
Date: February 2022

Software Fault Pattern Metamodel
(SFPM)

Version 1.0 – Beta 2

OMG Document Number: ptc/22-02-11

Normative reference: https://www.omg.org/spec/SFPM/1.0/PDF

Normative Machine Consumable files:

https://www.omg.org/spec/SFPM/20220201/SFPM.xml

This OMG document replaces the submission document (sysa/20-03-01). It is an OMG Adopted Beta Specification
and is currently in the finalization phase. Comments on the content of this document are welcome, and should be
directed to issues@omg.org by September 14, 2020.

You may view the pending issues for this specification from the OMG revision issues web page :
https://www.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in April, 2021. If you are reading this
after that date, please download the available specification from the OMG Specifications Catalog.

Copyright © 2019-2022, 88solutions Corp.
Copyright © 2019-2022, KDM Analytics, Inc.
Copyright © 2019-2022, Lockheed Martin Corporation
Copyright © 2019-2022, The MITRE Corporation
Copyright © 2019-2022, Dassault Systems
Copyright © 2022, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance
with the terms, conditions and notices set forth below. This document does not represent a
commitment to implement any portion of this specification in any company's products. The
information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and
to modify this document and distribute copies of the modified version. Each of the copyright
holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set
forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification
hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license
(without the right to sublicense), to use this specification to create and distribute software and
special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this
specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise
resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any
of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be
responsible for identifying patents for which a license may be required by any OMG
specification, or for conducting legal inquiries into the legal validity or scope of those patents
that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be
reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS
IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT
GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT
GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS
CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD
PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is
borne by you. This disclaimer of warranty constitutes an essential part of the license granted to
you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software -
Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the
DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are
as indicated above and may be contacted through the Object Management Group, 140 Kendrick
Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and
XMI® are registered trademarks of the Object Management Group, Inc., and Object
Management Group™, OMG™ , Unified Modeling Language™, Model Driven Architecture
Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™,
CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
SysML™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting
itself or through its designees) is and shall at all times be the sole entity that may authorize
developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with
this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially
matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event
that testing suites are implemented or approved by Object Management Group, Inc., software
developed using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(https://www.omg.org/technology/agreement.)

 vi Software Fault Patterrn Metamodel (SFPM), Version 1.0

Table of Contents	

Preface	...	xi	
1	 Scope	...	1	
1.1	 SFP	and	CWE	...	1	
1.2	 SFP	Applications	...	2	
1.3	 SFP	Apparatus	..	3	
1.3.1	 Semantics	of	Dataflows	...	4	
1.3.2	 Formalization	of	dataflows	in	SFP	..	8	
1.3.3	 SFP-enabled	capabilities	..	8	
1.3.4	 The	role	of	the	SFP	Metamodel	...	10	

2	 Conformance	..	10	

3	 References	..	11	
3.1	 Normative	References	..	11	
3.2	 Informative	References	...	11	

4	 Terms	and	Definitions	...	12	

5	 Symbols	..	14	

6	 Additional	Information	..	14	
6.1	 How	to	Read	this	Specification	..	15	
6.2	 Acknowledgements	..	15	

7	 SFP	Exchange	Format	..	17	
7.1	 Objectives	...	17	

8	 Software	Fault	Pattern	Metamodel	...	18	
8.1	 Core	Elements	of	the	SFP	Catalog	..	18	
8.1.1	 SFP	Catalog	Diagram	..	18	
8.1.1.1	 SFPCatalog	Class	..	19	
8.1.1.2	 Cluster	Class	...	22	
8.1.1.3	 SFP	Class	..	23	
8.1.1.4	 CWE	Class	...	24	
8.1.1.5	 Note	Class	..	27	
8.1.1.6	 CWESection	Class	...	27	
8.1.1.7	 DiscernibilityLevel	Enumeration	..	28	
8.1.1.8	 Status	Enumeration	...	29	

8.1.2	 SFP	Variations	Class	Diagram	...	29	
8.1.2.1	 Parameter	..	31	
8.1.2.2	 Variant	Class	..	33	
8.1.2.3	 Variation	Class	...	34	
8.1.2.4	 Property	Class	..	37	

8.1.3	 SFP	Causal	Context	Class	Diagram	...	37	
8.1.3.1	 RootCause	Class	...	37	
8.1.3.2	 Injury	Class	...	38	

8.1.4	 SFP	Variant	Mappings	Class	Diagram	..	40	

Software Fault Pattern Metamodel (SFPM) Version 1.0 vii

8.1.4.1	 InjuryMapping	Class	...	41	
8.1.4.2	 CWEMapping	Class	..	42	

8.2	 Sections	of	the	SFP	Catalog	...	43	
8.2.1	 All	Sections	Class	Diagram	...	43	
8.2.1.1	 Section	Class	(abstract)	..	44	
8.2.1.2	 CommonSection	Class	(abstract)	...	44	
8.2.1.3	 ClusterSection	Class	(abstract)	...	45	
8.2.1.4	 SFPSection	Class	(abstract)	..	45	

8.2.2	 SFP	Sections	Class	Diagram	..	45	
8.2.2.1	 InjuryMappingSection	Class	...	46	
8.2.2.2	 CWEMappingSection	Class	..	47	
8.2.2.3	 ParameterSection	Class	...	47	
8.2.2.4	 VariationSection	Class	..	47	
8.2.2.5	 ElementSection	Class	...	48	
8.2.2.6	 CanonicalSection	Class	...	49	
8.2.2.7	 SFP	Class	(additional	properties)	...	49	

8.2.3	 Common	Sections	Class	Diagram	...	50	
8.2.3.1	 RootCauseSection	Class	...	51	
8.2.3.2	 InjurySection	Class	...	52	
8.2.3.3	 IndicatorSection	Class	..	52	
8.2.3.4	 PropertySection	Class	..	53	
8.2.3.5	 ContextSection	Class	..	53	
8.2.3.6	 VocabularySection	Class	..	54	
8.2.3.7	 SFPCatalog	Class	(additional	properties)	...	54	

8.2.4	 Characteristic	Sections	Class	Diagram	...	55	
8.2.4.1	 CharacteristicSection	Class	..	56	
8.2.4.2	 Cluster	Class	(additional	properties)	..	58	
8.2.4.3	 SFP	Class	(additional	properties)	...	58	

8.3	 SFP	Defined	Elements	...	58	
8.3.1	 SFP	Defined	Elements	Class	Diagram	..	59	
8.3.1.1	 Property	Class	..	60	
8.3.1.2	 Indicator	Class	..	62	
8.3.1.3	 ReferencedContextElement	Class	..	64	

8.3.2	 SFP	Dataflow	Elements	Class	Diagram	...	66	
8.3.2.1	 DataflowElement	Class	(abstract)	..	67	
8.3.2.2	 PrimaryDataStatement	Class	...	67	
8.3.2.3	 SinkStatement	Class	...	69	
8.3.2.4	 SourceStatement	Class	..	72	
8.3.2.5	 Condition	Class	..	74	

8.3.3	 SFP	Canonical	Elements	Class	Diagram	...	74	
8.3.3.1	 CanonicalElement	Class	(abstract)	...	76	
8.3.3.2	 CanonicalForm	Class	..	76	
8.3.3.3	 CanonicalSegment	Class	(abstract)	..	79	
8.3.3.4	 SinkSegment	Class	...	79	
8.3.3.5	 SourceSegment	Class	...	80	

 viii Software Fault Patterrn Metamodel (SFPM), Version 1.0

8.3.3.6	 PrimaryDataSegment	Class	..	81	
8.3.3.7	 MitigatedSinkSegment	Class	..	82	
8.3.3.8	 MitigatedSourceSegment	Class	...	84	

8.3.4	 SFP	Context	Elements	Class	Diagram	...	85	
8.3.4.1	 ContextElement	Class	(abstract)	..	86	
8.3.4.2	 Resource	Class	...	86	
8.3.4.3	 Operation	Class	..	88	
8.3.4.4	 DataType	Class	...	89	
8.3.4.5	 DataElement	Class	...	90	
8.3.4.6	 API	Class	...	91	
8.3.4.7	 Decision	Class	...	91	

8.4	 Semantic	Formalization	Apparatus	...	92	
8.4.1	 Semantic	Elements	Class	Diagram	...	92	
8.4.1.1	 SemanticElement	Class	(abstract)	..	93	
8.4.1.2	 SemanticFragment	Class	..	93	
8.4.1.3	 Verbalization	Class	...	93	

8.4.2	 Statements	Class	Diagram	...	94	
8.4.2.1	 SemanticFormulation	Class	..	94	
8.4.2.2	 SemanticFormulationKind	Enumeration	..	98	
8.4.2.3	 ClauseReference	Class	(abstract)	...	99	
8.4.2.4	 VerbForm	Class	(abstract)	..	99	
8.4.2.5	 Variable	Class	...	100	

8.4.3	 Variable	Bindings	Class	Diagram	..	102	
8.4.3.1	 RoleBinding	Class	...	103	
8.4.3.2	 BindableTarget	Class	(abstract)	...	104	

8.5	 Referenced	Vocabularies	..	104	
8.5.1	 Vocabularies	Class	Diagram	...	105	
8.5.1.1	 NounConcept	Class	..	105	
8.5.1.2	 VerbConcept	Class	...	106	
8.5.1.3	 IndividualConcept	Class	...	109	
8.5.1.4	 Vocabulary	Class	..	110	
8.5.1.5	 VocabularyElement	Class	(abstract)	..	110	

9	 Appendix	A	(Informative)	..	111	

Software Fault Pattern Metamodel (SFPM) Version 1.0 ix

Table of Figures

Figure 1. Computations and data flows ...6	
Figure 2. UML class diagram SFP Catalog ..19	
Figure 3. UML class diagram SFP Variations ...31	
Figure 4. UML class diagram SFP Causal Context37	
Figure 5. UML class diagram SFP Variant Mappings41	
Figure 6. UML class diagram All Sections ...44	
Figure 7. UML class diagram SFP Sections ...46	
Figure 8. UML class diagram Common Sections ..51	
Figure 9. UML class diagram Characteristic Sections56	
Figure 10. UML class diagram SFP Defined Elements60	
Figure 11. UML class diagram SFP Dataflow Elements67	
Figure 12. UML class diagram SFP Canonical Elements76	
Figure 13. UML class diagram SFP Context Elements86	
Figure 14. UML class diagram Semantic Elements92	
Figure 15. UML class diagram Statements ..94	
Figure 16. UML class diagram Variable Bindings102	
Figure 17. UML class diagram Vocabularies ...105	

 x Software Fault Patterrn Metamodel (SFPM), Version 1.0

Software Fault Pattern Metamodel (SFPM) Version 1.0 xi

Preface
About the Object Management Group
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.
OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model);
and industry-specific standards for dozens of vertical markets.
More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL: https://www.omg.org/spec
All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:
OMG Headquarters
109 Highland Avenue
Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org
Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues
The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

 xii Software Fault Patterrn Metamodel (SFPM), Version 1.0

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Software Fault Pattern Metamodel (SFPM) Version 1.0 1

1 Scope
One of the key steps in preventing cyber attacks is to collect, analyze and efficiently manage
knowledge about exploitable weaknesses. This knowledge should be made available to the
community as a resource to build more comprehensive prevention, detection and mitigation
solutions. To this end, several classifications of weaknesses have been developed; the Common
Weakness Enumeration (CWE) catalog describes a large collection of weaknesses building upon
proposals by various researchers; however, all existing classifications remain informal and resist
automation.

This document describes the Software Fault Pattern (SFP) approach to building machine-consumable
knowledge of software weaknesses. The goal of the SFP approach is not to study weaknesses as
some abstract objects, but instead to examine computations that exhibit certain "faults"; to reveal the
invariants of such computations, and to provide a framework for describing and cataloguing "faults"
in terms of these invariants. Invariants of computations determine certain characteristic elements of
computations and common "patterns" in the flow of participating computations. Invariants also
describe certain logical relations between the characteristic elements of computations. The key
benefit of the SFP approach is that invariants of computations can be directly correlated with
semantic descriptions of software. To describe invariants in terms of software, the SFP approach uses
ISO/OMG Knowledge Discovery Metamodel (KDM) as a language-neutral, vendor-independent
vocabulary for describing software facts. With KDM as the foundation, the SFP framework
developed an apparatus for formally specifying invariants of computations, and describing and
cataloguing faults as invariants of computations. The SFP apparatus involves the specification of the
SFP Metamodel (SFPM) and the SFPM XMI schema. As the foundation of the SFP Catalog of
Software Fault Patterns – collection of reusable, machine-consumable units of knowledge, the SFP
Metamodel defines an infrastructure for new capabilities in software assurance. SFPM XMI is a
common interoperable format for representing machine-consumable content related to software
faults, their formal semantics and their mappings to the elements of the Common Weakness
Enumeration (CWE) catalog.

1.1 SFP and CWE

CWE catalog has been selected as the “reference” of the SFP Catalog since it is a de facto body of
community’s knowledge of software weaknesses. Objectives of the SFP program are complimentary
to those of CWE. SFP emphasizes machine-consumable/formal definitions of semantics of
weaknesses, focusing on the invariants, while CWE emphasizes the breadth of knowledge about
weaknesses and human-consumable content. Developing SFP content is an important to build a
better ecosystem of tools and services. SFP content can be available through cross-links from CWEs
and vice versa.

The objective of SFP is to provide a semantic “viewpoint” on the content that is already in CWE, to
provide a set of formal compliance points for software weaknesses as well as to resolve any
inconsistencies and ambiguities in existing CWE content and fill any gaps in CWE.

 2 Software Fault Pattern Metamodel (SFPM) Version 1.0

A formal compliance point for a software weakness provides a rigorous, automatable way to address
such questions as a) whether a certain code fragment is an example of a given software weakness,
and b) whether a certain tool can detect a given software weakness. Existence of formal compliance
points for individual “named” weaknesses – items of the CWE Catalog - has significant benefits in
removing ambiguities in weakness findings reporting and development of new evidence collection
capabilities for digital certification of systems.

A formal compliance points are particularly important for the industry of code analysis tools. In this
context, formal compliance points can be used analytically (by comparing an implementation to a
formal definition of a weakness); synthetically (by generating compliance test cases from the formal
definition of a weakness) or constructively (by developing a content-driven code analysis tool, and
importing formal definitions of weaknesses).

SFP addresses a certain important subset of software weaknesses in CWE – weaknesses that are fully
discernible/described as properties of code. This class can be called discernible white-box code
weaknesses.

The terms “weakness”, “flaw”, “bug” and “vulnerability” are often used inconsistently because the
objects implied by these terms lack constructive formal definitions. This specification uses the term
“software fault” as it refers to an identified – adjudged or hypothesized – cause of a failure of the
service performed by a piece of software under investigation. Correct service is delivered when the
service implements the system function. A service failure, often abbreviated to failure, is an event
that occurs when the delivered service deviates from correct service. A service fails either because it
does not comply with the functional specification, or because this specification did not adequately
describe the system function. Further, the SFP apparatus is developed to provide formal, constructive
definitions to the class of software faults that can be identified in the software alone. SFP metamodel
as defined by this specification, is the machine-consumable representation of these formal definition
of software faults. Further, the context in which SFP has been developed is system assurance, risk
management and digital certification of systems. Consequentially, the class of software faults of
interest for the SFP catalog is related to cybersecurity failures.

From this perspective, the CWE catalog has a broader scope as the CWE “weaknesses” can be
attributed to artifacts other than software. CWE “weaknesses” are not necessarily “discernible either.

1.2 SFP Applications

Formal machine-consumable descriptions of software weaknesses are instrumental to establish an
ecosystem of new capabilities that will consume the SFP content and use this content for various
purposes including (but not limited to)

- producing	analytics	related	to	software	faults	(visualizations,	reports,	identifying	gaps,		etc.),		

- collecting	evidence	for	digital	certification	of	systems	(identifying	instances	of	weaknesses	in	
code	and	binary,	proving	absence	of	certain	classes	of	weaknesses,	etc.),		

Software Fault Pattern Metamodel (SFPM) Version 1.0 3

- synthesizing	test	cases	for	code	analysis	tools	(measuring	performance	of	code	analysis	tools,	
calibrating	reporting	capabilities	in	tools,	etc.),	

- digital	certification	of	systems	(unambiguous	and	precise	mapping	of	classes	of	weaknesses	to	
risks,	communicating	requirements	for	evidence	collection	between	risk	management	tools	and	
code	analysis	tools,	communicating	evidence	findings	from	code	analysis	tools	to	risk	
management	tools,	etc.).	

	

1.3 SFP Apparatus

The primary objective of the SFP Catalog is to bring clarity and precision to the study of weaknesses
by building a systematic machine-consumable catalog of software faults and to enable analytics and
automation of various workflows involving the knowledge of software faults. To this end, the SFP
approach brings together several successful model-based techniques:

- ISO/OMG	Knowledge	Discovery	Metamodel	(KDM)	as	a	language-neutral,	vendor-independent	
vocabulary	for	describing	software	facts;		

- community	best	practices	for	machine-consumable	descriptions	of	software	faults	as	data	flows;		

- ISO/OMG	Semantics	of	Business	Vocabularies	and	Rules	(SBVR)	as	a	logical	foundation	for	
formal	definitions	of	logical	propositions	on	top	of	vocabularies	such	as	KDM,	and		

- Meta-Object	Facility	(MOF)	as	the	foundation	for	building	technology-neutral	representations.		

The resulting apparatus allows structured definitions of semantics of software faults, development of
vendor-neutral content, accumulation of reusable content, analytics, and development of new
capabilities.

SFPM defines a set of elements to describe denotational semantics of highly specialized objects –
software weaknesses, as dataflows. These definitions are independent of the implementation
language and thus are not related to syntax, structure of pragmatics of the programming language. In
contrast, SFP describes the semantics of the dataflows as invariants of computations. These
definitions are made modular, so that the resulting catalog can easily organize common clauses, and
reference them to the CWE items, which are considered as signifiers of the software weaknesses.

By providing a semantic definition of otherwise very informally defined CWE items, SFP program
achieves its objective of providing formal compliance points to CWEs.

The elements of meaning in SFPM have the following 4 layers:

- KDM elements define the meaning of the code elements. This is defined in the KDM
specification. KDM definitions do not involve full denotational semantics, but instead are
defined in reference to known programming languages.

- Common Logic Statements that use KDM vocabulary (as well as the common SBVR
vocabulary). To increase the readability of the definitions, SFP allows referencing any

 4 Software Fault Pattern Metamodel (SFPM) Version 1.0

formally defined vocabulary based on KDM. So, common clauses can be arranged into
vocabularies and referenced from other clauses.

- Semantic of a dataflow. This is defined informally by referencing to the well-known program
analysis literature. SFPM includes several structural elements of a dataflow that receive their
separate definitions as common logic statements. Thus, every dataflow is defined as its
source, sink and data element, as wells as a global condition. Structural apparatus of SFPM
allows managing individual modular semantic clauses and cross referencing them.

- Cross-referencing SFPs to enumerations of common causes and impacts.

The SFP Catalog provides a structured semantic approach to the enumeration of software faults. A
software fault is a situation that manifests itself as a faulty computation exhibited by a system. The
rest of this section defines the scope of the SFP Catalog in more detail by reviewing the background
of the SFP approach.

The SFP approach borrows methods and apparatuses of program analysis to describe related families
of computations independent of the existing code. The discipline of program analysis deals with
various representations of the computations implemented by a given code in the larger context of an
entire system under analysis. The purpose of SFP content is to be consumed by some program
analysis capabilities that would use it, for example, as executable rules to prove that the code under
analysis has faults described by the SFP. The SFP content exists independently of the corresponding
capability and independent of any code under analysis. The SFP Metamodel provides guidelines to
the coordinated development of the SFP content, and the capabilities that will use this content. It is
important that the SFP content be defined as both technology-neutral and vendor-neutral, i.e. not
assuming a specific capability that can utilize it.

1.3.1 Semantics of Dataflows

SFP Metamodel involves an apparatus for defining invariants of data flows. The main purpose of
this apparatus is to define computations that exhibit certain faults (vulnerabilities, weaknesses).
Vulnerability is defined as “a bug, flaw, weakness, or exposure of an application, system, device, or
service that could lead to a failure of confidentiality, integrity, or availability”. In other words,
“vulnerability” is a computation that can be exploited to produce (negative) impact. Certain
computations in the system are designed to mitigate vulnerabilities. These computations and the
corresponding mechanisms and “places” in the code are called “safeguards”. A “faulty computation”
is defined as either a computation that has direct negative impact on the operations of the system, or a
computation that corresponds to an incorrectly implemented security safeguard. The catalog of faulty
computations focuses at computations that are common to large families of systems.

Certain computations are specific to a single system. However, there are certain computations that
are common to large families of systems. For example, such common computations are related to
input processing, authentication, access control, cryptography, information output, resource
management, memory buffer management, exception management. To focus on the invariants of
such common computations, further abstractions of the basic concept of a computation may need to
be considered.

Software Fault Pattern Metamodel (SFPM) Version 1.0 5

In general, a computation is a sequence of events performed by a system. The idea of formally
describing invariants of computations using an alphabet of event names was outlined in C.A.R. Hoar
“Communicating Sequential Processes”. The choice of an alphabet usually involves a deliberate
simplification, a decision to ignore many other properties and actions which are considered to be of
lesser interest. This specification uses the word computation to stand for the behavior invariant of a
system, insofar as it can be described in terms of the limited set of events selected as its alphabet.
This first alphabet is referred to as the observable alphabet of a computation.

Events must be implemented by some activities which introduce another alphabet related to the
computation. This second alphabet is referred to as the activity alphabet of the computation.
Activities are implemented by the code and supported by other components of the system such as
hardware, firmware, networks, operators, etc. For a system implemented mostly in software, the code
provides the constraints to computations and therefore determines what computations can occur.
An activity corresponds to a certain identifiable place in the code (represented by some artifacts) -
also referred to as a program point. For example, a source code in C language is represented by one
or more text files containing function definitions and statements – these files are referred to as
“artifacts”. An activity in this case corresponds to one or more statements, and its place can be
described in terms of a region of line numbers in the source file(s), as well as in terms of function(s)
owning the statement(s). Activities are usually defined at the semantic level (referrerd to as micro-
KDM operations in [kdm]), so a “line of code” taken at syntax level usually corresponds to multiple
activities and thus – multiple program points. Program points introduce the third and final alphabet
of a computation – its program point alphabet. While activity defines a specific semantic micro
operation, for example assigning a value to a pointer, a program point refers to a specific position in
the control- and data-flow (same activity can happen at many different program points).
The fundamental decision of the SFP Catalog approach is to use the vocabulary defined by the KDM
standard as that activity alphabet and the program point alphabet for defining computations as
vendor-neutral content. This establishes a language-neutral foundation (SFP content can be mapped
to the syntax of different programming languages) as well as a vendor-neutral foundation (SFP
content is not expressed against some proprietary internal representation of a tool by some vendor).

When describing vulnerabilities, a larger context of system is important. An entire system is a
collection of activities that exchange data to achieve some desired purpose. Activities occur at
system nodes that are connected by channels. A system node is implemented by some code. A
channel is an abstraction to represent data exchanges between activities owned by two nodes.
Following the NIST Common Vulnerability Scoring System (CVSS) approach, we distinguish local
channels between system nodes deployed at the same machine (host); adjacent network channels
between system nodes deployed at the same local area network; and remote channels. This
distinction is important because it determines the class of access required to exploit vulnerabilities.
Each system node performs activities to provide services to other system nodes or the environment of
the entire system. Thus, the events described by activities can be mapped to system nodes.
Data exchanges use channels. We distinguish between data at rest (for example, data in a database),
data in motion (data in a channel) and data in use (data used by an activity).

In program analysis, any serious attempt at characterizing computation exhibited by a system must
provide for some sort of account of the computation’s structure in terms of one of its alphabets
(observable alphabet, activity alphabet or program point alphabet). Assertions regarding order of
activities, location and disposition of transfers, identification of subroutines, internal consistency, as

 6 Software Fault Pattern Metamodel (SFPM) Version 1.0

well as state of the computation in terms of the values of the data elements at any program point, all
involve a knowledge of the structure of the code under study. The structure of code is usually
determined by code artifacts describing the program, and may usually be given a convenient
geometric representation by means of control- and data- flow graphs.
Thus, a computation may traverse multiple system nodes and channels in the sense that the activity
events are mapped to a sequence of nodes and channels involved in data exchanges between
activities at connected nodes.
A trace of the behavior of a process is a finite sequence of symbols recording the events in which the
computation has engaged up to some moment in time.
A trace records a sequence of observable events, activities or program points. For a trivial
computation, a trace provides an adequate description of the computation. Obviously, any non-trivial
system exhibits an infinite number of traces. If one wanted to enumerate representative traces of a
certain system as a means of description, shorter traces may be preferred. For example, a system can
be described by a finite number of traces corresponding to a single statement (or a basic block of
statements). The number of larger traces of larger computations would be infinite as there is usually
no upper bound imposed on the maximum length of a trace. A more adequate description of the code
may be achieved by aggregating the initial single statement traces into longer sequences that are
“recurring” throughout various end-to-end computations.

	

Figure 1. Computations and data flows

Selection of short “recurring” computations as the means of describing complex behavior patterns is
important, as computations can be combined and/or interleaved. A (shorter) trace can be part of one
or more (larger) traces. Computations can be interleaved as follows. Consider two computations, c1
with activities {a1,a2,a3} and c2 with activities {a4,a5,a6}. Computation c1 is atomic, if a1 is always
followed by a2, and a2 is always followed by a3. The quantification “always” is taken over the set of
all end-to-end traces for the code. Computation c1 may be interleaved with computation c2, if c1 is
not atomic, and a1 is followed by a4, a4 is followed by a2, etc. This is illustrated at Figure 1.
Further, a useful way of enumerating “recurring” trace segments of a computation is to consider
“data flows”. A computation can be also viewed as a series of transformations of the data state,
which consists of the values of all data elements (variables) across all system nodes, including data
in motion, data in use and data at rest. A data flow is a computation that only includes activities that

Software Fault Pattern Metamodel (SFPM) Version 1.0 7

are related to the state of a single “data element”. The concept of a data element is essential for
imperative programming languages, however, even in the context of non-imperative language, e.g.
functional programming, or logic programming, there are data elements, such as formal parameters
of functions and logical variables, and therefore, there are data flows to consider. Obviously, data
flows are often interleaved between themselves.
A data flow focuses at assigning (or binding) values to data elements. A data flow can be viewed as a
flattened inverted tree of computations that compute the value of the data element at its root (the last
element in the computation). This is illustrated at Figure 1.

To focus on the invariants of computations that are common to broad classes of systems, further
abstractions of the basic concept of a computation may need to be considered. For example,
computations c1 and c2 in Figure 1 share common structure, with different names of the variables,
types of the variables, data values and expression in the last statement. Both are data flows, where a
variable is assigned a value that is the result of an arithmetic expression involving two other
variables. Each of the two variables is assigned a constant value. This pattern can be considered an
invariant of the corresponding data flow. When a formal description of this invariant is available as
machine-consumable content, one can develop a generic data-driven capability that will collect
evidence related to the presence of such data flows in the code (by enumerating the possible
locations in the code), or to synthesize samples of this data flow as tests.
The key part of a data flow is its sink. By definition, a data flow has a single sink. Further, a data
flow may have one or more sources. Sink and source(s) are defined as propositions that only use the
program point alphabet. In other words, sink and source(s) are defined in terms of the code
constructs (in terms of the KDM standard, in a language-neutral and technology-neutral way). They
are not defined in terms of the values of the data elements, or in terms of the state of the
computation. Source specification may only describe a statement. As a source specification of a data
flow, this is an indirect way of specifying the possible range of values of a data element. For
example, an assignment statement with constant “NULL” as the right-hand side expression as a
single source to a data flow specifies that the value of the data element can only be ‘NULL’.
A data flow may involve a characteristic condition that involves the value at the sink – a direct way
of specifying ranges of values. Condition is a powerful way of specifying data flows. Condition
correlates with the values specified by the source(s). For example, values {1,2} for the sources
satisfy the condition in Figure 1, and so do values {10,20}, but not values {1,-2}.
The SFP approach describes a sink of a data flow in terms of the code constructs, in such a way that
its location in the code can be established. This mechanism can be called a program point pattern
that is effectively matched to the code and identifies certain program points as instances of the
pattern. The rest of the data flow is described as one or more logical propositions the truth of which
must be established to make a claim that an occurrence of a data flow is found in the code. The SFP
approach assumes a capability that will match the sink program point pattern, and another capability
that will keep finding longer and longer data flows leading to the sink, and yet another capability that
will check the propositions that describe the invariant. Such capability must eventually make a
verdict whether there is enough evidence to claim the presence of the pattern or not. The two latter
capabilities must interact to keep extending the data flows, when possible, if no verdict has been
made, and to stop, when the evidence becomes inconclusive (when neither verdict can be made).
Condition as a means of specifying invariants of a data flow is a significantly more computationally
expensive, compared to more pattern-like propositions involving the source values.

 8 Software Fault Pattern Metamodel (SFPM) Version 1.0

1.3.2 Formalization of dataflows in SFP

The formalization approach of the SFP Catalog is based on the following considerations. An
invariant of a data flow can be described as a set of facts such that any “compliant” data flow will
exhibit these facts, and only compliant data flows will exhibit such facts.

Sink and sources of a data flow are defined using logical expressions built on top of program point
patterns. The program point patterns use KDM facts as the base vocabulary. The rest of the logical
expression for sinks and sources uses the first order logical formulations from the Semantics of
Business Vocabularies and Rules (SBVR) standard.

The	content	of	the	SFP	Catalog	describes	an	argument	justifying	the	claim	that	the	code	under	
assessment	exhibits	a	certain	fault.	The	starting	point	of	this	argument	is	the	presence	of	the	Indicator.	
Additional	evidence	is	provided	by	matching	of	the	elements	of	the	SFP	in	relation	to	the	Indicator.	Final	
evidence	is	collected	when	the	data	flow	satisfies	the	condition	of	the	SFP.	
An	invariant	of	a	data	flow	can	be	described	as	a	set	of	propositions	such	that	any	“compliant”	data	flow	
will	exhibit	these	propositions,	and	only	compliant	data	flows	will	exhibit	such	propositions.	Thus,	the	
SFP	Catalog	accumulates	content	related	to	describing	“interesting”	data	flows.		

1.3.3 SFP-enabled capabilities

The content of the SFP Catalog can be used for a multitude of purposes, including the three
fundamental ones:

1) [certification]	How	to	collect	evidence	that	a	certain	system	under	assessment	exhibits	a	given	
SFP;	

2) [synthesis]	How	to	generate	representative	samples	of	a	given	SFP;	

3) [analytics]	better	understanding	software	weaknesses	and	their	impact	on	systems,	including	
machine	learning	and	artificial	intelligence	

From the certification perspective, the SFP approach assumes four supporting capabilities:

1) capability	to	locate	certain	“places”	in	the	code	under	assessment;		

2) capability	to	systematically	identify	data	flows	that	involve	a	given	“place”	in	the	code;		

3) capability	to	check	certain	conditions	on	a	given	data	flow;	

4) capability	to	eventually	make	a	verdict	whether	there	is	enough	evidence	to	claim	the	
occurrence	of	a	data	flow	at	the	given	place	in	the	code.		

Thus, the evidence collected by this process involves the evidence of an (initial) location of a
(possible) SFP, evidence of the identification of the data flows, and evidence to the condition
checking.
A computation “indicator” is a known construct (such as an entry point, or an API call) manifested
in the system’s artifacts, such that it is a necessary condition for the computation. Certain places in

Software Fault Pattern Metamodel (SFPM) Version 1.0 9

the code can directly cause (negative) impact. Such places are indicators for the impacting
computations. Safeguards also have indicators, related to the safeguard itself as well as to the
protected region. Thus, a significant part of the SFP Catalog is the enumeration of the unique places
in the code associated with faulty computations that directly have impact or to the failed safeguards.
Indicators are described as program point patterns using KDM vocabulary.

From the synthesis perspective, the SFP Catalog accumulates content related to the full context in
which an invariant of a certain fault may occur, as well as the canonical samples of both “compliant”
and “non-compliant” data flows. Further, the SFP approach assumes the following capabilities:

1) capability	to	generate	a	sample	code	in	selected	programming	language	from	a	formal	
description	adopted	by	the	SFP	Catalog;	

2) capability	to	select	a	coherent	variant	of	the	“compliant”	(or	“non-compliant”)	data	flow	from	
the	formal	description	provided	by	the	SFP	Catalog;		

3) capability	to	extend	the	code	invariant	provided	by	the	SFP	Catalog	with	local	and	global	
variations	(or	“code	and	data	complexities”)	in	a	systematic	way.	

CWE already provides many illustrative examples of weaknesses in selected languages. While
illustrative examples are important for human consumption, such examples cannot be considered as a
useful part of machine-consumable knowledge. Code examples need to be parsed, they do not
identify the core parts of the "fault" (not often precise enough to do using the language syntax); they
do not provide guidance on true positive/false positive; they are very limited in the code and data
complexity and in their language coverage. On the other hand, the industry of code analysis tools
requires millions of systematic test cases with appropriate metadata.
The SFP approach separates the knowledge of a “software fault” in the form of dataflow invariants
from and “code and data complexities” and the language-specific details. By focusing on the
semantics of the dataflow, SFP provides the necessary “scaffolding” that can be used to generate
detailed metadata for a test case.
A software fault can be “implemented” (embodied) in an infinite number of ways: different variable
names, embedding a faulty computation into various contexts, introducing intermediate fragments to
the invariant without changing its semantics and many other ways. Concise specification of the
dataflow invariant allows to use the SFP content in a synthesizer/test case generator tool that can
introduce systematic code and data variations to the selected dataflow “slice” in a language-
independent form.
Language-specific details and variations are addressed by the KDM standard in the form of
language-specific mapping to and from KDM.

From the analytics perspective, the SFP Catalog accumulates a multitude of reusable, machine-
consumable units of knowledge that provide semantic denotations to families of faulty computations
(as dataflows), and reference them to the signifiers in the CWE catalog. The SFP Catalog has
modular organization of the semantic element to facilitate analytics, cross-reference between
elements, and reuse. This content facilitates machine learning and cross-referencing various
characteristics of software weaknesses, and other artificial intelligence applications.

 10 Software Fault Pattern Metamodel (SFPM) Version 1.0

1.3.4 The role of the SFP Metamodel

The Software Fault Pattern approach involves a certain apparatus for developing semantical
definitions of software weaknesses as dataflows, the SFP Metamodel that uses MOF to define the
“language” in which the items of the SFP catalog are defined, and the SFP catalog itself.

The SFP Catalog provides a catalog of the faulty computations, focuses at the “places” in the code,
that are the indicators of the corresponding computations. Therefore, the Software Fault Pattern
approach is driven by the invariants in the code as they determine classes of faulty computations.
The items of the SFP Catalog are grouped together into SFP items and further into primary and
secondary clusters based on their common indicators, and common impact. This viewpoint is
constructive and systematic and therefore enables automation. This uniform viewpoint makes the
Software Fault Pattern approach systematic and repeatable.

The SFP Metamodel (SFPM) – the normative part of this specification. SFPM determines the
interchange format via the XML Metadata Interchange (XMI) by applying the standard MOF to XMI
mapping to the SFPM MOF model. The interchange format defined by SFPM is called the SFPM
XMI schema.

SFPM XML (XMI) is a common interoperable format for representing machine-consumable content
related to software faults, their formal semantics and their mappings to the elements of the Common
Weakness Enumeration (CWE) catalog. SFPM XMI is the foundation for the OMG Catalog of
Software Fault Patterns that will over time accumulate formal machine-consumable definitions of
individual software faults and other structured content related to software faults. SFPM XMI
supports a larger ecosystem of capabilities that need to exchange formal definitions of weaknesses,
including but not limited to test generation tools, static code analysis tools, data repositories,
machine learning tools, visualization tools, training tools. The SFPM XMI is the canonical format in
which this content is available.

This specification describes the SFPM XMI schema and illustrates the usage of the SFPM XMI
schema by describing example SFPM XMI data representations compliant with the SFPM XMI
schema. To further facilitate development and review of the SFP content, Appendix A of this
specification describes a readable textual representation of the SFPM XMI. The specification
illustrates SFP Metamodel elements with numerous examples of real SFP content. All examples are
provided in SFPM XMI as well as in the readable SFP language. The readable SFP language is not a
normative part of the SFPM specification. This notation is a highly-specialized format optimized for
the SFP content. By utilizing the OMG MOF ecosystem, the SFP Metamodel allows multitude of
other technology-specific representations of the SFP content.

2 Conformance
The principle goal of SFPM is to define a common normalized format for representing machine-
consumable content related to software faults, their formal semantics and their mappings to the
elements of the Common Weakness Enumeration (CWE) catalog. SFPM is defined via the Meta-

Software Fault Pattern Metamodel (SFPM) Version 1.0 11

Object Facility (MOF). SFPM determines the interchange format via the XML Metadata Interchange
(XMI) by applying the standard MOF to XMI mapping to the SFPM MOF model. The interchange
format defined by SFPM is called the SFPM XMI schema.

To be SFP compliant, a document or an implementation (such as a capability, a tool, a repository, a
service) shall fully support SFPM as one compliance point. A compliant document shall comply to
the SFPM XMI schema. A compliant implementation shall provide either or both of the following:

• The capability to generate XMI documents based on the SFPM XMI schema capturing
content in the scope of the SFP Catalog.

• The capability to import and use content via representations based on the SFPM XMI
schema.

The “use” of imported SFP content in compliant tools is not limited to one of the use cases described
in this specification.

3 References
3.1 Normative References
The following normative documents contain provisions which, through reference in this text, provide
normative context for material in this specification.

[kdm] Knowledge Discovery Metamodel (KDM), v1.4, http://www.omg.org/spec/KDM/1.4
[sbvr] Semantics for Business Vocabulary and Rules (SBVR), v1.5,

http://www.omg.org/spec/SBVR/1.5/
[uml] Unified Modeling Language (UML), v2.5, http://www.omg.org/spec/UML/2.5
[mof] Meta-Object Facility (MOF), v.2.4.2, http://www.omg.org/spec/MOF/2.4.2
[xmi] XML Metadata Interchange (XMI), v2.5.1, http://www.omg.org/spec/XMI/2.5.1
[xml] Extensible Markup Language, v1.1, http:// http://www.w3.org/TR/xml11
[xsd-1] XML Schema Definition Language (XSD) v1.1 Part 1: Structures,

http://www.w3.org/TR/xmlschema11-1
[xsd-2] XML Schema Definition Language (XSD) v1.1 Part 2: Datatypes,

http://www.w3.org/TR/xmlschema11-2

[cwe] Common Weakness Enumeration (CWE) – a repository maintained by MITRE Corporation
of known weaknesses in software that can be exploited to modify data, read data, create a
denial-of-service that results in unreliable execution, create a denial-of-service that results in
resource consumption, execute unauthorized code or commands, gain privileges / assume
identity, bypass protection mechanism, and/or hide their activities1. <https://cwe.mitre.org>.

Also, ITU standard: ITU X.1524 Common Weakness Enumeration <
https://www.itu.int/rec/T-REC-X.1524-201203-I/en >

3.2 Informative References
The following non-normative documents contain provisions which, through reference in this text, provide informative
context for material in this specification.

1 CWE technical impact enumeration <https://cwe.mitre.org/cwraf/enum_of_ti.html>

 12 Software Fault Pattern Metamodel (SFPM) Version 1.0

• Software Fault Patterns (SFP) Catalog –

• AFRL-RY-WP-TR-2012-0111, V2 - DoD document approved for public release, distribution unlimited;

• Software Fault Pattern Clusters - a repository maintained by MITRE Corporation of links connecting SFPs
and CWEs <https://cwe.mitre.org/data/definitions/888.html>

• [NIST CVSS] NISTR Interagency Report 7435 “The Common Vulnerability Scoring System (CVSS) and its
applicability to Federal Agencies”.

4 Terms and Definitions
This section provides a glossary of terms used by this specification.

Computation	 Behavior	pattern	of	a	system,	insofar	as	it	can	be	described	in	terms	of	the	
limited	set	of	events	selected	as	its	alphabet.	

Alphabet	 A	set	of	basic	parts	of	elements,	esp.	the	set	of	characters	or	symbols	with	
which	a	language	is	written.	An	alphabet	of	a	computation	can	be	a	set	of	all	
events	that	the	computation	can	exhibit	(or	a	set	of	all	activities,	or	a	set	of	
all	program	points).	An	alphabet	of	a	computation	is	an	abstraction	to	define	
behavior	patterns.	

Trace	 A	trace	of	the	behavior	of	a	computation	is	a	finite	sequence	of	symbols	
recording	the	events	in	which	the	computation	has	engaged	up	to	some	
moment	in	time.	

Control	flow	 A	representation	of	the	order	of	activities	of	the	computation	

Data	flow	 A	data	flow	is	a	computation	that	only	includes	activities	that	are	related	to	
the	state	of	a	set	of	data	elements.	

Data	flow	invariant	 A	formal	description	characterizing	multiple	possible	instances	of	a	data	
flow	implemented	as	code	in	a	variety	of	programming	languages,	runtime	
support	systems,	hardware,	etc.	in	a	variety	of	system	contexts.	

Data	element	 [KDM]	DataElement	represents	computational	objects	of	a	software	system	
that	are	associated	with	a	value	of	a	particular	datatype.		

Data	flow	sink	 A	proposition	describing	a	final	program	point	of	a	data	flow.	

Data	flow	source	 A	proposition	describing	one	or	more	starting	program	points	of	a	data	flow	

Data	flow	condition	 A	proposition	describing	some	invariant	property	involving	the	values	of	the	
data	elements	of	a	data	flow	

Software Fault Pattern Metamodel (SFPM) Version 1.0 13

Indicator	 A	proposition	in	the	form	of	a	possibly	recursive	statement	in	KDM	
vocabulary	that	can	be	effectively	matched	to	the	KDM	representation	of	the	
code	under	analysis	so	that	the	instances	of	the	indicator	can	be	
enumerated.		In	SFP	Metamodel,	data	flow	sinks	are	specified	as	disjunctions	
of	indicators.	

Invariant	 A	property	of	all	objects	in	a	collection	or	a	family.	A	"logical	invariant"	is	a	
certain	condition	that	is	true	for	all	objects	in	a	family.	A	"structural	
invariant",	is	a	certain	fragment	that	all	objects	in	the	family	have.	

Proposition	 A	logic	statement	that	uses	semantic	formulation	and	terms	of	KDM	
vocabulary	

Program	point	 A	location	in	the	code	described	in	selected	program	point	alphabet.	As	the	
basis	for	defining	some	content	that	is	independent	of	the	code	under	
analysis,	the	foundation	for	the	program	point	alphabets	is	KDM.	Program	
points	can	be	defined	as	complex	sets	of	KDM	facts	(statements	in	KDM	
vocabulary).	Such	program	point	alphabet	provides	a	further	abstraction	on	
top	of	KDM	vocabulary.	

Program	point	pattern	 A	proposition	describing	a	program	point	as	some	content	that	is	
independent	of	the	existence	and	the	nature	of	the	code	under	analysis.	

Weakness	 Software	weaknesses	are	situations	in	software	implementation,	code,	
design	or	architecture	that	if	left	unaddressed	could	result	in	systems	and	
networks	being	vulnerable	to	attack.	Weaknesses	can	be	referred	to	as	flaws,		
bugs,	vulnerabilities.	

Vulnerability	 Weakness	in	an	information	system,	system	security	procedures,	internal	
controls,	or	implementation	that	could	be	exploited	or	triggered	by	an	
attacker.	

Fault	 The	adjudged	or	hypothesized	cause	of	a	failure	is	called	a	fault.	Correct	
service	is	delivered	when	the	service	implements	the	system	function.	A	
service	failure,	often	abbreviated	to	failure,	is	an	event	that	occurs	when	the	
delivered	service	deviates	from	correct	service.	A	service	fails	either	because	
it	does	not	comply	with	the	functional	specification,	or	because	this	
specification	did	not	adequately	describe	the	system	function.		

Software	Fault	 An	identified	–	adjudged	or	hypothesized	–	cause	of	a	failure	of	the	service	
performed	by	a	piece	of	software	under	investigation	(a	discernible	white-
box	code	weakness),	often	related	to	cybersecurity	failures	

Root	cause	 A	root	cause	is	an	initiating	cause	of	either	a	condition	or	a	causal	chain	that	
leads	to	an	outcome	or	effect	of	interest.	The	term	denotes	the	earliest,	most	
basic,	'deepest',	cause	for	a	given	behavior	(usually	of	a	failure).	It	is	
customary	to	refer	to	the	root	cause	in	singular	form,	but	one	or	several	
factors	may	in	fact	constitute	the	root	cause(s)	of	the	problem	under	study.	
A	factor	is	considered	the	root	cause	of	a	problem	if	removing	it	prevents	the	
problem	from	recurring.	A	causal	factor,	conversely,	is	one	that	affects	an	

 14 Software Fault Pattern Metamodel (SFPM) Version 1.0

event's	outcome,	but	is	not	the	root	cause.	Although	removing	a	causal	factor	
can	benefit	an	outcome,	it	does	not	prevent	its	recurrence	with	certainty.	
Effective	problem	statements	and	event	descriptions	(as	failures,	for	
example)	are	helpful	and	usually	required	to	ensure	the	execution	of	
appropriate	root	cause	analyses.	

Impact	 The	magnitude	of	harm	that	can	be	expected	to	result	from	the	
consequences	of	successful	attack	resulting	in	unauthorized	disclosure	of	
information,	unauthorized	modification	of	information,	unauthorized	
destruction	of	information,	or	loss	of	information	or	information	system	
availability.	Impact	can	be	further	categorized	as	harm	to	operations,	harm	
to	assets,	harm	to	individuals,	harm	to	other	organizations,	and	harm	to	the	
nation.	

SFP	Catalog	 The	goal	of	the	SFP	program	is	to	establish	the	SFP	Catalog.	SFP	Catalog	is	a	
collection	of	formal	machine-consumable	content	related	to	software	
weaknesses.	SFPM	(the	SFP	metamodel)	is	the	specification	of	the	content	in	
the	SFP	Catalog.	In	addition	to	the	content,	the	SFP	Catalog	involves	
custodians,	technical	support,	business	support,	and	technical	infrastructure	
to	access	and	search	the	catalog.	This	specification	defines	the	SFP	
metamodel	and	the	SFPM	XML/XMI	format.	

Program	point	 Reference	to	a	specific	place	in	control-	and	data-flow	of	the	computation.	
Program	point	corresponds	to	a	certain	activity.	Activities	are	semantic	
micro	operations	that	can	be	performed	by	a	computation.	In	SFP	activities	
are	micro-KDM	operations.	

5 Symbols
List of symbols/abbreviations:

SFP Software Fault Pattern

SFPM Software Fault Pattern Metamodel

CWE Common Weakness Enumeration

KDM Knowledge Discovery Metamodel

MOF Meta-Object Facility

XMI XML Metadata Interchange

SBVR Semantics of Business Vocabularies and Rules

6 Additional Information

Software Fault Pattern Metamodel (SFPM) Version 1.0 15

6.1 How to Read this Specification
SFPM	XMI	is	a	common	normalized	format	for	representing	machine-consumable	content	related	to	
software	faults,	their	formal	semantics	and	their	mappings	to	the	elements	of	the	Common	Weakness	
Enumeration	(CWE)	catalog.	SFPM	XMI	is	the	canonical	representation	of	the	SFP	content	as	defined	by	
the	MOF	specification	and	MOF	to	XMI	mapping.	This	document	describes	the	SFP	Metamodel	and	
provides	illustrations	of	SFPM	XMI	content.	In	addition,	this	specification	defines	and	informative	
“readable	SFP	language”	that	provides	a	very	concise	representation	of	the	SFP	content,	suitable	for	
reviews	by	humans.	The	SFP	content	is	also	illustrated	in	the	“readable	SFP	language”.	The	specification	
of	the	readable	SFP	language	is	provided	in	Appendix	A.	
	
This	specification	has	the	following	structure.		
	
Section	7.1	“SFP	Exchange	Format”	summarizes	the	key	design	objectives	for	the	SFP	Metamodel	and	
the	SFPM	XMI	format	as	the	canonical	representation	of	the	SFP	content.		
	
Section	8	“Software	Fault	Pattern	Metamodel”	describes	the	classes	of	the	SFPM	and	provides	examples	
of	the	SFPM	XMI	as	well	as	examples	of	SFP	content	in	the	readable	SFP	language.		
	
Section	8.1.	describes	the	core	concepts	of	the	SFP	Catalog.		
Section	8.2	describes	the	sections	of	the	SFP	Catalog	as	the	main	structuring	mechanism	for	managing	
content	in	the	catalog.		
Section	8.3	describes	the	framework	for	the	formal	definitions	of	the	faulty	computations	captured	by	
the	core	elements	of	the	SFP	Catalog.	These	elements	specify	invariants	of	data	flows	as	logical	
propositions	for	sink,	source,	the	data	element	of	the	data	flow.	
Section	8.4	describes	the	formalization	apparatus	developed	to	provide	formal	definitions	to	the	
elements	of	data	flows.	This	apparatus	is	aligned	with	existing	ISO	and	OMG	standards.	
Section	8.5	describes	the	representation	of	the	referenced	vocabularies	of	the	SFP	Catalog.	The	
formalization	apparatus	of	the	SFP	Catalog	does	not	define	the	meaning	of	constructs	involved	in	the	
definitions	of	the	data	flows	and	their	invariants.	Instead,	this	apparatus	defines	the	structure	of	the	
meaning.	The	elements	of	meaning,	identified	as	“atomic	formulations”	in	section	8.4,	are	supplied	by	
one	or	mode	referenced	vocabularies.	The	SFP	Catalog	assumes	the	use	of	the	ISO/OMG	Knowledge	
Discovery	Metamodel	(KDM)	vocabulary	as	the	foundation	for	the	formalizations,	and	some	generic	
parts	of	the	vocabulary	described	in	the	Semantics	of	Business	Vocabularies	and	Rules	(SBVR)	
specification.	
	
Appendix	A	provides	the	specification	of	the	“Readable	SFP	language”	as	a	context-free	grammar.	The	
mapping	of	the	constructs	of	this	language	to	the	elements	of	the	SFPM	and	thus	to	SFPM	XMI	is	
straightforward.	This	appendix	is	informative.	

6.2 Acknowledgements
The following companies submitted this specification:

• KDM Analytics
• Lockheed Martin
• MITRE Corporation
• 88solutions
• NoMagic

 16 Software Fault Pattern Metamodel (SFPM) Version 1.0

Software Fault Pattern Metamodel (SFPM) Version 1.0 17

7 SFP Exchange Format
7.1 Objectives

• Define	a	common	normalized	format	for	representing	reusable	machine-consumable	content	
related	to	software	faults,	their	formal	semantics	and	their	relationships	

• Define	a	common	normalized	format	for	structuring	knowledge	of	software	faults	

• Define	a	common	format	for	representing	mappings	to	the	formally	defined	and	structured	
units	of	software	faults	to	the	items	in	the	Common	Weakness	Enumeration	(CWE)	catalog	

• Contribute	to	the	evolution	of	the	CWE	catalog	by	defining	formal	compliance	points	to	CWEs	

• Define	the	infrastructure	to	identify	ambiguities,	inconsistencies	and	gaps	in	the	CWE	catalog	
based	on	the	formal	descriptions	of	software	faults	and	the	mapping	apparatus	to	the	CWE	
catalog,	and	the	means	for	sharing	these	findings	throughout	the	community.		

• Align	with	the	standard	Knowledge	Discovery	Metamodel	(KDM)	for	describing	basic	facts	
about	the	software	system	under	assessment	

• Align	formal	definitions	of	software	faults	with	their	impact	and	define	a	common	format	for	
enumerating	impacts	of	software	faults	and	their	variants		

• Align	with	the	risk	analysis	interchange	protocol	and	the	TOIF	protocol	as	well	as	other	
protocols	of	the	OMG	System	Assurance	Ecosystem	to	link	findings	as	evidence	to	risks	

• Define	a	common	format	for	enumerating	root	causes	of	software	faults	

• Align	with	the	OMG	TOIF	protocol	by	defining	a	consistent	enumeration	of	software	faults.	

• Establish	a	uniform,	vendor-neutral,	normalized	environment	for	analyzing	knowledge	related	
to	software	faults	

• Define	the	foundation	for	the	SFP	Catalog	that	will	accumulate	structured,	machine-consumable	
content	related	to	software	faults	

• Establish	an	ecosystem	for	development	of	new	capabilities	that	will	consume	the	SFP	content	
and	use	this	content	for	various	purposes	including	(but	not	limited	to)	analytics	related	to	
software	faults,	collecting	evidence	for	digital	certification	of	systems,	synthesizing	test	cases	for	
code	analysis	tools. 	

 18 Software Fault Pattern Metamodel (SFPM) Version 1.0

8 Software Fault Pattern Metamodel
This	section	describes	the	MOF	model	for	SFPM	using	UML	class	diagrams.	The	SFPM	model	is	the	
normative	part	of	the	SFPM	specification.	This	model	determines	the	SFPM	XMI	schema	by applying the
standard MOF to XMI mapping to the SFPM MOF model. The canonical interchange format defined
by SFPM is called the SFPM XMI schema. As	the	means	of	illustrating	the	SFPM,	examples	of	the	SFP	
content	are	provided	as	fragments	of	XML/XMI	documents	compliant	to	the	SFPM	XMI	schema,	as	well	
as	in	“readable	SFP	language”.	This	readable	SFP	language	is	described	in	Appendix	A	to	this	
specification.	This	language	constitutes	an	informative	part	of	the	specification.	
The	SFPM	MOF	model	consists	of	a	single	UML	package	and	includes	16	class	diagrams	to	represent	the	
following:	

o Core	elements	of	the	SFP	Catalog	
o Sections	of	the	SFP	Catalog		
o SFP	Defined	Elements	
o Semantic	Formalization	Apparatus	
o Referenced	Vocabularies	

	
The	rest	of	this	section	has	the	following	organization.	Section	8.1	presents	UML	class	diagrams	that	
describe	the	Core	elements	of	the	SFP	Catalog.	Section	8.2	presents	UML	class	diagrams	that	describe	
the	structuring	mechanism	of	the	SFP	Catalog,	called	“section”	and	the	corresponding	classes.	Section	
8.3	presents	UML	class	diagrams	that	describe	the	SFP	Defined	elements.	These	elements	specify	
invariants	of	data	flows	as	logical	propositions	for	sink,	source,	and	the	data	element	of	the	data	flow.	
Section	8.4	presents	UML	class	diagrams	for	the	SFP’s	apparatus	to	define	the	formal	semantics	of	the	
SFP	elements.	Section	8.5	concludes	the	definition	of	the	SFPM	by	describing	the	UML	diagrams	for	the	
referenced	vocabularies.	

8.1 Core Elements of the SFP Catalog
This	section	describes	several	UML	class	diagrams	that	represent	the	core	elements	of	the	SFP	catalog:	
SFP	Catalog,	SFP	and	SFP	Cluster.	Several	other	classes	are	also	considered	as	part	of	the	“core”:	these	
are	the	elements	representing	the	parameters	and	variation	of	SFPs,	elements	capturing	the	common	
root	causes	and	injuries	of	software	faults,	as	well	as	the	elements	involved	in	representing	mappings	of	
SFP	variants	to	the	elements	of	the	Common	Weakness	Enumeration	(CWE)	catalog.	

8.1.1 SFP Catalog Diagram
This	section	provides	an	overview	of	the	core	elements	of	the	Software	Fault	Patterns	Catalog.	The	SFP	
Catalog	class	diagram	defines	the	root	element	–	class	SFPCatalog	–	with	owned	elements	Cluster	and	
SFP.	The	diagram	also	shows	the	related	CWE	elements,	organized	into	one	or	more	CWESection	
containers.	A	“section”	is	a	general	structuring	mechanism	of	the	SFP	Catalog.	Sections	are	described	in	
more	detail	in	section	8.2.	
	

Software Fault Pattern Metamodel (SFPM) Version 1.0 19

Figure 2. UML class diagram SFP Catalog

8.1.1.1 SFPCatalog Class
The	SFPCatalog	class	is	the	root	class	of	SFPM.	This	class	represents	an	instance	of	an	SFP	Catalog.	One	
of	the	objectives	of	the	SFPM	is	to	support	the	SFP	Catalog	as	the	reference	collection	of	the	formal	
machine-consumable	content	related	to	software	faults.	At	the	same	time,	multiple	SFP	Catalog	
instances	can	be	established.	SFPCatalog	is	simply	a	container	for	some	SFP	content	created	under	some	
authority.	SFPM	does	not	impose	any	claims	regarding	completeness	or	usefulness	of	the	content	of	any	
SFPCatalog	instance.	For	example,	an	instance	of	SFPCatalog	can	be	used	to	pack	the	content	related	to	a	
single	SFP	and	deliver	it	to	the	SFP	Catalog	custodians	to	be	validated	and	added	to	the	SFP	Catalog.		
The	benefits	of	the	SFP	approach	come	from	the	content	that	is	shared	among	multiple	SFPs	using	the	
mechanism	of	common	sections	(CWEsection	is	an	example	of	a	section	that	can	be	linked	to	a	single	
SFP,	other	sections	can	be	linked	to	a	cluster,	or	to	the	entire	catalog).	Some	instances	of	SFPCatalog	
may	be	focused	at	delivering	such	common	content.	

 20 Software Fault Pattern Metamodel (SFPM) Version 1.0

Superclass

Attributes

version:String[1]		 Owned	attribute	that	specifies	the	version	of	the	
SFP	catalog.	The	version	of	the	SFP	Metamodel	is	
given	in	the	namespace	in	the	XMI	

description:String[1]	 Informal	description	of	the	purpose	and	content	
delivered	as	the	owned	elements	of	this	element	

owner:String[1]	 Organization	that	is	the	owner	of	the	catalog	

Associations

cluster:Cluster[0..*]		 Owned	collection	of	Cluster	elements	

Example 1. SFPM XMI
<?xml version="1.0" encoding="UTF-8"?>
<sfpm:SFPCatalog xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sfpm="https://www.omg.org/spec/SFPM/20200202"
version="03-08-2015_fp" owner=”sample organization”>
 <cluster name="Memory Access">
 <cluster name="Faulty Pointer Use">
 <sfp name="Faulty Pointer Use" id="7">
 <parameter_section name=""> <!—- body omitted --> </parameter_section>
 <variation_section name=""> <!—- body omitted --> </variation_section>
 <cwe_section name=""> <!—- body omitted --> </cwe_section>
 <element_section name=""> <!—- body omitted --> </element_section>
 <characteristic_section name="">

<!—- body omitted --></characteristic_section>
 <canonical_section name=""> <!—- body omitted --> </canonical_section>
 <cwe_mapping_section > <!—- body omitted --> </cwe_mapping_section >
 </sfp>
 </cluster>
 </cluster>
 <context_section name=""> <!—- body omitted --> </context_section>
 <vocabulary_section name=""> <!—- body omitted --> </vocabulary_section>
 <property_section name=""> <!—- body omitted --> </property_section>
 <indicator_section name=""> <!—- body omitted --> </indicator_section>
 <rootcause_section name=""> <!—- body omitted --> </rootcause_section>
 <injury_section name=""> <!—- body omitted --> </injury_section>

 <vocabulary_section name="referenced">
 <vocabulary name="KDM"> <!—- body omitted --> </vocabulary>
 <vocabulary name="Hooks"> <!—- body omitted --> </vocabulary>
 <vocabulary name="Analysis API"> <!—- body omitted --> </vocabulary>
 <vocabulary name="Strings"> <!—- body omitted --> </vocabulary>
 <vocabulary name="SBVR"> <!—- body omitted --> </vocabulary>

Software Fault Pattern Metamodel (SFPM) Version 1.0 21

 <vocabulary name="Platform Meta"> <!—- body omitted --> </vocabulary>
 <vocabulary name="Platform APIs"> <!—- body omitted --> </vocabulary>
 </vocabulary_section >
</sfpm:SFPCatalog>

Example 2 Readable SFP language

#####################################
########## SFP 7 #################
#####################################

Catalog 03-08-2015_fp

Cluster Memory Access
Secondary Faulty Pointer Use
 SFP 7 Faulty Pointer Use

 Parameters
 End Parameters

 Variations
 End Variations

 CWEs
 End CWEs

############### SFP Elements #################################

 Elements
 End Elements

 Characteristics
 End Characteristics

 Canonicals
 End Canonicals

End SFP
End Secondary
End Cluster

############## Context Elements ####################

SharedContextElements
End SharedContextElements

########### definitions ######

Vocabularies

 22 Software Fault Pattern Metamodel (SFPM) Version 1.0

Definitions KDM Patterns

 End Definitions
End Vocabularies

#####################################
########### Properties ##############
#####################################
Properties
End Properties

############### Indicators ####################

Indicators
End Indicators

End Catalog

8.1.1.2 Cluster Class
The	Cluster	class	represents	a	logically	coherent	collection	of	SFP	items.		The	SFP	catalog	supports	at	
least	two	levels	of	clusters:	primary	clusters	and	secondary	clusters.		Primary	clusters	are	represented	
by	instances	of	the	Cluster	class	owned	directly	by	the	SFPCatalog.	Secondary	clusters	are	represented	
by	the	instances	of	Cluster	class	owned	the	primary	clusters.	

A	primary	SFP	cluster	is	a	collection	of	one	or	more	secondary	SFP	clusters.	A	primary	SFP	cluster	shall	
not	directly	own	SFP	elements.	A	secondary	SFP	cluster	is	a	collection	of	one	or	more	SFP	elements.	

A	Cluster	may	have	one	or	more	CWE	sections	which	are	references	to	the	related	elements	of	the	
Common	Weakness	Enumeration	(CWE)	catalog.	

Superclass	

Attributes	

name:	String[1]		 Name	of	the	cluster	

description:String[1]		 Description	of	the	cluster	

	

Associations	

cluster:Cluster[0..*]		 Owned	collection	of	(secondary)	clusters.	

sfp:SFP[0..*]		 Owned	collection	of	SFP	elements	

cwe_section:CWESection[0..*]		 Owned	collection	of	CWE	sections.	

Constraints	
1. Each Cluster instance of the SFPCatalog shall have a unique name in the scope of the catalog.	

Software Fault Pattern Metamodel (SFPM) Version 1.0 23

2. Each Cluster instance that owns another Cluster shall not own SFP instances	

3. Each Cluster instance that owns SFP shall not own another Cluster instances	

Example	1.	SFPM	XMI	

<cluster name="Memory Access">
 <cluster name="Faulty Pointer Use">
 <sfp name="Faulty Pointer Use" id="7"> <!—- body omitted --> </sfp>
 </cluster>
</cluster>
	

Example	2.	Readable	SFP	language	

Cluster Memory Access
 Secondary Faulty Pointer Use

 SFP 7 Faulty Pointer Use

 End SFP
 End Secondary
End Cluster
	

8.1.1.3 SFP Class
The	SFP	class	represents	a	single	Software	Fault	Pattern	–	a	core	item	of	the	SFP	Catalog.	This	
specification	will	refer	to	an	instance	of	SFP	class	as	“SFP”	or	an	“SFP	item”,	and	to	the	semantically	
significant	parts	of	its	definition	as	“SFP	elements”.	

Superclass	

Attributes	

name:String[1]		 	Name	of	the	SFP	item	

id:	String[1]		 	Unique	identifier	of	the	SFP	item	

description:String[1]		 Description	of	the	SFP	item	

	

Associations	

cwe_section:CWESection[0..*]		 	Owned	collection	of	CWE	sections	

rootcause:RootCause[0..*]		 	References	to	the	related	Root	Cause	elements	(see	SFP	
Causal	Context	diagram)	

injury:Injury[0..*]		 	References	to	the	related	Injury	elements	(see	SFP	Causal	
Context	diagram)	

 24 Software Fault Pattern Metamodel (SFPM) Version 1.0

Example	1.	SFPM	XMI	

<sfp name="Faulty Pointer Use" id="7">
 <parameter_section name=""> <!—- body omitted --> </parameter_section>
 <variation_section name=""> <!—- body omitted --> </variation_section>
 <cwe_section name=""> <!—- body omitted --> </cwe_section>
 <element_section name=""> <!—- body omitted --> </element_section>
 <characteristic_section name="">

<!—- body omitted --> </characteristic_section>
 <canonical_section name=""> <!—- body omitted --> </canonical_section>
 <cwe_mapping_section > <!—- body omitted --> </cwe_mapping_section >
 <injury_mapping_section > <!—- body omitted --> </injury_mapping_section >
</sfp>
	

Example	2.	Readable	SFP	language	

SFP 7 Faulty Pointer Use

 Parameters
 End Parameters

 Variations
 End Variations

 CWEs
 End CWEs

############### SFP Elements #################################

 Elements
 End Elements

 Characteristics
 End Characteristics

 Canonicals
 End Canonicals

End SFP
	

8.1.1.4 CWE Class
The	CWE	class	represents	an	element	of	the	Common	Weakness	Enumeration	(CWE)	catalog.	CWE
catalog has been selected as the reference body of knowledge of software weaknesses. The objective
of SFP is to provide structured “viewpoint” on the content that is already in CWE, to provide a set of
formal compliance points for the software weaknesses, as well as to resolve the inconsistencies and
ambiguities in existing CWE content and fill any gaps in CWE. From the versioning perspective,
versions of the SFP catalog are aligned with the versions of CWE catalog, such that a CWE element
is identical in all implementations that are based on the same CWE version. However, SFP catalog

Software Fault Pattern Metamodel (SFPM) Version 1.0 25

may suggest new elements to the CWE catalog that resolve inconsistencies or address some gaps.
Such new elements are represented by instances of CWE class with “derived” names which includes
the name of some existing CWE element and a suffix. The intention of the CWE sections is to
facilitate the knowledge transfer to the CWE community.	

Superclass	

Attributes	

name:String[1]		 Full	name	of	the	element	as	it	appears	in	the	
Common	Weakness	Enumeration	(CWE)	catalog	
(or	derived	from	such	name	by	ways	of	a	suffix	to	
indicate	refined	elements).	

id:	String[1]		 Unique	identifier	of	the	element	in	the	CWE	
catalog	(or	derived	from	such	identifier	by	ways	of	
a	suffix	to	indicate	refined	elements)	

url:String[0..1]		 	Unique	URL	of	the	element	

description:String[0..1]		 	Description	of	the	element	

details:String[0..1]		 	Detailed	description	of	the	element	

status:Status[1]		 	Status	of	the	element	to	indicate	if	this	is	an	
original	element,	or	a	new	element	that	fills	a	gap,	
or	a	refinement	of	another	element	

discernible:DiscernibilityLevel[1]	 Level	of	discernibility	of	the	content	available	for	
this	CWE	in	the	CWE	catalog	(established	in	the	
course	of	SFP	formalization	of	CWE,	not	part	of	
the	CWE	catalog)	

	

Associations	

note:Note[0..*]		 Owned	collection	of	informal	notes	for	this	
element.	SFP	often	includes	notes	related	to	the	
applicable	languages,	even	if	this	is	completely	
redundant	given	that	the	SFP	content	is	
formalized	using	language-neutral	KDM	
representation.	Informal	notes	are	often	useful	to	

 26 Software Fault Pattern Metamodel (SFPM) Version 1.0

explain	the	relationship	between	CWE	and	SFP	
variants	

Example	1.	SFPM	XMI	

<cwe_section name="">
 <cwe xmi:id="cwe416"
name="Use After Free"
id="416"
description=""
details=""
status="original"
discernible=”Very High”
url="http://cwe.mitre.org/data/definitions/416.html" >
 <note text="Rename to Use After Release" />
 <note text="this pattern involves an explicit release" />
 <note text="the kind of entity must be releasable. This involves read

 or write access via pointer that still exists while the target
entity was released" />

 <note text="not applicable to java, since there is no explicit
 delete" />

 <note text="c,c++" />
 </cwe>
 <cwe xmi:id="cwe416a" name="Use After Expiration" id="416a"
status="refinement"
discernible=”Very High” >
 <note text="This pattern involves use of an entity that ceased to
 exist for reasons other than an explicit release. The use is via a
 pointer. This involves non-releasable named entities which cease to

exist while the pointer still exists. This pattern involves read or
write access." />

 <note text="uses involve passing to known api" />
 <note text="this is not applicable to java, as objects are garbage-
 collected" />
 <note text="c,c++" />
 </cwe>
</cwe_section>

Example	2.	Readable	SFP	language	

#####################################
########### CWE ####################
#####################################

CWEs

 CWE 416 Use After Free
 description=
 details=
 status=”other”
 discernible=Very High
 url="http://cwe.mitre.org/data/definitions/416.html"
 Mapping: 1.10 2.5 3.3
 Note: Rename to Use After Release
 Note: this pattern involves an explicit release
 Note: the kind of entity must be releasable. This involves read or

Software Fault Pattern Metamodel (SFPM) Version 1.0 27

 write access via pointer that still exists while the target entity
 was released

 Note: not applicable to java, since there is no explicit delete
 Note: c,c++
 End CWE

 CWE 416a Use After Expiration
 Mapping: 1.10 2.6 3.3
 Discernible=Very High
 Note: This pattern involves use of an entity that ceased to exist for
 reasons other than an explicit release. The use is via a pointer.
 This involves non-releasable named entities which cease to exist
 while the pointer still exists. This pattern involves read or write
 access.
 Note: uses involve passing to known api
 Note: this is not applicable to java, as objects are

garbage-collected
 Note: c,c++
 End CWE
End CWEs

	

8.1.1.5 Note Class
The	Note	class	represents	a	text	note	for	the	CWE	element.	

Superclass	

Attributes	

text:String[1]		 The	body	of	the	note	

Example	

	 See	8.1.1.4	

	

8.1.1.6 CWESection Class
The	CWESection	class	represents	a	container	for	one	or	more	CWE	elements.	CWESection	is	part	of	the	
structuring	mechanism	of	the	SFP	catalog	called	“sections”	that	are	described	in	full	detail	in	section	8.2	

Superclass	

	 ClusterSection	

Associations	

cwe:CWE[0..*]		 Owned	collection	of	the	CWE	elements	

Example	

 28 Software Fault Pattern Metamodel (SFPM) Version 1.0

	 See	8.1.1.4	

	

8.1.1.7 DiscernibilityLevel Enumeration
The	DiscernibilityLevel	class	introduces	levels	of	discernibility	of	content	available	for	a	CWE	element	
in	the	Common	Weakness	Enumeration	(CWE)	Catalog.	CWE	catalog	introduces	signifiers	of	software	
weaknesses.	Each	signifier	in	CWE	is	linked	to	an	informal	description,	and	to	one	or	more	sections	with	
code	samples	and	cross-references	to	other	content.	Discernibility	level	is	an	informal	measure	of	how	
easy	it	is	to	recognize	the	underlying	situation	(described	by	CWE	signifier)	in	the	code	artifacts.	A	more	
discernible	description	can	be	formalized.		A	discernible	characteristic	is	a	property	(used	in	a	semantic	
definition	representing	some	computation)	that	can	be	expressed	as	a	formal	statement	in	the	
vocabulary	of	the	system’s	artifacts.	The	foundation	for	such	vocabulary	is	KDM,	however	the	definition	
does	not	preclude	certain	extensions.	A	common	way	of	referring	to	situations	that	can	be	recognized	in	
code	is	“white-box	property”	(as	opposed	for	example	to	a	“black	box	property”	that	is	described	purely	
as	a	function	of	the	values	of	inputs	and	outputs).	Thus,	a	discernible	description	of	a	computation	is	a	
logical	statement	that	is	based	entirely	on	discernible	characteristics.	A	non-discernible	description	is	
either	ambiguous	(the	meaning	is	ill-defined,	the	description	is	not	a	logical	statement),	uses	ill-defined	
characteristics,	uses	one	or	more	non-discernible	characteristics	or	is	not	“white-box”.	A	discernible	
characteristic	emphasizes	the	artifacts	rather	than	values	or	state	–	consistent	with	the	SFP	approach.	

A	non-discernible	description	can	be	turned	into	a	discernible	one	by:	

• Providing	more	clarity	and	precision	

• Using	structured	language	based	on	controlled	vocabulary	of	well-defined	meanings	

• Performing	additional	research	to	better	define	the	corresponding	family	of	computations,	and	
better	defining	the	characteristics	involved	in	the	definition	

• Defining	additional	facts	and	extending	the	currently	available	vocabulary	of	facts	related	to	the	
system’s	artifacts.	

Literals	

Very	High		 The	content	of	this	CWE	weakness	description	is	
based	directly	on	the	well-understood	discernible	
white-box	properties	

High	 The	content	of	this	CWE	weakness	description	is	
based	on	discernible	white-box	properties	

Medium	 The	content	of	this	CWE	weakness	description	is	
based	on	discernible	white-box	properties	or	

Software Fault Pattern Metamodel (SFPM) Version 1.0 29

properties	that	are	believed	to	be	derivable	from	
them	

Low	 The	content	of	this	CWE	weakness	description	
involves	properties	that	are	not	derivable	from	
discernible	white-box	properties	

Very	Low	 The	content	of	this	CWE	description	is	not	
discernible	

Example	

	 See	8.1.1.4	where	SFPM	XMI	representation	is	illustrated.	The	actual	values	of	discernibility	
levels	for	CWEs	are	provided	in	the	SFP	catalog.		

	

8.1.1.8 Status Enumeration
The	Status	class	introduces	Status of a referenced CWE element to indicate if this is an original
element, or a new element that fills a gap, or a refinement of another element

Literals	

original		 The	CWE	element	represents	an	existing	item	from	
the	CWE	catalog	

new	 The	CWE	element	represents	a	new	item,	not	
present	in	the	CWE	catalog	

refinement	 The	CWE	element	represents	a	modification	of	an	
existing	item	in	the	CWE	catalog	

other	 The	CWE	element	represents	a	situation	not	
covered	by	other	literals	

Example	

	 See	8.1.1.4	where	SFPM	XMI	representation	is	illustrated.		

	

8.1.2 SFP Variations Class Diagram
This	section	describes	the	analytical	mechanism	of	the	SFP	Catalog	that	allows	managing	the	content	
and	establishing	new	properties	of	the	software	faults.	The	elements	of	this	mechanism	are	SFP	
Parameters,	Variations	and	Variants.	A	Software	Fault	Pattern	(SFP)	–	an	SFP	item	-	represents	a	family	
of	similar	faulty	computations	by	identifying	a	common	indicator,	common	data	flow	elements	and	

 30 Software Fault Pattern Metamodel (SFPM) Version 1.0

possibly	some	associated	conditions.	When	generalized,	an	SFP	definition	refers	to	the	entire	secondary	
cluster	and	is	arranged	into	an	invariant	core	and	variation	points.	By	focusing	at	the	dataflow	elements	
of	faulty	computations,	the	SFP	approach	allows	a	generalized	statement	to	cover	many	situations	that	
share	an	invariant	of	the	data	flow-	and	thus	concisely	describe	the	entire	family	of	computations.	A	
generalized	statement	includes	several	“variation	points”	that	are	disjunctions	of	more	detailed	
situations.	To	ensure	full	coverage,	variation	points	are	identified	through	top-down	analysis	of	entire	
cluster	space.	Once	all	variation	points	are	identified,	they	are	defined	as	specific	“parameters”.	In	other	
words,	variations	introduce	additional	details	for	the	generalized	definition,	focusing	at	the	named	
variation	points	–	the	parameters.	Each	SFP	Parameter	defines	a	set	of	distinct	situations,	referred	to	as	
its	Variants.	SFP	also	includes	a	mechanism	to	achieve	“horizontal”	consistency	between	multiple	
“slices”	of	the	tree	of	variants.	

Parameters	and	Variants	are	part	of	the	mechanism	for	establishing	a	mapping	between	SFP	and	
related	CWEs	which	also	contributes	to	the	analytical	capabilities	of	SFP.	SFP	items	map	to	multiple	
CWEs	in	such	a	way	that	each	CWE	in	the	family	can	be	defined	as	a	specialization	of	an	SFP	through	a	
specific	set	of	variants	for	certain	parameters	–	this	can	be	called	a	“profile”	of	the	CWE.	This	
specialization	is	formally	defined	as	a	unique	set	of	variants	of	one	or	more	SFP	parameters.	Based	on	
this	mapping,	CWEs	can	serve	as	a	reporting	mechanism	for	SFP.	

Identified	Software	Fault	Pattern	definitions	provide	the	foundation	for	developing	more	accurate	
testing	tools	and	improving	developer	education	since	it	is	easier	to	manage	the	knowledge	of	fewer	
SFPs	than	hundreds	of	CWEs.	They	also	provide	for	a	more	cost-effective	formalization.	
	

Each	SFP	element	owns	one	or	more	Parameters,	Variants	and	Variations.	This	ownership	is	
implemented	by	the	structuring	mechanism	of	SFPM	called	“sections”.	Section	as	fully	explained	in	
section	8.2.	Parameters,	and	Variations	are	owned	by	separate	sections.	Variants	are	owned	by	each	
Parameter	as	illustrated	below.	Properties	are	owned	by	yet	another	section	owned	by	the	entire	
catalog.	

Software Fault Pattern Metamodel (SFPM) Version 1.0 31

Figure 3. UML class diagram SFP Variations

	

8.1.2.1 Parameter
Parameter	is	one	of	the	key	concepts	of	the	structured	approach	to	formally	defining	software	faults.	
According	to	this	approach,	an	SFP	defines	a	family	of	computations	that	exhibits	a	certain	fault.	First	
these	computations	are	defined	by	their	characteristic	Sink,	Source	and	Data	(referred	to	as	the	SFP	
Dataflow	Elements).	Then	a	set	of	Parameters	is	identified	and	enumerated	where	a	Parameter	is	one	of	
the	“concepts”	involved	in	the	definition	of	the	faulty	computation	(part	of	the	Sink,	Source	or	Data).	
Each	Parameter	defines	a	set	of	distinct	situations,	referred	to	as	its	Variants.	Parameters	are	owned	by	
an	SFP	element	through	a	ParameterSection	(as	described	in	section	8.2	in	more	detail).	

Superclass

Attributes

 32 Software Fault Pattern Metamodel (SFPM) Version 1.0

name:Name[1]		 Name	of	the	parameter		

Associations

variant:Variant[1..*]		 Owned	set	of	Variants	for	the	Parameter	

Example 1. SFPM XMI

<parameter_section name="">
 <parameter name="Pointer Use Kind">
 <variant xmi:id="variant1" name="1.1 Dereference" definition="prop1" />
 <variant xmi:id="variant2" name="1.2 Call via pointer" definition="prop1" />
 <variant xmi:id="variant3" name="1.3 Access to Member via pointer"
 definition="prop2" />
 <variant xmi:id="variant4" name="1.4 Method call via pointer"
 definition="prop3" />
 <variant xmi:id="variant5" name="1.5 Access with index" definition="prop4" />
 <variant xmi:id="variant6" name="1.6 Cast" definition="prop5" />
 <variant xmi:id="variant7" name="1.7 Hidden access via api"
 definition="prop6" />
 <variant xmi:id="variant8" name="1.10 Any use" definition="prop7" />
 <variant xmi:id="variant9" name="1.11 Access to Member via overlay struct"
 definition="prop8" />
 <variant xmi:id="variant10" name="1.12 Access to Method via overlay class"
 definition="prop9" />
 </parameter>
 <parameter name="Incorrect Value Kind">
 <variant xmi:id="variant11" name="2.1 Pointer is NULL" definition="prop10" />
 <variant xmi:id="variant12" name="2.2 Pointer is invalid" definition="prop11"
 />
 <variant xmi:id="variant13" name="2.4 Faulty Type" definition="prop12" />
 <variant xmi:id="variant14" name="2.5 Entity is released" definition="prop13"
 />
 <variant xmi:id="variant15" name="2.6 Entity ceased to exist"
definition="prop14" />
 <variant xmi:id="variant16" name="2.7 Any value" definition="prop15" />
 <variant xmi:id="variant17" name="2.8 Not valid for call" definition="prop16"
 />
 </parameter>
 <parameter name="Access Kind">
 <variant xmi:id="variant18" name="3.1 Read access" definition="prop17" />
 <variant xmi:id="variant19" name="3.2 Write access" definition="prop18" />
 <variant xmi:id="variant20" name="3.3 Read or Write" definition="prop19" />
 <variant xmi:id="variant21" name="3.4 Call" definition="prop20" />
 <variant xmi:id="variant22" name="3.5 Not applicable" definition="prop21" />
 <variant xmi:id="variant23" name="3.7 Object oriented access"
 definition="prop22" />
 </parameter>
</parameter_section>

Software Fault Pattern Metamodel (SFPM) Version 1.0 33

Example 2. Readable SFP language

Parameters

 Parameter Pointer Use Kind
 Variant 1.1 Dereference -> Property "access mechanism pointer"
 Variant 1.2 Call via pointer -> Property "access mechanism pointer"
 Variant 1.3 Access to Member via pointer -> Property "access mechanism
 member"
 Variant 1.4 Method call via pointer -> Property "access mechanism method"
 Variant 1.5 Access with index -> Property "access mechanism index"
 Variant 1.6 Cast -> Property "access mechanism cast"
 Variant 1.7 Hidden access via api -> Property "access mechanism hidden"
 Variant 1.10 Any use -> Property "access mechanism any"
 Variant 1.11 Access to Member via overlay struct -> Property "access

 mechanism overlay"
 Variant 1.12 Access to Method via overlay class -> Property "access

mechanism overlay call"
 End Parameter

 Parameter Incorrect Value Kind
 Variant 2.1 Pointer is NULL -> Property "value null"
 Variant 2.2 Pointer is invalid -> Property "value invalid"
 Variant 2.4 Faulty Type -> Property "value faulty type"
 Variant 2.5 Entity is released -> Property "value released"
 Variant 2.6 Entity ceased to exist -> Property "value expired"
 Variant 2.7 Any value -> Property "any value"
 Variant 2.8 Not valid for call -> Property "value not callable"
 End Parameter

 Parameter Access Kind
 Variant 3.1 Read access -> Property "access read"
 Variant 3.2 Write access -> Property "access write"
 Variant 3.3 Read or Write -> Property "access read or write"
 Variant 3.4 Call -> Property "access call"
 Variant 3.5 Not applicable -> Property "access any"
 Variant 3.7 Object oriented access -> Property "access oo"
 End Parameter

End Parameters

8.1.2.2 Variant Class
An	SFP	Variant	is	a	fundamental	concept	of	the	structured	approach	to	formally	defining	software	
faults.	According	to	this	approach,	an	SFP	defines	a	family	of	computations	that	exhibits	some	fault.	
First	these	computations	are	defined	by	describing	its	characteristic	Sink,	Source	and	Data	(referred	to	
as	the	SFP	Dataflow	Elements).	Then	a	set	of	Parameters	is	identified	and	enumerated	where	a	
Parameter	is	one	of	the	concepts	involved	in	the	definition	of	the	faulty	computation	(part	of	the	Sink,	
Source	or	Data).	Each	Parameter	defines	a	set	of	distinct	situations,	referred	to	as	its	Variants.	The	
computation	is	defined	by	a	covering	set	of	cases	each	uniquely	identified	by	a	combination	of	distinct	
Variants.	Another	element	called	Variation	helps	manage	the	permutations	of	the	Variants.	

A	combination	of	variants	for	the	SFP’s	parameters	provides	a	slice	of	the	faulty	computation.	Each	such	
slice	may	have	own	root	causes	and	impacts.	SFP	Catalog	provides	a	mapping	between	computation	

 34 Software Fault Pattern Metamodel (SFPM) Version 1.0

slices	and	elements	of	the	Common	Weakness	Enumeration	(CWE)	catalog.		The	structured	approach	of	
the	SFP	allow	to	formally	define	individual	CWEs	as	SFP	slices,	defined	as	a	set	of	variants	for	SFP’s	
parameters.	This	approach	allows	to	detect	ambiguities,	overlaps	and	gaps	in	the	CWE	catalog.	These	
observations	are	captured	as	notes	in	the	CWE	mappings	in	the	SFP	Catalog.	

Variants	are	owned	by	the	corresponding	Parameter	of	the	SFP.	SFP	element	owns	Parameters	through	
a	ParameterSection	(as	described	further	in	section	8.2	in	more	detail).	

Superclass	

Attributes	

name:String[1]		 The	name	of	the	variant		

description:String[1..*]		 Description	of	the	variant	

Associations	

definition:Property[1..*]		 Definition	of	the	variant	in	terms	of	one	or	more	
properties	

Example 1. SFPM XMI
<variant xmi:id="variant2" name="1.2 Call via pointer" definition="prop1" />

Example 2. Readable SFP language
Variant 1.2 Call via pointer -> Property "access mechanism pointer"

See also 8.1.2.1

8.1.2.3 Variation Class
Variation	class	is	involved	in	constructing	“variation	trees”	–	auxiliary	structures	that	help	manage	
variants	of	an	SFP.	Variation	trees	are	represented	as	follows.	A	Variation	element	may	own	several	
(nested)	variation	elements.	This	parent	variation	usually	corresponds	to	a	certain	parameter	element,	
although	this	link	is	not	explicit	in	SFPM.	The	leaf	variations	refer	to	certain	variants.	Variation	section	
owns	a	set	of	top	variations.	Nesting	of	variations	imposes	dependencies	between	parameters	and	their	
variants.	The	variation	tree	restricts	acceptable	permutations	of	the	variants.	Variations	in	the	variation	
tree	are	ordered.	The	ordering	of	the	variants	in	the	tree	may	be	utilized	to	achieve	predictable	
enumeration	of	all	possible	permutations	of	the	variants.	

The	“variation	tree”	defines	the	initial	structure	of	the	family	of	computations	identified	as	an	SFP.	
Further,	the	SFP	elements	define	the	invariant	of	the	data	flows	involved,	by	defining	the	sink	(a	
collection	of	the	Indicators),	the	primary	data	element	of	the	data	flow,	the	source	and	the	invariant	
condition.	These	elements	are	defined	as	a	disjunction	of	“clauses”,	enumerating	various	distinct	
situations	involved	in	the	data	flow.	Consistency	of	the	clauses	of	the	SFP	element,	as	well	as	their	

Software Fault Pattern Metamodel (SFPM) Version 1.0 35

correlation	with	the	“variation	tree”	is	achieved	using	“properties”.	Each	property	is	defined	as	a	set	of	
“tags”.	Two	clauses	are	compatible	if	they	include	tags	with	matching	values.		

When	the	SFP	content	is	used	to	synthesize	representative	samples	of	“compliant”	or	“non-compliant”	
(but	similar-looking)	computations,	the	tags	guide	the	selection	of	the	computation	slices,	and	can	be	
used	to	identify	a	given	computation	slice.	

Properties	are	further	defined	in	section	8.3.	

Variation	tree	is	closely	aligned	with	the	CanonicalForm	of	the	SFP	that	describes	the	structure	of	the	
multitude	of	canonical	representations	of	the	computations	described	by	the	SFP	with	full	context.	
Canonical	Elements	are	further	described	in	section	8.3.	

SFP	element	owns	Variations	though	a	VariationSection	(as	further	described	in	section	8.2	in	more	
detail).	

Superclass

Associations

name:String[1]		 Name	of	the	variation		

description:String[1]		 Description	of	the	variation	

Associations

variation:Variation[0..*]		
{ordered}	

Owned	(nested)	variations	(ordered)	

variant:Variant[0..*]		 Specific	variant	that	defines	the	variation	

Example 1. SFPM XMI

This	example	illustrates	variation	tree	for	SFP-7.	Parameters	for	SFP-7	are	illustrated	in	section	8.1.2.1.	
The	top	level	of	the	variation	tree	has	two	variations:	DataType	and	Parameter	Value	Kind.	For	each	
variant	of	the	Parameter	Value	Kind,	the	tree	has	all	variations	of	the	Parameter	Access	Kind.	Then	for	
each	variation	of	the	Access	Kind,	the	tree	has	appropriate	variations	of	the	Parameter	Use	Kind.	
DataType	is	“built-in”	Parameter,	describing	variants	of	a	data	type	(e.g.	character,	integer,	Boolean,	
string,	pointer,	etc.).	

<variation_section name="">
 <variation name="DataType" />
 <variation name="Parameter Value Kind" >
 <variation name="Pointer is NULL" variant="variant11" >
 <variation name="Parameter Access Kind" />
 <variation name="Read" variant="variant18" >
 <variation name="Ordinary Pointer Dereference" variant="variant1" />
 <variation name="Access with index" variant="variant5" />

 36 Software Fault Pattern Metamodel (SFPM) Version 1.0

 <variation name="Access to member via pointer" variant="variant3" />
<variation name="Access to member via overlay struct"
variant="variant9" >

 <variation name="Hidden call via API" variant="variant7" />
 </variation>
 </variation>
 <variation name="Write" variant="variant19" >
 <variation name="Ordinary Pointer Dereference" variant="variant1" />
 <variation name="Access with index" variant="variant5" />
 <variation name="Access to member via pointer" variant="variant3" />
 <variation name="Access to member via overlay struct"

 variant="variant9" >
 <variation name="Hidden call via API" variant="variant7" />
 </variation>
 </variation>
 <variation name="Call" variant="variant21" > … </variation>
 <variation name="Pointer is invalid" variant="variant12" > … </variation>
 <variation name="Entity has been released" variant="variant14" > …
 </variation>
 <variation name="Entity ceased to exist" variant="variant15" > … </variation>
 <variation name="Pointer is valid but faulty type" variant="variant13" > …
 </variation>
 </variation>
</variation_section>

Example 2. Readable SFP language

Variations

 DataType
 Parameter Value Kind
 Pointer is NULL -> 2.1
 Parameter Access Kind
 Read -> 3.1
 Ordinary Pointer Dereference -> 1.1
 Access with index -> 1.5
 Access to member via pointer -> 1.3
 Access to member via overlay struct-> 1.11
 Hidden call via API -> 1.7
 Write -> 3.2
 Ordinary Pointer Dereference -> 1.1
 Access with index -> 1.5
 Access to member via pointer -> 1.3
 Access to member via overlay struct-> 1.11
 Hidden call via API -> 1.7
 Call -> 3.4
 …
 Pointer is invalid -> 2.2
 …
 Entity has been released -> 2.5
 …
 Entity ceased to exist -> 2.6
…
 Pointer is valid but faulty type -> 2.4
…
End Variations

Software Fault Pattern Metamodel (SFPM) Version 1.0 37

8.1.2.4 Property Class
Property	class	is	a	semantic	element	that	provides	definitions	for	variants	in	terms	of	special	tags	
(markers).	This	class	is	described	in	more	detail	in	section	8.3.		
The	purpose	of	the	tags	is	to	correlate	variations	with	the	clauses	of	the	formalized	descriptions.	

When	the	SFP	content	is	used	to	synthesize	representative	samples	of	“compliant”	or	“non-compliant”	
(but	similar-looking)	computations,	the	tags	guide	the	selection	of	the	computation	slices,	and	can	be	
used	to	identify	a	given	computation	slice.		

8.1.3 SFP Causal Context Class Diagram
This	section	describes	the	UML	representation	of	the	elements	that	capture	the	cause	and	effect	of	a	
software	fault.	

Figure 4. UML class diagram SFP Causal Context

8.1.3.1 RootCause Class
RootCause	class	defines	a	typical	root	cause	for	an	SFP	item.	Root	causes	–	also	known	as	“vulnerability	
fundamentals”	–	are	typical	factors	that	may	be	facilitating	vulnerabilities,	especially	as	they	are	
introduced	during	the	design	and	development	of	systems.	Root	causes	may	be	attributed	to	
programming	languages,	the	runtime	systems,	the	hardware	or	any	other	parts	of	the	environment.	A	
typical	root	cause	may	not	be	the	same	as	the	actual	root	cause	for	a	bug	in	a	specific	system	under	
assessment.	A	RootCause	is	a	useful	abstraction.	Enumerating	possible	root	causes	for	the	Software	
Fault	Patterns	as	part	of	the	SFP	Catalog	is	aimed	at	steering	research	into	hardening	systems.	SFPM	
facilitates	analytics	that	may	reveal	common	root	causes.	

 38 Software Fault Pattern Metamodel (SFPM) Version 1.0

RootCause	elements	are	owned	by	the	SFPCatalog	through	one	or	more	RootCauseSection	containers.	
Collectively,	RootCause	elements	define	the	set	of	possible	root	causes	of	the	faults	covered	by	the	SFP	
Catalog.		

Superclass

Attributes

name:String[1]		 Name	of	the	root	cause		

description:String[1..*]		 Description	of	the	root	cause	

Example	1.	SFPM	XMI	

<rootcause_section name="">

 <rootcause xmi:id="rc1" name="Lack of automatic management of buffers"

description=”language runtime”/>
 <rootcause xmi:id="rc2" name="Failure to provide integrity of internal

 references to memory buffer contents"/>
 <rootcause xmi:id="rc3" name="Disconnect between dumb pointers and resources

 that they represent"/>
 <rootcause xmi:id="rc4" name="Failure to compute size of memory buffer content

 parts"/>
 <rootcause xmi:id="rc5" name="Lack of exception on incorrect pointer use"/>
 <rootcause xmi:id="rc6" name="Failure to process fault state"/>

</rootcause_section>

<sfp name="Faulty Pointer Use" id="7" rootcause=”rc1 rc2 rc3 rc4 rc5 rc6”>
<sfp name="Faulty Buffer Access" id="8" rootcause=”rc1 rc7 rc8 rc9 rc10 rc11”>
	

Example	2.	Readable	SFP	language	
SFP 7 Faulty Pointer Use
 RootCauses

Lack of automatic management of buffers
Failure to provide integrity of internal references to memory buffer
contents
Disconnect between dumb pointers and resources that they represent
Failure to compute size of memory buffer content parts
Lack of exception on incorrect pointer use
Failure to process fault state

 End RootCauses

End SFP
	

8.1.3.2 Injury Class
Injury	class	defines	a	specific	impact	caused	by	a	vulnerability	to	the	operations	of	the	system.	Impact	
consists	of	Confidentiality	Impact,	Integrity	Impact	and	Availability	Impact.	NIST	Common	Vulnerability	

Software Fault Pattern Metamodel (SFPM) Version 1.0 39

Scoring	System	(CVSS)	provides	measurement	schema	for	impact,	and	the	NIST	National	Vulnerability	
Database	(NVD)	provides	measures	of	impact	for	known	vulnerabilities	in	open	source	and	commercial	
software	systems.	

Confidentiality	Impact	measures	the	impact	on	confidentiality	of	a	successfully	exploited	vulnerability.	
Confidentiality	refers	to	limiting	information	disclosure	to	only	authorized	users,	as	well	as	preventing	
access	by,	or	disclosure	to,	unauthorized	users.	

Integrity	Impact	measures	the	impact	on	integrity	of	a	successfully	exploited	vulnerability.	Integrity	
refers	to	the	trustworthiness	and	guaranteed	veracity	of	information.	Integrity	impact	involves	
modification	of	some	system	files	or	information.	

Availability	Impact	measures	the	impact	of	availability	of	a	successfully	exploited	vulnerability.	
Availability	refers	to	the	accessibility	of	information	resources.	Attacks	that	consume	bandwidth,	
processor	cycles,	or	disk	space	all	impact	availability	of	the	system.	

The	Injury	element	of	the	SFP	Catalog	represents	an	enumeration	of	the	situations	with	impact.	
Enumerations	of	the	impact	situations	and	mapping	specific	variants	of	Software	Fault	Patterns	to	
impact	aims	at	establishing	a	mapping	between	weakness	findings	and	risks.	

SFPM	views	injuries	as	a	flat	enumeration	however	they	can	be	described	hierarchically,	with	the	
following	3	tiers.	The	first	tier	is	the	base	type	of	impact:	Confidentiality,	Integrity	and	Availability.	The	
second	tier	considers	the	object	of	impact:	Data,	Service	and	Resource.	The	third	tier	considers	several	
specific	situations.	Data	impacts	can	involve	Data	at	rest,	Data	in	motion	or	Data	in	use.	Service	impacts	
involve	Disclosure,	Distortion,	Subversion,	Shutdown	and	Lock.	Further	Subversion	of	a	service	may	
involve	Code	at	rest	or	code	in	motion.	Availability	of	the	Data	at	rest	may	involve	Damage	or	Lock.	Also,	
a	fault	may	not	cause	impact	directly,	but	may	contribute	to	other	faults.	

Some	weaknesses	may	not	have	an	impact	from	the	cybersecurity	perspective,	but	may	contribute	to	
other	weaknesses.	This	type	of	indirect	impact	is	also	represented	by	the	Injury	elements	(illustrated	
below).	

SFP	Catalog	provides	two	places	where	the	impact	of	a	fault	is	described.	First	the	injuries	of	an	entire	
SFP	are	enumerated.	Second,	SFP	variants	are	mapped	to	specific	injuries.	

The	SFP	Catalog	owns	Injury	elements	through	an	InjurySection	container.	Links	between	individual	
Variants	of	an	SFP	to	Injuries	are	established	through	InjuryMapping	class	(described	in	a	subsequent	
section).	Each	SFP	owns	InjuryMapping	through	InjuryMappingSection	container.	Sections	of	the	SFP	
Catalog	are	described	in	more	detail	in	section	8.2	

Superclass	

Attributes	

name:String[1]	 	Name	of	the	injury	

description:	String[1]	 	Description	of	the	injury	

 40 Software Fault Pattern Metamodel (SFPM) Version 1.0

Example	1.	SFPM	XMI	

<injury_section name="">

 <injury xmi:id="inj1" name="Availability of service"/>
 <injury xmi:id="inj2" name="Contributes to SFP-4"/>
 <injury xmi:id="inj3" name="Subversion of service (especially bulk write
access)"/>
 <injury xmi:id="inj4" name="Distortion of service (write access)"/>
 <injury xmi:id="inj5" name="Confidentiality (read access)"/>

</injury_section>

<sfp name="Faulty Pointer Use" id="7" injury=”inj1 inj2”>
<sfp name="Faulty Buffer Access" id="8" injury=”inj1 inj3 inj4 inj5”>
	

Example	1.	Readable	SFP	language	

	
SFP 7 Faulty Pointer Use
 Injuries

Shutdown of service
Contributes to SFP11

 End Injuries

End SFP

SFP 8 Faulty Buffer Access
 Injuries

Shutdown of service
Subversion of service (especially bulk write access)
Distortion of service (write access)
Confidentiality (read access)

 End Injuries

End SFP

8.1.4 SFP Variant Mappings Class Diagram
This	section	describes	the	UML	representation	of	the	variant	mappings.	

Software Fault Pattern Metamodel (SFPM) Version 1.0 41

Figure 5. UML class diagram SFP Variant Mappings

	

8.1.4.1 InjuryMapping Class
InjuryMapping	class	defines	a	mapping	between	Variants	of	an	SFP	and	Injury	elements.	An	SFP	
element	owns	InjuryMappings	through	InjuryMappingSection	container	(further	described	in	section	
8.2	in	more	detail).	

Superclass	

Associations	
injury:Injury[1]	 	Reference	to	an	Injury		

variant:Variant[1..*]	 	Reference	to	one	or	more	Variant		

Constraints	

1. Each	Injury	referenced	by	the	SFP	shall	be	mapped	to	one	or	more	Variants	of	the	SFP	
	

Example	1.	SFPM	XMI	

	
<injury_mapping_section >

 42 Software Fault Pattern Metamodel (SFPM) Version 1.0

 <injury_mapping injury="inj1" variant="variant18 variant19 variant20 variant21
variant22 variant23" />
 <injury_mapping injury="inj2" variant="variant18 variant19 variant20 variant21
variant22 variant23" />
</injury_mapping_section >

<injury_section name="">

 <injury xmi:id="inj1" name="Availability of service"/>
 <injury xmi:id="inj2" name="Contributes to SFP-4"/>
 <injury xmi:id="inj3" name="Subversion of service (especially bulk write
access)"/>
 <injury xmi:id="inj4" name="Distortion of service (write access)"/>
 <injury xmi:id="inj5" name="Confidentiality (read access)"/>

</injury_section>

<sfp name="Faulty Pointer Use" id="7" injury=”inj1 inj2”>

Example	2.	Readable	SFP	language	

	
 Variant 3.1 Read access -> Property "access read"
 Injury: “Availability of service”, “Contributes to SFP-4”

8.1.4.2 CWEMapping Class
CWEMapping	class	defines	a	mapping	between	a	CWE	element	and	one	or	more	Variant	elements.	The	
intent	of	the	CWE	mapping	is	to	provide	a	formal	definition	of	a	CWE	element	as	a	profile	of	SFP	
variants.	

An	SFP	element	owns	CWEMappings	through	CWEMappingSection	container	(further	described	in	
section	8.2	in	more	detail).	

Superclass	

Associations	

cwe:CWE[1]	 CWE	element	being	defined	in	terms	of	SFP	variants	

variant:	Variant[1..*]	 	Set	of	SFP	variants	that	defines	a	CWE	element	

Example	1.	SFPM	XMI	

	
<cwe_mapping_section >
 <cwe_mapping cwe="cwe476a" variant="variant12 variant20 variant8" />
 <cwe_mapping cwe="cwe476b" variant="variant11 variant21 variant8" />
 <cwe_mapping cwe="cwe476c" variant="variant17 variant21 variant8" />
</cwe_mapping_section >

	

Software Fault Pattern Metamodel (SFPM) Version 1.0 43

Example	2.	Readable	SFP	language	

	
CWE 476a Invalid Pointer Dereference
 Mapping: 1.10 2.2 3.3
 Note: c,c++
End CWE

CWE 476b NULL Pointer Call
 Mapping: 1.10 2.1 3.4
 Note: c,c++, java
 End CWE

CWE 476c Invalid Pointer Call
 Mapping: 1.10 2.8 3.4
 Note: c,c++
 End CWE

8.2 Sections of the SFP Catalog
A	section	is	the	structuring	mechanism	of	the	SFP	catalog.	Sections	group	common	content	and	provide	
scoping:	common	sections	contain	content	for	the	entire	SFP	catalog	that	can	be	shared	between	all	SPF	
items	owned	by	the	SFP	Catalog;	cluster	sections	contain	content	that	can	be	shared	by	the	SFP	items	
within	this	cluster;	SFP	sections	contain	content	referenced	by	a	single	SFP	item.	SFP	Catalog	allows	
multiple	sections	of	the	same	type	at	the	same	scope.	This	provides	additional	grouping	capability	for	
the	readers,	however	semantically	there	is	no	difference	between	such	sections.	

8.2.1 All Sections Class Diagram
This	section	provides	an	overview	of	all	sections	of	the	SFP	Catalog.	

 44 Software Fault Pattern Metamodel (SFPM) Version 1.0

Figure 6. UML class diagram All Sections

8.2.1.1 Section Class (abstract)
The	Section	class	is	the	common	parent	of	all	sections	in	the	SFPM.	

Superclass

Attributes
name:String[1]	 Name	of	the	section	

description:String[1]	 Description	of	the	section	

8.2.1.2 CommonSection Class (abstract)
CommonSection	class	is	a	parent	class	for	all	sections	that	represent	the	common	reusable	content	of	
the	SFP	catalog,	i.e.	the	content	that	is	applicable	to	the	entire	collection	of	SFP	items,	and	is	referenced	
by	these	items	(in	the	current	catalog	or	in	other	catalogs)	or	may	be	referenced	by	the	items	in	the	
future	releases	of	the	current	catalog.	Other	kinds	of	sections	represent	the	content	that	is	specific	to	
either	an	individual	SFP	item	or	specific	to	a	certain	cluster	of	SFP	items.	

Superclass	

	 Section	

Constraints

Software Fault Pattern Metamodel (SFPM) Version 1.0 45

1. Owned elements of a common section shall not reference elements owned by any cluster
section or by any SFP section. An element references another element either directly or
indirectly in its owned semantic definition.

8.2.1.3 ClusterSection Class (abstract)
ClusterSection	class	is	a	parent	class	for	all	sections	that	represent	the	content	specific	to	a	certain	SFP	
cluster	or	to	an	individual	SFP	item.		

Superclass	

	 Section	

Constraints

1. Owned elements of a cluster section shall not reference elements owned by any section from
a different cluster or owned by any SFP section

8.2.1.4 SFPSection Class (abstract)
SFPSection	class	is	a	parent	class	for	all	sections	that	represent	the	content	specific	to	an	individual	SFP	
item.	

Superclass	

	 Section	

Constraints

1. Owned elements of an SFP section shall not reference elements owned by any section from a
different cluster or owned by any SFP section owned by a different SFP

8.2.2 SFP Sections Class Diagram
This	section	describes	the	sections	of	the	SFP	that	are	specific	to	an	individual	SFP	item.	Another	section	
called	CharacteristicsSection	may	be	owned	by	SFP	as	well	as	by	a	Cluster,	and	is	described	separately	
in	section	8.2.4.	

 46 Software Fault Pattern Metamodel (SFPM) Version 1.0

Figure 7. UML class diagram SFP Sections

8.2.2.1 InjuryMappingSection Class
The	InjuryMappingSection	class	is	a	container	for	the	InjuryMapping	elements.	Each	SFP	item	owns	the	
InjuryMapping	elements	for	its	variants.	

Superclass

 SFPSection
Associations	

injury_mapping:InjuryMapping[0..*]	 Owned	set	of	the	injury	mapping	elements	for	the	SFP	
item	

Constraints

1. Each SFP item shall own at least one InjuryMappingSection

Software Fault Pattern Metamodel (SFPM) Version 1.0 47

Example
 See 8.1.4.1

8.2.2.2 CWEMappingSection Class
CWEMappingSection	class	is	a	container	for	the	CWEMapping	elements.	Each	SFP	item	owns	the	
CWEMapping	elements	for	its	variants.	

Superclass	

	 SFPSection	

Associations	

cwe_mapping:CWEMapping[0..*]	 Owned	set	of	CWEMapping	elements	for	the	SFP		

Constraints

1. Each	SFP	shall	own	at	least	one	CWEMappingSection	
	

Example	

	 See	8.1.4.2	

8.2.2.3 ParameterSection Class
ParameterSection	class	is	a	container	for	the	Parameter	elements.	

Superclass	

	 SFPSection	

Associations	

parameter:Parameter[0..*]	 Owned	set	of	Parameter	

Example	

	 See	8.1.2.1	

8.2.2.4 VariationSection Class
VariationSection	class	is	a	container	for	the	Variation	elements.	

Superclass	

	 SFPSection	

Associations	

 48 Software Fault Pattern Metamodel (SFPM) Version 1.0

variation:Variation[0..*]	
{ordered}	

Owned	set	of	Variation	(ordered)	

Example	

	 See	8.1.2.3	

	

8.2.2.5 ElementSection Class
ElementSection	class	is	a	container	for	the	SFP	DataflowElement.	These	elements	specify	dataflows	that	
constitute	the	extension	of	the	SFP	as	a	concept.	“Extension”	is	the	totality	of	objects	to	which	a	concept	
corresponds.	According	to	the	SFP	approach,	the	“objects”	of	software	weaknesses	are	dataflows	
implemented	in	code.	SFP	items	are	denotations	(semantic	definitions)	for	families	of	dataflows	that	
correspond	to	the	classes	of	software	weaknesses	introduced	by	the	CWE	catalog.	CWE	catalog	provides	
signifiers	to	the	software	weaknesses.	SFP	provides	formal	semantic	definitions	to	a	subset	of	software	
weaknesses	in	CWE	catalog,	and	links	these	definitions	to	the	corresponding	CWE	items.	SFP	
DataflowElement	is	an	SFP	Defined	Element,	so	semantics	of	DataflowElements	is	defined	according	to	
the	formalization	apparatus	defined	in	section	8.4.	DataflowElements	correspond	to	the	key	parts	of	a	
dataflow.	DataflowElement	class	and	its	subclasses	are	further	described	in	section	8.3.		

Superclass	

	 SFPSection	

Associations	

element:DataflowElement[0..*]	 Owned	set	of	Dataflow	Element	of	the	SFP	

Example	1.	SFPM	XMI	

<element_section name="">
 <element xmi:type="sfpm:PrimaryDataStatement" xmi:id="cla1">

<!—- body omitted --> </element>
 <element xmi:type="sfpm:SourceStatement" xmi:id="cla2">

<!—- body omitted --> </element>
 <element xmi:type="sfpm:SinkStatement" xmi:id="cla3">

<!—- body omitted --> </element>
</element_section>

Example	2.	Readable	SFP	language	

Elements
 PrimaryDataStatement … End PrimaryDataStatement
 SourceStatement … End SourceStatement
 SinkStatement … End SinkStatement
End Elements
	

Software Fault Pattern Metamodel (SFPM) Version 1.0 49

8.2.2.6 CanonicalSection Class
CanonicalSection	class	is	a	container	for	CanonicalElement.	CanonicalElement	provide	canonical	
definition	of	the	dataflow	with	full	context.	CanonicalElement	class	and	its	subclasses	are	further	
described	in	section	8.3.	

Superclass	

	 SFPSection	

Associations	

canonical:CanonicalElement[0..*]	 Owned	set	of	Canonical	Element	

Example	1.	SFPM	XMI	

<canonical_section name="">
 <canonical xmi:type="sfpm:CanonicalForm" xmi:id="cla40" name="CF1" >

<!—- body omitted --> </canonical>
 <canonical xmi:type="sfpm:PrimaryDataSegment" xmi:id="cla41" >

<!—- body omitted --> </canonical>
 <canonical xmi:type="sfpm:SourceSegment" xmi:id="cla42" >

<!—- body omitted --> </canonical>
 <canonical xmi:type="sfpm:SinkSegment" xmi:id="cla43" >

<!—- body omitted --> </canonical>
 <canonical xmi:type="sfpm:MitigatedSourceSegment" xmi:id="cla44" >

<!—- body omitted --> </canonical>
 <canonical xmi:type="sfpm:MitigatedSinkSegment" xmi:id="cla45" >
 <!—- body omitted --> </canonical>
</canonical_section>

Example	2.	Readable	SFP	language	

Canonicals
Canonical CF1 … End Canonical
Segment PrimaryDataSegment … End Segment
Segment SourceSegment … End Segment
Segment SinkSegment … End Segment
Segment MitigatedSourceSegment … End Segment
Segment MitigatedSinkSegment … End Segment

End Canonicals
	

8.2.2.7 SFP Class (additional properties)
Class	diagram	SFP	Sections	introduces	several	additional	properties	to	the	SFP	class.	

Superclass	

Associations	

injury_mapping_section:InjuryMappingSection[1..*]	 Injury	mapping	section	of	the	SFP	

 50 Software Fault Pattern Metamodel (SFPM) Version 1.0

cwe_mapping_section:CWEMappingSection[1..*]	 CWE	mapping	section	of	the	SFP	

parameter_section:ParameterSection[1..*]	 Parameters	and	variants	of	the	SFP	

variation_section:VariationSection[1..*]	 Variations	of	the	SFP	

element_section:ElementSection[1..*]	 Elements	of	the	SFP	

canonical_section:CanonicalSection[1..*]	 Canonical	elements	of	the	SFP	

Example	

	 See	8.1.1.3,	8.1.2.1,	8.1.2.3,	8.1.4.1,	8.1.4.2	and	also	8.3.2	and	8.3.4	

8.2.3 Common Sections Class Diagram
This	section	describes	the	sections	of	the	SFP	Catalog.	These	sections	are	containers	for	the	formal	
content	that	is	common	across	multiple	SFPs.	Accumulation	of	the	common	content	for	multiple	
software	faults	is	one	of	the	objectives	of	the	SFP	approach.	The	SFPM	is	structured	to	enable	analytics	
related	to	the	software	faults.	The	common	content	includes	Indicators,	shared	characteristics,	common	
referenced	vocabularies,	enumeration	of	the	root	causes	and	injuries,	as	well	as	the	enumeration	of	the	
common	properties.		

Software Fault Pattern Metamodel (SFPM) Version 1.0 51

Figure 8. UML class diagram Common Sections

8.2.3.1 RootCauseSection Class
RootCauseSection	class	is	a	container	for	the	RootCause	elements.	All	RootCause	elements	are	owned	
by	the	SFPCatalog	through	one	or	more	of	the	RootCauseSection	containers.	Individual	SFP	items	
reference	the	RootCause	elements	as	defined	in	the	SFP	Causal	Context	class	diagram.	The	same	
RootCause	element	can	be	referenced	by	several	SFP	items.	The	RootCause	class	is	defined	in	section	
8.1.3.1.	

Superclass	

	 CommonSection	

Associations	
rootcause:RootCause[0..*]	 Owned	set	of	RootCause	element	

Example	
	 See	8.1.3.1	

 52 Software Fault Pattern Metamodel (SFPM) Version 1.0

8.2.3.2 InjurySection Class
InjurySection	class	is	a	container	for	the	Injury	elements.	All	Injury	elements	are	owned	by	the	
SFPCatalog	through	one	or	mode	InjurySection	containers.	Individual	SFP	items	reference	the	Injury	
elements	as	defined	in	the	SFP	Casual	Context	class	diagram.	The	same	Injury	element	can	be	
referenced	by	several	SFP	items.	The	Injury	class	is	defined	in	section	8.1.3.2.	

Superclass	

	 CommonSection	

Associations	

injury:Injury[0..*]	 Owned	set	of	Injury	element	

Example	

	 See	8.1.3.2	

8.2.3.3 IndicatorSection Class
IndicatorSection	class	is	a	container	for	the	Indicator	elements.	All	Indicator	elements	are	owned	by	the	
SFPCatalog	through	one	or	mode	IndicatorSection	containers.	Individual	SFP	items	reference	the	
Indicator	elements.	The	same	Indicator	element	can	be	referenced	by	several	SFP	items.	Indicator	class	
is	a	semantic	element	of	the	SFP	Catalog.	This	class	is	further	described	in	section	8.3.	
	

Superclass	

	 CommonSection	

Associations	

indicator:Indicator[0..*]	 Owned	set	of	Indicator	element	

Example	1.	SFPM	XMI	

<indicator_section name="">
 <indicator xmi:type="sfpm:Indicator" xmi:id="cla4"

name="ordinary pointer dereference read">
<!—- body omitted --> </indicator>

 <indicator xmi:type="sfpm:Indicator" xmi:id="cla5"
name="array with index read">

<!—- body omitted --> </indicator>
 <!—- body omitted -->
</indicator_section>

Example	2.	Readable	SFP	language	

Indicators
Indicator "ordinary pointer dereference read" … End Indicator
Indicator "array with index read" … End Indicator

Software Fault Pattern Metamodel (SFPM) Version 1.0 53

…
End Indicators

8.2.3.4 PropertySection Class
PropertySection	class	is	a	container	for	the	Property	elements.	All	Property	elements	are	owned	by	the	
SFPCatalog	through	one	or	more	PropertySection	containers.	Individual	SFP	items	reference	the	
Property	elements.	The	same	Property	element	can	be	referenced	by	several	SFP	items.	Property	class	
is	a	semantic	element	of	the	SFP	Catalog.	This	class	is	further	described	in	section	8.3.	

Superclass	

	 CommonSection	

Associations	

property:Property[0..*]	 Owned	set	of	Property	element	

Example	1.	SFPM	XMI	

<property_section name="">
 <property xmi:type="sfpm:Property" xmi:id="prop1"

name="access mechanism pointer"> <!—- body omitted --> </property>
 <property xmi:type="sfpm:Property" xmi:id="prop4"

name="access mechanism index"> <!—- body omitted --> </property>
<!—- body omitted -->

</property_section>

Example	2.	Readable	SFP	language	

Properties
 Property "access mechanism pointer" … End Property
 Property "access mechanism index" … End Property
End Properties

8.2.3.5 ContextSection Class
ContextSection	class	is	a	container	for	the	ContextElement.	All	ContextElement	are	owned	by	the	
SFPCatalog	through	one	or	mode	ContextSection	containers.	Individual	SFP	items	reference	the	
ContextElement	in	two	stages,	by	first	referencing	a	local	ReferencedContextElement	which	then	in	turn	
references	a	common	ContextElement.	Local	ReferencedContextElement	are	owned	by	
CharacteristicSection	of	SFP	or	one	of	the	Cluster	elements	that	owns	the	SFP	directly	or	through	
another	Cluster.		The	set	of	ReferencedContextElement	for	an	SFP	or	a	Cluster	is	its	“profile”.	Eventually	
the	same	ContextElement	can	be	referenced	by	several	SFP	items.		This	approach	allows	formal	
grouping	of	SFPs	based	on	the	characteristics	that	they	share.	The	analytics	can	establish	the	exact	
nature	of	the	relation	between	two	or	more	SFPs.	

ContextElement	class	is	a	semantic	element	of	the	SFP	Catalog.	This	class	is	further	described	in	section	
8.3.	

Superclass	

 54 Software Fault Pattern Metamodel (SFPM) Version 1.0

	 CommonSection	

Associations	

element:ContextElement[0..*]	 Owned	set	of	Context	element	

Example	1.	SFPM	XMI	

<context_section name="">
 <element xmi:type="sfpm:DataType" xmi:id="shared1" name="ElementType">
 <definition> <!—- body omitted --> </definition>
 </element>

<!—- body omitted -->
</context_section>

Example	2.	Readable	SFP	language	

SharedContextElements
 DataType ElementType … End DataType
…
End SharedContextElements

8.2.3.6 VocabularySection Class
VocabularySection	class	is	a	container	for	one	or	more	Vocabulary	representing	a	referenced	
vocabulary.	A	Vocabulary	class	owns	one	or	more	VocabularyElement.	At	a	minimum,	a	
VocabularyElement	is	a	proxy	to	some	externally	defined	concept,	however	it	can	also	have	a	full	formal	
definition	using	the	formalization	apparatus	defined	in	section	9.4.	All	VocabularyElement	are	owned	
by	the	SFPCatalog	through	one	or	mode	VocabularySection	and	Vocabulary	containers.	Individual	SFP	
items	reference	the	VocabularyElement	in	SemanticFormulations.	Vocabulary	class	and	
VocabularyElement	class	and	its	subclasses	is	further	described	in	section	8.5.	

Superclass	

	 CommonSection	

Associations	

vocabulary:Vocabulary[0..*]	 Owned	set	of	Vocabulary	element	

Example	

	 See 8.5.1.1-3
	

8.2.3.7 SFPCatalog Class (additional properties)
Class	diagram	Common	Sections	introduces	several	additional	properties	to	the	SFPCatalog	class.	

Superclass	

Software Fault Pattern Metamodel (SFPM) Version 1.0 55

Associations	

rootcause_section:RootCauseSection[1..*]	 RootCause	section	of	the	SFP	
Catalog	

injury_section:InjurySection[1..*]	 Injury	section	of	the	SFP	Catalog	

property_section:PropertySection[1..*]	 Properties	of	the	SFP	Catalog	

indicator_section:IndicatorSection[1..*]	 Indicators	of	the	SFP	Catalog	

context_section:ContextSection[1..*]	 Context	elements	of	the	SFP	Catalog	

vocabulary_section:VocabularySection[1..*]	 Referenced	vocabularies	of	the	SFP	
Catalog	

Example	

	 See	8.1.1.1	

	

8.2.4 Characteristic Sections Class Diagram
This	section	describes	the	sections	of	the	Cluster	and	SFP	containing	referenceable	definitions	(clauses)	
that	are	used	by	the	CanonicalSegments.	ReferencedContextElements	can	be	owned	by	SFP	or	Cluster.	
This	allows	introducing	local	names	and	scoping.	Cluster	has	more	generic	referenced	elements,	SFP	
has	more	specific	ones	if	needed.	CanonicalForm	references	these	element.	CanonicalForm	describes	
how	various	segments	(specific	to	an	SFP	and	referenced	context	elements)	can	be	arranged	into	a	
coherent	piece	of	source	code	which	“implements”	a	fault	in	an	appropriate	context.	

ReferncedContextElement	determine	the	common	characteristics	of	an	SFP	(and	all	SFPs	in	a	cluster)	
and	constitute	an	important	part	of	the	overall	SFP	content.	Based	on	the	shared	ContextElement,	SFP	
can	be	systematically	grouped	into	clusters,	and	the	nature	of	the	relationships	between	different	SFPs	
can	be	formally	described.	ContextElement	class	is	described	in	section	8.3.	

 56 Software Fault Pattern Metamodel (SFPM) Version 1.0

Figure 9. UML class diagram Characteristic Sections

8.2.4.1 CharacteristicSection Class
CharacteristicSection	class	is	a	container	for	zero	or	more	ReferencedContextElement.	Local	
ReferencedContextElement	are	owned	by	CharacteristicSection	of	SFP	or	one	of	the	Cluster	elements	
that	owns	the	SFP	directly	or	through	another	Cluster.		The	set	of	ReferencedContextElement	for	an	SFP	
or	a	Cluster	is	its	“profile”.	ReferencedContextElement	references	a	common	ContextElement.	All	
ContextElement	are	owned	by	the	SFPCatalog	through	one	or	mode	ContextSection	containers.	Thus,	
individual	SFP	items	reference	the	ContextElement	in	two	stages,	by	first	referencing	a	local	
ReferencedContextElement	which	then	in	turn	references	a	common	ContextElement	(illustrated	in	
more	detail	in	section	8.3.1).	Eventually	the	same	ContextElement	can	be	referenced	by	several	SFP	
items.		This	approach	allows	formal	grouping	of	SFPs	based	on	the	characteristics	that	they	share.	The	
analytics	can	establish	the	exact	nature	of	the	relation	between	two	or	more	SFP.	ContextElement	class	
is	a	semantic	element	of	the	SFP	Catalog,	with	a	formal	semantic	definition	in	the	form	of	a	common	
logic	statement	on	top	of	the	KDM	vocabulary.	The	ContextElement	class	is	further	described	in	section	
8.3.	

Superclass	

	 ClusterSection	

Associations	

Software Fault Pattern Metamodel (SFPM) Version 1.0 57

characteristic:ReferencedContextElement[0..*]	 Owned	set	of	characteristics	

Constraints	

1. Owned	elements	of	a	CharacteristicSection	shall	only	reference	a	local	
ReferenceContextElement	and	shall	not	reference	any	ContextElement	in	common	
ContextSections	of	the	SFPCatalog.	An	element	references	another	element	either	directly	or	
indirectly	in	its	owned	semantic	definition.	A	ReferencedContextElement	is	local	when	it	is	
owned	by	a	CharacteristicSection	of	the	SFP	or	the	(secondary)	Cluster	that	owns	the	SFP	or	the	
(primary)	Cluster	that	owns	the	(secondary)	Cluster	that	owns	the	SFP.	

	

Example	1.	SFPM	XMI	

<characteristic_section name="">
 <characteristic xmi:id="cla25" element="shared1" name="ElementType"/>
 <characteristic xmi:id="cla26" element="shared2" name="TargetBuffer"/>
 <characteristic xmi:id="cla27" element="shared3" name="TargetBufferType"/>
 <characteristic xmi:id="cla28" element="shared4" name="BufferPointerType"/>
 <characteristic xmi:id="cla29" element="shared5" name="BufferPointer"/>
 <characteristic xmi:id="cla30" element="shared6" name="BufferOffset"/>
 <characteristic xmi:id="cla31" element="shared7" name="BufferLength"/>
 <characteristic xmi:id="cla32" element="shared8" name="DataLengthGood"/>
 <characteristic xmi:id="cla33" element="shared9" name="DefineData"/>
 <characteristic xmi:id="cla34" element="shared10" name="DefineIndex"/>
 <characteristic xmi:id="cla35" element="shared11" name="DefineTargetBuffer"/>
 <characteristic xmi:id="cla36" element="shared12"

 name="BindPointerToTargetBuffer"/>
 <characteristic xmi:id="cla37" element="shared13" name="ReleaseTargetBuffer"/>
 <characteristic xmi:id="cla38" element="shared14" name="Cleanup"/>
 <characteristic xmi:id="cla39" element="shared15" name="DefineValidReference"/>
</characteristic_section>

Example	2.	Readable	SFP	language	

Characteristics

 Ref DataType ElementType

 Ref Resource TargetBuffer
 Ref DataType TargetBufferType

 Ref DataType BufferPointerType
 Ref DataElement BufferPointer
 Ref DataElement BufferOffset

 Ref DataElement BufferLength
 Ref DataElement DataLengthGood

 Ref DataElement DefineData
 Ref DataElement DefineIndex

 Ref Operation DefineTargetBuffer

 58 Software Fault Pattern Metamodel (SFPM) Version 1.0

 Ref Operation BindPointerToTargetBuffer
 Ref Operation ReleaseTargetBuffer
 Ref Operation Cleanup

Ref Operation DefineValidReference

 End Characteristics

8.2.4.2 Cluster Class (additional properties)
Class	diagram	Characteristic	Sections	introduces	several	additional	properties	to	the	Cluster	class.	

Superclass	

Associations	

characteristic_section:CharacteristicSection[1..*]	 Owned	set	of	characteristics	for	the	
cluster	

Example	

	 See	8.1.6.1	

8.2.4.3 SFP Class (additional properties)
Class	diagram	Characteristic	Sections	introduces	several	additional	properties	to	the	SFP	class.	

Superclass	

Associations	

characteristic_section:CharacteristicSection[1..*]	 Owned	set	of	characteristics	for	the	
SFP	

Example	

	 See	8.1.6.1	

8.3 SFP Defined Elements
This	section	describes	the	framework	for	the	formal	semantic	definitions	of	the	faulty	computations	
represented	by	the	core	elements	of	the	SFP	Catalog.	These	elements	constitute	the	formal	semantic	
content	of	the	SFP	catalog.	

These	elements	specify	dataflows	that	constitute	the	extension	of	an	SFP	as	a	concept.	“Extension”	is	the	
totality	of	objects	to	which	a	concept	corresponds.	According	to	the	SFP	approach,	the	“objects”	of	
software	weaknesses	are	dataflows	implemented	in	code.	SFP	items	are	denotations	(semantic	
definitions)	for	families	of	dataflows	that	correspond	to	the	classes	of	software	weaknesses	introduced	
by	the	CWE	catalog.	CWE	catalog	provides	signifiers	to	the	software	weaknesses.	SFP	provides	formal	
semantic	definitions	to	a	subset	of	software	weaknesses	in	CWE	catalog,	and	links	these	definitions	to	

Software Fault Pattern Metamodel (SFPM) Version 1.0 59

the	corresponding	CWE	items.	Formal	semantic	definitions	of	DataflowElement	are	given	using	the	
formalization	apparatus	defined	in	section	8.4.	An	overview	of	the	SFP	approach	to	formal	semantics	of	
dataflows	is	given	in	the	introduction	to	this	specification.	
	

8.3.1 SFP Defined Elements Class Diagram
This	section	describes	the	elements	of	the	SFP	Catalog	that	have	a	formal	semantic	definition	and	
constitute	the	formalization	framework	of	the	SFP	Catalog.	These	elements	are	Properties,	Indicators,	
SFP	DataflowElements,	ContextElements	and	CanonicalElements.	In	addition,	some	
VocabularyElements	can	be	formally	defined	using	the	same	formalization	apparatus.		

SFP	DataflowElements	describe	each	SFP	as	a	data	flow	with	a	primary	data	element,	source	and	sink.	
The	faulty	computation	is	assumed	to	involve	the	values	of	the	data	element	and	“flow”	from	the	source	
to	the	sink.	This	approach	is	based	on	the	best	practices	of	the	community.		

The	SFP	approach	focuses	at	the	discernible	“places”	in	the	code	that	are	“indicators”	of	particular	
computations.	The	indicators	may	describe	places	in	the	code	that	implement	operations	directly	linked	
to	some	injury	(for	example,	access	to	a	buffer	is	a	necessary	condition	for	a	buffer	overflow),	or	
describe	important	regions	of	the	code	based	on	its	purpose,	such	as	common	safeguards,	
authentication,	access	control,	privilege	management,	cryptography,	data	validation,	memory	
management,	resource	management,	exception	management,	etc.	Each	discernible	SFP	includes	some	
Indicators	that	provide	a	starting	point	for	identifying	the	presence	of	the	SFP	in	the	code	under	
assessment.	The	rest	of	the	SFP	definition	includes	a	set	of	propositions	that	may	be	eventually	traced	
to	the	code,	always	in	relation	to	the	Indicator.	Usually	SFP	definitions	involve	a	condition	that	must	be	
satisfied	to	make	the	claim	that	the	SFP	has	been	detected	in	code.	

The	concept	of	a	data	flow	with	a	data	element,	source,	sink	and	the	invariant	condition	is	central	to	SFP	
formalization.	SFP	DataflowElements	capture	these	elements.	Indicator	element	represent	discernible	
“places”	in	code.	Typically,	the	sink	of	an	SFP	is	defined	a	disjunction	of	references	to	Indicators.		

The	content	of	the	SFP	Catalog	describes	an	argument	justifying	the	claim	that	the	code	under	
assessment	exhibits	a	certain	fault.	The	starting	point	of	this	argument	is	the	presence	of	the	Indicator.	
Additional	evidence	is	provided	by	matching	of	the	elements	of	the	SFP	in	relation	to	the	Indicator.	Final	
evidence	is	collected	when	the	data	flow	satisfies	the	condition	of	the	SFP.	
An	invariant	of	a	data	flow	can	be	described	as	a	set	of	propositions	such	that	any	“compliant”	data	flow	
will	exhibit	these	propositions,	and	only	compliant	data	flows	will	exhibit	such	propositions.	Thus,	the	
SFP	Catalog	accumulates	content	related	to	describing	“interesting”	data	flows.		

CanonicalElements	define	a	broader	context	for	faulty	computations,	sufficient	to	generate	complete	
(compilable,	executable)	examples	of	the	faulty	computation	in	the	form	of	a	test	case.	These	test	cases	
can	be	used	to	validate	CWE	compliance	mappings	of	existing	and	future	Static	Code	Analysis	tools.	The	
ContextElements	represent	reusable	elements	that	are	used	in	CanonicalElements.	CanonicalElements	
also	represent	“mitigated”	computations	that	shared	significant	fragments	with	faulty	computations	but	
do	not	exhibit	the	fault.	The	latter	content	can	be	used	to	generate	additional	test	cases	for	the	“false	
positives”	reporting	in	existing	and	future	Static	Code	Analysis	tools.	

 60 Software Fault Pattern Metamodel (SFPM) Version 1.0

Figure 10. UML class diagram SFP Defined Elements

8.3.1.1 Property Class
Property	is	a	special	semantic	element	that	contains	statements	only	from	a	special	vocabulary	of	tags	
and	values	(markers).	This	vocabulary	is	usually	aligned	with	the	implementation	capabilities.	
Properties	is	a	mechanism	that	is	used	to	manage	the	variations	of	the	SFP.	Typically,	a	family	of	related	
faulty	computations	that	exhibit	a	certain	fault	(identified	as	an	SFP),	involves	many	“variations”	that	
share	many	common	elements	of	the	overall	data	flow.	The	overall	structure	of	the	variants	of	the	
family	is	defined	as	a	set	of	SFP	Parameters,	their	Variants,	and	is	represented	by	a	tree	of	Variations.	
SFP	data	element,	source,	and	sink	are	usually	defined	as	disjunctions	of	statements,	each	focusing	at	a	
certain	specific	case.	The	connections	between	these	cases	and	the	variants	of	the	SFP	is	made	through	
Properties	which	are	certain	tags	and	values	(markers)	added	to	the	KDM	Fragments.		

SFP	uses	a	completely	generic	formalization	mechanism	to	extend	the	semantics	of	other	elements	with	
tags	and	markers.	Thus,	the	formalization	uses	an	SBVR	statement	“Thing1	is	Thing2”	where	the	role	of	
“Thing1”	is	bound	to	a	tag,	and	the	role	“Thing2”	is	bound	to	a	value.	Both	tag	and	value	are	defined	as	
Individual	concepts	in	a	special	vocabulary	in	the	VocabularySection.	

The	SFP	implementation	may	use	the	tag	and	value	definitions	of	properties	in	a	multitude	of	ways,	for	
example	as	annotations,	markers,	metadata	for	variants,	or	executable	clauses	that	use	single	
assignment	to	prevent	synthesis	of	incompatible	variants,	or	to	cut	matching	incompatible	subtrees	of	
the	semantic	definition.	

The	vocabulary	of	property	tags	and	values	in	not	part	of	the	SFP	Metamodel,	and	should	be	explained	
in	the	SFP	catalog.	

Software Fault Pattern Metamodel (SFPM) Version 1.0 61

Superclass	

	 SemanticElement	

Attributes	

name:String[1]	 Name	of	the	property	

description:String[1]	 Description	of	the	property	

Example	1.	SFPM	XMI	

<property xmi:type="sfpm:Property" xmi:id="prop1" name="access mechanism
pointer">
 <definition>
 <meaning xmi:id="sem1208" identificator="property access mechanism pointer"
 kind="SetProjection" description="" >
 <variable xmi:id="var492" range="nc29" name="phantom"/>
 <operand xmi:id="sem1209" identificator="" kind="Conjunction"

 description="">
 <operand xmi:id="sem1210" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic93"/>
 <binding rolename="Thing2" target="ic103"/>
 </operand>
 <operand xmi:id="sem1211" verb="vc4" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic19"/>
 <binding rolename="Thing2" target="ic5"/>
 </operand>
 <operand xmi:id="sem1212" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic18"/>
 <binding rolename="Thing2" target="ic5"/>
 </operand>
 <operand xmi:id="sem1213" verb="vc4" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic8"/>
 <binding rolename="Thing2" target="ic3"/>
 </operand>
 </operand>
 </meaning>
 </definition>
</property>

<verb xmi:id="vc4" name="Thing1 is Thing2"/>

<vocabulary name="Platform Meta">
 <individual xmi:id="ic93" name="core.bufferaccessmechanism"/>
 <individual xmi:id="ic103" name="pointerdereference"/>
</vocabulary>

	

Example	2.	Readable	SFP	language	

 62 Software Fault Pattern Metamodel (SFPM) Version 1.0

Property "access mechanism pointer"
 [meta] core.bufferaccessmechanism,pointerdereference
 [meta] isindex,no
 [meta] isapi,no
 [meta] buffermode,regular
End Property

8.3.1.2 Indicator Class
The	SFP	approach	focuses	at	the	discernible	“places”	in	the	code	that	are	“indicators”	of	computations.	
The	indicators	may	describe	places	in	the	code	that	implement	operations	directly	linked	to	some	injury	
(for	example,	access	to	a	buffer	is	a	necessary	condition	for	a	buffer	overflow),	or	describe	important	
regions	of	the	code	based	on	its	purpose,	such	as	common	safeguards,	authentication,	access	control,	
privilege	management,	cryptography,	data	validation,	memory	management,	resource	management,	
exception	management,	etc.	Each	discernible	SFP	includes	some	Indicators	that	provide	a	starting	point	
for	identifying	the	presence	of	the	SFP	in	the	code	under	assessment.	The	rest	of	the	SFP	definition	
includes	a	set	of	propositions	that	may	be	eventually	matched	to	the	code,	always	in	relation	to	the	
Indicator.	

Superclass	

	 SemanticElement,	ClauseReference	

Attributes	

name:String[1]	 Name	of	the	indicator	

description:	String[1]	 Description	of	the	indicator	

Example	1.	SFPM	XMI	

<indicator xmi:type="sfpm:Indicator" xmi:id="cla4" name="ordinary pointer
dereference read">
 <definition>
 <meaning xmi:id="sem1388" kind="SetProjection"

description="Definition of indicator ordinary pointer
dereference read" >

 <variable xmi:id="var514" range="nc4" name="S1"/>
 <variable xmi:id="var515" range="nc4" name="S2"/>
 <variable xmi:id="var516" range="nc2" name="BP"/>
 <variable xmi:id="var517" range="nc2" name="BPTI"/>
 <variable xmi:id="var518" range="nc2" name="Data"/>
 <operand xmi:id="sem1389"

identificator="ordinary pointer dereference read"
kind="Conjunction" description="">

 <operand xmi:id="sem1390" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">

 <binding rolename="Thing1" target="ic26"/>
 <binding rolename="Thing2" target="ic27"/>
 </operand>

Software Fault Pattern Metamodel (SFPM) Version 1.0 63

 <operand xmi:id="sem1391" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">

 <binding rolename="Thing1" target="ic86"/>
 <binding rolename="Thing2" target="ic87"/>
 </operand>
 <operand xmi:id="sem1392" verb="vc4" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic93"/>
 <binding rolename="Thing2" target="ic103"/>
 </operand>
 <operand xmi:id="sem1393" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic8"/>
 <binding rolename="Thing2" target="ic3"/>
 </operand>
 <operand xmi:id="sem1394" verb="vc4" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic143"/>
 <binding rolename="Thing2" target="ic144"/>
 </operand>
 <operand xmi:id="sem1395" verb="vc109" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var514"/>
 </operand>
 <operand xmi:id="sem1396" verb="vc9" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var514"/>
 <binding rolename="DataElement" target="var516"/>
 </operand>
 <operand xmi:id="sem1397" verb="vc6" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var514"/>
 <binding rolename="DataElement" target="var517"/>
 </operand>
 <operand xmi:id="sem1398" verb="vc7" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var514"/>
 <binding rolename="DataElement" target="var518"/>
 </operand>
 <operand xmi:id="sem1399" verb="vc4" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="var515"/>
 <binding rolename="Thing2" target="var514"/>
 </operand>
 </operand>
 </meaning>
 </definition>
</indicator>

	

Example	2.	Readable	SFP	language	

Indicator "ordinary pointer dereference read"

 Var S1 : ActionElement [KDM] ;;; segment Begin
 Var S2 : ActionElement [KDM] ;;; segment End

 64 Software Fault Pattern Metamodel (SFPM) Version 1.0

 Var BP: DataElement [KDM]
 Var BPTI: DataElement [KDM]
 Var Data: DataElement [KDM]

 Clause "ordinary pointer dereference read"
 # data=*p;
 [meta] platform,c or cpp
 [meta] core.bufferaccess,read
 [meta] core.bufferaccessmechanism,pointerdereference
 [meta] buffermode,regular
 [meta] core.indicator,deref_read

 [ActionElement is ptrselect :KDM] S1
 [ActionElement addresses DataElement :KDM] S1,BP
 [ActionElement reads DataElement :KDM] S1, BPTI
 [ActionElement writes DataElement :KDM] S1,Data
 [Thing1 is Thing2 :SBVR] S2, S1

End Indicator

8.3.1.3 ReferencedContextElement Class
ReferencedContextElement	class	represents	an	element	of	a	conceptual	“profile”	of	an	SFP	defined	in	
terms	of	common	ContextElement.	Local	ReferencedContextElement	are	owned	by	
CharacteristicSection	of	SFP	or	one	of	the	Cluster	elements	that	owns	the	SFP	directly	or	through	
another	Cluster.		The	set	of	ReferencedContextElement	for	an	SFP	or	a	Cluster	is	its	“profile”.	
ReferencedContextElement	references	a	common	ContextElement.	All	ContextElement	are	owned	by	
the	SFPCatalog	through	one	or	mode	ContextSection	containers.	Thus,	individual	SFP	items	reference	
the	ContextElement	in	two	stages,	by	first	referencing	a	local	ReferencedContextElement	which	then	in	
turn	references	a	common	ContextElement.	Eventually	the	same	ContextElement	can	be	referenced	by	
several	SFP	items.			

The	purpose	of	a	local	ReferencedContextElement	is	to	provide	visibility	to	the	common	characteristics	
of	multiple	SFPs	and	to	the	conceptual	“profile”	of	an	SFP.	This	approach	allows	formal	grouping	of	SFPs	
based	on	the	shared	characteristics.	Analytics	can	establish	the	exact	nature	of	the	relation	between	two	
or	more	SFP	based	on	the	shared	ContextElement	as	well	as	other	content,	such	as	Property	or	
Indicator.	ContextElement	class	is	a	semantic	element	of	the	SFP	Catalog.	This	class	is	further	described	
in	section	8.3.	

Superclass	

	 ClauseReference	

Attributes	

name:String[1]	 Name	of	the	referenced	context	element	

	

Associations	

Software Fault Pattern Metamodel (SFPM) Version 1.0 65

element:	ContextElement[1]	 Reference	to	a	common	context	element	

Example	1.	SFPM	XMI	

<characteristic_section name="">
 <characteristic xmi:id="cla25" element="shared1" name="ElementType"/>
… </characteristics_section>

<context_section name="">
 <element xmi:type="sfpm:DataType" xmi:id="shared1" name="ElementType">
 <definition>
 <meaning xmi:id="sem131" kind="SetProjection"

description="Definition of DataType ElementType" >
 <variable xmi:id="var143" range="nc1" name="DT"/>
 <operand xmi:id="sem132" identificator=""
 kind="ExistentialQuantification" description="">
 <variable xmi:id="var144" range="nc8" name="T">
 <restriction xmi:id="sem133" verb="vc2" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="KDMEntity" target="var144"/>
 <binding rolename="Name" target="ic11"/>
 </restriction>
 </variable>
 <operand xmi:id="sem134" identificator="" kind="Conjunction"

 description="">
 <operand xmi:id="sem135" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic12"/>
 <binding rolename="Thing2" target="ic13"/>
 </operand>
 <operand xmi:id="sem136" verb="vc4" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="var143"/>
 <binding rolename="Thing2" target="var144"/>
 </operand>
 </operand>
 </operand>
 </meaning>
 </definition>
 </element>
<!—- body omitted -->
</context_section>

Example	2.	Readable	SFP	language	

Characteristics

 Ref DataType ElementType
…

 End Characteristics

SharedContextElements

 DataType ElementType

 66 Software Fault Pattern Metamodel (SFPM) Version 1.0

 Var DT : DataType [KDM]
 Clause
 Var T : CharType [KDM] such that
 [KDMEntity has Name :KDM] T, {"char": Strings}
 where
 [meta] complexity.datatype,char
 [Thing1 is Thing2 :SBVR] DT, T

 End DataType
…
End SharedContextElements

8.3.2 SFP Dataflow Elements Class Diagram
This	section	describes	the	main	structural	parts	of	a	faulty	computation	as	a	data	flow.	The	challenge	in	
describing	software	faults	is	to	manage	complexity	of	possible	computations	that	may	exhibit	the	given	
fault.	The	main	dimensions	of	the	set	of	computations	that	exhibit	a	given	fault	include	

- Programming	language	

- Code	libraries	and	components	

- Runtime	environment,	operating	system	

- Lexical	variations	(e.g.	names	of	variables)	

- Semantic	variations	of	the	indicator	

- Semantic	variations	of	the	overall	data	flow	

- The	context	into	which	the	faulty	computation	is	embedded	

The	SFP	approach	follows	community’s	best	practices	in	providing	machine-consumable	descriptions	of	
software	faults	based	on	common	data	flows	(for	example	Juliette	test	cases).	According	to	this	
approach,	the	invariant	of	a	faulty	computation	is	a	certain	data	flow,	which	has	several	structural	parts:		

- The	data	statement	

- The	sink	statement	

- The	source	statement	

As	an	invariant	of	a	faulty	computation,	the	data	flow	has	a	certain	condition	that	involves	the	data	
element,	and	the	source	and	sink	statements.	Some	common	terminology	is	reviewed	and	illustrated	in	
the	introduction	to	this	specification.	

Each	of	the	elements	above	is	an	SFP	DefinedElement,	such	that	it	has	a	semantic	definition	in	the	form	
of	the	SFP	SemanticFormulation,	further	defined	in	section	8.4.	Thus,	a	“statement”	can	be	a	conjunction	
of	several	logical	propositions.	

The	data	element	determines	that	set	of	values	that	flow	from	the	source	statement	to	the	sink	
statement.	The	scope	of	the	data	flow	is	restricted	to	the	activities	that	occur	at	the	source	statement,	
followed	by	the	activities	at	the	sink	statement.	In	other	words,	the	data	flow	is	assumed	to	flow	from	
the	source	statement	to	the	sink	statement.	Further,	it	is	assumed	that	any	activities	between	the	source	

Software Fault Pattern Metamodel (SFPM) Version 1.0 67

and	the	sink	do	not	affect	the	values	of	the	data	element.	The	compliant	data	flows	in	the	“extension”	of	
the	semantic	definition	can	be	interleaved	with	any	other	activities	as	long	as	they	do	not	violate	the	
above	assumptions.	

Figure 11. UML class diagram SFP Dataflow Elements

8.3.2.1 DataflowElement Class (abstract)
DataflowElement	is	a	parent	class	for	several	elements	that	define	the	structural	parts	of	faulty	
computations	as	an	invariant	of	a	data	flow.	

Superclass	

	 SemanticElement,	ClauseReference	

8.3.2.2 PrimaryDataStatement Class
PrimaryDataStatement	class	represents	the	data	element	of	the	data	flow	that	constitutes	an	invariant	
of	the	family	of	faulty	computations	collectively	described	as	an	SFP.		

PrimaryDataStatements	are	usually	defined	as	SetProjections,	involving	one	or	more	variables	that	
“range”	over	some	concepts	(see	example	below).	Semantic	formulations	are	based	on	the	SBVR	
specification	and	are	described	in	more	detail	in	Section	8.4	

Superclass	

	 DataflowElement	

Example	1.	SFPM	XMI	

	
<element xmi:type="sfpm:PrimaryDataStatement" xmi:id="cla1">

 68 Software Fault Pattern Metamodel (SFPM) Version 1.0

 <definition>
 <meaning xmi:id="sem1" kind="SetProjection"

description="Definition of primary data statement" >
 <variable xmi:id="var1" range="nc1" name="BPBT"/>
 <variable xmi:id="var2" range="nc2" name="TBTI"/>
 <variable xmi:id="var3" range="nc2" name="BP"/>
 <variable xmi:id="var4" range="nc1" name="BPT"/>
 <variable xmi:id="var5" range="nc2" name="BPTI"/>
 <operand xmi:id="sem2" identificator="pointer"

 kind="ExistentialQuantification" description="">
 <variable xmi:id="var6" range="nc3" name="PT">
 <restriction xmi:id="sem3" verb="vc1" identificator=""

 kind="AtomicFormulation"
description=""> … </restriction>

 </variable>
 <variable xmi:id="var7" range="nc2" name="SU">
 <restriction xmi:id="sem4" identificator=""
 kind="Conjunction" description="">

<!—- body omitted -->
</restriction>

 </variable>
 <operand xmi:id="sem7" identificator="" kind="Conjunction"
 description="">

<!—- body omitted -->
</operand>

 </operand>
 </meaning>
 </definition>
</element>

	

Example	2.	Readable	SFP	language	

	
PrimaryDataStatement

 Var BPBT: DataType [KDM] ;;; target buffer base type (in)
 Var TBTI: DataElement [KDM] ;;; target buffer type item (in)
 Var BP: DataElement [KDM] ;;; buffer pointer (out)
 Var BPT: DataType [KDM] ;;; buffer pointer type (out)
 Var BPTI: DataElement [KDM] ;;; buffer pointer item (out)

 Clause "pointer"
 # BPBT * p;
 Var PT : PointerType [KDM] such that
 [Type is a pointer to BaseType with ItemUnit:KDM Patterns] PT,
 BPBT, BPTI
 Var SU :DataElement [KDM] such that
 [KDMEntity has Name :KDM] SU, {"p": Strings}
 [DataElement has type DataType :KDM] SU, PT
 where
 [meta] pointermode,regular
 [Thing1 is Thing2 :SBVR] BP, SU
 [Thing1 is Thing2 :SBVR] BPT, PT

End PrimaryDataStatement

Software Fault Pattern Metamodel (SFPM) Version 1.0 69

8.3.2.3 SinkStatement Class
SinkStatement	class	represents	the	sink	of	the	data	flow	that	constitutes	an	invariant	of	the	family	of	
faulty	computations	collectively	described	as	an	SFP.		

SinkStatements	are	defined	as	SetProjections,	involving	one	or	more	variables	that	“range”	over	some	
concepts	(see	example	below).	A	SetProjection	“considers”	another	proposition.	Semantic	formulations	
are	based	on	the	SBVR	specification	and	are	described	in	more	detail	in	Section	8.4.	

	

Superclass	

	 DataflowElement	

Constraints	

1. Each SinkStatement shall be defined as a SetProjection that considers a Disjunction in which
the clauses are references to Indicator elements

	

Example	1.	SFPM	XMI	
<element xmi:type="sfpm:SinkStatement" xmi:id="cla3">
 <definition>
 <meaning xmi:id="sem30" kind="SetProjection"

description="Definition of sink statement" >
 <variable xmi:id="var15" range="nc4" name="S1"/>
 <variable xmi:id="var16" range="nc4" name="S2"/>
 <variable xmi:id="var17" range="nc5" name="BK"/>
 <variable xmi:id="var18" range="nc1" name="TBT"/>
 <variable xmi:id="var19" range="nc1" name="BPT"/>
 <variable xmi:id="var20" range="nc2" name="BPTI"/>
 <variable xmi:id="var21" range="nc2" name="TBTI"/>
 <variable xmi:id="var22" range="nc1" name="BPBT"/>
 <variable xmi:id="var23" range="nc1" name="DT"/>
 <variable xmi:id="var24" range="nc2" name="BP"/>
 <variable xmi:id="var25" range="nc2" name="Data"/>
 <variable xmi:id="var26" range="nc2" name="DataLength"/>
 <variable xmi:id="var27" range="nc2" name="Index"/>
 <operand xmi:id="sem31" identificator="" kind="Disjunction" description="">
 <operand xmi:id="sem32" identificator="Read Access"
 kind="ExistentialQuantification" description="">
 <variable xmi:id="var28" range="nc1" name="F1"/>
 <operand xmi:id="sem33" identificator="" kind="Disjunction"

 description="">
 <operand xmi:id="sem34" identificator="Explicit Access"
 kind="ExistentialQuantification" description="">
 <variable xmi:id="var29" range="nc1" name="F2"/>
 <operand xmi:id="sem35" identificator="" kind="Disjunction"

 description="">
 <operand xmi:id="sem36" verb="cla4" kind="AtomicFormulation"

 description="ordinary pointer dereference read">
 <binding rolename="S1" target="var15"/>
 <binding rolename="S2" target="var16"/>
 <binding rolename="BP" target="var24"/>
 <binding rolename="BPTI" target="var20"/>

 70 Software Fault Pattern Metamodel (SFPM) Version 1.0

 <binding rolename="Data" target="var25"/>
 </operand>
 <operand xmi:id="sem37" verb="cla5" kind="AtomicFormulation"

 description="array with index read">
 <binding rolename="S1" target="var15"/>
 <binding rolename="S2" target="var16"/>
 <binding rolename="BP" target="var24"/>
 <binding rolename="TBTI" target="var21"/>
 <binding rolename="Index" target="var27"/>
 <binding rolename="Data" target="var25"/>
 </operand>
 <operand xmi:id="sem38" verb="cla6" kind="AtomicFormulation"

 description="struct member read">
 <binding rolename="S1" target="var15"/>
 <binding rolename="S2" target="var16"/>
 <binding rolename="BP" target="var24"/>
 <binding rolename="BPBT" target="var22"/>
 <binding rolename="BPTI" target="var20"/>
 <binding rolename="TBTI" target="var21"/>
 <binding rolename="Data" target="var25"/>
 </operand>
 <operand xmi:id="sem39" verb="cla7" kind="AtomicFormulation"
 description="class member read">
 <binding rolename="S1" target="var15"/>
 <binding rolename="S2" target="var16"/>
 <binding rolename="BP" target="var24"/>
 <binding rolename="TBTI" target="var21"/>
 <binding rolename="Data" target="var25"/>
 </operand>
 <operand xmi:id="sem40" verb="cla8" kind="AtomicFormulation"
 description="cast read">
 <binding rolename="S1" target="var15"/>
 <binding rolename="S2" target="var16"/>
 <binding rolename="DT" target="var23"/>
 <binding rolename="BP" target="var24"/>
 <binding rolename="BPBT" target="var22"/>
 <binding rolename="Data" target="var25"/>
 </operand>
 </operand>
 </operand>
 <operand xmi:id="sem41" verb="cla9" kind="AtomicFormulation"
 description="overlay struct read">
 <binding rolename="S1" target="var15"/>
 <binding rolename="S2" target="var16"/>
 <binding rolename="DT" target="var23"/>
 <binding rolename="BP" target="var24"/>
 <binding rolename="BPBT" target="var22"/>
 <binding rolename="Data" target="var25"/>
 </operand>
 <operand xmi:id="sem42" identificator="Hidden Access via api"
 kind="ExistentialQuantification" description="">

<!—body omitted --> </operand>
 </operand>
 <operand xmi:id="sem46" identificator="Write Access"
 kind="ExistentialQuantification" description="">

<!—body omitted --> </operand>
 <operand xmi:id="sem60" identificator="Call access"

Software Fault Pattern Metamodel (SFPM) Version 1.0 71

 kind="ExistentialQuantification" description="">
<!—body omitted --> </operand>

 </operand>
 </meaning>
 </definition>
</element>

Example	2.	Readable	SFP	language	

	
SinkStatement
 Var S1 : ActionElement [KDM] ;;; segment Begin
 Var S2 : ActionElement [KDM] ;;; segment End

 Var BK: TargetBufferKind [Platform Meta]
 Var TBT: DataType [KDM]
 Var BPT: DataType [KDM]
 Var BPTI: DataElement [KDM]
TBTI can be a Pointer ItemUnit, an Array ItemUnit or a class MemberUnit
 Var TBTI: DataElement [KDM]
 Var BPBT: DataType [KDM]
 Var DT: DataType [KDM]
 Var BP: DataElement [KDM]
 Var Data: DataElement [KDM]
 Var DataLength : DataElement [KDM]
 Var Index: DataElement [KDM]

 Disjunction
 Clause "Read Access"
 Var F1 : DataType [KDM]
 Disjunction
 Clause "Explicit Access"
 Var F2 : DataType [KDM]
 Disjunction
 Clause [ordinary pointer dereference read]

 S1=S1, S2=S2,
BP=BP, BPTI=BPTI, Data=Data

 Clause [array with index read] S1=S1, S2=S2,
 BP=BP, TBTI=TBTI,
 Index=Index, Data=Data

 Clause [struct member read] S1=S1, S2=S2,
 BP=BP, BPBT=BPBT, BPTI=BPTI,

 TBTI=TBTI, Data=Data
 Clause [class member read] S1=S1, S2=S2,

 BP=BP, TBTI=TBTI, Data=Data
 Clause [cast read] S1=S1, S2=S2,

DT=DT, BP=BP, BPBT=BPBT,
 Data=Data

 End Disjunction

 Clause [overlay struct read] S1=S1, S2=S2,

DT=DT, BP=BP, BPBT=BPBT, Data=Data
 Clause "Hidden Access via api"
 …

 End Disjunction

 72 Software Fault Pattern Metamodel (SFPM) Version 1.0

 Clause "Write Access"
 …

 Clause "Call access"
 …

End SinkStatement

8.3.2.4 SourceStatement Class
SourceStatement	class	represents	the	source	of	the	data	flow	that	constitutes	an	invariant	of	the	family	
of	faulty	computations	collectively	described	as	an	SFP.	

SourceStatements	are	usually	defined	as	SetProjections,	involving	one	or	more	variables	that	“range”	
over	some	concepts	(see	example	below).	A	SetProjection	“considers”	another	proposition.	Semantic	
formulations	are	based	on	the	SBVR	specification	and	are	described	in	more	detail	in	Section	8.4.	

	

Superclass	

	 DataflowElement	

Example	1.	SFPM	XMI	
<element xmi:type="sfpm:SourceStatement" xmi:id="cla2">
 <definition>
 <meaning xmi:id="sem11" kind="SetProjection"

description="Definition of source statement" >
 <variable xmi:id="var8" range="nc4" name="S1"/>
 <variable xmi:id="var9" range="nc4" name="S2"/>
 <variable xmi:id="var10" range="nc5" name="BK"/>
 <variable xmi:id="var11" range="nc2" name="TB"/>
 <variable xmi:id="var12" range="nc1" name="BPT"/>
 <variable xmi:id="var13" range="nc1" name="BPBT"/>
 <variable xmi:id="var14" range="nc2" name="BP"/>
 <operand xmi:id="sem12" identificator="" kind="Disjunction"
 description="">
 <operand xmi:id="sem13" identificator="assign" kind="Conjunction"
 description="">
 <operand xmi:id="sem14" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic4"/>
 <binding rolename="Thing2" target="ic5"/>
 </operand>
 <operand xmi:id="sem15" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic6"/>
 <binding rolename="Thing2" target="ic7"/>
 </operand>
 <operand xmi:id="sem16" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic8"/>
 <binding rolename="Thing2" target="ic3"/>
 </operand>

Software Fault Pattern Metamodel (SFPM) Version 1.0 73

 <operand xmi:id="sem17" verb="vc5" identificator=""
 kind="AtomicFormulation" description="">

 <binding rolename="ActionElement" target="var8"/>
 </operand>
 <operand xmi:id="sem18" verb="vc6" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var8"/>
 <binding rolename="DataElement" target="var11"/>
 </operand>
 <operand xmi:id="sem19" verb="vc7" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var8"/>
 <binding rolename="DataElement" target="var14"/>
 </operand>
 <operand xmi:id="sem20" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="var9"/>
 <binding rolename="Thing2" target="var8"/>
 </operand>
 </operand>

<!—- body omitted -->
 </operand>
 </meaning>
 </definition>
</element>

	

Example	2.	Readable	SFP	language	

	
SourceStatement

 Var S1: ActionElement [KDM]
 Var S2: ActionElement [KDM]
 Var BK: TargetBufferKind [Platform Meta]
 Var TB: DataElement [KDM]
 Var BPT: DataType [KDM]
 Var BPBT: DataType [KDM]
 Var BP: DataElement [KDM]

 Disjunction
 Clause "assign"
 # p=buf;
 [meta] complexity.inline,no
 [meta] isnamed,yes
 [meta] buffermode,regular
 [ActionElement is assign :KDM] S1
 [ActionElement reads DataElement :KDM] S1, TB
 [ActionElement writes DataElement :KDM] S1, BP
 [Thing1 is Thing2 :SBVR] S2, S1

 Clause "address"
 # p=&buf;
 [meta] complexity.inline,no
 [meta] isnamed,yes
 [meta] buffermode,struct
 [ActionElement is ptr :KDM] S1

 74 Software Fault Pattern Metamodel (SFPM) Version 1.0

 [ActionElement addresses DataElement :KDM] S1,TB
 [ActionElement writes DataElement :KDM] S1,BP
 [Thing1 is Thing2 :SBVR] S2, S1

 Clause "release"
 [simple Begin End releases Buffer of DataType:KDM Patterns]

 S1, S2, BP, BPT
 End Disjunction

End SourceStatement

8.3.2.5 Condition Class
Condition	class	represents	the	invariant	condition	of	the	data	flow	for	the	family	of	faulty	computations	
collectively	described	as	an	SFP.	While	SinkStatement,	SourceStatement	and	PrimaryDataStatement	
focus	on	program	point	patterns,	Condition	allows	specification	of	properties	that	involve	values	(state)	
of	the	computation.	In	general,	specification	based	on	values	assumes	a	more	powerful	class	of	
supporting	capabilities.	

Superclass	

	 DataflowElement	

	

8.3.3 SFP Canonical Elements Class Diagram
This	section	describes	the	Canonical	Elements	of	the	SFP	Catalog.	In	contrast	to	the	Dataflow	Element	
that	define	the	invariant	of	some	data	flow,	CanonicalElements	define	canonical	dataflows	by	providing	
their	full	context.	CanonicalElements	are	aligned	with	the	Dataflow	elements	and	define	dataflows	that	
exhibit	the	fault	described	by	the	SFP,	as	well	as	related	dataflows	that	share	certain	significant	parts	of	
the	invariant	without	exhibiting	the	fault.	The	latter	dataflows	are	referred	to	as	“mitigated	dataflows”	
as	they	illustrate	possible	“mitigations”	of	the	fault.		

The	intention	of	the	Canonical	Elements	is	to	synthesize	the	test	cases	that	correspond	to	the	software	
weaknesses	defined	by	the	SFP	items.	CanonicalElements	define	a	broader	context	for	faulty	
computations,	sufficient	to	generate	complete	(compilable,	executable)	examples	of	the	faulty	
computation	in	the	form	of	a	test	case	with	appropriate	metadata.	These	test	cases	can	be	used	to	
validate	CWE	compliance	mappings	of	existing	and	future	Static	Code	Analysis	tools.	The	
ContextElements	represent	reusable	elements	that	are	used	in	CanonicalElements.	CanonicalElements	
also	represent	“mitigated”	computations	that	shared	significant	fragments	with	the	faulty	computations	
but	do	not	exhibit	the	fault.	The	latter	content	can	be	used	to	generate	additional	test	cases	for	the	“false	
positives”	reporting	in	existing	and	future	Static	Code	Analysis	tools.	

The	Dataflow	Element	Sink	and	Source	(when	applicable)	are	specifications	of	the	fault.	On	the	other	
hand,	CanonicalElements	SinkSegment	and	SourceSegment	are	rules	that	describe	unmitigated	Sink	and	
Source	together	with	the	context.	At	the	same	time,	MitigatedSinkSegment	and	
MitigatedSourceSergment	elements	represent	canonical	Sink	and	Source	with	mitigations,	also	with	the	
context.	CanonicalSegment	are	referred	to	by	a	CanonicalForm	that	provides	the	full	context	for	
canonical	descriptions	of	both	faulty	and	mitigated	computations.	The	elements	of	context	are	
introduced	when	needed,	esp.	for	Source	when	there	is	a	gap	between	the	specification	and	the	full	
context.	

Software Fault Pattern Metamodel (SFPM) Version 1.0 75

For	example,	an	invariant	specification	may	specify	data	flow	as	having	a	sink	that	is	a	dereference	of	a	
pointer.	This	content	may	be	used	to	systematically	collect	evidence	of	such	data	flows	in	a	given	code.	
The	assumed	capabilities	are		

1) representing	the	code	as	a	set	of	KDM	facts;	

2) 	identifying	the	specific	facts	that	are	instances	of	the	invariant.		

This	example	is	simplified	not	to	include	capabilities	to	identify	dataflows	related	to	the	identified	
location.	From	the	certification	perspective,	a	complete	collection	of	facts	is	obtained	by	the	capability	
#1	(for	example	by	parsing	source	or	binary	code	and	representing	the	result	as	a	set	of	standard	KDM	
facts).	The	content	that	specifies	the	fault	only	focuses	at	the	key	KDM	facts.	The	makes	implicit	
assumptions	and	relies	on	the	constraints	defined	in	the	KDM	standard	(for	example,	that	there	is	a	
variable	that	declares	a	pointer,	and	that	the	statement	representing	a	pointer	dereference	is	part	of	
some	procedure	that	is	called	from	some	runtime	entry	point).	Also,	the	concise	description	of	the	
invariant	relies	on	KDM	to	represent	the	multitude	of	situations	where	the	pointer	being	dereferenced	
can	be	embedded	into	a	more	complex	data	structure,	and	the	dereference	may	be	also	part	of	a	more	
complex	statement.	Some	(but	not	all)	of	these	implicit	assumptions	are	referred	to	as	the	“context”	of	
the	faulty	computation.	

The	CanonicalElements	define	the	dataflow	related	to	the	SFP	fault	in	context	by	providing	the	
necessary	definitions	and	filling	in	the	minimal	required	scopes	so	that	the	resulting	KDM	describes	a	
minimal	fully	functional	code	sample.	Further,	the	CanonicalElements	provide	some	“hooks”	for	adding	
“code	and	data	complexities”	in	a	structured	way	so	that	increasingly	more	complex	samples	can	be	
produced.	For	obvious	reasons,	it	is	not	possible	to	enumerate	all	samples	of	a	fault.	Thus,	the	content	of	
the	SFP	Catalog	involves	an	interface	to	the	external	capabilities	that	can	systematically	add	code	and	
data	complexities	as	needed.	The	name	“canonical”	emphasizes	the	fact	that	the	content	only	represents	
certain	select	(i.e.	“canonical”	rather	than	“random”)	examples	out	of	an	infinite	number	of	compliant	
dataflows.		

 76 Software Fault Pattern Metamodel (SFPM) Version 1.0

Figure 12. UML class diagram SFP Canonical Elements

8.3.3.1 CanonicalElement Class (abstract)
CanonicalElement	is	a	parent	class	of	the	elements	of	SFP	Catalog	that	provide	context	for	the	faulty	
computations	captured	as	dataflow	invariants.	

Superclass	

	 SemanticElement	

	

8.3.3.2 CanonicalForm Class
Through	its	semantic	definition,	CanonicalForm	defines	a	sequence	of	segments	that	completes	the	
definition	of	fault	into	a	full	canonical	representation	with	appropriate	context.	The	CanonicalForm	is	
the	“blueprint”	for	plugging	in	other	CanonicalSegments.		CanonicalForm	describes	how	various	
segments	(specific	to	an	SFP	and	referenced	context	elements)	can	be	arranged	into	a	coherent	piece	of	
source	code	which	“implements”	a	fault	in	an	appropriate	context.	

Software Fault Pattern Metamodel (SFPM) Version 1.0 77

	The	Canonical	Form	assumes	few	simple	variation	rules,	such	as	that	the	“unmitigated”	sample	of	the	
data	flow	can	be	obtained	by	plugging	in	Sink	and	Source	segments,	while	several	structurally	different	
forms	of	“mitigated”	dataflow	can	be	obtained	by	plugging	in	1)	only	Mitigated	Sink	instead	of	the	Sink	
Segment;	2)	only	MitigatedSource	instead	of	SourceSegment;	3)	both	Mitigated	Sink	and	
MitigatedSource.	

CanonicalForm	is	closely	aligned	with	the	variation	tree	described	in	section	8.1.2.3.	

A	“segment”	(a	“KDM	segment”)	is	a	term	consistently	used	in	SFP	to	refer	to	a	semantic	formulation	
that	represents	one	or	more	KDM	ActionElement	together	with	the	corresponding	Flows	relationships	
is	such	a	way	that	there	is	a	single	“entry”	ActionElement	and	a	single	“exit”	element.	The	“signature”	of	
a	segment	includes	two	variables	that	reference	these	two	elements.	KDM	segments	are	useful	building	
blocks	of	content.	SFP	vocabularies	built	on	top	of	KDM	often	define	KDM	segments	as	new	“verbs”.	

Specification	of	the	CanonicalForm	assumes	the	Flow	relations	between	the	segments	of	the	semantic	
definition,	connecting	them	in	the	order	in	which	they	occur	in	the	conjunction.	The	intent	is	that	the	
implementation	capabilities	may	inject	interleaving	dataflows	between	the	segments	of	the	
CanonicalForm.	

Complexity	“hooks”	are	introduced	to	the	same	end	and	use	explicit	tags	that	refer	to	the	kinds	of	
complexity	that	can	be	injected.	The	vocabulary	of	complexity	“hooks”	in	not	part	of	the	SFP	Metamodel,	
and	shall	be	explained	in	the	SFP	catalog.	

Superclass	

	 CanonicalElement	

Example 1. SFPM XMI
	
This	example	focuses	on	the	main	element	of	the	CanonicalForm	and	omits	the	body	of	the	semantic	
formulation.	See	Example	2	for	the	full	content.
<canonical xmi:type="sfpm:CanonicalForm" xmi:id="cla40" name="CF1" >
 <definition>
 <meaning xmi:id="sem67" kind="SetProjection"

description="Definition of CF1" >
 <variable xmi:id="var35" range="nc4" name="S1"/>
 <variable xmi:id="var36" range="nc4" name="S2"/>

<!—- body omitted -->
 </meaning>
 </definition>
</canonical>

Example 2. Readable SFP language
Canonical CF1

CanonicalForm defines a sequence of segments that fully exemplifies a fault
in an appropriate context

 Var S1: ActionElement [KDM]
 Var S2: ActionElement [KDM]

 78 Software Fault Pattern Metamodel (SFPM) Version 1.0

 Var DT :DataType [KDM]
 Var BK: TargetBufferKind [Platform Meta]
 Var TB: Buffer [Platform APIs]

 Var TBT : DataType [KDM] ;; target buffer type
TBTI can be a Pointer ItemUnit, an Array ItemUnit or a class MemberUnit
 Var TBTI : DataElement [KDM] ;; target buffer item

 Var BPTI: DataElement [KDM] ;; buffer pointer item
 Var BPCT: DataType [KDM] ;; buffer pointer container type
 Var BPT: DataType [KDM] ;; buffer pointer type
 Var BPBT: DataType [KDM] ;; buffer pointer base type
 Var BP: DataElement [KDM] ;; buffer pointer

 Var BufferLength: DataElement [KDM]
 Var BufferSize : IntegerValue [SBVR]
 Var Data: DataElement [KDM]
 Var DataLength : DataElement [KDM]
 Var DataSize: IntegerValue [SBVR]
 Var Index: DataElement [KDM]
 Var Offset: DataElement [KDM]

 Clause
 Var A2: ActionElement [KDM]
 Var A3: ActionElement [KDM]
 Var A4: ActionElement [KDM]
 Var A5: ActionElement [KDM]
 Var A6: ActionElement [KDM]
 Var A7: ActionElement [KDM]
 Var A8: ActionElement [KDM]
 Var A9: ActionElement [KDM]
 Var A10: ActionElement [KDM]
 Var A11: ActionElement [KDM]
 Var BE_1: DataElement [KDM]
 Var BE_2: DataElement [KDM]
 Var BE_3: DataElement [KDM]
 Var BP_1: DataElement [KDM]
 Var SA: ActionElement [KDM]
 Var SB: ActionElement [KDM]

 Clause [DataType ElementType] DT=DT

 Clause [Resource TargetBuffer] BK=BK, TB=TB
 Clause [DataType TargetBufferType] BK=BK, TBT=TBT, TBTI=TBTI, BPT=BPT,

 DT=DT, BPBT=BPBT, BufferSize=BufferSize

 Clause [PrimaryDataSegment] S1=S1, S2=A2, BPBT=BPBT, TBTI=TBTI,
 BufferSize=BufferSize, BP=BP, BPT=BPT, BPTI=BPTI, BPCT=BPCT

 Clause [DataElement BufferLength] BufferLength=BufferLength,

 BufferSize=BufferSize

 Clause [DataElement DataLengthGood] DataLength=DataLength,
DataSize=DataSize
 Clause [DataElement DefineData] DT=DT, Data=Data, DataSize=DataSize
 Clause [DataElement DefineIndex] BK=BK, Index=Index

Software Fault Pattern Metamodel (SFPM) Version 1.0 79

 [container access :Hooks] A3, A4, BP, BE_1

 Clause [SourceSegment] S1=A4, S2=A5, BK=BK, TB=TB, TBT=TBT, BPT=BPT,
 BPBT=BPBT, BP=BE_1, BufferSize=BufferSize

 [complexity comment :Hooks] A6

 [container access :Hooks] A6, A7, BP_1, BE_2

 Clause [SinkSegment] S1=A7, S2=A8, BK=BK, TBT=TBT, BPT=BPT, BPTI=BPTI,
 TBTI=TBTI, BPBT=BPBT, DT=DT, BP=BE_2, Data=Data,
 DataLength=DataLength, Index=Index, BufferSize=BufferSize

 [container access :Hooks] A9, A10, BP_1, BE_3

 Clause [Operation Cleanup] S1=A10, S2=A11, BK=BK, BPT=BPT, BPBT=BPBT,
 BP=BE_3

 [complexity connect :Hooks] A2, A3
 [complexity end :Hooks] A6, A8, SA, SB, BPT
 [complexity connect :Hooks] SB, A9
 [complexity path :Hooks] A5, SA, BP, BP_1, BPT, BPBT, BPCT
 [complexity return :Hooks] A11

End Canonical

8.3.3.3 CanonicalSegment Class (abstract)
CanonicalSegment	class	represents	a	canonical	version	of	a	Dataflow	element	with	full	context.	Further,	
Some	CanonicalSegment	represent	the	“mitigated”	versions	of	the	corresponding	Dataflow	element.	
Coordination	of	the	various	clauses	is	guided	by	the	Property	element	defined	as	part	of	the	clauses.	

Superclass	

	 CanonicalElement,	ClauseReference	

	

8.3.3.4 SinkSegment Class
SinkSegment	class	represents	a	canonical	version	of	the	Dataflow	element	SinkStatement	with	full	
context.	

Superclass	

	 CanonicalSegment	

Example	1.	SFPM	XMI	

This	example	focuses	on	the	main	element	of	the	SinkSegment	and	omits	the	body	of	the	semantic	
formulation.	See	Example	2	for	the	full	content.
	
<canonical xmi:type="sfpm:SinkSegment" xmi:id="cla43" >
 <definition>

 80 Software Fault Pattern Metamodel (SFPM) Version 1.0

 <meaning xmi:id="sem104" kind="SetProjection"
description="Definition of segment SinkSegment" >

 <variable xmi:id="var92" range="nc4" name="S1"/>
 <variable xmi:id="var93" range="nc4" name="S2"/>

<!—- body omitted -->
 </meaning>
 </definition>
</canonical>

Example	2.	Readable	SFP	language	
 Segment SinkSegment

the version of Sink with context uses additional parameter BufferSize
for use in mitigation;
must be signature compatible with MitigatedSinkSegment

 Var S1 : ActionElement [KDM] ;;; segment Begin
 Var S2 : ActionElement [KDM] ;;; segment End

 Var BK: TargetBufferKind [Platform Meta]
 Var TBT: DataType [KDM]
 Var BPT: DataType [KDM]
 Var BPTI: DataElement [KDM]
TBTI can be a Pointer ItemUnit, an Array ItemUnit or a class MemberUnit
 Var TBTI: DataElement [KDM]
method unit optional
Var TBTM: ControlElement [KDM]
 Var BPBT: DataType [KDM]
 Var DT: DataType [KDM]
 Var BP: DataElement [KDM]
 Var Data: DataElement [KDM]
 Var DataLength : DataElement [KDM]
 Var Index: DataElement [KDM]
 Var BufferSize : IntegerValue [SBVR]

 Clause [SinkStatement] S1=S1, S2=S2, BK=BK, TBT=TBT, BPT=BPT,
 BPTI=BPTI, TBTI=TBTI, BPBT=BPBT, DT=DT, BP=BP, Data=Data,

 DataLength=DataLength, Index=Index

 End Segment

8.3.3.5 SourceSegment Class
SourceSegment	class	represents	a	canonical	version	of	the	Dataflow	element	SourceStatement	with	full	
context.	

Superclass	

	 CanonicalSegment	

Example	1.	SFPM	XMI	

This	example	focuses	on	the	main	element	of	the	SourceSegment	and	omits	the	body	of	the	semantic	
formulation.	See	Example	2	for	the	full	content.
	

Software Fault Pattern Metamodel (SFPM) Version 1.0 81

<canonical xmi:type="sfpm:SourceSegment" xmi:id="cla42" >
 <definition>
 <meaning xmi:id="sem96" kind="SetProjection"

description="Definition of segment SourceSegment" >
 <variable xmi:id="var79" range="nc4" name="S1"/>
 <variable xmi:id="var80" range="nc4" name="S2"/>

<!—- body omitted -->
 </meaning>
 </definition>
</canonical>

Example	2.	Readable	SFP	language	

Segment SourceSegment
 Var S1: ActionElement [KDM]
 Var S2: ActionElement [KDM]

 Var BK: TargetBufferKind [Platform Meta]
 Var TB: Buffer [Platform APIs]
 Var TBT : DataType [KDM]
 Var BPT: DataType [KDM]
 Var BPBT: DataType [KDM]
 Var BP: DataElement [KDM]
 Var BufferSize : IntegerValue [SBVR]

 Clause
 Var A2: ActionElement [KDM]
 Var A3: ActionElement [KDM]
 Var A4: ActionElement [KDM]
 Var A5: ActionElement [KDM]

 where
 Clause [Operation DefineTargetBuffer] S1=S1, S2=A2, BK=BK, TBT=TBT,

 BPT=BPT, BPBT=BPBT, TB=TB, BP=BP, BufferSize=BufferSize
 Clause [Operation BindPointerToTargetBuffer] S1=A3, S2=A4,
 BK=BK,BPT=BPT,BPBT=BPBT,BP=BP, TB=TB
 Clause [Operation ReleaseTargetBuffer] S1=A5, S2=S2, BK=BK, BPT=BPT,

 BPBT=BPBT, BP=BP
 [ActionElement1 flows into ActionElement2 :KDM] A2, A3
 [ActionElement1 flows into ActionElement2 :KDM] A4, A5

End Segment

8.3.3.6 PrimaryDataSegment Class
PrimaryDataSegment	class	represents	a	canonical	version	of	the	Dataflow	element	
PrimaryDataStatement	with	full	context.	

Superclass	

	 CanonicalSegment	

Example	1.	SFPM	XMI	

This	example	focuses	on	the	main	element	of	the	PrimaryDataSegment	and	omits	the	body	of	the	
semantic	formulation.	See	Example	2	for	the	full	content.

 82 Software Fault Pattern Metamodel (SFPM) Version 1.0

	
<canonical xmi:type="sfpm:PrimaryDataSegment" xmi:id="cla41" >
 <definition>
 <meaning xmi:id="sem90" kind="SetProjection"
 description="Definition of segment PrimaryDataSegment" >
 <variable xmi:id="var70" range="nc4" name="S1"/>
 <variable xmi:id="var71" range="nc4" name="S2"/>

<!—- body omitted -->
 </meaning>
 </definition>
</canonical>

	

Example	2.	Readable	SFP	language	
Segment PrimaryDataSegment
 Var S1: ActionElement [KDM]
 Var S2: ActionElement [KDM]

 Var BPBT: DataType [KDM] ;;; target buffer base type (in)
 Var TBTI: DataElement [KDM] ;;; target buffer type item (in)
 Var BufferSize: DataType [KDM] ;; target buffer size (in)
 Var BP: DataElement [KDM] ;;; buffer pointer (out)
 Var BPT: DataType [KDM] ;;; buffer pointer type (out)
 Var BPTI: DataElement [KDM] ;;; buffer pointer item (out)
 Var BPCT: DataType [KDM] ;;; buffer pointer container type (out)

 [meta] complexity.inline,no
 Clause [DataType BufferPointerType] BPT=BPT, BPBT=BPBT, BPTI=BPTI,

 TBTI=TBTI
 [key data type pointer :Hooks] BPBT, BPT, BPTI, BufferSize
 Clause [DataElement BufferPointer] S1=S1, S2=S2, BP=BP, BPT=BPT,

BPBT=BPBT, BPCT=BPCT
End Segment

	

8.3.3.7 MitigatedSinkSegment Class
MitigatedSinkSegment	class	represents	a	canonical	mitigated	version	of	the	Dataflow	element	
SinkStatement	with	full	context.	See	additional	descriptions	in	the	CanonicalForm	section	and	the	
introduction	to	section	8.3.	

	

Superclass	

	 CanonicalSegment	

Example	1.	SFPM	XMI	

This	example	focuses	on	the	main	element	of	the	MitigatedSinkSegment	and	omits	the	body	of	the	
semantic	formulation.	See	Example	2	for	the	full	content.
	
<canonical xmi:type="sfpm:MitigatedSinkSegment" xmi:id="cla45" >
 <definition>

Software Fault Pattern Metamodel (SFPM) Version 1.0 83

 <meaning xmi:id="sem117" kind="SetProjection"
 description="Definition of segment MitigatedSinkSegment" >
 <variable xmi:id="var124" range="nc4" name="S1"/>
 <variable xmi:id="var125" range="nc4" name="S2"/>

<!—- body omitted -->
 </meaning>
 </definition>
</canonical>

	

Example	2.	Readable	SFP	language	
Segment MitigatedSinkSegment
 Var S1 : ActionElement [KDM] ;;; segment Begin
 Var S2 : ActionElement [KDM] ;;; segment End

 Var BK: TargetBufferKind [Platform Meta]
 Var TBT: DataType [KDM]
 Var BPT: DataType [KDM]
 Var BPTI: DataElement [KDM]
TBTI can be a Pointer ItemUnit, an Array ItemUnit or a class MemberUnit
 Var TBTI: DataElement [KDM]
 Var BPBT: DataType [KDM]
 Var DT: DataType [KDM]
 Var BP: DataElement [KDM]
 Var Data: DataElement [KDM]
 Var DataLength : DataElement [KDM]
 Var Index: DataElement [KDM]
 Var BufferSize : IntegerValue [SBVR]

 Disjunction
 Clause "null dereference"
 Var A1 : ActionElement [KDM] ;;; segment Begin
 Var A2 : ActionElement [KDM] ;;; segment End
 where
 [meta] isnull,yes
 Clause [SinkStatement] S1=A1, S2=A2, BK=BK, TBT=TBT,

 BPT=BPT, BPTI=BPTI, TBTI=TBTI, BPBT=BPBT,
DT=DT, BP=BP, Data=Data, DataLength=DataLength,
 Index=Index

 [simple Begin2 End2 mitigates null of DataType in segment
 Begin1 End1 DataElement:KDM Patterns] S1, S2,

BPT, A1, A2, BP

 Clause "other - use an alternative source"
 Var TB: Buffer [Platform APIs]

 Var A2: ActionElement [KDM]
 Var A3: ActionElement [KDM]

 where
 [meta] isnull,no
 [meta] complexity.inline,no

 Clause [Operation DefineValidReference] S1=S1, S2=A2,

 BK=BK, TBT=TBT, BPT=BPT, BPBT=BPBT, TB=TB,
BP=BP, BufferSize=BufferSize

 84 Software Fault Pattern Metamodel (SFPM) Version 1.0

 Clause [SinkStatement] S1=A3, S2=S2, BK=BK, TBT=TBT,
 BPT=BPT, BPTI=BPTI, TBTI=TBTI, BPBT=BPBT, DT=DT,

 BP=BP, Data=Data, DataLength=DataLength,
Index=Index

 [ActionElement1 flows into ActionElement2 :KDM] A2, A3

 End Disjunction
End Segment

	

8.3.3.8 MitigatedSourceSegment Class
MitigatedSourceSegment	class	represents	a	canonical	mitigated	version	of	the	Dataflow	element	
SourceStatement	with	full	context.	See	additional	descriptions	in	the	CanonicalForm	section	and	the	
introduction	to	section	8.3.	

Superclass	

	 CanonicalSegment	

Example	1.	SFPM	XMI	

This	example	focuses	on	the	main	element	of	the	MitigatedSourceSegment	and	omits	the	body	of	the	
semantic	formulation.	See	Example	2	for	the	full	content.
	
<canonical xmi:type="sfpm:MitigatedSourceSegment" xmi:id="cla44" >
 <definition>
 <meaning xmi:id="sem106" kind="SetProjection"
 description="Definition of segment MitigatedSourceSegment" >
 <variable xmi:id="var106" range="nc4" name="S1"/>
 <variable xmi:id="var107" range="nc4" name="S2"/>

<!—- body omitted -->
 </meaning>
 </definition>
</canonical>

	

Example	2.	Readable	SFP	language	
Segment MitigatedSourceSegment

generates a valid reference for each variant of the Parameter Incorrect Value
Kind

 Var S1: ActionElement [KDM]
 Var S2: ActionElement [KDM]

 Var BK: TargetBufferKind [Platform Meta]
 Var TB: Buffer [Platform APIs]
 Var TBT : DataType [KDM]
 Var BPT: DataType [KDM]
 Var BPBT: DataType [KDM]
 Var BP: DataElement [KDM]
 Var BufferSize : IntegerValue [SBVR]

Software Fault Pattern Metamodel (SFPM) Version 1.0 85

 Clause
 Var A1: ActionElement [KDM]
 Var A2: ActionElement [KDM]
 Var A3: ActionElement [KDM]
 Var A4: ActionElement [KDM]
 Var A5: ActionElement [KDM]
 Var A6: ActionElement [KDM]

 Var A7: ActionElement [KDM]
 Var A8: ActionElement [KDM]
Var A9: ActionElement [KDM]
Var A10: ActionElement [KDM]
 Var ValidTB: DataElement [KDM] such that
 [DataElement is a temporary variable of DataType :KDM]

ValidTB, BPT

 where
 Clause [Operation DefineTargetBuffer] S1=A1, S2=A2,

BK=BK, TBT=TBT, BPT=BPT, BPBT=BPBT, TB=TB,
BP=BP, BufferSize=BufferSize

 Clause [Operation BindPointerToTargetBuffer] S1=A3, S2=A4,
 BK=BK,BPT=BPT,BPBT=BPBT,BP=BP, TB=TB

 Clause [Operation ReleaseTargetBuffer] S1=A5, S2=A6,
BK=BK, BPT=BPT, BPBT=BPBT, BP=BP

 [ActionElement1 flows into ActionElement2 :KDM] A2, A3
 [ActionElement1 flows into ActionElement2 :KDM] A4, A5

 Clause [Operation DefineValidReference] S1=A7, S2=A8,

BK=BK, TBT=TBT, BPT=BPT, BPBT=BPBT, TB=ValidTB,
BP=BP, BufferSize=BufferSize

Clause [Operation BindMitigatedPointerToTargetBuffer]
S1=A9, S2=A10, BK=BK,BPT=BPT,BPBT=BPBT,BP=BP, TB=TB

[ActionElement1 flows into ActionElement2 :KDM] A8, A9

 [segment Begin3 End3 mitigates segments Begin1 End1 and

Begin2 End2:KDM Patterns] S1, S2, A1, A6, A7, A8
 End Segment

8.3.4 SFP Context Elements Class Diagram
This	section	describes	the	Context	Elements	of	the	SFP	Catalog.	As	ContextElement	represent	significant	
referenced	clauses	that	are	used	mainly	by	the	CanonicalElement	they	determine	the	common	
characteristics	of	an	SFP	and	constitute	an	important	part	of	the	overall	SFP	content.	Based	on	the	
shared	ContextElement,	SFP	can	be	systematically	grouped	into	clusters,	and	the	nature	of	the	
relationships	between	different	SFPs	can	be	formally	described.	

SFP	ContextElement	are	represent	the	conceptual	level	of	the	SFP	description	in	contrast	to	the	
technical	level	represented	by	KDM	vocabulary	and	KDM	patterns.	SFP	ContextElement	focus	at	the	
essential	Resource,	Operations,	DataTypes	and	DataElements,	as	well	as	APIs	and	Decision	involved	in	
SFPs.	By	adding	few	more	abstractions,	SFP	Catalog	extends	the	standard	vocabularies	and	accumulates	
more	useful	content	towards	the	advanced	analytics	of	the	software	weaknesses.	

 86 Software Fault Pattern Metamodel (SFPM) Version 1.0

Figure 13. UML class diagram SFP Context Elements

8.3.4.1 ContextElement Class (abstract)
ContextElement	class	represents	the	common	parent	for	context	elements.	

Superclass	

	 SemanticElement	

Attributes	

name:String[1]	 Name	of	the	context	elements	

description:	String[1]	 Informal	description	of	the	context	element	

	

8.3.4.2 Resource Class
Resource	class	represents	a	resource	provided	by	the	operating	system	or	by	one	of	the	frameworks.	
Resource	can	also	be	implemented	by	the	software	under	assessment.	Several	weaknesses	are	directly	
related	to	manipulations	of	resources	in	non-secure	ways.	Describing	these	situations	in	terms	of	the	
programming	constructs	fails	to	communicate	the	essence	of	the	related	software	faults,	as	from	the	
programming	language	perspective	manipulations	of	resources	looks	like	API	calls.	KDM	specification	
already	introduces	a	Resource	Layer	to	provide	a	more	meaningful	representation	of	common	
resources.	SFP	Resource	makes	this	framework	more	visible	as	part	of	the	content	of	the	SFP	Catalog.	
As	an	SFP	ContextElement	DataType	can	serve	as	a	variation	point	for	synthesis	of	test	cases	with	

Software Fault Pattern Metamodel (SFPM) Version 1.0 87

appropriate	metadata,	as	well	as	a	characteristic	of	an	SFP	while	analyzing	relationships	between	
multiple	SFP.	

Superclass	

	 ContextElement	

Attributes	

kind:String[1]	 Kind	of	the	resource	(defined	in	the	KDM	
specification)	

	

Associations	

interface:API[0..*]	 Set	of	API	of	the	resource	

Example	1.	SFPM	XMI	
<element xmi:type="sfpm:Resource" xmi:id="shared2" name="TargetBuffer">
 <definition>
 <meaning xmi:id="sem188" kind="SetProjection"

description="Definition of Resource TargetBuffer" >
 <variable xmi:id="var163" range="nc5" name="BK"/>
 <variable xmi:id="var164" range="nc6" name="TB"/>
 <operand xmi:id="sem189" identificator="" kind="Conjunction"
 description="">
 <operand xmi:id="sem190" verb="vc27" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="TargetBufferKind" target="var163"/>
 <binding rolename="Buffer" target="var164"/>
 </operand>
 <operand xmi:id="sem191" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic22"/>
 <binding rolename="Thing2" target="ic5"/>
 </operand>
 </operand>
 </meaning>
 </definition>
</element>

Example	2.	Readable	SFP	language	
Resource TargetBuffer

Var BK: TargetBufferKind [Platform Meta]
 Var TB: Buffer [Platform APIs]

 [TargetBufferKind represents Buffer : Platform APIs] BK, TB
 [meta] ooapi,no
End Resource

 88 Software Fault Pattern Metamodel (SFPM) Version 1.0

8.3.4.3 Operation Class
Operation	class	represents	a	logical	operation	on	a	resource.	Usually	an	operation	changes	the	state	of	
the	resource.	Operations	are	often	implemented	by	the	operating	systems	or	by	one	of	the	software	
frameworks.	Operation	can	also	be	defined	as	part	of	the	software.	As	an	SFP	ContextElement	Operation	
can	serve	as	a	variation	point	for	synthesis	of	test	cases	with	appropriate	metadata,	as	well	as	a	
characteristic	of	an	SFP	while	analyzing	relationships	between	multiple	SFP.	From	the	formalization	
perspective,	an	Operation	is	usually	a	KDM	segment.	

Superclass	

	 ContextElement	

Associations	

resource:Resource[0..*]	 Resource	manipulated	by	the	operation,	if	any	

input:	DataElement[0..*]	 Input	to	the	operation,	if	any	

output:	DataElement[0..*]	 Output	of	the	operation,	if	any	

interface:	API[0..*]	 API	of	this	operation	

Example	1.	SFPM	XMI	
<element xmi:type="sfpm:Operation" xmi:id="shared13" name="ReleaseTargetBuffer"
resource="shared2" >
 <definition>
 <meaning xmi:id="sem707" kind="SetProjection"

description="Definition of operation ReleaseTargetBuffer" >
 <variable xmi:id="var255" range="nc4" name="S1"/>
 <variable xmi:id="var256" range="nc4" name="S2"/>

<!—- body omitted -->
 </meaning>
 </definition>
</element>

Example	2.	Readable	SFP	language	
Operation ReleaseTargetBuffer
 involves TargetBuffer

 Var S1: ActionElement [KDM]
 Var S2: ActionElement [KDM]
 Var BK: TargetBufferKind [Platform Meta]
 Var BPT: DataType [KDM]
 Var BPBT: DataType [KDM]
 Var BP: DataElement [KDM]

Disjunction
 Clause "buffer is available"
 # no release
 [meta] release, no
 [ActionElement is nop :KDM] S1

Software Fault Pattern Metamodel (SFPM) Version 1.0 89

 [Thing1 is Thing2 :SBVR] S2, S1

 Clause "buffer is in released state"
 # explicit release;

 [meta] release, yes
 [simple Begin End releases Buffer of DataType:KDM Patterns]

 S1, S2, BP, BPT

End Operation
	

8.3.4.4 DataType Class
DataType	class	represents	a	data	type	in	the	software	under	assessment.	A	DataType	class	is	a	more	
powerful	construct	in	comparison	to	a	KDM	fact,	since	it	allows	disjunction	of	KDM	types,	complex	KDM	
types,	that	involve	multiple	facts,	as	well	as	combinations	of	KDM	statements	and	properties.	As	an	SFP	
ContextElement	DataType	can	serve	as	a	variation	point	for	synthesis	of	test	cases	with	appropriate	
metadata,	as	well	as	a	characteristic	of	an	SFP	while	analyzing	relationships	between	multiple	SFP.	

Superclass	

	 ContextElement	

Example	1.	SFPM	XMI	
<element xmi:type="sfpm:DataType" xmi:id="shared1" name="ElementType">
 <definition>
 <meaning xmi:id="sem131" kind="SetProjection"

description="Definition of DataType ElementType" >
 <variable xmi:id="var143" range="nc1" name="DT"/>
 <operand xmi:id="sem132" identificator="" kind="ExistentialQuantification"
 description="">
 <variable xmi:id="var144" range="nc8" name="T">
 <restriction xmi:id="sem133" verb="vc2" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="KDMEntity" target="var144"/>
 <binding rolename="Name" target="ic11"/>
 </restriction>
 </variable>
 <operand xmi:id="sem134" identificator="" kind="Conjunction"
 description="">
 <operand xmi:id="sem135" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="ic12"/>
 <binding rolename="Thing2" target="ic13"/>
 </operand>
 <operand xmi:id="sem136" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="var143"/>
 <binding rolename="Thing2" target="var144"/>
 </operand>
 </operand>
 </operand>
 </meaning>
 </definition>

 90 Software Fault Pattern Metamodel (SFPM) Version 1.0

</element>
	
Example	2.	Readable	SFP	language	
DataType ElementType

 Var DT : DataType [KDM]
 Clause
 Var T : CharType [KDM] such that
 [KDMEntity has Name :KDM] T, {"char": Strings}
 where
 [meta] complexity.datatype,char
 [Thing1 is Thing2 :SBVR] DT, T

End DataType

8.3.4.5 DataElement Class
DataElement	class	represents	a	data	element	in	the	software	under	assessment.	A	DataElement	class	is	
a	more	powerful	construct	in	comparison	to	a	KDM	fact,	since	it	allows	disjunction	of	KDM	facts,	
complex	KDM	facts,	as	well	as	combinations	of	KDM	statements	and	properties.	As	an	SFP	
ContextElement	DataElement	can	serve	as	a	variation	point	for	synthesis	of	test	cases	with	appropriate	
metadata,	as	well	as	a	characteristic	of	an	SFP	while	analyzing	relationships	between	multiple	SFP.	

Superclass	

	 ContextElement	

Associations	

type:DataType[0..*]	 Type	of	the	data	element,	if	available	

Example	1.	SFPM	XMI	
<element xmi:type="sfpm:DataElement" xmi:id="shared7" name="BufferLength">
 <definition>
 <meaning xmi:id="sem137" kind="SetProjection"

description="Definition of DataElement BufferLength" >
 <variable xmi:id="var145" range="nc2" name="BufferLength"/>
 <variable xmi:id="var146" range="nc7" name="BufferSize"/>
 <operand xmi:id="sem138" identificator="" kind="Conjunction"
 description="">
 <operand xmi:id="sem139" verb="vc22" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="DataElement" target="var145"/>
 <binding rolename="Datatype" target="ic14"/>
 <binding rolename="Name" target="ic15"/>
 </operand>
 <operand xmi:id="sem140" verb="vc4" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="var146"/>
 <binding rolename="Thing2" target="ic15"/>
 </operand>
 </operand>
 </meaning>
 </definition>

Software Fault Pattern Metamodel (SFPM) Version 1.0 91

 </element>

Example	2.	Readable	SFP	language	
DataElement BufferLength

 Var BufferLength: DataElement [KDM]
 Var BufferSize : IntegerValue [SBVR]

 [DataElement is a constant of Datatype with Name :KDM Patterns]

 BufferLength, defaultInt, {"10":SBVR}
 [Thing1 is Thing2 :SBVR] BufferSize, {"10":SBVR}

End DataElement

8.3.4.6 API Class
API	class	represents	an	external	function	provided	by	the	operating	system	or	a	software	library.	An	
API	class	is	a	more	powerful	construct	in	comparison	to	a	KDM	fact,	since	it	allows	disjunction	of	KDM	
facts,	complex	KDM	facts,	as	well	as	combinations	of	KDM	statements	and	properties.	API	provides	
more	visibility	to	certain	external	functions	as	part	of	the	SFP	Content.	As	an	SFP	ContextElement	API	
can	serve	as	a	variation	point	for	synthesis	of	test	cases	with	appropriate	metadata,	as	well	as	a	
characteristic	of	an	SFP	while	analyzing	relationships	between	multiple	SFP.	

Superclass	

	 ContextElement	

	

8.3.4.7 Decision Class
Decision	class	represents	one	or	more	statements	in	the	software	under	assessment	that	implement	a	
decision.	While	such	content	can	be	represented	as	KDM,	the	use	of	a	special	ContextElement	is	
warranted	for	important	decisions	in	the	code.	A	Decision	class	is	a	more	powerful	construct	in	
comparison	to	a	KDM	fact,	since	it	allows	complex	KDM	facts,	as	well	as	combinations	of	KDM	
statements	and	properties.	As	an	SFP	ContextElement	Decision	can	serve	as	a	variation	point	for	
synthesis	of	test	cases	with	appropriate	metadata,	as	well	as	a	characteristic	of	an	SFP	while	analyzing	
relationships	between	multiple	SFP.	

Superclass	

	 ContextElement	

Associations	

input:DataElement[1..*]	 Input	into	the	decision,	if	any	

	

 92 Software Fault Pattern Metamodel (SFPM) Version 1.0

8.4 Semantic Formalization Apparatus
This	section	describes	the	set	of	elements	that	provide	formal	definitions	to	the	SFP	Formalization	
elements.	The	formalization	apparatus	defined	in	this	section	is	aligned	with	existing	ISO	and	OMG	
standards.	

The	formalization	approach	of	the	SFP	Catalog	used	the	ISO/OMG	Knowledge	Discovery	Metamodel	
(KDM)	as	the	foundation	of	the	discourse	related	to	software	faults.	Statements	in	KDM	vocabulary	
represent	basic	semantic	fragments.	A	basic	KDM	fragment	is	interpreted	as	a	set	of	facts.	More	complex	
logical	statements	are	made	on	top	of	the	KDM	fragments	using	the	semantic	formulations	language	
defined	in	the	ISO/OMG	Semantics	of	Business	Vocabularies	and	Rules	(SBVR).	Basic	KDM	fragments	
are	the	atomic	propositions.	There	are	two	kinds	of	semantic	formulations.	The	first	kind,	logical	
formulation,	structures	propositions,	both	simple	and	complex.	Specializations	of	that	kind	are	given	for	
various	logical	operations,	quantifications,	atomic	formulations	based	on	verb	concepts	and	other	
formulations	for	special	purposes	such	as	objectifications	and	nominalizations.	

The	second	kind	of	semantic	formulation	is	projection.	It	structures	intensions	as	sets	of	things	that	
satisfy	constraints.	Projections	formulate	definitions,	aggregations,	and	questions.		

Semantic	Formulations	allow	building	complex	logical	propositions	in	the	well-understood	formalism	of	
propositional	logic.		

For	the	purposes	of	the	SFP	Catalog,	SBVR	provides	a	means	for	describing	the	structure	of	the	meaning	
of	software	faults	expressed	in	the	natural	language.	Semantic	formulations	are	not	expressions	or	
statements.	They	are	structures	that	make	up	meaning.	Using	SBVR,	the	meaning	of	a	definition	or	
statement	is	communicated	as	facts	about	the	semantic	formulation	of	the	meaning,	not	as	a	
restatement	of	the	meaning	in	a	formal	language.	
	

8.4.1 Semantic Elements Class Diagram
This	section	describes	the	semantic	elements	of	the	SFP	Catalog.	

Figure 14. UML class diagram Semantic Elements

Software Fault Pattern Metamodel (SFPM) Version 1.0 93

8.4.1.1 SemanticElement Class (abstract)
SemanticElement	is	the	parent	class	for	all	elements	of	SFP	Catalog	that	have	a	formal	definition.	

Superclass	

Associations	

definition:SemanticFragment[0..1]	 Formal	definition	of	a	semantic	element	

8.4.1.2 SemanticFragment Class
SemanticFragment	class	represents	the	formal	meaning	of	the	element	together	with	the	designated	
structure	text	that	describes	the	element.	The	top	SemanticFormulation	is	typically	a	SetProjection	that	
introduces	zero	or	more	variables	which	are	considered	the	signature	of	the	semantic	element;	any	
references	to	the	semantic	element	shall	match	the	signature.	For	a	SFP	Condition	the	top	element	is	
usually	a	quantification.	
	

Superclass	

Associations	

designation:Verbalization[0..1]	 Designated	structured	text	describing	the	
element	

meaning:	SemanticFormulation[0..1]	 The	formally	defined	meaning	of	the	element	

8.4.1.3 Verbalization Class
Verbalization	class	represents	designated	text	that	represent	a	semantic	element	in	addition	to	its	
formal	definition.	For	example,	the	verbalization	can	be	provided	as	a	structured	English	text	according	
to	the	rules	of	SBVR.	

Superclass	

Attributes	

text:String[1]	 Designation	of	the	element,	for	example	Structured	
English	text	

sample:	String[1]	 Sample	of	the	element,	for	example	a	fragment	in	
selected	programming	language	

 94 Software Fault Pattern Metamodel (SFPM) Version 1.0

8.4.2 Statements Class Diagram
This	section	describes	the	semantic	formulations	of	the	SFP	Catalog.	Semantic	formulations	provide	
conceptual	structure	of	meaning	[SBVR].	In	SFPM	semantic	formulations	are	represented	by	a	single	
class	SemanticFormulation	with	a	property	kind	of	type	SemanticFormulationKind	that	determines	the	
associations	and	the	meaning	of	the	SemanticFormulation.	The	constraints	of	individual	‘semantic	
formulation’	kinds	explain	what	meaning	is	formulated.	A	meaning	is	directly	formulated	only	for	a	
closed	semantic	formulation.	In	the	case	of	variables	being	free	within	a	semantic	formulation,	a	
meaning	is	formulated	with	respect	there	being	exactly	one	referent	thing	given	for	each	free	variable.	

Figure 15. UML class diagram Statements

8.4.2.1 SemanticFormulation Class
SemanticFormulation	class	represents	structure	of	meaning.	Property	kind	of	type	
SemanticFormulationKind	determines	the	associations	and	the	meaning	of	the	SemanticFormulation	
element.	The	constraints	of	individual	‘semantic	formulation’	kinds	explain	what	meaning	is	formulated.	

Superclass	

Attributes	

identificator:String[1]	 Unique	identifier	of	the	element	

kind:	SemanticFormulationKind[1]	 Literal	that	defines	the	kind	of	the	Semantic	
Formulation	element	and	constrains	its	
associations	

	

Software Fault Pattern Metamodel (SFPM) Version 1.0 95

Associations	

verb:VerbForm[0..1]	 Verb	used	in	some	semantic	formulation	as	
determined	by	the	SemanticFormulationKind	

operand:SemanticFormulation[0..*]	 Owned	operand	used	in	some	semantic	
formulation	as	determined	by	the	
SemanticFormulationKind	

noun:nounConcept[0..1]	 Noun	used	in	some	semantic	formulation	as	
determined	by	the	SemanticFormulationKind	

variable:Variable[0..*]	 Owned	variable	introduced	by	some	semantic	
formulation	as	determined	by	the	
SemanticFormulationKind	

description:String[0..1]	 Description	of	the	element	

binding:RoleBinding[0..*]	 Owned	role	bindings	used	in	some	semantic	
formulation	as	determined	by	the	
SemanticFormulationKind	

Constraints	

1. Each	SemanticFormulation	element	shall	have	a	set	of	associations	determined	by	its	kind	as	
follows	

a. If	Kind=AtomicFormulation	then	the	SemanticFormulation	element	shall	have	exactly	
one	verb	and	zero	or	more	binding	elements	where	each	RoleBinding	corresponds	to	a	
free	variable	of	the	VerbForm.	The	rolename	property	of	the	RoleBinding	corresponds	to	
the	name	of	the	role	in	the	VerbForm.		

i. The	AtomicFormulation	formulates	the	meaning:	there	is	an	actuality	that	
involves	in	each	role	of	the	verb	concept	the	thing	to	which	the	bindable	target	of	
the	corresponding	role	binding	refers	[SBVR].	

b. If	Kind=SetProjection	then	the	SemanticFormulation	element	shall	have	at	most	one	
operand	(the	constraint	of	the	projection)	and	one	or	more	variable	elements.	The	
SemanticFormulation	is	a	Projection.	The	constraint	of	the	projection	shall	not	be	a	
Projection.	

i. Projection	introduces	one	or	more	variables	corresponding	to	involvements	in	
actualities.	If	the	projection	is	constrained	by	a	logical	formulation,	then	for	each	
combination	of	variables,	one	referent	for	each	variable,	the	actuality	is	that	the	
meaning	of	the	constraining	formulation	is	true.	If	the	projection	has	no	
constraining	formulation,	then	for	each	combination	of	variables,	one	referent	
for	each	variable,	the	actuality	is	that	the	referents	exist	[SBVR].		

ii. A	Projection	can	be	opened	or	closed.	An	opened	projection	refers	to	variables	
that	are	introduced	outside	of	the	projection.	A	closed	projection	refers	only	to	
the	variables	introduced	by	the	projection.	

 96 Software Fault Pattern Metamodel (SFPM) Version 1.0

iii. Projection	is	used	in	ProjectingFormulation	and	as	the	element	of	meaning	in	
SemanticFragment	elements.	

c. If	Kind=InstantiationFormulation	then	the	SemanticFormulation	element	shall	have	
exactly	one	noun	element	and	exactly	one	binding	element	where	the	rolename	property	
of	the	RoleBinding	is	shall	be	ignored.	

i. InstantiationFormulation	formulates	the	meaning:	the	thing	to	which	the	
bindable	target	refers	is	an	instance	of	the	concept	[SBVR]	

d. If	Kind=LogicalNegation	then	the	SemanticFormulation	element	shall	have	exactly	one	
operand	element.		

i. LogicalNegation	formulates	that	the	meaning:	the	logical	operand	is	false	[SBVR]	

e. If	Kind=Conjunction	or	Kind=Disjunction	then	the	SemanticFormulation	element	shall	
have	two	or	more	operand	elements.		

i. Conjunction	formulates	that	the	meaning:	each	of	its	logical	operands	is	true	
[SBVR]	

ii. Disjunction	formulates	that	the	meaning:	at	least	one	of	its	logical	operands	is	
true	[SBVR]	

f. If	Kind=UniversalQuantification	then	the	SemanticFormulation	element	shall	exactly	
one	operand	element	(the	scope	formulation)	and	exactly	one	variable	element.		

i. UniversalQuantification	formulated	the	meaning:	for	each	referent	of	the	
variable	introduced	by	the	quantification	the	meaning	formulated	by	the	logical	
formulation	for	the	referent	is	true	[SBVR]	

g. If	Kind=AtLeastNQuantification	or	Kind=ExistentialQuantification	or	
Kind=AtmostNQuantification	or	Kind=AtmostNQuantification	or	
Kind=ExactlyNQuantification	or	Kind=ExactlyOneQuantification	then	the	
SemanticFormulation	element	shall	have	exactly	one	operand	element	and	exactly	one	
variable	element	and	exactly	one	binding	element	where	the	rolename	shall	be	ignored	
and	the	target	is	an	individual	concept	representing	a	non-negative	number.	The	
SemanticFormulation	is	a	Quantification.	

i. Quantification	formulates	the	meaning:	a	bounded	number	of	referents	of	the	
variable	exist	and	satisfy	a	scope	formulation	[SBVR]	

h. If	Kind=NumericRangeQuantification	then	the	SemanticFormulation	element	shall	have	
exactly	one	operand	element	and	exactly	one	variable	element	and	exactly	two	binding	
elements	where	the	rolename	of	the	first	RoleBinding	is	a	string	“min”	and	the	rolename	
of	the	second	RoleBinding	is	a	string	“max”	and	the	target	of	either	RoleBinding	an	
individual	concept	representing	a	non-negative	number.	

i. NumericRangeQuantification	formulates	the	meaning:	the	number	of	referents	
of	the	variable	introduced	by	the	quantification	that	exist	and	that	satisfy	a	scope	
formulation,	is	not	less	then	the	minimum	cardinality	and	is	not	greater	then	the	
maximum	cardinality	[SBVR]	

i. If	Kind=Objectification	then	the	SemanticFormulation	element	shall	have	exactly	one	
operand	element	(the	considered	logical	formulation)	and	exactly	one	binding	element	

Software Fault Pattern Metamodel (SFPM) Version 1.0 97

where	the	rolename	property	of	the	RoleBinding	is	an	empty	string.	The	considered	
formulation	shall	not	be	a	Projection.	

i. Objectification	formulates	the	meaning:	the	thing	to	which	the	bindable	target	
refers	is	a	state	of	affairs	to	which	the	meaning	of	the	considered	logical	
formulation	corresponds	[SBVR]	

j. If	Kind=AggregationFormulation	or	Kind=VerbConceptNominalization	then	the	
SemanticFormulation	element	shall	have	exactly	one	operand	element	(the	considered	
projection)	and	exactly	one	binding	element	where	the	rolename	property	of	the	
RoleBinding	shall	be	ignored.	The	operand	element	shall	be	a	Projection.	

i. AggregationFormulation	formulates	the	meaning:	the	thing	to	which	the	
bindable	target	bound	to	the	projecting	formulation	refers	is	the	result	of	the	
projection	of	the	projecting	formulation	[SBVR].	The	aggregation	formulation	is	
used	primarily	to	associate	a	variable	with	a	set	of	things,	involvements,	or	
actualities	that	satisfy	some	condition.			

ii. VerbConceptNominalization	formulates	the	meaning:	the	thing	to	which	the	
bindable	target	bound	to	the	projecting	formulation	refers	is	a	verb	concept	that	
is	defined	by	the	projection	of	the	projecting	formulation	[SBVR].	A	verb	concept	
nominalization	formulates	the	(anonymous)	verb	concept	defined	by	a	
projection.	In	most	uses	of	verb	concept	nominalizations,	the	bindable	target	is	a	
unitary	variable,	and	the	effect	is	to	define	the	variable	to	refer	to	the	
anonymous	verb	concept	defined	by	the	projection.	It	is	the	only	referent	for	
which	the	verb	concept	nominalization	will	hold.		

	

k. If	Kind=PropositionNominalization	then	the	SemanticFormulation	element	shall	have	
exactly	one	operand	element	(the	considered	logical	formulation)	and	exactly	one	
binding	element	where	the	rolename	property	of	the	RoleBinding	is	an	empty	string.	The	
considered	logical	formulation	shall	not	be	a	Projection.	

i. PropositionNominalization	formulates	the	meaning:	the	thing	to	which	the	
bindable	target	refers	is	the	proposition	that	is	formulated	by	the	considered	
logical	formulation	[SBVR]	

	

	

Example	1.	SFPM	XMI	
<indicator xmi:type="sfpm:Indicator" xmi:id="cla4" name="ordinary pointer
dereference read">
 <definition>
 <meaning xmi:id="sem1388" kind="SetProjection"

description="Definition of indicator ordinary pointer
dereference read" >

 <variable xmi:id="var514" range="nc4" name="S1"/>
 <variable xmi:id="var515" range="nc4" name="S2"/>
 <variable xmi:id="var516" range="nc2" name="BP"/>
 <variable xmi:id="var517" range="nc2" name="BPTI"/>
 <variable xmi:id="var518" range="nc2" name="Data"/>
 <operand xmi:id="sem1389" identificator="ordinary pointer dereference
 read" kind="Conjunction" description="">

 98 Software Fault Pattern Metamodel (SFPM) Version 1.0

 <operand xmi:id="sem1395" verb="vc109" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var514"/>
 </operand>
 <operand xmi:id="sem1396" verb="vc9" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var514"/>
 <binding rolename="DataElement" target="var516"/>
 </operand>
 <operand xmi:id="sem1397" verb="vc6" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var514"/>
 <binding rolename="DataElement" target="var517"/>
 </operand>
 <operand xmi:id="sem1398" verb="vc7" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var514"/>
 <binding rolename="DataElement" target="var518"/>
 </operand>
 <operand xmi:id="sem1399" verb="vc4" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="Thing1" target="var515"/>
 <binding rolename="Thing2" target="var514"/>
 </operand>
 </operand>
 </meaning>
 </definition>
</indicator>

Example	2.	Readable	SFP	language	
Indicator "ordinary pointer dereference read"

 Var S1 : ActionElement [KDM] ;;; segment Begin
 Var S2 : ActionElement [KDM] ;;; segment End
 Var BP: DataElement [KDM]
 Var BPTI: DataElement [KDM]
 Var Data: DataElement [KDM]

 Clause "ordinary pointer dereference read"
 # data=*p;
 [ActionElement is ptrselect :KDM] S1
 [ActionElement addresses DataElement :KDM] S1,BP
 [ActionElement reads DataElement :KDM] S1, BPTI
 [ActionElement writes DataElement :KDM] S1,Data
 [Thing1 is Thing2 :SBVR] S2, S1

End Indicator

8.4.2.2 SemanticFormulationKind Enumeration
Enumeration	that	determines	the	structure	and	meaning	of	a	SemanticFormulation	element.	

Literals	

Software Fault Pattern Metamodel (SFPM) Version 1.0 99

AtomicFormulation	 	

SetProjection	 	

InstantiationFormulation	 	

LogicalNegation	 	

Conjunction	 	

Disjunction	 	

UniversalQuantification	 	

AtleastNQuantification	 	

ExistentialQuantification	 	

NumericRangeQuantification	 	

AtmostNQuantification	 	

ExactlyOneQuantification	 	

Objectification	 	

AggregationFormulation	 	

PropositionNominalization	 	

8.4.2.3 ClauseReference Class (abstract)
ClauseReference	class	represents	the	proposition	based	on	a	formally	defined	“clause”	instead	of	a	
“VerbConcept”	from	one	of	the	referenced	vocabularies.	A	“clause”	is	a	proposition	that	is	part	of	one	of	
the	formally	defined	elements	of	the	SFP	Catalog,	such	as	an	Indicator,	or	one	of	the	DataflowElement,	
or	a	ContextElement.	Referenced	clauses	can	be	used	in	SemanticFormulation	in	the	same	way	as	
VerbConcept.	Note,	that	a	VerbConcept	can	be	also	formally	described.	The	ability	to	directly	reference	
a	clause	allows	preserving	its	primary	role	in	the	SFP	Catalog.	

Superclass	

	 VerbForm	

8.4.2.4 VerbForm Class (abstract)
VerbForm	is	either	a	VerbConcept	or	a	ClauseReference.	A	VerbForm	is	the	basis	of	propositions	as	
defined	in	section	8.4.2.1.	

 100 Software Fault Pattern Metamodel (SFPM) Version 1.0

8.4.2.5 Variable Class
Variable	class	represents	logical	variables	introduced	by	certain	semantic	formulations.	A	variable	is	
reference	to	an	element	of	a	set,	whose	referent	may	vary	or	is	unknown	[SBVR].	The	set	of	referents	of	
a	variable	is	defined	by	the	two	verb	concepts	‘variable	ranges	over	concept’	and	‘logical	formulation	
restricts	variable’.	The	set	is	limited	to	instances	of	the	concept.	If	the	variable	is	restricted	by	a	logical	
formulation,	the	set	is	further	limited	to	those	things	for	which	the	meaning	formulated	by	that	logical	
formulation	is	true	when	the	thing	is	substituted	for	each	occurrence	of	the	variable	in	the	formulation.		

Superclass	

	 BindableTarget	

Associations	

name:String[1]	 Name	of	the	variable	

description:	String[1]	 Description	of	the	variable	

	

Associations	

range:NounConcept[1]	 Range	of	the	variable	

restriction:SemanticFormulation[0..1]	 Restriction	on	the	set	of	instances	

Example	1.	SFPM	XMI	
<indicator xmi:type="sfpm:Indicator" xmi:id="cla6" name="struct member read">
 <definition>
 <meaning xmi:id="sem1411" kind="SetProjection" description="Definition of
indicator struct member read" >
 <variable xmi:id="var525" range="nc4" name="S1"/>
 <variable xmi:id="var526" range="nc4" name="S2"/>
 <variable xmi:id="var527" range="nc2" name="BP"/>
 <variable xmi:id="var528" range="nc1" name="BPBT"/>
 <variable xmi:id="var529" range="nc2" name="BPTI"/>
 <variable xmi:id="var530" range="nc2" name="TBTI"/>
 <variable xmi:id="var531" range="nc2" name="Data"/>
 <operand xmi:id="sem1412" identificator="struct member read"
 kind="ExistentialQuantification" description="">
 <variable xmi:id="var532" range="nc2" name="Tmp">
 <restriction xmi:id="sem1413" verb="vc19" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="DataElement" target="var532"/>
 <binding rolename="DataType" target="var528"/>
 </restriction>
 </variable>
 <operand xmi:id="sem1414" identificator="" kind="Conjunction"

 description="">
 <operand xmi:id="sem1421" verb="vc109" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var525"/>
 </operand>

Software Fault Pattern Metamodel (SFPM) Version 1.0 101

 <operand xmi:id="sem1422" verb="vc9" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var525"/>
 <binding rolename="DataElement" target="var527"/>
 </operand>
 <operand xmi:id="sem1423" verb="vc6" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var525"/>
 <binding rolename="DataElement" target="var529"/>
 </operand>
 <operand xmi:id="sem1424" verb="vc7" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var525"/>
 <binding rolename="DataElement" target="var532"/>
 </operand>
 <operand xmi:id="sem1425" verb="vc18" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement1" target="var525"/>
 <binding rolename="ActionElement2" target="var526"/>
 </operand>
 <operand xmi:id="sem1426" verb="vc111" identificator=""

 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var526"/>
 </operand>
 <operand xmi:id="sem1427" verb="vc9" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var526"/>
 <binding rolename="DataElement" target="var532"/>
 </operand>
 <operand xmi:id="sem1428" verb="vc6" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var526"/>
 <binding rolename="DataElement" target="var530"/>
 </operand>
 <operand xmi:id="sem1429" verb="vc7" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ActionElement" target="var526"/>
 <binding rolename="DataElement" target="var531"/>
 </operand>
 </operand>
 </operand>
 </meaning>
 </definition>
</indicator>

Example	2.	Readable	SFP	language	
Indicator "struct member read"
 Var S1 : ActionElement [KDM] ;;; segment Begin
 Var S2 : ActionElement [KDM] ;;; segment End
 Var BP: DataElement [KDM]
 Var BPBT: DataType [KDM]
 Var BPTI: DataElement [KDM]
 Var TBTI: DataElement [KDM]
 Var Data: DataElement [KDM]

 Clause "struct member read"

 102 Software Fault Pattern Metamodel (SFPM) Version 1.0

 # assuming struct sx { char a; } *bpt; bpt p; data=p->a;
 Var Tmp : DataElement [KDM] such that
 [DataElement is a temporary variable of DataType :KDM] Tmp, BPBT
 where
 [ActionElement is ptrselect :KDM] S1
 [ActionElement addresses DataElement :KDM] S1,BP
 [ActionElement reads DataElement :KDM] S1, BPTI
 [ActionElement writes DataElement :KDM] S1,Tmp
 [ActionElement1 flows into ActionElement2 :KDM] S1,S2
 [ActionElement is fieldselect :KDM] S2
 [ActionElement addresses DataElement :KDM] S2,Tmp
 [ActionElement reads DataElement:KDM] S2, TBTI
 [ActionElement writes DataElement :KDM] S2,Data
End Indicator

8.4.3 Variable Bindings Class Diagram
This	section	describes	the	variable	bindings	used	by	semantic	formulations	of	the	SFP	Catalog.	

Figure 16. UML class diagram Variable Bindings

Software Fault Pattern Metamodel (SFPM) Version 1.0 103

8.4.3.1 RoleBinding Class
RoleBinding	class	represents	a	connection	of	an	atomic	formulation	to	a	bindable	target.	The	rolename	
property	of	the	RoleBinding	refers	to	one	of	the	roles	in	the	atomic	formulation.	

RoleBinding	also	represents	a	connection	of	certain	other	SemanticFormulation	to	its	elements.	In	this	
case,	the	rolename	property	identifies	the	element,	if	there	is	more	than	one.	For	example,	
NumericRangeQuantification	has	two	elements	that	represent	the	minimum	and	maximum	cardinality.	
The	rolename	“min”	refer	to	the	minimum	cardinality,	and	the	rolename	“max”	refers	to	the	maximum	
cardinality.	Other	SemanticFormulation	may	have	a	single	element,	in	which	case	the	rolename	is	
ignored.	

Superclass	

Attributes	

rolename:String[1]	 Unique	reference	to	the	role	of	the	SemanticFormulation	

description:	String[0..1]	 Description	of	the	binding	

	

Associations	

target:BindableTarget[1]	 BindableTarget	

Example	1.	SFPM	XMI	
 <operand xmi:id="sem1422" verb="vc9" identificator="" kind="AtomicFormulation"
 description="">
 <binding rolename="ActionElement" target="var525"/>
 <binding rolename="DataElement" target="var527"/>
 </operand>

 <verb xmi:id="vc9" name="ActionElement addresses DataElement"/>

 <variable xmi:id="var525" range="nc4" name="S1"/>
 <variable xmi:id="var527" range="nc2" name="BP"/>

Example	2.	Readable	SFP	language	
 [ActionElement addresses DataElement :KDM] S1,BP

Example	3.	SFPM	XMI	
<variable xmi:id="var450" range="nc2" name="C2">
 <restriction xmi:id="sem1125" verb="vc22" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="DataElement" target="var450"/>
 <binding rolename="Datatype" target="ic14"/>
 <binding rolename="Name" target="ic135"/>
 </restriction>
</variable>

 <verb xmi:id="vc22" name="DataElement is a constant of Datatype with Name"/>

 104 Software Fault Pattern Metamodel (SFPM) Version 1.0

 <individual xmi:id="ic14" name="defaultInt"/>
 <individual xmi:id="ic135" name="NULL"/>

Example	4.	Readable	SFP	language	
Var C2: DataElement [KDM] such that
 [DataElement is a constant of Datatype with Name :KDM Patterns]

C2, defaultInt, {"NULL" :Strings}

Example	5.	SFPM	XMI	
 <operand xmi:id="sem1705" verb="vc4" identificator="" kind="AtomicFormulation"

 description="">
 <binding rolename="Thing1" target="ic143"/>
 <binding rolename="Thing2" target="ic168"/>
 </operand>

 <verb xmi:id="vc4" name="Thing1 is Thing2"/>

 <individual xmi:id="ic143" name="core.indicator"/>
 <individual xmi:id="ic168" name="callback_call"/>

Example	6.	Readable	SFP	language	
 [meta] core.indicator,callback_call

	

8.4.3.2 BindableTarget Class (abstract)
BindableTarget	is	either	an	IndividualConcept	or	a	Variable.	

Superclass	

Example	

	 See	8.4.3.1	

8.5 Referenced Vocabularies
This	section	describes	the	representation	of	the	referenced	vocabularies	of	the	SFP	Catalog.	The	
formalization	apparatus	of	the	SFP	Catalog	(defined	in	section	8.4)	does	not	define	the	meaning	of	
constructs	involved	in	the	definitions	of	the	data	flows	and	their	invariants.	Instead,	this	apparatus	
defines	the	structure	of	the	meaning.	The	elements	of	meaning,	identified	as	“atomic	formulations”	in	
section	8.4,	are	supplied	by	one	or	more	referenced	vocabularies.	The	SFP	Catalog	assumes	the	use	of	
the	ISO/OMG	Knowledge	Discovery	Metamodel	(KDM)	vocabulary	as	the	foundation	for	the	
formalizations,	and	some	generic	parts	of	the	vocabulary	described	in	the	Semantics	of	Business	
Vocabularies	and	Rules	(SBVR)	specification.	Other	vocabularies	are	introduced	by	a	given	SFP	Catalog	
to	represent:	

- Entire	fragments	of	KDM	constructs	based	entirely	on	the	KDM	vocabulary	

- Vocabulary	of	tags	for	SFP	Properties	

- Interfaces	to	the	supporting	capabilities	of	the	SFP	Catalog		

Software Fault Pattern Metamodel (SFPM) Version 1.0 105

The	elements	of	the	referenced	vocabularies	can	be	“basic”	or	“structured”.	Both	types	of	elements	are	
meant	to	be	used	as	part	of	structured	semantic	statements	by	the	content	of	the	SFP	Catalog.	Basic	
elements	are	informally	described	in	the	vocabulary.	In	contrast,	the	“Structured”	elements	are	formally	
defined	using	the	formalization	apparatus	of	section	8.4.		

8.5.1 Vocabularies Class Diagram
This	section	describes	the	organization	of	referenced	vocabularies	of	the	SFP	Catalog.	

Figure 17. UML class diagram Vocabularies

8.5.1.1 NounConcept Class
NounConcept	class	represents	a	noun	concept	-	concept	that	is	the	meaning	of	a	noun	or	noun	phrase.		A	
noun	concept	describes	a	“class”	of	some	objects.	Concept	is	a	unit	of	knowledge	created	by	a	unique	
combination	of	characteristics.	Characteristic	is	abstraction	of	a	property	of	an	object	[thing]	or	of	a	set	
of	objects	[ISO	1087-1,	SBVR].	Noun	concepts	are	used	as	restrictions	on	the	ranges	of	values	for	
variables	and	roles	of	verb	concepts.	Noun	concepts	can	be	also	considered	in	some	logical	formulations	
(see	section	8.4.2.1).	

 106 Software Fault Pattern Metamodel (SFPM) Version 1.0

Superclass	

	 VocabularyElement	

Attributes	

name:String[1]	 Name	of	the	noun	concept	

description:	String[1]	 Informal	description	of	the	noun	concept	

Example	1.	SFPM	XMI	
<vocabulary name="KDM">
 <noun xmi:id="nc2" name="DataElement"/>
 <noun xmi:id="nc22" name="MethodUnit"/>
 <noun xmi:id="nc11" name="ValueList"/>
 <noun xmi:id="nc24" name="Name"/>
 <noun xmi:id="nc23" name="IndexUnit"/>
 <noun xmi:id="nc28" name="BooleanType"/>
 <noun xmi:id="nc21" name="Signature"/>
 <noun xmi:id="nc8" name="CharType"/>
…
</vocabulary>

8.5.1.2 VerbConcept Class
VerbConcept	class	represents	a	verb	concept	-	concept	that	specializes	the	concept	‘state	of	affairs’	and	
that	is	the	meaning	of	a	verb	phrase	that	involves	one	or	more	verb	concept	roles.	Each	instance	of	a	
verb	concept	is	a	state	of	affairs.	For	each	instance,	each	role	of	the	verb	concept	is	one	point	of	
involvement	of	something	in	that	state	of	affairs.	A	verb	concept	role	is	played	by	a	thing	in	the	domain	
of	discourse	-	the	world	of	interest.	A	verb	concept	is	'bound'	by	specifying	the	thing(s)	that	play	the	
verb	concept	role.	Linguistically	those	things	can	be	specified	by	a	quantified	noun	phrase	or	by	an	
individual	noun	concept	or	by	a	pronoun	that	refers	to	a	specific	thing	[SBVR].	

An	integral	part	of	a	verb	concept	is	one	or	more	verb	concept	roles.	A	verb	concept	role	is	a	role	that	
specifically	characterizes	its	instances	by	their	involvement	in	an	actuality	that	is	an	instance	of	a	given	
verb	concept.	A	verb	concept	role	is	fundamentally	understood	as	a	point	of	involvement	in	actualities	
that	correspond	to	a	verb	concept.	Its	incorporated	characteristics	come	from	the	verb	concept	-	what	
the	verb	concept	requires	of	instances	of	the	role	[SBVR].	

The	SFPM	takes	a	simplified	approach	to	representing	the	roles	of	a	verb	concept	as	the	words	of	the	
name	of	the	concept	starting	with	an	uppercase	letter.	The	corresponding	RoleBinding	element	refers	to	
the	name	of	the	role	(see	section	8.4.3.1).	This	convention	makes	the	description	of	the	SFP	content	less	
verbose	(in	comparison	to	a	more	complete	representation	based	on	SBVR).	

Superclass	

	 VerbForm,	VocabularyElement	

Attributes	

Software Fault Pattern Metamodel (SFPM) Version 1.0 107

name:String[1]	 Name	of	the	verb	concept	

description:	String[1]	 Informal	description	of	the	verb	concept	

Meaning	

Consider KDM verb “ActionElement is ptrselect”. The VerbFormWithRoles includes a single role
“ActionElement”. The extent of this verb is zero or more systems that have code such that when the
code its represented as the set of KDM facts (referred to as a KDM representation), such set contains
at least one fact as follows (showing KDM XMI fragment for PtrSelect):
<codeElement xmi:id="id.92" xmi:type="action:ActionElement" name="b2.9"

 kind="PtrSelect">
<actionRelation xmi:id="id.93" xmi:type="action:Addresses"

to="id.49" from="id.92"/>
<actionRelation xmi:id="id.94" xmi:type="action:Reads"

to="id.104" from="id.92"/>
<actionRelation xmi:id="id.95" xmi:type="action:Writes"

to="id.98" from="id.92"/>
</codeElement>

In this fragment, the role ActionElement matches the xmi:id “id.92”, which is the xmi:id of the
ActionElement. According to KDM constraints, the same xmi:id is the “from” property of the 3
“actionRelation” elements owned by the ActionElement. Other xmi:id in this example can be any.
Also, the ActionElement may contain other associated KDM facts, such as the location, etc.

The meaning of the verb is formalized as follows:
“Any KDM representation K such that exists ID, and
also exist AR1, AR2, AR3, and
also exist N, R, W, A, such that
K contains at least one fragment
<codeElement xmi:id=ID xmi:type="action:ActionElement"

name=N kind="PtrSelect">
<actionRelation xmi:id=AR1 xmi:type="action:Addresses" to=A from=ID/>
<actionRelation xmi:id=AR2 xmi:type="action:Reads" to=R from=ID/>
<actionRelation xmi:id=AR3 xmi:type="action:Writes" to=W from=ID/>

</codeElement>
“

This fragment includes 4 KDM “existential facts” and 3 “owns facts”. The references N, R, W and A
provide the “context” of the fragment, into which it is “embedded”. The “location” of the finding is
determined by the parameter ID. For example, this can be the line in the KDM XMI file, or the
associated KDM source location fact. The meaning of the verb is formalized as a Projection.
Usually, KDM fragments take the form of a “segment” of connected ActionElement. A KDM
segment is determined by the two ID of its first and last ActionElement.
Connections between ActionElement in KDM is represented by an actionRelation “Flow”. For
example (showing KDM XMI):
<actionRelation xmi:id="id.91" xmi:type="action:Flow" to="id.92" from="id.86"/>

These facts may have special meaning when interleaving of the segments needs to be considered.
Usually, the connections between segments is represented by the SFP Dataflow elements. Each
Dataflow element is assumed to be a non-interleaving segment, ie the Flow shall match to exactly
one KDM fact.

Example	1.	SFPM	XMI	

 108 Software Fault Pattern Metamodel (SFPM) Version 1.0

<vocabulary name="KDM">
 <verb xmi:id="vc90" name="KDMEntity has Kind"/>
 <verb xmi:id="vc80" name="Class extends Class"/>
 <verb xmi:id="vc109" name="ActionElement is ptrselect"/>
 <verb xmi:id="vc87" name="Array has Size"/>
 <verb xmi:id="vc40" name="MemberUnit is static"/>
 <verb xmi:id="vc98" name="ActionElement reads DataElement1 and DataElement2"/>
 <!—body omitted -->
</vocabulary>

Example	2.	SFPM	XMI	
<verb xmi:id="vc66" name="segment Begin End copies Data to Buffer of DataType">
 <definition>
 <meaning xmi:id="sem915" kind="SetProjection" description="Definition of verb

 segment Begin End copies Data to Buffer of DataType" >
 <variable xmi:id="var329" range="nc4" name="S1"/>
 <variable xmi:id="var330" range="nc4" name="S2"/>
 <variable xmi:id="var331" range="nc2" name="Data"/>
 <variable xmi:id="var332" range="nc2" name="BP"/>
 <variable xmi:id="var333" range="nc1" name="BPT"/>
 <operand xmi:id="sem916" identificator="" kind="ExistentialQuantification"

 description="">
 <variable xmi:id="var334" range="nc7" name="ArgCount"/>
 <variable xmi:id="var335" range="nc21" name="Sig"/>
 <variable xmi:id="var336" range="nc13" name="Api">
 <restriction xmi:id="sem917" verb="vc67" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="ControlElement" target="var336"/>
 <binding rolename="Signature" target="var335"/>
 <binding rolename="ArgCount" target="var334"/>
 </restriction>
 </variable>
 <operand xmi:id="sem918" identificator="" kind="Conjunction"

 description="">
 <operand xmi:id="sem919" verb="vc68" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Par1" target="var332"/>
 <binding rolename="Par2" target="var331"/>
 </operand>
 <operand xmi:id="sem920" verb="vc69" identificator=""
 kind="AtomicFormulation" description="">
 <binding rolename="Begin" target="var329"/>
 <binding rolename="End" target="var330"/>
 <binding rolename="ControlElement" target="var336"/>
 <binding rolename="Signature" target="var335"/>
 <binding rolename="ArgCount" target="var334"/>
 <binding rolename="DataElement" target="var332"/>
 <binding rolename="DataType" target="var333"/>
 </operand>
 </operand>
 </operand>
 </meaning>
 </definition>
</verb>

Example	3.	Readable	SFP	language	

Software Fault Pattern Metamodel (SFPM) Version 1.0 109

Verb segment Begin End copies Data to Buffer of DataType [KDM Patterns]
 Var S1 : ActionElement [KDM]
 Var S2 : ActionElement [KDM]
 Var Data : DataElement [KDM]
 Var BP: DataElement [KDM]
 Var BPT : DataType [KDM]
 Clause
 Var ArgCount: IntegerValue [SBVR]
 Var Sig: Signature [KDM]
 Var Api: ControlElement [KDM] such that
 [ControlElement of Signature with ArgCount copies data
 :Platform APIs] Api, Sig, ArgCount
 where
 [two actual parameters Par1 Par2 :KDM] BP, Data
 [segment Begin End calls ControlElement of Signature with

 ArgCount with DataElement of DataType :KDM Patterns]
S1, S2, Api, Sig, ArgCount, BP, BPT

End Verb

8.5.1.3 IndividualConcept Class
IndividualConcept	class	represents	an	individual	noun	concept	-	noun	concept	that	corresponds	to	at	
most	one	thing	in	all	possible	worlds	[ISO-1087-1,	SBVR].	An	example	of	an	individual	concept	is	an	
integer	number	“1”.	

Superclass	

	 BindableTarget,	VocabularyElement	

Attributes	

name:String[1]	 Name	of	the	individual	concept	

description:	String[1]	 Informal	description	of	the	individual	concept	

Example	1.	SFPM	XMI	
<vocabulary name="SBVR">
 <noun xmi:id="nc7" name="IntegerValue"/>
 <noun xmi:id="nc26" name="String"/>
 <verb xmi:id="vc4" name="Thing1 is Thing2"/>
 <individual xmi:id="ic76" name="0xabad1dea"/>
 <individual xmi:id="ic15" name="10"/>
 <individual xmi:id="ic17" name="a"/>
 <individual xmi:id="ic137" name="false"/>
 <individual xmi:id="ic158" name="1.1"/>
 <individual xmi:id="ic80" name="null"/>
 <individual xmi:id="ic21" name="0"/>
 <individual xmi:id="ic68" name="1"/>
 <individual xmi:id="ic131" name="2"/>
 <individual xmi:id="ic64" name="3"/>
 <individual xmi:id="ic96" name="5"/>
</vocabulary>

 110 Software Fault Pattern Metamodel (SFPM) Version 1.0

8.5.1.4 Vocabulary Class
Vocabulary	class	represents	a	single	reference	vocabulary,	including	its	version	and	authority.	A	
vocabulary	is	a	container	for	a	collection	of	noun	and	verb	concepts.	The	alignment	with	the	ISO/OMG	
SBVR	standard	facilitates	the	use	of	externally	defined	ontologies,	vocabularies,	and	models	for	the	
purposes	of	defining	the	content	of	the	SFP	Catalog.	

Superclass	

Attributes	

name:String[1]	 Name	of	the	referenced	vocabulary	

version:	String[1]	 Version	of	the	vocabulary	

description:String[1]	 Description	of	the	vocabulary	

url:String[1]	 url	to	the	official	location	of	the	vocabulary	

owner:String[1]	 Owner	of	the	vocabulary	

Example	

 See 8.5.1.1-3

8.5.1.5 VocabularyElement Class (abstract)
VocabularyElement	class	is	a	common	parent	for	the	elements	owned	by	a	vocabulary.	This	includes	
noun	concepts,	verb	concepts	and	individual	concepts.	
	

Superclass	

	 SemanticElement	

Software Fault Pattern Metamodel (SFPM) Version 1.0 111

9 Appendix A (Informative)
This	section	defines	a	simple	textual	language	that	is	can	be	used	to	represent	SFP	context	in	a	readable	
form.	This	language	is	referred	to	as	“readable	SFP	language”	throughout	this	specification.	The	formal	
grammar	of	the	readable	SFP	language	is	given	in	this	specification	using	a	simple	Extended	Backus-
Naur	Form	(EBNF)	notation,	used	in	the	W3C	specification	of	XML	[xml].	

The	SFPM	XMI	representation	can	be	automatically	generated	from	this	language.	Examples	in	section	8	
are	given	both	in	SFPM	XMI	and	in	this	readable	SFP	language.	

SFPCatalog ::= `Catalog` Version CatalogClause*

PrimaryCluster+ CommonSection+

`End` `Catalog`

CatalogClause ::=

‘description’ ‘=’ Text |

‘owner’ ‘=’ Text

PrimaryCluster ::= ‘Cluster’ Name

SecondaryCluster+ (CWESection | ClusterSection)+

`End’ ‘Cluster’

SecondaryCluster ::= ‘Secondary’ Name

SFP+

(CWESection | ClusterSection)+

‘End’ ‘Secondary’

CWESection ::= ‘CWEs’ CWE+ ‘End’ ‘CWEs’

CWE ::= ‘CWE’ CWEID Name CWEClause+ Note* ‘End’ ‘CWE’

CWEClause ::= ‘description’ ‘=’ Text |

‘details’ ‘=’ Text |

 ‘status’ ‘=’ Text |

‘url’ ‘=’ Text |

‘discernible’ ‘=’ DiscernibilityLevel |

‘Mapping:’ VariantId+

DiscernibilityLevel ::= ‘Very High’ | ‘High’ | “Medium’ | ‘Low’ | ‘Very Low’

Note ::= ‘Note:’ Text

SFP ::= ‘SFP’ SFPID Name Description

 112 Software Fault Pattern Metamodel (SFPM) Version 1.0

RootCauses Injuries

(SFPSection | ClusterSection | CWESection)+

‘End’ ‘SFP’

RootCauses ::= ‘Rootcauses’ Name+ ‘End’ ‘RootCauses’

Injuries ::= ‘Injuries’ Name+ ‘End’ ‘Injuries’

ClusterSection ::= ‘Characteristics’ ReferencedContextElement*

‘End’ ‘Characteristics’

ReferencedContextElement ::= ‘Ref’ ContextElementKind Name

ContextElementKind ::= ‘Resource’ | ‘Operation’ | ‘DataType’ | ‘DataElement’ |
‘API’ | ‘Decision’

SFPSection ::= ParameterSection | VariationSection | ElementSection |
CanonicalSection

ParameterSection ::= ‘Parameters’ Parameter+ ‘End’ ‘Parameters’

Parameter ::= ‘Parameter’ Name Variant+ ‘End’ ‘Parameter’

Variant ::= ‘Variant’ VariantId Name ‘->’ ‘Property’ Name InjuryMapping

InjuryMapping ::= ‘Injuries:’ Name*

VariationSection ::= ‘Variations’ Variation+ ‘End’ ‘Variations’

Variation ::= VariantRef Variation* |

 Name NL Variation+ LF

VariantRef ::= Name ‘->’ VariantId LF

ElementSection ::= ‘Elements’ DataflowElement+ ‘End’ ‘Elements’

DataflowElement ::= PrimaryDataStatement | SourceStatement | SinkStatement |

 Condition

PrimaryDataStatement ::= ‘PrimaryDataStatement’ Definition

‘End’ ‘PrimaryDataStatement’

SourceStatement ::= ‘SourceStatement’ Definition

‘End’ ‘’SourceStatement’

SinkStatement ::= ‘SinkStatement’ Definition

‘End’ SinkStatement’

Condition ::= ‘PrimaryDataStatement’ Definition

Software Fault Pattern Metamodel (SFPM) Version 1.0 113

‘End’ ‘Condition’

CanonicalSection ::= ‘Canonicals’ CanonicalElement* ‘End’ ‘Canonicals’

CanonicalElement ::= CanonicalForm | PrimaryDataSegment | SourceSegment |

 SinkSegment | MitigatedSourceSegment | MitigatedSinkSegment

PrimaryDataSegment ::= ‘PrimaryDataSegment’ Definition

‘End’ ‘PrimaryDataSegment’

SourceSegment ::= ‘SourceSegment’ Definition

‘End’ ‘’SourceSegment’

SinkSegment ::= ‘SinkSegment’ Definition

‘End’ SinkSegment’

MitigatedSourceSegment ::= ‘MitigatedSourceSegment’ Definition

‘End’ ‘MitigatedSourceSegment’

MitigatedSinkSegment ::= ‘MitigatedSinkSegment’ Definition

‘End’ ‘MitigatedSinkSegment’

CommonSection ::= RootCauseSection | InjurySection | PropertySection |

 IndicatorSection | ContextSection | VocabularySection

RootCauseSection ::= ‘RootCauses’ Name+ ‘End’ ‘RootCauses’

InjurySection ::= ‘Injuries’ Name+ ‘End’ ‘Injuries’

PropertySection ::= ‘Properties’ Property+ ‘End’ ‘Properties’

Property ::= ‘Property’ Name Definition ‘End’ ‘Property’

IndicatorSection ::= ‘Indicators’ Indicator+ ‘End’ ‘Indicators’

Indicator ::= ‘Indicator’ Name Definition ‘End’ ‘Indicator’

ContextSection ::= ‘SharedContextElements’

 ContextElement*

‘End’ ‘SharedContextElements’

ContextElement ::= ContextElementKind Name Definition

VocabularySection ::= ‘Vocabularies’

 114 Software Fault Pattern Metamodel (SFPM) Version 1.0

(Vocabulary | Definitions)*

‘End’ ‘Vocabularies’

Vocabulary ::= ‘Vocabulary’ VocabularyName VocabularyClause* ‘End’ ‘Vocabulary’

VocabularyClause ::= ‘description’ ‘=’ Text |

‘version’ ‘=’ Text |

 ‘url’ ‘=’ Text |

‘owner’ ‘=’ Text

Definitions ::= ‘Definitions’ VocabularyName VocabularyElement* ‘

End’ ‘Definitions’

VocabularyElement ::= NounConcept | VerbConcept | IndividualConcept

NounConcept ::= ‘Noun’ Name Definition ‘End’ ‘Noun’

VerbConcept ::= ‘Verb’ VerbFormWithRoles Definition ‘End’ ‘Verb’

IndividualConcept ::= ‘Individual’ Name Definition ‘End’ ‘Individual’

Definition ::= Verbalization Meaning

Verbalization ::= Text

Meaning ::= Projection

Projection ::= Variable* LogicalFormulation

Variable ::= ‘Var’ Name ‘:’ NounRef (‘such’ ‘that’ LogicalFormulation)?

NounRef ::= Name ‘[‘ VocabularyName ’]’

LogicalFormulation ::= AtomicFormulation |

 Instantiation | LogicalOperation |

 Quantification | Objectification | AggregationFormulation |

VerbConceptNominalization | PropositionNominalization

AtomicFormulation ::= VerbRef BindableTarget*

VerbRef ::= ‘[‘ VerbFormWithRoles ‘:’ VocabularyName ‘]’ |

 ‘[‘ContextElementKind Name ‘]’

BindableTarget ::= VarRef | IndividualRef

VarRef ::= Name

IndividualRef ::= ‘{‘ [#”] Name [#”] ‘:’ VocabularyName ‘}’

VocabularyName ::= Name

Clause ::= Identificator LogicalFormulation

Identificator ::= Name

Software Fault Pattern Metamodel (SFPM) Version 1.0 115

LogicalOperation ::= LogicalNegation | LogicalBinaryOperation

LogicalNegation ::= ‘not’ LogicalFormulation

LogicalBinaryOperation ::= Disjunction | Conjunction

Disjunction ::=’Disjunction’ Clause+ ‘End’ ‘Disjunction’

Conjunction ::= Clause+

Quantification ::= UniversalQuantification | ExistentialQuantification |

 BoundedQuantification

UniversalQuantification ::= ‘for’ ‘all’ Variable+ ‘where’ LogicalFormulation

ExistentialQuantificaiton ::= Variable+ ‘where’ LogicalFormulation

BoundedQuantification ::= Bound Variable ‘where’ LogicalFormulation

Bound ::= AtLeastNBound | AtMostNBound | ExactlyNBound | ExactlyOneBound |

 NumericRangeBound

AtLeastNBound ::= ‘at’ ‘least’ Number

AtMostNBound ::= ‘at’ ‘most’ Number

ExactlyNBound ::= ‘exactly’ Number

ExactlyOneBound ::= ‘exactly’ ‘one’

NumericRangeBound ::= ‘exists’ ‘range’ MinNumber MaxNumber

MinNumber ::= Number

MaxNumber ::= Number

Instantiation ::= `instance of’ NounRef BindableTarget

Objectification ::= BindableTarget ‘objectifying’ LogicalFormulation

AggregationFormulation ::= BindableTarget ‘representing’ ‘set’ ‘of’

 Projection

VerbConceptNominalization ::= BindableTarget ‘representing’ Projection

PropositionNominalization ::= BindableTarget ‘representing’ LogicalFormulation

NCName ::= [http://www.w3.org/TR/xml-names/#NT-NCName]

Name ::= NCNAME | (NCNAME (#x20)* NCNAME)*

Text ::= NCNAME | (NCNAME S NCNAME)*

Number ::= [0-9]*

VerbFormWithRoles ::= Name

VariantId ::= [0-9.]+

 116 Software Fault Pattern Metamodel (SFPM) Version 1.0

CWEID ::= [0-9]+ [a-z]*

SFPID ::= [0-9]+

URL ::= [^#x5D:/?#]+ '://' [^#x5D#]+ ('#' NCName)?

Whitespace

 ::= S | Comment

S ::= #x9 | #xA | #xD | #x20

Comment ::= ('#' | '#') ([^#xA #xD])* [#xA #xD]

