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Preface

About the Object Management Group
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer in-
dustry standards consortium that produces and maintains computer industry specifications for interoperable, portable,
and reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia. OMG member companies write, adopt, and
maintain its specifications following a mature, open process. OMG’s specifications implement the Model Driven Ar-
chitecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple
operating systems, programming languages, middleware and networking infrastructures, and software development
environments. OMG’s specifications include: UML®(Unified Modeling Language™); CORBA® (Common Object
Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens
of vertical markets. More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifica-
tions are available from the OMG website at: https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
109 Highland Avenue
Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt Standard body text
Helvetica/Arial - 10 pt Bold OMG Interface Definition Language (OMG IDL) and syntax elements
Courier - 10 pt Bold Programming language elements
Helvetica/Arial - 10 pt Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to: https://
www.omg.org/report_issue.htm.
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1 Scope

Currently, manufacturers of hardware sensors producing data rely on arcane data sheets to describe the format of data
supplied by their sensors. Each manufacturer has defined their own data sheet format, and each consumer of the data
needs to interpret the data sheet for implementation in their own system. Errors and ambiguities can, and are likely to,
occur in these situations.

In response to the experiences of the members of the Industrial Internet Consortium (IIC) [4], particularly those
involved with the implementation of the IIC Testbeds initiative, this submission describes a metamodel for describing
the form of serialized data streams emitted by sensors, and describing how that data should be interpreted by a client
to derive the intended meaning of the data. The intent is that a manufacturer’s sensor products can be characterized by
a model expressed in the proposed metamodel. This submission does not concern itself with the transport, networking,
or wire protocol for transmitting the data from the sensor to the client.

This submission specifies a metamodel appropriate for modeling the syntax of the data streamed, as well as a mech-
anism for authoring a guideline for interpretation of that data. The model of a sensor’s data will then be provided
by the manufacturer as a document called an Electronic Data Sheet (EDS). The EDS will be a machine consumable
document such that it can be generated by the manufacturer and parsed by the consumer. The method for delivering
an EDS document is outside the scope of this submission.

The EDS is analogous to the current hardware data sheets offered by manufacturers, but improves on the current state
of the art by being highly structured, appropriate for machine consumption, and in a standardized form. An illustration
of how the EDS may be used is as follows:

• Equipment is required to offer sensor data to one or more unknown consumers.

• A consumer wishing to receive the data will access the EDS for the sensor product. The delivery of the EDS
may occur at any time prior to configuration of the consumer.

• Guided by the EDS, the consumer is adapted to parse the data provided by the sensor. This configuration may
occur at any time prior to communication with the sensor.

• The consumers and the hardware will communicate over a pre-determined protocol, such as Bluetooth, mDNS
+ TCP/IP, or other to be determined channels.

• The consumer begins to receive data from the sending hardware, and can interpret the data in the way that is
intended.

The intent is that manufacturers can use the metamodel to specify an EDS to provide a precise model of the data
their equipment is producing, and consumers can faithfully refer to a common standard to understand the EDS, and
information needed to interpret the data stream. This knowledge can be used to pre-configure a sensor client prior
to deployment. There is also the possibility of creating a dynamic configuration engine that parses EDS documents
and produces appropriate parsers and interpreters of data streams at run time. This allows manufacturers to provide
a precise description of the output of their hardware, confident that future consumers of the data produced by that
hardware can properly interpret the data stream.

An example of a bit stream that should be able to be defined is shown in Listing 1.1 at the end of this section. This
listing was provided by Bosch as an example of an existing data stream descriptor for an existing sensor, and appears
in Section 6.8.1 under Evaluation Criteria of the SENSR RFP[SENSR RFP].

The scope of the SENSR specification includes:

• Provide a metamodel that enables the unambiguous definitions of data types

• Describe an appropriate format to express EDS documents, where the EDS is a representation of a use of the
metamodel
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• Provide a mechanism to ensure unique identifiers for each encoding organization offering EDS documents.

The SENSR specification is not intended to:

• Define a new communication mechanism

• Restrict the kinds of hardware sensors that can provide data

• Restrict the kinds of consumers that can interpret data

[FileInfo]
FileName=Temperature_Sensor_EDS.eds
FileVersion=1
FileRevision=0
Description=Temperature Sensor
CreationTime=08:00AM
CreationDate=21-08-2018
CreatedBy=A. Cordes, BOSCH
ModificationTime=08:00AM
ModificationDate=21-08-2018
ModifiedBy=A. Cordes, BOSCH

[DeviceInfo]
ManufacturerID=0x02A6

[Payload_Value_1]
Length=16
Offset=0x00
Scale=1
Name=Sensor ID
Info=0x3815
Unit=n

[Payload_Value_2]
Length=8
Offset=0x00
Scale=1
Name=Counter
Unit=n

[Payload_Value_3]
Length=8
Offset=0x00
Scale=1
Name=Unused
Unit=n

[Payload_Value_4]
Length=2
Offset=0x00
Scale=1
Name=Telegram Version
Unit=n

[Payload_Value_5]
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Length=1
Offset=0x00
Scale=1
Name=Unused
Info=Value is constant 0
Unit=n

[Payload_Value_6]
Length=1
Offset=0x00
Scale=1
Name=Payload Encryption
Unit=n

[Payload_Value_7]
Length=1
Offset=0x00
Scale=1
Name=Battery Status
Unit=n

[Payload_Value_8]
Length=16
Offset=0
Scale=1
Name=Temperature
format=signend8.8
Unit=C

[Payload_Value_9]
Length=8
Offset=0
Scale=1
Name=Temperature_max1h
format=signed8
Unit=C

[Payload_Value_10]
Length=8
Offset=0
Scale=1
Name=Temperature_min1h
format=signed8
Unit=C

[Payload_Value_11]
Length=8
Offset=0
Scale=1
Name=Temperature_max24h
format=signed8
Unit=C

[Payload_Value_12]
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Length=8
Offset=0
Scale=1
Name=Temperature_min24h
format=signed8
Unit=C

Listing 1.1: Example Bitstream
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2 Conformance

2.1 Basic Conformance
All conformant products must comply with these conformance points:

• Implement the Base package. The Base package defines each abstract base class for the Syntax, Semantics, and
Unit class families, the DataElement class, and the DataSheet class. It provides the initial set of relationships.

• Implement the Syntax package. The Syntax package defines the bit layout in a data stream.

• Implement the Semantics package. The Semantics package defines the basic data kinds that consumers can
expect to encounter.

• Implement the Units package. The Units package defines a comprehensive way to describe physical units in
a measurement-system-independent manner, and then impose a measurement-system on the dimensioned de-
scriptors.

2.2 Extended Conformance
Products compliant with Extended Conformance must comply with all points of Basic Conformance, and in addition
provide a suitably useful data types library that offers either US Customary or Metric compliant units, a suite of syntax
and semantic types to handle the most common types such as a Boolean (single bit) type, and both 8 and 16 bit integer
types.
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4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Complete MOF (CMOF)
The CMOF, or Complete MOF, Model is the model used to specify other metamodels such as UML2.

Electronic Data Sheet (EDS)
An Electronic Data Sheet is an electronically transmitted document that describes a component, generally a
hardware component in electrical engineering. That component can be as low level as a single analog device
(resistor, diode, capacitor), or a complex device such as an environmental sensor. The data sheet describes how
to integrate that device into a larger system.

Essential MOF (EMOF)
Essential MOF is the subset of MOF that most closely corresponds to the facilities found in object-oriented
programming languages and in XML. It provides a straightforward framework for mapping MOF models to
implementations such as JMI and XMI for simple metamodels. A primary goal of EMOF is to allow simple
metamodels to be defined using simple concepts while supporting extensions (by the usual class extension
mechanism in MOF) for more sophisticated metamodeling using CMOF.

Industrial Internet Consortium (IIC)
"The Industrial Internet Consortium was founded in March 2014 to bring together the organizations and tech-
nologies necessary to accelerate the growth of the industrial internet by identifying, assembling, testing and
promoting best practices. Members work collaboratively to speed the commercial use of advanced technologies.
Membership includes small and large technology innovators, vertical market leaders, researchers, universities
and government organizations." https://www.iiconsortium.org/

Metamodel
A metamodel is a model that acts as the schema for a family of models.

Meta-Object Facility (MOF)
The Meta Object Facility (MOF), an OMG specification, provides a metadata management framework, and a
set of metadata services to enable the development and interoperability of model and metadata-driven systems.
Examples of systems that use MOF include modeling and development tools, data warehouse systems, metadata
repositories etc.

Model
A model is a formal specification of the function, structure and/or behavior of an application or system.

XML Metadata Interchange (XMI)
XMI is a widely used interchange format for sharing objects using XML. XMI is a comprehensive solution that
build on sharing data with XML. XMI is applicable to a wide variety of objects: analysis (UML), software (Java,
C++), components (EJB, IDL, CORBA Component Model), and databases (CWM).
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5 Symbols

The following symbols and/or abbreviations are used throughout this specification.

None.
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6 Additional Information
(informative)

6.1 How to read this Specification
This specification presents a metamodel for describing Electronic Data Sheets suitable for use by manufacturers of
devices that sense and report on observed phenomena. Clauses 1 to 6 provide compliance rules, terms definitions
and reference information. Clause 7 provides the description of the metamodel for SENSR. Clause 8 provides an
informative example of how to use SENSR to build a library of Units. Clause 9 provides informative examples of
how to define EDSs in SENSR, with equivalent XML representations. Clause 10 provides an informative example of
a PSM for a Bluetooth LE implementation.

All clauses of this document are normative unless explicitly marked “(informative)”. The marking “(informative)” of
a particular clause applies also to all contained sub-clauses of that clause.

6.2 Acknowledgments
• Axel Cordes and team members of Bosch Software Innovations reviewed this submission

• Peter Denno, NIST, provided review and feedback

• Jason McC. Smith, Elemental Reasoning, prepared the final submission
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7 Core Packages

7.1 Base
SENSR’s Base package defines the fundamental concepts of SENSR. The DataSheet is composed of DataElements,
and DataElements have three parts to their definition: Syntax, Semantics, and optionally Units.

Users of this metamodel are expected to create their own types from one of the four provided subtypes of DataElement,
depending on the representation in the sensor’s data.

Figure 7.1: Base Package Class Diagram

7.1.1 Container
A Container wraps an ordered collection of DataElements into a single entity. This is useful in cases where, for
example, a triplet of Distance measurements comprise a CartesianCoordinate, or it is necessary to break down a
Numeric type into the individual components such as Sign, Exponent, and Mantissa.

Generalizations

DataElement
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Associations (Required)

elements : DataElement [1..*] {ordered}
The elements attribute points to an ordered list of DataElement instances, such that the container acts
as a wrapper providing a syntactic ordering of subelements. The subelements can be any DataElement
subtype, another Container, a Quantity, a Union, or even a Stream. In the last case, the semantics are
such that when the Stream’s data is ended, however that is achieved, the next element in the Container’s
sequence is expected.

7.1.2 DataElement (Abstract)
A DataElement models a unit of data of the DataSheet’s streamElements, such that a consumer of the DataSheet can
understand that portion of the data stream. A DataElement contains physical layout (Syntax), a descriptor of the kind
of expected data (Semantics), and an optional Units that explains how to interpret the data as an observation of a
physical phenomenon.

Attributes (Required)

name : String
The name for the DataElement, this is vendor defined

Associations (Required)

description : SemanticBase [1]
The instance pointed to by the description association is of type SemanticBase. This class family provides
a DataElement with a way of describing the kind of data it will define, thus guiding interpretation.

7.1.3 DataSheet
DataSheet is the top level modeling element in SENSR. It is the electronic equivalent of a traditional manufacturer’s
data sheet for electronic devices. It provides guidance for implementors on how to interpret a data stream, and is
composed of DataElement instances.

Attributes (Required)

author : String
Initial author of the Data Sheet.

creationDateTime : String
Date and timestamp of the initial creation of this DataSheet. Format is ISO 8601 compliant, and assumes
UTC timezone: YYYYMMDDThhmmZ.

modificationDateTime : String
Date and timestamp of the last modification of this DataSheet. Format is ISO 8601 compliant, and assumes
UTC timezone: YYYYMMDDThhmmZ.

modifyingAuthor : String
Author who last modified this DataSheet.

name : String
The name of the DataSheet, provided by the vendor. Each vendor is likely to have their own naming
convention, such as the make of the sensor whose output stream is being modeled.

vendorID : String
The identifier for a specific vendor. This vendorID is unique to a vendor, and requires registration with a
central organization.

version : String
Version is defined in x.y.z format, where x is major version, y is revision, and z is patch, and each is a
monotonically increasing integer starting at 0, and reset when the number to the left is incremented.

Associations (Required)

streamElements : DataElement [1..*] {ordered}
An ordered sequence of DataElements that make up the bit stream.
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7.1.4 Quantity

A Quantity is a ’simple’ value, such as a number, a string, a flag, or a bitmask. It has a fixed data size (in bits), a known
semantics, and optionally a units signifier.

Generalizations

DataElement

Attributes (Optional)

base : Integer [0..1]
The numeric base of the number being represented. Defaults to 10 unless otherwise specified.

relativeZeroPoint : String [0..1]
If a value for relativeZeroPoint is provided, it is to be interpreted as establishing this Quantity as repre-
senting a relative measure. For instance, assume a home thermostat is reporting temperature in degrees
Celsius as a fixed point number using a relatively small number of bits. Since it is unlikely the thermostat
will need to report values below 15C, or above 35C, it sets a relative zero point of 25, and is able to use
its bit space to more precisely measure the +/- 10C it is most concerned with. This value is provided as a
String, to allow it to be independent of the syntax, description, and units associations.

Associations (Required)

syntax : SyntaxBase [1]
An association to an instance of SyntaxBase, this defines the layout of the bits for this Quantity.

Associations (Optional)

units : Unit [0..1]
An optional association, units provide dimensionality to a measure.

7.1.5 Stream

A Stream has no particular end to its data. Unlike a Quantity, which has a specific bit layout, or a Container, which
has a specific ordered list of DataElements, or a Union, which has a fixed size with alternate semantics, a Stream has
no predefined length.

Generalizations

DataElement

Attributes (Required)

eos : String
End of Stream signifier. For simple value streams, a String value should suffice. For more complex
streams, such as video or audio, it may be better to use the reference attribute to point to an external
specification, and leave this attribute blank.

7.1.6 Union

A Union, named after a similar data structure in the C programming language family, offers alternative semantics for
the same syntax field. Two or more DataElements are pointed to with the understanding that only one DataElement
can occupy the relevant bits in the data stream. As such, the DataElements in the collection of choices usually have
the same syntactic length. However, if the Union points to a VariableSize instance for its Syntax, then at least one
of the DataElements pointed to by the Union will have a unique Syntax element. Often, which semantics are used to
interpret the bit field is based on a conditional expression or value of a flag in the stream.

Generalizations
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DataElement

Associations (Required)

choices : DataElement [2..*]
Two or more choices to be selected from. Each choice must have the same Syntax length.

7.2 Syntax
The Syntax package lets authors of DataSheets define the ’physical’ layout of bits at the most basic level. This version
of the specification provides the FixedSize class, a provision that satisfies most needs. By providing an abstract base
class, however, we leave open the opportunity for future possibilities.

Figure 7.2: Syntax Package Class Diagram

7.2.1 Constant

A Constant data element has not only a fixed size, but a fixed value. The value String attribute gives the value in the
expected format indicated by the Semantics that accompany the data element.

Generalizations

FixedSize

Attributes (Required)

value : String
The value of the Constant held by the data element.
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7.2.2 FixedSize

The FixedSize class is expected to be the most commonly used Syntax class. It is used to define the number of bits
that a Quantity DataElement will take up in the datastream.

Generalizations

SyntaxBase

Attributes (Required)

bits : int
A simple count of the bits used for a Quantity.

7.2.3 SyntaxBase (Abstract)

SyntaxBase provides a common interface for describing the physical layout of bits within a bitstream.

Attributes (Required)

name : String
The name of the Syntax being defined.

7.2.4 VariableSize

A VariableSize Syntax informs the DataElement that the number of bits used by it may change due to other consider-
ations. This is useful with a Union DataElement subtype.

Generalizations

SyntaxBase

Attributes (Required)

max : int
Maximum number of bits that will be occupied by this Syntax element.

min : int
Smallest number of bits that will be occupied by this Syntax element.

7.3 Semantics
The Semantic package defines an extensible system for describing the kind of data being expressed by a DataElement.
The included descriptors range from the usual text and numeric data, to more complicated audio-visual data kinds.
The Semantic classes do not describe the physical layout of the data (which is handled by the Syntax package), or
how to interpret the data with respect to the physical world (which is handled by the Units package). The reference
attribute in the DataElement class is used to point to an authoritative external source for guidance, where applicable.
It is not embedded here, because the external source will necessarily depend on the syntax layout and, potentially, the
physical units.

7.3.1 Audio

Describes an audio stream.

Generalizations

SemanticBase
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Figure 7.3: Semantics Package Class Diagram

7.3.2 Bitfield

A Bitfield describes a fixed length vector of single bits. This is commonly used to collect boolean flags into a common
space. (Note that the field can be a single bit long, in which case it is just a flag.)

Generalizations

SemanticBase

7.3.3 Char

Describes a single character. Encoding is handled by an appropriate reference.

Generalizations

Text

7.3.4 Enumeration

Describes an enumeration, a fixed set of values that are the only valid values for the DataElement.

Generalizations

Bitfield

Associations (Required)

values : EnumValue [1..*]
A set of EnumValue objects that describe the allowed values for this Enumeration.
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7.3.5 EnumValue

A single value for an Enumeration kind. It has a name to refer to it by, and a value. The value is an Integer, interpreted
from the Bitfield that it specializes as big-endian base 2 values. Note that this is not to specify that the data must be
big-endian or base 2, but that for the purposes of mapping the bits to the enumerated value, there will be a specific bit
pattern that is to be interpreted in that matter.

Attributes (Required)

mapValue : Integer
The Integer value that corresponds to the bit pattern of the Enumeration to map to this EnumValue. The
bit pattern in the base Bitfield will be interpreted as big-endian base 2 to form this value.

name : String
The name of this particular enumeration value.

value : String
The value of the EnumValue. This is represented as a String, which is to be interpreted as the type specified
by the type attribute.

Associations (Required)

type : SemanticBase [1]
Guidance on how to interpret the value attribute. If, for example, this points to a String instance, then the
String value of the value attribute is to be taken literally. If this attribute points to an Integer instance, then
"1" would be the integer 1, "20" would be interpreted as the integer 20, and so on.

7.3.6 FixedPoint

A fixed point number, having a scale value that converts the integer to a fixed decimal position.

Generalizations

Numeric

Attributes (Required)

scale : int
The scaling factor by which to divide the integer.

7.3.7 FloatingPoint

A floating point number. Floating point representation can be quite complicated. Typically, FloatingPoint objects will
be used in a DataElement that points to an established reference such as IEEE 754.

Generalizations

Numeric

7.3.8 Ignore

Some sections of a bit stream are unused, and are to be ignored. Use this Semantic kind to indicate that a consumer
should simply skip these bits.

Generalizations

SemanticBase
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7.3.9 Image

Describes an image. Except for simple bitmaps, this is likely going to be pointing to an established specification using
DataElement::reference.

Generalizations

SemanticBase

7.3.10 Integer

An integer. Equivalent to a fixed point number with a scaling factor of 1.

Generalizations

FixedPoint

Constraints

scale : [scale = 1]
An integer is a fixed point with a scaling factor of 1.

7.3.11 Numeric

Any single-dimensional numeric value.

Generalizations

SemanticBase

Attributes (Required)

base : int
Base of the numeric type.

isSigned : boolean
Flag to indicate if the numeric type is signed. Default is true.

7.3.12 SemanticBase (Abstract)

SemanticBase is the base abstract class for all semantic classes. It supplies only a name attribute for the kind to be
described.

Attributes (Required)

name : String
The name of the semantic kind being described.

reference : String
URI to find reference material on the DataElement. Examples could be a link to the IEEE 745 floating
point specification, UTF-8 for strings, etc.

7.3.13 String

A string, a collection of characters. Encoding is handled by an appropriate reference.

Generalizations

Text
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7.3.14 Text

Any kind of textual data.

Generalizations

SemanticBase

7.3.15 Video

A video stream. Almost certainly this will use DataElement::reference to point to an established specification.

Generalizations

SemanticBase

7.4 Units
Units provide a dimensionality to a number. They give a rigorous interpretation guide for measurements of physical
phenomena, as well as provide a concrete representation space such as SI, US Customary, or Imperial measurements.

Users of SENSR are given four options for defining a Unit:

• Simple, an abstract base class for units that have a single dimensionality such as SI units or Imperial units

• Scaled, which scales another Unit by a fixed amount, such as 1000 grams in a kilogram, or 12 inches in a foot

• Multiply which combines dissimilar Units into a complex dimensioned Unit

• Exponent, which provides a compact way of expressing higher dimensionality of a single Unit.

Complex units such as those for measuring velocity, density, and force, can be built using the above mechanisms.

Conversions from one unit system to another can be accomplished by judicious use of the Scaled class.

7.4.1 Exponent

The Exponent class raises a Unit to a given power. The power is floating point, to accommodate fractal cases, and is
signed to provide a mechanism for division.

Generalizations

Unit

Attributes (Required)

power : float
The exponent to raise the Unit to. It is a signed number, so it can be used naturally for division via a
negative exponent. It is a floating point to handle fractal dimensionalities.

Associations (Required)

base : Unit [1]
The base attribute points to a defined Unit which is to be raised to a given exponential power. Any base
Unit can be used, but the most common will be subtypes of Simple.

Simplified Electronic Notation for Sensor Reporting (SENSR) 1.0(beta) 18



Figure 7.4: Units Package Class Diagram

7.4.2 Multiply

The Multiply class uses op1 as the first multiplicand, and op2 as the second.

Generalizations

Unit

Associations (Required)

op1 : Unit [1]
The first Unit to be referenced.

op2 : Unit [1]
The second Unit to be referenced.

7.4.3 Scaled

The Scaled class takes a base Unit and provides a scaling factor, the magnitude, to create a new unit that is a scale
conversion of the same dimensionality. An example would be a gram as 0.001 of a kilogram.

Generalizations

Unit

Attributes (Required)

magnitude : float
Value to scale Base unit by to create this Scaled unit.

Associations (Required)

base : Unit [1]
The Base unit kind that this Scaled unit is built off of.
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7.4.4 Simple (Abstract)
Simple is the core class for most Units that will ultimately be created using SENSR. It is abstract, and has seven
normative subclasses, defined in Clause 7.5.

Generalizations

Unit

7.4.5 Unit (Abstract)
Unit is the base class for an entire family of descriptors for the units that physical observations are to be measured in.

Attributes (Required)

name : String
Name of the Unit

7.5 FoundationalUnits
The FoundationalUnits package provides a core set of Units that can be composed into highly complex multi-dimensioned
Units. The seven foundational units were chosen to correspond to the seven basic units of the SI system. From these,
any physical phenomena should be describable. These Units are ’pure’ in the sense that they do not have a specific
measure, and do not map to a specific measuring system. They are therefore suitable to be mapped to any system, such
as SI (or metric), Imperial, or US Customary.

Figure 7.5: Simple Units Class Diagram

7.5.1 Amount
Amount describes a quantity. This can be the quantity of a substance, such as a chemical, or the number of birds in
a flock, or how many dozen eggs are in stock. If none of the other six FoundationalUnits correspond to what you are
measuring, use Amount as your starting point.

Generalizations

Simple
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7.5.2 Current

Current describes the rate of net flow of electric charge past a specific spatial point.

Generalizations

Simple

7.5.3 Length

Length describes a unit of physical linear measure.

Generalizations

Simple

7.5.4 Light

Light defines a unit for luminous intensity.

Generalizations

Simple

7.5.5 Mass

Mass is a descriptor for a unit of the physical property which is a measure of its resistance to acceleration.

Generalizations

Simple

7.5.6 Temperature

Temperature is a descriptor of the thermodynamic temperature of a system, a measure of the mean kinetic energy of
the components of the system.

Generalizations

Simple

7.5.7 Time

Time describes a unit of, well, time.

Generalizations

Simple
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8 UnitsLibrary (informative)

8.1 CompoundUnits
SENSR does not offer normative units, nor does it offer normative compound dimensional units. At the most abstract,
SENSR provides ’pure’ units in the FoundationalUnits package which are then filled in to form a basic unit set.

Compound Units combine these Foundational Units into more complex forms, such as velocity (Length / Time),
acceleration (Length / Time Squared), area (Length Squared), and volume (Length Cubed).

This is accomplished through the Unit::Multiply and Unit::Exponent classes. In general, use the Exponent class to
raise a Foundational Unit to the proper power, including negative powers, and then Multiply to combine like terms
into a single Compound Unit. Common examples are included in Figure 8.1.

Figure 8.1: Compound Units Object Diagram
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8.2 SIUnits
The International System of units (SI), commonly known as the metric system, is arguably the most common and
important unit system in technical environments. It is not, however, the only unit system. Instead of creating a
normative SI Unit library, SENSR offers vendors and consumers a way to jointly describe SI Units in a natural way.

Figure 8.2: SI Units Object Diagram

8.3 CompoundSIUnits
This library provides examples of how to use the SI Units and the techniques from the Compound Units to create the
common and useful forms seen in industry. Any physical phenomenon that can be measured using SI Units can be
modeled in this manner. Common examples are shown in Figure 8.3.

8.4 USCustomary
An example of how the seven Simple Units can be used to create instances corresponding to the US Customary unit
system. Examples of Scaled units and compound units are provided.
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Figure 8.3: Compound SI Units Object Diagram

Simplified Electronic Notation for Sensor Reporting (SENSR) 1.0(beta) 24



Figure 8.4: US Customary Units Object Diagram
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9 Examples (informative)

9.1 Example 1
A simple example showing a DataSheet describing two DataElements. The first is a 32-bit IEEE 754 unsigned floating
point number that represents frequency (Hz) in the SI unit system. The second is similarly a 32-bit IEEE 754 unsigned
floating point number, but it represents acceleration in the SI unit system.

Listing 9.1 shows a fully expanded form of this data, with redundancy but clarity.

<?xml version=’1.0’ encoding=’UTF-8’?>
<xmi:XMI xmlns:xmi=’http://www.omg.org/spec/XMI/20131001’

xmlns:sensr=’http://www.omg.org/spec/SENSR/20191001’>

<!--
frequency: 32-bit IEEE 754 Hz (1/sec)
accleration: 32-bit IEEE 754 (m/sec^2)

-->

<sensr:DataSheet>
<name xmi:type="String">Example1</name>
<vendorID xmi:type="String">0</vendorID>
<sensr:Quantity>

<name xmi:type="String">frequency</name>
<syntax xmi:type="sensr:FixedSize">

<name xmi:type="String">32bit</name>
<bits xmi:type="int">32</bits>

</syntax>
<unit xmi:type="sensr:Exponent">

<name xmi:type="String">perSec</name>
<power xmi:type="float">-1.0</power>
<base xmi:type="sensr:Time">

<name xmi:type="String">second</name>
</base>

</unit>
<description xmi:type="FloatingPoint">

<name xmi:type="String">IEEE754-1</name>
<isSigned xmi:type="boolean">false</isSigned>
<base xmi:type="int">10</base>
<reference xmi:type="String">

"https://ieeexplore.ieee.org/document/4610935"
</reference>

</description>
</sensr:Quantity>
<sensr:Quantity>

<name xmi:type="String">acceleration</name>
<syntax xmi:type="sensr:FixedSize">

<name xmi:type="String">32bit</name>
<bits xmi:type="int">32</bits>

</syntax>
<unit xmi:type="sensr:Multiply">

<name xmi:type="String">acceleration</name>
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<op1 xmi:type="sensr:Length">
<name>meter</name>

</op1>
<op2 xmi:type="sensr:Exponent">

<power xmi:type="float">-2.0</power>
<base xmi:type="sensr:Time">

<name xmi:type="String">second</name>
</base>

</op2>
</unit>
<description xmi:type="FloatingPoint">

<name xmi:type="String">IEEE754</name>
<isSigned xmi:type="boolean">false</isSigned>
<base xmi:type="int">10</base>
<reference xmi:type="String">

"https://ieeexplore.ieee.org/document/4610935"
</reference>

</description>
</sensr:Quantity>

</sensr:DataSheet>

Listing 9.1: ..//Example 1

9.2 Example 2
This is an equivalent example to Example 1, but instead of explicit instances, it shares instances where possible. You
can see the reduction in size in Listing 9.2. The redundancy is eliminated, with a slight reduction in clarity.

<?xml version=’1.0’ encoding=’UTF-8’?>
<xmi:XMI xmlns:xmi=’http://www.omg.org/spec/XMI/20131001’

xmlns:sensr=’http://www.omg.org/spec/SENSR/20191001’>

<!--
frequency: 32-bit IEEE 754 Hz (1/sec)
accleration: 32-bit IEEE 754 (m/sec^2)

-->

<sensr:DataSheet>
<name xmi:type="String">Example2</name>
<vendorID xmi:type="String">0</vendorID>
<sensr:Quantity>

<name xmi:type="String">frequency</name>
<syntax xmi:type="sensr:FixedSize" xmi:id="32bit">

<name xmi:type="String">32-bit</name>
<bits xmi:type="int">32</bits>

</syntax>
<unit xmi:type="sensr:Exponent">

<power xmi:type="float">-1.0</power>
<base xmi:type="sensr:Time" xmi:id="Second">

<name xmi:type="String">Second</name>
</base>

</unit>
<description xmi:type="FloatingPoint" xmi:id="IEEE754-FP">

<name xmi:type="String">IEEE754</name>
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Figure 9.1: Example 1 Object Diagram
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<isSigned xmi:type="boolean">false</isSigned>
<base xmi:type="int">10</base>
<reference xmi:type="String">

"https://ieeexplore.ieee.org/document/4610935"
</reference>

</description>
</sensr:Quantity>
<sensr:Quantity>

<name xmi:type="String">acceleration</name>
<syntax xmi:idref="32bit"/>
<unit xmi:type="sensr:Multiply">

<op1 xmi:type="sensr:Length" xmi:id="Meter">
<name>Meter</name>

</op1>
<op2 xmi:type="sensr:Exponent">

<power xmi:type="float">-2.0</power>
<base xmi:idref="Second"/>

</op2>
</unit>
<description xmi:idref="IEEE754-FP"/>

</sensr:Quantity>
</sensr:DataSheet>

Listing 9.2: ..//Example 2

9.3 Example 3
This is an example of three identical data types being reported in succession. Each is a signed 8-bit integer, reporting
acceleration in SI units across the x, y, and z axes.

The corresponding XML file can be found in Listing 9.3. You can see how the xmi:id and xmi:idref mechanism can be
used to reduce the size of the XML file by referring to pre-existing elements in the file. This allows a user of SENSR
to achieve both a self-contained file, and compactness.

<?xml version=’1.0’ encoding=’UTF-8’?>
<xmi:XMI xmlns:xmi=’http://www.omg.org/spec/XMI/20131001’

xmlns:sensr=’http://www.omg.org/spec/SENSR/20191001’>

<!--
vectored acceleration:

accleration: 8-bit signed int (m/sec^2)
accleration: 8-bit signed int (m/sec^2)
accleration: 8-bit signed int (m/sec^2)

-->

<sensr:DataSheet>
<name xmi:type="String">VectoredAcceleration</name>
<vendorID xmi:type="String">0</vendorID>
<sensr:Composite>

<name xmi:type="String">vectored_acceleration</name>
<sensr:Quantity>

<name>x</name>
<reference xmi:type="String"/>
<syntax xmi:type="sensr:FixedSize" xmi:id="8bit">

<name xmi:type="String">8-bit</name>
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Figure 9.2: Example 2 Object Diagram
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<bits xmi:type="int">8</bits>
</syntax>
<unit xmi:type="sensr:Multiply" xmi:id="Acceleration">

<op1 xmi:type="sensr:Length">
<name>Meter</name>

</op1>
<op2 xmi:type="sensr:Exponent">

<power xmi:type="float">-2.0</power>
<base xmi:type="sensr:Time">

<name xmi:type="String">Second</name>
</base>

</op2>
</unit>
<description xmi:type="Integer" xmi:id="integer">

<name xmi:type="String">short</name>
<isSigned xmi:type="boolean">true</isSigned>
<base xmi:type="int">10</base>

</description>
</sensr:Quantity>
<sensr:Quantity>

<name>y</name>
<reference xmi:type="String"/>
<syntax xmi:idref="8bit"/>
<unit xmi:idref="Acceleration"/>
<description xmi:idref="integer"/>

</sensr:Quantity>
<sensr:Quantity>

<name>z</name>
<reference xmi:type="String"/>
<syntax xmi:idref="8bit"/>
<unit xmi:idref="Acceleration"/>
<description xmi:idref="integer"/>

</sensr:Quantity>
</sensr:Composite>

</sensr:DataSheet>

Listing 9.3: ..//Example 3
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Figure 9.3: Example 3 Object Diagram

Simplified Electronic Notation for Sensor Reporting (SENSR) 1.0(beta) 32



10 PSM (Bluetooth LE) (informative)

Bosch has created a Bluetooth LE (BLE) Advertising implementation, and provided example data being transmitted.
The following PSM is a description of the model of the example data, and is presented in both XML and JSON formats
suitable for machine reading and configuration. The UML object diagram in Figure 10 is a match for the example
Listing 1.1 from Section 1. Listing 10.1 defines this model in XML. Note that the xmlns directive is pointing to
a speculative URI. The correct URI will be generated upon adoption of this specification. The JSON representation
requires a slight change, in that to reference JSON elements, one must use the name of the element in the JSON tree.
To do this requires adding a ’type’ field to each node to indicate which SENSR class it is an instance of. This is shown
in Listing 10.2.

MagicDraw, 1-1 /Users/smithja/Non-iCloud Documents/SENSR/BoschPSM.mdzip PSM Aug 17, 2019 12:08:26 AM

Object Diagram PSMPSM  ][ 

version = "1.0"
vendorID = "0x02A6"
streamElement = Data
name = "Temperature Sensor"
modifyingAuthor = "A. Cordes, BOSCH"
modificationDateTime = "20180821T0800Z"
creationDateTime = "20180821T0800Z"
author = "A. Cordes, BOSCH"

TemperatureSensorEDS : DataSheet

elements = Payload_Value_1, 
Payload_Value_2, Payload_Value_3, 
Payload_Value_4, Payload_Value_5, 
Payload_Value_6, Payload_Value_7, 
Payload_Value_8, Payload_Value_9, 
Payload_Value_10, Payload_Value_11, 
Payload_Value_12

Data : Container

units = Centigrade
syntax = Fixed8
name = "Temperature_max24h"
description = Integer

Payload_Value_11 : Quantity

units = Centigrade
syntax = Fixed8
name = "Temperature_min24h"
description = Integer

Payload_Value_12 : Quantity

units = Centigrade
syntax = Fixed8
name = "Temperature_max1h"
description = Integer

Payload_Value_9 : Quantity

units = Centigrade
syntax = Fixed8
name = "Temperature_min1h"
description = Integer

Payload_Value_10 : Quantity

units = n
syntax = Fixed1
name = "Payload Encryption"
description = Flags

Payload_Value_6 : Quantity

scale = 32768
name = "Fixed8_8"
isSigned = true
base = 10

Fixed8_8 : FixedPoint

units = n
syntax = Fixed2
name = "Telegram Version"
description = Integer

Payload_Value_4 : Quantity

units = Centigrade
syntax = Fixed16
name = "Temperature"
description = Fixed8_8

Payload_Value_8 : Quantity

units = n
syntax = Fixed1
name = "Battery Status"
description = Flags

Payload_Value_7 : Quantity

units = n
syntax = Zero
name = "Unused"
description = Unused

Payload_Value_5 : Quantity

units = n
syntax = Fixed8
name = "Unused"
description = Unused

Payload_Value_3 : Quantity

units = n
syntax = Fixed8
name = "Counter"
description = Integer

Payload_Value_2 : Quantity

units = n
syntax = SensorID
name = "Sensor ID"
description = Integer

Payload_Value_1 : Quantity

name = "Centigrade"

Centigrade : Temperature

value = "3815"
name = "SensorID"
bits = 16

SensorID : Constant

name = "Flag"
bits = 1

Fixed1 : FixedSize

name = "Int16"
bits = 16

Fixed16 : FixedSize

name = "Int2"
bits = 2

Fixed2 : FixedSize

name = "Int8"
bits = 8

Fixed8 : FixedSize

value = "0"
name = "Zero"
bits = 1

Zero : Constant

Unused : Ignore

name = "Flags"

Flags : Bitfield

isSigned = true

Integer : Integer

n : Amount

Figure 10.1: PSM Example

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmlns:sensr="https://www.omg.org/spec/SENSR/20191000">

<DataSheet id="TemperatureSensorEDS" name="Temperature Sensor" version="1.0"
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author="A. Cordes, BOSCH" creationDateTime="20180821T0800Z"
modifyingAuthor="A. Cordes, BOSCH" modificationDateTime="20180821T0800Z">
<Integer isSigned=’true’ id=’Integer’/>
<Bitfield name=’Flags’ id=’Flags’/>
<Ignore id=’Unused’/>
<FixedPoint id=’Fixed8_8’ name=’Fixed8_8’ scale=’32768’/>
<FixedSize id=’Fixed16’ name=’Int16’ bits=’16’/>
<FixedSize id=’Fixed8’ name=’Int8’ bits=’8’/>
<FixedSize id=’Fixed2’ name=’Int2’ bits=’2’/>
<FixedSize id=’Fixed1’ name=’Flag’ bits=’1’/>
<Temperature id=’Centigrade’ name=’Centigrade’/>
<Amount id=’n’/>
<Constant id=’Zero’ name=’Zero’ bits=’1’ value=’0’/>
<Constant id=’SensorID’ name=’SensorID’ bits=’16’ value=’3815’/>
<streamElement>

<Container id=’Data’>
<elements>

<Quantity id=’Payload_Value_1’ name=’Sensor ID’
description=’Integer’ syntax=’SensorID’ units=’n’/>

<Quantity id=’Payload_Value_2’ name=’Counter’
description=’Integer’ syntax=’Fixed8’ units=’n’/>

<Quantity id=’Payload_Value_3’ name=’Unused’
description=’Unused’ syntax=’Fixed8’ units=’n’/>

<Quantity id=’Payload_Value_4’ name=’Telegram Version’
description=’Integer’ syntax=’Fixed2’ units=’n’/>

<Quantity id=’Payload_Value_5’ name=’Unused’
description=’Unused’ syntax=’Zero’ units=’n’/>

<Quantity id=’Payload_Value_6’ name=’Payload Encryption’
description=’Flags’ syntax=’Fixed1’ units=’n’/>

<Quantity id=’Payload_Value_7’ name=’Battery Status’
description=’Flags’ syntax=’Fixed1’ units=’n’/>

<Quantity id=’Payload_Value_8’ name=’Temperature’
description=’Fixed8_8’ syntax=’Fixed16’ units=’Centigrade’/>

<Quantity id=’Payload_Value_9’ name=’Temperature_max1h’
description=’Integer’ syntax=’Fixed8’ units=’Centigrade’/>

<Quantity id=’Payload_Value_10’ name=’Temperature_min1h’
description=’Integer’ syntax=’Fixed8’ units=’Centigrade’/>

<Quantity id=’Payload_Value_11’ name=’Temperature_max24h’
description=’Integer’ syntax=’Fixed8’ units=’Centigrade’/>

<Quantity id=’Payload_Value_12’ name=’Temperature_min24h’
description=’Integer’ syntax=’Fixed8’ units=’Centigrade’/>

</elements>
</Container>

</streamElement>
</DataSheet>

</xmi:XMI>

Listing 10.1: PSM XML

{"TemperatureSensorEDS": {
"type": "DataSheet",
"name": "Temperature Sensor",
"version": "1.0",
"author": "A. Cordes, BOSCH",
"creationDateTime": "20180821T0800Z",
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"modifyingAuthor": "A. Cordes, BOSCH",
"modificationDateTime": "20180821T0800Z",
"Integer": {

"type": "Integer",
"isSigned": "true"

},
"Flags":{

"type": "Bitfield",
"name": "Flags"

},
"Unused": {

"type": "Ignore"
},
"Fixed8_8": {

"type": "FixedPoint",
"name": "Fixed8_8",
"base": "10",
"scale": "32768"

},
"Fixed16": {

"type": "FixedSize",
"name": "Int16",
"bits": "16"

},
"Fixed8": {

"type": "FixedSize",
"name": "Int8",
"bits": "8"

},
"Fixed2": {

"type": "FixedSize",
"name": "Int2",
"bits": "2"

},
"Fixed1": {

"type": "FixedSize",
"name": "Flag",
"bits": "1"

},
"Centigrade": {

"type": "Temperature",
"name": "Centigrade"

},
"n": {

"type": "Amount",
},
"Zero": {

"type": "Constant",
"name": "Zero",
"bits": "1",
"value": "0"

},
"SensorID": {

"type": "Constant",
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"name": "SensorID",
"bits": "16",
"value": "3815"

},
"Data": {

"type": "Container",
"elements": {

"Payload_Value_1": {
"type": "Quantity",
"name": "Sensor ID",
"description": {"$ref": "/#Integer"},
"syntax": {"$ref": "/#SensorID"},
"units": {"$ref": "/#n"}

},
"Payload_Value_2": {

"type": "Quantity",
"name": "Counter",
"description": {"$ref": "/#Integer"},
"syntax": {"$ref": "/#Fixed8"},
"units": {"$ref": "/#n"}

},
"Payload_Value_3": {

"type": "Quantity",
"name": "Unused",
"description": {"$ref": "/#Unused"},
"syntax": {"$ref": "/#Fixed8"},
"units": {"$ref": "/#n"}

},
"Payload_Value_4": {

"type": "Quantity",
"name": "Telegram Version",
"description": {"$ref": "/#Integer"},
"syntax": {"$ref": "/#Fixed2"},
"units": {"$ref": "/#n"}

},
"Payload_Value_5": {

"type": "Quantity",
"name": "Unused",
"description": {"$ref": "/#Unused"},
"syntax": {"$ref": "/#Zero"},
"units": {"$ref": "/#n"}

},
"Payload_Value_6": {

"type": "Quantity",
"name": "Payload Encryption",
"description": {"$ref": "/#Flags"},
"syntax": {"$ref": "/#Fixed1"},
"units": {"$ref": "/#n"}

},
"Payload_Value_7": {

"type": "Quantity",
"name": "Battery Status",
"description": {"$ref": "/#Flags"},
"syntax": {"$ref": "/#Fixed1"},
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"units": {"$ref": "/#n"}
},
"Payload_Value_8": {

"type": "Quantity",
"name": "Temperature",
"description": {"$ref": "/#Fixed8_8"},
"syntax": {"$ref": "/#Fixed16"},
"units": {"$ref": "/#Centigrade"}

},
"Payload_Value_9": {

"type": "Quantity",
"name": "Temperature_max1h",
"description": {"$ref": "/#Integer"},
"syntax": {"$ref": "/#Fixed8"},
"units": {"$ref": "/#Centigrade"}

},
"Payload_Value_10": {

"type": "Quantity",
"name": "Temperature_min1h",
"description": {"$ref": "/#Integer"},
"syntax": {"$ref": "/#Fixed8"},
"units": {"$ref": "/#Centigrade"}

},
"Payload_Value_11": {

"type": "Quantity",
"name": "Temperature_max24h",
"description": {"$ref": "/#Integer"},
"syntax": {"$ref": "/#Fixed8"},
"units": {"$ref": "/#Centigrade"}

},
"Payload_Value_12": {

"type": "Quantity",
"name": "Temperature_min24h",
"description": {"$ref": "/#Integer"},
"syntax": {"$ref": "/#Fixed8"},
"units": {"$ref": "/#Centigrade"}

}
}

}
}

Listing 10.2: PSM JSON
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