Interfaces 15-123

[652] Generation and verification of non-repudiation tokens require as context a non-
repudiation credential, which encapsulates a principal's security information
(particularly keys) needed to generate and/or verify the evidence. Most operations
provided by the Non-repudiation Service are performed on NRCredentials objects.

[653] Non-repudiation Service operations supported by the NRCredentials interface are as
follows.

¥ set_NR_features specifies the features to apply to future evidence generation and
verification operations.

¥ get_NR_features returns the features which will be applied to future evidence
generation and verification operations.

¥ generate_token generates a non-repudiation token using the current non-
repudiation features. The generated token may contain:

¥ Non-repudiation evidence.

¥ A request, containing information describing how a partner should use the Non-
repudiation Service to generate an evidence token.

¥ Both evidence and a request.

¥ verify_evidence verifies the evidence token using the current non-repudiation
features.

¥ get_token_details returns information about an input non-repudiation token. The
information returned depends upon the type of the token (evidence or request).

¥ form_complete_evidence is used when the evidence token itself does not contain
all the data required for its verification, and it is anticipated that some of the data
not stored in the token may become unavailable during the interval between
generation of the evidence token and verification unless it is stored in the token.
The form_complete_evidence operation gathers the ÒmissingÓ information and
includes it in the token so that verification can be guaranteed to be possible at any
future time.

The verify_evidence operation returns an indicator (evid_complete), which can be
used to determine whether the evidence contained in a token is complete. If a
tokenÕs evidence is not complete, the token can be passed to
form_complete_evidence to complete it.

If complete evidence is always required, the call to form_complete_evidence can,
in some cases, be avoided by setting the form_complete request flag on the call to
verify_evidence; this will result in a complete token being returned via the evid_out
parameter.

Non-repudiation Service Data Types

[654] The following data types are used in the Non-repudiation Service interfaces:
15-124 Security Service v1.8 September 2000 [DRAFT]

15
module NRservice {
typedef MechanismType NRMech;
typedef ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};

typedef unsigned long DurationInMinutes;

const DurationInMinutes DURATION_HOUR = 60;
const DurationInMinutes DURATION_DAY = 1440;
const DurationInMinutes DURATION_WEEK = 10080;
const DurationInMinutes DURATION_MONTH = 43200;// 30 days
const DurationInMinutes DURATION_YEAR = 525600;//365 days

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
NRPolicyId policy_id;
unsigned long policy_version;
NRMech mechanism;

};

typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};
};
15.5 Application DeveloperÕs Interfaces 15-125

The NRservice::NRCredentials Interface

[655] This section describes the Non-repudiation Service operations that are provided by the
NRCredentials interface.

set_NR_features
[656] When an NRCredentials object is created, it is given a default set of NR features,

which determine what NR policy will be applied to evidence generation and
verification requests.

[657] Security-aware applications may set NR features to specify policy affecting evidence
generation and verification. The interface for setting NR features is:

boolean set_NR_features(
in NRPolicyFeaturesList requested_features,
out NRPolicyFeaturesList actual_features

);

Parameters

Return Value

get_NR_features
[658] This operation is provided to allow security-aware applications to determine what NR

policy is currently in effect:

NRPolicyFeaturesList get_NR_features ();

Parameters

[659] None

Return Value

[660] The current set of NR features in use in this NRCredentials object.

generate_token
[661] This operation generates a non-repudiation token associated with the data passed in an

input buffer. Environmental information (for example, the calling principalÕs name) is
drawn from the NRCredentials object.

requested_features The non-repudiation features required.

actual_features The NR features that were set (may differ from those
requested depending on implementation).

TRUE The requested features were equivalent.

FALSE If the actual features differ from the requested features.
15-126 Security Service v1.8 September 2000 [DRAFT]

15
[662] If the data for which non-repudiation evidence is required is larger than can
conveniently fit into a single buffer, it is possible to issue multiple calls, passing a
portion of the data on each call. Only the last call (i.e., the one on which
input_buffer_complete = true) will return an output token and (optionally) an
evidence check.

void generate_token(
in Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Opaque nr_token,
out Opaque evidence_check

);

Parameters

input_buffer Data for which evidence should be generated.

generate_evidence_
type

Type of evidence token to generate (may be SecNoEvidence).

include_data_in_
token

If set TRUE, data provided in input_buffer will be included
in generated token; otherwise FALSE.

generate_request The output token should include a request, as described in the
request_features parameter.

request_features A structure describing the request. Its fields are:

requested_policy Non-repudiation policy to use when
generating evidence tokens in
response to this request

requested_evidence Type of evidence to be generated in
response to this request.

requested_evidence_
generators

Names of partners who should
generate evidence in response to this
request.

requested_evidence_
recipients

Names of partners to whom evidence
generated in response to this request
should be sent.
15.5 Application DeveloperÕs Interfaces 15-127

Return Value

[663] None.

verify_evidence
[664] Verifies the validity of evidence contained in an input NR token.

[665] If the token containing the evidence to be verified was provided to the calling
application by a partner responding to the calling applicationÕs request, then the calling
application should pass the evidence check it received when it generated the request as
a parameter to verify_evidence along with the token it received from the partner.

[666] It is possible to request the generation of complete evidence. This may succeed or fail;
if it fails, a subsequent call to form_complete_evidence can be made. Output
indicators are provided, which give guidance about the time or times at which
form_complete_evidence should be called; see the parameter descriptions for
explanations of these indicators and their use. Note that the time specified by
complete_evidence_before may be earlier than that specified by
complete_evidence_after; in this case it will be necessary to call
form_complete_evidence twice.

[667] Because keys can be revoked or declared compromised, the return from
verify_evidence cannot in all cases be a definitive ÒSecNRValidÓ or ÒSecNRInvalidÓ;
sometimes ÒSecNRConditionallyValidÓ may be returned, depending upon the policy
in use. ÒSecNRConditionallyValidÓ will be returned if:

¥ The interval during which the generator of the evidence may permissibly declare his
key invalid has not yet expired (and therefore it is possible that the evidence may be
declared invalid in the future), or

¥ Trusted time is required for verification, and the time obtained from the token is not
trusted.

include_this_token_
in_evidence

If set true, the evidence token
incorporating the request will be
included in the data for which partners
will generate evidence. If set false,
evidence will be generated using only
the associated data (and not the token
incorporating the request).

input_buffer_
complete

True if the contents of the input buffer
complete the data for which evidence
is to be generated; false if more data
will be passed on a subsequent call.

nr_token The returned NR token.

evidence_check Data to be used to verify the requested
token(s) (if any) when they are
received.
15-128 Security Service v1.8 September 2000 [DRAFT]

15
NRVerificationResult verify_evidence(
in Opaque input_token_buffer,
in Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Opaque output_token,
out Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after

);

Parameters

input_token_buffer Buffer containing (possibly a portion, possibly all of)
evidence token to be verified; buffer may also contain data
associated with evidence token (parsing of buffer in this case
is understood only by NR mechanism, see
get_token_details).

evidence_check The evidence check.

form_complete_
evidence

Set TRUE if complete evidence is required; otherwise
FALSE.

token_buffer_
complete

Set TRUE if the input_token_buffer completes the input
token; FALSE if more input token data remains to be passed
on a subsequent call.

output_token If form_complete_evidence was set to TRUE, this parameter
will contain complete evidence (and the Return Value will be
SecNRValid) or an ÒaugmentedÓ but still incomplete
evidence token, in which case SecNRConditionallyValid is
returned

data_included_in_
token

Data associated with the evidence, extracted from input token
(may be a zero length sequence).

evidence_is_
complete

TRUE if evidence in input token is complete, otherwise
FALSE.
15.5 Application DeveloperÕs Interfaces 15-129

Return Value

get_token_details
[668] The information returned depends upon the type of the token (evidence or request).

The mechanism that created the token is always returned.

¥ If the input token contains evidence, the following is returned: the non-repudiation
policy under which the evidence has been generated, the evidence type, the date and
time when the evidence was generated, the name of the generator of the evidence,
the size of the associated data, and an indicator specifying whether the associated
data is included in the token.

¥ If the input token contains a request, the following is returned: the name of the
requester of the evidence, the non-repudiation policy under which the evidence to
send back should be generated, the evidence type to send back, the names of the
recipients who should generate and distribute the requested evidence, and the names
of the recipients to whom the requested evidence should be sent after it has been
generated.

¥ If the input token contains both evidence and a request, an indicator describing
whether the partnerÕs evidence should be generated using only the data in the input
token, or using both the data and the evidence in the input token.

trusted_time_used TRUE if the evidence token contains a time considered to be
trusted according to the rules of the non-repudiation policy.
FALSE indicates that the security policy mandates trusted
time and that the time in the token is not considered to be
trusted.

complete_evidence_b
efore

If evidence_is_complete is FALSE and the return value from
verify_evidence is SecNRConditionallyValid, the caller
should call form_complete_evidence with the returned
output token before this time. This may be required, for
example, in order to ensure that the time skew between the
evidence generation time and the trusted time serviceÕs
countersignature on the evidence falls within the interval
allowed by the current NR policy.

complete_evidence_a
fter

If evidence_is_complete is FALSE and the return value from
verify_evidence is SecNRConditionallyValid, the caller
should call form_complete_evidence with the returned
output token after this time. This may be required, for
example, to ensure that all authorities involved in generating
the evidence have passed the last time at which the current
NR policy allows them to repudiate their keys.

SecNRInvalid Evidence is invalid.

SecNRValid Evidence is valid.

SecNRConditionallyValid Evidence cannot yet be determined to be invalid
15-130 Security Service v1.8 September 2000 [DRAFT]

15
void get_token_details(
in Opaque token_buffer,
in boolean token_buffer_complete,
out string token_generator_name,
out NRPolicyFeatures policy_features,
out EvidenceType evidence_type,
out UtcT evidence_generation_time,
out UtcT evidence_valid_start_time,
out DurationInMinutes evidence_validity_duration,
out boolean data_included_in_token,
out boolean request_included_in_token,
out RequestFeatures request_features

);

Parameters

Return Value

[669] None.

form_complete_evidence
[670] form_complete_evidence is used to generate an evidence token that can be verified

successfully with no additional data at any time during its validity period.

token_buffer Evidence token to parse.

token_buffer_
complete

Indicator when the token has been fully provided.

token_generator_
name

Principal name of token generator.

policy_features Describes the policy used to generate the token.

evidence_type Type of evidence contained in the token (may be
SecNoEvidence).

evidence_generation_time Time when evidence was generated.

evid_validity_start_
time

Beginning of evidence validity interval.

evidence_validity_
duration

Length of evidence validity interval.

data_included_in_
token

TRUE if the token includes the data for which it
contains evidence, otherwise FALSE.

request_included_in_token TRUE if the token includes a request, otherwise
FALSE.

evidence_generation_time Time when evidence was generated.
15.5 Application DeveloperÕs Interfaces 15-131

boolean form_complete_evidence(
in Opaque input_token,
out Opaque output_token,
out boolean trusted_time_used,
out TimeT complete_evidence_before,
out TimeT complete_evidence_after

);

Parameters

Return Value

15.6 AdministratorÕs Interfaces

[671] This section describes the administrative features of the specification. Administration
specifies the policies that control the security-related behavior of the system. These
features form an ÔAdministratorÕs View,Õ encompassing the interfaces that a human
administrator would need to use, but the facilities may also be used by conventional
applications that wish to be involved in administrative actions. ÔAdministratorÕ may
therefore refer to a human or system agent.

[672] Most interfaces defined here are in Security Functionality Level 2, as Level 1 security
does not include administration interfaces.

token_buffer Evidence token to be completed..

output_token The ÒaugmentedÓ evidence token may be complete.

trusted_time_used TRUE if the tokenÕs generation time can be trusted, otherwise
FALSE. If trusted time is required by the policy under which
the evidence will be verified, and if this indicator is not set,
the evidence will not be considered complete.

complete_evidence_b
efore

If the return value is FALSE, form_complete_evidence
should be called before this time.

complete_evidence_a
fter

If the return value is FALSE, form_complete_evidence
should be called after this time.

TRUE Evidence is now complete.

FALSE Evidence is not yet complete.
15-132 Security Service v1.8 September 2000 [DRAFT]

15
15.6.1 Concepts

Administrators

[673] This specification imposes no constraints on how responsibilities are divided among
security administrators, but in many cases an enterprise will have a security policy that
restricts the responsibilities of any one individual. Also, legal requirements may dictate
a separation of roles so that, for example, there are different administrators for access
control and auditing functions.

[674] Administrators are subject to the same security controls as other users of the system. It
is expected that an enterprise will define roles (or other privileges) that certain
administrators will adopt. Administrative operations are subject to access controls and
auditing in the same way as other object invocations, so only administrators with the
required administrative privileges will be able to invoke administrative operations.

[675] This specification does not define administrative functions concerning the management
of underlying mechanisms supporting the security services, such as an Authentication
Service, Key Distribution Service, or Certification Authority.

Policy Domains

[676] Security administrators specify security policies for particular security policy
domains (for brevity, only the words in bold are used for the remainder of this
section).

[677] A domain includes an object, called the domain manager, which has associated with
it the policy objects for this domain, and notionally contains zero or more other
objects, which are domain members and subject to the policies specified by the policy
objects associated with the domain manager.

[678] The domain manager records the membership of the domain and provides the means to
add and remove members. The domain manager is itself a member of a domain,
possibly the domain it manages.

[679] There are different types of policy objects for administering different types of policy.
As described in ÒSecurity Policy DomainsÓ on page 15-37, domains may be members
of other domains, forming containment hierarchies. Because different kinds of policy
affect different groups of objects, objects (and domains) may be members of multiple
domains.

[680] The policies that apply to an object are those of all its enclosing domains.

Security Policies

[681] This specification covers administration of security policies, which are enforced by a
secure object system in either of the following ways:
15.6 AdministratorÕs Interfaces 15-133

¥ Automatically on object invocation. This covers system policies for security
communications between objects, control of whether this client can use this
operation on this target object, whether the invocation should be audited, and
whether an original principalÕs credentials can be delegated.

¥ By the application. This covers security policies enforced by applications.
Applications may enforce access, audit, and non-repudiation policies. The
application policies may be managed using domains as for other security policies,
or the application can choose to manage its own policies in its own way.

[682] Invocation time policies for an object can be applicable only when this object is acting
as a client, only when it is a target object, or whenever it is acting as either.

[683] Security policies may be administered by any application with the right to use the
security administrative interfaces. This is subject to the invocation access control
policy for the administrative interface.

15.6.2 Domain Management

[684] The Domain Management facilities (defined in the ORB Interface chapter of the
Common Object Request Broker: Architecture and Specification) are used by the
Security Service as described in the following sections.

15.6.3 Security Policies Introduction

[685] Invocation security policies are enforced automatically by ORB services during object
invocation. These are:

¥ invocation access policies (Security::SecClientInvocationAccess and
Security::SecTargetInvocationAccess, interface SecurityAdmin::AccessPolicy) for
controlling access to objects.

¥ invocation audit policies (Security::SecClientInvocationAudit and
Security::SecTargetInvocationAudit, interface SecurityAdmin::AuditPolicy)
control which operations on which objects are to be audited.

¥ invocation delegation policies (Security::SecDelegation, interface
SecurityAdmin::DelegationPolicy) for controlling the delegation of privileges.

¥ secure invocation policies (Security::SecClientSecureInvocation and
Security::SecTargetSecureInvocation, interface
SecurityAdmin::SecureInvocationPolicy) for security associations, including
controlling the delegation of clientÕs credentials, and message protection.

[686] Different policies generally apply when an object acts as a client from when it is the
target of an invocation.

[687] In addition to these invocation policies, there are a number of policy types, which
apply independently of object invocation. These are:

¥ application access policy (Security::SecApplicationAccess, interface
SecurityAdmin::AccessPolicy), which applications may use to manage and enforce
their access policies.
15-134 Security Service v1.8 September 2000 [DRAFT]

15
¥ application audit policy (Security::SecApplicationAudit, interface
SecurityAdmin::AuditPolicy), which applications can use to manage and enforce
their audit policies.

¥ non-repudiation policies (Security::SecNonRepudiation, interface
SecurityAdmin::NRPolicy) determine the rules for the generation and use of
evidence.

[688] There is also a policy concerned with creation of object references, which is enforced
by POA::create_reference and variants thereof or equivalent operation. This is the
construction policy (CORBA::SecConstruction) which controls whether a new
domain is created when an object of a specified type is created. (See the ORB Interface
chapter of the Common Object Request Broker: Architecture and Specification.)

Note Ð Policies associated with underlying security technology are not included. For
example, there are no policies for principal authentication as this is often done by
specific security services.

[689] Operations are provided for setting all the types of security policies previously listed.
In each case, these management operations permit administration of standard policy
semantics supported by the interfaces defined in this specification. It is also possible
for implementors to replace the policy objects, the operations of which are defined in
this specification, with different policy objects supporting different semantics. In
general, such policy objects will also have management operations that are different
from those defined in this specification.

15.6.4 Access Policies

[690] There are two types of invocation access policies: 1) the Client Invocation Access
policy (Security::SecClientInvocationAccess) which is used at the client side of an
invocation, and 2) the Target Invocation Access policy
(Security::SecTargetInvocationAccess) which is used at the target side.

[691] There is one policy type for application access. However, no standard administrative
interface to this is specified, as different applications have different requirements.

[692] Access Policies control access by subjects (possessing Privilege Attributes), to objects,
using rights. Privilege Attributes have already been discussed (in Section 15.5,
ÒApplication DeveloperÕs Interfaces,Ó on page 15-87); rights are described in the next
section.

Rights

[693] The standard Access Policy objects in a secure CORBA system implement access
policy using rights (though implementations may define alternative, non-rights-based
Access Policy objects).

[694] In rights-based systems, Access Policy objects grant rights to PrivilegeAttributes. For
each operation in the interface of a secure object, some set of rights is required. Callers
must be granted these required rights in order to be allowed to invoke the operation.
15.6 AdministratorÕs Interfaces 15-135

[695] Secure CORBA systems provide a RequiredRights interface, which allows:

¥ Object interface developers to express the Òaccess control typesÓ of their operations
using standard rights, which are likely to be understood by administrators, without
requiring administrators to be aware of the detailed semantics of those operations.

¥ Access-control checking code to retrieve the rights required to invoke an interfaceÕs
operations.

[696] Note that required rights are characteristics of interfaces, not of instances. All
instances of an interface, therefore, will always have the same required rights.

[697] Note also that because required rights are defined and retrieved through the
RequiredRights interface, no change to existing object interfaces is required in order
to assign required rights to their operations.

Rights Families
[698] This specification provides a standard set of rights for use with the

DomainAccessPolicy interface defined later in this section. These rights may not
satisfy all access control requirements. However; to allow for extensibility, rights are
grouped into Rights Families. The RightsFamily containing the standard rights is
called Òcorba,Ó and contains four rights: ÒgÓ (interpreted to mean ÒgetÓ), ÒsÓ
(interpreted to mean ÒsetÓ), ÒmÓ (interpreted to mean ÒmanageÓ) and ÒuÓ (interpreted
to mean ÒuseÓ). Implementations may define additional Rights Families. Rights are
always qualified by the RightsFamily to which they belong.

The SecurityLevel2::RequiredRights Interface

[699] A Required Rights object can be thought of as a table (an example Required Rights
table appears later in this section). Note that implementations need not manage
required rights on an interface-by-interface basis. Required Rights objects should be
thought of as databases of policy information, in the same way as Interface
Repositories are databases of interface information. Thus in many implementations, all
calls to the RequiredRights interface will be handled by a single Required Rights
object instance, or by one of a number of replicated instances of a master Required
Rights object instance.

[700] The value returned for a particular operation in a Required Rights object is a list of
rights and a rights combinator. The rights combinator specifies the interpretation of
multiple rights in conjunction with a list of granted rights. This specification specifies
two rights combinators, SecAllRights and SecAnyRights. Each combinator defines a
predicate on a list of required rights and a list of granted rights.

[701] Given a list of granted rights, G, and a list of required rights, R, the definition of the
SecAllRights combinator forms the following predicate:

r r R∈ r G∈⇒∋∀
15-136 Security Service v1.8 September 2000 [DRAFT]

15
[702] The definition of the SecAnyRights combinator forms the following predicate:

[703] These definitions have important remifications when an empty list of required rights is
specified with each combinator. Regardless of the granted rights, if the required rights,
R, is empty, then the predicate formed with the SecAllRights combinator results in
true, and the predicate formed with the SecAnyRights combinator results in false.

[704] Note that the following behaviors of systems conforming to CORBA Security are
unspecified and therefore may be implementation-dependent:

¥ Assignment of initial required rights to newly created interfaces.

¥ Inheritance of required rights by newly created derived interfaces.

get_required_rights
[705] This operation retrieves the rights required to execute the operation specified by

operation_name of the interface specified by obj. The objÕs interface will be
determined and used to retrieve required rights. The returned values are a list of rights
and a combinator describing how the list of rights should be interpreted if it contains
more than one entry.

void get_required_rights(
in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out RightsList rights,
out RightsCombinator rights_combinator

);

Parameters

Return Value

[706] None.

obj The object for which required rights are to be returned.

operation_name The name of the operation for which required rights are to be
returned.

interface_name The CORBA RepositoryId of the interface implemented by
the object, which is used as a default only if the ORB cannot
determine the name of the most derived interface
implemented by the object in the obj parameter.

rights The returned list of required rights.

rights_combinator The returned rights combinator.

r r R∈ r G∈∧∋∃
15.6 AdministratorÕs Interfaces 15-137

set_required_rights
[707] This operation updates the rights required to execute the operation specified by the

operation_name of the interface specified by interface_name. The caller must provide
a list of rights and a combinator describing the interpretation of multiple rights.

void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
in RightsList rights,
in RightsCombinator rights_combinator

);

Parameters

Return Value

[708] None.

The SecurityAdmin::AccessPolicy Interface

[709] This is the root interface for the various kinds of invocation access control policy. This
interface supports querying of the effective access granted by a set of attributes by an
invocation access policy. It inherits the CORBA::Policy interface and has a single
operation, get_effective_rights.

get_effective_rights
[710] This operation returns the current effective rights (of family RightsFamily) granted by

this Access Policy object to the subject possessing all privilege attributes in the list of
attributes attrib_list.

RightsList get_effective_rights(
in AttributeList attrib_list,
in ExtensibleFamily rights_family

);

operation_name The name of the operation for which required rights are to be
updated.

interface_name The name of the interface whose required rights are to be
updated.

rights The desired new list of required rights.

rights_combinator The desired new RightsCombinator.
15-138 Security Service v1.8 September 2000 [DRAFT]

15
Parameters

Return Value

[711] A list of effective rights that are consistent with the attrib_list and the access policy,
of the family specified by rights_family. If the rights cannot be mapped from one or
more attributes, the attribute is silently ignored.

get_all_effective_rights
[712] This operation returns the current effective rights (for all rights families) granted by

this Access Policy object to the subject possessing all privilege attributes in the list of
attributes attrib_list.

RightsList get_all_effective_rights(
 in AttributeList attrib_list

);

Parameters

Return Value

[713] A list of effective rights that are consistent with the attrib_list and the access policy.

[714] Note that this specification does not define how an Access Policy object combines
rights granted through different Privilege Attribute entries, in case a subject has more
than one Privilege Attribute to which the Access Policy grants rights. However, this
call will cause the Access Policy object to combine rights granted to all privilege
attributes in the input AttributeList (using whatever operation it has implemented),
and return the result of the combination.

[715] Access Decision objects, and applications that check whether access is permitted
without using an Access Decision object, should use this operation to retrieve rights
granted to subjects.

Specific Invocation Access Policies

[716] This specification allows different Invocation Access policies to be provided through
specialization of the AccessPolicy interface.

attrib_list A list of attributes obtained from one or more Credentials
using the get_attributes operation.

rights_family The family of rights to be affected, filtering rights that do not
that match rights_family.

Table 15-2

attrib_list A list of attributes obtained from one or more Credentials
using the get_attributes operation
15.6 AdministratorÕs Interfaces 15-139

[717] The provider of each specific Invocation Access policy is responsible for defining its
own administrative operations. This specification defines a standard Invocation Access
policy interface, including administrative operations, presented in the next section.
This standard policy may of course be replaced by, or augmented with, other policies.

The Domain AccessPolicy Object

[718] The Domain Access Policy object with the SecurityAdmin::DomainAccessPolicy
interface provides discretionary access policy management semantics. CORBA
implementations with policy requirements, which cannot be met by the Domain Access
Policy abstraction, may choose to implement different Access Policy objects. For
example, they may choose to implement access control policy management using
capabilities.

Domains
[719] This specification defines interfaces for administration of access policy on a domain

basis. Each domain may be assigned an access policy, which is applied to all objects in
the domain. Each access-controlled object in a CORBA system must be a member of at
least one domain.

[720] A Domain Access Policy object defines the access policy, which grants a set of named
ÒsubjectsÓ (e.g., users), a specified set of ÒrightsÓ (e.g., g, s, m, u) to perform
operations on the ÒobjectsÓ in the domain. A Domain Access Policy can be represented
by a table whose row labels are the names of subjects, and whose cells are filled with
the rights granted to the subject named in that rowÕs label, as in Table 15-3. Note that
the use of the Delegation State is discussed in ÒDelegation StateÓ on page 15-141.

[721] This Domain Access Policy grants the rights ÒgÓ and ÒsÓ to Alice and Zeke, and the
right ÒgÓ to Bob and Cathy. (The annotation ÒcorbaÓ prefixing the granted rights
indicates which Rights Family, as defined in the previous section, each of the rights in
the table is drawn from. In this case, all rights are drawn from Domain Access PolicyÕs
standard ÒcorbaÓ Rights Family. The delegation state column is described under
ÒDelegation StateÓ on page 15-141.

Table 15-3 DomainAccessPolicy

Subject Delegation State Granted Rights

alice initiator corba:gs--

bob initiator corba:g---

cathy initiator corba:g---

...

zeke initiator corba:gs--
15-140 Security Service v1.8 September 2000 [DRAFT]

15
Domain Access Policy Use of Privilege Attributes
[722] Administration of principals by individual identity is costly, so the Domain Access

Policy aggregates principals for access control. A common aggregation is called a
Òuser group.Ó This specification generalizes the way users are aggregated, using
ÒPrivilege AttributesÓ (as defined in ÒAccess PoliciesÓ on page 15-25). Users may have
many kinds of privilege attributes, including groups, roles, and clearances (note that
user access identities, often referred to simply as Òuser identitiesÓ or Òuserids,Ó are
considered to be a special case of privilege attributes). The Domain Access Policy
object uses Privilege Attributes as its subject entries.

[723] This specification does not provide an interface for managing user privilege attributes;
an implementation of this specification might provide a ÒUser Privilege Attribute
TableÓ enumerating the set of users granted each Privilege attribute. An implementor
might provide a user privilege attribute table, shown next.

[724] Given the definitions in this table, we can simplify our Domain Access Policy as
follows (note that, for convenience, each PrivilegeAttribute entry is annotated in the
table with its PrivilegeAttribute type).

Delegation State
[725] The Domain Access Policy abstraction allows administrators to grant different rights

when a Privilege attribute is used by a delegate than those granted to the same
Privilege attribute when used by an initiator (note that ÒinitiatorÓ means the principal
issuing the first call in a delegated call chain; that is, the only client in the call chain
that is not also a target object). The Domain Access Policy shown next illustrates the
use of this feature.

Table 15-4 User Privilege Attributes (not defined by this specification)

Users Privilege Attributes

bob, cathy group:programmers

zeke group:administrators

Table 15-5 Domain Access Policy (with Privilege Attributes)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--

group:programmers initiator corba:g---

group:administrators initiator corba:gs--

Table 15-6 Domain Access Policy (with Delegate Entry)

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba:gs--
15.6 AdministratorÕs Interfaces 15-141

[726] This Domain Access Policy grants Alice the ÒgÓ and ÒsÓ rights when she accesses an
object as an initiator, but only the ÒgÓ right when a delegate using her identity accesses
the same object.

Domain Access Policy Use of Rights and Rights Families
[727] The rights granted to a Privilege Attribute by a Domain Access Policy entry must each

be ÒtaggedÓ with the RightsFamily to which they belong. Each Domain Access Policy
entry can grant its rowÕs PrivilegeAttribute rights from any number of different Rights
Families.

[728] Implementations may define new Rights Families in addition to the standard ÒcorbaÓ
family, though this should be done only if absolutely necessary, since new Rights
Families complicate the administratorÕs model of the system.

Access Decision Use of AccessPolicy and RequiredRights
[729] The Access Decision object is described in ÒThe Access Decision ObjectÓ on

page 15-120. It is used at run-time to perform access control checks. Access Decision
objects rely upon Access Policy objects to provide the policy information upon which
their decisions are based.

[730] To complete the example, imagine that we have the following set of object instances..

[731] The Domain Access Policy object illustrated next has been updated to include a list of
rights of type ÒotherÓ granted to each of the Privilege attributes..

access_id:alice delegate corba:g---

group:programmers initiator corba:g---

group:administrators initiator corba:gs--

Table 15-7 Interface Instances

Objects Interface

obj_1, obj_8, obj_n c1

obj_2, obj_5 c2

obj_12 c3

Table 15-8 Domain Access Policy

Privilege Attribute Delegation State Granted Rights

access_id:alice initiator corba: gs--
other: -u-m-s

Table 15-6 Domain Access Policy (with Delegate Entry)
15-142 Security Service v1.8 September 2000 [DRAFT]

15
[732] Table 15-9 shows Required Rights for three object interfaces (c1, c2, and c3), using the
standard Rights Family ÒcorbaÓ and a second Rights Family, Òother,Ó whose rights set
is assumed to be {g, u, o, m, t, s}.

[733] Using this, we can calculate the effective access granted by this Domain Access
Policy.

¥ alice can execute operations m1 and m2 of objects obj_1, obj_8, and obj_n as an
initiator, but may execute only m2 as a delegate.

¥ alice can execute operations m3 and m4 of objects obj_2, and obj_5 as an initiator,
but may execute no operations of obj_2 and obj_5 as a delegate.

¥ alice can execute operations m5 and m6 of object obj_12 as an initiator, but may
execute no operations as a delegate.

¥ ÒprogrammersÓ can execute operation m2 of objects obj_1, obj_8, and obj_n as an
initiator, but no operations as a delegate.

¥ ÒprogrammersÓ can execute operation m3 of objects obj_2 and obj_5 as an initiator,
but no operations as a delegate.

¥ ÒadministratorsÓ can execute operations m1 and m2 of objects obj_1, obj_8, and
obj_n as an initiator, but no operations as a delegate.

¥ ÒadministratorsÓ can execute operations m5 and m6 of object obj_12 as an initiator,
but no operations as a delegate.

access_id:alice delegate corba: g---
other: ------

group:programmers initiator corba: g---
other: -u----

group:administrators initiator corba: gs--
other: ------

Table 15-9 Required Rights for Interfaces c1, c2, and c3

Required Rights Rights Combinator Operation Interface

corba:s all m1 c1

corba:gs any m2

other:u all m3 c2

other:ms all m4

other: s all m5 c3

corba:gs all m6

Table 15-8 Domain Access Policy
15.6 AdministratorÕs Interfaces 15-143

The SecurityAdmin::DomainAccessPolicy Interface

[734] The Domain Access Policy object provides operations for managing access policy
through the DomainAccessPolicy interface.

[735] Each domain manager may have at most one Access Policy object, and therefore at
most one Domain Access Policy (though an object instance may have more than one
domain manager, and therefore, more than one Domain Access Policy). The
DomainAccessPolicy interface inherits the AccessPolicy interface and defines
operations to specify which subjects can have which rights as follows.

grant_rights
[736] This operation grants the specified rights to the privilege attribute priv_attr in

delegation state del_state.

[737] Utilities that manage access policy should use this operation to grant rights to a single
privilege attribute.

void grant_rights(
in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

Parameters

Return Value

[738] None.

revoke_rights
[739] This operation revokes the specified rights of the privilege attribute priv_attr in

delegation state del_state.

[740] Utilities that manage access policy should use this operation to revoke rights granted to
a single privilege attribute.

void revoke_rights(
in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be granted.
15-144 Security Service v1.8 September 2000 [DRAFT]

15
Parameters

Return Value

[741] None.

replace_rights
[742] This operation replaces the current rights of the privilege attribute priv_attr in

delegation state del_state with the rights provided as input.

[743] Utilities that manage access policy should use this operation to replace rights granted
to a single privilege attribute in cases where using grant_rights and revoke_rights is
inappropriate. For example, replace_rights might be used to change an access_idÕs
authorizations to reflect a change in job description (since the change in authorization
in this case is related to the duties of the new job rather than to the current
authorizations granted to the user owning the access_id).

void replace_rights(
in SecAttribute priv_attr,
in DelegationState del_state,
in RightsList rights

);

Parameters

Return Value

[744] None.

get_rights
[745] This operation returns the current rights (of type RightsList) of the privilege attribute

priv_attr in delegation state del_state.

[746] Utilities that manage access policy should use this operation to retrieve rights granted
to an individual privilege attribute.

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be revoked.

priv_attr Privilege attributes to be affected.

del_state Delegation state to be set.

rights The list of rights to be replaced.
15.6 AdministratorÕs Interfaces 15-145

RightsList get_rights(
in SecAttribute priv_attr,
in DelegationState del_state,
in ExtensibleFamily rights_family

);

Parameters

Return Value

[747] A list of rights granted to the specified privilege attribute of the specified rights family
in the specified delegation state. If the rights cannot be mapped from one or more
attributes, the attribute is silently ignored.

get_all_rights
[748] This operation returns the current rights (for all rights families) of the privilege

attribute priv_attr in delegation state del_state.

[749] Utilities that manage access policy should use this operation to retrieve rights granted
to an individual privilege attribute.

RightsList get_all_rights(
 in SecAttribute priv_attr,
 in DelegationState del_state

);

Parameters

Return Value

[750] A list of rights granted to the specified privilege attribute in the specified delegation
state.

priv_attr Privilege attributes to which the requested rights are
granted.

del_state Delegation state to be set.

rights_family The family of rights to be affected, filtering rights that
do not that match rights_family.

priv_attr Privilege attributes to which the requested rights are
granted.

del_state Delegation state to be set.
15-146 Security Service v1.8 September 2000 [DRAFT]

15
15.6.5 Audit Policies

[751] There are two invocation audit policies: 1) the SecClientInvocationAudit policy,
which is used at the client side of an invocation, and 2) the SecTargetInvocationAudit
policy, which is used at the target side. There is also an application audit policy type.

[752] Audit policy administration interfaces are used to specify the circumstances under
which object invocations and application activities in this domain are audited. As for
access policies, this specification allows different audit policies to be specified, which
may have different administrative interfaces.

[753] Different audit policies are potentially possible, which allow a great range of options
of what to audit. Some of these are needed to respond to the problem of getting the
useful information, without generating huge quantities of audit information.

[754] Examples of what events could be audited during invocation include:

¥ Specified operations on objects.

¥ Failed operations (i.e., those that raise an exception) on specified object types in a
domain.

¥ Use of certain operations during certain time intervals (e.g., overnight).

¥ Access control failures on specified operations.

¥ Operations done by a specified principal.

¥ Combinations of these.

[755] Note that many of these events may be related to the business application. For
example, an operation of update_bank_account is a business, rather than system,
operation. However, some events are mainly of interest to a Privilege administrator
(e.g., access failures to systems objects).

[756] Application audit policies may audit similar types of events, though these are often
related to application functions, not object invocations.

The SecurityAdmin::AuditPolicy Interface

[757] The AuditPolicy interface can be used to administer both client and target invocation
audit policies.

[758] This standard audit policy is used to specify, for a set of event families and event
types, the selectors to be used to define which events are to be audited.
15.6 AdministratorÕs Interfaces 15-147

[759] These are related to the selectors used in audit_needed (of Audit Decision object,
interface AuditDecision) and audit_write (of Audit Channel object, interface
AuditChannel) as follows..

[760] Note that audit policy is managed on an audit policy domain basis. Assignment of
initial audit selectors to newly created domains is unspecified and hence may be
implementation-dependent.

[761] The audit policy also specifies an Audit Combinator for each event type. The Audit
Combinator defines how, for a given event type, audit_needed matches its selector
value list against the selectors in an audit policy. This specification defines two Audit
Combinators: SecAllSelectors (which means that if all selectors in an audit policy
match the selectors supplied to audit_needed, audit_needed will return TRUE), and
SecAnySelector (which means that if any selector in the audit policy matches a
selector in audit_needed, audit_needed will return TRUE).

[762] The following operations are available on the Audit Policy object.

set_audit_selectors
[763] This operation defines the selectors to be used to decide whether to audit the specified

event families and types.

void set_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events,
in SelectorValueList selectors,
in AuditCombinator audit_combinator

);

Table 15-10Standard Audit Policy

Selector Type Value on audit_needed
and audit_write

Value Administered

InterfaceName interface name CORBA::RepositoryId

ObjectRef object reference none - the policy applies to all objects in
the domain

Operation op_name operation

Initiator credential list security attributes (audit_id and
privileges)

Success
Failure

boolean boolean

Time utc when event
occurred

time interval during which auditing is
needed

DayOfWeek DayOfTheWeek day of the week on which audit is to be
done
15-148 Security Service v1.8 September 2000 [DRAFT]

15
Parameters

Return Value

[764] None.

clear_audit_selectors
[765] This clears all audit selectors for the specified event families and types.

void clear_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events

);

Parameters

Return Value

[766] None.

replace_audit_selectors
[767] This replaces the specified selectors.

object_type The type of objects for which an audit policy is being
set. If this is the empty string, the default policy for all
object types is implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll), the selectors apply to all
event types in that family.

selectors The values for the selectors to be set for the specified
events. Selectors replaces the old selector list for each
of the specified events. (Selectors for all other events
remain unchanged.)

audit_combinator The value for the combinator to be set for the specified
events.

object_type The type of objects for which an audit policy is being
cleared. If this is the empty string, the default policy
for all object types is implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll), the selectors apply to all
event types in that family.
15.6 AdministratorÕs Interfaces 15-149

void replace_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventTypeList events,
in SelectorValueList selectors
in AuditCombinator audit_combinator

);

Parameters

Return Value

[768] None.

get_audit_selectors
[769] This obtains the current values of the selectors for the specified event family or event.

void get_audit_selectors(
in CORBA::RepositoryId object_type,
in AuditEventType event_type
out SelectorValueList selectors
out AuditCombinator audit_combinator

);

Parameters

object_type The type of objects for which an audit policy is being
replaced. If this is the empty string, the default policy
for all object types is implied.

events Event types are specified as family and type ids. If the
type id is zero (AuditAll), the selectors apply to all
event types in that family.

selectors The values for the selectors to be set for the specified
events. Selectors replaces the old selector list for each
of the specified events. Selectors for all events not in
the specified events list are reset to empty lists.

audit_combinator The value for the combinator to be set for the specified
events.

object_type The type of objects for which an audit policy is being
obtained. If this is the empty string, the default policy
for all object types is implied.

eventtype The requested event type.

selectors The list of selector values for the specified event_type.

audit_combinator The audit combinator for the specified event_type.
15-150 Security Service v1.8 September 2000 [DRAFT]

15
Return Value

[770] None.

set_audit_channel
[771] This specifies the identity of the audit channel to be used with this audit policy. The

actual audit channel object corresponding to this id is provided to the user by the
corresponding Audit Decision object.

void set_audit_channel(
in AuditChannelId audit_channel_id

);

Parameters

Return Value

[772] None.

15.6.6 Secure Invocation and Delegation Policies

[773] These policies affect the way secure communications between client and target are set
up, and then used. There are three policies here:

1. Security::SecClientSecureInvocation policy, which specifies the client policy in
terms of trust in the targetÕs identity and protection requirements of the
communications between them.

2. Security::SecTargetSecureInvocation policy, which specifies the target policy in
terms of trust in the clientÕs identity and protection requirements of the
communications between them.

3. Security::SecDelegation policy, which specifies whether credentials are delegated
for use by the target when a security association is established between client and
target. This is a client side policy.

[774] In all these cases, there is a standard policy interface for administering the policy
options. Unlike access and audit policies, this is not replaceable. The standard policy
administration operations allow support of a range of policies.

Secure Invocation Policies

[775] These are used to set client and target invocation policies which specify both a set of
required secure association options and a set of supported options that control how:

¥ The security association is made, for example, whether trust between client and
target is established (implying authentication if the client and target are not in the
same identity domain).

audit_channel_id A unique identifier associated with an audit channel.
15.6 AdministratorÕs Interfaces 15-151

¥ Messages using that association are protected, for example, the levels of integrity
and confidentiality.

[776] The administrator should specify the required association options, but will often not
need to specify the supported options as these default to the ones supported by the
security mechanism used. However, the administrator could choose to restrict what is
supported, and in this case, should specify supported options.

[777] Some implementations may support separate sets of association options for
communications in the request direction and the reply direction (e.g., for an application
that requires no protection on the request, but confidentiality on the reply).
Conforming implementations are not required to support this unidirectional feature.
Some selectable policy options may not be meaningful to set for a certain direction
(e.g., the EstablishTrustInTarget option is not meaningful for a reply).

[778] Both SecClientSecureInvocation and SecTargetSecureInvocation type policy objects
support the same interface, though not all of the selectable policy options are
meaningful to both client and target.

Required and Supported Secure Invocation Policy
[779] For both the SecClientSecureInvocation and SecTargetSecureInvocation policies, a

separate set of secure association options may be established to indicate required
policy and supported policy. The required policy indicates the options that an object
requires for communications with a peer. The supported policy specifies the options
that an object can support if requested by a communicating peer.

[780] The required options indicate the minimum requirements of the object, stronger
protection is not precluded.

Secure Association Options

[781] The selectable secure association options (Security::AssociationOptions) are listed
next with a description of their semantics for required policy and supported policy.

NoProtection
¥ Required semantics: the objectÕs minimal protection requirement is unprotected

invocations.

¥ Supported semantics: the object supports unprotected invocations.

Integrity
¥ Required semantics: the object requires at least integrity-protected invocations.

¥ Supported semantics: the object supports integrity-protected invocations.

Confidentiality
¥ Required semantics: the object requires at least confidentiality-protected

invocations.
15-152 Security Service v1.8 September 2000 [DRAFT]

15
¥ Supported semantics: the object supports confidentiality-protected invocations.

DetectReplay
¥ Required semantics: the object requires replay detection on invocation messages.

¥ Supported semantics: the object supports replay detection on invocation messages.

DetectMisordering
¥ Required semantics: the object requires sequence error detection on fragments of

invocation messages.

¥ Supported semantics: the object supports sequence error detection on fragments of
invocation messages.

EstablishTrustInTarget
¥ Required semantics: On client policy, the client requires the target to authenticate

its identity to the client. On target policy, this option is not meaningful.

¥ Supported semantics: On client policy, the client supports having the target
authenticate its identity to the client. On target policy, the target is prepared to
authenticate its identity to the client.

EstablishTrustInClient
¥ Required semantics: On client policy, this option is not meaningful. On target

policy, the target requires the client to authenticate its privileges to the target.

¥ Supported semantics: On client policy, the client is prepared to authenticate its
privileges to the target. On target policy, the target supports having the client
authenticate its privileges to the target.

[782] Note that on an invocation, if both the client and target policies specify that peer trust
is needed, mutual authentication of client and target is generally required.

[783] If the target accepts unauthenticated users as well as authenticated ones, the
EstablishTrustInClient option may be set for supported policy, but not for required
policy. This allows unauthenticated clients to use this target (subject to access
controls); the target can still insist on only authenticated users for certain operations by
using access controls.

The SecurityAdmin::SecureInvocationPolicy Interface

[784] The SecureInvocationPolicy interface provides the following operations:

set_association_options
[785] This operations of the SecurityAdmin::SecureInvocationPolicy interface (PolicyType

SecClientSecureInvocation and SecTargetSecureInvocation) is used to set the secure
association options for objects in the domain to which the policy applies. Separate
options may be set for particular object types by using the object_type parameter.
15.6 AdministratorÕs Interfaces 15-153

[786] This call allows requesting a different set of association options for communication in
the request direction versus the reply direction, although conforming implementations
are not required to support this feature. The ÒrequestÓ and ÒreplyÓ options sets are
treated as overrides to the ÒbothÓ options set when evaluating policy for a single
communication direction. Implementations should raise the CORBA::BAD_PARAM
exception if an unsupported direction is requested on this call.

[787] Not all selectable association options are meaningful for every policy set. For example,
EstablishTrustInClient, which is meaningful for the SecTargetSecureInvocation
policy, is not meaningful as a requirement for the SecClientSecureInvocation policy.
Likewise, certain association options do not make sense when applied to only a single
direction (e.g., EstablishTrustInTarget is not meaningful for communication in the
reply direction). An implementation may choose whether to raise an exception or
silently ignore requests for invalid association options.

void set_association_options(
in CORBA::RepositoryId object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction,
in AssociationOptions options

);

Parameters

Return Value

[788] None.

get_association_options
[789] This is used to find what secure association options apply on

SecClientSecureInvocation and SecTargetSecureInvocation policy objects for the
required or supported policy, for the indicated direction, and for the specified object
type.

[790] Implementations should raise the CORBA::BAD_PARAM exception if an
unsupported direction is requested on this call.

object_type The type of objects that the association options apply
to. If this parameter is an empty string, all object types
are implied

requires_supports Indicates whether the operation applies to the required
options or the supported options

direction Indicates whether the options apply to only the request,
only the reply, or to both directions of the invocation.

options Indicates requested secure association options by
setting the corresponding options flags.
15-154 Security Service v1.8 September 2000 [DRAFT]

15
AssociationOptions get_association_options(
in CORBA::RepositoryId object_type,
in RequiresSupports requires_supports,
in CommunicationDirection direction

);

Parameters

Return Values

[791] The association options flags set for this policy.

The SecurityAdmin::DelegationPolicy Interface

[792] The Delegation Policy object, which has the SecurityAdmin::DelegationPolicy
interface, controls which credentials are used when an intermediate object in a chain
invokes another object.

set_delegation_mode
[793] The set_delegation_mode operation specifies which credentials are delegated by

default at an intermediate object in a chain where objects invoke other objects. This
default can be overridden by the object at run time.

void set_delegation_mode(
in CORBA::RepositoryId object_type,
in DelegationMode mode

);

Parameters

object_type The type of objects that the association options apply
to. If this parameter is an empty string, all object types
are implied

requires_supports Indicates whether the operation applies to the required
options or the supported options

direction Indicates whether the options apply to only the request,
only the reply, or to both directions of the invocation.

object_type The type of objects to which this delegation policy applies.

mode The delegation mode. Options are:
15.6 AdministratorÕs Interfaces 15-155

Return Value

[794] None.

get_delegation_mode
[795] This returns the delegation mode associated with the object.

DelegationMode get_delegation_mode(
in CORBA::RepositoryId object_type

);

Parameters

Return Value

[796] The delegation mode of the object type specified by the object_type parameter.

15.6.7 Non-repudiation Policy Management

[797] This section defines interfaces for management of non-repudiation policy.

[798] Non-repudiation policies define the following:

¥ Rules for the generation of evidence, such as the trusted third parties which may be
involved in evidence generation and the roles in which they may be involved and
the duration for which the generated evidence is valid.

¥ Rules for the verification of evidence, for example, the interval during which a
trusted third party may legitimately declare its key to have been compromised or
revoked.

¥ Rules for adjudication, for example, which authorities may be used to adjudicate
disputes.

SecDelModeNoDelegation The intermediateÕs own credentials are
used for future invocations.

SecDelModeSimple
Delegation

The initiating principal credentials are
delegated.

SecDelModeComposite
Delegation

Both the received credentials and the
intermediate objectÕs own credentials
are passed (if the underlying security
mechanism supports this). The
requesterÕs credentials and the
intermediateÕs own credentials may be
combined into a single credential, or
kept separate, depending on the
underlying security mechanism.

object_type The type of object for which delegation mode is requested.
15-156 Security Service v1.8 September 2000 [DRAFT]

15
[799] The non-repudiation policy itself may be used by the adjudicator when resolving a
dispute. For example, the adjudicator might refer to the non-repudiation policy to
determine whether the rules for generation of evidence have been complied with.

[800] For each type of evidence, a policy defines a validity duration and whether trusted time
must be used to generate the evidence.

[801] For each non-repudiation mechanism, a policy defines the set of trusted third parties
(ÒauthoritiesÓ), which may be used by the mechanism. A policy also defines, for each
mechanism, the maximum allowable ÒskewÓ between the time of generation of
evidence and the time of countersignature by a trusted time service; if the interval
between these two times is larger than the maximum skew, the time is not considered
to be trusted.

[802] For each authority, a policy defines which roles the authority may assume, and a time
offset, relative to evidence generation time, which allows computation of the last time
at which the authority can legitimately declare its key to have been compromised or
revoked. For example, if an authority has a defined last_revocation_check_offset of
negative one hour, then all revocations taking effect earlier than one hour before the
generation of a piece of evidence will render that evidence invalid; no revocation
taking place later than one hour before the generation of the evidence will affect the
evidenceÕs validity. Note that the last_revocation_check_offset is inclusive, in the
sense that all revocations occurring up to and including the time defined by
generation_time + offset are considered effective.

Data Types for Non-repudiation Policy Management Interfaces

[803] The following data types are used by the NR policy management operations.

module NRservice {

struct EvidenceDescriptor {
EvidenceType evidence_type,
DurationInMinutes evidence_validity_duration,
boolean must_use_trusted_time

};

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name,
string authority_role,
TimeOffsetInMinutes last_revocation_check_offset
// may be >0 or <0; add this to evid. gen. time to
// get latest time at which mech. will check to see
// if this authorityÕs key has been revoked.

};

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;
15.6 AdministratorÕs Interfaces 15-157

struct MechanismDescriptor {
NRMech mech_type,
AuthorityDescriptorList authority_list,
TimeOffsetInMinutes max_time_skew
// max permissible difference between evid. gen. time
// and time of time service countersignature
// ignored if trusted time not reqd.

};

typedef sequence <MechanismDescriptor> MechanismDescriptorList;
};

The NRservice::NRPolicy Interface

[804] The NRPolicy interface has the get_NR_policy_info and set_NR_policy_info
operations, and like all other Policy interfaces it derives from the CORBA::Policy
interface.

get_NR_policy_info
[805] Returns information from a non-repudiation policy object.

void get_NR_policy_info(
out ExtensibleFamily NR_policy_id,
out unsigned long policy_version,
out TimeT policy_effective_time,
out TimeT policy_expiry_time,
out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList supported_mechanisms

);

Parameters

Return Value

[806] None.

NR_policy_id The identifier of this non-repudiation policy.

policy_version The version number of this non-repudiation policy.

policy_effective_time The time at which this policy came into effect.

policy_expiry_time The time at which this policy expires.

supported_evidence_
types

The types of evidence that can be generated under this
policy.

supported_mechanisms The non-repudiation mechanisms which can be used to
generate and verify evidence under this policy.
15-158 Security Service v1.8 September 2000 [DRAFT]

15
set_NR_policy_info
[807] Updates non-repudiation policy information.

boolean set_NR_policy_info(
in MechanismDesciptorList requested_mechanisms,
out MechanismDescriptorList actual_mechanisms

);

Parameters

Return Value

15.7 ImplementorÕs Security Interfaces

[808] This section addresses Security Service replaceability. This section defines the security
service interfaces that allow different security service implementations to be
substituted, whether or not the generic ORB service interfaces are supported (see
Section 15.7.2, ÒImplementation-Level Security Object Interfaces,Ó on page 15-165,
for details).

[809] Appendix D, ÒGuidelines for a Trustworthy SystemÓ on page 15-348, offers additional
guidance to implementors of secure ORBs, including a discussion of using protection
boundaries to separate components, depending on the level of security required.

[810] The description of security interceptors in Section 15.7.1, ÒSecurity Interceptors,Ó on
page 15-160 (particularly that in Invocation Time Policies), specifies how client and
target side policies and client preferences are used to decide what policy options to
enforce. This definition of how the options are used applies whether the ORB
conforms to the replaceability options or not. The interceptor facility that this is based
on is defined in the Interceptors chapter of the Common Object Request Broker:
Architecture and Specification.

[811] None of the interfaces defined in this section affect the application and administrator's
views described in Section 15.5, ÒApplication DeveloperÕs Interfaces,Ó on page 15-87,
and Section 15.6, ÒAdministratorÕs Interfaces,Ó on page 15-132.

requested_mechanisms The non-repudiation mechanisms to be supported under
this policy.

actual_mechanisms The non-repudiation mechanisms now supported under
this policy.

TRUE The requested mechanisms were all set.

FALSE If the actual mechanisms returned differ from those
requested.
15.7 ImplementorÕs Security Interfaces 15-159

15.7.1 Security Interceptors

[812] This section describes the interceptors that can be used for implementing the security
services.

[813] The ORB Services replaceability package requires implementation of two security
interceptors (see the Interceptors chapter of the Common Object Request Broker:
Architecture and Specification):

¥ Secure Invocation Interceptor. This is a message-level interceptor. At bind time,
this establishes the security context required to support message protection. When
processing a request, it is a message-level interceptor that uses cryptographic
services to provide message protection and verification. It is able to check and
protect messages (requests and replies) for both integrity and confidentiality.

¥ Access Control Interceptor. This is a request-level interceptor, which determines
whether an invocation should be permitted. This interceptor also handles auditing of
general invocation failures, but not related to denial of access (access-control denial
failures are audited within the Access Decision object, which is called by this
interceptor to check access control).

[814] This specification does not define a separate audit interceptor, as the other
interceptorsÕ implementations or the security service implementations call Audit
Service interfaces directly if the events for which they are responsible are to be
audited.

[815] The security interceptors implement security functionality by calling the replaceable
security service objects (defined later in this section) as shown in Figure 15-54.

Figure 15-54 Security Functionality Implemented by Security Service Objects

reply request

ORB Core

Client

Control

Client

Invocation

Client
Access
Decision

Vault

Security
Context

Target
Access
Decision

Vault

Security
Context

per request

to set up
security
association

per message

create create

replyrequest

Secure

Interceptors

 Access

Interceptors

Target

Control

Target

Invocation
Secure

Interceptors

 Access

Interceptors
15-160 Security Service v1.8 September 2000 [DRAFT]

15
[816] The diagram shows the order in which security interceptors are called. Other
interceptors may also be used during the invocation. The order in which other
interceptors are called in relationship to security interceptors depends on the type of
interceptor.

[817] At the client:

¥ In general, the access control interceptor should be called first (to avoid
unnecessary processing of the request by other interceptors when permission to
perform the request is denied).

¥ All request level interceptors (e.g., transaction or replication ones) are called before
the secure invocation interceptor, as the secure invocation interceptor is a message-
level interceptor.

The secure invocation interceptor should ordinarily be the last interceptor invoked
(because message protection may encrypt the request, so that the code
implementing a further interceptor will not understand it). Even if only integrity
protection is used, the integrity check will fail if the message has been altered in
any way. Note that data compression and data fragmentation should be applied
before the message-protection interceptor is called.

[818] At the target, analogous rules apply to the interceptors in the reverse order.

Invocation Time Policies

[819] Interceptors decide what security policies to enforce on an invocation as follows:

¥ They call the SecurityLevel2::SecurityManager::get_security_policy operation
defined in Section 15.5, ÒApplication DeveloperÕs Interfaces,Ó on page 15-87, to
find what policies apply to this client (at the client side) or this target (at the target
side).

¥ At the client side, the security hints in the target object reference are used to find
what policies apply to the target object and what security mechanisms and protocols
are supported. This uses operations on the object reference.

¥ At the client, the overrides set by the client on the credentials or target object
reference and the security supported by the mechanism in the clientÕs environment
are taken into account.

[820] The SecurityManager::get_security_policy operation may be used to get any of the
following policies:

¥ The invocation access policies of the current execution context. These are used by
the access control interceptor to check whether access is permitted.

¥ The invocation audit policy. This is used by interceptors and security services to
check whether to audit events during an invocation.

¥ The secure invocation policy. This is used by the secure invocation interceptor at
bind time. It uses SecureInvocationPolicy::get_association_options as defined in
Section 15.6, ÒAdministratorÕs Interfaces. The secure invocation policies (and hints
in the object reference) specify required and supported values. The interceptor
15.7 ImplementorÕs Security Interfaces 15-161

checks that the required values can be supported, and will not continue with the
invocation if the clientÕs requirements are not met. If the targetÕs requirements are
not met, the invocation may optionally proceed, allowing policy enforcement at the
target.

¥ The invocation delegation policy. This is used by the secure invocation interceptor
at bind time. The interceptor calls SecureInvocationPolicy::get_delegation_mode
to retrieve this information.

Secure Invocation Interceptor

[821] At bind time, the secure invocation interceptor establishes a security context, which the
client initiating the binding can use to securely invoke the target object designated by
the object reference used in establishing the binding. At object invocation time, the
secure invocation interceptor is called to use the (previously established) security
context to protect the message data transmitted from the client to the invoked target
object.

[822] Please note that the remainder of this section assumes that security interceptors are
implemented using the security services replaceability interfaces defined in this
specification; interceptors built for implementations which do not provide the security
services replaceability interfaces will have similar responsibilities, but will obviously
make different calls.

[823] It should also be noted that binding takes place implicitly and the exact point at which
it occurs can vary from one ORB to another. All that one can be certain of is that a
binding exists when an invocation of an operation takes place. There is no certainty
that the same binding will be used in subsequent invocations. Consequently, the
discussion that follows is about binding states and what must happen when the act of
implicit binding is executed by the ORB. All reference to the term ÒBindÓ should be
interpreted as such.

Bind Time - Client Side
[824] The Secure Invocation interceptorÕs client bind time functions are used to:

¥ Find what security policies apply.

¥ Establish a security association between client and target. This is done on first
invoking the object, but may be repeated when changes to the security context
occur.

[825] Security policies relevant to this interceptor are the client secure invocation and
delegation policies. To retrieve the invocation policy objects, the Secure Invocation
interceptor calls the SecurityManager::get_security_policy operation.

[826] The interceptor checks if there is already a suitable security context object for this
clientÕs use of this target. If a suitable context already exists, it is used. If no suitable
context exists, the interceptor establishes a security association between the client and
target object (see ÒEstablishing Security AssociationsÓ on page 15-21).
15-162 Security Service v1.8 September 2000 [DRAFT]

15
[827] The client interceptor calls Vault::init_security_context to request the security
features (such as QOP, delegation) required by the client policy, client overrides and
target (as defined in its object reference). The Vault returns a security token to be sent
to the target, and indicates whether a continuation of the exchange is needed. It also
returns a reference to the newly-created Security Context object for this client-target
security association. (The way trust is established depends on policy, the security
technology used, and whether both client and target object are in the same identity
domain. It may involve mutual authentication between the objects and negotiation of
mechanisms and/or algorithms.)

[828] The interceptor constructs the association establishment message (including the
security token, which must be transferred to the target to permit it to establish the
target-side Security Context object). The association establishment message may be
constructed in one of two ways:

1. When only the initial security token is needed to establish the association, the
association establishment message may also include the object invocation in the
buffer (i.e., the request) supplied to the interceptor when it was invoked by
send_message. After constructing the association establishment message, the
interceptor invokes send, which results in the ORB sending the message to the
target. After receipt at the target, the association establishment message is
intercepted by the Secure Invocation Interceptor in the target, which at bind time
calls Vault::accept_security_context to create the target Security Context object
(if needed).

2. When several exchanges are required to establish the security association, the
association establishment message is sent separately, in a message that does not
include the object invocation in the buffer (i.e., the request), again using send. This
message is intercepted in the target and the Vault called to create the Security
Context object. However, in this case, the target interceptor must generate another
security token and send it back to the client interceptor. The client interceptor calls
the Security Context object with a continue_security_context operation passing
the token returned from the target to check if trust has now been established. There
may be several exchanges of security tokens to complete this. Once the security
association has been established, the original client object invocation (i.e., request)
is sent in a separate association establishment message.

[829] Details of the transformation to the request and the association establishment message
formats appear in Section 15.8, ÒSecurity Interoperability Protocols,Ó on page 15-190.

Bind Time - Target Side
[830] The secure invocation interceptorÕs target bind functions:

¥ Find the target secure invocation policies.

¥ Respond to association establishment messages from the client to establish security
associations.

[831] On receiving an association establishment message, the target secure invocation
interceptor separates it (if needed) into the security token and the request message and
uses the Vault (if there is no security context object yet) or the appropriate Security
15.7 ImplementorÕs Security Interfaces 15-163

Context object to process the security token. As previously described, this may result
in exchanges with the client. Once the association is established, the message
protection function described next is used to reclaim the request message and protect
the reply.

Message Protection (Client and Target Sides)
[832] The Secure Invocation Interceptor is used after bind time for message protection,

providing integrity and/or confidentiality protection of requests and responses,
according to quality of protection requirements specified for this security association in
the active Security Context object.

[833] The Secure Invocation InterceptorÕs send_message method calls
SecurityContext::protect_message, and its receive_message method calls
SecurityContext::reclaim_message, in each case using the appropriate Security
Context object.

Access Control Interceptor

Bind Time
[834] At bind time, the client access control interceptor uses

SecurityManager::get_security_policy to get the SecClientInvocationAccess policy
and SecClientInvocationAudit policy. The target access control interceptor uses the
SecurityManager::get_security_policy operation to get the
SecTargetInvocationAccessPolicy and SecTargetInvocationAudit policy.

Access Decision Time
[835] The Access Control Interceptor decides whether a request should be allowed or

disallowed.

[836] Access control decisions may be made at the client side, depending on the client access
control policy, and at the target side depending on the targetÕs access control policy.
Target side access controls are the norm; client-side access controls can be used to
reduce needless network traffic in distributed ORBs. Note that in some ORBs, system
integrity considerations may make exclusive reliance on client-side access control
enforcement undesirable.

[837] The Access Control Interceptor client_invoke and target_invoke methods invoke the
access_allowed method of the Access Decision object, specifying the appropriate
authorization data. The access decision returns a boolean specifying whether the
request should be allowed or disallowed.

[838] The Access Control Interceptor does not know what sort of policy this Access Decision
object supports. It may be ACL-based, capability-based, label-based, etc. It also does
not know if the Access Decision object uses the credentials exactly as passed, or takes
the identity from the credentials and uses these to find further valid privileges if
needed for this principal from a trusted source.
15-164 Security Service v1.8 September 2000 [DRAFT]

15
[839] The Access Control Interceptor may also check if this invocation attempt should be
audited, by calling the audit_needed operation on the Audit Decision object; if this
call indicates that the invocation attempt should be audited, the Access Control
Interceptor uses the AuditChannel interface to write the appropriate audit record.

[840] This interceptor does not transform the request. It either passes the request unchanged
to continue processing the request, or it aborts the request by returning with an
appropriate exception (e.g., CORBA::NO_PERMISSION if AccessDecision::
access_allowed returns False).

15.7.2 Implementation-Level Security Object Interfaces

[841] The interfaces described in this section are all provided by the underlying security
infrastructure and the Object Security Service is a client of these interfaces. Since the
interfaces are internal to the ORB Security implementation, all these interfaces are
local.

[842] This specification defines the following implementation-level security object interfaces
to support security service replaceability:

¥ Vault is used to create a security context for a client/target-object association.

¥ Security Context objects hold security information about the client-target security
association and are used to protect messages.

¥ Credentials object is used for passing Credentials information between the security
infrastructure and the ORB Security Services.

¥ Access Decision objects are used (usually by Access Control Interceptors) to decide
if requests should be allowed or disallowed.

¥ Audit Decision. objects are used to decide if events are to be audited.

¥ Audit Channel objects are used to write audit records to the audit trail.

¥ Principal Authenticator object is used for authenticating a principal.

¥ NRCredentials object is used for passing non repudiation credentials informations.

The Vault Object

[843] The Vault object with the SecurityReplaceable::Vault interface facilitates creating
credentials objects and establishing security contexts between clients and targets when
they are in different trust domains. Authentication is required to establish trust. The
Vault is a local object. Implementations of the Vault are responsible for calling
AuditDecision::audit_needed to determine whether the audit policy requires auditing
of successful and/or failed access control checks, and for calling
AuditChannel::audit_write whenever audit is needed.
15.7 ImplementorÕs Security Interfaces 15-165

The SecurityReplaceable::Vault Interface

[844] The Vault operations are described below. Note that if an invocation of a Vault
operation results in an incomplete Security Context (i.e., one which requires continued
dialogue to complete), the continuation of the dialogue is accomplished using the
interface of the incomplete Security Context object rather than the Vault interface.

acquire_credentials
[845] This operation is called to authenticate the principal and optionally request privilege

attributes that the principal requires during its capsule specific session with the system.
It creates a capsule specific Credentials object including the required attributes.

AuthenticationStatus acquire_credentials(
in AuthenticationMethod method,
in MechanismType mechanism,
in SecurityName security_name,
in any auth_data,
in AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Parameters

method Contains the identifier of the authentication method used

mechanism Contains the security mechanism with which to create the
Credentials.

security_name Contains the principalÕs identification information (e.g., login
name).

auth_data Contains the principalÕs authentication information such as
password or long term key.

privileges Contains the privilege attributes requested.

creds Contains a local object reference of the newly created
Credentials object. It is usable and placed on the Current
objectÕs own_credentials list only if the return value is
ÔSecAuthSuccess.Õ

auth_specific_data Information specific to the particular authentication service used

continuation_data If the return parameter from the authenticate operation is
ÔSecAuthContinue,Õ then this parameter contains challenge
information for authentication continuation.
15-166 Security Service v1.8 September 2000 [DRAFT]

15
Return Value

[846] The return parameter is used to specify the result of the operation.

continue_credentials_acquistion
[847] This continues the authentication process for authentication procedures that cannot

complete in a single operation. An example of this might be a challenge/response type
of authentication procedure.

AuthenticationStatus continue_credentials_acquisition(
in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Parameters

ÔSecAuthSuccessÕ Indicates that the object reference of the newly created
initialized credentials object is available in the creds
parameter.

ÔSecAuthFailureÕ Indicates that authentication was in some way inconsistent
or erroneous, and therefore credentials have not been
created.

ÔSecAuthContinueÕ Indicates that the authentication procedure uses a
challenge/response mechanism. The creds contains the
object reference of a partially initialized Credentials
object. The continuation_data indicates details of the
challenge.

ÔSecAuthExpiredÕ Indicates that the authentication data contained some
information, the validity of which had expired (e.g., expired
password). Credentials have therefore not been created.

response_data Contains the response data to the challenge.

creds Contains the reference of the partially initialized Credentials
object. The Credentials object is fully initialized only when
return parameter is ÔSecAuthSuccess.Õ

continuation_data If the return parameter from the continue_authentication
operation is ÔSecAuthContinue,Õ then this parameter contains
challenge information for authentication continuation.

auth_specific_data Contains information specific to the particular authentication
service used.
15.7 ImplementorÕs Security Interfaces 15-167

Return Value

The return parameter is used to specify the result of the operation.

init_security_context
[848] This operation is used by the association interceptor (or the ORB if separate

interceptors are not implemented) at the client to initiate the establishment of a security
association with the target. This operation creates the ClientSecurityContext object
that represents the clientÕs view of the shared security context.

AssociationStatus init_security_context(
in Credentials creds,
in SecurityName target_security_name,
in Object target,
in DelegationMode delegation_mode,
in OptionsDirectionPairList association_options,
in MechanismType mechanism,
in Opaque comp_data,
in ChannelBindings chan_bindings,
out OpaqueBuffer security_token,
out ClientSecurityContext security_context

);

Parameters

ÔSecAuthSuccessÕ Indicates that the Credentials object whose reference was
identified by the creds parameter is now fully initialized.

ÔSecAuthFailureÕ Indicates that the response data was in some way
inconsistent or erroneous, and that therefore credentials
have not been created.

ÔSecAuthContinueÕ Indicates that the authentication procedure requires a
further challenge/response. The Credentials object whose
reference was identified in the creds parameter is still only
partially initialized. The continuation_data indicates
details of the next challenge.

ÔSecAuthExpiredÕ Indicates that the authentication data contained some
information whose validity had expired (e.g., expired
password). The Credentials object referred to by the creds
parameter is not valid.

creds The credentials to be used to establish the security
association.

target_security_name The security name of the target as set in its object
reference.

target The target object reference.
15-168 Security Service v1.8 September 2000 [DRAFT]

15
Return Value

[849] The return value is used to specify the result of the operation.

delegation_mode The mode of delegation to employ. The value is obtained
by combining client policy and application preferences as
described in Invocation Time Policies under
Section 15.7.1, ÒSecurity Interceptors,Ó on page 15-160.

association_options A sequence of one or more pairs of secure association
options and direction. The options include such things as
required peer trust and message protection. Normally,
one pair will be specified, for the ÒbothÓ direction.
Implementations that support separate association options
for requests and replies may supply an additional options
set for each direction supported. These values are
obtained from a combination of the clientÕs security
policy, the hints in the target object reference, and any
requests made by the application.

mechanism Normally the empty string, meaning use default
mechanism for security associations. Otherwise, it
contains the security mechanism(s) requested. (These
may have been obtained from the target object reference.)

comp_data The component data from the specific
IOP::TaggedComponent the ORB has selected from a
targetÕs object reference..

chan_binding The channel bindings for the security context. The are the
channel bindings defined for the GSS-API.

security_token The token to be transmitted to the target to establish the
security association. Note that this may take several
exchanges, but operations required at the client to
continue the establishment of the association are on the
Security Context object.

security_context The initialized security context.

SecAssocSuccess Indicates that the security context has been successfully
created and that no further interactions with it are needed to
establish the security association.

SecAssocFailure Indicates that there was some error, which prevents
establishment of the association.

SecAssocContinue Indicates that the association procedure needs more
exchanges.
15.7 ImplementorÕs Security Interfaces 15-169

accept_security_context
[850] This operation is used by the association interceptor (or ORB) at the target to accept a

request from the client to establish a security association. This operation creates the
ServerSecurityContext object that represents the targetÕs view of the shared security
context.

AssociationStatus accept_security_context(
in CredentialsList creds_list,
in ChannelBindings chan_bindings,
in OpaqueBuffer in_token,
out OpaqueBuffer out_token,
out ServerSecurityContext security_context

);

Parameters

Return Value

get_supported_mechs
[851] This operation returns the mechanism types supported by this Vault object and the

association options these support.

creds_list The credentials of the target. Note that this may be the
credentials of the trust domain, not the individual object.

chan_bindings The channel bindings for the security context. They are
the channel bindings as specified for the GSS-API.

in_token The security token transmitted from the client.

out_token If establishment of the security association is not yet
complete, this contains the security token to be
transmitted to the client to continue the security dialogue.
Note that any further operations needed to complete the
security association are on the security context object.

security_context The Security Context object at the target which
represents the shared security context between client and
target.

SecAssocSuccess Indicates that the security context has been successfully
created and no further interactions with it are needed to
establish the security association.

SecAssocFailure Indicates that there was some error that prevents
establishment of the association.

SecAssocContinue The first stage of establishing the security association has
been successful, but it is not complete. The out_token
contains the token to be returned to continue it.
15-170 Security Service v1.8 September 2000 [DRAFT]

15
MechandOptionsList get_supported_mechs ();

Parameters

[852] None.

Return Value

[853] The list of mechanism types supported by this Vault object and the association options
they support.

supported_mech_oids
[854] This readonly attribute contains a sequence of OIDs each of which identifies a

particular GSS mechanism that the Vault supports.

get_supported_authen_methods
[855] This operation returns the authentication methods that are valid for a particular

mechanism that the Vault object supports. This operation raises a
CORBA::BAD_PARAM exception if the vault does not support the mechanism.

AuthenticationMethodList get_supported_authen_methods(
in MechanismType mechanism

);

Parameters

Return Value

[856] The list of authentication methods supported by this Vault object for the particular
mechanism.

create_ior_components
[857] This operation is called to create a set of security related Tagged Components that

indicate the security mechanisms supported by the Vault and the given set of
Credentials objects.

IOP::TaggedComponentSeq create_ior_components(
in CredentialsList creds_list

);

mechanism Contains the mechanism for which the authentication methods
are valid.
15.7 ImplementorÕs Security Interfaces 15-171

Parameters

Return Value

[858] This operation returns the Tagged Components.

The Security Context Object

[859] A Security Context object with the SecurityReplaceable::SecurityContext interface
represents the shared security context between a client and a target. It is a local object.
It is used as follows:

¥ By the security association interceptors to complete the establishment of a security
association between client and target after the Vault has initiated this.

¥ By the message protection interceptors in protecting messages for integrity and/or
confidentiality.

¥ In response to a target objectÕs request to Current for privileges and other
information (sent from the client) about the initiating principal.

¥ In response to a target objectÕs request to Current to supply one (or more)
credentials object(s) from incoming information about principal(s).

¥ To check if the security context is valid, and if not, try and refresh it.

[860] The Security Context object is a stateful object that goes through state transitions
based on the result of calls on its operations. It also may go through state transitions
based on environmental concerns such as an amount of time that has expired. An
implementation of a Security Context must model the following states:

InitialInitial state of any Security Context.

ContinuedThe Security Context is in process of negotiation and not yet established.
This state corresponds to SECIOP state S1 and S3

ClientEstablishedThe Security Context is established on the client side. This means
evidence from the target may not need to be processed before
messages can be protected and sent to the target side. This state
corresponds to SECIOP state S2.

EstablishedThe Security Context is fully established. It is able to process all messages.
This state corresponds to SECIOP state S3.

EstablishExpiredThe negotiation has expired.

ExpiredThe Security Context has expired.

InvalidThe Security Context is invalid.

[861] The state transitions are modeled by the following diagram

creds_list This argument lists the credentials that are to be considered in
creating the Tagged Components.
15-172 Security Service v1.8 September 2000 [DRAFT]

15
Figure 15-55 Security Context State Transition Diagram

[862] An implementation of a Security Context that transitions into the ClientEstablished
state, which must only be on the client side of the context, must allow successful
processing of protect_message operations.

[863] From any state, a context may enter the Expired or Invalid (not pictured) states due to
environmental events or bad operations. Contexts in the ClientEstablished,
Established, and Expired state may be refreshed, although, it is not a requirement that
refresh be successful for all those states (i.e. some mechanisms may only allow refresh
of unexpired contexts). If refresh is not supported for this context, then the
supports_refresh attribute must be false.

The SecurityReplaceable::SecurityContext Interface

[864] The SecurityReplaceable::SecurityContext interface has the following attributes and
operations:

context_type
[865] The context_type readonly attribute returns the orientation type of the security

association. It has the following definition:

Initial

Continued
Client
Established

Established

Establish
Expired

Expired

Invalid
init_security_context
accept_security_context

init_security_context

continue_security_context

discard_security_context

Operation Transition

Environmental Transition
15.7 ImplementorÕs Security Interfaces 15-173

readonly attribute SecurityContextType context_type;

Return Value

context_state
[866] The context_state readonly attribute returns state of the security association. A

security context goes through a number of different states during the establishment and
use of the secure association. It has the following definition:

readonly attribute SecurityContextState context_state;

Return Value

mechanism
[867] The mechanism readonly attribute returns security mechanism used by security

association. It has the following definition:

ÔSecClientSecurityContextÕ This security context has a client orientation. It was
created by the Vault::init_security_context operation.

ÔSecServerSecurityContextÕ This security context has a server orientation. It was
created by the Vault::accept_security_context
operation.

ÔSecContextInitializedÕ This security context has been initialized.

ÔSecContextContinuedÕ This security context is awaiting more negotiation to
become established.

ÔSecContextClientEstablishedÕ This security context is established on the client side
and the client has the ability to send protected
messages to the server side. However, the context is
still waiting for the server side to complete the
establishment of the association.

ÔSecContextEstablishedÕ This security context is fully established.

ÔSecContextEstablishExpiredÕ This security context has expired during
establishment negotiation.

ÔSecContextExpiredÕ This security context has expired. It may be possible
to refresh it

ÔSecContextInvalidÕ This security context is invalid. It cannot be used or
refreshed.
15-174 Security Service v1.8 September 2000 [DRAFT]

15
readonly attribute MechanismType mechanism;

Return Value

[868] The value of the mechanism that created the security context.

chan_binding
[869] The chan_binding readonly attribute returns channel bindings that were used when the

security context was created. It has the following definition:

readonly attribute ChannelBindings chan_binding;

Return Value

[870] The channel binding that was used when the security context was created.

received_credentials
[871] The received_credentials readonly attribute returns the ReceivedCredentials that are

received from the invoker.

readonly attribute ReceivedCredentials received_credentials;

Return Value

[872] Object reference to received credentials.

continue_security_context
[873] This operation is invoked by the association interceptor to continue establishment of

the security association. It can be called by either the client or target interceptor on the
local security context object.
15.7 ImplementorÕs Security Interfaces 15-175

AssociationStatus continue_security_context(
in OpaqueBuffer in_token,
out OpaqueBuffer out_token

);

Parameters

Return Value

protect_message
[874] The protect_message operation of the Security Context object provides the means

whereby the client message protection interceptor may protect the request message, or
the target interceptor may protect the response message for integrity and/or
confidentiality according to the Quality of Protection required.

void protect_message(
in OpaqueBuffer message,
in QOP qop,
out OpaqueBuffer text_buffer,
out OpaqueBuffer token

);

Parameters

Return Value

[875] None.

in_token The security token generated by the other one of the client-target
pair and sent to this Security Context object to be used to
continue the dialogue between client and target to establish the
security association.

out_token If required, a further security token to be returned to the other
Security Context object to continue the dialogue.

SecAssocSuccess The security association has been successfully established.

SecAssocFailure The attempt to establish a security association has failed.

SecAssocContinue The context is only partially initialized and further
operations are required to complete authentication.

message The message for which protection is required.

qop Required message protection options.

text_buffer The protected message, optionally encrypted.

token The integrity checksum, if any.
15-176 Security Service v1.8 September 2000 [DRAFT]

15
reclaim_message
[876] The reclaim_message operation on the SecurityContext object provides the means

whereby a protected message may be checked for integrity and decrypted if necessary.

boolean reclaim_message(
in OpaqueBuffer text_buffer,
in OpaqueBuffer token,
out QOP qop,
out OpaqueBuffer message

);

Parameters

Return Value

[877] If the reclaim_message operation returns a value of FALSE, then the message has
failed its integrity check. If TRUE, the integrity of the message can be assured.

is_valid
[878] The is_valid operation of the Security Context object allows a caller to determine

whether the context is currently valid.

boolean is_valid(
out UtcT expiry_time

);

text_buffer The message for which the check is required and optionally
the message to be decrypted.

token The integrity checksum, if any. Will typically be zero
length if QOP indicates that confidentiality was applied.

qop The quality of protection that was applied to the protected
message.

message The unprotected message, decrypted if required.
15.7 ImplementorÕs Security Interfaces 15-177

Parameters

Return Value

Parameters

Return Value

Parameters

Return Value

discard_security_context
[879] This operation is invoked by the association interceptor to discard a security

association. It takes one input argument of data specific to the mechanism that may be
needed to discard the context. The output token may be given as evidence to the
opposite side of the discard.

expiry_time The time at which this context is no longer valid.

FALSE The context is no longer valid.

TRUE The context is still valid.

refresh_data Data specific to the mechanism that may be needed to
refresh the security context.

out_token Evidence of the refresh request that is to be delivered to the
opposite side of the context.

FALSE The context has not been successfully refreshed. The
parameter out_token does not contain a valid value.

TRUE The context has been successfully refreshed, or it has been
opened up for renegotiation that may need subsequent calls
to continue_security_context. The parameter out_token
contains the evidence token.

refresh_token Evidence token supporting refresh of this context.

FALSE The context has not been successfully refreshed.

TRUE The context has been successfully refreshed, or it has been
opened up for renegotiation that may need subsequent calls
to continue_security_context.
15-178 Security Service v1.8 September 2000 [DRAFT]

15
boolean discard_security_context (
in Opaque discard_data,
out OpaqueBuffer out_token

);

Parameters

Return Value

process_discard_token

[880] This operation may discard the SecurityContext based on a token from the opposite
side of the shared association. The process_discard_token operation may be called on
both valid and expired contexts.

boolean process_discard_token (
in OpaqueBuffer discard_token

);

Parameters

Return Value

The Client Security Context Object

[881] A Client Security Context object with the
SecurityReplaceable::ClientSecurityContext interface represents the clientÕs view of
a shared security context between a client and a target. It implements the
SecurityReplaceable::SecurityContext interface by inheritance and is a local object.

refresh_data Data specific to the mechanism that may be needed to
discard the security context.

out_token Evidence of the discard to be delivered to the opposite side.

FALSE The context has not been discarded. The parameter
out_token does not have a valid value.

TRUE The context has been discarded. The parameter out_token
contains the evidence token.

discard_token Evidence token supporting discard of this context.

FALSE The context has not been discarded. Discard token may be
invalid for context.

TRUE The context has been successfully discarded.
15.7 ImplementorÕs Security Interfaces 15-179

The SecurityReplaceable::ClientSecurityContext Interface

[882] The SecurityReplaceable::ClientSecurityContext interface extends the
SecurityReplaceable::SecurityContext interface with attributes that concern client
side initialization arguments and target side information. It has the following attributes:

association_options_used
[883] The asscociation_options_used readonly attribute returns the association options used

and to create the security context with Vault::init_security_context. These options
may also have been negotiated during set up to something other than the association
options supplied to Vault::init_security_context. Nonetheless, it is the current state of
the security context that is reflected in this attribute.

readonly attribute AssociationOptions association_options_used;

Return Value

[884] The association options that reflects the current state of the security context.

delegation_mode
[885] The delegation readonly attribute returns the delegation mode used and to create the

security context with Vault::init_security_context. This option may have been
negotiated during set up to something other than the association options supplied to
Vault::init_security_context. Nonetheless, it is the delegation mode of the security
context that is reflected in this attribute.

readonly attribute Security::DelegationMode delegation_mode;

Return Value

[886] The delegation mode that reflects the current state of the security context.

mech_data
[887] The mech_data readonly attribute returns the value of the mech_data argument used

to create the security context with Vault::init_security_context.

readonly attribute Opaque mech_data;

Return Value

[888] The mechanism data used to create the context.

client_credentials
[889] The client_credentials readonly attribute returns the Credentials object used to create

the security context with Vault::init_security_context.
15-180 Security Service v1.8 September 2000 [DRAFT]

15
readonly attribute Credentials client_credentials;

Return Value

[890] The credentials used to create the security context.

target_credentials
[891] The target_credentials readonly attribute returns the Credentials object used to create

the security context with the target.

readonly attribute TargetCredentials target_credentials;

Return Value

[892] The credentials representing authentication of the principal of the target.

server_options_supported
[893] The server_options_supported readonly attribute returns the association options that

the server side of the security context supported.

readonly attribute AssociationOptions server_options_supported;

Return Value

[894] The association options that the server supports.

server_options_required
[895] The server_options_required readonly attribute returns the association options that

the server side of the security context required.

readonly attribute AssociationOptions server_options_required;

Return Value

[896] The association options that the server requires.

server_security_name
[897] The server_security_name readonly attribute returns the security name that the server

side of the security context represents.

readonly attribute Opaque server_security_name;

Return Value

[898] The security name of the target side.
15.7 ImplementorÕs Security Interfaces 15-181

The Server Security Context Object

[899] A Server Security Context object with the
SecurityReplaceable::ServerSecurityContext interface represents the targetÕs view of
a shared security context between a client and a target. It implements the
SecurityReplaceable::SecurityContext interface by inheritance and is a local object.

The SecurityReplaceable::ServerSecurityContext Interface

[900] The SecurityReplaceable::ServerSecurityContext interface extends the
SecurityReplaceable::SecurityContext interface with attributes that concern target
side initialization arguments and target side information. It has the following attributes:

association_options_used
[901] The asscociation_options_used readonly attribute returns the association options that

have been negotiated during set up via Vault::accept_security_context.

readonly attribute AssociationOptions association_options_used;

Return Value

[902] The association options that reflects the current state of the security context.

delegation_mode
[903] The delegation readonly attribute returns the delegation mode in effect for this security

context.

readonly attribute Security::DelegationMode delegation_mode;

Return Value

[904] The delegation mode that reflects the current state of the security context.

server_credentials
[905] The server_credentials readonly attribute returns the server credentials selected from

the list of credentials used to create the security context with
Vault::accept_security_context.

readonly attribute Credentials server_credentials;

Return Value

[906] The credentials used to create the security context.

server_options_supported
[907] The server_options_supported readonly attribute returns the association options that

this server side of the security context supported.
15-182 Security Service v1.8 September 2000 [DRAFT]

15
readonly attribute AssociationOptions server_options_supported;

Return Value

[908] The association options that this server supported for negotiation of this security
context.

server_options_required
[909] The server_options_required readonly attribute returns the association options that

this server side of the security context required.

readonly attribute AssociationOptions server_options_required;

Return Value

[910] The association options that this server required for negotiation of this security
context.

server_security_name
[911] The server_security_name readonly attribute returns the security name for which this

server used to accept and negotiate the security context.

readonly attribute Opaque server_security_name;

Return Value

[912] The target security name of the security context.

The Credentials Object

[913] The Credentials object with the SecurityLevel2::Credentials interface, as defined in
Section 15.5.4, ÒThe Credentials Object,Ó on page 15-94, is used to pass Credentials
information between the underlying security mechanisms and the ORB Security
Services.

The Access Decision Object

[914] The Access Decision object is responsible for determining whether the specified
credentials allow this operation to be performed on a target object. It uses access
control attributes for the target object to determine whether the principalÕs privileges,
obtained from the Security Context are sufficient to meet the access criteria for the
requested operation

The SecurityReplaceable::AccessDecision Interface

[915] The SecurityReplaceable::AccessDecision object is a local object. This object has the
following interface:
15.7 ImplementorÕs Security Interfaces 15-183

local interface AccessDecision {
boolean access_allowed(

in SecurityLevel2::ReceivedCredentials creds,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId target_interface_name

);
};

Parameters

Return Value

The Required Rights Object

[916] The Required Rights object has operation for retrieving and setting the rights required
for operations on interfaces. It is replaceable since the replaceable Acccess Decision
depends upon its implemenation, if the access Decision object uses RequiredRights.

The SecurityReplaceable::RequiredRights Interface

[917] The SecurityReplaceable::RequiredRights object has the following operations:

get_required_rights
[918] This operation retrieves the rights required for access to the operation specified by

operation_name from the interface specified by interface_name. The returned values
are a list of rights and a combinator describes the interoperation of multiple rights.

get_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId target_interface_name,
out RightsList rights,
out RightsCombinator rights_combinator

);

creds The credentials of the client principal.

operation_name The name of the requested operation.

target_interface_name The name of the interface.

FALSE Access is to be denied.

TRUE Access is to be allowed.
15-184 Security Service v1.8 September 2000 [DRAFT]

15
Parameters

Return Value

[919] None.

set_required_rights
[920] This operation updates the rights required for access to the operation specified by

operation_name from the interface specified by interface_name. The caller must
provide a list of rights and a combinator describing the interpretation of multiple
rights.

set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId target_interface_name,
in RightsList rights,
in RightsCombinator rights_combinator

);

Parameters

Return Value

[921] None.

The Audit Decision Object

[922] The Audit Decision object is used to determine if an event needs to be audited.

operation_name The name of the operation for which required rights are
returned.

target_interface_name The CORBA Repository identifier which name the
interface to which the operation belongs.

rights The returned list of rights.

rights_combinator The returned rights combinator.

operation_name The name of the operation for which required rights are
set.

target_interface_name The CORBA Repository identifier which name the
interface to which the operation belongs.

rights The list of rights.

rights_combinator The rights combinator.
15.7 ImplementorÕs Security Interfaces 15-185

The SecurityReplaceable::AuditDecision Interface

[923] The AuditDecision object has the following attributes and operations:

audit_needed
[924] This operation is used to determine if an audit record is to be written to the audit

channel. The caller specifies an event type and values for the selectors. It has the
following definition:

boolean audit_needed(
in AuditEventType event_type,
in SelectorValueList value_list

);

Parameters

Return Value

audit_channel
[925] This attribute provides the audit channel associated with the audit decision object:

readonly attribute AuditChannel audit_channel;

Return Value

[926] The audit channel object.

The Audit Channel Object

[927] The Audit Channel object contains the operations necessary to generate audit records.

The SecurityReplaceable::AuditChannel Interface

[928] The AuditChannel object has the following attributes and operations:

audit_channel_id
[929] This attribute provides the contains an identifier with which to identifiy the particular

audit channel object:

event_type The event type.

value_list A list of zero or more selector value pairs.

FALSE An audit record need not be written to the audit channel.

TRUE An audit record needs to be written to the audit channel.
15-186 Security Service v1.8 September 2000 [DRAFT]

15
readonly attribute AuditChannelId audit_channel_id;

Return Value

[930] The audit channel identifier.

audit_write
[931] This operation writes an audit record to the audit channel.

void audit_write(
in AuditEventType event_type,
in CredentialsList creds_list,
in UtcT time,
in SelectorValueList descriptors,
in any event_specific_data

);

Parameters

Return Value

[932] None.

Principal Authentication

[933] The Principal Authenticator object with the
SecurityLevel2::PrincipalAuthenticator interface, defined in Section 15.5.3,
ÒAuthentication of Principals,Ó on page 15-89, provides the facility for authenticating a
principal. It may also be used by implementation security objects, specifically the
Vault.

Non-repudiation

[934] The Non-repudiation services are accessible through the NRservice::NRCredentials
interface. Its functionality and operations are defined in Section 15.5.14, ÒNon-
repudiation,Ó on page 15-123.

event_type The type of event.

creds_list The list of Credentials objects of the principal
responsible for the event.

time The time the event occured

descriptors The set of values to be recoreded that are associated
with the event.

event_specific_data Data specific to the particular type of event.
15.7 ImplementorÕs Security Interfaces 15-187

15.7.3 Replaceable Security Services

[935] It is possible to replace some security services independently of others.

Replacing Authentication and Message Protection Services

[936] Replacement of the authentication and message protection services underlying a secure
ORB implementation is accomplished by changing the Vault, which creates
Credentials and SecurityContext objects.

Replacing Access Control Policies

[937] Access control policies can be changed by replacing the Access Policy and Access
Decision objects, which define and enforce access control policies (for example,
substituting another Access Policy object for DomainAccessPolicy).

[938] Applications may also change their access control policies. If the application access
policy object(s) is similar to the invocation access policy object(s), then they can be
replaced in a similar way.

Replacing Audit Services

[939] Audit policies may be replaced, for example, to support certain types of invocation
audit policy not supported by the standard audit policy objects. In this case, the policy
objects are replaced in a similar way to the access policy objects.

[940] Also, Audit Channel objects may be replaced to change how audit records are routed
to a collection point or filtered.

[941] The Audit Channel object used for object system auditing is replaced by replacing the
Audit Channel object in the environment. Other Audit Channel objects may be
replaced by associating a different channel object with the appropriate audit policy.

[942] Application auditing objects can be replaced by the application.

Replacing Non-repudiation Services

[943] The Non-repudiation Service is a stand-alone replaceable security service associated
with NRCredentials and NRPolicy objects. Different NR services may use different
mechanisms and support different policies. For example, it may be that a service using
symmetric encipherment techniques may be replaced by a service using asymmetric
encipherment techniques.

[944] The same credentials and authentication method may be used for non-repudiation and
for other secure invocations, so when replacing either of these, the effect on the other
should be considered.
15-188 Security Service v1.8 September 2000 [DRAFT]

15
Other Replaceability

[945] No other replaceability points are defined as part of this specification. However,
individual implementations may permit replacement of other security services or
technologies.

Linking to External Security Services

[946] The security service interfaces specified in this section may encapsulate calls to
external security services via APIs.

[947] The external services used may include:

¥ Authentication Services, to authenticate principals.

¥ Privilege (Attribute) Services, for selecting and certifying privilege attributes for
authenticated principals (if access control can be based on privileges as well as on
individual identity).

¥ Security Association Services, for establishing secure associations between
applications. These services may themselves use other security services such as Key
Distribution Services (if secret keys are used), a Certification Authority for
certifying public keys, and Interdomain Services for handling communications
between security policy domains.

¥ Audit (and Event) Services.

¥ Cryptographic Support Facilities, to perform cryptographic operations (perhaps in
an algorithm-independent way).

[948] This specification does not mandate which interfaces are used to access external
security services, but notes the following possibilities:

¥ The GSS-API is used for security associations and for the majority of Credentials
and Security Context operations, as this allows easy security service replacement.
With this in mind, several interfaces in this specification have been designed to
allow easy mapping to GSS-API functions, and the Credentials and Security
Context objects are consistent with GSS-API credentials and contexts.

¥ IDUP GSS-API may be used for independent data unit protection and evidence
generation and verification.

¥ Cryptographic operations performed by a Cryptographic Support Facility (CSF) to
ease replacement of cryptographic algorithms. No specific interface is
recommended for this yet, as such interfaces are being actively discussed in X/Open
and other international bodies, and standards are not yet stable.
15.7 ImplementorÕs Security Interfaces 15-189

15.8 Security Interoperability Protocols

15.8.1 Introduction

[949] This section specifies a model for secure interoperability between ORBs which
conform to the CORBA 2 interoperability specification and employ a common security
technology.

[950] The interoperability model also describes other interoperability cases, such as the
effect on interoperability of crossing security policy domains. However, detailed
definitions of these are not given in this specification.

[951] It then defines the extensions required to the interoperability protocol for security.
This includes:

¥ specification of tags in the CORBA 2 Interoperable Object Reference (IOR) so this
can carry information about the security policy for the target object and the security
technology which can be used to communicate securely with it.

¥ a security interoperability protocol to support the establishment of a security
association between client and target object and the protection of CORBA 2
General Inter-ORB Protocol (GIOP) messages between them for integrity and/or
confidentiality. This is independent of the security technology used to provide this
protection.

¥ security when using the DCE-CIOP protocol.

[952] As the security information needed by a security mechanism is generally independent
of which ORB interoperability protocol is used, other Environment-Specific Protocols
(ESIOPs) may support security in a similar way to that described for GIOP. However,
the proposal only addresses DCE-CIOP, which supports only DCE security.

[953] The security protocol specified does not define details of the contents of the security
tokens exchanged to establish a security association, the integrity seals for message
integrity, or the details of encryption used for confidentiality of messages, as these
depend on the particular security mechanism used. This specification does not specify
mechanisms.

15.8.2 Interoperability Model

[954] This section describes secure interoperability when:

¥ the ORBs share a common interoperability protocol,

¥ consistent security policies are in force at the client and target objects, and

¥ the same security mechanism is used.

[955] All other options build from this.
15-190 Security Service v1.8 September 2000 [DRAFT]

15
[956] The model for secure interoperability is shown in the following diagram.

Figure 15-55 Model for Secure Interoperability

[957] When the target object registers its object reference, this contains extra security
information to assist clients in communicating securely with it.

[958] The protocol between client and target object on object invocations is as follows:

¥ If there is not already a security association between the client and target, one is
established by transmitting security token(s) between them (transparently to the
application).

¥ Requests and responses between client and target are protected in transit between
them. Protection includes not only ensuring individual messages are inviolate and
private, but that message streams are as well.

Security Information in the Object Reference

[959] When an object is created in a secure object system, the security attributes associated
with it depend on the security policies for its domain and object type and the security
technology available. A client needs to know some of this information to communicate
securely with this object in a way the object will accept. So the object reference
transferred between two interoperating systems includes the following information:

¥ A security name or names for the target so the client can authenticate its identity.

¥ Any security policy attributes of the target relevant to a client wishing to invoke it.
This covers policies such as the required quality of protection for messages and
whether the target requires authentication of the clients identity and supports
authentication of its identity.

Client

request request

ORB Core

Target
Object

ORB

Services
Security

ORB

Services
Security

security token at association setup

protected message

reply reply
15.8 Security Interoperability Protocols 15-191

¥ Identification of the security technology used for secure communication between
objects this target supports and any associated attributes. This allow the client to
use the right security mechanism and cryptographic algorithms to communicate
with the target.

Establishing a Security Association

[960] The contents of the security tokens exchanged depend on the security mechanism used.

[961] A particular security mechanism may itself have options on how many security tokens
are used. The minimum is an initial context token (a term used in GSS-API), sent from
the client to the target object to establish the security association. This typically
contains:

¥ an identification of the security mechanism used,

¥ security information used by this mechanism to establish the required trust between
client and target and to set up the security context necessary for protecting
messages later,

¥ the principalÕs credentials, and

¥ information for protecting this security data in transit.

[962] In addition to this token, subsequent security tokens may be needed if:

¥ mutual authentication of client and target object is required, or

¥ some negotiation of security options for this mechanism is required (for example,
the choice of cryptographic algorithms).

Protecting Messages

[963] The invocation may be protected for integrity and/or confidentiality. In either case, the
messages forming the request and reply are first wrapped in an envelope and then
cryptographically protected by the ORB security services. For integrity, extra
information (e.g., an integrity seal) is added to the message so the target ORB security
services can check that the message has not been changed.

[964] For confidentiality, the message itself is encrypted so it cannot be intercepted and read
in transit.

[965] Details of how messages are protected are again mechanism-dependent. Note,
however, that messages cannot be changed once they have been protected, as they
cannot be understood once confidentiality protected and the integrity check will fail if
they are altered in any way.

Security Mechanisms for Secure Object Invocations

[966] The interoperability model above can be supported using different security
mechanisms.
15-192 Security Service v1.8 September 2000 [DRAFT]

15
[967] This specification does not define a standard security mechanism to be supported by
all secure ORBs. It therefore does not specify a particular set of security token formats
and message protection details for a particular security mechanism.

Security Mechanism Types

[968] There are two major types of security mechanisms used in existing systems for
security associations. They are those using:

¥ Symmetric (secret) key technology where a shared key is used by both sides, and a
trusted third party (a Key Distribution Service) is used by the client to obtain a key
to talk to the target.

¥ Asymmetric (public) key technology where the keys used by the two sides are
different, though linked. In this case, long term, public keys are normally freely
available in certificates which have been certified by a Certification Authority.

[969] Several existing systems use symmetric key technology for key distribution when
establishing security associations. These are usually based on MITÕs Kerberos product.
Such systems normally include no public key technology.

[970] Other security mechanisms use public key technology for authentication and key
distribution as this has advantages for scalability and inter-enterprise working. The
number of public key based systems are growing and the use of public key technology
is standard for non-repudiation, which is an optional component in this specification,
and increasingly needed in commercial systems so any OMG security specification
must not preclude its use. Also, the use of smart cards with public key technology is
increasing. However, non-repudiation is not a service required for secure
interoperability.

Interoperating with Multiple Security Mechanisms
[971] The current specification allows a client to identify the security mechanism(s)

supported by the target. Where a client or target supports more than one mechanism,
and there is at least one mechanism in common between client and target, the client
can choose one which they both support.

[972] Some security mechanisms may support a number of options, for example:

¥ a choice of cryptographic algorithms for protecting messages,

¥ a choice of using public or secret key technology for key distribution.

[973] The appropriate options can be chosen by the client in the same way as choosing the
basic mechanism, via the client security policy and information in the targetÕs object
reference. However, some mechanisms will be able to negotiate options using extra
exchanges at association establishment which are specific to the particular
mechanisms.
15.8 Security Interoperability Protocols 15-193

Interoperating between Underlying Security Services
[974] Security mechanisms for secure object invocations use underlying security services for

authentication, privilege acquisition, key distribution, certificate management, and
audit. Under some circumstances, these need to inter-operate. For example, key
distribution services may need to communicate with each other, and audit services may
need to transmit audit records between systems.

[975] Interoperability of such underlying security services is considered out of scope of this
specification, as they are mechanism dependent.

Interoperating between Security Policy Domains

[976] The sections above consider interoperability within a security policy domain where
consistent security policies apply to access control, audit and other aspects of the
system. These rely on information about the principal, including its identity and
privilege attributes, being trusted and having a consistent meaning throughout the
policy domain.

[977] Where a large distributed system is split into a number of security policy domains,
interoperation between security policy domains is needed. This requires the
establishment of trust between these domains. For example, an ORB security
association service at a target system will need to identify the source of the principalÕs
credentials so it can decide how much to trust them.

[978] Once the identity of the client domain has been established, interdomain security
policies need to be enforced. For example, access control policies are mainly based on
the principalÕs certified identity and privilege attributes. The policy for this could be:

1. The target domain trusts the client domain to identify principals correctly, but does
not trust their privilege attributes, so treats all principals from other domains as
guest users.

2. The administrators of the two domains have agreed some privilege attributes in
common, and trust each other to give these only to suitably authorized users. In this
case, the target system will give principals from the client domain with these
privileges the same rights as principals from the target domain.

3. The administrators of the two domains agree what particular privilege attributes in
the client domain are equivalent to particular privilege attributes in the target
domain, and so grant corresponding access rights.

[979] For the first two of these, the target domain security policy could enforce restrictions
about which privilege attributes may be used there. This would not necessarily affect
the interoperability protocols - the get_attributes operation will simply not return all
of the privileges. But even in this case, some security mechanisms will choose to
modify the principalÕs credentials to exclude unwanted attributes.

[980] In the third case, the privilege attributes need to be translated to the ones used in the
target domain. If this translation is to be done only once, an interdomain service is
likely to be used which both translates the credentials and reprotects them so they can
be delegated between nodes in the target domain.
15-194 Security Service v1.8 September 2000 [DRAFT]

15
[981] Such an interdomain service may be invoked by the ORB Security Services, but may
be invoked by a separate interoperability bridge between the ORB domains. If invoked
by an ORB service, it extends the implementation of the Vault object described
previously and this will probably call on a mechanism specific Interdomain Service.

Secure Interoperability Bridges

[982] Secure Interoperability Bridges between ORB domains are relevant to this architecture,
as in future, they may be specified as part of some secure CORBA compliant systems.
However, this section does not describe how to build such bridges.

[983] Secure interoperability bridges may be needed for:

¥ ORB-mediated bridges, where data marshalling is done outside the ORB and
associated ORB services.

¥ Translating between security mechanisms (technology domains).

¥ Mapping between security policy domains.

[984] In all these cases, both the system and application data being passed will need to be
altered, affecting its protected status. This needs to be re-established using security
services trusted by both client and target domains.

15.8.3 Protocol Enhancements

[985] The following sections detail the enhancements required to the CORBA 2
interoperability specification for security.

[986] Section 15.8.4, ÒCORBA Interoperable Object Reference with Security,Ó on
page 15-195 defines the enhancements needed to the Interoperable Object Reference
(IOR).

[987] Section 15.9, ÒSecure Inter-ORB Protocol (SECIOP),Ó on page 15-222 defines the
enhancements needed to secure GIOP messages and Section 15.15, ÒDCE-CIOP with
Security,Ó on page 15-286 defines the DCE-CIOP with security.

15.8.4 CORBA Interoperable Object Reference with Security

[988] The CORBA 2 Interoperable Object Reference (IOR) comprises a sequence of Ôtagged
profilesÕ. A profile identifies the characteristics of the object necessary for a client to
invoke an operation on it correctly, including naming/addressing information. The tag
is a standard, OMG-allocated identifier for the profile which allows the client to
interpret the profile data, but although the tag is OMG-allocated, the profile itself may
not be OMG-specified.

[989] A multi-component profile is a profile that itself consists of tagged components. This
specification defines TAGS for use in such multi-component profiles as follows:

[990] The following TAGs are defined:
15.8 Security Interoperability Protocols 15-195

¥ IIOP components, which can be used in a multi component profile (see Appendix
Section A.8, ÒSecure Inter-ORB Protocol (SECIOP),Ó on page 15-322).

¥ Security components that identify security mechanism types, one for each
mechanism supported. Each security mechanism component can also include
mechanism specific data.

¥ Aspects of the target object policy that cover the dependencies between and overall
use of components (for example, the quality of protection required) may be
specified in separate policy components. This avoids establishing unnecessary
dependencies between other (technology) components.

[991] Use of tagged components within the multi component profile to carry IIOP, security
and other data may cause performance degradations in certain situations. For example,
if an IOR carries many tagged components that are unrecognized by a client
implementation, it must process these when they appear before those that it does
recognize. Some, such as the components describing IIOP, have a high probability of
being recognized and used by many clients. Consequently, implementations with an
objective to optimize IOR processing will place such components at the beginning of
the tagged component sequence.

Security Components of the IOR

[992] The following new tags are used to define the security information required by the
client to establish a security association with the target. Note that a tag may occur
more than once, denoting that the target allows the client some choice. All tag
component data must be encapsulated using CDR encoding

TAG_x_SEC_MECH
[993] This is the prototype TAG definition for OMG registered security association

mechanisms. The mechanism is identified by the TAG value. The component data for
TAGs of this kind is defined by the person who registers the TAG. The confidentiality
and integrity algorithms to be used with the mechanism may either be encoded into the
TAG value or in mechanism specific data (see Appendix Section G.2, ÒGuidelines for
Mechanism TAG Definition in IORs,Ó on page 15-386).

[994] If this definition includes:

sequence <TaggedComponent> components;

[995] The components field can contain any of the other component TAGs, whose values can
be specific to the mechanism.

[996] If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi component level.

[997] Multiple TAG_x_SEC_MECH components may be present to enumerate the security
mechanisms available at the target.
15-196 Security Service v1.8 September 2000 [DRAFT]

15
TAG_GENERIC_SEC_MECH
[998] This TAG enables mechanisms not registered with the OMG, but common to both

client and target to be used with the standard interoperability protocol. Its definition is:

struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <TaggedComponent> components;

};

[999] The first part of this TAG is the security_mechanism_type which identifies the type of
underlying security mechanism supported by the target including confidentiality and
integrity algorithm definition. It is an ASN.1 Object Identifier (OID) as described for
use with the GSS-API in IETF RFC 1508.

[1000] The mech_specific_data field allows mechanism specific information to be passed by
the target to the client.

[1001] The components field can contain any of the other component TAGs, whose values can
be specific to the mechanism.

[1002] If the mechanism is selected for use, the components in this field are used in
preference to any recorded at the multi component level.

[1003] Multiple TAG_GENERIC_SEC_MECH components may be present to enumerate
the security mechanisms available at the target.

TAG_ASSOCIATION_OPTIONS
[1004] This TAG is used to define the association properties supported and required by the

target. Its definition is:

struct TargetAssociationOptions{
AssociationOptions target_supports;
AssociationOptions target_requires;

};

[1005] target_supports - gives the functionality supported by the target

[1006] target_requires - defines the minimum that the client must use when invoking the
target, although it may use additional functionality supported by the target.

[1007] The following table gives the definition of the options.

Table 15-10 Definition of Association Options

Association Options target_supports target_requires

NoProtection the target supports
unprotected messages

the targetÕs minimal
protection requirement is
unprotected invocations
15.8 Security Interoperability Protocols 15-197

TAG_SEC_NAME
[1008] The target security name component contains the security name used to identify and

authenticate the target. It is an octet sequence, the content and syntax of which is
defined by the authentication service in use at the target. The security name is often the
name of the environment domain rather than the particular target object.

[1009] The TAG_SEC_NAME component is not needed if the target does not need to be
authenticated.

Integrity the target supports integrity
protected messages

the target requires
 messages to be integrity
protected

Confidentiality the target supports
confidentiality protected
invocation

the target requires
 invocations to be protected
for confidentiality

DetectReplay the target can detect replay
of requests (and request
fragments)

the target requires security
associations to detect
 message replay

DetectMisordering target can detect sequence
errors of requests and
request fragments

the target requires security
associations to detect
 message mis-sequencing

EstablishTrustInTarget the target is prepared to
authenticate its identity to
the client

(this option is not defined)

EstablishTrustInClient the target is capable of
authenticating the client

the target requires
establishment of trust in the
clientÕs identity

NoDelegation target supports no
delegation

the target states that
delegation will not be
supported

SimpleDelegation the target supports simple
delegation

(this option is not defined)

CompositeDelegation the target supports
composite delegation

(this option is not defined)

Table 15-10 Definition of Association Options (Continued)

Association Options target_supports target_requires
15-198 Security Service v1.8 September 2000 [DRAFT]

15
 IOR Example

[1010] In this example, if mechanism Òmech 1Ó is used, the target security name is ÒMBn1Ó
while the association must use integrity replay and misordering options. If mechanism
Òmech 2Ó is used, no mechanism specific security name has been specified and so
ÒManchester branchÓ is used as the security name. The association options are
EstablishTrustInClient and Integrity.

Operational Semantics

[1011] This section describes how an ORB and associated ORB services should use the IOR
security components to provide security for invocations and how the target object
information should be provided.

Client Side
[1012] During a request invocation, the non-security tagged components in the IOR multi-

component profile indicate whether the target supports IIOP and/or some other
environment specific protocol such as DCE-CIOP. Security mechanism tag

Table 15-11 IOR Example

tag value mech specific tag value

tag_sec_name ÒManchester branchÓ

tag_association_
options

supports and requires
integrity and to
establish trust in the
clients privileges

tag_generic_sec_
mech

mech 1 oid

tag_sec_name ÒMBn1Ó

tag_association_
options

supports and requires
integrity, replay
detection, misordering
detection, and to
establish trust in the
clientÕs security
attributes

tag_generic_sec_
mech

mech 2 oid

tag_association_
options

target requires and
supports
confidentiality and to
establish trust in the
clientÕs security
attributes
15.8 Security Interoperability Protocols 15-199

components specify the security mechanisms (and associated integrity and
confidentiality algorithms) this target can use. The ORB selects a combination of
interoperability protocol and security mechanism which it can support.

[1013] If there is a common interoperability protocol, but no common security mechanism,
then a secure request on this IOR cannot be assured.

[1014] If the same security mechanism is supported at the client and the target, but the
TAG_ASSOCIATION_OPTIONS component specifies no protection is needed or no
SEC_MECH is specified, then unprotected requests are supported by the target, and
the request can be made without using security services. If the target requires protected
requests, then the ORB must choose an alternative transport and/or security
mechanism.

[1015] The IOR tags and the clientÕs policies and preferences are used together to choose the
security for this clientÕs conversation with the target.

[1016] The specific security service used may not understand the CORBA security values, and
so may require them to be mapped into values it can understand.

Determining Association Options
[1017] The Association Options in Table 15-10 on page 15-197, lists possible association

options such as NoProtection, Integrity, DetectReplay.

[1018] The actual association options used when a client invokes a target object via an IOR
depend on:

¥ The client-side secure invocation policy and environment.

¥ Client preferences as specified by set_association_options on the Credentials or
set_policy_overrides of the object reference invoked with a QOPPolicy object as
one of the Policies to be overridden.

¥ The target-side secure invocation policy and environment (as indicated by
information in the TAG_ASSOCIATION_OPTIONS component).

[1019] An association option should be enforced by the security services if the client requires
it and the target supports it, or the target requires it and the client supports it.

[1020] If the target cannot support the clientÕs requirements, then a
CORBA::NO_PERMISSION exception should be raised. If the client cannot meet the
requirements of the target, then the invocation may optionally proceed, allowing policy
enforcement on the target side.

Target Side
[1021] The security information required in the IOR for this target must be supplied from the

target (or its environment). This specification does not define exactly when particular
information is added, as some of it may only be needed when the object reference is
exported from its own environment.

[1022] The security information may come from a combination of:
15-200 Security Service v1.8 September 2000 [DRAFT]

15
¥ The objectÕs own credentials (see ÒSecurity Operations on CurrentÓ on
page 15-114). This includes for example, the targetÕs security name. It could include
mechanism specific information such as the targetÕs public key if it has one.

¥ Policy associated with the object. This includes, for example, the QOP.

¥ The environment. This includes, for example, the mechanism types supported.

[1023] The target object does not need to supply this information itself. This is done
automatically by the ORB when required. For example, much of the information for
the targetÕs own credentials are set up on object creation.

[1024] As at the client, the specific security service used may require CORBA security values
to be mapped into those it understands.

[1025] If when the client invokes the target identified by the IOR an Invoke Response
message is returned for the request with the status
INVOKE_LOCATION_FORWARD, then the returned multiple component profile
must contain security information as well as the new binding information for the target
specified in the original Invoke Request message.

[1026] Any security information in the returned profile applies to the new binding information
and replaces all security information in the original profile. This
INVOKE_LOCATION_FORWARD behavior can be used to inform the client of
updated security information (even if the address information hasnÕt changed).

15.8.5 Common Secure Interoperability Levels

[1027] Three Common Secure Interoperability Levels are defined to help in classifying and
positioning the various interoperability facilities that are defined, and also to help in
concisely stating the conformance requirements. The three CSI levels are:

CSI Level 0 - supports only identity based policies without delegation.

CSI Level 1 - supports identity based policies with or without unrestricted delegation.

CSI Level 2 - supports identity and privilege based policies with controlled
delegation.

[1028] A complete description of the these CSI levels of interoperability can be found in
Appendix Section C.7.2, ÒCommon Secure Interoperability Levels,Ó on page 15-345.

15.8.6 Key Distribution Types

[1029] Security mechanisms use cryptography in the establishment of a secure association
between a client and target and in protecting the data between them. Security
mechanisms differ in the type of cryptography they use, particularly for distribution of
keys. (Keys are assigned to clients, targets, and trusted authorities). Three types of key
distribution are defined in this specification:

¥ Secret keys - use secret key technology for distribution of keys for principals.
15.8 Security Interoperability Protocols 15-201

¥ Public keys - use public key technology for distribution of keys for principals,
though may use secret key technology for message protection.

¥ Hybrid - use secret key technology for key distribution for principals within an
administration domain, and public key technology for key distribution for trusted
authorities, and hence between domains.

[1030] All types of key distribution can be used to support all the facilities in CORBA
Security for secure object invocations (though public key is almost universally used for
non-repudiation). The choice of mechanism to use depends on a customerÕs
requirements. For example, to fit with other systems and for scalability to inter-
enterprise working.

15.8.7 Security Mechanisms Hosted on SECIOP

[1031] The choice of protocol to use depends on the mechanism type required and the
facilities required by the range of applications expected to use it. How the mechanisms
underlying the following three security protocols are hosted on SECIOP are specified:

1. SPKM Protocol

[1032] Supports identity based policies without delegation (CSI level 0) using public key
technology for keys assigned to both principals and trusted authorities. The SPKM
protocol is based on the definition in [20].

2. GSS Kerberos Protocol

[1033] Supports identity based policies with unrestricted delegation (CSI level 1) using secret
key technology for keys assigned to both principals and trusted authorities. It is
possible to use it without delegation (providing CSI level 0).

[1034] The GSS Kerberos protocol is based on the [12] which itself is a profile of [13].

3. CSI-ECMA protocol

[1035] Supports identity and privilege based policies with controlled delegation (CSI level 2).
It can be used with identity, but no other privileges and without delegation restrictions
if the administrator permits this (CSI level 1) and can be used without delegation (CSI
level 0).

[1036] For keys assigned to principals, it has two options:

¥ It can use either secret or public key technology.

¥ It uses public key technology for keys assigned to trusted authorities.

[1037] The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as defined in
ECMA 235, but is a significant subset of this - the SESAME profile as defined in [16].
It is designed to allow the addition of new mechanism options in the future; some of
these are already defined in ECMA 235.
15-202 Security Service v1.8 September 2000 [DRAFT]

15
[1038] The following table shows which CSI functionality is supported with which protocols.

15.8.8 Security Mechanisms Hosted Directly on IIOP

[1039] The SSL [21] protocol which provides for confidentiality and integrity within the IP
sockets paradigm can be used to provide interoperability based on this protocol hosted
directly on IIOP. How this is done is specified in Section 15.14, ÒIntegrating SSL with
CORBA Security,Ó on page 15-284. It supports identity based policies without
delegation.

15.8.9 Choices of Protocols, Cryptographic Profiles and Key Technologies

[1040] What combination of Security Protocols, Key Technologies, and Cryptographic
Profiles are the most desirable has been subject of debate both inside and outside
OMG. In this specification, certain choices have been made based on the belief that
these choices best meet OMGÕs current needs given the other constraints.

Choice of Protocol and Key Technology

[1041] GSS Kerberos is specified as the mandatory protocol for common secure
interoperability, as Kerberos is widely available and most vendors can support it.
However, it does not provide all facilities required and is secret key only.

[1042] Several other protocols are specified as non-mandatory options follows:

¥ CSI-ECMA is specified as a protocol to provide support for the full set of CORBA
security facilities using public key or secret key technology.

¥ SPKM is specified as a simpler public key protocol suitable for applications where

¥ access and audit policies are static, and

¥ at each stage in a chain of object invocations, the policies depend only on the
identity of the immediate invoker, not the initiator of the chain.

¥ SSL is specified for use in the web market.

Cryptographic Profiles

[1043] Security mechanisms use cryptography in the establishment of a secure association
between a client and target and in protecting the data between them. Different
cryptographic algorithms are used to support particular security functions depending

Table 15-12 CSI Functionality and Protocols

 Protocol
CSI Level

SPKM GSSKerberos CSI-ECMA

0 Supported Supported Supported

1 Not supported Supported (Mandatory) Supported

2 Not supported Not supported Supported
15.8 Security Interoperability Protocols 15-203

on the type of mechanism used and also the regulations on use of cryptography. The
combination of algorithms used to provide particular security using a particular
mechanism is called a cryptographic profile.

[1044] Currently, different cryptographic algorithms, and/or different key lengths are required
to meet export controls and regulations on use of cryptography in various countries
(see ÒInternational DeploymentÓ on page 15-205). Although some vendors produce
more than one version of secure products for different markets, they are increasingly
reluctant to do this. For common secure interoperability, a particular cryptographic
profile is needed. Some options are to standardize:

¥ Integrity only for user data, not confidentiality. If done using MD5, this is likely to
be exportable and generally deployable, but doesnÕt provide confidentiality when
interoperating. This does not provide the functionality which some users will want.

¥ Integrity and confidentiality using weak keys only. This provides the required
functionality, in a way which can generally be exported, but does not provide the
strength of protection needed by some customers. Also, products using it may be
subject to import controls or other regulations in some countries.

¥ On strong confidentiality and integrity, which customers want, but will be subject to
export controls in most countries and to deployment regulations in some. Leave
vendors and customers to sort out the problems.

[1045] This chapter makes only the first of these options mandatory; however, implementors
of all profiles may choose to support other profiles also.

Conformance to External Security Mechanisms

[1046] This specification uses protocols defined in other standards documents. It refers to
particular versions of these standards, which is needed for interoperability. If the
versions of these external documents change in future, there may be a need to update
this specification so that it is in line with the most accepted external version of these
standards.

15.8.10 Common Secure Interoperability Requirements

[1047] This section describes the requirements that Common Secure Interoperability is
expected to meet.

[1048] The Common Secure Interoperability specification is required to provide for standard
security mechanisms, simple delegation, and international deployment. This section
discusses the key requirements for common secure interoperability that have driven the
design of this specification and how this specification responds to these requirements.

CORBA Standard Security Mechanisms

[1049] Standard CORBA security mechanisms are required so that ORBs can interoperate
securely at all.
15-204 Security Service v1.8 September 2000 [DRAFT]

15
[1050] Four popular security mechanisms to meet different circumstances, as described above,
can be used to host CORBAsecurity in a standard way. One of the four described in
this chapter is mandatory and all conformant ORBs must support it. Interoperability
between conformant ORBs is always possible using this; however, the facilities
supported when using it are limited.

[1051] Interoperability also requires common use of cryptographic algorithms. A number of
cryptographic profiles are specified to meet the needs of different markets and
countries. One is mandatory and interoperability between conformant ORBs is always
possible using this; however, it provides data integrity but not confidentiality.

[1052] Where multiple mechanisms and cryptographic profiles are supported by both ORBs,
the client and target object must agree which to use. In this specification, this is done
by the client looking at the security mechanism tag in the target object reference and
choosing an appropriate mechanism and profile which both support. (In future,
negotiation of mechanisms may be supported.)

International Deployment

[1053] International deployment requires that the security mechanisms and algorithms chosen
can be used worldwide in countries which are subject to different national regulatory
controls on the use of cryptography. It also requires that they can be used across
international boundaries. International deployment may also be affected by export
control regulations and other issues.

[1054] Requirements distilled from the key regulations affecting international deployment
include:

¥ Keeping the amount of information which must be encrypted for confidentiality to a
minimum. In general, encryption of keys is acceptable, but encryption of other data
may not be. For this reason, encryption of security attributes is undesirable. At CSI
level 2, where more attributes are generally needed, the part of the security tokens
concerned with key distribution is separated from the part used to carry privileges
(e.g., in CSI-ECMA); therefore, the latter part does not have to be encrypted.

¥ Being able to use identities for auditing which are anonymous, except to the
auditor.
For this reason, identities used for access control and audit may need to be
different. A separate AuditId can be transmitted at level 2.

¥ Allowing use of different cryptographic algorithms, with different lengths of keys
for specified functions to meet export and use regulations in different countries.
The specification defines cryptographic profiles which allow for different cases.
The mandatory one provides data integrity only, as this is generally easier to deploy
internationally.

[1055] There may be further requirements on secure ORB products to ensure that they are
exportable. For example, they must not allow easy/uncontrolled replacement of
cryptographic algorithms. This affects the construction of the system, but not this
interoperability standard, so is not considered further here.
15.8 Security Interoperability Protocols 15-205

[1056] Other restrictions on the use of algorithms and security mechanisms are highlighted in
ÒIdentifying Encumbered TechnologyÓ on page 15-208. For example, the DES
algorithm is subject to export controls, while RSA requires licensing in some
countries. The MIT version of the Kerberos technology, widely used in the USA, is
also subject to export controls.

Consistency

[1057] It should be possible to provide consistent security across the distributed object system
and with associated legacy and other non-object systems. This includes:

¥ Support of consistent policies for which principals should be able to access the sort
of information, within a security domain, that includes heterogeneous systems.

For this specification, it requires the ability to transmit consistent privilege and
other attributes between ORBs to support these policies. Level 0 and 1 conformant
ORBs can transmit identities, level 2 conformant ORBs can transmit a range of
privilege attributes. These can be the ones used in existing systems, though system
specific ones will not be usable in other systems.

¥ Fit with existing logons (so extra logons are not needed) and with existing user
databases (to reduce the user administration burden).

Log on needs to result in credentials which include the information required to
support the specified security mechanisms. Note that single logon with secure
messaging, web, etc. generally requires use of public key based mechanisms. Also,
if non-repudiation is supported, they will also need to include the security
information required to support the non-repudiation mechanism (normally, a public
key mechanism).

Also, interoperating with non-object systems may require, for example, a CORBA
object implementation which calls a non-CORBA application to be able to delegate
incoming credentials (assuming compatible security mechanisms.)

¥ Fit with all non-object systems is clearly not possible if such a system uses security
mechanisms which are incompatible with the one used in the object system. Such
systems may be able to use CORBA Security, but will not be able to interoperate
using the common secure interoperability standard.

[1058] This specification includes an interoperability level which supports privileges and a
public key (as well as a secret key) mechanism to support these requirements.

Scalability

[1059] It should be possible to provide security for a range of systems from small, local
systems to large intra- and inter-enterprise systems. For larger systems, it should be
possible to:

¥ Base access controls on the privilege attributes of users such as roles or groups
(rather than individual identities) to reduce administrative costs. This specification
includes the transmission of such privilege attributes in CSI level 2.
15-206 Security Service v1.8 September 2000 [DRAFT]

15
¥ Have a number of security domains which enforce different security policy details,
but support interworking between them subject to policy. (This specification
includes the architecture for such inter-domain working, though this specification
does not define interface for this.) Use of public key technology helps large scale,
particularly inter-enterprise interoperability.

¥ Manage the distribution of cryptographic keys across large networks securely and
without undue administrative overheads.

Flexibility of Security Policy

[1060] The security policies required varies from enterprise to enterprise, so choices should be
allowed, though standard policies should be supported for common secure
interoperability.

Access Policies
[1061] At CSI levels 0 and 1, the AccessId is the only privilege attribute supported. The

standard DomainAccessPolicy defined in Section 15.6.4, ÒAccess Policies,Ó on
page 15-135 (or other access policies) can be used with only this privilege.

[1062] At CSI level 2, conformant ORBs are able to transmit further privilege attributes (such
as role and group), so the DomainAccessPolicy (and other access policies) can be used
with these privileges also.

[1063] CSI level 2 is designed to allow transmission of further privileges, including user
defined privileges and security clearances as needed for multi-level secure systems. If
received by a conformant ORB, they will be available for access control at the target.
However, conformant ORBs need not transmit them, so use of such privileges is
subject to the agreement between the systems.

[1064] The mechanisms defined here also allow a wider range of privileges, etc. to be
supported and other access policies to be used. However, interoperability with all other
conformant ORBs is not guaranteed in this case.

Audit Policies
[1065] All CSI levels provide an AuditId which can be used in audit policies. CSI level 2 can

transmit an AuditId which is anonymous to all but audit administrators.

Application Portability

[1066] Application portability is an important OMG requirement. The many applications
which are unaware of security will continue to be portable.

[1067] Applications which enforce their own security policies should still be portable across
ORBs supporting common secure interoperability if the access and audit policies they
use rely only on security attributes which are mandatory in the chosen CSI level.
15.8 Security Interoperability Protocols 15-207

[1068] Applications should be unaware of the security mechanism used to enforce the
security, unless they specifically ask what it is (e.g. using get_service_information,
see Section 15.5.2, ÒFinding Security Features,Ó on page 15-89).

Security Services Portability/Replaceability

[1069] The CORBA Security specification includes replaceability conformance options.

[1070] The objects supporting the security mechanism (PrincipalAuthenticator, Vault, and
Security Context) can be replaced to support the mechanisms in this specification.
However, if logon outside the object system is supported, this will need to provide
credentials including the security information needed by the CSI mechanism(s) used.

[1071] If the invocation access policy is replaced, this can utilize privileges transmitted using
CSI protocols. However, if an ORB wishes to control access on invocations using local
(e.g., operating system) attributes, then mapping of attributes prior to calling the
Access Decision object is needed.

Performance

[1072] Security should not impose an unacceptable performance overhead, particularly for
normal commercial levels of security, although a greater performance overhead may
occur as higher levels of security are implemented.

[1073] Details of the performance overhead depend on the mechanism used and its
implementation; however, in this specification:

¥ Sufficient information can be carried in the IOR so that the client knows what
security the target supports and does not have to negotiate protocols and options
with it.

¥ The mechanisms used allow the initial_context_token to be transmitted with first
message, if mutual authentication is not required.

Identifying Encumbered Technology

[1074] This specification includes technology which is encumbered to some extent.

¥ The Kerberos V5 technology is licensable from the Massachusetts Institute of
Technology without cost and is widely deployed within the USA. However, it is
subject to export control from the USA; therefore, [12] is the definition of the
protocol used here, as this can be implemented independently of the MIT Kerberos
code.

¥ SPKM implementations are available, though not free. As for other mechanisms,
the (draft) standard is the basis of this specification.

¥ SESAME implementation is available, but is not free for commercial use, and has
restrictions on cryptography for export reasons (the public version does not include
commercial cryptographic profiles - it has the secret key algorithm replaced by
XOR for export control reasons).
15-208 Security Service v1.8 September 2000 [DRAFT]

15
¥ There are two patents associated with the CSI-ECMA protocol. These are usable
free of charge for implementations conformant with this specification under fair
conditions (formal definition of these are available from Bull and ICL).

¥ The DES algorithm is widely deployed internationally, but is subject to export
controls. Export with key lengths which provide strong confidentiality is not
generally permitted.

¥ Increasingly, the RSA algorithm is widely deployed internationally; however, it is
subject to licensing in the USA. It is also subject to export controls, though where it
can be shown that it is not used for confidentiality, products using it are more likely
to be exportable.

¥ Any other cryptographic algorithms used are generally subject to export controls, as
is any interface which makes it easy to replace algorithms.

15.8.11 Relation to CORBA Security Facilities and Interfaces

[1075] This section describes how the security facilities and interfaces defined in Sections 5.5
through 5.7 map to various elements of security protocol mechanisms. It is aimed at:

¥ Object implementors developing applications using a secure object system who
need to know what security is available.

¥ Implementors of security policies who may be constrained by the security attributes
available when interoperating according to this standard.

¥ ORB implementors supporting replaceable security policies.

Functionality

[1076] The security information that is transmitted between ORBs, and which security
facilities and policies are supported in an interoperable environment, is described in
these sections. Three levels of secure interoperability are defined specifying the
particular security attributes that conformant ORBs must support.

[1077] Note that the interoperability defined here is for interoperability of requests/responses
between ORBs. It does not include interoperability of the evidence tokens used for
non-repudiation.

Replaceability

[1078] In replaceability, options which allow ORB implementors to support a wide range of
security policies and mechanisms is defined. For example, the standard
DomainAccessPolices can be replaced by other policies where ORBs support the
appropriate replaceability option. This specification still allows this replaceability,
though the policy being added may be restricted by the security information guaranteed
to be available.
15.8 Security Interoperability Protocols 15-209

[1079] This specification allows replaceability of security mechanisms by replacement of the
Vault and Security Context objects. It specifies mechanisms and protocols which can
be implemented via a GSS-API interface. This adds the potential for having a single
implementation of the Vault and Security Context objects, which by using GSS-API,
would be able to use different security mechanisms.

Levels of Interoperability

[1080] This specification includes three interoperability levels, as described more completely
in Appendix C, Section C.7.2, ÒCommon Secure Interoperability Levels,Ó on
page 15-345. This section gives information about these levels and an example
showing the difference in the way they handle a particular problem.

Common Secure Interoperability Level 0
[1081] CSI level 0 supports identity based policies without delegation. It requires ORBs to

support the following:

¥ Authentication of principals using security functions under one ORB, and then use
of the resultant credentials when making a secure invocation to an object under a
different ORB.

¥ Secure associations to establish trust between client, target, and protect messages.

¥ As part of the secure association, the security name of the client is passed to the
target and used to set both AccessId and AuditId so that identity based access and
audit policies can be supported.

The identity is always that of the immediate invoker of an object in a chain of
object invocations, this is only the same as the initiator of the chain at the point of
entry to the chain.

Common Secure Interoperability Level 1
[1082] CSI level 1 supports identity based policies with unrestricted delegation. It requires

ORBs to support the mandatory part of the CORBA Security when two conformant
ORBs interoperate (using the same security mechanism). It provides the CSI level 0
facilities plus security information (in particular, the security name) of a principal in
the call chain can be delegated to objects (subject to security policy).

[1083] Once this security information has been delegated, the intermediate object has the
choice of acting under its own identity or delegating the initiating principalÕs identity
when invoking another object. When delegating another principalÕs identity, the
delegated identity (rather than the immediate invokerÕs identity) is used to set both the
AccessId and AuditId at the target.
15-210 Security Service v1.8 September 2000 [DRAFT]

15
Common Secure Interoperability Level 2
[1084] CSI level 2 supports identity and privilege based policies with controlled delegation.

ORBs supporting this level must support interoperability of all facilities in Sections 5.5
through 5.7 concerned with object invocation. CSI level 2 provides the CSI level 0 and
level 1 facilities plus:

¥ The security information of the immediate invoker or the delegated information of
the initiating principal can include more security attributes, as follows:

¥ an extensible range of privilege attributes (e.g., roles, groups, enterprise defined
attributes) to support a wider range of policies. Generally, these attributes include
an AccessId which is independent of the security name (and the mechanism type
used) and is used to set the AccessId at the target. Interoperability using particular
types of privileges depends on these privileges being common to both ORBs. This
CSI specification defines which privileges a CSI level 2 conformant ORB must
support (see Appendix Section C.7.2, ÒCommon Secure Interoperability Levels,Ó
on page 15-345).

¥ a separate AuditId can be transmitted. This may be anonymous (except to the
audit administrator). It will always represent the actual principal using the system,
even when the AccessId represents someone who has allowed another user to
access the system on his behalf.

¥ The delegation of a principalÕs attributes can be controlled (for example, usable at
only identified (groups of) targets). Intermediate receiving delegated security
attributes of a principal will not always be able to delegate them.

¥ Composite delegation is allowed for, but support for this is not mandatory.

Example
[1085] This section looks at an example of a secure object system which highlights the

difference between the delegation facilities of the three CSI levels. In this example,
Bob wants to close his bank account and is prepared to give Dan power of attorney to
do this.

¥ At CSI level 0, no delegation is possible; therefore, Bob has to go to the bank and
close the account himself.

¥ At CSI level 1, Bob gives Dan unlimited power of attorney to act for him (as
delegation is unrestricted). Dan can close BobÕs bank account. As the power of
attorney is unlimited, Dan can also read BobÕs medical records and pass on the
power of attorney to Mark - who can also close BobÕs bank account, read BobÕs
medical records, etc.

¥ At CSI level 2, Bob gives Dan the power of attorney to close his bank account;
therefore, Dan can close the account. But this does not include the right to read
BobÕs medical records (as only limited privileges were given to Dan) and does not
include the right to give the power of attorney to Mark (as delegation was restricted
to Dan).
15.8 Security Interoperability Protocols 15-211

15.8.12 Security Functionality

[1086] This section reviews the security functionality in Section 15.5 through 15.7 and
specifies which functionality is supported interoperably at which CSI level. Some
security functionality is supported at all CSI levels, some only at CSI level 1 or 2.

Authentication

[1087] The CSI mechanisms do not specify authentication of principals, but use the result of
such authentication. Principal authentication must result in credentials which contain
the security information needed by the security mechanisms supported by this
conformant ORB.

[1088] CSI mechanisms require authenticated principals (see Section 15.5.3, ÒAuthentication
of Principals,Ó on page 15-89).

Access Control

[1089] Access controls depend upon the privileges of the principal.

[1090] At CSI levels 0 and 1, only the principalÕs identity is available at the target; therefore,
Access Policies using this level must either:

¥ use only the principalÕs identity for access control, or

¥ retrieve other attributes for that principal prior to taking the access decision (the
ÒpullÓ model).

[1091] The standard DomainAccessPolicy assumes all privileges required have been ÒpushedÓ
from the client; therefore, they will be restricted to using identity only. Access policies
using the pull model will not be portable, if the source of such attributes is system
dependent.

[1092] At CSI level 2, the AccessPolicies can use any of the privileges supported by both
ORBs. All CSI level 2 conformant ORBs support AccessId, GroupId, and Role. They
may also transmit user defined privileges, where the user enterprise concerned has a
CORBA attribute family definer, and defines its own families of attributes. However,
some attribute types defined outside the object system may not be understood at all
targets; therefore, portability of these may not be possible to all environments.

Audit

[1093] Auditing is as defined in Section 15.3.5, ÒAuditing,Ó on page 15-27, and is possible at
all CSI levels. A separate AuditId (which may be anonymous) can be transmitted at
CSI level 2.

Secure Invocation

[1094] Conformant implementations (all CSI levels) must support all the association options
defined in Table 15-10 on page 15-197.
15-212 Security Service v1.8 September 2000 [DRAFT]

15
[1095] Channel bindings, as defined in GSS-API and all protocols defined here, are not part of
the mandatory specification.

[1096] Conformant implementations at level 2 allow use of algorithms with different strengths
for integrity and confidentiality.

Delegation Facilities

¥ At CSI level 0, no delegation is supported.

¥ At CSI level 1, the initiating principalÕs identity can be delegated to the target. It is
either delegated or not - there are no other restrictions on delegation.

¥ At CSI level 2, the initiating principalÕs privileges, as well as identity, can be
delegated to the target. Delegation can be controlled further, restricting the targets
to which the attributes can be delegated. These restrictions must be specified by
administrative action, as there are no interfaces specified in to do this in this
specification.

[1097] Level 2 protocols are also defined which allow support of composite delegation;
however, support of this is not required by conformant ORBs.

Non repudiation

[1098] Non-repudiation relies on NR credentials for handling NR evidence tokens. The same
credentials can be used for secure invocations and non-repudiation. This will only be
possible if compatible security technology is used for non-repudiation and secure
invocation. While no specific security technology is mandated for non-repudiation, it is
expected that this will use public key technology. Common credentials usable for both
purposes are expected to use public key technology, to fit with public key mechanisms
(SPKM or the CSI-ECMA public key option), rather than with secret key mechanisms.

Security Policies

[1099] Security policies are potentially sharable between ORBs if they use only identities and
privileges which are available at both ORBs and can be transmitted between them. For
example, a DomainAccessPolicy that uses roles must receive requests from an ORB
which can generate them via a CSI level 2 protocol which can transmit roles.
15.8 Security Interoperability Protocols 15-213

15.8.13 Model for Use and Contents of Credentials

[1100] The CORBA Security model includes security functionality enforced during object
invocations and by applications, as shown in Figure 15-56 on page 15-214.

Figure 15-56 Security Functionality Enforced During Object Invocations and Applications

[1101] Most of the security services utilize the principalÕs credentials either at the client
(before invoking the target object) or at the target. For example, the ORB security
services use these credentials for secure associations, access control, and auditing.

[1102] To fit with the standard CSI security mechanisms, user/principal authentication must
produce credentials suitable for both client side security controls and to fit with the
security mechanisms used for secure invocations. A single credentialÕs object may
have security context information for more than one mechanism. Security services at
the client application use these credentials to enforce security there.

[1103] Access control policies at the target generally depend on the initiating principalÕs
privilege attributes (which generally includes an identity). Normally they rely on
information from the credentials being passed from the client to the target. Other
access policies may use the pull model for obtaining privileges at the target. For
example, an access policy at the target could obtain the access identity using the
get_attributes function. It could then call, in a non-standard way, on whatever service
provides privileges in this case. Alternatively, an attribute Mapper (see ÒAttributes at
the TargetÓ on page 15-216) could be used before calling the access policy (if this
optional facility is supported).

[1104] Audit policies generally require an audit id, though this may be derived like the access
id from a single identifier.

[1105] This specification allows unauthenticated and authenticated users.

Client

request request

Target
Object

ORB

Services
Security

ORB

Services
Security

Credentials
Credentials

application
security
controls

application
security
controls

logon
authentication

user

..

credentials info in token
15-214 Security Service v1.8 September 2000 [DRAFT]

15
[1106] The privilege and other attributes, as seen by the AccessDecision object at the target,
may not be those passed from the client because the security mechanism may have
moderated what is available to the object system.

Credential Content at the Client

[1107] Credentials are made available to the client as the result of authenticating the user (or
other principal), though they may be modified later. Authenticated users have two
types of attributes visible to applications and relevant to secure interoperability:

1. Privilege attributes used for access control. These include the AccessId (the
principalÕs identity as used for access control); other standard CORBA security
attributes such as GroupId, Role, Clearance, and enterprise defined attributes.

2. Identity attributes used for purposes other than access control. Only the audit
identity is relevant here.

At CSI levels 0 and 1, the only attributes which must be visible to the client and
target are the AccessId and AuditId. These will normally be the userÕs security
name.

At CSI level 2, a wider range of privilege attributes is supported.

¥ All conformant ORBs can generate (via security services) credentials with the
following privilege attributes:

¥ AccessId

¥ AuditId

¥ Role

¥ GroupIds - a primary group and other groups

¥ There may be a single identity (e.g., the access identity) which can also be used
for auditing, or separate AccessId and AuditId may be generated. AuditId may
be anonymous.

¥ Optionally, there may also be other privilege attributes including user defined
attributes.

Attributes During Transmission

[1108] At levels 0 and 1, only the principalÕs identity is transmitted. No other attributes are
transmitted.

[1109] At level 2, a wide range of privileges can be transmitted including standard CORBA
attributes and optionally user defined ones. Attributes may have individual defining
authorities, as at the IDL interface, or share a defining authority.
15.8 Security Interoperability Protocols 15-215

Attributes at the Target

[1110] At CSI levels 0 and 1, when only a single identity (e.g., the security name) is
transmitted, that single identity is used to generate the AccessId and the AuditId at the
target. When using the CSI-ECMA protocol at level 0 or 1, principal identity attributes
are transmitted separately from the security name; therefore, the AccessId and AuditId
do not have to be generated from the security name.

[1111] At CSI level 2, all conformant ORBs can accept:

¥ Separate access and audit ids or a single identity used for both purposes.

¥ Transmission of any privileges defined in Appendix Section A.11.1, ÒSecurity
Attributes,Ó on page 15-328, and any privileges with Object Identifiers which can
be mapped to SecurityAttributes.

[1112] This range of privileges can be used in access decisions at the target. Even if these
privileges are not used by the invocation access policy to control access to the target
object, they may be obtained by the application using Current::get_attributes or
Credentials::get_attribute and used in application access decisions.

[1113] The attributes at the target appear as defined in ÒPrivilege AttributesÓ on page 15-249.
For example, they have:

¥ an Attribute type (family definer, family, and the type within this family),

¥ a defining authority, and

¥ the attribute value.

[1114] The attributes may need to be mapped from their form in transit to the form used at the
IDL interface in response to get_attribute calls. An attribute mapper may be needed,
as shown in Figure 15-57.

Figure 15-57 Attribute Mapper Diagram

[1115]

ORB Security Services

Access
Decision
Object

Credentials
as seen at the

target

Target
Object

Optional
Attribute Mapper

Client

Credentials
as

generated request request

application
security
controls
15-216 Security Service v1.8 September 2000 [DRAFT]

15
[1116] This mapping depends on:

¥ Which functionality level is supported. At levels 0 and 1, a single name must be
mapped to provide both AccessId and AuditId. This will be the security name if the
protocol does not carry a separate AccessId or AuditId; both the SPKM and GSS-
Kerberos protocols use the security name.

¥ Whether the access control decisions at the target uses attribute values which are
valid externally from the ORB/operating system (for example, in a domain of
heterogeneous systems), or whether the Access policies use local attributes (such as
operating system ids).

In line with the OMG requirement for portability, externally valid attributes are the
norm, and must be supported in conformant ORBs (so that an application which
includes administration of its access policy is portable between unlike systems).
Mapping to local attributes may also be provided, but is not standardized in this
specification.

Mapping Security Names to Externally Valid Identities

[1117] Where the only client attribute transmitted is the security name, CSI conformant ORBs
map this onto both the AccessId and AuditId in the received credentials. These both
have the same value.

[1118] When using the GSS-Kerberos, the security name protocol has two components: a
realm name and a principal name. The security name is of the form principal@realm.
The principal name may be a multi-component name with components separated by slash
(/) - see [12] section 2.1.1.

[1119] When using a public key based mechanism, the security name is a directory name.
This is a multi-part name (e.g., country, organization, organization unit, surname, and
common name). The security name is returned from the security mechanism in the
form of a string complying with [4] for the string representation of distinguished
names. The separators between components of the name may be commas or
semicolons.

[1120] In both cases, the full Security name is used as the value for the AccessId and AuditId
in the IDL SecurityAttributes. This means the form of these attributes are dependent on
the security mechanism used, as Kerberos and X.500 names have different forms.

Mapping Other Attributes to Externally Valid IDL Attributes

[1121] Other security attributes may also be transmitted from the client when using the CSI-
ECMA protocol. For example, at level 2, there could be a Role, GroupId, and
enterprise specific attributes as well as AccessId and/or AuditId. Also, separate
AccessId and AuditIds may be transmitted.

[1122] In general, these will already have values which are valid outside a particular ORB and
operating system; therefore, the mapping is mainly to put these in the form of an IDL
SecurityAttribute. However, if a separate AuditId has not been transmitted, the
AuditId value will be copied from the AccessId. Also, if a separate defining authority
15.8 Security Interoperability Protocols 15-217

is not transmitted for an attribute, the defining authority for the attribute in IDL is set
from the issuer Domain of the authority who generated the Privilege Attribute
Certificate containing the privileges. Note also that the target security policy may
restrict which of the attributes are available to the application.

[1123] Attribute types in transmission are identified by Object Identifiers. For the standard
attribute types such as Role or GroupId (as defined in Appendix Section A.11.1,
ÒSecurity Attributes,Ó on page 15-328), the type is automatically translated to the
appropriate CORBA family and attribute type. The value is also re-encoded, if needed,
from ASN.1 to the equivalent IDL type.

[1124] We propose that OMG should register itself in the ISO Object Identifier space. A
SecurityAttribute type where there is a family definer registered with OMG (see
Appendix Section A.11, ÒValues for Standard Data Types,Ó on page 15-328) can then
be transmitted with an Object Identifier of:

<iso>..<omg>.<security>.<family_definer>.<family>.<attribute type>

[1125] which then can be mapped automatically onto the CORBA SecurityAttribute
structure.

[1126] Attributes other than the standard attributes and those with CORBA family Object
Identifiers are not guaranteed to be understood at the target; therefore, they may not be
automatically mapped to CORBA families and types. Such mapping can be done by an
optional attribute mapper which understands these attribute types.

Mapping to Local Attribute Values

[1127] An ORB can support mapping of the security name and other attributes to local
operating system values such as UNIX uids and gids. This mapper could generate
different AccessIds and AuditIds. Note that when using local values, the application
(particularly the access policy administration) will not be portable to other types of
system.

[1128] Mapping of these values is specific to the ORB and/or operating system. This standard
does not specify how this mapping is done, whether it calls on other software to do it,
or what types of values it generates. However, the defining authority in the IDL
SecurityAttribute must identify the local environment responsible for the meanings of
these values, so the application can determine where these values are valid.

[1129] Mapping to local attributes may be done by an optional attribute mapper (see
ÒAttribute MappingÓ on page 15-221).

15.8.14 CORBA Interfaces

[1130] In this section:

¥ Profiles of the interfaces defined in sections 15.5 through 15.7 are defined.

¥ Values of certain IDL constants relevant to these profiles are defined.
15-218 Security Service v1.8 September 2000 [DRAFT]

15
¥ Restrictions that application that use the Security interfaces must adhere to for
conforming to this Common Secure Interoperability standard are identified.

Service Options for Common Secure Interoperability

[1131] The following Service Options are returned by ORB::get_service_information
representing the level of CSI that is supported by the ORB:

module Security {
const CORBA::ServiceOption CommonInteroperabilityLevel0 = 10;
const CORBA::ServiceOption CommonInteroperabilityLevel1 = 11;
const CORBA::ServiceOption CommonInteroperabilityLevel2 = 12;

};

[1132] The common interoperability protocols supported are identified using a ServiceDetail
structure with a ServiceDetailType of Security::SecurityMechanismType, as
described in Section 15.5.2, ÒFinding Security Features,Ó on page 15-89. The values
for the CSI mechanisms are defined in Appendix Section A.2, ÒGeneral Security Data
Module,Ó on page 15-296.

Mechanism Types

[1133] The mechanism at the application interface is defined as Security::MechanismType (a
string). CSI mechanisms are encoded in the MechanismType string by concatenating a
mechanism id and zero, one, or more cryptographic profiles separated by commas.

[1134] The mechanisms supported by an object are identified by tags in its IOR. In the
MechanismType, the mechanism is identified by a ÒstringifiedÓ form (e.g., the integer
value 123 represented as the string Ò123Ó) of the TAG_x_SEC_MECH id value for
that mechanism. Mechanisms supported by SECIOP based protocols are:

¥ SPKM_1 or SPKM_2: the level 0 public key mechanisms using the SPKM
protocol.

¥ KerberosV5: the level 1 secret key mechanism using GSS Kerberos protocol.

¥ CSI_ECMA_Secret: the CSI-ECMA secret key mechanism, using Kerberos V5.

¥ CSI_ECMA_Hybrid: the CSI-ECMA mechanisms which uses secret key
technology for key distribution within a domain, but public key between domains.

¥ CSI_ECMA_Public: the CSI-ECMA public key mechanism.

[1135] Cryptographic profiles are identified by a ÒstringifiedÓ form of the
CryptographicProfile value as used in the IOR.

[1136] Mechanism tags in the IOR and mechanism type Object Identifiers (as in GSS-API) in
SECIOP messages are also used as appropriate.
15.8 Security Interoperability Protocols 15-219

[1137] A MechanismType identifier for a generic security mechanism is the stringified value of
SECIOP::TAG_GENERIC_SEC_MECH concatenated with a colon ":", concatenated
with the stringified hexadecimal encoding of the octet sequence of the
security_mechanism_type field in the componentÕs associated
SECIOP::GenericMechanismInfo structure.

[1138] MechanismType is used in a number of operations. These include operations that:

¥ Deal with the mechanisms and cryptographic profiles in MechanismsPolicy object
for use with get_policy and set_policy_overrides on an object reference. In this
case, the mechanisms attribute of the MechanismPolicy object (see ÒClient Side
Invocation Policy ObjectsÓ on page 15-104), contains all the Cryptographic profiles
available with that mechanism to communicate with that target.

¥ Specify a security mechanism to use when talking to a target (e.g., using the
MechanismPolicy object with the set_policy_overrides on an object reference and
Vault::Init_security_context on the Vault). In this case, either just the mechanism
name may be specified (in which case, a default cryptographic profile will be used)
or a mechanism name and cryptographic profile may be specified.

[1139] The get_service_information operation on the ORB can also return the mechanism,
though in this case, it is in the form of a sequence<octet>.

Delegation Related Interfaces

[1140] Interfaces to handle no delegation, simple delegation, and composite delegation (hence
delegation interfaces for CSI levels 0, 1, and part of 2) are defined in Section 15.5.13,
ÒDelegation Facilities,Ó on page 15-122).

[1141] CSI level 2 also supports controls on the delegation of credentials. How to specify
these controls is not included in this specification. It is assumed that it is handled by
administrative action. For example, it may be done by associating the delegation
controls with a user or an attribute set selected when the user logs on or selects
attributes at other times. Management of attributes associated with a principal is
considered out-of-scope of this specification.

[1142] No facilities are currently defined for an application object to specify controls it wishes
to apply on delegating its credentials. In future, such facilities may be considered for
CORBA Security - see Appendix F, Section F.13, ÒAdvanced Delegation Features,Ó on
page 15-381.

15.8.15 Support for CORBA Security Facilities and Extensibility

[1143] This CSI specification assumes that the ORB conforms to at least CORBA Security
mandatory facilities (except for delegation at CSI level 0), and requires that this
functionality can be supported across different ORBs using any of the CSI level
specified here.

[1144] The CORBA Security specification allows use of a wide range of security policies,
facilities, and mechanisms. Conformant ORBs can restrict which of these can be used
during interoperability, as follows:
15-220 Security Service v1.8 September 2000 [DRAFT]

15
¥ The protocol may not carry the privileges the target needs for some of its access
policies. For example, at CSI levels 0 and 1 only an identity is supported.

¥ It may not carry the type of audit identity needed for the audit policy. For example,
it may not be able to carry an anonymous AuditId.

¥ It may not support composite delegation. (CSI levels 0 and 1 do not; in CSI level 2
it is not mandatory).

¥ There are restrictions on the SECIOP exchanges (e.g., separate request and response
protection is not supported).

¥ Unauthenticated users may not be supported (All CSI levels).

15.8.16 Security Replaceability for ORB Security Implementors

[1145] Security policy implementations could be replaced to provide new security policies as
discussed in Section 15.7.3, ÒReplaceable Security Services,Ó on page 15-188.

[1146] This common Interoperability specification affects replaceability in two areas:

1. Mapping of attributes as described in Section 15.8.13, ÒModel for Use and Contents
of Credentials,Ó on page 15-214 affects replaceable security policies which use
these attributes.

2. Use of the Generic Security Services API (GSS-API) within the Vault and Security
Context implementation objects described in Section 15.7.2, ÒImplementation-
Level Security Object Interfaces,Ó on page 15-165, should make these objects
independent of the particular security mechanisms used.

Attribute Mapping

[1147] As described in ÒAttributes at the TargetÓ on page 15-216, the form of attributes may
need to be mapped before being made available to a target security policy
(AccessPolicy or AuditPolicy) or to the target object.

[1148] No interface for an attribute mapper is currently defined; therefore, it is not possible to
replace attribute mapping independently of the ORB/security mechanism. Such an
interface may be defined in the future.

Use of GSS-API

[1149] The choice of security mechanism is not visible outside the Vault and Security
Context objects, except for the identification of the Mechanism (and associated
cryptographic profiles) in the IOR and in the MechanismPolicy object (see ÒClient
Side Invocation Policy ObjectsÓ on page 15-104).

[1150] The Vault and Security Context can use GSS-API to implement their security
functions, and so remain independent of security mechanism.
15.8 Security Interoperability Protocols 15-221

[1151] If only CSI level 0 or 1 facilities are used, the standard GSS-API interface (as defined
in RFC 1508) can be used. If CSI level 2 facilities are needed, this requires use of
attributes other than the security name, and may also use delegation controls.
Therefore, it requires use of an extended GSS-API, such as [12].

[1152] Use of GSS-API is a recommendation, but is not proposed as a conformance option for
this CSI specification or for the CORBA Security specification.

15.9 Secure Inter-ORB Protocol (SECIOP)

[1153] To provide a flexible means of securing interoperability between ORBs, a new
protocol is introduced into the CORBA Interoperability Architecture. This protocol sits
below the GIOP protocol and provides a means of transmitting GIOP messages
securely.

Figure 15-58 Position of SECIOP Protocol

[1154] SECIOP messages support the establishment of Security Context objects and protected
message passing. Independence from GIOP allows the GIOP protocol to be revised
independently of SECIOP. A Security Context object represents a security
association.

[1155] The SECIOP Context Management Layer encapsulates GSS based tokens in SECIOP
messages. It is driven by the finite state machines defined in Table 15-13 on
page 15-229 and Table 15-14 on page 15-232.

GIOP
fragmentation

IIOP SECIOP SSLIOPSECIOP

GIOP
fragmentation

IIOP SECIOP SSLIOPSECIOP

transport
15-222 Security Service v1.8 September 2000 [DRAFT]

15
15.9.1 Architectural Assumptions

[1156] SECIOP is designed to support a rich variety of different software implementation
architectures. In order to operate in the most sophisticated of these, the design assumes
both clients and targets are multi-threaded and that a single TCP connection can
support multiple security associations.

Figure 15-59 Architectural Assumptions

[1157] This specification assumes the following environmental and implementation
characteristics:

¥ Each SECIOP secure association is bound to a single transport connection. This
ensures that GIOP fragments are not reordered due to thread scheduling anomalies.
It also guarantees that a response to a GIOP request returns on the same transport
connection as the request, which is required by the GIOP specification.

¥ SECIOP may use multiple security associations over the same transport connection.
This allows implementations to multiplex SECIOP traffic, which can improve
performance.

¥ A secure association is viewed by the GIOP layer as if it were a transport
connection. Therefore, GIOP operates in the same manner as a connection closure
when a security association is discarded. When the transport connection underneath
SECIOP is closed, all SECIOP secure associations established on that connection
are effectively discarded.

15.9.2 SECIOP Context Management Layer

[1158] The SECIOP Context Management Layer establishes and controls a secure association
between a client and target. It also provides a means for the transmission of protected
messages between clients and targets.

GIOP

SECIOP

...

GIOP

SECIOP

Multiple Security
Associations

TCP Connection

Thread Thread Thread Thread Thread Thread

...
15.9 Secure Inter-ORB Protocol (SECIOP) 15-223

SECIOP Context Management Layer Message Header

[1159] SECIOP Context Management messages share a common header format with GIOP
messages defined in the Common Object Request Broker: Architecture and
Specification. The fields of this header have the following definition.

¥ magic - identifies the protocol of the message. Each protocol (GIOP, SECIOP) is
allocated a unique identifier by the OMG. The value for SECIOP is ÒSECP.Ó

¥ protocol_version - this contains the major and minor protocol versions of the
protocol identified by magic. The value for the version of SECIOP defined here is 1
major version, 1 minor version. This field is called GIOP_version in
GIOP::MessageHeader_1_1.

¥ byte_order - as in the GIOP header definition.

¥ message_type - this is the protocol specific identifier for the message.

¥ message_size - as in the GIOP header definition.

SECIOP Context Management Layer Protocol

[1160] Where possible, SECIOP Context Management messages are sent with GIOP messages
rather than as separate exchanges. However this is not always possible (e.g., when the
client wishes to authenticate the target before it is prepared to send a GIOP message).

[1161] The SECIOP Context Management Layer has the following message types:

module SECIOP
enum MsgType {

MTEstablishContext, MTCompleteEstablishContext,
MTContinueEstablishContext, MTDiscardContext,
MTMessageError, MTMessageInContext

};

typedef unsigned long long ContextId;

enum ContextIdDefn {
CIDClient,
CIDPeer,
CIDSender

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};
};
15-224 Security Service v1.8 September 2000 [DRAFT]

15
ContextId

[1162] This type is used to define the identifiers allocated by the client and target for the
association.

ContextIdDefn

[1163] This enum is used to define the kind of context identifier held in an SECIOP message.
The context identifier will either be the one specified by the client which established
the context or it will be the identifier associated with the receiver of the message (i.e.,
the request target for request or request fragment messages or the request client for
reply or reply fragment messages). The value must equal Client if the value of
target_context_id_valid in the CompleteEstablishContext was false or the message
has not yet been exchanged. It must equal Peer if the value of target_context_id_valid
in the CompleteEstablishContext was true. The use of peer identifiers allows the
recipient of the message to more efficiently find its security context. The values are
defined as:

¥ CIDClient - the context id is that of the associationÕs client.

¥ CIDPeer - the context id is that of the recipient of the message.

¥ CIDSender - the context id is that of the sender of the message. This is only used
with the DiscardContext message when the sender of the DiscardContext message
has no context and has received a message which it cannot process.

TokenType

[1164] This type is used to indicate the type of message_protection_token carried by a
MessageInContext message. The value SecTokenTypeWrap indicates the token was
returned by a GSS_Wrap() call, while the value SecTokenTypeMIC indicates the
token was returned by a GSS_GetMIC() call.

Message Definitions

EstablishContext
[1165] This message is passed by the client to the target when a new association is to be

established. Its definition is:

struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

¥ client_context_id - this is the clientÕs identifier for the security association. It is
passed by the target to the client with subsequent messages within the association.
It enables the client to link the message with the appropriate security context.
15.9 Secure Inter-ORB Protocol (SECIOP) 15-225

¥ initial_context_token - this is the token required by the target to establish the
security association. It contains a mechanism version number, mech type identifier
and mechanism specific information required by the target to establish the context.
It may be sent with a protected message (for example if the client does not wish to
authenticate the target).

CompleteEstablishContext
[1166] This message is returned by the target to indicate that the association has been

established. It is sent as a reply to an establish context or continue establish context. It
may be sent with a GIOP reply or reply fragment. Its definition is:

struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;

};

¥ client_context_id - this is the clientÕs identifier for the security association. It is
returned by the target to the client to enable the client to link the message with the
appropriate security context.

¥ target_context_id_valid - this indicates whether the target has supplied a
target_context_id for use by the client. True indicates that the following field is
valid.

¥ target_context_id - the targets identifier for the association. It is passed by the
client to the target with subsequent messages. It enables the target to associate a
local identifier with the context to allow the target to identify the context
efficiently.

¥ final_context_token - this is the token required by the client to complete the
establishment of the security association. It may be zero length.

ContinueEstablishContext
[1167] This message is used by the client or target during context establishment to pass

further messages to its peer as part of establishing the context. It may be the response
to an establish context or to another continue establish context. It is defined as:

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

¥ client_context_id - the clientÕs identifier for the association. It is used by both
client and target to identify the association during the establishment sequence.

¥ continuation_context_token - this is the security information required to continue
establishment of the security association.
15-226 Security Service v1.8 September 2000 [DRAFT]

15
DiscardContext
[1168] This message is used to indicate to the receiver that the sender of the message has

discarded the identified context. Once the message has been sent the sender will not
send further messages within the context. The message is used as a hint to enable
contexts to be closed tidily. Its definition is:

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

¥ message_context_id_defn - the type of context identifier supplied in the
message_context_id field.

¥ message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies.

¥ discard_context_token - optional token provided by the sender to assist the
receiver in cleaning up its security context state.

MessageError
[1169] This message is used to indicate an error detected in attempting to establish an

association either due to a message protocol error or a context creation error. The
message is also used to indicate errors in use of the context.

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

¥ message_context_id_defn - the type of context identifier supplied in the
message_context_id field.

¥ message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies. It is either the clientÕs
identifier for the context (type client) or the receiver of the messages identifier (type
peer).

¥ major_status - the reason for rejecting the context. The values used are those
defined by the GSS API (RFC 1508) for fatal error codes.

¥ minor_status - this field allows mechanism specific error status to further define
the reason for rejecting the context. It is not defined further here.

MessageInContext
[1170] Once established messages are sent within the context using the MessageInContext

message. Its definition is:
15.9 Secure Inter-ORB Protocol (SECIOP) 15-227

struct MessageInContext {
ContextIdDefn message_context_id_defn;
TokenType message_protection_token_type;
ContextId message_context_id;
sequence <octet> message_protection_token;

};

¥ message_context_id_defn - the type of context identifier supplied in the
message_context_id field.

¥ message_protection_token_type - indicates whether the
message_protection_token is a SecTokenTypeWrap or SecTokenTypeMIC token.

¥ message_context_id - the context identifier to be used by the recipient of the
message to identify the context to which the message applies.

¥ message_protection_token - the sign or seal token for the message. This is a self
defining token which indicates how the message is protected. If the message is not
protected the token will be zero length.

[1171] For signed and unprotected messages, the MessageInContext message is followed by
the higher level protocol message being transmitted within a security context (i.e.
GIOP message or message fragment). The length of the higher level protocol message
is included in the length of the MessageInContext message. For sealed messages the
length of the higher level protocol message is zero.

15.9.3 SECIOP Context Management Finite State Machine Tables

[1172] Table 15-13 on page 15-229 and Table 15-14 on page 15-232 present the state
transition rules for the Context Management Layer of SECIOP. The state transitions
given in these tables are intended to operate in an environment satisfying the following
assumptions:

¥ Each TCP connection may be associated with multiple FSMs.

¥ Each ContextId is associated with one and only one FSM.

SECIOP Context Management Protocol State Tables

[1173] Note that some mechanisms may start in state S3.
15-228 Security Service v1.8 September 2000 [DRAFT]

15
Table 15-13 SECIOP Context Management Finite State Machine -Table 1

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

EstablishContext
arrives

If create context = OK
& context complete,
Send CompleteEstab-
lishContext.
Execute send algo-
rithm.
S3.
Else if create context =
OK & context incom-
plete.
Send ContinueEstab-
lishContext.
S2.
Else
Send MessageError.
Terminate.

[Target sent Estab-
lishContext at
same time Client
did. ClientÕs has
precedence]
S1.

[Target sent Estab-
lishContext at
same time Client
did. ClientÕs has
precedence]
S2.

[Target discarded context
without telling client]
Create a new FSM in state
S0.
Deliver EstablishContext
message to it.
Terminate.

CompleteEstab-
lishContext arrives

[A CompleteEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate

Complete context
with targetÕs con-
text id.
If OK,
S3.
Else,
send MessageEr-
ror.
Terminate

Complete context
with targetÕs con-
text id.
If OK,
Execute send algo-
rithm.
S3.
Else,
send MessageEr-
ror.
Terminate

[A CompleteEstablish-
Context arriving in S3 is
illegal]
Send MessageError.
Terminate
15.9 Secure Inter-ORB Protocol (SECIOP) 15-229

ContinueEstablish-
Context arrives

[A ContinueEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate

[A ContinueEstab-
lishContext arriv-
ing in S1 is illegal]
Send MessageEr-
ror.
Terminate

update context
state.
If OK & context
complete,
Send CompleteEs-
tablishContext.
Execute send algo-
rithm.
S3.
Else If OK & con-
text incomplete,
Send ContinueEs-
tablishContext.
S2.
Else,
Send MessageEr-
ror.
Terminate

[A ContinueEstablish-
Context arriving in S3 is
illegal]
Send MessageError.
Terminate

MessageError
arrives

[A MessageError arriv-
ing in S0 is illegal]
Terminate

Terminate Terminate [target had trouble using
its security context and
couldnÕt reestablish it]
Terminate.

Send Frame

[Normal send
case.]

If create context = OK,
 Send EstablishCon-
text
 message.
 If Message allowed,
 Send the frame.
 S1.
 Else
 S2.
Else
Terminate

Send the frame.
S1.

S2. If context valid,
Send the frame.
S3.
Else
Create a new FSM in state
S0.
Deliver SendFrame to
FSM
Terminate

Table 15-13 SECIOP Context Management Finite State Machine -Table 1 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
15-230 Security Service v1.8 September 2000 [DRAFT]

15
MessageInContext
arrives

[Normal receive
case.]

[Client has discarded
context, but target
doesnÕt know it.]
Send DiscardContext.
S0

[MessageInCon-
text arriving in
state S1 is illegal]]
Send MessageEr-
ror.
Terminate

[MessageInCon-
text arriving in
state S2 is illegal]]
Send MessageEr-
ror.
Terminate

If message OK,
Execute receive algo-
rithm.
Else If context timed out,
Send DiscardContext.
Create a new FSM in state
S0.
Execute send algorithm.
Terminate.
Else If message bad, but
context OK, drop mes-
sage.
Execute send algorithm.
Else
Send MessageError.
Terminate.

DiscardContext
arrives

[ignore]
S0

[Target doesnÕt
want to create a
security associa-
tion]
Terminate

[Target doesnÕt
want to create a
security associa-
tion]
Terminate

[targetÕs context is no
longer valid]
Create a new FSM in state
S0.
Execute send algorithm.
Terminate.

Resync Requested [ignore. Resync will
occur on next Send-
Frame request]
S0

Terminate Terminate Send DiscardContext.
Create a new FSM in state
S0.
Execute send algorithm.
Terminate.

Table 15-13 SECIOP Context Management Finite State Machine -Table 1 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
15.9 Secure Inter-ORB Protocol (SECIOP) 15-231

Table 15-14 SECIOP Context Management Finite State Machine - Table 2

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)

EstablishContext
arrives

If create context = OK
& context complete,
Send CompleteEstab-
lishContext.
Execute send algo-
rithm.
S3.
Else if create context =
OK & context incom-
plete,
Send ContinueEstab-
lishContext.
S2.
Else
Send MessageError.
Terminate

[illegal state at Target
Side]

[Client wants to
start over. Always
allow this.]
discard partial con-
text.
Create a new FSM
in state S0.
Deliver Establish-
Context frame to it.
Terminate.

[Client discarded con-
text without telling tar-
get.]
Create a new FSM in
state S0.
Deliver EstablishCon-
text frame to it.
Terminate.

CompleteEstab-
lishContext arrives

[A CompleteEstablish-
Context arriving in S0
is illegal]
 Send MessageError.
Terminate

[illegal state at Target
Side]

Complete context
with context id.
If OK,
Execute send algo-
rithm.
S3.
Else,
send MessageEr-
ror.
Terminate

[A CompleteEstablish-
Context arriving in S3
is illegal]
Send MessageError.
Terminate
15-232 Security Service v1.8 September 2000 [DRAFT]

15
ContinueEstablish-
Context arrives

A ContinueEstablish-
Context arriving in S0
is illegal]
Send MessageError.
Terminate

[illegal state at Target
Side]

update context
state.
If OK & context
complete,
Send CompleteEs-
tablishContext.
Execute send algo-
rithm.
S3.
Else If OK & con-
text incomplete,
Send ContinueEs-
tablishContext.
S2.
Else,
Send MessageEr-
ror.
Terminate

[A ContinueEstablish-
Context arriving in S3
is illegal]
Send MessageError.
Terminate

MessageError
arrives

[A MessageErrort
arriving in S0 is illegal]
Terminate

[illegal state at Target
Side]

Terminate [target had trouble
using its security con-
text and couldnÕt rees-
tablish it]
Terminate.

Send Frame

[Normal send
case.]

If create context = OK,
Send EstablishContext
message.
S2.
Else
Terminate

[illegal state at Target
Side]

S2. If context valid
Send the frame (if not
already sent).
S3.
Else Create a new FSM
in state S0.
Deliver SendFrame to
FSM
Terminate.

Table 15-14 SECIOP Context Management Finite State Machine - Table 2 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
15.9 Secure Inter-ORB Protocol (SECIOP) 15-233

15.10 The SECIOP Hosted CSI Protocols

[1174] All the SECIOP hosted Common Secure Interoperable (CSI) protocols and
mechanisms use common elements as far as possible.

¥ All mechanisms use IOR tags of the form TAG_x_SEC_MECH as defined in
ÒSecurity Components of the IORÓ on page 15-196.

¥ The component data structure associated with these tags is common for all protocols
and mechanisms in this specification.

MessageInContext
arrives

[Normal receive
case.]

[Target has discarded
context, but client
doesnÕt know it.]
Send DiscardContext.
S0

[illegal state at Target
Side]

[MessageInCon-
text arriving in
state S2 is illegal]]
Send MessageEr-
ror.
Terminate

If message OK,
Execute receive algo-
rithm.
Else If context timed
out,
Send DiscardContext.
Create a new FSM in
state S0
Execute send algo-
rithm.
Terminate
Else If message bad,
but context OK, drop
message.
Execute send algo-
rithm.
Else
Send MessageError.
Terminate

DiscardContext
arrives

[ignore]
S0

[illegal state at Target
Side]

[Client doesnÕt
want to create a
security associa-
tion]
Terminate

[clientÕs context is no
longer valid.]
Create a new FSM in
state S0.
Execute send algo-
rithm.
Terminate.

Resync Requested [ignore. Resync will
occur on next Send-
Frame request]
S0

[illegal state at Target
Side]

Terminate Send DiscardContext.
Create a new FSM in
state S0.
Execute send algo-
rithm.
Terminate.

Table 15-14 SECIOP Context Management Finite State Machine - Table 2 (Continued)

Event No Association (S0) Association being
created, message
allowed (S1)

Association being
created, message
not allowed (S2)

Association exists (S3)
15-234 Security Service v1.8 September 2000 [DRAFT]

15
¥ Cryptographic profiles are defined in all cases which allow use of relevant
algorithms for confidentiality, integrity, etc. Different mechanisms support some of
the same algorithms and one way functions.

¥ The MechanismType as seen at the IDL interface also reflect the mechanism ids
and cryptographic profile values in the IOR tags.

¥ Privilege attributes when CSI level 2 is used are the same whether a secret or public
key mechanism is used.

¥ The basic SECIOP token format and some details (such as token types and ids) are
common for all protocols.

¥ All tag components must be encapsulated using CDR encoding.

[1175] These protocols are designed to allow use of GSS-API mechanisms. Use of level 2
facilities such as handling of privileges, as defined in Appendix Section A.11, ÒValues
for Standard Data Types,Ó on page 15-328, imply use of an extended GSS-API such as
[23].

15.10.1 IOR

[1176] The IOR TAG_INTERNET_IOP profile contains the security tags needed for
common secure interoperability using GIOP/IIOP. These security tags may be shared
with other (non IIOP) protocols, including DCE-CIOP.

[1177] The IIOP tag identifiying the SECIOP security transport is
TAG_SECIOP_INET_SEC_TRANS. The tagged component data described below
must be encapsulated using CDR encoding. The data structure associated with this tag
is as follows:

struct SECIOP_INET_SEC_TRANS {
unsigned short port;

};

[1178] The port field contains the port number to be used instead of the port defined in the
encompassing IIOP profile body. It contains the TCP/IP port number on the specified
host where the target agent is listening for TCP/IP connection requests for the SECIOP
protocol.

[1179] The security tags describe what the security target supports and requires, and any
mechanism specific data required for secure interoperability using this mechanism.

[1180] For common secure interoperability and for all CSI mechanisms and protocols, the
IOR must contain at least one appropriate TAG_x_SEC_MECH tag.

[1181] The IOR may also contain the following tags, as defined in ÒSecurity Components of
the IORÓ on page 15-196:

¥ TAG_SEC_NAME provides the security name and may be shared between
mechanisms which use the same form of name. Conformant implementation must
be able to accept security names shared between such mechanisms.

¥ TAG_ASSOCIATION_OPTIONS may be shared between mechanisms.
15.10 The SECIOP Hosted CSI Protocols 15-235

¥ TAG_GENERIC_SEC_MECH whose component definition includes a sequence
<TaggedComponents> includes a security_mechanism_type and can include a
security name and association options.

[1182] If a mechanism is selected for use, and has a defined security name and/or association
option, these values are used in preference to any values defined at the higher level. If
no name or association options are defined for the mechanism, then the values of these
tags in the IIOP profile are used.

15.10.2 Mechanism Tags

[1183] The TAG_x_SEC_MECH tags for all the CSI mechanisms defined in this
specification have an associated component data structure of the same form:

struct <mechanism name> {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence <octet> security_name;

};

[1184] Names for the CSI mechanisms are:

SPKM_1
SPKM_2
KerberosV5
CSI_ECMA_Secret
CSI_ECMA_Hybrid
CSI_ECMA_Public

[1185] Tag ids for the mechanisms are:

TAG_SPKM_1_SEC_MECH
TAG_SPKM_2_SEC_MECH
TAG_KerberosV5_SEC_MECH
TAG_CSI_ECMA_Secret_SEC_MECH
TAG_CSI_ECMA_Hybrid_SEC_MECH
TAG_CSI_ECMA_Public_SEC_MECH

¥ The association options required/supported by the target are defined in
Section 15.10.3, ÒAssociation Options,Ó on page 15-237.

¥ The sequence of crypto_profiles defines one or more cryptographic profile
supported by this target using this mechanism as defined in Section 15.10.4,
ÒCryptographic Profiles,Ó on page 15-237.

¥ The security name is defined in Section 15.10.5, ÒSecurity Name,Ó on page 15-238.
15-236 Security Service v1.8 September 2000 [DRAFT]

15
15.10.3 Association Options

[1186] With all CSI protocols and mechanisms, a secure ORB supporting a target object must
be able to put in the IOR any or all of the association options defined in the CORBA
Security specification, as required by the target.

[1187] All compliant secure ORBs supporting clients must be able to accept all the
target_supports and target_requires association options, and act on these correctly, as
defined in ÒTAG_ASSOCIATION_OPTIONSÓ on page 15-197.

[1188] Two of the association options are replay and misordering detection. While all the
protocols in this specification include facilities to detect replay and misordering, in a
multi-threading CORBA environment, the calls on the security mechanism are not
guaranteed to be made in the same order that the messages they are protecting are
transmitted. The facilities in the security mechanisms cannot guarantee that they will
correctly detect replay and misordering. An extension to SECIOP is expected in future
to provide these checks. Until this change to SECIOP has been specified and adopted
(although these association options may be set) replay and misordering detection is not
a mandatory part of this specification.

[1189] If no association options are specified in the IOR, a CSI defined default is assumed.

15.10.4 Cryptographic Profiles

[1190] Cryptographic algorithms are used for

¥ integrity and confidentiality protection of messages,

¥ establishing the security association between client and target (including peer
authentication and establishing session keys),

¥ deriving dialogue keys for message protection (both confidentiality and integrity),
and

¥ protecting systems security data such as PACs (Privilege Attribute Certificates).

[1191] The security mechanisms defined here allow a choice of algorithms which can be used
for the different functions, depending on

¥ the needs of the functions, and

¥ the requirements for international deployment in countries which constrain how
cryptography can be used and exported from countries where use of cryptography is
controlled.

[1192] In some cases, export controls may require international versions of products to use
shorter key lengths; therefore, a large number of combinations of algorithms and key
lengths may be possible. For interoperability, both client and target must support the
same algorithms and key lengths for these functions.

[1193] This specification defines a number of cryptographic profiles, where each profile
identifies a set of algorithms with specified key lengths used by a mechanism for
specified functions.
15.10 The SECIOP Hosted CSI Protocols 15-237

[1194] For example, the CSI-ECMA protocol defines a NoDataConfidentiality cryptographic
profile which can use DES and RSA for protecting the security mechanism, but does
not encrypt the ORB request/reply. (The profile for full security would use DES/64 for
data confidentiality.)

[1195] Cryptographic profiles are identified by a value, represented in IORs as an unsigned
short:

 typedef unsigned short CryptographicProfile;

Key Establishment Algorithms

[1196] The algorithms used to establish the cryptographic session keys during security
associations depend on the type of mechanism.

¥ Where the secret key (Kerberos based) mechanism is used, either via the GSS
Kerberos or CSI-ECMA protocol, the DES algorithm is used.

¥ When a public key mechanism is used, either via SPKM or CSI-ECMA protocol,
the RSA algorithm is used.

Common Message Protection Algorithms

[1197] Even if different mechanisms and algorithms are used for key establishment, the same
algorithms can be used for message protection.

¥ All CSI mechanisms have cryptographic profiles which include an MD5 hash of the
data for integrity, though the hash, in some profiles may be signed or encrypted.

¥ All CSI mechanisms can use DES in CBC mode for message confidentiality.

Cryptographic Profiles Supported by CSI Protocols

[1198] A number of cryptographic profiles are defined for each CSI protocol. Further
cryptographic profiles using different algorithms can be used with these protocols, but
these are not part of this interoperability standard. A target may support several
cryptographic profiles for a particular mechanism.

[1199] In all cases, support of a CSI protocol requires support for a cryptographic profile
which provides integrity of user data, but not confidentiality, as such a profile is easier
to deploy internationally. For example, the GSS Kerberos protocol always supports its
MD5 cryptographic profile. Other profiles may also be supported.

15.10.5 Security Name

[1200] The form of the security name depends on the security mechanism used. For example,
it can be a Kerberos name or a Directory style name. Directory names conform to the
string representation defined in [4].
15-238 Security Service v1.8 September 2000 [DRAFT]

15
[1201] The security name may be at the component level of the IOR or higher if shared
between mechanisms. If a security mechanism tag, but no security name is present in
the IOR, the IOR is improperly formatted and a CORBA::INV_OBJREF exception
shall be raised when the IOR is used to specify the target of an operation.

15.10.6 Security Administration Domains

[1202] As defined in ÒDomainsÓ on page 15-37, a security policy domain is a set of objects to
which a security policy applies for a set of security related activities and is
administered by a security authority.

[1203] Security mechanisms are concerned with the security domains where users and other
principals are administered, often by on-line authorities such as Authentication and
Privilege Attribute Services. Often, this domain will be the enclosing domain
encompassing secure invocation, access control, and other policy domains.

[1204] Note that some authorities may be off-line. For example, the Certification Authority
used to issue certificates is often off-line.

[1205] The security mechanisms specified in this document allow requests to cross domain
boundaries. At the boundary, trust between the domains needs to be established. (The
way this is done depends on the mechanism used.) Also, the scope of privileges may
not always cross the domain boundary. This specification does not define how
privileges are mapped on crossing domain boundaries, as this does not affect the
protocol.

[1206] While all security mechanisms here include the concept of such domains, in Kerberos
(used here as the secret key mechanism) these are known as realms. In this
specification, the term realm is used in tokens using this mechanism.

15.10.7 Mapping of Common Elements to the SECIOP Protocol

[1207] The SECIOP protocol includes the tokens for context establishment and management
and per message tokens.

[1208] The context establishment tokens contain:

¥ Information associated with a principal, including at least an identity. (At CSI Level
2, there may be a range of privileges and a separate audit identity, if required.)

¥ Associated delegation information. Only simple delegation is mandatory to conform
to this specification.

¥ Security information used to establish the client-target object security association.

¥ Security information used to establish the keys for message protection.

Basic Token Format

[1209] SECIOP messages include context and message protection tokens.
15.10 The SECIOP Hosted CSI Protocols 15-239

[1210] All CSI mechanisms are usable inside and outside the object environment. In line with
standard practice outside the object environment, tokens are defined in ASN.1. and
encoded for transmission using BER (in some cases, constrained to the DER subset of
these). The token appears as a sequence<octet> in CDR encoded SECIOP messages.

[1211]

[1212] These tokens are enclosed within framing as follows:

[APPLICATION 0] IMPLICIT SEQUENCE {
thisMech MechType

-- MechType is OBJECT IDENTIFIER
innerContextToken ANY DEFINED BY thisMech

-- contents mechanism-specific;
}

Note Ð For conformance to GSS-API, only the initial context token has to use this
token framing; however, in the CSI protocols, it applies to all tokens.

The initial context token should include a mechanism version, as well as type. For CSI
mechanisms, version numbers are in the mechanism specific information such as the
Kerberos ticket or CSI-ECMA PAC.

Inner Context Tokens

[1213] The same token types are used in the different CSI protocols, though not all protocols
support all token types. The token types are defined below showing the relationship
with GSS-API calls, as all CSI protocols can be implemented using GSS-API.

[1214] The inner context tokens used for security association establishment are:

InitialContextToken sent by the initiator to a target, to start establishment of a
security association in an SECIOP EstablishContext
message. The token id is 01 00 (hex).
If GSS-API is being used, it is the value returned by the
GSS_Init_sec_context call.

TargetResultToken sent to the initiator by the target to complete establishment
of the context in an SECIOP CompleteEstablishContext
message. The token id is 02 00 (hex).
It is returned by GSS_Accept_sec_context.

ContinueEstablishToken sent either by the initiator or the target to continue context
establishment in an SECIOP ContinueEstablishContext
message. The token id is 03 00 (hex) (in SPKM)
It is returned by either the GSS_Init_sec_context call or the
GSS_Accept_sec_context call.
15-240 Security Service v1.8 September 2000 [DRAFT]

15
ErrorToken sent on detection of an error during security association
establishment in an SECIOP CompleteEstablishContext or
ContinueEstablishContext message. The token id is 03 00
(hex) (except in SPKM where it is 04 00 (hex)).
It is returned by either the GSS_Init_sec_context call or the
GSS_Accept_sec_context call.

[1215] The inner context token for message protection is the message_protection_token in
the SECIOP MessageInContext message. This can take one of the following forms:

MICToken sent either by the initiator or the target to verify the integrity
of the user data sent in the following GIOP message (or
message fragment).
The token id is 01 01 (hex)
It is returned by GSS_GetMIC.

WrapToken sent either by the initiator or the target. Encapsulates the
input user data (optionally encrypted) along with integrity
check values.
The token id is 02 01 (hex).
It is returned by GSS_Wrap.

[1216] This specification always uses MIC tokens for integrity and Wrap tokens for
confidentiality. This may ease national use and export problems where only MIC
tokens are supported.

[1217] The inner context token in the DiscardContext SECIOP message may optionally
contain a DeleteContextToken.

ContextDeleteToken sent either by the initiator, or the target in an SECIOP
DiscardContext message to release a Security Association.
It is returned by GSS_Delete_sec_context.

15.10.8 CSI Protocols

[1218] This specification includes three protocols for different circumstances, as described in
Section 15.8.6, ÒKey Distribution Types,Ó on page 15-201.

[1219] In all cases, the appropriate section specifies the cryptographic profiles supported, and
the contents of the SECIOP security tokens.

[1220] In all cases, the protocol as supported by OMG is a subset of the protocol defined in
the source document. For example, in all protocols, channel bindings as defined in
GSS-API (and specified in the underlying protocols) are not supported. This is
because IP addresses cannot be trusted in current implementations; IP addresses are
spoofable. Including the channel binding information would lead to a false sense of
security about the source of the transmission.

[1221] The protocols described in this specification include SPKM, GSS Kerberos, and CSI-
ECMA.
15.10 The SECIOP Hosted CSI Protocols 15-241

SPKM Protocol

[1222] The SPKM protocol supports CSI level 0. This is a public key based protocol. The
only client information transmitted is its security name. See Section 15.11, ÒSPKM
Protocol,Ó on page 15-242.

GSS Kerberos Protocol

[1223] The GSS Kerberos protocol supports CSI level 1. This is a secret key based protocol.
The only client information transmitted is its security name. See Section 15.12, ÒGSS
Kerberos Protocol,Ó on page 15-245.

CSI-ECMA Protocol

[1224] The CSI-ECMA protocol also supports the privilege handling, separate Auditid, and
delegation controls of CSI level 2. Subschemes within this protocol support the three
key distribution options: secret, public, and hybrid. See Section 15.13, ÒCSI-ECMA
Protocol,Ó on page 15-248 for additional information.

[1225] To support this flexibility, the initial_context_token is split into three parts; therefore,
the attributes for access control are independent of the key distribution method, and
this is independent of the cryptography used for message protection. The token
contains:

¥ Authorization information - attributes of a principal are held in a Privilege Attribute
Certificate (PAC) with any associated information needed for delegation and other
controls. This is independent of the way the communications are protected;
therefore, it is usable with different key distribution methods.

¥ Security information needed to establish the association. The form of this depends
on the key distribution method used. It is a Kerberos ticket if this is secret key
based; it is a profile of the SPKM_REQ token for public key mechanisms. In both
cases, there is a link between this and the PAC. Changing the security mechanism
mainly just requires replacing this part of the token.

¥ Dialogue key packages to establish confidentiality and integrity keys.

15.11 SPKM Protocol

[1226] This section specifies the SPKM protocol, a simple public-key GSS-API mechanism. It
is based on SPKM as defined in [20]. SPKM protocol provides CSI level 0
functionality only and the purpose is to allow the adoption of a simple security
infrastructure without undue complexity or overhead.

[1227] SPKM has two separate GSS-API mechanisms, SPKM_1 and SPKM_2, whose
primary difference is that SPKM_2 requires the presence of secure timestamps for the
purpose of replay detection during context establishment and SPKM_1 does not.
SPKM_1 is the mandatory mechanism for conformance to the SPKM protocol while
SPKM_2 is the optional mechanism.
15-242 Security Service v1.8 September 2000 [DRAFT]

15
[1228] Specifically, it defines the required information for encoding a secure interoperability
IOR and defines the token formats used by the SECIOP protocol.

15.11.1 Cryptographic Profiles

[1229] The following cryptographic profiles are supported with this mechanism:

MD5_RSA

[1230] Specifies use of the SPKM mechanism to provide data integrity and authenticity by
computing an RSA signature on the MD5 hash of that data. The default SPKM key
establishment algorithm is used (i.e., the context key is generated by the initiator,
encrypted with the RSA public key of the target, and sent to the target). Note that
MD5_RSA is a mandatory integrity and authenticity algorithm for SPKM.

MD5_DES_CBC

[1231] Specifies use of the SPKM mechanism to provide data integrity by encrypting, using
DES in CBC mode, the MD5 hash of that data. The default SPKM key establishment
algorithm is used.

DES_CBC

[1232] Specifies use of the SPKM mechanism to provide data confidentiality by using DES in
CBC mode. The default key establishment algorithm is used.

MD5_DES_CBC_SOURCE

[1233] Specifies use of the SPKM mechanism to provide data integrity by encrypting, using
DES in CBC mode, the MD5 hash of that data. The default key establishment
algorithm is used plus source authentication information is also encrypted with the
target's public key.

DES_CBC_SOURCE

[1234] Specifies use of SPKM mechanism to provide data confidentiality by using DES in
CBC mode. The default key establishment algorithm is used plus source authentication
information is also encrypted with the target's public key.

[1235] Values for these cryptographic profiles are assigned in Appendix Section A.2, ÒGeneral
Security Data Module,Ó on page 15-296.

15.11.2 IOR Encoding

[1236] The security tags in the IOR are encoded. The component data member associated
with the SPKM_1 and SPKM_2 mechanism tags is a struct, defined as follows:
15.11 SPKM Protocol 15-243

struct <mechanism_name> {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence <CryptographicProfile> crypto_profiles;
sequence<octet> security_name;

};

[1237] mechanism_name can be either SPKM_1 or SPKM_2 and security_name must
contain a valid X.500 distinguished name represented as a string conforming to [4]. For
example, it could be Òcn=Andrew Rust, ou=Home Office, o=Acme Widgets Inc.,
c=CA".

[1238] All tag components must be encapsulated using CDR encoding.

15.11.3 Using SPKM for SECIOP

[1239] When the SPKM protocol is chosen as the security mechanism for invoking an object,
the SECIOP protocol carries the information described in this section. This protocol is
a profile of the SPKM GSS-API mechanism as defined in [20].

[1240] All SPKM tokens are encoded according to the general format described in
Section 15.10.7, ÒMapping of Common Elements to the SECIOP Protocol,Ó on
page 15-239.

[1241] The innerContextTokens are described in the following sections. All
innerContextTokens are encoded using ASN.1 BER (constrained, in the interests of
parsing simplicity, to the DER subset defined in [22]).

[1242] The SPKM GSS-API mechanism is identified by an OBJECT IDENTIFIER
representing "SPKM_1" or ÒSPKM_2Ó. SPKM_1 uses random numbers for replay
detection during context establishment and SPKM_2 uses timestamps (note that for
both mechanisms, sequence numbers are used to provide replay and out-of-sequence
detection during the context, if this has been requested by the application). SPKM_1
OBJECT IDENTIFIER is 1.3.6.1.5.5.1.1 and SPKM_2 OBJECT IDENTIFIER is
1.3.6.1.5.5.1.2.

The Initial Context Token

[1243] The initial_context_token carried within an EstablishContext SECIOP message is
encoded according to the general framework and confirms to the SPKM-REQ token as
described in [20] Section 3.1.1.

[1244] In the initial_context_token, channel bindings are required to be ZERO
(GSS_C_NO_BINDINGS).

[1245] The GSS_C_DELEG_FLAG is required to be FALSE (no delegation is supported).

[1246] The GSS_C_MUTUAL_FLAG is TRUE if it requires both parties to authenticate
itself and FALSE (the default) if only one party is required to authenticate itself.
15-244 Security Service v1.8 September 2000 [DRAFT]

15
 The Final Context Token

[1247] The final_context_token carried within a CompleteEstablishContext SECIOP
message is encoded according to the SPKM-REP-TI token as defined in [20] Section
3.1.2 or the SPKM-ERROR token as defined in [20] Section 3.1.4.

The Continuation Context Token

[1248] The continuation_context_token carried within a ContinueEstablishContext SECIOP
message is encoded according to the SPKM-REP-TI token or the SPKM-REP-IT
token as defined in [20] Section 3.1.3 or the SPKM-ERROR token.

The Message Protection Token

[1249] The message_protection_token carried within a SECIOP MessageInContext message
is encoded according to the SPKM-MIC token (for integrity) or SPKM-WRAP token
(for confidentiality) as defined in [20] Section 3.2.

The Context Delete Token

[1250] The context_delete_token carried within a SECIOP DiscardContext message is
encoded according to the SPKM-DEL token as defined in [20] Section 3.2.3.

15.12 GSS Kerberos Protocol

[1251] This section specifies the GSS Kerberos protocol. It is based on the GSS Kerberos
specification [12] which itself is based on Kerberos V5 as defined in [13]. This
specification refers to, rather than repeats, information in [12] and [13].

[1252] This section defines the required information for encoding the mechanism specific
information in the IOR and the token formats used by the SECIOP protocol.

15.12.1 Cryptographic Profiles

[1253] The following cryptographic profiles are supported with this mechanism:

DES_CBC_DES_MAC

[1254] Specifies use of the Kerberos V5 mechanism with DES MAC message digest for
integrity and DES in CBC mode for confidentiality.

DES_CBC_MD5

[1255] Specifies use of the Kerberos V5 mechanism with MD5 message digest for integrity
and DES in CBC mode for confidentiality.
15.12 GSS Kerberos Protocol 15-245

DES_MAC

[1256] Specifies use of the Kerberos V5 mechanism with DES MAC message digest for
integrity.

MD5

[1257] Specifies use of the Kerberos V5 mechanism with a DES encrypted MD5 message
digest for integrity.

[1258] Values for these cryptographic profiles are assigned in Appendix A, Section A.2,
ÒGeneral Security Data Module,Ó on page 15-296.

15.12.2 Mandatory and Optional Cryptographic Profiles

[1259] ORB implementations claiming conformance to the GSS Kerberos protocol must
implement at least the MD5 profile. Conformant ORBs may, but are not required to,
implement the remaining cryptographic profiles defined in this specification.

15.12.3 IOR Encoding

[1260] The security tags in the IOR are encoded. Both security name and association options
tags may appear in the IOR and be shared between mechanisms.

[1261] The component data member associated with the KerberosV5 mechanism tag is a
struct defined as follows:

struct KerberosV5 {
AssociationOptions target_supports;
AssociationOptions target_requires;
sequence<CryptographicProfile> crypto_profiles;
sequence<octet> security_name;

};

[1262] security_name shall contain a valid Kerberos Principal Name of type
GSS_KRBV5_NT_PRINCIPAL_NAME, which is defined in [12].

[1263] All tag components must be encapsulated using CDR encoding.

15.12.4 SECIOP Tokens

[1264] When the GSS-Kerberos protocol is chosen as the security mechanism for invoking an
object, the SECIOP protocol carries the information described in this section. All
Kerberos tokens are encoded according to the general format.

[1265] The OBJECT IDENTIFIER for Kerberos V5 is 1.3.5.1.2 until [12] is advanced to a
Proposed Standard RFC when it will be changed to 1.2.840.113554.1.2.2.

[1266] Each individual token is distinguished by the data carried in the ANY field of this
general framework.
15-246 Security Service v1.8 September 2000 [DRAFT]

15
 The Initial Context Token

[1267] The initial_context_token carried within an EstablishContext SECIOP message is
encoded according to the general framework and conforms to the unencrypted
authenticator message as described in [12] Section 1.1.1.

[1268] Note that channel bindings are required to be ZERO (GSS_C_NO_BINDINGS) in this
specification (see Section 15.10.8, ÒCSI Protocols,Ó on page 15-241).

[1269] The GSS_C_DELEG_FLAG is set when either the client has called
set_security_features specifying SecDelModeSimpleDelegation or when an
administrator has called set_delegation_mode with a value of
SecDelModeSimpleDelegation on a domain to which the target object belongs. The
optional ÒDelegÓ field, if present, includes a forwardable Ticket Granting Ticket
(TGT) representing the delegated credentials of the client sending the
EstablishContext message.

[1270] The GSS_C_MUTUAL_FLAG is set when either the client has called
set_association_options specifying a value of EstablishTrustInTarget or an
administrator has called set_association_options with a value of
EstablishTrustInTarget on the domain to which the target belongs.

[1271] The GSS_C_REPLAY_FLAG and GSS_C_SEQUENCE_FLAG are generally clear
as they can cause incorrect replay and misordering detection in a multi-threaded
environment (see Section 15.10.3, ÒAssociation Options,Ó on page 15-237).

Note Ð The current GSS Kerberos implementation available without cost from MIT
does not support replay detection.

The Final Context Token

[1272] The final_context_token carried within a CompleteEstablishContext SECIOP
message is encoded according to the formats defined in [12] Section 1.1.2.

The Continuation Context Token

[1273] Kerberos V5 does not use the ContinueEstablishContext message and therefore does
not define the continuation_context_token format. If the Kerberos V5 mechanism is
amended in the future to support mechanism negotiation, support of the
ContinueEstablishContext message would be necessary and thus definition of the
continuation_context_token would be required.

The Message Protection Token

[1274] The message_protection_token carried within a SECIOP MessageInContext message
is encoded according to the formats defined in [12] section 1.2.
15.12 GSS Kerberos Protocol 15-247

15.13 CSI-ECMA Protocol

[1275] This section defines the CSI-ECMA protocol. It is based on the ECMA GSS-API
mechanism as defined in ECMA-235, though is a significant subset of that. It supports
all CSI levels (0, 1, and 2). It provides three options for key distribution:

1. A secret key option using Kerberos data structures.

2. A hybrid option where secret keys are used within an administrative domain, but
public keys are used between domains.

3. A public key option which uses public key technology for key distribution both
within and between domains.

[1276] This section includes the full definition of the CSI-ECMA protocol so that it can be
read without reference to ECMA 235. The CSI-ECMA protocol is a subset of ECMA
235. It is very similar to the SESAME profile as described in [16].

[1277] The CSI-ECMA protocol supports the CORBA Security Level 2 facilities. It is
designed to be extensible as new facilities (for example, new delegation options) are
agreed in future, and further key distribution options. It is also designed to respond to
the requirements of international deployment such as minimal confidentiality (only
keying information needs to be encrypted), use of anonymous audit (a separate
audit_id can be transmitted), and choice of cryptography for message protection
(including strong integrity, weak confidentiality).

[1278] The structure of the initial context token is key to providing this flexibility. It is
separated into three parts:

1. Authorization information.

2. Information concerned with establishing the security association using one of the
supported key distribution options.

3. Information concerned with generating the dialogue keys for message protection.

15.13.1 Concepts

Separation of Concerns

[1279] The initial context token transmitted in the SECIOP EstablishContext message on
setting up a security association contains a number of parts with limited links between
them. This is so that the different parts can be varied independently of each other. The
three main parts are:

1. Authorization information - the Privilege Attribute Certificate (PAC) which
contains the privileges used for access control and other attributes such as the audit
id. Associated with this are delegation and other controls. Therefore, this is
concerned with the access control and delegation policies, but is mainly
independent of the key establishment and message protection mechanisms. The
PAC can be updated to affect these policies independently of mechanisms. (The
15-248 Security Service v1.8 September 2000 [DRAFT]

15
size of the PAC may be significant; therefore, it is not confidentiality protected, as
this may cause regulatory problems.) Privilege and other attributes in PACs are
described in Section 15.13.2, ÒSecurity Attributes,Ó on page 15-249.

2. Target key block - used to provide the information needed to establish the security
association between client and target. Secret key or public key technology (or some
hybrid of these) may be used. The result is always a ÒbasicÓ key from which
dialogue keys to protect application messages can be derived. Therefore, this is
concerned with the mechanism for establishing trust and distributing keys. This can
be varied independently of the authorization policies and the message protection
methods. Key establishment methods are described in Section 15.13.5, ÒKey
Distribution Schemes,Ó on page 15-250.

3. Dialogue key packages which control how dialogue keys to protect messages are
derived from the basic key. Note that this is largely independent of the key
distribution method (i.e., public key technology may be used to establish secret keys
for dialogue protection).

15.13.2 Security Attributes

Privilege Attributes

[1280] The CSI-ECMA protocol allows a range of privilege attributes in a Privilege Attribute
Certificate (PAC) transmitted between the client and target object. These privileges
then can be used for access control.

[1281] Privilege attributes which can be carried in the PAC at level 2 are defined in Appendix
A, Section A.11.1, ÒSecurity Attributes,Ó on page 15-328 and include all those defined
in the CORBA Security specification.

[1282] A vendor or user enterprise may also define its own privilege attributes (if the
particular implementation allows this) and use them for access control.

[1283] In line with the CORBA Security specification, each privilege attribute has a defining
authority which identifies the authority responsible for defining the semantics of the
value of the security attribute. This can be included for each privilege attribute in the
PAC and in this case, there could be a different defining authority for each privilege.

[1284] It is often the case that most attributes in the PAC come under the same defining
authority which is the authority that issued the PAC. If the PAC, as transmitted, does
not have defining authorities for some attributes, then the issuing authority of the PAC
is considered to be the defining authority.

Miscellaneous Attributes

[1285] This specification allows other types of security attributes to be carried in the PAC
under the general heading of miscellaneous attributes. In CSI-ECMA, the only type of
miscellaneous attribute supported is the audit identity.
15.13 CSI-ECMA Protocol 15-249

15.13.3 Target Access Enforcement Function

[1286] The security processing functionality at the target is split between the target
application and the target access enforcement function (targetAEF). ISO (ISO/IEC
10181-3) defines an access enforcement function collocated with the target application
which controls access to a target application. This has a number of advantages
including:

¥ The security critical code is isolated which makes security evaluation simpler.

¥ Long term keys can be shared between applications/objects. This can simplify
administration (as there are less keys) and allow re-use of keying information when
accessing another application/object sharing this targetAEF.

[1287] The targetAEF is responsible for setting up the security association, including
validating the PAC and releasing the keys for message protection.

15.13.4 Basic and Dialogue Keys

[1288] The exchanges between client and target are secured using a two level key scheme in
which a distinction is made between basic and dialogue keys.

[1289] A basic key is a temporary key established between a client and the target (actually,
the targetAEF). The basic key is used for integrity protection of the PAC and
associated information, its own key establishment information, and the information
used to establish the dialogue keys. The basic key is established by the client sending
information to the target in the targetKeyBlock. This can take different forms,
depending on the key distribution method used.

[1290] A dialogue key is a temporary key established between the client and target and is used
to protect the requests and responses. Separate dialogue keys can be established for
integrity and confidentiality protection, enabling different strengths of mechanism to
be configured. The information required to derive the dialogue keys is transmitted in
the Dialogue key package. Typically, dialogue keys are constructed from the basic key
using a one way algorithm.

15.13.5 Key Distribution Schemes

[1291] The CSI-ECMA protocol allows a choice of key distribution methods for establishing
a client-target security association including the basic key. The content of the
targetKeyBlock depends on the scheme used.

[1292] The key distribution schemes depend on the existence of long term cryptographic keys.
Both secret (symmetric) and public (asymmetric) key technology can be used. When
secret keys are used, a key is shared between the target and its Key Distribution
Service (KDS). When public keys are used, the private key is kept by the principal and
the public key held in a certificate, in a directory or elsewhere.

[1293] Initiators may also possess symmetric or asymmetric keys established as the result of
an earlier authentication.
15-250 Security Service v1.8 September 2000 [DRAFT]

15
[1294] This CSI-ECMA specification defines three key distribution schemes. These are
described below and are identified by a name and an architectural option number.
Other schemes are possible as extensions to this as described in ECMA-235.

Basic Symmetric Key Distribution Scheme

[1295] In this scheme, the client and target each share different secret keys with the same Key
Distribution Server. The scheme name for this is: symmIntradomain. The
architectural option number is 2.

[1296] To establish the association between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the targetÕs long
term key. On receipt of the targetKeyBlock, the target can extract the basic key from
it.

[1297] In this case, the targetKeyBlock is a Kerberos ticket.

Symmetric Key Distribution with Asymmetric KDS

[1298] In this scheme, the initiator shares a secret key with its KDS and the target shares a
secret key with its KDS (which is different). In addition, each KDS possesses a
private/public key pair. The scheme name for this is: hybridInterdomain. The
architectural option number is 3.

[1299] To establish the client-target association, the client gets a targetKeyBlock from its
KDS containing the basic key encrypted under a temporary key and the temporary key
encrypted under the targetÕs KDS public key. The targetKeyBlock is also signed using
the initiatorÕs KDS private key.

[1300] On receipt of the targetKeyBlock, the target transmits it to its KDS and gets back the
basic key encrypted under the long term secret key it shares with its KDS.

Full Public Key Scheme

[1301] In this scheme, both client and target possess private/public keys. Neither use a KDS.
The scheme name for this is: asymmetric. The architectural option number is 6.

[1302] To establish the client-target association, the client constructs a targetKeyBlock
containing a basic key encrypted under the targetÕs public key. The target key block is
signed with the clientÕs private key. On receipt of the targetKeyBlock, the target
directly establishes a basic key from it.

15.13.6 Cryptographic Algorithms and Profiles

[1303] Cryptographic and hashing algorithms are used for various purposes. This section
categorizes the algorithms according to usage so that client and targets can determine
more easily if they have the cryptographic support required to allow interoperation.
The categorization then is refined into cryptographic profiles that can be incorporated
15.13 CSI-ECMA Protocol 15-251

into specific mechanism identifiers. The mechanism identifiers with cryptographic
profiles then can be carried in the IOR. Table 15-15 summarizes the different uses to
which algorithms are put.

[1304] The algorithms can now be further categorized into broader classes, as shown in the
following table.

[1305] Use 10 is a fixed value and does not contribute to mechanism use options.

Table 15-15 Summary of Algorithm Usage

Use Reference Description of Use Type of Algorithm

2 PAC protection using signature OWF + asymmetric
signature

3 basic key usage confidentiality and
integrity

4 integrity dialogue key derivation OWF

5 integrity dialogue key usage symmetric integrity

6 CA public keys OWF + asymmetric
signature

7 encryption using shared long term
symmetric key

symmetric confidentiality

8 name hash to prevent ciphertext
stealing

OWF

9 asymmetric basic key distribution asymmetric encryption

10 key establishment within
SPKM_REQ

(fixed value)

11 confidentiality dialogue key
derivation

OWF

12 confidentiality dialogue key use symmetric confidentiality

Table 15-16 Summary of Algorithm Classes

Class 1: symmetric for security of mechanism: uses 3, 5, 7

Class 2: all OWFs: uses 2, 4, 6, 8, 11

Class 3: internal mechanism asymmetric, encrypting: use 9

Class 4: internal mechanism asymmetric, non encrypting: use 2

Class 5: CAÕs asymmetric non-encrypting: use 6

Class 6: data confidentiality, symmetric: use 12
15-252 Security Service v1.8 September 2000 [DRAFT]

15
[1306] Based on these classes, the following cryptographic algorithm usage profiles are
defined. Other profiles are possible and can be defined as required. Note that
symmetric algorithm key sizes are included in this profiling, thus DES/64 indicates
DES with a 64 bit key.

[1307] Table key:

¥ Profile 1 provides full security, using standard cryptographic algorithms with
common accepted key sizes.

¥ Profile 2 is the same, but without supporting any confidentiality of user data.

¥ Profile 3 provides low grade confidentiality. In some countries, products using this
are exportable without restriction; in others, they are more easily
exportable/importable.

¥ Profile 5 uses algorithms identified by a separately specified default. It is intended
for use by organizations who wish to use their own proprietary or government
algorithms by separate agreement or negotiation.

15.13.7 PAC Protection and Delegation - Outline

[1308] The ECMA protocol provides a number of ways to protect a principalÕs credentials, as
held in a PAC. In CSI-ECMA, a digital signature is used, as this allows a target system
to check what Security Authority authorized use of these privileges, without relying on
the transitive trust needed for sealed PACs crossing domain boundaries. Encrypted
PACs are not included in this profile.

[1309] There may also be controls on where the PAC may be delegated and used.

[1310] Protection method fields in the PAC specify where this PAC can be used and whether
it can be used by the specified targets only (for example, allowing use of the privileges
for access control) or whether that target can also delegate it.

Table 15-17 Cryptographic Algorithm Usage Profiles

Profile 1
Full

Profile 2
no data
confidentiality

Profile 3
low grade
confidentiality

Profile 5
defaulted

Class 1 DES/64 DES/64 RC4/128 separately
agreed default

Class 2 MD5 MD5 MD5 separately
agreed default

Class 3 RSA RSA RSA separately
agreed default

Classes 4
and 5

RSA RSA RSA separately
agreed default

Class 6 DES/64 None RC4/40 separately
agreed default
15.13 CSI-ECMA Protocol 15-253

[1311] Protection method fields are grouped together into method groups. The protection
method check is passed if all the method fields in any one of the method groups is
passed.

15.13.8 PPID Method

[1312] This method protects the PAC from being stolen, by restricting the initiators who can
use the PAC.

[1313] When no other method group is present, it permits the PAC to be used only by the
client entity to which it was originally issued (i.e., it prevents delegation). However, a
PAC with a PPID will be delegatable if delegation is permitted by a PV/CV method.

[1314] A PPID identifying the initiating principal is put in the PAC by the Privilege Attribute
(or other security) Service, according to policy or client request. The same/related
information is also supplied as part of the targetKeyBlock so that the target can check
that the entity which sent this token is the same entity which is entitled to use the
PAC.

[1315] The PPID is a security attribute whose value in the CSI-ECMA protocol can take one
of two forms, depending on the key distribution scheme used by the initiator.

¥ When the initiator has a secret key, the PPID is a random bit string which is also
sent in the authorization field of the Kerberos ticket. This ticket is sent as part of the
targetKeyBlock and can be checked to come from this client.

¥ For the public key scheme, the PPID contains the certificate serial number and CA
name for the initiatorÕs X.509 public key certificate. The targetKeyBlock sent to
the target is signed using this initiatorÕs private key.

15.13.9 PV/CV Delegation Method

[1316] This method prevents the PAC from being stolen and at the same time controls
whether (and where) it can be delegated. The method field in the PAC contains a
protection value (PV) which is a one way function of a Control Value (CV).

[1317] A PAC will be accepted by the target (subject to other controls in the PVÕs method
group) if the client proves knowledge of the CV by passing it (encrypted) as part of the
initial context token. A method group contains at most one PV value.

[1318] In the simplest case, the method group contains just the PV and the target can delegate
the PAC if it receives the CV.

[1319] The PV/CV method can be used for more selective targeting of the PAC also. A
method group can include qualifier attributes which specify where the PAC can be
used. Qualifier attributes can specify which principals can receive the PAC as a target
and which can act as both delegate and target. These principals can be specified by
their identities (though the protocol is extensible for other options such as a
group/domain to which they belong).
15-254 Security Service v1.8 September 2000 [DRAFT]

15
[1320] For the simpler case, delegation can be prevented by setting the delegation mode to
Security::SecDelModeNoDelegation. This will cause the client to send the PAC
without the CV.

Note Ð The protocol allows more than one method group in the PAC, each with its
own PV/CV. This can be used by a client or intermediate object in a chain to further
restrict who can use the PAC, by failing to send some of the CVs. However, this
specification does not include any operations for restricting delegation in this way, so
it is not possible to exploit this capability.

Restrictions

[1321] Other restrictions may be included in the PAC. An ORB conforming to this
specification does not have to generate these restrictions, but will reject PACs with
mandatory restrictions which it does not understand or cannot process.

15.13.10 Mechanism Identifiers and IOR Encoding

[1322] All tag component data in the IOR must be encapsulated using CDR encoding.

[1323] Mechanism identifiers for the CSI-ECMA protocol have up to three parts, as follows:

1. The protocol identifier. This is CSI-ECMA.

2. The architectural option. This identifies the architectural option (i.e., the key
distribution method used when establishing security associations). If absent, the
default option is used.

3. The cryptographic profile. This identifies the cryptographic profile as defined
above. If absent, a default is used.

[1324] In the IOR, the mechanism name in the struct of the TAG_x_SEC_MECH is:

CSI-ECMA_<architectural option>

[1325] where the architectural options supported are Secret, Hybrid, and Public; therefore,
mechanism names are CSI_ECMA_Secret, CSI_ECMA_Hybrid, and
CSI_ECMA_Public.

[1326] These values could also be negotiated using a generic mechanism negotiation scheme
such as that in [19] in future, but are in the IOR for the current CSI specification.

15.13.11 Security Names

[1327] This protocol uses two forms of security names:

1. Directory names (DNs) are used where public key technology is used, as this is the
form of name used in X509 certificates.
15.13 CSI-ECMA Protocol 15-255

2. Kerberos names are used where secret key technology is used, as this is the form of
name used by Kerberos.

Kerberos Naming

[1328] An entity that uses the normal Kerberos V5 authentication is given a printable
Kerberos principal name of the form:

<principal_name>@realm_name>

Note Ð Components of a name can be separated by Ò/Ó.

The separator @ signifies that the remainder of the string following the @ is to be
interpreted as a realm identifier. If no @ is encountered, the name is interpreted in the
context of the local realm. Once an @ is encountered, a non-null realm name, with no
embedded Ò/Ó separators must follow. The Ò/Ó character is used to quote the character
that follows immediately.

Directory Naming

[1329] Where public key technology supported by Directory Certificates is used, entities are
given DNs. Such names are normally transmitted as directoryNames. At interfaces,
they are strings built from components separated by a semicolon. The standardized
keywords supported are:

CN (common-name)
S (surname)
OU (organization unit)
O (organization)
C (country)

[1330] An example of a supported DN is:

CN=Martin;OU=Sesame;O=Bull;C=fr

[1331] There is no general rule for mapping the Directory name of an entity onto its Kerberos
principal name. An explicit mapping is provided in a principalÕs Directory Certificate
using the extensions field of the extended Directory Certificate syntax (version 3) to
carry the principalÕs Kerberos name.

[1332] The syntax of the login name is imported from the Kerberos V5 GSS-API mechanism.
The form of name is referred to using the symbolic name:
GSS_KRB5_NT_PRINCIPAL. Syntax details are given in [12].

15.13.12 SECIOP Tokens When Using CSI-ECMA

[1333] All SECIOP security tokens conform to the basic token format defined in ÒBasic
Token FormatÓ on page 15-239. The object identifier for the MechType is of the form:
15-256 Security Service v1.8 September 2000 [DRAFT]

15
{generic_CSI_ECMA_mech (y) (z)}

[1334] where the value for generic_CSI_ECMA_mech is 1.3.12.0.235.4 and the values of y
and z, if present, represent the architectural option number and cryptographic profile
numbers. Both y and z can be defaulted.

[1335] The innerContextToken of the SECIOP message may be any of the tokens defined in
ÒInner Context TokensÓ on page 15-240. For context establishment, tokens are:

InitialContextToken sent by the initiator to a target, to start the process of
establishing a Security Association.

TargetResultToken sent to the initiator by the target, if needed, following receipt
of an Initial Context Token.

ErrorToken sent by the target on detection of an error during Security
Association establishment.

The per-message tokens are:

MICToken sent either by the initiator or the target to verify the integrity
of the user data sent separately.

WrapToken sent either by the initiator or the target. Encapsulates the
input user data (optionally encrypted) along with integrity
check values.

[1336] A ContextDeleteToken may also be used either by the initiator or the target to release
a Security Association.

[1337] This definition uses ASN.1 types from other standards (e.g., the ISO definition of a
Certificate). These types are detailed in Annex E of ECMA-235.

15.13.13 Initial Context Token

[1338] The initial context token contains:

¥ General information such as the token id, contextFlags (delegation, replay-detect
etc.), utcTime, seq-number, etc.

¥ A targetAEF part to be passed to the target access enforcement function. This
includes the PAC and associated CVs, target key block, and dialogue key package.

¥ A seal.
15.13 CSI-ECMA Protocol 15-257

[1339] :

Figure 15-60 Initial Context Token

InitialContextToken ::= SEQUENCE{
ictContents [0] ICTContents,
ictSeal [1] Seal

}

[1340] ictContents
Body of the initial context token

[1341] ictSeal
Seal of ictContents computed with the integrity dialogue key. Only the sealValue field
of the Seal data structure is present. The cryptographic algorithms that apply are
specified by integDKUseInfo in the dialogueKeyBlock field of the initial context
token.

ICTContents ::= SEQUENCE {
tokenId [0] INTEGER, -- shall contain X'0100'
SAId [1] OCTET STRING,
targetAEFPart [2] TargetAEFPart,
targetAEFPartSeal [3] Seal,
contextFlags [4] BIT STRING {

delegation (0),
mutual-auth (1),
replay-detect (2),
sequence (3),
conf-avail (4),
integ-avail (5)

}
utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,
initiatorAddress [8] HostAddress OPTIONAL,
targetAddress [9] HostAddress OPTIONAL

}

[1342] tokenId
Identifies the initial-context token. Its value is 01 00 (hex)

target AEF part

token id. pac & CVs target Key Block dialogue Key Block seal

(used by target to enforce policy)

etc. (initiating and/or
delegate principalÕs

authorization
and delegation
information)

(information
needed to

establish the
association)

(information used
to establish

message protection
key - integrity and

confidentiality)
15-258 Security Service v1.8 September 2000 [DRAFT]

15
[1343] SAId
A random number for identifying the Security Association being formed; it is one
which (with high probability) has not been used previously. This random number is
generated by the initiator and processed by the target as follows:

¥ If no targetResultToken is expected, the SAId value is taken to be the identifier of
the Security Association being established (if this is unacceptable to the target, then
an error token with etContents value of gss_ses_s_sg_sa_already_established must
be generated).

¥ If a targetResultToken is expected, the target generates its random number and
concatenates it to the end on the initiator's random number. The concatenated value
is then taken to be the identifier of the Security Association being established.

[1344] targetAEFPart
Part of the initial-context token to be passed to the target access enforcement function.
This is defined below and includes PAC, basic, and dialogue key packages.

[1345] targetAEFPartSeal
Seal of the targetAEFPart computed with the basic key. Only the sealValue field of
the Seal data structure is present. The cryptographic algorithms that apply are specified
by algorithm profile in the mechanism option.

[1346] contextFlags
Combination of flags that indicates context-level functions requested by the initiator.

[1347] utcTime
The initiator's UTC time.

[1348] usec
Micro second part of the initiator's time stamp. This field along with utcTime are used
together to specify a reasonably accurate time stamp.

[1349] seq-number
When present, specifies the initiator's initial sequence number; otherwise, the default
value of 0 is to be used as an initial sequence number.

Flag Indicates that ...

delegation when set to 0, the initiator explicitly forbids delegation of the PAC
in the targetAEFPart.

mutual-auth mutual authentication is requested.

replay-detect replay detection features are requested to be applied to messages
transferred on the established Security Association.

sequence sequencing features are requested to be enforced to messages
transferred on the established Security Association.

conf-avail a confidentiality service is available on the initiator side for the
established Security Association.

integ-avail an integrity service is available on the initiator side for the
established Security Association.
15.13 CSI-ECMA Protocol 15-259

[1350] initiatorAddress
Initiator's network address part of the channel bindings. This field is present only when
channel bindings are transmitted by the caller to the mechanism implementation.
Conformant ORBs do not need to generate this field.

[1351] targetAddress
Target's network address part of the channel bindings. This field is present only when
channel bindings are transmitted by the caller to the implementation.

TargetAEF Part
TargetAEFPart ::= SEQUENCE {

pacAndCVs [0] SEQUENCE OF CertandECV OPTIONAL,
targetKeyBlock [1] TargetKeyBlock,
dialogueKeyBlock [2] DialogueKeyBlock,
targetIdentity [3] Identifier,
flags [4] BIT STRING {

 delegation (0)
 }

}

[1352] pacAndCVs
The initiator ACI to be used for this Security Association. This field is not present
when the association does not require any ACI. This field contains the PAC together
with associated PAC protection information. When only simple delegation is
supported, exactly one of these should be present.

[1353] If composite delegation options are supported, this field will contain more than one
PAC. For example, for the initiator plus immediate invoker case, the initiatorÕs PAC
would be present (with CVs) and the immediate invokerÕs (with a PPID).

[1354] targetKeyBlock
The targetKeyBlock carrying the basic key to be used for the Security Association
being established.

[1355] dialogueKeyBlock
A dialogue key block used by the targetAEF along with the basic key to establish an
integrity dialogue key and a confidentiality dialogue key for per-message protection
over the Security Association being established.

[1356] targetIdentity
The identity of the intended target of the Security Association. Used by the targetAEF
to validate the PAC. Can also be used by the targetAEF to help protect the delivery of
dialogue keys.

[1357] flags
Flags required by the targetAEF for its validation process. Contains only a delegation
flag, the value of which is the same as the value of delegation flag in contextFlag field
of ictContents. When the flag is set, all ECVs sent in pacAndCVs are made available
to the target. Other bits are reserved for future use.
15-260 Security Service v1.8 September 2000 [DRAFT]

15
15.13.14 TargetResultToken

[1358] This token is returned by the target if the mutual-req flag is set in the Initial Context
Token. It serves to authenticate the target to the initiator since only the genuine target
could derive the integrity dialogue key needed to seal the TargetResultToken.

TargetResultToken ::= SEQUENCE{
trtContents [0] TRTContents,
trtSeal [1] Seal

}

TRTContents ::= SEQUENCE {

tokenId [0] INTEGER, -- shall contain X'0200'
SAId [1] OCTET STRING,
utcTime [5] UTCTime OPTIONAL,
usec [6] INTEGER OPTIONAL,
seq-number [7] INTEGER OPTIONAL,

}

Note Ð There is no field for returning certification data here. This is because any such
data that may be required is assumed to be returned at the conclusion of mechanism
negotiation.

[1359] trtContents
This contains only administrative fields, identifying the token type, the context, and
providing exchange integrity.

[1360] seq-number
When present, specifies the target's initial sequence number; otherwise, the default
value of 0 is to be used as an initial sequence number.

[1361] The other administrative fields are as described previously.

[1362] trtSeal
Seal of trtContents computed with the integrity dialogue key. Only the sealValue field
of the Seal data structure is present. The cryptographic algorithms that apply are
specified by integDKUseInfo in the dialogueKeyBlock field of the initial context
token.

15.13.15 ErrorToken

[1363] An error token may be returned, as follows:

ErrorToken ::= {
tokenType [0] OCTET STRING VALUE X'0400',
etContents [1] ErrorArgument,

}

[1364] etContents
Contains the reason for the creation of the error token. The different reasons are given
as minor status return values.
15.13 CSI-ECMA Protocol 15-261

ErrorArgument ::= ENUMERATED {
gss_ses_s_sg_server_sec_assoc_open (1),
gss_ses_s_sg_incomp_cert_syntax (2),
gss_ses_s_sg_bad_cert_attributes (3),
gss_ses_s_sg_inval_time_for_attrib (4),
gss_ses_s_sg_pac_restrictions_prob (5),
gss_ses_s_sg_issuer_problem (6),
gss_ses_s_sg_cert_time_too_early (7),
gss_ses_s_sg_cert_time_expired (8),
gss_ses_s_sg_invalid_cert_prot (9),
gss_ses_s_sg_revoked_cer (10),
gss_ses_s_sg_key_constr_not_supp (11),
gss_ses_s_sg_init_kd_server_ unknown (12).
gss_ses_s_sg_init_unknown (13),
gss_ses_s_sg_alg_problem_in_dialogue_key_block (14),
gss_ses_s_sg_no_basic_key_for_dialogue_key_block (15),
gss_ses_s_sg_key_distrib_prob (16),
gss_ses_s_sg_invalid_user_cert_in_key_block (17),
gss_ses_s_sg_unspecified (18),
gss_ses_s_g_unavail_qop (19),
gss_ses_s_sg_invalid_token_format (20)

}

15.13.16 Per Message Tokens

[1365] The syntax of the message_protection_token in SECIOP messages has the same
general structure for both MIC and Wrap tokens:

PMToken ::= SEQUENCE{
pmtContents [0] PMTContents,
pmtSeal [1] Seal

-- seal over the pmtContents being protected
}

PMTContents ::= SEQUENCE {
tokenId [0] INTEGER, -- shall contain X'0101'
SAId [1] OCTET STRING,
seq-number [2] INTEGER OPTIONAL
userData [3] CHOICE {

plaintext BIT STRING,
ciphertext OCTET STRING OPTIONAL

}
directionIndicator [4] BOOLEAN OPTIONAL

}

[1366] pmtContents

[1367] tokenId
SAId
A random number for identifying the Security Association being formed; it is one
which (with high probability) has not been used previously. This random number is
generated by the initiator and processed by the target as follows:
15-262 Security Service v1.8 September 2000 [DRAFT]

15
If no targetResultToken is expected, the SAId value is taken to be the identifier of
the Security Association being established (if this is unacceptable to the target, then
an error token with etContents value of gss_ses_s_sg_sa_already_established must
be generated).

If a targetResultToken is expected, the target generates its random number and
concatenates it to the end on the initiator's random number. The concatenated value
is then taken to be the identifier of the Security Association being established.

seq-number
This field must be present if replay detection or message sequencing have been
specified as being required at Security Association initiation time. The field
contains a message sequence number whose value is incremented by one for each
message in a given direction, as specified by directionIndicator. The first message
sent by the initiator following the InitialContextToken shall have the message
sequence number specified in that token, or if this is missing, the value 0. The first
message returned by the target shall have the message sequence number specified in
the TargetReplyToken if present, or failing this, the value 0.

The receiver of the token will verify the sequence number field by comparing the
sequence number with the expected sequence number and the direction indicator
with the expected direction indicator. If the sequence number in the token is higher
than the expected number, then the expected sequence number is adjusted and
GSS_S_GAP_TOKEN is returned. If the token sequence number is lower than the
expected number, then the expected sequence number is not adjusted and
GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN is returned, whichever
is appropriate. If the direction indicator is wrong, then the expected sequence
number is not adjusted and GSS_S_UNSEQ_TOKEN is returned.

userData
See specific token type narratives below.

directionIndicator
FALSE indicates that the sender is the context initiator, TRUE that the sender is
the target.

[1368] pmtSeal

[1369] See specific token type narratives below.

MICToken

[1370] A MICToken is a per-message token, separate from the user data being protected,
which can be used to verify the integrity of that data as received. The token is passed
in the message_protection_token in SECIOP messages, and the protected data follows
as a GIOP message or message fragment. The syntax of the token is:

MICToken ::= PMToken

[1371] The overall structure and field contents of the token are described above. Fields
specific to the MICToken are:
15.13 CSI-ECMA Protocol 15-263

[1372] userData
Not present for MICTokens.

[1373] pmtSeal
The Checksum is calculated over the DER encoding of the pmtContents field with the
user data temporarily placed in the userData field. The userData field is not
transmitted.

WrapToken

[1374] A WrapToken encapsulates the input user data (optionally encrypted) along with
associated integrity check values. It consists of an integrity header followed by a body
portion that contains either the plaintext or encrypted data. The syntax of the token is:

WrapToken ::= PMToken

[1375] The overall structure and field contents of the token are described above. Fields
specific to the WrapToken are:

[1376] userData
Present either in plain text form or encrypted. If the data is encrypted, it is performed
using the Confidentiality Dialogue Key, and as in [13], an 8-byte random confounder
is first prepended to the data to compensate for the fact that an IV of zero is used for
encryption.

[1377] wtSeal
The Checksum is calculated over the pmtContents field, including the userData. If
the userData field is to be encrypted, the seal value is computed prior to the
encryption.

15.13.17 ContextDeleteToken

[1378] The ContextDeleteToken is issued by either the context initiator or the target to
indicate to the other party that the context is to be deleted.

ContextDeleteToken ::= SEQUENCE {
cdtContents [0] CDTContents,
cdtSeal [1] Seal

-- seal over cdtContents, encrypted under the Integrity
-- Dialogue Key. Contains only the sealValue field

}

CDTContents ::= SEQUENCE {
tokenType [0] OCTET STRING VALUE X'0301',
SAId [1] OCTET STRING,
utcTime [2] UTCTime OPTIONAL,
usec [3] INTEGER OPTIONAL,
seq-number [4] INTEGER OPTIONAL,

}

15-264 Security Service v1.8 September 2000 [DRAFT]

15
[1379] cdtContents
This contains only administrative fields, identifying the token type, the context, and
providing exchange integrity.

[1380] seq-number
When present, this field contains a value one greater than that of the seq-number field
of the last token issued from this issuer. The other administrative fields are as
described above.

[1381] trtSeal
See above for a general description of the use of this construct.

15.13.18 Security Attributes

Data Structures

[1382] The security attribute is a basic construct for privilege and other attributes in PACs.

SecurityAttribute ::= SEQUENCE{
attributeType Identifier,
attributeValue SET OF SEQUENCE {

definingAuthority [0] Identifier OPTIONAL,
securityValue [1] SecurityValue

}
}

Identifier ::= CHOICE{
objectId [0] OBJECT IDENTIFIER,
directoryName [1] Name,

-- imported from the Directory Standard
printableName [2] PrintableString,
octets [3] OCTET STRING,
intVal [4] INTEGER,
bits [5] BIT STRING,
pairedName [6] SEQUENCE{

printableName [0] PrintableString,
uniqueName [1] OCTET STRING

}
}

SecurityValue ::= CHOICE{
directoryName [0] Name,
printableName [1] PrintableString,
octets [2] OCTET STRING,
intVal [3] INTEGER,
bits [4] BIT STRING,
any [5] ANY -- defined by attributeType

}

15.13 CSI-ECMA Protocol 15-265

[1383] Only one set member is permitted in AttributeValue. Multivalue attributes are effected
in the securityValue field, where the ÒSEQUENCE OFÓ construct can be used.
(Including ÒSET OFÓ in the syntax enables security attributes to be stored as normal in
a Directory whenever the choice made within Identifier is OBJECT IDENTIFIER.)

[1384] A directory name is translated into a string format as defined in Section 15.13.11,
ÒSecurity Names,Ó on page 15-255. The sequence<octet> attribute value returned at
the IDL interface is a representation of this string, not the more complex ASN.1
definition of this.

[1385] attributeType
Defines the type of the attribute. Attributes of the same type have the same semantics
when used in Access Decision Functions, though they may have different defining
authorities.

[1386] definingAuthority
The authority responsible for the definition of the semantics of the value of the
security attribute. This optional field of the attributeValue can be used to resolve
potential value clashes. It is defined as an Identifier which has a choice of syntax. For
CSI-ECMA, it is always a directoryName.

[1387] securityValue
The value of the security attribute. Its syntax can be either one of the basic syntaxes
for attributes or a more complex one determined by the attribute type.

Attribute Types

[1388] An attribute type in this standard is formally defined as an Identifier which provides a
choice of syntax; however, all standard attribute types are defined as OBJECT
IDENTIFIERs. Three types of attributes are defined:

1. Privilege attributes (e.g., AccessId, GroupId, Role)

2. Miscellaneous attributes, mainly the AuditId

3. Qualifier attributes used within the PV/CV delegation scheme to say where
credentials can be used/delegated.

[1389] For standard attributes, the OBJECT IDENTIFIER includes

¥ first, a standard part with the value 1.3.12.1.46,

¥ then the ÒfamilyÓ for privilege, miscellaneous, or qualifier attributes (4, 3, or 5), and

¥ then the value for that particular attribute type.

[1390] All standard attributes, which conformant ORBs must be able to generate/transmit,
have this form.

[1391] In addition, conformant ORBs must be able to handle other attribute types defined in
this chapter. They must also be able to handle attribute types with ÒOMGÓ object
identifiers, as described in ÒMapping Other Attributes to Externally Valid IDL
AttributesÓ on page 15-217. In this case, the Object Identifier is:
15-266 Security Service v1.8 September 2000 [DRAFT]

15
<iso>..<omg>.<security><family definer>.<family>.<attribute type>

[1392] where the values of the CORBA family definer, CORBA family and attribute type are
as defined in Appendix Section A.11.1, ÒSecurity Attributes,Ó on page 15-328. For
standard attributes, the family definer is 0 and the family is 0 for privileges and 1 for
miscellaneous attributes.

[1393] OMG Object Identifiers can also be used for privilege attributes defined by other
organizations, who have registered a family definer with OMG.

15.13.19 Privilege and Miscellaneous Attribute Definitions

[1394] Privilege and miscellaneous attribute types are normally identified by Object
Identifiers which have a standard part, then family and attribute type parts.

[1395] The following privilege and miscellaneous attributes are defined in the CORBA
Security specification and have defined attribute types. Some of these are mandatory
for a CSI level 2 conformant ORB to generate (see Section 15.8.15, ÒSupport for
CORBA Security Facilities and Extensibility,Ó on page 15-220). The Object Identifier
in the privilege attribute set for that type is listed in the following table.

15.13.20 Qualifier Attributes

[1396] When a targetQualification or delegateTargetQualification method is present in the
PAC, the syntax used for the method parameters is securityAttribute. Object
Identifiers for qualifier attributes have the value 1.3.12.1.46.5.<qualifier attribute
type>.

Table 15-18 Privilege and Miscellaneous Attributes

Type of
Attribute

oid
family
& type

Syntax Meaning

access-
identity

4.2 printableString The access identity represents the
principal's identity to be used for access
control purposes.

primary-
group

4.3 printableString The primary group represents a unique
group to which a principal belongs. A
security context must not contain more than
one primary group for a given principal.

group 4.4 SEQUENCE
OF
printableString

A group represents a characteristic common
to several principals. A PAC may contain
more than one group for this principal.

role 4.1 printableString A role attribute represents one of the
principal's organizational responsibilities.

audit_id 3.2 printableString The identity of the principal as used for
auditing.
15.13 CSI-ECMA Protocol 15-267

[1397] Currently, only one form of qualifier attribute is defined, and this identifies the target
by security name. This is usually the name of an identity domain as defined in
ÒDomainsÓ on page 15-37, not an individual object.

[1398] In future, other forms of qualifier attributes may be added. For example, the attribute
could identify an invocation delegation domain, rather than particular named target.

15.13.21 Target Names

[1399] Within a PAC protection method, a target name is indicated using the OID:

target-name-qualifier OBJECT IDENTIFIER ::= {qualifier-attribute 1 }
Its syntax in the PAC is:
TargetNameValueSyntax ::= Identifier

15.13.22 PAC Format

[1400] The PAC is in the form of a generalized certificate. A Generalized Certificate is
composed of three main structural components:

1. The ÒcommonContentsÓ fields collectively serve to provide generally required
management and control over the use of the PAC.

2. The ÒspecificContentsÓ fields are different for different types of certificate, and
contain a type identifier to indicate the type. In this specification, only one type is
defined - the Privilege Attribute Certificate (PAC).

3. The ÒcheckValueÓ fields are used to guarantee the origin of the certificate. This is a
signature in the CSI-ECMA specification. (though a seal would be possible as in
ECMA 235).

Figure 15-61 Generalized CertificateÕs Structural Components

GeneralizedCertificate ::= SEQUENCE{
certificateBody [0] CertificateBody,
checkValue [1] CheckValue

}

CertificateBody ::= CHOICE{
encryptedBody [0] BIT STRING,
normalBody [1] SEQUENCE{

commonContents [0] CommonContents,
specificContents [1] SpecificContents

}
}

PAC specific contents
Common
Certificate
Contents protection/

delegation
methods

privilege
and other
attributes

restrictions

Check
Value
15-268 Security Service v1.8 September 2000 [DRAFT]

15
[1401] The next sections describe these three main structural components of the Generalized
Certificate.

15.13.23 Common Contents fields
CommonContents ::= SEQUENCE{

comConSyntaxVersion [0] INTEGER { version1 (1) }DEFAULT 1,
issuerDomain [1] Identifier OPTIONAL,
issuerIdentity [2] Identifier,
serialNumber [3] INTEGER,
creationTime [4] UTCTime OPTIONAL,
validity [5] Validity,
algId [6] AlgorithmIdentifier,
hashAlgId [7] AlgorithmIdentifier OPTIONAL

}

[1402] In the imported definition of AlgorithmIdentifier, ISO currently permits both a hash
and a cryptographic algorithm to be specified. If this is done, they must appear in the
algId field. The hashAlgId field is present for those cases where a separate hash
algorithm specification is required.

Validity ::= SEQUENCE {
notBefore UTCTime,
notAfter UTCTime

} -- as in [ISO/IEC 9594-8]
 -- Note: Validity is not tagged, for compatibility with the
-- Directory Standard.

[1403] comConFieldsSyntaxVersion
Identifies the version of the syntax of the combination of the commonContents and the
checkValue fields parts of the certificate.

[1404] issuerDomain
The security domain of the issuing authority. Not required if the form of issuerIdentity
is a full distinguished name, but required if other forms of naming are in use. In CSI-
ECMA, this is always a directoryName.

[1405] issuerIdentity
The identity of the issuing authority for the certificate.

[1406] serialNumber
The serial number of the certificate (PAC) as allocated by the issuing authority.

[1407] creationTime
The UTCtime that the certificate was created, according to the authority that created it.

[1408] validity
A pair of start and end times within which the certificate is deemed to be valid.

[1409] algId
The identifier of the secret or of the public cryptographic algorithm used to seal or to
sign the certificate. If there is a single identifier for both the encryption algorithm and
the hash function, it appears in this field.
15.13 CSI-ECMA Protocol 15-269

[1410] hashAlgId
The identifier of the hash algorithm used in the seal or in the signature.

[1411] The certificate can be uniquely identified by a combination of the issuerDomain,
issuerIdentity, and serialNumber.

15.13.24 Specific Certificate Contents for PACs
SpecificContents ::= CHOICE{

pac [1] PACSpecificContents
-- only the PAC is used here

}

PACSpecificContents ::= SEQUENCE{
pacSyntaxVersion [0] INTEGER{ version1 (1)} DEFAULT 1,
protectionMethods [2] SEQUENCE OF MethodGroup OPTIONAL,
pacType [4] ENUMERATED{

primaryPrincipal (1),
temperedSecPrincipal (2),
untemperedSecPrincipal(3)

 } DEFAULT 3,
privileges [5] SEQUENCE OF PrivilegeAttribute,
restrictions [6] SEQUENCE OF Restriction OPTIONAL,
miscellaneousAtts [7] SEQUENCE OF SecurityAttribute OPTIONAL,
timePeriods [8] TimePeriods OPTIONAL

}

PrivilegeAttribute ::= SecurityAttribute

Restriction ::= SEQUENCE {
howDefined [0] CHOICE {

included [3] BIT STRING
},

-- the actual restriction in a form undefined here
type [2] ENUMERATED {

mandatory (1),
optional (2)

} DEFAULT mandatory,
targets [3] SEQUENCE OF SecurityAttribute OPTIONAL

} -- applies to all targets if this is omitted

[1412] pacSyntaxVersion
Syntax version of the PAC.

[1413] protectionMethods
A sequence of optional groups of Method fields used to protect the certificate from
being stolen or misused. For a full description see below.

[1414] pacType
Indicates whether the privileges contained in the PAC are those of a Primary Principal
(e.g., the client) or of a Secondary Principal (e.g., the user). In this specification, it is
always a PAC of a secondary principal untempered by the privileges of a Primary
Principal.
15-270 Security Service v1.8 September 2000 [DRAFT]

15
[1415] privileges
Privilege Attributes of the principal.

[1416] restrictions
This field enables the original owner of the PAC to impose constraints on the
operations for which it is valid. There are two types of restriction:

¥ Mandatory: If a target to which the restriction applies cannot understand the bit
string defining the restriction, access should not be granted.

¥ Optional: If a target application to which the restriction applies cannot understand
the bit string, it is expected to ignore it.

[1417] For CSI-ECMA, it is not mandatory to generate restrictions, but mandatory restrictions
cannot be ignored. If not understood, the PAC cannot be accepted.

[1418] miscellaneousAtts
Security attributes which are neither privileges attributes nor restrictions attributes. In
a PAC, this may include identity attributes such as Audit Identity. For the CSI-ECMA
specification, this is the only miscellaneous attribute expected.

[1419] timePeriods
This field adds further time restrictions to the validity field of the commonContents.
Either startTime or endTime can be optional. The TimePeriods control is passed if
the time now is within any of the sequence periods, or if there is a period with a start
before now and no endTime, or there is a period with an end after now and no
startTime.

Protection Methods

[1420] A method consists of a method id and parameters (methodParams). The method id
determines the syntax for the type of methodParams.

Method ::= SEQUENCE{
methodId [0] MethodId,
methodParams [1] SEQUENCE OF Mparm OPTIONAL

}
MethodId ::= CHOICE{

predefinedMethod [0] ENUMERATED {
controlProtectionValues (1),
ppQualification (2),
targetQualification (3),
delegateTargetQualification (4)

}
}

Mparm ::= CHOICE{
pValue [0] PValue,
securityAttribute [1] SecurityAttribute

}

15.13 CSI-ECMA Protocol 15-271

PValue ::= SEQUENCE{
pv [0] BIT STRING
algorithmIdentifier [1] AlgorithmIdentifier OPTIONAL

}

CertandECV ::= SEQUENCE {
certificate [0] GeneralizedCertificate,
ecv [1] ECV OPTIONAL

}
- ECV is defined in later

[1421] methodId
Identifies a protection method. Methods can be used in any combination, and except
where stated otherwise, multiple occurrences of the same method are permitted. The
choice of methodId determines the permitted choices of method parameters in the
methodParams construct as described below.

[1422] methodParams
Parameters for a protection method. The semantics of each protection method is
described in section Section , ÒCryptographic Profiles,Ó on page 15-203.

[1423] For the Primary Principal Qualification Method, the MethodId is ppQualification and
the syntax of Mparm is securityAttribute. Its value is defined in Section 15.13.8,
ÒPPID Method,Ó on page 15-254.

[1424] For the PV/CV method, the MethodId is:controlProtectionValues and the syntax of
Mparm is: pValue.

[1425] For the Target Qualification protection method, the MethodId is targetQualification
and the syntax for Mparms is securityAttribute.

[1426] For the Delegate/Target Qualification protection method, the MethodId is
delegatetargetQualification and the syntax for Mparms is securityAttribute.

[1427] The security attribute in the target and delegate/target protection method is a qualifier
attribute as defined in Section 15.13.20, ÒQualifier Attributes,Ó on page 15-267.

External Control Values Construct

[1428] When using the controlProtectionValues method a PAC protected under that method
may be accompanied by one or more control values and indices to the method
occurrences in the certificate to which they apply. Also, when such a certificate is
being issued to a requesting client, the CV values it will need in order to use that
certificate may need to be returned with it.

ECV ::= SEQUENCE {
crypAlgIdentifier [0] AlgorithmIdentifier OPTIONAL,
cValues [1] CHOICE {

encryptedCvalueList [0] BIT STRING,
individualCvalues [1] CValues

}
}

15-272 Security Service v1.8 September 2000 [DRAFT]

15
CValues ::= SEQUENCE OF SEQUENCE {
index [0] INTEGER,
value [1] BIT STRING

}

[1429] crypAlgIdentifier
This specifies the encryption algorithm of the control values.

[1430] cValues
An ECV construct can contain either an encrypted list of control values in the
encryptedCvalueList field, or a list of individual control values in individualCvalues.

[1431] If the encryptedCvalueList choice is made, the whole list is encrypted in bulk, but the
in-clear contents of this field are expected to have the syntax CValues. If the
individualCvalues choice is made, values are individually encrypted in the value
fields of the list. Encryption is always done under the basic key protecting the
operation.

[1432] In the case of the controlProtectionValues method, value is a CV, and index is then
the index of the method occurrence in the certificate, starting at 1.

15.13.25 Check Value

[1433] In this specification, a PAC is protected by being digitally signed by the issuer.

[1434] A signature may be accompanied by information identifying the Certification
Authority under which the signature can be verified, and with an optional convenient
reference to or the actual value of the user certificate for the private key that the
signing authority used to sign the certificate.

CheckValue ::= CHOICE{
signature [0] Signature
-- only signature supported here

}

Signature ::= SEQUENCE{
signatureValue [0] BIT STRING,
publicAlgId [1] AlgorithmIdentifier OPTIONAL,
hashAlgId [2] AlgorithmIdentifier OPTIONAL,
issuerCAName [3] Identifier OPTIONAL,
caCertInformation [4] CHOICE {

caCertSerialNumber [0] INTEGER,
certificationPath [1] CertificationPath

} OPTIONAL
}
--CertificationPath is imported from [22]

[1435] signatureValue
The value of the signature. It is the result of a public encryption of a hash value of the
certificateBody.
15.13 CSI-ECMA Protocol 15-273

[1436] publicAlgId
Only present if the certificate body is encrypted, then it is a duplication of the algId
value in "commonContents." This is not required in CSI-ECMA.

[1437] hashAlgId
Only present if the certificate body is encrypted, then it is a duplication of the
hashAlgId value in ÒcommonContents.Ó This is not required in CSI-ECMA.

[1438] issuerCAName
The identity of the Certification Authority that has signed the user certificate
corresponding to the private key used to sign this certificate.

[1439] caCertInformation
Contains either just a certificate serial number which together with the issuerCAName
uniquely identifies the user certificate corresponding to the private key used to sign
this certificate, or a full specification of a certification path via which the validity of
the signature can be verified. The latter option follows the approach used in [22].

[1440] The Seal structure is used in the Tokens defined above.

Seal ::= SEQUENCE{
sealValue [0] BIT STRING,
secretAlgId [1] AlgorithmIdentifier OPTIONAL,
hashAlgId [2] AlgorithmIdentifier OPTIONAL,
targetName [3] Identifier OPTIONAL,
keyId [4] INTEGER OPTIONAL

}

[1441] sealValue
The value of the seal. It is the result of a secret encryption of a hash value of a set of
octets (which are the DER encoding of some ASN.1 type)

[1442] secretAlgId
An optional indicator of the sealing algorithm.

[1443] hashAlgId
Only present if the secretAlgId does not specify which hashing algorithm is used.

[1444] targetName
This field identifies the targetAEF or target with which the secret key used for the seal
is shared.

[1445] keyId
This serial number together with the targetName uniquely identifies the secret key
used in the seal.

15.13.26 Basic Key Distribution

[1446] The TargetKeyBlock is structured as follows:

¥ An identifier (kdSchemeOID) for the key distribution scheme being used, which
takes the form of an OBJECT IDENTIFIER.
15-274 Security Service v1.8 September 2000 [DRAFT]

15
¥ A part which, if present, the target AEF needs to pass on to its KDS
(targetKDSPart - will be present only when the target AEF's KDS is different from
the initiator's).

¥ A part which, if present, can be used directly by the targetAEF (targetPart).

[1447] When a targetAEF using a separate KDS receives the targetKeyBlock, it first checks
whether it supports the key distribution scheme indicated in kdsSchemeOID. Two
different cases need to be considered:

1. Only the targetPart is present. The target AEF computes the basic key directly,
using the information present in the targetPart. The syntax of targetPart is scheme
dependent. Expiry information optionally can be present in targetPart. If supported
by the scheme, the Primary Principal attributes of the initiator will also be present
for PAC protection under the Primary Principal Qualification method (see above).

2. Only the targetKDSPart is present. The targetAEF forwards the TargetKeyBlock
to its KDS. In return, it receives a scheme dependent data structure which allows
the target AEF to determine the basic key and, if supported by the scheme, the
Primary Principal attributes of the initiator for PAC protection purposes. Expiry
information can optionally be present in the targetKDSPart.

[1448] The form of this information depends on the key distribution configuration in place.

15.13.27 Keying Information Syntax
TargetKeyBlock ::= SEQUENCE {

kdSchemeOID [2] OBJECT IDENTIFIER,
targetKDSpart [3] ANY OPTIONAL,

-- depending on kdSchemeOID
targetPart [4] ANY OPTIONAL

-- depending on kdSchemeOID
}

[1449] kdSchemeOID
Identifies the key distribution scheme used. Allows the targetAEF to determine
rapidly whether or not the scheme is supported. It also allows for the easy addition of
future schemes.

[1450] targetKDSpart
Part of the Target Key Block which is processable only by the KDS of the target AEF.
This part is sent by the target AEF to its local KDS, in order to get the basic key which
is in it. It must always contain the name of a target ÒservedÓ by the targetAEF in
question. The mapping between the name of the application and the name of the target
AEF is known to the target AEF's KDS which is able to authenticate which targetAEF
is issuing the request for translating the targetKDSpart. It can then verify that the
AEF is one which is responsible for the application name contained in the
targetKDSpart. If it is, the key is released and is sent protected back to the requesting
AEF. TargetKDSpart should include data that enables the KDS of the target AEF to
authenticate the KDS of the initiator. When the ÒPrimary Principal QualificationÓ
15.13 CSI-ECMA Protocol 15-275

protection method needs to be used for the PAC, unless there is an accompanying
targetPart, targetKDSpart must contain the appropriate primary principal security
attributes (which is always true in this specification).

[1451] targetPart
A part of the Target Key Block which is processed only by the target AEF. When there
is no targetKDSpart it is processable directly; otherwise, it can only be processed
after the target KDSpart has been processed by the KDS of the target AEF, and the
appropriate Keying Information has been returned to the AEF. The targetPart construct
should include data that enables the target AEF to authenticate the KDS of the
initiator. When the ÒPrimary Principal QualificationÓ protection method needs to be
used for the PAC, targetPart must contain the primary principal security attributes.

15.13.28 Summary of Key Distribution Schemes

[1452] This specification defines three key distribution schemes. These are:

1. symmIntradomain: using a secret key technology within a domain. In this case, the
targetKDSpart of the TargetKeyBlock is not supplied and the targetPart contains
a Kerberos ticket.

2. hybridInterdomain: In this case, the targetPart field is not supplied. The
PublicTicket contains a Kerberos ticket.

3. asymmetric: the targetKDSpart is not supplied and the targetPart contains an
SPKM_REQ.

[1453] The following table shows the different syntaxes used for targetKDSpart and
targetPart for the defined KD-schemes. ÒMissingÓ in the table means that the relevant
construct is not supplied.

[1454] Further options are possible by defining further kd-schemes. For example, ECMA 235
also defines options for:

¥ initiators with public keys and targets with secret keys

¥ initiators with secret keys and targets with public keys

15.13.29 CSI-ECMA Secret Key Mechanism

[1455] In this scheme, the client and target each share different secret keys with the same Key
Distribution Server.

Table 15-19 Syntaxes Used for targetKDSpart and targetPart

KD-Scheme name kdSchemeOID targetKDSpart targetPart

symmIntradomain {kd-schemes 1} Missing Ticket

hybridInterdomain {kd-schemes 3} PublicTicket Missing

asymmetric {kd-schemes 6} Missing SPKM_REQ
15-276 Security Service v1.8 September 2000 [DRAFT]

15
[1456] To establish the association, between the client and target, the client obtains a
targetKeyBlock from its KDS containing a basic key encrypted under the targetÕs long
term key. On receipt of the targetKeyBlock, the target can extract the basic key from
it.

[1457] The symmIntradomain key distribution scheme

¥ has a mechanism id of CSI_ECMA_Secret, and

¥ uses a Kerberos ticket in the targetKeyBlock of the initial_context_token.
An unmodified Kerberos TGS can be used as the KDS in this case.

 Profile of Ticket as Used in SymmIntradomain Scheme

[1458] The following table indicates which optional fields must be present in the Kerberos
ticket for the CSI_ECMA_Secret mechanism and indicates the values which are
required to be present in all fields.

[1459] The Kerberos Ticket's authorization_data field contains the PPID of the context
initiator, as formally defined below.

ECMA-AUTHORIZATION-DATA-TYPE ::= INTEGER { ECMA-ADATA (65) }

Table 15-20 Kerberos TicketÕs Mechanism Fields

Field Value/Constraint

tkt-vno 5

realm ticket issuer's domain name in Kerberos realm name form

sname target application name including the realm of the target

- EncTicketPart encrypted with long term key of target AEF

-- flags only bits 6, 10 and 11 can be meaningful in the context of the
CSI-ECMA protocol, the rest are ignored

-- key the basic key

-- crealm initiator domain name in Kerberos realm name form

-- cname principal name of the initiator (in the case of delegation the
cname will be that of the delegate)

-- transited not used

-- authtime the time at which the initiator was authenticated

-- starttime not used

-- endtime the time at which the ticket becomes invalid

-- renew-till not used

-- caddr not used

-- authorization-
data

contains the PPID corresponding to cname
15.13 CSI-ECMA Protocol 15-277

ECMA-AUTHORIZATION-DATA ::= SEQUENCE {
ecma-ad-type [0] ENUMERATED {ppidType (0)},
ecma-ad-value [1] CHOICE {ppidValue [0] SecurityAttribute

}
}

[1460] ppidType
Indicates the type of the authorization data which is included in the Ticket.

[1461] ppidValue
This value is used in the ppQualification PAC protection method, as described above.

15.13.30 CSI-ECMA Hybrid Mechanism

[1462] In this scheme, the initiator shares a secret key with its KDS and the target shares a
secret key with its KDS (which is different). In addition, each KDS possesses a
private/public key pair.

[1463] To establish the client-target association, the client gets a targetKeyBlock from its
KDS containing the basic key encrypted under a temporary key and the temporary key
encrypted under the targetÕs KDS public key. The targetKeyBlock is also signed using
the initiatorÕs KDS private key.

[1464] On receipt of the targetKeyBlock, the target transmits it to its KDS and gets back the
basic key encrypted under the long term secret key it shares with its KDS.

[1465] The hybridInterdomain key distribution scheme

¥ has a mechanism id of CSI_ECMA_Hybrid in the IOR, and

¥ uses a Public ticket in the targetKeyBlock of the initial_context_token, as
described below.

A modified Kerberos TGS can be used as the KDS in this case.

 Hybrid Inter-domain Key Distribution Scheme Data Elements
PublicTicket ::= SEQUENCE{

krb5Ticke [0] Ticket,
publicKeyBlock [1] PublicKeyBlock

}

PublicKeyBlock ::= SEQUENCE{
signedPKBPart [0] SignedPKBPart,
signature [1] Signature OPTIONAL,
certificate [2] Certificate OPTIONAL

}

SignedPKBPart ::= SEQUENCE{
keyEstablishmentData [0] KeyEstablishmentData,
encryptionMethod [1] AlgorithmIdentifier OPTIONAL,
issuingKDS [2] Identifier,
uniqueNumber [3] UniqueNumber,
15-278 Security Service v1.8 September 2000 [DRAFT]

15
validityTime [4] TimePeriods,
creationTime [5] UTCTime

}

UniqueNumber ::= SEQUENCE{
timeStamp [0] UTCTime,
random [1] BIT STRING

}

[1466] krb5Ticket
The Kerberos Ticket which contains the basic key. The encrypted part of this ticket is
encrypted using the key found within the encryptedPlainKey field of the
KeyEstablishmentData in the PublicKeyBlock.

[1467] publicKeyBlock
Contains the key used to protect the krb5Ticket encrypted using the public key of the
recipient and signed by the encryptor (i.e., the context initiator's KD-Server).

[1468] signedPKBPart
The part of the publicKeyBlock which is signed. The keyEstablishmentData field
contains the KeyEstablishmentData (i.e., the actual encrypted temporary key).

¥ The encryptionMethod indicates the algorithm used to encrypt the encryptedKey.

¥ The issuingKDS is the name of the KD-Server which produced the PublicTicket.

¥ The uniqueNumber is a value (containing a timestamp and a random number)
which prevents replay of the PublicTicket.

¥ validityTime specifies the times for which the PublicTicket is valid.

¥ creationTime contains the time at which the PublicTicket was created.

[1469] signature
Contains the signature calculated by the issuingKDS on the signedPKBPart field.

[1470] certificate
If present, contains the public key certificate of the issuing KDS.

Key Establishment Data Elements

[1471] These are used in public key establishment mechanisms.

KeyEstablishmentData ::= SEQUENCE {
encryptedPlainKey [0] BIT STRING,-- encrypted PlainKey
targetName [1] Identifier OPTIONAL,
nameHashingAlg [2] AlgorithmIdentifier OPTIONAL

}

HashedNameInput ::= SEQUENCE {
hniPlainKey [0] BIT STRING,-- same as plainKey
hniIssuingKDS [1] Identifier
15.13 CSI-ECMA Protocol 15-279

PlainKey ::= SEQUENCE {
plainKey [0] BIT STRING, -- The cleartext key
hashedName [1] BIT STRING

}

[1472] encryptedPlainKey
Contains the encrypted key. The BIT STRING contains the result of encrypting a
PlainKey structure.

[1473] targetName
If present, contains the name of the target application. This is necessary for some of
the KD-schemes.

[1474] nameHashingAlg
Specifies the algorithm which is used to calculate the hashedName field of the
PlainKey.

[1475] hniPlainKey
hniIssuingKDS
Used as input to a hashing algorithm as a general means to prevent ciphertext stealing
attacks.

[1476] plainKey
Contains the actual bits of the plaintext key which is to be established.

[1477] hashedName
A hash of the name of the encrypting KDS calculated using the plainkey and KDS
name as input (within the HashedNameInput structure). The algorithm identified in
nameHashingAlg is used to calculate this value.

[1478] targetName
If present, contains the name of the target for which the PublicTicket was originally
produced. This may be different from the targetIdentity field of the
initialContextToken if caching of PublicTickets has been implemented.

Key Establishment Algorithm

[1479] The PublicKeyBlock in this mechanism and the SPKM_REQ construct used in
scheme 6 requires a sequence of key establishment algorithm identifier values to be
inserted into the key_estb_set field. The OBJECT IDENTIFIER below is defined as
the (single) key establishment ÒalgorithmÓ for ECMA mechanisms:

gss-key-estb-alg AlgorithmIdentifier ::= {kd-schemes, NULL }

[1480] gss-key-estb-alg
This AlgorithmIdentifier identifies the key establishment algorithm value to be used
within the key_estb_set field of an SPKM_REQ data element as the one defined by
ECMA.

[1481] This algorithm is used to establish a symmetric key for use by both the initiator and the
target AEF as part of the context establishment. The corresponding key_estb_req field
of the SPKM_REQ will be a BIT STRING the content of which is a DER encoding of
the KeyEstablishmentData element.
15-280 Security Service v1.8 September 2000 [DRAFT]

15
 Profile of Ticket as Used in Hybrid Interdomain Scheme

[1482] Note that the krb5Ticket part of this is identical to that used in the
CSI_ECMA_Secret key mechanism except that the EncTicketPart is encrypted with
the temporary key used between KDS rather than the targetÕs key.

Table 15-21 Ticket as Used in Hybrid Interdomain Scheme

Field Value/Constraint

krb5Ticket

- tkt-vno 5

- realm initiator domain name in Kerberos realm name form

- sname target application name including the realm of the
target

-- EncTicketPart encrypted with temporary key (which is in turn
encrypted within the keyEstablishmentData field)

--- flags only bits 6, 10 and 11 can be meaningful in the context
of the CSI-ECMA protocol, the rest are ignored

--- key the basic key

--- crealm initiator domain name in Kerberos realm name form

--- cname principal name of the initiator (in the case of delegation
the cname will be that of the delegate)

--- transited not used

--- authtime the time at which the initiator was authenticated

--- starttime not used

--- endtime the time at which the ticket becomes invalid

--- renew-till not used

--- caddr not used

--- authorization-data contains the PPID corresponding to cname

publicKeyBlock

- signedPKBPart

-- encryptedKey KeyEstablishmentData structure

-- encryptionMethod gss-key-estb-alg

-- issuingKDS X.500 name of initiator's KDS (the signer)

-- uniqueNumber creation time of publicKeyBlock plus a random bit
string

-- validityTime only one period allowed
15.13 CSI-ECMA Protocol 15-281

15.13.31 CSI-ECMA Public Mechanism

[1483] In this scheme, both client and target possess a private/public key pair and neither use
a KDS.

[1484] To establish the client-target association, the client constructs a targetKeyBlock
containing a basic key encrypted under the targetÕs public key. The target key block is
signed with the clientÕs private key. On receipt of the targetKeyBlock, the target
directly establishes a basic key from it.

[1485] The asymmetric key distribution scheme:

¥ has a mechanism id of CSI_ECMA_Public, and

¥ uses an SPKM_REQ in the targetKeyBlock of the initial_context_token.

[1486] This mechanism has only a profile of the SPKM_REQ as defined below.

Profile of SPKM_REQ Used in Public Key Mechanism

[1487] The following table indicates which optional fields must be present in the
SPKM_REQ in the targetKeyBlock for the CSI_ECMA_Public mechanism and
indicates the values which are required to be present in all fields.

 -- creationTime creation time of publicKeyBlock

- signature contains all the signing information as well as the
actual signature bits

- certificate optional

Table 15-22 SPKM-REQ Used in Public Key Mechanism

Field Value/Constraint

 requestToken

- tok_id not used - fixed value of Ô0'

- context_id not used - fixed value of bit string containing one zero bit

- pvno not used - fixed value of bit string containing one zero bit

- timestamp creation time of SPKM_REQ - required

- randSrc random bit string

- targ_name X.500 Name of target AEF

- src_name X.500 Name of initiator

- req_data

-- channelId not used - octet string of length one value Ô00'H

Table 15-21 Ticket as Used in Hybrid Interdomain Scheme (Continued)

Field Value/Constraint
15-282 Security Service v1.8 September 2000 [DRAFT]

15
[1488] Definitions of KeyEstablishmentData and gss-key-estb-alg are given in
Section 15.13.30, ÒCSI-ECMA Hybrid Mechanism,Ó on page 15-278.

15.13.32 Dialogue Key Block

[1489] Dialogue Key Block constructs are used to specify how the integrity dialogue key and
confidentiality dialogue key should be derived from the basic key, and specify the
cryptographic algorithms with which the keys should be used. Dialogue keys are
explained above. The syntax is as follows:

 DialogueKeyBlock ::= SEQUENCE {
integKeySeed [0] SeedValue,
confKeySeed [1] SeedValue,
integKeyDerivationInfo [2] KeyDerivationInfo OPTIONAL,
confKeyDerivationInfo [3] KeyDerivationInfo OPTIONAL,
integDKuseInfo [4] DKuseInfo OPTIONAL,
confDKuseInfo [5] DKuseInfo OPTIONAL

}

SeedValue ::= SEQUENCE {
timeStamp [0] UTCTime OPTIONAL,
random [1] BIT STRING

}

KeyDerivationInfo::= SEQUENCE {
owfId [0] AlgorithmIdentifier,
keySize [1] INTEGER

}

DKuseInfo ::= SEQUENCE {
useAlgId [0] AlgorithmIdentifier,

-- seq_number missing

-- options not used - all bits set to zero

-- conf_alg not used - use NULL CHOICE

-- intg_alg not used - use a SEQUENCE OF with zero elements

- validity mandatory

- key_estb_set only one element supplied containing gss-key-estb-alg

- key_estb_req contains KeyEstablishmentData with targetApplication field
missing

- key_src_bind missing

req_integrity sig_integ mandatory

certif_data only userCertificate field supported

 auth_data missing

Table 15-22 SPKM-REQ Used in Public Key Mechanism (Continued)

Field Value/Constraint
 15-283

useHashAlgId [1] AlgorithmIdentifier OPTIONAL
}

[1490] integKeySeed
A random number, optionally concatenated with a time value to ensure uniqueness,
used as input to the one way function specified in integKeyDerivationInfo.

[1491] confKeySeed
A random number, optionally concatenated with a time value to ensure uniqueness,
used as input to the one way function specified in confKeyDerivationInfo.

[1492] integKeyDerivationInfo
Key derivation information for the integrity dialogue key, as follows:

owfId
The one way algorithm which takes the basic key XOR the seed as input,
resulting in the integrity dialogue key.

keySize
The size of the key in bits. If the algorithm identified by owfId produces a larger
key, it is reduced by masking to this length, losing its most significant end.

[1493] confKeyDerivationInfo
Key derivation information for the confidentiality dialogue key. The fields in this
construct have the same meanings as defined above for the integrity dialogue key.

[1494] integDKuseInfo
Information describing how the integrity dialogue key is to be used, as follows:

useAlgId
The secret or public reversible encryption algorithm with which the integrity
dialogue key is to be used.

useHashAlgId
The one way function with which the integrity dialogue key is to be used. It is
the hash produced by this algorithm on the data to be protected which is
encrypted using useAlgId.

[1495] confDKuseInfo
Information describing how the confidentiality key is to be used. The useHashAlgId
construct is not used here.

15.14 Integrating SSL with CORBA Security

15.14.1 Introduction

[1496] This section defines how SSL [21] is integrated with CORBA Security. SSL provides
CSI level 0(see Appendix Section C.7.2, ÒCommon Secure Interoperability Levels,Ó on
page 15-345) functionality only. This level of functionality is achieved only if the
optional authentication features of SSL are used.
15-284 Security Service v1.8 September 2000 [DRAFT]

15
15.14.2 Cryptographic Profiles

[1497] All of the cryptographic profiles defined by SSL may be used by ORBs using SSL for
Security.

15.14.3 IOR Encoding

[1498] A new kind of security tag is defined, for use in the component tag sequence in the
IIOP IOR profile body, to describe the use of Secure Transports with CORBA
Security. This enables the future use of combinations of security mechanisms and
secure transports.

[1499] The IIOP TAG identifying the SSL secure transport is TAG_SSL_SEC_TRANS. The
tag component data described below must be encapsulated using CDR encoding. The
data structure associated with this tag is as follows:

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

};

[1500] The definition of association options is the same as for the CSI protocols. SSL only
supports client and target authentication if the optional certificate exchanger features of
SSL are supported.

[1501] Unlike the CSI mechanism TAGs, the SSL TAG does not include cryptographic
profiles as cryptography is negotiated as part of the SSL session establishment. For the
same reason the TAG does not include a security name for the target.

[1502] The port field contains the port number to be used instead of the port defined in the
accompanying IIOP profile body, if SSL is selected by the client. It contains the
TCP/IP port number (at the specified host) where the target agent is listening for
connection requests. The agent must be ready to process IIOP messages on connections
accepted at this port.

[1503] As with the other secure interoperability options, if the client invokes the target
without the appropriate level of security (e.g., if the client is not secure and simply
invokes the target ignoring all security TAGs in the profile) the target shall raise the
CORBA::NO_PERMISSION exception.

15.14.4 Relation to SECIOP

[1504] As SSL provides a secure transport layer over TCP/IP, the CORBA SECIOP protocol
is not required when using SSL. Instead, the connection rules of IIOP (see the General
Inter-ORB Protocol chapter of the Common Object Request Broker: Architecture and
Specification) are applied to SSL (which itself uses TCP).
 15-285

15.15 DCE-CIOP with Security

[1505] This section describes how to provide secure interoperability between ORBs which use
the DCE Common Inter-ORB Protocol (DCE-CIOP). It describes how the DCE-CIOP
transport layer should handle security (for example, how it should interpret the security
components of the IOR profile when selecting DCE Security Services for a request
and secure invocation).

15.15.1 Goals of Secure DCE-CIOP

[1506] The original goals of DCE-CIOP, documented in the Common Object Request Broker:
Architecture and Specification, are maintained and enhanced by Secure DCE-CIOP:

¥ Support multi-vendor, mission critical, enterprise-wide, secure ORB-based
applications.

¥ Leverage services provided by DCE wherever appropriate.

¥ Allow efficient and straightforward implementation using public DCE APIs.

¥ Preserve ORB implementation freedom.

[1507] Secure DCE-CIOP achieves these goals by taking advantage of the integrated security
services provided by DCE Authenticated RPC. It is not a goal of the Secure DCE-
CIOP specification to support the use of arbitrary security mechanisms for protection
of DCE-CIOP messages.

15.15.2 Secure DCE-CIOP Overview

[1508] Secure interoperability between ORBs using the DCE-CIOP transport relies on the
DCE Security Services and the DCE Authenticated RPC runtime that utilizes those
services.

[1509] The DCE Security Services (specified in [6]), as employed by the DCE Authenticated
RPC runtime (specified in [7] and the [8]), provide the following security features:

¥ cryptographically secured mutual authentication of a client and target,

¥ ability to pass client identity and authorization credentials to the target as part of a
request,

¥ protection against undetected, unauthorized modification of request data,

¥ cryptographic privacy of data, and

¥ protection against replay of requests and data.

[1510] The RPC runtime provides the communication conduit for exchanging security
credentials between communicating parties. It protects its communications from threats
such as message replay, message modification, and eavesdropping.

[1511] The DCE-CIOP uses DCE RPC APIs to request security features for a given client-
target communication binding. Subsequent DCE-CIOP messages on that binding flow
over RPC and thus are protected at the requested levels.
15-286 Security Service v1.8 September 2000 [DRAFT]

15
[1512] This Secure DCE-CIOP specification defines the IOR Profile components required to
support Secure DCE-CIOP. Each component is identified by a unique tag, and the
encoding and semantics of the associated component_data are specified. Client secure
association requirements, as indicated by client-side policy, and target secure
association requirements, as specified in the target IOR Profile security components,
are mapped to DCE Security Services. Finally, the use of DCE APIs to protect DCE-
CIOP messages is described.

IOR Security Components for DCE-CIOP

[1513] The information necessary to invoke secure operations on objects using DCE-CIOP is
encoded in an IOR in a profile identified by TAG_MULTIPLE_COMPONENTS.
The profile_data for this profile is a CDR encapsulation (see ÒCDR Transfer SyntaxÓ
in the General Inter-ORB Protocol chapter of the Common Object Request Broker:
Architecture and Specification) of the MultipleComponentProfile type, which is a
sequence of TaggedComponent structures. These types are described in the ORB
Interoperability Architecture chapter of the Common Object Request Broker:
Architecture and Specification.

[1514] The Multiple Component Profile contains the tagged components required to support
DCE-CIOP, described in the DCE ESIOP chapter of the Common Object Request
Broker: Architecture and Specification, as well as the components required to support
security for DCE-CIOP. The general security components are described in ÒSecurity
Components of the IORÓ on page 15-196. The DCE-specific security component and
semantics for the common security components are described here.

[1515] Although a conforming implementation of Secure DCE-CIOP is only required to
generate and recognize the components defined here and in the General Inter-ORB
Protocol chapter of the Common Object Request Broker: Architecture and
Specification, the profile may also contain components used by other kinds of ORB
transports and services. Implementations should be prepared to encounter profiles
identified by TAG_MULTIPLE_COMPONENTS that do not support DCE-CIOP.
Unrecognized components should be preserved but ignored. Although an
implementation may choose to order the components in a profile in a particular way,
other implementations are not required to preserve that order. Implementations must be
prepared to handle profiles whose components appear in any order.

TAG_DCE_SEC_MECH
[1516] For a profile to support Secure DCE-CIOP, it must include exactly one

TAG_DCE_SEC_MECH component. Presence of this component indicates support
for the (non-GSSAPI) ÒDCE Security with Kerberos V5 with DESÓ mechanism type.
The component_data field contains an authorization service identifier and an optional
sequence of tagged components.

[1517] Future versions of DCE Security that require different information than what is
provided by the component_data structure described below are expected to be
supported with a new component tag, rather than with revisions to the data structure
associated with the TAG_DCE_SEC_MECH tag.
 15-287

[1518] The DCE Security Mechanism component is defined by the following OMG IDL:

module DCE_CIOPSecurity {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103

// CORBA IDL doesn't (yet) support const octet
//
// const octet DCEAuthorizationNone = 0;
// const octet DCEAuthorizationName = 1;
// const octet DCEAuthorizationDCE = 2;

typedef unsigned short DCEAuthorization;

const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;

// since consts of type octet are not allowed in IDL the constant
// values that can be assigned to the authorization_service field
// in the DCESecurityMechanismInfo is declared as unsigned shorts.
// when they actually get assigned to the authorization_service field
// they should be assigned as octets.

struct DCESecurityMechanismInfo {
octet authorization_service;
sequence <TaggedComponent> components;

};
};

[1519] A TaggedComponent structure is built for the DCE Security Mechanism component
by setting the tag member to TAG_DCE_SEC_MECH, and setting the
component_data member to a CDR encapsulation of a DCESecurityMechanismInfo
structure.

The authorization_service Field

[1520] The authorization_service field is used to indicate what authorization service is
required by the target, and therefore must be supported by the authenticated RPC
runtime for invocations on this IOR. Two authorization models are supported:
DCEAuthorizationName and DCEAuthorizationDCE with a third identifier,
DCEAuthorizationNone, to indicate that no authorization is required.

The components Field

[1521] The components field contains a sequence of zero or more tagged components, none
of which may appear more than once, from the following list of common security IOR
components: TAG_ASSOCIATION_OPTIONS, and TAG_SEC_NAME.

[1522] Each of these components, defined in ÒSecurity Components of the IORÓ on
page 15-196, may be present either in the components field of the
DCESecurityMechanismInfo structure, or at the top level of the IOR profile. When
15-288 Security Service v1.8 September 2000 [DRAFT]

15
one of these components appears at the top level of the profile, its data may be shared
by other security mechanisms in the profile. When it appears in the nested components
field of DCESecurityMechanismInfo, its data is available only to the DCE Security
mechanism and overrides the data of an identically-tagged component, if present, at the
top level of the profile.

TAG_ASSOCIATION_OPTIONS

[1523] The association options component, described in ÒSecurity Components of the IORÓ
on page 15-196, contains flags indicating which protection and authentication services
the target supports and which it requires. This component is optional for Secure DCE-
CIOP; defaults are used when the component is not present.

[1524] The way in which association options are interpreted for use with DCE security is
reflected in Table 15-23 shows how an association option is mapped to a DCE RPC
protection level and authentication service.

[1525] If the TAG_ASSOCIATION_OPTIONS component is not present, then the target is
assumed both to support and to require rpc_c_protect_level_default and
rpc_c_authn_dce_secret. (The value of rpc_c_protect_level_default is defined by the
DCE implementation or by a site administrator.)

The target_supports Field
[1526] When an association option is set in the target_supports field of the

TAG_ASSOCIATION_OPTIONS component_data, it indicates that the target
supports invocations which use Secure DCE-CIOP with the protection level and
authentication service that correspond to the selected option, as shown in Table 15-23.
Any or all of the association options may be set in the target_supports field. The
options set in the target_supports field will be compared with client-side policy
required options to determine if the target can support the clientÕs requirements.

Table 15-23 Association Option Mapping to DCE Security

Association Option DCE RPC
Protection Level

DCE RPC
Authentication
Service

NoProtection rpc_c_protect_level_none rpc_c_authn_none

Integrity rpc_c_protect_level_pkt_integrity rpc_c_authn_dce_secret

Confidentiality rpc_c_protect_level_pkt_privacy rpc_c_authn_dce_secret

DetectReplay rpc_c_protect_level_pkt rpc_c_authn_dce_secret

DetectMisordering rpc_c_protect_level_pkt rpc_c_authn_dce_secret

EstablishTrustInTarget rpc_c_protect_level_connect rpc_c_authn_dce_secret

EstablishTrustInClient rpc_c_protect_level_connect rpc_c_authn_dce_secret

tag not present rpc_c_protect_level_default rpc_c_authn_dce_secret
 15-289

[1527] Although, for the DCE security mechanism, a single selected option may imply
support for several other options (e.g., selection of the Integrity option implies support
for DetectReplay, DetectMisordering, and EstablishTrustInClient) it is
recommended that every supported option be explicitly set in the target_supports field
to facilitate comparison with client requirements.

The target_requires Field
[1528] When an association option is set in the target_requires field of the

TAG_ASSOCIATION_OPTIONS component_data, it indicates that the target
requires invocations secured with at least the protection level and authentication
service that correspond to the selected option, as shown in Table 15-23. Since DCE
RPC supports a range of protection levels, each of which provides all the protection of
the level below it and also some additional protection, selecting multiple
target_requires options does not make sense. For DCE, no more than one option need
be selected in the target_requires field.

[1529] If a TAG_ASSOCIATION_OPTIONS component is contained within the
DCESecurityMechanismInfo structure, the target_requires field may conform to the
DCE semantics (i.e. no more than one option selected). If other security mechanisms
are sharing the TAG_ASSOCIATION_OPTIONS component, and perhaps using
different rules for interpreting the target_requires field, then the target_requires field
may have several options selected. The ÒDCE Association Options ReductionÓ
algorithm, described in section , handles both cases and is used to select the
appropriate DCE secure invocation services given a set of required association options.

[1530] The EstablishTrustInTarget option in the target_requires field is meaningless, and is
therefore ignored.

TAG_SEC_NAME

[1531] The security name component contains the DCE principal name of the target.
Generally, this is a global principal name that includes the name of the cell in which
the target principalÕs account resides. If a cell-relative principal name (i.e., the cell
prefix does not appear) is specified, the local cell is assumed. Cell-relative principal
names are only appropriate for use in IORs that are consumed by clients in the same
cell in which the target resides. When an IOR containing a cell-relative principal name
in the TAG_SEC_NAME component crosses a cell boundary, the cell-relative
principal name should be replaced with a global name.

[1532] The format of a Òhuman-friendlyÓ DCE principal name is described in section 1.13 of
[6]. It is a string containing a concatenated cell name and cell-relative principal name
that looks like:

/.../cell-name/cell-relative-principal-name

[1533] For example, the principal with the cell-relative name ÒprintserverÓ in the
Òmis.prettybank.comÓ cell has the global principal name:
15-290 Security Service v1.8 September 2000 [DRAFT]

15
/.../mis.prettybank.com/printserver

[1534] The component_data member of the TAG_SEC_NAME component is set to the
string value of the DCE principal name. The string is represented directly in the
sequence of octets, including the terminating NULL.

[1535] If the TAG_SEC_NAME component is not present, then a value of NULL is assumed,
indicating that the client will depend on the DCE authenticated RPC runtime to
retrieve the DCE principal name of the target, identified in the IOR by the DCE-CIOP
string binding and binding name components. This case indicates that the client is not
interested in authentication of the target identity.

15.15.3 DCE RPC Security Services

[1536] This section provides details about the protection provided by DCE Authenticated RPC
authorization services, protection levels, and authentication services. See the
rpc_binding_set_auth_info() man page in [9] for more information about using these
protection parameters to secure an association between a client and target.

DCE RPC Authorization Services
[1537] This section describes the DCE authorization service indicated by the

authorization_service member of the DCESecurityMechanismInfo structure in the
component_data field of the TAG_DCE_SEC_MECH component.

[1538] DCEAuthorizationName indicates that the target performs authorization based on the
client security name. The DCE RPC authorization service DCEAuthorizationName
asserts the principal name (without cryptographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

[1539] DCEAuthorizationDCE indicates that the target performs authorization using the
clientÕs Privilege Attribute Certificate (for OSF DCE 1.0.3 or previous versions), or the
clientÕs Extended Privilege Attribute Certificate (for DCE 1.1). The authorization
service DCEAuthorizationDCE asserts the principal name and appropriate
authorization data (without cryptographic protection if the association option
NoProtection is chosen, or with cryptographic protection otherwise).

[1540] DCEAuthorizationNone indicates that the target performs no authorization based on
privilege information carried by the RPC runtime. This is valid only if the association
option NoProtection is chosen.

[1541] The authorization_service identifiers defined here for Secure DCE-CIOP correspond to
DCE RPC authorization service identifiers and are defined to have identical values.
The relationship between these identifiers is shown in the following table.

Table 15-24 Relation between DCE-CIOP and DCE RPC Authorization Service Identifiers

Secure DCE-CIOP
authorization_service

DCE RPC
Authorization Service

Shared Value

DCEAuthorizationNone rpc_c_authz_none 0
 15-291

DCE RPC Protection Levels
[1542] The meanings of the DCE RPC protection levels referenced in Table 8-4 are described

below. For the purposes of evaluating the protection levels, it is interesting to
remember that a single DCE-CIOP message is transferred over the wire in the body of
one or more DCE RPC PDUs.

[1543] rpc_c_protect_level_none indicates that no authentication or message protection is to
be performed, regardless of the authentication service chosen. Depending on target
policy, the client may be granted access as an unauthenticated principal.

[1544] rpc_c_protect_level_connect indicates that the client and server identities are
exchanged and cryptographically verified at the time the binding is set up between
them. Strong mutual authentication and replay detection for the binding set-up only is
provided. There are no protection services per DCE RPC PDU.

[1545] rpc_c_protect_level_pkt indicates that the rpc_c_protect_level_connect services are
provided plus detection of misordering or replay of DCE RPC PDUs. There is no
protection against PDU modification.

[1546] rpc_c_protect_level_pkt_integrity offers the rpc_c_protect_level_pkt services plus
detection of DCE RPC PDU modification.

[1547] rpc_c_protect_level_pkt_privacy offers the rpc_c_protect_level_pkt_integrity
services plus privacy of RPC arguments, which means the DCE-CIOP message in its
entirety is privacy protected.

[1548] rpc_c_protect_level_default indicates the default protection level, as defined by the
DCE implementation or by a site administrator (should be one of the above defined
values).

DCE RPC Authentication Services
[1549] The meanings of the DCE RPC authentication services referenced in Table 15-24 are

described below.

[1550] rpc_c_authn_none indicates no authentication. If this is selected, then no
authorization, DCEAuthorizationNone, must be chosen as well.

[1551] rpc_c_authn_dce_secret indicates the DCE shared-secret key authentication service.

DCEAuthorizationName rpc_c_authz_name 1

DCEAuthorizationDCE rpc_c_authz_dce 2

Table 15-24 Relation between DCE-CIOP and DCE RPC Authorization Service Identifiers

Secure DCE-CIOP
authorization_service

DCE RPC
Authorization Service

Shared Value
15-292 Security Service v1.8 September 2000 [DRAFT]

15
Secure DCE-CIOP Operational Semantics

[1552] This section describes how the DCE-CIOP transport layer should provide security for
invocation and locate requests.

[1553] During a request invocation, if the IOR components indicate support for the DCE-
CIOP transport and the TAG_DCE_SEC_MECH component is present, then a Secure
DCE-CIOP request can be made.

Deriving DCE Security Parameters from Association Options
[1554] The client-side secure invocation policy and the target-side policy expressed in the

TAG_ASSOCIATION_OPTIONS component are used to derive the actual options
using the method described in ÒDetermining Association OptionsÓ on page 15-200.
These options are then reduced to a single required_option using the algorithm
described in ÒThe DCE Association Options Reduction AlgorithmÓ on page 15-293
below. The resultant required_option is used to select a DCE RPC protection level
and authentication service using Table 15-23 on page 15-289. The derived protection
level and authentication service are used to secure the association via the
rpc_binding_set_auth_info() call (see ÒSecuring the Binding Handle to the TargetÓ on
page 15-294).

The DCE Association Options Reduction Algorithm
[1555] The ÒDCE Association Options ReductionÓ algorithm is used to select a single

association option, required_option, given the value required by client and target
derived as described in ÒDetermining Association OptionsÓ on page 15-200. The
resultant required_option indicates, via Table 15-23 on page 15-289, the DCE
protection level and authentication service to use for invocations.

[1556] The association option names used in the following algorithm refer to options in the
negotiated-required options set.

[1557] The ÒDCE Association Options ReductionÓ algorithm is expressed as:

If Confidentiality is set, then required_option = Confidentiality;
else if Integrity is set, then required_option = Integrity;
else if DetectReplay is set, OR
 if DetectMisordering is set,
 then required_option = DetectReplay;
 (alternatively, the same results are obtained with:
 then required_option = DetectMisordering;)
else if EstablishTrustInClient is set,
 then required_option = EstablishTrustInClient;
else required_option = NoProtection.

Behavior When TAG_ASSOCIATION_OPTIONS Not Present
[1558] As described earlier, if the TAG_ASSOCIATION_OPTIONS component is not

present, then the target is assumed to support and require rpc_c_protect_level_default
and rpc_c_authn_dce_secret. Since these protection parameters are not expressed as
 15-293

association options, the usual method of deriving a single required_option by
combining client and target policy (see ÒDetermining Association OptionsÓ on
page 15-200 and ÒThe DCE Association Options Reduction AlgorithmÓ on
page 15-293Òabove) cannot be used. Instead, use the following alternative method to
derive the required DCE RPC protection level and authentication service:

¥ Translate the client-side secure invocation policy from a set of client supported
association options to a single client_supported_option and from a set of client
required association options to a single client_required_option, using in each case
the algorithm described in ÒThe DCE Association Options Reduction AlgorithmÓ on
page 15-293.

¥ Using Table 15-23 ÒAssociation Option Mapping to DCE SecurityÓ translate the
client_supported_option and client_required_option to corresponding ÒsupportedÓ
and ÒrequiredÓ DCE RPC protection level/authentication service pairs.

¥ If the target principal is a member of the local cell, determine the target required
protection level implied by rpc_c_protect_level_default by calling
rpc_mgmt_inq_dflt_protect_level() passing rpc_c_authn_dce_secret as the
authn_svc parameter. If the target principal is not a member of the local cell or if
itÕs difficult to determine, then assume a target required protection level of
rpc_c_protect_level_pkt_integrity.

¥ If the client supports rpc_c_authn_dce_secret, then choose the strongest protection
level that both the client and target support and that does not exceed the strongest
protection level required by either the client or target. If the client does not support
rpc_c_authn_dce_secret, then choose rpc_c_authn_none and
rpc_c_protect_level_none. Use the protection level and authentication service thus
derived to secure the association between this client and target.

Securing the Binding Handle to the Target
[1559] The DCE-CIOP protocol engine acquires an rpc_binding_handle to the target using its

normal procedure. The DCE_CIOP sets authentication and authorization information
on that binding handle with the rpc_binding_set_auth_info() call using data from the
IOR profile security components in the following way:

¥ The target security name string from the TAG_SEC_NAME component (or NUL,
if the component is not present) is passed to rpc_binding_set_auth_info() via the
server_princ_name parameter.

¥ If the TAG_ASSOCIATION_OPTIONS component is present in the IOR, see
ÒDeriving DCE Security Parameters from Association OptionsÓ on page 15-293
above to select a DCE RPC protection level and authentication service for this
invocation.

If the TAG_ASSOCIATION_OPTIONS component is not present in the IOR, see
ÒBehavior When TAG_ASSOCIATION_OPTIONS Not PresentÓ on page 15-293
above to select a DCE RPC protection level and authentication service for this
invocation.
15-294 Security Service v1.8 September 2000 [DRAFT]

15
The selected protection level is passed to rpc_binding_set_auth_info() via the
protect_level parameter. The selected authentication service is passed via the
authn_svc parameter to rpc_binding_set_auth_info().

¥ The auth_identity parameter is set to NULL to use the DCE default login context.

¥ The authorization service identifier from the authorization_service field of the
DCESecurityMechanismInfo component_data is mapped to the corresponding
DCE RPC authorization service identifier (using Table 15-24 on page 15-291)
which is then passed via the authz_svc parameter.

[1560] After a successful call to rpc_binding_set_auth_info(), the authenticated binding
handle will be used by the DCE-CIOP protocol engine to make secure requests.

[1561]
 15-295

Introduction
Appendix A Consolidated OMG IDL

A.1 Introduction

[1562] The OMG IDL for CORBA security is split into modules as follows:

¥ A module containing the common data types used by all security modules.

¥ A module for application interfaces for each Security Functionality Levels 1 and 2.

¥ A module for Security Level 2 security policy administration.

¥ A module for non-repudiation, including the non-repudiation policy administration
interface.

¥ A module for the Replaceable Security Service, as described in Section 15.7,
ÒImplementorÕs Security Interfaces,Ó on page 15-159.

¥ A module for elements of the SECure Inter Orb Protocol (SECIOP)l.

¥ A module for elements of the SSL Protocol.

¥ A module for elements related to Security that are added to the DCE_CIOPSecurity
module.

A.2 General Security Data Module

[1563] This subsection defines the OMG IDL for security data types common to the other
security modules, which is the module Security. The Security module depends on the
TimeBase module and the CORBA module.
15-296 Security Service v1.8 September 2000 [DRAFT]

15
#if !defined(_SECURITY_IDL_)
#define _SECURITY_IDL_
#include <orb.idl>
#include <TimeBase.idl>
#pragma prefix "omg.org"

module Security {

pragma version Security 1.8

typedef string SecurityName;
typedef sequence <octet> Opaque;

// Constant declarations for Security Service Options

const CORBA::ServiceOption SecurityLevel1 = 1;
const CORBA::ServiceOption SecurityLevel2 = 2;
const CORBA::ServiceOption NonRepudiation = 3;
const CORBA::ServiceOption SecurityORBServiceReady = 4;
const CORBA::ServiceOption SecurityServiceReady = 5;
const CORBA::ServiceOption ReplaceORBServices = 6;
const CORBA::ServiceOption ReplaceSecurityServices = 7;
const CORBA::ServiceOption StandardSecureInteroperability = 8;
const CORBA::ServiceOption DCESecureInteroperability = 9;

// Service options for Common Secure Interoperability

const CORBA::ServiceOption CommonInteroperabilityLevel0 = 10;
const CORBA::ServiceOption CommonInteroperabilityLevel1 = 11;
const CORBA::ServiceOption CommonInteroperabilityLevel2 = 12;

// Security mech types supported for secure association
const CORBA::ServiceDetailType SecurityMechanismType = 1;

// privilege types supported in standard access policy
const CORBA::ServiceDetailType SecurityAttribute = 2;

// extensible families for standard data types

struct ExtensibleFamily {
unsigned short family_definer;
unsigned short family;

};
 15-297

General Security Data Module
typedef sequence<octet> OID;

typdef sequence<OID> OIDList;

// security attributes

typedef unsigned long SecurityAttributeType;

// other attributes; family = 0

const SecurityAttributeType AuditId = 1;
const SecurityAttributeType AccountingId = 2;
const SecurityAttributeType NonRepudiationId = 3;

// privilege attributes; family = 1

const SecurityAttributeType _Public = 1;
const SecurityAttributeType AccessId = 2;
const SecurityAttributeType PrimaryGroupId = 3;
const SecurityAttributeType GroupId = 4;
const SecurityAttributeType Role = 5;
const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType Clearance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
ExtensibleFamily attribute_family;
SecurityAttributeType attribute_type;

};

typedef sequence<AttributeType> AttributeTypeList;

struct SecAttribute {
AttributeType attribute_type;
OID defining_authority;
Opaque value;
// the value of this attribute can be
// decoded only with knowledge of defining_authority

};

typedef sequence <SecAttribute> AttributeList;

// Authentication return status

enum AuthenticationStatus {
SecAuthSuccess,
SecAuthFailure,
SecAuthContinue,
SecAuthExpired

};
15-298 Security Service v1.8 September 2000 [DRAFT]

15
// Association return status

enum AssociationStatus {
SecAssocSuccess,
SecAssocFailure,
SecAssocContinue

};

// Authentication method
typedef unsigned long AuthenticationMethod;

typedef sequence<AuthenticationMethod> AuthenticationMethodList;

// Credential types

enum InvocationCredentialsType {
SecOwnCredentials,
SecReceivedCredentials,
SecTargetCredentials

};

// Declarations related to Rights

struct Right {
ExtensibleFamily rights_family;
string the_right;

};

typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

};

// Delegation related

enum DelegationState {
SecInitiator,
SecDelegate

};
 15-299

General Security Data Module
enum DelegationDirective {
Delegate,
NoDelegate

};

// pick up from TimeBase

typedef TimeBase::UtcT UtcT;
typedef TimeBase::IntervalT IntervalT;
typedef TimeBase::TimeT TimeT;

// Security features available on credentials.

enum SecurityFeature {
SecNoDelegation,
SecSimpleDelegation,
SecCompositeDelegation,
SecNoProtection,
SecIntegrity,
SecConfidentiality,
SecIntegrityAndConfidentiality,
SecDetectReplay,
SecDetectMisordering,
SecEstablishTrustInTarget,
SecEstablishTrustInClient

};

// Quality of protection which can be specified
// for an object reference and used to protect messages

enum QOP {
SecQOPNoProtection,
SecQOPIntegrity,
SecQOPConfidentiality,
SecQOPIntegrityAndConfidentiality

};

// Type of SecurityContext

enum SecurityContextType {
SecClientSecurityContext,
SecServerSecurityContext

};
15-300 Security Service v1.8 September 2000 [DRAFT]

15
// Operational State of a Security Context

enum SecurityContextState {
SecContextInitialized,
SecContextContinued,
SecContextClientEstablished,
SecContextEstablished,
SecContextEstablishExpired,
SecContextExpired,
SecContextInvalid

};

struct ChannelBindings {
unsigned long initiator_addrtype;
sequence<octet> initiator_address;
unsigned long acceptor_addrtype;
sequence<octet> acceptor_address;
sequence<octet> application_data;

};

// For use with SecurityReplaceable

struct OpaqueBuffer {
Opaque buffer;
unsigned long startpos;
unsigned long endpos;
// startpos <= endpos
// OpaqueBuffer is said to be empty if startpos == endpos

};

// Association options which can be administered
// on secure invocation policy and used to
// initialize security context

typedef unsigned short AssociationOptions;

const AssociationOptions NoProtection = 1;
const AssociationOptions Integrity = 2;
const AssociationOptions Confidentiality = 4;
const AssociationOptions DetectReplay = 8;
const AssociationOptions DetectMisordering = 16;
const AssociationOptions EstablishTrustInTarget = 32;
const AssociationOptions EstablishTrustInClient = 64;
const AssociationOptions NoDelegation = 128;
const AssociationOptions SimpleDelegation = 256;
const AssociationOptions CompositeDelegation = 512;
 15-301

General Security Data Module
// Flag to indicate whether association options being
// administered are the ÒrequiredÓ or ÒsupportedÓ set

enum RequiresSupports {
SecRequires,
SecSupports

};

// Direction of communication for which
// secure invocation policy applies

enum CommunicationDirection {
SecDirectionBoth,
SecDirectionRequest,
SecDirectionReply

};

// security association mechanism type

typedef string MechanismType;

typedef sequence<MechanismType> MechanismTypeList;

// AssociationOptions-Direction pair

struct OptionsDirectionPair {
AssociationOptions options;
CommunicationDirectiondirection;

};

typedef sequence <OptionsDirectionPair> OptionsDirectionPairList;

// Delegation mode which can be administered

enum DelegationMode {
SecDelModeNoDelegation, // i.e. use own credentials
SecDelModeSimpleDelegation, // delegate received credentials
SecDelModeCompositeDelegation // delegate both;

};

// Association options supported by a given mech type

struct MechandOptions {
MechanismType mechanism_type;
AssociationOptions options_supported;

};
15-302 Security Service v1.8 September 2000 [DRAFT]

15
typedef sequence <MechandOptions> MechandOptionsList;

// Attribute of the SecurityLevel2::EstablishTrustPolicy

struct EstablishTrust {
boolean trust_in_client;
boolean trust_in_target;

};

// Audit

typedef unsigned long AuditChannelId;

typedef unsigned short EventType;

const EventType AuditAll = 0;
const EventType AuditPrincipalAuth = 1;
const EventType AuditSessionAuth = 2;
const EventType AuditAuthorization = 3;
const EventType AuditInvocation = 4;
const EventType AuditSecEnvChange = 5;
const EventType AuditPolicyChange = 6;
const EventType AuditObjectCreation = 7;
const EventType AuditObjectDestruction = 8;
const EventType AuditNonRepudiation = 9;

enum DayOfTheWeek {
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sun-

day};

enum AuditCombinator {
SecAllSelectors,
SecAnySelector

};

struct AuditEventType {
ExtensibleFamily event_family;
EventType event_type;

};
typedef sequence <AuditEventType> AuditEventTypeList;

typedef unsigned long SelectorType;

const SelectorType InterfaceName = 1;
const SelectorType ObjectRef = 2;
const SelectorType Operation = 3;
const SelectorType Initiator = 4;
const SelectorType SuccessFailure = 5;
const SelectorType Time = 6;
const SelectorType DayOfWeek = 7;
 15-303

Application Interfaces - Level 1
// values defined for audit_needed and audit_write are:
// InterfaceName: CORBA::RepositoryId
// ObjectRef: object reference
// Operation: op_name
// Initiator: Credentials
// SuccessFailure: boolean
// Time: utc time on audit_write; time picked up from
// environment in audit_needed if required
// DayOfWeek: DayOfTheWeek

struct SelectorValue {
SelectorType selector;
any value;

};
typedef sequence <SelectorValue> SelectorValueList;

// Constant declaration for valid Security Policy Types

// General administrative policies
const CORBA::PolicyType SecClientInvocationAccess = 1;
const CORBA::PolicyType SecTargetInvocationAccess = 2;
const CORBA::PolicyType SecApplicationAccess = 3;
const CORBA::PolicyType SecClientInvocationAudit = 4;
const CORBA::PolicyType SecTargetInvocationAudit = 5;
const CORBA::PolicyType SecApplicationAudit = 6;
const CORBA::PolicyType SecDelegation = 7;
const CORBA::PolicyType SecClientSecureInvocation = 8;
const CORBA::PolicyType SecTargetSecureInvocation = 9;
const CORBA::PolicyType SecNonRepudiation = 10;

// Policies used to control attributes of a binding to a target
const CORBA::PolicyType SecMechanismsPolicy = 12;
const CORBA::PolicyType SecInvocationCredentialsPolicy = 13;
const CORBA::PolicyType SecFeaturePolicy = 14; // obsolete
const CORBA::PolicyType SecQOPPolicy = 15;

const CORBA::PolicyType SecDelegationDirectivePolicy = 38;
const CORBA::PolicyType SecEstablishTrustPolicy = 39;

};

#endif /* _SECURITY_IDL_ */

A.3 Application Interfaces - Level 1

[1564] This subsection defines those interfaces available to application objects using only
Security Functionality Level 1, and consists of a single module, SecurityLevel1. This
module depends on the CORBA module, and on the Security module.
15-304 Security Service v1.8 September 2000 [DRAFT]

15
#if !defined(_SECURITY_LEVEL_1_IDL_)
#define _SECURITY_LEVEL_1_IDL_
#include <Security.idl>
#pragma prefix "omg.org"

module SecurityLevel1 {

pragma version SecurityLevel1 1.8
local interface Current : CORBA::Current {

pragma version Current 1.8

// thread specific operations

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);
};

};
#endif /* _SECURITY_LEVEL_1_IDL_ */

A.4 Application Interfaces - Level 2

[1565] This subsection defines the interfaces available to applications using Security
Functionality Level 2, all of which are declared in the SecurityLevel2 module. This
module depends on the CORBA, SecurityLevel1 and Security modules. The interfaces
are described in Section 15.5, ÒApplication DeveloperÕs Interfaces,Ó on page 15-87.

#if !defined(_SECURITY_LEVEL_2_IDL_)
#define _SECURITY_LEVEL_2_IDL_
#include <SecurityLevel1.idl>
#pragma prefix "omg.org"

module SecurityLevel2 {

pragma version SecurityLevel2 1.8

// Forward declaration of interfaces
local interface PrincipalAuthenticator;
local interface Credentials;
local interface Current;

// Interface PrincipalAuthenticator
local interface PrincipalAuthenticator {

pragma version PrincipalAuthenticator 1.8

Security::AuthenticationMethodList
get_supported_authen_methods(

in Security::MechanismType mechanism
);
 15-305

Application Interfaces - Level 2
Security::AuthenticationStatus authenticate (
in Security::AuthenticationMethod method,
in Security::MechanismType mechanism,
in Security::SecurityName security_name,
in any auth_data,
in Security::AttributeList privileges,
out Credentials creds,
out any continuation_data,
out any auth_specific_data

);

Security::AuthenticationStatus continue_authentication (
in any response_data,
in Credentials creds,
out any continuation_data,
out any auth_specific_data

);
};

// Interface Credentials
local interface Credentials {

pragma version Credentials 1.8

Credentials copy ();

void destroy();

readonly attribute Security::InvocationCredentialsType
credentials_type;

readonly attribute Security::AuthenticationStatus
authentication_state;

readonly attribute Security::MechanismType mechanism;

attribute Security::AssociationOptions
accepting_options_supported;

attribute Security::AssociationOptions
accepting_options_required;

attribute Security::AssociationOptions
invocation_options_supported;

attribute Security::AssociationOptions
invocation_options_required;

boolean get_security_feature(
in Security::CommunicationDirection direction,
in Security::SecurityFeature feature

);
15-306 Security Service v1.8 September 2000 [DRAFT]

15
boolean set_attributes (
in Security::AttributeList requested_attributes,
out Security::AttributeList actual_attributes

);

Security::AttributeList get_attributes (
in Security::AttributeTypeList attributes

);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean refresh(
in any refresh_data

);
};

typedef sequence <Credentials> CredentialsList;

local interface ReceivedCredentials : Credentials {

pragma version ReceivedCredentials 1.8

readonly attribute Credentials accepting_credentials;

readonly attribute Security::AssociationOptions
association_options_used;

readonly attribute Security::DelegationState
delegation_state;

readonly attribute Security::DelegationMode
delegation_mode;

};

local interface TargetCredentials : Credentials {

pragma version TargetCredentials 1.8

readonly attribute Credentials initiating_credentials;

readonly attribute Security::AssociationOptions
association_options_used;

};
 15-307

Application Interfaces - Level 2
// RequiredRights Interface

interface RequiredRights{
void get_required_rights(

in Object obj,
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator

);

void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
in Security::RightsList rights,
in Security::RightsCombinator rights_combinator

);
};

// interface audit channel
local interface AuditChannel {

pragma version AuditChannel 1.8

void audit_write (
in Security::AuditEventType event_type,
in CredentialsList creds,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in any event_specific_data

);

readonly attribute Security::AuditChannelId audit_channel_id;
};

// interface for Audit Decision

local interface AuditDecision {
#pragma version AuditDecision 1.8

boolean audit_needed (
in Security::AuditEventType event_type,
in Security::SelectorValueList value_list

);

readonly attribute AuditChannel audit_channel;
};
15-308 Security Service v1.8 September 2000 [DRAFT]

15
local interface AccessDecision {
#pragma version AccessDecision 1.8

boolean access_allowed (

in SecurityLevel2::CredentialsList cred_list,
in Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);
};

// Policy interfaces to control bindings

local interface QOPPolicy : CORBA::Policy {
#pragma version QOPPolicy 1.8
readonly attribute Security::QOP qop;

};

local interface MechanismPolicy : CORBA::Policy {
#pragma version MechanismPolicy 1.8
readonly attribute Security::MechanismTypeList mechanisms;

};

local Iinterface nvocationCredentialsPolicy : CORBA::Policy {
#pragma version InvocationCredentialsPolicy 1.8
readonly attribute CredentialsList creds;

};

local interface EstablishTrustPolicy : CORBA::Policy {
#pragma version EstablishTrustPolicy 1.8
readonly attribute Security::EstablishTrust trust;

};

local interface DelegationDirectivePolicy : CORBA::Policy {
#pragma version DelegationDirectivePolicy 1.8
readonly attribute Security::DelegationDirective

delegation_directive;
};
 15-309

Application Interfaces - Level 2
local interface SecurityManager {

#pragma version SecurityManager 1.8

// Process/Capsule/ORB Instance specific operations

readonly attribute Security::MechandOptionsList
supported_mechanisms;

readonly attribute CredentialsList own_credentials;

readonly attribute RequiredRights required_rights_object;

readonly attribute PrincipalAuthenticator
principal_authenticator;

readonly attribute AccessDecision access_decision;

readonly attribute AuditDecision audit_decision;

TargetCredentials get_target_credentials (
in Object obj_ref

);

void remove_own_credentials(
in Credentials creds

);

CORBA::Policy get_security_policy (
in CORBA::PolicyType policy_type

);

};
};
15-310 Security Service v1.8 September 2000 [DRAFT]

15
// Interface Current derived from SecurityLevel1::Current providing
// additional operations on Current at this security level.
// This is implemented by the ORB

local interface Current : SecurityLevel1::Current {

pragma version Current 1.8

// Thread specific

readonly attribute ReceivedCredentials received_credentials;
};

#endif /* _SECURITY_LEVEL_2_IDL_ */

A.5 Security Administration Interfaces

[1566] This section covers interfaces concerned with querying and modifying security
policies, and comprises the module SecurityAdmin. The SecurityAdmin module
depends on CORBA, Security, and SecurityLevel2 modules. The interfaces are
described in ÒAdministratorÕs InterfacesÓ on page 15-132. There are related interfaces
for finding domain managers and policies. They are to be found in the ORB Interface
chapter of the Common Object Request Broker: Architecture and Specification.

#if !defined(_SECURITY_ADMIN_IDL_)
#define _SECURITY_ADMIN_IDL_
#include <SecurityLevel2.idl>
#pragma prefix "omg.org"

module SecurityAdmin {

pragma version SecurityAdmin 1.5

// interface AccessPolicy
interface AccessPolicy : CORBA::Policy {

pragma version AccessPolicy 1.5

Security::RightsList get_effective_rights (
in Security::AttributeList attrib_list,
in Security::ExtensibleFamily rights_family

);

Security::RightsList get_all_effective_rights(
 in Security::AttributeList attrib_list

);

};
 15-311

Security Administration Interfaces
// interface DomainAccessPolicy
interface DomainAccessPolicy : AccessPolicy {

pragma version DomainAccessPolicy 1.5

void grant_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

void revoke_rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

void replace_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::RightsList rights

);

Security::RightsList get_rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del_state,
in Security::ExtensibleFamily rights_family

);

Security::RightsList get_all_rights(
 in Security::SecAttribute priv_attr,
 in Security::DelegationState del_state

);

};

// interface AuditPolicy
interface AuditPolicy : CORBA::Policy {

pragma version AuditPolicy 1.5

void set_audit_selectors (
in CORBA::RepositoryId object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors,
in Security::AuditCombinator audit_combinator

);

void clear_audit_selectors (
in CORBA::RepositoryId object_type,
in Security::AuditEventTypeList events

);
15-312 Security Service v1.8 September 2000 [DRAFT]

15
void replace_audit_selectors (
in CORBA::RepositoryIdf object_type,
in Security::AuditEventTypeList events,
in Security::SelectorValueList selectors,
in Security::AuditCombinator audit_combinator

);

void get_audit_selectors (
in CORBA::RepositoryId object_type,
in Security::AuditEventType event_type
out Security::SelectorValueList selectors,
out Security::AuditCombinator audit_combinator

);

void set_audit_channel (
in Security::AuditChannelId audit_channel_id

);
};

// interface SecureInvocationPolicy
interface SecureInvocationPolicy : CORBA::Policy {

pragma version SecureInvocationPolicy 1.5

void set_association_options(
in CORBA::RepositoryId object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection

direction,
in Security::AssociationOptions options

);

Security::AssociationOptions get_association_options(
in CORBA::RepositoryId object_type,
in Security::RequiresSupports requires_supports,
in Security::CommunicationDirection

direction
);

};

// interface DelegationPolicy
interface DelegationPolicy : CORBA::Policy {

pragma version DelegationPolicy 1.5

void set_delegation_mode(
in CORBA::RepositoryId object_type,
in Security::DelegationMode mode

);
 15-313

Interfaces for Non-repudiation
Security::DelegationMode get_delegation_mode(
in CORBA::RepositoryId object_type

);
};

};

#endif /* _SECURITY_ADMIN_IDL_ */

A.6 Interfaces for Non-repudiation

[1567] This subsection defines the optional application interface for non-repudiation. This
module depends on SecurityLevel2 and CORBA modules. The interfaces are
described in ÒNon-repudiationÓ on page 15-123.

#if !defined(_NR_SERVICE_IDL_)
#define _NR_SERVICE_IDL_
#include <SecurityLevel2.idl>
#pragma prefix "omg.org"

module NRService {

pragma version NRService 1.5

typedef Security::MechanismType NRMech;
typedef Security::ExtensibleFamily NRPolicyId;

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

};

enum NRVerificationResult {
SecNRInvalid,
SecNRValid,
SecNRConditionallyValid

};
15-314 Security Service v1.8 September 2000 [DRAFT]

15
// the following are used for evidence validity duration
typedef unsigned long DurationInMinutes;

const DurationInMinutes DurationHour = 60;
const DurationInMinutes DurationDay = 1440;
const DurationInMinutes DurationWeek = 10080;
const DurationInMinutes DurationMonth = 43200;// 30 days;
const DurationInMinutes DurationYear = 525600;//365 days;

typedef long TimeOffsetInMinutes;

struct NRPolicyFeatures {
 NRPolicyId policy_id;
 unsigned long policy_version;
 NRMech mechanism;
};

typedef sequence <NRPolicyFeatures> NRPolicyFeaturesList;

// features used when generating requests
struct RequestFeatures {

NRPolicyFeatures requested_policy;
EvidenceType requested_evidence;
string requested_evidence_generators;
string requested_evidence_recipients;
boolean include_this_token_in_evidence;

};

struct EvidenceDescriptor {
EvidenceType evidence_type;
DurationInMinutes evidence_validity_duration;
boolean must_use_trusted_time;

};

typedef sequence <EvidenceDescriptor> EvidenceDescriptorList;

struct AuthorityDescriptor {
string authority_name;
string authority_role;
TimeOffsetInMinutes last_revocation_check_offset;

 // may be >0 or <0; add this to evid. gen. time to
 // get latest time at which mech. will check to see
 // if this authorityÕs key has been revoked.
};

typedef sequence <AuthorityDescriptor> AuthorityDescriptorList;
 15-315

Interfaces for Non-repudiation
struct MechanismDescriptor {
NRMech mech_type;
AuthorityDescriptorList authority_list;
TimeOffsetInMinutes max_time_skew;

// max permissible difference between evid. gen. time
// and time of time service countersignature
// ignored if trusted time not reqd.

};

typedef sequence <MechanismDescriptor> MechanismDescriptorList;

interface NRCredentials : SecurityLevel2::Credentials{

boolean set_NR_features (
in NRPolicyFeaturesList requested_features,

 out NRPolicyFeaturesList actual_features
);

NRPolicyFeaturesList get_NR_features ();

void generate_token (
in Security::Opaque input_buffer,
in EvidenceType generate_evidence_type,
in boolean include_data_in_token,
in boolean generate_request,
in RequestFeatures request_features,
in boolean input_buffer_complete,
out Security::Opaque nr_token,
out Security::Opaque evidence_check

);

NRVerificationResult verify_evidence (
in Security::Opaque input_token_buffer,
in Security::Opaque evidence_check,
in boolean form_complete_evidence,
in boolean token_buffer_complete,
out Security::Opaque output_token,
out Security::Opaque data_included_in_token,
out boolean evidence_is_complete,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);
15-316 Security Service v1.8 September 2000 [DRAFT]

15
void get_token_details (
in Security::Opaque token_buffer,
in boolean token_buffer_complete,
out string token_generator_name,
out NRPolicyFeatures policy_features,
out EvidenceType evidence_type,
out Security::UtcT evidence_generation_time,
out Security::UtcT evidence_valid_start_time,
out DurationInMinutes evidence_validity_duration,
out boolean data_included_in_token,
out boolean request_included_in_token,
out RequestFeatures request_features

);

boolean form_complete_evidence (
in Security::Opaque input_token,
out Security::Opaque output_token,
out boolean trusted_time_used,
out Security::TimeT complete_evidence_before,
out Security::TimeT complete_evidence_after

);
};

interface NRPolicy : CORBA::Policy{

void get_NR_policy_info (
out Security::ExtensibleFamily

NR_policy_id,
out unsigned long policy_version,
out Security::TimeT policy_effective_time,
out Security::TimeT policy_expiry_time,
out EvidenceDescriptorList supported_evidence_types,
out MechanismDescriptorList

supported_mechanisms
);

boolean set_NR_policy_info (
in MechanismDescriptorList

requested_mechanisms,
out MechanismDescriptorList

actual_mechanisms
);

};
};
#endif /* _NR_SERVICE_IDL_ */
 15-317

Security Replaceable Service Interfaces
A.7 Security Replaceable Service Interfaces

[1568] This section defines the IDL interfaces to the Security objects, which should be
replaced if there is a requirement to replace the Security services used for security
associations (i.e., the Vault and Security Context). The IDL provided here is for those
interfaces that have not already been covered by the SecurityLevel2 module. This
section comprises the module SecurityReplaceable. This module depends on the
CORBA, Security, and SecurityLevel2 modules. The interfaces are described in
Section 15.7, ÒImplementorÕs Security Interfaces,Ó on page 15-159.

#if !defined(_SECURITY_REPLACEABLE_IDL_)
#define _SECURITY_REPLACEABLE_IDL_
#include <SecurityLevel2.idl>
#include <IOP.idl>
#pragma prefix "omg.org"

module SecurityReplaceable {

pragma version SecurityReplacable 1.8

local interface SecurityContext;
local interface ClientSecurityContext;
local interface ServerSecurityContext;

local interface Vault {

pragma version Vault 1.8

Security::AuthenticationMethodList
get_supported_authen_methods(

in Security::MechanismType mechanism
);

readonly attribute Security::OIDList supported_mech_oids;

Security::AuthenticationStatus acquire_credentials(
in Security::AuthenticationMethod method,
in Security::MechanismType mechanism,
in Security::SecurityName security_name,
in any auth_data,
in Security::AttributeList privileges,
out SecurityLevel2::Credentials creds,
out any continuation_data,
out any auth_specific_data

);
15-318 Security Service v1.8 September 2000 [DRAFT]

15
Security::AuthenticationStatus continue_credentials_acquisition(
in any response_data,
in SecurityLevel2::Credentials creds,
out any continuation_data,
out any auth_specific_data

);

IOP::TaggedComponentSeq create_ior_components(
in SecurityLevel2::Credentials creds_list

);

Security::AssociationStatus init_security_context (
in SecurityLevel2::Credentials creds,
in Security::SecurityName target_security_name,
in Object target,
in Security::DelegationMode delegation_mode,
in Security::OptionsDirectionPairList

association_options,
in Security::MechanismType mechanism,
in Security::Opaque comp_data, //from IOR
in Security::ChannelBindings chan_binding,
out Security::OpaqueBuffer security_token,
out ClientSecurityContext security_context

);

Security::AssociationStatus accept_security_context (
in SecurityLevel2::CredentialsList creds_list,
in Security::ChannelBindings chan_bindings,
in Security::OpaqueBuffer in_token,
out Security::OpaqueBuffer out_token,
out ServerSecurityContext security_context

);

Security::MechandOptionsList get_supported_mechs ();
};

local interface SecurityContext {

pragma version SecurityContext 1.8

readonly attribute Security::SecurityContextType
context_type;

readonly attribute Security::SecurityContextState
context_state;

readonly attribute Security::MechanismType
mechanism;

readonly attribute Security::ChannelBindings
 chan_binding;
 15-319

Security Replaceable Service Interfaces
readonly attribute SecurityLevel2::ReceivedCredentials
 received_credentials;

Security::AssociationStatus continue_security_context (
in Security::OpaqueBuffer in_token,
out Security::OpaqueBuffer out_token

);

void protect_message (
in Security::OpaqueBuffer message,
in Security::QOP qop,
out Security::OpaqueBuffer text_buffer,
out Security::OpaqueBuffer token

);

boolean reclaim_message (
in Security::OpaqueBuffer text_buffer,
in Security::OpaqueBuffer token,
out Security::QOP qop,
out Security::OpaqueBuffer message

);

boolean is_valid (
out Security::UtcT expiry_time

);

boolean discard_security_context (
in Security::Opaque discard_data,
out Security::OpaqueBuffer out_token

);

boolean process_discard_token (
in Security::OpaqueBuffer discard_token

);

};
15-320 Security Service v1.8 September 2000 [DRAFT]

15
local interface ClientSecurityContext : SecurityContext {
#pragma version ClientSecurityContext 1.8
readonly attribute Security::AssociationOptions

association_options_used;
readonly attribute Security::DelegationMode

delegation_mode;
readonly attribute Security::Opaque comp_data;
readonly attribute SecurityLevel2::Credentials

client_credentials;
readonly attribute Security::AssociationOptions

server_options_supported;
readonly attribute Security::AssociationOptions

server_options_required;
readonly attribute Security::Opaque server_security_name;

};

local interface ServerSecurityContext : SecurityContext {
#pragma version ServerSecurityContext 1.8
readonly attribute Security::AssociationOptions

association_options_used;
readonly attribute Security::DelegationMode

delegation_mode;
readonly attribute SecurityLevel2::Credentials

server_credentials;
readonly attribute Security::AssociationOptions

server_options_supported;
readonly attribute Security::AssociationOptions

server_options_required;
readonly attribute Security::Opaque server_security_name;

};

interface RequiredRights{
void get_required_rights(

in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
out Security::RightsList rights,
out Security::RightsCombinator rights_combinator

);

void set_required_rights(
in CORBA::Identifier operation_name,
in CORBA::RepositoryId interface_name,
in Security::RightsList rights,
in Security::RightsCombinator rights_combinator

);
};
 15-321

Secure Inter-ORB Protocol (SECIOP)
local interface AuditChannel {

void audit_write (
in Security::AuditEventType event_type,
in SecurityLevel2::CredentialsList creds_list,
in Security::UtcT time,
in Security::SelectorValueList descriptors,
in Security::Opaque event_specific_data

);

readonly attribute Security::AuditChannelId audit_channel_id;
};

local interface AuditDecision {

boolean audit_needed (
in Security::AuditEventType event_type,
in Security::SelectorValueList value_list

);

readonly attribute AuditChannel audit_channel;
};

local interface AccessDecision {

boolean access_allowed (
in SecurityLevel2::CredentialsList cred_list,
in CORBA::Identifier operation_name,
in CORBA::Identifier target_interface_name

);

};

};

#endif /* _SECURITY_REPLACEABLE_IDL_ */

A.8 Secure Inter-ORB Protocol (SECIOP)

[1569] The SECIOP module holds structure declarations related to the layout of message
fields in the Secure Inter-ORB protocol. This module depends on the IOP and Security
modules.
15-322 Security Service v1.8 September 2000 [DRAFT]

15
#if !defined(_SECIOP_IDL_)
#define _SECIOP_IDL
#include <IOP.idl>
#include <Security.idl>
#pragma prefix "omg.org"

module SECIOP {

#pragma version SECIOP 1.1

const IOP::ComponentId TAG_GENERIC_SEC_MECH = 22;

const IOP::ComponentId TAG_ASSOCIATION_OPTIONS = 13;

const IOP::ComponentId TAG_SEC_NAME = 14;

const IOP::ComponentId TAG_SECIOP_INET_SEC_TRANS = 123;

struct SECIOP_INET_SEC_TRANS {
unsigned short port;

};

struct TargetAssociationOptions{
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;

};

struct GenericMechanismInfo {
sequence <octet> security_mechanism_type;
sequence <octet> mech_specific_data;
sequence <IOP::TaggedComponent> components;

};

enum MsgType {
MTEstablishContext,
MTCompleteEstablishContext,
MTContinueEstablishContext,
MTDiscardContext,
MTMessageError,
MTMessageInContext

};

typedef unsigned long long ContextId;

enum ContextIdDefn {
CIDClient,
CIDPeer,
CIDSender

};
 15-323

Secure Inter-ORB Protocol (SECIOP)
struct EstablishContext {
ContextId client_context_id;
sequence <octet> initial_context_token;

};

struct CompleteEstablishContext {
ContextId client_context_id;
boolean target_context_id_valid;
ContextId target_context_id;
sequence <octet> final_context_token;

};

struct ContinueEstablishContext {
ContextId client_context_id;
sequence <octet> continuation_context_token;

};

struct DiscardContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
sequence <octet> discard_context_token;

};

struct MessageError {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
long major_status;
long minor_status;

};

enum ContextTokenType {
SecTokenTypeWrap,
SecTokenTypeMIC

};

struct MessageInContext {
ContextIdDefn message_context_id_defn;
ContextId message_context_id;
ContextTokenType message_context_type;
sequence <octet> message_protection_token;

};

typedef sequence <octet> SecurityName;
typedef unsigned short CryptographicProfile;
typedef sequence <CryptographicProfile> CryptographicProfileList;
15-324 Security Service v1.8 September 2000 [DRAFT]

15
// Cryptographic profiles for SPKM

const CryptographicProfile MD5_RSA = 20;
const CryptographicProfile MD5_DES_CBC = 21;
const CryptographicProfile DES_CBC = 22;
const CryptographicProfile MD5_DES_CBC_SOURCE = 23;
const CryptographicProfile DES_CBC_SOURCE = 24;

// Security Mechanism SPKM_1

const IOP::ComponentId TAG_SPKM_1_SEC_MECH = 15;

struct SPKM_1 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism SPKM_1

const IOP::ComponentId TAG_SPKM_2_SEC_MECH = 16;

struct SPKM_2 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Cryptographic profiles for GSS Kerberos Protocol

const CryptographicProfile DES_CBC_DES_MAC = 10;
const CryptographicProfile DES_CBC_MD5 = 11;
const CryptographicProfile DES_MAC = 12;
const CryptographicProfile MD5 = 13;

// Security Mechanism KerberosV5

const IOP::ComponentId TAG_KerberosV5_SEC_MECH = 17;

struct KerberosV5 {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};
 15-325

SSL
// Cryptographic profiles for CSI-ECMA Protocol

const CryptographicProfile FullSecurity = 1;
const CryptographicProfile NoDataConfidentiality = 2;
const CryptographicProfile LowGradeConfidentiality = 3;
const CryptographicProfile AgreedDefault = 5;

// Security Mechanism CSI_ECMA_Secret

const IOP::ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;

struct CSI_ECMA_Secret {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism CSI_ECMA_Hybrid

const IOP::ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;

struct CSI_ECMA_Hybrid {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};

// Security Mechanism CSI_ECMA_Public

const IOP::ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;

struct CSI_ECMA_Public {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
CryptographicProfileList crypto_profile;
SecurityName security_name;

};
};

#endif /* _SECIOP_IDL */

A.9 SSL

[1570] The SSLIOP module holds the structure and TAG definitions needed for using SSL as
the secure transport under CORBA Security. This module depends on the Security and
the IOP modules.
15-326 Security Service v1.8 September 2000 [DRAFT]

15
#if !defined(_SSLIOP_IDL)
#define _SSLIOP_IDL
#pragma prefix "omg.org"
#include <IOP.idl>
#include<Security.idl>

module SSLIOP {
// Security mechanism SSL

const IOP::ComponentId TAG_SSL_SEC_TRANS = 20;

struct SSL {
Security::AssociationOptions target_supports;
Security::AssociationOptions target_requires;
unsigned short port;

};
};
#endif /* _SSLIOP_IDL */

A.10 Secure DCE CIOP

[1571] The DCE_CIOP_Security module extension holds structures and TAG definitions
needed for using DCE-CIOP Security. This module depends on Security and IOP
modules.

#if !defined(_DCE_CIOP_SECURITY_IDL)
#define _DCE_CIOP_SECURITY_IDL
#pragma prefix "omg.org"
#include <IOP.idl>
#include <Security.idl>

module DCE_CIOPSecurity {

const IOP::ComponentId TAG_DCE_SEC_MECH = 103;

typedef unsigned short DCEAuthorization;

const DCEAuthorization DCEAuthorizationNone = 0;
const DCEAuthorization DCEAuthorizationName = 1;
const DCEAuthorization DCEAuthorizationDCE = 2;
 15-327

Values for Standard Data Types
// since consts of type octet are not allowed in IDL the constant
// values that can be assigned to the authorization_service field
// in the DCESecurityMechanismInfo is declared as unsigned shorts.
// when they actually get assigned to the authorization_service field
// they should be assigned as octets.

struct DCESecurityMechanismInfo {
octet authorization_service;
sequence<IOP::TaggedComponent> components;

};
};

#endif /* _DCE_CIOP_SECURITY_IDL */

A.11 Values for Standard Data Types

[1572] A number of data types in this specification allow an extensible set of values, so the
user can add values as required to meet his own security policies. However, if all users
defined their own values, portability and interoperability would be seriously restricted.

[1573] Therefore, some standard values for certain data types are defined. These include the
values that identify:

¥ Security attributes (privilege and other attribute types)

¥ Rights families

¥ Audit event families and types

¥ Security mechanism types as used in the IOR (and Vault, etc.)

[1574] Rights families and audit event families are defined as an ExtensibleFamily type. This
has a family definer value registered with OMG and a family id defined by the family
definer. Security attribute types also have family definers. Family definers with values
0 - 7 are reserved for OMG. The family value 0 is used for defining standard types
(e.g., of security attributes).

A.11.1 Security Attributes

[1575] ÒApplication DeveloperÕs InterfacesÓ on page 15-87 defines an attribute structure for
privilege and other attributes. This includes:

¥ A family, as previously described.

¥ An attribute type. Users may add new attribute types. Two standard OMG families
are defined: the family of privilege attributes (family = 1), and the family of other
attributes (family = 0). Types in these families are listed in Table 15-25, ÒAttribute
Values,Ó on page 329.

¥ A defining authority. The field indicates the authority responsible for defining the
encoding of the value field of the attribute. The defining authority is defined as an
octet sequence that is a standard ASN.1 encoding of an OID. The entity referenced
by the OID defines the valueÕs encoding to/from a sequence of octets. If the
15-328 Security Service v1.8 September 2000 [DRAFT]

15
defining authority field is empty (i.e. octet sequence of length 0), the defining
authority is the OMG. The OMG defines all attribute values to be UTF-8 byte
encodings of a string value.

¥ An attribute value. The attribute value is encoded as an octet sequence. The
encoding is specified by the defining_authority field.

[1576] Attributes used in the CORBA realm or CORBA based security mechanisms have
values of UTF-8 encoded strings, which is stipulated by an empty sequence of octets
for the defining_authority field. A defining authority field stipulating different
encodings for values is meant for the representation of security attributes from security
mechanism other than CORBA such that the values of these attributes cannot be
represented as the standard UTF-8 encoding of a string, or if such a mapping to and
from a string is not defined. Equality for attributes is defined as structural equality
based on structural equality on the attribute type, octet sequence equality on the
defining authority, and octet sequence equality of the value.

Table 15-25 Attribute Values

Attribute
Type
Value Meaning

Privilege Attributes (family = 1) All privilege attributes are used for access
control.

Public 1 The principal is a member of the general public
(always present).

AccessId 2 The identity of the principal used for access
control.

PrimaryGroupId 3 The primary group to which the principal
belongs.

GroupId 4 A group to which the principal belongs.

Role 5 A role the principal takes.

AttributeSet 6 An identifier for a set of related attributes, which
a user or application can obtain.

Clearance 7 The principalÕs security clearance

Capability 8 A capability

Other Attributes (family = 0)

AuditId 1 The identity of the principal used for auditing

AccountingId 2 The id of the account to be charged for resource
use

NonRepudiationId 3 The id of the principal used for non-repudiation
 15-329

Values for Standard Data Types
A.11.2 Rights Families and Values

[1577] Administration is simplified by defining rights that provide access to a set of
operations, so the administrator only needs to know what rights are required, rather
than the semantics of particular operations.

[1578] Rights are grouped into families. Only one rights family is defined in this
specification. The family definer is OMG (value 0) and the family id is CORBA (value
1). Other families may be added by vendors or users.

[1579] Three values are specified for the standard CORBA rights family.

Table 15-26 CORBA Rights Family Values

A.11.3 Audit Event Families and Types

[1580] Events, like rights, are grouped into families as defined in ÒApplication DeveloperÕs
InterfacesÓ on page 15-87.

[1581] Only one event family is defined in this specification. This has a family definer of
OMG (value 0) and family of SYSTEM (value 1) and is used for auditing system
events. All events of this type are audited by the object security services, or the
underlying security services they use. Some of these events must be audited by secure
object systems conforming to Security Functionality Level 1 (though in some cases,
the event may be audited by underlying security services). Other event types are
identified so that, if produced, a standard record is generated, so that audit trails from
different systems can more easily be combined. System audit events are specified in
Table 15-27.

Right Meaning

ÒgetÓ Used for any operation on the object that does not change its state

ÒsetÓ For operations on an object that changes its state

ÒmanageÓ For operations on the attributes of the object, not its state

ÒuseÓ For operations on an object that may change the overall state of
the system, but not the state of the object itself
15-330 Security Service v1.8 September 2000 [DRAFT]

15
Table 15-27 System Audit Events

[1582] Application audit policies are expected to use application audit families.

A.11.4 Security Mechanisms

[1583] The security specification allows use of different mechanisms for security associations.
These are used in the Interoperable Object Reference and also on the interface to the
Vault.

[1584] Mechanism ids that are formed by stringifying the integer value of the corresponding
mechanism tag value. So, for example the mechanism id of mechanism type SPKM_1
is the string Ò15Ó, which is the string representation of the mechanism tag value
defined in the SECIOP module above as TAG_SPKM_1_SEC_MECH.

Event Name
Valu
e Whether

Mandatory
Meaning and Event Specific Data

AuditPrincipalAuth 1 Yes Authentication of principals, either
via the principal authentication
interface or underlying security
services

AuditSessionAuth 2 Yes Security association/peer
authentication

AuditAuthorization 3 Yes Authorization of an object
invocation (normally using an
Access Decision object)

AuditInvocation 4 No Object invocation (i.e. the
request/reply)

AuditSecEnvChange 5 No Change to the security environment
for this client or object (e.g.
override_default_credentials)

AuditPolicyChange 6 Yes Change to a security policy (using
the administrative interfaces in
Section 15.6, AdministratorÕs
Interfaces)

AuditObjectCreation 7 No Creation of an object

AuditObjectDestruction 8 No Destruction of an object

AuditNonRepudiation 9 No Generation or verification of
evidence
 15-331

Values for Standard Data Types
Following this rule, the currently defined mechanism ids are:

[1585] Cryptographic profile ids are the stringified form of the value of the cryptographic
profile constant. For example the id of the cryptographic profile MD5_RSA is the
string Ò20Ó. The cryptographic profile ids currently defined are:

[1586] A complete mechanism type (used for MechanismType parameters) consists of a
mechanism id with zero, one or more comma separated cryptographic profiles
appended to it. For example the mechanism type Ò15,20Ó represents SPKM_1
mechanism with MD5_RSA cryptographic profile.

Table 15-28 Mechanism Ids

Mechanism Name Mechanism Tag Mech
Id

Base Mech

SPKM_1 TAG_SPKM_1_SEC_MECH Ò15Ó SPKM

SPKM_2 TAG_SPKM_2_SEC_MECH Ò16Ó SPKM

KerberosV5 TAG_KerberosV5_SEC_MECH Ò17Ó KerberosV5

CSI_ECMA_Secret TAG_CSI_ECMA_Secret_SEC_MEC
H

Ò18Ó CSI_ECMA

CSI_ECMA_Hybri
d

TAG_CSI_ECMA_Hybrid_SEC_MEC
H

Ò19Ó CSI_ECMA

CSI_ECMA_Public TAG_CSI_ECMA_Public_SEC_MEC
H

Ò21Ó CSI_ECMA

Table 15-29 Cryptographic Profile Ids

Profile Name Profile Id Base Mech

MD5_RSA Ò20Ó SPKM

MD5_DES_CBC Ò21Ó SPKM

DES_CBC Ò22Ó SPKM

MD5_DES_CBC_SOURCE Ò23Ó SPKM

DES_CBC_SOURCE Ò24Ó SPKM

DES_CBC_DES_MAC Ò10Ó KerberosV5

DES_CBC_MD5 Ò11Ó KerberosV5

DES_MAC Ò12Ó KerberosV5

MD5 Ò13Ó KerberosV5

FullSecurity Ò1Ó CSI_ECMAS

NoDataConfidentiality Ò2Ó CSI_ECMA

LowGradeConfidentaility Ò3Ó CSI_ECMA

AgreedDefault Ò5Ó CSI_ECMA
15-332 Security Service v1.8 September 2000 [DRAFT]

15
Appendix B Relationship to Other Services

B.1 Introduction

[1587] This appendix describes the relationship between Object Services and Common
Facilities and the security architecture components, if they are to participate in a
consistent, secure object system.

B.2 General Relationship to Object Services and Common Facilities

[1588] In general, Object Services and Common Facilities, like any application objects, may
be unaware of security, and rely on the security enforced automatically on object
invocations. As for application objects, access to their operations can be controlled by
access policies as described in ÒSecurity Reference ModelÓ on page 15-17,
ÒApplication DeveloperÕs InterfacesÓ on page 15-87, and elsewhere.

[1589] An Object Service or Common Facility needs to be aware of security if it needs to
enforce security itself. For example, it may need to control access to functions and data
at a finer granularity than at object invocation, or need to audit such activities. The
way it can do this is described in ÒSecurity Reference ModelÓ on page 15-17. Existing
Object Services should be reviewed to see if such access control and auditing is
required.

[1590] If an Object Service or Common Facility is required to be part of a more secure
system, some assurance of its correct functioning, if security relevant, is needed, even
if it is not responsible for enforcing security itself. See Appendix D, for guidelines on
this matter.

[1591] Where an Object Service is called by an ORB service as part of object invocation in a
secure system, there is a need to ensure security of all the information involved in the
invocation. This requires ORB Services to be called in the order required to provide
the specified quality of protection. For example, the Transaction Service must be
invoked first to obtain the transaction context information before the whole message is
protected for integrity and/or confidentiality.

[1592] In the following sections, we provide an initial estimation of the relationship between
Security Service and other existing services and facilities.

B.3 Relationship with Specific Object Services

B.3.1 Naming Service

[1593] For security, the object must be correctly identified wherever it is within the
distributed object system. The Naming Service must do this successfully in an
environment where an object name is unique within a naming context, and name
spaces are federated. (However, to provide the required proof of identity, objects,
 15-333

Relationship with Common Facilities
and/or the gatekeepers which give access to them will be authenticated using a separate
Authentication Service.) See Section D.6.3, ÒBasis of Trust,Ó on page 15-366, for
additional information about the relationship between security and names.

B.3.2 Event Service

[1594] The implementation of a Security Audit Service may involve the use of Event Service
objects for the routing of both audits and alarms.

[1595] However, this is only possible if the Event Service itself is secure in that it protects the
audit trail from modification and deletion. It must also be able to guard against
recursion if it audits its own activities.

B.3.3 Persistent Object Service

[1596] No explicit use is made of this service. Audit trails may be saved using this service, in
which case the implementation of the Persistent Object Service must ensure that data
stored and retrieved through it is not tampered with by unauthorized entities. If it is
used in the implementation of Security Service or by a secure application, it must
follow the guidelines in Appendix D.

B.3.4 Time Service

[1597] The Security Service uses the data types for time, timestamps, and time intervals as
defined by the Time Service, so that applications can readily use the Time Service
defined interfaces to manipulate the time data that the Security Service uses. The
interfaces of Security Service do not explicitly pass any interfaces defined in the Time
Service.

B.3.5 Other Services

[1598] The other services are not used explicitly. If any of them are used in the
implementation of Security Service or by a secure application, it must be verified that
the service used follows the guidelines in Appendix D.

B.4 Relationship with Common Facilities

[1599] Because Management Services have been identified as Common Facilities in the
Object Management Architecture, only minimal, security-specific administration
interfaces are specified here. When Common Facilities Management services are
specified, they will need to take into account the need for security management and
administration identified in this specification. Also, such management services will
themselves need to be secure.

[1600] This specification adds certain basic interfaces to CORBA, which form the basis for
the minimal policy administration related interfaces and functionality that has been
provided. Future management facilities are expected to build upon this foundation.
15-334 Security Service v1.8 September 2000 [DRAFT]

15
Appendix C Conformance Details

C.1 Introduction

[1601] CORBA Security Feature Packages include:

¥ Main security functionality. There are two possible levels.

¥ Level 1: This provides a first level of security for applications unaware of
security, and for those that have limited requirements to enforce their own
security in terms of access controls and auditing.

¥ Level 2: This provides more security facilities, and allows applications to
control the security provided at object invocation. It also includes administration
of security policy, allowing applications administering policy to be portable.

¥ Security Functionality Options. These are functions expected to be required in
several ORBs, so are worth including in this specification, but are not generally
required enough to form part of one of the main security functionality levels
previously specified. There is only one such option in the specification.

¥ Non-Repudiation: This provides generation and checking of evidence so that
actions cannot be repudiated.

¥ Security Replaceability. This specification is designed to allow security policies to
be replaced. The additional policies must also conform to this specification. This
includes, for example, new Access Polices. Security Replaceability specifies if and
how the ORB fits with different security services. There are two possibilities.

¥ ORB Services replaceability: The ORB uses interceptor interfaces to call on
object services, including security ones. It must use the specified interceptor
interfaces and call the interceptors in the specified order. An ORB conforming
to this does not include any significant security-specific code, as that is in the
interceptors.

¥ Security Service replaceability: The ORB may or may not use interceptors, but
all calls on security services are made via the replaceability interfaces specified
in Section 15.7, ÒImplementorÕs Security Interfaces,Ó on page 15-159. These
interfaces are positioned so that the security services do not need to understand
how the ORB works, so they can be replaced independently of that knowledge.

An ORB that supports one or both of these replaceability options is said to be
Security Ready (i.e., support no security functionality itself, but be ready to have
security added).

Note: Some replaceability of the security mechanism used for secure associations
may still be provided if the implementation uses some standard generic interface for
security services such as GSS-API.

¥ Secure Interoperability using SECIOP: An ORB supporting this can generate/use
security information in the IOR and can send/receive secure requests to/from other
ORBs using the GIOP/IIOP protocol with the security (SECIOP) enhancements
defined in Section 15.9, ÒSecure Inter-ORB Protocol (SECIOP),Ó on page 15-222,
providing they can both use the same underlying security mechanism and
algorithms for security associations.
 15-335

Introduction
¥ Common Secure Interoperability (CSI) Feature packages: These feature
packages each provide different levels of secure interoperability. There are three
functionality levels for Common Secure Interoperability (CSI).

All levels can be used in distributed secure CORBA compliant object systems
where clients and objects may run on different ORBs and different operating
systems. At all levels, security functionality supported during an object request
includes (mutual) authentication between client and target and protection of
messages - for integrity, and when using an appropriate cryptographic profile, also
for confidentiality.

An ORB conforming to CSI level 2 can support all the security functionality
described in the CORBA Security specification. Facilities are more restricted at
levels 0 and 1. The three levels are:

1.Identity based policies without delegation (CSI level 0): At this level, only the
identity (no other attributes) of the initiating principal is transmitted from the
client to the target, and this cannot be delegated to further objects. If further
objects are called, the identity will be that of the intermediate object, not the
initiator of the chain of object calls.

2.Identity based policies with unrestricted delegation (CSI level 1): At this level,
only the identity (no other attributes) of the initiating principal is transmitted from
the client to the target. The identity can be delegated to other objects on further
object invocations, and there are no restrictions on its delegation, so intermediate
objects can impersonate the user. (This is the impersonation form of simple
delegation defined in ÒOverview of Delegation SchemesÓ on page 15-30.)

3.Identity & privilege based policies with controlled delegation (CSI level 2): At
this level, attributes of initiating principals passed from client to target can
include separate access and audit identities and a range of privileges such as roles
and groups. Delegation of these attributes to other objects is possible, but is
subject to restrictions, so the initiating principal can control their use. Optionally,
composite delegation is supported, so the attributes of more than one principal
can be transmitted. Therefore, it provides interoperability for ORBs conforming
to all CORBA Security functionality.

An ORB that interoperates securely must provide at least one of the CSI packages.
For the definitive statement on conformance requirements see Appendix C.

¥ Common Security Protocol packages: The choice of protocol to use depends on
the mechanism type required and the facilities required by the range of applications
expected to use it. Common Security Protocols define the details of the tokens in
the IIOP and SECIOP messages as applicable. Four protocols are defined:

1.SPKM Protocol: This protocol supports identity based policies without delegation
(CSI level 0) using public key technology for keys assigned to both principals and
trusted authorities. The SPKM protocol is based on the definition in [20]. The use
of SPKM in CORBA interoperability is based on the SECIOP extensions to IIOP.
15-336 Security Service v1.8 September 2000 [DRAFT]

15
2.GSS Kerberos Protocol: This protocol supports identity based policies with
unrestricted delegation (CSI level 1) using secret key technology for keys
assigned to both principals and trusted authorities. It is possible to use it without
delegation (providing CSI level 0). The GSS Kerberos protocol is based on the
[12] which itself is a profile of [13]. The use of Kerberos in CORBA
interoperability is based on the SECIOP extensions to IIOP.

3.CSI-ECMA protocol: This protocol supports identity and privilege based policies
with controlled delegation (CSI level 2). It can be used with identity, but no other
privileges and without delegation restrictions if the administrator permits this
(CSI level 1) and can be used without delegation (CSI level 0). For keys assigned
to principals, it has the following options:

¥ It can use either secret or public key technology.

¥ It uses public key technology for keys assigned to trusted authorities.

 The CSI-ECMA protocol is based on the ECMA GSS-API Mechanism as defined
in ECMA 235, but is a significant subset of this - the SESAME profile as defined
in [16]. It is designed to allow the addition of new mechanism options in the
future; some of these are already defined in ECMA 235. The use of CSI-ECMA
in CORBA interoperability use the SECIOP extensions to IIOP

DCE-CIOP: An ORB supporting this option provides secure interoperability using
DCE Security together with the Security extensions to DCE-CIOP.

4.SSL protocol: This protocol supports identity based policies without delegation
(CSI level 0). The SSL protocol is based on the definition in [21]. The use of SSL
in CORBA interoperability does not depend on the SECIOP extensions to IIOP.

[1602] An ORB that interoperates securely must do so using one of these protocol packages.
For the definitive statement on conformance requirements see Appendix E.

C.2 Conformance Requirements

[1603] An ORB must meet the following requirements to claim conformance to the CORBA
Security specification:

¥ To claim conformance to the CORBA Security interfaces it must support the
following feature packages:

¥ Security Functionality Level 1.

¥ To claim conformance to CORBA Secure Interoperability it must support the
following feature packages:

¥ Secure Interoperability using SECIOP.

¥ CSI Level 1.

¥ GSS Kerberos Protocol using MD5 Cryptographic profile.

¥ Conformance to any of the other feature packages may be claimed in addition to the
base conformance specified in the previous bullet item, by providing the interfaces,
facilities and support for protocols specified in that package, as described further in
the following sections.
 15-337

Security Functionality Level 1
[1604] The conformance statement required for a CORBA Security conformant
implementation is defined in Section Appendix F, ÒFacilities Not in This Specification.
Appendix F includes two checklists, one for functionality and the other for
interoperability, which can be completed to show what the ORB conforms to; they are
reproduced next. A main security functionality level must always be specified.
Functional Options, Security Replaceability, and Secure Interoperability should be
indicated by checking the boxes corresponding to the function supported by the ORB.

C.3 Security Functionality Level 1

[1605] Security Functionality Level 1 provides:

¥ A level of security functionality available to applications unaware of security. (It
will, of course, also provide this functionality to applications aware of security.)
This level includes security of the invocation between client and target object,
simple delegation of client security attributes to targets, ORB-enforced access
control checks, and auditing of security-relevant system events.

¥ An interface through which a security-aware application can retrieve security
attributes, which it may use to enforce its own security policies (e.g., to control
access to its own attributes and operations).

C.3.1 Security Functionality Required

[1606] An ORB supporting Level 1 security functionality must provide the following security
features for all applications, whether they are security-aware or not.

Table 15-30 CORBA Security Functionality Checklist

Main Functionality
Functionality

Options Security Replaceability

Level 1 Level 2
Non

Repudiation
ORB

Services
Security
Services

Security
Ready

Table 15-31 CORBA Secure Interoperability Checklist

Interop IIOP DCE-

Level
SECIOP

SSL CIOPSPKM

Kerberos

CSI-ECMA

SPKM
1

SPKM
2

Privat
e

Public Hybri
d

Level 0

Level 1 XXXX XXXX XXX

Level 2 XXXX XXXX XXXXX XXX
15-338 Security Service v1.8 September 2000 [DRAFT]

15
¥ Allow users and other principals to be authenticated, though this may be done
outside the object system.

¥ Provide security of the invocation between client and target object including:

¥ Establishment of trust between them, where needed. At Level 1, this may be
supported by ORB level security services or can be achieved in any other secure
way. For example, it could use secure lower-layer communications. Mutual
authentication need not be supported.

¥ Integrity and/or confidentiality of requests and responses between them.

¥ Control of whether this client can access this object. At this level, access
controls can be based on ÒsetsÓ of subjects and ÒsetsÓ of objects. Details of the
Access Policy and how this is administered are not specified.

¥ At an intermediate object in a chain of calls, the ability to be able to either delegate
the incoming credentials or use those of the intermediate object itself.

¥ Auditing of the mandatory set of systemÕs security-relevant events specified in
Appendix A, Consolidated OMG IDL. In some cases, the events to be audited may
occur, and be audited, outside the object system (for example, in underlying
security services). In this case, the conformance statement must identify the product
responsible for generating the record of such an event (or choice of product, for
example, when the ORB is portable to different authentication services).

At this level, auditing of object invocations need not be selectable. However, it
must be possible to ensure that certain events are audited (see Section A.11.3,
ÒAudit Event Families and Types,Ó on page 15-330, for the list of mandatory
events).

Note Ð For security aware applications, it must also make the privileges of
authenticated principals available to applications for use in application access control
decisions.

[1607] These facilities require the ORB and security services to be initialized correctly. For
example, the Current object at the client must be initialized with a reference to a
credentials object for the appropriate principal.

C.3.2 Security Interfaces Supported

[1608] Security interfaces available to applications may be limited to:

¥ get_service_information providing security options and details (see Section 15.5.2,
ÒFinding Security Features,Ó on page 15-89).

¥ get_attributes on Current (see Interfaces under ÒSecurity Operations on CurrentÓ
on page 15-114).

[1609] No administrative interfaces are mandatory at this level.
 15-339

Security Functionality Level 2
C.3.3 Other Security Conformance

[1610] An ORB providing Security Functionality Level 1 may also conform to other security
options. For example, it may also:

¥ Support some of the Security Functionality Options specified in,Section C.5,
ÒSecurity Functionality Optional Packages,Ó on page 15-342.

¥ Provide security replaceability using either of the replaceability options.

¥ Provide secure interoperability, though in this case, will need to provide security
associations at the ORB level (not lower-layer communications) as the protocol
assumes security tokens are at this level.

C.4 Security Functionality Level 2

[1611] This is the functionality level that supports most of the application interfaces defined
in ÒApplication DeveloperÕs InterfacesÓ on page 15-87, and the administrative
interfaces defined in ÒAdministratorÕs InterfacesÓ on page 15-132. It provides a
competitive level of security functionality for most situations.

C.4.1 Security Functionality Required

[1612] An ORB that supports Security Functionality Level 2 supports the functionality in
Security Level 1 previously defined, and also:

¥ Principals can be authenticated outside or inside the object system.

¥ Security of the invocation between client and target objects is enhanced.

¥ Establishment of trust and message protection can be done at the ORB level, so
security below this (for example, in the lower layer communications) is not
required (though may be used for some functions).

¥ Further integrity options can be requested (e.g., replay protection and detection
of messages out of sequence) but need not be supported.

¥ The standard DomainAccessPolicy is supported for control of access to
operations on objects.

¥ Selective auditing of methods on objects is supported.

¥ Applications can control the options used on secure invocations. It can:

¥ Choose the quality of protection of messages required (subject to policy
controls).

¥ Change the privileges in credentials.

¥ Choose which credentials are to be used for object invocation.

¥ Specify whether these can just be used at the target (e.g. for access control) or
whether they can also be delegated to further objects.

¥ No further delegation facilities are mandatory, but the application can request
ÒcompositeÓ delegation, and the target can obtain all credentials passed, in systems
that support this. Note that ÒcompositeÓ here just specifies that both received
credentials and the intermediateÕs own credentials should be used. It does not
specify whether this is done by combining the credentials or linking them.
15-340 Security Service v1.8 September 2000 [DRAFT]

15
¥ Administrators can specify security policies using domain managers and policy
objects as specified in ÒAdministratorÕs InterfacesÓ on page 15-132. The security
policy types supported at Level 2 are all those defined in Section 15.6,
ÒAdministratorÕs Interfaces,Ó on page 15-132 except non-repudiation. The standard
policy management interfaces for each of the Level 2 policies is supported.

¥ Applications can find out what security policies apply to them. This includes
policies they enforce themselves (e.g., which events types to audit) and some
policies the ORB enforces for them (e.g., default qop, delegation mode).

¥ ORBs (and ORB Services, if supported) can find out what security policies apply to
them. They can then use these policy objects to make decisions about what security
is needed (check if access is permitted, check if auditing is required) or get the
information needed to enforce policy (get QOP, delegation mode, etc.) depending
on policy type.

[1613] As at Level 1, these facilities require the ORB and security services to be initialized
correctly.

C.4.2 Security Interfaces Supported

[1614] Interfaces supported at this level are:

¥ All application interfaces defined in Section 15.5, ÒApplication DeveloperÕs
Interfaces,Ó on page 15-87, except those in Section 15.5.14, ÒNon-repudiation,Ó on
page 15-123.

¥ All security policy administration interfaces defined in Section 15.6,
AdministratorÕs Interfaces (except those for the non-repudiation policy).

[1615] Note that some of these interfaces may raise a CORBA::NO-IMPLEMENT
exception, as not ORBs conforming to Level 2 Security need implement all possible
values of all parameters. This will happen when:

¥ A privilege attribute is requested of a type that is not supported (attribute types
supported are defined in Section A.2, ÒGeneral Security Data Module,Ó on
page 15-296).

¥ A delegation mode is requested, which is not supported.

¥ A communication direction for association options is requested, which is not
supported.

C.4.3 Other Security Conformance

[1616] An ORB providing Security Functionality Level 2 may also conform to other security
options. For example, it may also:

¥ Support some of the Security Functionality Options specified in Section C.6,
ÒSecurity Replaceability,Ó on page 15-343.

¥ Provide security replaceability, using either of the replaceability options.

¥ Provide secure interoperability.
 15-341

Security Functionality Optional Packages
C.5 Security Functionality Optional Packages

[1617] An ORB may also conform to optional security functionality defined in this
specification. Only one optional facilities is specified: non-repudiation.

[1618] Also, some requirements on conformance of additional facilities are specified.

C.5.1 Non-repudiation

C.5.1.1 Security Functionality

[1619] An ORB conforming to this must support the non-repudiation facilities for generating
and verifying evidence described in ÒThe Model as Seen by the Objects Implementing
SecurityÓ on page 15-78. Note that these use NRCredentials, the attributes in which
may be the same as in the credentials used for other security facilities. Where non-
repudiation is supported, the credentials acquired from the environment or generated
by the authenticate operation must be able to support non-repudiation.

C.5.1.2 Security Operations Supported

[1620] The following operations must be supported. All are available to applications. They
are:

¥ set_/get_NR_features as defined in Section 15.5.14, ÒNon-repudiation,Ó on
page 15-123.

¥ generate_token, verify_evidence, form_complete_evidence and get_token_details
of NRCredentials object as defined in ÒNon-repudiationÓ on page 15-123.

¥ Use of set/get_credentials on Current specifying the type of credentials to be used
is NRCredentials.

¥ NRPolicy object with associated interfaces as in Section 15.6.7, ÒNon-repudiation
Policy Management,Ó on page 15-156.

C.5.1.3 Fit with Other Security Conformance

[1621] Non-repudiation requires use of credentials; thus it can only be used with ORBs, which
support some of the interfaces defined in Security Functionality level 2. However,
conformance to all of Security Functionality Level 2 is not a prerequisite for
conformance to the non-repudiation security functionality option.

[1622] Secure interoperability as defined in Section C.7, ÒSecure Interoperability,Ó on
page 15-344, is not affected by non-repudiation. The evidence may be passed on an
invocation as a parameter to a request, but the ORB need not be aware of this.

[1623] The current specification does not specify interoperability of evidence (i.e. one non-
repudiation service handling evidence generated by another).
15-342 Security Service v1.8 September 2000 [DRAFT]

15
C.5.2 Conformance of Additional Policies

[1624] This specification is designed to allow security policies to be replaced. The additional
policies must also conform to some of the interfaces in this specification if they are
used to replace the standard policies automatically enforced on object invocation.

[1625] The case described next is for the addition of a new Access Policy which can be used
for controlling access to objects automatically, replacing the standard
DomainAccessPolicy.

[1626] Clearly, other policies can be replaced. For example, the audit policy could be replaced
by one that used different selectors, or the delegation policy could be replaced by one
that supported more advanced features.

C.6 Security Replaceability

[1627] This specifies how an ORB can fit with security services, which may not come from
the same vendor as the ORB. As explained above, there are two levels where this can
be done (apart from any underlying APIs used by an implementation).

C.6.1 Security Features Replaceability

[1628] Conformance to this allows security features to be replaced.

[1629] If it is provided without conformance to the ORB Service replaceability option (see
Section C.6.2, ÒORB Services Replaceability,Ó on page 15-343), it requires the ORB to
have a reasonable understanding of security, handling credentials, etc. and knowing
when and how to call on the right security services.

[1630] Support for this replaceability option requires an ORB (or the ORB Services it uses) to
use the implementation-level security interfaces as defined in Section 15.7,
ÒImplementorÕs Security Interfaces,Ó on page 15-159. This includes:

¥ The Vault, Security Context, Access Decision, Audit and Principal
Authentication objects defined in Section 15.7.2, ÒImplementation-Level Security
Object Interfaces,Ó on page 15-165.

¥ Certain features of the CORBA Core needed for ORB Service Replaceability can be
found in the Common Object Request Broker: Architecture and Specification.

C.6.2 ORB Services Replaceability

[1631] Conformance to this allows an ORB to know little about security except which
interceptors to call in what order. This is intended for ORBs, which may use different
ORB services from different vendors, and require these to fit together. It therefore
provides a generic way of calling a variety of ORB Services, not just security ones. It
also assumes that any of these services may have associated policies, which control
some of their actions.

[1632] Support for this replaceability option requires an ORB to:
 15-343

Secure Interoperability
¥ Use the Interceptor interfaces defined in the Interceptor chapter of the Common
Object Request Broker: Architecture and Specification to call security interceptors
defined in Section 15.7.1, ÒSecurity Interceptors,Ó on page 15-160, in the order
defined there.

¥ Use the get_policy operation (and the associated security policy operations such as
access_allowed, audit_needed defined in ÒAccess ControlÓ on page 15-119 and
Section 15.5.10, ÒSecurity Audit,Ó on page 15-116 respectively, for access control
and audit and also get_association_options and get_delegation_mode defined in
Section 15.6.6, ÒSecure Invocation and Delegation Policies,Ó on page 15-151, for
association options, quality of protection of messages, and delegation).

C.6.3 Security Ready for Replaceability

[1633] An ORB is Security Ready for Replaceability if it does not provide any security
functionality itself, but does support one of the security replaceability options.

C.6.3.1 Security Functionality Required

[1634] An ORB that is Security Ready does not have to provide any security functionality,
though must correctly respond to a request for the security features supported.

C.6.3.2 Security Interfaces Supported

¥ get_service_information operation providing security options and details (see
Section 15.5.2, ÒFinding Security Features,Ó on page 15-89).

¥ get_current operation to obtain the Current object for the execution context (see the
ORB Interface chapter of the Common Object Request Broker: Architecture and
Specification).

C.6.3.3 Other Security Conformance

[1635] An ORB that is Security Ready for replaceability supports one of the replaceability
options. This should be done in such a way that the ORB can work without security,
but can take advantage of security services when they become available. So it calls on
the replaceability interfaces correctly (using dummy routines to replace security
services when these are needed, but not available).

C.7 Secure Interoperability

[1636] The definition of secure interoperability in this document specifies that a conformant
ORB can:

¥ Generate, and take appropriate action on, Interoperable Object References (IORs),
which include security tags as specified in Section 15.8.4, ÒCORBA Interoperable
Object Reference with Security,Ó on page 15-195.
15-344 Security Service v1.8 September 2000 [DRAFT]

15
¥ Transmit and receive the security tokens needed to establish security associations,
and also the protected messages used for protected requests and responses once the
association has been established according to the protocol defined in Section 15.9,
ÒSecure Inter-ORB Protocol (SECIOP),Ó on page 15-222

[1637] Note that a Security Ready ORB (i.e., with no built-in security functionality) may, by
additions of appropriate security services, conform to secure interoperability.

[1638] For ORBs to interoperate securely, they must choose to use the same mechanism,
algorithms, etc. (or use a bridge between them, if available). A set of standard security
mechanisms and algorithms are described in subsections.

C.7.1 Standard Secure Interoperability

[1639] An ORB that conforms to this must support the security-enhanced IOR defined in
Section 15.8.4, ÒCORBA Interoperable Object Reference with Security,Ó on
page 15-195, and also GIOP/IIOP protocol with the SECIOP enhancements as defined
in Section 15.9, ÒSecure Inter-ORB Protocol (SECIOP),Ó on page 15-222.

[1640] As for CORBA 2, this may be done by immediate bridges or half bridges. (However,
use of half bridges implies more complex trust relationships, which some systems may
not be able to support.) This allows a large range of security mechanisms to be used.

C.7.2 Common Secure Interoperability Levels

[1641] There are three functionality levels for Common Secure Interoperability (CSI). An
example of the difference in use of the three levels is explained in Section C.7.2,
ÒCommon Secure Interoperability Levels,Ó on page 15-345.

[1642] All levels can be used in distributed secure CORBA compliant object systems where
clients and objects may run on different ORBs and different operating systems. At all
levels, security functionality supported during an object request includes (mutual)
authentication between client and target and protection of messages - for integrity, and
when using an appropriate cryptographic profile, also for confidentiality.

[1643] An ORB conforming to CSI level 2 can support all the security functionality described
in this specification. Facilities that are supportable at levels 0 and 1 are more restricted.
The three levels are:

1. Identity based policies without delegation (CSI level 0)
[1644] At this level, only the identity (no other attributes) of the initiating principal is

transmitted from the client to the target, and this cannot be delegated to further objects.
If further objects are called, the identity will be that of the intermediate object, not the
initiator of the chain of object calls.

[1645] Access and audit policies at this level are based on the identity of the immediate
invoker. So access and audit policies in encapsulated objects which depend on the
initiator of the chain, can only be used at the point of entry to the object system, not in
further objects encapsulated by it.
 15-345

Secure Interoperability
[1646] As the attributes of principals are not delegated, environments should not be trusted to
pass on principal information which should be controlled.

[1647] Examples of applications which can use level 0 facilities are wrapped legacy
applications and telephone switches. If a CSI level 0 ORB also supports non-
repudiation, it can also be used for other types of applications such as electronic funds
transfer.

2. Identity based policies with unrestricted delegation (CSI level 1)
[1648] At this level, only the identity (no other attributes) of the initiating principal is

transmitted from the client to the target. The identity can be delegated to other objects
on further object invocations, and there are no restrictions on its delegation, so
intermediate objects can impersonate the user. (This is the impersonation form of
simple delegation defined in Section 15.3.6, ÒDelegation,Ó on page 15-29.)

[1649] Access and audit policies at this level can be based on the identity of the initiating
principal or immediate invoker, depending on the delegation policy.

[1650] As delegation is not restricted, once an initiator has delegated his identity, it must trust
the objects it calls not to abuse its delegated rights to act as the initiator. In practice,
this will limit the type of environment in which level 1 should be used to relatively
closed environments.

[1651] An example of an application environment which can use level 1 facilities is a back
office system protected by firewalls where identity based policies are acceptable.

3. Identity & privilege based policies with controlled delegation (CSI
level 2)

[1652] At this level, attributes of initiating principals passed from client to target can include
separate access and audit identities and a range of privileges such as roles and groups.
Delegation of these attributes to other objects is possible, but is subject to restrictions,
so the initiating principal can control their use. Optionally, composite delegation is
supported, so the attributes of more than one principal can be transmitted. Therefore, it
provides interoperability for ORBs conforming to all CORBA Security functionality.

[1653] Access and audit policies are based on the attributes of initiating principals. At this
level, a wider range of policies can be supported (e.g., role based access controls and
mandatory access controls using the initiating principalÕs security clearance).

[1654] At this level, an initiator needs to trust those targets which it has allowed to use its
attributes not to abuse these. It does not have to trust these targets not to delegate the
attributes outside the trusted set of targets, as the delegation controls can be used to
prevent this.

[1655] This level can be used for a wide range of applications in large enterprise and inter-
enterprise networks.
15-346 Security Service v1.8 September 2000 [DRAFT]

15
C.7.3 SECIOP Hosted Interoperability Mechanisms

[1656] The following conformance can be claimed:

¥ SPKM at level 0 by providing the specified CSI level using the SPKM protocol
(mechanism SPKM_1 and optionally also SPKM_2).

¥ KerberosV5 at level 0 or 1 by providing the specified CSI level using the Kerberos
protocol.

¥ CSI-ECMA Public Key at level 0, 1, or 2 by providing the specified level of CSI
functionality using the CSI-ECMA protocol with the public key option (mechanism
CSI_ECMA_Public).

¥ CSI-ECMA Secret Key at level 0, 1, or 2 by providing the specified CSI level using
the CSI-ECMA protocol with the secret key option (mechanism
CSI_ECMA_Secret).

¥ CSI-ECMA Hybrid at level 0, 1, or 2 by providing the specified CSI level using the
CSI-ECMA protocol with the hybrid key option (mechanism CSI_ECMA_Hybrid).

[1657] In addition, a conformant ORB must specify all the cryptographic profiles it supports.

C.7.4 Secure Interoperability with SSL

[1658] Conformance can be claimed for CORBA Security based on SSL by providing CSI
level 0 functionality using SSL on IIOP using any of the cryptographic profiles defined
in[21]. A conformant ORB must specify which of the cryptographic profiles are
supported by it.

C.7.5 Secure Interoperability with DCE-CIOP

[1659] An ORB that conforms to this must conform to Standard Secure Interoperability using
GIOP/IIOP as described in Section C.7.1, ÒStandard Secure Interoperability,Ó on
page 15-345, and also support secure interoperability using DCE-CIOP as defined in
Section 15.15, ÒDCE-CIOP with Security,Ó on page 15-286.

[1660] Both the Kerberos V5 based SECIOP Security and DCE Security must be supported
for this option. Any version of DCE up to and including DCE 1.1 is supported; the
DCE interfaces and protocols are specified in [5]
 15-347

Introduction
Appendix D Guidelines for a Trustworthy System

D.1 Introduction

[1661] This appendix provides some general guidelines for helping ORB implementors
produce a trustworthy system. The intention is to have all information related to
trustworthiness and assurance in this appendix, to explain how the specification has
taken into account the requirements for assurance, and also to show how conformant
implementations can have different levels of assurance.

[1662] The remainder of the introduction first provides the rationale for including these
guidelines in the specification, and then gives some background on trustworthiness and
assurance. Section D.2, ÒProtecting Against Threats,Ó on page 15-350, describes the
threats and countermeasures relevant to a CORBA security implementation. Section
D.3 through D.6 provide the architecture and implementation guidelines for each
security object model described in Section 15.4, ÒSecurity Architecture,Ó on
page 15-44.

D.1.1 Purpose of Guidelines

[1663] The security standards proposed in this specification have been deliberately chosen to
allow flexibility in the security features, which can be provided. The specification can
support significantly different security policies and mechanisms for security functions
such as access control, audit and authentication. However, there is an overall security
model which applies whatever the security policy. This is described in the earlier
sections of the document.

[1664] There is also flexibility in the level of security assurance, which can be provided,
conforming to this model and these standards. This appendix describes the
trustworthiness issues underlying the security model and interfaces described earlier in
the document, and provides implementation guidance on what components of the
architecture need to be trusted and why. Note that trust requirements assume
conformance to all of the security models, including the implementorÕs view, as the
implementation affects trustworthiness. If a CORBA security implementation conforms
to the security features replaceability level, but not the ORB services one, any
requirements on ORB services will apply to the ORB. Trustworthiness will also
depend on several other implementation choices, such as the particular security
technology used.

D.1.2 Trustworthiness

[1665] Before an enterprise places valuable business assets within an IT system, enterprise
management must decide whether the assets will be adequately protected by the
system. Management must be convinced that the particular system configuration is
sufficiently trustworthy to meet the security needs of the enterprise environment.
Security trustworthiness is thus the ability of a system to protect resources from
exposure to misuse through malicious or inadvertent means.
15-348 Security Service v1.8 September 2000 [DRAFT]

15
[1666] The basis for trust in distributed systems differs from host-centric stand-alone systems
largely for two reasons. First, the assignment of trust in a distributed system is not
isolated to a single global system mechanism. Second, the degree of trust in elements
of distributed systems (particularly distributed object systems) may change
dynamically over time, whereas in host-centric systems trustworthiness is typically
static. In many cases, trust in distributed systems must be seen in the context of mutual
suspicion.

D.1.3 Assurance

[1667] Assurance is a qualitative measure of trustworthiness; assurance is the confidence that
a system meets enterprise security needs. The qualitative nature of assurance means
that enterprises may have different assurance guidelines for an equivalent level of
confidence in security. Some organizations may need extensive evaluation criteria,
while other organizations need very little evidence of trustworthiness.

[1668] It is necessary to set a context by which CORBA developers and end-users of the
CORBA Security specification may evaluate the level of security to meet their needs.
A single overall trust model that underlies the security reference model and
architecture (as described elsewhere in this specification) can set this context for
closed systems, but it is unlikely that a single trust model exists for the diversity of
open distributed systems likely to populate the distributed object technology world.

[1669] To support a balanced approach, assurance arguments should be assembled from a set
of system building blocks. Concepts of system composition and integration should
allow the assurance analysis to be tailored to specific user requirements. Assurance
evidence should be carefully packaged to best support enterprise decision-makers
during the security trade-off process.

[1670] The security object models defined by the CORBA Security specification are the basis
for the necessary building blocks. The trust guidelines described in ÒGuidelines for
Structural ModelÓ on page 15-354, provide constraints on how these components may
relate.

[1671] The relationship between assurance and security provides the foundation for the
overall security model. The key characteristic is balance. Balanced assurance promotes
the use of assurance arguments and evidence appropriate to the level of risk in the
system components.

[1672] Basic system building blocks, such as those in the CORBA Security specification
previously noted, are critical to developing balanced assurance. For example,
confidentiality is of most importance to a classified intelligence or military system,
whereas data integrity may be of more importance in a computer patient record system.
The former relies on assurance in the underlying operating system, where the latter
focuses security in application software.
 15-349

Protecting Against Threats
D.2 Protecting Against Threats

[1673] An enterprise needs to protect its assets against perceived threats using appropriate
security measures. This document addresses security in distributed object systems, so
focuses on the threats to assets, software, and data, in such systems.

[1674] An enterprise may want to assess the risk of a security breach occurring, against the
damage which will be done if it does occur. The enterprise can then decide the best
trade-off between the cost of providing protection from such threats and any
performance degradation this causes, against the probability of loss of assets. This
specification allows options in how security is provided to counter the threats.
However, it is expected that many enterprises will not undertake a formal risk
assessment, but rely on a standard level of protection for most of their assets, as
identified by industry or government criteria. This section describes CORBA-specific
security goals, the main distributed system threats, and protection against them. The
discussion does not emphasize generic issues of threats and countermeasures, but
instead concentrates on issues that are unique to the CORBA security architecture.

D.2.1 Goals of CORBA Security

[1675] The overall goals of the CORBA security architecture were described in ÒIntroduction
to SecurityÓ on page 15-1. CORBA security is based on the four fundamental
objectives of any secure system:

¥ Maintain confidentiality of data and/or system resources.

¥ Preserve data and/or system integrity.

¥ Maintain accountability.

¥ Assure data/system availability.

[1676] Many of the goals described in Section 15.1, ÒIntroduction to Security,Ó on page 15-1
are relevant to any IT system that is targeted at large-scale applications. However,
some security goals described are specific to the CORBA security architecture. These
goals deserve special attention because they surface potential threats that may not be
encountered in typical architectures. CORBA-specific security goals include:

¥ Providing security across a heterogeneous system where different vendors may
supply different ORBs.

¥ Providing purely object-oriented security interfaces.

¥ Using encapsulation to promote system integrity and to hide the complexity of
security mechanisms under simple interfaces.

¥ Allowing polymorphic implementations of objects based on different underlying
mechanisms.

¥ Ensuring object invocations are protected as required by the security policy.

¥ Ensuring that the required access control and auditing is performed on object
invocation.
15-350 Security Service v1.8 September 2000 [DRAFT]

15
[1677] The discussion of the architecture and implementation guidelines in Section D.3,
ÒGuidelines for Structural Model,Ó on page 15-354, addresses the mechanisms used to
ensure these CORBA-specific security goals, as well as many other generic security
issues.

D.2.2 Threats

[1678] The CORBA security model needs to take into account all potential threats to a
distributed object system. It must be possible to set a security policy and choose
security services and mechanisms that can protect against the threats to the level
required by a particular enterprise.

[1679] A security threat is a potential system misuse that could lead to a failure in achieving
the system security goals previously described. Section 15.1, ÒIntroduction to
Security,Ó on page 15-1, provided an overview of security threats in a distributed
object system. These threats and related attacks include:

¥ Information compromise - the deliberate or accidental disclosure of confidential
data (e.g., masquerading, spoofing, eavesdropping).

¥ Integrity violations - the malicious or inadvertent modification or destruction of
data or system resources (e.g., trapdoor, virus).

¥ Denial of service - the curtailment or removal of system resources from authorized
users (e.g., network flooding).

¥ Repudiation of some action - failure to verify the actual identity of an authorized
user and to provide a method for recording the fact (e.g., audit modification).

¥ Malicious or inadvertent misuse - active or passive bypassing of controls by
either authorized or unauthorized users (e.g., browsing, inference, harassment).

[1680] The threats described above give rise to a wide variety of attacks. Most if not all the
threats that pertain to host-centric systems are pertinent to distributed systems.
Furthermore, it appears likely that the wide distribution of resources and mediation in
truly distributed systems will not only exacerbate the strain on host-centric security
services and mechanisms in use today on client/server systems, but also engender new
forms of threat.

[1681] Threats may be of different strengths. For example, accidental misuse of a system is
easier to protect against than malicious attacks by a skilled hacker. This specification
does not attempt to counter all threats to a distributed system. Those that should be
countered by measures outside the scope of this specification include:

¥ Denial of service, which may be caused by flooding the communications with
traffic. It is assumed that the underlying communications software deals with this
threat.

¥ Traffic analysis.

¥ Inclusion of rogue code in the system, which gives access to sensitive information.
(This affects the build and change control process.)
 15-351

Protecting Against Threats
D.2.3 Vulnerabilities of Distributed Object-Oriented Systems

[1682] Vulnerabilities are system weaknesses that leave the system open to one or more of the
threats previously described. Information systems are subject to a wide range of
vulnerabilities, a number of which are compounded in distributed systems. These
vulnerabilities often result from deliberate or unintentional trade-offs made in system
design and implementation, usually to achieve other more desirable goals such as
increased performance or additional functionality.

[1683] Classes of vulnerabilities include:

¥ An authorized user of the system gaining access to some information which should
be hidden from that user, but has not been properly protected (e.g., access controls
have not been properly set up or the store occupied by one object has not been
cleared out when another reuses the space).

¥ A user masquerading as someone else, and so obtaining access to whatever that user
is authorized to do, resulting in actions being attributed to the wrong person. In a
distributed system, a user may delegate his rights to other objects, so they can act
on his behalf. This adds the threat of rights being delegated too widely, again,
causing a threat of unauthorized access.

¥ Controls that enforce security being bypassed.

¥ Eavesdropping on a communication line giving access to confidential data.

¥ Tampering with communication between objects: modifying, inserting, and deleting
items.

¥ Lack of accountability due, for example, to inadequate identification of users.

[1684] System data as well as business data must be protected. For example:

¥ If a principalÕs credentials are successfully obtained by an unauthorized user, they
could be used to masquerade as that principal.

¥ If the security sensitive information in the security context between client and target
object is available to an unauthorized user, confidential messages can be read, and
it may be possible to modify and resend integrity-protected messages or send false
messages without this being detected.

[1685] As described earlier, system threats and vulnerabilities are compounded by the
complexities of distributed object-based systems. Some of the inherent characteristics
of distributed object systems that make them particularly vulnerable include:

¥ Dynamic Systems -- Distributed object systems are always changing. New
components are constantly being added, deleted, and modified. Security policies
also may be dynamically modified as enterprises change. Dynamic systems are
inherently complex, and thus security may be difficult to ensure. For example, in a
large distributed object system it will be difficult to update a security policy
atomically. While an administrator installs a new policy on some parts of the
system, other parts of the system still may be using the old version of the policy.
These potential inconsistencies in policy enforcement could lead to a security
failure.
15-352 Security Service v1.8 September 2000 [DRAFT]

15
¥ Mutual Suspicion -- In a large distributed system, some system components will
not trust others. Mistrust could occur at many layers within the architecture:
principals, objects, administrators, ORBs, and operating systems may all have
varying degrees of trustworthiness. In this environment, there is always the
potential to inadvertently place unjustified trust in some system component, thus
exposing a vulnerability. Although there are many mechanisms (e.g., cryptographic
authentication) to ensure the identity of a remote component, the system security
architecture must be carefully structured to ensure that these checks are always
performed.

¥ Multiple Policy Domains -- Distributed object systems that interconnect many
enterprises are likely to require many different security policy domains, each one
enforcing the security requirements of its organization. There is no single security
policy and enforcement mechanism that is appropriate for all businesses. As a
result, security policies must be able to address interactions across policy domain
boundaries. Defining the appropriate policies to enforce across domains may be a
difficult job. Mismatched policies could lead to vulnerabilities.

¥ Layering of Security Mechanisms -- Distributed object systems are highly
layered, and the security mechanisms for those systems will be layered as well.
Complex, potentially nondeterministic interactions at the boundary of the layers is
another area for vulnerabilities to occur. A hardware error, for example, could cause
security checking code in the ORB to be bypassed, thus violating the policy. The
complexity of the layering is further compounded in systems where security
enforcement is widely distributed; that is, there is no clear security perimeter
containing only a small amount of simple functionality.

¥ Complex Administration -- Finally, large geographically distributed object
systems may be difficult to administer. Security administration requires the
cooperation of all the administrators, who even may be mutually suspicious. All of
the issues listed above lead to complex, error-prone administration. An innocent
change to a principalÕs access rights, for example, could expose a serious
vulnerability.

D.2.4 Countermeasures

[1686] Some threats are common across most distributed secure systems, so should be
countered by standard security features of any OMA-compliant secure systems.
However, the level of protection against these threats may vary. Complete protection is
almost impossible to achieve. Most enterprises will want a balance between a level of
protection against threats which are important to them, and the cost in performance and
use of other resources of providing that level of protection.

[1687] A number of measures exist for countering or mitigating the effects of the above
threats/attacks. Countering these threats requires the use of the security object models
described in this specification. Relevant features of the object models include the
following:

¥ Authentication of principals proves who they are, so it is possible to check what
they should be able to do. This check can be performed at both client and target
object, as the client principalÕs credentials can be passed to the server.
 15-353

Guidelines for Structural Model
¥ Authentication between clients and target objects allows them to check that they are
communicating with the right entities.

¥ Security associations can protect the integrity of the security information in transit
between client and target object (e.g., credentials, keys) to prevent theft and replay,
and keep the keys used for protecting business data confidential.

¥ Business data can be integrity-protected in transit so any tampering is detected
using the message protection ORB services. (This includes detecting extra or
missing messages, and messages out of sequence.)

¥ Unauthorized access to objects is protected using access controls.

¥ Misuse of the system can be detected using auditing.

¥ Segregating (groups of) applications from each other and security services from
applications can prevent unauthorized access between them.

¥ Bypassing of security controls is deterred by use of a Trusted Computing Base
(TCB), where security is automatically enforced during object invocation.

[1688] Assurance arguments and evidence are frequently founded on the concept of a TCB,
which mediates security by segregating the security-relevant functions into a security
kernel or reference monitor.

[1689] A traditional monolithic TCB approach is not suitable for the open, multiuser, multiple
environment situations in which most CORBA users reside. In many cases, for
example, secure interoperability of CORBA applications and ORBs may be based on
mutual suspicion. TCB scalability issues also argue against typical TCB approaches.
Given the complexity of distributed systems, it is not clear whether centralized access
mediation is possible in the presence of distributed data and program logic.

[1690] Traditional TCB approaches also do not adequately address application security
requirements, particularly for many commercial applications. Applications common to
the CORBA world such as general purpose DBMSs, financial accounting, electronic
commerce, or horizontal common facilities will have many security requirements in
addition to those that can be enforced by a central underlying TCB.

[1691] Despite the limitations of the traditional TCB, we use the concept of a distributed TCB
in the assurance discussions of the next section. The concept of a distributed TCB is
the collection of objects and mechanisms that must be trusted so that end-to-end
security between client and target object is maintained. However, note that depending
on the assurance requirements of a particular CORBA security architecture, sensitive
data may still be handled by ÒentrustedÓ ORB code. Thus, our informal use of the
distributed TCB concept may not correspond to other existing models for network
TCBs, particularly for minimal assurance commercial CORBA security applications.

D.3 Guidelines for Structural Model

[1692] This section provides architecture and implementation guidelines for the structural
model of the CORBA security architecture described in Section 15.4, ÒSecurity
Architecture,Ó on page 15-44. The security functions provided in the model and the
basis for trust are described.
15-354 Security Service v1.8 September 2000 [DRAFT]

15
D.3.1 Security Functions

[1693] Figure 15-63 outlines interactions during a normal use of the system. It gives a simple
case, where the application is unaware of security except for calling a security service
such as audit. The security interactions include those seen by application objects and
secure object system implementors.

Figure 15-63 Normal System Interactions

[1694] This diagram is the basis for the discussions of security functions in each of the
security object models described next.

D.3.2 Basis of Trust

[1695] Enterprise management is responsible for setting the overall security policies and
ensuring system enforcement of the policies.

[1696] The system developer and systems integrators must provide a system that supports the
required level of assurance in the core security functionality. Generally application
developers cannot be expected to be aware of all the threats to which the system will
be subject, and to put the right countermeasures in place.

[1697] Higher levels of security may require the code enforcing it to be formally evaluated
according to security criteria such as those of the US TCSEC or European ITSEC.

Client

ORB

Target
Object

Security

Services
ORB

Services

Clientnon-repud

Credentials

audit etc.

ORB
Security

user

.. object reference

CurrentObj RefCredentials

Application View

System
ImplementorÕs

View

security tokens
transformed request
 15-355

Guidelines for Structural Model
Distributed Trusted Computing Base

[1698] The key security functionality in the system is enforced transparently to the application
objects so that it can be provided for application objects, which are security unaware.
This key functionality is contained in the distributed TCB of the system. It is therefore
responsible for ensuring that:

¥ Users cannot invoke objects unless they have been authenticated (unless the
security policy supports unauthenticated, guest access for some services).

¥ Security policies on access control, audit, and security association are enforced on
object invocation. This includes policies for message protection, both
confidentiality (ensuring confidential data cannot be read) and integrity (ensuring
any corruption of data in transit is detected).

¥ A principalÕs credentials are automatically transferred on object invocation if
required, so the access control and other security policies can be enforced at the
server object.

¥ Application objects which do not trust each other cannot interfere with each other.

¥ The security policy between different security policy domains is suitably mediated.

¥ The security mechanisms themselves cannot be tampered with.

¥ The security policy data cannot be changed except by authorized administrators.

¥ The system cannot be put into an undefined or insecure state as a result of the
operation of nonprivileged code.

[1699] The distributed TCB also needs to provide the required information so that
applications can enforce their own security policies in a way that is consistent with the
domain security policy.
15-356 Security Service v1.8 September 2000 [DRAFT]

15
.

Figure 15-64 Distributed TCB

[1700] The TCB in an OMA-compliant secure system is normally distributed and includes
components as follows.

¥ The distributed core ORBs and associated Object Adapters
Core ORBs are trusted to function correctly and call the ORB Security Services
correctly in the right order, but do not need to understand what these do.
Object Adapters are trusted to utilize the operating system facilities to provide the
required protection boundaries between components in line with the security policy.

¥ The associated ORB Services
ORB Services other than security are trusted similarly to the ORB. ORB Security
Services are used to provide the required security on object invocation.

¥ Related objects
ORB Services use objects such as the binding and Current to find which security is
required.

¥ Security objects
Security objects include those available to applications such as Principal
Authentication and Credentials and those called by security interceptors (Vault,

Core ORBS and OAs

Binding

Application

Current

lower layer
communications

External Security Services

Operating System, Hardware

Security Objects
(Principal Authentication, Credentials, Security policies,

Vault, Security Context, Access Decision)

(Distributes) Trusted Computing Base

ORB
Services
 15-357

Guidelines for Structural Model
Security Context, Access Decision, and Security Audit). These are trusted to
function correctly to enforce security in line with the security policy and other
requirements.

¥ Any external security services used by the security services, as part of enforcing the
security policy.

¥ The supporting operating systems.
These are trusted to ensure that objects (in different trust domains) cannot interfere
with each other (using protection domains). The security services should also ensure
that the security information driving the security policy (such as the credentials and
security contexts) is adequately protected from the application objects using such
features.

¥ Optionally, lower layer communications software. However, this does not generally
need to be particularly secure (at least for normal commercial security) as
protection of data in transit is done by the security association and message
protection interceptors, which are independent of the underlying communication
software.

[1701] A distributed system may be split into domains, which have different security policies.
These domains may include ORBs and ORB Services with different levels of trust.
Trust between domains needs to be established, and an interdomain policy between
them enforced. The ORB security services (and external security services that these
call) to provide this interdomain working are part of the distributed TCB. Note,
therefore, that the parts of this TCB in different domains may have different levels of
trust.

[1702] Note that application objects may enforce their own security polices, if these are
consistent with the policy of the security domain. However, failure to enforce these
securely will affect only the applications concerned and any other application objects
that trusted them to perform this function.

D.3.2.1 Protection Boundaries

[1703] The general approach is to establish protection boundaries around groups of one or
more components, which are said to belong to a corresponding protection domain.
Components belonging to a protection domain are assumed to trust each other, and
interactions between them need not be protected from each other, whereas interactions
across boundaries may be subject to controls. Protection Boundaries and Domains are
a lower level concept than Environment Domains; they are the fundamental protection
mechanism on which higher levels are built.

[1704] At a minimum, it must be possible to create protection boundaries between:

¥ Application components that do not trust each other.

¥ Components that support security services and other components.

¥ Components that support security services and each other.
15-358 Security Service v1.8 September 2000 [DRAFT]

15
D.3.2.2 Controlled Communications

[1705] As well as providing protection boundaries, it is necessary to provide a controlled
means of allowing particular components to interact across protection boundaries (for
example, an application invoking a Security Object (explicitly), or an interceptor
(implicitly).

[1706] It must not be possible for applications to bypass security services which enforce
security policies. It is therefore necessary to ensure that the components supporting
those services are always invoked when required. This is achieved by using both
protection boundaries and controlled communications to ensure that client requests
(and server responses) are routed via the components (interceptors and Security
Objects), which implement the security services.

[1707] Figure 15-65 illustrates the segregation of components implementing security services
into separate protection domains from application components; the only means of
communication between components is via controlled communication paths.

Figure 15-65 Base Protection and Communications

[1708] In implementation terms, components could, for example, be executed in separate
processes, with process boundaries acting as protection boundaries. Alternatively,
security services could be executed in-process with (i.e., in the same address space as)
corresponding client and server application components, provided that they are
adequately protected from each other -- for example, by hardware-supported multilevel
access control mechanisms).

[1709] Figure 15-66 shows two examples of protection boundaries. In the first example, the
boundaries between components might be process boundaries. In the second example,
ORB and security components might be protected from applications by memory
protection mechanisms (e.g., kernel and user spaces) and client and server components
might be protected from each other by physical separation.

Client Server
Logical Object Request

Security Services

Base Protection and Communications
 15-359

Guidelines for Structural Model
Figure 15-66 Protection Boundaries

D.3.3 Construction Options

[1710] For some systems, the TCB in domains of the distributed system may need to meet
security evaluation criteria for both functionality and assurance (in the correctness and
effectiveness of the security functionality) as defined in TCSEC, ITSEC, or other
security evaluation criteria.

[1711] The split into components previously described allows a choice over the way the
system is constructed to meet different requirements for assurance and performance.

[1712] This section describes three options for how the system may be constructed, as
follows:

¥ A commercial system where all applications are generated using trusted tools.

¥ A commercial system with limited security requirements.

¥ A higher security system.

Note Ð These are just examples to show the type of flexibility provided by the security
model. It is not expected that any implementation will provide all the options implied
by these.

Example Using Trusted Generation Tools and ORBs

[1713] If all applications are generated using trusted tools, applications can be trusted not to
interfere with other components in the same environment. Therefore there is no need to
provide protection boundaries between different application objects or between
application objects and the underlying ORB.

Hardware and Operating SystemHardware and Operating System

Client ClientServer ServerApplications

Security etc.

ORB
15-360 Security Service v1.8 September 2000 [DRAFT]

15
[1714] If the ORB and ORB Services are also trusted, there may need be no need to provide a
protection boundary between the ORB and the underlying security services and
objects. It may well be acceptable to run them all in the same process, relying on the
trust between the components, rather than more rigidly enforced boundaries.

[1715] However, if the application generation tools and the ORB are less trusted than the
security services, then there may need to be a protection boundary to prevent access to
security-sensitive information in the Credentials, Security Context, and Vault objects.

Commercial System with Limited Security Requirements

[1716] Some systems may not contain very sensitive business information, so enterprises may
not be prepared to pay for a high level of security. They may also know that the
probability of serious malicious attempts to break the system is low, and decide that
protecting against such attempts is not worth the cost. They may also choose not to
sacrifice performance for better levels of security.

[1717] In many systems, applications are generated using tools that are not particularly
trusted. For example, using a C compiler, it would be possible to write an application
that can read, or even alter, any information within the same protection domain.
Theoretically, providing good security implies putting protection boundaries between
each application object, and between applications and the ORB and Security Services.

[1718] The security model allows environment domains to be defined, where enforcement of
policy can be achieved by means local to the environment. For example, objects in the
same identity domain can share a security identity. Applications belonging to
environment domains may trust each other not to interfere with each other, and so can
be put in the same protection domain.

[1719] It may also be acceptable to run (part of) the ORB in the same protection domain as
the application objects. This assumes that an interface boundary between applications
and the ORB is sufficient protection from accidental damage (the probability of an
application corrupting an ORB being low in a commercial system). Even if the
application does corrupt the ORB, damage is limited, as the ORB does not handle
security-sensitive data.

[1720] In some commercial systems, it may also be acceptable to run some of the security
services in the same protection domain as the application and ORB. The chance of
these being accidentally (or maliciously) corrupted may be low, so it may be
acceptable to risk a failure to enforce the access control policy because the Access
Decision object is corrupt.

[1721] However, it will often be desirable to protect the state information of security objects,
which contain very sensitive security information from the applications.

Higher Security System

[1722] In a security system requiring high assurance, different security policies may be used.
For example, label-based access controls may be used and these may be mandatory (set
under administratorÕs controls) and not changeable by application objects.
 15-361

Guidelines for Structural Model
[1723] Stronger protection boundaries are also likely to be needed, allowing:

¥ Individual applications to be protected from each other. Even if environment
domains are used, the size of the domain is likely to be smaller.

¥ The ORB and ORB Services to be protected from the application.

¥ The core security objects, which contain security-sensitive information such as keys
to be protected from applications and ORBs, etc.

¥ Particular secure objects (e.g., the Access Decision objects) to be separate from
others, as they may have been written by someone less trusted than those who
wrote, for example, the Security Context objects.

D.3.4 Integrity of Identities (Trojan Horse Protection)

[1724] In traditional procedural systems, protecting the integrity of an identity is
straightforward; programs are stored in files, which are protected against modification
by operating system access control mechanisms. When invoked, programs run inside a
process whose address space is protected by operating system memory protection
mechanisms. Programs load code in fairly predictable ways.

[1725] Since this specification does not mandate which entities have identities, implementors
have a wide variety of choices; identities may be associated, for example, with the
following:

¥ Object instances

¥ Servers

¥ Object adaptors

¥ Address spaces

[1726] If identities are associated with object instances, precautions are necessary to prevent
object instance code from being modified by other code (which may have no identity,
or a different identity) in the instanceÕs address space.

[1727] Servers may permit dynamic instantiations of previously unknown classes into their
address spaces. This makes it difficult to determine what code is running under an
identity if identities are associated with servers; this in turn makes it difficult to
determine whether a server identity can be Òtrusted.Ó Identified servers must therefore
be provided with some way of controlling what code can run under their identities.

[1728] Observing the following guidelines will help to ensure integrity of identities.

¥ Code running under one identity must not be permitted to modify code running
under another identity without passing an authorization check.

¥ It must be possible for an identified ÒentityÓ to control which code runs within the
scope of its identity.
15-362 Security Service v1.8 September 2000 [DRAFT]

15
D.4 Guidelines for Application Interface Model

[1729] This section provides architecture and implementation guidelines for the application
interface model of the CORBA security architecture described in Section 15.4,
ÒSecurity Architecture,Ó on page 15-44. The security functions provided in the model
and the basis for trust are described.

D.4.1 Security Functions

D.4.1.1 Logging onto the System

[1730] When a user or other principal wants to use a secure object system, it authenticates
itself and obtains credentials. These contain its certified identity and (optionally)
privilege attributes, and also controls where and when they can be used. This principal
information is integrity-protected and it should be possible to ascertain what security
service certified them.

Walkthrough of Secure Object Invocation

[1731] The following is a walkthrough of what happens when a client invokes a target object.

¥ The client invokes the object using its object reference. The ORB Security Services
are transparent to the client and application object and use the security information
with the object reference and the security policy to decide on the security facilities
required. There are separate ORB Services for security associations, message
protection, and access control on object invocation, but the audit service can be
called by any or none of these according to security policy.

The client and target object establish the required level of trust in each other,
transmitting security tokens to each other to provide the required degree of proof.
For example, they may or may not require mutual authentication. It is expected that
most security mechanisms will provide options here, though the details of how they
do this, and the form of tokens used, is mechanism dependent.

The principalÕs credentials are normally passed from client to target object
transparently. These should be protected in transit from theft and replay as well as
for integrity of the information itself (though some security mechanisms may not
support this). The Vault object will validate these, checking that it trusts who
certified them, as well as whether they are still intact.

Different ORB services may be called at the target end. For example, access control
is normally called at the server, rather than the client.

¥ Once the security association has been established between client and target object,
the request can be passed using the message protection interceptor to protect it. This
should be able to provide integrity and/or confidentiality protection. It should also
be able to provide continuous authentication, as the messages will be protected
using keys only known to this client and server (or the trust group for the target
object).
 15-363

Guidelines for Administration Model
¥ The application object may also call security services for access control and audit.
These will use the security information available from the environment to identify
the initiating principal and its privileges.

¥ This application object may now act as a client, and call further objects. It may
delegate the clientÕs credentials or use its own (or use both). However, there may be
constraints on whether the clientÕs credentials can be delegated. For example, a
particular principalÕs credentials may be constrained to particular groups of objects.

D.4.2 Basis of Trust

[1732] Users have some trust in application objects, and application objects have some trust in
other objects. Both may:

¥ Trust application objects to perform the business functions.

¥ Have limited trust in some applications, or domains of the distributed system, so
restrict which of their privilege attributes are available to these objects.

¥ Want to restrict the extent that their credentials can be propagated at all.

¥ Have to prove their identity to the system so it can enforce access on their behalf,
unless they are only going to access publicly available services.

[1733] Both users and applications trust the underlying system to enforce the system security
policy, and therefore protect their information from unauthorized access and
corruption.

D.5 Guidelines for Administration Model

[1734] This section provides architecture and implementation guidelines for the
administration model of the CORBA security architecture described in Section 15.4,
ÒSecurity Architecture,Ó on page 15-44. The security functions provided in the model
and the basis for trust are described.

D.5.1 Security Functions

Object and Object Reference Creation

[1735] When an object is created in a secure object system, the security attributes associated
with it depend on the security policies associated with its domain and object type,
though the object may be permitted to change some of these. These attributes control
what security is enforced on object invocation (or example, whether access control is
needed and, if so, the Access Decision object to be used; the minimum quality of
protection required).

[1736] The object reference for a such an object is extended to include some security
information. For example, it may contain:
15-364 Security Service v1.8 September 2000 [DRAFT]

15
¥ An extended identity. This includes the object identity as normal in an object
reference. However, it will also contain the identity of the trust domain, if the object
belongs to one. Small objects, which are dynamically created and do not need to be
protected from each other, will normally share a trust domain. There could also be
a node identity.

¥ Security policy attributes required by the object when invoked by a client such as
the minimum quality of protection of data in transit.

¥ The security technology it supports. It may also contain some mechanism-specific
information such as its public key, if public key technology is being used, and
particular algorithms used.

[1737] Much of the information is just ÒhintsÓ about which security is required, and will be
verified by the ORB services supporting the target object, so does not need protecting.

D.5.2 Basis of Trust

Authorization Policy Information

[1738] Domain objects may store policy information inside their own encapsulation
boundaries, or they may store it elsewhere (for example, authorization policy
information could be encapsulated in the state data of the protected objects themselves,
or it could be stored in a procedural Access Control Manager whose interfaces are
accessible to Domain objects). Wherever authorization policy information is stored, it
must be protected against modification by unauthorized users.

[1739] Authorization policy information must be modifiable only by authorized
administrators.

Audit Policy Information and Audit Logs

[1740] Audit policy information is security sensitive and must be protected against
unauthorized modification. Audit logs are security sensitive and may contain private
information; they should be viewed and changed only by authorized auditors.

¥ Audit policy information must be modifiable only by authorized audit
administrators.

¥ Audit logs must be protected against unauthorized examination and modification.

D.6 Security Object Implementation Model

 D.6.1 Guidelines

[1741] This section provides architecture and implementation guidelines for the security
object implementation model of the CORBA security architecture described in
Section 15.4, ÒSecurity Architecture,Ó on page 15-44. The security functions provided
in the model and the basis for trust are described.
 15-365

Security Object Implementation Model
D.6.2 Security Functions

[1742] The distributed core ORBs, object adapters, ORB security services, and security
objects provide the underlying implementation to support the application and
administration interfaces.

D.6.3 Basis of Trust

Target Object Identities

[1743] CORBA objects do not have unique identities; for this reason, when objects that are
not associated with a human user authenticate themselves in a secure CORBA system,
they use Òsecurity names.Ó Successful authentication to a target object indicates that it
possesses the authentication data (perhaps a cryptographic key), which is presumed to
be known only to the legitimate owner of the security name. An objectÕs security name
may be included in references to that object as a Òhint.Ó The question Òhow do
applications know that the security-name hint is reliable?Ó naturally arises.

[1744] The answer is as follows:

¥ If the EstablishTrustinTarget security feature is specified, then the security
services defined in this specification will authenticate the target security name
found in the target object reference. The semantics of this authentication operation
include an assumption that the security name in the reference corresponds to an
identity that the user is willing to trust to provide the target objectÕs
implementation. There is no way for the security services to test this assumption.

¥ If your implementation provides a trusted source of object references, then
everything will work properly. If you do not have a source of trusted object
references, the specification provides a get_security_names operation on the object
reference through which applications can retrieve the targetÕs security name and
perform any tests, which may help satisfy them of its validity.

[1745] CORBA object references can circulate very widely; for example, they can be
ÒstringifiedÓ and then (potentially) copied onto a piece of paper. Implementations with
very high integrity requirements could ensure that references are trustworthy by
providing a trustworthy service that generates references and cryptographically signs
the contents, including the target security name.

Assumptions about Security Association Mechanisms

[1746] Implementation of a secure CORBA system requires use of security mechanisms to
enforce the security with the required degree of protection against the threats. For
example, cryptographic keys are normally used in implementing security, for functions
such as authenticating users and protecting data in transit between objects. However,
different security mechanisms may use different types of cryptographic technology
(e.g. secret or public key) and may use it in different ways when, for example,
protecting data in transit. These cryptographic keys have to be managed, and again, the
way this is done is mechanism specific.
15-366 Security Service v1.8 September 2000 [DRAFT]

15
[1747] A full analysis of how well an implementation counters the threats requires knowledge
of the security mechanisms used. However, this specification does not dictate that a
particular mechanism is used.

[1748] It does assume that the security mechanisms used for authentication and security
associations can provide the relevant security countermeasures listed in Section D.2.4,
ÒCountermeasures,Ó on page 15-353. These are expected to be provided by a number
of security mechanisms, which will be available for protecting secure object systems.
Therefore, the analysis of threats and the trust model assume this facility level.

[1749] It would be possible to use a security mechanism that does not provide some of these
facilities (for example, mutual authentication, or even to switch this off to improve
performance in systems that can provide it). However, if such a system is used, it will
be vulnerable to more threats.

Invoking Special Objects

[1750] Some of the objects described in this document are local objects, which bypass the
normal invocation process and therefore are not subject to the security enforced by the
ORB services. The Current object (used, for example, by the target object to obtain
security information about the client) is of this type. Protection of these objects is
provided by other means, for example, using protection boundaries previously
described.

D.6.4 Basis For ORB Assurance

[1751] The ORB must function correctly (e.g., when enforcing security policy on object
invocation and object creation as defined in this specification). Likewise the
underlying host platforms must function correctly in their provision of the security
mechanisms employed, and relied upon, by the ORB. Both must do this to the level of
assurance specified in its Conformance Statement (which is described in Appendix E).
This section identifies many of the most critical design considerations related to
providing these assurances in a DOC system.

Isolating Security Mechanisms

[1752] Figure 15-67 depicts how security functionality and trust is distributed throughout the
architecture.
 15-367

Security Object Implementation Model
Figure 15-67 Distribution of Security Functionality and Trust

[1753] The split of security objects is designed to reduce (as much as possible) the amount of
security-sensitive information, which must be visible to applications and ORBs.

¥ Only log-in applications (where provided) need to handle secrets such as passwords,
and then only briefly during authentication.

¥ Cryptographic keys and other security-sensitive information about principals are
held with Credentials objects. References to Credentials objects are visible to
applications so they can invoke operations on them to, for example, reduce
privileges in the credentials before calling an object. However, no operations on the
Credentials provide visibility of security information such as keys.

¥ Security information used to protect application data in transit between objects is
held in Security Context objects, which are not visible to applications at all. (Target
applications can ask for attributes associated with an incoming invocation using the
Current object.)

[1754] Security objects such as Credentials, Security Context, and Access Decision objects
are also not used directly by the core ORB, only by the security interceptors. Therefore
the core ORB needs to be trusted to call the interceptors correctly in the right order,
but does not need to understand security or have access to the security-sensitive
information in them.

[1755] The split also is intended to isolate components which may be replaced to change
security policy or security mechanisms. For example, to replace the access control
policy, the Access Decision objects need to be changed. However, the access control
interceptor will remain responsible for finding and invoking the right Access Decision
object. To replace the security mechanisms for security association, only the Vault and
associated Security Context objects need to be replaced.

Application
may be security unaware

may enforce application security policy

core ORB and OA

must function correctly e.g.
invoke required interceptors

in the right order

ORB security interceptors

must function correctly
ensure security enforced

core security objects - must enforce security
Principal

Authentication

Credentials Vault Security
Context

Access
Decision

Audit
Non-

repudiation
15-368 Security Service v1.8 September 2000 [DRAFT]

15
Integrity of the ORB and Security Service Objects

[1756] Security in a CORBA environment depends on the correct operation of the ORB and
Security Services. In order for these mechanisms to operate correctly, the following
rules must be followed:

¥ The ORB and Vault code must not be modifiable by unauthorized users or
processes.

¥ The ORB must protect all messages, according to policy, using the message
protection interfaces.

¥ The ORB must always check the clientÕs authorization before dispatching a clientÕs
message to a protected object.

Safeguarding the Object Environment

[1757] To guard against unauthorized modification of the ORB and security services,
implementors should use Operating System protection mechanisms to isolate the ORB
and Security Service objects from untrusted applications and user code.

[1758] Note that some modifications of ORB or Vault code may not compromise system
integrity. For example, in a CORBA implementation, which relies on third-party
authentication and does not share Vault or ORB objects between processes, corruption
of the client-side Vault (or ORB) by user-written code may not compromise system
security. (This is because the client-side ORB and Vault in a third-party-based system
may, depending upon the implementation, contain only information that the user is
entitled to know and change anyway. In this case, nothing the user can do to
information on his machine will enable him to deceive the third-party authentication
server about his identity and credentials.)

Safeguarding the Dispatching Mechanism

[1759] To ensure that the ORB always checks the clientÕs authorization before dispatching a
clientÕs message to a protected object, ORB implementors should follow one of the
following rules:

¥ Eliminate Òdirect dispatchingÓ mechanisms (which permit clients to dispatch
messages directly to target objects without going through the ORB).

¥ Permit Òdirect dispatchingÓ only after checking authorization and issuing Òrestricted
object referencesÓ to client objects. A Òrestricted object referenceÓ is one that grants
access only to those methods of the target object, which the client is authorized to
invoke.

Safeguarding Information in Shared Vault Objects

[1760] Vault objects encapsulate identity-specific, security-sensitive information (for
example, cryptographic keys associated with Security Context objects). If code owned
by one principal can penetrate a Vault object and examine or modify another
principalÕs information, security can be compromised.
 15-369

Security Object Implementation Model
[1761] In an implementation that does not permit sharing of Vault objects by multiple
identities, this problem does not arise. However, if Vault objects are accessible to and
encapsulate information about multiple identities, the following guidelines should be
observed:

¥ Do not permit a Vault object, which encapsulates one principalÕs Security Contexts,
to exist in the same address space as code running under a different principalÕs
identity.

¥ If a Vault object contains Security Contexts for two different principals, ensure that
no principal is able to obtain or use another principalÕs Security Contexts.
15-370 Security Service v1.8 September 2000 [DRAFT]

15
Appendix E Conformance Statement

E.1 Introduction

[1762] A secure object system, like any secure system, should not only provide security
functionality, but should also provide some assurance of the correctness and
effectiveness of that functionality.

[1763] Each OMG-compliant secure or security ready implementation must therefore include
in its documentation a conformance statement describing:

¥ The productÕs supported security functionality levels and options, security
replaceability, and security interoperability, as described in Appendix C.

¥ The vendorÕs assurance argument that demonstrates how effectively the product
provides its specified security functionality and security policies.

¥ Constraints on the use of the product to ensure security conformance.

[1764] The vendor provides the conformance statement so that a potential product user can
make an informed decision on whether a product is appropriate for a particular
application. Ordinary descriptive documentation is not required as part of an OMG-
compliant product. However, because the CORBA security specification provides a
general security framework rather than a single model, there are many different kinds
of secure ORB implementations that conform to the framework. For example, some
systems may have greater flexibility and support customized security policies, while
other systems may come with a single built-in policy. Some systems may strive for a
high level of security assurance, while others provide minimal assurance. The
conformance statement will help the user understand the security features provided by
the product.

[1765] Some products will undergo an independent formal security evaluation (such as ones
meeting the ITSEC or TCSEC). The OMG security conformance statement does not
take the place of a formal evaluation, but may refer to formal assurance
documentation, if it exists. When formal evaluations are not required (often the case in
commercial systems), it is expected that the productÕs security conformance statement
along with supporting product documentation will provide an adequate description of
security functionality and assurance.

E.2 Conformance Template Overview

[1766] The following template specifies the contents for CORBA security conformance
statements. Guidelines for using this template are provided in Section, Conformance
Guidelines.

[1767] CORBA Security Conformance Statement

[1768] <date>
 15-371

Conformance Guidelines
[1769] <product identification>

[1770] <vendor identification>

1. Introduction

1.1 Summary of Security Conformance

1.2 Scope of Product

1.3 Security Overview

2. Security Conformance

2.1 Main Security Functionality Level

2.2 Security Functionality Options

2.3 Security Replaceability

2.4 Secure Interoperability

3. Assurance

3.1 Philosophy of Protection

3.2 Threats

3.3 Security Policies

3.4 Security Protection Mechanisms

3.5 Environmental Support

3.6 Configuration Constraints

3.7 Security Policy Extensions

4. Supplemental Product Information

E.3 Conformance Guidelines

[1771] The guidelines in this section are intended to help the ORB implementor determine
which information belongs in each section of the conformance statement. The
statement will often be accompanied by product documentation to provide some of the
information needed.

1. Introduction

1.1 Summary of Security Conformance
15-372 Security Service v1.8 September 2000 [DRAFT]

15
[1772] This section should give a summary of the security conformance provided by the
product. The summary is in the form of a table with boxes that are ticked to show the
relevant conformance.

[1773] For the main security functionality level, one of the boxes must be selected (either
Level 1 or Level 2), though note that an ORB can be just Security Ready, so does not
support either of the main security functionality levels. For security functionality
options, security replaceability, and secure interoperability, the appropriate boxes
should be selected.

1.2 Scope of Product

[1774] This section should define what security components this product offers. Examples
are:

¥ ORB plus all security services needed to support it plus other object services fitting
with it and meeting the assurance criteria.

¥ Security-ready ORB.

¥ Security Services, which can be used with a security-ready ORB.

1.3 Security Overview

[1775] This section should give an overview of the productÕs security features.

2. Security Conformance

2.1 Main Security Functionality Level

Table 15-32 CORBA Security Functionality Checklist

Main Functionality
Functionality

Options Security Replaceability

Level 1 Level 2
Non

Repudiation
ORB

Services
Security
Services

Security
Ready

Table 15-33 CORBA Secure Interoperability Checklist

Interop IIOP DCE-

Level
SECIOP

SSL CIOPSPKM

Kerberos

CSI-ECMA

SPKM
1

SPKM
2

Privat
e

Public Hybri
d

Level 0

Level 1 XXXX XXXX XXX

Level 2 XXXX XXXX XXXXX XXX
 15-373

Conformance Guidelines
[1776] This section should define which main security functionality level this product
supports, Level 1 or Level 2.

[1777] This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any bells
and whistles around the published interfaces, and any limitations on support for this
level.

[1778] As in the conformance level descriptions, the description should be divided into:

¥ The security functionality provided by the product

¥ The application developerÕs interfaces

¥ The administrative interfaces

2.2 Security Functionality Options

[1779] This section should define which functionality options are provided, in particular the
support for non-repudiation.

[1780] For non-repudiation, as this is a published interface in this specification, it should be
accompanied by a qualification statement if needed, as for the main security
functionality level.

2.3 Security Replaceability

This section should define whether the product supports replaceability of security
services, ORB services, or neither.

This should also include any qualifications on that support. For example, any
interpretation of the CORBA security specification and how it is supported, any
bells and whistles around the published interfaces, and any limitations on support
for this conformance option.

2.4 Secure Interoperability

[1781] This section should define whether the product supports SECIOP based secure
interoperability, DCE-CIOP based interoperability, SSL based interoperability, or
none. As with the previous sections, qualifications of the support, interpretations of the
CORBA specification, and limitations should be included as needed.

2.5 Level of Interoperability

[1782] This section should specify what level of interoperability is supported by the ORB. As
with the previous sections, qualifications of the support, interpretations of the CORBA
specification, and limitations should be included as needed.

2.6 Mechanism Profiles
15-374 Security Service v1.8 September 2000 [DRAFT]

15
[1783] This section should specify what mechanism and cryptographic profiles for
interoperability are supported by the ORB. As with the previous sections,
qualifications of the support, interpretations of the CORBA specification, and
limitations should be included as needed.

3. Assurance

[1784] If the product already has supporting assurance documentation (for example, because it
is being formally evaluated), much of this section may be satisfied by references to
such documentation. Appendix E, Guidelines for a Trustworthy System, provides
general discussions of many of the topics described here, particularly the basis of trust
needed for each of the architecture object models.

3.1 Philosophy of Protection

[1785] Overview of supported security policies, security mechanisms and supporting
mechanisms.

3.2 Threats

[1786] Description of specific threats intended to be addressed by the system security policy,
as well as those not addressed.

3.3 Security Policies

[1787] Description of any predefined policies, including

¥ Classes of entities (such as clients, objects) controlled by security policy

¥ Modes of access (conditions that allow active entities to access objects)

¥ Use of domains (policy, trust, technology)

¥ Requirements for authentication of principal, client and target objects

¥ Requirements for trusted path between principals, clients, ORBs, and target objects

¥ Delegation model

¥ Security of communications

¥ Accountability requirements (audit, non-repudiation)

¥ Environmental assumptions of the policy (e.g. classes of users, LAN/WAN,
physical protection)

3.4 Security Protection Mechanisms

¥ Rationale for approach

¥ Identification of components, which must function properly for security policies to
be enforced

¥ Description of mechanisms used to enforce security policy

¥ How protection mechanisms are distributed in the architecture
 15-375

Conformance Guidelines
¥ Why security mechanisms (such as access control) are always invoked and tamper-
proof

3.5 Environmental Support

¥ How the underlying environment (such as operating systems, generation tools,
hardware, network services, time services, security technology) are used in
providing assurance

¥ How installation tools ensure secure configuration

¥ How security management and administration maintains secure configuration

3.6 Configuration Constraints

[1788] Constraints to ensure that system security assurance is preserved, for example:

¥ Requirements on use and development of: clients, target objects, legacy software

¥ Limitations on interoperability

¥ Required software and hardware configuration

3.7 Security Policy Extensions

¥ Supported security policy extensions, if applicable

¥ Limitations of extensions

¥ Requirements imposed on developers to ensure trustworthiness of policy extensions

¥ Supported interactions and compositions of security policies

4. Supplemental Product Information

[1789] Supplemental product information is included at the vendorÕs discretion. It can be used
to describe, for example:

¥ Additional security features, not covered by the CORBA Security specification

¥ The impact of security mechanisms on existing applications
15-376 Security Service v1.8 September 2000 [DRAFT]

15
Appendix F Facilities Not in This Specification

F.1 Introduction

[1790] Security in CORBA systems is a big subject, which affects many parts of the Object
Management Architecture. It was therefore decided to phase the specification in line
with the priorities agreed as part of the security evaluation criteria by the Security
Working Group prior to the production of this specification.

[1791] This specification therefore includes the core security facilities and the security
architecture to allow further facilities to be added. Priority has been given to those
requirements most needed by commercial systems. Even with these limitations, the
size of the specification is larger than desirable for OMG members to review easily or
for vendors to implement.

[1792] Some of the facilities omitted from this specification are agreed to be required in some
secure CORBA systems, and so are expected to be added later, using the usual OMG
process of RFPs to request their specification.

[1793] This appendix lists those security facilities which are not included in the specification,
but left to later specifications, which may be in response to further RFPs for Object
Services or Common Facilities.

F.2 Interoperability Limitations between Unlike Domains

[1794] Secure interoperability is included in this specification. This allows applications
running under different ORBs in different domains to interoperate providing that:

¥ Both support and can use the same security mechanisms (and algorithms, etc.) for
authentication and secure associations (an ORB may support a choice of security
mechanisms).

¥ Use of these between the domains will not contravene any government regulations
on the use of cryptography.

¥ The security policies they support are consistent -- for example, use the same types
for privileges which can be understood in both places.

[1795] Limitations in the specification which affect this type of interoperability are:

¥ The standard policies defined do not include specifying different policies when a
client communicates with different domains (though it is possible to define specific
policies to do this).

¥ There is no specification of the mapping policies required to translate attributes
when crossing a domain boundary where these policies are inconsistent, and how
these must be positioned, for example, to allow delegation of the mapped attributes.
Again, such mapping policies are not prevented.

¥ In general, there is no specification of how federated policies are implemented.
 15-377

Non-Session-Oriented SECIOP Protocol
¥ There is no specification of gateways to handle interoperability between security
mechanisms. It is expected that only limited interoperability between particular
security mechanisms will ever be provided, so this is not expected to be the subject
of an RFP in the foreseeable future.

F.3 Non-Session-Oriented SECIOP Protocol

[1796] The SECIOP protocol defined in Section 15.9, ÒSecure Inter-ORB Protocol
(SECIOP),Ó on page 15-222, assumes that all underlying security mechanisms are
session-oriented. The current specification does not support security mechanisms,
which encapsulate key distribution and other security context management information
in a single message along with the data being protected (examples of such mechanisms
include those accessed through the proposed internet IDUP-GSS-API interface).
Changes to the SECIOP protocol would be required to support non-session-oriented
protocols.

F.4 Mandatory Security Mechanisms

[1797] The current specification does not mandate any particular security mechanism which
all secure ORBs must implement. This is because the submitters did not think it was
possible to specify out-of-the-box interoperability adequately in the timescale of this
submission.

F.5 Specific Security Policies

[1798] This specification includes some standard types of security policies for security
functionality such as access control, audit, and security of invocations. These are
aimed at general commercial users. Some enterprises may require other types of
policies, for example, support of mandatory access controls. Where there is a sufficient
market for such policies, new policies may be defined, providing they fit with the
replaceability interfaces defined in this specification.

F.6 Other Audit Services

[1799] This specification only contains limited audit facilities, which allow audit records of
security relevant events to be collected. It does not include:

¥ Filtering of records after generation to further reduce the size of the audit trail.

¥ Routing audit records to a collection point for consolidation and analysis or routing
some as alarms to security administrators. (However, routing may be done using the
OMG Event Service, if that is secure enough.)

¥ Audit reporting or analysis tools to use the audit trails to track down problems.
15-378 Security Service v1.8 September 2000 [DRAFT]

15
F.7 Possible Enhancements

F.7.1 SECIOP Mechanism and Option Negotiation

[1800] This specification assumes the mechanism identifiers in the IOR allow the client to
choose what mechanisms and options to use when communicating with this target.
Therefore, it does not define protocol exchanges to allow the client and target to
negotiate either mechanisms or options.

[1801] However, if the target supports a number of mechanisms and options, the size of the
IOR could become larger than desirable. So in future, it may be desirable to define
protocol exchanges for mechanism negotiation, for example, using [19].

F.7.2 Further Key Distribution Options

[1802] The current CSI-ECMA protocol defines secret and public key options for key
distribution and a hybrid option where secret keys are used within a domain, but public
keys are used between domains. It does not define the protocol for use in the sort of
hybrid system where the initiator uses secret key and target uses public key technology
and vice versa.

[1803] This may be needed for interoperation between unlike domains. If so, further
architectural options from ECMA 235 may need to be included in the specification.

 F.7.3 Further Delegation Options at/above Level 2

[1804] The current level 2 specification supports restricting where an initiatorÕs attributes can
be used to targets identified by security name. Further options for restricting where a
PAC may be delegated could be added (e.g., to restrict delegation to particular
delegation policy domain). This would require definition of further Òqualifier
attributesÓ in the CSI-ECMA protocol (see application trust groups in ECMA 235). It
would also require administration of this, which would best be done by extending the
security policy administration in ÒAdministratorÕs InterfacesÓ on page 15-132.

[1805] Composite delegation of the initiator plus immediate invoker kind is described in the
CSI protocol, but is not mandatory at level 2. Further composite delegation options,
including traced delegation, could be added.

F.8 Interoperability when using Non-Repudiation

[1806] The optional Non-repudiation service in the CORBA Security specification generates
NR tokens. This specification does not specify the technology used to generate these
tokens or a standard form for them. Interoperability of evidence tokens would require
a standard specification for such tokens.
 15-379

Audit Trail Interoperability
[1807] This CSI specification is focused at inter-ORB interoperability, and therefore the IOR
and SECIOP protocol. So it also does not specify the format of evidence tokens as they
do not affect the SECIOP protocol. However, these evidence tokens may be passed
between ORBs as parameters, and will not be understood by an ORB which does not
use the same security technology.

[1808] In future, a mandatory interoperability evidence token format should be defined, at
least for a limited number of types of evidence. This is expected to be compatible with
the public key mechanism specified in this document and use X.509 version 3
certificates.

F.9 Audit Trail Interoperability

[1809] The CORBA Security specification includes an Audit Channel interface which allows
applications and ORBs to write records to the audit trail. The way this Audit Service
routes the audit records is not defined. This could be done using the OMG Event
Service or other means. Also, the stored/on-the-wire format of audit records is not
defined.

[1810] So there is no standard OMG defined method of bringing together audit records from
different Audit Services.

F.10 Management

[1811] This specification contains only the management interfaces which are essential for
security policy management. It specifies how to obtain and use security policy objects.
However, it does not contain:

¥ Specification of facilities for handling domains, policies other than those required
for security policy administration.

¥ Specification of facilities for the management of some aspects of security. For
example, it does not specify how to create and install permanent keys, as this is
implementation specific.

F.11 Reference Restriction

[1812] This specification requires the movement of credentials to delegate access rights from
one object to another. Another technique of access rights delegation restricts the use of
an object reference according to a set of criteria. This approach, know as reference
restriction, is under study by a number of vendors, but is not ready for standardization
at this time. The criteria used to restrict references could include:

¥ Whether an object has the right to assert certain privileges, such as act on behalf of
a principal, act on behalf of a group of principals, act in a particular role, act with a
particular clearance, etc.

¥ Whether the object reference has been limited to use within a given time interval.

¥ Whether a particular method can be used by an object holding the object reference.
15-380 Security Service v1.8 September 2000 [DRAFT]

15
[1813] Various techniques for restricting object references have been developed. Some use
cryptographic methods, while others store state in the object associated with the
restricted reference, allowing the object to decide if a method request meets the
restricted reference use criteria.

[1814] It is anticipated that vendors will explore this type of access rights delegation and
move towards the standardization of an interface supporting it in a submission to a
future RFP.

F.12 Target Control of Message Protection

[1815] In the current specification, message protection can be specified by policy
administration at both the client and the target object.

[1816] Requesting an operation on an object may result in many other objects being invoked.
The CORBA security specification in this document allows an intermediate object in
such a chain of objects to delegate received credentials to the next object in the chain
(subject to policy). However, the current specification does not allow the application to
control when and where these credentials are used. A later specification may provide
such controls to ride the default quality of protection selectively. Therefore, it could
cause some messages to have different qualities of protection during a security
association.

[1817] The target has no equivalent interface to request the quality of protection for a
particular response. There are cases where this could be useful.

[1818] A future security specification should consider adding control of quality of protection
by the target for individual responses.

F.13 Advanced Delegation Features

[1819] Requesting an operation on an object may result in many other objects being invoked.
The CORBA security specification in this document allows an intermediate object in
such a chain of objects to delegate received credentials to the next object in the chain
(subject to policy).

[1820] However, the current specification does not allow the application to control when and
where these credentials are used.

[1821] A later specification may provide such controls.

[1822] If so, it is expected that a set_controls operation on the Credentials object will be
added to enable the application to set the controls, and a matching get_controls
operation to enable it to see what controls apply (see the set_attributes and
get_attributes operations defined in Interfaces under Section 15.5.4, ÒThe Credentials
Object,Ó on page 15-94).

[1823] The set_controls operation would allow the application to specify a set of required
control values such as delegation mode (allowing for richer forms of delegation),
restrictions on where the credentials may be used and/or delegated, and validity period.
 15-381

Overlapping and Hierarchical Domains
[1824] Note: These operations were not included in the specification because of concerns
about portability of applications using them. Current delegation implementations use a
wide variety of delegation controls, and some use similar controls in semantically
different ways. Further implementation experience and investigation may make it
possible to define a portable, standard set.

F.14 Overlapping and Hierarchical Domains

[1825] This specification does not require support for overlapping or hierarchical security
policy domains. However, it is possible to implement both using the interfaces
provided.

[1826] Recall from Section 15.6, ÒAdministratorÕs Interfaces,Ó on page 15-132, that the
DomainAccessPolicy for each domain defines which rights are granted to subjects
when they attempt to access objects in the domain. In order to make an access
decision, the AccessDecision logic also needs to know which rights are required to
execute the operations of an object, which is a member of the relevant domain. The
RequiredRights interface provides this information; the AccessDecision object will
probably use this interface in most implementations.

[1827] A RequiredRights instance can be queried to determine which rights a user must be
granted in order to be allowed to invoke an objectÕs operations. The intended use of
DomainAccessPolicy and RequiredRights objects by the AccessDecision object is
illustrated next, in Figure 15-68.

Figure 15-68 Intended Use by AccessDecision

[1828] AccessDecision retrieves the relevant policy object by calling get_domain_managers
on the target object reference, and then calling get_domain_policy(access) on the
returned domain manager (assuming for purposes of this example that there is only
one). It then calls get_effective_rights on the returned policy object. AccessDecision
then calls get_required_rights on RequiredRights and compares the returned list of
required rights with the effective rights. If all required rights have been granted, it
grants the access.

[1829] Figure 15-69 illustrates how the specification could be implemented to support
overlapping access policy domains (i.e., to allow an object to be a member of more
than one domain, such that each domain has an access policy and all domainsÕ access
policies are applied). In the diagram, the AccessDecision object must have logic to

AccessDecision

RequiredRights

access_allowed

DomainAccessPolicy

get_effective_rights get_required_rights
15-382 Security Service v1.8 September 2000 [DRAFT]

15
combine the policies asserted by the various AccessPolicy objects (which may involve
evaluating which AccessPolicy objectÕs policy takes precedence over the others). Note
that the AccessDecision object knows the target object reference, because it is passed
as an input parameter to the access_allowed operation.

Figure 15-69 Supporting Overlapping Access Policy Domains

[1830] Hierarchical domains can be handled in a similar way as illustrated in Figure 15-70 on
page 15-384 (note that once again the AccessDecision objectÕs implementation is
responsible for reconciling the various retrieved policies).

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers
15.15 DCE-CIOP with Security 15-383

Capability-Based Access Control
.

Figure 15-70 Hierarchical domains

F.15 Capability-Based Access Control

[1831] Capability-based systems store access policy information in tokens, which are passed
from sender to receiver along with a message, rather than in tables associated with
target objects or domains. In such systems, the DomainAccessPolicy object will
generally not be used in resolving target-side access control checks. Instead, a
CapabilityAccessPolicy object might be returned from a call to Object::get_policy in
a capability-based system. This object could retrieve the granted rights from the
capability (which will be associated with the requesterÕs credentials), illustrated in
Figure 15-71 on page 15-385.

AccessDecision

RequiredRights

access_allowed

get_required_rights

 AccessPolicy

get_effective_rights

DomainManager

get_domain_policy(access)

Target

get_domain_managers

DomainManager AccessPolicy

get_superior_domain_managers
15-384 Security Service v1.8 September 2000 [DRAFT]

15
Figure 15-71 Retrieving Granted Rights

[1832] Note that neither the CapabilityAccessPolicy interfaces nor the Capability interfaces
are defined in this specification (the get_granted_rights call to the capability in the
previous diagram is printed in italics, to indicate that no IDL is provided for it in this
specification). The diagram assumes that CapabilityAccessPolicy inherits the
get_effective_rights operation from AccessPolicy.

F.16 Non-repudiation Services

[1833] This specification contains Non-repudiation Services for evidence handling. It is
anticipated that future service offerings could include data protection processing and
the specification of a delivery service. In addition, it is expected that policy processing
interfaces will emerge to cover the broad range of non-repudiation policy coverage
within the service.

[1834] It is anticipated that the data protection and delivery service functions will be reaching
a level of maturity within other standards domains (such as IETF and ISO SC27),
which should allow a richer definition of these services to be enabled in future
revisions of this specification.

[1835] The absence of these services in this specification means that application writers and
manipulators will need to consult local implementation practice for the correct course
of action to be taken when writing or porting their software.

[1836] This specification also does not include a standard format of evidence token for
interoperability. In the future, a token format based on public key certificates may be
specified.

AccessDecision

RequiredRights

access_allowed

get_required_rights

CapabilityAccessPolicy

get_effective_rights

Capability

get_granted_rights
15.15 DCE-CIOP with Security 15-385

Introduction
Appendix G Interoperability Guidelines

G.1 Introduction

[1837] This appendix includes:

¥ Guidelines for defining Security Mechanism TAGs in Interoperable Object
References (IORs).

¥ Examples of the secure inter-ORB protocol, SECIOP.

G.2 Guidelines for Mechanism TAG Definition in IORs

[1838] Section 15.8, ÒSecurity Interoperability Protocols,Ó on page 15-190, defined a
prototype TAG definition for security association mechanisms. This appendix provides
guidelines that specifiers of mechanism TAGs (called authors here) should follow.

[1839] In addition to registering TAGs with the OMG, authors must lodge a document that
explains how the mechanism (and its associated options) is mapped to this standard. Its
document should:

¥ Identify the Òsecurity mechanism tagged componentÓ being described. It may be
either:

¥ A new component TAG for the mechanism with a set of options it can have (for
example, a separate TAG for each combination of mechanism and algorithm),

or

¥ Use TAG_GENERIC_SEC_MECH and specify the mechanism OID (for use in
the security_mechanism_type field) being described by this specification.

It may not be both.

¥ Specify the scope implied by the above mechanism identifier. This should not
exceed:

¥ Security association mechanism

¥ Negotiation protocols

¥ Cryptographic algorithms

¥ Authentication method (e.g., public key)

¥ For the first example under the first bullet, describe the format, contents, and
encoding of the component_data field for the TAG-specific components. For the
second example under the first bullet, describe the format, contents, and encoding
of the data in the mech_specific_data and components fields of the TAG specific
components. In each case, this may include:

¥ Allocating new component TAGs and describing the format, contents, and
encoding of their data.

¥ Specifying the use of these new tagged components, as well as other predefined
tagged components within TAG-specific components.
15-386 Security Service v1.8 September 2000 [DRAFT]

15
¥ Specifying the use of these new tagged components, as well as other predefined
tagged components that may or should appear at the top level of the
multicomponent profile.

¥ Describe a model that should be followed when defining future extensions or
variations using the same mechanism.

¥ The author must define either by reference to another document, or explicitly, the
format of the context tokens used by the mechanism in the SECIOP protocol.

G.3 SECIOP Examples

G.3.1 Mutual Authentication

[1840] In this example, the client wishes to authenticate the identity of the target (in addition
to the targets requirement to authenticate the client) before it is prepared to send a
request to the target.

[1841] The client sends an EstablishContext message to the target containing the clientÕs
context id for the association, and the token required by the target to authenticate it and
define the options chosen by the client for the association. The target verifies the
clientÕs token and generates the token required by the client to authenticate the target.
The target sends this token (along with the clientÕs context id for the association and its
own) to the client in a CompleteEstablishContext message. When the client receives
this message, it authenticates the target using the token supplied by the target and
establishes the peer id as part of the context.

[1842] Having completed the establishment of the context, the client sends the request as part
of a MessageInContext message, which includes the targetÕs context identifier and the
integrity token for the message. When the target receives the message, it identifies the
context by its identifier, checks the integrity of the message with the token, and passes
the message to GIOP. When the reply is returned, it is sealed for integrity and returned
to the client in a SECIOP MessageInContext with the client identifier for the context
and the generated integrity token.
15.15 DCE-CIOP with Security 15-387

SECIOP Examples
Figure 15-72 Mutual Authentication

G.3.2 Confidential Message with Context Establishment

[1843] This example describes how context establishment is combined with the transmission
of a confidentiality protected message when the client does not wish to authenticate the
target before passing it a message.

[1844] The client establishes its context object with identifier c_id_1. This identifier is
included with the token (token_1) in an EstablishContext message. The GIOP request
is transformed into the message seal (ms_1) and sent with the clientÕs context identifier
in a MessageInContext.

[1845] When the target receives the message, it first processes the EstablishContext message,
authenticating the client and allowing the target to create its context object. It then
unseals the message in ms_1 and passes it to GIOP.

[1846] When GIOP sends the reply, SECIOP adds a CompleteEstablishContext message to
the MessageInContext message, which protects the reply, to enable the target to return
its context identifier to the client. When the client receives the message, it first
completes its view of the context (adding the targets id to the state for the context). It
can then unseal the reply from ms_2 and passes the reply message up the protocol
stack.

Client establishes
context object id = c_od_1
token = token_1 EstablishContext(c_id_1, token_1)

Target establishes
context objectid = c_id_69
token = token_2

CompleteEstablishContext(c_id_1, c_id_69, token_2)

Client completes context
and transmits signed GIOP
request with sign = ms_1

MessageInContext(peer, c_id_69, ms_1)(GIOP request)

Target checks sign and
processes request, signs
reply and transmits reply
with sign = ms_2

MessageInContext(peer, c_id_1, ms_2)(GIOP reply)

Client checks sign
and processes reply.
15-388 Security Service v1.8 September 2000 [DRAFT]

15

Figure 15-73 Confidential Message with Context Establishment

G.3.3 Fragmented GIOP Request with Context Establishment

[1847] In this example, the security context is established as part of the processing of a
fragmented GIOP request (note that the current GIOP protocol does not support
fragmentation, but this example indicates the independence of SECIOP from the
current GIOP protocol and explains how the SECIOP protocol would handle a
fragmented GIOP request). The sequence described reflects the requirement of the
target to authenticate the clientÕs privileges.

[1848] The client establishes its context object (with id c_id_1) and passes this identifier with
the authentication token in an EstablishContext message. As the client does not require
authenticating the target, this message is sent with a MessageInContext message with
the integrity sign (ms_1) and the GIOP fragment (as the message field of the
MessageInContext).

[1849] When the target receives the messages, it authenticates the client using token_1. It then
creates a context object with c_id_69, and then processes the MessageInContext,
checking the integrity of the message using sign ms_1. Having checked the message, it
passes the fragment up the protocol stack.

[1850] The client sends the final fragment as a MessageInContext with sign ms_2, but as the
target has not yet passed its identifier for the context to the client, the client uses its
own identifier for the context.

[1851] The target finds its context object from the clientÕs identifier (c_id_1) and checks the
integrity of the message. It then passes the final fragment up the protocol stack to
GIOP.

Client establishes context
object id = c_id_1
token id = token_1
Seals GIOP request into
seal = ms_1 Establish Context(c_id_1, token_1)

MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
Target unseals and
processes request, seals
reply and transmits
reply in
seal = ms_2

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply
15.15 DCE-CIOP with Security 15-389

SECIOP Examples
[1852] GIOP now has a complete request and can invoke the object (subject to the access
decision function).

[1853] GIOP generates a single fragment reply, which is passed to the SECIOP protocol
machine. The reply is sent within a MessageInContext with sign ms_3. In addition, a
CompleteEstablishContext message is generated to allow the target to pass its
identifier for the context (c_id_69) to the client for use in future messages.

[1854] The client receives the message and updates its context object to record the targetÕs
context identifier. It then checks the integrity of the MessageInContext and passes the
reply up the protocol stack (to GIOP).

Figure 15-74 Fragmented GIOP Request with Context Establishment

Client establishes context
object id = c_id_1
token id = token_1
Client signs GIOP

sign = ms_1
Establish Context(c_id_1, token_1)
MessageInContext(client, c_id_1, ms_1)

Target establishes context
object id = c_id_69
and checks the fragment

CompleteEstablishContext(c_id_1, c_id_69, nul)
MessageInContext(peer, c_id_1, ms_2)

Client unseals and
processes reply

fragment with

(GIOP fragment)

sign.

Client signs final
fragment with
sign = ms_2 MessageInContext(client, c_id_1, ms_2)

(GIOP fragment)

Target checks sign and
processes request, signs
reply and transmits
reply with
sign = ms_2

(GIOP reply)
15-390 Security Service v1.8 September 2000 [DRAFT]

15
Appendix H Glossary

H.1 Definitions

[1855] absolute time: Time relative to the time base of 0 hours 0 minutes 0 seconds of 15
October 1582 (c.f. CORBA Time Service [3]), accurate within a known margin of
error.

[1856] access control: The restriction of access to resources to prevent its unauthorized use.

[1857] access control information (ACI): Information about the initiator of a resource access
request, used to make an access control enforcement decision.

[1858] access control list: A list of entities, together with their access rights, which are
authorized to have access to a resource.

[1859] access decision function: The function which is evaluated in order to make an access
control enforcement decision. The inputs to an access decision function include the
requesterÕs access control information (q.v.), the resourceÕs control information, and
context data.

[1860] ADO: Access Decision Object: The CORBA security object which implements access
decision functions.

[1861] accountability: The property that ensures that the action of an entity may be traced
uniquely to the entity.

[1862] active threat: The threat of a deliberate unauthorized change to the state of a system.

[1863] adjudicator: An authority that resolves disputes among parties in accordance with a
policy. In CORBA security, an adjudicator evaluates non-repudiation evidence in
order to resolve disputes.

[1864] anonymous user: A user of the system operating under a distinguished ÒpublicÓ
identity corresponding to no specific user.

[1865] assurance: 1. Justified confidence in the security of a system. 2. Development,
documentation, testing, procedural, and operational activities carried out to ensure that
a systemÕs security services do in fact provide the claimed level of protection.

[1866] asymmetric key: One half of a key pair used in an asymmetric (Òpublic-keyÓ)
encryption system. Asymmetric encryption systems have two important properties: (i)
the key used for encryption is different from the one used for decryption (ii) neither
key can feasibly be derived from the other.

[1867] audit: See security audit.

[1868] audit event: The data collected about a system event for inclusion in the system audit
log.

[1869] audit trail: See security audit trail.
15.15 DCE-CIOP with Security 15-391

Definitions
[1870] authentication: The verification of a claimantÕs entitlement to use a claimed identity
and/or privilege set.

[1871] authentication information: Information used to establish a claimantÕs entitlement to
a claimed identity (a common example of authentication information is a password).

[1872] authorization: The granting of authority, which includes the granting of access based
on access rights.

[1873] availability: The property of being of being accessible and usable upon demand by an
authorized user.

[1874] call chain: The series of client to target object calls required to complete an operation.
Used in this specification in conjunction with delegation.

[1875] certification authority: A party trusted to vouch for the binding between names or
identities and public keys. In some systems, certification authorities generate public
keys.

[1876] ciphertext: The result of applying encryption to input data; encrypted text.

[1877] cleartext: Intelligible data; text which has not been encrypted or which has been
decrypted using the correct key. Also known as ÒplaintextÓ.

[1878] confidentiality: The property that information is not made available or disclosed to
unauthorized individuals, entities, or processes.

[1879] conformance level: A graduated sequence of defined sets of functionality defined by
the CORBA Security specification. An implementation must implement at least one of
these defined sets of functionality in order to claim conformance to CORBA Security.

[1880] conformance option: A defined set of functionality which implementations may
optionally provide in order to claim CORBA Security conformant functionality over
and above the minimum required by the defined conformance levels.

[1881] conformance statement: A written document describing the conformance levels and
conformance options to which an implementation of the OMG CORBA Security
specification conforms.

[1882] control attributes: The set of characteristics which restrict when and where privileges
can be invoked or delegated.

[1883] counter-measures: Action taken in response to perceived threats.

[1884] credentials: Information describing the security attributes (identity and/or privileges)
of a user or other principal. Credentials are claimed through authentication or
delegation (q.v.) and used by access control (q.v.).

[1885] current object: An object representing the current execution context; CORBA
Security associates security state information, including the credentials of the active
principal, with the current object.

[1886] DAC: Discretionary Access Control - an access control policy regime wherein the
creator of a resource is permitted to manage its access control policy information.
15-392 Security Service v1.8 September 2000 [DRAFT]

15
[1887] data integrity: The property that data has not been undetectably altered or destroyed
in an unauthorized manner or by unauthorized users.

[1888] DCE: Distributed Computing Environment (of OSF).

[1889] DCE CIOP:DCE Common Inter-ORB Protocol - the protocol specified in the OMG
CORBA 2.0/ Interoperability specification which uses the DCE RPC for
interoperability.

[1890] decipherment: Generation of cleartext from ciphertext by application of a
cryptographic algorithm with the correct key.

[1891] decryption: See decipherment.

[1892] delegation: The act whereby one user or principal authorizes another to use his (or her
or its) identity or privileges, perhaps with restrictions.

[1893] denial of service: The prevention of authorized access to resources or the delaying of
time-critical operations.

[1894] digital signature: Data appended to, or a cryptographic transformation of. a data unit
that allows a recipient of the data unit to prove the source and integrity of the data
against forgery, e.g. by the recipient.

[1895] domain: A set of objects sharing a common characteristic or abiding by a common set
of rules. CORBA Security defines several types of domains, including security policy
domains, security environment domains, and security technology domains.

[1896] domain manager: A CORBA Security object through whose interfaces the
characteristics of a security policy domain are administered.

[1897] encipherment: Generation of ciphertext from corresponding cleartext by application
of a cryptographic algorithm and a key.

[1898] encryption: See encipherment.

[1899] ESIOP: Environment-Specific Inter-ORB Protocol (specified in the OMG CORBA
2.0/ Interoperability specification).

[1900] evidence: Data generated by the CORBA Security Non-Repudiation service to prove
that a specific principal initiated a specific action.

[1901] evidence token: A data structure containing CORBA Security Non-Repudiation
evidence.

[1902] federated domains: Separate domains whose policy authorities have agreed to a set of
shared policies governing access by users from one domain to resources in another.

[1903] GSS-API: Generic Security Services- Application Programming Interface - specified
by RFC 1508 issued by the Internet IETF. An update to this interface is near
completion as this is written, and it is anticipated that RFC 1508 will be superseded by
a revised specification soon.

[1904] GIOP: General Inter-ORB Protocol (specified in the OMG CORBA 2.0/
Interoperability specification.)
15.15 DCE-CIOP with Security 15-393

Definitions
[1905] group: A CORBA Security privilege attribute. Many users (and other principals) may
be assigned the same group attribute; this allows administrators to simplify security
administration by granting rights to groups rather than to individual principals.

[1906] granularity: The relative fineness or coarseness by which a mechanism may be
adjusted.

[1907] hierarchical domains: A set of domains together with a precedence hierarchy defining
the relationships among their policies.

[1908] identity: A security attribute with the property of uniqueness; no two principalsÕ
identities may be identical. Principals may have several different kinds of identities,
each unique (for example, a principal may have both a unique audit identity and a
unique access identity). Other security attributes (e.g. groups, roles, etc...) need not be
unique.

[1909] immediate invoker: In a delegated call chain, the client from which an object directly
receives a call.

[1910] impersonation: The act whereby one principal assumes the identity and privileges of
another principal without restrictions and without any indication visible to recipients of
the impersonatorÕs calls that delegation has taken place.

[1911] initiator: The first principal in a delegation Òcall chainÓ; the only participant in the
call chain which is not the recipient of a call.

[1912] integrity: In security terms, the property that a system always faithfully and
effectively enforces all of its stated security policies.

[1913] interceptor: An object which provides one or more specialized services, at the ORB
invocation boundary, based upon the context of the object request,. The OMG
CORBAsecurity specification define the security interceptors.

[1914] intermediate: An object in a delegation Òcall chainÓ which is neither the initiator nor
the ultimate (final) target.

[1915] IETF: Internet Engineering Task Force. Reviews an issues Internet standards.

[1916] IIOP: Internet Interoperable Object Protocol (specified in the OMG CORBA 2.0/
Interoperability specification).

[1917] IOR: Interoperable Object Reference - a data structure specified in the OMG CORBA
2.0/ Interoperability specification.

[1918] ITSEC: Information Technology Security Evaluation Criteria (of ECSC-EEC-EAEC).
Harmonized Criteria.

[1919] MAC: Mandatory Access Control - an access control regime wherein resource access
control policy information is always managed by a designated authority, regardless of
who creates the resources.

[1920] mechanism: A specific implementation of security services, using particular
algorithms, data structures, and protocols.
15-394 Security Service v1.8 September 2000 [DRAFT]

15
[1921] message protection: Security protection applied to a message to protect it against
unauthorized access or modification in transit between a client and a target.

[1922] mutual authentication: The process whereby each of two communicating principals
authenticates the otherÕs identity. Frequently this is a prerequisite for the
establishment of a secure association between a client and a target.

[1923] Non-Repudiation: The provision of evidence which will prevent a participant in an
action from convincingly denying his responsibility for the action.

[1924] ORB Core: The functionality provide by the CORBA Object Request Broker which
provides the basic representations of objects and the communication of requests.

[1925] ORB Services: Elements of functionality provided transparently to applications by the
CORBA Object Request Broker in response to the implicit context of an object
request.

[1926] ORB technology domain: A set of objects or entities that share a common ORB
implementation technology.

[1927] originator: The entity in an object request which creates the request.

[1928] passive threat: The threat of unauthorized disclosure of information without changing
the state of the system.

[1929] physical security: The measures used to provide physical protection of resources
against deliberate and accidental threats.

[1930] POSIX: Portable Open System Interfaces (for) UNIX - A set of standardized interfaces
to UNIX systems specified by IEEE Standard 1003.

[1931] principal: A user or programmatic entity with the ability to use the resources of a
system.

[1932] privacy: 1. See confidentiality. 2. The right of individuals to control or influence what
information related to them may be collected and stored and by whom that information
may be disclosed.

[1933] private key: In a public-key (asymmetric) cryptosystem, the component of a key pair
which is not divulged by its owner.

[1934] privilege: A security attribute (q.v.) which need not have the property of uniqueness,
and which thus may be shared by many users and other principals. Examples of
privileges include groups, roles, and clearances.

[1935] proof of delivery: Non-repudiation evidence demonstrating that a message or data has
been delivered.

[1936] proof of origin: Non-repudiation evidence identifying the originator of a message or
data.

[1937] proof of receipt: Non-repudiation evidence demonstrating that a message or data has
been received by a particular party.
15.15 DCE-CIOP with Security 15-395

Definitions
[1938] protection boundary: The domain boundary within which security services provide a
known level of protection against threats.

[1939] PDU: Protocol Data Unit. The data fields of a protocol message, as distinguished from
the protocol header and trailer fields.

[1940] POA: Portable Object Adaptor

[1941] proof of submission: Non-repudiation evidence demonstrating that a message or data
has been submitted to a particular principal or service.

[1942] public key: In a public-key (asymmetric) cryptosystem, the component of a key pair
which is revealed.

[1943] public-key cryptosystem: An encryption system which uses an asymmetric-key (q.v.)
cryptographic algorithm.

[1944] QOP: Quality of Protection. The type and strength of protection provided by a
message-protection service.

[1945] RPC: Remote Procedure Call.

[1946] replaceability: The quality of an implementation which permits substitution of one
security service for another semantically similar service.

[1947] repudiation: Denial by one of the entities involved in an action of having participated
in all or part of the action.

[1948] RFP: Request for Proposal. An OMG procedure for soliciting technology from OMG
members.

[1949] right: A named value conferring the ability to perform actions in a system. Access
control policies grant rights to principals (on the basis of their security attributes); in
order to make an access control decision, access decision functions compare the rights
granted to a principal against the rights required to perform an operation.

[1950] rights type: A defined set of rights.

[1951] role: A privilege attribute representing the position or function a user represents in
seeking security authentication. A given human being may play multiple roles and
therefore require multiple role privilege attributes.

[1952] RSA: An asymmetric encryption algorithm invented by Ron Rivest, Adi Shamir, and
Len Adelman.

[1953] seal: To encrypt data for the purpose of providing confidentiality protection.

[1954] secret-key cryptosystem: A cryptosystem which uses a symmetric-key (q.v.)
cryptographic algorithm.

[1955] secure time: A reliable Time service that has not been compromised, and whose
messages can be authenticated by their recipients.

[1956] security association: The shared security state information which permits secure
communication between two entities.
15-396 Security Service v1.8 September 2000 [DRAFT]

15
[1957] security attributes: Characteristics of a subject (user or principal) which form the
basis of the systemÕs policies governing that subject.

[1958] security audit: The facility of a secure system which records information about
security-relevant events in a tamper-resistant log. Often used to facilitate an
independent review and examination of system records and activities in order to test
for adequacy of system controls, to ensure compliance with established policy and
operational procedures, to detect breaches in security, and to recommend changes in
control, policy and procedures.

[1959] security features: Operational information which controls the security protection
applied to requests and responses in a CORBA Security conformant system.

[1960] security context: The CORBA Security object which encapsulates the shared state
information representing a security association.

[1961] security policy: The data which defines what protection a systemÕs security services
must provide. There are many kinds of security policy, including access control
policy, audit policy, message protection policy, non-repudiation policy, etc.

[1962] security policy domain: A domain whose objects are all governed by the same
security policy. There are several types of security policy domain, including access
control policy domains and audit policy domains.

[1963] security service: Code that implements a defined set of security functionality.
Security services include Access Control, Audit, Non-repudiation, and others.

[1964] security technology domain: A set of objects or entities whose security services are
all implemented using the same technology.

[1965] subject: An active entity in the system; either a human user principal or a
programmatic principal.

[1966] symmetric key: The key used in a symmetric (Òsecret-keyÓ) encryption system. In
such systems, the same key is used for encryption and decryption.

[1967] tagged profile: The data element in an IOR which provides the profile information for
each protocol supported.

[1968] target: The final recipient in a delegation Òcall chain.Ó The only participant in such a
call chain which is not the originator of a call.

[1969] target ACI: The Access Control Information for the target object.

[1970] target object: The recipient of a CORBA request message.

[1971] threat: A potential violation of security.

[1972] traced delegation: Delegation wherein information about the initiator and all
intervening intermediates is available to each recipient in the call chain, or to the
authorization subsystem controlling access to each recipient.

[1973] trust model: A description of which components of the system and which entities
outside the system must be trusted, and what they must be trusted for, if the system is
to remain secure.
15.15 DCE-CIOP with Security 15-397

References
[1974] trusted code: Code assumed to always perform some specified set of operations
correctly.

[1975] TCB: Trusted Computing Base. The portion of a system which must function correctly
in order for the system to remain secure. A TCB should be tamper-proof and its
enforcement of policy should be noncircumventable. Ideally a systemÕs TCB should
also be as small as possible, to facilitate analysis of its integrity.

[1976] TCSEC: Trusted Computer System Evaluation Criteria (a U.S. Department of Defense
Standard specifying requirements for secure systems).

[1977] unauthenticated principal: A user or other principal who has not authenticated any
identity or privilege.

[1978] UNO: Universal Networked Objects (an OMG Specification, now obsolete).

[1979] UTC: Coordinated Universal Time.

[1980] unsecure time: Time obtained from an unsecure time services.

[1981] UTO: Universal Time Object (c.f. CORBA Time Service [3]).

[1982] user: A human being using the system to issue requests to objects in order to get them
to perform functions in the system on his behalf.

[1983] user sponsor: The interactive user interface to the system which acts as the
authenticating authority (e.g. validating passwords) which validate the identity of a
user.

[1984] vault: The CORBA Security object which creates security context objects.

[1985] X/Open: X/Open Company Ltd., U.K.

H.2 References

[1986] The following sources were used in the preparation of this glossary:

[1987] Applied Cryptography, 2nd edition by Bruce Schneier, John Wiley and Sons, New
York, 1996.

[1988] ISO Standard 7498-2, ÒInformation Processing Systems -- Open Systems
Interconnection -- Basic Reference Model -- Part 2:Security ArchitectureÓ,
International Standards Organization,1989.

[1989] ECMA TR/46 ÒSecurity in Open Systems: A Security FrameworkÓ, European
Computer Manufacturers Association, 1988.

[1990] ITSEC ÒInformation Technology Security Evaluation CriteriaÓ European
Commission, 1991.

[1991] DoD Standard 5200.28-STD ÒDepartment of Defense Trusted Computer System
Evaluation CriteriaÓ, US Department of Defense, 1985.

[1992] X/Open Snapshot: ÒDistributed Security Framework: Company Review DraftÓ,
X/Open Company Ltd.,U.K. 1994.
15-398 Security Service v1.8 September 2000 [DRAFT]

15
[1993] Computer Related Risks: Peter G. Neuman, The ACM Press, 1995
15.15 DCE-CIOP with Security 15-399

References
Appendix I References

[1994] Note that these references are to definitions which are sometimes a set of document.

[1] CORBA/IIOP 2.2.

[2] Common Secure IIOP Request for Proposals (orb/96-01-03)

[3] CORBA Time Service, Chapter 16 of CORBAservices specification, also
available at the URL http://www.omg.org/docs/formal/97-02-22.pdf

[4] IETF RFC 1779 A String Representation of Distinguished Names. March 1995.

[5] X/Open Application Environment Specification for Distributed Computing.

[6] X/Open Preliminary Specification X/Open DCE: Authentication and Security
Services.

[7] X/OPEN CAE Specification C309

[8] OSF AES/Distributed Computing RPC Volume.

[9] OSF DCE 1.1 Application Development Reference

[10] The ECMA GSS-API mechanism specified in ECMA-235. See also related
standard ECMA-219 (Authentication and Privilege Attribute Security
Application with related key distribution functions)

[11] GSS-APIThe Generic Security Services API as defined in IETF RFC 1508
(September 1993) and X/Open P308.An update to RFC 1508 has been produced
by the IETF cat group.

[12] The IETF GSS Kerberos V5 definition which specifies details of the use of
Kerberos V5 with GSS-API. It includes updates to RFC 1510 e.g. how to carry
delegation information. It is specified in RFC 1964.

[13] The Kerberos V5 mechanism as defined in IETF RFC 1510 (September 1993).

[14] The ORB Portability Specification - CORBA V2.3 Chapter 9..

[15] Open Distributed Processing - Reference Model Parts 1 through 3, OMG doc
#om/96-10-02, 03, 04.

[16] The SESAME gss-api mechanism. This is a subset of the ECMA GSS
Mechanism and is specified in draft-ietf-cat-sesamemech-00.txt.

[17] The SESAME V4 Overview. This can be found via the web at
www.esat.kuleuven.ac.be/cosic/sesame.html

[18] John G. Fletcher, ÒSerial Link Protocol Design: A Critique of the X.25
Standard, Level 2,Ó Proceedings of SIGCOMM '84, ACM SIGCOMM, pp.26-
33, June 6-8, 1984.

[19] IETF RFC 2478, The Simple and Protected GSS-API Negotiation Mechanism,
December 1998.
15-400 Security Service v1.8 September 2000 [DRAFT]

15
[20] IETF RFC 2025, The Simple Public-Key GSS-API Mechanism (SPDM),
October 1996.

[21] Secure Socket Layer [http://home.netscape.com/eng/ssl3/ssl-toc.html]

[22] ISO/IEC 9594-8, ÒInformation Technology - Open Systems Interconnection -
The Directory: Authentication FrameworkÓ, CCITT/ITU Recommendation
X.509, 1993.

[23] The extended gss-api supporting access control and delegation extensions
defined in draft-ietf-cat-xgssapi-acc-cntrl-00.txt. This interface is also defined in
the ECMA GSS-API Mechanism standard - ECMA-235
15.15 DCE-CIOP with Security 15-401

References
15-402 Security Service v1.8 September 2000 [DRAFT]

	Security Service Specification
	Contents
	15.1 Introduction to Security
	15.1.1 Why Security?
	15.1.2 What Is Security?
	15.1.3 Threats in a Distributed Object System
	15.1.4 Summary of Key Security Features
	15.1.5 Goals
	Simplicity
	Consistency
	Scalability
	Usability for End Users
	Usability for Administrators
	Usability for Implementors
	Flexibility of Security Policy
	Independence of Security Technology
	Application Portability
	Interoperability
	Performance
	Object Orientation
	Specific Security Goals
	Security Architecture Goals

	15.2 Introduction to the Specification
	15.2.1 Specification Structure
	Structure of the Chapter
	Normative and Non-normative Material
	Section Summaries

	15.2.2 CORBA Security and Secure Interoperability Feature Packages
	15.2.3 Feature Packages and Modules

	15.3 Security Reference Model
	15.3.1 Definition of a Security Reference Model
	15.3.2 Principals and Their Security Attributes
	15.3.3 Secure Object Invocations
	Establishing Security Associations
	Message Protection

	15.3.4 Access Control Model
	Object Invocation Access Policy
	Application Access Policy
	Access Policies
	Privilege Attributes
	Control Attributes
	Access Policies Supported by This Specification

	15.3.5 Auditing
	15.3.6 Delegation
	Privilege Delegation
	Overview of Delegation Schemes
	Facilities Potentially Available
	Specifying Delegation Options
	Technology Support for Delegation Options

	15.3.7 Non-repudiation
	15.3.8 Domains
	Security Policy Domains
	Security Environment Domains
	Security Technology Domains
	Domains and Interoperability

	15.3.9 Security Management and Administration
	Managing Security Policy Domains
	Managing Security Environment Domains
	Managing Security Technology Domains

	15.3.10 Implementing the Model

	15.4 Security Architecture
	15.4.1 Different Users’ View of the Security Model
	Enterprise Management View
	End User View
	Application Developer View
	Administrator’s View
	Object System Implementor’s View

	15.4.2 Structural Model
	Application Components
	ORB Services
	Security Services
	Security Policies and Domain Objects

	15.4.3 Security Technology
	15.4.4 Basic Protection and Communications
	Environment Domains
	Component Protection

	15.4.5 Security Object Models
	The Model as Seen by Applications
	Administrative Model
	The Model as Seen by the Objects Implementing Security
	Summary of Objects in the Model

	15.5 Application Developer’s Interfaces
	15.5.1 Introduction
	Security Functionality Packages
	Introduction to the Interfaces

	15.5.2 Finding Security Features
	Description of Facilities

	15.5.3 Authentication of Principals
	Description of Facilities
	The SecurityLevel2::PrincipalAuthenticator Interface
	Portability Implications

	15.5.4 The Credentials Object
	Description of Facilities
	The SecurityLevel2::Credentials Interface

	15.5.5 The ReceivedCredentials Object
	Description of Facilities
	The SecurityLevel2::ReceivedCredentials Interface
	Portability Implications

	15.5.6 The TargetCredentials Object
	Description of Facilities

	15.5.7 Operations on Object Reference
	Description of Facilities
	Client Side Invocation Policy Objects
	Semantics of Combined Client Policies
	Security Relevant Operations in the CORBA::Object Interface
	Portability Implications

	15.5.8 Operations on Security Manager
	Description
	The SecurityLevel2::SecurityManager Interface

	15.5.9 Security Operations on Current
	Description
	The SecurityLevel1::Current Interface
	The SecurityLevel2::Current Interface

	15.5.10 Security Audit
	Description of Facilities
	The SecurityLevel2::AuditDecision Interface
	The SecurityLevel2::AuditChannel Interface
	Portability Implications

	15.5.11 Administering Security Policy
	15.5.12 Access Control
	Description of Facilities
	The Access Decision Object
	The SecurityLevel2::AccessDecision Interface
	Portability Implications

	15.5.13 Delegation Facilities
	Description of Facilities
	Operations
	Portability Implications

	15.5.14 Non-repudiation
	Description of Facilities
	Non-repudiation Service Data Types
	The NRservice::NRCredentials Interface

	15.6 Administrator’s Interfaces
	15.6.1 Concepts
	Administrators
	Policy Domains
	Security Policies

	15.6.2 Domain Management
	15.6.3 Security Policies Introduction
	15.6.4 Access Policies
	Rights
	The SecurityLevel2::RequiredRights Interface
	The SecurityAdmin::AccessPolicy Interface
	Specific Invocation Access Policies
	The Domain AccessPolicy Object
	The SecurityAdmin::DomainAccessPolicy Interface

	15.6.5 Audit Policies
	The SecurityAdmin::AuditPolicy Interface

	15.6.6 Secure Invocation and Delegation Policies
	Secure Invocation Policies
	Secure Association Options
	The SecurityAdmin::SecureInvocationPolicy Interface
	The SecurityAdmin::DelegationPolicy Interface

	15.6.7 Non-repudiation Policy Management
	Data Types for Non-repudiation Policy Management Interfaces
	The NRservice::NRPolicy Interface

	15.7 Implementor’s Security Interfaces
	15.7.1 Security Interceptors
	Invocation Time Policies
	Secure Invocation Interceptor
	Access Control Interceptor

	15.7.2 Implementation-Level Security Object Interfaces
	The Vault Object
	The SecurityReplaceable::Vault Interface
	The Security Context Object
	The SecurityReplaceable::SecurityContext Interface
	The Client Security Context Object
	The SecurityReplaceable::ClientSecurityContext Interface
	The Server Security Context Object
	The SecurityReplaceable::ServerSecurityContext Interface
	The Credentials Object
	The Access Decision Object
	The SecurityReplaceable::AccessDecision Interface
	The Required Rights Object
	The SecurityReplaceable::RequiredRights Interface
	The Audit Decision Object
	The SecurityReplaceable::AuditDecision Interface
	The Audit Channel Object
	The SecurityReplaceable::AuditChannel Interface
	Principal Authentication
	Non-repudiation

	15.7.3 Replaceable Security Services
	Replacing Authentication and Message Protection Services
	Replacing Access Control Policies
	Replacing Audit Services
	Replacing Non-repudiation Services
	Other Replaceability
	Linking to External Security Services

	15.8 Security Interoperability Protocols
	15.8.1 Introduction
	15.8.2 Interoperability Model
	Security Information in the Object Reference
	Establishing a Security Association
	Protecting Messages
	Security Mechanisms for Secure Object Invocations
	Security Mechanism Types
	Interoperating between Security Policy Domains
	Secure Interoperability Bridges

	15.8.3 Protocol Enhancements
	15.8.4 CORBA Interoperable Object Reference with Security
	Security Components of the IOR
	IOR Example
	Operational Semantics

	15.8.5 Common Secure Interoperability Levels
	15.8.6 Key Distribution Types
	15.8.7 Security Mechanisms Hosted on SECIOP
	1. SPKM Protocol
	2. GSS Kerberos Protocol
	3. CSI-ECMA protocol

	15.8.8 Security Mechanisms Hosted Directly on IIOP
	15.8.9 Choices of Protocols, Cryptographic Profiles and Key Technologies
	Choice of Protocol and Key Technology
	Cryptographic Profiles
	Conformance to External Security Mechanisms

	15.8.10 Common Secure Interoperability Requirements
	CORBA Standard Security Mechanisms
	International Deployment
	Consistency
	Scalability
	Flexibility of Security Policy
	Application Portability
	Security Services Portability/Replaceability
	Performance
	Identifying Encumbered Technology

	15.8.11 Relation to CORBA Security Facilities and Interfaces
	Functionality
	Replaceability
	Levels of Interoperability

	15.8.12 Security Functionality
	Authentication
	Access Control
	Audit
	Secure Invocation
	Delegation Facilities
	Non repudiation
	Security Policies

	15.8.13 Model for Use and Contents of Credentials
	Credential Content at the Client
	Attributes During Transmission
	Attributes at the Target
	Mapping Security Names to Externally Valid Identities
	Mapping Other Attributes to Externally Valid IDL Attributes
	Mapping to Local Attribute Values

	15.8.14 CORBA Interfaces
	Service Options for Common Secure Interoperability
	Mechanism Types
	Delegation Related Interfaces

	15.8.15 Support for CORBA Security Facilities and Extensibility
	15.8.16 Security Replaceability for ORB Security Implementors
	Attribute Mapping
	Use of GSS-API

	15.9 Secure Inter-ORB Protocol (SECIOP)
	15.9.1 Architectural Assumptions
	15.9.2 SECIOP Context Management Layer
	SECIOP Context Management Layer Message Header
	SECIOP Context Management Layer Protocol
	ContextId
	ContextIdDefn
	TokenType
	Message Definitions

	15.9.3 SECIOP Context Management Finite State Machine Tables
	SECIOP Context Management Protocol State Tables

	15.10 The SECIOP Hosted CSI Protocols
	15.10.1 IOR
	15.10.2 Mechanism Tags
	15.10.3 Association Options
	15.10.4 Cryptographic Profiles
	Key Establishment Algorithms
	Common Message Protection Algorithms
	Cryptographic Profiles Supported by CSI Protocols

	15.10.5 Security Name
	15.10.6 Security Administration Domains
	15.10.7 Mapping of Common Elements to the SECIOP Protocol
	Basic Token Format
	Inner Context Tokens

	15.10.8 CSI Protocols
	SPKM Protocol
	GSS Kerberos Protocol
	CSI-ECMA Protocol

	15.11 SPKM Protocol
	15.11.1 Cryptographic Profiles
	MD5_RSA
	MD5_DES_CBC
	DES_CBC
	MD5_DES_CBC_SOURCE
	DES_CBC_SOURCE

	15.11.2 IOR Encoding
	15.11.3 Using SPKM for SECIOP
	The Initial Context Token
	The Final Context Token
	The Continuation Context Token
	The Message Protection Token
	The Context Delete Token

	15.12 GSS Kerberos Protocol
	15.12.1 Cryptographic Profiles
	DES_CBC_DES_MAC
	DES_CBC_MD5
	DES_MAC
	MD5

	15.12.2 Mandatory and Optional Cryptographic Profiles
	15.12.3 IOR Encoding
	15.12.4 SECIOP Tokens
	The Initial Context Token
	The Final Context Token
	The Continuation Context Token
	The Message Protection Token

	15.13 CSI-ECMA Protocol
	15.13.1 Concepts
	Separation of Concerns

	15.13.2 Security Attributes
	Privilege Attributes
	Miscellaneous Attributes

	15.13.3 Target Access Enforcement Function
	15.13.4 Basic and Dialogue Keys
	15.13.5 Key Distribution Schemes
	Basic Symmetric Key Distribution Scheme
	Symmetric Key Distribution with Asymmetric KDS
	Full Public Key Scheme

	15.13.6 Cryptographic Algorithms and Profiles
	15.13.7 PAC Protection and Delegation - Outline
	15.13.8 PPID Method
	15.13.9 PV/CV Delegation Method
	Restrictions

	15.13.10 Mechanism Identifiers and IOR Encoding
	15.13.11 Security Names
	Kerberos Naming
	Directory Naming

	15.13.12 SECIOP Tokens When Using CSI-ECMA
	15.13.13 Initial Context Token
	TargetAEF Part

	15.13.14 TargetResultToken
	15.13.15 ErrorToken
	15.13.16 Per Message Tokens
	MICToken
	WrapToken

	15.13.17 ContextDeleteToken
	15.13.18 Security Attributes
	Data Structures
	Attribute Types

	15.13.19 Privilege and Miscellaneous Attribute Definitions
	15.13.20 Qualifier Attributes
	15.13.21 Target Names
	15.13.22 PAC Format
	15.13.23 Common Contents fields
	15.13.24 Specific Certificate Contents for PACs
	Protection Methods
	External Control Values Construct

	15.13.25 Check Value
	15.13.26 Basic Key Distribution
	15.13.27 Keying Information Syntax
	15.13.28 Summary of Key Distribution Schemes
	15.13.29 CSI-ECMA Secret Key Mechanism
	Profile of Ticket as Used in SymmIntradomain Scheme

	15.13.30 CSI-ECMA Hybrid Mechanism
	Hybrid Inter-domain Key Distribution Scheme Data Elements
	Key Establishment Data Elements
	Key Establishment Algorithm
	Profile of Ticket as Used in Hybrid Interdomain Scheme

	15.13.31 CSI-ECMA Public Mechanism
	Profile of SPKM_REQ Used in Public Key Mechanism

	15.13.32 Dialogue Key Block

	15.14 Integrating SSL with CORBA Security
	15.14.1 Introduction
	15.14.2 Cryptographic Profiles
	15.14.3 IOR Encoding
	15.14.4 Relation to SECIOP

	15.15 DCE-CIOP with Security
	15.15.1 Goals of Secure DCE-CIOP
	15.15.2 Secure DCE-CIOP Overview
	IOR Security Components for DCE-CIOP
	TAG_ASSOCIATION_OPTIONS
	TAG_SEC_NAME

	15.15.3 DCE RPC Security Services
	Secure DCE-CIOP Operational Semantics

	Appendix A Consolidated OMG IDL
	A.1 Introduction
	A.2 General Security Data Module
	A.3 Application Interfaces - Level 1
	A.4 Application Interfaces - Level 2
	A.5 Security Administration Interfaces
	A.6 Interfaces for Non-repudiation
	A.7 Security Replaceable Service Interfaces
	A.8 Secure Inter-ORB Protocol (SECIOP)
	A.9 SSL
	A.10 Secure DCE CIOP
	A.11 Values for Standard Data Types
	A.11.1 Security Attributes
	A.11.2 Rights Families and Values
	A.11.3 Audit Event Families and Types
	A.11.4 Security Mechanisms

	Appendix B Relationship to Other Services
	B.1 Introduction
	B.2 General Relationship to Object Services and Common Facilities
	B.3 Relationship with Specific Object Services
	B.3.1 Naming Service
	B.3.2 Event Service
	B.3.3 Persistent Object Service
	B.3.4 Time Service
	B.3.5 Other Services

	B.4 Relationship with Common Facilities

	Appendix C Conformance Details
	C.1 Introduction
	C.2 Conformance Requirements
	C.3 Security Functionality Level 1
	C.3.1 Security Functionality Required
	C.3.2 Security Interfaces Supported
	C.3.3 Other Security Conformance

	C.4 Security Functionality Level 2
	C.4.1 Security Functionality Required
	C.4.2 Security Interfaces Supported
	C.4.3 Other Security Conformance

	C.5 Security Functionality Optional Packages
	C.5.1 Non-repudiation
	C.5.1.1 Security Functionality
	C.5.1.2 Security Operations Supported
	C.5.1.3 Fit with Other Security Conformance

	C.5.2 Conformance of Additional Policies

	C.6 Security Replaceability
	C.6.1 Security Features Replaceability
	C.6.2 ORB Services Replaceability
	C.6.3 Security Ready for Replaceability
	C.6.3.1 Security Functionality Required
	C.6.3.2 Security Interfaces Supported
	C.6.3.3 Other Security Conformance

	C.7 Secure Interoperability
	C.7.1 Standard Secure Interoperability
	C.7.2 Common Secure Interoperability Levels
	C.7.3 SECIOP Hosted Interoperability Mechanisms
	C.7.4 Secure Interoperability with SSL
	C.7.5 Secure Interoperability with DCE-CIOP

	Appendix D Guidelines for a Trustworthy System
	D.1 Introduction
	D.1.1 Purpose of Guidelines
	D.1.2 Trustworthiness
	D.1.3 Assurance

	D.2 Protecting Against Threats
	D.2.1 Goals of CORBA Security
	D.2.2 Threats
	D.2.3 Vulnerabilities of Distributed Object-Oriented Systems
	D.2.4 Countermeasures

	D.3 Guidelines for Structural Model
	D.3.1 Security Functions
	D.3.2 Basis of Trust
	Distributed Trusted Computing Base
	D.3.2.1 Protection Boundaries
	D.3.2.2 Controlled Communications

	D.3.3 Construction Options
	Example Using Trusted Generation Tools and ORBs
	Commercial System with Limited Security Requirements
	Higher Security System

	D.3.4 Integrity of Identities (Trojan Horse Protection)

	D.4 Guidelines for Application Interface Model
	D.4.1 Security Functions
	D.4.1.1 Logging onto the System
	Walkthrough of Secure Object Invocation

	D.4.2 Basis of Trust

	D.5 Guidelines for Administration Model
	D.5.1 Security Functions
	Object and Object Reference Creation

	D.5.2 Basis of Trust
	Authorization Policy Information
	Audit Policy Information and Audit Logs

	D.6 Security Object Implementation Model
	D.6.1 Guidelines
	D.6.2 Security Functions
	D.6.3 Basis of Trust
	Target Object Identities
	Assumptions about Security Association Mechanisms
	Invoking Special Objects

	D.6.4 Basis For ORB Assurance
	Isolating Security Mechanisms
	Integrity of the ORB and Security Service Objects
	Safeguarding the Object Environment
	Safeguarding the Dispatching Mechanism
	Safeguarding Information in Shared Vault Objects

	Appendix E Conformance Statement
	E.1 Introduction
	E.2 Conformance Template Overview
	E.3 Conformance Guidelines

	Appendix F Facilities Not in This Specification
	F.1 Introduction
	F.2 Interoperability Limitations between Unlike Domains
	F.3 Non-Session-Oriented SECIOP Protocol
	F.4 Mandatory Security Mechanisms
	F.5 Specific Security Policies
	F.6 Other Audit Services
	F.7 Possible Enhancements
	F.7.1 SECIOP Mechanism and Option Negotiation
	F.7.2 Further Key Distribution Options
	F.7.3 Further Delegation Options at/above Level 2

	F.8 Interoperability when using Non-Repudiation
	F.9 Audit Trail Interoperability
	F.10 Management
	F.11 Reference Restriction
	F.12 Target Control of Message Protection
	F.13 Advanced Delegation Features
	F.14 Overlapping and Hierarchical Domains
	F.15 Capability-Based Access Control
	F.16 Non-repudiation Services

	Appendix G Interoperability Guidelines
	G.1 Introduction
	G.2 Guidelines for Mechanism TAG Definition in IORs
	G.3 SECIOP Examples
	G.3.1 Mutual Authentication
	G.3.2 Confidential Message with Context Establishment
	G.3.3 Fragmented GIOP Request with Context Establishment

	Appendix H Glossary
	H.1 Definitions
	H.2 References

	Appendix I References

