
i

Date: March 2012

Satellite Operations Language Metamodel
Final Specification, version 1.0

OMG Document Number: dtc/2012-03-18

Standard document URL: http://www.omg.org/spec/SOLM/1.0

Associated Schema Files(s): http://www.omg.org/spec/SOLM/20120301

Primary Contact:
Brad Kizzort, Harris Corporation

email: bkizzort@harris.com

ii

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company’s products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create
and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute
this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this
permission notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and
will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred
for commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically
terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any
copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required
by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means–graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems–without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY
OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE,
INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR
USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This disclaimer
of warranty constitutes an essential part of the license granted to you to use this specification.

iii

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph © (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph ©(1) and (2) of the
Commercial Computer Software – Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object
Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and IIOP®
are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™, OMG
Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That’s Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are trademarks
of the Object Management Group. All other products or company names mentioned are used for identification purposes only, and
may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report
any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web
page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue
(http://www.omg.org/technology/agreement.htm).

iv

Table of Contents

Table	of	Contents	
Revision History .. viii

Introduction .. 1

1 Scope .. 2

1.1 General .. 2

1.2 Environments Supporting SOLM.. 4

1.3 Transition to SOLM .. 4

2 Conformance .. 4

3 References .. 5

3.1 Normative References ... 5

4 Terms and Definitions.. 6

5 Glossary ... 6

6 Meta-model Definition ... 7

6.1 General .. 7

6.2 Procedure Invocation ... 10

6.2.1 ModeledProcedure ... 11

6.2.2 NativeProcedure ... 12

6.2.3 Procedure ... 12

6.2.4 ProcedureArgument ... 13

6.2.5 Comment .. 13

6.2.6 HeaderComment .. 14

6.2.7 InlineComment .. 14

6.3 Activities ... 14

6.3.1 Action ... 17

6.3.2 Activity .. 18

6.3.3 ActivityEdge .. 18

6.3.4 ActivityFinalNode.. 19

6.3.5 ActivityGroup .. 19

6.3.6 ActivityNode .. 20

6.3.7 ControlFlow ... 20

v

6.3.8 ControlNode ... 21

6.3.9 DecisionNode ... 21

6.3.10 ExecutableNode ... 21

6.3.11 Expression .. 22

6.3.12 FinalNode ... 22

6.3.13 ForkNode ... 23

6.3.14 HandledExceptionRegion .. 23

6.3.15 InitialNode ... 23

6.3.16 JoinNode .. 24

6.3.17 MergeNode .. 24

6.3.18 ObjectFlow ... 25

6.3.19 ValueNode ... 25

6.4 Parameters ... 26

6.4.1 SpecificTime .. 27

6.4.2 Device .. 28

6.4.3 ExternalParameter .. 29

6.4.4 GemsParameter .. 29

6.4.5 GroundParameter ... 29

6.4.6 InstantValue ... 30

6.4.7 InternalParameter ... 30

6.4.8 Parameter ... 31

6.4.9 ParameterType ... 31

6.4.10 TimeInterval ... 31

6.4.11 ProcedureEnvironment .. 32

6.4.12 ProcedureVariable .. 33

6.4.13 Restriction .. 33

6.4.14 SpaceSystem .. 34

6.4.15 Time ... 35

6.4.16 XtceParameter .. 35

6.5 Command Transmission .. 35

6.5.1 Command ... 36

6.5.2 CommandArgument ... 37

6.5.3 CommandRequest .. 37

vi

6.5.4 CustomDirective .. 38

6.5.5 Directive ... 39

6.5.6 DirectiveArgument .. 39

6.5.7 GemsDirective ... 39

6.6 Procedure Actions ... 40

6.6.1 Invoke .. 41

6.6.2 ParameterRead ... 41

6.6.3 ParameterWrite .. 42

6.6.4 Query.. 42

6.6.5 Send.. 43

6.6.6 Verify ... 43

6.6.7 VerifyExpression ... 43

6.6.8 VerifyRange ... 44

6.6.9 Wait .. 44

6.6.10 WaitOnExpression ... 45

6.6.11 WaitOnTime .. 45

6.7 Operations Language Metamodel RFP Requirements .. 49

7 Comet Control Language (CCL) Mapping .. 51

7.1 General .. 51

8 SpacePython Mapping ... 56

8.1 General .. 56

vii

Figure 1 SOLM Context .. 3

Figure 2 Process Modeling .. 3

Figure 3 Notional System Sequence Diagram (Non-Normative) .. 7

Figure 4 Notional SOLM Procedure Activity Diagram (Non-Normative) .. 9

Figure 5 Key SOLM Classes ... 10

Figure 6 Procedure Signatures ... 11

Figure 7 Activities.. 15

Figure 8 Control Nodes .. 15

Figure 9 Control and Data Flow .. 16

Figure 10 Exception Handling ... 17

Figure 11 GEMS and XTCE Parameters ... 26

Figure 12 Procedure Environment ... 27

Figure 13 Directives: CommandRequests and GemsDirectives .. 36

Figure 14 SOLM Action Nodes for Activity Diagrams ... 40

Figure 15 Invoke Subprocedure ... 41

Figure 16 Parameter Read .. 46

Figure 17 Parameter Write ... 46

Figure 18 Query Operator .. 47

Figure 19 Send Directive ... 47

Figure 20 Verify State .. 48

Figure 21 Wait ... 48

viii

Revision History

Date Version Description Author
November 18th
2005

1.0 Initial version from the submission team. Brad Kizzort,
Jim Cater,
Geri Chaudhri

April 17th 2006 1.1 Revised submission based on Rhea metamodel Brad Kizzort,
Jim Cater,
Geri Chaudhri

May 26th 2008 1.1.5 Revised submission based on a service modeling approach Brad Kizzort
August 25th 2008 1.2 Revised submission to address issues raised Brad Kizzort
February 23rd
2008

1.3 Revised submission to incorporate a UML profile
approach.

Brad Kizzort,
Geri Chaudhri

February 22nd,
2010

1.4 Continue refining UML profile approach, adding a system
model and an xmi interchange file for the profile.

Brad Kizzort,
Geri Chaudhri

September 22nd,
2010

1.5 Fully develop mappings to SpacePython and CCL Brad Kizzort

November 8th,
2010

1.6 Add stereotypes and mappings for Verify, Comments,
Error Handling

Brad Kizzort

December 2nd,
2010

1.7 Remove UML profile, add corrections and clarification
based on comments from AB.

Brad Kizzort

February 20th,
2011

1.8 Cleanup metamodel based on comments from AB. Make
sure all relationship ends are named, attributes and
operations are public. Apply metamodel profile in EA.
Remove UML Activity Diagram / Profile dependencies
and define as standalone MOF metamodel. Provide
semantics for all classes.

Brad Kizzort

March 18th, 2011 1.9 Remove Java types from model and make private
attributes public in the model. Update external spec
references. Clarify Time class names, semantics and
terminology and introduce concept of execution loci.
Update figures affected by model changes.

Brad Kizzort

1

Introduction
Automation of ground station operations is crucial to efficient and cost-effective spacecraft
operations. Automation is achieved when scripted procedures are used to conduct normal
operations, such as configuration of ground equipment for a satellite contact, commanding the
spacecraft or payload to a new configuration, commanding a spacecraft maneuver, etc. There
are a variety of spacecraft operations scripting languages in use today. These languages are
incompatible between different ground system developers and spacecraft vendors. Transfer of
a satellite from one ground system to another ground system, as would occur during a ground
system upgrade, is therefore more expensive due to the required conversion of thousands of
lines of automation scripts. A common meta-model format for capturing the operations
procedure definition from one implementation and allow conversion into another
implementation scripting language would provide significant cost savings, even if 100%
conversion is not achieved. Another area of benefit would be direct transfer of test and
configuration procedures from spacecraft component test environments into satellite integration
environments and into operations environments.

2

1 Scope
1.1 General

This specification defines a meta-model, Satellite Operations Language Meta-model (SOLM),
for representing spacecraft operations procedures. These procedures contain sequences of
instructions to conduct spacecraft operations, typically consisting of spacecraft commands and
spacecraft telemetry comparisons. These procedures may also include the configuration of
ground equipment, configuration of spacecraft test equipment, execution of ground testing, and
execution of on-orbit testing. Historically, these procedures have been captured in flowcharts,
text manuals, and a number of different scripting languages used for ground station automation.
A standard meta-model to represent spacecraft operations procedures will facilitate the transfer
of procedures between the spacecraft vendor and the spacecraft operator, as well as allow for
maintenance and transfer of the procedures across different ground systems employed over the
lifetime of the spacecraft.

This specification is primarily aimed at providing procedure portability for earth-orbiting
satellites. While deep-space spacecraft use similar operational procedures, they also use
extensive on-board procedures and there are significant considerations in the representation of
time that are not incorporated in this meta-model.

SOLM allows the definition of a platform independent model (PIM) of a spacecraft procedure.
The PIM can be mapped into a platform-specific model (PSM) for procedure execution. As
shown in Figure 1, the spacecraft operator actor represents the operations group that conducts
spacecraft operations. This actor is the primary user of the SOLM repository and maintains
spacecraft operations procedures in the repository. The SOLM Repository is shown with a
multiplicity association with only one spacecraft, due to dependencies on spacecraft-specific
command and telemetry definitions. Because there may be multiple operations groups that share
control of the spacecraft either simultaneously or over time, the multiplicity relationship is
shown as 1 or more spacecraft operators. The spacecraft integrator/manufacturer may provide an
initial set of procedures in the SOLM format or these procedures may be translated into SOLM.

3

Figure 1 SOLM Context

Viewing SOLM as process modeling, SOLM represents the meta-model M2 layer that allows
definition of platform independent models (M1) of spacecraft procedures, as shown in Figure 2.
Occurrences of procedure executions are the M0 layer, taking on specific parameter values and
event times. Spacecraft operators and integrators can develop and exchange M1 models for a
specific spacecraft by using SOLM as the common M2 metamodel.

Figure 2 Process Modeling

4

1.2 Environments Supporting SOLM
There are two environments that support the SOLM. The first environment is the modeling
environment for defining platform independent spacecraft operations procedures, which is
represented as the SOLM Repository in Figure 1. The second environment is the platform-
specific procedure execution environment, represented by the two secondary system actors,
Translator and Direct Executive, in Figure 1. Compliant implementations can provide
translation, modeling or execution in either or both of these environments.

A SOLM Translator reads a spacecraft procedure PIM and translates it to a procedure that can be
executed by a specific ground system. This procedure will typically be in the native scripting
language used by the ground system. Choosing a SOLM Translator as the procedure mapping
environment allows for minimal performance impact when implementing SOLM for an existing
ground system. The target language for a translator is a Domain Specific Language (DSL), and
many DSL’s may be targeted by a translator.

A SOLM Modeling Tool maintains a repository of spacecraft procedure PIM’s and can export
PSM’s for a specific execution environment.

A SOLM execution environment is a specific ground system used for spacecraft test or
operation. A SOLM-compliant ground system may use a Translator or a Direct Executive to
execute procedures provided as SOLM models in an XMI document or as a SpacePython
procedure file. The SpacePython language is a DSL that is designed to accept all of the SOLM-
defined model in the target procedure.

A SOLM Direct Executive executes the spacecraft procedure reading the PIM directly, without
translating it into a specific intermediate representation.

1.3 Transition to SOLM
There is a large body of existing spacecraft operations procedures. Initially, the most desirable
SOLM capabilities will be translation of existing procedures into a SOLM repository and either
translating or direct execution environments for executing SOLM-based procedure models. As
the base of SOLM-compliant execution environments expands, and the body of SOLM-based
procedure models expands, the market for modeling tools to create, validate, and maintain
SOLM-based procedures will develop. A significant part of this specification is the mapping of
existing procedure languages to SOLM, and this mapping is intended to be bi-directional to
speed the transition. Mappings for other existing or new scripting languages for spacecraft
operations may be developed and published as SOLM-related specifications.

2 Conformance
A SOLM modeling tool must be able to read and write a spacecraft procedure PIM as an XMI
document or as a SpacePython procedure file. A modeling tool must support definition of
procedures containing all of the standard SOLM elements, including transformation of XML
Telemetry and Command Exchange (XTCE) documents to define the Command and Parameter
objects that may be referenced by the procedure model, and transformation of GEMS parameter
and directive definition documents into DirectiveTemplate and Parameter objects that may be
referenced by the procedure. A modeling environment may also support simulation of procedure

5

execution and/or an execution display of the procedure in an execution environment. When a
SOLM modeling tool is requested to write a spacecraft procedure PSM for a target platform that
does not support exception handling or threaded procedure execution defined in the procedure
model, it must generate an error message identifying the activity diagram node or procedure file
line number that causes the inability to translate.

A compliant SOLM execution environment can provide three levels of compliance:

1. Level 1 compliance must provide execution of procedure models containing conditionals,
looping, timed waits, SOLM::NativeProcedure invocations, and Command and Parameter
objects from an XTCE document. It must also support exception handling and early
termination of a procedure due to errors in a procedure step.

2. Level 2 compliance must provide execution of procedure models as in 1, but also
including DirectiveTemplate and Parameter objects from a GEMS equipment definition.

3. Level 3 compliance must provide execution of procedure models as in 2, but also support
parallel execution threads in a procedure.

3 References
3.1 Normative References
The following normative documents contain provisions which, through reference in this text,
constitute provisions of this specification. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply:

The following OMG standards provided the MOF/UML foundation of SOLM:

UML 2.4.1 (formal/11-08-05, formal/11-08-06)

MOF 2.4.1 Core Specification (formal/11-08-07)

XML Metadata Interchange (XMI) provides a syntactic interchange mechanism for models. It is
expected that models conforming to this specification will be interchanged using XMI.

MOF 2 XMI Mapping, v2.4.1 (formal/11-08-09)

The following domain specifications provide the formats for the definition of pre-existing objects
made available to the procedure modeler in a compliant modeling environment.

XML Telemetric and Command Exchange (XTCE) Version 1.1 (formal/2008-03-01),

Ground Equipment Management Specification (GEMS) Version 1.2, (dtc/2011-04-01)

6

4 Terms and Definitions
For the purposes of this specification, the terms and definitions given in the normative references and the
following apply:

Ground System – The target system that performs command and telemetry processing for the
spacecraft and monitors and controls ground equipment.

SOLM execution environment – a software environment for spacecraft operations or testing that
executes SOLM procedures either directly or translated into a native format.

SOLM Modeling Tool – a software environment that supports the development of spacecraft
operations procedures.

5 Glossary
HTTP – Hyper Text Transfer Protocol
SOLM – Satellite Operations Language Metamodel

UML – Unified Modeling Language
URL – Universal Resource Locator
XMI – XML Metadata Interchange
XSD – XML Schema Definition
XSLT – XML Stylesheet Language Transformations
XTCE – XML Telemetry and Command Exchange format

7

6 Meta-model Definition
6.1 General
In order to leverage existing commercial standards and technologies, this specification defines a MOF-based
meta-model. This approach is intended to allow the application of existing modeling and model
transformation environments for spacecraft operations procedures.

The SOLM procedure execution environment could be modeled as interacting with two external actors, an
operator, and the ground system that controls the spacecraft and ground equipment, as shown in Figure 3.
The procedure execution environment may actually be part of the Ground System, but for the purposes of
defining the procedure, the interactions with the operator and the ground system are the significant features.

The notional sequence diagram illustrates that the interactions with the operator are primarily to obtain
parameter values and permission to continue with procedure execution. A specific procedure will have
specific parameter requirements or may require no interaction with the operator to complete the activity.

Operator

Procedure
Execution

Environment

Ground
System

Query for parameter

Set parameter

Request parameter

Parameter value

Query for release

Parameter value

Issue Directive

Issue release

Figure 3 Notional System Sequence Diagram (Non-Normative)

The interaction with the Ground System includes parameter values and directives. Parameter values
supplied to the procedure can guide or change procedure execution paths or supply values for directives.
Parameter values set in the Ground System by the procedure may guide or control execution in the ground
system. Directives are an abstraction that covers both spacecraft commands and ground system commands.
Directives result in commands being transmitted to the spacecraft or reconfiguration of the Ground System.

This notional sequence diagram also illustrates the critical actions that must be logged by a procedure
execution environment as an operations log. Each interaction with the Operator or Ground System is a
critical action that must be logged as part of the operations log.

8

Existing spacecraft procedure definition and development lends itself well to simple flowcharting. Most
procedures are simple sequences of commands, with some conditional checks to verify system state before
or after a command transmission. Existing languages attempt to make it easy to send spacecraft commands
or configure ground equipment, but are not strong in arithmetic or computational performance. The SOLM
proposal uses a metamodel similar to the UML Activity Diagram to capture a workflow for the modeled
procedure.

Reuse of the activity diagram metamodel implies that a target language may be required to support
threading for multi-threaded activities and handling for early/error termination of a procedure or sub-
procedure, in order to handle any procedure defined in an activity diagram. Not all existing control
languages provide these capabilities, but the SpacePython described in this specification does, and the
Comet Control Language (CCL),mapped to SOLM in this specification, supports early/error termination.

9

Figure 4 Notional SOLM Procedure Activity Diagram (Non-Normative)

Figure 4 illustrates the definition of a simple spacecraft operating procedure using an activity diagram. This
procedure will also be used in demonstrating the mapping of SOLM to two existing spacecraft operations
languages.

Figure 5 is an overview of the key classes and relationships for SOLM. Each of the following sections will
provide subset of the model and descriptions and semantics for the classes. All classes in SOLM are
presented as UML in this document, but the normative metamodel is provided as a MOF XMI file. The
classes outlined with the dashed XTCE and GEMS box represent classes that will be instantiated from
XTCE and GEMS definitions by the SOLM modeling environment.

10

Figure 5 Key SOLM Classes

The ProcedureEnvironment maintains a collection of Procedures with specified ProcedureArguments that
defines how to invoke each Procedure. The Procedures that are ModeledProcedures have an Activity that
defines the procedure step-by-step. The ProcedureEnvironment may also have GroundParameters that are
used within Procedures and are treated as global to all procedures, as are the other ExternalParameters that
are defined for spacecraft and ground equipment in the XTCE and GEMS definitions. One of the key
Actions in an Activite is the Send action, which is causes a Directive to be sent during procedure execution.
Directives include GemsDirectives and CommandRequests that are the primary contents of spacecraft
operations procedures.

6.2 Procedure Invocation
Procedure invocation, either manual or via an Invoke action in a running procedure, is more simplistic than
the UML model. For that reason a simplified procedure signature is modeled as shown in Figure 6. All
ProcedureArguments are input to the procedure, there is no concept of an out or inout ProcedureArgument.
Any outputs use the Send or ParameterWrite action. ProcedureArgument is derived from Parameter and the
types match those of the GEMS and XTCE parameters.

11

Figure 6 Procedure Signatures

There may also be sub-procedures that are in the native scripting language that are not translated into the set
of SOLM procedure models shown in the diagram as class NativeProcedure. These sub-procedures must
also be able to be invoked from a SOLM model. Because of the different capabilities of different ground
system languages in passing and returning values to/from sub-procedures, the sub-procedure invocation is
cast as input only Parameters defined in a procedure signature with a single integer returned from the
procedure invocation. Additional output Parameters may be set within the procedure only as
ExternalParameters.

6.2.1 ModeledProcedure
A ModeledProcedure is a Procedure with an Activity definition for all of the operational steps.
6.2.1.1 Generalizations

• Procedure, page 12
6.2.1.2 Attributes

12

No additional attributes.
6.2.1.3 Associations

• behaviour:Activity – the modelled behaviour of the Procedure.
6.2.1.4 Constraints

No additional constraints
6.2.1.5 Semantics

A ModeledProcedure has one activity definition with a single InitialNode that is the start of execution.

6.2.2 NativeProcedure
A NativeProcedure is a Procedure that can be invoked by another Procedure in SOLM, but does not have a
modelled behaviour. It is defined in the modelling environment so that it can be invoked by modelled
procedures and must be provided as a procedure executable by name in the execution environment. It is
intended to support procedures that are in the ground system native format that cannot be fully modelled in
SOLM due to system-specific extensions.
6.2.2.1 Generalizations

• Procedure, page 12
6.2.2.2 Attributes

No additional attributes.
6.2.2.3 Associations

No additional associations.
6.2.2.4 Constraints

No additional constraints
6.2.2.5 Semantics

A NativeProcedure runs to completion when invoked before returning control to the invoking Procedure.
The NativeProcedure may return an error that can be handled by an exception handler

6.2.3 Procedure
6.2.3.1 Generalizations

None
6.2.3.2 Attributes

• description:String – A short text description of the effects of the procedure that can be presented to a
modeller or operator for procedure selection. This text will typically be included in the header of a
script file.

• duration:TimeInterval – An estimated time period that is required for procedure execution that could
be used in planning and scheduling the operation. A negative time value must be used to indicate
that the procedure is too variable to predict or has no time estimate.

• lastModified:SpecificTime – the last time that the procedure was modified. This will typically be
included as a text comment in the procedure to aid configuration management and anomaly
resolution.

• name:String – the name of the procedure

13

• version:String – a version number assigned to the last modification time.
6.2.3.3 Associations

• argument:ProcedureArgument[0..*] – arguments to the procedure that can receive specific values at
execution time to modify the behaviour and actions of the procedure.

• header:HeaderComment[0..1] – an optional long text description of the procedure that can be
included in the header of a script file.

6.2.3.4 Constraints

No additional constraints
6.2.3.5 Semantics

A Procedure can be invoked with specific ProcedureArgument values at run-time, either directly by an
operator submitting it to the SOLM execution environment, or as a sub-procedure invocation by another
executing procedure.

6.2.4 ProcedureArgument
A ProcedureArgument provides Parameter values to a specific invocation of a Procedure.
6.2.4.1 Generalizations

• InternalParameter, page 30
6.2.4.2 Attributes

No additional attributes.
6.2.4.3 Associations

• procedure:Procedure – the Procedure this argument supplies values to
6.2.4.4 Constraints

No additional constraints
6.2.4.5 Semantics

The value for a ProcedureArgument can be specified at the time of invocation. The value may be
referenced in expressions defined in the Activity. A ProcedureArgument is input only, it may be set within
the Procedure behaviour, but the changed value is not returned to a calling Procedure.

6.2.5 Comment
A Comment is descriptive text in a Procedure
6.2.5.1 Generalizations

None
6.2.5.2 Attributes

• text:String – the descriptive text
6.2.5.3 Associations

No additional associations.
6.2.5.4 Constraints

No additional constraints

14

6.2.5.5 Semantics

Comments do not affect the execution of a procedure, but provide a way to capture descriptive text in the
comments of an existing script.

6.2.6 HeaderComment
6.2.6.1 Generalizations

• Comment, page 13
6.2.6.2 Attributes

No additional attributes.
6.2.6.3 Associations

• subject:Procedure – the Procedure this comment describes.
6.2.6.4 Constraints

No additional constraints
6.2.6.5 Semantics

The text contents of a HeaderComment would normally be included in the header of a translated native scipt
by a SOLM translator.

6.2.7 InlineComment
6.2.7.1 Generalizations

• Comment, page 13
6.2.7.2 Attributes

No additional attributes.
6.2.7.3 Associations

• subject:ActivityNode – the action/condition/parameter this comment describes.
6.2.7.4 Constraints

No additional constraints
6.2.7.5 Semantics

The text contents of an InlineComment would normally be included inline in the translated native script by a
SOLM translator.

6.3 Activities
The basic model of a ModeledProcedure is captured in an Activity, which is a collection of ActivityEdges
and ActivityNodes. SOLM reuses the abstract syntax of the Activity modeling in UML and Foundational
UML, but there are some simplifications to the meta-model and semantics, since SOLM is not intended as a
general purpose software metamodel. Figure 7 through Figure 10 show the portions of SOLM related to
defining an operations procedure as an Activity.

15

Figure 7 Activities

Figure 8 Control Nodes

16

Figure 9 Control and Data Flow

17

Figure 10 Exception Handling

6.3.1 Action
An Action is an abstract executable node in the Activity that defines procedure behaviour .
6.3.1.1 Generalizations

• ExecutableNode, page 21
6.3.1.2 Attributes

No additional attributes.
6.3.1.3 Associations

No additional associations.
6.3.1.4 Constraints

No additional constraints
6.3.1.5 Semantics

The sequencing of actions are controlled by control edges within activities, which carry control (see
Activity). Except where noted, an action can only begin execution when it has been offered control tokens
on all incoming control flows and values are available for all of the incoming object flows. Note that this

18

differs from the UML semantics in that there are no dynamic object creations and deletions during the
activity execution. This is a simplification in keeping with the procedural nature of existing spacecraft
operations languages. When the execution of an action is complete, it offers control tokens on its outgoing
control flows and specified Parameter values are replaced by outgoing object flows. The steps of executing
an action with control and object flow are as follows:

[1] An action execution is created when all its control flow prerequisites have been satisfied (implicit
join). Any exceptions to this are listed in the subclass action semantics.

[2] When an action accepts the offers for control tokens, the tokens are removed from the original
sources that offered them. If multiple control tokens are available on a single incoming control flow,
they are all consumed.

[3] An action continues executing until it has completed. The detailed semantic of execution an
action and definition of completion depends on the particular subclass of action.

[4] When completed, an action execution offers control tokens on all its outgoing control flows
(implicit fork), and it terminates. Exceptions to this are listed below. The offered tokens may now
satisfy the control flow prerequisites for other action executions.

[5] After an action execution has terminated, its resources may be reclaimed by an implementation,
but the details of resource management are not part of this specification. All Actions in the current
model are locally reentrant. This means that there may be, within any one execution of the
containing activity, more than one concurrent execution of the action ongoing at any given time.

6.3.2 Activity
An Activity defines the behaviour of a ModeledProcedure
6.3.2.1 Generalizations

None
6.3.2.2 Attributes

No additional attributes.
6.3.2.3 Associations

• edge:ActivityEdge[*] – an edge representing a control or data flow between two ActivityNodes
• node:ActivityNode[*] – the data and control nodes in an Activity
• procedure:ModeledProcedure[1] – the Procedure that the Activity defines the behaviour for.

6.3.2.4 Constraints

No additional constraints
6.3.2.5 Semantics

An Activity has one InitialNode that begins the control flow execution of a Procedure. Activity control flow
terminates if an error is encountered, unless the error occurs in a HandledExceptionRegion defined within
the Activity.

6.3.3 ActivityEdge
An ActivityEdge is an abstract class for directed connections (control or data flow) between two
ActivityNodes.
6.3.3.1 Generalizations

19

None
6.3.3.2 Attributes

No additional attributes.
6.3.3.3 Associations

• activity:Activity[0..1] – the owning activity
• target:ActivityNode[1] – the target node of this flow.
• source:ActivityNode[1] – the source node of this flow.
• guard:Expression[0..1] – an expression limiting control flow on this edge.

6.3.3.4 Constraints

A guard is only allowed if the source of the edge is a DecisionNode
6.3.3.5 Semantics

An ActivityEdge can be either a ControlFlow or an ObjectFlow between two ActivityNodes.

6.3.4 ActivityFinalNode
An ActivityFinalNode ends execution of a Procedure.
6.3.4.1 Generalizations

• FinalNode, page 22
6.3.4.2 Attributes

No additional attributes.
6.3.4.3 Associations

No additional associations.
6.3.4.4 Constraints

No additional constraints
6.3.4.5 Semantics

An ActivityFinalNode terminates execution of a procedure. All threads of execution of the procedure
terminate. Parallel flows should use a JoinNode or a MergeNode to coalesce with other execution threads
prior to the ActivityFinalNode, otherwise active threads associated with parallel flows will be terminated by
the thread (control flow) that reaches the ActivityFinalNode.

6.3.5 ActivityGroup
An ActivityGroup is a subset of the ActivityNodes in an Activity
6.3.5.1 Generalizations

None
6.3.5.2 Attributes

No additional attributes.
6.3.5.3 Associations

containedNode:ActivityNode[*] – nodes in group
6.3.5.4 Constraints

20

No additional constraints
6.3.5.5 Semantics

An ActivityGroup is an abstract collection of ActivityNodes. No descendants, other than
HandledExceptionGroup is currently defined for SOLM.

6.3.6 ActivityNode
An ActivityNode is a data or control node in an Activity.
6.3.6.1 Generalizations

None
6.3.6.2 Attributes

No additional attributes.
6.3.6.3 Associations

• activity:Activity[0..1] – Activity that the node belongs to.
• description:InlineComment[0..1] – description of the ActivityNode effects on procedure.
• incoming:ActivityEdge[*] – incoming data or control flow.
• outgoing:ActivityEdge[*] – outgoiong data or control flow.
• inGroup:ActivityGroup[*] – groups that contain this node
• inExceptionRegion:HandledExceptionRegion[*] – exception handler regions that contain this node.
• sender:HandledExceptionRegion[*] – regions from which this node receives control when

exceptions occur.
6.3.6.4 Constraints

No additional constraints
6.3.6.5 Semantics

An ActivityNode is an abstract node. See descendants for semantics.

6.3.7 ControlFlow
A ControlFlow transfers execution control from one ActivityNode to the next.
6.3.7.1 Generalizations

• ActivityEdge, page 18
6.3.7.2 Attributes

No additional attributes.
6.3.7.3 Associations

No additional associations.
6.3.7.4 Constraints

No additional constraints
6.3.7.5 Semantics

A control flow is an activity edge that only passes control tokens. Tokens offered by the source node are all
offered to the target node.

21

6.3.8 ControlNode
A ControlNode exerts control over the incoming ControlFlow(s).
6.3.8.1 Generalizations

• ActivityNode, page 20
6.3.8.2 Attributes

No additional attributes.
6.3.8.3 Associations

No additional associations.
6.3.8.4 Constraints

No additional constraints
6.3.8.5 Semantics

A ControlNode is an abstract node, see the descendants for specific semantics.

6.3.9 DecisionNode
A DecisionNode selects one exclusive outgoing ControlFlow from a set.
6.3.9.1 Generalizations

• ControlNode, page 21
6.3.9.2 Attributes

No additional attributes.
6.3.9.3 Associations

No additional associations.
6.3.9.4 Constraints

• A DecisionNode has one incoming edge and at least one outgoing edge.
• The incoming and outgoing edges must be all control flows.

6.3.9.5 Semantics

Each outgoing ControlFlow from a DecisionNode will have a guard expression, except for a default flow, if
one is provided. There is no guaranteed order of guard evaluation, so multiple guards should be exclusive,
otherwise any valid guard expression can be chosen during execution and the execution behaviour is
unspecified. Only one ControlFlow will be activated by a decision node.

6.3.10 ExecutableNode
An ExecutableNode performs domain-specific actions
6.3.10.1 Generalizations

• ActivityNode, page 20
6.3.10.2 Attributes

No additional attributes.

22

6.3.10.3 Associations

No additional associations.
6.3.10.4 Constraints

No additional constraints
6.3.10.5 Semantics

An ExecutableNode is an abstract action, see the descendants for specific semantics.

6.3.11 Expression
An Expression is a Boolean or arithmetic expression consisting of read only references to the Parameters
visible at the containing Procedure scope.
6.3.11.1 Generalizations

None
6.3.11.2 Attributes

• value:String – the expression string is a valid python arithmetic expression.
6.3.11.3 Associations

No additional associations.
6.3.11.4 Constraints

The expression must be a valid python arithmetic expression (version 2.6). The syntax for python is
maintained in an open source project at http://docs.python.org/reference.
6.3.11.5 Semantics

An expression is evaluated in a DecisionNode, where the Expression is associated with the outgoing
ControlFlows. An expression is also evaluated in the WaitForExpression and ParameterWrite
ExecutableNodes.

6.3.12 FinalNode
A FinalNode is an abstract node with one descendant, the ActivityFinalNode. No FlowFinalNode is
included in SOLM, because it is generally not necessary to terminate and individual flow in an activity, but
the FinalNode to ActivityFinalNode inheritance in the UML abstract syntax is retained.
6.3.12.1 Generalizations

• ControlNode, page 21
6.3.12.2 Attributes

No additional attributes.
6.3.12.3 Associations

No additional associations.
6.3.12.4 Constraints

No additional constraints
6.3.12.5 Semantics

See ActivityFinalNode, page 19.

23

6.3.13 ForkNode
A ForkNode starts one or more parallel threads of execution.
6.3.13.1 Generalizations

• ControlNode, page 21
6.3.13.2 Attributes

No additional attributes.
6.3.13.3 Associations

No additional associations.
6.3.13.4 Constraints

No additional constraints
6.3.13.5 Semantics

A ForkNode accepts an incoming control token and places an outgoing control token on each outgoing
control flow. This allows the creation of parallel execution paths. These parallel control paths will continue
until an ActivityFinalNode or an execution error terminates all control flows. .

6.3.14 HandledExceptionRegion
A HandledExceptionRegion identifies a set of ActivityNodes that will transfer control to an exception
handling ActivityNode, if an error occurs during execution.
6.3.14.1 Generalizations

• ActivityGroup, page 19
6.3.14.2 Attributes

No additional attributes.
6.3.14.3 Associations

handler:ActivityNode – the ActivityNode that will receive control on an exception.
6.3.14.4 Constraints

• An ActivityNode may only be directly contained in one HandledExceptionRegion.

6.3.14.5 Semantics

If an error occurs during the execution of any ExecutableNode or ControlNode in the set of nodes in the
region, execution on the thread in error will cease and control will be transferred to the ActivityNode
specified as the handler for the HandledExceptionRegion. Parallel control flows will continue. If no
HandledExceptionRegion with a handler is defined for the Activity, an error in the execution of any control
flow path will cause all control flows to cease execution, as if an ActivityFinal node was executed.
ActivityNode containment is constrained so that it is only possible for an error in execution to transfer
control to one handler. It is possible to nest HandledExceptionRegions so that an error in the handler for
one HandledExceptionRegion may transfer control to the owning region.

6.3.15 InitialNode
The InitialNode is where execution begins for an Activity.

24

6.3.15.1 Generalizations

• ControlNode, page 21
6.3.15.2 Attributes

No additional attributes.
6.3.15.3 Associations

No additional associations.
6.3.15.4 Constraints

No additional constraints
6.3.15.5 Semantics

Only one InitialNode must be specified for an Activity. The InitialNode creates one control talken and
transfers it on the outgoing ControlFlow.

6.3.16 JoinNode
A JoinNode ends parallel threads of execution.
6.3.16.1 Generalizations

• ControlNode, page 21
6.3.16.2 Attributes

No additional attributes.
6.3.16.3 Associations

No additional associations.
6.3.16.4 Constraints

• A JoinNode has exactly one outgoing edge that is a ControlFlow
• All incoming edges are ControlFlows
• There is at least one incoming edge.

.
6.3.16.5 Semantics

If control tokens are offered on all incoming edges, then one control token is offered to the outgoing edge.
Multiple tokens offered on the same incoming edge are combined into one.

6.3.17 MergeNode
A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize
concurrent flows but to accept one among several alternate flows.
6.3.17.1 Generalizations

• ControlNode, page 21
6.3.17.2 Attributes

No additional attributes.
6.3.17.3 Associations

25

No additional associations.
6.3.17.4 Constraints

• A MergeNode has exactly one outgoing edge.
• A MergeNode has at least one incoming edge.
• All incoming and outgoing edges are ControlFlows.

6.3.17.5 Semantics

All tokens offered on incoming edges are offered to the outgoing edge. There is no synchronization of flows
or joining of tokens.

6.3.18 ObjectFlow
An ObjectFlow represents a data value being applied to a Parameter, ProcedureArgument, or
DirectiveArgument.
6.3.18.1 Generalizations

• ActivityEdge, page 18
6.3.18.2 Attributes

No additional attributes.
6.3.18.3 Associations

• incoming:ActivityNode[1] – the ValueNode or ExecutableNode providing a value.
• outgoing:ActivityNode[1] – the ValueNode or ExecutableNode receiving a value.

6.3.18.4 Constraints

No additional constraints
6.3.18.5 Semantics

If the outgoing node is a ValueNode, the value of the Parameter is set to the value provided by the incoming
node. If the outgoing node is an ExecutableNode then the value from the incoming node is provided to the
ExecutableNode.

6.3.19 ValueNode
A ValueNode is a Parameter that participates in an ObjectFlow within an Activity.
6.3.19.1 Generalizations

• Parameter, page 31
• ActivityNode, page 20

6.3.19.2 Attributes

No additional attributes.
6.3.19.3 Associations

No additional associations.
6.3.19.4 Constraints

No additional constraints

26

6.3.19.5 Semantics

A ValueNode is a Parameter that participates in an ObjectFlow within an Activity.

6.4 Parameters
In order to leverage the XTCE and GEMS specifications already published by the OMG, SOLM has defined
Parameters with types that are compatible with both the XTCE and GEMS definitions. A Parameter can be
defined in an XTCE document, a GEMS document, or a platform-specific mechanism. In addition to a data
type, a parameter may also be restricted in a manner similar to XML schema restrictions. These restrictions
should be enforced by the modeling and execution environment for SOLM, but not all target platforms will
support all restriction types. Figure 11 illustrates the Parameter relationships for SOLM. Each Parameter
may have a CurrentValue, which is the most recent value received from the Space System or ground
equipment and an associated timestamp for when the value was generated or received.

Figure 11 GEMS and XTCE Parameters

27

Figure 12 Procedure Environment

The SpaceSystem class represents the communications link to the spacecraft or Space System being
operated, and the catalog of all XtceParameters represents the current state of the spacecraft. In a similar
way, the Device class represents an item of ground equipment in the control system, and the catalog of all
GemsParameters for the Device represents the current state of the equipment.

6.4.1 SpecificTime
A SpecificTime represents a point in time at the SOLM Execution Environment. This is normally the
ground system conducting spacecraft operations. SpecificTime values are not specified within an operations
procedure, since that would limit the reusability of the procedure model, but are usually input by the
operations team as a ProcedureArgument at invocation, as a result of a Query during execution, or are
calculated from a current time obtained from the ProcedureEnvironment at execution time. For portability,
the value representation of a SpecificTime will be a String representation of Coordinated Universal Time
(UTC), default input format, YYYY-MM-DDTHH:MM:SS.NNN. Other representations or time
coordinates required for onboard or remote execution should be calculated within a procedure model, or
specified as a ProcedureArgument. Time precision must extend to milliseconds, and future versions of this
specification may require micro or nanosecond precision.
6.4.1.1 Generalizations

• Time, page 34
6.4.1.2 Attributes

No additional attributes.
6.4.1.3 Associations

28

No additional associations.
6.4.1.4 Constraints

No additional constraints
6.4.1.5 Semantics

A SpecificTime may be used as part of a Wait action, in an Expression, as a value for a DirectiveArgument,
or as a value for a ParameterWrite. A SpecificTime must be convertible to a POSIX seconds and
nanoseconds structure for use with XTCE and GEMS Parameter types. In an expression, the difference
between two SpecificTimes is a TimeInterval. A TimeInterval may also be added or subtracted from a
SpecificTime to yield another SpecificTime.
6.4.1.6 Operations

• year() returns the Integer value of the Gregorian year associated with the time.
• month() returns the Integer value of the Gregorian month, 1-12.
• day() returns the Integer value of the day of the month, 1-31.
• dayOfYear() returns the Integer value of the ordinal day of the Gregorian year, 1-366.
• hour() returns the Integer value of the hour of the day, 0-23.
• minutes() returns the Integer value of the minute of the hour, 0-59.
• seconds() returns the Integer value of the second of the minute, 0-59.
• nanos() returns the Integer value of the nanoseconds of the second, 0-999,999,999.

6.4.2 Device
A GEMS device has a set of Parameters that can be read and written and may also support GemsDirectives
to change the Device configuration. A GEMS device is usually ground equipment that is part of the
spacecraft ground support.
6.4.2.1 Generalizations

None
6.4.2.2 Attributes

• name:String – unique name for the device.
6.4.2.3 Associations

• state:GemsParameter[0..*] – the set of Parameters that represent the state of the device, some of
which may also be settable to change the configuration of the device.

• director:GemsDirective[0..*] – the set of directives that can be used to change device configuration
or state.

• controller:ProcedureEnvironment[1] – the ProcedureEnvironment in the ground system that controls
this Device.

6.4.2.4 Constraints

No additional constraints
6.4.2.5 Semantics

A Device may be configured by writing GemsParameter values and issuing GemsDirectives associated with
the device. Device state may also be used in a procedure by reading GemsParameter values. The unique

29

name of a Device will be used by the procedure environment to establish a control and status connection to
the device.

6.4.3 ExternalParameter
An ExternalParameter differentiates Parameters that are external to the Procedure. ExternalParameters may
be GemsParameters, XtceParameters, or GroundParameters.
6.4.3.1 Generalizations

• Parameter, page 31
6.4.3.2 Attributes

No additional attributes.
6.4.3.3 Associations

No additional associations.
6.4.3.4 Constraints

No additional constraints
6.4.3.5 Semantics

The ParameterRead action on an ExternalParameter must cause special processing to obtain a new value. A
ParameterWrite action an ExternalParameter must change the state of the procedure environment or devices
associated with the procedure environment. Because ExternalParameters are, by definition, external to the
Procedure, they act like global parameters.

6.4.4 GemsParameter
A GemsParameter represents part of the state of a GEMS Device. It has a specific value which may be read
from the device. Some GemsParameters are writable, and the configuration of the Device will be changed
by a ParameterWrite with an outgoing ObjectFlow to the GemsParameter.
6.4.4.1 Generalizations

• ExternalParameter, page 29
6.4.4.2 Attributes

• writable:Boolean – indicates whether the GEMS device supports setting the value of the Parameter.
6.4.4.3 Associations

• system:Device – the GEMS device containing the Parameter.
6.4.4.4 Constraints

• A GemsParameter with a False writable attribute value cannot be the target of an ObjectFlow.
6.4.4.5 Semantics

See description above.

6.4.5 GroundParameter
A GroundParameter represents part of the state of the ground system providing the Procedure environment.
It has a specific value which may be read from the system. Some GroundParameters are writable, in which
case, setting the value changes the configuration of the ground system.

30

6.4.5.1 Generalizations

• ExternalParameter, page 29
6.4.5.2 Attributes

• writable:Boolean – indicates whether the ground system supports setting the value of the Parameter.
6.4.5.3 Associations

No additional associations.
6.4.5.4 Constraints

• A GroundParameter with a False writable attribute value cannot be the target of an ObjectFlow.
6.4.5.5 Semantics

See description above.

6.4.6 InstantValue
A value with a timestamp for a Parameter.
6.4.6.1 Generalizations

None
6.4.6.2 Attributes

• value:String – the value of the Parameter. The value should be expressed appropriate to the
ParameterType and any Restrictions on the ParameterType

• timestamp:AbsoluteTime – the time when the value was sampled or calculated.
6.4.6.3 Associations

• parameter:Parameter – the valued parameter.
6.4.6.4 Constraints

No additional constraints
6.4.6.5 Semantics

Provides a value for a Parameter to be used in expressions or Procedure invocations.

6.4.7 InternalParameter
An InternalParameter is a Parameter internal to the Procedure. An InternalParameter may be a
ProcedureVariable or a ProcedureArgument.
6.4.7.1 Generalizations

• Parameter, page 31
6.4.7.2 Attributes

No additional attributes.
6.4.7.3 Associations

No additional associations.
6.4.7.4 Constraints

No additional constraints

31

6.4.7.5 Semantics

The effect of reading or writing an InternalParameter is limited to the Procedure itself. Writing the value of
an InternalParameter will cause all later references to the InternalParameter to use the new value.

6.4.8 Parameter
A Parameter has a type and a value and is read and/or written by Procedures.
6.4.8.1 Generalizations

None
6.4.8.2 Attributes

No additional attributes.
6.4.8.3 Associations

• evaluation:InstantValue[0..1] – value of the Parameter at an instant in time. If the Parameter has
never been reported or calculated it may not have an InstantValue. An Expression that uses a
Parameter with no defined Instantvalue causes an exception in the execution that may be handled in
a HandledExceptionRegion.

• restriction:Restriction[0..*] – the values that Parameter may take are restricted by the
ParameterType and may be additionally restricted by defined Restrictions.

6.4.8.4 Constraints

No additional constraints
6.4.8.5 Semantics

In order to be consistent with XTCE and GEMS Parameters, all values used in SOLM are based on the
Parameter class, and have ParameterTypes and Restrictions that are consistent with those specifications.
Distinguishing between internal and external Parameter types allows special actions to occur when
ExternalParameters are read or written.

6.4.9 ParameterType
6.4.9.1 Generalizations

None
6.4.9.2 Attributes

The type enumeration in SOLM is consistent with the types supported by GEMS, XTCE, and most
spacecraft operations scripting languages.
6.4.9.3 Associations

No additional associations.
6.4.9.4 Constraints

No additional constraints
6.4.9.5 Semantics

The ParameterType constrains the allowable values and allowable Restrictions for a Parameter.

6.4.10 TimeInterval

32

A TimeInterval represents a negative or positive interval of time. A TimeInterval can be added or
subtracted from a SpecificTime to create a new SpecificTime that is later or earlier than the original
SpecificTime. The default value representation of a TimeInterval is sPDTHH:MM:SS.NNNNNNNNN,
where ‘s’ is an optional ‘+’ or ‘-‘, and D represents as many digits of an integer number of 24-hour days as
are necessary or the digit ‘0’. The precision must extend to nanoseconds.
6.4.10.1 Generalizations

• Time, page 34
6.4.10.2 Attributes

No additional attributes.
6.4.10.3 Associations

No additional associations.
6.4.10.4 Constraints

No additional constraints
6.4.10.5 Semantics

A TimeInterval is the result of an Expression taking the difference between to SpecificTimes. An
Expression may also calculate a new SpecificTime by adding or subtracting a TimeInterval to/from a
SpecificTime. A TimeInterval may be initialized from a POSIX time structure in a GEMS or XTCE
Parameter type. It may also be initialized from an Integer number of seconds or a floating point decimal
number with fractional seconds. A TimeInterval may be used in a Wait action.

6.4.10.6 Operations

• days() returns the Integer number of whole days in this interval.
• hours() returns the Integer number of whole hours, not including any whole days.
• minutes() returns the Integer number of whole minutes, not including any whole hours.
• seconds() returns the Integer number of whole seconds, not including any whole minutes.
• nanos() returns the Integer number of nanoseconds, not including any whole seconds.
• asSeconds() returns the Integer number of seconds in the entire interval.

6.4.11 ProcedureEnvironment
6.4.11.1 Generalizations

None
6.4.11.2 Attributes

No additional attributes.
6.4.11.3 Associations

• director:CustomDirective[0..*] – A collection of CustomDirectives that are part of the procedure
environment. These Directives may be defined by a modeling environment to support ground
system-specific directives.

• equipment:Device[0..*] – GEMS devices that are part of the ground system.
• state:GroundParameter[0..*] – Collection of Parameters that are specific to a ground system.
• operation:Procedure[0..*] – Collection of Procedures defined for a ground system.

33

• subject:SpaceSystem[1..*] – Collection of at least one SpaceSystem that is monitored and controlled
by the ground system.

6.4.11.4 Constraints

No additional constraints
6.4.11.5 Semantics

The ProcedureEnvironment is a singleton that contains all of the definitions associated with Procedure
development for a specific SpaceSystem.

6.4.12 ProcedureVariable
6.4.12.1 Generalizations

• InternalParameter, page 30.
6.4.12.2 Attributes

No additional attributes.
6.4.12.3 Associations

• incoming:ObjectFlow[0..*] – source of new value from Procedure action.
6.4.12.4 Constraints

No additional constraints
6.4.12.5 Semantics

A ProcedureVariable is a Parameter with a local procedure scope. Setting the value of the
ProcedureVariable from an Action in the procedure Activity definition will have no effect on the ground
system or the execution of other procedures.

6.4.13 Restriction
A Restriction restricts the allowed values of a Parameter
6.4.13.1 Generalizations

None
6.4.13.2 Attributes

• enumeration:String – restricts the values of ParameterTypes with a String value to the specific list of
strings.

• fractionDigits:Integer – restricts the number of digits after the decimal place in a ParameterType
with a floating point value.

• length:Integer – restricts the length of a string ParameterType to a specific, exact length.
• maxExclusive:String – restricts the value of a numeric ParameterType, floating point, integer, or the

seconds portion of a time type, to be less than the specified value.
• maxInclusive:String – restricts the value of a numeric ParameterType, floating point, integer, or the

seconds portion of a time type, to be less than or equal to the specified value.
• maxLength:Integer – restricts the length of a string ParameterType to a maximum number of

characters.
• maxNanos:Integer – restricts the nanoseconds portion of a time ParameterType to be less than or

equal to the specified value.

34

• minExclusive:String – restricts the value of a numeric ParameterType, floating point, integer, or the
seconds portion of a time type, to be greater than the specified value.

• minInclusive:String – restricts the value of a numeric ParameterType, floating point, integer, or the
seconds portion of a time type, to be greater than or equal to the specified value.

• minLength:Integer – restricts the length of a string ParameterType to a minimum number of
characters.

• minNanos:Integer – restricts the nanoseconds portion of a time ParameterType to be greater than or
equal to a specified value.

• pattern:String – restricts the value of a string ParameterType to the pattern defined by a regular
expression.

• totalDigits:Integer – restricts the total number of digits allowed in a floating point ParameterType.
6.4.13.3 Associations

No additional associations.
6.4.13.4 Constraints

The value of specific attributes of the Restriction are constrained to be compatible with the associated
Parameter.
6.4.13.5 Semantics

Writing a value to a Parameter or supplying an argument to a ProcedureArgument or DirectiveArgument
that does not meet the associated restriction criteria will result in an error that halts script execution unless a
HandledExceptionRegion is defined for the ActivityNode where the error occurred. The Query action
should limit accepted data to the values allowed by the associated Parameter.

6.4.14 SpaceSystem
A SpaceSystem represents a link to the spacecraft under control by the Procedure. The name is taken from
the XTCE specification.
6.4.14.1 Generalizations

None
6.4.14.2 Attributes

• name:String – unique name for the SpaceSystem used by the ProcedureEnvironment to establish a
link to the SpaceSystem.

6.4.14.3 Associations

• state:XtceParameter[0..*] – the set of Parameters that represent the state of the spacecraft.
• instruction:Command[0..*] – the set of commands that can be used to change spacecraft

configuration or state.
• controller:ProcedureEnvironment[1] – the ProcedureEnvironment in the ground system that controls

this SpaceSystem.
6.4.14.4 Constraints

No additional constraints
6.4.14.5 Semantics

35

The SpaceSystem is typically defined by an XTCE document, which results in a set of XtceParameter and
Command instances which can be used in the Procedure definition. The unique name of the SpaceSystem is
used at procedure execution time to establish a connection with the SpaceSystem being controlled.

6.4.15 Time
6.4.15.1 Generalizations

None
6.4.15.2 Attributes

None
6.4.15.3 Associations

No additional associations.
6.4.15.4 Constraints

None.
6.4.15.5 Semantics

A Time is an abstract time value. It represents either a TimeInterval or a SpecificTime.
6.4.15.6 Operations

• toString(String) returns the Time value formatted according to the specified format String or the
default format if the String is empty. The format string follows the python 2.6 time module
specification for time formatting.

6.4.16 XtceParameter
An XtceParameter represents a part of the state of a SpaceSystem under control.
6.4.16.1 Generalizations

• ExternalParameter, page 29.
6.4.16.2 Attributes

No additional attributes.
6.4.16.3 Associations

No additional associations.
6.4.16.4 Constraints

No additional constraints
6.4.16.5 Semantics

The telemetry of a SpaceSystem is normally received, calculated, and buffered by the ground system and
made available to the Procedure as last reported values, therefore a ReadParameter action does not usually
cause communication to the SpaceSystem, merely retrieval of the last reported value. Likewise, setting the
value of an XtceParameter does not result in communication with the SpaceSystem under control, but
usually results in the update of a derived (non-telemetered) state value, or is simply overwritten when the
ground system updates the current value of the Parameter.

6.5 Command Transmission

36

SOLM requires a standard way to invoke the transmission of a command defined in an XTCE document.
The modeling environment creates a collection of Command instances based on the MetaCommands
defined in the XTCE document for the spacecraft. In order to transmit a command, a CommandRequest is
created for a specific Command instance in the modeling environment catalog, and describes how the
Command must be handled when transmitted through the link. Parameters required or optionally allowed
for the Command are specified in association with the command. These relationships are shown in Figure
13. A GemsDirective is effectively a command to an item of ground equipment and the Command and the
GemsDirective are generalized as a Directive which is a single step in an operations procedure.

Figure 13 Directives: CommandRequests and GemsDirectives

6.5.1 Command
A Command is usually a binary packet sent to a spacecraft to change the onboard configuration. In SOLM
Commands are defined by an XTCE document. The binary format is not important to SOLM, it is
formatted by the ground system.
6.5.1.1 Generalizations

None
6.5.1.2 Attributes

37

• name:String – the name of the Command, unique for a specific SpaceSystem
6.5.1.3 Associations

• modifier:CommandArgument[0..*] – an argument modifies a command, usually altering the contents
of the binary packet sent to the spacecraft.

• carrier:CommandRequest[0..*] – a CommandRequest is part of a procedure that carries a command
to the ground system for transmission.

• target:SpaceSystem[1] – a Command is intended for one target SpaceSystem.
6.5.1.4 Constraints

No additional constraints
6.5.1.5 Semantics

Much of the Command structure defined in an XTCE document is irrelevant for SOLM. The Procedure
determines the sequence, timing, and argument values for each Command, so the only Telecommand
elements SOLM needs from the XTCE document are a list of valid commands and the type and range of
each command argument.

6.5.2 CommandArgument
A CommandArgument modifies the effect of a Command on the target SpaceSystem.
6.5.2.1 Generalizations

• Parameter, page 31
6.5.2.2 Attributes

• defaultValue:String – provides a default value for the argument, if none is supplied by the Directive
6.5.2.3 Associations

• target:Command[1] – the Command modified by this argument
• value:DirectiveArgument[0..1] – the Directive may supply a DirectiveArgument to be used instead

of the defaultValue attribute.
6.5.2.4 Constraints

No additional constraints
6.5.2.5 Semantics

A CommandArgument that does not have a defaultValue, must have a value supplied by a
directiveArgument.

6.5.3 CommandRequest
A CommandRequest includes additional information about how the Command should be transmitted by the
ground system.
6.5.3.1 Generalizations

• Directive, page 39
6.5.3.2 Attributes

• ignoreConstraints:Boolean – if true, the ground system must ignore any pre-transmission constraints
defined for the command and allow the transmission to proceed without signalling an error, even if

38

transmission would violate the constraints. Pre-transmission constraints may be defined in XTCE
but are not managed by SOLM.

• ignoreReceipt:Boolean – if true, the ground system must ignore any receipt acknowledgement
normally required for the command and proceed without signalling an error.

• ignoreVerification:Boolean – if true, the ground system must ignore any functional verification
defined for the command, and proceed without signalling an error, even if the function verification
would fail.

• noEncryption:Boolean – if true, the ground system must transmit the command without encrypting
the binary packet.

• preAuthorized:Boolean – if true, the ground system must ignore any requirement for release
authorization before transmission.

• releaseAt:AbsoluteTime – if provided, the ground system must not release the command for
transmission until the specified time.

6.5.3.3 Associations

• contents:Command[1] – the command to request the ground system to transmit.
6.5.3.4 Constraints

No additional constraints
6.5.3.5 Semantics

When the SOLM execution environment provides the CommandRequest directive information to the ground
system, the ground system must format the command and transmit it to the SpaceSystem, conducting any
normal verifications for the command, unless overridden by one of the CommandRequest attributes.
Control must be returned to the executing procedure after transmission is complete, unless the “releaseAt”
time is specified, in which case control must be returned after the Command is queued for transmission at a
later time.

6.5.4 CustomDirective
A CustomDirective is a ground system-specific directive. Many scripting languages have directives that are
not related to a GEMS device or a SpaceSystem. SOLM provides a way to capture CustomDirective
information in a Procedure, but the system-specific behaviour is not directly transferable.
6.5.4.1 Generalizations

• Directive, page 39.
6.5.4.2 Attributes

name:String – the name of the directive
6.5.4.3 Associations

• target:ProcedureEnvironment[1] – the environment of the CustomDirective
6.5.4.4 Constraints

No additional constraints
6.5.4.5 Semantics

The complete behaviour of a CustomDirective is indeterminate. For the purposes of SOLM, the name and
DirectiveArguments are supplied to the ground system. The ground system either completes the directive

39

without error, returning control to the executing Procedure, or the ground system returns an error, which
will either terminate execution or be handled by an exception handler.

6.5.5 Directive
A Directive instructs the ground system to take an action during Procedure execution.
6.5.5.1 Generalizations

None
6.5.5.2 Attributes

No additional attributes.
6.5.5.3 Associations

modifier:DirectiveArgument[0..*] – supplies additional information to the ground system for completing the
action of the Directive.
6.5.5.4 Constraints

No additional constraints
6.5.5.5 Semantics

A Directive is an abstract representation of a ground system action. See the related concrete Directive
descendants for semantics.

6.5.6 DirectiveArgument
A DirectiveArgument supplies additional information to the ground system for Directive execution.
6.5.6.1 Generalizations

• Parameter, page 31
6.5.6.2 Attributes

• defaultValue: String – provides a default for the argument value
6.5.6.3 Associations

• target:CommandArgument[0..1] – CommandArgument that will receive the DirectiveArgument
value.

6.5.6.4 Constraints

No additional constraints
6.5.6.5 Semantics

DirectiveArguments are defined during procedure definition and are passed to the ground system during
Directive execution by the Send action. See page 43.

6.5.7 GemsDirective
A GemsDirective sends a command and parameters to a GEMS device.
6.5.7.1 Generalizations

• Directive, page 39
6.5.7.2 Attributes

40

• name:String – the directive name
6.5.7.3 Associations

• target:Device – the GEMS device targeted by this GemsDirective
6.5.7.4 Constraints

No additional constraints
6.5.7.5 Semantics

The execution of a GemsDirective issues a directive message to the GEMS device. The GemsDirective is
completed and control returns to the Procedure execution when the GEMS device responds. If the GEMS
device fails to respond or returns an error response, the GemsDirective will return an error, halting
procedure execution or transferring control to an exception handler, if one is defined for the procedure.

6.6 Procedure Actions
Spacecraft operations procedures frequently check the current value of a telemetry parameter to determine if
a command was properly executed or to determine the correct command to send, based on the current
spacecraft state. Requested parameters can be used in conditional expressions or as command arguments
within the procedure. In SOLM, the telemetry Parameter instances are created from the XTCE document in
the modeling environment. The value of the Parameter instance may be referenced in the procedure model
for conditional tests, computation, or setting the value of a Directive Parameter.

Figure 14 through Figure 21 show the action nodes that can be part of an activity diagram defining an
operations procedure.

Figure 14 SOLM Action Nodes for Activity Diagrams

41

Figure 15 Invoke Subprocedure

6.6.1 Invoke
A Procedure may invoke another Procedure as a sub-procedure.
6.6.1.1 Generalizations

• Action, page 17
6.6.1.2 Attributes

No additional attributes.
6.6.1.3 Associations

No additional associations.
6.6.1.4 Constraints

No additional constraints
6.6.1.5 Semantics

The Invoke action calls a Procedure as a sub-procedure. Any ProcedureArguments required by the sub-
procedure definition must be supplied from the associated incoming ObjectFlows. Execution of
ModeledProcedures take place in the same ProcedureEnvironment context, but there may be
InternalParameters that are local to the ModeledProcedure. The Integer result of the Procedure may be
passed to an outgoing ObjectFlow. If the sub-procedure completes normally, the control token is passed to
the outgoing ControlFlow of the Action. If the sub-procedure exits with an error, control is passed to error
handling within the current Activity.

6.6.2 ParameterRead
A ParameterRead is required to obtain a new value for an ExternalParameter.
6.6.2.1 Generalizations

• Action, page 15
6.6.2.2 Attributes

42

No additional attributes.
6.6.2.3 Associations

• incoming:ObjectFlow[1] – ObjectFlow connected to an ExternalParameter providing a new value.
• outgoing:ObjectFlow[1] – ObjectFlow connected to a ProcedureParameter receiving the new value.

6.6.2.4 Constraints

No additional constraints
6.6.2.5 Semantics

An ExternalParameter requires an interaction with the ground system to obtain a new value for the
Parameter.

6.6.3 ParameterWrite
A ParameterWrite sets the value of a Parameter.
6.6.3.1 Generalizations

• Action, page 15
6.6.3.2 Attributes

No additional attributes.
6.6.3.3 Associations

• value:Expression[1] – Expression evaluated to obtain the new value for the Parameter
• outgoing:ObjectFlow[1] – ObjectFlow connected to a Parameter receiving the new value.

6.6.3.4 Constraints

No additional constraints
6.6.3.5 Semantics

An ExternalParameter requires an interaction with the ground system to set a new value for the Parameter.

6.6.4 Query
A Query obtains a new value for a Parameter from the Operator.
6.6.4.1 Generalizations

• Action, page 15
6.6.4.2 Attributes

• prompt:String – text to prompt the operator for a value.
6.6.4.3 Associations

• outgoing:ObjectFlow[1] – ObjectFlow connected to the Parameter receiving the new value.
6.6.4.4 Constraints

No additional constraints
6.6.4.5 Semantics

43

There are system-specific ways to prompt the operator for a value. The ParameterType and prompt can be
provided to insure a good value is provided. Failure to provide a value or providing a value that is not
allowed by the ParameterType and Restrictions results in an error.

6.6.5 Send
A Send issues a Directive to the ground system for execution.
6.6.5.1 Generalizations

• Action, page 15
6.6.5.2 Attributes

No additional attributes.
6.6.5.3 Associations

• action:Directive[1] – the Directive to send to the ground system.
• incoming:ObjectFlow[0..*] – ObjectFlows providing values from InternalParameters
• outgoing:ObjectFlow[0..*] – ObjectFlows providing values to DirectiveArguments

6.6.5.4 Constraints

No additional constraints
6.6.5.5 Semantics

A Send action collects DirectiveArgument values and issues the Directive to the ground system for
completion.

6.6.6 Verify
Verify is an abstract action.
6.6.6.1 Generalizations

• Action, page 15
6.6.6.2 Attributes

No additional attributes.
6.6.6.3 Associations

No additional associations.
6.6.6.4 Constraints

No additional constraints
6.6.6.5 Semantics

See VerifyExpression and VerifyRange

6.6.7 VerifyExpression
VerifyExpression evaluates a Boolean expression.
6.6.7.1 Generalizations

• Verify, page 43
6.6.7.2 Attributes

44

• expression:String – string containing a python Boolean expression.
6.6.7.3 Associations

No additional associations.
6.6.7.4 Constraints

The expression must be a valid python Boolean expression (version 2.6). The syntax for python is
maintained in an open source project at http://docs.python.org/reference.
6.6.7.5 Semantics

The expression is evaluated and if it is true, execution continues at the outgoing ControlFlow. If it is false,
an error is generated and any associated exception handler is executed.

6.6.8 VerifyRange
A VerifyRange tests the equality of a floating point Parameter type.
6.6.8.1 Generalizations

• Verify, page 43
6.6.8.2 Attributes

• expected:String – the expected value of the Parameter.
• tolerance:String – a plus/minus tolerance value to test for equality within a range.

6.6.8.3 Associations

• readReference:InternalParameter[1] – the Parameter to test for equality
6.6.8.4 Constraints

No additional constraints
6.6.8.5 Semantics

The value of the readReference is compared to the range defined by the value of the expected attribute of
the VerifyRange, plus the tolerance and minus the tolerance. If it is within the range, inclusively, execution
continues at the outgoing ControlFlow. If it is not, an error is generated and any associated exception
handler is executed.

6.6.9 Wait
Wait is an abstract action.
6.6.9.1 Generalizations

• Action, page 15
6.6.9.2 Attributes

No additional attributes.
6.6.9.3 Associations

No additional associations.
6.6.9.4 Constraints

No additional constraints
6.6.9.5 Semantics

45

See WaitOnExpression and WaitOnTime for specific semantics.

6.6.10 WaitOnExpression
WaitOnExpression waits for the value of a Boolean expression to become true.
6.6.10.1 Generalizations

• Wait, page 44
6.6.10.2 Attributes

• pollPeriod:TimeInterval – the time period to wait before re-evaluating the expression.
• timeout:Time – the time period or AbsoluteTime to wait before failing due to timeout

6.6.10.3 Associations

• expression:Expression[1] – the Boolean expression to evaluate
6.6.10.4 Constraints

No additional constraints
6.6.10.5 Semantics

This Action repeatedly evaluates the expression, obtaining new values for ExternalParameters referenced,
until the Expression is true or the timeout occurs. Execution continues on the outgoing ControlFlow, if the
expression is true. The timeout error will transfer control to an exception handler, if one is defined for the
Action.

When a TimeInterval is used as the timeout in a WaitOnExpression action, it is used as the time interval to
wait for the expression to become true. A zero or negative interval will result in an immediate timeout error
if the expression is not true. When used as the pollPeriod in a WaitOnExpression action, it is used as the
time interval to wait between expression evaluations. A zero or negative interval in this case will cause an
immediate error.

6.6.11 WaitOnTime
WaitOnTime delays the execution thread.
6.6.11.1 Generalizations

• Wait, page 44
6.6.11.2 Attributes

• time:Time – the TimeInterval period to wait, or the AbsoluteTime to resume execution.
6.6.11.3 Associations

No additional associations.
6.6.11.4 Constraints

No additional constraints
6.6.11.5 Semantics

Execution suspends until the specified time is reached, then execution continues on the outgoing
ControlFlow. When a TimeInterval is used as the time in a WaitOnTime action, it defines the interval to
delay before continuing execution. A zero or negative interval will result in an immediate completion of the
action. When a SpecificTime is used as the time in a WaitOnTime action, execution will delay until the

46

SpecificTime is reached. If the SpecificTime is in the past, it results in an immediate completion of the
action.

Figure 16 Parameter Read

Figure 17 Parameter Write

47

Figure 18 Query Operator

Figure 19 Send Directive

48

Figure 20 Verify State

Figure 21 Wait

49

6.7 Operations Language Metamodel RFP Requirements
The following table describes how the SOLM proposal addresses the requirements for the Operations
Language Metamodel RFP.

Number Requirement SOLM Compliance

6.5.1 The proposal shall supply a
metamodel of a spacecraft operations
language

The SOLM metamodel is defined in this
specification.

6.5.2 The proposal shall define a metamodel
that allows for the automation of
spacecraft operations including the
configuration of spacecraft, payload
components and ground equipment

An activity diagram for procedure
invocation can contain command
transmission and GEMS ground equipment
parameter sets and ground equipment
directives when used with a compliant
execution environment.

6.5.3 The proposal shall define a metamodel
that is suitable for use in spacecraft
integration and test as well as
spacecraft launch and on-orbit
operations.

The defined procedures are applicable in an
operations environment as well as an
integration and test environment.

6.5.4 The abstract syntax of the metamodel
shall be specified as a Meta Object
Facility (MOF)-compliant metamodel
(v2.0)

SOLM is a MOF Meta-model.

6.5.5 The proposal shall define standard
mappings of the metamodel to at least
two existing spacecraft operations
languages (see appendix A for a
description of some of these
languages).

Mappings for two spacecraft operations
languages is provided in this specification.

6.5.6 The proposal shall define a metamodel
that applies to different spacecraft
types, i.e. it should be generic.

SOLM provides for generic definition of
operations processes. Different spacecraft
can be used via a spacecraft-specific XTCE
document, or other methods of loading the
model catalog of Commands and
Parameters.

6.5.7 The proposed metamodel shall support
methods for model management,
including the production of a

This requirement is implementation
dependent, but MOF does provide a
reflective interface.

50

difference report between edited
versions of a model, e.g. reflective
interface. Rationale: Configuration
Management.

6.5.8 The proposed metamodel shall allow
for the definition of the following
constructs in the space domain:

• Control flow constructs

• Expressions

• Sub processes

• Data elements and parameters

• Pre and post conditions
(including time)

The Meta-model supports all of the
required constructs.

6.5.9 The operations language described by
the metamodel shall have the
capability to verify commands and
telemetry definitions, e.g. from an
XTCE document.

The SOLM activity diagram allows the
specification of commands and telemetry as
part of a procedure model in a way that is
compatible with using XTCE definitions.

6.5.10 The operations language described by
the metamodel shall be able to act on
dynamic and ground system telemetry
data.

The Parameter access for telemetry and
ground equipment management support
access to this data.

6.5.11 The operations language described by
the metamodel shall be capable of
including time-based functions.

Time-based events and processing are
supported.

6.5.12 The operations language described by
the metamodel shall include the
capability to define and invoke inline
system-specific code within a
procedure.

System-specific procedures are invoked as
sub-procedures.

6.5.13 An operations language described by
the metamodel shall be capable of
invoking commands and referencing
telemetry items defined within an
XTCE document. Proper use of
XTCE object definitions must be
enforced when defining a model

Enforcement is implementation dependent,
but SOLM supports invoking commands
and referencing telemetry defined by XTCE
documents.

51

6.6.1 (optional) The metamodel may include data
synchronization features necessary to
represent concurrent processing
defined by at least one target
operations language.

The activity diagram supports definition of
concurrent sub-processes. Synchronization
is implementation dependent.

7 Comet Control Language (CCL) Mapping
7.1 General
The native scripting language for Harris Corporation’s OS/COMET® product is known as Comet Control
Language, or CCL. This section provides information on mapping a procedure defined in SOLM into a
CCL procedure. In the mapping table, a value inside <> indicates a named entity that is used by name in the
procedure.

A CCL representation of the procedure shown in Figure 4 is provided below:
PARAMDEF NPARAM=SpeedIncrement

ATTACH SAT=”SAT_1”

IF (MomentumWheelState .EQ. “Off”) THEN

 CEXL MomentumWheelOn

ENDIF

CEXL SetWheelSpeed, WheelSpeed=MomentumWheelSpeed+’SpeedIncrement’

Three example OS/COMET CCL procedures are provided with the specification in a machine-consumable
format, to avoid problems with cut-and-paste from formatted text. The following mapping table describes
how SOLM features are mapped to CCL. The transformation between CCL and SOLM is non-normative, in
that there may be multiple valid mappings, and there are some SOLM constructs, such as multi-threading,
that must be mapped to multiple procedures with coordination through shared memory.

CCL SOLM Comments

! or ; Comment An activity diagram note in
the procedure sequence

DOWHILE..ENDDO DecisionNode,
MergeNode

CCL also supports an
iterative DO..ENDDO and
REPEAT..UNTIL
constructs

INQUIRE Query

52

PAUSE Query with no Parameters

ONERROR HandledExceptionRegion An ONERROR statement
sets up an exception
handler for errors that occur
during procedure execution,
including an error in the
Verify statement.

VERIFY Verify A statement that accepts a
Boolean expression and
transfers control to an
exception handler, if one is
defined, or halts the
procedure if no exception
handler is provided.

ATTACH <SPACESYSTEM_NAME> SpaceSystem Associates command and
telemetry references with
the SpaceSystem specified
by unique name.

PARAMDEF Procedure,
ProcedureArgument

Defines the named
parameters for a procedure

PERFORM <PROCEDURE_NAME> Invoke Invokes the specified
procedure or sub-
procedure.

IF..[ELSE]..ENDIF DecisionNode Defines a conditional
execution path.

CEXL <COMMAND_NAME> CommandRequest

Command

Requests command
transmission for the
command specified by
unique name with the
specified keyword values
for the SpaceSystem
referred to in the most
recent ATTACH statement.

<Parameter> Parameter

ParameterRead

A parameter value is
referenced by using its
unique name in an
expression

53

SET <Parameter> = expression Parameter

ParameterWrite

A parameter value may be
overridden by a SET
statement. This override
replaces a local copy and
does not change the value
in the associated
SpaceSystem or GEMS
device

GEMS <device>, GET,
PARAMS=<param1¶m2…>

GemsParameter

ParameterRead

Get the current values for
the specified Parameters in
the specified GEMS device.

GEMS <device>, SET,
PARAMS=<param1¶m2…>,
VALUES=<value1&value2…>

GemsParameter

ParameterWrite

Set the current values for
the specified Parameters in
the specified GEMS device.

GEMS <device>,
<directive>,PARAMS=<param1¶m2…>,
VALUES=<value1&value2…>

GemsDirective Issue the specified directive
to the specified GEMS
device with the specified
Parameter values.

WAIT <Time>, <Expression>,
[TIMEOUT_ERROR],[Statement]

WaitOnTime

WaitOnExpression
Wait for a time interval in
seconds, optionally wait for
an expression to become
true, optionally generate a
timeout error or a CCL
statement to execute when a
timeout occurs.

Table 1 CCL Constructs for SOLM Mapping

SOLM CCL Comments

Procedure, ProcedureArgument PARAMDEF
NPARAM=<parameters defined
in Signature>

If there are no input parameters,
the PARAMDEF is not required
in CCL.

SpaceSystem ATTACH
SAT=”<Link.SpaceSystem>”

A Link must be defined in the
procedure class model in order to
access XTCE Parameters and
Commands

Device No statement is required in CCL
until a parameter is read, a
parameter is written, or a directive

54

is issued to the GEMS Device.

DecisionNode IF <guard1 expression>

…

ELSEIF<guard2 expression>

…

ELSE <default guard>

…

ENDIF

The guard paths should be
exclusive, since there is no order
implied in the activity diagram
other than the default guard.

MergeNode ENDIF or ENDDO There is no concept of threads
within CCL, so the merge node
would typically only be seen at
the end of a conditional path or
loop.

ParameterRead <Parameter.name>

Or

GEMS <Device.name>,GET,
PARAMS=<Parameter.name>

In CCL, the parameter name may
be used in an expression to
retrieve the current value for an
XTCE Parameter. Reading a
GemsParameter requires a
specific directive.

ParameterWrite SET <Parameter.name>

Or

GEMS <Device.name>,SET,
PARAMS=<Parameter.name>,
VALUES=<Value>

Send CEXL <Command.name> or

GEMS <GemsDirective.name>

The Send action is translated
based on the Directive type.

ParameterWrite SET <Variable.name> =
<Expression>

The syntax of arithmetic
expressions in CCL is similar to
Python, but Boolean and logical
operators are FORTRAN format
in CCL.

ActivityFinalNode EXIT <status>

HandledExceptionRegion ONERROR GOSUB <Handler
Label>

55

<HandlerLabel>:

WaitOnExpression WAIT <Timeout>, <Expression>,
[TIMEOUT_ERROR]

CCL allows waiting for an
expression to become true.

WaitOnTime WAIT<Timeout> CCL only allows waiting on a
time interval of 0-86400 seconds.

56

8 SpacePython Mapping
8.1 General
Python is an open source scripting language for general purpose computing applications that can easily
be extended to specialized applications, such as spacecraft control. This section provides information on
mapping SOLM to a SpacePython script. SpacePython is based on the Python 2.6 syntax with the
addition of the SOLM extensions defined in this appendix to support spacecraft operations.

Because either direct execution or translation of a SpacePython procedure is an acceptable conformance
to SOLM, additional machine-consumable SpacePython script examples are provided with the SOLM
specification, including the SetMomentumWheelSpeed example from Figure 4. All of the examples are
provided in the form of Python package that can be added to any Python 2.6 installation. The example
module will run all of the example scripts, demonstrating a compliant SpacePython interface. A SOLM-
compliant ground system would use its own database and control mechanisms to run the same
SpacePython scripts rather than modules provided in the demonstration space package.

SpacePython SOLM Comments

Comment Delimits comment text

While Loop defined by
DecisionNode, ControlFlow

Defines a loop construct with a
conditional entrance. The
Python language also supports
a for construct with iteration
over lists. Indentation is
significant for defining the
span of the loop.

This is in the Python 2.6 base
language.

If..[elif]..[else] DecisionNode Defines conditional execution
paths. Indentation is
significant for defining the
span of each conditional block.

This is in the Python 2.6 base
language.

Invoke InitialNode Defines the primary entry
point for a procedure accepting
keyword arguments for the
parameter values.

This is SpacePython usage of a
function definition as the
procedure entry point.

57

operatorQuery Query Python supports numerous
GUI widget sets and console
input, but a SpacePython
procedure uses an
operatorQuery function that
interfaces with the execution
platform GUI

def operatorQuery(prompt,
parameterList):

This is a SpacePython library
function

operatorQuery(‘prompt text’, None) Query with no associated
Parameters

An operatorQuery with no
parameters is essentially a
PAUSE, waiting for the
operator to continue the
procedure execution.

This is a SpacePython library
function

Link(<SPACESYSTEM>) SpaceSystem A Link object represents a
command and telemetry
connection through the ground
system to a specific
SpaceSystem defined by an
XTCE document. The Link is
created in a procedure using
the unique name of the
SpaceSystem. If the
underlying system needs
additional information or
settings to establish the Link,
these may be supplied in a
system-specific way using the
SpaceSystem name as a key.

This is a SpacePython class
definition.

Link.send(<COMMAND>) CommandRequest

Command

The send method of a Link
object issues a command
transmission request to the
ground system for the
SpaceSystem associated with
the Link. A fully-specified

58

command (no required
Arguments) can be specified
by its unique name, otherwise
a Command instance must be
obtained from the
Link.lookupCommand()
method and completed by
specifying required arguments
to the Command instance.

This is a SpacePython class
method.

Link.lookupParameter(<PARAMETER>) XtceParameter

ParameterType

Restriction

Obtain an instance of a
Parameter in the SpaceSystem
associated with the Link (or
Downlink).

This is a SpacePython class
method.

Link.lookupCommand(<COMMAND>) Command Obtain a reference to a
Command in the SpaceSystem
associated with the Link.

This is a SpacePython class
method.

Downlink(<SPACESYSTEM>) SpaceSystem A Downlink object represents
a telemetry-only connection to
a SpaceSystem. Telemetry
Parameters may be looked up
and read but cannot be written.
A Downlink object also does
not support the send() method
for CommandRequests.

This is a SpacePython class
definition.

GemsDevice(<DEVICE>) Device A GemsDevice object
represents a connection to a
specific GEMS device. The
object is created with the
unique name for the device,
which may be mapped via a
system-specific configuration
to the network address of the
device.

59

This is a SpacePython class
definition.

GemsDevice.get() GemsParameter

ParameterRead

Obtain the current values of a
list of Parameters, specified by
unique names, from a GEMS
device.

This is a SpacePython class
method.

GemsDevice.set() GemsParameter

ParameterWrite

Set the values of a list of
Parameters in a GEMS device,
specified as a list of
name=value pairs.

This is a SpacePython class
method.

GemsDevice.lookupDirective() GemsDirective

Restriction

Obtain an instance of a
Directive, specified by unique
name, defined for the GEMS
device.

This is a SpacePython class
method.

GemsDevice.send() GemsDirective Issues a Directive to the
GEMS device. The Directive
instance must be obtained by
the
GemsDevice.lookupDirective()
method and completed by
supplying any required
Parameter values.

This is a SpacePython class
method.

<Parameter> Parameter Represents an XTCE or GEMS
Parameter.

This is a SpacePython abstract
class.

<Parameter>__<Attribute> Restriction Provides the attributes of a
parameter including limits and
valid range.

60

Parameter.value() XtceParameter

ParameterRead

Returns the engineering unit
value of the Parameter for use
in an expression.

This is a SpacePython class
method.

Parameter.raw() XtceParameter Returns the raw (usually
binary or integer) value of the
Parameter for use in an
expression.

This is a SpacePython class
method.

try … catch HandledExceptionRegion The try catch block sets up an
exception handler for a
protected section of the
procedure.

verify Verify A statement that accepts a
Boolean expression and raises
an exception if the condition is
false.

GemsParameter GemsParameter Represents a GEMS Parameter
definition. Must be obtained
by a factory method
“lookupParameter” on the
GemsDevice.

This is a SpacePython class.

XtceParameter XtceParameter Represents an XTCE
Parameter definition. Must be
obtained by a factory method
“lookupParameter” on Link or
Downlink.

wait(seconds) WaitOnTime

Wait for a time interval in
seconds.

waitUntil(<SpecificTime>) WaitOnTime Wait for a specific date/time.

waitFor(<expression>,<timeout>,<Polling
period>)

WaitOnExpression Wait for an expression to
become true or a timeout
occurs.

61

SOLM SpacePython Comments

InitialNode from space import Link

def invoke(**kwargs):

Python accepts
param=value style keyword
arguments.

SpaceSystem link =
Link(”<Link.SpaceSystem>”)

A Link must be defined in
the procedure class model
in order to access XTCE
Parameters and Commands

Device dev =
GemsDevice(“<Device.name>”)

A Device must be defined
in the procedure class
model in order to access
GEMS Parameters and
Directives

DecisionNode if <guard1 expression>:

…

elif<guard2 expression>:

...

else <default guard>:

...

The guard paths should be
exclusive, since there is no
order implied in the activity
diagram other than the
default guard.

JoinNode Thread.join() De-indentation completes a
conditional or loop. Join()
waits for the joined thread
to terminate.

ParameterRead Value =
dev.get(‘<Parameter.name>’)

ParameterWrite dev.set(<Parameter.name>=value)

Send dev.send(directive)

or

link.send(command)

The Send action is
translated based on the
Directive type.

ParameterWrite <Variable.name> = <Expression>

62

ActivityFinalNode return

HandledExceptionRegion try:

 …

catch:

 …

WaitOnTime wait(<seconds>)

waitUntil(<SpecificTime)
SpacePython allows
waiting for a specific time
of day or for a time
interval. The time interval
may include fractional
seconds.

WaitOnExpression waitFor(<Expression>,
<Timeout>, <Polling Period>)

SpacePython allows
waiting for an expression to
become true or timeout
period to elapse.

