
Date: December 2010

Architecture-Driven Modernization (ADM):
Structured Metrics Meta-Model (SMM)

FTF - Beta 2

__

OMG Document Number: ptc/2010-11-34 (Change-bar version)

Standard document URL: http://www.omg.org/spec/SMM/1.0/PDF

Associated File(s)*: http://www.omg.org/spec/SMM/20101135

 http://www.omg.org/spec/SMM/20101136

* Original file(s): XMI (admtf/08-05-05), XSD (admtf/08-06-05)

This OMG document replaces the submission document (admtf/10-02-12, Beta2). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content
of this document are welcome, and should be directed to issues@omg.org by April 1, 2011.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on July 1, 2011. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

alpic� 13/11/09 17:24

alpic� 22/2/10 19:13

alpic� 22/2/10 22:21

alpic� 16/11/09 12:27

alpic� 13/11/09 17:24

alpic� 22/2/10 23:02

alpic� 13/11/09 17:25

Andrew Watson� 11/3/11 11:19

alpic� 7/12/10 18:21

alpic� 7/12/10 19:18

alpic� 7/12/10 19:18

alpic� 7/12/10 19:18

alpic� 7/12/10 19:18

alpic� 7/12/10 18:22

alpic� 7/12/10 18:22

alpic� 7/12/10 18:22

alpic� 7/12/10 18:22

alpic� 7/12/10 18:22

alpic� 7/12/10 19:20

Deleted: March

Deleted: 9

Comment: 14095

Deleted: oftware

Deleted: 1

Deleted: 9

Deleted: 03

Deleted: 2

Deleted: 03

Deleted: 805

Deleted: 01

Deleted: 8

Deleted: 0601

Deleted: 8

Deleted: 5

Deleted: 04

Deleted: Alpha

Deleted: 09

Deleted: 09

Copyright © 2010, Benchmark Consulting
Copyright © 2010, eCube Systems, LLC
Copyright © 2010, Electronic Data Systems
Copyright © 2010, KDM Analytics
Copyright © 2010, Object Management Group, Inc.
Copyright © 2010, Software Revolution
Copyright © 2010, Tactical Strategy Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

alpic� 7/12/10 18:23

alpic� 7/12/10 18:23

alpic� 7/12/10 18:23

alpic� 7/12/10 18:23

alpic� 7/12/10 18:23

alpic� 7/12/10 18:23

alpic� 7/12/10 18:23

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 8

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 140 Kendrick Street,
Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

 Structured Metrics Meta-Model, FTF 2 i

alpic� 22/3/10 14:00

alpic� 22/3/10 14:00

Table of Contents

1	
 Scope .. 1	

2	
 Conformance .. 1	

3	
 Normative References .. 2	

4	
 Terms and Definitions .. 2	

5	
 Symbols .. 2	

6	
 Additional Information... 2	

6.1	
 Changes to Adopted OMG Specifications ..2	

6.2	
 How to Read this Specification...2	

6.3	
 Acknowledgments...3	

7	
 SMM .. 3	

7.1	
 General Usage Notes (Non normative) ...4	

7.2	
 Steps in using SMM (Non normative) ..4	

7.3	
 Interpreting Measures (Informative) ...4	

8	
 Core Classes ... 6	

8.1	
 SmmElement Class (Abstract) ..7	

8.2	
 SmmModel Class ..8	

8.3	
 SmmRelationship Class (abstract) ..8	

8.4	
 MeasureLibrary Class ...8	

8.5	
 MeasureCategory Class...9	

8.6	
 CategoryRelationship ..9	

8.7	
 Date ...10	

8.8	
 Timestamp...10	

9	
 Extensions... 11	

9.1	
 Attribute Class...11	

9.2	
 Annotation Class ...12	

10	
 Measures... 12	

10.1	
 AbstractMeasureElement Class (abstract)...14	

10.2	
 Characteristic Class ...15	

10.3	
 Scope Class..15	

Deleted: oftware

Deleted: Beta 1

alpic� 22/2/10 22:24
Formatted: English (US)
alpic� 22/2/10 22:24
Formatted: English (US)

10.4	
 Measure Class (abstract)..16	

10.5	
 Operation Class..18	

10.6	
 OCLOperation Class..19	

10.7	
 MeasureRelationship Class (abstract) ...19	

10.8	
 EquivalentMeasureRelationship Class ..20	

10.9	
 RefinementMeasureRelationship Class...20	

10.10	
 RecursiveMeasureRelationship Class..21	

10.11	
 DimensionalMeasure Class ...21	

10.12	
 Ranking Class ..22	

10.13	
 RankingMeasureRelationship..22	

10.14	
 RankingInterval Class..23	

11	
 Collective Measures ... 23	

11.1	
 CollectiveMeasure Class ...25	

11.2	
 Accumulator data type (enumeration)...26	

11.3	
 DirectMeasure Class ...26	

11.4	
 Counting Class ..26	

11.5	
 BinaryMeasure Class...27	

11.6	
 Ratio Class ..28	

11.7	
 BaseMeasureRelationship Class ...28	

11.8	
 Base1MeasureRelationship Class ...28	

11.9	
 Base2MeasureRelationship Class ...28	

12	
 Other Measures... 29	

12.1	
 NamedMeasure Class ..29	

12.2	
 RescaledMeasure Class ...30	

12.3	
 RescaledMeasureRelationship Class ...30	

13	
 Measurements... 30	

13.1	
 Measurement Class (abstract)..31	

13.2	
 MeasurementRelationship Class (abstract) ...32	

13.3	
 EquivalentMeasurementRelationship..32	

13.4	
 RefinementMeasurementRelationship Class...33	

13.5	
 RecursiveMeasurementRelationship Class..33	

13.6	
 DimensionalMeasurement Class ...33	

13.7	
 Grade Class..34	

RankingMeasurementRelationship Class ..35	

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: 19

Deleted: 20

Deleted: 21

Deleted: 22

Deleted: 24

Deleted: 25

Deleted: 25

Deleted: 25

Deleted: 26

Deleted: 27

Deleted: 27

Deleted: 27

Deleted: 27

Deleted: 28

Deleted: 28

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 30

Deleted: 31

Deleted: 31

Deleted: 32

Deleted: 32

Deleted: 32

Deleted: 33

Deleted: 34

 Structured Metrics Meta-Model, FTF 2
iii

alpic� 22/3/10 14:00

14	
 Collective Measurements ... 35	

14.1	
 CollectiveMeasurement Class ...36	

14.2	
 DirectMeasurement Class..37	

14.3	
 Count Class..37	

14.4	
 BinaryMeasurement Class...37	

14.5	
 RatioMeasurement Class ...38	

14.6	
 BaseMeasurementRelationship Class..38	

14.7	
 Base1MeasurementRelationship Class..38	

14.8	
 Base2MeasurementRelationship Class..38	

15	
 Named and Rescaled Measurements .. 39	

15.1	
 NamedMeasurement Class ..39	

15.2	
 RescaledMeasurement Class ...39	

15.3	
 RescaledMeasurementRelationship Class ...40	

16	
 Observations ... 40	

16.1	
 Observation Class ..41	

16.2	
 ObservationScope Class ..42	

16.3	
 ObservedMeasure Class ..43	

16.4	
 Argument Class ...43	

17	
 Historic and Trend Data (Non-Normative) .. 44	

18	
 Inaccuracy (Non-Normative).. 44	

19	
 Library of Measures (Non-Normative) .. 46	

19.1	
 Various Counts ..46	

19.1.1	
 Module Count ..46	

19.1.2	
 Screen Count..50	

19.1.3	
 Method Count ..53	

19.1.4	
 Lines of Code...54	

19.1.5	
 Lines of Code for ASTM ...58	

19.2	
 McCabe..59	

19.2.1	
 Branching Factor of ActionElements and Modules...59	

19.2.2	
 Cyclomatic Complexity of a Module...60	

19.2.3	
 Extended Cyclomatic Complexity of a Module...61	

19.2.4	
 Average Extended Cyclomatic Complexity of Modules in the System61	

	
 Ratio of Additive ECC over Additive Counting of modules...61	

19.3	
 Counts of Operating Systems ..61	

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: 34

Deleted: 35

Deleted: 36

Deleted: 36

Deleted: 36

Deleted: 37

Deleted: 37

Deleted: 37

Deleted: 37

Deleted: 38

Deleted: 38

Deleted: 38

Deleted: 39

Deleted: 39

Deleted: 40

Deleted: 41

Deleted: 42

Deleted: 42

Deleted: 43

Deleted: 43

Deleted: 45

Deleted: 45

Deleted: 45

Deleted: 48

Deleted: 51

Deleted: 52

Deleted: 56

Deleted: 57

Deleted: 57

Deleted: 58

Deleted: 59

... [1]

19.4	
 Halstead ...63	

19.4.1	
 Distinct Operator Count of a Module ..63	

19.4.2	
 Distinct Operand Count of a Module...64	

19.4.3	
 Operator Occurrence Count of a Module...64	

19.4.4	
 Operand Occurrence Count of a Module ...64	

19.4.5	
 Halstead Length of a Module...64	

19.4.6	
 Halstead Vocabulary of a Module ...64	

19.4.7	
 Halstead Volume of a Module ...64	

19.5	
 Software Engineering Institute (SEI) Maintainability Index...68	

19.6	
 Qualitative Example ..73	

19.6.1	
 Non-standard language usage score...73	

20	
 Library of Categories (Software example) ... 74	

	
 SMM does not establish a standard set of measurement categories that presents an organization
of measures applicable to every environment or every engineering activity. SMM minimally
establishes a demonstration library of metric categories. The library does not assert that the given
categories are standards. These metric categories reflect a high-level summary of industry metrics
that support some engineering processes. ..74	

20.1	
 Environmental Metrics ..74	

20.2	
 Data Definition Metrics ...74	

20.3	
 Program Process Metrics ...74	

20.4	
 Architecture Metrics ..75	

20.5	
 Functional Metrics...75	

20.6	
 Quality / Reliability Metrics ..75	

20.7	
 Performance Metrics..75	

20.8	
 Security / Vulnerability ...75	

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:24
Formatted
Unknown
Field Code Changed
Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:24
Formatted
Unknown
Field Code Changed
Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:24
Formatted
Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:24

alpic� 22/2/10 22:24
Formatted

Deleted: 61

Deleted: 61

Deleted: 62

Deleted: 62

Deleted: 62

Deleted: 62

Deleted: 62

Deleted: 62

Deleted: 66

Deleted: 71

Deleted: 71

Deleted: 72

Deleted: 72

Deleted: 72

Deleted: 72

Deleted: 72

Deleted: 73

Deleted: 73

Deleted: 73

Deleted: 73

Deleted: 73

Deleted: 1 Scope 1
2 Conformance 1
3 Normative References 2
4 Terms and Definitions 2
5 Symbols 2
6 Additional Information 2
6.1 Changes to Adopted OMG Specifications 2
6.2 How to Read this Specification 2
6.3 Acknowledgments 3
7 SMM 3
7.1 General Usage Notes 4

... [2]

... [3]

... [4]

... [5]

... [6]

... [7]

... [8]

 Structured Metrics Meta-Model, FTF 2 v

alpic� 22/3/10 14:00

alpic� 22/3/10 14:00

Preface
OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:
http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

1. UML

• MOF

• XMI

• CWM

• Profile specifications

OMG Middleware Specifications

1. CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

1. CORBAservices

• CORBAfacilities
Deleted: oftware

Deleted: Beta 1

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 1 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 1

alpic� 22/3/10 14:01

1 Scope
This specification defines a meta-model for representing measurement information related to any model
structured information with an initial focus on software, its operation, and its design. Referred to as the
Structured Metrics Meta-model (SMM), this specification is an extensible meta-model for exchanging both
measures and measurement information concerning artifacts contained or expressed by structured models, such
as MOF.

The SMM include elements representing the concepts needed to express a wide range of diversified measures.
The specification does include a minimal library of software measures, but it is not asserting that the listed
measures constitute standards themselves; these are supplied simply as non-normative examples.

The SMM is a specification for the definition of measures and the representation of their measurement results.
The measure definitions make up the library of measures and that serves to establish the specification upon
which all of the measurements will be based.

The SMM is part of the Architecture Driven Modernization (ADM) roadmap and fulfills the metric needs of
the ADM roadmap scenarios as well as other information technology scenarios.

The SMM specifies the representation of measures without detailing the representation of the entities
measured. SMM anticipates that those entities are represented in other OMG meta-models. Measures of
software artifacts or their features that are defined within the SMM, the Knowledge Discovery Metamodel
(KDM), the Abstract Syntax Tree Metamodel (ASTM), another ADM roadmap meta-model or another OMG
meta-model may arise as:

• Counts. (Lines of code measures exemplify the mechanism.)

• Direct applications of named measurements. (One such named measure is Cyclomatic Complexity.)

• Simple algebraic change of scales of already defined numeric measures (e.g. the translation to ‘choice
points’ from Cyclomatic complexity).

• Simple algebraic aggregations of numeric artifact features, including other measures, over sets of
software artifacts. (Determining the complexity of an application by summing the complexities of the
application’s elements demonstrates this process.)

• Simple range-based grading or classification of already defined numeric measures. (Cyclomatic
reliable/unreliable quadrants are one such a grading.)

• Qualitative evaluations where the range of evaluations can be mapped to a linear order.

Useful metrics must go beyond static (or dynamic) code analysis and technical performance to include factors
related to information utility and acceptance of the system by the organization(s) participating in an enterprise.
To be objective and repeatable, such metrics need to be based on technical characteristics of the system. Given
a meta-model representation of such characteristics, the SMM will facilitate the exchange of such measures.

Given the evolutionary nature of system development and the predicate value of metrics with respect to
“downstream” problems, metrics are gathered into trends or viewed from historical perspective. As shown in
Section Historic and Trend Data, SMM addresses the issues of trend and history to model for system
development as long as the historical links of the measured entities are provided.

Consistent with other models defined by OMG, the SMM will be defined using the MOF meta-modeling
language. As such, it will have a standard textual representation presented by XMI. Consequently, the
exchange of metrics defined by SMM will be in the XMI. These models will, similarly, be compatible with
MOF repositories for storage and retrieval by various tools.

2 Conformance
The principle goal of SMM is the exchange of measurements about software. To be SMM compliant, a tool
must fully support SMM as one compliance point. An implementation can provide:

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Comment: 14095 + Typos

Deleted: Software

Deleted: specifaction

Deleted: software-related

Deleted: existing software assets (designs,
implementations,

Deleted: operations). A standard for the
exchange of measures is important given the role
that measures play in software engineering and
design

Deleted: software

Deleted: . Software measurement field is fairly
young especially with respect to modernization. As
the field matures, the measures considered as
standard are likely to change

Deleted: instead

Deleted: demonstrate

Deleted: and provide a representation for many
currently popular software measures

Deleted: fullfills

Deleted: .,

Deleted: 14 ,

Comment: 14095

Deleted: completely

Deleted: model elements.

Deleted: Submission

2 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

alpic� 22/3/10 14:00

alpic� 22/3/10 14:00

alpic� 22/3/10 14:01

alpic� 22/3/10 14:01

• The capability to generate XMI documents based on the SMM XMI schema capturing measurements
from the existing model of the tool.

• The capability to import measurements via representations based on the SMM XMI schema and to map
the measurements into the existing model of the tool.

3 Normative References
The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of any of these
publications do not apply.

• UML 2. Infrastructure Specification

• MOF 2.0 Specification

• OCL 2.2 Specification

4 Terms and Definitions
We assume the following definitions:

Measure: A method assigning comparable numerical or symbolic values to entities in order to characterize an
attribute of the entities.

Measurement: A numerical or symbolic value assigned to an entity by a measure.

Measurand: An entity quantified by a measurement.

Unit of Measure: A quantity in terms of which the magnitudes of other quantities within the same total order
can be stated.

Dimension: A totally ordered range of values which can be stated as orders of magnitude relative to one
another or to an archetypal member.

Measurement Accuracy: The measurement by which another measurement may be wrong.

Measurement Scope: The domain (set of entities) to which a given measure may be applied.

Measurement Range: The range (set of comparable values) assignable by a given measure.

5 Symbols
There are no symbols/abbreviations.

6 Additional Information

6.1 Changes to Adopted OMG Specifications
There are no changes to other OMG specifications.

6.2 How to Read this Specification
The rest of this document contains the technical content of this specification.

Although the chapters are organized in a logical manner and can be read sequentially, this reference
specification is intended to be read in a non-sequential manner. Consequently, extensive cross-references are
provided to facilitate browsing and search.

alpic� 22/2/10 22:21
Comment: Missing as reported by PR

Deleted: oftwa

Deleted: re

Deleted: Submissio

Deleted: n

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 3 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 3

alpic� 22/3/10 14:01

6.3 Acknowledgments
The following companies submitted and/or supported parts of this specification:

• EDS

• Benchmark Consulting

• KDM Analytics

• Software Revolution

• Tactical Strategy Group

• NIST

• eCube Systems

The following persons were members of the core team that designed and wrote this specification: Kevin
Barnes, Djenana Campara, Larry Hines, Nikolai Mansurov, Alain Picard, John Salasin, Michael Smith, and
William Ulrich.

7 SMM
Measurements provide data for disciplined engineering in that engineers and their managers rely on these
comparable evaluations in assessing the static and operational qualities of systems.

For example, software measurement methods produce comparable evaluations of software or application
artifacts. Counts such as number of screens, lines of code and number of methods quantify the size of artifacts
along a single dimension. These evaluations readily distinguish larger artifacts from smaller ones; likewise
complexity metrics such as Halstead and Cyclomatic separate the simpler artifacts from the more complex.
Comparable evaluations form mappings of artifacts of a given type into a single dimension.

Such is also the case for architecture measures (coupling and cohesion); functional measures (functions
defined in system, persistent data as a percentage of all data, functions in current system that map to functions
in target architecture); quality measures (failures per unit time, meantime to failure, meantime between repair);
performance measures (average batch window clock time, average online response time); software assurance
measures; and cost measures.

Predictive metrics provide a basis for continual system-level in contrast to fixed milestone-based assessments.
These metrics may indicate at some future development stage the probability that the system will or will not
meet its requirements.

This specification defines a meta-model for representing measurement related to structured model assets and
their operational environments referred to as the Structured Metrics Meta-model (SMM).

The SMM promotes a common interchange format that will allow interoperability between existing tools,
commercial services providers and their respective models. This common interchange format applies equally
well to development and maintenance tools, services and models. SMM complements a common repository
structure and so facilitates the exchange of data currently contained within individual tool models that
represent modeled assets. Given that the repository’s meta-model represents the physical and logical modeled
assets at various levels of abstraction as entities and relations, SMM represent the measurements of these
assets.

The main goals for the SMM are to provide an extendable meta-model establishing a standard for the
interchange of measure libraries and structured model related measurements over the entities modeled by
OMG meta-models. By structured model, we mean measurements derived from the structure model artifacts
(that is those artifact that are modeled according to the MOF meta-model approach). SMM contains meta-
model classes and associations to model measurements, measures and observations. We present and explain
diagrams depicting measures, then measurements and finally observations. All initial depictions are in terms of
software measurement, but the specification is not limited to representing those modeled elements.

SMM supports the meta-models of the OMG by providing for extendable measurements of entities.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: <#>Acknowledgements

Deleted: <#>Benchmark Consulting

Comment: 14095

Deleted: software…software

Deleted: ,

Deleted: existing software…Software

Deleted: modernization
…maintainence…,…existing software…software

Deleted: goal…is…software-…ADM Roadmap1
meta-models or other …software-related…existing
software …including source, design, and linkage
from source to target architectures) or technical
measurements concerning deployment. Source
artifacts include program code, runtime traces,
scheduling specifications, screen layouts, and UML
models. It may also include grid-service
infrastructure descriptions and SOA adoption
specification of multiple organization units in an
enterprise.
,…,

Deleted: ADM roadmap …quantifiable and
specific indicators, in the form of counts, measures,
and computational results, about existing systems
and the relationship of those systems to target
architecture. The meta-model provides …and is
…to … modeled by other OMG meta-models
where those

Deleted: Submission

... [9]

... [10]

... [11]

... [12]

... [13]

4 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

alpic� 22/3/10 14:00

alpic� 22/3/10 14:00

alpic� 22/3/10 14:01

alpic� 22/3/10 14:01

7.1 General Usage Notes (Non normative)
The SMM is designed to allow for both the exchange of measurement data, as well as the measures upon
which those measurements were established.

Even though there exists a mechanism whereby someone can essentially exchange measurement data without
providing any insight into the measures (accomplished with NamedMeasure), this approach is surely not the
major trust of this specification.

The value of SMM comes from the ability of various groups and vendors to be able to define library of
measures against different structured models. These libraries can then be exchanged, validated and then used to
produce measurements of specific model instances.

In order to exchange measure libraries, the definition of those libraries has to be precise and detailed enough to
enable for their unambiguous use in carrying out measurements on models.

While SMM compliance doesn’t mandate how to gather measurements from defined measures, it is clear that
without any common understanding measures loose most of their value. This section should help to facilitate
the understanding of the specification and also provide some background that will help in applying the
specification more uniformly.

7.2 Steps in using SMM (Non normative)
In general, using the SMM starts with the definition of measures and their libraries. In the case of measures
being applied to standard models, these measure libraries could also be pre-defined and made available to
various practitioners.

How we proceed next very much depends on the type of environment that the tools are operating in. Tools that
are simply using the SMM as a mean of interchanging measurement data will take some measurements, along
with the details about the Observation that resulted in those measurements, populate the model and deliver the
results.

Other tools that are designed more natively with the SMM in mind will take a bit of a different multi-steps
process.

Once we have our measures in place, the next step is to determine what we will be measuring. This is what we
call defining the observation. Among other things this will include specifying the model(s) to use
(ObservationScope) for taking the measures, as well as determining which measures we are interested in
performing (requestedMeasures). It can also include determining and passing in any arguments that might be
needed by our requestMeasure(s) and their descendants.

Next step is to apply the requested measure(s) on the model(s) in scope and to figure out the measurements.
Once that is done, the resulting model is ready to be used or exchanged.

The step of applying the measure, the “measurement step” is clearly one that can take on many forms
depending on the implementer. But regardless of how the process is carried out, the measure library should
provide sufficient information for a tool vendor to implement “executable measuring”. This “executable
measuring” should enable another tool vendor, presented with the same measure libraries, observation
information and instance models, to be able to apply those measures in an unambiguous fashion and to come
up with the same measurements (subject to uncertainty errors).

7.3 Interpreting Measures (Informative)
Measures essentially fall into 2 “categories”, there are direct measures, which are measures that are taken
directly against a measurand, and all others, which we shall call derived measures, as their result is based on
some other measure(s), direct or derived. Ultimately, every measure comes from a direct measure (otherwise it
might end up triggering a defaultQuery for its value).

In order to support many type of measure refinement, where you have a drill-down of measures representing
the collective aggregation of values in a top-down fashion, and also in order to make sure that derived
measures are correctly linked to their base measure(s), the establishment of a measurement graph shall be
considered to essentially be a top-down operation.

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

Comment: Non normative notes

Deleted: are software-related

Comment: Non normative notes

Comment: Non normative notes

Deleted: oftwa

Deleted: re

Deleted: Submissio

Deleted: n

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 5 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 5

alpic� 22/3/10 14:01

In contrast, the taking of measurements to realize such a measurement graph, is normally a bottom-up
operation, where the direct measures are first calculated, in order for the various next levels of derived
measures to have all of the base measures calculated prior to being calculated themselves.

Figure 1 Fundamental Approach
SMM avoids duplicating features of the measured artifact as features of the measurement. Consider as an
example a log of bug reports. Possible measures are total bug count in the log, total time logged in the log and

class Fundamental
Approach

SMM_Element
Measur
e

+

library: string
[0..1] +

name: string
[0..1]

SMM_Elemen
t Measuremen

t
+

error: string
[0..1]

MOF::Elemen
t

SMM_Elemen
t Observatio

n
+

observer: string
[0..1] +

tool: string
[0..1] +

whenObserved: Date
[0..1]

+refinemen
t 0..
*

+equivalentT
o 0..
*

+equivalentFro
m 0..
*

0..
*

+measuran
d

+observatio
n

+measuremen
t 0..

*

+measur
e

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Comment: Original figure 1
14101 – Measure attributes
14104 – Observation scope
14232 – observedMeasure
14233 – ObservedMeasure + requestedMeasures
14600 – Changed relationship of measure

Deleted: -

Deleted: Submission

6 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

alpic� 22/3/10 14:00

alpic� 22/3/10 14:00

alpic� 22/3/10 14:01

alpic� 22/3/10 14:01

bugs per time-period. The units of measures are a bug, a unit of time and bugs per time interval, respectively.
SMM does not provide representations for bug, start time and end time. Their representations must be provided
elsewhere3.

A measurement result is precisely identified only if its measure is identified. To understand the meaning of
1000 lines we need to know that it is the result of measuring a program’s length in lines. The measured entity
must be identified. That is, 1000 lines is for a particular program. Contextual information may also be needed.
For example, function point counts of a program may vary depending upon the expert applying the measure.

Figure 1 presents the fundamental approach of this specification. Measurement has a value conveying the
measurement results. The measurement may be of any MOF element as related by the measurand association.
In this way, measurement is applicable to elements of any OMG meta-models including the Knowledge
Discovery Meta-model and the Abstract Syntax Tree Meta-model. The measured entity may represent any
software artifact or an aspect of an artifact.

The SMM associates an evaluation process, a measure, to each of the measurement. Measures signify
functions from the domain of the modeled artifacts and aspects thereof to sets of ordered values.

Contextual information is related by Observation, such as who, where and when. Observation may serve to
distinguish distinct utilizations of a given measure on a given measurand.

8 Core Classes

Figure 2 Core Classes Diagram

3 For example, the General Ledger Specification v1.0 provides representations for start_date and end_date.

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Comment: typo

Deleted: unit

Deleted: 2.

Deleted: Figure 1

Deleted: Figure 1

Comment: 14095

Deleted: other

Comment: 14095

Deleted: software

Deleted: ,

Deleted:

Deleted: -

Deleted: oftwa

Deleted: re

Deleted: Submissio

... [14]

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 7 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 7

alpic� 22/3/10 14:01

Figure 3 Core Relationship Classes

8.1 SmmElement Class (Abstract)
An SmmElement constitutes an atomic constituent of a model. In the meta-model, SmmElement is the top
class in the hierarchy. SmmElement is an abstract class.

Attributes
name: String Specifies the name of the SMM element (optional)
shortDescription: String A short description for the element (optional).
description: String A detailed description for the element (optional).

Associations
inbound:SmmRelationship[0..*] The set of relationship such that the current SmmElement is the

to-endpoint of these relations. This property is a derived union.
outbound:SmmRelationship[0..*] The set of relationship such that the current SmmElement is the

from-endpoint of these relations. This property is a derived
union.

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Deleted: 8.1 SMM_Element

Comment: 14096 renaming

Comment: 14096 renaming

Comment: 14096 renaming

Deleted: SMM element

Deleted: SMM_Element

Deleted: SMM_Element

Deleted: .

Comment: 14096 renamed

Deleted: short_description

Comment: 14099 added missing

Deleted: 8.2 SMM_Model

Deleted: Submission

8 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

alpic� 22/3/10 14:00

alpic� 22/3/10 14:00

alpic� 22/3/10 14:01

alpic� 22/3/10 14:01

Operations
getInbound:SmmRelationship[0..*] This operation returns the set of relations represented by the

derived union inbound relation.
getOutbound:SmmRelationship[0..*] This operation returns the set of relations represented by the

derived union outbound relation.

8.2 SmmModel Class
This class represents the entry point into the SMM model and provides the top-level container for all the
elements of the SMM.

SuperClass
SmmElement

Associations
libraries:MeasureLibrary [0..*] The set of all MeasureLibrary owned by the model.
observations:Observation[0..*] The set of all Observation owned by the model.

8.3 SmmRelationship Class (abstract)
This class is a model element that represents semantic association between SMM elements.

SuperClass
SmmElement

Associations
from:SmmElement[1] The origin element (also referred to as the from-endpoint of the

relationship). This property is a derived union.
to:SmmElement[1] The target element (also referred to as the to-endpoint of the

relationship). This property is a derived union.

Operations
getFrom:SmmElement [1] This operation returns the SmmElement that is the to-endpoint (the

target) of the current relationship.
getTo:SmmElement[1] This operation returns the SmmElement that is the from-endpoint (the

origin) of the current relationship.

8.4 MeasureLibrary Class
This class represents libraries of measures. A library represents the top container for all measure artifacts. The
library of measures defines a reference set of measures that can be applied over and over in a way that is
independent and decoupled from the models under observation. Therefore it shall be possible to pre-define
library of metrics and to pass those libraries to a builder so that the metrics can be applied to specified models,
without affecting the measures in the library.

SuperClass
SmmElement

Associations
measureElements:AbstractMeasureElement [0..*] The set of all AbstractMeasureElement owned by

the measure library.
categoryRelationships:CategoryRelationship [0..*] The set of all CategoryRelationship owned by the

measure library.

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

Comment: 14097 & 14099 added missing

Comment: 14096 renaming

Deleted: aggregation of

Comment: 14099 added missing

Deleted: 8.3 SMM_Relationship

Comment: 14232 added both relations

Comment: 14096 renaming

Deleted: SMM_Element

Deleted: SMM_Element

Comment: 14097

Deleted: SMM_Element

Comment: 14097

Comment: 14600 added operations

Deleted: 8.4 SMM_Category

Comment: 14232 added class

Deleted: oftwa

Deleted: re

Deleted: Submissio

Deleted: n

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2 9 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 9

alpic� 22/3/10 14:01

Semantics
Measure elements can be related across libraries and need not be restricted to their own library.

8.5 MeasureCategory Class
This class represents categories of measures. A category has measures and other categories as its elements.

A category represents the measures directly associated with an ‘element’ and the measures of each sub-
category likewise associated with an ‘element’.

A measure may appear in multiple categories. A category can be a subcategory of other categories indicating
only that its measures also are measures of these other categories.

This class may be used to represent a family of similar measures which apply to different scopes such as lines
of code in a file, lines of code in a method and lines of code in program. It may also represent a category of
measures which are associated with a given field or engineering task. For instance we speak often of Quality
Assurance Metrics and Software Maintainability Metrics. The category of a metric may indicate the kind of
purpose for which the metric is used.

• Environmental Metrics (e.g., number of screens, programs, lines of code, etc.)

• Data Definition Metrics (e.g., number of data groups, overlapping data groups, unused data elements,
etc.)

• Program Process Metrics (e.g., Halstead, McCabe, etc.)

• Architecture Metrics (e.g., average call nesting level, deepest call nesting level, etc.)

• Functional Metrics (e.g., functions defined in system, business data as a percentage of all data, functions
in current system that map to functions in target architecture, etc.)

• Quality Metrics (e.g., failures per day, meantime to failure, meantime to repair, etc.)

• Performance Metrics (e.g. average batch window clock time, average online response time, etc.)

• Software Assurance Metrics

Metric categorization has other uses as well. For example, measures may be categorized by tool support.

SuperClass
AbstractMeasureElement

Associations
category:MeasureCategory[0..*] Represents the parent endpoint of the category

hierarchy relationship.
categoryElement:MeasureCategory[0..*] Represents the children endpoint of the category hierarchy

relationship.

categoryMeasure:Measure[0..*] Represents that measure is in this category.

8.6 CategoryRelationship
This class is a model element that represents semantic or named association between Measure categories and
other Measure elements. For example, a modeler may choose to create a “gold standard” measure for a
selected category. To do so, the modeler can use a category relationship named “gold standard” to associate the
measure to the category. See Figure 17.

SuperClass
SmmRelationship

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

Comment: 14096 & 14231 renamed class

Deleted: withan ‘element.’

Comment: 14095

Deleted: that

Deleted: software

Deleted: .,

Comment: 14098 correct category associations

Comment: 14098 cardinality

Deleted: Category

Deleted: Indicates that categoryElement is a
subcategory

Deleted: this

Deleted: .

Comment: 14098 renamed

Deleted: categoryElement

Deleted: Indicates

Comment: 14098 delete param assoc.

Deleted: parameter:Category_Relationship[0..*]

Deleted: Associates parameters or features of the
category.

Comment: 14096 Renamed

Deleted: <#>8.5 Category_Relationship

Deleted: SMM catogories

Deleted: SMM

Deleted: Figure 17

Deleted: Figure

Deleted: SMM_Element

Deleted: Submission

... [15]

... [16]

10 Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) FTF 2

alpic� 22/3/10 14:00

alpic� 22/3/10 14:00

alpic� 22/3/10 14:01

alpic� 22/3/10 14:01

Associations
from:MeasureCategory[1] Indicates the measure category which has relation.
to:AbstractMeasureElement[1] Indicates the Category or Measure element related to the category. A

constraint is used to limit the type of SmmElement that can be used.

Semantics
CategoryRelationship represents a named association between a measure category and a measure element
(AbstractMeasureElement) such as a measure.

Constraints
context CategoryRelationship inv:

to.oclIsTypeOf(MeasureCategory) or

measures.oclIsTypeOf(Measure)

8.7 Date
This represents dates. In a language binding it should be mapped to a type that allows ordered comparison. For
XMI it is mapped to the XML Schema date type.

8.8 Timestamp
This represents a point in time: for example, a combination of a date and a time within the day. For XMI it is
mapped to the XML dateTime type.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Deleted: SMM_Category

Deleted: to:SMM_Element

Deleted: SMM

Deleted: Category_Relationship

Deleted: an

Deleted: SMM_Element

Comment: 14104

Deleted:

Deleted: oftwa

Deleted: re

Deleted: Submissio

Deleted: n

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 11 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 11

9 Extensions
The SMM model provides for a set of simple extension mechanisms that provide a uniform meta-model pattern for
extending the SMM model.

Figure 4 SMM Extensions
This diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to instances of
SMM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs of <tag, value>
to an individual element instance. An ad hoc user-defined attribute is owned by an individual element instance. This
means that different instances of the same meta-model element may own completely different user-defined attributes
(and some may have none at all).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to
the elements of SMM instances. They may be used by implementer to add specific information to an individual
element. They may also be used by an analyst, annotating a given SMM instance.

9.1 Attribute Class
An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). Attribute add information to the instances of model elements.

SuperClass
SmmElement

Attributes
tag: String Contains the name of the attribute. This name determines the semantics

that are applicable to the contents of the value attribute.
value: String Contains the current value of the attribute

Constraints
Attribute cannot have further annotations or attributes.

Semantics
The interpretation of attribute semantics is outside the scope of SMM. It must be determined by the user or the
implementer conventions. It is expected that some tools will provide capability to add arbitrary attributes to the
instances of the model to supply information needed for their operations beyond the basic semantics of SMM. Such
information could support analysis of SMM models by analysis, etc.

An attribute element is not related to a particular meta-model element. It does not define a “virtual” attribute to an
extended meta-model element that is instantiated with every instantiation of the new element. Instead, an attribute
element can be added to any SMM element. It defines a property of a particular instance, not a property of a class of

alpic� 22/2/10 22:21
Comment: 14105 extensions

12 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

instances.

9.2 Annotation Class
Annotations allow textual descriptions to be attached to any instance of a model element.

SuperClass
SmmElement

Attributes
text: String Contains the text of the annotation to the target model element.

Constraints
Annotations cannot have further annotations or attributes.

Semantics
Annotation allows associating a human-readable text with an instance of any Element.

10 Measures
Measures are evaluation processes that assign comparable numeric or symbolic values to entities in order to
characterize selected qualities or traits of the entities. Counting the lines of program code in a software application is
one such evaluation.

There may be many measures which characterize a trait with differing dimensions, resolutions, accuracy, and so
forth. Moreover, trait or characteristic may be generalize or specialized. For example, line length is a specialization
of length which is a specialization of size.

Each measure has a scope, the set of entities to which it is applicable; a range, the set of possible measurement
results; and the measurable property or trait which the measure characterizes. For example, the aforementioned line
counting has software applications as one of its scope with line length as one of its measurable trait. Explicitly
representing the scope and the measurable trait allows for the consideration of different measures which characterize
the same attribute for the same set of entities. Each measurable trait may have multiple, identifiably distinct
measures.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 13 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 13

Figure 5 Measurable Characteristic and Scope
The evaluation process may assign numeric values which can be ordered by magnitude relative to one another.
These measures are modeled by the DimensionalMeasure class.

The evaluation process may alternatively assign numeric values which are percentages or, more generically, ratios of
two base measurements. These measures are modeled by the Ratio class. The percentage of comment lines in an
application exemplifies this type of measure.

The evaluation process may also assign symbolic values demonstrating a ranking which preserve the ordering of
underlying base measures. These measures are modeled by the Ranking class. Cyclomatic reliable/unreliable
criterion illustrates one such ranking. Reliable is comparably better than unreliable. Comparability is essential here
because ranking is not intended to model every possible assignment of measurands.

The documentations of measures, accomplished with measure libraries, should stand by themselves so that an
interchange of measurements may simply reference such documentation and not duplicate it. The documentation of
measures should also be precise and complete enough to provide for an unambiguous specification that can be
executed on a referenced model, with the exception of the NamedMeasure when used for simple result interchange.
The actual ability to execute a model is not part of the compliance to this specification and neither is the method to
provide execution defined within this specification. These are left to the implementers.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

Deleted:

Deleted: 3

Comment: 14609 named measure clarification

14 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 6 Measure Class Diagram

10.1 AbstractMeasureElement Class (abstract)
The AbstractMeasureElement is the abstract parent class for all measure entities.

SuperClass
SmmElement

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

Deleted:

Deleted: 4 -

Comment: 14232 class added

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 15 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 15

Associations
None.

10.2 Characteristic Class
This class represents a property or trait of the members in its scope, a set of MOF Elements, which may be
characterized by applying a measure to those members. By specifying a characteristic a modeler is indicating what
aspect, trait or property the measure purports to measure.

Note that Characteristic provides for a representation of a hierarchy of measures based upon the abstraction of
measured trait. For example, a length characteristic may be the parent of the fileLength and programLength
characteristics. programLength could be the parent of programLinesOfCodeLength.

SuperClass
AbstractMeasureElement

Attributes
name: String Specifies the name of the SMM element. (inherited)

Associations
parent:Characteristic[0..1] Specifies the generalization of this characterization.

10.3 Scope Class
This class represents sets of MOF::Elements as domains for measures. The domain is a subset instances of a class
specified by the class attribute. If the subset does not include all instances of the given class then a restriction is
specified by specifying a recognizer for the subset elements.

The scope of a measure identifies a set of objects as the domain of the measure. The object all exhibit to varying
degrees the trait or property characterized by a measurement. SMM requires that the objects be instances of a single
class. The set of objects may be further restricted by a recognizer operation. The recognizer is optional.

The recognizer, if given, is a boolean operation applicable to instances of the named class. The measure’s scope is
restricted to those instances for which the recognizer returns true.

SuperClass
AbstractMeasureElement

Attributes

class: String[1] Specifies the class for elements of the set. See semantics for format rules
(required).

Associations
recognizer:Operation[0..1] If given, provides a boolean operation applicable to instances of the

class which returns true if and only if the instance is an element of the
set.

breakCondition: Operation[0:1] If given, provides for an operation that returns a string describing a
break condition to allow for dynamically grouping instances of the class
in scope by a certain value. For example, this can be used to group
elements by language name in KDM SourceItem or by folder name in
Inventory Items, without having to know all of the possible conditions
in advance.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

Deleted: modeller

Deleted: representaion

Comment: 14232

Deleted: SMM_Element

Comment: 1400 introduced changes that
modified some text

Deleted: 9.2

Deleted: ,

Deleted: either by enumerating the element or

Deleted: function or by enumerating them
explicitly

Deleted: and the enumeration are

Deleted: , but they cannot be used together

Deleted: function

Deleted: Alternatively if enumeration is set then
the scope is the set of instances (of the named class)
associated as elements to the Scope.

Comment: 14232

Deleted: SMM_Element

Comment: 14100 & 14232 & 14602

Deleted: name: String

Comment: 14602

Deleted: element:MOF::Element[0..*]

Deleted: Specifies the elements of the set.
Elements are specified if and only if enumerated is
true.

Comment: 14602

... [17]

16 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Semantics
The class attribute may name a class within any MOF model. The entities associated as elements of a Scope are
restricted to members of the specified class.

The class attribute should be able to provide an unambiguous way to specify a class name. In order to achieve this
goal, the string should be formatted according to the following pattern, with all 3 elements being required:

 Namespace:Package::ClassName

This usage of package pathnames is transitive and can also be used for packages within packages:

 Packagename1::Packagename2::ClassName

Where:

• Namespace represents the model where the class is defined. Namespace can be either one of the pre-defined
values (“kdm”, “astm” or “smm” at the moment) or be a namespace defined in the XMI where this measure is
located. For example a namespace value of “mykdm” would be valid if the SMM model contains the
following XMI namespace definition in its header:
“xmlns:mykdm=http://kdm.somecompany.com/spec/KDM/1.4”. XMI based namespace definition can also be
used with the standard namespace to point the class name definition to a specific version of those model
specification. Without such a namespace entry, the pre-defined values would point to a “current” unspecified
version.

• Package represents the package name within the model

• ClassName represents the base class name within the specified package.

The breakCondition attribute is defined as an OCL operation that evaluates to a string representing the group or
break value of the class instance.

• Examples:

1. this.language

1. This would represent a break on the attribute language, as seen in the KDM inventory model
SourceFile class. Applicable as long as the measurand class is the same as the scope class,
SourceFile in this example.

10.4 Measure Class (abstract)
The Measure class (see Figure 1) models the specification of measures either by name, by representing derivations of
base measures, or by representing method operations directly applied to the measured object. The essential
requirement for the measure class is that it meaningfully identifies the measure applied to produce a given
measurement. For example, McCabe’s cyclomatic complexity could be specified by its name, McCabe’s cyclomatic
complexity, by a direct measurement operation or by rescaling counts of either independent paths or choice points.
A measure may alternatively be identified by citing a library of measure which includes the measure by name.

The scope of a measure identifies a set of objects as the domain of the measure. The objects all exhibit to varying
degrees the trait or property characterized by a measurement. SMM requires that the objects be instances of a single
class. The set of objects may be further restricted by a recognizer function. The recognizer is optional.

Scope need not be specified if the library and name are given. In that case, the scope can be found in the library.

A measure may be a refinement of another measure. The scope of the first measure is a subset of the second
measure’s scope. The characteristic of both measures must be identical.

SuperClass
AbstractMeasureElement

Attributes
name: String[1] Specifies the unique name of the measure. (inherited)

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 21:12

Comment: 14100 document content of class
attribute

Deleted: OMG standard.

Deleted: an

Deleted: specifies

Deleted: <#>9.3 Measure Class (abstract)
This

Deleted: Figure 1

Deleted: Figure 1

Deleted: or by enumerating them explicitly

Deleted: and the enumeration are

Deleted: , but they cannot be used together

Comment: 14232

Deleted: SMM_Element

Deleted: 0..

Deleted: library: String[0..1] ... [18]

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 17 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 17

measureLabelFormat:String[0:1] Specifies a label format string to use when rendering this
measure. See semantics for detailed content format.

measurementLabelFormat:String[0:1] Specifies a label format string to use when rendering
measurements of this measure. See semantics for detailed
content format.

visible:boolean[1:1] Specifies if rendering tools should display this measure or not.
Some measures whose role is only to help produce other
measures will often be marked as non-visible. Defaults to true.

Associations
scope:Scope[1] Specifies a set of elements measurable by this

measure.
defaultQuery:Operation[0..1] Specifies a query that is used to determine a

default value for the measure in case we are
dealing with a non-direct measure (i.e. a
measure that depends on another for its value)
where its base measure returns no children. This
is a normal situation that can happen when
certain optional “children” don’t exist.

equivalentFrom:EquivalentMeasureRelationship[0..*] Specifies the relationship instance that defines
the equivalency of this measure.

equivalentTo: EquivalentMeasureRelationship[0..*] Specifies the relationship instance that defines
the equivalency of this measure.

refinementFrom:RefinementMeasureRelationship[0..*] Specifies the relationship instance that defines
the refinement of this measure.

refinementTo:RefinementMeasureRelationship[0..*] Specifies the relationship instance that defines
the refinement of this measure.

recursiveFrom:RecursiveMeasureRelationship[0..*] Specifies the relationship instance that defines
the recursivity of this measure.

recursiveTo:RecursiveMeasureRelationship[0..*] Specifies the relationship instance that defines
the recursivity of this measure.

category:MeasureCategory[0..*] Specifies categories to which this measure
belongs.

trait:Characteristic[1] Specifies the trait characterized by this

measure.

inbound:MeasureRelationship[0..*] The set of relationship such that the current
Measure is the to-endpoint of these relations.
This property is a derived union.

outbound:MeasureRelationship[0..*] The set of relationship such that the current
Measure is the to-endpoint of these relations.
This property is a derived union.

measureRelationships:MeasureRelationship[0..*] The set of all MeasureRelationship owned by
the measure.

Operations
getArguments:Argument[0..*] This operation returns the set of arguments that the different

operations of the measure have defined and got returned by
getParamStrings().

getAllArguments:Argument[0..*] This operation returns the set of arguments for this measure and any
child measure required for the execution of the measure. It should call
getArguments() on itself and every one of its child measures.

Semantics
The labelFormat is based on the concept of format string used in many languages to assemble string content for
rendering. Although beyond the scope of this specification to cover implementation details, this format also supports

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

Comment: 14101 & 14607

Comment: 14607

Comment: 14101

Comment: Simply moved

Deleted: equivalentFrom:Measure[0..*]

Deleted: Indicates that two measures are
equivalent.

Comment: 14604 added

Deleted: equivalentTo:Measure[0..*]

Deleted: Indicates that two measures are
equivalent.

Comment: 14101 changed endpoint

Deleted: scope:Scope

Deleted: a set…elements measurable by

Comment: 14101 changed endpoint

Deleted: refinement:Measure[0..*]

Deleted: measures whose scopes are
subclasses…measure’s scope.

Deleted: category:SMM_Category[0..*]…

Deleted: belongs

Comment: 14600

Deleted: measurement: Measurement[0..*]

Deleted: Indicates measurements obtained by

Comment: 14600

Deleted: trait:Characteristic

Deleted: trait characterized by

Comment: 14600

Comment: 14600

Comment: 14600

Comment: 14600

Deleted: Constraint

context Measure inv:
not library->isEmpty implies not
name->isEmpty and
scope->isEmpty implies not
library->isEmpty.
Semantics
Assigning a measure to the equivalentTo role of

Comment: 14603 added

Comment: 14603 added

... [19]

... [20]

... [21]

... [22]

... [23]

... [24]

... [25]

... [26]

... [27]

... [28]

... [29]

... [30]

... [31]

... [32]

... [33]

... [34]

... [35]

... [36]

... [37]

... [38]

... [39]

... [40]

18 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

the use of external resource to provide i18N internationalization.

Just like format strings, the labelFormat is defined as a text portion with possible replacement expressed as argument
index surrounded by French braces “{}”, where the zero-based index is matched with its corresponding replacement
argument, which follow the text portion.

Label format specification:

“Template Text”, Context Object: OperationName, ContextObject.attribute,…

Examples of the label String Template could be:
“This is a label” A fixed string, in which case no arguments are necessary
“This {1} of {0} A label with replaceable arguments that will come from evaluating

the corresponding argument from the list supplied (in numerical
order, starting at 0)

$Resource:resource_text_constant Here resource_text_constant would be replaced with a constant that
will be matched in some resource location and for the proper locale
(not defined here). The content returned by this resource resolution
can be any valid label string template.

The arguments of the label format are defined in a comma separated list. Each of those arguments must follow a
specific pattern. There is a standard syntax and also a shorthand version for some common cases.

The standard syntax, which is always valid, starts by specifying a context object, followed by a literal colon “:”, then
an operation whose name must be the name of a valid instance in the Operation class,

• ContextObject: It is the first part and it represents the Object that we are interested in collecting information
from. This object is related or associated with the measurement such as the Scope or the measure or the
measurand …etc. It is important to understand here that the labelFormat is defined as part of the measure, but
it is accessed normally from within the context of a measurement.

• OperationName: Defines the name of a valid instance of the Operation class that is designed to return a string.

The shorthand syntax is valid to get the value of attributes from the current instance of measurement, measure and
scope based on the current context of the initial measurement. This syntax calls for the use of a dotted notation being
ContextObject.attributeName. For example you could get “Measure.name” or “Scope.class” directly.

The defaultQuery is designed to provide a way to specify a default value in the specific case where a non-direct
measure (i.e. a measure that depends on another for its value) happens not to have any available value from what
should have been its “base measure”. In those case, the query should be execute to provide for the value instead of
returning null or failing the measurement, as this is a normal situation that can happen when certain optional
“children” don’t exist.

10.5 Operation Class
Operation is a subclass of AbstractMeasureElement which defines an operation to execute.

SuperClass
AbstractMeasureElement

Attributes
language:String Specifies the language of the operation. Valid values are currently

“OCL” and “XQuery”.
body:String Specifies the measurement operation expressed in the selected language.

Operations
getParamStrings:String[0..*] This operation returns the set of String that defines the parameter in use

by an operation.

alpic� 22/2/10 22:21
Comment: 14103 added

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 19 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 19

Semantics
The operation body supports the use of replaceable parameters in order to support parameterized measures. This is
accomplished by defining placeholders for incoming arguments that will be replaced at runtime with a specific
value, like when dealing with date ranges for example.

The implementer is responsible, when using the measure library in an executable fashion, to determine base on the
requested measures of his observation, what are all of the arguments that should be passed in with the observation in
order to properly perform the measurements. The getArguments and getAllArguments operation of the Measure
class are designed to help in this regard.

When parameters are used they must adhere to the following specification: '{' [typeName] parameterName [' =”'
defaultValue '” '] '}' where:

• typeName represents the type of the parameter. The typeName must be one of the types supported by the
“type” attribute of the Argument class

• parameterName represents the name of the parameter (required)

• defaultValue represents a default value to offer (on getArguments()) or to use if not supplied as Argument to
an observation. defaultValue is optional.

10.6 OCLOperation Class
OCLOperation is a subclass of AbstractMeasureElement which defines OCL helper methods.

SuperClass
AbstractMeasureElement

Attributes
context:String Specifies the classifier for which this helper is being defined. OCL inheritance rules

applies to resolve applicability of operation, based on the passed in context
body:String Specifies the body of the OCL helper method.

Semantics
The OCLOperation class allows for the definition and registration of OCL helper methods in the context of specific
classifiers. These operations allow for the definition and reuse of often lengthy and complex OCL methods. It is the
implementer’s responsibility to determine how to best provide for the parsing or execution environment of those
methods. Any helper method that is defined with an OCLOperation then becomes available for OCL based
operations applied to the proper classifier.

10.7 MeasureRelationship Class (abstract)
MeasureRelationship is an abstract class representing any relationship between two measures. See Figure 6.

SuperClass
SmmRelationship

Attributes
name:String Specifies the name of this measure relationship. (inherited)

Associations
from:Measure [1] The origin element (also referred to as the from-endpoint of the

relationship). This property is a derived union.
to:Measure [1] The target element (also referred to as the to-endpoint of the

relationship). This property is a derived union.
measurandQuery:Operation[0..1] Specifies a query that is used to determine the measurands that satisfy

alpic� 22/2/10 22:21

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20
Formatted: Font:Times New Roman
Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:21

Comment: 14602 added

Deleted: Figure

Deleted: Figure 6

Comment: 14601

20 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

the relation between two measures. It is most often used to specify the
measurands that match a specific non-containment refinement relation
between measures.

Semantics
By default, relationship between measures have their meaning implied by their concrete subtype. The
measurandQuery defines an optional way to describe this relationship by allowing the specification of a query
operation that will return the specific measure instance that satisfies the query condition. It is mostly designed to be
used with RefinementMeasureRelationship in order to provide a navigation that is different than the default
containment mode.

10.8 EquivalentMeasureRelationship Class
EquivalentMeasureRelationship is a class representing any relationship of equivalency between two measures. See
Figure 6.

SuperClass
MeasureRelationship

Associations
from:Measure[1] Specifies the equivalent measure at the from endpoint of the relationship.
to:Measure[1] Specifies the equivalent measure at the to-endpoint of the relationship.
mapping:Operation[0..1] Specifies the mapping operation query that retrieves the “to” measure

between a pair of equivalent measures, when each measure is represented
by a different scope.

Semantics
Defining a measure as being equivalent to another measure states that two measures are semantically
indistinguishable. Any measurement result by one on a given entity under a given observation should equal a
measurement by the other on the same or different entity as long as they are part of the same observation.

The semantics of this association is symmetric, but only one direction needs to be defined in a way that is
resolvable, i.e. in a way that provides a path all of the way to base measures assigned against outside measurand. If a
measure can’t resolve to base measurements but is defined as equivalent to another measure, then it can use this
equivalency to derive its own measurement result.

This means that when establishing the dependency graph for calculation, a measure can find its base measure not
only through direct lineage, but also through measure equivalency. For example, calculating LOC at various levels
in code can be defined against ASTM. Then we define that the ASTM CompilationUnit level LOC measure is
equivalent to the KDM SourceFile LOC measure. This then allows for the SourceFile LOC measure to find its result
through its equivalency relationship.

10.9 RefinementMeasureRelationship Class
Refinement MeasureRelationship is a class representing any relationship of refinement between two measures.

SuperClass
MeasureRelationship

Associations
from:Measure[1] Specifies the measure at the from endpoint of the relationship.
to:Measure[1] Specifies the measure at the to-endpoint of the relationship.

alpic� 22/2/10 22:21

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20
Formatted: Font:TimesNewRoman
Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

Comment: 14101 added

Deleted: Figure

Deleted: Figure 6

Deleted: and

Deleted: The semantics of this association is
symmetric, but only one direction needs to be
given.

Comment: 14600 added from existing association

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 21 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 21

Semantics
Throughout the remainder of this document we will say that a measure is a refinement of another measure if and
only if the first is associated to the second as a refinement directly or transitively.

When this association is defined without a measurandQuery (from MeasureRelationship superclass), then it implies
that the from and to measure of the refinement are related through a containment relation where the from measure is
the container and the to measure represents the content of the container.

When the refinement relation between the two measure classes is not a direct containment, then a measurandQuery
should be used to provide the appropriate query to retrieve the related children in the scope of the ‘to’ measure.

10.10 RecursiveMeasureRelationship Class
RecursiveMeasureRelationship is a class representing any relationship of recursivity on a measure upon itself.

SuperClass

MeasureRelationship

Associations
from:Measure[1] Specifies the measure at the from endpoint of the relationship.
to:Measure[1] Specifies the measure at the to-endpoint of the relationship.

Semantics
Defining a measure as being recursive to itself states that measure can recursively refine itself and that we intend to
apply this recursive refinement to our measure.

Constraint
context RecursiveMeasureRelationship inv:
from = to.

10.11 DimensionalMeasure Class
This class models the specification of measures which assign numeric values that can be placed in order by
magnitude. Dimensional measures have units of measures and their values span a dimension. See Figure.

The unit of measure is an archetypal or prototype element of the dimension. Every element of the dimension can be
stated by a numerical multiple of the ‘unit of measure’ element.

The unit of measure does not distinguish between measures which share the same range. That distinction would be
entirely within the purview of the measure identification. For examples, a height measure and a width measure may
share the same unit of measure. That is to say, a measurement is not just a number and a unit of measure. The
measured artifact must be indicated, the measure identified and contextual information retained as the observation.

SuperClass
Measure

Attributes
unit:String Identifies the unit of measure.

Associations
 rankingFrom:RankingMeasureRelationship[0..*] Specifies the relationship instance that defines the

rankings for this measure.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

Deleted: This association implies that the class
of the scope of a measure is a superclass of the class
of the scope of any refinement measure. For any
measure m and for any class c equal to
m.refinement.scope.class, c is the class or is a
subclass of the class m.scope.class.

Deleted: The refinement association essentially
establishes measures as methods of their scope’s
classes.
<#>9.4 MeasureRelationship (abstract)
MeasureRelationship is an abstract
Comment: 14600 added from existing association

Deleted: between two measurements. See Figure
4. The class provides as an extension point

Deleted: SMM_Relationship
Attributes

Deleted: name:String

Deleted: name of this

Deleted: (inherited)

Deleted: Associations
from:Measure

Deleted: See Figure 4.

Comment: 14600

... [41]

... [42]

22 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

baseMeasureFrom:BaseMeasureRelationship[0..*] Specifies the relationship instance that defines the
accumulation for this measure.

baseMeasure1From:Base1MeasureRelationship[0..*] Specifies the relationship instance that defines the 1st
part of the binary comparator for this measure.

baseMeasure2From:Base2MeasureRelationship[0..*] Specifies the relationship instance that defines the
2nd part of the binary comparator for this measure.

rescaleTo:RescaledMeasureRelationship[0..*] Specifies the relationship instance that defines the
measure rescaling this measure.

10.12 Ranking Class
This class represents simple range-based grading or classifications based upon already defined dimensional
measures. See Figure 6.

Examples are:

• Small, medium, large

• Cold, warm, hot

• A, B, C, D or F

• Reliable / Unreliable

Collectively the ranking intervals may completely cover the base dimension or may leave gaps. A base
measurement in such a gap is considered unranked and is not representable as a measurement of the ranking
measure.

The intervals may overlap. A ranking resulting in a particular symbol means and only means that the base measure
resulted in a value occurring a ranking’s interval which mapped to that symbol. This does not exclude the possibility
that the value might occur in another interval.

Ranking consists of mapping intervals to symbols where the intervals are parts of the underlying measure’s
dimension. For example, 100 to 90 points maps to “A,” 80 up to 90 maps to “B,” 70 up to 80 maps to “C,” 60 up to
70 maps to “D,” and below 60 maps to “F.” The underlying dimension consists of grade points. The result is the
usual A,B,C,D, and F style grade.

Ranking measure may represent a purely qualitative evaluation with no quantitative base measure. For example we
could measure the non-standardness of the source language and evaluate it without quantification. It is identified as
“2GL,” “Unacceptable 3GL or 4GL,” “Acceptable 3GL or 4GL,” or “Ideal Strategic Language.” The first two are
judged equivalently non-standard. The third is more nearly standard and the last is standard.

SuperClass
Measure

Associations

rankingTo:RankingMeasureRelationship[0..1] Specifies the relationship instance that defines the measure
ranked by this ranking.

interval:RankingInterval[1..*] Identifies intervals within the dimension of the base measure
and the symbol to which each interval is mapped.

10.13 RankingMeasureRelationship
RankingMeasureRelationship is a class representing any relationship of ranking between a ranking measure and a
dimensional measure.

SuperClass
MeasureRelationship

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20
Formatted: Body Char1, Font:(Default)
Times New Roman
Andrew Watson� 11/3/11 11:20

alpic� 22/3/10 17:18
Formatted: Body Char1, Font:(Default)
Times New Roman
Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

Deleted: gradings

Deleted: Figure 6

Deleted: Figure

Deleted: baseMeasure:DimensionalMeasure

Deleted: Identifies

Deleted: base

Deleted: on which

Deleted: measure is based.

Comment: 14600 added from existing association

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 23 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 23

Associations
from:Ranking [1] Specifies the ranking measure at the from endpoint of the relationship.
to:DimensionalMeasure[1] Specifies the dimensional measure at the to-endpoint of the relationship.

10.14 RankingInterval Class
This class represents the mapping of an interval to a symbol that serves as a rank. See Figure 6.

SuperClass
SmmElement

Attributes
maximumOpen:Boolean True if and only if interval include maximum endpoint. Default = false.
minimumOpen:Boolean True if and only if interval include minimum endpoint. Default = false.
maximum:Number Identifies interval’s maximum endpoint.
minimum:Number Identifies interval’s minimum endpoint.
symbol:String Base measurements within this interval are mapped by symbol.

Constraints
context RankingInterval inv:
maximum ≥ minimum and (maximumOpen or minimumOpen → maximum > minimum)

11 Collective Measures
This diagram represents measures which assess container entities by accumulating assessments of contained entities
which are found by the base measure. See demonstration given in Figure 8.

Most engineering measures are collective. We count up lines of code for each program block and sum these values
to measure routines, programs and eventually applications. A similar process is followed to count operators,
operands, operator and operand occurrences, independent paths, and branching points.

Other frequently used container measures are based upon finding the maximum measurement of the container’s
elements. Nesting depth in a program and class inheritance depth exemplify these collective measures.

The collective measure specifies the following measurement process:

1. Apply the base measure to each contained element to obtain a set of base measurements.

2. Apply the n-ary accumulator to the set of base measurements to obtain the measurement of the container.

Figure 8 demonstrates this process, with simplified associations.

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: The booleans, maximuOpen, and
minimumOpen default to false.

Deleted: Figure 6

Deleted: Figure

Deleted: SMM_Element

Deleted: SMM_Unit
Text
Text
Text
Text

Deleted: Figure 8

Deleted: Figure

Deleted: software

Deleted: Figure 8

Deleted: Figure

24 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 7 Collective Measures

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted:

Deleted: 5 -

... [43]

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 25 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 25

Figure 8 Collective Measure Demonstration

11.1 CollectiveMeasure Class
The CollectiveMeasure class represents measures which when applied to a given entity accumulates measurements
of entities similarly related to the given entity. See Figure 7. For example, counts for container entities are often
found by accumulating (adding) counts of the containers’ contained entities. In fact, sizing measures generally
accumulate to containers by adding the results of applying the appropriate size measure to the contained entities.

Maximum is another frequent accumulator.

The measurands of the base measurements need not be the same of the measurand of the collective measurement.
Within SMM, the measurands are just arbitrary MOF::Elements declared in another MOF model.

The SEI Maintainability Index is one such aggregation that does not change the unit of measure.

SuperClass
DimensionalMeasure

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20
Formatted: Font:Times New Roman
Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

Deleted:

Deleted: 6 -

Deleted: simalarly

Deleted: Figure 7

Deleted: Figure

Deleted: arbitary

26 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Attributes
accumulator:Accumulator Identifies the n-ary or custom function that accumulates the base

measurements.

Associations
baseMeasureTo:BaseMeasureRelationship[1..*] Specifies the relationship instance that defines the

measure accumulated by this collective measure.
operation:Operation[0..1] Specifies the measurement operation of this measure.

Constraints
Context CollectiveMeasure inv:
accumulator->isEmpty or operation->iEmpty

11.2 Accumulator data type (enumeration)
The Accumulator enumeration defines DirectMeasure – a subclass of DimensionalMeasure which applies a given
operation to the measured entity. See Figure 7.

Literal Values
Sum
Minimum
Maximum
Average
standardDeviation

11.3 DirectMeasure Class
DirectMeasure – a subclass of DimensionalMeasure which applies a given operation to the measured entity. See
Figure 7.

SuperClass
DimensionalMeasure

Associations
operation:Operation[0..1] Specifies the measurement operation of this measure..

11.4 Counting Class
Counting is a subclass of DirectMeasure where the given operation returns 0 or 1 based upon recognizing the
measured entity. See Figure 7.

SuperClass
DirectMeasure

Constraints
context Counting::self.operation(…):int
post: result = 0 or result = 1

The operation is a recognizer that selects some subset of the elements of the measure’s scope found by self.scope.
The recognizers returns 1 for the elements of the subset and returns 0 otherwise. self.unit need not be an element of
the subset.

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 7/12/10 18:45

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20
Formatted: Font:TimesNewRoman
Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20
Formatted: Font:Times New Roman
Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 18:03

Comment: 14102

Deleted: String

Deleted: baseMeasure:DimensionalMeasure

Deleted: The base measurements are derived by
applying the specified measure or refinements of it.

Comment: 14103 Changed type

Comment: 14104

Comment: 14102 Added & deleted
AdditiveMeasure and MaximalMeasure

Deleted: <#>AdditiveMeasure Class
AdditiveMeasure – a subclass of CollectiveMeasure
which sums the measurements of the contained
entities. See Figure 5.
SuperClass
CollectiveMeasure
Constraints
context MaximalMeasure inv:
accumulator = ‘sum’
Accumulator is n-ary addition. If there are no
contained entities then zero is returned by this
measure.
<#>MaximalMeasure Class
MaximalMeasure – a subclass of
CollectiveMeasure that takes the maximum of the
measurements of the contained entities. See Figure
5.
SuperClass
CollectiveMeasure
Constraints
context MaximalMeasure inv:
accumulator = ‘maximum’.

Deleted: Figure 7

Deleted: Figure

Comment: 14606

Deleted: that

Deleted: Figure 7

Deleted: Figure

Deleted: Attributes

Comment: 14103 Changed type

Deleted: . It is applicable to elements of the class
and returns numeric values interpretable with
respect to the unit of measure.

Deleted: Figure 7

Deleted: Figure

Deleted: S

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 27 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 27

Figure 9 Counting Unit of Measure Constraint

11.5 BinaryMeasure Class
The BinaryMeasure class represents measures which when applied to a given entity accumulates measurements of
two entities related to the given entity. See Figure 7. For example, areas for two dimensional entities are often found
by accumulating (multiplying) lengths.

The measurands of the base measurements need not be the same as the measurand of the collective measurement.

SuperClass
DimensionalMeasure

Attributes
 functor:String Identifies the binary function that combines two base measurements.

Associations
baseMeasure1:DimensionalMeasure The first base measurement is derived by applying the specified

measure or a refinement of it.
baseMeasure2:DimensionalMeasure The second base measurement is derived by applying the specified

measure or a refinement of it.

Semantics
The usual semantics of algebra would require that the unit of a binary measure equals applying the accumulator to
the units of the base measures. While conforming to this requirement would ensure more easily understood models,
SMM does not enforce this requirement.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: <sp>

Deleted: 7

Deleted: Figure 7

Deleted: Figure

Deleted: multipling

Deleted: algrebra

28 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

11.6 Ratio Class
This class represents those measures that are ratios of two base measures. See Figure 7. Examples include:

• Average lines of code per module,

• Failures per day,

• Uptime percentage – Uptime divided by total time,

• Business data percentage of all data,

• Halstead level = Halstead volume divided by potential volume,

• Halstead effort = Halstead level divided by volume.

A ratio measure and its two base measures frequently characterize three different traits of the same entity. If the
dividend characterized the total code length of an application and the divisor characterized the number of program in
the application then the ratio characterizes the average code length per program.

Ratios may also characterize traits of distinct entities. For example, a ratio may contrast the code length between a
pair of programs.

SuperClass
DimensionalMeasure

Constraints
context MaximalMeasure inv:
functor = ‘divide’

11.7 BaseMeasureRelationship Class
BaseMeasureRelationship is a class representing relationship of hierarchy between a collective measure and a
dimensional measure.

SuperClass
MeasureRelationship

Associations
from:CollectiveMeasure[1] Specifies the collective measure at the from endpoint of the relationship.
to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

11.8 Base1MeasureRelationship Class
Base1MeasureRelationship is a class representing relationship of hierarchy between a binary measure and a
dimensional measure.

SuperClass
MeasureRelationship

Associations
from:BinaryMeasure[1] Specifies the binary measure at the from endpoint of the relationship.
to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

11.9 Base2MeasureRelationship Class
Base2MeasureRelationship is a class representing relationship of hierarchy between a binary measure and a
dimensional measure.

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

Deleted: Figure 7

Deleted: Figure

Deleted: measurements

Deleted: ,

Comment: 14600 added from existing association

Comment: 14600 added from existing association

Comment: 14600 added from existing association

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 29 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 29

SuperClass
MeasureRelationship

Associations
from:BinaryMeasure[1] Specifies the binary measure at the from endpoint of the relationship.
to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

12 Other Measures
The following diagram presents three additional measures.

• Direct applications of named measurements. (One such named measure is Cyclomatic Complexity.)

• Simple algebraic change of scales of already defined numeric measures (e.g. the translation to ‘choice points’
from Cyclomatic complexity).

Figure 10 Other Measures

12.1 NamedMeasure Class
The class allows for specifying measures which are well-known and can be specify simply by name. See Figure 10.
For example, McCabe’s cyclomatic complexity. The meaning of applying the named measure should be generally
accepted.

SMM is for the exchange of measurement results. To convey such results for well known measures, it suffices to
identify the measure solely by name.

SuperClass
DimensionalMeasure

Attributes
name: String Specifies the name of the SMM element. This attribute is inherited from the

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

Deleted: .,

Deleted:

Deleted: 8 -

Deleted: Figure 10

Deleted: Figure

Deleted: convery

30 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

SmmElement class where it is optional. Here it is required.

Constraints
context NamedMeasure inv:
not self.name->isEmpty

12.2 RescaledMeasure Class
The measure specifies a process that re-scales a measurement on an entity with one unit of measure to obtain a
second measurement of the same entity with an different unit of measure. See Figure 10.

SuperClass
DimensionalMeasure

Attributes
formula:String Specifies the algebraic formula that re-scales a result from the base

measure’s dimension to obtain a value expressed in a different unit of
measure with respect to this measure’s unit of measure

Associations
baseMeasure:DimensionalMeasure Identifies the measure applied to each “contained”

entity to determine base measurements.

rescaleFrom:RescaledMeasureRelationship[0..
*]

Specifies the relationship instance that defines the
measure rescaled by this rescaled measure.

12.3 RescaledMeasureRelationship Class
RescaledMeasureRelationship is a class representing relationship of measure rescaling between a rescaled measure
and a dimensional measure.

SuperClass
MeasureRelationship

Associations
from: DimensionalMeasure [1] Specifies the dimensional measure at the from endpoint of the

relationship.
to:RescaledMeasure [1] Specifies the rescaled measure at the to-endpoint of the relationship.

13 Measurements
Measurement results are values from ordered sets. Such a set may be nominal (e.g. Poor, Fair, Good, Excellent) as
long as there is an underlying order. A set may instead define a dimension where its values may be stated in orders
of magnitude with respect to archetypal member. SMM allows for dimensional measurements. The magnitude is the
measure’s unit of measure.

SMM also allows for dimensionless measurements derived by ratios and ranking schemes. In the former the ratio is
derived from two measurements of the same dimension; whereas, in the latter measurements from a dimension are
mapped to symbolic representations (e.g., 100-90 becomes “A”, 89-80 becomes “B”).

The modeling of measurements mirrors the modeling of measure.

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: Element

Deleted: Figure 10

Deleted: Figure

Comment: 14600

Comment: 14600 added from existing association

Deleted: .,

Deleted: ,”

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 31 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 31

Figure 11 Measurements

13.1 Measurement Class (abstract)
The Measurement class represents the results of applying the associated Measure to the associated Measurand. See
Figure 11. Two measurements of the same measurand by the same measure can be distinguished by observation
information provided by the associated Observation. Measurand is in the scope of the measure.

The value of a measurement is an element of an ordered set. It may be a number where the ordering is the usual
standard. The DimensionalMeasurement and Percentage subclasses of Measurement defined below have numeric
values. The value may also be a symbol that we can map to a numeric interval. The Grade subclass has a symbolic
value.

Measure is a process and, hence, may fail. The error attribute of measurement allows such failures to be noted. A
measurement either has a value or an error is recorded.

SuperClass
SmmElement

Attributes
error:String[0..1] If an error occurred in the measurement process, this field contains

a code representing the error.

 breakValue:String[0:1] If the scope specifies a break condition, this field contains the instance
value associated with the break condition.

Associations
measurand:MOF::Element[1] Identifies the object measured.
equivalentFrom:EquivalentMeasurementRelationship[0..*] Specifies the relationship instance that

defines the equivalency of this
measurement.

equivalentTo: EquivalentMeasurementRelationship[0..*] Specifies the relationship instance that
defines the equivalency of this

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20
Formatted: Font:TimesNewRoman
Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted:

Deleted: 9 -

Deleted: Figure 8

Deleted: Figure 11

Deleted: Figure

Deleted: SMM_Element

Comment: 14100

Deleted: measure:Measure

Deleted: process by which the measurement was
determined.

Comment: 14600

Deleted: measurand:MOF::Element

Deleted: Identifies the object measured.

Comment: 14600

Deleted: observation:Observation

Deleted: Provides contextual information

Deleted: may distinguish

32 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

measurement.
refinementFrom:RefinementMeasurementRelationship[0..*] Specifies the relationship instance that

defines the refinement of this measurement.
refinementTo:RefinementMeasurementRelationship[0..*] Specifies the relationship instance that

defines the refinement of this measurement.
recursiveFrom:RecursiveMeasurementRelationship[0..*] Specifies the relationship instance that

defines the recursivity of this measurement.
recursiveTo:RecursiveMeasurementRelationship[0..*] Specifies the relationship instance that

defines the recursivity of this measurement.
inbound:MeasurementRelationship[0..*] The set of relationship such that the current

Measurement is the to-endpoint of these
relations. This property is a derived union.

outbound:MeasurementRelationship[0..*] The set of relationship such that the current
Measurement is the to-endpoint of these
relations. This property is a derived union.

measurementRelationships:MeasurementRelationship[0..*] The set of all MeasurementRelationship
owned by the measure.

Operations
getMeasureLabel:String[1] This operation returns the label describing the measure of this

measurement according to the rule specified in measureLabelFormat in
the Measure class.

getMeasurementLabel:String[1] This operation returns the label describing this measurement and
measurand according to the rule specified in measurementLabelFormat
in the Measure class.

Constraints
context Measurement inv:
scope.breakCondition->isEmpty == breakValue->isEmpty

Semantics
Measurand must be in the scope of measure. Specifically, measurand must be an instance of the class named in
measure. scope.class. If measure. scope.recognizers is given then the recognizer applied to the measurand must
return true.

13.2 MeasurementRelationship Class (abstract)
MeasurementRelationship is an abstract class representing any relationship between two measurements. See Figure
11.

SuperClass

SmmRelationship

13.3 EquivalentMeasurementRelationship
EquivalentMeasurementRelationship is a class representing any relationship of equivalency between two
measurements.

SuperClass
MeasurementRelationship

Associations
from:Measurement [1] Specifies the equivalent measurement at the from endpoint of the

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20
Formatted: Font:TimesNewRoman
Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 22/3/10 17:18
Formatted: Font:TimesNewRoman
alpic� 22/3/10 17:18
Formatted: Font:TimesNewRoman
Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

Deleted: from other assessments by the same
measure on the same measurand.

Comment: 14600 conversion of previous direct
associations

Comment: 14607 added

Comment: 14607 added

Comment: 14100

Comment: 14100 drove changes here

Deleted: characterizes.scope.class. If class
named in measure.characterizes.

Deleted: enumerated is true, then measurand is
associated as an element to

Deleted: named in

Deleted: characterizes.scope. Otherwise, if
measure.characterizes.

Deleted: ,

Deleted: If the measure is identified by name and
library, then the measure’s measurable trait need
not appear when convey of measurement. In that
case the definitive measure is given in the named
library with the given name. The measurable trait is
found in the library by following the associated
characterizes role.
12.2 MeasurementRelation
Comment: 14600 consistent renaming

Deleted: MeasurementRelation

Deleted: Figure 9

Deleted: Figure 11

Deleted: Figure 11

Deleted: Figure

Deleted: SMM_Relationship
12.3

Comment: 14600 added from existing association

... [44]

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 33 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 33

relationship.
to:Measurement[1] Specifies the equivalent measurement at the to-endpoint of the

relationship.

13.4 RefinementMeasurementRelationship Class
Refinement MeasurementRelationship is a class representing any relationship of refinement between two
measurements.

SuperClass
MeasurementRelationship

Associations
from:Measurement[1] Specifies the measurement at the from endpoint of the relationship.
to:Measurement[1] Specifies the measurement at the to-endpoint of the relationship.

13.5 RecursiveMeasurementRelationship Class
RecursiveMeasurementRelationship is a class representing any relationship of recursivity on a measurement upon
itself.

SuperClass
MeasurementRelationship

Associations
from:Measurement[1] Specifies the measurement at the from endpoint of the relationship.
to:Measurement[1] Specifies the measurement at the to-endpoint of the relationship.

13.6 DimensionalMeasurement Class
The DimensionalMeasurement class represents the results of applying a dimensional measure to an entity. The
result is given in terms of the measure’s unit. See Figure 11.

SuperClass
Measurement

Attributes
value:Number[0..1] Represents the measurement result as a magnitude with respect to the unit

of measure.

Associations
 rankingFrom:RankingMeasurementRelationship[0..*] Specifies the relationship instance that

defines the rankings for this measurement.
baseMeasurementFrom:BaseMeasurementRelationship[0..*] Specifies the relationship instance that

defines the accumulation for this
measurement.

baseMeasurement1From:Base1MeasurementRelationship[0..*] Specifies the relationship instance that
defines the 1st part of the binary comparator
for this measurement.

baseMeasurement2From:Base2MeasurementRelationship[0..*] Specifies the relationship instance that
defines the 2nd part of the binary comparator
for this measurement.

rescaleTo:RescaledMeasurementRelationship[0..*] Specifies the relationship instance that
defines the measurement rescaling this
measurement.

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:21

Comment: 14600 added from existing association

Comment: 14600 added from existing association

Deleted: Figure 9

Deleted: Figure 11

Deleted: Figure

Comment: 14600 conversion of previous direct
associations

34 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Constraints
context DimensionalMeasurement inv:
measure.oclIsTypeOf(DimensionalMeasure) and
error->isEmpty <> value->isEmpty

13.7 Grade Class
The Grade class represents the grade found by Ranking measure. Its ranking scheme mapped the grade’s underlying
base measurement to the grade’s symbol. Once again, the base measurements share its measurand with this derived
grading. See Figure 11.

Super Class
Measurement

Attributes
value: String[0..1] Identifies rank as a measurement derived from the base measurement.
isBaseSupplied:Boolean True if baseMeasurement is supplied.

Associations
rankingTo:RankingMeasurementRelationship[0..1] Specifies the relationship instance that defines the

measurement graded by this grade.

Constraints
context Grade inv:
measure.oclIsTypeOf(Ranking) and
error->isEmpty <> value->isEmpty and
isBaseSupplied →(measurand = baseMeasurement.measurand and
baseMeasurement.measure = measure.baseMeasure)

Semantics
If isBaseSupplied holds, then value is one of the symbols found by measure.interval where baseMeasurement.value
is in the interval. A numeric value is in the interval if and only if the it is less than the maximumEndPoint when
maximumOpen is false, less than or equal to maximumEndPoint when maximumOpen is true, greater than
minimumEndPoint when minimumOpen is false, and greater than or equal to minimumEndPoint when
minimumOpen is true.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: shares

Deleted: gradingis.

Deleted: Figure 9

Deleted: Figure 11

Deleted: Figure

Deleted: SuperClass

Comment: 14600

Deleted: baseMeasurement:DimensionalMeasure
ment

Deleted: Identifies

Deleted: from which the rank was derived.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 35 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 35

Figure 12 Grade Constraint

RankingMeasurementRelationship Class
RankingMeasurementRelationship is a class representing any relationship of grading between a grade measurement
and a dimensional measurement.

SuperClass
MeasurementRelationship

Associations
from:Grade [1] Specifies the grade measurement at the from endpoint of the

relationship.
to:DimensionalMeasurement[1] Specifies the dimensional measurement at the to-endpoint of the

relationship.

14 Collective Measurements
This class represents measurements found by accumulating a set of base measurements. For example, the number
lines of code in application can be determines by accumulating the number lines in its programs.

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21
Deleted: 10 -

Comment: 14600 added from existing association

36 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 13 Collective Measurements

14.1 CollectiveMeasurement Class
The CollectiveMeasurement class represents the results of applying its CollectiveMeasure measure to an entity. See
Figure 13. In this case, applying the measure is as follows:

1. Apply the base measure to each contained element to obtain a set of base measurements.

2. Apply the n-ary accumulator to the set of base measurements to obtain the measurement of the container.

The results of step 1 are the DimensionalMeasurements associated by base measurement.

SuperClass
DimensionalMeasurement

Attributes
isBaseSupplied:Boolean True if baseMeasurements are supplied. All are supplied or none is

assumed.
accumulator: Accumulator Enumerated value indicating the type collective measure

Associations
baseMeasurement:DimensionalMeasurement[0..*] Identifies the measurements from which this

collective measurement was derived.

Constraints
context CollectiveMeasurement inv:
measure.oclIsTypeOf(CollectiveMeasure) and
isBaseSupplied →
(not baseMeasurement->isEmpty and
baseMeasurement.measure=measure.baseMeasure)

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: <sp>

Deleted: 11 -

Deleted: 13.1

Deleted: Figure 13

Deleted: Figure

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 37 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 37

Semantics
If isBaseSupplied holds, then value equals the result of applying measure.accumulator the set of values given by
baseMeasurement.value.

14.2 DirectMeasurement Class
The DirectMeasurement class represents the measurement results found by of applying the measure’s specified
operation directly to the measurand. See Figure 13.

SuperClass
DimensionalMeasurement

Constraints
context DirectMeasurement inv:
measure.oclIsTypeOf (DirectMeasure)

14.3 Count Class
Counting forms the basis for multiple metrics. This class consists of a particular subclass of directMeasurement
which is very useful in counting. See Figure 13. Its associated measure is a CountingMeasure where the specified
operation is a recognizer operation. Therefore, the value of any instance of this class is 1 or 0 depending upon
whether or not the measurand is recognized.

SuperClass
DirectMeasurement

Constraints
context Count inv:
measure.oclIsTypeOf (CountingMeasure)

14.4 BinaryMeasurement Class
SuperClass
DimensionalMeasurement

Attributes
isBaseSupplied:Boolean True if both base measurements are supplied.

Associations
baseMeasurement1:DimensionalMeasurement[0..1] Identifies the first base measurement.
baseMeasurement2:DimensionalMeasurement[0..1] Identifies the second measurement.

Constraints
 context RatioMeasurement inv:
measure.oclIsTypeOf(BinaryMeasure) and
isBaseSupplied →
(not baseMeasurement1.isEmpty and not baseMeasurement2.isEmpty) and
not baseMeasurement1.isEmpty →
(baseMeasurement1.measure = measure. baseMeasurement1) and
not baseMeasurement2.isEmpty →
(baseMeasurement2.measure = measure. baseMeasure2)

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: 13.2

Deleted: Figure 13

Deleted: Figure

Deleted: software

Deleted: ,

Deleted: Figure 13

Deleted: Figure

38 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Semantics
If isBaseSupplied holds, then value equals the result of applying measure.functor to baseMeasurement1.value and
baseMeasurement2.value.

14.5 RatioMeasurement Class
The RatioMeasurement class affords evaluations of a ratio measure of two evaluations of different dimensional
measures. See Figure 13. The measure associated with the dividend has its unit of measure in common with the
measure associated with the divisor.

SuperClass
BinaryMeasurement

Constraints
context RatioMeasurement inv:
measure.oclIsTypeOf(RatioMeasure) and
isBaseSupplied → (value = baseMeasurement1.value / baseMeasurement2.value)

14.6 BaseMeasurementRelationship Class
BaseMeasurementRelationship is a class representing relationship of hierarchy between a collective measurement
and a dimensional measurement.

SuperClass
MeasurementRelationship

Associations
from:CollectiveMeasurement[1] Specifies the collective measurement at the from endpoint of the

relationship.
to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the

relationship.

14.7 Base1MeasurementRelationship Class
Base1MeasurementRelationship is a class representing relationship of hierarchy between a binary measurement and
a dimensional measurement.

SuperClass
MeasurementRelationship

Associations
from:BinaryMeasurement[1] Specifies the binary measurement at the from endpoint of the

relationship.
to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the

relationship.

14.8 Base2MeasurementRelationship Class
Base2MeasurementRelationship is a class representing relationship of hierarchy between a binary measurement and
a dimensional measurement.

SuperClass
MeasurementRelationship

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

Deleted: Figure 13

Deleted: Figure

Comment: 14600 added from existing association

Comment: 14600 added from existing association

Comment: 14600 added from existing association

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 39 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 39

Associations
from:BinaryMeasurement[1] Specifies the binary measurement at the from endpoint of the

relationship.
to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the

relationship.

15 Named and Rescaled Measurements
Measurement is in terms of its unit of measure as specified under its associated DimensionalMeasure. That is, the
measurement is a multiple of its unit of measure where value determines the multiple.

Figure 14 Named and Rescaled Measurements

15.1 NamedMeasurement Class
The NamedMeasurement class represents the measurement results of applying to the Measurand measurement
processes which are generally known and identifiable by name. See Figure 14.

SuperClass
DimensionalMeasure

Constraints
context NamedMeasurement inv:
measure.oclIsTypeOf(NamedMeasure).

15.2 RescaledMeasurement Class
The RescaledMeasurement class represents the measurement results of applying to the base measurement the
operation specified by the Measure to rescale the measurement. That is, given a one measurement of the measurand
with respect to one unit of measure, we obtain a second measurement of the measurand with respect to a different
unit of measure. See Figure 14.

Measure is a RescaledMeasure.

SuperClass
DimensionalMeasure

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: <sp>

Deleted: 12 -

Deleted: <#>14.1 AggregatedMeasurement
Class
The AggregatedMeasurement class represents the
measurement results of applying the operation
specified by the measure to the base measurements.
See Figure 12. Its measurand and the measurand of
its base measurement are identical. That is, this is
not a measurement of a container as represented by
the CollectiveMeasurement. Instead,
AggregatedMeasurement combines different
measurements of a given entity to create a new
measurement for that entity. The SEI
Maintainability index demonstrates this process.

171 - 5.2(ln(aveV)) - 0.23(aveV(g')) -
16.2(ln(aveLOC)) + 50(sin (sqrt(2.4(perCM))))
SuperClass
DimensionalMeasure
Attributes
isBaseSupplied:Boolean

Comment: 14234 delete of
AggregateMeasurement (above)

Deleted: ,

Deleted: Figure 14

Deleted: Figure

Deleted: Figure 14

Deleted: Figure

... [45]

... [46]

40 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Attributes

isBaseSupplied:Boolean True if the base measurement is supplied.

Associations
rescaleFrom:RescaledMeasurementRelationship[0..*] Specifies the relationship instance that defines

the measurement rescaled by this rescaled
measurement.

Constraints
context RescaledMeasurement inv:
measure.oclIsTypeOf(RescaledMeasure) and
isBaseSupplied →
not baseMeasurement->isEmpty and baseMeasurement.measure =
measure.baseMeasure

Semantics
If isBaseSupplied is true then value equals result of applying measure.operation to the baseMeasurements’ values.

15.3 RescaledMeasurementRelationship Class
RescaledMeasurementRelationship is a class representing relationship of measurement rescaling between a rescaled
measurement and a dimensional measurement.

SuperClass
MeasurementRelationship

Associations
from: DimensionalMeasurement [1] Specifies the dimensional measurement at the from endpoint of the

relationship.
to:RescaledMeasurement [1] Specifies the rescaled measurement at the to-endpoint of the

relationship.

16 Observations
Measurements are sometimes repeated. An old carpentry rule is measure twice, cut once.

To distinguish these multiple measurements, the observation and scope class can represent contextual information
such as the time of the measurement and the identification of the measurement tool and the artifacts that are under
measurement.

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 13/11/09 14:49

Comment: 14600

Deleted: baseMeasurement:DimensionalMeasure
ment[0..1]

Deleted: Identifies

Deleted: from which

Deleted: was derived

Deleted: ,

Comment: 14600 added from existing association

Comment: 14104 rewording of descr

Deleted: respresent

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 41 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 41

 Figure 15 Observations

16.1 Observation Class
This class represents some of the contextual information which may be unique to this measurement such as date,
measurer and tool used. See Figure 15.

SuperClass
 SmmElement

Attributes
 whenObserved:date[0..1] Identifies the “moment” when the measurement was taken.
observer:String[0..1] Identifies measurer.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: <sp>

Deleted: 13 -

Deleted: ,

Deleted: ,

Deleted: Figure 15

Deleted: Figure

Deleted: SMM_Element

Deleted: measurementwas

42 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

tool:String[0..1] Identifies tool used in measurement.

Associations
observedMeasures:ObservedMeasure[0..*] The set of all ObservedMeasure owned by the observation.
requestedMeasures:SmmElement[0..*] Specifies the measures or their category that are part of the

observation request. This association is optional and can
be used by a builder to know what to include in a specific
observation.

scopes:ObservationScope[0..*] Specifies the scopes of the observation, i.e. the models or
model portions that are the subject of the Observation

Constraints
context Observation inv:
requestedMeasures.oclIsTypeOf(MeasureCategory) or
requestedMeasures.oclIsTypeOf(CategoryRelationship) or
requestedMeasures.oclIsTypeOf(Measure)

16.2 ObservationScope Class
This class represents the model(s) or sub model that are the subject of the related observation. This information can
be used initially by builders to understand which model to gather measurements from, later by anyone wishing to
recreate a new observation of the same artifacts. See Figure 15.

SuperClass
 SmmElement

Attributes
scopeUri:String[1] Uri that identifies model(s) or model fragment.

Semantics
The scopeUri represents specific schemes following the RFC 2396: Uniform Resource Identifiers (URI): Generic
Syntax. As a hierarchical URI, the scopeUri supports all features associated with such URI, including both absolute
and relative addressing. The starting point for the resolution of relative addressing should match generally accepted
rules, but this specification doesn’t dictate any such details.

To quote the URI syntax:

At the highest level a URI reference (hereinafter simply "URI") in string form has the syntax

 [scheme:]scheme-specific-part[#fragment]

The scopeUri should inherently accept and understand the following 2 schemes: mof and ecore, respectively
representing models expressed as MOF and Ecore (Eclipse EMF model variant of MOF).

Our scheme-specific-part complies with the definition of hierarchical URI and as such it has the following syntax:

 [//authority][path][?query]

The general form of a scope uri is then:
mof://kdm.example.com/projectName/kdmName Uri for a specific MOF KDM model.
ecore://astm.example.com/pathToWherever/longPath/modelName Uri for a specific Ecore ASTM model

A more advanced form of the URI for our schemes is made to support the query part of the URI in order to specify
portion of models and also to specify models in paths that represent folders or collections.

The query part of the scopeUri follows the general form of key=value separated by ampersand (&). The following
keys are defined by our schemes:

Model Regex based pattern representing the name of model or models that should be matched in
the path

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Comment: 14232

Comment: 14233

Comment: 14232

Comment: 14104

Comment: 14104 added

Deleted: Figure 15

Deleted: Figure

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 43 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 43

Recursive True if the search for models matching the model pattern should also recursively descend
the hierarchical path structure rooted at the path specified in the URI. Default is false.

queryType Type of query to use in select. “OCL” (default) or “XQuery”.
Select Query into selected model(s) that represent a selection of a subset or portion of the entire

model that will be used as the scope of performing measurements. For example this could
represent a segment in a KDM that is related to a specific application.

The general form of a scope uri is then:
mof://kdm.example.com/projectName?model=a?rt*&recursive=true Uri for all MOF models with name

matching a?rt* located in projectName
or under.

ecore://kdm.example.com/path/
?queryType=Xquery&select=/Segment[@name=”default”]/
Segment[@name=”myApp”]

Uri for a specific Ecore KDM model
segment representing a particular
application segment.

16.3 ObservedMeasure Class
This class represents association between observations and the measures that make up such observation. This class
also serves to hold the list of measurements characterized by the related measure that are part of a given observation.

SuperClass
SmmRelationship

Associations
Measurements:Measurement[0..*] The set of all Measurement owned by the observed measure.
measure:Measure[1] The measure that is being observed.

16.4 Argument Class
This class represents some of the variable arguments or parameters that are being passed to the measures that have
Operations that make use of replaceable parameters.

SuperClass
 SmmElement

Attributes
 name: String[1..1] Specifies the name of the argument. (inherited)

 type:String[1..1] Specifies the type of the argument. See semantic section for detailed
information.

 value:String[1..1] The value of the argument, expressed in a “typesafe” fashion.

Associations
None

Semantics
The type attribute represents the type of the argument being passed. The accepted types are the basic types that are
defined in OCL, as this is the main operation language supported. Those types are, as defined in section 7.1 of the
OCL 2.1 specification: Boolean, Integer, Real and String.

The above supported types are very limited. For example there is no direct support for Date or DateTime. The
implementation of additional types is left to the implementers. As a suggestion (not normative), implementers
should try to use OCLOperation helper functions in order to facilitate hiding the implementation and make their
implementation shareable and portable.

alpic� 22/2/10 22:21

alpic� 22/2/10 22:21

Comment: 14232 added

Comment: 14603 added

44 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

For all accepted types, the value attribute is a String whose content directly matches what is expected by the
Operation language, so that it can be transferred verbatim into the Operation body during the parameter replacement.
Implementer specific types can define their own value format if needed.

17 Historic and Trend Data (Non-Normative)
SMM does not model tracking or trend data directly. Linking versions of objects through a software evolution poses
a concern in modeling software evolution even if measures are never taken. When the measurand’s model provides
the linkage (e.g. an “EvolvesTo” relationship), then a measurement of an original artifact could be traced to its
newer versions and to their measurements if available. The diagram below (Figure 16) is overly simplistic, but
hopefully conveys the gist of such tracing. The beige filled instances indicate the metric representations augmenting
the base model (green). The central point is that the evolves path is between instances of the base model. The
measures of the evolving artifacts can be gathered or compared only if the linkage between the artifacts is captured
and maintained through the modeling of the system development and modification.

Fig
ure 16 Tracking Measurements across Versions

18 Inaccuracy (Non-Normative)
Inaccuracy of a measurement is the amount by which the measurement is in error. That is, we may model inaccuracy
as measure if we first model a measure which is assumed to be true. Inaccuracy of a measurement is then just the
difference between the measurement and a “true” measurement of the same entity.

In SMM inaccuracy is representable by measures that characterize inaccuracy. The measures are comparable
elevation of measurements evaluated by the difference between the measurement and the truest (at least accepted as
such) measurement of that entity for that trait.

Given two measures which characterize the same trait and share the same scope, then inaccuracy can be modeled as
a binary measure expressing the difference taken over the two measures.

In the demonstration below (Figure 17), a category collects measures that are applicable to ExampleClass1 and
characterize ExampleTrait. The category identifies the “truest” measure by the goldStandard relationship and

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: .,

Deleted: Figure 16

Deleted: Figure

Deleted: indicates

Deleted:

Deleted: 14 -

Deleted: bythe

Deleted: characterizes

Deleted: Figure 17

Deleted: Figure

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 45 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 45

identifies an appropriate inaccuracy measure for Measure1 by the InaccuracyMeasure relationship.

A Characteristic may have a measure that is designated as the best or truest measure of the attribute. That measure
may be associated as the attribute’s gold standard. Such a designation allows for the representation of inaccuracy for
each of the attribute’s measures as the difference between the measure and the gold standard.

Figure 17 Inaccuracy Demonstration

Figure 18 Uncertainty Demonstration

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: 15 -

Deleted: 16 -

46 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 19 SMM Extension for Uncertainty

19 Library of Measures (Non-Normative)
The following is a suggestive list of measurement classes along with their measure classes and measurand classes.
Sources include:

• Comsys Systems Redevelopment Methodology:
www.comsysprojects.com/SystemTransformation/TMethodology.htm

• “A Survey of Software Metrics” by F. Riguzzi, DEIS Technical Report no. DEIS-LIA-96-010, July 1996,
Università degli Studi di Bologna.

Each measure is defined using the classes of the SMM. The referenced software artifacts are modeled using the
Knowledge Discovery Metamodel (KDM) unless otherwise noted.

19.1 Various Counts

19.1.1 Module Count45

Module Count ≡ A count of the number of modules in a system.

Assume that the system is modeled by a KDM model. The KDM:AbstractCodeElement serves as a container of
code parts as well as modeling the code parts themselves. The KDM:Module is an AbstractCodeElement subclass
that models modules. SeeFigure 20.
Counting the modules in the code model requires summing the results of a
recognizer for module across the model. The unit of measure is module. See

5 See GAM 003 in Comsys Systems Redevelopment Methodology.

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

alpic� 13/11/09 14:49

Deleted: 17 -

Deleted: Figure 20

Deleted: Figure

Deleted: 4 See GAM 003 in Comsys Systems
Redevelopment Methodology.

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 47 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 47

Figure 21 for the library entry and see

Figure 22 for a brief demonstration.

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: Figure 21

Deleted: Figure

Deleted:
Figure 22

Deleted: Figure

48 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 20 KDM Code Package Fragment

Figure 21 Library Entry for Module Count in Code Model

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: 18 -

Deleted: <sp>

Deleted: 19 -

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 49 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 49

Figure 22 Module Count in Model Demonstration
For an entire system, we identify each CodeModel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each code::CodeModel, its baseMeasure elements are identified. In this example the
default containment association relation is overridden by a measurand query expressed as the XQuery operation of
‘..//Module’ which states that we want all Module children of our CodeModel recursively. Next we move to apply
the scope recognizer, which filters out any elements that are not of class code::Module, which here is just a safety
test as the measurand query already provides this level of filtering. This leaves us with only instances of
code::Module, on which we apply a Counting measure with a default operation of true so that it always returns 1.

All of the Counting measurement with a value of 1 representing here the code:Module are then summed up into a
Collective measurement for each code::CodeModel according to the accumulator defined in the Collective measure.

Another possible approach would be to move the recognizer to the Counting class instead of the scope as shown in
Figure 1.

The difference between these two approaches is subtle but very interesting. In the first case, the recognizer is applied
to determine if a class instance is in scope or not. In the second approach, the recognizer is used to determine if the
counting class will return 0 or 1 for the measurement of the class instance. The 1st approach would normally be
preferred as it avoids creating measurements with a value of 0 for any non-matching class instance, whereas the
second approach will have measurement for every AbstractCodeElement in the CodeModel. Obviously, the sum
applied by the collective measure will produce the same final result.

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted: 20

Deleted: Figure 1

Deleted: 1

50 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 1Module Count in Model (take 2)

19.1.2 Screen Count7

Screen Count ≡ A count of the number of screens in a system.

7 See TEM 153 in Comsys Systems Redevelopment Methodology.

alpic� 15/11/09 12:54

alpic� 13/11/09 14:49

Deleted: Counting the modules in an abstract
code element sums recursively the count up the
code part heirarchy.
It requires noticing if the code element is a module
and returning 1 as well as recursively counting the
modules in all the contained code elements. This is
a CollectiveMeasure that sums two base measures.
The first is a CountingMeasure that recognizes
modules. The second is a sum accumulator of the
owner/codeElement association from CodeElement
to CodeElement and its base measure is the above
CollectiveMeasure. The unit of each of these
measures is a module.
For the entire system, we count the modules in the
CodeModel that owns the top-level code elements
of the system. The counting is a CollectiveMeasure
with a sum accumulator of the model/codeElement
association from CodeModel to CodeElement and
its base measure is the above counting of modules
in a code element.
18.1.2

Deleted: 6

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 51 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 51

Figure 23 KDM Action Package Fragment alpic� 13/11/09 14:49
Deleted: 21 -

52 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 24 Screen Count Library Entry

Figure 25 Screen Count Demonstration
Assume that the system is modeled by a KDM model. The KDM:UIElement serves as a container of user interface
parts as well as modeling the user interface parts themselves. The KDM:Screen is a UIElement subclass that models
screens.

For an entire system, we identify each UIModel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each ui::UIModel, its baseMeasure elements are identified. In this example the default

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: <sp>

Deleted: 22

Deleted: <sp>

Deleted: 23

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 53 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 53

containment association relation is overridden by a measurand query expressed as the XQuery operation of
‘..//Screen’ which states that we want all Screen children of our UIModel recursively. Next we move to apply the
scope recognizer, which filters out any elements that are not of class ui::Screen, which here is just a safety test as the
measurand query already provides this level of filtering. This leaves us with only instances of ui::Screen, on which
we apply a Counting measure with a default operation of true so that it always returns 1.

All of the Counting measurement with a value of 1 representing here the ui::Screen are then summed up into a
Collective measurement for each ui::UIModel according to the accumulator defined in the Collective measure.

19.1.3 Method Count
Method Count ≡ A count of the number of methods in a system.

Figure 26 Method Count Library Entry

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: Count the screens in a code element
requires noticing if the user interface element is a
screen and returning 1 as well as recursively
counting the screens in all the contained user
interface elements. This is a CollectiveMeasure that
sums two base measures. The first is a
CountingMeasure that recognizes screens. The
second is a sum accumulator of the
owner/UIElement association from UIElement to
UIElement and its base measure is the above
CollectiveMeasure. The unit of each of these
measures is a screen.
For the entire system, we count the screens in the
UIModel which owns the top-level user interface
elements of the system. The counting is a sum
accumulator of the model/uiElement association
from UIModel to UIElement and its base measure is
the above counting of screens in a user interface
element. The unit of measure is “each.”

Deleted: <sp>

Deleted: 24

54 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure
27 Method Count Demonstration
Assume that the system is modeled by a KDM model. The KDM:MethodUnit is a CodeElement subclass which
models methods. The counting of methods then is very similar to the counting of modules given above.

For an entire system, we identify each CodeModel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each code::CodeModel, its baseMeasure elements are identified. In this example the
default containment association relation is overridden by a measurand query expressed as the XQuery operation of
‘..//MethodUnit’ which states that we want all MethodUnit children of our CodeModel recursively. Next we move to
apply the scope recognizer, which filters out any elements that are not of class code::MethodUnit, which here is just
a safety test as the measurand query already provides this level of filtering. This leaves us with only instances of
code::MethodUnit, on which we apply a Counting measure with a default operation of true so that it always returns
1.

All of the Counting measurement with a value of 1 representing here the code::MethodUnit are then summed up into
a Collective measurement for each code::CodeModel according to the accumulator defined in the Collective
measure.

19.1.4 Lines of Code9
A line of code is any line of program text that is not a comment or a blank line, regardless of the number of
statements or fragments of statements on the line. This specifically includes all lines containing program headers,
declarations, and executable and non-executable statements”11 Lines of code here means fully expanded lines of
code including copy books, includes and comments.

KDM does not directly model lines of source, code or otherwise. As a demonstration, let us assume that blank lines
may be included. This allows us to use the KDM SourceRegion to measure lines of code. We will further assume
source region do not overlap or even having one start on the line that another ends on. The problem here is that code
snippets are the smallest pieces of source modeled in KDM. Lines by themselves are not modeled, which means that
counting them is indirect. We will sum of the line size of code snippets and call that counting lines of code.

9 See ERP 001 in Comsys Systems Redevelopment Methodology.
11 See S. Conte, H. Dunsmore, V. Shen, Software Engineering Metrics and Models, Benjamin/Cummings, Menlo
Park, CA.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 15/11/09 20:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: <sp>

Deleted:

Deleted: 25 -

Deleted: ,

Deleted: Counting the modules in a code element
requires noticing if the code element is a method
and returning 1 as well as recursively counting the
methods in all the contained code elements. This is
an CollectiveMeasure that sums two base measures.
The first is a CountingMeasure that recognizes
methods. The second is a sum accumulator of the
owner/codeElement association from codeElement
to codeElement and its base measure is the above
CollectiveMeasure. The unit of each of these
measures is a method.
For the entire system, we count the methods in the
CodeModel that owns the top-level code elements
of the system. The counting is a sum accumulator of
the model/codeElement association from
CodeModel to CodeElement and its base measure is
the above counting of modules in a code element.
The unit of measures is a method.

Deleted: 8

Deleted: ”10

Deleted: ,

Deleted: ,

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 55 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 55

Lines of SourceRegion and SourceRef
KDM specifies a code snippet with a SourceRegion element that has two attributes, startLine and endLine, that
interest us here. The number of lines in the SourceRegion is endLine – StartLine + 1.

Our representation is a DirectMeasure with a class of SourceRegion and a function of endLine – startLine + 1.

SourceRef consists of multiple SourceRegions. Assuming no overlap as stated above, the determination of lines of
code in a SourceRef is a sum accumulator CollectiveMeasure with the previous lines of SourceRegion as its base
measure.

alpic� 15/11/09 20:53

alpic� 15/11/09 20:53

alpic� 13/11/09 14:49

Deleted: ve

Deleted: the

Deleted: an AdditiveMeasure

56 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 28 Lines of Code Measures

Figure 29 Lines of Code Demonstration

alpic� 15/11/09 20:55

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted:

Deleted: <sp>

Deleted: 26

Deleted: <sp>

Deleted:

Deleted: 27 -

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 57 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 57

Refinement of Lines of ControlElement, CodeElement and Module
The source role for these elements is SourceRef. Determining the lines of code in each is a sum accumulator
CollectiveMeasure where the base measure is the lines of SourceRef given above (the one in darker blue).

Figure 30 Additional Lines of Code Measures

alpic� 16/11/09 08:14

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: Lines of AbstractCodeElement

Deleted:

Deleted: 28 -

58 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 31 Module and Control Element LOC Demonstration

19.1.5 Lines of Code for ASTM
The Abstract Syntax Tree Metamodel (ASTM) facilitates the interchange of programming language constructs
parsed as abstract syntax trees. The Generic Abstract Tree Metamodel establishes a common core for modeling
across a wide variety of programming languages. Each of these constructs may, of course, be measured by their lines
of code.

GASTM does not directly model lines of source, code or otherwise. We will, consequently, make the same
assumptions we made above for KDM. Blank lines are included and overlaps are ignored.

Figure 34 shows a fragment of the proposed ASTM covering the core syntax object, source location and source file.
Figure 35 shows a possible SMM library entry to represent lines of code measure of GASTM syntax objects.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 16/11/09 08:14

alpic� 13/11/09 14:49

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Andrew Watson� 11/3/11 11:20

Deleted:

Deleted: 29 -

Deleted: Refinement of Lines of
ControlElement, CodeElement and Module
The source role for these elements is SourceRef.
Determining the lines of code in each is an
AdditiveMeasure where the base measure is the
lines of SourceRef given above.
<sp>
Figure 30 - Module LOC Demonstration

Deleted:
Figure 31 - Comment Line Count
18.1.5
Deleted: Figure 34

Deleted: Figure

Deleted: Figure 35

Deleted: Figure

... [47]

... [48]

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 59 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 59

Figure 34 GASTM Fragment

Figure 35 LOC Library Entry for GASTM

19.2 McCabe
McCabe’s cycolmatic complexity could be modeled in different ways. It could be a RescaledMeasure from count of
independent paths found by adding 2. Another representation would be as aRescaledMeasure from count of
branching points found by adding 1. Each of these representations represents equivalent measures. We demonstrate
below cyclomatic as a NamedMeasure and as a RescaledMeasure from branching factor.

19.2.1 Branching Factor of ActionElements and Modules
Branching Factor is simply the difference between the number of nodes and edges in a module’s control flow graph.
KDM models the nodes as ActionElements, the edges as ControlFlow. Branching factor is then measured by
subtracting the count of ControlFlow instances from the count of ActionElements.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 16/11/09 08:17

alpic� 16/11/09 08:17

alpic� 16/11/09 08:18

alpic� 16/11/09 08:18

alpic� 16/11/09 08:19

alpic� 16/11/09 08:19

Deleted: 32 -

Deleted: 33 -

Deleted: as a NamedMeasure

Deleted: It is widely recognized. Alternatively, i

Deleted: S

Deleted: S

Deleted: are

Deleted: S

60 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 36 Control Flow Edge Count Library Entry
Figure 37 Control Flow Node Count Library Entry

Figure 38 Control Flow Branching Factor Library Entry

19.2.2 Cyclomatic Complexity of a Module13
Cyclomatic complexity (CC) = E - N + p where E is the number of edges of the flow graph, N is the number of
nodes of the flow graph and p is the number of connected components.

13 See TPM 065 in Comsys Systems Redevelopment Methodology.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: 34 -

Deleted: 35 -

Deleted: 36 -

Deleted: 18.2.2

Deleted: 12

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 61 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 61

In this demonstration we assume that the control graph of each module is entirely connected. That is, p is always 1.
Cyclomatic is then simply the branching factor of a module plus one.

Figure 39 McCabe Cyclomatic Complexity Library Entry

19.2.3 Extended Cyclomatic Complexity of a Module15
Extended cyclomatic is the count of predicates or atomic formula in the condition of branching statements. We
demonstrate this count based upon ASTM modeling of an “if” statement. The condition of the “if” is an expression
that can be navigated to find its atomic formulas.

19.2.4 Average Extended Cyclomatic Complexity of Modules in
the System

19.3 Ratio of Additive ECC over Additive Counting of
modules.Counts of Operating Systems

The Application Management and System Monitoring for CMS Systems (ASMS) specification provides a PIM
based upon commercial enterprise management called the DMTF Common Information Model (CIM). “CIM
models a software or hardware system as a collection of component models connected via associations. A specific
instance of a system is modeled as a collection of instances of component models and associations.”17

We demonstrate the counting of operating systems installed and running on computer systems.

15 See ”An extension to the Cyclomatic measure of Program Complexity”, Glenford Myers, SIGPLAN Notices, vol
12 no 10, 1977.
17 See dtc/07-05-02.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: 37 -

Deleted: 14

Deleted:

Deleted: .”16

62 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 40 ASMS Fragment alpic� 13/11/09 14:49

Deleted: 38 -

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 63 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 63

Figure 41 OS Counting Demonstration

19.4 Halstead

19.4.1 Distinct Operator Count of a Module

ή1 ≡ A count of the number of distinct operators in a module.

alpic� 13/11/09 14:49
Deleted: 39 -

64 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Distinguishing operators invocations from calls to externally defined routines is not the type of higher level
architectural concerns represented in the KDM. Counting the number of called, but not defined elements would get
us close to this metric.

19.4.2 Distinct Operand Count of a Module

ή2 ≡ A count of the number of distinct operands in a module.

This is the data count shown above.

19.4.3 Operator Occurrence Count of a Module

N1 ≡ A count of the number of operator occurrences in a module.

This is a count of the calls to elements identified as operators.

19.4.4 Operand Occurrence Count of a Module

N2 ≡ A count of the number of operand occurrences in a module.

For KDM, this is a count StorableElements owned by ActionElements.

19.4.5 Halstead Length of a Module

N=N1+N2

This is an CollectiveMeasure where the aggregator is addition and the base measures are the occurrence counts
given above.

19.4.6 Halstead Vocabulary of a Module

ή = ή 1+ή2

This is an CollectiveMeasure where the aggregator is addition and the base measures are the counts given above.

19.4.7 Halstead Volume of a Module

V=N log2 ή

First log2 ή is a ReScaledMeasure based upon the vocabulary metric given above. The volume is then an
CollectiveMeasure of the length given above and the rescaled vocabulary with multiplication as the aggregator. The
unit of measure for the rescaled vocabulary and for the volume is “required bits of representation”.

alpic� 13/11/09 14:49
Deleted: .”

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 65 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 65

Figure 42 Halstead Vocabulary Library Entry alpic� 13/11/09 14:49

Deleted: 40 -

66 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 43 Halstead Volume Library Entry

alpic� 13/11/09 14:49
Deleted: 41 -

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 67 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 67

Figure 44 Halstead Potential Library Entry

Figure 45 Halstead Effort Library Entry

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: 42 -

Deleted: 43 -

68 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 46 Halstead Measures Demonstration

19.5 Software Engineering Institute (SEI) Maintainability
Index

171 - 5.2(ln(aveV)) - 0.23(aveV(g')) - 16.2(ln(aveLOC)) + 50(sin (sqrt(2.4(perCM))))

Each of the averages are RatioMeasures of their respective metric (V for Halstead volume, V(g’) for extended Cyclomatic
complexity and LOC of line of code) for modules over the count of modules. perCM, the percentage of comments in a module, is
a PercentageMeasure of line count of comments over the total line count of a module.

Each resulting metric is rescaled to share the same unit of measure, namely maintainability index points.

aveV rescaled 50 – 5.2(ln(aveV)
aveV(g’) rescaled 50 – 0.23(aveV(g’))
aveLOC rescaled 21 – ln(aveLOC)
perCM rescaled 50(sin (sqrt(2.4(perCM))))

The SEI index is then a CollectiveMeasure for a module of the above four rescaling with addition as the aggregator.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: 44 -

Deleted: an

Deleted: rescalings

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 69 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 69

Figure 47 Conversion of Information Size to Maintainability alpic� 13/11/09 14:49

Deleted: 45 -

70 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 48 Conversion of McCabe Cyclomatic to Maintainability alpic� 13/11/09 14:49

Deleted: 46 -

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 71 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 71

Figure 49 Conversion of LOC to Maintainability alpic� 13/11/09 14:49

Deleted: 47 -

72 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 50 Conversion of Comment Count to Maintainability alpic� 13/11/09 14:49

Deleted: 48 -

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 73 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 73

Figure 51 SEI Maintainability Demonstration

19.6 Qualitative Example

19.6.1 Non-standard language usage score
Non-standard languages are defined by an organization’s accepted technology standards. Assign the following
scores where a 1 or 2 is low, a 3 is medium and a 5 is high:

1. 2GL or unacceptable 4GL assign 1 or 2
2. Acceptable 3GL or 4GL assign 3 or 4
3. Ideal strategic language assign 5

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

Deleted: 49 -

Deleted: 18.5

Deleted: 18.5.1

74 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission

Figure 52 Qualitative Measure Demonstration

20 Library of Categories (Software example)

20.1 SMM does not establish a standard set of measurement
categories that presents an organization of measures
applicable to every environment or every engineering activity.
SMM minimally establishes a demonstration library of
metric categories. The library does not assert that the
given categories are standards. These metric categories
reflect a high-level summary of industry metrics that support
some engineering processes.Environmental Metrics

Number of screens, programs, lines of code, etc.

20.2 Data Definition Metrics
Number of data groups, overlapping data groups, unused data elements, etc.

20.3 Program Process Metrics
Halstead, McCabe, etc.

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 13/11/09 14:49

alpic� 16/11/09 08:27

Deleted: 50 -

Deleted: software

Deleted: , every stage of software life cycle,
every software platform, software language,

Deleted: software

Deleted: software

Deleted:

Deleted: n

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM) Submission 75 Architecture-driven Modernization (ADM): Software Metrics Meta-model (SMM) Submission 75

20.4 Architecture Metrics
Average call nesting level, deepest call nesting level, etc.

20.5 Functional Metrics
Functions defined in system, business data as a percentage of all data, functions in current system that map to
functions in target architecture, etc.

20.6 Quality / Reliability Metrics
Failures per day, meantime to failure, meantime to repair, etc.

20.7 Performance Metrics
Average batch window clock time, average online response time, etc.

20.8 Security / Vulnerability
Breaches per day, vulnerability points, etc.

alpic� 16/11/09 08:27

alpic� 16/11/09 08:27

alpic� 16/11/09 08:28

alpic� 16/11/09 08:28

alpic� 16/11/09 08:28

Deleted: a

Deleted: f

Deleted: f

Deleted: a

Deleted: b

