
SmartTransducers Interface
Specification

PTC/2002-09-11

Final Adopted Specification
August2002

Copyright © 2001, TTTech Computertechnik AG.
Copyright © 2001, VERTEL Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ver-
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having con-
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protect-
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be liable for
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss of profits,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the Object
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize devel-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indi-
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in sub-

division (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and Object
Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, ORB,
CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc. X/Open
is a trademark of X/Open Company Ltd.
Smart Transducers Adopted Specification

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.
Smart Transducers Adopted Specification

Smart Transducers Adopted Specification

Tableof Contents
1. Introduction. 1-1
1.1 Guide to the Specification . 1-1

1.2 Proof of Concept . 1-1

2. Smart Transducers Interface . 2-1
2.1 Overview and Rationale . 2-1

2.2 Conceptual Model . 2-2
2.2.1 Structure of a Smart Transducer System. 2-2
2.2.2 The Interface File System. 2-3
2.2.3 Observations . 2-4
2.2.4 Distinction between Time Triggered and Event

Triggered systems. 2-5
2.2.5 Interface Types . 2-6
2.2.6 The Transport Protocol 2-6
2.2.7 Metadata about a Smart Transducer 2-6
2.2.8 Fault-tolerant Sensor Systems 2-7

2.3 File Access Protocols . 2-8
2.3.1 File Structure and Naming 2-8
2.3.2 File Operations . 2-9
2.3.3 Master-Slave (MS) Round 2-10
2.3.4 Multi-partner (MP) Round 2-10
2.3.5 Broadcast Round . 2-11
2.3.6 Interleaving of Rounds 2-11
2.3.7 Data security. 2-12
2.3.8 Global Time . 2-12

2.4 Smart Transducer Filesystem in the ST 2-14
Smart Transducers Adopted Specification i

2.4.1 The Round Descriptor Lists (RODLs)
(file no. 0x00-0x07) . 2-14

2.4.2 The Configuration File (file no. 0x08) 2-15
2.4.3 The Membership File (file no. 0x09) 2-15
2.4.4 The Round Sequence (ROSE) File

(file no. 0x0A) . 2-16
2.4.5 The Owner File (file no. 0x0B) 2-17
2.4.6 The Documentation File (file no. 0x3D). 2-17

2.5 The Fireworks . 2-18

2.6 Description of CORBA Based Object Model and Interfaces 2-18
2.6.1 Representation of Observed Transducer Data. . 2-18
2.6.2 Real-time Service (RS) interfaces 2-19
2.6.3 Diagnostic and Management interfaces 2-19
2.6.4 Configuration and Planning interfaces 2-19

2.7 Special Services . 2-20
2.7.1 Node Identification—Plug and Play 2-20
2.7.2 Baptizing of Nodes . 2-21
2.7.3 Wakeup and Sleep Service 2-21

2.8 UART Transport Protocol . 2-22
2.8.1 Bus Access . 2-22
2.8.2 Timing . 2-22
2.8.3 Start-up Synchronization and

Re-synchronization. 2-23
2.8.4 Physical Layer . 2-23

3. Requirements and IDL . 3-1
3.1 Mandatory Requirements . 3-1

3.2 Optional Requirements. 3-1

3.3 Changes or Extensions required to adopted
OMG Specifications. 3-3

3.4 Complete IDL Definitions . 3-3

3.5 Specification of Data Representation 3-5
3.5.1 Error Codes ERR . 3-7
3.5.2 Confidence Marker (CONF). 3-8
3.5.3 Time Precision (PREC) 3-8
3.5.4 User Data (USER) . 3-8
3.5.5 XML Description of a RODL 3-8
ii Smart Transducers Adopted Specification August 2002

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group’s answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
August 2002 Smart Transducers Adopted Specification iii

OMG Documents

The OMG documentation is organized as follows:

OMG Modeling

• Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems.

• Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and
their corresponding models.

• OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including
both model and metamodel information.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes
the conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object and
the client. IDL is a strongly typed declarative language that is programming language-
independent. Language mappings enable objects to be implemented and sent requests
in the developer’s programming language of choice in a style that is natural to that
language. The OMG has an expanding set of language mappings, including Ada, C,
C++, COBOL, IDL to Java, Java to IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.
iv Smart Transducers Adopted Specification August 2002

These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many different
uses in applications. They can be used to construct higher level facilities and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such as Collection, Concurrency, Event, Externalization, Naming,
Licensing, Life Cycle, Notification, Persistent Object, Property, Query, Relationship,
Security, Time, Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications such as Internationalization and Time, and
Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

• CORBA Business: Comprised of specifications that relate to the OMG-compliant
interfaces for business systems.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

• CORBA Transportation: Comprised of specifications that relate to the OMG-
compliant interfaces for transportation systems.
August 2002 Smart Transducers: OMG Documents v

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

IDL appears using this font.

Language Mapped code appears using this font.

Important Reminders appear using this font.

In various places a few issues are highlighted. These are mostly areas where we
have discovered that some additional clarification may be needed.

A statement expressing a requirement will highlight its verb in bold, eg. shall or
may not.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• TTTech Computertechnik A.G.

• VERTEL Corporation
vi Smart Transducers Adopted Specification August 2002

This is a joint submission of TTTech Computertechnik A.G., Vertel Corporation
(USA), and the Technische Universität Wien, which acted as a subcontractor to
TTTech. This work has been supported by the European Research Project DSOS and
the research project TTSB, conducted jointly between the Technische Universität
Wien, Austria, the Universität Stuttgart, Germany and the Technische Universität
Munich, Germany.
August 2002 Smart Transducers: Acknowledgments vii

viii Smart Transducers Adopted Specification August 2002

Introduction 1
1.1 Guide to the Specification

This document describes the specification for a set of smart transducer interfaces that
supports the following properties

1. The provision of a standardized set of functions, or service to a user in order to
operate, configure and diagnose a generic transducer device.

2. An encapsulation of the internal complexity of the generic smart-transducer
hardware and software and the internal transducer failure modes to reduce the
complexity at the system level.

3. Describe a canonical form of a communication service, or protocol with small delay
and minimal jitter that is tailored to operate on low bandwidth channels given
severely constrained environments.

1.2 Proof of Concept

The smart transducer interface described in this specification has been implemented on
a number of different micro-controllers. The resource requirements on an 8 bit micro
controller, including the communication protocol, are less than 4 kByte of ROM and
64 Bytes of RAM memory.

The specification is derived from experiences in prototyping design and
implementation performed by TTTech Computertechnik AG and Vertel Corporation,
and partners (through e*ORB real-time products used in Telematics, on-board vehicle
systems, and the application to various prototype consumer electronics applications) in
time triggered real-time vehicular systems, telematics, industrial automation and
control.
August 2002 Smart Transducers Adopted Specification 1-1

1

1-2 Smart Transducers Adopted Specification August 2002

Smart Transducers Interface 2
2.1 Overview and Rationale

A smart transducer (ST) may comprise a hardware or software device consisting of a
small, compact unit containing a sensor or actuator element (possibly both), a micro-
controller, a communication controller and the associated software for signal
conditioning, calibration, diagnostics, and communication. The ST provides the
intended services across interfaces to its clients. These interfaces are well specified in
the value domain and in the temporal domain and only make those ST properties
visible to the client that are required for the proper use of the ST. If the STs are in
agreement with this standard proposal, these interfaces have the same form and
behavior for the wide array of differing sensor and actuator nodes in the various
engineering disciplines. The internal structure and operation of these differing STs
remain encapsulated within the ST and are not exposed at the interfaces that are
accessible from the client. A user of an ST, which conforms to this standard, will thus
have to cope only with one single generic ST interface for the multitude of existing
and new sensor types.

Many ST systems are designed for mass-market applications, where lowest
manufacturing costs are absolutely essential. Therefore this standard has been designed
to minimize the resource requirements in the STs and thus supports very cost-effective
implementations fulfilling the mandatory requirements only. A minimal ST (see
Section 3.1, “Mandatory Requirements,” on page 3-1) fits into an 8-bit wide processor
with on-chip oscillator and a minimum of less than 4 kByte of ROM and 64 bytes of
RAM storage.

Understandability and flexibility have been the driving forces behind this specification.
The ST interface specification contained in this document provides a flexible
capability to CORBA to access the real-time service (RS) interface, the diagnostic and
maintenance management (DM) interface, and the configuration and planning (CP)
interface of small STs in a distributed control system. By standardizing many different
interfaces of STs, this specification contributes to a simplification of I/O programming
and thus to software cost reduction of distributed control systems.
August 2002 Smart Transducers Adopted Specification 2-1

2

A distributed control system must support predictable performance in the temporal
domain. Since many of the standard communication protocols, such as General Inter-
ORB Protocol (GIOP), have not been designed for temporal predictability, this
specification proposes a new time-triggered transport service within the distributed ST
subsystem and an encapsulated gateway of this subsystem to the CORBA environment.

This chapter is organized as follows: Section 2.2 presents the conceptual model that is
the base of this specification. Section 2.3 explains the design of the interface file
system (IFS) and the file access protocols that are at the core of this specification.
Section 2.4, “Smart Transducer Filesystem in the ST,” on page 2-14 is devoted to the
IFS in the STs, while Section 2.5, “The Fireworks,” on page 2-20 describes the
required framework. The CORBA interface is described in Section 2.6, “Description of
CORBA Based Object Model and Interfaces,” on page 2-20. Special system services
are treated in Section 2.7, “Special Services,” on page 2-22. The UART transport
protocol is specified in Section 2.8, “UART Transport Protocol,” on page 2-24.

2.2 Conceptual Model

The following sections give a detailed description of the structure and concepts as they
pertain to a smart transducer cluster.

2.2.1 Structure of a Smart Transducer System

A smart transducer (ST) system that can be accessed from a single CORBA gateway
interface consists of up to 250 clusters. The master (an ST with extended features) of
each cluster is connected to the CORBA gateway through a real-time communication
network, which provides a synchronized time to each master. Each cluster can contain
up to 250 STs that communicate via a cluster-wide broadcast communication channel.
One active master controls the communication within one ST cluster (in the following
sections the term master refers to the active master unless stated otherwise). Since the
other STs are controlled by the master, we call them slave nodes also. Figure 2-1
depicts an ST system consisting of three clusters with one master each, and 8 slave
nodes each.
2-2 Smart Transducer Adopted Specification August 2002

2

Figure 2-1 Transducer System with 3 clusters

During operation, every ST must have a cluster-unique logical name. Additionally, a
series number that identifies the type of the transducer must be stored in each
transducer. In most cases, an ST will also contain a serial number that is unique for
each transducer type. If it contains a serial number, the concatenation series number
and serial number determines the unique physical name of an ST that identifies an ST
uniquely in the universe of STs. This physical name is used when assigning a logical
name to an ST (this is called the baptizing of the ST and can be performed on line). If
the plug and play capability is used, every ST in a cluster must have a unique physical
name. In case there exists more than one ST with the same physical name in a cluster
the baptize algorithm, which assigns an ST a logical name cannot be successful. (In
such cases the logical name must be assigned out of system).

Every ST cluster has a master that controls the communication among the STs of a
cluster. The interconnection between an ST system and the CORBA world is
accomplished by one or more gateway nodes supporting three encapsulated CORBA
interfaces: the real-time service (RS) interface, the diagnostic and maintenance
management (DM) interface, and the configuration and planning (CP) interface. It is
assumed that every ST contains a physical clock for measuring time. If required, the
state of clocks in the STs can be related to an external time standard, such as GPS time.

2.2.2 The Interface File System

The information transfer between an ST and its client is achieved by sharing
information that is contained in an encapsulated ST internal interface file system (IFS),
as depicted in Figure 2-2. This IFS is at the core of the conceptual model, which is thus
a data centric model.

Transducer Node

CORBA-Gateway

Active
Master

Active
Master

Active
Master

Cluster A Cluster B Cluster C
August 2002 Smart Transducer Adopted Specification 2-3

2

Figure 2-2 Interface File System in a Smart Transducer

An IFS file is an indexed sequential file with up to 256 records. A record has a fixed
length of four bytes (32 bits). An IFS record is the smallest addressable unit within an
ST system. Every record of every IFS file has a unique hierarchical address (which
also serves as the global name of the record) consisting of the concatenation of the
cluster name, the logical name, the file name and the record name. Since each name has
a length of one single byte, the name of a record is thus also four bytes long and fits
itself into a single record. There are three operations defined on a record: read, write,
and execute. These operations are described in detail in Section 2.3, “File Access
Protocols,” on page 2-8.

In very small STs, the IFS can degenerate to a few records of a few files. Such an ST
will only support a limited functionality for a particular mass-market application. In
order to become a viable standard for these mass-market applications, this specification
suggests a set of services, that starts with a very limited minimum service level. This
minimum service level must be provided by any conforming implementation. If more
services than these minimum services are provided, this specification defines services
that can be combined like building blocks in order to design an appropriate ST. If a
building block is implemented, the ST must provide the full set of services of this
building block. The specification of further building blocks will be the object of future
standards.

2.2.3 Observations

Any property of a relevant state variable that is observed by an ST; for example, the
temperature of a vessel, is called a state attribute and the corresponding information
state information. An observation records the state of a state variable at a particular
instant, the point of observation. An observation can be expressed by the atomic triple:

<Name of the observed state variable, observed value, time of observation>

Example: The following would be an observation: "The temperature of vessel A was 75
degrees Celsius at 10:42 a.m." This concept of an observation is the essential element
for understanding the design of this specification.

Interface
File

System

Write

Read

by ClientInternal Logic of
Sensor is

EncapsulatedSensor
Element
2-4 Smart Transducer Adopted Specification August 2002

2

An observation is an example of a state information data item. State information is
idempotent and requires an at-least-once semantics when transmitted to a client. At the
receiver, state information requires an update-in-place and a non-consumable read.

A sudden change of state that occurs at an instant is called an event. Information that
describes an event is called event information. Event information is not idempotent and
requires exactly-once semantics when transmitted to a consumer. At the receiver, event
information must be queued and consumed on reading.

An observation is stored in a record of the IFS within an ST and is normally
periodically updated by internal encapsulated processes of the ST. The hierarchical
address (global name) of the selected record denotes the name of the observed state
variable. The observed value is contained in the record and the time of observation is
the time of updating the record by the internal process of the ST. If the value of an
observation is longer than four bytes, then such an observation will be stored in
multiple records of an IFS file.

In the ST model, the name of the observed state variable, the global name, serves a
second purpose: it identifies the meta-data about the given ST (at a defined internet
address outside the ST system) to explain the meaning of the data in the given ST
implementation. Since STs are very resource constrained, the meta-data for the
development is cleanly separated from the run-time system and kept in a comfortable
development system. The series number (part of the physical name) that must be stored
in every ST establishes the link between an ST type and its description.

At the encapsulated CORBA interface a complete observation; that is, the name of the
observed state variable (4 bytes), the time of update (8 bytes) the value (4 bytes) and an
attribute field (4 bytes) is presented in the CORBA interface in at least five consecutive
four-byte records.

2.2.4 Distinction between Time Triggered and Event Triggered systems

For the reader, who is not familiar with the terms time-triggered and event-triggered,
we include the following short explanation. A more detailed discussion can be found in
the text - Kopetz, H. (1997). “Real-Time Systems, Design Principles for Distributed
Embedded Applications”, ISBN: 0-7923-9894-7, Fourth printing 2001. Boston, Kluwer
Academic Press.

A trigger is an event that causes the start of some action; for example, the execution of
a task or the transmission of a message. Depending on the triggering mechanism for
the start of communication and processing activities in each node of a computer
system, two distinctly different approaches to the design of real-time computer
applications can be identified: the event-triggered (ET) and the time-triggered (TT)
approach.

In the ET approach, all communication and processing activities are initiated whenever
a significant change of state; that is, an event other than the regular event of a clock
tick, is noted.
August 2002 Smart Transducer Adopted Specification 2-5

2

In the TT approach, all communication and processing activities are initiated at
predetermined instants by the progression of time. While ET systems are flexible, TT
systems are temporally predictable.

2.2.5 Interface Types

In the ST model we distinguish between three interface types of an ST, the real-time
service (RS) interface, the diagnostic and maintenance management (DM) interface and
the configuration and planning (CP) interface. All information that is exchanged across
these interfaces is stored in files of the IFS. While the real-time service interface is
time sensitive, the other two interfaces are not time sensitive.

Real-time Service Interface: The real-time service (RS) interface provides time
sensitive information to its client. This information is normally used for control
purposes (for example, periodic execution of a control loop), where the quality of
control is degraded by jitter. Time critical information is therefore delivered
periodically at the master with small known delay and minimal jitter. The temporally
predictable real-time service interface is time-triggered. This implies that the jitter is
determined by the precision of the clock synchronization, which is, even in the lowest
cost implementations, below 100 µsec. In implementations supporting a higher
bandwidth this precision can be improved to less than 1 µsec. To minimize the delay,
the instant of update of the IFS file record that contains the real-time information can
be synchronized a-priori with the instant of transmission-start of this information. In
this case, the delay will be reduced to the duration of the interval required for the
actual transmission.

Diagnostic and maintenanceManagement Interface: The diagnostic and
maintenance management interface is used to monitor the ST, to parameterize the
node, and to access the diagnostic information inside the ST.

Configuration and Planning Interface: The configuration and planning interface is
used to configure a generic ST for a new application. This includes assigning a logical
name to the ST and the assignment of the transmission slots in the time-triggered
schedule for the real-time service (RS) interface.

2.2.6 The Transport Protocol

The ST system-internal transport protocol supports the time-triggered transport of data
frames from one ST to all other STs of a cluster (broadcast transport service within a
cluster). A frame consists of one or more bytes sent by an ST. Since the instant when a
frame is sent is controlled — either directly or indirectly — by the master, it is assured
that only one sender will access the communication channel at a particular instant. In
case the communication is not successful, there is no automatic retransmission. The
communication system is thus predictable with a known latency and minimal jitter.
Different transport protocols, such as CAN or LIN, or the wireless IEEE 802.11, can
be integrated within this standard. For low-cost STs, a single wire UART transport
protocol that uses an ISO standardized physical layer is specified in Section 2.8,
“UART Transport Protocol,” on page 2-24.
2-6 Smart Transducer Adopted Specification August 2002

2

2.2.7 Metadata about a Smart Transducer

The structure and the meaning of the data items in the IFS files are only intelligible if
some metadata about the particular IFS is known. Since an ST has only a very limited
storage capacity, this metadata describing the semantics of the ST files resides outside
the ST at a web site associated with each ST type. This metadata can be accessed via a
register service. The metadata information is essential for the development of
applications by a "human design process" or by an “automated design process” In the
beginning, this metadata will be described by an ad-hoc combination of "structured
English" and XML metadata tags (see Section 3.5.5, “XML Description of a RODL,”
on page 3-8). If this specification is successful, the standardization of these metadata
files by the OMG is an urgent topic in order to enable the development of effective
design support tools.

The register service for the smart transducer systems has the following functions:

• Establishment of a link to the ST metadata. The series number (part of the
physical name) in each ST, which indirectly defines the structure and contents of
the IFS in an ST type, can be used to establish a link to a file at the ST vendor,
which contains a metadata description of this ST.

• Namespace management of the physical names of STs. To avoid duplication of
ST's physical names, each vendor is assigned a unique series number for each ST
type and a defined partition of the namespace to assign unique serial numbers to
each physical ST.

• Maintain ST yellow pages. The register service maintains a database of STs that
are available on the open market. By querying this database, a novice user can
find out which available ST meets his/her requirement and get a pointer to the
web site of the supplier.

This ST specification provides mechanisms for the "plug and play" capability of ST
systems (see Section 2.7.1, “Node Identification—Plug and Play,” on page 2-22 and
Section 2.7.2, “Baptizing of Nodes,” on page 2-23). The master of a cluster can
periodically query whether a new node has been connected to an existing cluster. Then
the master can identify the physical name of this new node by executing a binary
search algorithm. This search is performed simultaneously to the real-time operation of
the other nodes of the ST cluster. As soon as the physical name of the new node has
been identified, the master can access, via the register service, the metadata of the
newly connected ST and can initiate a design process that integrates the new node into
the running ST system.

2.2.8 Fault-tolerant Sensor Systems

Fault-tolerant ST systems can be constructed by the replication of ST and their
clusters, and the connection of these replicated clusters to replicated masters that form
fault-tolerant units. Since real-time applications often have FT mechanisms that are
based on active replication, no distortion of the temporal properties of the service takes
place in case of a failure of a unit. Figure 2-3 outlines an example of a fault-tolerant
ST configuration.
August 2002 Smart Transducer Adopted Specification 2-7

2

Figure 2-3 Fault-Tolerant Sensor Subsystem.

A controlled object is observed by a plurality of replicated sensors that are connected
to two distinct ST clusters. Replicated masters form a fault-tolerant unit with two
access points controlling these two clusters. The upper master in Figure 2-3 controls
the upper cluster. In the event that the upper master were to fail, the lower master,
which would normally act as a standby master for the upper cluster would take control
of both clusters. The same would apply for the lower master with respect to the lower
cluster. Such a configuration will tolerate any single failure in any one of its
constituent components without suffering any degradation of service.

2.3 File Access Protocols

2.3.1 File Structure and Naming

The Interface File System (IFS) is a hierarchical distributed file system that comprises
a set of up to 64 index-sequential files in each node of the ST system. The structure of
the IFS corresponds to the structure of the ST system, as outlined in Section 2.2,
“Conceptual Model,” on page 2-2. An external client can access a record within an ST
system, by the following structured address:

<cluster name, node name, file name, record name>

Since the ST system is optimized for eight bit node architectures, each name has a
length of one byte. The maximum size of a distributed IFS is thus 222 files, with 256
records of four bytes each. If the situation implies a restricted context of an address,
then the address can be smaller. For example, inside a cluster the cluster name can be
omitted and within a node, a record can be identified by two fields, the file name and
the record name.

ST-M

FT Bus

FT Bus

ST-M

A A A

A A A

Controlled Object

ST Bus

Host

Host

FTU

A ST node
FT Bus Fault Tolerant Bus Controller
FTU Fault-Tolerant Unit
ST-M ST master controller

Replicated
Fault Tolerant
Bus

ST Bus
2-8 Smart Transducer Adopted Specification August 2002

2

Some values for the cluster name and the logical node name are reserved for a special
purpose, e.g., 0x00 is reserved for broadcast messages. A detailed description of these
values is in Section 3.5, “Specification of Data Representation,” on page 3-6.

2.3.2 File Operations

The master of a cluster initiates a file operation by transmitting a special one-byte
frame, called the firework. The firework informs all nodes that a new operation is
starting and identifies the file-operation.

The file system supports three file operations: read, write, and execute a file record.
Every file operation must be followed by the global name of the record. The read and
write operations are executed atomically to read or write the named record.

When performing an execute operation, the name of the file record serves two
purposes:

1. The concatenation of the file-name field (1 byte) and the record-name field (1
byte) denote the type of operation that is to be performed.

2. The global record name points to the parameters of this operation, which are
contained in the named record.

This encoding technique improves the efficiency of operations in low-cost small
bandwidth systems.

Example: If a temperature-sensor should start a new conversion executing a specific
record may perform this. As soon as the conversion completes the result will be stored
in this record.

Since there are only three file operations, the file operations code can be encoded in
two bits as shown in Table 2-1 on page 2-9.

Together with the 64 file names (6 bits), which an ST can hold, the file operation and
the file name can be fitted into a single byte.

Since an ST can hold up to 64 files, the file name (6 upper bits) and the file operation
(2 lower bits) can be fitted into a single byte.

Op Code
Meaning in MP
Round Meaning in MS Round

00b write from bus to IFS write from bus to slave’s IFS

01b read to bus from IFS read to bus from slave’s IFS

10b write to IFS and sync forbidden

11b execute execute

Table 2-1 Description of OP-Codes
August 2002 Smart Transducer Adopted Specification 2-9

2

In the ST system we distinguish between three two kinds of file accesses, called a
master-slave (MS) round, a multi-partner (MP) round and a broadcast round. The MS
rounds are used to implement the diagnostic and maintenance management (DM)
interface and the configuration and planning (CP) interface. The periodic multi-partner
(MP) rounds are used to implement the real-time service (RS) interface. The broadcast
rounds are used to implement operations that must be executed by all nodes of a
cluster.

For operations that must be executed simultaneously by all nodes of a cluster it is
possible to use a MS round with a logical name of 0x00 in order to perform a
broadcast round.

2.3.3 Master-Slave (MS) Round

The master-slave (MS) round is used by the master of a cluster to read data from an
IFS file record, to write data to an IFS file record, or to execute a selected IFS file
record within the cluster.

An MS round consists of two phases, an address phase (MSA) and a data phase
(MSD). During the address phase the master specifies (in a message to the slave node)
which type of file operation is intended (read, write, or execute) and the address of the
selected file record. The message in the address phase consists of the following six
bytes:

<firework><epoch><logical name><file name | operation+file name><record
name><check byte>

Instead of the cluster name (which is required in the global IFS record address but not
at the cluster level), an epoch counter that contains an identification of the current
epoch of the cluster internal time base and is incremented each round is provided. In
the subsequent MSD round the master sends a firework, which indicates that it is either
transmitting the record data (if a file write operation is performed) or is waiting for the
slave to transmit the requested record data (if a file read or execute operation is
performed). The message in the data phase consists of six bytes:

<firework><data byte 0><data byte 1><data byte 2><data byte 3><check byte>

As mentioned before, the implementation must guarantee that the record read and
record write operations are atomic at the record level. If atomicity is required beyond
the record level, a concurrency control protocol must be implemented at the
application level by designating one record as a concurrency control record. In order to
avoid any delay of the writer, a non-blocking concurrency control protocol should be
implemented.

The check byte in the MSA-Round and MSD-Round is calculated as a result of an
exclusive-or operation of the preceding bytes (including the firework). The check byte
is also used for transmitting inline error codes. In case of an error, all four data bytes
of the MSD-Round are set to 0xFF and the check byte contains an error code in the
lower nibble while the bits of the higher nibble are all set. Note that a message
containing the value 0xFFFFFFFF differs significantly from an error message in the
check byte..
2-10 Smart Transducer Adopted Specification August 2002

2

Two optional membership vectors (bit fields) are defined (see Section 2.4.3). Every
time the master receives from an ST a correct response within an MS round it sets the
corresponding bit of the second membership vector. If none or a wrong answer is
received, the respective bit is cleared.

If multiple MSA rounds are received the last one is chosen. If multiple MSD rounds
are received the first one is chosen and the remaining are ignored. Thus the system
provides additional resistance against unintended operations due to missed MSA or
MSD rounds.

2.3.4 Multi-Partner (MP) Round

A multi-partner (MP) round is used to implement the real-time service (RS) with
constant delay and minimal jitter. It is possible to define up to six different MP rounds
at the same time; for example, to perform fast switches between different modes. MP
rounds are periodic and optimized for high data efficiency. An MP round consists of a
firework and subsequent data frames. A data frame is a sequence of one or more bytes
originating from one ST (master or slave). The sequence of frames of an MP round,
depicted in Figure 2-4 is described in a round-descriptor list (RODL). The RODL is
stored in a file of the IFS.

Figure 2-4 Structure of MP rounds

An MP round starts with a firework, sent by the master, followed by a sequence of data
frames, either from the master or one of the slaves. The firework contains the name of
the RODL file that must be executed in this round. The RODL file that is stored at the
slave contains the following information:

1. Which byte numbers after the firework are assigned to this slave.

2. The type of operation (read, or read-synchronize, write, or execute) is requested.

3. Where to get or put these data bytes in the IFS.

4. Type of protection of the data-frame (none, four-bit or eight-bit checksum).

The firework, which initiates a round, contains the name of the RODL to be executed.
It is evident that the schedule described in the RODL referred to by the firework must
be different in each slave. A global RODL can be considered as a distributed file
system consisting of all ST-local RODLs.

Since Slot 0 is reserved for the firework and the last slot of a round is reserved for the
Inter Round Gap (IRG), an MP round may be used to communicate up to 62 data bytes
because a valid MP round is limited to 64 slots in total.

firework byte 1 byte 2 byte 3

Time

byte 4 byte 5

firework frame data frame data frame
August 2002 Smart Transducer Adopted Specification 2-11

2

The master contains a special file, the ROund-SEquence (ROSE) file. A ROSE file
contains the specification of the instants for a sequence of consecutively executable
rounds and a sequence period, which determines after which duration this sequence,
must be repeated.

Two optional membership vectors (bit fields) are defined (see Section 2.4.3). Every
time the master receives from an ST a correct response within an MP round it sets the
corresponding bit of the first membership vector. If none or a wrong answer is
received, the respective bit is cleared.

The correct response of an ST in an MP round is considered a life-sign of the node.
Based on this life-sign information, the first membership vector of active STs is
maintained at the master. The error detection latency of the first membership vector is
less than two sequence periods. A second membership vector is used to hold life-sign
information of STs that are not members of the MP rounds currently issued by the
ROSE file. This second membership vector is therefore updated via MS rounds. The
error detection latency of this second membership vector is application specific.

2.3.5 Broadcast Round

A broadcast round has the same firework and the same layout as a master-slave round,
but its address field always contains the logical name 0. The logical name 0 is a
reserved logical name and addresses all baptized nodes (the logical name is not equal
to 0xFF) in the cluster. The broadcast round consists also of two parts, but in contrast
to a usual MS round, the slaves must not send an answer of an execute or read
command, thus a read command is not feasible. An example for the use of a broadcast
round is a "sleep command" that puts all nodes of a cluster into the “sleep state”.

2.3.6 Interleaving of Rounds

Between any two MP rounds there must be an interval of sufficient duration to execute
one phase of an MS round, as depicted in Figure 2-5. MP rounds and MS rounds are
executed periodically. If there is no request from an external client for an MS round
pending, the interval between the two MP rounds will be used to update the second
membership vector. Interleaving diagnostic traffic with real-time traffic without
disturbing the temporal characteristics of the real-time traffic as depicted in Figure 2-5
is recommended.

Figure 2-5 Interleaving of MP and MS rounds

Multipartner Round Multipartner RoundMaster-Slave Round

Time
2-12 Smart Transducer Adopted Specification August 2002

2

It is possible to build a new MP round dynamically while the present MP round
performs the real-time service. The master writes new configuration data dynamically
into a new RODL by using MS rounds, and then, after the RODLs in all slave nodes
have been updated, switches to the newly created RODL in order to execute the new
MP round.

2.3.7 Data Security

This specification includes a number of error detection mechanisms that help to detect
the possible corruption of IFS file data in storage and during transport:

1. On transport, every byte contains a parity bit for error detection.

2. Every frame of an MS round is protected by a check byte (eight-bit checksum).

3. Each frame of an MP round can be protected by a four-bit or eight-bit checksum
(coded in the RODL).

4. When designing MP rounds, check protected data bytes can be included used if
required by the application scenario.

5. The data patterns in the firework byte have been carefully designed to provide a
Hamming distance of 4.

6. An ST node can express the confidence in its sensor reading by assigning a value to
a confidence marker. This confidence marker is an important input (and output) of
sensor fusion algorithms.

2.3.8 Global Time

In a distributed transducer subsystem, a global notion of time must be available in
every node of the system in order to coordinate the actions of the nodes in the temporal
domain. Since the different nodes can have widely differing hardware characteristics,
the precision, the granularities, and the horizon of the time representations in the
differing nodes may vary in order to optimally match the time representation to the
limited hardware capabilities of the nodes. In this specification we therefore
distinguish between an external time representation at the CORBA interface and an
internal time representation within a particular cluster. The master acts as a timeserver,
transforms the external time representation to the internal time representation and vice
versa, and provides a reference time for all nodes of a cluster. The master—or the
CORBA gateway—can also implement an external clock synchronization; for example,
with a GPS time receiver that provides a global accuracy in the sub microsecond range.

As an external time representation we specify a uniform eight-byte (64 bit) long time
format based on GPS time, which allows to mark uniquely every instant within the
time horizon of interest. It has a granularity of 2-24 seconds; that is, about 60 nano-
seconds. This granularity has been chosen because it is possible to synchronize a site
with a time signal from a GPS receiver within this accuracy. The duration between two
external clock ticks must be an integer fraction of the physical second in order to
facilitate the synchronization of the external clock with the GPS clock at the full-
second instants. The external time representation has a horizon of 240 seconds; that is,
August 2002 Smart Transducer Adopted Specification 2-13

2

more than 10 000 years and thus will not wrap around in the foreseeable future. The
epoch starts with the epoch of the GPS time; that is, January 6, 1980 plus an offset of
238 seconds1980. The offset is introduced to be able to express Thus instants before
January 6, 1980 are expressed as positive negative values. To express time and date in
the conventional form, a Gregorian calendar function with the input (and output) of the
long time representation must be implemented.

The smart transducer system can also be used with free running clocks; that is, without
a GPS reference. In such a system we use the same external time representation as
above, but initialize the time with 0 at startup of the CORBA gateway. In such a
system it is still possible to measure durations, but a relationship of the transducer
internal instants to an external time-reference cannot be established.

The CORBA gateway is connected to the master of each cluster through a real-time
communication network, which can transport messages with constant delay and
minimal jitter. It is thus possible to synchronize the clocks of the masters with the
CORBA gateway clock.

In order to economize on the representation of the continuously flowing time in the
slaves, only an interval of time around the current time “now”, can be expressed in the
slaves in the internal time representation. This is in agreement with the strategy to
reduce the memory requirement of a slave as far as possible. The epoch of the time
scale at a slave (internal time representation) begins with the instant of the start of a
firework. Every time a new round (MP, MSA, or MSD round) is started the MSA
firework8-bit epoch counter is incremented by one. To be able to Thus each slave can
distinguish between time values belonging 256 consecutive epochs. In order to allow a
slave to (re)integrate to successive rounds, the system the master transmits an 8 its 8-
bit epoch-counter at with each MSA round thus allowing each slave to distinguish
between 256 consecutive epochsround. To save bandwidth, this This 8-bit epoch
counter replaces the cluster name in the MS address round which is not needed any
more at the addressed master.

The translation of the slave internal time representations of the transducer subsystem to
the external time representation is in the responsibility of the master node. During the
transmission of the data frames within a round, the slaves are periodically
resynchronized with the reception of data bytes from a node with a trusted time base.
The "trusted-time-base" slots of a multi-partner round are marked as "read
synchronize" slots in the corresponding RODL. The integration and periodic
resynchronization of local clocks of slaves with a maximum frequency deviation within
50% of the nominal frequency and a drift rate of up to 10-1 sec/sec is thus supported.

2.4 Smart Transducer Filesystem in the ST

The Interface File System (IFS) provides the common encapsulated addressing space
for the exchange of information within a set of ST clusters and between a set of ST
clusters and the CORBA gateway. The IFS of a single ST comprises 64 files of up to
256 four-byte records each. Except for a minimal documentation file, an ST must
implement only those files that are required for its purpose.
2-14 Smart Transducer Adopted Specification August 2002

2

The first record (rec. no. 0x00) of each file is the Header record, which contains file
specific information.

Figure 2-6 Addressing Space

RO: read-only bit. If set file is read-only.

Stat: 01b file ok.

otherwise filedamaged

If a file is not implemented there is no need to implement the respective header record;
the "NoFile"-error is returned instead. Unimplemented records in the middle of a file
should return 0x00 in order to prevent holes in the IFS (the "NoRecord"-error is
applicable for records beyond the length of a file only).

Two initial states are very likely in a memory element: all bits set or all bits cleared.
Since a correct file header must contain at least one set bit and one cleared bit (in the
stat field) such an initial state is recognized as a damaged file.

The namespace for files is subdivided into two parts:

System Files (file no. 0x00-0x0F and file no. 0x38-0x3F)

Application Specific Files (file no. 0x10-0x37)

The System Files are dedicated to special tasks that are further described in the
following sections (system files not covered in these sections are reserved for future
extensions). All the remaining files are Application Specific Files and may be freely
used in any desired manner as long as the first record (rec. no. 0x00) contains the
header record as specified above in order to be conformant to this specification.

2.4.1 The Round Descriptor Lists (RODLs) (file no. 0x00-0x07)

An ST can only participate in a multi-partner (MP) round if the ST has the information
about the structure of this MP round stored in one of its six RODLs. Each RODL file
contains the ST-local description of one MP round. The numbers of the RODL files are
0x00, 0x02, 0x03, 0x04, 0x06 and 0x07 (see Table 2-2 on page 2-20).

RODL 0x01 and 0x05 are reserved as internal buffer for implementing the MSD and
MSA round.

Header

reservedStatR
O File Length -1 For file OSFor file OS

M
SB

L
SB

M
SB

L
SB

M
SB

L
SB

M
SB

L
SB

Byte 0 1 2 3
August 2002 Smart Transducer Adopted Specification 2-15

2

The standardized generic RODL format, expressed in XML, is contained in
Section 3.5.5, “XML Description of a RODL,” on page 3-8. This generic RODL file
format contains the name of the MP round (which corresponds to the RODL file name)
and the information where the data that is involved in this round is located in the node-
local IFS, what action to perform, and at which position of the MP round the data is
placed.

A software development tool must transform this abstract RODL format into the
concrete format required by a particular ST. This concrete format can then be
downloaded into the ST by using the MS rounds.

2.4.2 The System Configuration File (file no. 0x08-0x0C and 0x3E, 0x3F)

There are 8 system files in an ST. No application may use any of the records of the
system files for application specific functions. The system file number 0x08
(configuration fileConfiguration File) contains the current logical name, the Identifier
Compare Value (IDCV) and the sleep record. It is necessary for each ST node (master
and slave) that supports plug and play or the sleep function. The layout of the
Configuration File (0x08) is depicted below.

The configuration file (0x08) is mandatory for each ST node (master and slave). The
layout of the Configuration file (0x08) is depicted below.

Figure 2-7 Layout of Configuration File

CCN: is the Currently assigned Cluster Name.

CLN: is the Currently assigned Logical Name.

NLN: is the New Logical Name used by the baptize algorithm.

IDCV: (optional) is needed by the baptize algorithm and stores the ID Compare Value.

STAT: is the current Status of the node.

CRND: is the number of the current round.

SleepIDCVHeader

Record
Byte

0x01
0 3

0x02 0x03 0x04
0 0 03 3 3

M
SB

L
SB

0x05
0 3

reserved

C
L

N

N
L

N

SleepIDCVHeader

Record
Byte

0x01
0 3

0x02 0x03 0x04
0 0 03 3 3

M
SB

L
SB

0x05
0 3

C
L

N

N
L

N

C
C

N

SC
T

R

E
C

T
R

C
R

N
D

ST
A

T

2-16 Smart Transducer Adopted Specification August 2002

2

ECTR: is the current value of the Epoch-Counter.

SCTR: is the current value of the Slot-Counter.

2.4.3 The Membership File (file no. 0x09)

The Membership File contains two membership vectors of 256 bits (32 byte) each. The
logical name of the ST is interpreted as an index to the 256 membership bits of the
membership vector. The first membership vector contains all slaves that have sent a life-
sign during the last sequence period. The second membership vector contains all slaves,
which have responded correctly to the most recent MS operation (read or execute).

If there is no pending request by an external client, the master fills the empty MS slots
by issuing a read operation to an ST. Eventually the master will have sent read
operations to all addresses in the (logical) name space in order to update the second
membership vector. Since the second membership vector is updated sporadically no
guarantee about temporal accuracy of the second membership vector can be given..
Refer to Figure 2-8.

Figure 2-8 The Membership File

Example: The logical name 0x1F is assigned to the MSB (bit number 31) of record
0x08 for the first membership vector (respectively 0x10 in the second membership
vector). If the respective bit is set, the node has been active in the last sequence period.

2.4.4 The Round Sequence (ROSE) File (file no. 0x0A)

A ROSE file makes sense for the master only and contains the specification of the start
instants of a sequence of sequentially executable rounds and a sequence period, which
determines after which duration this sequence must be repeated. The ROSE file
consists of three sections. The first section is the status record. The second and third

F irs t M em b ersh ip

V ec to r

R eco rd
B yte

0 x 0 1
0 3

0 x 0 2 0 x 0 3 0 x 0 4
0 0 03 3 3

0 x 0 5 0 x 0 6
3 300

0 x 0 7 0 x 0 8
3 300

M
SB

L
S

B

S e co n d M em b ersh ip

V ec to r

0 x 0 D 0 x 0 E
3 300

0 x 0 F 0 x 1 0
3 300

L
SB

0 x 0 9 0 x 0 A
3 300

0 x 0 B 0 x 0 C
3 300

M
SB

H e a d e r
August 2002 Smart Transducer Adopted Specification 2-17

2

section each contain a sequence of MP round names. At any instant in time exactly one
of the second or third section is active, while the other one is inactive. Modifications of
the active section of the ROSE file are forbidden.

The Status record (0x01) describes which section of the ROSE file is currently active.
It also contains the length of the second (and third) section of the ROSE file. Refer to
Figure 2-9.

Figure 2-9 Status Record

Byte 0: 0 section two is active.
1 section three is active.

Byte 1: start record of section two
Byte 2: start record of section three

Section two of the ROSE file has the following format:

Figure 2-10 Section Two of ROSE File

This section contains the instant when the sequence should be started (start time) and
the sequence-period (period).

Byte 0 of every following record contains in the three LSBs the name of the round to
be issued. A set MSB of byte 0 signal that this is the last entry of a round-sequence.
This end-of-round (EOR) bit must be cleared for all entries except the last.

Byte 1 contains the length of the inter-round gap (IRG). The IRG must be a positive
integer multiple of one slot (13 bit cells) duration. Valid entries are 0x01, 0x02, …,
0x0F, referring to an IRG of the length of one slot, two slots, …, up to 15 slots.

The first entry must be an MSA entry (0x05, round number 5). All bits not specified
above must be set to 0. Further every MSA round must have a complementary MSD
round.

To change the active part of the ROSE file the address of the Status record (0x01) has
to be part of an execute command. After finishing the current round sequence the
master reads the other section of the ROSE file to do the new schedule.

StatusHeader

Record
Byte

0x01
0 3

Round No. Round No.PeriodStart Time

L
SB

0x02 0x03 0x04
0 0 03 3 3

M
SB

L
SB

M
SB

0x05 0x06
3 300

0x07
30
2-18 Smart Transducer Adopted Specification August 2002

2

2.4.5 Application Specific Files (0x0D - 0x3C)

There are 48 files available in each ST node for applications, to store sensor, actuator
or diagnostic data. The first record (0x00) of every file must be a header record (as
specified in 2.4). The programmer is free to design the layout of remaining records of
the application specific files as desired.

2.4.6 The Owner File (file no. 0x0B)

The Owner File contains the “owner” (the logical name of the node which is allowed
to write to the bus) of each slot of each round. This file must be consistent with the
RODL files.

Rec. no. 0x01 and 0x02 are used as index containing the record no. of the first entry of
each round. The remaining records contain a list of the logical names of the sending
nodes of the respective round. The first entry of a round must always be in byte 0x00
of a record. See Figure 2-12.

The entry in the index for the MSA and MSD round (IndexA and IndexD) is unused
but has been left in the index in order to allow consistent address calculations. These
entries should be initialized with 0x00.

Figure 2-11 The Owner File

Unused slots are assigned to the logical name 0x00 which is reserved for broadcast and
thus is not a valid logical name for an ST.

Since slot 0 is used for the fireworks byte the owner of slot 0 of each round is the
master of the cluster.

2.4.7 The Documentation File (file no. 0x3D)

Every ST must contain at least the first, second, and third (0x00, 0x01, and 0x02)
record of the documentation file 0x3D. This file is a read only file and contains the
physical name, an eight-byte (64 bit) integer in record 0x01 and 0x02. The MSB is
stored in the first byte. See Figure 2-12.

…Header

Record
Byte

0x01
0 3

0x02 0x03 0x04
0 0 03 3 3

Sl
ot

3

...
0 3

In
de

x3

In
de

x2

In
de

xD

In
de

x0

Sl
ot

0

Sl
ot

1

Sl
ot

2

In
de

x4

In
de

xA

In
de

x6

In
de

x7

Sl
ot

4

Sl
ot

5

Sl
ot

6

Sl
ot

7

August 2002 Smart Transducer Adopted Specification 2-19

2

Figure 2-12 The Documentation File

With this information it is possible for the client to identify an ST and to access the
documentation about the ST from the Internet. Implementations have the freedom to
provide in the remaining records of the documentation file read-only documentation of
this ST.

2.5 The Fireworks

The firework initiates the start of a round. The list of firework is depicted in Table 2-2.
The fireworks (protected by a parity bit) have a Hamming distance of at least 4. To be
able to distinguish between a firework and a normal data byte the parity for the
fireworks have to be odd, while for normal data bytes even parity is used.

The MSA firework has been designed to generate a regular bit pattern for the start-up
synchronization of ST nodes that contain an imprecise on-chip oscillator.

2.6 Description of CORBA Based Object Model and Interfaces

2.6.1 Representation of Observed Transducer Data

In the proposed CORBA-gateway each RT observation (see Section 2.2.3) is
represented by a structure consisting of 4 fields. The first four-byte field contains the
hierarchical address consisting of cluster name, logical name, file name, and record
name and thus identifies the name of the observation. The second 8-byte field contains

firework Meaning Description

0x78 RODL=0 multi-partner round 0

0x49 MSD Master-Slave-Data

0xBA RODL=2 multi-partner round 2

0x8B RODL=3 multi-partner round 3

0x64 RODL=4 multi-partner round 4

0x55 MSA Master-Slave-Address - Synchronize Round

0xA6 RODL=6 multi-partner round 6

0x97 RODL=7 multi-partner round 7

Table 2-2 Description of Firework-Bytes

ID

M
SB

L
SBHeader

Record
Byte

0x01
0 3

0x02
0 3
2-20 Smart Transducer Adopted Specification August 2002

2

the time of the observation, expressed in the external time format described in
Section 2.3.8, “Global Time,” on page 2-13. The third four-byte field contains the
attributes as described in Section 3.5, “Specification of Data Representation,” on
page 3-6. Finally, the fourth field contains the value of the RT entity. Normally, the
fourth field will be 4 bytes long. If the value of an RT entity is longer, the value field
will be extended accordingly to the application specific requirements.

In the proposed CORBA-gateway each RT observation (see Section 2.2.3) is
represented by a structure consisting of 4 fields. The first four-byte field contains the
hierarchical address consisting of cluster name, node name, file name and record name
and thus identifies the name of the observation. The second 8-byte field contains the
time of the observation, expressed in the external time format described in Section
2.3.8. The third four-byte field contains the attributes as described in Section 3.6.
Finally, the fourth field contains the value of the RT entity. Normally, the fourth field
will be 4 bytes long. If the value of an RT entity is longer, the value field will be
extended accordingly to the application specific requirements

2.6.2 Real-time Service (RS) Interface

The real-time service (RS) interface contains the RT images of the time-critical state
variables of the ST system.

On input from the ST nodes to the CORBA gateway, these RT images (sensor values)
are continuously updated from the addressed ST file records by the periodic MP
rounds at a-priori known instants determined by the active ROSE/RODL files. Since
the data at the RS interface is state data, a new version of a sensor value overwrites the
old version. Fresh state data with known temporal characteristics is thus always
available at the CORBA gateway and can be accessed by a CORBA method without
any delay.

On output, the set-points for the actuators are periodically fetched at time instants
computed a-priori and determined by the active ROSE/RODL file from the CORBA
gateway and delivered to the addressed ST file record. Again stateful data semantics
are assumed, viz., the available data value is not consumed on access. The real-time
communication system that transports the RT observations is characterized by small
known delay and by a minimal jitter. Since the jitter is tightly controlled in the RS
interface, the data can be used for time-sensitive real-time services; for example,
distributed control loops.

2.6.3 Diagnostic and Maintenance interfacesManagement Interface

The diagnostic and maintenance management (DM) interface accesses application
specific diagnostic and calibration data that is stored in application files at the ST
nodes via master-slave (MS) rounds. Since in general the transport timing of MS
rounds cannot be guaranteed, the DM interface should not be used for time-sensitive
control data.
August 2002 Smart Transducer Adopted Specification 2-21

2

The representation of file specific information at the CORBA DM interface is the same
as the representation of observations at the RS interface, as described above. Again
data is treated as “state data”; that is, the contents of a new round overwrite the
contents of the previous round.

2.6.4 Configuration and Planning Interface

The configuration and planning (CP) interface accesses the configuration data stored in
the RODL files of the slaves and the ROSE file of the master by MS rounds.

The internal format of the RODL file is specific to an ST type and must be generated
for a particular ST by an RODL generation tool from the abstract RODL specification
contained in Section 3.5.5, “XML Description of a RODL,” on page 3-8.

2.7 Special Services

2.7.1 Node Identification—Plug and Play

Each node has a universally unique physical name, stored in the first two records
second and third (0x01 and 0x02) record of the documentation file. During operation,
a node is not addressed by this unique physical name, but by a cluster unique 8-bit (one
byte) logical name that is a shorter alias of the ST within a cluster. Additionally there
are two logical names set aside for group addressing: the logical name 0x00 is reserved
to address all STs of a cluster and the logical name 0xFF is reserved for addressing all
unbaptized STs of a cluster. A node, newly connected to an ST cluster, must have either
an a-priori assigned logical name or the special logical name 0xFF, which marks it as
an unbaptized node. If the unique physical name of a new node is known, then a baptize
operation; that is, the assignment of a logical name to this ST, can be started
immediately, otherwise, the unique physical name must be retrieved by a special search
algorithm. Node identification is an optional service.

If there are many unbaptized nodes connected to an ST cluster they all have the same
logical name 0xFF at startup. Thus it is impossible to address exactly one unbaptized
node by an MS round. In general, reading from multiple nodes via MS rounds is
impossible. A special execute command to 0xFF will cause all unbaptized nodes to
respond and thus inform the listener only about the existence of unbaptized nodes in
the cluster. It is however possible to write to and execute at multiple nodes due to the
broadcast capability of the network. The two operations (write and execute) suffice to
retrieve the physical names of the unbaptized nodes and thus solve the node
identification problem.

The node identification uses a binary search algorithm over the entire code space of the
unique node ids. It proceeds as follows:

1. An eight-byte Identifier Compare Value (IDCV) is written into system file
"configuration" (0x08) of the IFS at each node with logical name 0xFF by a
broadcast“broadcast” write.
2-22 Smart Transducer Adopted Specification August 2002

2

2. A special record of system file "configuration" (0x08) is executed at all nodes with
logical name 0xFF to compare its unique physical name with the IDCV.

3. Unbaptized Nodes with a unique physical name greater or equal to the IDCV
respond, all other nodes stay silent.

4. As long as there exist some answering nodes the IDCV is raised and the algorithm
is repeated. If no node answers, the IDCV must be lowered and the algorithm
repeated.

This algorithm is repeated until exactly one IDCV is identified as an existing physical
name.

An ST supporting the baptize feature must support an execute command to the first
record of the IDCV (file: 0x08, record: 0x02). Executing this record the IDCV and the
physical name (file: 0x3D, records: 0x01-0x02) is compared. If the physical name is
greater or equal to the number stored in IDCV the node replies in the following master-
slave-data (MSD) round with a single zero byte (the remaining slots of the MSD round
remain empty), otherwise no answer is generated.

2.7.2 Baptizing of Nodes

If the physical name and the logical name are known, the baptizing operation proceeds
as follows. The master writes (with a "broadcast" logical name 0xFF of the MS round)
the new logical name and the physical name into special records of the system file
"configuration" (0x08) of all nodes, which have not yet been baptized. It then performs
an execute command on record (file: 0x08; rec: 0x01), which assigns the new logical
name only to the node that has the same physical name in the documentation file as the
physical name that has been previously written into the system file "configuration"
(file: 0x08; rec: 0x02-0x03).

For baptizing, record number 0x01 of system file "configuration" (0x08) must have an
execute operation assigned. Executing this record the New Logical Name (NLN)
replaces the logical name if the IDCV (file: 0x08, record: 0x02-0x03) matches the
physical name (file: 0x3D, records: 0x01-0x02).

The logical name 0xFF means that an ST is currently not integrated in the system.
Such an ST must not answer any MS or MP request except the two MS-execute
commands required for the baptize algorithm (MS-execute of file: 0x08, record: 0x01
and MS-execute of file: 0x08, record: 0x02). MS-write operations have to be
performed without respect to the logical name.

Extremely low-cost nodes produced in large quantities for a particular application (e.g.,
in consumer electronics, or automotive applications) may not include the functionality
for baptizing. These nodes may have an a-priori assigned logical name. This can be
done outside the system context (e.g., during manufacturing). Since all logical names
of an ST cluster must be different, only one node with a particular hard-coded logical
name may be part of an ST cluster.
August 2002 Smart Transducer Adopted Specification 2-23

2

2.7.3 Wakeup and Sleep Service

A node can be forced into sleep mode by executing a special record in the system file
"configuration" (0x08) of the IFS. Since each node can be accessed by the broadcast
logical name (0x00) it is possible to force the entire ST cluster into sleep mode with a
single sleep command. During sleep, a node is in a save-power state and has only very
limited functional capabilities. In the sleep state, there is no activity on the bus.
Wakeup occurs if a sleeping node detects activity on the bus or is woken up by a node
specific local event.

Executing the Sleep record (file: 0x08, record: 0x05) sends the node to sleep mode.

Since a slave node is not resynchronized while sleeping, the master has to be aware
that the clock of a node that just woke up may be unsynchronized. After receiving a
wake up signal on the bus the master initiates an MSA round to synchronize and wake
up all nodes within the cluster.

2.8 UART Transport Protocol

The predictable ST transport service can be implemented by a byte oriented UART
protocol on a broadcast communication channel. Any communication is initiated by
sending a firework from the master according to the time-triggered schedule stored in
the active ROSE file. There are no collisions on the communication channel.

2.8.1 Bus Access

Whenever the time reaches an instant stored in the active ROSE file of a master, it will
output the specified firework on the communication channel. In the UART protocol, a
slot for the transmission of one byte has a length of 13 bits, composed as follows:

<start bit; eight data bits; parity bit; stop bit; inter-frame gap of two bits>

All bytes sent by the master must start precisely at the a-priori specified instants (start-
instant of the round plus an amount - bytecount x bitduration x 13).

In the UART implementation, the rounds have the following structure:

Master Slave Address (MSA) round (six bytes):

<firework, epoch, logical name, file-name and command, record name, check byte>

The check byte is calculated by an exclusive OR over the first five bytes of the MSA
round.

Master Slave Data (MSD) round (six bytes):

<firework, data byte 1, data byte 2, data byte 3, data byte 4, check byte>

Byte 0 (the most significant byte) of the record is transmitted first. The check byte is
calculated by an exclusive OR over the first five bytes of the MSD round.

Multi-partner round (up to 64 bytes, according to RODL specification):
2-24 Smart Transducer Adopted Specification August 2002

2

<firework for selected RODL, data byte 1, data byte 2, . . . data byte n>

2.8.2 Timing

Whenever the master sends a firework for an MSA a new round, a new epoch is started
at the slaves. The starting instant of this new epoch is the first (falling) edge of the
start-bit of the firework. In an MSA round the master provides the number of the
current epoch in the byte following the firework. The slave measure time by counting
the slots (or fractions thereof) after the epoch (internal time representation).

The sequence of rounds between the start instant of an MSA round and the start instant
of the next MSA round is the period of the schedule contained in the RODL file. The
duration of the inter-round gap between the last round of a period and the first round of
the next period may be used to synchronize the start of the next MSA round with the
external time (variant slack). All other inter-round gaps within a period must last a
positive integer-multiple of precisely 13 bit lengths.

The Since the maximum length of two MS a MP round and two MP rounds is 172 78
slots (fireworks plus up to 62 data bytes plus up to 15 slots for Inter Round Gap) and
the variant slack before slot counter is reset to 0x00 with the next MSA firework.
Thus beginning of each epoch (at the time stamp beginning of a slave can be correctly
resolved by each round), the master if the slot number do not exceed 255counter easily
fits into an 8 bit register. Otherwise, Thus the pair epoch number must counter and slot
counter may be provided by the slave to identify the epochused as timestamp on ST
level. Since every cluster can have differing transmission speeds (and time formats) the
master must transform the internal time representation to the external time
representation.

2.8.3 Start-up Synchronization and Re-synchronization

A node with an imprecise oscillator (e.g., RC on chip oscillator) must adjust its clock
after startup and periodic during operation. For this purposes the firework 0x55 was
chosen to be the fireworks of the MSA round. This firework has a very regular bit
pattern. Further a read-synchronize command is defined during MP rounds. This
command can be used to resynchronize the node's clock on reading a message
originating from a node with a highly reliable oscillator.

2.8.4 Physical Layer

The UART protocol can be based on different physical layers. The two major
requirements are:

• It must be possible to transport UART messages via the bus.

• In the case where a baptize service is available, concurrent write operations (all slaves write
the same value at almost the same instant) to the bus must be supported and the master must
be able to detect in such a case that there is some traffic on the bus. It is not a requirement
that the master can read this data correctly.
August 2002 Smart Transducer Adopted Specification 2-25

2

For example, the ISO9141 (ISO K Line), the RS485 and several other bus standards
fulfill these requirements.
2-26 Smart Transducer Adopted Specification August 2002

Requirements and IDL 3
This chapter attempts to prioritize key focal elements with regards to mandatory versus
optional requirements from the smart transducers interface RFP (OMG Orbos/2000-12-
13) based on current observed industrial practices. In addition a brief description of the
initial proposed IDL interfaces is given with a detailed breakdown of the individual
data and interfaces composed therein. It is the intent that these interfaces will undergo
some refinement as the specification progresses.

3.1 Mandatory versus Optional Requirements for Smart Transducers (ST)

3.2 Mandatory Requirements

Every ST must support MS rounds in order that one can read the physical name and the
logical name of an ST from the CORBA interface. This function is necessary to learn
about the existence of an ST in a cluster.

Every ST must support at least reading of the first, second, and third (0x00, 0x01, and
0x02) record of the documentation file 0x3D as described in Section 2.4.6, “The
Documentation File (file no. 0x3D),” on page 2-19 in order to allow reading the
physical name.

Every master must provide the capability to translate the representation of the external
internal time of its cluster to the representation of the internal time of its cluster and
vice versaexternal time.

Every CORBA gateway must provide the three interfaces: the RS interface, the DM
interface, and the CP interface.
August 2002 Smart Transducers Adopted Specification 3-1

3

3.3 Optional Requirements

An implementor is free to select one or more additional functions from the following
list of optional requirements. If such a function is implemented in an ST, is must be
implemented according to the specification provided by this standard proposal.

In addition to the mandatory services an ST compliant to this specification may
support an arbitrary set of the following optional services:

Fixed MP Round

A low-cost ST that is used in mass-market applications may contain only one or more
a-priori preprogrammed RODLs in its ROM memory. Other low-cost nodes may not
support any MP round.

Programmable MP Round

This function makes it possible to change the RODL within an ST on-line.

Baptizing of STs without an assigned Logical Name

This function enables the on-line assignment of a logical name to an ST that has no a-
priori assigned logical name (the logical name 0xFF denotes an ST currently not
integrated in the system).

Identification of STs (Plug and Play)

This function enables the on-line identification of a new node that has been detected to
exist.

Sleep and Wakeup Service

This function enables a cluster to enter the sleep mode and to wake-up the cluster after
a significant event has occurred.

First Membership at Master

This function provides membership information about STs that participate in MP
rounds.

Second Membership at Master

This function provides membership information about currently available STs in a
cluster.

Maintain Epoch Counter

This function enables a slave to maintain the Epoch Counter and thus provide
timestamps within an ST.
3-2 Smart Transducers Adopted Specification August 2002

3

Programmable ROSE file at Master

This function enables the on-line modification of the round sequence (ROSE) list at the
master.

3.4 Mandatory versus Optional Interfaces at the CORBA Gateway

3.4.1 Mandatory Interfaces

The CORBA gateway must provide the tree interfaces, the RS interface, the DM
interface and the CP interfaces.

3.4.2 Optional Interfaces

Convert External Time to Cluster-Internal Time

This function enables an ST to convert the external time into the cluster internal
format.

External Clock Synchronization at Master or CORBA Gateway

The master or the CORBA gateway may provide an external clock synchronization
interface in order to synchronize the actions of the master with an external time
reference (e.g., GPS).

3.5 Proposed Compliance Points

All future extensions of ST services must be compatible with the services specified in
this proposal.

Application Specific Extensions

An ST may support read-, write-, or execute-operations on application specific files in
order to fulfill application specific purposes as long as record 0x00 is used as header
record as described in Section 2.4, “Smart Transducer Filesystem in the ST,” on
page 2-14.

3.6 Changes or Extensions required to adopted OMG Specifications

The external representation of time provided in this standard should be included in the
CORBA time services.

A Smart Transducer object service may be used by an object to bootstrap itself into
operation; as such, this specification mandates an additional ObjectId for use in the
resolve_initial_references() operation defined in the ORB Initialization Specification,
OMG Document 94-10-24.
August 2002 Smart Transducers Adopted Specification 3-3

3

The following ObjectId is reserved for finding an initial Smart Transducer object
service:

SmartTransducer

No other extensions are proposed to OMG IDL, CORBA, and/or the OMG object
model.

3.7 Complete IDL Definitions

This section contains the complete IDL definitions of the three CORBA Interfaces of a
smart transducer system; the RS interface, the DM interface, and the CP interface.

The following code has been verified by using e*ORB idlc for 2 different languages
(C++, Java), and orbit-idl (ORBit-devel-0.5.13-3).
//
// File: sti.idl
//

#ifndef _ST_INTERFACE_IDL_
#define _ST_INTERFACE_IDL_
#include <orb.idl>
#pragma prefix "omg.org"

module SmartTransducer {

exception NoCluster {};
exception NoNode {};
exception NoFile {};
exception NoRecord {};
exception Damaged {};
exception DataNotReady {};
exception NoExecutable {};
exception ReadOnly {};
exception NoMessageReceived {};
exception CommunicationError {};
exception TimeError {};
exception NotSupported {};
3-4 Smart Transducers Adopted Specification August 2002

3

interface RShandle;
interface DMhandle;
interface CPhandle;

typedef octet ClusterID;
typedef octet logicalNameID;
typedef octet FileID;
typedef octet RecordID;
struct NameID {

ClusterID cluster;
logicalNameID logicalName;
FileID file;
RecordID record;

};

typedef unsigned long long TimeInstant;
typedef unsigned long long TimeDuration;

struct TakeInstant {
TimeInstant Instant;
TimeDuration Period;

};
struct DeliveryInstant {

TimeInstant Instant;
TimeDuration Period;

};
struct Instants {

TimeInstant instant;
TimeDuration period;

};

typedef unsigned long long AttributesData;
struct AttributesData {

octet ERR;
octet CONF;
octet PREC;
unsigned short USER;

};

typedef unsigned long long RecordData;
August 2002 Smart Transducers Adopted Specification 3-5

3

typedef octet RecordData[4];

typedef any DeviceClusterDescriptor;

// Time-Triggered Real-Time Interface
interface RShandle {

void Read(in NameID Name,
out TimeInstant Time,
inout AttributesData Attr,
out RecordData Data

) raises (
NoCluster,
NoNode,
NoFile,
NoRecord,
Damaged,
DataNotReady,
NoMessageReceived,
CommunicationError,
TimeError,
NotSupported

);
void ReadDeliveryInstant
void ReadDeliveryInstants(

in NameID Name,
out Instants Instant,
out octet ERR

) raises (
NoCluster,
NoNode,
NoFile,
NoRecord,
Damaged,
DataNotReady,
NoMessageReceived,
CommunicationError,
TimeError,
NotSupported

);
void Write(in NameID Name,

in TimeInstant Time,
inout AttributesData Attr,
in RecordData Data

) raises (
NoCluster,
NoNode,
NoFile,
NoRecord,
ReadOnly,
NoMessageReceived,
CommunicationError,
3-6 Smart Transducers Adopted Specification August 2002

3

TimeError,
NotSupported

);
void ReadTakeInstants(
void ReadTakeInstant(

in NameID Name,
out TakeInstant Instant

out Instants Instant,
out octet ERR

) raises (
NoCluster,
NoNode,
NoFile,
NoRecord,
Damaged,
DataNotReady,
NoMessageReceived,
CommunicationError,
TimeError,
NotSupported

);
};

// Diagnostic and maintenance interfaceManagement Interface
interface DMhandle {

void Read(in NameID Name,
inout AttributesData Attr,
out RecordData Data

) raises (
NoCluster,
NoNode,
NoFile,
NoRecord,
Damaged,
DataNotReady,
NoMessageReceived,
CommunicationError,
TimeError,
NotSupported

);
void Write(in NameID Name,

inout AttributesData Attr,
in RecordData Data

) raises (
NoCluster,
NoNode,
NoFile,
NoRecord,
ReadOnly,
NoMessageReceived,
CommunicationError,
August 2002 Smart Transducers Adopted Specification 3-7

3

TimeError,
NotSupported

);
void Execute(in NameID Name,

inout AttributesData Attr
) raises (

NoCluster,
NoNode,
NoFile,
NoRecord,
Damaged,
DataNotReady,
NoExecutable,
NoMessageReceived,
CommunicationError,
TimeError,
NotSupported

);
};

// Configuration and Planning Interface
interface CPhandle {

void Read(in NameID Name,
inout AttributesData Attr,
out RecordData Data

) raises (
NoCluster,
NoNode,
NoFile,
NoRecord,
Damaged,
DataNotReady,
NoMessageReceived,
CommunicationError,
TimeError,
NotSupported

);
void Write(in NameID Name,

inout AttributesData Attr,
in RecordData Data

) raises (
NoCluster,
NoNode,
NoFile,
NoRecord,
ReadOnly,
NoMessageReceived,
CommunicationError,
TimeError,
NotSupported
3-8 Smart Transducers Adopted Specification August 2002

3

);
void Execute(in NameID Name,

inout AttributesData Attr
) raises (

NoCluster,
NoNode,
NoFile,
NoRecord,
Damaged,
DataNotReady,
NoExecutable,
NoMessageReceived,
CommunicationError,
TimeError,
NotSupported

);
};

// Smart Transducer Abstraction Handle
struct STDevice {

DeviceClusterDescriptor device;
NameID name;
RShandle rsh;
DMhandle dmh;
CPhandle cph;

};

typedef sequence<STDevice> devices;

interface Current : CORBA::Current {
attribute devices dev;

};

};

#endif // _ST_INTERFACE_IDL_

3.8 Specification of Data Representation

octet ClusterID: This type may have values from 0 to 255 and is used to address a
specific cluster (the ClusterID 0 is reserved for broadcast; the ClusterID 251-252 and
254 is reserved for future extensions; the ClusterID 253 is the gateway; the ClusterID
255 is reserved for integrating new clusters).

octet logicalNameID: This type may have values from 0 to 255 and is used to address
the nodes (the logicalName 0 is reserved for broadcast; the logicalName 251-252 is
reserved for future extensions; the logicalName 253 is the gateway; the logicalName
254 is the master; the logicalName 255 is reserved for integrating new nodes).
August 2002 Smart Transducers Adopted Specification 3-9

3

octet FileID: This type may have values from 0 to 63 and is used to address a specific
file. The values from 64 to 255 are invalid!

octet RecordID: This type may have values from 0 to 255 and is used to address a
specific record in a file.

struct NameID: This struct has the subfields cluster, logicalName, file, and record and
is used for addressing a specific record of the IFS.

any DeviceClusterDescriptor: This is a CORBA any used specifically to allow for
the incorporation of devices or legacy hardware that may only have generic MIB like
identifiers, which may be placed in such an any by inserting a user definable IDL
struct.

sequence<STDevice> devices: This sequence is provided to hold a set of devices
that may be being accessed in many different ways from the same current logical locus
of execution or current programming context.

unsigned long long TimeInstant: This type is used for timestamps. The 40 upper bits
represent the number of seconds (all 34841 years an overflow will occur) while the
remaining 24 bits represent the fractions of a second, allowing an accuracy of 60 ns. In
a system with external clock synchronization the 40 upper bits are initialized with the
value 238 (bit 62 of this 64 bit value is set) 0 at 00:00:00 UTC on January 6, 1980,
which is also the reference starting point (the epoch) for GPS-time. In this way every
point in time 8710 17420 years before and 26131 17420 years after January 6, 1980
can be uniquely represented with an accuracy window of 60 ns. Stand-alone systems
without external clock synchronization are set to 0 during initialization.

unsigned long long TimeDuration: This type is used for durations that are
represented in units of 2-24 seconds (about 60 ns).

unsigned long typedef octet RecordData[4]: This type is used for representing a
record and has consists of 4 octets with a valid range from 0 to 232-1255 each.

unsigned long struct AttributesData: This type is used for representing some
attributes and has a valid range from 0 to 232-1. The following subfields are defined:

• octet ERR (Bit 0-3) of the attributes-field contains an error-code that is specified
for the values from 0 to 12. All other values are reserved for future extensions.
(See Section 3.8.1, “Error Codes ERR,” on page 3-11).

• CONF (Bit 4-7) represents a confidence-marker. (See Section 3.6.2)

• octet CONF represents a confidence-marker with a valid range from 0 to 15.
(See Section 3.8.2, “Confidence Marker (CONF),” on page 3-12).

• octet PREC (Bit 8-13) represents the number of significant bits in the timestamp.
Valid values are in the range from 0 to 63. (See Section 3.8.3, “Time Precision
(PREC),” on page 3-12).

• Bit 14-15 are reserved for future extensions.

• unsigned short USER (Bit 16-31) are application specific flags and may have a
semantics specified by the application. The valid range is from 0 to 65535.
3-10 Smart Transducers Adopted Specification August 2002

3

struct DeliveryInstantInstants: The first value (subfield Instantinstant) informs about
the next instant when the named data item is delivered by most recent of the real-time
transport system to the CORBA gatewaydenoted events will occur. The second value
(subfield period) is the period of the named data item.

struct STDevice: This struct is the object-oriented abstraction representing an
individual or multiple transducer devices. Its members are DeviceClusterDescriptor
(optional), in addition it contains the NameID, and the three object reference pointers
to the 3 interfaces on that particular transducer(s) cluster. The aim of this abstraction is
to allow easy handling of an object representation of a cluster in programmatic terms.
Multiples of these may easily be handled though the use of a number of Current
interfaces that is used to track the locus of interaction with any or all of these
transducers.

SmartTransducer::Current: This interface is used to semantically acquire and
separate the interactions and read-write operations of any single individual transducer
be being able to separate them at the programming level though a thread or task locus
model as that of the CORBA Current interface. It has one attribute, which is a
sequence of devices under the control of that context or thread in general programming
terms. Implementations are free to not use a thread abstraction to represent this if so
deemed appropriate.

3.8.1 Error Codes ERR

Errors are reported by setting an error-code ERR in the attributes field viz.

• Success (0): no error occurred.

• NoCluster (1): The specified cluster-ID doesn't exist.

• NoNode (2): The specified node-ID doesn't exist in the addressed cluster.

• NoFile (3): The specified file-ID doesn't exist in the node specified by the node-ID.

• NoRecord (4): The specified record-ID is beyond the length of the file.

• Damaged (5): The specified record is damaged and the error can't be corrected.

• DataNotReady (6): The addressed node is not able to determine the correct result within the
given time, but is still operating.

• NoExecutable (7): An execute command to a record address that is not executable has been
issued.

• ReadOnly (8): Write operation to a record marked as read-only.

• NoMessageReceived (9): No response from the addressed node.

• CommunicationError (10): The received data are not valid.

• TimeError (11): The clocks on the STs are out of sync.

• NotSupported (12): This function is not supported by this ST.
August 2002 Smart Transducers Adopted Specification 3-11

3

3.8.2 Confidence Marker (CONF)

The four-bit confidence marker CONF is a measurement for the quality of the sensor
value, where 0 is defined to be no confidence and 15 is high confidence.

High precision sensors will yield better confidence than low cost sensors. When
multiple sensors are used the quality of a measurement may be improved in
conjunction with sensor-fusion (e.g., if all sensors provide the same consistent value
the confidence-marker can be improved). When differing values are provided the value
with best confidence may be preferred.

3.8.3 Time Precision (PREC)

The Precision represents the number of significant bits in the timestamp. This
concludes in an error window of 239-PREC seconds. Valid values are from 0 (no
precision; the timestamp might be a random value) to 63 (an error window of about 60
nanoseconds). Note that this parameter refers to precision within an ST system, not to
the accuracy between the clocks within an ST system and the external time reference.

3.8.4 User Data (USER)

This field has no specific purpose and may be used as required by an application (e.g.
additional data where more than 32 bits are required).

3.8.5 XML Description of a RODL

The following is an example XML code that describes RODL-file 7, which forces node
34 (0x22) to write the contents of file 17 (0x11), record 22 (0x16), bytes 0-3 to the
communication channel in slot 12 (0x0C) - 15 (0x0F).
3-12 Smart Transducers Adopted Specification August 2002

3

<?xml version="1.0" ?>
<rodl:rodl name="7"

xmlns:rodl="http://www.ttpforum.org/2001/ROundDescriptorList"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ttpforum.org/2001/

ROundDescriptorList/RODLSchema.xsd">
<rodl:logical name="34">

<rodl:slot position="12">
<rodl:operationCode>read</rodl:operationCode>
<rodl:fileName>17</rodl:fileName>
<rodl:recordNumber>22</rodl:recordNumber>
<rodl:recordAlignment>0</rodl:recordAlignment>
<rodl:messageLength>4</rodl:messageLength>
<rodl:valid>true</rodl:valid>

</rodl:slot>
</rodl:node>

</rodl:rodl>
August 2002 Smart Transducers Adopted Specification 3-13

3

3-14 Smart Transducers Adopted Specification August 2002

	Table of Contents
	About the Object Management Group
	What is CORBA?

	OMG Documents
	OMG Modeling
	Object Management Architecture Guide
	CORBA: Common Object Request Broker Architecture and Specification
	Object Frameworks and Domain Interfaces
	Obtaining OMG Documents

	Typographical Conventions
	Acknowledgments
	Introduction
	1.1 Guide to the Specification
	1.2 Proof of Concept

	Smart Transducers Interface
	2.1 Overview and Rationale
	2.2 Conceptual Model
	2.2.1 Structure of a Smart Transducer System
	2.2.2 The Interface File System
	2.2.3 Observations
	2.2.4 Distinction between Time Triggered and Event Triggered systems
	2.2.5 Interface Types
	2.2.6 The Transport Protocol
	2.2.7 Metadata about a Smart Transducer
	2.2.8 Fault-tolerant Sensor Systems

	2.3 File Access Protocols
	2.3.1 File Structure and Naming
	2.3.2 File Operations
	2.3.3 Master-Slave (MS) Round
	2.3.4 Multi-Partner (MP) Round
	2.3.5 Broadcast Round
	2.3.6 Interleaving of Rounds
	2.3.7 Data Security
	2.3.8 Global Time

	2.4 Smart Transducer Filesystem in the ST
	2.4.1 The Round Descriptor Lists (RODLs) (file no. 0x00-0x07)
	2.4.2 The System Configuration File (file no. 0x08-0x0C and 0x3E, 0x3F)
	2.4.3 The Membership File (file no. 0x09)
	2.4.4 The Round Sequence (ROSE) File (file no. 0x0A)
	2.4.5 Application Specific Files (0x0D - 0x3C)
	2.4.6 The Owner File (file no. 0x0B)
	2.4.7 The Documentation File (file no. 0x3D)

	2.5 The Fireworks
	2.6 Description of CORBA Based Object Model and Interfaces
	2.6.1 Representation of Observed Transducer Data
	2.6.2 Real-time Service (RS) Interface
	2.6.3 Diagnostic and Maintenance interfacesManagement Interface
	2.6.4 Configuration and Planning Interface

	2.7 Special Services
	2.7.1 Node Identification—Plug and Play
	2.7.2 Baptizing of Nodes
	2.7.3 Wakeup and Sleep Service

	2.8 UART Transport Protocol
	2.8.1 Bus Access
	2.8.2 Timing
	2.8.3 Start-up Synchronization and Re-synchronization
	2.8.4 Physical Layer

	Requirements and IDL
	3.1 Mandatory versus Optional Requirements for Smart Transducers (ST)
	3.2 Mandatory Requirements
	3.3 Optional Requirements
	3.4 Mandatory versus Optional Interfaces at the CORBA Gateway
	3.4.1 Mandatory Interfaces
	3.4.2 Optional Interfaces

	3.5 Proposed Compliance Points
	3.6 Changes or Extensions required to adopted OMG Specifications
	3.7 Complete IDL Definitions
	3.8 Specification of Data Representation
	3.8.1 Error Codes ERR
	3.8.2 Confidence Marker (CONF)
	3.8.3 Time Precision (PREC)
	3.8.4 User Data (USER)
	3.8.5 XML Description of a RODL

