

 Date: January 2012

Structured Metrics Metamodel (SMM)

Version 1.0

OMG Document Number: formal/2012-01-05
Standard document URL: http://www.omg.org/spec/SMM
Associated Schema Files*:http://www.omg.org/spec/SMM/20120101

Normative: http://www.omg.org/spec/SMM/20120101/SMM.cmof
 Non-normative: http://www.omg.org/spec/SMM/20120101/SMMXMI.xsd

http://www.omg.org/spec/SMM/20120101/SMM.emof
http://www.omg.org/spec/SMM/20120101/SMM.eap

* original files: ptc/2010-11-35 (cmof), ptc/2010-11-36 (xsd), ptc/2010-11-37 (emof), ptc/2011-03-03 (eap)

Copyright © 2010, Benchmark Consulting
Copyright © 2010, eCube Systems, LLC
Copyright © 2010, Electronic Data Systems
Copyright © 2010, KDM Analytics
Copyright © 2011, Object Management Group, Inc.
Copyright © 2010, Software Revolution
Copyright © 2010, Tactical Strategy Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this

specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://
www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/agree-
ment.htm).

Table of Contents

Preface ..vii

1 Scope .. 1

2 Conformance ... 2

3 Normative References ... 2

4 Terms and Definitions .. 2

5 Symbols ... 3

6 Additional Information .. 3

6.1 Changes to Adopted OMG Specifications ..3

6.2 How to Read this Specification ...3

6.3 Acknowledgments ...3

7 SMM Introduction ... 5

7.1 Overview ...5
7.1.1 Goals .. 5

7.2 General Usage Notes (Non normative) ...5

7.3 Steps in using SMM (Non-normative) ...6

7.4 Interpreting Measures (Informative) ..6

8 Core Classes ... 9

8.1 General ...9

8.2 SmmElement Class (Abstract) .. 10

8.3 SmmModel Class ..11

8.4 SmmRelationship Class (abstract) ..11

8.5 MeasureLibrary Class ...12

8.6 MeasureCategory Class ... 12

8.7 CategoryRelationship .. 13

8.8 Date ..14

8.9 Timestamp ..14
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 i

9 Extensions ... 15

9.1 General ...15

9.2 Attribute Class ...15

9.3 Annotation Class ...16

10 Measures ... 17

10.1 General ...17

10.2 Characteristic Class ..19

10.3 Scope Class ..19

10.4 Measure Class (abstract) ..21

10.5 Operation Class ..23

10.6 OCLOperationClass ..24

10.7 MeasureRelationship Class (abstract) ..25

10.8 EquivalentMeasureRelationship Class ..25

10.9 RefinementMeasureRelationship Class ..26

10.10 RecursiveMeasureRelationship Class ..27

10.11 DimensionalMeasure Class ..27

10.12 Ranking Class ...28

10.13 RankingMeasureRelationship ...29

10.14 RankingInterval Class ...29

11 Collective Measures ... 31

11.1 General ...31

11.2 CollectiveMeasure Class ...33

11.3 Accumulator data type (enumeration) ...34

11.4 DirectMeasure Class ...34

11.5 Counting Class ..34

11.6 BinaryMeasure Class ..35

11.7 Ratio Class ..36

11.8 BaseMeasureRelationship Class ..37

11.9 Base1MeasureRelationship Class ..37

11.10 Base2MeasureRelationship Class ..37
ii Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM), v1.0

12 Other Measures ... 39

12.1 General ...39

12.2 NamedMeasure Class ..39

12.3 RescaledMeasure Class ...40

12.4 RescaledMeasureRelationship Class ...40

13 Measurements ... 41

13.1 General ...41

13.2 Measurement Class (abstract) ..41

13.3 MeasurementRelationship Class (abstract) ..43

13.4 EquivalentMeasurementRelationship ...43

13.5 RefinementMeasurementRelationship Class .. 43

13.6 RecursiveMeasurementRelationship Class ..44

13.7 DimensionalMeasurement Class ..44

13.8 Grade Class ..45

13.9 RankingMeasurementRelationship Class ... 46

14 Collective Measurements ... 47

14.1 General ...47

14.2 CollectiveMeasurement Class ..47

14.3 DirectMeasurement Class ...48

14.4 Count Class ..48

14.5 BinaryMeasurement Class .. 49

14.6 RatioMeasurement Class ..49

14.7 BaseMeasurementRelationship Class .. 49

14.8 Base1MeasurementRelationship Class ..50

14.9 Base2MeasurementRelationship Class ..50

15 Named and Rescaled Measurements .. 51

15.1 General ...51

15.2 NamedMeasurement Class ..51

15.3 RescaledMeasurement Class ...51

15.4 RescaledMeasurementRelationship Class ...52
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 iii

16 Observations .. 53

16.1 General ...53

16.2 Observation Class ...53

16.3 ObservationScope Class ...54

16.4 ObservedMeasure Class ...55

16.5 Argument Class ...56

17 Historic and Trend Data (Non-normative) .. 57

17.1 General ...57

18 Inaccuracy (Non-normative) ... 59

18.1 General ...59

19 Library of Measures (Non-normative) .. 63

19.1 General ...63

19.2 Various Counts ..63
19.2.1 Module Count ... 63
19.2.2 Screen Count .. 66
19.2.3 Method Count ... 69
19.2.4 Lines of Code ... 70
19.2.5 Lines of Code for ASTM ... 74

19.3 McCabe ...75
19.3.1 Branching Factor of ActionElements and Modules ... 75
19.3.2 Cyclomatic Complexity of a Module .. 77
19.3.3 Extended Cyclomatic Complexity of a Module ... 78
19.3.4 Average Extended Cyclomatic Complexity of Modules in the System 78

19.4 Ratio of Additive ECC over Additive Counting of modules. Counts
 of Operating Systems ..78

19.5 Halstead ..80
19.5.1 Distinct Operator Count of a Module .. 80
19.5.2 Distinct Operand Count of a Module .. 81
19.5.3 Operator Occurrence Count of a Module ... 81
19.5.4 Operand Occurrence Count of a Module .. 81
19.5.5 Halstead Length of a Module .. 81
19.5.6 Halstead Vocabulary of a Module ... 81
19.5.7 Halstead Volume of a Module .. 81

19.6 Software Engineering Institute (SEI) Maintainability Index86

19.7 Qualitative Example ..91
19.7.1 Non-standard language usage score ... 91
iv Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM), v1.0

20 Library of Categories (Software example) ... 93

20.1 General ...93

20.2 Environmental Metrics ..93

20.3 Data Definition Metrics...93

20.4 Program Process Metrics ..93

20.5 Architecture Metrics .. 93

20.6 Functional Metrics ...93

20.7 Quality / Reliability Metrics .. 93

20.8 Performance Metrics ...93

20.9 Security / Vulnerability ..93
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 v

vi Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM), v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

• Business Rules and Process Management Specifications

Language Mappings

• IDL/Language Mapping Specifications

• Other Language Mapping Specifications

Middleware Specifications

• CORBA/IIOP

• CORBA Component Model

• Data Distribution

• Specialized CORBA
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 vii

Modeling and Metadata Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

Modernization Specifications

• KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications

• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and
may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as ISO
standards. Please consult http://www.iso.org

OMG Contact Information

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
http://www.omg.org/
Email: pubs@omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions
viii Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 ix

x Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

1 Scope

This specification defines a meta-model for representing measurement information related to any model structured
information with an initial focus on software, its operation, and its design. Referred to as the Structured Metrics Meta-
model (SMM), this specification is an extensible meta-model for exchanging both measures and measurement information
concerning artifacts contained or expressed by structured models, such as MOF.

The SMM include elements representing the concepts needed to express a wide range of diversified measures. The
specification does include a minimal library of software measures, but it is not asserting that the listed measures constitute
standards themselves; these are supplied simply as non-normative examples.

The SMM is a specification for the definition of measures and the representation of their measurement results. The
measure definitions make up the library of measures and that serves to establish the specification upon which all of the
measurements will be based.

The SMM is part of the Architecture Driven Modernization (ADM) roadmap and fulfills the metric needs of the ADM
roadmap scenarios as well as other information technology scenarios.

The SMM specifies the representation of measures without detailing the representation of the entities measured. SMM
anticipates that those entities are represented in other OMG meta-models. Measures of software artifacts or their features
that are defined within the SMM, the Knowledge Discovery Metamodel (KDM), the Abstract Syntax Tree Metamodel
(ASTM), another ADM roadmap meta-model or another OMG meta-model may arise as:

• Counts. (Lines of code measures exemplify the mechanism.)

• Direct applications of named measurements. (One such named measure is Cyclomatic Complexity.)

• Simple algebraic change of scales of already defined numeric measures (e.g., the translation to ‘choice points’ from
Cyclomatic complexity).

• Simple algebraic aggregations of numeric artifact features, including other measures, over sets of software artifacts.
(Determining the complexity of an application by summing the complexities of the application’s elements
demonstrates this process.)

• Simple range-based grading or classification of already defined numeric measures. (Cyclomatic reliable/unreliable
quadrants are one such grading.)

• Qualitative evaluations where the range of evaluations can be mapped to a linear order.

Useful metrics must go beyond static (or dynamic) code analysis and technical performance to include factors related to
information utility and acceptance of the system by the organization(s) participating in an enterprise. To be objective and
repeatable, such metrics need to be based on technical characteristics of the system. Given a meta-model representation of
such characteristics, the SMM will facilitate the exchange of such measures.

Given the evolutionary nature of system development and the predicate value of metrics with respect to “downstream”
problems, metrics are gathered into trends or viewed from historical perspective. As shown in Clause 17 “Historic and
Trend Data,” SMM addresses the issues of trend and history to model for system development as long as the historical
links of the measured entities are provided.

Consistent with other models defined by OMG, the SMM is defined using the MOF meta-modeling language. As such, it
has a standard textual representation presented by XMI. Consequently, the exchange of metrics defined by SMM is in the
XMI. These models are compatible with MOF repositories for storage and retrieval by various tools.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 1

2 Conformance

The principle goal of SMM is the exchange of measurements about software. To be SMM compliant, a tool must fully support
SMM as one compliance point. An implementation can provide:

• The capability to generate XMI documents based on the SMM XMI schema capturing measurements from the existing
model of the tool.

• The capability to import measurements via representations based on the SMM XMI schema and to map the
measurements into the existing model of the tool.

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of any of these publications do not apply.

• UML 2. Infrastructure Specification

• MOF 2.0 Specification

• OCL 2.2 Specification

4 Terms and Definitions

We assume the following definitions:

Measure: A method assigning comparable numerical or symbolic values to entities in order to
characterize an attribute of the entities.

Measurement: A numerical or symbolic value assigned to an entity by a measure.

Measurand: An entity quantified by a measurement.

Unit of Measure: A quantity in terms of which the magnitudes of other quantities within the same total
order can be stated.

Dimension: A totally ordered range of values which can be stated as orders of magnitude relative
to one another or to an archetypal member.

Measurement Accuracy: The measurement by which another measurement may be wrong.

Measurement Scope: The domain (set of entities) to which a given measure may be applied.

Measurement Range: The range (set of comparable values) assignable by a given measure.
2 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

5 Symbols

There are no symbols/abbreviations.

6 Additional Information

6.1 Changes to Adopted OMG Specifications

There are no changes to other OMG specifications.

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification.

Although the clauses are organized in a logical manner and can be read sequentially, this reference specification is intended to
be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate browsing and search.

6.3 Acknowledgments

The following companies submitted and/or supported parts of this specification:

• EDS

• Benchmark Consulting

• KDM Analytics

• Software Revolution

• Tactical Strategy Group

• NIST

• eCube Systems

The following persons were members of the core team that designed and wrote this specification: Kevin Barnes, Djenana
Campara, Larry Hines, Nikolai Mansurov, Alain Picard, John Salasin, Michael Smith, and William Ulrich.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 3

4 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

7 SMM Introduction

7.1 Overview

Measurements provide data for disciplined engineering in that engineers and their managers rely on these comparable
evaluations in assessing the static and operational qualities of systems.

For example, software measurement methods produce comparable evaluations of software or application artifacts. Counts
such as number of screens, lines of code, and number of methods quantify the size of artifacts along a single dimension.
These evaluations readily distinguish larger artifacts from smaller ones; likewise complexity metrics such as Halstead and
Cyclomatic separate the simpler artifacts from the more complex. Comparable evaluations form mappings of artifacts of a
given type into a single dimension.

Such is also the case for architecture measures (coupling and cohesion); functional measures (functions defined in system,
persistent data as a percentage of all data, functions in current system that map to functions in target architecture); quality
measures (failures per unit time, meantime to failure, meantime between repair); performance measures (average batch
window clock time, average online response time); software assurance measures; and cost measures.

Predictive metrics provide a basis for continual system-level in contrast to fixed milestone-based assessments. These metrics
may indicate at some future development stage the probability that the system will or will not meet its requirements.

This specification defines a meta-model for representing measurement related to structured model assets and their operational
environments referred to as the Structured Metrics Meta-model (SMM).

The SMM promotes a common interchange format that will allow interoperability between existing tools, commercial services
providers, and their respective models. This common interchange format applies equally well to development and maintenance
tools, services, and models. SMM complements a common repository structure and so facilitates the exchange of data
currently contained within individual tool models that represent modeled assets. Given that the repository’s meta-model
represents the physical and logical modeled assets at various levels of abstraction as entities and relations, SMM represents the
measurements of these assets.

7.1.1 Goals

The main goals for the SMM are to provide an extendable meta-model establishing a standard for the interchange of measure
libraries and structured model related measurements over the entities modeled by OMG meta-models. By structured model, we
mean measurements derived from the structure model artifacts (that is those artifacts that are modeled according to the MOF
meta-model approach). SMM contains meta-model classes and associations to model measurements, measures, and
observations. We present and explain diagrams depicting measures, then measurements and finally observations. All initial
depictions are in terms of software measurement, but the specification is not limited to representing those modeled elements.

SMM supports the meta-models of the OMG by providing for extendable measurements of entities.

7.2 General Usage Notes (Non normative)

The SMM is designed to allow for both the exchange of measurement data, as well as the measures upon which those
measurements were established.

Even though there exists a mechanism whereby someone can essentially exchange measurement data without providing any
insight into the measures (accomplished with NamedMeasure), this approach is surely not the major trust of this specification.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 5

The value of SMM comes from the ability of various groups and vendors to be able to define library of measures against
different structured models. These libraries can then be exchanged, validated, and then used to produce measurements of
specific model instances.

To exchange measure libraries, the definition of those libraries has to be precise and detailed enough to enable for their
unambiguous use in carrying out measurements on models.

While SMM compliance doesn’t mandate how to gather measurements from defined measures, it is clear that without any
common understanding measures lose most of their value. The following clause(s) should help to facilitate the understanding
of the specification and also provide some background that will help in applying the specification more uniformly.

7.3 Steps in using SMM (Non-normative)

In general, using the SMM starts with the definition of measures and their libraries. In the case of measures being applied to
standard models, these measure libraries could also be pre-defined and made available to various practitioners.

How we proceed next very much depends on the type of environment that the tools are operating in. Tools that are simply
using the SMM as a means of interchanging measurement data will take some measurements, along with the details about the
Observation that resulted in those measurements, populate the model, and deliver the results.

Other tools that are designed more natively with the SMM in mind will take a bit of a different multi-step process.

Once we have our measures in place, the next step is to determine what we will be measuring. This is what we call defining the
observation. Among other things this will include specifying the model(s) to use (ObservationScope) for taking the measures,
as well as determining which measures we are interested in performing (requestedMeasures). It can also include determining
and passing in any arguments that might be needed by our requestMeasure(s) and their descendants.

Next step is to apply the requested measure(s) on the model(s) in scope and to figure out the measurements. Once that is done,
the resulting model is ready to be used or exchanged.

The step of applying the measure, the “measurement step” is clearly one that can take on many forms depending on the
implementer. But regardless of how the process is carried out, the measure library should provide sufficient information for a
tool vendor to implement “executable measuring.” This “executable measuring” should enable another tool vendor, presented
with the same measure libraries, observation information and instance models, to be able to apply those measures in an
unambiguous fashion and to come up with the same measurements (subject to uncertainty errors).

7.4 Interpreting Measures (Informative)

Measures essentially fall into 2 “categories,” there are direct measures, which are measures that are taken directly against a
measurand, and all others, which we shall call derived measures, as their result is based on some other measure(s), direct or
derived. Ultimately, every measure comes from a direct measure (otherwise it might end up triggering a defaultQuery for its
value).

In order to support many types of measure refinement, where you have a drill-down of measures representing the collective
aggregation of values in a top-down fashion, and also in order to make sure that derived measures are correctly linked to their
base measure(s), the establishment of a measurement graph shall be considered to essentially be a top-down operation.

In contrast, the taking of measurements to realize such a measurement graph, is normally a bottom-up operation, where the
direct measures are first calculated, in order for the various next levels of derived measures to have all of the base measures
calculated prior to being calculated themselves.
6 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 7.1 - Fundamental Approach

SMM avoids duplicating features of the measured artifact as features of the measurement. Consider as an example a log of bug
reports. Possible measures are total bug count in the log, total time logged in the log, and bugs per time-period. The units of
measures are a bug, a unit of time, and bugs per time interval, respectively. SMM does not provide representations for bug,

start time and end time. Their representations must be provided elsewhere1.

A measurement result is precisely identified only if its measure is identified. To understand the meaning of 1000 lines we need
to know that it is the result of measuring a program’s length in lines. The measured entity must be identified. That is, 1000
lines is for a particular program. Contextual information may also be needed. For example, function point counts of a program
may vary depending upon the expert applying the measure.

???? presents the fundamental approach of this specification. Measurement has a value conveying the measurement results.
The measurement may be of any MOF element as related by the measurand association. In this way, measurement is
applicable to elements of any OMG meta-models including the Knowledge Discovery Meta-model and the Abstract Syntax
Tree Meta-model. The measured entity may represent any software artifact or an aspect of an artifact.

The SMM associates an evaluation process, a measure, to each of the measurements. Measures signify functions from the
domain of the modeled artifacts and aspects thereof to sets of ordered values.

Contextual information is related by Observation, such as who, where, and when. Observation may serve to distinguish
distinct utilizations of a given measure on a given measurand.

1. For example, the General Ledger Specification v1.0 provides representations for start_date and end_date.

class Fundamental Approach

AbstractMeasureElement

Measure

+ measureLabelFormat: string [0..1]
+ measurementLabelFormat: string [0..1]
+ scale: MeasurementScale
+ visible: boolean [0..1]

+ getAllArguments() : Argument[0..*]
+ getArguments() : Argument[0..*] A

Measurement

- breakValue: string [0..1]
+ error: string [0..1]

+ getMeasureLabel() : string
+ getMeasurementLabel() : string

Observation

+ observer: string [0..1]
+ tool: string [0..1]
+ whenObserved: Date [0..1]

ObservationScope

- scopeUri: string

MofElement

SmmRelationship

ObservedMeasure

SmmElement

- description: string
- name: string
- shortDescription: string

+ getInbound() : SmmRelationship[0..*]
+ getOutbound() : SmmRelationship[0..*]

0..*

+measure 1

+observedMeasures

0..*

+scopes 0..*

+measurements 0..*

0..*

+measurand

1

0..*

+requestedMeasures
0..*
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 7

8 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

8 Core Classes

8.1 General

Figure 8.1 - Core Classes Diagram

 class Core Classes

SmmModel
SmmElement

- description: stri ng
- name: string
- shortDescription: string

MeasureLibrary

Observation

+ observer: string [0..1]
+ tool: string [0..1]
+ whenObserved: Date [0..1]

SmmRelationship

ObservedMeasure

Measurement

- breakValue: string [0..1]
+ error: string [0..1]

+ getMeasureLabel() : string
+ getMeasurementLabel() : string

Measure

+ measureLabel Format: string [0..1]
+ measurementLabel Format: string [0..1]
+ visible: boolean [0..1]

+ getAll Arguments() : Argument[]
+ getArguments() : Argument[] A

MeasureCategory

SmmRelationship

CategoryRelationship

AbstractMeasureElement

SmmRelationship

MeasureRelationship

Scope

+ class: string

Characteristic

Observ ationScope

- scopeUri : stri ng

0..*

+/to 1

+l ibraries 0..*

0..*

+requestedMeasures

0..*

+observations
0..*

+observedMeasures

0..*

0..*

+measure 1

+measurements 0..*

+categoryMeasure

0..*

+category

0..*

0..*

+scope 1

+scopes 0..*

0..*

+/from
1

+categoryRelationships

0..*

+measureElements

0..*

+/outbound
0..*
{uni on}

+/from

1
{union}

+/inbound

0..*
{uni on}

+/to

1
{union}

+measureRelationships

0..*

+parent 0..1

+tra it 1

0..*

+categoryElement 0..*

+category 0..*
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 9

Figure 8.2 - Core Relationship Classes

8.2 SmmElement Class (Abstract)

An SmmElement constitutes an atomic constituent of a model. In the meta-model, SmmElement is the top class in the
hierarchy. SmmElement is an abstract class.

class Core Relationship Classes

AbstractMeasureElement

Measure

+ measureLabelFormat: string [0..1]
+ measurementLabelFormat: string [0..1]
+ scale: MeasurementScale
+ visible: boolean [0..1]

+ getAl lArguments() : Argument[0..*]
+ getArguments() : Argument[0..*] A

Observ ation

+ observer: string [0..1]
+ tool : string [0..1]
+ whenObserved: Date [0..1]

Measurement

- breakValue: string [0..1]
+ error: string [0..1]

+ getMeasureLabel() : string
+ getMeasurementLabel() : string

Observ edMeasure

Equiv alentMeasureRelationship

MeasureRelationship

SmmRelationship

+ getFrom() : SmmElement
+ getTo() : SmmElement

SmmElement

- description: string
- name: string
- shortDescription: string

+ getInbound() : SmmRelationship[0..*]
+ getOutbound() : SmmRelationship[0..*]

CategoryRelationship

MeasurementRelationship

RefinementMeasurementRelationship

Equiv alentMeasurementRelationship

Recursiv eMeasurementRelationship

Recursiv eMeasureRelationship

RefinementMeasureRelationship

+from

1

+equivalentTo

0..*

+observedMeasures

0..*

+to

1

+recursiveFrom
0..1

+from

1

+recursiveTo
0..1

+to
1 +refinementFrom

0..*
+from

1

+refinementTo
0..*

+from 1

+equivalentTo
0..*

+measurements

0..*

+to 1

+refinementFrom
0..*

+from

1

+refinementTo
0..*

+from
1

+recursiveTo 0..1

+to

1

+recursiveFrom
0..1

+to1

+equivalentFrom

0..*

+to1

+equivalentFrom

0..*

+/outbound

0..*
{union}

+/from
1
{union}

+measurementRelationships
0..*

0..*

+measure1

+/inbound

0..*
{union}

+/to
1
{union}

+/inbound

0..*
{union}

+/to1
{union}

+/outbound
0..*
{union}

+/from1
{union}

+measureRelationships

0..*

+/inbound

0..*
{union}

+/to

1
{union}

+/outbound0..*
{union}

+/from

1
{union}
10 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Attributes

Associations

Operations

8.3 SmmModel Class

This class represents the entry point into the SMM model and provides the top-level container for all the elements of the SMM.

SuperClass

SmmElement

Associations

8.4 SmmRelationship Class (abstract)
This class is a model element that represents semantic association between SMM elements.

SuperClass

SmmElement

name: String Specifies the name of the SMM element (optional)

shortDescription: String A short description for the element (optional).

description: String A detailed description for the element (optional).

inbound:SmmRelationship[0..*] The set of relationship such that the current SmmElement is the to-endpoint
of these relations. This property is a derived union.

outbound:SmmRelationship[0..*] The set of relationship such that the current SmmElement is the from-
endpoint of these relations. This property is a derived union.

getInbound:SmmRelationship[0..*] This operation returns the set of relations represented by the derived union
inbound relation.

getOutbound:SmmRelationship[0..*] This operation returns the set of relations represented by the derived union
outbound relation.

libraries:MeasureLibrary [0..*] The set of all MeasureLibrary owned by the model.

observations:Observation[0..*] The set of all Observation owned by the model.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 11

Associations

Operations

8.5 MeasureLibrary Class

This class represents libraries of measures. A library represents the top container for all measure artifacts. The library of
measures defines a reference set of measures that can be applied over and over in a way that is independent and decoupled
from the models under observation. Therefore it shall be possible to pre-define library of metrics and to pass those libraries to
a builder so that the metrics can be applied to specified models, without affecting the measures in the library.

SuperClass

SmmElement

Associations

Semantics

Measure elements can be related across libraries and need not be restricted to their own library.

8.6 MeasureCategory Class

This class represents categories of measures. A category has measures and other categories as its elements.

A category represents the measures directly associated with an ‘element’ and the measures of each sub-category likewise
associated with an ‘element.’

A measure may appear in multiple categories. A category can be a subcategory of other categories indicating only that its
measures also are measures of these other categories.

This class may be used to represent a family of similar measures that apply to different scopes such as lines of code in a file,
lines of code in a method, and lines of code in program. It may also represent a category of measures that are associated with a
given field or engineering task. For instance we speak often of Quality Assurance Metrics and Software Maintainability
Metrics. The category of a metric may indicate the kind of purpose for which the metric is used.

from:SmmElement[1] The origin element (also referred to as the from-endpoint of the relationship).
This property is a derived union.

to:SmmElement[1] The target element (also referred to as the to-endpoint of the relationship). This
property is a derived union.

getFrom:SmmElement [1] This operation returns the SmmElement that is the to-endpoint (the target) of the
current relationship.

getTo:SmmElement[1] This operation returns the SmmElement that is the from-endpoint (the origin) of
the current relationship.

measureElements:AbstractMeasureElement [0..*] The set of all AbstractMeasureElement owned by the measure
library.

categoryRelationships:CategoryRelationship [0..*] The set of all CategoryRelationship owned by the measure library.
12 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

• Environmental Metrics (e.g., number of screens, programs, lines of code, etc.)

• Data Definition Metrics (e.g., number of data groups, overlapping data groups, unused data elements, etc.)

• Program Process Metrics (e.g., Halstead, McCabe, etc.)

• Architecture Metrics (e.g., average call nesting level, deepest call nesting level, etc.)

• Functional Metrics (e.g., functions defined in system, business data as a percentage of all data, functions in current
system that map to functions in target architecture, etc.)

• Quality Metrics (e.g., failures per day, meantime to failure, meantime to repair, etc.)

• Performance Metrics (e.g., average batch window clock time, average online response time, etc.)

• Software Assurance Metrics

Metric categorization has other uses as well. For example, measures may be categorized by tool support.

SuperClass

AbstractMeasureElement

Associations

8.7 CategoryRelationship

This class is a model element that represents semantic or named association between Measure categories and other Measure
elements. For example, a modeler may choose to create a “gold standard” measure for a selected category. To do so, the
modeler can use a category relationship named “gold standard” to associate the measure to the category. See Figure 18.1.

SuperClass

SmmRelationship

Associations

Semantics

CategoryRelationship represents a named association between a measure category and a measure element
(AbstractMeasureElement) such as a measure.

category:MeasureCategory[0..*] Represents the parent endpoint of the category hierarchy relationship.

categoryElement:MeasureCategory[0..*] Represents the children endpoint of the category hierarchy
relationship.

categoryMeasure:Measure[0..*] Represents that measure is in this category.

from:MeasureCategory[1] Indicates the measure category that has relation.

to:AbstractMeasureElement[1] Indicates the Category or Measure element related to the category. A constraint is
used to limit the type of SmmElement that can be used.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 13

Constraints

context CategoryRelationship inv:

to.oclIsTypeOf(MeasureCategory) or

measures.oclIsTypeOf(Measure)

8.8 Date

This represents dates. In a language binding it should be mapped to a type that allows ordered comparison. For XMI it is
mapped to the XML Schema date type.

8.9 Timestamp

This represents a point in time: for example, a combination of a date and a time within the day. For XMI it is mapped to the
XML dateTime type.
14 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

9 Extensions

9.1 General

The SMM model provides for a set of simple extension mechanisms that provide a uniform meta-model pattern for extending
the SMM model.

Figure 9.1 - SMM Extensions

This diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to instances of SMM
elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs of <tag, value> to an individual
element instance. An ad hoc user-defined attribute is owned by an individual element instance. This means that different
instances of the same meta-model element may own completely different user-defined attributes (and some may have none at
all).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the
elements of SMM instances. They may be used by implementer to add specific information to an individual element. They
may also be used by an analyst, annotating a given SMM instance.

9.2 Attribute Class

An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e., name=value).
Attribute add information to the instances of model elements.

SuperClass

SmmElement

Attributes

Constraints

Attribute cannot have further annotations or attributes.

tag: String Contains the name of the attribute. This name determines the semantics that are applicable
to the contents of the value attribute.

value: String Contains the current value of the attribute.

c la s s E x te n s io n s

A ttr ib u te

+ ta g : st ri n g
+ v a l u e : st ri n g

A n n o ta tio n

+ te x t : st ri n g

S m m E le m e n t

- d e sc ri p t i o n : st ri n g
- n a m e : st ri n g
- sh o rtD e sc ri p t i o n : st ri n g

+ a n n o ta t i o n s

0 . . *

+ a t t ri b u te s

0 . . *
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 15

Semantics

The interpretation of attribute semantics is outside the scope of SMM. It must be determined by the user or the implementer
conventions. It is expected that some tools will provide capability to add arbitrary attributes to the instances of the model to
supply information needed for their operations beyond the basic semantics of SMM. Such information could support analysis
of SMM models by analysis, etc.

An attribute element is not related to a particular meta-model element. It does not define a “virtual” attribute to an extended
meta-model element that is instantiated with every instantiation of the new element. Instead, an attribute element can be added
to any SMM element. It defines a property of a particular instance, not a property of a class of instances.

9.3 Annotation Class

Annotations allow textual descriptions to be attached to any instance of a model element.

SuperClass

SmmElement

Attributes

Constraints

Annotations cannot have further annotations or attributes.

Semantics

Annotation allows associating a human-readable text with an instance of any Element.

text: String Contains the text of the annotation to the target model element.
16 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

10 Measures

10.1 General

Measures are evaluation processes that assign comparable numeric or symbolic values to entities in order to characterize
selected qualities or traits of the entities. Counting the lines of program code in a software application is one such evaluation.

There may be many measures that characterize a trait with differing dimensions, resolutions, accuracy, and so forth. Moreover,
trait or characteristic may be generalized or specialized. For example, line length is a specialization of length that is a
specialization of size.

Each measure has a scope, the set of entities to which it is applicable; a range, the set of possible measurement results; and the
measurable property or trait that the measure characterizes. For example, the aforementioned line counting has software
applications as one of its scope with line length as one of its measurable trait. Explicitly representing the scope and the
measurable trait allows for the consideration of different measures, which characterize the same attribute for the same set of
entities. Each measurable trait may have multiple, identifiably distinct measures.

Figure 10.1 - Measurable Characteristic and Scope

The evaluation process may assign numeric values that can be ordered by magnitude relative to one another. These measures
are modeled by the DimensionalMeasure class.

 c las s Me as urable Attribute

Charac teris tic

Me as ure

+ m ea su re La bel Fo rm at: Strin g [0. .1]
+ m ea su re me ntL ab el Forma t: Strin g [0..1]
+ visib le: Bo ole an [0 ..1]

+ g etAll Argu me nts() : A rg um e nt[0 ..*]
+ g etArg um e nts() : Arg um en t[0 ..*]

A

Scope

+ cla ss: St rin g

SmmEleme nt

Abstra ctM e asureEle me nt

Operation

+ bo dy: Stri ng
+ la ng uag e: S tri ng

+ ge tParam Strin gs() : strin g[0.. *]

Rec ursiv e M eas ureRe la tionship

Re finem entM ea sure Rela tions hip

OCLOpe ra tion

+ b od y: String
+ co nte xt: Strin g

Dime nsio na lMe asu re

Dire ctMe as ure

SmmRe lati on ship

Me as ureRe lationship

Equiv ale ntMe as ureRelationship

+trait 1

0 ..*

+bre akCon dit ion
0 ..1

+reco gn izer
0..1

0 ..*
+sco pe

1

+d efau ltQu ery
0. .1

+from

1

+eq ui vale ntTo

0 ..*

+to1

+eq ui vale ntFro m
0. .*

+to
1

+re cursiveFrom

0 ..1

+from

1

+recu rsi veT o

0..1

+fro m
1

+refin em e ntT o

0..*

+pa ren t
0 ..1

+m ap pi ng

0 ..1

+op era tio n

0 ..1

+m ea su reRe lat ion sh ip s

0 ..*

+m easu ran dQu ery

0 ..1+to

1

+ re fine m en tFro m
0 ..*
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 17

The evaluation process may alternatively assign numeric values that are percentages or, more generically, ratios of two base
measurements. These measures are modeled by the Ratio class. The percentage of comment lines in an application exemplifies
this type of measure.

The evaluation process may also assign symbolic values demonstrating a ranking that preserve the ordering of underlying base
measures. These measures are modeled by the Ranking class. Cyclomatic reliable/unreliable criterion illustrates one such
ranking. Reliable is comparably better than unreliable. Comparability is essential here because ranking is not intended to
model every possible assignment of measurands.

The documentations of measures, accomplished with measure libraries, should stand by themselves so that an interchange of
measurements may simply reference such documentation and not duplicate it. The documentation of measures should also be
precise and complete enough to provide for an unambiguous specification that can be executed on a referenced model, with the
exception of the NamedMeasure when used for simple result interchange. The actual ability to execute a model is not part of
the compliance to this specification and neither is the method to provide execution defined within this specification. These are
left to the implementers.

Figure 10.2 - Measure Class DIagram

c la s s M e a s u re s

A b s tra c tM e a s u re E l e me n t

M e a s u re

+ m e a su re L a b e l F o rm a t : st ri n g [0 . .1]
+ m e a su re m e n tL a b e l F o rm a t : st ri n g [0 . .1]
+ v i si b l e : b o o l e a n [0 . .1]

+ g e tA l l A rg u m e n ts() : A rg u m e n t[0 . . *]
+ g e tA rg u m e n ts() : A rg u m e n t [0 . . *]

A

R a n k in g D im e n s io n a lM e a s u re

+ u n i t : st ri n g

S mmE l e me n t

R a n k in g In te rv a l

+ m a x i m u m E n d p o i n t: d o u b l e
+ m a x i m u m O p e n : b o o l e a n [0 . .1]
+ m i n i m u m E n d p o i n t : d o u b l e
+ m i n i m u m O p e n : b o o l e a n [0 . .1]
+ sy m b o l : st ri n g

S mmR e l a t i o n s h i p

M e a s u re R e la tio n s h ip

E q u iv a le n tM e a s u re R e la tio n s h ip

R a n k in g M e a s u re R e la tio n s h ip

A b s tra c tM e a su re E l e me n t

O p e ra tio n

+ b o d y : stri n g
+ l a n g u a g e : st ri n g

+ g e tP a ra m S tri n g s() : st ri n g [0 . . *]

+ m a p p i n g

0 . .1

+ to 1

+ e q u i v a l e n tF ro m
0 . .*

+ f ro m 1

+ e q u i v a l e n tT o
0 ..*

+ d e fa u l tQ u e ry

0 . .1

+ fro m 1

+ ra n ki n g T o

0 . .1

+ to
1

+ ra n ki n g F ro m

0 . .*
+ i n te rva l 1 . . *

+ m e a su ra n d Q u e ry

0 . .1

+ m e a su re R e l a t i o n sh i p s

0 . . *

+ / i n b o u n d

0 . .*
{u n i o n }

+ / to
1
{u n i o n }

+ /o u tb o u n d
0 . .*
{u n i o n }

+ / f ro m
1
{u n i o n }
18 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

The AbstractMeasureElement is the abstract parent class for all measure entities.

SuperClass

SmmElement

Associations

None

10.2 Characteristic Class

This class represents a property or trait of the members in its scope, a set of MOF Elements, which may be characterized by
applying a measure to those members. By specifying a characteristic a modeler is indicating what aspect, trait, or property the
measure purports to measure.

Note that Characteristic provides for a representation of a hierarchy of measures based upon the abstraction of measured trait.
For example, a length characteristic may be the parent of the fileLength and programLength characteristics. programLength
could be the parent of programLinesOfCodeLength.

SuperClass

AbstractMeasureElement

Attributes

Associations

10.3 Scope Class

This class represents sets of MOF::Elements as domains for measures. The domain is a subset instances of a class specified by
the class attribute. If the subset does not include all instances of the given class, then a restriction is specified by specifying a
recognizer for the subset elements.

The scope of a measure identifies a set of objects as the domain of the measure. The objects all exhibit to varying degrees the
trait or property characterized by a measurement. SMM requires that the objects be instances of a single class. The set of
objects may be further restricted by a recognizer operation. The recognizer is optional.

The recognizer, if given, is a boolean operation applicable to instances of the named class. The measure’s scope is restricted to
those instances for which the recognizer returns true.

SuperClass

AbstractMeasureElement

name: String Specifies the name of the SMM element. (inherited)

parent:Characteristic[0..1] Specifies the generalization of this characterization.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 19

http://kdm.somecompany.com/spec/KDM/1.4

Attributes

Associations

Semantics

The class attribute may name a class within any MOF model. The entities associated as elements of a Scope are restricted to
members of the specified class.

The class attribute should be able to provide an unambiguous way to specify a class name. In order to achieve this goal, the
string should be formatted according to the following pattern, with all 3 elements being required:

Namespace:Package::ClassName

This usage of package pathnames is transitive and can also be used for packages within packages:

Packagename1::Packagename2::ClassName

Where:

• Namespace represents the model where the class is defined. Namespace can be either one of the pre-defined values
(“kdm,” “astm,” or “smm” at the moment) or be a namespace defined in the XMI where this measure is located. For
example a namespace value of “mykdm” would be valid if the SMM model contains the following XMI namespace
definition in its header: “xmlns:mykdm=http://kdm.somecompany.com/spec/KDM/1.4”. XMI based namespace
definition can also be used with the standard namespace to point the class name definition to a specific version of those
model specification. Without such a namespace entry, the pre-defined values would point to a “current” unspecified
version.

• Package represents the package name within the model

• ClassName represents the base class name within the specified package.

The breakCondition attribute is defined as an OCL operation that evaluates to a string representing the group or break value of
the class instance.

• Examples:

1. this.language

1. This would represent a break on the attribute language, as seen in the KDM inventory model SourceFile
class. Applicable as long as the measurand class is the same as the scope class, SourceFile in this example.

class: String[1] Specifies the class for elements of the set. See semantics for format rules (required).

recognizer:Operation[0..1] If given, provides a boolean operation applicable to instances of the class that
returns true if, and only if, the instance is an element of the set.

breakCondition: Operation[0:1] If given, provides for an operation that returns a string describing a break
condition to allow for dynamically grouping instances of the class in scope by a
certain value. For example, this can be used to group elements by language name
in KDM SourceItem or by folder name in Inventory Items, without having to know
all of the possible conditions in advance.
20 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

10.4 Measure Class (abstract)

The Measure class (see Figure 7.1) models the specification of measures either by name, by representing derivations of base
measures, or by representing method operations directly applied to the measured object. The essential requirement for the
measure class is that it meaningfully identifies the measure applied to produce a given measurement. For example, McCabe’s
cyclomatic complexity could be specified by its name, McCabe’s cyclomatic complexity, by a direct measurement operation
or by rescaling counts of either independent paths or choice points. A measure may alternatively be identified by citing a
library of measure which includes the measure by name.

The scope of a measure identifies a set of objects as the domain of the measure. The objects all exhibit to varying degrees the
trait or property characterized by a measurement. SMM requires that the objects be instances of a single class. The set of
objects may be further restricted by a recognizer function. The recognizer is optional.

Scope need not be specified if the library and name are given. In that case, the scope can be found in the library.

A measure may be a refinement of another measure. The scope of the first measure is a subset of the second measure’s scope.
The characteristic of both measures must be identical.

SuperClass

AbstractMeasureElement

Attributes

name: String[1] Specifies the unique name of the measure. (inherited)

measureLabelFormat:String[0:1] Specifies a label format string to use when rendering this measure. See
semantics for detailed content format.

measurementLabelFormat:String[0:1] Specifies a label format string to use when rendering measurements of this
measure. See semantics for detailed content format.

visible:boolean[1:1] Specifies if rendering tools should display this measure or not. Some
measures whose role is only to help produce other measures will often be
marked as non-visible. Defaults to true.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 21

Associations

Operations

Semantics

The labelFormat is based on the concept of format string used in many languages to assemble string content for rendering.
Although beyond the scope of this specification to cover implementation details, this format also supports the use of external
resource to provide i18N internationalization.

scope:Scope[1] Specifies a set of elements measurable by this measure.

defaultQuery:Operation[0..1] Specifies a query that is used to determine a default value for
the measure in case we are dealing with a non-direct measure
(i.e., a measure that depends on another for its value) where its
base measure returns no children. This is a normal situation
that can happen when certain optional “children” don’t exist.

equivalentFrom:EquivalentMeasureRelationship[0..*] Specifies the relationship instance that defines the equivalency
of this measure.

equivalentTo: EquivalentMeasureRelationship[0..*] Specifies the relationship instance that defines the equivalency
of this measure.

refinementFrom:RefinementMeasureRelationship[0..*] Specifies the relationship instance that defines the refinement
of this measure.

refinementTo:RefinementMeasureRelationship[0..*] Specifies the relationship instance that defines the refinement
of this measure.

recursiveFrom:RecursiveMeasureRelationship[0..*] Specifies the relationship instance that defines the recursivity
of this measure.

recursiveTo:RecursiveMeasureRelationship[0..*] Specifies the relationship instance that defines the recursivity
of this measure.

category:MeasureCategory[0..*] Specifies categories to which this measure belongs.

trait:Characteristic[1] Specifies the trait characterized by this measure.

inbound:MeasureRelationship[0..*] The set of relationship such that the current Measure is the to-
endpoint of these relations. This property is a derived union.

outbound:MeasureRelationship[0..*] The set of relationship such that the current Measure is the to-
endpoint of these relations. This property is a derived union.

measureRelationships:MeasureRelationship[0..*] The set of all MeasureRelationship owned by the measure.

getArguments:Argument[0..*] This operation returns the set of arguments that the different operations of the
measure have defined and got returned by getParamStrings().

getAllArguments:Argument[0..*] This operation returns the set of arguments for this measure and any child
measure required for the execution of the measure. It should call
getArguments() on itself and every one of its child measures.
22 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Just like format strings, the labelFormat is defined as a text portion with possible replacement expressed as argument index
surrounded by French braces “{}”, where the zero-based index is matched with its corresponding replacement argument,
which follow the text portion.

Label format specification:

“Template Text”, Context Object: OperationName, ContextObject.attribute,…

Examples of the label String Template could be:

The arguments of the label format are defined in a comma separated list. Each of those arguments must follow a specific
pattern. There is a standard syntax and also a shorthand version for some common cases.

The standard syntax, which is always valid, starts by specifying a context object, followed by a literal colon “:”, then an
operation whose name must be the name of a valid instance in the Operation class,

• ContextObject: It is the first part and it represents the Object that we are interested in collecting information from. This
object is related or associated with the measurement such as the Scope or the measure or the measurand …etc. It is
important to understand here that the labelFormat is defined as part of the measure, but it is accessed normally from
within the context of a measurement.

• OperationName: Defines the name of a valid instance of the Operation class that is designed to return a string.

The shorthand syntax is valid to get the value of attributes from the current instance of measurement, measure, and scope
based on the current context of the initial measurement. This syntax calls for the use of a dotted notation being
ContextObject.attributeName. For example you could get “Measure.name” or “Scope.class” directly.

The defaultQuery is designed to provide a way to specify a default value in the specific case where a non-direct measure (i.e.,
a measure that depends on another for its value) happens not to have any available value from what should have been its “base
measure.” In those case, the query should be executed to provide for the value instead of returning null or failing the
measurement, as this is a normal situation that can happen when certain optional “children” don’t exist.

10.5 Operation Class

Operation is a subclass of AbstractMeasureElement that defines an operation to execute.

SuperClass

AbstractMeasureElement

“This is a label” A fixed string, in which case no arguments are necessary.

“This {1} of {0} A label with replaceable arguments that will come from evaluating the
corresponding argument from the list supplied (in numerical order, starting at 0).

$Resource:resource_text_constant Here resource_text_constant would be replaced with a constant that will be
matched in some resource location and for the proper locale (not defined here). The
content returned by this resource resolution can be any valid label string template.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 23

Attributes

Operations

Semantics

The operation body supports the use of replaceable parameters in order to support parameterized measures. This is
accomplished by defining placeholders for incoming arguments that will be replaced at runtime with a specific value, like
when dealing with date ranges for example.

The implementer is responsible, when using the measure library in an executable fashion, to determine base on the requested
measures of his observation, what are all of the arguments that should be passed in with the observation in order to properly
perform the measurements. The getArguments and getAllArguments operation of the Measure class are designed to help in
this regard.

When parameters are used they must adhere to the following specification: '{' [typeName] parameterName [' =”' defaultValue
'” '] '}' where:

• typeName represents the type of the parameter. The typeName must be one of the types supported by the “type”
attribute of the Argument class.

• parameterName represents the name of the parameter (required).

• defaultValue represents a default value to offer (on getArguments()) or to use if not supplied as Argument to an
observation. defaultValue is optional.

10.6 OCLOperationClass

OCLOperation is a subclass of AbstractMeasureElement that defines OCL helper methods.

SuperClass

AbstractMeasureElement

Attributes

Semantics

The OCLOperation class allows for the definition and registration of OCL helper methods in the context of specific classifiers.
These operations allow for the definition and reuse of often lengthy and complex OCL methods. It is the implementer’s

language:String Specifies the language of the operation. Valid values are currently “OCL” and
“XQuery.”

body:String Specifies the measurement operation expressed in the selected language.

getParamStrings:String[0..*] This operation returns the set of String that defines the parameter in use by an
operation.

context:String Specifies the classifier for which this helper is being defined. OCL inheritance rules applies to
resolve applicability of operation, based on the passed in context.

body:String Specifies the body of the OCL helper method.
24 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

responsibility to determine how to best provide for the parsing or execution environment of those methods. Any helper method
that is defined with an OCLOperation then becomes available for OCL based operations applied to the proper classifier.

10.7 MeasureRelationship Class (abstract)

MeasureRelationship is an abstract class representing any relationship between two measures. See Figure 10-2.

SuperClass

SmmRelationship

Attributes

Associations

Semantics

By default, relationships between measures have their meaning implied by their concrete subtype. The measurandQuery
defines an optional way to describe this relationship by allowing the specification of a query operation that will return the
specific measure instance that satisfies the query condition. It is mostly designed to be used with
RefinementMeasureRelationship in order to provide a navigation that is different than the default containment mode.

10.8 EquivalentMeasureRelationship Class

EquivalentMeasureRelationship is a class representing any relationship of equivalency between two measures. See Figure
10.2.

SuperClass

MeasureRelationship

name:String Specifies the name of this measure relationship. (inherited)

from:Measure [1] The origin element (also referred to as the from-endpoint of the relationship).
This property is a derived union.

to:Measure [1] The target element (also referred to as the to-endpoint of the relationship). This
property is a derived union.

measurandQuery:Operation[0..1] Specifies a query that is used to determine the measurands that satisfy the
relation between two measures. It is most often used to specify the measurands
that match a specific non-containment refinement relation between measures.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 25

Associations

Semantics

Defining a measure as being equivalent to another measure states that two measures are semantically indistinguishable. Any
measurement result by one on a given entity under a given observation should equal a measurement by the other on the same
or different entity as long as they are part of the same observation.

The semantics of this association is symmetric, but only one direction needs to be defined in a way that is resolvable, i.e., in a
way that provides a path all of the way to base measures assigned against outside measurand. If a measure can’t resolve to base
measurements but is defined as equivalent to another measure, then it can use this equivalency to derive its own measurement
result.

This means that when establishing the dependency graph for calculation, a measure can find its base measure not only through
direct lineage, but also through measure equivalency. For example, calculating LOC at various levels in code can be defined
against ASTM. Then we define that the ASTM CompilationUnit level LOC measure is equivalent to the KDM SourceFile
LOC measure. This then allows for the SourceFile LOC measure to find its result through its equivalency relationship.

10.9 RefinementMeasureRelationship Class

Refinement MeasureRelationship is a class representing any relationship of refinement between two measures.

SuperClass

MeasureRelationship

Associations

Semantics

Throughout the remainder of this document we will say that a measure is a refinement of another measure if and only if the
first is associated to the second as a refinement directly or transitively.

When this association is defined without a measurandQuery (from MeasureRelationship superclass), then it implies that the
from and to measure of the refinement are related through a containment relation where the from measure is the container and
the to measure represents the content of the container.

When the refinement relation between the two measure classes is not a direct containment, then a measurandQuery should be
used to provide the appropriate query to retrieve the related children in the scope of the ‘to’ measure.

from:Measure[1] Specifies the equivalent measure at the from endpoint of the relationship.

to:Measure[1] Specifies the equivalent measure at the to-endpoint of the relationship.

mapping:Operation[0..1] Specifies the mapping operation query that retrieves the “to” measure between a pair
of equivalent measures, when each measure is represented by a different scope.

from:Measure[1] Specifies the measure at the from endpoint of the relationship.

to:Measure[1] Specifies the measure at the to-endpoint of the relationship.
26 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

10.10 RecursiveMeasureRelationship Class

RecursiveMeasureRelationship is a class representing any relationship of recursivity on a measure upon itself.

SuperClass

MeasureRelationship

Associations

Semantics

Defining a measure as being recursive to itself states that measure can recursively refine itself and that we intend to apply this
recursive refinement to our measure.

Constraint
context RecursiveMeasureRelationship inv:

from = to.

10.11 DimensionalMeasure Class

This class models the specification of measures which assign numeric values that can be placed in order by magnitude.
Dimensional measures have units of measures and their values span a dimension. See Figure 10.1.

The unit of measure is an archetypal or prototype element of the dimension. Every element of the dimension can be stated by a
numerical multiple of the ‘unit of measure’ element.

The unit of measure does not distinguish between measures which share the same range. That distinction would be entirely
within the purview of the measure identification. For examples, a height measure and a width measure may share the same unit
of measure. That is to say, a measurement is not just a number and a unit of measure. The measured artifact must be indicated,
the measure identified and contextual information retained as the observation.

SuperClass

Measure

from:Measure[1] Specifies the measure at the from endpoint of the relationship.

to:Measure[1] Specifies the measure at the to-endpoint of the relationship.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 27

Attributes

Associations

10.12 Ranking Class

This class represents simple range-based grading or classifications based upon already defined dimensional measures. See
Figure 10.2.

Examples are:

• Small, medium, large

• Cold, warm, hot

• A, B, C, D or F

• Reliable / Unreliable

Collectively the ranking intervals may completely cover the base dimension or may leave gaps. A base measurement in such
a gap is considered unranked and is not representable as a measurement of the ranking measure.

The intervals may overlap. A ranking resulting in a particular symbol means and only means that the base measure resulted in
a value occurring a ranking’s interval which mapped to that symbol. This does not exclude the possibility that the value might
occur in another interval.

Ranking consists of mapping intervals to symbols where the intervals are parts of the underlying measure’s dimension. For
example, 100 to 90 points maps to “A,” 80 up to 90 maps to “B,” 70 up to 80 maps to “C,” 60 up to 70 maps to “D,” and below
60 maps to “F.” The underlying dimension consists of grade points. The result is the usual A,B,C,D, and F style grade.

Ranking measure may represent a purely qualitative evaluation with no quantitative base measure. For example we could
measure the non-standardness of the source language and evaluate it without quantification. It is identified as “2GL,”
“Unacceptable 3GL or 4GL,” “Acceptable 3GL or 4GL,” or “Ideal Strategic Language.” The first two are judged
equivalently non-standard. The third is more nearly standard and the last is standard.

SuperClass
Measure

unit:String Identifies the unit of measure.

 rankingFrom:RankingMeasureRelationship[0..*] Specifies the relationship instance that defines the rankings for
this measure.

baseMeasureFrom:BaseMeasureRelationship[0..*] Specifies the relationship instance that defines the accumulation
for this measure.

baseMeasure1From:Base1MeasureRelationship[0..*] Specifies the relationship instance that defines the 1st part of the
binary comparator for this measure.

baseMeasure2From:Base2MeasureRelationship[0..*] Specifies the relationship instance that defines the 2nd part of
the binary comparator for this measure.

rescaleTo:RescaledMeasureRelationship[0..*] Specifies the relationship instance that defines the measure
rescaling this measure.
28 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Associations

10.13 RankingMeasureRelationship

RankingMeasureRelationship is a class representing any relationship of ranking between a ranking measure and a dimensional
measure.

SuperClass

MeasureRelationship

Associations

10.14 RankingInterval Class

This class represents the mapping of an interval to a symbol that serves as a rank. See Figure 10.2.

SuperClass

SmmElement

Attributes

Constraints
context RankingInterval inv:

maximum ≥ minimum and (maximumOpen or minimumOpen → maximum > minimum)

rankingTo:RankingMeasureRelationship[0..1] Specifies the relationship instance that defines the measure ranked by
this ranking.

interval:RankingInterval[1..*] Identifies intervals within the dimension of the base measure and the
symbol to which each interval is mapped.

from:Ranking [1] Specifies the ranking measure at the from endpoint of the relationship.

to:DimensionalMeasure[1] Specifies the dimensional measure at the to-endpoint of the relationship.

maximumOpen:Boolean True if and only if interval include maximum endpoint. Default = false.

minimumOpen:Boolean True if and only if interval include minimum endpoint. Default = false.

maximum:Number Identifies interval’s maximum endpoint.

minimum:Number Identifies interval’s minimum endpoint.

symbol:String Base measurements within this interval are mapped by symbol.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 29

30 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

11 Collective Measures

11.1 General

This diagram represents measures that assess container entities by accumulating assessments of contained entities which are
found by the base measure. See demonstration given in Figure 11.2.

Most engineering measures are collective. We count up lines of code for each program block and sum these values to measure
routines, programs and eventually applications. A similar process is followed to count operators, operands, operator and
operand occurrences, independent paths, and branching points.

Other frequently used container measures are based upon finding the maximum measurement of the container’s elements.
Nesting depth in a program and class inheritance depth exemplify these collective measures.

The collective measure specifies the following measurement process:

1. Apply the base measure to each contained element to obtain a set of base measurements.

2. Apply the n-ary accumulator to the set of base measurements to obtain the measurement of the container.

Figure 11.2 demonstrates this process, with simplified associations.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 31

Figure 11.1 - Collective Measures
32 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 11.2 - Collective Measure Demonstration

11.2 CollectiveMeasure Class

The CollectiveMeasure class represents measures which when applied to a given entity accumulates measurements of entities
similarly related to the given entity. See Figure 11.1. For example, counts for container entities are often found by
accumulating (adding) counts of the containers' contained entities. In fact, sizing measures generally accumulate to containers
by adding the results of applying the appropriate size measure to the contained entities.

Maximum is another frequent accumulator.

The measurands of the base measurements need not be the same of the measurand of the collective measurement. Within
SMM, the measurands are just arbitrary MOF::Elements declared in another MOF model.

The SEI Maintainability Index is one such aggregation that does not change the unit of measure.

SuperClass

DimensionalMeasure

obj ect ContainRelation

M easurement1 :
Collectiv eM easurement

value = 12
baseSuppl ied = true

Collectiv eM easure1 :
Collectiv eM easurement

accum ulator = sum
uni t = uni t1

Entity1 :Class2

Entity2 :Class1 Entity3 :Class1 Entity4 :Class1

M easurement2 :
DimensionalM easurement

value = 7

M easurement3 :
DimensionalM easurement

value = 3

M easurement4 :
DimensionalM easurement

value = 2

DM easure1 :
DimensionalM easure

uni t = uni t1

+baseM easurem ent

+m easurand

+baseM easurem ent

+m easure

+baseM easurem ent

+baseM easure

+m easure

+m easurand

+m easure

+m easurand

+m easure

+m easurand
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 33

Attributes

Associations

Constraints

Context CollectiveMeasure inv:

accumulator->isEmpty or operation->iEmpty

11.3 Accumulator data type (enumeration)

The Accumulator enumeration defines DirectMeasure - a subclass of DimensionalMeasure which applies a given operation to
the measured entity. See Figure 11.1.

Literal Values

• Sum

• Minimum

• Maximum

• Average

• standardDeviation

11.4 DirectMeasure Class

DirectMeasure - a subclass of DimensionalMeasure which applies a given operation to the measured entity. See Figure 11.1.

SuperClass

DimensionalMeasure

Associations

11.5 Counting Class

Counting is a subclass of DirectMeasure where the given operation returns 0 or 1 based upon recognizing the measured entity.
See Figure 11.1.

accumulator:Accumulator Identifies the n-ary or custom function that accumulates the base measurements.

baseMeasureTo:BaseMeasure
Relationship[1..*]

Specifies the relationship instance that defines the measure accumulated by this
collective measure.

operation:Operation[0..1] Specifies the measurement operation of this measure.

operation:Operation[0..1] Specifies the measurement operation of this measure.
34 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

SuperClass

DirectMeasure

Constraints

context Counting::self.operation(…):int

post: result = 0 or result = 1

The operation is a recognizer that selects some subset of the elements of the measure's scope found by self.scope. The
recognizers returns 1 for the elements of the subset and returns 0 otherwise. self.unit need not be an element of the subset.

Figure 11.3 - Counting Unit of Measure Constraint

11.6 BinaryMeasure Class

The BinaryMeasure class represents measures which when applied to a given entity accumulates measurements of two entities
related to the given entity. See Figure 11.1. For example, areas for two dimensional entities are often found by accumulating
(multiplying) lengths.

The measurands of the base measurements need not be the same as the measurand of the collective measurement.

SuperClass

DimensionalMeasure

obj ect Counting Constraint

:Count

value = ...

:Counting

nam e = CountingM easure
un i t = Class1

:Class1
:Characteris tic

nam e = Coun tab leT rai t

:Scope

class = Class1

+m easurand

+m easurem ent

+m easure

+scope

+tra i t
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 35

Attributes

Associations

Semantics

The usual semantics of algebra would require that the unit of a binary measure equals applying the accumulator to the units of
the base measures. While conforming to this requirement would ensure more easily understood models, SMM does not
enforce this requirement.

11.7 Ratio Class

This class represents those measures that are ratios of two base measures. See Figure 11.1. Examples include:

• Average lines of code per module,

• Failures per day,

• Uptime percentage – Uptime divided by total time,

• Business data percentage of all data,

• Halstead level = Halstead volume divided by potential volume,

• Halstead effort = Halstead level divided by volume.

A ratio measure and its two base measures frequently characterize three different traits of the same entity. If the dividend
characterized the total code length of an application and the divisor characterized the number of program in the application
then the ratio characterizes the average code length per program.

Ratios may also characterize traits of distinct entities. For example, a ratio may contrast the code length between a pair of
programs.

SuperClass

DimensionalMeasure

Constraints

context MaximalMeasure inv:

functor = ‘divide’

 functor:String Identifies the binary function that combines two base measurements.

baseMeasure1:DimensionalMeasure The first base measurement is derived by applying the specified measure or a
refinement of it.

baseMeasure2:DimensionalMeasure The second base measurement is derived by applying the specified measure or a
refinement of it.
36 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

11.8 BaseMeasureRelationship Class

BaseMeasureRelationship is a class representing relationship of hierarchy between a collective measure and a dimensional
measure.

SuperClass

MeasureRelationship

Associations

11.9 Base1MeasureRelationship Class

Base1MeasureRelationship is a class representing relationship of hierarchy between a binary measure and a dimensional
measure.

SuperClass

MeasureRelationship

Associations

11.10 Base2MeasureRelationship Class

Base2MeasureRelationship is a class representing relationship of hierarchy between a binary measure and a dimensional
measure.

SuperClass

MeasureRelationship

Associations

from:CollectiveMeasure[1] Specifies the collective measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

from:BinaryMeasure[1] Specifies the binary measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

from:BinaryMeasure[1] Specifies the binary measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 37

38 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

12 Other Measures

12.1 General

The following diagram presents three additional measures.

• Direct applications of named measurements. (One such named measure is Cyclomatic Complexity.)

• Simple algebraic change of scales of already defined numeric measures (e.g., the translation to ‘choice points’ from
Cyclomatic complexity).

Figure 12.1 - Other Measures

12.2 NamedMeasure Class

The class allows for specifying measures which are well-known and can be specify simply by name. See Figure 12.1. For
example, McCabe’s cyclomatic complexity. The meaning of applying the named measure should be generally accepted.

SMM is for the exchange of measurement results. To convey such results for well known measures, it suffices to identify the
measure solely by name.

SuperClass

DimensionalMeasure

c la s s O the r M e a s ure s

M e a su re

Dim e ns iona lM e a s ure

+ u n i t: stri n g

Re s c a le dM e a s ure

+ fo rm u l a : stri n g

Na m e dM e a s ure

+ n a m e : stri n g

M e a su re Re l a ti o n sh i p

Re s c a le dM e a s ure Re la tions h ip+ fro m

1

+ re sca l e T o

0 ..*

+ to 1

+ re sca l e Fro m 0 ..*
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 39

Associations

Constraints
context NamedMeasure inv:

not self.name->isEmpty

12.3 RescaledMeasure Class

The measure specifies a process that re-scales a measurement on an entity with one unit of measure to obtain a second
measurement of the same entity with an different unit of measure. See Figure 12.1.

SuperClass

DimensionalMeasure

Attributes

Associations

12.4 RescaledMeasureRelationship Class

RescaledMeasureRelationship is a class representing relationship of measure rescaling between a rescaled measure and a
dimensional measure.

SuperClass

MeasureRelationship

Associations

name: String Specifies the name of the SMM element. This attribute is inherited from the SmmElement
class where it is optional. Here it is required.

formula:String Specifies the algebraic formula that re-scales a result from the base measure’s
dimension to obtain a value expressed in a different unit of measure with respect to
this measure’s unit of measure

baseMeasure:DimensionalMeasure Identifies the measure applied to each “contained” entity to determine
base measurements.

rescaleFrom:RescaledMeasureRelationship[0..*] Specifies the relationship instance that defines the measure rescaled
by this rescaled measure.

from: DimensionalMeasure[1] Specifies the dimensional measure at the from endpoint of the relationship.

to: RescaledMeasure [1] Specifies the rescaled measure at the to-endpoint of the relationship.
40 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

13 Measurements

13.1 General

Measurement results are values from ordered sets. Such a set may be nominal (e.g., Poor, Fair, Good, Excellent) as long as
there is an underlying order. A set may instead define a dimension where its values may be stated in orders of magnitude with
respect to archetypal member. SMM allows for dimensional measurements. The magnitude is the measure’s unit of measure.

SMM also allows for dimensionless measurements derived by ratios and ranking schemes. In the former the ratio is derived
from two measurements of the same dimension; whereas, in the latter measurements from a dimension are mapped to
symbolic representations (e.g., 100-90 becomes “A”, 89-80 becomes “B”).

The modeling of measurements mirrors the modeling of measure.

Figure 13.1 - Measurements

13.2 Measurement Class (abstract)

The Measurement class represents the results of applying the associated Measure to the associated Measurand. See Figure
13.1. Two measurements of the same measurand by the same measure can be distinguished by observation information
provided by the associated Observation. Measurand is in the scope of the measure.

class Measurement

SmmElement

Measurement

- breakValue: string [0..1]
+ error: string [0..1]

+ getMeasureLabel() : string
+ getMeasurementLabel() : string

DimensionalMeasurement

+ value: double [0..1]

Grade

+ isBaseSupplied: boolean
+ value: string [0..1]

SmmRelationship

MeasurementRelationship

MofElement

Equiv alentMeasurementRelationship
RecursiveMeasurementRelationship

RefinementMeasurementRelationship

RankingMeasurementRelationship

+from

1

+equivalentTo

0..*

+/outbound

0..*
{union}

+/from

1
{union}

+/inbound

0..*
{union}

+/to

1
{union}

+from 1

+rankingTo 0..1

+to

1

+rankingFrom

0..*

+measurementRelationships
0..*

+to

1

+equivalentFrom 0..*

+from 1

+refinementTo

0..*

+to 1

+refinementFrom

0..*

+from

1

+recursiveTo
0..1

+to
1

+recursiveFrom 0..1

0..*

+measurand

1

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 41

The value of a measurement is an element of an ordered set. It may be a number where the ordering is the usual standard. The
DimensionalMeasurement and Percentage subclasses of Measurement defined below have numeric values. The value may
also be a symbol that we can map to a numeric interval. The Grade subclass has a symbolic value.

Measure is a process and, hence, may fail. The error attribute of measurement allows such failures to be noted. A measurement
either has a value or an error is recorded.

SuperClass

SmmElement

Attributes

Associations

error:String[0..1] If an error occurred in the measurement process, this field contains a code representing
the error

breakValue:String[0:1] If the scope specifies a break condition, this field contains the instance value
associated with the break condition.

measurand:MOF::Element[1] Identifies the object measured.

equivalentFrom:EquivalentMeasurementRelationship[0..*] Specifies the relationship instance that defines the
equivalency of this measurement.

equivalentTo: EquivalentMeasurementRelationship[0..*] Specifies the relationship instance that defines the
equivalency of this measurement.

refinementFrom:RefinementMeasurementRelationship[0..*] Specifies the relationship instance that defines the
refinement of this measurement.

refinementTo:RefinementMeasurementRelationship[0..*] Specifies the relationship instance that defines the
refinement of this measurement.

recursiveFrom:RecursiveMeasurementRelationship[0..*] Specifies the relationship instance that defines the
recursivity of this measurement.

recursiveTo:RecursiveMeasurementRelationship[0..*] Specifies the relationship instance that defines the
recursivity of this measurement

inbound:MeasurementRelationship[0..*] The set of relationship such that the current Measurement
is the to-endpoint of these relations. This property is a
derived union.

outbound:MeasurementRelationship[0..*] The set of relationship such that the current Measurement
is the to-endpoint of these relations. This property is a
derived union.

measurementRelationships:MeasurementRelationship[0..*] The set of all MeasurementRelationship owned by the
measure.
42 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Operations

Constraints

context Measurement inv:

scope.breakCondition->isEmpty == breakValue->isEmpty

Semantics

Measurand must be in the scope of measure. Specifically, measurand must be an instance of the class named in measure.
scope.class. If measure. scope.recognizers is given then the recognizer applied to the measurand must return true.

13.3 MeasurementRelationship Class (abstract)

MeasurementRelationship is an abstract class representing any relationship between two measurements. See .

SuperClass

SmmRelationship

13.4 EquivalentMeasurementRelationship

EquivalentMeasurementRelationship is a class representing any relationship of equivalency between two measurements.

SuperClass

MeasurementRelationship

Associations

13.5 RefinementMeasurementRelationship Class

Refinement MeasurementRelationship is a class representing any relationship of refinement between two measurements.

SuperClass

MeasurementRelationship

getMeasureLabel:String[1] This operation returns the label describing the measure of this measurement
according to the rule specified in measureLabelFormat in the Measure class.

getMeasurementLabel:String[1] This operation returns the label describing this measurement and measurand
according to the rule specified in measurementLabelFormat in the Measure
class.

from:Measurement [1] Specifies the equivalent measurement at the from endpoint of the relationship.

to:Measurement[1] Specifies the equivalent measurement at the to-endpoint of the relationship.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 43

Associations

13.6 RecursiveMeasurementRelationship Class

RecursiveMeasurementRelationship is a class representing any relationship of recursivity on a measurement upon itself.

SuperClass

MeasurementRelationship

Associations

13.7 DimensionalMeasurement Class

The DimensionalMeasurement class represents the results of applying a dimensional measure to an entity. The result is given
in terms of the measure’s unit. See Figure 13.1.

SuperClass

Measurement

Attributes

from:Measurement [1] Specifies the measurement at the from endpoint of the relationship.

to:Measurement[1] Specifies the measurement at the to-endpoint of the relationship.

from:Measurement[1] Specifies the measurement at the from endpoint of the relationship.

to:Measurement[1] Specifies the measurement at the to-endpoint of the relationship.

value:Number[0..1] Represents the measurement result as a magnitude with respect to the unit of
measure.
44 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Associations

Constraints

context DimensionalMeasurement inv:

measure.oclIsTypeOf(DimensionalMeasure) and

error->isEmpty <> value->isEmpty

13.8 Grade Class

The Grade class represents the grade found by Ranking measure. Its ranking scheme mapped the grade’s underlying base
measurement to the grade’s symbol. Once again, the base measurements share its measurand with this derived grading. See
Figure 13.1.

Super Class

Measurement

Attributes

Associations

Constraints
context Grade inv:

measure.oclIsTypeOf(Ranking) and

error->isEmpty <> value->isEmpty and

isBaseSupplied →(measurand = baseMeasurement.measurand and baseMeasurement.measure =
measure.baseMeasure)

 rankingFrom:RankingMeasurementRelationship[0..*] Specifies the relationship instance that defines the
rankings for this measurement.

baseMeasurementFrom:BaseMeasurementRelationship[0..*] Specifies the relationship instance that defines the
accumulation for this measurement.

baseMeasurement1From:Base1MeasurementRelationship[0..*] Specifies the relationship instance that defines the 1st
part of the binary comparator for this measurement.

baseMeasurement2From:Base2MeasurementRelationship[0..*] Specifies the relationship instance that defines the 2nd
part of the binary comparator for this measurement.

rescaleTo:RescaledMeasurementRelationship[0..*] Specifies the relationship instance that defines the
measurement rescaling this measurement.

value: String[0..1] Identifies rank as a measurement derived from the base measurement.

isBaseSupplied:Boolean True if baseMeasurement is supplied.

rankingTo:RankingMeasurementRelationship[0..1] Specifies the relationship instance that defines the measurement
graded by this grade.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 45

Semantics

If isBaseSupplied holds, then value is one of the symbols found by measure.interval where baseMeasurement.value is in the
interval. A numeric value is in the interval if and only if the it is less than the maximumEndPoint when maximumOpen is
false, less than or equal to maximumEndPoint when maximumOpen is true, greater than minimumEndPoint when
minimumOpen is false, and greater than or equal to minimumEndPoint when minimumOpen is true.

Figure 13.2 - Grade Constraint

13.9 RankingMeasurementRelationship Class

RankingMeasurementRelationship is a class representing any relationship of grading between a grade measurement and a
dimensional measurement.

SuperClass

MeasurementRelationship

Associations

from:Grade [1] Specifies the grade measurement at the from endpoint of the relationship.

to:DimensionalMeasurement[1] Specifies the dimensional measurement at the to-endpoint of the relationship.

uc GradeConstra int

:Gr ade

:Ran king

:Dimens iona lM ea sure me nt

:Dimensiona lM easure

+m ea su re

+b ase M ea sure

+b ase M ea surem ent

+m ea sure
46 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

14 Collective Measurements

14.1 General

This class represents measurements found by accumulating a set of base measurements. For example, the number lines of code
in application can be determines by accumulating the number lines in its programs.

Figure 14.1 - Collective Measurements

14.2 CollectiveMeasurement Class

The CollectiveMeasurement class represents the results of applying its CollectiveMeasure measure to an entity. See Figure 14-
1. In this case, applying the measure is as follows:

1. Apply the base measure to each contained element to obtain a set of base measurements.

2. Apply the n-ary accumulator to the set of base measurements to obtain the measurement of the container.

The results of step 1 are the DimensionalMeasurements associated by base measurement.

SuperClass

DimensionalMeasurement

class Collectiv e Measurements

Measurement

DimensionalMeasurement

+ value: double [0..1]

Collectiv eMeasurement

- accumulator: Accumulator
+ isBaseSupplied: boolean

DirectMeasurement

Count

BinaryMeasurement

+ isBaseSupplied: boolean

RatioMeasurment

MeasurementRelationship

Base1MeasurementRelationship

MeasurementRelationship

BaseMeasurementRelationship

MeasurementRelationship

Base2MeasurementRelationship +to

1

+baseMeasurement2From

0..*

+to

1

+baseMeasurementFrom

0..*

+to
1

+baseMeasurement1From

0..*

+from 1

+baseMeasurementTo 0..*

+from 1

+baseMeasurement2To
0..1

+from 1

+baseMeasurement1To

0..1
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 47

Attributes

Associations

Constraints
context CollectiveMeasurement inv:

measure.oclIsTypeOf(CollectiveMeasure) and

isBaseSupplied →
(not baseMeasurement->isEmpty and baseMeasurement.measure=measure.baseMeasure)

Semantics

If isBaseSupplied holds, then value equals the result of applying measure.accumulator the set of values given by
baseMeasurement.value.

14.3 DirectMeasurement Class

The DirectMeasurement class represents the measurement results found by of applying the measure’s specified operation
directly to the measurand. See Figure 14.1.

SuperClass

DimensionalMeasurement

Constraints
context DirectMeasurement inv:

measure.oclIsTypeOf (DirectMeasure)

14.4 Count Class

Counting forms the basis for multiple metrics. This class consists of a particular subclass of directMeasurement that is very
useful in counting. See Figure 14.1. Its associated measure is a CountingMeasure where the specified operation is a recognizer
operation. Therefore, the value of any instance of this class is 1 or 0 depending upon whether or not the measurand is
recognized.

SuperClass

DirectMeasurement

Constraints
context Count inv:

measure.oclIsTypeOf (CountingMeasure)

isBaseSupplied:Boolean True if baseMeasurements are supplied. All are supplied or none is assumed.

accumulator: Accumulator Enumerated value indicating the type collective measure.

baseMeasurement:DimensionalMeasurement[0..*] Identifies the measurements from which this collective
measurement was derived.
48 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

14.5 BinaryMeasurement Class

SuperClass

DimensionalMeasurement

Attributes

Associations

Constraints
 context RatioMeasurement inv:

measure.oclIsTypeOf(BinaryMeasure) and

isBaseSupplied →
(not baseMeasurement1.isEmpty and not baseMeasurement2.isEmpty) and

not baseMeasurement1.isEmpty →
(baseMeasurement1.measure = measure. baseMeasurement1) and

not baseMeasurement2.isEmpty →
(baseMeasurement2.measure = measure. baseMeasure2)

Semantics

If isBaseSupplied holds, then value equals the result of applying measure.functor to baseMeasurement1.value and
baseMeasurement2.value.

14.6 RatioMeasurement Class

The RatioMeasurement class affords evaluations of a ratio measure of two evaluations of different dimensional measures. See
Figure 14.1. The measure associated with the dividend has its unit of measure in common with the measure associated with the
divisor.

SuperClass

BinaryMeasurement

Constraints
context RatioMeasurement inv:

measure.oclIsTypeOf(RatioMeasure) and

isBaseSupplied → (value = baseMeasurement1.value / baseMeasurement2.value)

14.7 BaseMeasurementRelationship Class

BaseMeasurementRelationship is a class representing relationship of hierarchy between a collective measurement and a
dimensional measurement.

isBaseSupplied:Boolean True if both base measurements are supplied.

baseMeasurement1:DimensionalMeasurement[0..1] Identifies the first base measurement.

baseMeasurement2:DimensionalMeasurement[0..1] Identifies the second measurement.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 49

SuperClass

MeasurementRelationship

Associations

14.8 Base1MeasurementRelationship Class

Base1MeasurementRelationship is a class representing relationship of hierarchy between a binary measurement and a
dimensional measurement.

SuperClass

MeasurementRelationship

Associations

14.9 Base2MeasurementRelationship Class

Base2MeasurementRelationship is a class representing relationship of hierarchy between a binary measurement and a
dimensional measurement.

SuperClass

MeasurementRelationship

Associations

from:CollectiveMeasurement[1] Specifies the collective measurement at the from endpoint of the relationship.

to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the relationship.

from:BinaryMeasurement[1] Specifies the binary measurement at the from endpoint of the relationship.

to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the relationship.

from:BinaryMeasurement[1] Specifies the binary measurement at the from endpoint of the relationship.

to: DimensionalMeasurement [1] Specifies the dimensional measurement at the to-endpoint of the relationship.
50 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

15 Named and Rescaled Measurements

15.1 General

Measurement is in terms of its unit of measure as specified under its associated DimensionalMeasure. That is, the
measurement is a multiple of its unit of measure where value determines the multiple.

Figure 15.1 - Named and Rescaled Measurements

15.2 NamedMeasurement Class

The NamedMeasurement class represents the measurement results of applying to the Measurand measurement processes that
are generally known and identifiable by name. See Figure 15.1.

SuperClass

DimensionalMeasure

Constraints
context NamedMeasurement inv:

measure.oclIsTypeOf(NamedMeasure).

15.3 RescaledMeasurement Class

The RescaledMeasurement class represents the measurement results of applying to the base measurement the operation
specified by the Measure to rescale the measurement. That is, given a one measurement of the measurand with respect to one
unit of measure, we obtain a second measurement of the measurand with respect to a different unit of measure. See Figure
15.1.

Measure is a RescaledMeasure.

class Other Measurements

Measurement

DimensionalMeasurement

+ value: double [0..1]

NamedMeasurement
RescaledMeasurement

+ isBaseSupplied: boolean

MeasurementRelationship

RescaledMeasurementRelationship

+from

1

+rescaleTo

0..*

+to

1

+rescaleFrom

0..*
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 51

SuperClass

DimensionalMeasure

Attributes

Associations

Constraints
context RescaledMeasurement inv:

measure.oclIsTypeOf(RescaledMeasure) and

isBaseSupplied →
not baseMeasurement->isEmpty and baseMeasurement.measure = measure.baseMeasure

Semantics

If isBaseSupplied is true then value equals result of applying measure.operation to the baseMeasurements’ values.

15.4 RescaledMeasurementRelationship Class

RescaledMeasurementRelationship is a class representing relationship of measurement rescaling between a rescaled
measurement and a dimensional measurement.

SuperClass

MeasurementRelationship

Associations

isBaseSupplied:Boolean True if the base measurement is supplied.

rescaleFrom:RescaledMeasurementRelationship[0..*] Specifies the relationship instance that defines the measurement
rescaled by this rescaled measurement.

from: DimensionalMeasurement [1] Specifies the dimensional measurement at the from endpoint of the relationship.

to:RescaledMeasurement [1] Specifies the rescaled measurement at the to-endpoint of the relationship.
52 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

16 Observations

16.1 General

Measurements are sometimes repeated. An old carpentry rule is measure twice, cut once.

To distinguish these multiple measurements, the observation and scope class can represent contextual information such as the
time of the measurement and the identification of the measurement tool and the artifacts that are under measurement.

Figure 16.1 - Observations

16.2 Observation Class

This class represents some of the contextual information which may be unique to this measurement such as date, measurer and
tool used. See Figure 16.1.

SuperClass

 SmmElement

cla ss Obs erv ation

S mmEle me n t

Obse rv a tion

+ o bse rve r: strin g [0 ..1]
+ to o l : stri ng [0 ..1]
+ whe n Ob served : Da te [0 ..1]

SmmE lemen t

Obs erv ationS cope

- sco p eUri : stri n g

A bstra ctMe asu reE lemen t

M e as ure

+ m ea sure La b e lForm at: stri ng [0 ..1]
+ m ea sure m e n tL a be lFo rm a t: stri n g [0 ..1]
+ sca le : M ea sure m e ntS ca le
+ vi sib le : b oo lea n [0 ..1]

+ g e tA l lA rg um en ts() : A rg um en t[0 ..*]
+ g e tA rgu m e n ts() : A rgu m e n t[0 ..*]

A

S mmRela tio n sh ip

O bs e rv e dM ea s ure

S mmE le men t

M e as ure m e nt

- b re akV a lu e : stri ng [0 ..1]
+ e rro r: stri ng [0 ..1]

+ g e tM e asu re L ab e l () : stri ng
+ g e tM e asu re m en tLa b e l () : stri n g

S mmE le men t

Argum ent

+ typ e : stri n g
+ va lue : stri ng

+m e a su re m e nts 0 ..*

0 ..*

+m e a su re 1

+o b se rved M e a su res

0 ..*

+arg u m e nts 0 ..*

+scop es 0 ..*
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 53

http://www.ietf.org/rfc/rfc2396.txt

Attributes

Associations

Constraints
context Observation inv:
requestedMeasures.oclIsTypeOf(MeasureCategory) or

requestedMeasures.oclIsTypeOf(CategoryRelationship) or

requestedMeasures.oclIsTypeOf(Measure)

16.3 ObservationScope Class

This class represents the model(s) or sub model that are the subject of the related observation. This information can be used
initially by builders to understand which model to gather measurements from, later by anyone wishing to recreate a new
observation of the same artifacts. See Figure 16.1.

SuperClass

SmmElement

Attributes

Semantics

The scopeUri represents specific schemes following the RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax. As a
hierarchical URI, the scopeUri supports all features associated with such URI, including both absolute and relative addressing.
The starting point for the resolution of relative addressing should match generally accepted rules, but this specification doesn’t
dictate any such details.

To quote the URI syntax:

At the highest level a URI reference (hereinafter simply “URI”) in string form has the syntax

 [scheme:]scheme-specific-part[#fragment]

 whenObserved:date[0..1] Identifies the “moment” when the measurement was taken.

observer:String[0..1] Identifies measurer

tool:String[0..1] Identifies tool used in measurement.

observedMeasures:ObservedMeasure[0..*] The set of all ObservedMeasure owned by the observation.

requestedMeasures:SmmElement[0..*] Specifies the measures or their category that are part of the
observation request. This association is optional and can be used by a
builder to know what to include in a specific observation.

scopes:ObservationScope[0..*] Specifies the scopes of the observation, i.e., the models or model
portions that are the subject of the Observation

scopeUri:String[1] Uri that identifies model(s) or model fragment.
54 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

The scopeUri should inherently accept and understand the following 2 schemes: mof and ecore, respectively representing
models expressed as MOF and Ecore (Eclipse EMF model variant of MOF).

Our scheme-specific-part complies with the definition of hierarchical URI and as such it has the following syntax:

[//authority][path][?query]

The general form of a scope uri is then:

A more advanced form of the URI for our schemes is made to support the query part of the URI in order to specify portion of
models and also to specify models in paths that represent folders or collections.

The query part of the scopeUri follows the general form of key=value separated by ampersand (&). The following keys are
defined by our schemes:

The general form of a scope uri is then:

16.4 ObservedMeasure Class

This class represents association between observations and the measures that make up such observation. This class also serves
to hold the list of measurements characterized by the related measure that are part of a given observation.

SuperClass

SmmRelationship

mof://kdm.example.com/projectName/kdmName Uri for a specific MOF KDM model.

ecore://astm.example.com/pathToWherever/longPath/modelName Uri for a specific Ecore ASTM model

Model Regex based pattern representing the name of model or models that should be matched in the path.

Recursive True if the search for models matching the model pattern should also recursively descend the
hierarchical path structure rooted at the path specified in the URI. Default is false.

queryType Type of query to use in select. “OCL” (default) or “XQuery.”

Select Query into selected model(s) that represent a selection of a subset or portion of the entire model that
will be used as the scope of performing measurements. For example this could represent a segment
in a KDM that is related to a specific application.

mof://kdm.example.com/projectName?model=a?rt*&recursive=true Uri for all MOF models with name matching a?rt*
located in projectName or under.

ecore://kdm.example.com/path/
?queryType=Xquery&select=/Segment[@name=”default”]/
Segment[@name=”myApp”]

Uri for a specific Ecore KDM model segment
representing a particular application segment.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 55

Associations

16.5 Argument Class

This class represents some of the variable arguments or parameters that are being passed to the measures that have Operations
that make use of replaceable parameters.

SuperClass

SmmElement

Attributes

Associations

None

Semantics

The type attribute represents the type of the argument being passed. The accepted types are the basic types that are defined in
OCL, as this is the main operation language supported. Those types are, as defined in section 7.1 of the OCL 2.1 specification:
Boolean, Integer, Real, and String.

The above supported types are very limited. For example there is no direct support for Date or DateTime. The implementation
of additional types is left to the implementers. As a suggestion (not normative), implementers should try to use OCLOperation
helper functions in order to facilitate hiding the implementation and make their implementation shareable and portable.

For all accepted types, the value attribute is a String whose content directly matches what is expected by the Operation
language, so that it can be transferred verbatim into the Operation body during the parameter replacement. Implementer
specific types can define their own value format if needed.

Measurements:Measurement[0..*] The set of all Measurement owned by the observed measure.

measure:Measure[1] The measure that is being observed.

name: String[1..1] Specifies the name of the argument. (inherited)

type:String[1..1] Specifies the type of the argument. See semantic section for detailed
information.

value:String[1..1] The value of the argument, expressed in a “typesafe” fashion.
56 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

17 Historic and Trend Data (Non-normative)

17.1 General

SMM does not model tracking or trend data directly. Linking versions of objects through a software evolution poses a concern
in modeling software evolution even if measures are never taken. When the measurand’s model provides the linkage (e.g., an
“EvolvesTo” relationship), then a measurement of an original artifact could be traced to its newer versions and to their
measurements if available. Figure 17.1 is overly simplistic, but hopefully conveys the gist of such tracing. The beige filled
instances indicate the metric representations augmenting the base model (green). The central point is that the evolves path is
between instances of the base model. The measures of the evolving artifacts can be gathered or compared only if the linkage
between the artifacts is captured and maintained through the modeling of the system development and modification.

Figure 17.1 - Tracking Measurements across Versions

uc Evo lve sTo

Artifact1 Artifact2

Mea surem ent1 Measur ement2Mea sure

Obse rv ati on1 Observ a tion2

+observation

+measure

+m easurand

+observation

+m easure

+ measurand

+evolve dFrom + evolvedTo
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 57

58 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

18 Inaccuracy (Non-normative)

18.1 General

Inaccuracy of a measurement is the amount by which the measurement is in error. That is, we may model inaccuracy as
measure if we first model a measure which is assumed to be true. Inaccuracy of a measurement is then just the difference
between the measurement and a “true” measurement of the same entity.

In SMM inaccuracy is representable by measures that characterize inaccuracy. The measures are comparable elevation of
measurements evaluated by the difference between the measurement and the truest (at least accepted as such) measurement of
that entity for that trait.

Given two measures which characterize the same trait and share the same scope, then inaccuracy can be modeled as a binary
measure expressing the difference taken over the two measures.

In the demonstration below (), a category collects measures that are applicable to ExampleClass1 and characterize
ExampleTrait. The category identifies the “truest” measure by the goldStandard relationship and identifies an appropriate
inaccuracy measure for Measure1 by the InaccuracyMeasure relationship.

A Characteristic may have a measure that is designated as the best or truest measure of the attribute. That measure may be
associated as the attribute’s gold standard. Such a designation allows for the representation of inaccuracy for each of the
attribute’s measures as the difference between the measure and the gold standard.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 59

Figure 18.1 - Inaccuracy Demonstration

Figure 18.2 - Uncertainty Demonstration

obj ect Inaccurac y

:Scope

class = Exampl eClass1

:DimensionalMea sure

nam e = Mea sure1

:DimensionalMeasure

name = M easure2

:DimensionalMeasurement:Dimensional Me asurement

Obje ct1 :
ExampleCl ass1

:BinaryMe asurement

baseSu ppli ed = true

:Binary Measure

functor = difference
nam e = In accuracyMeasure1

Inaccurac y1 :Characteristic

name = InaccuracyWRTMeasure2

Scope 1 :Scope

reco gnizer = measu re.name ='Mea sure 1'
class = SMM::Measurement

:Characteristic

name = Example Tra it

Category1 :SMM_Category

:Category_ Relati onship

name = go ldStan dard

:Category_Relations hip

nam e = InaccuracyMeasure

+t rait

+baseMe asure1+baseM easure2
+sco pe

+m easure

+measurand

+baseMeasurement1+baseMeasurem ent2

+mea surand

+mea surement

+me asu re

+measurand

+mea surement

+m easure

+scope +scop e

+tra it

+ca tegoryElem ent +categoryElement

+valu e

+param eter

+cate gory

+param eter

+categ ory

+value

obj ect UncertaintyDemonstration

Ex ampleM easu re :
Dim ension alM ea sure

UncertaintyE stimator ForE xampleM easure :
Dim ension alM ea sure

:Un certaint yM ea sureOf

M ea surem ent1 :
Dimensio nal M easuremen t

UncertaintyE stim ate :
Dim ensional M e asurement

:Unce rta intyM easu rem entOf

+m easure +m e asu re

+from +to

+from +to
60 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 18.3 - SMM Extension for Uncertainty

class UncertaintyRelations

Uncertain tyMeasureOf

SMM_Rela tionship

MeasureRelatio nship

SMM_Rela tionship

MeasurementRe lation

Un certaintyM ea surementOf
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 61

62 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

19 Library of Measures (Non-normative)

19.1 General

The following is a suggestive list of measurement classes along with their measure classes and measurand classes. Sources
include:

• Comsys Systems Redevelopment Methodology: www.comsysprojects.com/SystemTransformation/TMethodology.htm

• “A Survey of Software Metrics” by F. Riguzzi, DEIS Technical Report no. DEIS-LIA-96-010, July 1996, Università
degli Studi di Bologna.

Each measure is defined using the classes of the SMM. The referenced software artifacts are modeled using the Knowledge
Discovery Metamodel (KDM) unless otherwise noted.

19.2 Various Counts

19.2.1 Module Count1

Module Count ≡ A count of the number of modules in a system.

Assume that the system is modeled by a KDM model. The KDM:AbstractCodeElement serves as a container of code parts as
well as modeling the code parts themselves. The KDM:Module is an AbstractCodeElement subclass that models modules. See
Figure 19.1.

Counting the modules in the code model requires summing the results of a recognizer for module across the model. The unit of
measure is module. See Figure 19.2 for the library entry and see Figure ??? for a brief description.

Figure 19.1 -

1. See GAM 003 in Comsys Systems Redevelopment Methodology

obj e c t M e thodCountE x a m ple

:M odule:C ode M ode l

:Count

va l u e = 1

:Counting

n a m e = M o d u le M e th o d Re co g n i ze r
l i b ra ry = S M M sa m p le L ib ra ry

:Co lle c tiv e M e a s ure m e nt

b a se S u p p l i e d = tru e
va l u e = . ..

:C o lle c tiv e M e a s ure

n a m e = M e th o d Co u n tIn M o d e l
l i b ra ry = S M M sa m p le L ib ra ry
a ccu m u la to r = su m

+co d e E le m e n t

+ m e a su ra n d

+ m e a su re

+ m e a su ra n d

+ m e a su re

+b a se M e a su re m e n t

+ b a se M e a su re
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 63

Figure 19.2 - KDM Code Package Fragment

class KDM_Code_Fragment

Elemen t

source::Source Reg ion
{leaf}

+ startL ine: Integ er
+ startPosition : Integer
+ endLine: Integer
+ endPosition: In teger
+ language : Strin g
+ path: String

Element

source::SourceRef
{leaf}

+ lan guage: String
+ snippet: Stri ng

code::Module

KDMEntity

code: :Abstra ctCodeElement

code: :ComputationalObje ct code::Da tatype

code::CodeItem

c ode::ControlElemen t

code::MethodUnit
{leaf}

+ kind : MethodKind
+ expo rt: ExportKind

code::Callab leUnit
{leaf}

+ kind: Callabl eKi nd

code::Data Ele ment

+ ext: Str ing
+ size: In teger

a ction::
ActionElem ent

+ kind: String

+owner
0. .1

+codeEleme nt
0..*

0..*

Sign atu re

+type
0. .1

0.. 1

CodeS ource+source

0..*

+owner 0. .1

+codeEleme nt
0 ..*

1

SourceRegions

+region 0.. *

+type
1

Type

0..*

+cod eElement
0..*

+owne r 0.. 1

+ own er 0. .1

+cod eEl ement

0 ..*
64 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.3 - Library Entry for Module Count in Code Model

Figure 19.4 - Module Count in Model Demonstration

For an entire system, we identify each CodeModel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each code::CodeModel, its baseMeasure elements are identified. In this example the default
containment association relation is overridden by a measurand query expressed as the XQuery operation of ‘..//Module’ which
states that we want all Module children of our CodeModel recursively. Next we move to apply the scope recognizer, which
filters out any elements that are not of class code::Module, which here is just a safety test as the measurand query already

obj ect ModuleCount

:Collectiv eMeasure

accumulator = sum
name = ModuleCountInModel
unit = code::Module
measurandQuery = Operation->XQuery->.//Module

:Counting

name = ModuleCountRecognizer
unit = code::Module
operation = true

:Characteristic

name = ModuleCount

:Scope

class = code::AbstracCodeIElement
recognizer = Operation->isOCLTypeOf(code::Module)

:Scope

class = code::CodeModel

+refinement

+baseMeasure

+trait

+scope

+trait

+scope

ob j e c t M e thodCountE x a m ple

:M odu le:Code M ode l

:Count

va l u e = 1

:Counting

n a m e = M o d u l e M e th o d R e co g n i ze r
l i b ra ry = S M M sa m p l e L i b ra ry

:C olle c tiv e M e a s ure m e nt

b a se S u p p l i e d = t ru e
va l u e = . ..

:C olle c tiv e M e a s ure

n a m e = M e th o d C o u n t In M o d e l
l i b ra ry = S M M sa m p l e L i b ra ry
a ccu m u l a to r = su m

+ co d e E l e m e n t

+ m e a su ra n d

+ m e a su re

+ m e a su ra n d

+ m e a su re

+ b a se M e a su re m e n t

+ b a se M e a su re
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 65

provides this level of filtering. This leaves us with only instances of code::Module, on which we apply a Counting measure
with a default operation of true so that it always returns 1.

All of the Counting measurement with a value of 1 representing here the code:Module are then summed up into a Collective
measurement for each code::CodeModel according to the accumulator defined in the Collective measure.

Another possible approach would be to move the recognizer to the Counting class instead of the scope as shown in Figure 7.1.

The difference between these two approaches is subtle but very interesting. In the first case, the recognizer is applied to
determine if a class instance is in scope or not. In the second approach, the recognizer is used to determine if the counting class

will return 0 or 1 for the measurement of the class instance. The 1st approach would normally be preferred as it avoids creating
measurements with a value of 0 for any non-matching class instance, whereas the second approach will have measurement for
every AbstractCodeElement in the CodeModel. Obviously, the sum applied by the collective measure will produce the same
final result.

Figure 19.5 - Module Count in Model (take 2)

19.2.2 Screen Count1

Screen Count ≡ A count of the number of screens in a system.

1. See TEM 153 in Comsys Systems Redevelopment Methodology

obj ect M oduleCount Take2

:Collectiv eM easure

accum ulator = sum
nam e = M oduleCountInM odel
uni t = code::M odule
m easurandQuery = Operation->XQuery->.//M odule

:Counting

nam e = ModuleCountRecognizer
uni t = code::M odule
operation = isOCLTypeOf(code::M odule)

:Characteristic

nam e = M oduleCount

:Scope

class = code::AbstracCodeIElem ent

:Scope

class = code::CodeM odel

+refinem ent

+baseMeasure

+trai t

+scope

+trai t

+scope
66 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.6 - KDM Action Package Fragment

c la s s K D M -S c r e e nFr a gm e nt

K D ME n ti ty

ui::A bs tr a c tU IE le m e nt

K DM Mo d e l

ui::U I M ode l

ui:: UIR e s o urc e

ui::U ID is pla y

u i::R e por tui::S c r e e n

+o w n e r

0 . .1

+U IE l e m e n t
0 ..*

+m o d e l 0 . .1

+U IE l e m e n t 0 ..*
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 67

Figure 19.7 - Screen Count Demonstration

Assume that the system is modeled by a KDM model. The KDM:UIElement serves as a container of user interface parts as
well as modeling the user interface parts themselves. The KDM:Screen is a UIElement subclass that models screens.

obj ec t S creenCount

:Counting

opera tion = true
nam e = S creenCoun tRecogn ize r
l ib ra ry = S M M sam p leL ib ra ry
un i t = u i ::Screen

:Scope

class = u i ::A bstracUIE lem en t
recogn ize r = O pera tion ->i sOCLT ypeO f(u i ::Screen)

:Charac teris tic

nam e = ScreenCoun t

:Collectiv eM easure

accum u la to r = sum
nam e = ScreenCoun tInM ode l
l i b ra ry = SM M sam p leL ib ra ry
un i t = u i ::Screen
m easurandQ uery = O pera tion ->XQ uery->.//S creen

:S cope

class = u i ::UIM ode l

+tra i t

+scope

+tra i t

+scope

+re fi nem en t

+baseM easure

o bj e c t S c re e nC ou ntE x a m ple

:U IM ode l :S c re e n

:C olle c tiv e M e a s u re m e nt

b a se S u p p l i e d = tru e
va lu e = .. .

:C oun t

va l u e = 1

:C olle c tiv e M e a s ure

n a m e = S c re e n C o u n tIn M o d e l
l i b ra ry = S M M sa m p l e L ib ra ry

:Cou ntin g

n a m e = S cre e n C o u n tR e co g n i ze r
l i b ra ry = S M M sa m p l e L i b ra ry

+ u i E l e m e n t

+ m e a su re

+ b a se M e a su re m e n t

+ m e a su ra n d

+ m e a su re

+ m e a su ra n d

+ b a se M e a su re
68 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

For an entire system, we identify each UIModel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each ui::UIModel, its baseMeasure elements are identified. In this example the default
containment association relation is overridden by a measurand query expressed as the XQuery operation of ‘..//Screen’ which
states that we want all Screen children of our UIModel recursively. Next we move to apply the scope recognizer, which filters
out any elements that are not of class ui::Screen, which here is just a safety test as the measurand query already provides this
level of filtering. This leaves us with only instances of ui::Screen, on which we apply a Counting measure with a default
operation of true so that it always returns 1.

All of the Counting measurement with a value of 1 representing here the ui::Screen are then summed up into a Collective
measurement for each ui::UIModel according to the accumulator defined in the Collective measure.

19.2.3 Method Count

Method Count ≡ A count of the number of methods in a system.

Figure 19.8 - Method Count Library Entry

obj ect M ethodCount

:Counting

operation = true
nam e = M ethodCountRecognizer
l ibrary = SM M sam pleLibrary
uni t = code::M ethodUni t

:Scope

class = code::AbstracCodeIElem ent
recognizer = Operation->isOCLT ypeOf(code::M ethodUni t)

:Characteristic

nam e = M ethodCount

:Collectiv eM easure

accum ulator = sum
nam e = M ethodCountInM odel
l ibrary = SM M sam pleLibrary
uni t = code::M ethodUni t
m easurandQuery = Operation->XQuery->.//M ethodUni t

:Scope

class = code::CodeM odel

+tra it

+scope +scope

+tra i t

+refinem ent

+baseM easure
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 69

Figure 19.9 - Method Count Demonstration

Assume that the system is modeled by a KDM model. The KDM:MethodUnit is a CodeElement subclass which models
methods. The counting of methods then is very similar to the counting of modules given above.

For an entire system, we identify each CodeModel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each code::CodeModel, its baseMeasure elements are identified. In this example the default
containment association relation is overridden by a measurand query expressed as the XQuery operation of ‘..//MethodUnit’
which states that we want all MethodUnit children of our CodeModel recursively. Next we move to apply the scope
recognizer, which filters out any elements that are not of class code::MethodUnit, which here is just a safety test as the
measurand query already provides this level of filtering. This leaves us with only instances of code::MethodUnit, on which we
apply a Counting measure with a default operation of true so that it always returns 1.

All of the Counting measurement with a value of 1 representing here the code::MethodUnit are then summed up into a
Collective measurement for each code::CodeModel according to the accumulator defined in the Collective measure.

19.2.4 Lines of Code1

A line of code is any line of program text that is not a comment or a blank line, regardless of the number of statements or
fragments of statements on the line. This specifically includes all lines containing program headers, declarations, and

executable and non-executable statements”2 Lines of code here means fully expanded lines of code including copy books,
includes and comments.

KDM does not directly model lines of source, code or otherwise. As a demonstration, let us assume that blank lines may be
included. This allows us to use the KDM SourceRegion to measure lines of code. We will further assume source region do not
overlap or even having one start on the line that another ends on. The problem here is that code snippets are the smallest pieces
of source modeled in KDM. Lines by themselves are not modeled, which means that counting them is indirect. We will sum of
the line size of code snippets and call that counting lines of code.

1. See ERP 001 in Comsys Systems Redevelopment Methodology.
2. See S. Conte, H. Dunsmore, V. Shen, Software Engineering Metrics and Models, Benjamin/Cummings, Menlo Park, CA.

obj e ct M e thodCountEx a m ple

:M odule:CodeM ode l

:Count

va lue = 1

:Counting

n a m e = M od u leM eth o dRe co g n ize r
l i b ra ry = S M M sa m ple L ib ra ry

:Colle c tiv e M e a surem e nt

b a se S up p l ied = tru e
va lue = ...

:Collec tiv e M e a s ure

na m e = M e tho d Co u ntIn M o de l
l i b ra ry = S M M sa m p leL ib ra ry
accum u la to r = sum

+co de E le m en t

+m e asu ran d

+m e a sure

+m e asu ran d

+m e a su re

+b a se M ea su re m en t

+ba se M e a su re
70 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Lines of SourceRegion and SourceRef

KDM specifies a code snippet with a SourceRegion element that has two attributes, startLine and endLine, that interest us
here. The number of lines in the SourceRegion is endLine – StartLine + 1.

Our representation is a DirectMeasure with a class of SourceRegion and a function of endLine – startLine + 1.

SourceRef consists of multiple SourceRegions. Assuming no overlap as stated above, the determination of lines of code in a
SourceRef is a sum accumulator CollectiveMeasure with the previous lines of SourceRegion as its base measure.

Figure 19.10 - Lines of Code Measures

object SourceLOC

:DirectMeasure

operation = endLine - startLine + 1
name = SourceRegionLOCMeasure
unit = LineOfCode

:Characteristic

name = LineCount

:Scope

class = source::SourceRegion

:CollectiveMeasure

accumulator = sum
name = SourceRefLOCMeasure
unit = LineOfCode

:Scope

class = source::SourceRef

:Scope

class = code::AbstractCodeElement

:CollectiveMeasure

accumulator = sum
name = CodeEltTotalLOC
unit = LineOfCode

+scope

+trait+trait

+scope+scope

+trait

+refinement+refinement

+baseMeasure +baseMeasure
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 71

Figure 19.11 - Lines of Code Demonstration

Refinement of Lines of ControlElement, CodeElement and Module

The source role for these elements is SourceRef. Determining the lines of code in each is a sum accumulator
CollectiveMeasure where the base measure is the lines of SourceRef given above (the one in darker blue).

object AbstractCodeElementLOC

:CollectiveMeasure

name = SourceRefLOCMeasure
library = SMMsampleLibrary
accumulator = sum

:CollectiveMeasurement

value = 25
baseSupplied = true

:Collectiv eMeasurement

value = 38

:Collectiv eMeasure

name = CodeEltTotalLOC
library = SMMsampleLibrary
accumulator = sum

:Collectiv eMeasurement

value = 63
baseSupplied = true

:SourceRef

:AbstractCodeElement

:DirectMeasure

name = SourceRegionLOCMeasure
library = SMMsampleLibrary

:SourceRegion

startLine = 6
endLine = 23

:DirectMeasurement

value = 18

:DirectMeasurement

value = 7

:SourceRegion

startLine = 24
endLine = 30

:SourceRef

+measurand

+region

+measurand

+measure

+measurand

+measure

+source+source

+region

+measure

+baseMeasure

+baseMeasurement

+baseMeasure

+measurand

+measure

+baseMeasurement

+measure

+measurand

+baseMeasurement

+baseMeasurement
72 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.12 - Additional Lines of Code Measures

object CodeLOC

:Collectiv eMeasure

accumulator = sum
name = ModuleTotalLOC
unit = LineOfCode

:Characteristic

name = LineCount

:Scope

class = code::Module

:Collectiv eMeasure

accumulator = sum
name = ControlLOCMeasure
unit = LineOfCode

:Scope

class = code::ControlElement
:Scope

class = code::AbstractCodeElement

:Collectiv eMeasure

accumulator = sum
name = CodeEltTotalLOC
unit = LineOfCode

+baseMeasure

+scope

+trait

+baseMeasure

+scope

+trait

+scope

+trait

+refinement +refinement
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 73

Figure 19.13 - Module and Control Element LOC Demonstration

19.2.5 Lines of Code for ASTM

The Abstract Syntax Tree Metamodel (ASTM) facilitates the interchange of programming language constructs parsed as
abstract syntax trees. The Generic Abstract Tree Metamodel establishes a common core for modeling across a wide variety of
programming languages. Each of these constructs may, of course, be measured by their lines of code.

GASTM does not directly model lines of source, code, or otherwise. We will, consequently, make the same assumptions we
made above for KDM. Blank lines are included and overlaps are ignored.

Figure 19.14 shows a fragment of the proposed ASTM covering the core syntax object, source location and source file. Figure
19.15 shows a possible SMM library entry to represent lines of code measure of GASTM syntax objects.

object ModulreLOC2

:Characteristic

name = CodeLength

:Scope

class = Code::AbstractCodeElement

:Collectiv eMeasurement

value = 83
baseSupplied = false

:Scope

class = Code::Module

:Collectiv eMeasure

unitClass = LineOfCode
accumulator = sum
basePath = codeElement

:CollectiveMeasurement

value = 297
baseSupplied = true

:Module :CodeElement

:Module

:CollectiveMeasure

unitClass = LineOfCode
accumulator = sum
basePath = source

:Collectiv eMeasurement

value = 63
baseSupplied = false

:Collectiv eMeasure

unitClass = LineOfCode
accumulator = sum
basePath = codeElement

:Scope

class = Code::ControlElement

:CollectiveMeasurement

value = 151
baseSupplied = false

:ControlElement

+baseMeasurement

+measurand

+trait

+scope

+measure

+measurand

+scope

+refinement
+refinement

+codeElement

+measure

+codeElement

+trait

+baseMeasurement

+measurand

+baseMeasurement

+measure

+scope

+baseMeasure

+trait

+measurand

+measure

+codeElement

+baseMeasure
74 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.14 - GASTM Fragment

Figure 19.15 - LOC Library Entry for GASTM

19.3 McCabe

McCabe’s cycolmatic complexity could be modeled in different ways. It could be a RescaledMeasure from count of
independent paths found by adding 2. Another representation would be as aRescaledMeasure from count of branching points
found by adding 1. Each of these representations represents equivalent measures. We demonstrate below cyclomatic as a
NamedMeasure and as a RescaledMeasure from branching factor.

19.3.1 Branching Factor of ActionElements and Modules

Branching Factor is simply the difference between the number of nodes and edges in a module’s control flow graph. KDM
models the nodes as ActionElements, the edges as ControlFlow. Branching factor is then measured by subtracting the count of
ControlFlow instances from the count of ActionElements.

cla ss ASTM _Fragm ent

GA STMO b ject

G ASTMS ynta xO bj ec t

G AS TMSo urce Ob ject

Source Loca tion

+ Sta rtL in e: in t
+ Sta rtCo lum n : i nt
+ En dL ine : int
+ En dCol um n: in t

GAS TMSo urce Ob ject

S ourc eFile

+ Pa th Na me : St rin g

+ In So urceFi le+Lo ca tio nIn fo

objec t AS TM Source LO C

:Dire ct Me as ure

op erati on = Lo ca tio nI n fo .en dL in e - Lo ca ti o nI nfo .st art Lin e + 1
na m e = S ou rce Re g ion LO CMe asure
un it = L in e
l ib ra ry = S M Msam pl eL ibrary

:Sc ope

cla ss = g astm ::G A ST MS yn ta xO bj ect

:Chara ct er istic

na m e = L ine Co un t

+ tra it +sco pe
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 75

Figure 19.16 - Control Flow Edge Count Library Entry

Figure 19.17 - Control Flow Node Count Library Entry

object FlowEdgeCount

:Counting

name = FlowEdgeCount
unit = edge

:Scope

class = action::ControlFlow

:Characteristic

name = ControlFlowEdgeCount

:Additiv eMeasure

accumulator = sum
name = DirectFl owEdgesInAct ion
unit = edge

:Sc ope

class = action::ActionElement

:Additiv eMeasure

accumulator = sum
name = TotalFlowEdgesInActi on
unit = edge

+baseMeasure
+scope

+trai t

+baseMeasure

+trai t

+scope

+scope

+trai t

object FlowNodeCount

:Counting

name = FlowNodeCount
unit = node

:Characteristic

name = ControlFlowNodeCount

:Scope

class = action::ActionElement

:Additiv eMeasure

accumulator = sum
name = TotalFlowNodesInActi on
unit = node

+baseMeasure

+scope+trai t

+scope
+trai t
76 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.18 - Control Flow Branching Factor Library Entry

19.3.2 Cyclomatic Complexity of a Module1

Cyclomatic complexity (CC) = E - N + p where E is the number of edges of the flow graph, N is the number of nodes of the
flow graph and p is the number of connected components.

In this demonstration we assume that the control graph of each module is entirely connected. That is, p is always 1. Cyclomatic
is then simply the branching factor of a module plus one.

1. See TPM 065 in Comsys Systems Redevelopment Methodology.

object BranchingFactor

:Sc ope

class = acti on::Acti onEl ement

:Additiv eMeasure

accumulat or = sum
name = Total Flo wEdgesInAction
uni t = edge

:Additiv eMeasure

accumul at or = sum
name = TotalFlo wNodesInAction
uni t = node

:BinaryMeasure

functor = di fference
name = B ranching
unit = edge

:Characteristic

name = BranchingFactor

:Additiv eMeasure

accumulator = sum
name = B ranching
unit = edge

:Scope

class = code::Module

:Additiv eMeasure

accumulator = sum
name = B ranching
unit = edge

+trait
+baseMeasure

+scope

+refi nement+baseMeasure
+scope

+trait

+trait

+scope

+baseMe asure1 +baseMeasure2

+scope+scope
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 77

Figure 19.19 - McCabe Cyclomatic Complexity Library Entry

19.3.3 Extended Cyclomatic Complexity of a Module1

Extended cyclomatic is the count of predicates or atomic formula in the condition of branching statements. We demonstrate
this count based upon ASTM modeling of an “if” statement. The condition of the “if” is an expression that can be navigated to
find its atomic formulas.

19.3.4 Average Extended Cyclomatic Complexity of Modules in the System

19.4 Ratio of Additive ECC over Additive Counting of modules. Counts of
Operating Systems

The Application Management and System Monitoring for CMS Systems (ASMS) specification provides a PIM based upon
commercial enterprise management called the DMTF Common Information Model (CIM). “CIM models a software or
hardware system as a collection of component models connected via associations. A specific instance of a system is modeled

as a collection of instances of component models and associations.”2

We demonstrate the counting of operating systems installed and running on computer systems.

1. See ”An extension to the Cyclomatic measure of Program Complexity”, Glenford Myers, SIGPLAN Notices, vol 12 no 10, 1977.
2. See dtc/07-05-02.

object McCabeMeasures

:Characteristic

name = McCabeComplexity

:NamedM easure

name = McCabeCycl omaticComplexity
uni t = edge

:Characteristic

name = BranchingFactor

:RescaledMeasure

operation = 1+BranchingFactor
name = McCabeCyclomati cComplexity1
unit = edge

:Sc ope

cl ass = co de::Module

:Additiv eMeasure

accumulator = sum
name = B ranching
unit = edge

+trait

+scope

+scope

+baseMeasure

+trait

+equivalentFrom

+equivalentTo +scope

+trait
78 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.20 - ASMS Fragment

class CIM

CIM_OperatingSystem

+ OSType: String

Logical Hardware::
AMS_OperatingSystem

+ Name: String
+ Version: String

CIM_LogicalElement

Supported Application Model::
AMS_SupportedApplicationModel

+ Name: String
+ ConfigurationInfo: String

Supported Application Model::
AMS_OSType

- cf. CIM_OperatingSystem.OSType: int

CIM_ComputerSystem

Logical Hardware::
AMS_ComputerSystem

+ Name: String
+ ArchitectureInfo: String
+ Status: ui nt16
+ NetworkLoad: uint16

Logical Hardware Specification::
AMS_ConfigurationSpecification

+ InstanceID: String

CIM_LogicalElement

Application Deployment
Specification::

AMS_DeploymentLinkSpec

+ LinkID: Stri ng

0..1

AMS_DeploymentLinkDependency

0..*

0..1

AMS_ConfSpecCS

0..1

0..1

AMS_ConfSpecOS

0..1

0..1

AMS_ConfSpecDLS

0..1

0..*

SupportedOSType

1

OSType

0..*

AMS_AMSupportedByOS

0..*

0..*

CIM_InstalledOS

1

1..*

CIM_RunningOS

1

-1

AMS_OSUsed

-1
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 79

Figure 19.21 - OS Counting Demonstration

19.5 Halstead

19.5.1 Distinct Operator Count of a Module

ή1 ≡ A count of the number of distinct operators in a module.

Distinguishing operators invocations from calls to externally defined routines is not the type of higher level architectural
concerns represented in the KDM. Counting the number of called, but not defined elements would get us close to this metric.

obj ect OS_Coun t

:Additiv e Measure

accumul ato r = sum
name = Instal ledO peratin gSystems
library = SMMsamp leLibrary
unit = O S

:Coun ting

name = AM S_ Operat ingSystemCounte r
l ibrary = SMMsample Library
unit = O S

:Cha rac teristi c

name = Instal ledO peratin gSystems

:Sc ope

class = Logical Hardware::AMS_OperatingSyste m

:Sc ope

class = Logical Hardwa re::AMS_Compu terSystem

:Additiv e Measure

accumul ato r = sum
name = RunningO peratin gSystems
library = SMMsamp leLibrary
unit = O S

:Cha rac teristi c

name = RunningO peratin gSystems

:Characteristic

name = OperatingSystems

+ba seM easure+scope

+trait

+scope

+baseMeasure

+trait

+scope
80 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

19.5.2 Distinct Operand Count of a Module

ή2 ≡ A count of the number of distinct operands in a module.

This is the data count shown above.

19.5.3 Operator Occurrence Count of a Module

N1 ≡ A count of the number of operator occurrences in a module.

This is a count of the calls to elements identified as operators.

19.5.4 Operand Occurrence Count of a Module

N2 ≡ A count of the number of operand occurrences in a module.

For KDM, this is a count StorableElements owned by ActionElements.

19.5.5 Halstead Length of a Module

N=N1+N2

This is an CollectiveMeasure where the aggregator is addition and the base measures are the occurrence counts given above.

19.5.6 Halstead Vocabulary of a Module

ή = ή 1+ή2

This is an CollectiveMeasure where the aggregator is addition and the base measures are the counts given above.

19.5.7 Halstead Volume of a Module

V=N log2 ή

First log2 ή is a ReScaledMeasure based upon the vocabulary metric given above. The volume is then an CollectiveMeasure of

the length given above and the rescaled vocabulary with multiplication as the aggregator. The unit of measure for the rescaled
vocabulary and for the volume is “required bits of representation.”
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 81

Figure 19.22 - Halstead Vocabulary Library Entry

object Ha lsteadVocabulary

:BinaryMeasure

functo r = sum
name = Ha lsteadVocabulary
uni t = oc currence

:DirectMeasure

operat ion = Se t { operand } -> size()
name = Dist inctOperandsCount
unit = oc currence

:DirectMeasure

operat ion = Set { operator } -> si ze ()
name = DistinctOpera torsCount
unit = oc currence

:Rescale dMeasure

operatio n = log2
name = Ha lsteadVocabula ryInBits
uni t = di scrim ina tion

:Characteristic

name = Symbo lSpaceSi ze

+t rai t
+baseMeasure

+trait+tra it

+trait

+baseMeasure2+baseMeasure1
82 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.23 - Halstead Volume Library Entry

object Ha lsteadVolume

:Direct Measure

nam e = T otalOpera to rOccu rrence
unit = oc currence
ope rat ion = operato r -> size {}

:Direc tM easure

name = To ta lOpe randOccurrence
un it = occurrence
opera tio n = ope ra nd -> size{}

:BinaryM easure

functo r = ti mes
nam e = Ha lsteadVolum e
uni t = di scrim ina tion

:BinaryM easure

functor = sum
nam e = HalsteadLeng th
un it = occurrence

:Rescale dMeasure

ope ra tio n = log2
nam e = Ha lsteadVocabu la ryInB its
uni t = di scrim ina tion

:Charac ter is tic

name = Sym bo lSpaceSize

:Charact eristic

nam e = In fo rm ati onSi ze

:Characte ris tic

name = Sym bo lUsage

+tra it

+tra it
+baseMe asure2

+b aseM e asu re1

+tra it

+baseM easure2

+baseM easu re1

+tra it

+tra it
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 83

Figure 19.24 - Halstead Potential Library Entry

obje ct Ha lsteadP otentialVolume

:Binary Meas ure

fu nctor = tim es
na m e = Hal ste ad Pote nti alVol um e
un it = d iscri mi na tion

:Di rectM eas ure

o perat ion = pa ra mete r -> si ze ()
n am e = Dist inctIOope ran dsCoun t
u nit = oc currence

:Resc ale dM eas ure

o pe rat ion = lo g2 base M ea surem en t
n am e = Ha lstead Pote nti alLen gthInB its
u nit = discrim ina tio n

:Res cale dM ea sure

opera tio n = b ase M easu reme nt + 2
name = Halstea dCon ce ptua lVo ca bu la ry
un it = o ccurren ce

:Cha ract eristic

na m e = In fo rm ati onSi ze

:Charac teris tic

na m e = S ym bo lSpa ce Size

:Cha ract eristic

na m e = S ym bo lUsa ge

+tra it

+b ase M easure

+tra it

+b aseM easu re

+tra it

+ tra it

+b aseM ea sure 1

+base Measure2
84 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.25 - Halstead Effort Library Entry

object HalsteadEffort

:BinaryMeasure

functor = t imes
name = HalsteadVolume
unit = disc riminat ion

:RatioM easure

name = Hal steadLevel
functor = divide
unit = ' '

:RatioM easure

name = HalsteadEffort
unit = disc riminat ion

:BinaryMeasure

functor = times
name = Hal stead Potenti alVolume
unit = discrimination

:Characteristic

name = ProblemSize

:Characteristic

name = ProblemLevel

+trait

+baseMe asure1

+baseMeasure2

+trait

+baseMe asure1

+baseMeasure2
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 85

Figure 19.26 - Halstead Measures Demonstration

19.6 Software Engineering Institute (SEI) Maintainability Index

171 - 5.2(ln(aveV)) - 0.23(aveV(g')) - 16.2(ln(aveLOC)) + 50(sin (sqrt(2.4(perCM))))

Each of the averages are RatioMeasures of their respective metric (V for Halstead volume, V(g’) for extended Cyclomatic
complexity and LOC of line of code) for modules over the count of modules. perCM, the percentage of comments in a module,
is a PercentageMeasure of line count of comments over the total line count of a module.

Each resulting metric is rescaled to share the same unit of measure, namely maintainability index points.

The SEI index is then a CollectiveMeasure for a module of the above four rescaling with addition as the aggregator.

aveV rescaled 50 – 5.2(ln(aveV)

aveV(g’) rescaled 50 – 0.23(aveV(g’))

aveLOC rescaled 21 – ln(aveLOC)

perCM rescaled 50(sin (sqrt(2.4(perCM))))

obj ect Halstead

:BinaryMeas ure

functo r = sum
name = Halstea dLength
unit = occurrence

:Additiv eMeasure

accumu lat or = sum
nam e = TotalOpe randOccu rrence
unit = occu rrence

:Additi v eMea sure

accumulat or = sum
name = Tota lOpe ratorOccurrence
unit = oc currence

:DirectMeasure

operation = Set { o perators } -> size()
nam e = DistinctOperatorsCount
unit = occu rrence

:DirectMeasure

operation = Set { opera nd } -> size()
name = DistinctOpe randsCount
unit = oc currence

:Bi naryMeasure

functor = sum
nam e = HalsteadVocabulary
uni t = occurrence

:Res cale dMeasure

op eratio n = log2
na me = HalsteadVocabularyInBits
un it = discrimina tion

:BinaryMeas ure

functor = time s
nam e = Halste adVolume
unit = discriminat ion

:DirectMea sure

ope ration = pa rameter -> size()
nam e = DistinctIOoperan dsCou nt
unit = occu rrence

:Rescale dM easure

ope ration = ba se Mea surement + 2
nam e = HalsteadConceptualVocabulary
unit = occu rrence

:Resc ale dMeasure

operation = log2 baseM easurement
name = Halstead Pot entialLeng thInBits
unit = discrim ination

:BinaryMeasure

functor = time s
nam e = Halstead PotentialVolu me
unit = discriminat ion

:Perce ntage

name = Hal steadL evel

:RatioMe asure

name = Ha lste adEffort
unit = d isc rimination

+baseMe asu re2

+baseMe asure1 +baseM easure2+baseMea sure

+baseMe asu re

+ baseMeasure

+ baseMeasure2

+ba seM ea sure1

+baseMe asu re2

+baseMeasure2

+baseMe asure1

+baseMe asure1 + baseMeasure2

+baseM easure 1

+b ase Me asu re1
86 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.27 - Conversion of Information Size to Maintainability

obj ect Informatio nS ize

:Rescale dM e asure

operati on = 50 - 5 .2* ln(baseM easure)
nam e = Vo lum e2M a inta inabi l i ty
uni t = M ainta inab i l i tyUni t
l ibrary = S M M sam ple Library

:S c ope

c lass = co de::M odule

:BinaryM eas ure

functo r = tim es
nam e = Halstead Vo lum e
uni t = d isc rim ination
l ibrary = S M M sam pl eLibrary

:Additiv eM easu re

acc um ulat or = su m
nam e = M odule CountIn M odel
l ibrary = S M M sam ple Library
uni t = c od e::M od ule

:S co pe

c lass = c ode ::CodeM o del

:Charact er istic

nam e = M odul eCo unt

:RatioM easure

fun ctor = d ivide
nam e = A v eM oduleV olum e
l ibrary = S M M sam pleLi brary
uni t = d isc rim ina tion/c ode::M o dule

:Charact eris tic

nam e = A v erageI nform ationS ize

:Charact er istic

na m e = Info rm a tionS ize

:Charact eri stic

nam e = M ainta ina bi l i ty

+scope+tra it

+ baseM easure2

+ba seM ea sur e1

+tra i t

+sc ope

+tra i t +sco pe

+ba seM easure

+scope

+tra i t
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 87

Figure 19.28 - Conversion of McCabe Cyclomatic to Maintainability

obj ect C odeS tructureM ain ta inability

:R esca led M easure

o pe ra tion = 5 0 - 0 .23*baseM easure
n am e = Cyc lom ati c 2M ain ta ina b i l i ty
u n i t = M a in ta ina b i l i ty Un i t
l i b r a ry = S M M sam pleL ib rar y

:R atioM eas ure

fu n cto r = d i vide
nam e = A v eM odu le Cy clom ati c
l i b ra ry = S M M sam pleL ib rary
un i t = ed ge/ code::M odu le

:Charac t eris tic

nam e = A v erage C yc lom atic S ize

:Charac t eris tic

nam e = M ain ta ina b i l i ty

:Addi tiv eM e as ure

ac cum ula t o r = su m
na m e = M od u le Cou n tInM o de l
l i b ra ry = S M M sa m p leL ib ra ry
un i t = cod e:: M od u le

:Sc ope

class = c ode ::Co deM o de l

: Cha rac ter is ti c

nam e = M od u leC ount

:Charact er is tic

nam e = M cC abeCom p lexi ty

:NamedM ea s ure

n am e = M c Cab eCyc lom a ti c Com plex i ty
u n i t = edge
l ib ra ry = SM M sam pleL ib rary

:R esca led M easure

opera tio n = 1+B ranc h ingFac to r
nam e = M cCa b eC yc lom atic C om ple xi ty 1
un i t = edge
l ib ra ry = S M M sa m pleL ib rary

:S c ope

c lass = co d e::M o du le

+scop e

+tra i t

+tra i t

+tr a i t

+eq u iva len t From

+eq u iva len t To

+scope

+scope

+ba seM ea sure 1

+tra i t

+tra i t

+sc ope

+scope

+b a se M ea sure

+baseM easure2
88 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.29 - Conversion of LOC to Maintainability

obj ect CodeLengthMaintai nability

:Addi tiv eMe asure

accum ulat or = sum
na me = Mod ule Cou ntInMode l
lib rary = SMM sa mpleLibra ry
un it = cod e:: Module

:Sc ope

class = cod e:: Cod eModel

:Cha rac teristi c

name = M oduleCount

:Resca ledMeasure

ope ration = 2 1 - ln(baseMe asu re)
nam e = LinesOfCode2Main tainability
uni t = Mainta inabilityUn it
library = SMM sam pleLibrary

:RatioM easure

fu nctor = divide
name = Ave ModuleLOC
library = SMMsampleL ibrary
unit = Lin eOfCo de/code::Mod ule

:Characteris tic

name = Avera geCodeLen gth

:Additiv eMeasure

accumula tor = sum
name = Modu leTotalL OC
unit = Lin eOfCode
library = SMMsamp leLibrary

:Characteri stic

name = L ineCount

:Sc ope

class = co de:: Module

:Characteris tic

name = M aintainab ility

+scope

+trait

+scope

+b ase Measure

+scope

+trait

+baseMeasure 2

+tra it +scope

+baseMe asure1

+trait
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 89

Figure 19.30 - Conversion of Comment Count to Maintainability

object CommentedCodeMaintainability

:Resca ledMeasure

operation = 21 - ln(baseMeasure)
name = Com mentedne ss2Ma intainabili ty
unit = Ma intainabil ityUnit
library = SMMsampleL ibrary

:Rati oM easure

fu nctor = divide
name = AveModule Comm entPercen tage
library = SMMsampleL ibrary
unit = Percent /code ::Module

:Characteristic

name = AverageComm entedness

:Addi tiv eMe asure

accum ulat or = sum
na me = Mod ule Cou ntInMode l
lib rary = SMM sa mpleLibra ry
un it = cod e:: Module

:Sc ope

class = cod e:: Cod eModel

:Cha rac teristi c

name = M oduleCount

:Characteris tic

name = M aintainab il ity

:Additiv eMeasure

accum ulat or = sum
nam e = Modu leCommentL ines
uni t = Line
library = SMM sam pleLibrary

:Cha rac teristi c

na me = Comme ntLineCount

+ trait

+baseMeasure

+scope

+trait

+scope

+scope

+trait

+trait
90 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Figure 19.31 - SEI Maintainability Demonstration

19.7 Qualitative Example

19.7.1 Non-standard language usage score

Non-standard languages are defined by an organization’s accepted technology standards. Assign the following scores where a
1 or 2 is low, a 3 is medium and a 5 is high:

obj ect SEI_Maintainability

:Rescale dM easure

opera tion = 50 - 5.2*ln(baseMeasure)
name = Volume2M aintainabi lity
unit = Maintaina bilityUnit
library = SMMsamp leLibrary

:Sc ope

class = code ::CodeMode l

:Rescale dM easure

opera tion = 50 - 0.2 3*b ase Measure
name = Cycl omatic2Maintain ability
unit = Maintaina bilityUnit
library = SMMsamp leLibrary

:Characteristic

name = Maintaina bility

:Rescale dM easure

opera tion = 21 - ln(baseMeasure)
name = LinesOf Cod e2Mainta inability
unit = Maintaina bilityUnit
library = SMMsamp leLibrary

:Rescale dMe asure

opera tion = 21 - ln(baseMeasure)
name = Commente dness2 Maintaina bility
unit = Maintaina bilityUnit
library = SMMsamp leLibrary

:AggregatedM easure

aggregat or = su m
name = SIE_Ma inta inabilityMeasure
unit = Ma intainabil ityUnit
library = SMMsampleL ibrary

+scope

+ trait

+scope

+trait

+scope

+tra it

+scope

+trait

+baseMeasure

+baseMeasure

+baseMeasure

+baseMeasure

+trait

+scope
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 91

1. 2GL or unacceptable 4GL assign 1 or 2

2. Acceptable 3GL or 4GL assign 3 or 4

3. Ideal strategic language assign 5

Figure 19.32 - Qualitative Measure Demonstration

class Nonsta ndardLangua ge

:Ranking

name = Source Lang uageScore
library = SMMsampl eLibrary

:Sc ope

class = co de::AbstractCode Ele ment

:Cha rac teristic

name = Stan dardnessOfSourceLanguag e

:Ranki ngInterv al

symbol = 2GL
minimum Endp oin t = 1
maxi mumEnd point = 2
maxi mumOpen = false
minimum Ope n = f alse

:Ranki ngInterv al

symbol = Acceptab le 3GL or 4GL
minimum En dp oint = 3
maxi mumEndpoin t = 4
maxi mumOpen = false
minimum Ope n = f alse

:Ranki ngInterv al

symbol = Id eal Strategic Langua ge
minimum En dp oint = 5
minimum Ope n = f alse
maxi mumOpen = false

:Ranki ngInterv al

symbol = Unaccep table 3GL or 4GL
minimum Endp oin t = 1
maxi mumEnd point = 2
maxi mumOpen = false
minimum Ope n = f alse

+inte rval

+inte rval

+inte rval

+inte rval

+tra it

+scop e
92 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

20 Library of Categories (Software example)

20.1 General

SMM does not establish a standard set of measurement categories that presents an organization of measures applicable to
every environment or every engineering activity. SMM minimally establishes a demonstration library of metric categories.
The library does not assert that the given categories are standards. These metric categories reflect a high-level summary of
industry metrics that support some engineering processes.

20.2 Environmental Metrics

Number of screens, programs, lines of code, etc.

20.3 Data Definition Metrics

Number of data groups, overlapping data groups, unused data elements, etc.

20.4 Program Process Metrics

Halstead, McCabe, etc.

20.5 Architecture Metrics

Average call nesting level, deepest call nesting level, etc.

20.6 Functional Metrics

Functions defined in system, business data as a percentage of all data, functions in current system that map to functions in
target architecture, etc.

20.7 Quality / Reliability Metrics

Failures per day, meantime to failure, meantime to repair, etc.

20.8 Performance Metrics

Average batch window clock time, average online response time, etc.

20.9 Security / Vulnerability

Breaches per day, vulnerability points, etc.
Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 93

94 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgments

	7 SMM Introduction
	7.1 Overview
	7.1.1 Goals

	7.2 General Usage Notes (Non normative)
	7.3 Steps in using SMM (Non-normative)
	7.4 Interpreting Measures (Informative)

	8 Core Classes
	8.1 General
	8.2 SmmElement Class (Abstract)
	8.3 SmmModel Class
	8.4 SmmRelationship Class (abstract)
	8.5 MeasureLibrary Class
	8.6 MeasureCategory Class
	8.7 CategoryRelationship
	8.8 Date
	8.9 Timestamp

	9 Extensions
	9.1 General
	9.2 Attribute Class
	9.3 Annotation Class

	10 Measures
	10.1 General
	10.2 Characteristic Class
	10.3 Scope Class
	10.4 Measure Class (abstract)
	10.5 Operation Class
	10.6 OCLOperationClass
	10.7 MeasureRelationship Class (abstract)
	10.8 EquivalentMeasureRelationship Class
	10.9 RefinementMeasureRelationship Class
	10.10 RecursiveMeasureRelationship Class
	10.11 DimensionalMeasure Class
	10.12 Ranking Class
	10.13 RankingMeasureRelationship
	10.14 RankingInterval Class

	11 Collective Measures
	11.1 General
	11.2 CollectiveMeasure Class
	11.3 Accumulator data type (enumeration)
	11.4 DirectMeasure Class
	11.5 Counting Class
	11.6 BinaryMeasure Class
	11.7 Ratio Class
	11.8 BaseMeasureRelationship Class
	11.9 Base1MeasureRelationship Class
	11.10 Base2MeasureRelationship Class

	12 Other Measures
	12.1 General
	12.2 NamedMeasure Class
	12.3 RescaledMeasure Class
	12.4 RescaledMeasureRelationship Class

	13 Measurements
	13.1 General
	13.2 Measurement Class (abstract)
	13.3 MeasurementRelationship Class (abstract)
	13.4 EquivalentMeasurementRelationship
	13.5 RefinementMeasurementRelationship Class
	13.6 RecursiveMeasurementRelationship Class
	13.7 DimensionalMeasurement Class
	13.8 Grade Class
	13.9 RankingMeasurementRelationship Class

	14 Collective Measurements
	14.1 General
	14.2 CollectiveMeasurement Class
	14.3 DirectMeasurement Class
	14.4 Count Class
	14.5 BinaryMeasurement Class
	14.6 RatioMeasurement Class
	14.7 BaseMeasurementRelationship Class
	14.8 Base1MeasurementRelationship Class
	14.9 Base2MeasurementRelationship Class

	15 Named and Rescaled Measurements
	15.1 General
	15.2 NamedMeasurement Class
	15.3 RescaledMeasurement Class
	15.4 RescaledMeasurementRelationship Class

	16 Observations
	16.1 General
	16.2 Observation Class
	16.3 ObservationScope Class
	16.4 ObservedMeasure Class
	16.5 Argument Class

	17 Historic and Trend Data (Non-normative)
	17.1 General

	18 Inaccuracy (Non-normative)
	18.1 General

	19 Library of Measures (Non-normative)
	19.1 General
	19.2 Various Counts
	19.2.1 Module Count
	19.2.2 Screen Count
	19.2.3 Method Count
	19.2.4 Lines of Code
	19.2.5 Lines of Code for ASTM

	19.3 McCabe
	19.3.1 Branching Factor of ActionElements and Modules
	19.3.2 Cyclomatic Complexity of a Module
	19.3.3 Extended Cyclomatic Complexity of a Module
	19.3.4 Average Extended Cyclomatic Complexity of Modules in the System

	19.4 Ratio of Additive ECC over Additive Counting of modules. Counts of Operating Systems
	19.5 Halstead
	19.5.1 Distinct Operator Count of a Module
	19.5.2 Distinct Operand Count of a Module
	19.5.3 Operator Occurrence Count of a Module
	19.5.4 Operand Occurrence Count of a Module
	19.5.5 Halstead Length of a Module
	19.5.6 Halstead Vocabulary of a Module
	19.5.7 Halstead Volume of a Module

	19.6 Software Engineering Institute (SEI) Maintainability Index
	19.7 Qualitative Example
	19.7.1 Non-standard language usage score

	20 Library of Categories (Software example)
	20.1 General
	20.2 Environmental Metrics
	20.3 Data Definition Metrics
	20.4 Program Process Metrics
	20.5 Architecture Metrics
	20.6 Functional Metrics
	20.7 Quality / Reliability Metrics
	20.8 Performance Metrics
	20.9 Security / Vulnerability

