Date: January 2012

OBJECT MANAGEMENT GROUP

Structured Metrics Metamodel (SMM)

Version 1.0

OMG Document Number: formal/2012-01-05

Standard document URL: http://www.omg.org/spec/SMM

Associated Schema Files*:http://www.omg.org/spec/SMM/20120101
Normative: http://www.omg.org/spec/SMM/20120101/SMM.cmof

Non-normative: http://www.omg.org/spec/SMM/20120101/SMMXMI.xsd
http://www.omg.org/spec/SMM/20120101/SMM.emof
http://www.omg.org/spec/SMM/20120101/SMM.eap

* original files: ptc/2010-11-35 (cmof), ptc/2010-11-36 (xsd), ptc/2010-11-37 (emof), ptc/2011-03-03 (eap)

Copyright © 2010, Benchmark Consulting
Copyright © 2010, eCube Systems, LLC
Copyright © 2010, Electronic Data Systems
Copyright © 2010, KDM Analytics

Copyright © 2011, Object Management Group, Inc.
Copyright © 2010, Software Revolution

Copyright © 2010, Tactical Strategy Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patentsthat are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XM
Logo™, CWM™ CWM Logo™, IIOP™ [IMM™ MOF™ | OMG Interface Definition Language (IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this

specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://

www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technol ogy/agree-
ment.htm).

Table of Contents

(=3 = T TP Vil
Yo 0 01 PP 1
pZ o o1 0] 1 0 F= T g (o = U 2
3 NOrMAtiVe REFEIENCESoiiiiiii e e e 2
4 Terms and DefiNitiONScoiiiiii i e e 2
5 SYMDOIS o 3
6 Additional INfOrmMationccooeiiiiiii 3
6.1 Changes to Adopted OMG Specificationsoooeiiiiiiiiiiiiiiiiee e 3

6.2 How to Read this SPeCIfiCationccccceeiiiiiiiiiiiii e e e e ee e 3

6.3 ACKNOWIEAGMENTS ..ot e e e e e e e e aaaas 3

7 SMM INTrOAUCTION ... e e e e e e e e 5
7.1 OVEIVIEW ..ttt ettt s e e s e e e e e e e e e e e eeeeeee s s beaa e e e e e e e e e eaeaeeeeeeneenes 5

4 05 R T T TP RPTPTI 5

7.2 General Usage Notes (NON NOMMALIVE) ...ccooeeeeeiiiiieiiieeiiiiiiie e eeeeeens 5

7.3 Steps in using SMM (NON-NOMALIVE)ccccvviiiiiieeiiiiree e e e e e e 6

7.4 Interpreting Measures (INfOrmative)ocooeieiiiiiiiiieeecre e 6

8 COrE ClASSESoiiiieiiiitiii ettt 9
S TR R T 1T - | TR UUPRPPPPPPRPTRPI 9

8.2 SmmElement Class (ADSLract)ueuiiiiiiiiiie e 10

8.3 SMMMOAEI CIASSuviiiiiiiiiiiiiiiii et 11

8.4 SmmRelationship Class (ADSract)ccooeoiviiiiiiiiiii e 11

8.5 MeasUreLibrary CIAaSSueuuuuiuiiiiiiiiiiee e ettt e e e e e e e e e e e e aaeeeenennnne 12

8.6 MeasureCategory ClasSooiviiiiiiiiiiiiiiii e e e e e e e 12

8.7 CategoryRelatioNShiPcooooiii e 13

S 7RG T D - | (PP 14

SR T I T 1S3 =g] o R USURRR 14

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 i

O X BN S ONS ettt 15

S R R 1T 1T - | PRSI 15
9.2 AHIDULE CIASS ..o e e e e e 15
9.3 ANNOLALION CIASS ...ttt e e e e e e e e e e e eeae b s 16
O 1YL= LU 17
O €T o 1T = U RPPPPTPPTPRTRR 17
10.2 CharaCteriStiC ClASSceuiiiiiiiiiiiiiiiii i 19
10.3 SCOPE CIASS ..eueuiiiieiii ettt a e e e e e e e e e aeaaaee 19
10.4 Measure Class (ADSIrACt)cuuuurruuiiiiirie ettt e e e e e eeeeeaeees 21
10.5 Operation ClaSSccciiiiiiiiiieice st e e e e e e e e e e e e aeaeaanaaaaa 23
10.6 OCLOPEratiONCIASS ...ciiiieeieieiiieeeeeeiit et e e e e e e e e e eeees 24
10.7 MeasureRelationship Class (abStract)ccoeeeiiiiiiiiiiiiiii e 25
10.8 EquivalentMeasureRelationship Classccccceeiiiiiiieieeveecre e 25
10.9 RefinementMeasureRelationship Classooooviiiiiiiiiiiiiini e 26
10.10 RecursiveMeasureRelationship Classcooviiiiiiiiiiiiiiiiii e 27
10.11 DimensionalMeasure Classooooiiiiiiiiiiiiiiiiiiceeee e 27
10.12 RANKING CIASS ...iiiiiiiieieieeieeeeeet ettt e e e e e e e e e e e e eeaeeaeee 28
10.13 RankingMeasureRelatioNShIPccooviiiiiiiiiii e 29
10.14 RankingInterval Classcceuuiiiiiiiiiiiiiiii e a e e e e aaeeees 29
11 COlIECHIVE MEBASUIEScvvviiiiiiie e ettt e e e ettt r e e e e e e e e eeeeseeenanans 31
0 R T o 1T = TP RPPPPPPTRRTRR 31
11.2 CollectivEMEASUIE CIASSuuuuuuiiiiiiiiee ettt a e e eeeeeaeeaeees 33
11.3 Accumulator data type (€NUMEration)ceeveeuuuirruiiiiisseeeeeeeeeeeeereeeeesennnnn 34
11.4 DireCtMeasUure CIASSoouiiiiiiiiiiiiiiiai et a e e e e e e 34
11.5 CoUNLING ClASS ...iiieeiiiieie et e e e e e e e e e 34
11.6 BINAryMeEASUIE CIASSccciviiiuiiiiiiiiiiiiiseeeeeeeeeeeeeeeeeeeaeestanna s e e e s e e aeeaaaeeeeeees 35
A Vo T O = T SRR 36
11.8 BaseMeasureRelationship Class ... 37
11.9 BaselMeasureRelationship Classcccccciiiiiiiiiiiiiiccssee e 37
11.10 Base2MeasureRelationship Class ... 37

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM), v1.0

L2 Other MEBASUIES ...t et 39

D T €T o 1T - | SRR 39
12.2 NamMedMeasUure ClasScooouiiiiiiiiiiiiiiiiiiiii ettt 39
12.3 RescaledMeasure ClassS ...t 40
12.4 RescaledMeasureRelationship Classccooeiiiiiiiiiiiiiiiiii e 40
RGBT Y= T U [=] 0 =]] PP 41
T A 7= 1= = | 41
13.2 Measurement Class (ADSLract)eeeeiiiiiiiiiiiii e 41
13.3 MeasurementRelationship Class (abstract)cccccvviiiiiiiiiiiiiiiii e, 43
13.4 EquivalentMeasurementRelationShipccccoeeiiiiiiiiiiiiiie e 43
13.5 RefinementMeasurementRelationship Classccooviiiiiiiiiiiiieeeeeeeeeeee 43
13.6 RecursiveMeasurementRelationship Classcooviiiiiiiiiiiiiiiieeeeeeeee 44
13.7 DimensionalMeasurement Classcccociiiiiiiiiiiiiiii e 44
R S I €1 = o [O = T TSR 45
13.9 RankingMeasurementRelationship Classcccoiiiiiiiiiiiiiii e 46
14 ColleCtiVE MEASUIEIMENTS ...vuiiieiieiieiiee et e e e e e e e e e et e ean e eaeeannees 47
LA.1 GENEIAI ...ttt ettt e e a7
14.2 CollectiveMeasurement CIaSSuuuuuiiiiiiinieiiieeieieeeeeeiei e 47
14.3 DirectMeasuremMent CIASScoouiiiiiiiiuiiiiiiieeee ettt a e e e 48
144 COUNE CIASS ..eiiiiiiiiiiiiiiiei ettt e e e e e e e e e e eee s 48
14.5 BinaryMeasurement ClassScoooiiiiiiiiiiiiiiiiiire e 49
14.6 RatioMeasurement CIASScoooiiiiiiiiiiiiiiiiiie e 49
14.7 BaseMeasurementRelationship Classcccccceieiiiiiiiiiiieicccee e, 49
14.8 BaselMeasurementRelationship Classcccoooiiiiiiiiiiiiiiiiiii e 50
14.9 Base2MeasurementRelationship Classcccccoeoiiiiiiiiiiiiiiii e 50
15 Named and Rescaled Measurementsuuueeiiiiineeiieeeiieiiiinnn e 51
L15.1 GENEIAI ...ttt 51
15.2 NamedMeasurement ClassScoouiiiiiiiiiiiiiiiie e 51
15.3 RescaledMeasurement CIASSuuuuuiuuiiiiiiiiieee et 51
15.4 RescaledMeasurementRelationship Classcccccvvviiiiiviiiiiiiciiiiie e 52

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 iii

L6 ODSEIVALIONS ..o e e 53

G A €T o 1T = U RPPPPTPPTPRTRR 53
16.2 ODSEIVALION CIASSuuviriiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e 53
16.3 ObservatioNSCOPE ClASSccuvuuuuriiiiieiii et e e e eeeeeaeee 54
16.4 ObservedMeasure ClasSuuuuiuiiiiiiiee et e e e eeeeeeeeaeee 55
16.5 ArguUMENT ClIasS ...coieeiiiiiiiiiiieeeee e s e e e e e e et e et ee s s e e e e e aeaeaaeeeeeeennnes 56
17 Historic and Trend Data (NON-NOrMatiVe)cccovveeviiieeveeiiiiieeeeeeiiieeeeeennnns 57
A R €T o 1T = U RPPPPPTPPTPRTR 57
18 Inaccuracy (NON-NOIMALIVE)uuuiiiiiiiiiiieeeeeeiia e e eeeet e e e eeean e e e e eeen e e e eeaenes 59
S €T o 1T = U RPPPPTPPTPRTTN 59
19 Library of Measures (NON-NOrMALtIVE)ccuuuiiiiiiiiiiiiiieeeeeiiiie e 63
LO.1 GENEIAI ...ttt e e e e e e e e e e e e e e 63
19.2 VArIOUS COUNTS ..ottt e e e e e e e e ae et a e e e e e e e e e e e eaeeeeees 63
19.2.1 MOAUIE COUNL ...ttt ettt e e e e e e e ettt e e e e e e e e e e sanbebbeaeeeeeaaaaaas 63
19.2.2 SCIEEIN COUNT ...ttt e e e e e e e e e e et et e ettt eeeeeeee e babebe b anas e a e e e e e e e e e aaeeeaas 66
19.2.3 MO COUNL ...ttt e e e e e e e e e e st e e e e eeeaaaaeas 69
19.2.4 LINES OF COUE ...ttt e e e e e e e bbb e e e e e e e e as 70
19.2.5 Lines Of COde fOr ASTIM ...eeeiiiiiiiiiii ettt e e e e e e e e e e e e e e 74
19.3 MCCADE ...ttt a e e e e e e e e e 75
19.3.1 Branching Factor of ActionElements and Modulesccccviiiiiiiiiiiiniiiiieeeee e 75
19.3.2 Cyclomatic Complexity of @ MOAUIEooeiiiiiiiiie e 77
19.3.3 Extended Cyclomatic Complexity of a Module ..., 78
19.3.4 Average Extended Cyclomatic Complexity of Modules in the System 78

19.4 Ratio of Additive ECC over Additive Counting of modules. Counts
Of Operating SYSEIMScoiiiiiiiiiiiiiiiir et e e e e e e e e eeeeeeeenaees 78
19.5 HAISTEAU ...coeeeeieiiiiiieie et e e et e e e e e e e e eees 80
19.5.1 Distinct Operator Count of a MOAUIEeviiiiiiiiiii i 80
19.5.2 Distinct Operand Count of @ MOdUIEc..oviiiiiiiiie e 81
19.5.3 Operator Occurrence Count of a MOdUIEccevveeiiiiiiiiiiiiicieecee e 81
19.5.4 Operand Occurrence Count of @ MOAUIEoeviiieiiiiiiiiiece e 81
19.5.5 Halstead Length of @ MOAUIEcovviiiiiiiiiiee e 81
19.5.6 Halstead Vocabulary of a MOAUIEcoooiiiiiiiiiieec e 81
19.5.7 Halstead Volume of & MOUIEcooiiiiiiiiiii e e 81
19.6 Software Engineering Institute (SEI) Maintainability Indexcccceevvnnnies 86
19.7 Qualitative EXamPIEccooiiiiieeeee e 91
19.7.1 Non-standard language USAQE SCOMEcccuvrrererrieeeeeiiiiiienieneeeeeeeessssnnnsenrnneeeeeaesses 91

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM), v1.0

20 Library of Categories (Software example) ... 93

20,1 GENEIAL .ottt e e e e e e e e e eaeaaaee 93
20.2 ENVIronmMental MEtIICSuuviiiiiiiiiiiiiee ettt 93
20.3 Data Definition METIICScoiiiiiiiiiiiiiieee ettt e e e e e e e e e eeeeeeeeanee 93
20.4 Program ProCeSS MELIICSuuuuuuiuiiiiiiee e ee e e eeee ettt e s e e e e e e e e e e e eeeeeeeennee 93
20.5 ArCRItECIUIE METIICS ...uvviiiiiiiiiiiiii e 93
20.6 FUNCLONAI MELIIICS .. .coeiiiieiiieeieiit ettt e e e e e e e e e e eeeeeeeennees 93
20.7 Quality / Reliability MEtrICScouuiiiiiiiiiieieee e 93
20.8 PerformanCe MELIIICSuuiiiiiiiiiiieie it e e 93
20.9 Security / VUINErabilityouuuiuiiiiiiiiiie e 93

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 \Y

Vi

Architecture-driven Modernization (ADM): Structured Metrics Meta-model (SMM), v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

. Business Rules and Process Management Specifications

Language Mappings
. IDL/Language Mapping Specifications
. Other Language Mapping Specifications

Middleware Specifications
. CORBA/IIOP
. CORBA Component Model
. Data Distribution
e Specialized CORBA

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 vii

Modeling and Metadata Specifications

. UML
. MOF
« XMl

. CWM

. Profile specifications.

Modernization Specifications
. KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications
. CORBAservices
e CORBAfacilities
. OMG Domain specifications
. OMG Embedded Intelligence specifications
. OMG Security specifications
All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and

may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as SO
standards. Please consult http://www.iso.org

OMG Contact Information

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
http: //mwww.omg.org/
Email: pubs@omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

viii Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Note — Terms that appear in italics are defined in the glossary. Italic text al so represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 iX

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

1 Scope

This specification defines a meta-model for representing measurement information related to any model structured
information with an initial focus on software, its operation, and its design. Referred to as the Structured Metrics Meta-
model (SMM), this specification is an extensible meta-model for exchanging both measures and measurement information
concerning artifacts contained or expressed by structured models, such as MOF.

The SMM include elements representing the concepts needed to express a wide range of diversified measures. The
specification does include aminimal library of software measures, but it is not asserting that the listed measures constitute
standards themselves; these are supplied simply as non-normative examples.

The SMM is a specification for the definition of measures and the representation of their measurement results. The
measure definitions make up the library of measures and that serves to establish the specification upon which al of the
measurements will be based.

The SMM s part of the Architecture Driven Modernization (ADM) roadmap and fulfills the metric needs of the ADM
roadmap scenarios as well as other information technology scenarios.

The SMM specifies the representation of measures without detailing the representation of the entities measured. SMM
anticipates that those entities are represented in other OMG meta-models. Measures of software artifacts or their features
that are defined within the SMM, the Knowledge Discovery Metamodel (KDM), the Abstract Syntax Tree Metamodel
(ASTM), another ADM roadmap meta-model or another OMG meta-model may arise as:

e Counts. (Lines of code measures exemplify the mechanism.)
« Direct applications of named measurements. (One such named measure is Cyclomatic Complexity.)

« Simple algebraic change of scales of already defined numeric measures (e.g., the trandation to ‘ choice points from
Cyclomatic complexity).

« Simple algebraic aggregations of numeric artifact features, including other measures, over sets of software artifacts.
(Determining the complexity of an application by summing the complexities of the application’s elements
demonstrates this process.)

e Simple range-based grading or classification of already defined numeric measures. (Cyclomatic reliable/unreliable
guadrants are one such grading.)

* Qualitative evaluations where the range of evaluations can be mapped to alinear order.

Useful metrics must go beyond static (or dynamic) code analysis and technical performance to include factors related to
information utility and acceptance of the system by the organization(s) participating in an enterprise. To be objective and
repeatable, such metrics need to be based on technical characteristics of the system. Given a meta-model representation of
such characteristics, the SMM will facilitate the exchange of such measures.

Given the evolutionary nature of system development and the predicate value of metrics with respect to “downstream”
problems, metrics are gathered into trends or viewed from historical perspective. As shown in Clause 17 “Historic and
Trend Data,” SMM addresses the issues of trend and history to model for system development as long as the historical
links of the measured entities are provided.

Consistent with other models defined by OMG, the SMM is defined using the MOF meta-modeling language. As such, it
has a standard textual representation presented by XMI. Consequently, the exchange of metrics defined by SMM isin the
XMI. These models are compatible with MOF repositories for storage and retrieval by various toals.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 1

2 Conformance

The principle goal of SMM isthe exchange of measurements about software. To be SMM compliant, atool must fully support
SMM as one compliance point. An implementation can provide:

» The capability to generate XMI documents based on the SMM XMI schema capturing measurements from the existing
model of the tool.

e The capability to import measurements via representations based on the SMM XM schema and to map the
measurements into the existing model of the tool.

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of any of these publications do not apply.

e UML 2. Infrastructure Specification
e MOF 2.0 Specification
e OCL 2.2 Specification

4 Terms and Definitions

We assume the following definitions:

Measure: A method assigning comparable numerical or symbolic values to entities in order to
characterize an attribute of the entities.

M easurement: A numerical or symbolic value assigned to an entity by a measure.
M easur and: An entity quantified by a measurement.
Unit of Measure: A quantity in terms of which the magnitudes of other quantities within the same total

order can be stated.

Dimension: A totally ordered range of values which can be stated as orders of magnitude relative
to one another or to an archetypal member.

Measurement Accuracy: The measurement by which another measurement may be wrong.
Measurement Scope: The domain (set of entities) to which a given measure may be applied.

Measurement Range: The range (set of comparable values) assignable by a given measure.

2 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

5

Symbols

There are no symbols/abbreviations.

6

6.1

Additional Information

Changes to Adopted OMG Specifications

There are no changes to other OMG specifications.

6.2

How to Read this Specification

Therest of this document contains the technical content of this specification.

Although the clauses are organized in alogical manner and can be read sequentially, this reference specification is intended to
be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate browsing and search.

6.3

Acknowledgments

The following companies submitted and/or supported parts of this specification:

EDS

Benchmark Consulting
KDM Analytics
Software Revolution
Tactical Strategy Group
NIST

eCube Systems

The following persons were members of the core team that designed and wrote this specification: Kevin Barnes, Djenana
Campara, Larry Hines, Nikolai Mansurov, Alain Picard, John Salasin, Michael Smith, and William Ulrich.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 3

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

7 SMM Introduction

7.1 Overview

M easurements provide data for disciplined engineering in that engineers and their managers rely on these comparable
eva uations in assessing the static and operational qualities of systems.

For example, software measurement methods produce comparable evaluations of software or application artifacts. Counts
such as number of screens, lines of code, and number of methods quantify the size of artifacts along a single dimension.
These evaluations readily distinguish larger artifacts from smaller ones; likewise complexity metrics such as Halstead and
Cyclomatic separate the simpler artifacts from the more complex. Comparable evaluations form mappings of artifacts of a
given type into asingle dimension.

Such is aso the case for architecture measures (coupling and cohesion); functional measures (functions defined in system,
persistent data as a percentage of all data, functionsin current system that map to functions in target architecture); quality
measures (failures per unit time, meantime to failure, meantime between repair); performance measures (average batch
window clock time, average online response time); software assurance measures, and cost measures.

Predictive metrics provide abasis for continual system-level in contrast to fixed milestone-based assessments. These metrics
may indicate at some future development stage the probability that the system will or will not meet its requirements.

This specification defines a meta-model for representing measurement related to structured model assets and their operational
environments referred to as the Structured Metrics Meta-model (SMM).

The SMM promotes acommon interchange format that will allow interoperability between existing tools, commercial services
providers, and their respective models. This common interchange format applies equally well to devel opment and maintenance
tools, services, and models. SMM complements a common repository structure and so facilitates the exchange of data
currently contained within individual tool models that represent model ed assets. Given that the repository’s meta-model
represents the physical and logical modeled assets at various levels of abstraction as entities and relations, SMM represents the
measurements of these assets.

7.1.1 Goals

The main goals for the SMM are to provide an extendable meta-model establishing a standard for the interchange of measure
libraries and structured model related measurements over the entities modeled by OM G meta-models. By structured model, we
mean measurements derived from the structure model artifacts (that is those artifacts that are modeled according to the MOF
meta-model approach). SMM contains meta-model classes and associations to model measurements, measures, and
observations. We present and explain diagrams depicting measures, then measurements and finally observations. All initial
depictions are in terms of software measurement, but the specification is not limited to representing those modeled elements.

SMM supports the meta-models of the OMG by providing for extendable measurements of entities.

7.2 General Usage Notes (Non normative)

The SMM is designed to allow for both the exchange of measurement data, as well as the measures upon which those
measurements were established.

Even though there exists a mechanism whereby someone can essentially exchange measurement data without providing any
insight into the measures (accomplished with NamedM easure), this approach is surely not the major trust of this specification.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 5

The value of SMM comes from the ability of various groups and vendors to be able to define library of measures against
different structured models. These libraries can then be exchanged, validated, and then used to produce measurements of
specific model instances.

To exchange measure libraries, the definition of those libraries has to be precise and detailed enough to enable for their
unambiguous use in carrying out measurements on models.

While SMM compliance doesn’'t mandate how to gather measurements from defined measures, it is clear that without any
common understanding measures lose most of their value. The following clause(s) should help to facilitate the understanding
of the specification and also provide some background that will help in applying the specification more uniformly.

7.3 Steps in using SMM (Non-normative)

In general, using the SMM starts with the definition of measures and their libraries. In the case of measures being applied to
standard models, these measure libraries could a so be pre-defined and made available to various practitioners.

How we proceed next very much depends on the type of environment that the tools are operating in. Tools that are simply
using the SMM as a means of interchanging measurement data will take some measurements, along with the details about the
Observation that resulted in those measurements, populate the model, and deliver the results.

Other tools that are designed more natively with the SMM in mind will take a bit of a different multi-step process.

Once we have our measuresin place, the next step isto determine what we will be measuring. Thisiswhat we call defining the
observation. Among other things thiswill include specifying the model(s) to use (ObservationScope) for taking the measures,
as well as determining which measures we are interested in performing (requestedMeasures). It can also include determining
and passing in any arguments that might be needed by our requestM easure(s) and their descendants.

Next step isto apply the requested measure(s) on the model(s) in scope and to figure out the measurements. Once that is done,
the resulting model is ready to be used or exchanged.

The step of applying the measure, the “ measurement step” is clearly one that can take on many forms depending on the
implementer. But regardless of how the processis carried out, the measure library should provide sufficient information for a
tool vendor to implement “ executable measuring.” This “executable measuring” should enable another tool vendor, presented
with the same measure libraries, observation information and instance models, to be able to apply those measuresin an
unambiguous fashion and to come up with the same measurements (subject to uncertainty errors).

7.4 Interpreting Measures (Informative)

Measures essentially fall into 2 “ categories,” there are direct measures, which are measures that are taken directly against a
measurand, and all others, which we shall call derived measures, as their result is based on some other measure(s), direct or
derived. Ultimately, every measure comes from a direct measure (otherwise it might end up triggering a defaultQuery for its
value).

In order to support many types of measure refinement, where you have a drill-down of measures representing the collective
aggregation of values in atop-down fashion, and also in order to make sure that derived measures are correctly linked to their
base measure(s), the establishment of a measurement graph shall be considered to essentially be a top-down operation.

In contrast, the taking of measurements to realize such a measurement graph, is normally a bottom-up operation, where the
direct measures are first calculated, in order for the various next levels of derived measures to have all of the base measures
calculated prior to being cal culated themselves.

6 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

class Fundamental Approach/

AbstractMeasureElement
SmmElement Measure

- description: string
- name: string
- shortDescription: string

measureLabelFormat: string [0..1]
measurementLabelFormat: string [0..1]
scale: MeasurementScale

visible: boolean [0..1]

+ o+ o+ o+

+ getinbound() : SmmRelationship[0..*]
+ getOutbound() : SmmRelationship[0..*]

+

getAllArguments() : Argument[0..]

0.* + getArguments() : Argument[0..¥] A
+requestedMeasures
+measure 1
0..* 0.*
Observation SmmRelationship
+ observer: sting [0..1] +observedMeasures | ObservedMeasure
+ tool: string [0..1] 0.*
+ whenObserved: Date [0..1]

+measurements [g

+scopes |0..*

Measurement
MofElement
Observ ationScope - breakvalue: string [0..1] +measurand
. N + eror: string [0..1]
- scopeUri: string 0.* 1
+ getMeasureLabel() : string
+ getMeasurementLabel() : string|

Figure 7.1 - Fundamental Approach

SMM avoids duplicating features of the measured artifact as features of the measurement. Consider as an example alog of bug
reports. Possible measures are total bug count in the log, total time logged in the log, and bugs per time-period. The units of
measures are a bug, a unit of time, and bugs per timeinterval, respectively. SMM does not provide representations for bug,

start time and end time. Their representations must be provided elsewhere®.

A measurement result is precisely identified only if its measure isidentified. To understand the meaning of 1000 lines we need
to know that it isthe result of measuring a program’s length in lines. The measured entity must be identified. That is, 1000
linesisfor aparticular program. Contextual information may also be needed. For example, function point counts of a program
may vary depending upon the expert applying the measure.

?7?7?7? presents the fundamental approach of this specification. Measurement has a val ue conveying the measurement results.
The measurement may be of any MOF element as related by the measurand association. In this way, measurement is
applicable to elements of any OMG meta-modelsincluding the Knowledge Discovery Meta-model and the Abstract Syntax
Tree Meta-model. The measured entity may represent any software artifact or an aspect of an artifact.

The SMM associates an eval uation process, a measure, to each of the measurements. Measures signify functions from the
domain of the modeled artifacts and aspects thereof to sets of ordered values.

Contextual information is related by Observation, such as who, where, and when. Observation may serve to distinguish
distinct utilizations of a given measure on a given measurand.

1. For example, the General Ledger Specification v1.0 provides representations for start_date and end_date.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 7

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

8

8.1

General

class Core Classes ;

Core Classes

MeasureLibrary

+measureElements

AbstractMeasureElement <‘ﬁ

'

+libraries | 0..

*

SmmModel

!

+categoryRelationships

SmmElement

- description: string
- name: string
- shortDescription: string

Observ ationScope

scopeUri: string

0.*
+requestedMeasures
N
+scopes\ 0"
0.*

*

Observation

+to| 1

Characteristic

+trait 1

SmmRelationship
CategoryRelations hip

Measurement

breakValue: string [0..1]
error: string [0..1]

getMeasurelLabel() : string
getMeasurementLabel() : string

+observations

+ observer: string [0..1]
0..*| + tool: string [0..1]

+ whenObserved: Date [0..1]

+observedMeasures

+measurements | 0..*

Scope

+ class dring

Meas ureCategory

+parent 0..

0.%

SmmRelationshi
ObservedMeasure

p

0.*

«
+/from \0"

+catego

]

+categoryElement 0..*

+categoryMeasure

+scope 1
+category 0.*

y

Meas

ure

+ measurementlLabel

+ measureLabel Format: string [0..1]

+ visible: boolean [0..1]

|Format: sring [0..1]

+ getAllArguments)

+ getArguments() : Argument[]

: Argument[]

1
{qnion}
+/to

+measure 1

+/inbound
0.4
{union}

1]
{un‘mn) 0

+/from

+measureRelationships

+/outbound
0.4
{union}

0.%

MeasureRelations hip

SmmRelationship

Figure 8.1 - Core Classes Diagram

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

class Core Relationship Classes/

RefinementMeasureRelationship

Noo \o

+refinementTo +refinementFrom

RecursiveMeasureRelationship

MeasureRelationship
CategoryRelationship +/inbound

{union} +recursiveTo” 0..1 0.1
+recursiveFrom

N
1 H +from
{union} (umon{ +from
+lto 1 +to, 1 1
}/‘ \ +0
AbstractMeasureElement 3
Measure
+measureRelationshipsBf + measureLabelFormat: string [0..1] EquivalentMeasureRelationship
+outb Ad + measurementLabelFormat: string [0..1] |+from +equivalentTo
1 +from 0.+ Touooun + scale: MeasurementScale A 0
SmmElement funiony {union} SmmRelationship + visible: boolean [0..1] +equivalentFrom
1 +lto b N
— description: string —(union)—g('fj"'o"d P om0 - SmmElement + getAllArguments() : Argument[0..*] L +to 0.
- name: string inboun + getTo(): SmmElement + getArguments() : Argument[0..*] A
- shortDescription: string
+measure
+ getinbound() : SmmRelationship[0..*]
+ getOutbound() : SmmRelationship[0..*]
[ﬁ MeasurementRelationship <
<l— RecursiveMeasurementRelationship
0.% 0.* 04;*
{unlion) {union} +measurementRelationships
+/inbound *+/outbound
0..1°
srecursiveTo ' +recursiveFrom
+to +/from
1 1]
{union} {union} +from
0-* Measurement 1
Observation +to,
ObservedMeasure ts| - breakvalue: string [0..1]
+ observer: string [0..1] +obser + eror: string [0..1] 1
+ tool: string [0..1] " 0.* +10
+ whenObserved: Date [0..1] 0.. + getMeasureLabel() : string me\ﬂeﬁnementme
+ getMeasurementLabel() : string 0..*
+to
+rom 1 1 o RefinementMeasurementRelationship
+refinementTo
0.*
+equivalentFrom
Equiv alentMeasurementRelationship
0.%

+equivalentTo
0.*

Figure 8.2 - Core Relationship Classes

8.2 SmmeElement Class (Abstract)

An SmmElement constitutes an atomic constituent of amodel. In the meta-model, SmmElement is the top classin the
hierarchy. SmmElement is an abstract class.

10 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Attributes

name: String Specifies the name of the SMM element (optional)
shortDescription: String A short description for the element (optional).
description: String A detailed description for the element (optional).

Associations

inbound: SmmRelationship[0..*] The set of relationship such that the current SmmElement is the to-endpoint
of these relations. This property is a derived union.

outbound: SmmRel ationship[0..*] The set of relationship such that the current SmmElement is the from-
endpoint of these relations. This property is a derived union.

Operations
getl nbound: SmmRelationship[0..*] This operation returns the set of relations represented by the derived union
inbound relation.
getOutbound: SmmRelationship[0..*] This operation returns the set of relations represented by the derived union
outbound relation.

8.3 SmmModel Class

This class represents the entry point into the SMM model and provides the top-level container for al the elements of the SMM.

SuperClass

SmmElement

Associations

libraries:Measurel ibrary [0..*] The set of all MeasureLibrary owned by the model.
observations.Observation[0..*] The set of all Observation owned by the model.

8.4 SmmRelationship Class (abstract)

Thisclassisamodel element that represents semantic association between SMM elements.
SuperClass

SmmElement

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 11

Associations

from:SmmElement[1] The origin element (also referred to as the from-endpoint of the relationship).
This property is aderived union.

to:SmmElement[1] Thetarget element (also referred to as the to-endpoint of the relationship). This
property is aderived union.

Operations
getFrom:SmmElement [1] This operation returns the SmmElement that is the to-endpoint (the target) of the
current relationship.
getTo:SmmElement[1] This operation returns the SmmElement that is the from-endpoint (the origin) of
the current relationship.

8.5 MeasureLibrary Class

This class represents libraries of measures. A library represents the top container for all measure artifacts. The library of
measures defines a reference set of measures that can be applied over and over in away that is independent and decoupled
from the models under observation. Therefore it shall be possible to pre-define library of metrics and to passthose librariesto
abuilder so that the metrics can be applied to specified models, without affecting the measures in the library.

SuperClass

SmmElement

Associations

measureElements: AbstractM easureElement [0..*] The set of all AbstractM easureElement owned by the measure
library.

categoryRel ationships. CategoryRel ationship [0..*] The set of all CategoryRelationship owned by the measure library.

Semantics

Measure elements can be related across libraries and need not be restricted to their own library.

8.6 MeasureCategory Class

This class represents categories of measures. A category has measures and other categories as its elements.

A category represents the measures directly associated with an ‘element’ and the measures of each sub-category likewise
associated with an ‘element.”’

A measure may appear in multiple categories. A category can be a subcategory of other categories indicating only that its
measures al so are measures of these other categories.

This class may be used to represent afamily of similar measures that apply to different scopes such as lines of codein afile,
lines of code in amethod, and lines of codein program. It may also represent a category of measures that are associated with a
given field or engineering task. For instance we speak often of Quality Assurance Metrics and Software Maintainability
Metrics. The category of a metric may indicate the kind of purpose for which the metric is used.

12 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

e Environmental Metrics (e.g., number of screens, programs, lines of code, etc.)

« DataDefinition Metrics (e.g., number of data groups, overlapping data groups, unused data elements, etc.)
e Program Process Metrics (e.g., Halstead, McCabe, etc.)

< Architecture Metrics (e.g., average call nesting level, deepest call nesting level, etc.)

* Functional Metrics (e.g., functions defined in system, business data as a percentage of all data, functionsin current
system that map to functions in target architecture, etc.)

e Quality Metrics (e.g., failures per day, meantime to failure, meantime to repair, etc.)
« Performance Metrics (e.g., average batch window clock time, average online response time, etc.)
» Software Assurance Metrics

Metric categorization has other uses as well. For example, measures may be categorized by tool support.

SuperClass

AbstractM easureElement

Associations

category:MeasureCategory[0..*] Represents the parent endpoint of the category hierarchy relationship.

categoryElement:MeasureCategory|[0..*] Represents the children endpoint of the category hierarchy
relationship.

categoryMeasure:Measure[0..*] Represents that measure isin this category.

8.7 CategoryRelationship

Thisclassisamodel element that represents semantic or named association between Measure categories and other Measure
elements. For example, amodeler may choose to create a “ gold standard” measure for a selected category. To do so, the
modeler can use a category relationship named “gold standard” to associate the measure to the category. See Figure 18.1.

SuperClass

SmmRelationship

Associations

from:MeasureCategory[1] Indicates the measure category that has relation.

to:AbstractM easureElement[1] Indicates the Category or Measure element related to the category. A constraint is
used to limit the type of SmmElement that can be used.

Semantics

CategoryRelationship represents a named association between a measure category and a measure element
(AbstractM easureElement) such as a measure.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 13

Constraints
context CategoryRelationship inv:
to.oclIsTypeOf (MeasureCategory) or

measures.oclIsTypeOf (Measure)

8.8 Date

This represents dates. In alanguage binding it should be mapped to a type that allows ordered comparison. For XMl it is
mapped to the XML Schema date type.

8.9 Timestamp

This represents apoint in time: for example, acombination of a date and atime within the day. For XM it is mapped to the
XML dateTimetype.

14 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

9 Extensions

9.1 General

The SMM model provides for aset of simple extension mechanisms that provide a uniform meta-model pattern for extending
the SMM model.

‘class Extensions /

SmmElement ;
) +annotations
Attribute *rattributes P - —————— Annotation
description: string 0.
+ tag: string 0..* - name: string |+ text: string
+ value: string - shortDescription: string

Figure 9.1 - SMM Extensions

This diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to instances of SMM
elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs of <tag, value> to an individual
element instance. An ad hoc user-defined attribute is owned by an individual element instance. This means that different
instances of the same meta-model element may own completely different user-defined attributes (and some may have none at
all).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the
elements of SMM instances. They may be used by implementer to add specific information to an individual element. They
may also be used by an analyst, annotating a given SMM instance.

9.2 Attribute Class

An attribute allows information to be attached to any model element in the form of a“tagged value” pair (i.e., name=value).
Attribute add information to the instances of model elements.

SuperClass
SmmElement
Attributes
tag: String Contains the name of the attribute. This name determines the semantics that are applicable
to the contents of the value attribute.
value: String Contains the current value of the attribute.

Constraints

Attribute cannot have further annotations or attributes.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 15

Semantics

The interpretation of attribute semantics is outside the scope of SMM. It must be determined by the user or the implementer
conventions. It is expected that some tools will provide capability to add arbitrary attributes to the instances of the model to
supply information needed for their operations beyond the basic semantics of SMM. Such information could support analysis
of SMM models by analysis, etc.

An attribute element is not related to a particular meta-model element. It does not define a“virtual” attribute to an extended
meta-model element that is instantiated with every instantiation of the new element. Instead, an attribute el ement can be added
to any SMM element. It defines a property of a particular instance, not a property of a class of instances.

9.3 Annotation Class
Annotations allow textual descriptions to be attached to any instance of a model element.

SuperClass

SmmElement

Attributes

text: String Contains the text of the annotation to the target model element.

Constraints

Annotations cannot have further annotations or attributes.

Semantics

Annotation allows associating a human-readabl e text with an instance of any Element.

16 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

10 Measures

10.1 General

Measures are eval uation processes that assign comparable numeric or symbolic values to entities in order to characterize
selected qualities or traits of the entities. Counting the lines of program code in a software application is one such evaluation.

There may be many measures that characterize atrait with differing dimensions, resolutions, accuracy, and so forth. Moreover,
trait or characteristic may be generalized or specialized. For example, line length is a specialization of length that isa

specialization of size.

Each measure has a scope, the set of entitiesto which it is applicable; arange, the set of possible measurement results; and the
measurable property or trait that the measure characterizes. For example, the aforementioned line counting has software
applications as one of its scope with line length as one of its measurable trait. Explicitly representing the scope and the

measurable trait allows for the consideration of different measures, which characterize the same attribute for the same set of
entities. Each measurable trait may have multiple, identifiably distinct measures.

class Measurable Attribute ~

Characteristic

AbstractMeasureElement

SmmEleme nt

+breakCondition

+

OCLOperation

body: String
context: String

Operation

+defaultQuery

body: String
language: String

RecursiveMeasureRelationship

+refinementFrom

+refinementTo
0.%
|

RefinementMeasureRelations hip

+parent
0.1 +trait |\ 1
0.+
Measure O;scope Scope
+ measureLabelFormat: String [0..1] —/1’ + class: String
+ measurementLabelFormat: String [0..1]
+ visible: Boolean [0..1]
+ getAllArguments() : Argument[0..*]
+ getArguments() : Argument[0..*]
+to A
1
1 +to
A / 1 !1 1
+from
+from +to +from +equivalentFrom
+recursiveFrom +recursveTo
/
0.1 0..1 Equiv alentMeasureRelationship

+mapping

/

+gquivalentTo
N\

0..*

+measureRelationships

0.

SmmRelationship

MeasureRelationship

]

+

getParamStrings() : string[0..*]

b

0.1 +operation

+measurandQuery

DimensionalMeasure
DirectMeasure

Figure 10.1 - Measurable Characteristic and Scope

The evaluation process may assign numeric values that can be ordered by magnitude relative to one another. These measures
are modeled by the DimensionalM easure class.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

17

The evaluation process may alternatively assign numeric values that are percentages or, more generically, ratios of two base
measurements. These measures are model ed by the Ratio class. The percentage of comment lines in an application exemplifies
this type of measure.

The evaluation process may also assign symbolic values demonstrating aranking that preserve the ordering of underlying base
measures. These measures are modeled by the Ranking class. Cyclomatic reliable/unreliable criterion illustrates one such
ranking. Reliable is comparably better than unreliable. Comparability is essential here because ranking is not intended to
model every possible assignment of measurands.

The documentations of measures, accomplished with measure libraries, should stand by themselves so that an interchange of
measurements may simply reference such documentation and not duplicate it. The documentation of measures should also be
precise and complete enough to provide for an unambiguous specification that can be executed on areferenced model, with the
exception of the NamedM easure when used for simple result interchange. The actual ability to execute amodel is not part of

the compliance to this specification and neither is the method to provide execution defined within this specification. These are
|eft to the implementers.

AbstractMeasureElement
EquivalentMeasureRelationship +tmapping Operation
0.1 (4 body: string

+ language: string

0.1+

2 getParam Strings() : string[0..*]
+defaultQuery

o~ [o
+equivalentFrom +equivalentTo

0..1
+measurandQuery

+to |1 +from |1
AbstractMeasureElement
Measure +/from +/00u.tvb*0und
—1 A SmmRelationshi
measureLabelFormat: string [0..1] {union} {union} P
measurementLabelFormat: string [0..1] +measureRelationships MeasureRelationship
visible: boolean [0..1] ‘ 0..*
getAllArguments() : Argum ent[0..*] 1}[0 +/inbound
+ getArguments() : Argument[0..*] A {union} 0..* A
{union}

Ranking DimensionalMeasure

+ unit: string

+from 1 1
+to

+rankingFrom
0..*

+interval |1..*

SmmElement

Rankinglinterv al RankingMeasureRelationship

maximumEndpoint: double
maximumOpen: boolean [0..1]
minimumEndpoint: double
minimumOpen: boolean [0..1]
symbol: string

+rankingTo

0..1

+ o+ o+ o+ +

Figure 10.2 - Measure Class Dlagram

18 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

The AbstractMeasureElement is the abstract parent class for all measure entities.

SuperClass
SmmElement
Associations

None

10.2 Characteristic Class

This class represents a property or trait of the membersin its scope, a set of MOF Elements, which may be characterized by
applying a measure to those members. By specifying a characteristic amodeler isindicating what aspect, trait, or property the
measure purports to measure.

Note that Characteristic provides for a representation of a hierarchy of measures based upon the abstraction of measured trait.
For example, alength characteristic may be the parent of the fileL ength and programL ength characteristics. programL ength
could be the parent of programLinesOfCodeL ength.

SuperClass

AbstractM easureElement

Attributes

‘ name: String ‘ Specifies the name of the SMM element. (inherited) ‘

Associations

‘ parent:Characteristic[0..1] ‘ Specifies the generalization of this characterization. ‘

10.3 Scope Class

This class represents sets of MOF::Elements as domains for measures. The domain is a subset instances of a class specified by
the class attribute. If the subset does not include all instances of the given class, then arestriction is specified by specifying a
recognizer for the subset elements.

The scope of a measure identifies a set of objects as the domain of the measure. The objects all exhibit to varying degrees the
trait or property characterized by a measurement. SMM requires that the objects be instances of asingle class. The set of
objects may be further restricted by a recognizer operation. The recognizer is optional.

The recognizer, if given, is aboolean operation applicable to instances of the named class. The measure’s scopeisrestricted to
those instances for which the recognizer returns true.

SuperClass

AbstractM easureElement

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 19

http://kdm.somecompany.com/spec/KDM/1.4

Attributes

class: String[1] ‘ Specifies the class for elements of the set. See semantics for format rules (required). ‘

Associations

recognizer:Operation[0..1] If given, provides a boolean operation applicable to instances of the class that
returns true if, and only if, the instance is an element of the set.

breakCondition: Operation[0:1] If given, provides for an operation that returns a string describing a break
condition to allow for dynamically grouping instances of the classin scope by a
certain value. For example, this can be used to group elements by language name
in KDM Sourceltem or by folder namein Inventory Items, without having to know
all of the possible conditions in advance.

Semantics

The class attribute may name a class within any MOF model. The entities associated as elements of a Scope are restricted to
members of the specified class.

The class attribute should be able to provide an unambiguous way to specify a class name. In order to achieve this goal, the
string should be formatted according to the following pattern, with all 3 elements being required:

Namespace: Package::ClassName

This usage of package pathnamesis transitive and can also be used for packages within packages:
Packagenamel::Packagename?::ClassName

Where:

« Namespace represents the model where the class is defined. Namespace can be either one of the pre-defined values
(“kdm,” “astm,” or “smm” at the moment) or be a namespace defined in the XMI where this measure is located. For
example a namespace value of “mykdm” would be valid if the SMM model contains the following XMI namespace
definition in its header: “xmins:mykdm=http://kdm.somecompany.com/spec/KDM/1.4". XMI based namespace
definition can also be used with the standard namespace to point the class name definition to a specific version of those
model specification. Without such a namespace entry, the pre-defined values would point to a“ current” unspecified
version.

» Package represents the package name within the model
« ClassName represents the base class name within the specified package.

The breakCondition attribute is defined as an OCL operation that eval uates to a string representing the group or break value of
the classinstance.

e Examples:
1. thislanguage

1. Thiswould represent a break on the attribute language, as seen in the KDM inventory model SourceFile
class. Applicable aslong as the measurand class is the same as the scope class, SourceFilein this example.

20 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

10.4 Measure Class (abstract)

The Measure class (see Figure 7.1) models the specification of measures either by name, by representing derivations of base
measures, or by representing method operations directly applied to the measured object. The essential requirement for the
measure classis that it meaningfully identifies the measure applied to produce a given measurement. For example, McCabe's
cyclomatic complexity could be specified by its name, McCabe's cyclomatic complexity, by adirect measurement operation
or by rescaling counts of either independent paths or choice points. A measure may aternatively beidentified by citing a
library of measure which includes the measure by name.

The scope of a measure identifies a set of objects as the domain of the measure. The objects all exhibit to varying degrees the
trait or property characterized by a measurement. SMM requires that the objects be instances of asingle class. The set of
objects may be further restricted by a recognizer function. The recognizer is optional.

Scope need not be specified if the library and name are given. In that case, the scope can be found in the library.

A measure may be arefinement of another measure. The scope of the first measure is a subset of the second measure’s scope.
The characteristic of both measures must be identical.

SuperClass

AbstractM easureElement

Attributes

name: String[1] Specifies the unique name of the measure. (inherited)

measurelabel Format: String[0: 1] Specifies alabel format string to use when rendering this measure. See
semantics for detailed content format.

measurementL abel Format: String[0:1] Specifiesalabel format string to use when rendering measurements of this
measure. See semantics for detailed content format.

visible:boolean[1:1] Specifiesif rendering tools should display this measure or not. Some
measures whose role is only to help produce other measures will often be
marked as non-visible. Defaults to true.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 21

Associations

scope: Scope] 1]

Specifies a set of elements measurable by this measure.

defaultQuery:Operation[0..1]

Specifies aquery that is used to determine a default value for
the measure in case we are dealing with a non-direct measure
(i.e., ameasure that depends on another for its value) whereits
base measure returns no children. Thisis anormal situation
that can happen when certain optional “children” don’t exist.

equivalentFrom:Equival entM easureRel ationshi p[0..*]

Specifiestherelationship instance that defines the equivalency
of this measure.

equivalentTo: EquivalentM easureRelationship[0..*]

Specifiestherelationship instance that definesthe equivalency
of this measure.

refinementFrom: RefinementM easureRel ationship[0..*]

Specifies the relationship instance that defines the refinement
of this measure.

refinementTo: RefinementM easureRel ationship[0..*]

Specifies the relationship instance that defines the refinement
of this measure.

recursiveFrom:RecursiveM easureRel ationship[0..*]

Specifies the relationship instance that defines the recursivity
of this measure.

recursiveTo: RecursiveM easureRel ationship[0..*]

Specifies the relationship instance that defines the recursivity
of this measure.

category:MeasureCategory[0..*]

Specifies categories to which this measure belongs.

trait:Characteristic[1]

Specifies the trait characterized by this measure.

inbound: M easureRel ationship[0..*]

The set of relationship such that the current Measure is the to-
endpoint of these relations. This property is a derived union.

outbound:M easureRel ationship[0..*]

The set of relationship such that the current Measure is the to-
endpoint of these relations. This property is a derived union.

measureRel ationships:M easureRel ationship[0..*]

The set of all MeasureRelationship owned by the measure.

Operations

getArguments: Argument[0..*]

This operation returns the set of arguments that the different operations of the
measure have defined and got returned by getParamStrings().

getAllArguments:Argument[0..*]

This operation returns the set of arguments for this measure and any child
measure required for the execution of the measure. It should call
getArguments() on itself and every one of its child measures.

Semantics

The labelFormat is based on the concept of format string used in many languages to assemble string content for rendering.
Although beyond the scope of this specification to cover implementation details, this format also supports the use of external

resource to provide i18N internationalization.

22 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Just like format strings, the label Format is defined as atext portion with possible replacement expressed as argument index
surrounded by French braces“{}”, where the zero-based index is matched with its corresponding replacement argument,
which follow the text portion.

Label format specification:
“Template Text”, Context Object: OperationName, ContextObject.attribute,...

Examples of the label String Template could be;

“Thisisalabel” A fixed string, in which case no arguments are necessary.

“This{1} of {0} A label with replaceable arguments that will come from evaluating the
corresponding argument from the list supplied (in numerical order, starting at 0).

$Resource:resource_text_constant Here resource_text_constant would be replaced with a constant that will be
matched in some resource | ocation and for the proper locale (not defined here). The
content returned by this resource resolution can be any valid label string template.

The arguments of the label format are defined in a comma separated list. Each of those arguments must follow a specific
pattern. There is a standard syntax and also a shorthand version for some common cases.

The standard syntax, which is always valid, starts by specifying a context object, followed by aliteral colon “:”, then an
operation whose name must be the name of avalid instance in the Operation class,

« ContextObject: It isthefirst part and it represents the Object that we are interested in collecting information from. This
object isrelated or associated with the measurement such as the Scope or the measure or the measurand ... etc. It is
important to understand here that the label Format is defined as part of the measure, but it is accessed normally from
within the context of a measurement.

e OperationName: Defines the name of avalid instance of the Operation class that is designed to return a string.

The shorthand syntax is valid to get the value of attributes from the current instance of measurement, measure, and scope
based on the current context of the initial measurement. This syntax calls for the use of a dotted notation being
ContextObject.attributeName. For example you could get “Measure.name” or “ Scope.class’ directly.

The defaultQuery is designed to provide away to specify a default value in the specific case where a non-direct measure (i.e.,
ameasure that depends on another for its value) happens not to have any available value from what should have been its “ base
measure.” In those case, the query should be executed to provide for the value instead of returning null or failing the
measurement, as thisis anormal situation that can happen when certain optional “children” don’t exist.

10.5 Operation Class
Operation is a subclass of AbstractM easureElement that defines an operation to execute.

SuperClass

AbstractM easureElement

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 23

Attributes

language: String Specifies the language of the operation. Valid values are currently “OCL” and
" XQuery."
body:String Specifies the measurement operation expressed in the selected language.
Operations
getParamStrings: String[0..*] This operation returns the set of String that defines the parameter in use by an
operation.
Semantics

The operation body supports the use of replaceable parameters in order to support parameterized measures. Thisis
accomplished by defining placeholders for incoming arguments that will be replaced at runtime with a specific value, like
when dealing with date ranges for example.

The implementer is responsible, when using the measure library in an executable fashion, to determine base on the requested
measures of his observation, what are all of the arguments that should be passed in with the observation in order to properly
perform the measurements. The getArguments and getAll Arguments operation of the Measure class are designed to help in
thisregard.

When parameters are used they must adhere to the following specification: '{' [typeName] parameterName[' ="' defaultValue
"'} where:

« typeName represents the type of the parameter. The typeName must be one of the types supported by the “type”
attribute of the Argument class.

e parameterName represents the name of the parameter (required).

« defaultValue represents a default value to offer (on getArguments()) or to use if not supplied as Argument to an
observation. defaultValueis optional.

10.6 OCLOperationClass
OCL Operation is a subclass of AbstractM easureElement that defines OCL helper methods.

SuperClass

AbstractM easureElement

Attributes
context: String Specifies the classifier for which this helper is being defined. OCL inheritance rules applies to
resolve applicability of operation, based on the passed in context.
body:String Specifies the body of the OCL helper method.
Semantics

The OCL Operation class allows for the definition and registration of OCL hel per methods in the context of specific classifiers.
These operations allow for the definition and reuse of often lengthy and complex OCL methods. It is the implementer’s

24 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

responsihility to determine how to best provide for the parsing or execution environment of those methods. Any hel per method
that is defined with an OCL Operation then becomes available for OCL based operations applied to the proper classifier.

10.7 MeasureRelationship Class (abstract)
MeasureRel ationship is an abstract class representing any relationship between two measures. See Figure 10-2.

SuperClass

SmmRelationship

Attributes

name: String Specifies the name of this measure relationship. (inherited)

Associations

from:Measure [1] The origin element (also referred to as the from-endpoint of the relationship).
This property is a derived union.
to:Measure [1] The target element (also referred to as the to-endpoint of the relationship). This

property is aderived union.

measurandQuery:Operation[0..1] Specifies a query that is used to determine the measurands that satisfy the
relation between two measures. It is most often used to specify the measurands
that match a specific non-containment refinement relation between measures.

Semantics

By default, relationships between measures have their meaning implied by their concrete subtype. The measurandQuery
defines an optional way to describe this relationship by allowing the specification of a query operation that will return the
specific measure instance that satisfies the query condition. It is mostly designed to be used with

RefinementM easureRel ationship in order to provide a navigation that is different than the default containment mode.

10.8 EquivalentMeasureRelationship Class

EquivalentM easureRel ationship is a class representing any relationship of equivalency between two measures. See Figure
10.2.

SuperClass

M easureRel ationship

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 25

Associations

from:Measure[1] Specifies the equivalent measure at the from endpoint of the relationship.

to:Measure[1] Specifies the equivalent measure at the to-endpoint of the relationship.

mapping:Operation[0..1] Specifies the mapping operation query that retrieves the “to” measure between a pair
of equivalent measures, when each measure is represented by a different scope.

Semantics

Defining a measure as being equivalent to another measure states that two measures are semantically indistinguishable. Any
measurement result by one on a given entity under a given observation should equal a measurement by the other on the same
or different entity aslong as they are part of the same observation.

The semantics of this association is symmetric, but only one direction needs to be defined in away that isresolvable, i.e., ina
way that provides apath al of the way to base measures assigned against outside measurand. If ameasure can’t resolve to base
measurements but is defined as equivalent to another measure, then it can use this equivalency to derive its own measurement
result.

This means that when establishing the dependency graph for calculation, a measure can find its base measure not only through
direct lineage, but also through measure equivalency. For example, calculating LOC at various levelsin code can be defined
against ASTM. Then we define that the ASTM CompilationUnit level LOC measure is equivalent to the KDM SourceFile

L OC measure. Thisthen allows for the SourceFile LOC measure to find its result through its equivalency relationship.

10.9 RefinementMeasureRelationship Class
Refinement M easureRel ationship is a class representing any relationship of refinement between two measures.

SuperClass

M easureRel ationship

Associations

from:Measure[1] Specifies the measure at the from endpoint of the relationship.
to:Measure[1] Specifies the measure at the to-endpoint of the relationship.
Semantics

Throughout the remainder of this document we will say that a measure is a refinement of another measure if and only if the
first is associated to the second as a refinement directly or transitively.

When this association is defined without a measurandQuery (from MeasureRel ationship superclass), then it implies that the
from and to measure of the refinement are related through a containment relation where the from measure is the container and
the to measure represents the content of the container.

When the refinement relation between the two measure classesis not adirect containment, then a measurandQuery should be
used to provide the appropriate query to retrieve the related children in the scope of the ‘to’ measure.

26 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

10.10 RecursiveMeasureRelationship Class
RecursiveM easureRelationship is a class representing any relationship of recursivity on a measure upon itself.

SuperClass

M easureRel ationship

Associations

from:Measure[1] Specifies the measure at the from endpoint of the relationship.
to:Measure[1] Specifies the measure at the to-endpoint of the relationship.
Semantics

Defining a measure as being recursive to itself states that measure can recursively refine itself and that we intend to apply this
recursive refinement to our measure.

Constraint
context RecursiveMeasureRelationship inv:
from = to.

10.11 DimensionalMeasure Class

This class models the specification of measures which assign numeric values that can be placed in order by magnitude.
Dimensional measures have units of measures and their values span a dimension. See Figure 10.1.

The unit of measureis an archetypal or prototype element of the dimension. Every element of the dimension can be stated by a
numerical multiple of the ‘unit of measure’ element.

The unit of measure does not distinguish between measures which share the same range. That distinction would be entirely
within the purview of the measure identification. For examples, a height measure and awidth measure may share the same unit
of measure. That isto say, ameasurement is not just a number and a unit of measure. The measured artifact must be indicated,
the measure identified and contextual information retained as the observation.

SuperClass

Measure

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 27

Attributes

unit: String | dentifies the unit of measure.

Associations

rankingFrom:RankingM easureRel ationship[0..*] Specifies the relationship instance that defines the rankings for
this measure.
baseM easureFrom:BaseM easureRel ationship[0..*] Specifiesthe relationship instance that defines the accumul ation

for this measure.

baseM easure1From:BaselMeasureRel ationship[0..*] Specifiesthe relationship instance that defines the 1% part of the
binary comparator for this measure.

baseM easure2From: Base2M easureRel ationship[0..*] Specifies the relationship instance that defines the 2" part of
the binary comparator for this measure.

rescal eTo:RescaledM easureRel ationship[0..*] Specifies the relationship instance that defines the measure
rescaling this measure.

10.12 Ranking Class

This class represents simple range-based grading or classifications based upon already defined dimensional measures. See
Figure 10.2.

Examples are;
e Small, medium, large
e Cold, warm, hot
« AB,C,DorF
* Reliable/ Unreliable

Collectively the ranking intervals may completely cover the base dimension or may leave gaps. A base measurement in such
agap is considered unranked and is not representabl e as a measurement of the ranking measure.

The intervals may overlap. A ranking resulting in a particular symbol means and only means that the base measure resulted in
avalue occurring aranking's interval which mapped to that symbol. This does not exclude the possibility that the value might
occur in another interval.

Ranking consists of mapping intervals to symbols where the intervals are parts of the underlying measure’s dimension. For
example, 100 to 90 points mapsto “A,” 80 up to 90 mapsto “B,” 70 up to 80 mapsto “C,” 60 up to 70 mapsto “D,” and below
60 mapsto“F.” The underlying dimension consists of grade points. The result isthe usual A,B,C,D, and F style grade.

Ranking measure may represent a purely qualitative eval uation with no quantitative base measure. For example we could
measure the non-standardness of the source language and evaluate it without quantification. Itisidentified as“2GL,"
“Unacceptable 3GL or 4GL,” “Acceptable 3GL or 4GL,” or “Ideal Strategic Language.” Thefirst two are judged
equivalently non-standard. The third is more nearly standard and the last is standard.

SuperClass
Measure

28 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Associations

rankingTo:RankingM easureRel ationship[0..1]

Specifies the relationship instance that defines the measure ranked by
this ranking.

interval:RankingInterval[1..*]

Identifies interval s within the dimension of the base measure and the
symbol to which each interval is mapped.

10.13 RankingMeasureRelationship

RankingM easureRel ationship is a class representing any rel ationship of ranking between aranking measure and a dimensional

measure.

SuperClass

M easureRel ationship

Associations

from:Ranking [1] Specifies the ranking measure at the from endpoint of the relationship.

to:Dimensional M easure[1] Specifies the dimensional measure at the to-endpoint of the relationship.

10.14 Rankinglinterval Class

This class represents the mapping of an interval to asymbol that serves as arank. See Figure 10.2.

SuperClass

SmmElement

Attributes
maximumOpen:Boolean Trueif and only if interval include maximum endpoint. Default = false.
minimumOpen:Boolean Trueif and only if interval include minimum endpoint. Default = false.
maximum:Number Identifies interval’s maximum endpoint.
minimum: Number Identifies interval’s minimum endpoint.
symbol:String Base measurements within this interval are mapped by symbol.

Constraints
context RankingInterval inv:

maximum = minimum and (maximumOpen or minimumOpen — maximum > minimum)

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

29

30

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

11 Collective Measures

11.1 General

This diagram represents measures that assess container entities by accumulating assessments of contained entities which are
found by the base measure. See demonstration given in Figure 11.2.

Most engineering measures are collective. We count up lines of code for each program block and sum these values to measure
routines, programs and eventually applications. A similar processisfollowed to count operators, operands, operator and
operand occurrences, independent paths, and branching points.

Other frequently used container measures are based upon finding the maximum measurement of the container’s elements.
Nesting depth in a program and class inheritance depth exemplify these collective measures.

The collective measure specifies the following measurement process:
1. Apply the base measure to each contained element to obtain a set of base measurements.
2. Apply the n-ary accumulator to the set of base measurements to obtain the measurement of the container.

Figure 11.2 demonstrates this process, with ssmplified associations.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 31

class Collective Measures

SmmAelationship
MeasweRelationship
Base1MeasureRelationship BaseMeasureRelationship
0.*
+baseMeasure 1From +baseMeasureFrom
BE 0 [1
+baseMeasurei1To +haseMeasureTo
+o™1, +10
Base2MeasureRelationship| o Measure| 4 +rom| 1
. DimensionalMeasure
Ry T T L5 CollectiveMeasure
+baseMeasure2From 14 unit ot =
' i + accumulator Accumulator
+baseMeasy i
«enumerations
+from | 1 +from Accumulator
BinaryMeasure sum

maxamum

+ functor sring minimum Cuery
average 0.1 0.1
sandardDeviation

AbstractideasursElemant|
DirectMeasure R Dperation

+ body: Sting
0.1} + language: Sting

+ _getParamStings() : stringfD "

RatioMeasure

+ functor sring = divide
Counting

Figure 11.1 - Collective Measures

32 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object ContainRelation /

Entityl :Class?2

+measurand
CollectiveMeasurel : ¥ 2
CollectiveMeasurement |+measure w
CollectiveMeasurement
accumulator = sum T
unit = unitl VRIS .
baseSupplied = true
Entity2 :Class1 Entity3 :Class1 Entity4 :Class1
+measurand +measurand [+baseMeasurement +measurand
+baseMeasurement +baseMeasurement
\
Measurement2 : Measurement3 : Measurement4 :
DimensionalMeasurement DimensionalMeasurement DimensionalMeasurement
value =7 value = 3 value = 2
+baseMeasure
+measure
+measure
L
DMeasurel : +measure

DimensionalMeasure

unit = unitl

Figure 11.2 - Collective Measure Demonstration

11.2 CollectiveMeasure Class

The CollectiveM easure class represents measures which when applied to a given entity accumul ates measurements of entities
similarly related to the given entity. See Figure 11.1. For example, counts for container entities are often found by
accumulating (adding) counts of the containers contained entities. In fact, sizing measures generally accumulate to containers
by adding the results of applying the appropriate size measure to the contained entities.

Maximum is another frequent accumulator.

The measurands of the base measurements need not be the same of the measurand of the collective measurement. Within
SMM, the measurands are just arbitrary MOF::Elements declared in another MOF model.

The SEI Maintainability Index is one such aggregation that does not change the unit of measure.

SuperClass

Dimensiona M easure

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 33

Attributes

accumulator: Accumulator Identifies the n-ary or custom function that accumul ates the base measurements.

Associations

baseM easureTo:BaseM easure Specifies the relationship instance that defines the measure accumulated by this
Relationship[1..*] collective measure.
operation;Operation[0..1] Specifies the measurement operation of this measure.

Constraints
Context CollectiveMeasureinv:

accumulator->isEmpty or operation->iEmpty

11.3 Accumulator data type (enumeration)

The Accumulator enumeration defines DirectM easure - a subclass of Dimensional M easure which applies a given operation to
the measured entity. See Figure 11.1.

Literal Values
* Sum
e Minimum
o Maximum
e Average

* standardDeviation

11.4 DirectMeasure Class
DirectMeasure - a subclass of Dimensional M easure which applies a given operation to the measured entity. See Figure 11.1.

SuperClass

Dimensional M easure

Associations

’ operation;Operation[0..1] Specifies the measurement operation of this measure.

11.5 Counting Class

Counting is asubclass of DirectM easure where the given operation returns 0 or 1 based upon recognizing the measured entity.
See Figure 11.1.

34 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

SuperClass

DirectMeasure

Constraints
context Counting::self.operation(...):int
post: result = 0 or result = 1

The operation is arecognizer that selects some subset of the elements of the measure's scope found by self.scope. The
recognizers returns 1 for the elements of the subset and returns O otherwise. self.unit need not be an element of the subset.

‘ object Counting Constraint/

:Counting
name = CountingMeasure
unit = Classl

+measure

+scope +measurement

:Scope :Count

class = Classl value = ...

+trait +measurand

:Characteristic :Class1

name = CountableTrait

Figure 11.3 - Counting Unit of Measure Constraint

11.6 BinaryMeasure Class

The BinaryM easure class represents measures which when applied to a given entity accumul ates measurements of two entities
related to the given entity. See Figure 11.1. For example, areas for two dimensional entities are often found by accumulating
(multiplying) lengths.

The measurands of the base measurements need not be the same as the measurand of the collective measurement.

SuperClass

DimensionalMeasure

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 35

Attributes

functor:String I dentifies the binary function that combines two base measurements.

Associations

baseMeasurel:DimensionalMeasure | The first base measurement is derived by applying the specified measure or a
refinement of it.

baseM easure2:DimensionalMeasure | The second base measurement is derived by applying the specified measure or a
refinement of it.

Semantics

The usual semantics of algebrawould require that the unit of a binary measure equals applying the accumulator to the units of
the base measures. While conforming to this requirement would ensure more easily understood models, SMM does not
enforce this requirement.

11.7 Ratio Class

This class represents those measures that are ratios of two base measures. See Figure 11.1. Examples include:

« Average lines of code per module,

» Failures per day,

« Uptime percentage — Uptime divided by total time,

« Business data percentage of all data,

« Halstead level = Halstead volume divided by potential volume,
« Halstead effort = Halstead level divided by volume.

A ratio measure and its two base measures frequently characterize three different traits of the same entity. If the dividend
characterized the total code length of an application and the divisor characterized the number of program in the application
then the ratio characterizes the average code length per program.

Ratios may also characterize traits of distinct entities. For example, aratio may contrast the code length between a pair of
programs.

SuperClass
Dimensional M easure

Constraints
context MaximalMeasure inv:

functor = ‘divide’

36 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

11.8 BaseMeasureRelationship Class

BaseM easureRelationship is a class representing relationship of hierarchy between a collective measure and a dimensional
measure.

SuperClass

M easureRel ationship

Associations

from:CollectiveM easure] 1] Specifies the collective measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

11.9 BaselMeasureRelationship Class

BaselMeasureRel ationship is a class representing relationship of hierarchy between a binary measure and a dimensional
measure.

SuperClass

M easureRel ationship

Associations

from:BinaryMeasure[1] Specifies the binary measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

11.10 Base2MeasureRelationship Class

Base2M easureRel ationship is a class representing relationship of hierarchy between a binary measure and a dimensional
measure.

SuperClass

M easureRel ationship

Associations

from:BinaryMeasure[1] Specifies the binary measure at the from endpoint of the relationship.

to: DimensionalMeasure [1] Specifies the dimensional measure at the to-endpoint of the relationship.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

38

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

12 Other Measures

12.1 General

The following diagram presents three additional measures.
« Direct applications of named measurements. (One such named measure is Cyclomatic Complexity.)

« Simple algebraic change of scales of already defined numeric measures (e.g., the trandation to ‘ choice points from
Cyclomatic complexity).

‘ class Other Measures /

Measure MeasureRelationship
DimensionalMeasure |+from +rescaleTo |poscaledMeasureRelationship
+ unit: string 1 0..*

+rescaleFrom 0..*
+
to 1
NamedMeasure RescaledMeasure
+ name: string + formula: string

Figure 12.1 - Other Measures

12.2 NamedMeasure Class

The class alows for specifying measures which are well-known and can be specify simply by name. See Figure 12.1. For
example, McCabe's cyclomatic complexity. The meaning of applying the named measure should be generally accepted.

SMM isfor the exchange of measurement results. To convey such results for well known measures, it suffices to identify the

measure solely by name.

SuperClass

Dimensiona M easure

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

39

Associations

name: String Specifies the name of the SMM element. This attribute isinherited from the SmmElement
classwhereitisoptional. Hereit is required.

Constraints
context NamedMeasure inv:

not self.name->isEmpty

12.3 RescaledMeasure Class

The measure specifies a process that re-scales a measurement on an entity with one unit of measure to obtain a second
measurement of the same entity with an different unit of measure. See Figure 12.1.

SuperClass

Dimensional M easure

Attributes

formula: String Specifies the algebraic formula that re-scales aresult from the base measure’s
dimension to obtain a value expressed in a different unit of measure with respect to
this measure’s unit of measure

Associations

baseM easure:Dimensional M easure Identifiesthe measure applied to each “ contained” entity to determine
base measurements.

rescal eFrom: Rescal edM easureRel ationship[0..*] Specifies the relationship instance that defines the measure rescaled
by this rescaled measure.

12.4 RescaledMeasureRelationship Class

RescaledM easureRel ationship is a class representing relationship of measure rescaling between a rescaled measure and a
dimensional measure.

SuperClass

M easureRel ationship

Associations

from: Dimensional M easure[1] Specifies the dimensional measure at the from endpoint of the relationship.

to: RescaledMeasure [1] Specifies the rescaled measure at the to-endpoint of the relationship.

40 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

13 Measurements

13.1 General

Measurement results are values from ordered sets. Such a set may be nominal (e.g., Poor, Fair, Good, Excellent) aslong as
thereis an underlying order. A set may instead define a dimension where its values may be stated in orders of magnitude with
respect to archetypal member. SMM allows for dimensional measurements. The magnitude is the measure’s unit of measure.

SMM also alows for dimensionless measurements derived by ratios and ranking schemes. In the former theratio is derived

from two measurements of the same dimension; whereas, in the latter measurements from a dimension are mapped to
symbolic representations (e.g., 100-90 becomes“A”, 89-80 becomes “B”).

The modeling of measurements mirrors the modeling of measure.

class Measurement

>

i 0.1 : 0.1
+recursiveFrom +recursiveTo

RefinementMeasurementRelationship

+refinementFrom

RecursiveMeasurementRelationship

1
+/outbound

+from

SmmRelationship
MeasurementRelationship

{union} {lIJnion}
+/inbound

[o.x

+/from
1 1
{union} {union}

+/to

=
<

+measurementRelationships

1

SmmElement
Measurement

+to | _

breakvalue: string [0..1]
error: string [0..1]

Equiv alentMeasurementRelationship

+equivalentFrom

+equivalentTo

0.*
+refinementTo

+to 1

0..*

Figure 13.1 - Measurements

+from 1

+ getMeasureLabel() : string
+ getMeasurementLabel() : string|

JAY

DimensionalMeasurement

+ value: double [0..1]

13.2 Measurement Class (abstract)

The Measurement class represents the results of applying the associated Measure to the associated Measurand. See Figure
13.1. Two measurements of the same measurand by the same measure can be distinguished by observation information

provided by the associated Observation. Measurand isin the scope of the measure.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

+from
MofElement
- +measurand
1
0.* 1
Grade
+ isBaseSupplied: boolean
+ value: string [0..1]
+from 1
+rankingTo_ 0..1
RankingMeasurementRelationship
+to +rankingFrom
1 0.*

The value of ameasurement is an element of an ordered set. It may be a number where the ordering isthe usua standard. The
Dimensional M easurement and Percentage subclasses of Measurement defined bel ow have numeric values. The value may
also be asymbol that we can map to a numeric interval. The Grade subclass has a symbolic value.

Measure is a process and, hence, may fail. The error attribute of measurement allows such failures to be noted. A measurement

either has avalue or an error is recorded.

SuperClass
SmmElement
Attributes
error:String[0..1] If an error occurred in the measurement process, thisfield contains a code representing
the error
breakValue: String[0:1] If the scope specifies a break condition, thisfield contains the instance value
associated with the break condition.

Associations

measurand:M OF::Element[1]

I dentifies the object measured.

equivalentFrom: Equival entM easurementRel ationship[0..*]

Specifies the relationship instance that defines the
equivalency of this measurement.

equivalentTo: EquivalentM easurementRelationship[0..*]

Specifies the relationship instance that defines the
equivalency of this measurement.

refinementFrom: RefinementM easurementRel ationship[0..*]

Specifies the relationship instance that defines the
refinement of this measurement.

refinementTo: RefinementM easurementRel ationship[0..*]

Specifies the relationship instance that defines the
refinement of this measurement.

recursiveFrom:RecursiveM easurementRel ationship[0..*]

Specifies the relationship instance that defines the
recursivity of this measurement.

recursiveTo:RecursiveM easurementRel ationship[0..*]

Specifies the relationship instance that defines the
recursivity of this measurement

inbound: M easurementRel ationship[0..*]

The set of relationship such that the current Measurement
is the to-endpoint of these relations. This property isa
derived union.

outbound: M easurementRe ationship[0..*]

The set of relationship such that the current Measurement
is the to-endpoint of these relations. This property isa
derived union.

measurementRel ati onshi ps: M easurementRel ationship[0..*]

The set of all MeasurementRelationship owned by the
measure.

42 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Operations

getMeasurelabel: String[1] This operation returns the label describing the measure of this measurement
according to the rule specified in measurel abel Format in the Measure class.

getM easurementL abel: String[1] This operation returns the label describing this measurement and measurand
according to the rule specified in measurementL abel Format in the Measure
class.

Constraints

context Measurement inv:
scope.breakCondition->isEmpty == breakValue->isEmpty

Semantics

Measurand must be in the scope of measure. Specifically, measurand must be an instance of the class named in measure.
scope.class. If measure. scope.recognizers is given then the recognizer applied to the measurand must return true.

13.3 MeasurementRelationship Class (abstract)
M easurementRelationship is an abstract class representing any relationship between two measurements. See .

SuperClass

SmmRelationship

13.4 EquivalentMeasurementRelationship
EquivalentM easurementRelationship is a class representing any relationship of equivalency between two measurements.

SuperClass

M easurementRel ationship

Associations

from:Measurement [1] Specifies the equivalent measurement at the from endpoint of the relationship.

to:Measurement[1] Specifies the equivalent measurement at the to-endpoint of the relationship.

13.5 RefinementMeasurementRelationship Class
Refinement M easurementRel ationship is a class representing any relationship of refinement between two measurements.

SuperClass

M easurementRel ationship

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 43

Associations

from:Measurement [1] Specifies the measurement at the from endpoint of the relationship.

to:Measurement[1] Specifies the measurement at the to-endpoint of the relationship.

13.6 RecursiveMeasurementRelationship Class
RecursiveM easurementRel ationship is a class representing any relationship of recursivity on a measurement upon itself.

SuperClass

M easurementRel ationship

Associations

from:Measurement[1] Specifies the measurement at the from endpoint of the relationship.

to:Measurement[1] Specifies the measurement at the to-endpoint of the relationship.

13.7 DimensionalMeasurement Class

The Dimensional M easurement class represents the results of applying a dimensional measureto an entity. Theresult is given
in terms of the measure’s unit. See Figure 13.1.

SuperClass

M easurement

Attributes

value:Number[0..1] Represents the measurement result as a magnitude with respect to the unit of
measure.

44 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Associations

rankingFrom: RankingM easurementRel ationship[0..*] Specifies the relationship instance that defines the
rankings for this measurement.
baseM easurementFrom: BaseM easurementRel ationship[0..*] Specifies the relationship instance that defines the

accumulation for this measurement.

baseM easurement1From:BaselMeasurementRel ationship[0..*] | Specifies the relationship instance that defines the 1%
part of the binary comparator for this measurement.

baseM easurement2From: Base2M easurementRel ationship[0..*] | Specifies the relationship instance that defines the 2™
part of the binary comparator for this measurement.

rescal eTo:Rescal edM easurementRel ationshi p[0..*] Specifies the relationship instance that defines the
measurement rescaling this measurement.

Constraints
context DimensionalMeasurement inv:
measure.oclIsTypeOf (DimensionalMeasure) and

error->isEmpty <> value->isEmpty

13.8 Grade Class

The Grade class represents the grade found by Ranking measure. Its ranking scheme mapped the grade’s underlying base
measurement to the grade’s symbol. Once again, the base measurements share its measurand with this derived grading. See
Figure 13.1.

Super Class

M easurement

Attributes
value: String[0..1] Identifies rank as a measurement derived from the base measurement.
isBaseSupplied:Boolean True if baseM easurement is supplied.

Associations

rankingTo:RankingM easurementRelationship[0..1] | Specifies the relationship instance that defines the measurement
graded by this grade.

Constraints

context Grade inv:

measure.oclIsTypeOf (Ranking) and

error->isEmpty <> value->isEmpty and

isBaseSupplied - (measurand = baseMeasurement.measurand and baseMeasurement.measure =
measure.baseMeasure)

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 45

Semantics

If isBaseSupplied holds, then value is one of the symbols found by measure.interval where baseM easurement.valueisin the
interval. A numeric valueisin theinterval if and only if theit isless than the maximumEndPoint when maximumOpen is
false, less than or equal to maximumEndPoint when maximumOpen is true, greater than minimumEndPoint when
minimumOpen is false, and greater than or equal to minimumEndPoint when minimumOpen is true.

uc GradeConstraint

:DimensionalMeasurement :Grade
+baseMeasurement ——

+measure +measure
:DimensionalMeasure :Ranking

+baseMeasure

Figure 13.2 - Grade Constraint

13.9 RankingMeasurementRelationship Class

RankingM easurementRel ationship is a class representing any relationship of grading between a grade measurement and a
dimensional measurement.

SuperClass

M easurementRel ationship

Associations

from:Grade [1] Specifies the grade measurement at the from endpoint of the relationship.

to:Dimensional M easurement[1] Specifies the dimensional measurement at the to-endpoint of the relationship.

46 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

14 Collective Measurements

14.1 General

This class represents measurements found by accumulating a set of base measurements. For example, the number lines of code
in application can be determines by accumulating the number lines in its programs.

‘ class Collective Measurements /

MeasurementRelationship
BaselMeasurementRelationship

+baseMeasurementlFrom
0..%

0.1
+baseMeasurement1To
1
MeasurementRelationshi
Base2M Relati h'p +baseMeasurement2From> Measurement fEEherEnRelaion=hip
s o eniRelationship DimensionalMeasurement | +to +baseMeasurementFrom BaseMeasurementRelationship
*
O- s value: double [0..1] 1 0.%
| 0.1
+baseMeasurement2To +baseMeasurementTo | 0.*
+from |1 +from (1

BinaryMeasurement d
Y DirectMeasurement

+from 1

+ isBaseSupplied: boolean

CollectiveMeasurement

accumulator: Accumulator
+ isBaseSupplied: boolean

RatioMeasurment
Count

Figure 14.1 - Collective Measurements

14.2 CollectiveMeasurement Class

The CollectiveM easurement class represents the results of applying its CollectiveM easure measure to an entity. See Figure 14-
1. Inthis case, applying the measure is as follows:

1. Apply the base measure to each contained element to obtain a set of base measurements.

2. Apply the n-ary accumulator to the set of base measurements to obtain the measurement of the container.
Theresults of step 1 are the Dimensional M easurements associated by base measurement.
SuperClass

Dimensiona M easurement

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 47

Attributes

isBaseSupplied:Boolean Trueif baseM easurements are supplied. All are supplied or none is assumed.

accumulator; Accumulator Enumerated value indicating the type collective measure.

Associations

baseM easurement: Dimensional M easurement[0..*] | dentifies the measurements from which this collective
measurement was derived.

Constraints

context CollectiveMeasurement inv:

measure.oclIsTypeOf (CollectiveMeasure) and

isBaseSupplied —

(not baseMeasurement->isEmpty and baseMeasurement.measure=measure.baseMeasure)

Semantics
If isBaseSupplied holds, then value equal s the result of applying measure.accumulator the set of values given by

baseM easurement.value.

14.3 DirectMeasurement Class

The DirectM easurement class represents the measurement results found by of applying the measure's specified operation
directly to the measurand. See Figure 14.1.

SuperClass

Dimensiona M easurement

Constraints
context DirectMeasurement inv:
measure.oclIsTypeOf (DirectMeasure)

14.4 Count Class

Counting forms the basis for multiple metrics. This class consists of a particular subclass of directMeasurement that is very
useful in counting. See Figure 14.1. Its associated measure is a CountingM easure where the specified operation is arecognizer
operation. Therefore, the value of any instance of thisclassis 1 or 0 depending upon whether or not the measurand is
recognized.

SuperClass

DirectM easurement

Constraints
context Count inv:
measure.oclIsTypeOf (CountingMeasure)

48 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

14.5 BinaryMeasurement Class

SuperClass

Dimensional M easurement

Attributes

isBaseSupplied:Boolean Trueif both base measurements are supplied.

Associations

baseM easurement1: Dimensional M easurement[0..1] Identifies the first base measurement.

baseM easurement2: Dimensi onal M easurement[0..1] I dentifies the second measurement.

Constraints
context RatioMeasurement inv:
measure.oclIsTypeOf (BinaryMeasure) and
isBaseSupplied -
(not baseMeasurementl.isEmpty and not baseMeasurement2.isEmpty) and
not baseMeasurementl.isEmpty —
(baseMeasurementl.measure = measure. baseMeasurementl) and
not baseMeasurement2.isEmpty —
(baseMeasurement2.measure = measure. baseMeasure2)

Semantics
If isBaseSupplied holds, then value equals the result of applying measure.functor to baseM easurement1.value and
baseM easurement2.val ue.

14.6 RatioMeasurement Class

The RatioM easurement class affords eval uations of aratio measure of two evaluations of different dimensional measures. See
Figure 14.1. The measure associated with the dividend hasits unit of measure in common with the measure associated with the
divisor.

SuperClass
BinaryM easurement

Constraints

context RatioMeasurement inv:

measure.oclIsTypeOf (RatioMeasure) and

isBaseSupplied - (value = baseMeasurementl.value / baseMeasurement2.value)

14.7 BaseMeasurementRelationship Class

BaseM easurementRel ationship is a class representing relationship of hierarchy between a collective measurement and a
dimensional measurement.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 49

SuperClass

M easurementRel ationship

Associations

from:CollectiveM easurement[1]

Specifies the collective measurement at the from endpoint of the relationship.

to: Dimensional M easurement [1]

Specifies the dimensional measurement at the to-endpoint of the relationship.

14.8 BaselMeasurementRelationship Class

BaselM easurementRelationship is a class representing relationship of hierarchy between a binary measurement and a

dimensional measurement.

SuperClass

M easurementRel ationship

Associations

from:BinaryM easurement[1]

Specifies the binary measurement at the from endpoint of the relationship.

to: Dimensional Measurement [1]

Specifies the dimensional measurement at the to-endpoint of the relationship.

14.9 Base2MeasurementRelationship Class

Base2M easurementRelationship is a class representing relationship of hierarchy between a binary measurement and a

dimensional measurement.

SuperClass

M easurementRel ationship

Associations

from:BinaryM easurement[1]

Specifies the binary measurement at the from endpoint of the relationship.

to: Dimensional Measurement [1]

Specifies the dimensional measurement at the to-endpoint of the relationship.

50

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

15 Named and Rescaled Measurements

15.1 General

Measurement is in terms of its unit of measure as specified under its associated DimensionalMeasure. That is, the
measurement is a multiple of its unit of measure where value determines the multiple.

class Other Measurements /

Measurement
DimensionalMeasurement

+ value: double [0..1] ‘
+from

1
+rescaIeT\o MeasurementRelationship
0..+| RescaledMeasurementRelationship

NamedMeasurement

RescaledMeasurement

+to +rescaleFrom
+ isBaseSupplied: boolean 1

0.*

Figure 15.1 - Named and Rescaled Measurements

15.2 NamedMeasurement Class

The NamedM easurement class represents the measurement results of applying to the Measurand measurement processes that
are generally known and identifiable by name. See Figure 15.1.

SuperClass

DimensionalMeasure

Constraints
context NamedMeasurement inv:
measure.oclIsTypeOf (NamedMeasure) .

15.3 RescaledMeasurement Class

The RescaledM easurement class represents the measurement results of applying to the base measurement the operation
specified by the Measure to rescale the measurement. That is, given a one measurement of the measurand with respect to one
unit of measure, we obtain a second measurement of the measurand with respect to a different unit of measure. See Figure
15.1.

Measure is a RescaledM easure.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 51

SuperClass

Dimensional M easure

Attributes

isBaseSupplied:Boolean Trueif the base measurement is supplied.

Associations

rescal eFrom: Rescal edM easurementRel ationship[0..*] Specifies the relationship instance that defines the measurement
rescaled by this rescaled measurement.

Constraints

context RescaledMeasurement inv:
measure.oclIsTypeOf (RescaledMeasure) and
isBaseSupplied —

not baseMeasurement->isEmpty and baseMeasurement.measure = measure.baseMeasure
Semantics

If isBaseSupplied is true then value equals result of applying measure.operation to the baseM easurements’ values.

15.4 RescaledMeasurementRelationship Class

RescaledM easurementRel ationship is a class representing relationship of measurement rescaling between arescaled
measurement and a dimensional measurement.

SuperClass

M easurementRel ationship

Associations

from: Dimensional M easurement [1] Specifies the dimensional measurement at the from endpoint of the relationship.

to:RescaledM easurement [1] Specifies the rescaled measurement at the to-endpoint of the relationship.

52 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

16 Observations

16.1 General

M easurements are sometimes repeated. An old carpentry rule is measure twice, cut once.

To distinguish these multiple measurements, the observation and scope class can represent contextual information such as the

time of the measurement and the identification of the measurement tool and the artifacts that are under measurement.

class Observation ~

SmmElement
Argument

AbstractMeasureElement

Measure

+ type: string
+ value: string

+arguments 0..*

+ 4+ + o+

measureLabelFormat: string [0..1]

measurementLabelFormat: string [0..1]

scale: MeasurementScale
visible: boolean [0..1]

o

getAllArguments() : Argument[0..*]
getArguments() : Argument[0..*]

Observation

SmmElement

+ observer: string [0..1]
+ tool: string [0..1]

+observedMeasures| ObservedMeasure

+measure 1

0..*

SmmRelationship

+ whenObserved: Date [0..1]

+scopes|0..*

Observ ationScope

SmmElement

scopeUri: string

Figure 16.1 - Observations

16.2 Observation Class

0..*

+measurements|0..*

SmmElement
Measurement

- breakvalue: string [0..1]
+ error: string [0..1]

+ getMeasureLabel() : string
+ getMeasurementLabel(): string

This class represents some of the contextual information which may be unique to this measurement such as date, measurer and

tool used. See Figure 16.1.

SuperClass

SmmElement

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

53

http://www.ietf.org/rfc/rfc2396.txt

Attributes

whenObserved:date[0..1] Identifies the “moment” when the measurement was taken.
observer:String[0..1] I dentifies measurer
tool: String[0..1] Identifies tool used in measurement.

Associations

observedM easures: ObservedM easure[0..*] The set of all ObservedMeasure owned by the observation.

requestedM easures: SmmElement[0..*] Specifies the measures or their category that are part of the
observation request. This association isoptional and can be used by a
builder to know what to include in a specific observation.

scopes.ObservationScope[0..*] Specifies the scopes of the observation, i.e., the models or model
portions that are the subject of the Observation

Constraints

context Observation inv:

requestedMeasures.oclIsTypeOf (MeasureCategory) or
requestedMeasures.oclIsTypeOf (CategoryRelationship) or
requestedMeasures.oclIsTypeOf (Measure)

16.3 ObservationScope Class

This class represents the model (s) or sub model that are the subject of the related observation. This information can be used
initially by builders to understand which model to gather measurements from, later by anyone wishing to recreate a new
observation of the same artifacts. See Figure 16.1.

SuperClass

SmmElement

Attributes

scopeUri:String[1] Uri that identifies model (s) or model fragment.

Semantics

The scopeUri represents specific schemes following the REC 2396: Uniform Resource Identifiers (URI): Generic Syntax. Asa
hierarchical URI, the scopeUri supports all features associated with such URI, including both absol ute and relative addressing.
The starting point for the resol ution of relative addressing should match generally accepted rules, but this specification doesn’t
dictate any such details.

To quote the URI syntax:
At the highest level a URI reference (hereinafter simply “URI”) in string form has the syntax

[scheme:] scheme-specific-part[#fragment]

54 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

The scopeUri should inherently accept and understand the following 2 schemes: mof and ecore, respectively representing
models expressed as MOF and Ecore (Eclipse EMF model variant of MOF).

Our scheme-specific-part complies with the definition of hierarchical URI and as such it has the following syntax:
[//authority][path] [?query]

The general form of a scope uri isthen:

mof://kdm.example.com/projectName/kdmName Uri for aspecific MOF KDM model.

ecore://astm.example.com/pathToWherever/longPath/model Name Uri for aspecific Ecore ASTM model

A more advanced form of the URI for our schemes is made to support the query part of the URI in order to specify portion of
models and also to specify models in paths that represent folders or collections.

The query part of the scopeUri follows the general form of key=value separated by ampersand (&). The following keys are
defined by our schemes:

Model Regex based pattern representing the name of model or models that should be matched in the path.

Recursive Trueif the search for models matching the model pattern should also recursively descend the
hierarchical path structure rooted at the path specified in the URI. Default isfalse.

queryType Type of query to usein select. “OCL" (default) or “XQuery.”

Select Query into sel ected model (s) that represent a selection of a subset or portion of the entire model that

will be used as the scope of performing measurements. For example this could represent a segment
inaKDM that is related to a specific application.

The general form of a scope uri isthen:

mof://kdm.example.com/projectName?model =a?rt* & recursive=true Uri for all MOF modelswith name matching a?rt*
located in projectName or under.

ecore://kdm.example.com/path/ Uri for aspecific Ecore KDM model segment
2query Type=X query& sel ect=/Segment[@name="default"]/ representing a particular application segment.
Segment[@name="myApp”]

16.4 ObservedMeasure Class

This class represents associ ation between observations and the measures that make up such observation. This class also serves
to hold the list of measurements characterized by the related measure that are part of a given observation.

SuperClass

SmmRelationship

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 55

Associations

M easurements: M easurement[0..*] The set of al Measurement owned by the observed measure.

measure:Measure[1] The measure that is being observed.

16.5 Argument Class

This class represents some of the variable arguments or parameters that are being passed to the measures that have Operations
that make use of replaceable parameters.

SuperClass
SmmElement
Attributes
name: String[1..1] Specifies the name of the argument. (inherited)
type:String[1..1] Specifies the type of the argument. See semantic section for detailed
information.
value:String[1..1] The value of the argument, expressed in a“typesafe” fashion.

Associations

None

Semantics

The type attribute represents the type of the argument being passed. The accepted types are the basic types that are defined in
OCL, asthisisthe main operation language supported. Those types are, as defined in section 7.1 of the OCL 2.1 specification:
Boolean, Integer, Real, and String.

The above supported types are very limited. For example there is no direct support for Date or DateTime. The implementation
of additional typesis|eft to the implementers. As a suggestion (not normative), implementers should try to use OCL Operation
helper functions in order to facilitate hiding the implementation and make their implementation shareable and portable.

For all accepted types, the value attribute is a String whose content directly matches what is expected by the Operation
language, so that it can be transferred verbatim into the Operation body during the parameter replacement. Implementer
specific types can define their own value format if needed.

56 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

17 Historic and Trend Data (Non-normative)

17.1 General

SMM does not model tracking or trend data directly. Linking versions of objects through a software evolution poses a concern
in modeling software evolution even if measures are never taken. When the measurand’s model provides the linkage (e.g., an

“EvolvesTo” relationship), then a measurement of an original artifact could be traced to its newer versions and to their
measurements if available. Figure 17.1 isoverly simplistic, but hopefully conveys the gist of such tracing. The beige filled

instances indicate the metric representati ons augmenting the base model (green). The central point is that the evolves path is
between instances of the base model. The measures of the evolving artifacts can be gathered or compared only if the linkage

between the artifacts is captured and maintained through the modeling of the system devel opment and modification.

uc EvolvesTo

Artifactl

+measurand/

Measurementl

+m easure Measure

+observation

Observationl

+evolve dFrom +ewvolvedTo Artifact2

+m easurand

+measure

Figure 17.1 - Tracking Measurements across Versions

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Measur ement2

+observation

Observ ation2

57

58

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

18 Inaccuracy (Non-normative)

18.1 General

Inaccuracy of a measurement is the amount by which the measurement isin error. That is, we may model inaccuracy as
measure if we first model a measure which is assumed to be true. Inaccuracy of a measurement is then just the difference
between the measurement and a “true” measurement of the same entity.

In SMM inaccuracy is representable by measures that characterize inaccuracy. The measures are comparable el evation of
measurements eval uated by the difference between the measurement and the truest (at |east accepted as such) measurement of
that entity for that trait.

Given two measures which characterize the same trait and share the same scope, then inaccuracy can be modeled as a binary
measure expressing the difference taken over the two measures.

In the demonstration below (), a category collects measures that are applicable to ExampleClassl and characterize
ExampleTrait. The category identifies the “truest” measure by the goldStandard relationship and identifies an appropriate
inaccuracy measure for Measurel by the | naccuracyM easure relationship.

A Characteristic may have a measure that is designated as the best or truest measure of the attribute. That measure may be
associated as the attribute’s gold standard. Such a designation allows for the representation of inaccuracy for each of the
attribute’s measures as the difference between the measure and the gold standard.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 59

obj ect Inaccuracy

:Characteristic

name = Example Trait

+rait
Categoryl :SMM_Category
:Scope I
Inaccuracyl :Characteristic
class= Exampl eClassl
/ name = Inaccuracy WRT Measure2
+categ o +cate gory
+scope +scope +trait
+param eter +categoryElement +categoryElement
iCategory Relati onshi :Dimen sionalMeasure | Dim ensionalMeasure Scope1 :Scope
name = goldStan dard +value name = Measure2 name = Measurel recognizer = measu re.name =Mea re 1'
class = SMM:: Measurement
+measire | +haseMeasure2 *+m easure +baseMe asurel
+scope
+param eter
\
:Category Relations hip ‘Binary Measure
\ -
name = InaccuracyMeasure | inCior o e
+value name = InaccuracyMeasurel
+measurement +measurement +measure
:Dimensional Me asurement Dimen sional Measu rem ent |+ measurand
\+baseMeasurem ent2 ‘+baseMeasurement 1

:Binaryg easurement

+measurand +measurand baseSupplied = true
A

Objectl :
ExampleClassl

Figure 18.1 - Inaccuracy Demonstration

object UncertaintyDemonstration

ExampleM easure : +from :UncertaintyMeasureOf +to Uncertainty Estimator ForExampleM easure :
DimensionalMeasure

DimensionalMeasure

+measure +me asire
Measurem entl : +from tUnce rtaintyM easu rem entOf +to UncertaintyEstim ate :

Dimensional Measurement

Dim ensional Me asurement

Figure 18.2 - Uncertainty Demonstration

60 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

class UncertaintyRelations

SMM_Relationship
MeasureRelatio nship

L\

UncertaintyMeasureOf

SMM_Relationship
MeasurementRe lation

JAY

UncertaintyM easurementOf

Figure 18.3 - SMM Extension for Uncertainty

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

61

62

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

19 Library of Measures (Non-normative)

19.1 General

Thefollowing is asuggestive list of measurement classes along with their measure classes and measurand classes. Sources
include:

¢ Comsys Systems Redevel opment M ethodol ogy: www.comsysproj ects.com/SystemTransformati on/TM ethodol ogy.htm

e “A Survey of Software Metrics’ by F. Riguzzi, DEIS Technical Report no. DEIS-LIA-96-010, July 1996, Universita
degli Studi di Bologna.

Each measure is defined using the classes of the SMM. The referenced software artifacts are modeled using the Knowledge
Discovery Metamodel (KDM) unless otherwise noted.

19.2 Various Counts

19.2.1 Module Count?!

Module Count = A count of the number of modulesin a system.

Assume that the system is modeled by a KDM model. The KDM:AbstractCodeElement serves as a container of code parts as
well as modeling the code parts themselves. The KDM:Module is an AbstractCodeElement subclass that models modules. See
Figure 19.1.

Counting the modulesin the code model requires summing the results of arecognizer for modul e across the model. The unit of
measure is module. See Figure 19.2 for the library entry and see Figure ??? for a brief description.

object MethodCountExample /

:CollectiveMeasure +baseMeasure :Counting
name = MethodCountinModel name = ModuleMethodRecognizer
library = SMMsampleLibrary library = SMMsampleLibrary
accumulator = sum
+measure
+measure
:CollectiveMeasurement +baseMeasurement ‘Count
baseSupplied = true value = 1
value = ...
+measurand +measurand
:CodeModel +codeElement :Module

Figure 19.1 -

1. See GAM 003 in Comsys Systems Redevelopment Methodol ogy

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 63

class KDM_Code_Frag ment

+cod eEl ement
0..

+owner(0..1

action::
ActionElem ent

+ kind: String

Element
source::SourceRef KDMEntity
{leaf} |+source
CodeS ource <@ code::AbstractCodeElement
+ language: String 0..% 0.1
+ snippet: String
+codeElement
0..* +codeEleme nt
0..*
1
SourceRegions code:: Cod eltem
+owner 0..1
+region \|/0..*
Element code: :Co mputation alObje ct code: :Datatype code::Module
source::Source Region
{leaf}
+type AO..* 1
+ startLine: Integer 0..1 +codeElement | +type
+ startPosition: Integer
+ endLine: Integer . Type
+ endPosition: Integer Signature
+ language: String +rowner +owner | 0..1
+ path: String 0.1 0.
0.*

]

code::ControlElement

code::Data Ele ment

+
+

ext: String
size: Integer

code::Callab leUnit

{leaf}

code::Method Unit
{leaf}

+ kind: CallableKind

+ kind: MethodKind
+ export: ExportKind

Figure 19.2 - KDM Code Package Fragment

64

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object ModuleCount

:Characteristic

name = ModuleCount

+rait +rait
refi
iCollectiveMeasure refinement :Counting
accumulator = sum name = ModuleCountRecognizer
name = ModuleCountinModel unit = code::Module
" +baseMeasure N
unit = code::Module operation = true
measurandQuery = Operation->XQuery->.//Module
+scope +scope
ESGODES :Scope
RN o= codeModel class = code::AbstracCodelElement
recognizer = Operation->isOCLTypeOf(code::Module)

Figure 19.3 - Library Entry for Module Count in Code Model

‘ object MethodCountExample /

:CollectiveMeasure +baseMeasure :Counting
name = MethodCountinModel name = ModuleMethodRecognizer
library = SMMsampleLibrary library = SMMsampleLibrary
accumulator = sum
+measure
+measure
:CollectiveMeasurement +baseMeasurement :Count
baseSupplied = true value = 1
value = ...
+measurand +measurand
:CodeModel +codeElement :Module

Figure 19.4 - Module Count in Model Demonstration

For an entire system, we identify each CodeModel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each code::CodeModel, its baseM easure elements are identified. In this example the default
containment association relation is overridden by ameasurand query expressed as the X Query operation of *..//Module’ which
states that we want all Module children of our CodeModel recursively. Next we move to apply the scope recognizer, which
filters out any elements that are not of class code::Module, which here isjust a safety test as the measurand query already

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 65

providesthis level of filtering. This leaves uswith only instances of code::Module, on which we apply a Counting measure
with a default operation of true so that it always returns 1.

All of the Counting measurement with avalue of 1 representing here the code:Module are then summed up into a Collective
measurement for each code::CodeM odel according to the accumulator defined in the Collective measure.

Another possible approach would be to move the recognizer to the Counting classinstead of the scope as shown in Figure 7.1.

The difference between these two approaches is subtle but very interesting. In the first case, the recognizer is applied to
determineif aclassinstanceisin scope or not. In the second approach, the recognizer is used to determineif the counting class

will return O or 1 for the measurement of the classinstance. The 1% approach would normally be preferred asit avoids creating
measurements with avalue of 0 for any non-matching class instance, whereas the second approach will have measurement for
every AbstractCodeElement in the CodeM odel. Obviously, the sum applied by the collective measure will produce the same
final result.

‘ object ModuleCount Takez/

:Characteristic

name = ModuleCount

+rait +trait
. +refi .
:CollectiveMeasure refinement :Counting
accumulator = sum name = ModuleCountRecognizer
name = ModuleCountinModel +baseMeasure unit = code::Module
unit = code::Module operation = isSOCLTypeOf(code::Module)
measurandQuery = Operation->XQuery->.//Module

+scope
P +scope

Eopel :Scope

class = code::CodeModel

class = code::AbstracCodelElement

Figure 19.5 - Module Count in Model (take 2)

19.2.2 Screen Count!

Screen Count = A count of the number of screensin a system.

1. See TEM 153 in Comsys Systems Redevel opment M ethodol ogy

66 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

class KDM-ScreenFragme nt

KDM Mo del
ui:UIModel

+UIEIement& 0..*

K D ME ntity
ui::AbstractUIEleme nt

0..*

/+UIEIement
+owner
ui::UIResourc e 0..1
ui::UIDisplay
ui::Screen ui::Report

Figure 19.6 - KDM Action Package Fragment

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

67

object ScreenCount

:Characteristic

name = ScreenCount

+trait

+trait

:CollectiveMeasure

accumulator = sum

name = ScreenCountinModel
library = SMMsampleLibrary
unit = ui::Screen

measurandQuery = Operation->XQuery->.//Screen

+refinement :Counting
operation = true

name = ScreenCountRecognizer
+baseMeasure library = SMMsampleLibrary
unit = ui::Screen

+scope

:Scope

class = ui::UIModel

object ScreenCountExample /

:CollectiveMeasure

+scope

:Scope
class = ui::AbstracUIElement
recognizer = Operation->isOCLTypeOf(ui::Screen)

+baseMeasure :Counting

name = ScreenCountinModel
library = SMMsampleLibrary

+measure

:CollectiveMeasurement

name = ScreenCountRecognizer
library = SMMsampleLibrary

+measure

+baseMeasurement :Count

baseSupplied = true
value = ...

+measurand

:UIModel

value = 1

+measurand

+uiElement ‘Screen

Figure 19.7 - Screen Count Demonstration

Assume that the system is modeled by a KDM model. The KDM:UIElement serves as a container of user interface parts as
well as modeling the user interface parts themselves. The KDM:Screen is a UlElement subclass that models screens.

68

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

For an entire system, we identify each UIModel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each ui::UIModel, its baseM easure elements are identified. In this example the default
containment association relation is overridden by a measurand query expressed as the X Query operation of *..//Screen’” which
states that we want all Screen children of our UIModel recursively. Next we move to apply the scope recognizer, which filters
out any elements that are not of class ui::Screen, which hereisjust a safety test as the measurand query already provides this
level of filtering. Thisleaves uswith only instances of ui::Screen, on which we apply a Counting measure with a default
operation of true so that it always returns 1.

All of the Counting measurement with a value of 1 representing here the ui::Screen are then summed up into a Collective
measurement for each ui::UIModel according to the accumulator defined in the Collective measure.

19.2.3 Method Count

Method Count = A count of the number of methods in a system.

object MethodCount

:Characteristic

name = MethodCount

+trait +trait

:CollectiveMeasure +refinement :Counting

accumulator = sum

name = MethodCountinModel
library = SMMsampleLibrary
unit = code::MethodUnit +baseMeasure
measurandQuery = Operation->XQuery->.//MethodUnit

operation = true

name = MethodCountRecognizer
library = SMMsampleLibrary

unit = code::MethodUnit

+scope +scope
:Scope :Scope
class = code::CodeModel class = code::AbstracCodelElement
recognizer = Operation->isOCLTypeOf(code::MethodUnit)

Figure 19.8 - Method Count Library Entry

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 69

object MethodCountExample /

:CollectiveMeasure A .
) +baseMeasure :Counting

name = ModuleMethodRecognizer
library = SMMsampleLibrary

name = MethodCountinModel
library = SMMsampleLibrary
accumulator = sum

+measure
+measure

:CollectiveMeasurement +baseMeasurement :Count
baseSupplied = true value = 1
value = ...

+measurand +measurand
:CodeModel +tcodeElement :Module

Figure 19.9 - Method Count Demonstration

Assume that the system is modeled by a KDM model. The KDM:MethodUnit is a CodeElement subclass which models
methods. The counting of methods then is very similar to the counting of modules given above.

For an entire system, we identify each CodeM odel instance in the KDM (or a specific subset depending on the
ObservationScope). Then for each code::CodeModel, its baseM easure elements are identified. In this example the default
containment association relation is overridden by a measurand query expressed as the XQuery operation of *..//MethodUnit’
which states that we want all MethodUnit children of our CodeModel recursively. Next we move to apply the scope
recognizer, which filters out any elements that are not of class code::MethodUnit, which hereisjust a safety test as the
measurand query already providesthislevel of filtering. This|eaves uswith only instances of code::MethodUnit, on which we
apply a Counting measure with a default operation of true so that it always returns 1.

All of the Counting measurement with avalue of 1 representing here the code::MethodUnit are then summed up into a
Collective measurement for each code::CodeModel according to the accumulator defined in the Collective measure.

19.2.4 Lines of Codel

A line of codeis any line of program text that is not a comment or a blank line, regardless of the number of statements or
fragments of statements on the line. This specifically includes al lines containing program headers, declarations, and

executable and non-executable statements’ 2 Lines of code here means ful ly expanded lines of code including copy books,
includes and comments.

KDM does not directly model lines of source, code or otherwise. As ademonstration, let us assume that blank lines may be
included. Thisallows usto use the KDM SourceRegion to measure lines of code. We will further assume source region do not
overlap or even having one start on the line that another ends on. The problem here isthat code snippets are the smallest pieces
of source modeled in KDM. Lines by themselves are not model ed, which means that counting them isindirect. We will sum of
the line size of code snippets and call that counting lines of code.

1. See ERP 001 in Comsys Systems Redevel opment Methodol ogy.
2. SeeS. Conte, H. Dunsmore, V. Shen, Software Engineering Metrics and Model s, Benjamin/Cummings, Menlo Park, CA.

70 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Lines of SourceRegion and SourceRef

KDM specifies a code snippet with a SourceRegion element that has two attributes, startLine and endLine, that interest us
here. The number of linesin the SourceRegion is endLine — StartLine + 1.

Our representation is a DirectM easure with a class of SourceRegion and afunction of endLine — startLine + 1.

SourceRef consists of multiple SourceRegions. Assuming no overlap as stated above, the determination of lines of codein a
SourceRef is asum accumulator CollectiveM easure with the previous lines of SourceRegion as its base measure.

object SourceLOC

:Characteristic

name = LineCount

T ’
+rait +rait Frait
-+ +refi q
:CollectiveMeasure +refinement :CollectiveMeasure refinement :DirectMeasure

accumulator = sum accumulator = sum operation = endLine - startLine + 1

name = CodeEltTotalLOC +baseMeasure name = SourceRefLOCMeasure +haseMeasure name = SourceRegionLOCMeasure

unit = LineOfCode unit = LineOfCode unit = LineOfCode

+scope +scope +scope
:Scope :Scope :Scope

class = code::AbstractCodeElement class = source::SourceRef class = source::SourceRegion

Figure 19.10 - Lines of Code Measures

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 71

object AbstractCodeElememLoc/

iCollectiveMeasure :CollectiveMeasure +bassMeasure -DirectMeasure
name = CodeEltTotalLOC +baseMeasure = q
[leLib name = SourceRefLOCMeasure name = SourceRegionLOCMeasure
Ibrary = Sl ELIETR) library = SMMsampleLibrary library = SMMsampleLibrary
accumulator = sum accumulator = sum
A A +measure +measure
rmeasure measure measure
:DirectMeasurement :DirectMeasurement
value = 18 value =7
+baseMeasurement +baseMeasurement
:CollectiveMeasurement
value = 38 +measurand +measurand
:CollectiveMeasurement :SourceRegion :SourceRegion
+baseMeasurement’ - i A
value = 25 startLine = 6 startLine = 24
baseSupplied = true endLine =23 endLine = 30
+regi +regi
+baseMeasurement region reglon
+measurand +measurand
:CollectiveMeasurement :SourceRef :SourceRef
value = 63
baseSupplied = true
+source +source
+measurand

:AbstractCodeElement

Figure 19.11 - Lines of Code Demonstration

Refinement of Lines of ControlElement, CodeElement and Module

The sourcerole for these elements is SourceRef. Determining the lines of code in each is a sum accumulator
CollectiveM easure where the base measure is the lines of SourceRef given above (the one in darker blue).

72 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object CodeLOC

:Characteristic
name = LineCount

T
+trait +trait +trait

) +baseMeasure | +baseMeasure !
:CollectiveMeasure :CollectiveMeasure :CollectiveMeasure
accumulator = sum +refinement accumulator = sum +refinement accumulator = sum
name = ControlLOCMeasure name = CodeEltTotalLOC name = ModuleTotalLOC
unit = LineOfCode unit = LineOfCode unit = LineOfCode
+scope +scope +scope
:Scope :Scope :Scope

class = code::ControlElement class = code::AbstractCodeElement class = code::Module

Figure 19.12 - Additional Lines of Code Measures

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object ModulreLOC2

:Characteristic

name = CodelLength

/+trait +trait +trait

:Scope :Scope :Scope
class = Code::Module class = Code::AbstractCodeElement class = Code::ControlElement
+scope +scope +scope
:CollectiveMeasure +baseMeasure :CollectiveMeasure :CollectiveMeasure
R T +baseMeasure T
unitClass = LineOfCode X unitClass = LineOfCode unitClass = LineOfCode
accumulator = sum +refinement accumulator = sum refinement accumulator = sum
basePath = codeElement basePath = source ' basePath = codeElement
Y
+measure +measure +measure +measure
:CollectiveMeasurement :CollectiveMeasurement :CollectiveMeasurement
value = 83 value = 63 value = 151
baseSupplied = false baseSupplied = false baseSupplied = false
/ ——
+baseMeasurement /+baseMeasurement /+baseMeaStJrement
:CollectiveMeasurement //
value = 297 / +measurand +measurand +measurand
baseSupplied = true

:Module :CodeElement :ControlElement

+codeElement

+codeElement +codeElement
:Module
+measurand T
~

Figure 19.13 - Module and Control Element LOC Demonstration

19.2.5 Lines of Code for ASTM

The Abstract Syntax Tree Metamodel (ASTM) facilitates the interchange of programming language constructs parsed as
abstract syntax trees. The Generic Abstract Tree Metamodel establishes a common core for modeling across a wide variety of
programming languages. Each of these constructs may, of course, be measured by their lines of code.

GASTM does not directly model lines of source, code, or otherwise. We will, conseguently, make the same assumptions we
made above for KDM. Blank lines are included and overlaps are ignored.

Figure 19.14 shows afragment of the proposed ASTM covering the core syntax object, source location and sourcefile. Figure
19.15 shows a possible SMM library entry to represent lines of code measure of GASTM syntax objects.

74 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

class ASTM_Fragment

IGASTMSourceObject
GASTMObject SourcelLocation GASTMSourceObject
GASTMSyntaxObject +Locationinfo - : +InSourceFile Sourc eFile
+ StartLine: int
+ StartColumn: int + PathName: String
+ EndLine: int
+ EndColumn: int

Figure 19.14 - GASTM Fragment

object ASTMSourceLOC

:Characteristic :Scope
name = LineCount class = gastm::GAST MSyntaxObject
+trait +scope

:DirectMeasure

operation = LocationIinfo.endLine - LocationInfo.startLine + 1
name = SourceRe gionLOCMeasure

unit = Line

library = SMMsampleLibrary

Figure 19.15 - LOC Library Entry for GASTM

19.3 McCabe

McCabe's cycolmatic complexity could be modeled in different ways. It could be a RescaledM easure from count of
independent paths found by adding 2. Another representation would be as aRescaledM easure from count of branching points
found by adding 1. Each of these representations represents equivalent measures. We demonstrate below cyclomatic as a
NamedM easure and as a Rescal edM easure from branching factor.

19.3.1 Branching Factor of ActionElements and Modules

Branching Factor is simply the difference between the number of nodes and edges in a modul€'s control flow graph. KDM
models the nodes as ActionElements, the edges as Control Flow. Branching factor isthen measured by subtracting the count of
Control Flow instances from the count of ActionElements.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 75

object Flow EdgeCount

:Counting +scope :Scope
name = FlowEdgeCount class = action::Control Flow
unit = edge
+baseMeasure

+trai

N :AdditiveMeasure
:Characteristic I

accumulator = sum
name = DirectFlowEdgesIinAction

unit = edge \
+scope
+rait \p

+baseMeasure

name = ControlFl owEdge Count +trait

:Scope
+scope =cope

class = action::ActionElement
:Additiv eMeasure /

accumulator = sum
name = TotalFlowEdgesinAction
unit = edge

Figure 19.16 - Control Flow Edge Count Library Entry

object Flow NodeCount

:Counting
name = FlowNodeCount

thrai/ unit = node \
+scope
=27

:Characteristic +baseMeasure

:Scope

name = ControlFlowNodeCount |+trait +scope class = action::ActionElement

\ :Additiv eMeasure /

accumulator = sum
name = TotalFlowNodes nAction
unit= node

Figure 19.17 - Control Flow Node Count Library Entry

76 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object BranchingFactor

:Additiv eMeasure

accumulator = sum
name = Total FlowEdgesinAction

:Additiv eMeasure

accumulator = sum
name = TotalFlowNodesinAction

unit = edge unit= node
+baseMe asure 1 +baseMeasure2
+sco& +scope
:BinaryMeasure 4 .
scope :Scope
functor= d|ffer§nce class = action::ActionElement
name = Branching
unit = edge
. +
+baseMeasure +refinement scope
+rait
.. . :Additiv eMeas ure
:Characteristic +trait —
3 accumulator = sum
name = BranchingFactor name = Branching
unit = edge
+trait
+baseMeasure
:Additiv eMeas ure +scope S
:Scope
accumulator = sum =cope
name = Branching class= code::Module
unit = edge

Figure 19.18 - Control Flow Branching Factor Library Entry

19.3.2 Cyclomatic Complexity of a Modulel

Cyclomatic complexity (CC) = E - N + p where E is the number of edges of the flow graph, N is the number of nodes of the
flow graph and p is the number of connected components.

In this demonstration we assume that the control graph of each moduleis entirely connected. That is, p isalways 1. Cyclomatic
isthen ssimply the branching factor of a module plus one.

1. See TPM 065 in Comsys Systems Redevel opment Methodol ogy.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

77

object McCabeMeasures

Al . :Additiv eMeasure
:Characteristic +rait —a
~ N accumulator = sum
name = BranchingFactor name = Branching

unit = edge

+baseMeasure

+scope

:RescaledMeasure
T +scope :Scope

operation = 1+BranchingFactor
i g class = code::Module

name = McCabeCyclomaticComplexityl

/ TR S GHEE
+equivalentTo +scope

:Characteristic +rait

name = McCabeComplexity | +trait

\

+equivalentFrom

:NamedMeasure

name = McCabe CyclomaticComplexity
unit= edge

Figure 19.19 - McCabe Cyclomatic Complexity Library Entry

19.3.3 Extended Cyclomatic Complexity of a Modulel

Extended cyclomatic is the count of predicates or atomic formulain the condition of branching statements. We demonstrate
this count based upon ASTM modeling of an “if” statement. The condition of the “if” is an expression that can be navigated to
find its atomic formulas.

19.3.4 Average Extended Cyclomatic Complexity of Modules in the System

19.4 Ratio of Additive ECC over Additive Counting of modules. Counts of
Operating Systems
The Application Management and System Monitoring for CM S Systems (ASMS) specification provides a PIM based upon

commercial enterprise management called the DMTF Common Information Model (CIM). “CIM models a software or
hardware system as a collection of component models connected via associations. A specific instance of a system is modeled

as a collection of instances of component models and associations.” 2

We demonstrate the counting of operating systems installed and running on computer systems.

1. See”An extension to the Cyclomatic measure of Program Complexity”, Glenford Myers, SIGPLAN Notices, vol 12 no 10, 1977.
2. Seedtc/07-05-02.

78 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

class CIM

CIM_OperatingSystem

+ OSType: String

CIM_RunningOS

S + Name: Sring

1L*x 0x
L

Logical Hardware::
AMS_OperatingSystem

1

CIM_Ingtalledos

Logical Hardware::
AMS_ComputerSystem

CM_QonputerSystem|

+ Architedurelnfo: String
+ Satus uintl6
+ Networkoad: uintl6

\0..1

AMS_(nfSpecOS

AMS_ConfSpecCS

0.1

+ Name: String
+ Verson: Sting

AMS_AMSupported ByOS

Lgu*

0.1
-1
0.*

AMS_OSUsed

OSType

N\

Logical Hardware Specification::
AMS_Configurati onSpecificati on

0..1]

+ IngtancelD: String

\0..1

AMS_ConfSpecDLS

CM_LogicalElement

Supported Appli cation Model::

AMS_SupportedApplicati onModel (g, SupportedOSType

+ Name: String
+ @nfigurationinfo: String

Figure 19.20 - ASMS Fragment

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

Supported Application Model::
AMS_OSType

of. CIM_OperatingSystem.OSType: int

0.1

1

CM_LogicalElement
Application Depl oyment
Secification::
AMS_DeploymentLink Spec

+ LinkD: Sting

0.*

0.1

1
AMS_DeploymentL inkDependency

79

object OS_Count

:Charac teristic

name = InstalledO peratin gSystems

+trait

:Additive Measure

accumulator=sum :Scope
name = InstalledO peratin gSystems
library = SMMsamp leLibrary

unit =0S

class = Logical Hardware::AMS_OperatingSyse m

+ope
+baseMeasure
Tecope :Counting
:Scope name = AM S_OperatingSystemCounte r
; library = SMMsample Library
class = Logical Hardware::AMS_Compu terSystem unit = 0S

+scope +baseMeasure
:Additiv e Measure +trait

accumulator = sum

name = RunningO peratin gSystems
library = SMMsamp leLibrary

unit =0S

:Characteristic
name = OperatingSystems

:Charac teristic

name = RunningO peratin gSystems

Figure 19.21 - OS Counting Demonstration

19.5 Halstead
19.5.1 Distinct Operator Count of a Module

M1 = A count of the number of distinct operatorsin a module.

Distinguishing operators invocations from calls to externally defined routines is not the type of higher level architectural
concerns represented in the KDM. Counting the number of called, but not defined elements would get us close to this metric.

80 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

19.5.2 Distinct Operand Count of a Module
M2 = A count of the number of distinct operandsin a module.
Thisisthe data count shown above.
19.5.3 Operator Occurrence Count of a Module
N, = A count of the number of operator occurrencesin a module.
Thisisacount of the calls to elements identified as operators.
19.5.4 Operand Occurrence Count of a Module
N, = A count of the number of operand occurrences in amodule.
For KDM, thisis a count StorableElements owned by ActionElements.
19.5.5 Halstead Length of a Module
N=N1+N2
Thisisan CollectiveM easure where the aggregator is addition and the base measures are the occurrence counts given above.
19.5.6 Halstead Vocabulary of a Module
=M1+
Thisisan CollectiveM easure where the aggregator is addition and the base measures are the counts given above.
19.5.7 Halstead Volume of a Module

V=N log, 7

First log, 1) is a ReScaledM easure based upon the vocabulary metric given above. The volume isthen an CollectiveM easure of

the length given above and the rescaled vocabulary with multiplication as the aggregator. The unit of measure for the rescaled
vocabulary and for the volumeis “required bits of representation.”

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0 81

object HalsteadVocabulary

:RescaledMeasure

operation = log2
name = HalsteadVocabularylnBits
unit = discrimination

+baseMeasure
+trait
+rait :BinaryMeasure
:Characteristic rai
—) functor=sum
name = SymbolSpaceSize name = HalsteadVocabulary
unit = occurrence

+trait +trait

+baseMeasurel +baseMeasure2
:DirectMeasure :DirectMeasure
operation = Set{ operand } -> size() operation = Set { operator } -> size()
name = DistinctOperandsCount name = DistinctOperatorsCount
unit = occurrence unit = occurrence

Figure 19.22 - Halstead Vocabulary Library Entry

82 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object HalsteadVolume

:Characteristic +trait e Measure
o functor = times
name = InformationSize name = HalsteadVolume
unit= discrimination

+baseMeasure2

:BinaryMeasure
functor = sum
name = HalsteadLength
unit = occurrence

+baseMeasure2
+trait

:Characteristic +rait DirectMeasure

name = TotalOperatorOccurrence
name = SymbolUsage unit = occurrence

operation = operator -> size{}

+trait

+baseMe asurel

:DirectMeasure.
name = TotalOperandOccurrence
unit = occurrence
operation = operand -> size{}

+baseMeasurel

:RescaledMeasure

:Characteristic +trait

) operation = log2
name = SymbolSpaceSize name = HalsteadVocabularylnBits
unit = discrimination

Figure 19.23 - Halstead Volume Library Entry

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object HalsteadPotential Volume

:Characteristic +trait BinaryMeasure
el functor = times
name = InformationSize name = Halstead PotentialVolume
unit = discrimination

+baseMeasure2

:RescaledMeasure

:Characteristic +trait .
operation = log2 baseMeasurement

name = SymbolUsage name = Halstead PotentialLengthinBits
unit = discrimination

+baseMeasure:li +baseMeasure

:RescaledMeasure

operation =baseMeasurement + 2
name = HalsteadConceptualVocabulary

V unit = occurrence
:Characteristic

name = SymbolSpaceSize +trait +baseMeasure

\ :DirectMeas ure

operation = parameter -> size()
name = DistinctlOoperandsCount
unit = occurrence

Figure 19.24 - Halstead Potential Library Entry

84 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object HalsteadEffort

:Characteristic +trait :RatioM easure

name = HalsteadEffort

name = ProblemSize . -
unit = discrimination

+baseMeasure2

. :RatioMeasure
:Characteristic +rait
e name = HalsteadLevel
name = ProblemLevel functor = divide

unit ="'

+baseMe asure 1

:BinaryMeasure
functor = times
name = Halgtead PotentialVolume
unit = discrimination

+baseMe asure 1 +baseMeasure2

:BinaryMeasure
functor =times
name = HalsteadVolume
unit = discrimination

Figure 19.25 - Halstead Effort Library Entry

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object Halstead

:Ratio Me asure

name = Halde adEffort
unit = dis rimination

+baseMeasure2

:Percentage

name = Hal steadL evel

+baseMe asurel +haeMeawrel +baseMe asire2
:BinaryMeas ure :BinaryMeasure
functor = time s functor = time's
nam e = Halste adVolume nam e = Halstead PotentialVolume
unit = discrimination unit = discrimination
+baseM easure 1 +baseMe agire2 +baseMeasure2
:RescaledMeasure :BinaryMeas ure :Resc aledMeasure
operation = log2 functor = sum operation =log2 baseM easurement
name = HalsteadVocabularyInBits name = HalsteadLength name = Halstead PotentialLeng thinBits
unit = discrimination unit = occurrence unit = discrim ination
+baseMeasure +baseMe asurel +baseM easure2 +haeMeasu rel\ +baseMeasure
:BinaryMeasure :Additiv eMeasure :AdditiveMeasure :RescaledMeasure
functor = sum accumu lator = sum accumulator = sum operation = base Measirement + 2
name = HalsteadVocabulary name = TotalOpe randOccu rrence name = TotalOpe ratorOccurrence nam e = HalsteadConceptualVocabulary
unit = occurrence unit = occu rence unit = oc currence unit = occu rrence
+baseMeasurel / +baseMeasureZ\ +baseMeasure
:DirectMeasure :DirectMeasure :DirectMeasure
operation = Set { operand } -> size() operation = Set { o perators } -> size() operation = parameter -> sze()
name = DistinctOpe randsCount name = DistinctOperatorsCount name = DistinctlO operan d<Cou nt
unit = oc currence unit = occu rence unit = occurrence

Figure 19.26 - Halstead Measures Demonstration

19.6 Software Engineering Institute (SEI) Maintainability Index

171 - 5.2(In(aveV)) - 0.23(aveV(g)) - 16.2(In(aveL OC)) + 50(sin (sgrt(2.4(perCM))))

Each of the averages are RatioM easures of their respective metric (V for Halstead volume, V(g') for extended Cyclomatic
complexity and LOC of line of code) for modules over the count of modules. perCM, the percentage of commentsin amodule,
is a PercentageM easure of line count of comments over the total line count of a module.

Each resulting metric is rescaled to share the same unit of measure, namely maintainability index points.

aveV rescaled 50 -5.2(In(aveV)
aveV(g') rescaled 50-0.23(aveV(g'))
avel OC rescaled 21 —In(aveL OC)
perCM rescaled 50(sin (sgrt(2.4(perCMm))))

The SEI index is then a CollectiveMeasure for amodule of the above four rescaling with addition as the aggregator.

86 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object InformationSize

:RescaledMeasure
:Characteristic +trait

name = Maintaina bility

operation = 50 - 5.2*In(baseMeasure)
name = Volume2Ma intainability
unit = M aintainab ilityUnit

library = SMMsample Library

+ba =M easure

+scope
:RatioM easure
:Characteris tic +trait fun ctor = divide +scope :Scope
name = Averagelnform ationSize name = AveM oduleVolum e class = code ::CodeModel

library = SMMsampleLibrary

unit = discrimination/code::Mo dule +scope/

+baseMeawrel
:Additiv eMeasure
:Characteristic +trai t

accumulator= sum

name = Module Countln Model
library = SMMsample Library
unit = cod e::Mod ule

name = ModuleCo unt

+baseMeasure2

:BinaryMeas ure
:Characteristic Hrait functor = times +sco pe :Scope
name = InformationSize name = Halstead Vo lume class = code::M odule
unit = disc rimination
library = SMMsampl eLibrary

Figure 19.27 - Conversion of Information Size to Maintainability

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

object CodeStructureMain tainability

:Rescaled Measure

operation =50 - 0.23*baseMeasure
name = Cyclomatic2Mainta inability
unit = MaintainabilityUn it

library = SMM sam pleLibrary

:Characteris tic +trait
name = M aintainability

+base Measure

+scope
:RatioM easure
:Characteris tic +trait functor = divide tscope :Sc ope
name = Average CyclomaticSize name = AveModule Cyclom atic class = code ::CodeMode
library = SMMsampleL ibrary
unit = ed ge/code::M odule +scope/
+baseMeasure2
:AdditiveMeasure
:Charac teristic +trait accum ulator = sum
name = M oduleCount name = Module CountinMode |

library = SMM sampleLibrary
unit = code::Module

+baseMeawrel

:RescaledMeasure
operation = 1+BranchingFactor

name = McCabeCyclomaticCom plexity 1
unit = edge

/ library = SMMsampleL ibrary +500|{
:Characteristic +trait +equivalentTo

iScope
name = M cCabeComp lexity [+trait +equivalentFrom

class= code::Module
\ 1

. +scope
:NamedM easure | p

name = McCabeCyclomaticComplexity
unit = edge

library = SM MsampleLibrary

Figure 19.28 - Conversion of McCabe Cyclomatic to Maintainability

88 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

obj ect CodeLengthMaintai nability

:Rescaled Measure

:Characteristic +Hrait operation = 21 - In(baseMe asure)

_ S - nam e = LinesOfCode2Main tainability
amelMainiain Rl unit = MaintainabilityUnit
library = SMM sam pleLibrary

+b asee Measure

. +scope
:RatioM easure
:Characteristic Hrait functor = divide +scope :Scope
name = AverageCodeLength name = Ave ModuleLOC dass=codeeodencnt
library = SMMsampleL ibrary
unit = LineOfCode/code::Mod ule /
+scope
+baseMeasure 2
N\
:Addi tiveMe asure
:Characteristic +rait accumulator = sum
name = M oduleCount name = Mod ule Cou ntinModel
library = SMM sampleLibrary
unit = cod e:: Module
+baseMe asurel
:Additiv eMeasure
:Characteri stic Hrait accumulator = sum +scope :Sc ope
name = LineCount name = ModuleTotalL OC class = code:: Module
unit = LineOfCode
library = SMMsamp leLibrary

Figure 19.29 - Conversion of LOC to Maintainability

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

obj ect CommentedCodeMaintainability

:Rescaled Measure

:Characteris tic +rait operation = 21 - In(baseMeasure)

name = Maintainability name = Com mentedne s2Maintainabili ty
unit = Maintainabil ityUnit
library = SMMsampleL ibrary

+baseMeasure
+scope
:Rati oM easure
:Characteristic -+ trait functor = divide +scope :Scope
name = AverageComm entedness name = AveModule Comm entPercentage class = cod e:: Cod eModel
library = SMMsampleL ibrary
unit = Percent/code ::Module +soope/
:Addi tiveMe asure
:Charac teristic +rait

accumulator = sum

name = M oduleCount name = Mod ule Cou ntinMode |
library = SMM sampleLibrary
unit = code:: Module

:Additiv eMeasure

:Charac teristic +trait accumulator = sum

name = Comme ntLineCount name = ModuleCommentLines
unit= Line
library = SMM sam pleLibrary

Figure 19.30 - Conversion of Comment Count to Maintainability

90 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

obj ect SEI_Maintain ability

+baseMeasure

+baseMeasure

:AgaregatedM easure
aggregator = uum
name = SIE_MaintainabilityMeasure
unit = Maintainabil ityUnit
library = SMMsampleL ibrary

+baseMeasure

+baseMeasure

:RescaledMeasure

operation = 50 - 5.2*In(baseMeasure)
name = Volume2M aintainabi lity
unit = MaintainabilityUnit

library = SMMsamp leLibrary

:RescaledMeasure

operation = 50 - 0.2 3*h a® Measure
name = Cyc omatic2Maintain ability
unit = MaintainabilityUnit

library = SMMsamp leLibrary

+trait

+trait

:RescaledMeasure

operation = 21 - In(baseMeasure)
name = LinesOf Cod e2Maintainability
unit = MaintainabilityUnit

library = SMMsamp leLibrary

:Characteristic

name = Maintainability

+Hrait

+trait/ +trait/

+SCOE +SCOpe, +scope\

:RescaledMeasure

operation = 21 - In(baseMeasure)

name = Commente dnes2 Maintaina bility

unit = MaintainabilityUnit
library = SMMsamp leLibrary

Figure 19.31 - SEI Maintainability Demonstration

19.7 Qualitative Example

19.7.1 Non-standard language usage score

+scope

:Scope
class = code ::CodeMode |

7
+scope

Non-standard languages are defined by an organization’s accepted technology standards. Assign the following scores where a
lor2islow, a3ismediumanda5ishigh:

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

91

1. 2GL or unacceptable 4GL assign 1 or 2
2. Acceptable 3GL or 4GL assign 3 or 4

3. ldeadl strategic language assign 5

class NonstandardLanguage

:Rankinginterval
symbol = 2GL
minimum Endpoint=1
maxi mumEnd point = 2
maxi mumOpen = false
minimum Open = false

+inte rval

:Characteristic

name = Stan dardnessOfSourceLanguag e

:Rankinglnterv al

+trait symbol = Unacceptable 3GL or 4GL
minimum Endpoint=1
+inte rval maxi mumEnd point = 2

maxi mumOpen = false
/ minimum Open = false

:Ranking
name = Source LanguageScore
library = SMMsampl eLibrary

———+inte val ;
— :Rankinginterv al

symbol = Acceptable 3GL or 4GL
minimum Endpoint =3

+scope maxi mumEndpoint = 4
maxi mumOpen = false
:Scope minimum Open = fale

class = code::AbstractCode Ele ment

+inte rval .
N :Rankinglinterv al

symbol = Id eal Strategic Language

minimum Endpoint =5

minimum Open = false

maxi mumOpen = false

Figure 19.32 - Qualitative Measure Demonstration

92 Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

20 Library of Categories (Software example)

20.1 General

SMM does not establish a standard set of measurement categories that presents an organization of measures applicable to
every environment or every engineering activity. SMM minimally establishes a demonstration library of metric categories.
Thelibrary does not assert that the given categories are standards. These metric categories reflect a high-level summary of
industry metrics that support some engineering processes.

20.2 Environmental Metrics

Number of screens, programs, lines of code, etc.

20.3 Data Definition Metrics

Number of data groups, overlapping data groups, unused data elements, etc.

20.4 Program Process Metrics

Halstead, McCabe, etc.

20.5 Architecture Metrics

Average call nesting level, deepest call nesting level, etc.

20.6 Functional Metrics

Functions defined in system, business data as a percentage of all data, functionsin current system that map to functionsin
target architecture, etc.

20.7 Quality / Reliability Metrics

Failures per day, meantime to failure, meantime to repair, etc.

20.8 Performance Metrics

Average batch window clock time, average online response time, etc.

20.9 Security / Vulnerability

Breaches per day, vulnerability points, etc.

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

93

94

Architecture-driven Modernization: Structured Metrics Meta-Model (SMM), v1.0

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgments

	7 SMM Introduction
	7.1 Overview
	7.1.1 Goals

	7.2 General Usage Notes (Non normative)
	7.3 Steps in using SMM (Non-normative)
	7.4 Interpreting Measures (Informative)

	8 Core Classes
	8.1 General
	8.2 SmmElement Class (Abstract)
	8.3 SmmModel Class
	8.4 SmmRelationship Class (abstract)
	8.5 MeasureLibrary Class
	8.6 MeasureCategory Class
	8.7 CategoryRelationship
	8.8 Date
	8.9 Timestamp

	9 Extensions
	9.1 General
	9.2 Attribute Class
	9.3 Annotation Class

	10 Measures
	10.1 General
	10.2 Characteristic Class
	10.3 Scope Class
	10.4 Measure Class (abstract)
	10.5 Operation Class
	10.6 OCLOperationClass
	10.7 MeasureRelationship Class (abstract)
	10.8 EquivalentMeasureRelationship Class
	10.9 RefinementMeasureRelationship Class
	10.10 RecursiveMeasureRelationship Class
	10.11 DimensionalMeasure Class
	10.12 Ranking Class
	10.13 RankingMeasureRelationship
	10.14 RankingInterval Class

	11 Collective Measures
	11.1 General
	11.2 CollectiveMeasure Class
	11.3 Accumulator data type (enumeration)
	11.4 DirectMeasure Class
	11.5 Counting Class
	11.6 BinaryMeasure Class
	11.7 Ratio Class
	11.8 BaseMeasureRelationship Class
	11.9 Base1MeasureRelationship Class
	11.10 Base2MeasureRelationship Class

	12 Other Measures
	12.1 General
	12.2 NamedMeasure Class
	12.3 RescaledMeasure Class
	12.4 RescaledMeasureRelationship Class

	13 Measurements
	13.1 General
	13.2 Measurement Class (abstract)
	13.3 MeasurementRelationship Class (abstract)
	13.4 EquivalentMeasurementRelationship
	13.5 RefinementMeasurementRelationship Class
	13.6 RecursiveMeasurementRelationship Class
	13.7 DimensionalMeasurement Class
	13.8 Grade Class
	13.9 RankingMeasurementRelationship Class

	14 Collective Measurements
	14.1 General
	14.2 CollectiveMeasurement Class
	14.3 DirectMeasurement Class
	14.4 Count Class
	14.5 BinaryMeasurement Class
	14.6 RatioMeasurement Class
	14.7 BaseMeasurementRelationship Class
	14.8 Base1MeasurementRelationship Class
	14.9 Base2MeasurementRelationship Class

	15 Named and Rescaled Measurements
	15.1 General
	15.2 NamedMeasurement Class
	15.3 RescaledMeasurement Class
	15.4 RescaledMeasurementRelationship Class

	16 Observations
	16.1 General
	16.2 Observation Class
	16.3 ObservationScope Class
	16.4 ObservedMeasure Class
	16.5 Argument Class

	17 Historic and Trend Data (Non-normative)
	17.1 General

	18 Inaccuracy (Non-normative)
	18.1 General

	19 Library of Measures (Non-normative)
	19.1 General
	19.2 Various Counts
	19.2.1 Module Count
	19.2.2 Screen Count
	19.2.3 Method Count
	19.2.4 Lines of Code
	19.2.5 Lines of Code for ASTM

	19.3 McCabe
	19.3.1 Branching Factor of ActionElements and Modules
	19.3.2 Cyclomatic Complexity of a Module
	19.3.3 Extended Cyclomatic Complexity of a Module
	19.3.4 Average Extended Cyclomatic Complexity of Modules in the System

	19.4 Ratio of Additive ECC over Additive Counting of modules. Counts of Operating Systems
	19.5 Halstead
	19.5.1 Distinct Operator Count of a Module
	19.5.2 Distinct Operand Count of a Module
	19.5.3 Operator Occurrence Count of a Module
	19.5.4 Operand Occurrence Count of a Module
	19.5.5 Halstead Length of a Module
	19.5.6 Halstead Vocabulary of a Module
	19.5.7 Halstead Volume of a Module

	19.6 Software Engineering Institute (SEI) Maintainability Index
	19.7 Qualitative Example
	19.7.1 Non-standard language usage score

	20 Library of Categories (Software example)
	20.1 General
	20.2 Environmental Metrics
	20.3 Data Definition Metrics
	20.4 Program Process Metrics
	20.5 Architecture Metrics
	20.6 Functional Metrics
	20.7 Quality / Reliability Metrics
	20.8 Performance Metrics
	20.9 Security / Vulnerability

