

Date: April 2013

MOF Support for Semantic Structures

Version 1.0

OMG Document Number: formal/2013-04-02
Standard document URL: http://www.omg.org/spec/SMOF/1.0/
Machine Consumable Files:
 Normative: http://www.omg.org/spec/SMOF/20120801/SMOF.xmi

http://www.omg.org/spec/SMOF/20120801/SMOFAbstractSemantics.ocl
 Non-normative: http://www.omg.org/spec/SMOF/20120801/MOF-SMOF.zip

http://www.omg.org/spec/SMOF/20120801/SMOFAbstractDomainModel.emx

Copyright © 2009-2012, 88solutions Corporation
Copyright © 2009-2012, Adaptive, Inc.
Copyright © 2009-2012, Deere & Company
Copyright © 2009-2012, Mega International
Copyright © 2009-2012, Microsoft Corporation
Copyright © 2009-2012, Model Driven Solutions
Copyright © 2013, Object Management Group, Inc.
Copyright © 2009-2012, Thematix Partners (formerly known as Sandpiper Software, Inc.)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specifica-
tion in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specifi-
cation to create and distribute software and special purpose specifications that are based upon this specification, and to
use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the specifica-
tions is for informational purposes and will not be copied or posted on any network computer or broadcast in any media
and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specifi-
cation. This limited permission automatically terminates without notice if you breach any of these terms or conditions.
Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CON-
SEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE,
INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFOR-
MANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This dis-
claimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™, MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes the
testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

Table of Contents

Preface..iii

1 Scope ... 1

2 Conformance .. 1
2.1 SMOF for CMOF Compliance ... 1
2.2 SMOF for EMOF Compliance .. 1

3 Normative References ... 1
3.1 List of Normative References .. 1
3.2 List of Non-Normative References .. 2

4 Terms and Definitions .. 2

5 Symbols ... 2

6 Additional Information .. 2
6.1 How to Read this Specification .. 2
6.2 Changes to Adopted OMG Specifications 3
6.3 Acknowledgements ... 3

7 Concept Overview and Use Cases (informative) 5
7.1 Overview .. 5
7.2 Multiple and Dynamic Classification .. 5
7.3 Use Case: UML ... 6
7.4 Use Case: Semantic of Business Vocabularies and
 Business Rules (SBVR) ... 6
7.5 Use Case: Ontology Definition Metamodel (ODM) 7

8 Abstract Syntax Architecture .. 9
8.1 Overview .. 9

9 Metamodel Extensions ... 11
9.1 Common SMOF Extensions .. 11
MOF Support for Semantic Structures, v1.0 i

9.1.1 Abstract Syntax ..11
 9.1.1.1 Class Descriptions ... 11

10 Abstract Semantics .. 15
10.1 SMOF Semantic Domain Model .. 15

10.1.1 Class ..17
10.1.2 Instance ..18

11 Changes to the XMI Serialization ... 23
ii MOF Support for Semantic Structures, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
MOF Support for Semantic Structures, v1.0 iii

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the URI cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.
iv MOF Support for Semantic Structures, v1.0

1 Scope

The Meta Object Facility has proven itself as a valuable and powerful foundation for a family of modeling languages, like
UML, ODM, CWM, etc.

However, MOF 2 suffers from the same structural rigidity as many object-oriented programming systems, lacking the
ability to classify objects by multiple metaclasses, the inability to dynamically reclassify objects without interrupting the
object lifecycle or altering the object's identity, and a too constrained view on generalization and properties.

This extension to MOF modifies MOF 2 to support dynamically mutable multiple classifications of elements and to
declare the circumstances under which such multiple classifications are allowed, required, and prohibited.

2 Conformance

The Semantic MOF specifies two compliance options:

1. SMOF for CMOF

2. SMOF for EMOF

2.1 SMOF for CMOF Compliance

As described in Clause 9, package merge is used to extend the CMOF metamodel to produce the SMOF for CMOF, or
SCMOF compliance level.

2.2 SMOF for EMOF Compliance

As described in Clause 9, package merge is used to extend the EMOF metamodel to produce the SMOF for EMOF, or
SEMOF compliance level. This also necessitates the inclusion of Abstractions::Constraints and Abstractions::Expressions
into SEMOF, because Semantic MOF of its nature involves the declaration of constraints.

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

3.1 List of Normative References

Meta Object Facility (MOF) Core Specification, Version 2.4.1, OMG Document formal/2011-08-07

Meta Object Facility (MOF) Facility Object Lifecycle, Version 2.0, OMG Document formal/10-03-04

OMG Unified Modeling LanguageTM (UML), Superstructure, Version 2.4.1, OMG Document formal/2011-08-06

MOF/XMI Mapping, Version 2.4.1, OMG Document formal/2011-08-09
MOF Support for Semantic Structures, v1.0 1

The Object Constraint Language (OCL) Version 2.3.1 is used to define constraints and semantics in subsequent clauses of this
specification. The OCL 2.3.1 language definition can be found here:

Object Constraint Language Specification, Version 2.3.1, OMG Document formal/2012-01-01

3.2 List of Non-Normative References

The following specification is mentioned in descriptive text of subsequent clauses, but does not constitute a normative part of
this specification:

• Semantics of a Foundational Subset for Executable UML Models, Version 1.0, OMG Document formal/2011-02-01

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

5 Symbols

No symbols are defined by this specification.

6 Additional Information

6.1 How to Read this Specification

This specification is part of the MOF 2 specifications. As such, it does not contain a complete specification of the Meta
Object Facility version 2, but an increment to extend the MOF 2 Core with features to handle semantic structures. To obtain
a complete extended MOF 2 specification, the content of this specification must be merged with the MOF 2 Core
specification.

Clause 7 provides several non-normative use cases and examples to introduce the problem area addressed by this
specification. Clause 8 formally positions this specification in relationship to the Complete MOF (CMOF) specification
contained in the MOF 2 Core document. Clause 9 provides the abstract syntax and detailed descriptions of the MOF
extensions specified in this document. Clause 10 provides the corresponding changes to the abstract semantics. Clause 11
contains the required changes to the XMI serialization.

Multiple Classification The type of an object resulting from instantiating the union of structural and
behavioral features defined by two or more independent metaclasses into a
single object.

Dynamic Reclassification The ability to add or remove metaclasses from the type of an object during
the lifecycle of that object. The addition or removal of metaclasses may alter
the structure and/or behavior of the object, but does not alter the object’s
identity.
2 MOF Support for Semantic Structures, v1.0

6.2 Changes to Adopted OMG Specifications

This specification amends / modifies the following OMG specifications:

• MOF Core 2.4.1

• MOF Facility Object Lifecycle 2.0

6.3 Acknowledgements

The following companies submitted this specification:

• 88solutions

• Adaptive

• Deere & Company

• Mega International

• Microsoft

• Model Driven Solutions

• Thematix Partners (formerly known as Sandpiper Software)

The following companies supported this specification:

• Computer Science Corporation
MOF Support for Semantic Structures, v1.0 3

4 MOF Support for Semantic Structures, v1.0

7 Concept Overview and Use Cases (informative)

7.1 Overview

The Meta Object Facility (MOF) takes a central architectural role in the family of modeling languages developed at the
Object Management Group (OMG). The combination of multiple meta-levels and reflection provides a flexible and
powerful but simple foundation for more elaborate modeling languages, like UML 2.

However, most object-oriented systems (including MOF) suffer from structural rigidness and lack the ability to address
temporal aspects in an elegant way. This makes a correct representation of real-world facts difficult, if not impossible.
Problem areas are the type / classification system and object relationships. Currently, if an object is created, it is
instantiated with the type and features of its defining class, and it has to live as such until its destruction. In reality,
objects are subject to constant variations without changing their identity, they undergo changes in classifications and
assumed roles. This deficiency has a direct negative impact on several MOF-based metamodels and languages. Clause 7.2
demonstrates the impact on the Semantic for Business Vocabularies and Business Rules (SBVR) specification, and clause
7.3 shows the workarounds needed to base the Ontology Definition Metamodel (ODM) on MOF.

7.2 Multiple and Dynamic Classification

In most traditional object-oriented systems, object instances are statically typed (classified) by their defining classifier at
instantiation time and retain this type and all structural and behavioral features defined by this type for the entire lifetime
of the instance. MOF and most object-oriented programming languages follow this scheme. However, it is often desirable
to change the type of an object instance at a certain point of time without affecting the existence (and identity) of the
object instance. This is achieved by dynamic classification. The type of an object, ignoring primitive types for a moment,
has structural consequences for the object; it is the “blueprint” defining the structural and semantic implementation of the
type’s features within this object. If we change the type of an object instance through dynamic classification, then we
need to readjust the object’s features according to the new type.

For example, a person identified as “Fred” graduates from university and becomes an employee of a corporation.
Consequently we dynamically reclassify Fred from type “Student” to type “Employee.” In this process Fred loses his
feature “studentId” and gains the features “employeeNumber” and “monthlySalary.”

Dynamic classification of single-classified objects is rather drastic, as all features of the object need to be revisited.
Multiple classification avoids this, the resulting object instances represent the union of feature instances (slots) from all
defining classifiers (types) of the object. As a consequence, multiple classified objects become conceptually
inhomogeneous; the conceptual single object is structured into slices, where each slice represents the slots defined by one
classifier. Applying dynamic classification to multiple classified objects means effectively adding, removing, or
exchanging of slices of that object instance without affecting the life of the object as long as at least one slice remains at
all time.

Multiple classification of our “Fred” enables him to be an employee during daytime and a student in the evening.

This example provides insight into another interesting side effect of the object slicing caused by multiple classification:
Multiple containment. Containment means a “part-of” relationship, which applies on a slice-by-slice basis in multiply
classified objects. The classification of our “Fred” as employee implies a part-of relationship to his employing company.
But this part-of relationship affects only the employment-relevant features of Fred, which means the slice defined by the
“Employee” classification. The same holds for the part-of relationship with the school defined by the “Student”
classification. This shows that multiply classified objects may participate concurrently in multiple containments, but on a
MOF Support for Semantic Structures, v1.0 5

slice-by-slice basis to be exact. If a container is deleted, then the corresponding slice is removed from the object. If the
object was multiply classified, the corresponding classification is also removed from the object. If the object is singly
classified, or if this was the last remaining classification, the object is deleted.

SMOF extends MOF with the abilities of multiple classification and dynamic classification. This is achieved by extending
Element in MOF::Reflection with the ability to be classified by more than one metaclass, and by adding new reflective
operations to Element which allow querying, adding, and removing of metaclasses during the lifetime of Element. Slices
are not explicitly modeled; they are implicitly defined by the features contributed by each classifying metaclass. Slices
become visible in the containment and delete semantics, and in the XMI serialization.

7.3 Use Case: UML

An example issue with UML is the inability for actor to have the capabilities of a structured classifier.

Figure 7.1

Consider that Actor, BehavioredClassifer, and StructuredClassifier were aspects as shown above. This would then allow
the SAME classifier to be an actor and a structured classifier, yet these concepts remain uncoupled in the metamodel. To
allow this capability in the current UML metamodel these all get inherited into a class that could do anything and
everything, which makes it unwieldy and difficult to use. It also makes it difficult to add or federate capabilities without
modifying the source metamodels. This demonstrates how SMOF facilitates a less coupled approach to metamodeling
while allowing a more flexible way to combine features.

7.4 Use Case: Semantic of Business Vocabularies and Business Rules
(SBVR)

New metamodeling infrastructure layers are being built within ‘MOF’ metamodels: for example the Essential SBVR in
the Semantics of Business Vocabulary and Rules (SBVR). The following is an instance diagram example from the SBVR
specification that shows, to achieve the required flexibility, elements can only be typed by a generic MOF metaclass
called Thing. An aim of this specification is to allow SBVR to represent the types of the domain directly in MOF.

6 MOF Support for Semantic Structures, v1.0

Figure 7.2

7.5 Use Case: Ontology Definition Metamodel (ODM)

One of the incentives for this specification was the requirement in OMG specifications for multiple classification. This
issue was identified in SBVR as well as “ODM” (Ontology Definition Metamodel). ODM provides a MOF meta model of
multiple ontology languages, including OWL. The following model fragment is from ODM.

Figure 7.3

MOF Support for Semantic Structures, v1.0 7

Note that there are several subclasses of “Property.” This matches the semantics of OWL in that a property can be any of
these subclasses but can also be a combination of these classes. A property can, for example, be functional and transitive.
Here, due to the single classification restriction of MOF, it is not possible to directly represent the intended OWL
semantics or even the OWL structure. In OWL an instance can be classified by any number of classifiers. To allow for the
intended OWL semantics in ODM using SMOF, each of the subtypes of Property should be an “AspectOf” of Property
and they would then be able to be combined in any order. Where there are restrictions on these combinations
“IncompatibleWith” can be used to declare which combinations are invalid.

Semantic MOF representation of OWL properties

The following model fragment shows the SMOF solution where the generalizations are marked as “aspects” of the more
general class. Since each asset is a classification of the same individual this matches the intent of the ODM model
without refactoring. Note that some combinations are invalid, which could be represented using “IncompatibleWith” as it
is using OWL disjoint.

Figure 7.4

8 MOF Support for Semantic Structures, v1.0

8 Abstract Syntax Architecture

8.1 Overview

Semantic structures may be introduced into MOF in multiple ways. However, not every method provides backward
compatibility with the existing MOF 2 Core. The approach selected in this specification aims for a maximum of
compatibility with MOF 2.

The following diagram shows the SMOF extension of MOF as a Package diagram.

Figure 8.1 - The SMOF Packages in relation to the EMOF / CMOF Packages

MOF Support for Semantic Structures, v1.0 9

The SMOF specification is part of the MOF 2 family of specifications. As such, it constitutes an increment building on
top of the MOF 2 Core. To obtain a complete extended MOF 2 specification with support for semantic structures (SMOF),
the content of this specification must be merged with the MOF 2 Core specification using Package Merge.

In order to support the two SMOF compliance levels, SEMOF as extension of EMOF, and SCMOF as extension of
CMOF, additional package merge steps are required due to the limitations of EMOF.

Package SEMOF contains all MOF 2 Core extensions provided by SMOF. Beginning with MOF Core 2.4, MOF shares
the metamodel with UML Superstructure by reusing UML’s Kernel package. Constraints in the MOF Core 2.4.1
specification enumerate the concrete metaclasses from UML’s Kernel permitted for use by MOF metamodels separately
for EMOF and CMOF.

SMOF requires the concrete metaclasses Constraint, Expression, and OpaqueExpression, which are not available in
EMOF. Therefore this specification amends constraint [8] in clause 12.4 of the MOF Core 2.4.1 specification by:

For SEMOF, the following concrete metaclasses from UML’s Kernel may also be used:

• Constraint

• OpaqueExpression

Package SCMOF does not contain any SMOF-specific extensions; it merges the additional features of CMOF (compared
to EMOF) into package SEMOF.

This specification amends clause 12.5 of the MOF Core 2.4.1 specification, in the part headed
Property::isComposite==true, as follows:

Replace “An object may have only one container” by “An object may have at most one container, or if the object is
multiply classified, at most one container per classifier.”

Replace “Only one container property may be non-null” by “Only one container property, or if the object is multiply
classified only one container property per classifier, may be non-null.”

Replace “If an object has an existing container and a new container is to be set, the object is removed from the old
container before the new container is set” by “If an object has an existing container and a new container is to be set for
the same container property, the object is removed from the old container before the new container is set.”
10 MOF Support for Semantic Structures, v1.0

9 Metamodel Extensions

9.1 Common SMOF Extensions

9.1.1 Abstract Syntax

Figure 9.1 - Reflection, as extended by SMOF

9.1.2 Class Descriptions

9.1.2.1 Constraint (as extended)

Description

The semantics of Constraint from MOF are extended to express disjoint and equivalent Classes.

Semantics

A Constraint with constrainedElements that are Classes, and with specification that is an OpaqueExpression with
language[0] = ‘SMOF’ and body[0] one of {‘disjoint,’ ‘equivalent’} has the effect of declaring that the
constrainedElements are respectively disjoint or equivalent.

9.1.2.2 Element (as extended)

Package: SEMOF
isAbstract: Yes
Generalization: Reflection::Object

Description

Element is extended with a new operation getMetaClasses to return multiple values. The original getMetaClass
operation is retained. If there is only one metaclass, then getMetaClass will return it; otherwise, an exception will be
thrown. Two additional operations provide reclassification capabilities. Note that the existing operation isInstanceOf can
still be used to check whether an Element conforms to a class.

Attributes

No new attributes
MOF Support for Semantic Structures, v1.0 11

Associations

Operations

Constraints

[1] Metaclasses to be added must not be abstract.
 not self.getMetaClasses()->exists(isAbstract=true)

/metaclass : UML::Classes::Kernel::Class [1..*]

(A_element_metaclass)(

A derived association providing navigation capabilities between
metalevels. The association is navigable in both directions, but the
association owns both ends. This association redefines the
equivalent association defined by MOF Core, but with different
multiplicity and navigation.

getMetaClasses() : Class [1..*] Returns the set of metaclasses that classify this element.

getMetaClass(): Class Redefines MOF::Reflection::Element::getMetaClass(). If
getMetaClasses only contains one class, this is returned by
getMetaClass; otherwise, getMetaClass will throw an exception.

reclassify(oldMetaClass : Class [0..*],
 newMetaClass: Class [0..*])

This pair of operations provides the capability to reclassify any
instance of SMOF::Element or its subclasses. Reclassification is
not permitted for any element contained in package SMOF.

reclassifyAll(newMetaClass : Class [1..*]) Reclassification of the element instance using either of the two
operations is performed as an atomic step and results either in a
complete reclassification, or has no effect at all. See “Semantics”
below for the detailed description.

The operation reclassify() will throw an exception if
oldMetaClass contains any metaclass that does not currently
directly classify the object.

addMetaClass(newMetaClass : Class [1..*]) Add the specified metaclasses to the classification of element.
This is a convenience signature for reclassify() and equivalent to
calling reclassify with an empty oldMetaClass argument. e.g.:
reclassify(, new).

removeMetaClass(oldMetaClass : Class [1..*]) Remove the specified metaclasses from the classification of
element. This is a convenience signature for reclassify() and
equivalent to calling reclassify with an empty newMetaClass
argument. e.g.: reclassify(old,).

container() : Element Redefines MOF::Reflection::Element:container(). Returns the
parent container of this element if any. Return Null if there is no
containing element. If more than one container exists, which is
possible in the case of multiple classification, a call to container
will return Null and throw an exception.

getContainers() : Element [0..*] Returns all existing parent containers for this element.

getContainerForMetaClass(metaClass : Class)
 :Element

Returns the parent container, if any, defined by the classification
by MetaClass. Returns Null if no such container exists.
12 MOF Support for Semantic Structures, v1.0

[2] Any element must be classified by at least one metaclass.
 self.getMetaClasses()->size() >=1

[3] The metaclass association is derived from the getMetaClasses operation.
 self.metaClass = self.getMetaClasses()

Semantics

Any instance of SMOF::Element or its subclasses can be reclassified as constrained by the applicable Compatibility and
Incompatibility elements.

Two operations, reclassify() and reclassifyAll() are provided to perform the reclassification (see below for the
difference). Reclassification is performed as an atomic step: either the element instance is reclassified by the resulting set
of classes derived during operation execution and all related side effects on all affected features of the element instance
are completely performed, or the operation execution has no effect on the element instance at all and will signal its
failure.

The signature of reclassify() has two input parameters: oldMetaClass lists the classes to be removed, newMetaClass
lists the classes to be added to the set of classes classifying the element instance. The signature of reclassifyAll() has only
the parameter newMetaClass and implies that all existing classes shall be removed. Besides this, both operations
implement identical behavior.

• Reclassification preserves the identity of the reclassified element instance.

• When the operation completes, at least one class must classify the element instance, and none of the classes classifying
the element instance may be abstract.

• If the set of classes to be removed contains classes identical to classes in the set of classes to be added, then these
classes are not removed, the corresponding classes in the set of classes to be added are discarded, and all values for
features defined by these classes remain untouched.

• If a class contained in the set of classes to be removed defined some features of the element instance, which are
identically defined again by a class in the set of classes to be added, then the existing feature values are preserved
unchanged. (For example when an old and a new metaclass share a common ancestor, or where an old and a new
metaclass are ancestors of one another).

Any attempt to use reclassify(), reclassifyAll(), or addMetaClass() to simultaneously classify an element by metaclasses
marked as disjoint, or which have any ancestors marked as disjoint, will cause the reclassification to fail and an exception
will be thrown.

A new operation getMetaClasses(), has been introduced to return a list of all classes classifying the Element on which the
operation is performed.

The existing operation getMetaClass(), as defined in MOF::Reflection, is redefined to return either the single metaclass
if there is one, or to throw an exception.

Association A_element_metaclass redefines the equivalent unidirectional association defined by MOF Core. The
association is derived using the SMOF operation getMetaclasses(). It can be used by OCL expressions to navigate
between Elements and their metaclasses.

Multiply classified Elements may participate in multiple containments concurrently at any time provided that each
containment is defined by a different classifying metaclass, and the containment semantic is restricted to the slice of the
Element defined by that metaclass. A “slice of the Element” is defined as the structural and behavioral features of the
MOF Support for Semantic Structures, v1.0 13

Element defined by the corresponding metaclass. At most one slot within a slice for the opposite of a composite property
may have a value, where “slot within a slice” means that the slot has a defining feature owned by the corresponding
metaclass or one of its ancestors.

If a container Element is deleted, which contained a multiple classified Element through a composite relationship, then
the classifying metaclass that defined the part end of the composite relationship must be removed from the contained
Element, effectively deleting the slice of that Element defined by that metaclass.

9.1.2.3 Factory

Factory has not changed from CMOF. If an Element with multiple classifications needs to be constructed, a two-step
process must be applied:

1. Create the Element with single classification using one of the CMOF Factory operations create() or createElement().

2. Add additional metaclasses using the SMOF Element::addMetaClass() operation.
14 MOF Support for Semantic Structures, v1.0

10 Abstract Semantics

This clause describes the abstract semantics of SMOF. It uses essentially the same approach as the abstract semantics of
CMOF but is reformulated here. The semantics of the SMOF reflective operations are described by the effect of
corresponding operations on an abstract semantic domain model.

10.1 SMOF Semantic Domain Model

This specification does not model the semantics of Extents, which are unchanged from the MOF specification. The goal
of this clause is to model the new semantics of Elements including the possibility of multiple classifications. This covers
the concepts of multiply classified Elements, their Properties and values of those properties, including creation and
destruction.

The SMOF semantic domain model is an extended version of a subset of UML 2.4.1 L1. The reused subset of UML
contains the following non-abstract classes, all of their superclasses, and all properties, associations, constraints, and
operations defined on these: Class, Association, Property, and OpaqueExpression. In what follows, this subset of UML is
called CAPO. The non-abstract classes introduced by the semantic domain model are Instance, Link, Slot, LinkSlot, and
InstanceValue.

Figure 10.1 - Semantic Domain Model Package

The extensions are introduced to simplify the modeling of instances and links and to introduce new operations and
constraints that define the semantics.

CAPO

SMOFAbstractDomainModel

«merge»
MOF Support for Semantic Structures, v1.0 15

Figure 10.2 - SMOFAbstractDomainModel package

The semantics of SMOF::Element are modeled by instances of Instance according to the constraints and operations
defined in what follows. To break any apparent circularity we assume that the semantics of instantiating the domain
model itself are as defined in the OCL 2 specification, which also of course allows us to use OCL to express constraints
over instances of the abstract semantics domain model.

Slightly more formally, we are introducing a semantic function Φ that is a homomorphism from elements and operators
in the SMOF specification to elements and operators in the semantic domain:

Φ : SMOF → SMOF::AbstractDomainModel

Such that for every n-ary operator μ:

Φ(μ(a1,.. ,an) = Φ(μ)(Φ(a1), ..., Φ(an))

Because CAPO shares its content with those aspects of UML that are merged into SMOF, much of Φ is simply an identity
mapping. Hence Φ(SMOF::Class) = SMOFAbstractDomainModel::Class, Φ(SMOF::Property) =
SMOFAbstractDomainModel::Property, and so on. Φ applied to any operation or attribute maps to a corresponding
operation or attribute with the same name. Φ is the identity when applied to any data type or data value.

The interesting semantics are captured as follows.

For all instances obj of SMOF::Object:

16 MOF Support for Semantic Structures, v1.0

-- Elements map to Instances
if (obj.isInstanceOfType(SMOF::Element, true)) then
Φ(obj).oclIsKindOf(SMOFAbstractDomainModel::Instance)

-- Links map to Links
if (obj.isInstanceOfType (SMOF::Link, true)) then
Φ(obj).oclIsKindOf(SMOFAbstractDomainModel::Link)

For all operations defined on classes in SMOF:

Φ(el.op(a1,.. ,an)) = Φ(el).Φ(op)(Φ(a1), ..., Φ(an))

For all properties defined on classes in SMOF:

Φ(el.attr) = Φ(el).Φ(attr)

Said in English, this means that the meaning of an operation or attribute applied to the element el is defined by the
meaning of the corresponding operation or attribute in the semantic domain, with the mapping function applied to all of
its arguments and results.

The following constraints and operations are introduced in the SMOFAbstractDomainModel package and apply to the
classes in the merged semantic domain model in addition to all constraints defined in CAPO.

10.1.1 Class

Constraints

• NotBothEquivalentAndDisjoint
No pair of classes exists such that they are both equivalent and disjoint

 inv: not Class.allInstances()->exists(c | self.isEquivalentTo(c) and
 self.isDisjointWith(c) or self.hasDisjointAncestorsWith(c)))

Operations

• isDisjointWith(other) :
 post: result = Constraint.allInstances()->exists(c |

 c.specification.oclIsKindOf(OpaqueExpression)

 and c.specification.oclAsType(OpaqueExpression).language->at(0)='SMOF'

 and c.specification.oclAsType(OpaqueExpression)._'body'->at(0)='disjoint'

 and c.constrainedElement->includes(self)

 and c.constrainedElement->includes(other))

• isEquivalentTo(other) :
 post: result = Constraint.allInstances()->exists(c |

 c.specification.oclIsKindOf(OpaqueExpression)

 and c.specification.oclAsType(OpaqueExpression).language->at(0)='SMOF'

 and c.specification.oclAsType(OpaqueExpression)._'body'->at(0)='equivalent'
MOF Support for Semantic Structures, v1.0 17

 and c.constrainedElement->includes(self)

 and c.constrainedElement->includes(other))

• hasDisjointAncestorsWith(other) :
 post: result = self.allParents()->exists(c1 | other.allParents()->exists(c2 |

c1.oclAsType(Class).isDisjointWith(c2.oclAsType(Class))))

• directlyEquivalentClasses() :
 post: result = Class.allInstances()->select(c | self.isEquivalentTo(c))

• thisAndAllParents() :
 post: result = self->union(allParents()->collect(oclAsType(Class))->asSet())

10.1.2 Instance

Constraints

• OnlyClassesAndAssociations
The classifiers can only be Classes or Associations.

 inv: classifier->forAll(c | c.oclIsKindOf(Class) or c.oclIsKindOf(Association))

• LinksClassifiedByAssociations
If the InstanceSpecification is not a Link, none of its classifiers are associations.

 inv: not self.oclIsKindOf(Link) implies classifier->forAll(c |
 c.oclIsKindOf(Class))

• ClassifiersNotAbstract
All classifiers are non-abstract.

 inv: not classifier->exists(isAbstract)

• SlotsHaveDefiningProperties
The defining feature of each slot is a structural feature (directly or inherited) of a classifier of the instance
specification.

 inv: slot->forAll(s | classifier->exists (c |

 c.allFeatures()->includes (s.definingFeature)))

• AtMostOneSlotPerFeature
One structural feature (including the same feature inherited from multiple classifiers) is the defining feature of at most
one slot in an instance specification.

 inv: classifier->forAll(c | (c.allFeatures()->forAll(f |

 slot->select(s | s.definingFeature = f)->size() <= 1)))

• NoDisjointClasses
No two metaclasses may be disjoint or have disjoint ancestors.

 inv: let classes : Set(Class) = self.getMetaClasses() in
18 MOF Support for Semantic Structures, v1.0

 classes->forAll(c1 | not classes->exists(c2 | c1 <> c2 and
 (c1.isDisjointWith(c2) or c1.hasDisjointAncestorsWith(c2))))

• AtLeastOneClassifier
Each instance is classified at least once.

 inv: classifier->notEmpty()

• AllEquivalentClasses
If any metaclasses or their ancestors have equivalent classes, then those equivalent classes are also classifiers, either
directly or indirectly.

 inv: self.hasAllEquivalentClasses()

• AtMostOneContainerPerClassifier
At most one slot within a slice for the opposite of a composite property may have a value.

 inv: let containerSlots : Set(Slot) = Link.allInstances()->select(link |

 link.secondSlot.value->any(true).oclAsType(InstanceValue).instance = self

 and

 link.secondSlot.definingFeature.oclAsType(Property).isComposite

)->collect(firstSlot)->asSet() in

 classifier->forAll(cls |

 containerSlots->select(slot |

 cls.allFeatures()->includes(slot.definingFeature))->size() <= 1)

Operations

• reclassify(oldMetaClassnewMetaClass) :
 pre: not newMetaClass->exists(isAbstract)

 pre: not self.classifier->exists(oclIsKindOf(Association))

 pre: let classesToRemove : Set(Class) = oldMetaClass->reject(o |

 newMetaClass->includes(o)) in

 let classesToAdd : Set(Class) = newMetaClass->reject(n |

 oldMetaClass->includes(n)) in

 let classesToLeave : Set(Class) = (self.getMetaClasses()->reject(c |

 classesToRemove->includes(c)))->union(classesToAdd) in

 classesToLeave->notEmpty() and classesToLeave ->forAll(ctl1 |

 not classesToLeave ->exists(ctl2 |

 ctl1.isDisjointWith(ctl2) or ctl1.hasDisjointAncestorsWith(ctl2)))

 pre: oldMetaClass->forAll(omc | getMetaClasses()->includes(omc))

 post: let classesToRemove : Set(Class) = oldMetaClass->reject(o |

 newMetaClass->includes(o)) in

 let classesToAdd : Set(Class) = newMetaClass->reject(n |

 oldMetaClass->includes(n)) in
MOF Support for Semantic Structures, v1.0 19

 let classesToLeave : Set(Class) = (self.getMetaClasses()->reject(c |

 classesToRemove->includes(c)))->union(classesToAdd) in

 self.getMetaClasses()->includesAll(classesToLeave) and

self.hasAllEquivalentClasses()

 post: (slot@pre->reject(s | slot->includes(s)))->forAll(sl |

 self.slotIsCleared(sl.definingFeature.oclAsType(Property)))

 post: (slot->reject(s | slot@pre->includes(s)))->forAll(sl |

 sl.value->any(true).equals(

 sl.definingFeature.oclAsType(Property).defaultValue))

• reclassifyAll(newMetaClass) :
 pre: not newMetaClass->exists(isAbstract)

 pre: not self.classifier->exists(oclIsKindOf(Association))

 pre: newMetaClass ->forAll(nmc1 | not newMetaClass ->exists(nmc2 |
 nmc1.isDisjointWith(nmc2) or nmc1.hasDisjointAncestorsWith(nmc2)))

 post: self.getMetaClasses()->includesAll(newMetaClass) and
 self.hasAllEquivalentClasses()

 post: (slot@pre->reject(s | slot->includes(s)))->forAll(sl |

 self.slotIsCleared(sl.definingFeature.oclAsType(Property)))

 post: (slot->reject(s | slot@pre->includes(s)))->forAll(sl |

 sl.value->any(true).equals(

 sl.definingFeature.oclAsType(Property).defaultValue))

• getMetaClass() :
 pre: self.getMetaClasses()->size() = 1

 post: result = self.getMetaClasses()->one(true)

• getMetaClasses() :
 post: result = self.classifier->select(oclIsKindOf(Class))->

 collect(oclAsType(Class))->asSet()

• slotIsCleared(prop) :
 post: prop.isComposite and prop.type.oclIsKindOf(Class) implies

 Link.allInstances()->select(link |

 link.firstSlot.value->any(true).oclAsType(InstanceValue).instance = self

 and link.secondSlot.definingFeature.oclAsType(Property) = prop)
 ->collect(link |

 link.secondSlot.value.oclAsType(InstanceValue).instance)
 ->forAll(i | i.metaClassIsRemoved(prop.type.oclAsType(Class)))
20 MOF Support for Semantic Structures, v1.0

• container() :
 pre: self.getContainers()->size() <= 1

 post: result = self.getContainers()->any(true)

• getContainers() :
 post: result = Link.allInstances()->select(link |

 link.secondSlot.value->any(true).oclAsType(InstanceValue).instance = self
 and link.secondSlot.definingFeature.oclAsType(Property).isComposite)->

 collect(link |

 link.firstSlot.value->any(true).oclAsType(InstanceValue).instance)
 ->asSet()

• getContainerForMetaClass(metaClass) :
 pre: Link.allInstances()->select(link |

 link.secondSlot.value->any(true).oclAsType(InstanceValue).instance = self and

 link.secondSlot.definingFeature.oclAsType(Property).isComposite and

 metaClass.thisAndAllParents()->

 includes(link.secondSlot.definingFeature.type.oclAsType(Class)))->

 collect(link |

 link.firstSlot.value->any(true).oclAsType(InstanceValue).instance)
 ->asSet()->size() <= 1

 post: result = Link.allInstances()->select(link |

 link.secondSlot.value->any(true).oclAsType(InstanceValue).instance = self and

 link.secondSlot.definingFeature.oclAsType(Property).isComposite and

 metaClass.thisAndAllParents()->

 includes(link.secondSlot.definingFeature.type.oclAsType(Class)))->

 collect(link |

 link.firstSlot.value->any(true).oclAsType(InstanceValue).instance)
 ->asSet()->any(true)

• metaClassIsRemoved(class) :
 post: (slot@pre->reject(s | slot->includes(s)))->forAll(sl |

 self.slotIsCleared(sl.definingFeature.oclAsType(Property)))

 post: not self.getMetaClasses()->includes(class)

• hasAllEquivalentClasses() :
 post: result = self.getMetaClasses()->forAll(c1 |

 let classAndAncestors : Set(Class) = c1.thisAndAllParents(),

 directEquivalences : Set(Class) = classAndAncestors->

 collect(directlyEquivalentClasses())->asSet() in

 directEquivalences->forAll(e |

 self.getMetaClasses()->exists(c2 |

 c2.thisAndAllParents()->includes(e)))

)
MOF Support for Semantic Structures, v1.0 21

• delete() :
 post: slot@pre->forAll(sl |

 self.slotIsCleared(sl.definingFeature.oclAsType(Property)))
22 MOF Support for Semantic Structures, v1.0

11 Changes to the XMI Serialization

Normally XMI element names are derived from the metamodel names: the root XMI element uses a metaclass name and
the other elements use the name of the Property used to link the element to its container, with the xmi:type attribute
indicating the actual metaclass (for single-inheritance metamodels xsi:type can be used).

xmi:ids only need to be unique within a document, and there is nothing to stop many xmi:ids being used for the same
element in either the same, or different documents: they are all unified through using the same xmi:uuid. Though the use
of xmi:uuid is generally optional in XMI, it is needed in such cases.

To allow the serialization of multiple classifications for an element, SMOF makes use of this existing mechanism with a
separate XML element per class applied to a model element. Thus no changes are required to the XMI specification, and
importers can deal with XMI documents from SMOF as they do with any other XMI document.

For example:

<xmi:XMI xmlns:xmi="http://www.omg.org/spec/XMI/20100901"

 xmlns:uml="http://www.omg.org/spec/UML/20100901"

 xmlns:bpmn="http://www.omg.org/spec/BPMN/20100501">

 <uml:Package name="P1" xmi:id="x1" xmi:type="uml:Package">

 <packagedElement xmi:id="x2" xmi:uuid="myorg.models.m555.e123” name="myClass"

 xmi:type="uml:Class">

 ... content related to uml:Class

 </packagedElement>

 </uml:Package>

 <bpmn:Definitions name = "Defs1" xmi:id="x3" xmi:type="bpmn:Definitions">

 <rootElements xmi:id="x4" xmi:uuid="myorg.models.m555.e123" name="myProcess"

 xmi:type=”bpmn:Process”>

 ...content related to bpmn:Process

 </rootElements >

 </bpmn:Definitions>

</xmi:XMI>

Note: in the above, the ‘name’ properties for the uml:Class and bpmn:Process are different.

Alternatively, the individual metaclass-related aspects could be serialized in different XMI files.

The above also represents one option for serializing multiple ownership (the same element having multiple composite
owners through being multiple classified). Another option is to serialize the MOF Associations: this example uses a
combination of XML nesting and an Association element in the same file; alternatively they could be in separate files
with an href rather than an xmi:idref used:

<xmi:XMI xmlns:xmi="http://www.omg.org/spec/XMI/20100901"

 xmlns:uml="http://www.omg.org/spec/UML/20100901"

 xmlns:bpmn="http://www.omg.org/spec/BPMN/20100501">

 <uml:Package name="P1" xmi:id="x1" xmi:type="uml:Package">

 <packagedElement xmi:id="x2" xmi:uuid="myorg.models.m555.e123” name="myClass"
MOF Support for Semantic Structures, v1.0 23

 xmi:type="uml:Class">

 ... content related to uml:Class

 </packagedElement>

 </uml:Package>

 <bpmn:Definitions name = "Defs1" xmi:id="x3" xmi:type="bpmn:Definitions"/>

 <bpmn:Process xmi:id="x4" xmi:uuid="myorg.models.m555.e123" name="myProcess"

 xmi:type=”bpmn:Process”>

 ...content related to bpmn:Process

 </bpmn:Process>

 <bpmn:A_definitions_rootElements>

 <definition xmi:idref="x3"/>

 <rootElements xmi:idref="x4"/>

 </bpmn:A_definitions_rootElements>

</xmi:XMI>

In the case where more than one metaclass shares the same property, the shared slots must be separately, and somewhat
redundantly, serialized for each metaclass.

In order to provide control over how the metaclass aspects are serialized, additional options are added to the export
option. Since this control over serialization is applicable to non-SMOF facilities, this represents a change to the general
MOF Facility and Object Lifecycle specification.

In detail the change is as follows:

Add the following properties to the ExportOptions data type in section 6.10.3.2.1:

onlyPackages:Package[0..*] If a value is supplied for this property, only direct instances of classifiers in the
specified packages are included in the export (in addition to those explicitly
specified through onlyClassifiers).

onlyClassifiers: Classifier[0..*] If a value is supplied for this property, only instances of the specified classifiers
are included in the export, in addition to those specified through the onlyPackages
property. Unlike that other property, specifying Classifiers in this property
includes subtypes.
24 MOF Support for Semantic Structures, v1.0

	Preface
	1 Scope
	2 Conformance
	2.1 SMOF for CMOF Compliance
	2.2 SMOF for EMOF Compliance

	3 Normative References
	3.1 List of Normative References
	3.2 List of Non-Normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 How to Read this Specification
	6.2 Changes to Adopted OMG Specifications
	6.3 Acknowledgements

	7 Concept Overview and Use Cases (informative)
	7.1 Overview
	7.2 Multiple and Dynamic Classification
	7.3 Use Case: UML
	7.4 Use Case: Semantic of Business Vocabularies and Business Rules (SBVR)
	7.5 Use Case: Ontology Definition Metamodel (ODM)
	Semantic MOF representation of OWL properties

	8 Abstract Syntax Architecture
	8.1 Overview

	9 Metamodel Extensions
	9.1 Common SMOF Extensions
	9.1.1 Abstract Syntax
	9.1.2 Class Descriptions
	9.1.2.1 Constraint (as extended)
	9.1.2.2 Element (as extended)
	Description
	Attributes
	Associations
	Operations
	Constraints
	Semantics
	9.1.2.3 Factory

	10 Abstract Semantics
	10.1 SMOF Semantic Domain Model
	10.1.1 Class
	Constraints
	Operations

	10.1.2 Instance
	Constraints
	Operations

	11 Changes to the XMI Serialization

