
Date: March 2025

Satellite Operations Language Metamodel

Version 1.1

OMG Document Number: formal/25-03-01
 Standard Document URL: https://www.omg.org/spec/SOLM/

https://www.omg.org/spec/SOLM/

ii Satellite Operations Language Metamodel (SOLM), v1.1

Copyright © 2025, Object Management Group, Inc.
Copyright © 2010-2011, Harris Corporation (now Peraton)
Copyright © 2025, Kratos S1, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

Satellite Operations Language Metamodel (SOLM), v1.1 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY
OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA
OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,
SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are
registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

iv Satellite Operations Language Metamodel (SOLM), v1.1

 OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process, we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page https://www.omg.org, under Specifications, Report a Bug/Issue.

Satellite Operations Language Metamodel (SOLM), v1.1 v

vi Satellite Operations Language Metamodel (SOLM), v1.1

Contents

Preface ... viii
1 Scope .. 1
1.1 General .. 1
1.2 Environments Supporting SOLM ... 2
1.3 Transition to SOLM ... 2
2 Conformance ... 3
3 References .. 3
3.1 Normative References ... 3
4 Terms and definitions ... 4
5 Glossary ... 4
6 Meta-model Definition .. 5
6.1 General .. 5
6.2 Procedure Invocation .. 8
6.2.1 ModeledProcedure .. 9
6.2.2 NativeProcedure ... 10
6.2.3 Procedure... 10
6.2.4 ProcedureArgument ... 11
6.2.5 Comment ... 11
6.2.6 HeaderComment ... 12
6.2.7 InlineComment ... 12
6.3 Activities .. 13
6.3.1 Action ... 15
6.3.2 Activity ... 15
6.3.3 ActivityEdge .. 16
6.3.4 ActivityFinalNode ... 16
6.3.5 ActivityGroup ... 17
6.3.6 ActivityNode .. 17
6.3.7 ControlFlow ... 18
6.3.8 ControlNode .. 18
6.3.9 DecisionNode ... 19
6.3.10 ExecutableNode .. 19
6.3.11 Expression ... 20
6.3.12 FinalNode .. 20
6.3.13 ForkNode ... 21
6.3.14 HandledExceptionRegion .. 21
6.3.15 InitialNode ... 22
6.3.16 JoinNode .. 22
6.3.17 MergeNode .. 23
6.3.18 ObjectFlow .. 23
6.3.19 ValueNode ... 24
6.4 Parameters... 24
6.4.1 SpecificTime .. 26
6.4.2 Device ... 26
6.4.3 ExternalParameter ... 27
6.4.4 GemsParameter .. 28
6.4.5 GroundParameter ... 28
6.4.6 InstantValue .. 28
6.4.7 InternalParameter .. 29
6.4.8 Parameter .. 29
6.4.9 ParameterType ... 30
6.4.10 TimeInterval ... 30
6.4.11 ProcedureEnvironment .. 31
6.4.12 ProcedureVariable ... 32
6.4.13 Restriction ... 32
6.4.14 SpaceSystem .. 33
6.4.15 Time ... 33

Satellite Operations Language Metamodel (SOLM), v1.1 vii

6.4.16 XtceParameter .. 34
6.5 Command Transmission .. 34
6.5.1 Command .. 35
6.5.2 CommandArgument ... 36
6.5.3 CommandRequest ... 36
6.5.4 CustomDirective ... 37
6.5.5 Directive ... 37
6.5.6 DirectiveArgument ... 38
6.5.7 GemsDirective ... 38
6.6 Procedure Actions ... 39
6.6.1 Invoke .. 40
6.6.2 ParameterRead ... 40
6.6.3 ParameterWrite .. 41
6.6.4 Query ... 41
6.6.5 Send .. 42
6.6.6 Verify ... 42
6.6.7 VerifyExpression ... 43
6.6.8 VerifyRange ... 43
6.6.9 Wait .. 44
6.6.10 WaitOnExpression ... 44
6.6.11 WaitOnTime ... 45
6.7 Operations Language Metamodel RFP Requirements .. 49
7 Comet Control Language (CCL) Mapping .. 51
7.1 General .. 51
8 SpacePython Mapping .. 55
8.1 General .. 55

viii Satellite Operations Language Metamodel (SOLM), v1.1

 Preface
About the Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL: https://www.omg.org/spec

All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues

The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org/report_issue.htm

https://www.omg.org/
mailto:pubs@omg.org
http://www.iso.org/
https://www.omg.org/report_issue.htm

Satellite Operations Language Metamodel (SOLM), v1.1 ix

Satellite Operations Language Metamodel (SOLM), v1.1 1

1 Scope
1.1 General

This specification defines a meta-model, Satellite Operations Language Meta-model (SOLM), for representing spacecraft
operations procedures. These procedures contain sequences of instructions to conduct spacecraft operations, typically
consisting of spacecraft commands and spacecraft telemetry comparisons. These procedures may also include the
configuration of ground equipment, configuration of spacecraft test equipment, execution of ground testing, and execution of
on-orbit testing. Historically, these procedures have been captured in flowcharts, text manuals, and a number of different
scripting languages used for ground station automation. A standard meta-model to represent spacecraft operations procedures
will facilitate the transfer of procedures between the spacecraft vendor and the spacecraft operator, as well as allow for
maintenance and transfer of the procedures across different ground systems employed over the lifetime of the spacecraft.

This specification is primarily aimed at providing procedure portability for earth-orbiting satellites. While deep-space
spacecraft use similar operational procedures, they also use extensive on-board procedures and there are significant
considerations in the representation of time that are not incorporated in this meta-model.
SOLM allows the definition of a platform independent model (PIM) of a spacecraft procedure. The PIM can be mapped into a
platform-specific model (PSM) for procedure execution. As shown in Figure 1, the spacecraft operator actor represents the
operations group that conducts spacecraft operations. This actor is the primary user of the SOLM repository and maintains
spacecraft operations procedures in the repository. The SOLM Repository is shown with a multiplicity association with only
one spacecraft, due to dependencies on spacecraft-specific command and telemetry definitions. Because there may be
multiple operations groups that share control of the spacecraft either simultaneously or over time, the multiplicity relationship
is shown as 1 or more spacecraft operators. The spacecraft integrator/manufacturer may provide an initial set of procedures
in the SOLM format, or these procedures may be translated into SOLM.

Figure 1: SOLM Context

Viewing SOLM as process modeling, SOLM represents the meta-model M2 layer that allows definition of platform
independent models (M1) of spacecraft procedures, as shown in Figure 2. Occurrences of procedure executions are the M0
layer, taking on specific parameter values and event times. Spacecraft operators and integrators can develop and exchange
M1 models for a specific spacecraft by using SOLM as the common M2 metamodel.

2 Satellite Operations Language Metamodel (SOLM), v1.1

Figure 2: Process Modeling

1.2 Environments Supporting SOLM
There are two environments that support the SOLM. The first environment is the modeling environment for defining
platform independent spacecraft operations procedures, which is represented as the SOLM Repository in Figure 1. The
second environment is the platform-specific procedure execution environment, represented by the two secondary system
actors, Translator and Direct Executive, in Figure 1. Compliant implementations can provide translation, modeling or
execution in either or both of these environments.

A SOLM Translator reads a spacecraft procedure PIM and translates it to a procedure that can be executed by a specific
ground system. This procedure will typically be in the native scripting language used by the ground system. Choosing a
SOLM Translator as the procedure mapping environment allows for minimal performance impact when implementing SOLM
for an existing ground system. The target language for a translator is a Domain Specific Language (DSL), and many DSL’s
may be targeted by a translator.

A SOLM Modeling Tool maintains a repository of spacecraft procedure PIM’s and can export PSM’s for a specific execution
environment.

A SOLM execution environment is a specific ground system used for spacecraft test or operation. A SOLM-compliant
ground system may use a Translator or a Direct Executive to execute procedures provided as SOLM models in an XMI
document or as a SpacePython procedure file. The SpacePython language is a DSL that is designed to accept all of the
SOLM-defined model in the target procedure.

A SOLM Direct Executive executes the spacecraft procedure reading the PIM directly, without translating it into a specific
intermediate representation.

1.3 Transition to SOLM
There is a large body of existing spacecraft operations procedures. Initially, the most desirable SOLM capabilities will be
translation of existing procedures into a SOLM repository and either translating or direct execution environments for
executing SOLM-based procedure models. As the base of SOLM-compliant execution environments expands, and the body

Satellite Operations Language Metamodel (SOLM), v1.1 3

of SOLM-based procedure models expands, the market for modeling tools to create, validate, and maintain SOLM-based
procedures will develop.

A significant part of this specification is the mapping of existing procedure languages to SOLM, and this mapping is intended
to be bi-directional to speed the transition. Mappings for other existing or new scripting languages for spacecraft operations
may be developed and published as SOLM-related specifications.

2 Conformance
A SOLM modeling tool must be able to read and write a spacecraft procedure PIM as an XMI document or as a SpacePython
procedure file. A modeling tool must support definition of procedures containing all of the standard SOLM elements,
including transformation of XML Telemetry and Command Exchange (XTCE) documents to define the Command and
Parameter objects that may be referenced by the procedure model, and transformation of GEMS parameter and directive
definition documents into DirectiveTemplate and Parameter objects that may be referenced by the procedure. A modeling
environment may also support simulation of procedure execution and/or an execution display of the procedure in an execution
environment. When a SOLM modeling tool is requested to write a spacecraft procedure PSM for a target platform that does
not support exception handling or threaded procedure execution defined in the procedure model, it must generate an error
message identifying the activity diagram node or procedure file line number that causes the inability to translate.

A compliant SOLM execution environment can provide three levels of compliance:

1. Level 1 compliance must provide execution of procedure models containing conditionals, looping, timed waits,
SOLM::NativeProcedure invocations, and Command and Parameter objects from an XTCE document. It must also
support exception handling and early termination of a procedure due to errors in a procedure step.

2. Level 2 compliance must provide execution of procedure models as in 1 but also including DirectiveTemplate and
Parameter objects from a GEMS equipment definition.

3. Level 3 compliance must provide execution of procedure models as in 2 but also support parallel execution threads
in a procedure.

3 References
3.1 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply:

The following OMG standards provided the MOF/UML foundation of SOLM:

UML 2.4.1 (formal/11-08-05, formal/11-08-06)

MOF 2.4.1 Core Specification (formal/11-08-07)

XML Metadata Interchange (XMI) provides a syntactic interchange mechanism for models. It is expected that models
conforming to this specification will be interchanged using XMI:

MOF 2 XMI Mapping, v2.4.1 (formal/11-08-09)

4 Satellite Operations Language Metamodel (SOLM), v1.1

The following domain specifications provide the formats for the definition of pre-existing objects made available to the
procedure modeler in a compliant modeling environment:

XML Telemetric and Command Exchange (XTCE) Version 1.1 (formal/2008-03-01),

Ground Equipment Management Specification (GEMS) Version 1.2, (dtc/2011-04-01)

4 Terms and definitions
For the purposes of this specification, the terms and definitions given in the normative references and the following apply:

Ground System – The target system that performs command and telemetry processing for the spacecraft and
monitors and controls ground equipment.

SOLM execution environment – a software environment for spacecraft operations or testing that executes
SOLM procedures either directly or translated into a native format.

SOLM Modeling Tool – a software environment that supports the development of spacecraft operations
procedures.

5 Glossary
HTTP – Hyper Text Transfer Protocol

SOLM – Satellite Operations Language Metamodel

UML – Unified Modeling Language

URL – Universal Resource Locator

XMI – XML Metadata Interchange

XSD – XML Schema Definition

XSLT – XML Stylesheet Language Transformations

XTCE – XML Telemetry and Command Exchange format

Satellite Operations Language Metamodel (SOLM), v1.1 5

6 Meta-model Definition
6.1 General
In order to leverage existing commercial standards and technologies, this specification defines a MOF-based meta-model.
This approach is intended to allow the application of existing modeling and model transformation environments for
spacecraft operations procedures.

The SOLM procedure execution environment could be modeled as interacting with two external actors, an operator, and
the ground system that controls the spacecraft and ground equipment, as shown in Figure 3. The procedure execution
environment may actually be part of the Ground System, but for the purposes of defining the procedure, the interactions
with the operator and the ground system are the significant features.

The notional sequence diagram illustrates that the interactions with the operator are primarily to obtain parameter values
and permission to continue with procedure execution. A specific procedure will have specific parameter requirements or
may require no interaction with the operator to complete the activity.

Operator

Procedure
Execution

Environment

Ground
System

Query for parameter

Set parameter

Request parameter

Parameter value

Query for release

Parameter value

Issue Directive

Issue release

Figure 3: Notional System Sequence Diagram (Non-Normative)

The interaction with the Ground System includes parameter values and directives. Parameter values supplied to the
procedure can guide or change procedure execution paths or supply values for directives. Parameter values set in the
Ground System by the procedure may guide or control execution in the ground system. Directives are an abstraction that
covers both spacecraft commands and ground system commands. Directives result in commands being transmitted to the
spacecraft or reconfiguration of the Ground System.

This notional sequence diagram also illustrates the critical actions that must be logged by a procedure execution
environment as an operations log. Each interaction with the Operator or Ground System is a critical action that must be
logged as part of the operations log.

Existing spacecraft procedure definition and development lends itself well to simple flowcharting. Most procedures are
simple sequences of commands, with some conditional checks to verify system state before or after a command
transmission. Existing languages attempt to make it easy to send spacecraft commands or configure ground equipment

6 Satellite Operations Language Metamodel (SOLM), v1.1

but are not strong in arithmetic or computational performance. The SOLM proposal uses a metamodel similar to the
UML Activity Diagram to capture a workflow for the modeled procedure.

Reuse of the activity diagram metamodel implies that a target language may be required to support threading for multi-
threaded activities and handling for early/error termination of a procedure or sub-procedure, in order to handle any
procedure defined in an activity diagram. Not all existing control languages provide these capabilities, but the
SpacePython described in this specification does, and the Comet Control Language (CCL),mapped to SOLM in this
specification, supports early/error termination.

Figure 4: Notional SOLM Procedure Activity Diagram (Non-Normative)

Figure 4 illustrates the definition of a simple spacecraft operating procedure using an activity diagram. This procedure
will also be used in demonstrating the mapping of SOLM to two existing spacecraft operations languages.

Satellite Operations Language Metamodel (SOLM), v1.1 7

Figure 5 is an overview of the key classes and relationships for SOLM. Each of the following sections will provide
subset of the model and descriptions and semantics for the classes. All classes in SOLM are presented as UML in this
document, but the normative metamodel is provided as a MOF XMI file. The classes outlined with the dashed XTCE
and GEMS box represent classes that will be instantiated from XTCE and GEMS definitions by the SOLM modeling
environment.

8 Satellite Operations Language Metamodel (SOLM), v1.1

Figure 5: Key SOLM Classes

The ProcedureEnvironment maintains a collection of Procedures with specified ProcedureArguments that defines how to
invoke each Procedure. The Procedures that are ModeledProcedures have an Activity that defines the procedure step-by-
step. The ProcedureEnvironment may also have GroundParameters that are used within Procedures and are treated as
global to all procedures, as are the other ExternalParameters that are defined for spacecraft and ground equipment in the
XTCE and GEMS definitions. One of the key Actions in an Activite is the Send action, which is causes a Directive to be
sent during procedure execution. Directives include GemsDirectives and CommandRequests that are the primary
contents of spacecraft operations procedures.

6.2 Procedure Invocation
Procedure invocation, either manual or via an Invoke action in a running procedure, is more simplistic than the UML
model. For that reason, a simplified procedure signature is modeled as shown in Figure 6. All ProcedureArguments are
input to the procedure, there is no concept of an out or inout ProcedureArgument. Any outputs use the Send or
ParameterWrite action. ProcedureArgument is derived from Parameter and the types match those of the GEMS and
XTCE parameters.

Satellite Operations Language Metamodel (SOLM), v1.1 9

Figure 6: Procedure Signatures

There may also be sub-procedures that are in the native scripting language that are not translated into the set of SOLM
procedure models shown in the diagram as class NativeProcedure. These sub-procedures must also be able to be invoked
from a SOLM model. Because of the different capabilities of different ground system languages in passing and returning
values to/from sub-procedures, the sub-procedure invocation is cast as input only Parameters defined in a procedure
signature with a single integer returned from the procedure invocation. Additional output Parameters may be set within
the procedure only as ExternalParameters.

6.2.1 ModeledProcedure

A ModeledProcedure is a Procedure with an Activity definition for all of the operational steps.

6.2.1.1 Generalizations

• Procedure, page 5

6.2.1.2 Attributes

No additional attributes.

6.2.1.3 Associations

• behaviour:Activity – the modelled behaviour of the Procedure.

10 Satellite Operations Language Metamodel (SOLM), v1.1

6.2.1.4 Constraints

No additional constraints

6.2.1.5 Semantics

A ModeledProcedure has one activity definition with a single InitialNode that is the start of execution.

6.2.2 NativeProcedure

A NativeProcedure is a Procedure that can be invoked by another Procedure in SOLM but does not have a modelled
behaviour. It is defined in the modelling environment so that it can be invoked by modelled procedures and must be
provided as a procedure executable by name in the execution environment. It is intended to support procedures that are
in the ground system native format that cannot be fully modelled in SOLM due to system-specific extensions.

6.2.2.1 Generalizations

• Procedure, page 5

6.2.2.2 Attributes

No additional attributes.

6.2.2.3 Associations

No additional associations.

6.2.2.4 Constraints

No additional constraints.

6.2.2.5 Semantics

A NativeProcedure runs to completion when invoked before returning control to the invoking Procedure. The
NativeProcedure may return an error that can be handled by an exception handler

6.2.3 Procedure

6.2.3.1 Generalizations

None.

6.2.3.2 Attributes

• description:String – A short text description of the effects of the procedure that can be presented to a modeller or
operator for procedure selection. This text will typically be included in the header of a script file.

• duration:TimeInterval – An estimated time period that is required for procedure execution that could be used in
planning and scheduling the operation. A negative time value must be used to indicate that the procedure is too
variable to predict or has no time estimate.

• lastModified:SpecificTime – the last time that the procedure was modified. This will typically be included as a
text comment in the procedure to aid configuration management and anomaly resolution.

• name:String – the name of the procedure
• version:String – a version number assigned to the last modification time.

Satellite Operations Language Metamodel (SOLM), v1.1 11

6.2.3.3 Associations

• argument:ProcedureArgument[0..*] – arguments to the procedure that can receive specific values at execution
time to modify the behaviour and actions of the procedure.

• header:HeaderComment[0..1] – an optional long text description of the procedure that can be included in the
header of a script file.

6.2.3.4 Constraints

No additional constraints.

6.2.3.5 Semantics

A Procedure can be invoked with specific ProcedureArgument values at run-time, either directly by an operator
submitting it to the SOLM execution environment, or as a sub-procedure invocation by another executing procedure.

6.2.4 ProcedureArgument

A ProcedureArgument provides Parameter values to a specific invocation of a Procedure.

6.2.4.1 Generalizations

• InternalParameter, page 24

6.2.4.2 Attributes

No additional attributes.

6.2.4.3 Associations

• procedure:Procedure – the Procedure this argument supplies values to

6.2.4.4 Constraints

No additional constraints

6.2.4.5 Semantics

The value for a ProcedureArgument can be specified at the time of invocation. The value may be referenced in
expressions defined in the Activity. A ProcedureArgument is input only, it may be set within the Procedure behaviour,
but the changed value is not returned to a calling Procedure.

6.2.5 Comment

A Comment is descriptive text in a Procedure

6.2.5.1 Generalizations

None

6.2.5.2 Attributes

• text:String – the descriptive text

6.2.5.3 Associations

No additional associations.

12 Satellite Operations Language Metamodel (SOLM), v1.1

6.2.5.4 Constraints

No additional constraints

6.2.5.5 Semantics

Comments do not affect the execution of a procedure but provide a way to capture descriptive text in the comments of an
existing script.

6.2.6 HeaderComment

6.2.6.1 Generalizations

• Comment, page 6

6.2.6.2 Attributes

No additional attributes.

6.2.6.3 Associations

• subject:Procedure – the Procedure this comment describes.

6.2.6.4 Constraints

No additional constraints

6.2.6.5 Semantics

The text contents of a HeaderComment would normally be included in the header of a translated native script by a SOLM
translator.

6.2.7 InlineComment

6.2.7.1 Generalizations

• Comment, page 6

6.2.7.2 Attributes

No additional attributes.

6.2.7.3 Associations

• subject:ActivityNode – the action/condition/parameter this comment describes.

6.2.7.4 Constraints

No additional constraints

6.2.7.5 Semantics

The text contents of an InlineComment would normally be included inline in the translated native script by a SOLM
translator.

Satellite Operations Language Metamodel (SOLM), v1.1 13

6.3 Activities
The basic model of a ModeledProcedure is captured in an Activity, which is a collection of ActivityEdges and
ActivityNodes. SOLM reuses the abstract syntax of the Activity modeling in UML and Foundational UML, but there are
some simplifications to the meta-model and semantics, since SOLM is not intended as a general purpose software
metamodel. Figure 7 through Figure 10 show the portions of SOLM related to defining an operations procedure as an
Activity.

Figure 7: Activities

Figure 8: Control Nodes

14 Satellite Operations Language Metamodel (SOLM), v1.1

Figure 9: Control and Data Flow

Figure 10: Exception Handling

Satellite Operations Language Metamodel (SOLM), v1.1 15

6.3.1 Action

An Action is an abstract executable node in the Activity that defines procedure behaviour .

6.3.1.1 Generalizations

• ExecutableNode, page 14

6.3.1.2 Attributes

No additional attributes.

6.3.1.3 Associations

No additional associations.

6.3.1.4 Constraints

No additional constraints

6.3.1.5 Semantics

The sequencing of actions are controlled by control edges within activities, which carry control (see Activity). Except
where noted, an action can only begin execution when it has been offered control tokens on all incoming control flows
and values are available for all of the incoming object flows. Note that this differs from the UML semantics in that there
are no dynamic object creations and deletions during the activity execution. This is a simplification in keeping with the
procedural nature of existing spacecraft operations languages. When the execution of an action is complete, it offers
control tokens on its outgoing control flows and specified Parameter values are replaced by outgoing object flows. The
steps of executing an action with control and object flow are as follows:

[1] An action execution is created when all its control flow prerequisites have been satisfied (implicit join). Any
exceptions to this are listed in the subclass action semantics.

[2] When an action accepts the offers for control tokens, the tokens are removed from the original sources that
offered them. If multiple control tokens are available on a single incoming control flow, they are all consumed.

[3] An action continues executing until it has completed. The detailed semantic of execution an action and
definition of completion depends on the particular subclass of action.

[4] When completed, an action execution offers control tokens on all its outgoing control flows (implicit fork),
and it terminates. Exceptions to this are listed below. The offered tokens may now satisfy the control flow
prerequisites for other action executions.

[5] After an action execution has terminated, its resources may be reclaimed by an implementation, but the
details of resource management are not part of this specification. All Actions in the current model are locally re-
entrant. This means that there may be, within any one execution of the containing activity, more than one
concurrent execution of the action ongoing at any given time.

6.3.2 Activity

An Activity defines the behaviour of a ModeledProcedure

6.3.2.1 Generalizations

None

16 Satellite Operations Language Metamodel (SOLM), v1.1

6.3.2.2 Attributes

No additional attributes.

6.3.2.3 Associations

• edge:ActivityEdge[*] – an edge representing a control or data flow between two ActivityNodes
• node:ActivityNode[*] – the data and control nodes in an Activity
• procedure:ModeledProcedure[1] – the Procedure that the Activity defines the behaviour for.

6.3.2.4 Constraints

No additional constraints

6.3.2.5 Semantics

An Activity has one InitialNode that begins the control flow execution of a Procedure. Activity control flow terminates
if an error is encountered, unless the error occurs in a HandledExceptionRegion defined within the Activity.

6.3.3 ActivityEdge

An ActivityEdge is an abstract class for directed connections (control or data flow) between two ActivityNodes.

6.3.3.1 Generalizations

None

6.3.3.2 Attributes

No additional attributes.

6.3.3.3 Associations

• activity:Activity[0..1] – the owning activity
• target:ActivityNode[1] – the target node of this flow.
• source:ActivityNode[1] – the source node of this flow.
• guard:Expression[0..1] – an expression limiting control flow on this edge.

6.3.3.4 Constraints

A guard is only allowed if the source of the edge is a DecisionNode

6.3.3.5 Semantics

An ActivityEdge can be either a ControlFlow or an ObjectFlow between two ActivityNodes.

6.3.4 ActivityFinalNode

An ActivityFinalNode ends execution of a Procedure.

6.3.4.1 Generalizations

• FinalNode, page 15

6.3.4.2 Attributes

No additional attributes.

Satellite Operations Language Metamodel (SOLM), v1.1 17

6.3.4.3 Associations

No additional associations.

6.3.4.4 Constraints

No additional constraints.

6.3.4.5 Semantics

An ActivityFinalNode terminates execution of a procedure. All threads of execution of the procedure terminate. Parallel
flows should use a JoinNode or a MergeNode to coalesce with other execution threads prior to the ActivityFinalNode,
otherwise active threads associated with parallel flows will be terminated by the thread (control flow) that reaches the
ActivityFinalNode.

6.3.5 ActivityGroup

An ActivityGroup is a subset of the ActivityNodes in an Activity

6.3.5.1 Generalizations

None

6.3.5.2 Attributes

No additional attributes.

6.3.5.3 Associations

containedNode:ActivityNode[*] – nodes in group

6.3.5.4 Constraints

No additional constraints

6.3.5.5 Semantics

An ActivityGroup is an abstract collection of ActivityNodes. No descendants, other than HandledExceptionGroup is
currently defined for SOLM.

6.3.6 ActivityNode

An ActivityNode is a data or control node in an Activity.

6.3.6.1 Generalizations

None

6.3.6.2 Attributes

No additional attributes.

18 Satellite Operations Language Metamodel (SOLM), v1.1

6.3.6.3 Associations

• activity:Activity[0..1] – Activity that the node belongs to.
• description:InlineComment[0..1] – description of the ActivityNode effects on procedure.
• incoming:ActivityEdge[*] – incoming data or control flow.
• outgoing:ActivityEdge[*] – outgoiong data or control flow.
• inGroup:ActivityGroup[*] – groups that contain this node
• inExceptionRegion:HandledExceptionRegion[*] – exception handler regions that contain this node.
• sender:HandledExceptionRegion[*] – regions from which this node receives control when exceptions occur.

6.3.6.4 Constraints

No additional constraints

6.3.6.5 Semantics

An ActivityNode is an abstract node. See descendants for semantics.

6.3.7 ControlFlow

A ControlFlow transfers execution control from one ActivityNode to the next.

6.3.7.1 Generalizations

• ActivityEdge, page 11

6.3.7.2 Attributes

No additional attributes.

6.3.7.3 Associations

No additional associations.

6.3.7.4 Constraints

No additional constraints

6.3.7.5 Semantics

A control flow is an activity edge that only passes control tokens. Tokens offered by the source node are all offered to the
target node.

6.3.8 ControlNode

A ControlNode exerts control over the incoming ControlFlow(s).

6.3.8.1 Generalizations

• ActivityNode, page 17

6.3.8.2 Attributes

No additional attributes.

Satellite Operations Language Metamodel (SOLM), v1.1 19

6.3.8.3 Associations

No additional associations.

6.3.8.4 Constraints

No additional constraints

6.3.8.5 Semantics

A ControlNode is an abstract node, see the descendants for specific semantics.

6.3.9 DecisionNode

A DecisionNode selects one exclusive outgoing ControlFlow from a set.

6.3.9.1 Generalizations

• ControlNode page 18

6.3.9.2 Attributes

No additional attributes.

6.3.9.3 Associations

No additional associations.

6.3.9.4 Constraints

• A DecisionNode has one incoming edge and at least one outgoing edge.
• The incoming and outgoing edges must be all control flows.

6.3.9.5 Semantics

Each outgoing ControlFlow from a DecisionNode will have a guard expression, except for a default flow, if one is
provided. There is no guaranteed order of guard evaluation, so multiple guards should be exclusive, otherwise any valid
guard expression can be chosen during execution, and the execution behaviour is unspecified. Only one ControlFlow
will be activated by a decision node.

6.3.10 ExecutableNode

An ExecutableNode performs domain-specific actions

6.3.10.1 Generalizations

• ActivityNode, page 17

6.3.10.2 Attributes

No additional attributes.

6.3.10.3 Associations

No additional associations.

20 Satellite Operations Language Metamodel (SOLM), v1.1

6.3.10.4 Constraints

No additional constraints

6.3.10.5 Semantics

An ExecutableNode is an abstract action, see the descendants for specific semantics.

6.3.11 Expression

An Expression is a Boolean or arithmetic expression consisting of read only references to the Parameters visible at the
containing Procedure scope.

6.3.11.1 Generalizations

None

6.3.11.2 Attributes

• value:String – the expression string is a valid Python arithmetic expression.

6.3.11.3 Associations

No additional associations.

6.3.11.4 Constraints

The expression must be a valid Python arithmetic expression. The syntax for Python is maintained in an open-source
project at https://docs.python.org/reference.

6.3.11.5 Semantics

An expression is evaluated in a DecisionNode, where the Expression is associated with the outgoing ControlFlows. An
expression is also evaluated in the WaitForExpression and ParameterWrite ExecutableNodes.

6.3.12 FinalNode

A FinalNode is an abstract node with one descendant, the ActivityFinalNode. No FlowFinalNode is included in SOLM,
because it is generally not necessary to terminate and individual flow in an activity, but the FinalNode to
ActivityFinalNode inheritance in the UML abstract syntax is retained.

6.3.12.1 Generalizations

• ControlNode, page 18

6.3.12.2 Attributes

No additional attributes.

6.3.12.3 Associations

No additional associations.

6.3.12.4 Constraints

No additional constraints

https://docs.python.org/reference

Satellite Operations Language Metamodel (SOLM), v1.1 21

6.3.12.5 Semantics

See ActivityFinalNode, page 16.

6.3.13 ForkNode

A ForkNode starts one or more parallel threads of execution.

6.3.13.1 Generalizations

• ControlNode, page 18

6.3.13.2 Attributes

No additional attributes.

6.3.13.3 Associations

No additional associations.

6.3.13.4 Constraints

No additional constraints

6.3.13.5 Semantics

A ForkNode accepts an incoming control token and places an outgoing control token on each outgoing control flow.
This allows the creation of parallel execution paths. These parallel control paths will continue until an
ActivityFinalNode or an execution error terminates all control flows.

6.3.14 HandledExceptionRegion

A HandledExceptionRegion identifies a set of ActivityNodes that will transfer control to an exception handling
ActivityNode, if an error occurs during execution.

6.3.14.1 Generalizations

• ActivityGroup, page 17

6.3.14.2 Attributes

No additional attributes.

6.3.14.3 Associations

handler:ActivityNode – the ActivityNode that will receive control on an exception.

6.3.14.4 Constraints

• An ActivityNode may only be directly contained in one HandledExceptionRegion.

22 Satellite Operations Language Metamodel (SOLM), v1.1

6.3.14.5 Semantics

If an error occurs during the execution of any ExecutableNode or ControlNode in the set of nodes in the region,
execution on the thread in error will cease and control will be transferred to the ActivityNode specified as the handler for
the HandledExceptionRegion. Parallel control flows will continue. If no HandledExceptionRegion with a handler is
defined for the Activity, an error in the execution of any control flow path will cause all control flows to cease execution,
as if an ActivityFinal node was executed. ActivityNode containment is constrained so that it is only possible for an error
in execution to transfer control to one handler. It is possible to nest HandledExceptionRegions so that an error in the
handler for one HandledExceptionRegion may transfer control to the owning region.

6.3.15 InitialNode

The InitialNode is where execution begins for an Activity.

6.3.15.1 Generalizations

• ControlNode, page 18

6.3.15.2 Attributes

No additional attributes.

6.3.15.3 Associations

No additional associations.

6.3.15.4 Constraints

No additional constraints

6.3.15.5 Semantics

Only one InitialNode must be specified for an Activity. The InitialNode creates one control token and transfers it on the
outgoing ControlFlow.

6.3.16 JoinNode

A JoinNode ends parallel threads of execution.

6.3.16.1 Generalizations

• ControlNode, page 18

6.3.16.2 Attributes

No additional attributes.

6.3.16.3 Associations

No additional associations.

6.3.16.4 Constraints

• A JoinNode has exactly one outgoing edge that is a ControlFlow
• All incoming edges are ControlFlows
• There is at least one incoming edge.

Satellite Operations Language Metamodel (SOLM), v1.1 23

6.3.16.5 Semantics

If control tokens are offered on all incoming edges, then one control token is offered to the outgoing edge. Multiple
tokens offered on the same incoming edge are combined into one.

6.3.17 MergeNode

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize concurrent
flows but to accept one among several alternate flows.

6.3.17.1 Generalizations

• ControlNode, page 18

6.3.17.2 Attributes

No additional attributes.

6.3.17.3 Associations

No additional associations.

6.3.17.4 Constraints

• A MergeNode has exactly one outgoing edge.
• A MergeNode has at least one incoming edge.
• All incoming and outgoing edges are ControlFlows.

6.3.17.5 Semantics

All tokens offered on incoming edges are offered to the outgoing edge. There is no synchronization of flows or joining of
tokens.

6.3.18 ObjectFlow

An ObjectFlow represents a data value being applied to a Parameter, ProcedureArgument, or DirectiveArgument.

6.3.18.1 Generalizations

• ActivityEdge, page 16

6.3.18.2 Attributes

No additional attributes.

6.3.18.3 Associations

• incoming:ActivityNode[1] – the ValueNode or ExecutableNode providing a value.
• outgoing:ActivityNode[1] – the ValueNode or ExecutableNode receiving a value.

6.3.18.4 Constraints

No additional constraints

24 Satellite Operations Language Metamodel (SOLM), v1.1

6.3.18.5 Semantics

If the outgoing node is a ValueNode, the value of the Parameter is set to the value provided by the incoming node. If the
outgoing node is an ExecutableNode then the value from the incoming node is provided to the ExecutableNode.

6.3.19 ValueNode

A ValueNode is a Parameter that participates in an ObjectFlow within an Activity.

6.3.19.1 Generalizations

• Parameter, page 24
• ActivityNode, page 17

6.3.19.2 Attributes

No additional attributes.

6.3.19.3 Associations

No additional associations.

6.3.19.4 Constraints

No additional constraints

6.3.19.5 Semantics

A ValueNode is a Parameter that participates in an ObjectFlow within an Activity.

6.4 Parameters
In order to leverage the XTCE and GEMS specifications already published by the OMG, SOLM has defined Parameters
with types that are compatible with both the XTCE and GEMS definitions. A Parameter can be defined in an XTCE
document, a GEMS document, or a platform-specific mechanism. In addition to a data type, a parameter may also be
restricted in a manner similar to XML schema restrictions. These restrictions should be enforced by the modeling and
execution environment for SOLM, but not all target platforms will support all restriction types. Figure 11 illustrates the
Parameter relationships for SOLM. Each Parameter may have a CurrentValue, which is the most recent value received
from the Space System or ground equipment and an associated timestamp for when the value was generated or received.

Satellite Operations Language Metamodel (SOLM), v1.1 25

Figure 11: GEMS and XTCE Parameters

Figure 12: Procedure Environment

26 Satellite Operations Language Metamodel (SOLM), v1.1

The SpaceSystem class represents the communications link to the spacecraft or Space System being operated, and the
catalog of all XtceParameters represents the current state of the spacecraft. In a similar way, the Device class represents
an item of ground equipment in the control system, and the catalog of all GemsParameters for the Device represents the
current state of the equipment.

6.4.1 SpecificTime

A SpecificTime represents a point in time at the SOLM Execution Environment. This is normally the ground system
conducting spacecraft operations. SpecificTime values are not specified within an operations procedure, since that would
limit the reusability of the procedure model but are usually input by the operations team as a ProcedureArgument at
invocation, as a result of a Query during execution, or are calculated from a current time obtained from the
ProcedureEnvironment at execution time. For portability, the value representation of a SpecificTime will be a String
representation of Coordinated Universal Time (UTC), default input format, YYYY-MM-DDTHH:MM:SS.NNN. Other
representations or time coordinates required for onboard or remote execution should be calculated within a procedure
model or specified as a ProcedureArgument. Time precision must extend to milliseconds, and future versions of this
specification may require micro or nanosecond precision.

6.4.1.1 Generalizations

• Time, page 33

6.4.1.2 Attributes

No additional attributes.

6.4.1.3 Associations

No additional associations.

6.4.1.4 Constraints

No additional constraints

6.4.1.5 Semantics

A SpecificTime may be used as part of a Wait action, in an Expression, as a value for a DirectiveArgument, or as a value
for a ParameterWrite. A SpecificTime must be convertible to a POSIX seconds and nanoseconds structure for use with
XTCE and GEMS Parameter types. In an expression, the difference between two SpecificTimes is a TimeInterval. A
TimeInterval may also be added or subtracted from a SpecificTime to yield another SpecificTime.

6.4.1.6 Operations

• year() returns the Integer value of the Gregorian year associated with the time.
• month() returns the Integer value of the Gregorian month, 1-12.
• day() returns the Integer value of the day of the month, 1-31.
• dayOfYear() returns the Integer value of the ordinal day of the Gregorian year, 1-366.
• hour() returns the Integer value of the hour of the day, 0-23.
• minutes() returns the Integer value of the minute of the hour, 0-59.
• seconds() returns the Integer value of the second of the minute, 0-59.
• nanos() returns the Integer value of the nanoseconds of the second, 0-999,999,999.

6.4.2 Device

A GEMS device has a set of Parameters that can be read and written and may also support GemsDirectives to change the
Device configuration. A GEMS device is usually ground equipment that is part of the spacecraft ground support.

Satellite Operations Language Metamodel (SOLM), v1.1 27

6.4.2.1 Generalizations

None

6.4.2.2 Attributes

• name:String – unique name for the device.

6.4.2.3 Associations

• state:GemsParameter[0..*] – the set of Parameters that represent the state of the device, some of which may also
be settable to change the configuration of the device.

• director:GemsDirective[0..*] – the set of directives that can be used to change device configuration or state.
• controller:ProcedureEnvironment[1] – the ProcedureEnvironment in the ground system that controls this

Device.

6.4.2.4 Constraints

No additional constraints

6.4.2.5 Semantics

A Device may be configured by writing GemsParameter values and issuing GemsDirectives associated with the device.
Device state may also be used in a procedure by reading GemsParameter values. The unique name of a Device will be
used by the procedure environment to establish a control and status connection to the device.

6.4.3 ExternalParameter

An ExternalParameter differentiates Parameters that are external to the Procedure. ExternalParameters may be
GemsParameters, XtceParameters, or GroundParameters.

6.4.3.1 Generalizations

• Parameter, page 24

6.4.3.2 Attributes

No additional attributes.

6.4.3.3 Associations

No additional associations.

6.4.3.4 Constraints

No additional constraints

6.4.3.5 Semantics

The ParameterRead action on an ExternalParameter must cause special processing to obtain a new value. A
ParameterWrite action an ExternalParameter must change the state of the procedure environment or devices associated
with the procedure environment. Because ExternalParameters are, by definition, external to the Procedure, they act like
global parameters.

28 Satellite Operations Language Metamodel (SOLM), v1.1

6.4.4 GemsParameter

A GemsParameter represents part of the state of a GEMS Device. It has a specific value which may be read from the
device. Some GemsParameters are writable, and the configuration of the Device will be changed by a ParameterWrite
with an outgoing ObjectFlow to the GemsParameter.

6.4.4.1 Generalizations

• ExternalParameter, page 27

6.4.4.2 Attributes

• writable:Boolean – indicates whether the GEMS device supports setting the value of the Parameter.

6.4.4.3 Associations

• system:Device – the GEMS device containing the Parameter.

6.4.4.4 Constraints

• A GemsParameter with a False writable attribute value cannot be the target of an ObjectFlow.

6.4.4.5 Semantics

See description above.

6.4.5 GroundParameter

A GroundParameter represents part of the state of the ground system providing the Procedure environment. It has a
specific value which may be read from the system. Some GroundParameters are writable, in which case, setting the
value changes the configuration of the ground system.

6.4.5.1 Generalizations

• ExternalParameter, page 27

6.4.5.2 Attributes

• writable:Boolean – indicates whether the ground system supports setting the value of the Parameter.

6.4.5.3 Associations

No additional associations.

6.4.5.4 Constraints

• A GroundParameter with a False writable attribute value cannot be the target of an ObjectFlow.

6.4.5.5 Semantics

See description above.

6.4.6 InstantValue

A value with a timestamp for a Parameter.

Satellite Operations Language Metamodel (SOLM), v1.1 29

6.4.6.1 Generalizations

None

6.4.6.2 Attributes

• value:String – the value of the Parameter. The value should be expressed appropriate to the ParameterType and
any Restrictions on the ParameterType

• timestamp:AbsoluteTime – the time when the value was sampled or calculated.

6.4.6.3 Associations

• parameter:Parameter – the valued parameter.

6.4.6.4 Constraints

No additional constraints

6.4.6.5 Semantics

Provides a value for a Parameter to be used in expressions or Procedure invocations.

6.4.7 InternalParameter

An InternalParameter is a Parameter internal to the Procedure. An InternalParameter may be a ProcedureVariable or a
ProcedureArgument.

6.4.7.1 Generalizations

• Parameter, page 24

6.4.7.2 Attributes

No additional attributes.

6.4.7.3 Associations

No additional associations.

6.4.7.4 Constraints

No additional constraints

6.4.7.5 Semantics

The effect of reading or writing an InternalParameter is limited to the Procedure itself. Writing the value of an
InternalParameter will cause all later references to the InternalParameter to use the new value.

6.4.8 Parameter

A Parameter has a type and a value and is read and/or written by Procedures.

6.4.8.1 Generalizations

None

30 Satellite Operations Language Metamodel (SOLM), v1.1

6.4.8.2 Attributes

No additional attributes.

6.4.8.3 Associations

• evaluation:InstantValue[0..1] – value of the Parameter at an instant in time. If the Parameter has never been
reported or calculated it may not have an InstantValue. An Expression that uses a Parameter with no defined
Instantvalue causes an exception in the execution that may be handled in a HandledExceptionRegion.

• restriction:Restriction[0..*] – the values that Parameter may take are restricted by the ParameterType and may
be additionally restricted by defined Restrictions.

6.4.8.4 Constraints

No additional constraints

6.4.8.5 Semantics

In order to be consistent with XTCE and GEMS Parameters, all values used in SOLM are based on the Parameter class
and have ParameterTypes and Restrictions that are consistent with those specifications. Distinguishing between internal
and external Parameter types allows special actions to occur when ExternalParameters are read or written.

6.4.9 ParameterType

6.4.9.1 Generalizations

None

6.4.9.2 Attributes

The type enumeration in SOLM is consistent with the types supported by GEMS, XTCE, and most spacecraft operations
scripting languages.

6.4.9.3 Associations

No additional associations.

6.4.9.4 Constraints

No additional constraints

6.4.9.5 Semantics

The ParameterType constrains the allowable values and allowable Restrictions for a Parameter.

6.4.10 TimeInterval

A TimeInterval represents a negative or positive interval of time. A TimeInterval can be added or subtracted from a
SpecificTime to create a new SpecificTime that is later or earlier than the original SpecificTime. The default value
representation of a TimeInterval is sPDTHH:MM:SS.NNNNNNNNN, where ‘s’ is an optional ‘+’ or ‘-‘, and D
represents as many digits of an integer number of 24-hour days as are necessary or the digit ‘0’. The precision must
extend to nanoseconds.

6.4.10.1 Generalizations

• Time, page 33

Satellite Operations Language Metamodel (SOLM), v1.1 31

6.4.10.2 Attributes

No additional attributes.

6.4.10.3 Associations

No additional associations.

6.4.10.4 Constraints

No additional constraints

6.4.10.5 Semantics

A TimeInterval is the result of an Expression taking the difference between to SpecificTimes. An Expression may also
calculate a new SpecificTime by adding or subtracting a TimeInterval to/from a SpecificTime. A TimeInterval may be
initialized from a POSIX time structure in a GEMS or XTCE Parameter type. It may also be initialized from an Integer
number of seconds or a floating point decimal number with fractional seconds. A TimeInterval may be used in a Wait
action.

6.4.10.6 Operations

• days() returns the Integer number of whole days in this interval.
• hours() returns the Integer number of whole hours, not including any whole days.
• minutes() returns the Integer number of whole minutes, not including any whole hours.
• seconds() returns the Integer number of whole seconds, not including any whole minutes.
• nanos() returns the Integer number of nanoseconds, not including any whole seconds.
• asSeconds() returns the Integer number of seconds in the entire interval.

6.4.11 ProcedureEnvironment

6.4.11.1 Generalizations

None

6.4.11.2 Attributes

No additional attributes.

6.4.11.3 Associations

• director:CustomDirective[0..*] – A collection of CustomDirectives that are part of the procedure environment.
These Directives may be defined by a modeling environment to support ground system-specific directives.

• equipment:Device[0..*] – GEMS devices that are part of the ground system.
• state:GroundParameter[0..*] – Collection of Parameters that are specific to a ground system.
• operation:Procedure[0..*] – Collection of Procedures defined for a ground system.
• subject:SpaceSystem[1..*] – Collection of at least one SpaceSystem that is monitored and controlled by the

ground system.

6.4.11.4 Constraints

No additional constraints

6.4.11.5 Semantics

The ProcedureEnvironment is a singleton that contains all of the definitions associated with Procedure development for a
specific SpaceSystem.

32 Satellite Operations Language Metamodel (SOLM), v1.1

6.4.12 ProcedureVariable

6.4.12.1 Generalizations

• InternalParameter, page 29.

6.4.12.2 Attributes

No additional attributes.

6.4.12.3 Associations

• incoming:ObjectFlow[0..*] – source of new value from Procedure action.

6.4.12.4 Constraints

No additional constraints

6.4.12.5 Semantics

A ProcedureVariable is a Parameter with a local procedure scope. Setting the value of the ProcedureVariable from an
Action in the procedure Activity definition will have no effect on the ground system or the execution of other procedures.

6.4.13 Restriction

A Restriction restricts the allowed values of a Parameter

6.4.13.1 Generalizations

None

6.4.13.2 Attributes

• enumeration:String – restricts the values of ParameterTypes with a String value to the specific list of strings.
• fractionDigits:Integer – restricts the number of digits after the decimal place in a ParameterType with a floating

point value.
• length:Integer – restricts the length of a string ParameterType to a specific, exact length.
• maxExclusive:String – restricts the value of a numeric ParameterType, floating point, integer, or the seconds

portion of a time type, to be less than the specified value.
• maxInclusive:String – restricts the value of a numeric ParameterType, floating point, integer, or the seconds

portion of a time type, to be less than or equal to the specified value.
• maxLength:Integer – restricts the length of a string ParameterType to a maximum number of characters.
• maxNanos:Integer – restricts the nanoseconds portion of a time ParameterType to be less than or equal to the

specified value.
• minExclusive:String – restricts the value of a numeric ParameterType, floating point, integer, or the seconds

portion of a time type, to be greater than the specified value.
• minInclusive:String – restricts the value of a numeric ParameterType, floating point, integer, or the seconds

portion of a time type, to be greater than or equal to the specified value.
• minLength:Integer – restricts the length of a string ParameterType to a minimum number of characters.
• minNanos:Integer – restricts the nanoseconds portion of a time ParameterType to be greater than or equal to a

specified value.
• pattern:String – restricts the value of a string ParameterType to the pattern defined by a regular expression.
• totalDigits:Integer – restricts the total number of digits allowed in a floating point ParameterType.

6.4.13.3 Associations

No additional associations.

Satellite Operations Language Metamodel (SOLM), v1.1 33

6.4.13.4 Constraints

The value of specific attributes of the Restriction are constrained to be compatible with the associated Parameter.

6.4.13.5 Semantics

Writing a value to a Parameter or supplying an argument to a ProcedureArgument or DirectiveArgument that does not
meet the associated restriction criteria will result in an error that halts script execution unless a HandledExceptionRegion
is defined for the ActivityNode where the error occurred. The Query action should limit accepted data to the values
allowed by the associated Parameter.

6.4.14 SpaceSystem

A SpaceSystem represents a link to the spacecraft under control by the Procedure. The name is taken from the XTCE
specification.

6.4.14.1 Generalizations

None

6.4.14.2 Attributes

• name:String – unique name for the SpaceSystem used by the ProcedureEnvironment to establish a link to the
SpaceSystem.

6.4.14.3 Associations

• state:XtceParameter[0..*] – the set of Parameters that represent the state of the spacecraft.
• instruction:Command[0..*] – the set of commands that can be used to change spacecraft configuration or state.
• controller:ProcedureEnvironment[1] – the ProcedureEnvironment in the ground system that controls this

SpaceSystem.

6.4.14.4 Constraints

No additional constraints

6.4.14.5 Semantics

The SpaceSystem is typically defined by an XTCE document, which results in a set of XtceParameter and Command
instances which can be used in the Procedure definition. The unique name of the SpaceSystem is used at procedure
execution time to establish a connection with the SpaceSystem being controlled.

6.4.15 Time

6.4.15.1 Generalizations

None

6.4.15.2 Attributes

None

6.4.15.3 Associations

No additional associations.

34 Satellite Operations Language Metamodel (SOLM), v1.1

6.4.15.4 Constraints

None

6.4.15.5 Semantics

A Time is an abstract time value. It represents either a TimeInterval or a SpecificTime.

6.4.15.6 Operations

• toString(String) returns the Time value formatted according to the specified format String or the default format
if the String is empty. The format string follows the Python time module specification for time formatting.

6.4.16 XtceParameter

An XtceParameter represents a part of the state of a SpaceSystem under control.

6.4.16.1 Generalizations

• ExternalParameter, page 27

6.4.16.2 Attributes

No additional attributes.

6.4.16.3 Associations

No additional associations.

6.4.16.4 Constraints

No additional constraints

6.4.16.5 Semantics

The telemetry of a SpaceSystem is normally received, calculated, and buffered by the ground system and made available
to the Procedure as last reported values, therefore a ReadParameter action does not usually cause communication to the
SpaceSystem, merely retrieval of the last reported value. Likewise, setting the value of an XtceParameter does not result
in communication with the SpaceSystem under control, but usually results in the update of a derived (non-telemetered)
state value, or is simply overwritten when the ground system updates the current value of the Parameter.

6.5 Command Transmission
SOLM requires a standard way to invoke the transmission of a command defined in an XTCE document. The modeling
environment creates a collection of Command instances based on the MetaCommands defined in the XTCE document for
the spacecraft. In order to transmit a command, a CommandRequest is created for a specific Command instance in the
modeling environment catalog and describes how the Command must be handled when transmitted through the link.
Parameters required or optionally allowed for the Command are specified in association with the command. These
relationships are shown in Figure 13. A GemsDirective is effectively a command to an item of ground equipment and the
Command and the GemsDirective are generalized as a Directive which is a single step in an operations procedure.

Satellite Operations Language Metamodel (SOLM), v1.1 35

Figure 13: Directives: CommandRequests and GemsDirectives

6.5.1 Command

A Command is usually a binary packet sent to a spacecraft to change the onboard configuration. In SOLM Commands
are defined by an XTCE document. The binary format is not important to SOLM, it is formatted by the ground system.

6.5.1.1 Generalizations

None

6.5.1.2 Attributes

• name:String – the name of the Command, unique for a specific SpaceSystem

6.5.1.3 Associations

• modifier:CommandArgument[0..*] – an argument modifies a command, usually altering the contents of the
binary packet sent to the spacecraft.

• carrier:CommandRequest[0..*] – a CommandRequest is part of a procedure that carries a command to the
ground system for transmission.

• target:SpaceSystem[1] – a Command is intended for one target SpaceSystem.

6.5.1.4 Constraints

No additional constraints

36 Satellite Operations Language Metamodel (SOLM), v1.1

6.5.1.5 Semantics

Much of the Command structure defined in an XTCE document is irrelevant for SOLM. The Procedure determines the
sequence, timing, and argument values for each Command, so the only Telecommand elements SOLM needs from the
XTCE document are a list of valid commands and the type and range of each command argument.

6.5.2 CommandArgument

A CommandArgument modifies the effect of a Command on the target SpaceSystem.

6.5.2.1 Generalizations

• Parameter, page 24

6.5.2.2 Attributes

• defaultValue:String – provides a default value for the argument, if none is supplied by the Directive

6.5.2.3 Associations

• target:Command[1] – the Command modified by this argument
• value:DirectiveArgument[0..1] – the Directive may supply a DirectiveArgument to be used instead of the

defaultValue attribute.

6.5.2.4 Constraints

No additional constraints

6.5.2.5 Semantics

A CommandArgument that does not have a defaultValue, must have a value supplied by a directiveArgument.

6.5.3 CommandRequest

A CommandRequest includes additional information about how the Command should be transmitted by the ground
system.

6.5.3.1 Generalizations

• Directive, page 37

6.5.3.2 Attributes

• ignoreConstraints:Boolean – if true, the ground system must ignore any pre-transmission constraints defined for
the command and allow the transmission to proceed without signalling an error, even if transmission would
violate the constraints. Pre-transmission constraints may be defined in XTCE but are not managed by SOLM.

• ignoreReceipt:Boolean – if true, the ground system must ignore any receipt acknowledgement normally required
for the command and proceed without signalling an error.

• ignoreVerification:Boolean – if true, the ground system must ignore any functional verification defined for the
command, and proceed without signalling an error, even if the function verification would fail.

• noEncryption:Boolean – if true, the ground system must transmit the command without encrypting the binary
packet.

• preAuthorized:Boolean – if true, the ground system must ignore any requirement for release authorization
before transmission.

• releaseAt:AbsoluteTime – if provided, the ground system must not release the command for transmission until
the specified time.

Satellite Operations Language Metamodel (SOLM), v1.1 37

6.5.3.3 Associations

• contents:Command[1] – the command to request the ground system to transmit.

6.5.3.4 Constraints

No additional constraints

6.5.3.5 Semantics

When the SOLM execution environment provides the CommandRequest directive information to the ground system, the
ground system must format the command and transmit it to the SpaceSystem, conducting any normal verifications for the
command, unless overridden by one of the CommandRequest attributes. Control must be returned to the executing
procedure after transmission is complete, unless the “releaseAt” time is specified, in which case control must be returned
after the Command is queued for transmission at a later time.

6.5.4 CustomDirective

A CustomDirective is a ground system-specific directive. Many scripting languages have directives that are not related
to a GEMS device or a SpaceSystem. SOLM provides a way to capture CustomDirective information in a Procedure, but
the system-specific behaviour is not directly transferable.

6.5.4.1 Generalizations

Directive, page 37

6.5.4.2 Attributes

name:String – the name of the directive

6.5.4.3 Associations

• target:ProcedureEnvironment[1] – the environment of the CustomDirective

6.5.4.4 Constraints

No additional constraints

6.5.4.5 Semantics

The complete behaviour of a CustomDirective is indeterminate. For the purposes of SOLM, the name and
DirectiveArguments are supplied to the ground system. The ground system either completes the directive without error,
returning control to the executing Procedure, or the ground system returns an error, which will either terminate execution
or be handled by an exception handler.

6.5.5 Directive

A Directive instructs the ground system to take an action during Procedure execution.

6.5.5.1 Generalizations

None

6.5.5.2 Attributes

No additional attributes.

38 Satellite Operations Language Metamodel (SOLM), v1.1

6.5.5.3 Associations

modifier:DirectiveArgument[0..*] – supplies additional information to the ground system for completing the action of the
Directive.

6.5.5.4 Constraints

No additional constraints

6.5.5.5 Semantics

A Directive is an abstract representation of a ground system action. See the related concrete Directive descendants for
semantics.

6.5.6 DirectiveArgument

A DirectiveArgument supplies additional information to the ground system for Directive execution.

6.5.6.1 Generalizations

• Parameter, page 24

6.5.6.2 Attributes

• defaultValue: String – provides a default for the argument value

6.5.6.3 Associations

• target:CommandArgument[0..1] – CommandArgument that will receive the DirectiveArgument value.

6.5.6.4 Constraints

No additional constraints

6.5.6.5 Semantics

DirectiveArguments are defined during procedure definition and are passed to the ground system during Directive
execution by the Send action. See page 38.

6.5.7 GemsDirective

A GemsDirective sends a command and parameters to a GEMS device.

6.5.7.1 Generalizations

• Directive, page 37

6.5.7.2 Attributes

• name:String – the directive name

6.5.7.3 Associations

• target:Device – the GEMS device targeted by this GemsDirective

Satellite Operations Language Metamodel (SOLM), v1.1 39

6.5.7.4 Constraints

No additional constraints

6.5.7.5 Semantics

The execution of a GemsDirective issues a directive message to the GEMS device. The GemsDirective is completed,
and control returns to the Procedure execution when the GEMS device responds. If the GEMS device fails to respond or
returns an error response, the GemsDirective will return an error, halting procedure execution or transferring control to an
exception handler, if one is defined for the procedure.

6.6 Procedure Actions
Spacecraft operations procedures frequently check the current value of a telemetry parameter to determine if a command
was properly executed or to determine the correct command to send, based on the current spacecraft state. Requested
parameters can be used in conditional expressions or as command arguments within the procedure. In SOLM, the
telemetry Parameter instances are created from the XTCE document in the modeling environment. The value of the
Parameter instance may be referenced in the procedure model for conditional tests, computation, or setting the value of a
Directive Parameter.

Figure 14 through Figure 21 show the action nodes that can be part of an activity diagram defining an operations
procedure.

Figure 14: SOLM Action Nodes for Activity Diagrams

40 Satellite Operations Language Metamodel (SOLM), v1.1

Figure 15: Invoke Subprocedure

6.6.1 Invoke

A Procedure may invoke another Procedure as a sub-procedure.

6.6.1.1 Generalizations

• Action, page 15

6.6.1.2 Attributes

No additional attributes.

6.6.1.3 Associations

No additional associations.

6.6.1.4 Constraints

No additional constraints

6.6.1.5 Semantics

The Invoke action calls a Procedure as a sub-procedure. Any ProcedureArguments required by the sub-procedure
definition must be supplied from the associated incoming ObjectFlows. Execution of ModeledProcedures take place in
the same ProcedureEnvironment context, but there may be InternalParameters that are local to the ModeledProcedure.
The Integer result of the Procedure may be passed to an outgoing ObjectFlow. If the sub-procedure completes normally,
the control token is passed to the outgoing ControlFlow of the Action. If the sub-procedure exits with an error, control is
passed to error handling within the current Activity.

6.6.2 ParameterRead

A ParameterRead is required to obtain a new value for an ExternalParameter.

Satellite Operations Language Metamodel (SOLM), v1.1 41

6.6.2.1 Generalizations

• Action, page 15

6.6.2.2 Attributes

No additional attributes.

6.6.2.3 Associations

• incoming:ObjectFlow[1] – ObjectFlow connected to an ExternalParameter providing a new value.
• outgoing:ObjectFlow[1] – ObjectFlow connected to a ProcedureParameter receiving the new value.

6.6.2.4 Constraints

No additional constraints

6.6.2.5 Semantics

An ExternalParameter requires an interaction with the ground system to obtain a new value for the Parameter.

6.6.3 ParameterWrite

A ParameterWrite sets the value of a Parameter.

6.6.3.1 Generalizations

• Action, page 15

6.6.3.2 Attributes

No additional attributes.

6.6.3.3 Associations

• value:Expression[1] – Expression evaluated to obtain the new value for the Parameter
• outgoing:ObjectFlow[1] – ObjectFlow connected to a Parameter receiving the new value.

6.6.3.4 Constraints

No additional constraints

6.6.3.5 Semantics

An ExternalParameter requires an interaction with the ground system to set a new value for the Parameter.

6.6.4 Query

A Query obtains a new value for a Parameter from the Operator.

6.6.4.1 Generalizations

• Action, page 15

42 Satellite Operations Language Metamodel (SOLM), v1.1

6.6.4.2 Attributes

• prompt:String – text to prompt the operator for a value.

6.6.4.3 Associations

• outgoing:ObjectFlow[1] – ObjectFlow connected to the Parameter receiving the new value.

6.6.4.4 Constraints

No additional constraints

6.6.4.5 Semantics

There are system-specific ways to prompt the operator for a value. The ParameterType and prompt can be provided to
insure a good value is provided. Failure to provide a value or providing a value that is not allowed by the ParameterType
and Restrictions results in an error.

6.6.5 Send

A Send issues a Directive to the ground system for execution.

6.6.5.1 Generalizations

• Action, page 15

6.6.5.2 Attributes

No additional attributes.

6.6.5.3 Associations

• action:Directive[1] – the Directive to send to the ground system.
• incoming:ObjectFlow[0..*] – ObjectFlows providing values from InternalParameters
• outgoing:ObjectFlow[0..*] – ObjectFlows providing values to DirectiveArguments

6.6.5.4 Constraints

No additional constraints

6.6.5.5 Semantics

A Send action collects DirectiveArgument values and issues the Directive to the ground system for completion.

6.6.6 Verify

Verify is an abstract action.

6.6.6.1 Generalizations

• Action, page 15

6.6.6.2 Attributes

No additional attributes.

Satellite Operations Language Metamodel (SOLM), v1.1 43

6.6.6.3 Associations

No additional associations.

6.6.6.4 Constraints

No additional constraints

6.6.6.5 Semantics

See VerifyExpression and VerifyRange

6.6.7 VerifyExpression

VerifyExpression evaluates a Boolean expression.

6.6.7.1 Generalizations

• Verify, page 42

6.6.7.2 Attributes

• expression:String – string containing a Python Boolean expression.

6.6.7.3 Associations

No additional associations.

6.6.7.4 Constraints

The expression must be a valid Python Boolean expression. The syntax for Python is maintained in an open-source
project at https://docs.python.org/reference.

6.6.7.5 Semantics

The expression is evaluated and if it is true, execution continues at the outgoing ControlFlow. If it is false, an error is
generated, and any associated exception handler is executed.

6.6.8 VerifyRange

A VerifyRange tests the equality of a floating point Parameter type.

6.6.8.1 Generalizations

• Verify, page 42

6.6.8.2 Attributes

• expected:String – the expected value of the Parameter.
• tolerance:String – a plus/minus tolerance value to test for equality within a range.

6.6.8.3 Associations

• readReference:InternalParameter[1] – the Parameter to test for equality

https://docs.python.org/reference

44 Satellite Operations Language Metamodel (SOLM), v1.1

6.6.8.4 Constraints

No additional constraints

6.6.8.5 Semantics

The value of the readReference is compared to the range defined by the value of the expected attribute of the
VerifyRange, plus the tolerance and minus the tolerance. If it is within the range, inclusively, execution continues at the
outgoing ControlFlow. If it is not, an error is generated, and any associated exception handler is executed.

6.6.9 Wait

Wait is an abstract action.

6.6.9.1 Generalizations

• Action, page 15

6.6.9.2 Attributes

No additional attributes.

6.6.9.3 Associations

No additional associations.

6.6.9.4 Constraints

No additional constraints

6.6.9.5 Semantics

See WaitOnExpression and WaitOnTime for specific semantics.

6.6.10 WaitOnExpression

WaitOnExpression waits for the value of a Boolean expression to become true.

6.6.10.1 Generalizations

• Wait, page 44

6.6.10.2 Attributes

• pollPeriod:TimeInterval – the time period to wait before re-evaluating the expression.
• timeout:Time – the time period or AbsoluteTime to wait before failing due to timeout

6.6.10.3 Associations

• expression:Expression[1] – the Boolean expression to evaluate

6.6.10.4 Constraints

No additional constraints

Satellite Operations Language Metamodel (SOLM), v1.1 45

6.6.10.5 Semantics

This Action repeatedly evaluates the expression, obtaining new values for ExternalParameters referenced, until the
Expression is true, or the timeout occurs. Execution continues on the outgoing ControlFlow, if the expression is true.
The timeout error will transfer control to an exception handler, if one is defined for the Action.

When a TimeInterval is used as the timeout in a WaitOnExpression action, it is used as the time interval to wait for the
expression to become true. A zero or negative interval will result in an immediate timeout error if the expression is not
true. When used as the pollPeriod in a WaitOnExpression action, it is used as the time interval to wait between
expression evaluations. A zero or negative interval in this case will cause an immediate error.

6.6.11 WaitOnTime

WaitOnTime delays the execution thread.

6.6.11.1 Generalizations

• Wait, page 44

6.6.11.2 Attributes

• time:Time – the TimeInterval period to wait, or the AbsoluteTime to resume execution.

6.6.11.3 Associations

No additional associations.

6.6.11.4 Constraints

No additional constraints

6.6.11.5 Semantics

Execution suspends until the specified time is reached, then execution continues on the outgoing ControlFlow. When a
TimeInterval is used as the time in a WaitOnTime action, it defines the interval to delay before continuing execution. A
zero or negative interval will result in an immediate completion of the action. When a SpecificTime is used as the time
in a WaitOnTime action, execution will delay until the SpecificTime is reached. If the SpecificTime is in the past, it
results in an immediate completion of the action.

46 Satellite Operations Language Metamodel (SOLM), v1.1

Figure 16: Parameter Read

Figure 17: Parameter Write

Satellite Operations Language Metamodel (SOLM), v1.1 47

Figure 18: Query Operator

Figure 19: Send Directive

48 Satellite Operations Language Metamodel (SOLM), v1.1

Figure 20: Verify State

Figure 21: Wait

Satellite Operations Language Metamodel (SOLM), v1.1 49

6.7 Operations Language Metamodel RFP Requirements
The following table describes how the SOLM proposal addresses the requirements for the Operations Language
Metamodel RFP.

Number Requirement SOLM Compliance

6.5.1 The proposal shall supply a metamodel of a
spacecraft operations language

The SOLM metamodel is defined in this
specification.

6.5.2 The proposal shall define a metamodel that
allows for the automation of spacecraft
operations including the configuration of
spacecraft, payload components and ground
equipment

An activity diagram for procedure invocation can
contain command transmission and GEMS ground
equipment parameter sets and ground equipment
directives when used with a compliant execution
environment.

6.5.3 The proposal shall define a metamodel that
is suitable for use in spacecraft integration
and test as well as spacecraft launch and on-
orbit operations.

The defined procedures are applicable in an
operations environment as well as an integration
and test environment.

6.5.4 The abstract syntax of the metamodel shall
be specified as a Meta Object Facility
(MOF)-compliant metamodel (v2.0)

SOLM is a MOF Meta-model.

6.5.5 The proposal shall define standard mappings
of the metamodel to at least two existing
spacecraft operations languages (see
appendix A for a description of some of
these languages).

Mappings for two spacecraft operations languages
is provided in this specification.

6.5.6 The proposal shall define a metamodel that
applies to different spacecraft types, i.e. it
should be generic.

SOLM provides for generic definition of
operations processes. Different spacecraft can be
used via a spacecraft-specific XTCE document, or
other methods of loading the model catalog of
Commands and Parameters.

6.5.7 The proposed metamodel shall support
methods for model management, including
the production of a difference report between
edited versions of a model, e.g. reflective
interface. Rationale: Configuration
Management.

This requirement is implementation dependent,
but MOF does provide a reflective interface.

6.5.8 The proposed metamodel shall allow for the
definition of the following constructs in the
space domain:

• Control flow constructs

• Expressions

• Sub processes

• Data elements and parameters

• Pre and post conditions (including
time)

The Meta-model supports all of the required
constructs.

50 Satellite Operations Language Metamodel (SOLM), v1.1

6.5.9 The operations language described by the
metamodel shall have the capability to verify
commands and telemetry definitions, e.g.
from an XTCE document.

The SOLM activity diagram allows the
specification of commands and telemetry as part
of a procedure model in a way that is compatible
with using XTCE definitions.

6.5.10 The operations language described by the
metamodel shall be able to act on dynamic
and ground system telemetry data.

The Parameter access for telemetry and ground
equipment management support access to this
data.

6.5.11 The operations language described by the
metamodel shall be capable of including
time-based functions.

Time-based events and processing are supported.

6.5.12 The operations language described by the
metamodel shall include the capability to
define and invoke inline system-specific
code within a procedure.

System-specific procedures are invoked as sub-
procedures.

6.5.13 An operations language described by the
metamodel shall be capable of invoking
commands and referencing telemetry items
defined within an XTCE document. Proper
use of XTCE object definitions must be
enforced when defining a model

Enforcement is implementation dependent, but
SOLM supports invoking commands and
referencing telemetry defined by XTCE
documents.

6.6.1 (optional) The metamodel may include data
synchronization features necessary to
represent concurrent processing defined by
at least one target operations language.

The activity diagram supports definition of
concurrent sub-processes. Synchronization is
implementation dependent.

Satellite Operations Language Metamodel (SOLM), v1.1 51

7 Comet Control Language (CCL) Mapping
7.1 General
The native scripting language for Harris Corporation’s OS/COMET® product is known as Comet Control Language, or
CCL. This section provides information on mapping a procedure defined in SOLM into a CCL procedure. In the
mapping table, a value inside <> indicates a named entity that is used by name in the procedure.

A CCL representation of the procedure shown in Error! Reference source not found. is provided below:

PARAMDEF NPARAM=SpeedIncrement

ATTACH SAT=”SAT_1”

IF (MomentumWheelState .EQ. “Off”) THEN

 CEXL MomentumWheelOn

ENDIF

CEXL SetWheelSpeed, WheelSpeed=MomentumWheelSpeed+’SpeedIncrement’

Three example OS/COMET CCL procedures are provided with the specification in a machine-consumable format, to
avoid problems with cut-and-paste from formatted text. The following mapping table describes how SOLM features are
mapped to CCL. The transformation between CCL and SOLM is non-normative, in that there may be multiple valid
mappings, and there are some SOLM constructs, such as multi-threading, that must be mapped to multiple procedures
with coordination through shared memory.

CCL SOLM Comments

! or ; Comment An activity diagram note in the
procedure sequence

DOWHILE..ENDDO DecisionNode,
MergeNode

CCL also supports an iterative
DO..ENDDO and REPEAT..UNTIL
constructs

INQUIRE Query

PAUSE Query with no Parameters

ONERROR HandledExceptionRegion An ONERROR statement sets up an
exception handler for errors that
occur during procedure execution,
including an error in the Verify
statement.

VERIFY Verify A statement that accepts a Boolean
expression and transfers control to
an exception handler, if one is
defined, or halts the procedure if no
exception handler is provided.

ATTACH <SPACESYSTEM_NAME> SpaceSystem Associates command and telemetry
references with the SpaceSystem
specified by unique name.

PARAMDEF Procedure, Defines the named parameters for a

52 Satellite Operations Language Metamodel (SOLM), v1.1

ProcedureArgument procedure

PERFORM <PROCEDURE_NAME> Invoke Invokes the specified procedure or
sub-procedure.

IF..[ELSE]..ENDIF DecisionNode Defines a conditional execution path.

CEXL <COMMAND_NAME> CommandRequest

Command

Requests command transmission for
the command specified by unique
name with the specified keyword
values for the SpaceSystem referred
to in the most recent ATTACH
statement.

<Parameter> Parameter

ParameterRead

A parameter value is referenced by
using its unique name in an
expression

SET <Parameter> = expression Parameter

ParameterWrite

A parameter value may be
overridden by a SET statement. This
override replaces a local copy and
does not change the value in the
associated SpaceSystem or GEMS
device

GEMS <device>, GET,
PARAMS=<param1¶m2…>

GemsParameter

ParameterRead

Get the current values for the
specified Parameters in the specified
GEMS device.

GEMS <device>, SET,
PARAMS=<param1¶m2…>,
VALUES=<value1&value2…>

GemsParameter

ParameterWrite

Set the current values for the
specified Parameters in the specified
GEMS device.

GEMS <device>,
<directive>,PARAMS=<param1¶m2…>,
VALUES=<value1&value2…>

GemsDirective Issue the specified directive to the
specified GEMS device with the
specified Parameter values.

WAIT <Time>, <Expression>,
[TIMEOUT_ERROR],[Statement]

WaitOnTime

WaitOnExpression

Wait for a time interval in seconds,
optionally wait for an expression to
become true, optionally generate a
timeout error or a CCL statement to
execute when a timeout occurs.

SOLM CCL Comments

Procedure, ProcedureArgument PARAMDEF NPARAM=<parameters
defined in Signature>

If there are no input parameters, the
PARAMDEF is not required in CCL.

SpaceSystem ATTACH
SAT=”<Link.SpaceSystem>”

A Link must be defined in the
procedure class model in order to
access XTCE Parameters and
Commands

Device No statement is required in CCL
until a parameter is read, a parameter
is written, or a directive is issued to

Satellite Operations Language Metamodel (SOLM), v1.1 53

the GEMS Device.

DecisionNode IF <guard1 expression>

…

ELSEIF<guard2 expression>

…

ELSE <default guard>

…

ENDIF

The guard paths should be exclusive,
since there is no order implied in the
activity diagram other than the
default guard.

MergeNode ENDIF or ENDDO There is no concept of threads within
CCL, so the merge node would
typically only be seen at the end of a
conditional path or loop.

ParameterRead <Parameter.name>

Or

GEMS <Device.name>,GET,
PARAMS=<Parameter.name>

In CCL, the parameter name may be
used in an expression to retrieve the
current value for an XTCE
Parameter. Reading a
GemsParameter requires a specific
directive.

ParameterWrite SET <Parameter.name>

Or

GEMS <Device.name>,SET,
PARAMS=<Parameter.name>,
VALUES=<Value>

Send CEXL <Command.name> or

GEMS <GemsDirective.name>

The Send action is translated based
on the Directive type.

ParameterWrite SET <Variable.name> = <Expression> The syntax of arithmetic expressions
in CCL is similar to Python, but
Boolean and logical operators are
FORTRAN format in CCL.

ActivityFinalNode EXIT <status>

HandledExceptionRegion ONERROR GOSUB <Handler Label>

<HandlerLabel>:

WaitOnExpression WAIT <Timeout>, <Expression>,
[TIMEOUT_ERROR]

CCL allows waiting for an
expression to become true.

54 Satellite Operations Language Metamodel (SOLM), v1.1

WaitOnTime WAIT<Timeout> CCL only allows waiting on a time
interval of 0-86400 seconds.

Satellite Operations Language Metamodel (SOLM), v1.1 55

8 SpacePython Mapping
8.1 General
Python is an open-source scripting language for general purpose computing applications that can easily be extended to
specialized applications, such as spacecraft control. This section provides information on mapping SOLM to a
SpacePython script. SpacePython is based on the Python 3 syntax with the addition of the SOLM extensions defined in
this appendix to support spacecraft operations.

Because either direct execution or translation of a SpacePython procedure is an acceptable conformance to SOLM,
additional machine consumable SpacePython script examples are provided with the SOLM specification, including the
SetMomentumWheelSpeed example from Figure 4. All of the examples are provided in the form of Python package that
can be added to any Python installation. The example module will run all of the example scripts, demonstrating a
compliant SpacePython interface. A SOLM-compliant ground system would use its own database and control
mechanisms to run the same SpacePython scripts rather than modules provided in the demonstration space package.

SpacePython SOLM Comments

Comment Delimits comment text

While Loop defined by DecisionNode,
ControlFlow

Defines a loop construct with a
conditional entrance. The Python
language also supports a for
construct with iteration over lists.
Indentation is significant for
defining the span of the loop.

This is in the Python base language.

If..[elif]..[else] DecisionNode Defines conditional execution
paths. Indentation is significant for
defining the span of each
conditional block.

This is in the Python base language.

Invoke InitialNode Defines the primary entry point for
a procedure accepting keyword
arguments for the parameter values.

This is SpacePython usage of a
function definition as the procedure
entry point.

operatorQuery Query Python supports numerous GUI
widget sets and console input, but a
SpacePython procedure uses an
operatorQuery function that
interfaces with the execution
platform GUI

def operatorQuery(prompt,
parameterList):

This is a SpacePython library
function

56 Satellite Operations Language Metamodel (SOLM), v1.1

operatorQuery(‘prompt text’, None) Query with no associated Parameters An operatorQuery with no
parameters is essentially a PAUSE,
waiting for the operator to continue
the procedure execution.

This is a SpacePython library
function

Link(<SPACESYSTEM>) SpaceSystem A Link object represents a
command and telemetry connection
through the ground system to a
specific SpaceSystem defined by an
XTCE document. The Link is
created in a procedure using the
unique name of the SpaceSystem.
If the underlying system needs
additional information or settings to
establish the Link, these may be
supplied in a system-specific way
using the SpaceSystem name as a
key.

This is a SpacePython class
definition.

Link.send(<COMMAND>) CommandRequest

Command

The send method of a Link object
issues a command transmission
request to the ground system for the
SpaceSystem associated with the
Link. A fully-specified command
(no required Arguments) can be
specified by its unique name,
otherwise a Command instance
must be obtained from the
Link.lookupCommand() method
and completed by specifying
required arguments to the
Command instance.

This is a SpacePython class method.

Link.lookupParameter(<PARAMETER>) XtceParameter

ParameterType

Restriction

Obtain an instance of a Parameter in
the SpaceSystem associated with
the Link (or Downlink).

This is a SpacePython class method.

Link.lookupCommand(<COMMAND>) Command Obtain a reference to a Command in
the SpaceSystem associated with
the Link.

This is a SpacePython class method.

Downlink(<SPACESYSTEM>) SpaceSystem A Downlink object represents a
telemetry-only connection to a
SpaceSystem. Telemetry
Parameters may be looked up and
read but cannot be written. A
Downlink object also does not
support the send() method for

Satellite Operations Language Metamodel (SOLM), v1.1 57

CommandRequests.

This is a SpacePython class
definition.

GemsDevice(<DEVICE>) Device A GemsDevice object represents a
connection to a specific GEMS
device. The object is created with
the unique name for the device,
which may be mapped via a system-
specific configuration to the
network address of the device.

This is a SpacePython class
definition.

GemsDevice.get() GemsParameter

ParameterRead

Obtain the current values of a list of
Parameters, specified by unique
names, from a GEMS device.

This is a SpacePython class method.

GemsDevice.set() GemsParameter

ParameterWrite

Set the values of a list of Parameters
in a GEMS device, specified as a
list of name=value pairs.

This is a SpacePython class method.

GemsDevice.lookupDirective() GemsDirective

Restriction

Obtain an instance of a Directive,
specified by unique name, defined
for the GEMS device.

This is a SpacePython class method.

GemsDevice.send() GemsDirective Issues a Directive to the GEMS
device. The Directive instance
must be obtained by the
GemsDevice.lookupDirective()
method and completed by supplying
any required Parameter values.

This is a SpacePython class method.

<Parameter> Parameter Represents an XTCE or GEMS
Parameter.

This is a SpacePython abstract
class.

<Parameter>__<Attribute> Restriction Provides the attributes of a
parameter including limits and valid
range.

Parameter.value() XtceParameter

ParameterRead

Returns the engineering unit value
of the Parameter for use in an
expression.

This is a SpacePython class method.

58 Satellite Operations Language Metamodel (SOLM), v1.1

Parameter.raw() XtceParameter Returns the raw (usually binary or
integer) value of the Parameter for
use in an expression.

This is a SpacePython class method.

try … catch HandledExceptionRegion The try catch block sets up an
exception handler for a protected
section of the procedure.

verify Verify A statement that accepts a Boolean
expression and raises an exception
if the condition is false.

GemsParameter GemsParameter Represents a GEMS Parameter
definition. Must be obtained by a
factory method “lookupParameter”
on the GemsDevice.

This is a SpacePython class.

XtceParameter XtceParameter Represents an XTCE Parameter
definition. Must be obtained by a
factory method “lookupParameter”
on Link or Downlink.

wait(seconds) WaitOnTime

Wait for a time interval in seconds.

waitUntil(<SpecificTime>) WaitOnTime Wait for a specific date/time.

waitFor(<expression>,<timeout>,<Polling period>) WaitOnExpression Wait for an expression to become
true or a timeout occurs.

SOLM SpacePython Comments

InitialNode from space import Link

def invoke(**kwargs):

Python accepts param=value style
keyword arguments.

SpaceSystem link = Link(”<Link.SpaceSystem>”) A Link must be defined in the
procedure class model in order to
access XTCE Parameters and
Commands

Device dev = GemsDevice(“<Device.name>”) A Device must be defined in the
procedure class model in order to
access GEMS Parameters and
Directives

DecisionNode if <guard1 expression>:

…

The guard paths should be
exclusive, since there is no order
implied in the activity diagram
other than the default guard.

Satellite Operations Language Metamodel (SOLM), v1.1 59

elif<guard2 expression>:

...

else <default guard>:

...

JoinNode Thread.join() De-indentation completes a
conditional or loop. Join() waits
for the joined thread to terminate.

ParameterRead Value = dev.get(‘<Parameter.name>’)

ParameterWrite dev.set(<Parameter.name>=value)

Send dev.send(directive)

or

link.send(command)

The Send action is translated
based on the Directive type.

ParameterWrite <Variable.name> = <Expression>

ActivityFinalNode return

HandledExceptionRegion try:

 …

catch:

 …

WaitOnTime wait(<seconds>)

waitUntil(<SpecificTime)

SpacePython allows waiting for a
specific time of day or for a time
interval. The time interval may
include fractional seconds.

WaitOnExpression waitFor(<Expression>, <Timeout>,
<Polling Period>)

SpacePython allows waiting for an
expression to become true or
timeout period to elapse.

	Preface
	1 Scope
	1.1 General
	1.2 Environments Supporting SOLM
	1.3 Transition to SOLM

	2 Conformance
	3 References
	3.1 Normative References

	4 Terms and definitions
	5 Glossary
	6 Meta-model Definition
	6.1 General
	6.2 Procedure Invocation
	6.2.1 ModeledProcedure
	6.2.1.1 Generalizations
	6.2.1.2 Attributes
	6.2.1.3 Associations
	6.2.1.4 Constraints
	6.2.1.5 Semantics

	6.2.2 NativeProcedure
	6.2.2.1 Generalizations
	6.2.2.2 Attributes
	6.2.2.3 Associations
	6.2.2.4 Constraints
	6.2.2.5 Semantics

	6.2.3 Procedure
	6.2.3.1 Generalizations
	6.2.3.2 Attributes
	6.2.3.3 Associations
	6.2.3.4 Constraints
	6.2.3.5 Semantics

	6.2.4 ProcedureArgument
	6.2.4.1 Generalizations
	6.2.4.2 Attributes
	6.2.4.3 Associations
	6.2.4.4 Constraints
	6.2.4.5 Semantics

	6.2.5 Comment
	6.2.5.1 Generalizations
	6.2.5.2 Attributes
	6.2.5.3 Associations
	6.2.5.4 Constraints
	6.2.5.5 Semantics

	6.2.6 HeaderComment
	6.2.6.1 Generalizations
	6.2.6.2 Attributes
	6.2.6.3 Associations
	6.2.6.4 Constraints
	6.2.6.5 Semantics

	6.2.7 InlineComment
	6.2.7.1 Generalizations
	6.2.7.2 Attributes
	6.2.7.3 Associations
	6.2.7.4 Constraints
	6.2.7.5 Semantics

	6.3 Activities
	6.3.1 Action
	6.3.1.1 Generalizations
	6.3.1.2 Attributes
	6.3.1.3 Associations
	6.3.1.4 Constraints
	6.3.1.5 Semantics

	6.3.2 Activity
	6.3.2.1 Generalizations
	6.3.2.2 Attributes
	6.3.2.3 Associations
	6.3.2.4 Constraints
	6.3.2.5 Semantics

	6.3.3 ActivityEdge
	6.3.3.1 Generalizations
	6.3.3.2 Attributes
	6.3.3.3 Associations
	6.3.3.4 Constraints
	6.3.3.5 Semantics

	6.3.4 ActivityFinalNode
	6.3.4.1 Generalizations
	6.3.4.2 Attributes
	6.3.4.3 Associations
	6.3.4.4 Constraints
	6.3.4.5 Semantics

	6.3.5 ActivityGroup
	6.3.5.1 Generalizations
	6.3.5.2 Attributes
	6.3.5.3 Associations
	6.3.5.4 Constraints
	6.3.5.5 Semantics

	6.3.6 ActivityNode
	6.3.6.1 Generalizations
	6.3.6.2 Attributes
	6.3.6.3 Associations
	6.3.6.4 Constraints
	6.3.6.5 Semantics

	6.3.7 ControlFlow
	6.3.7.1 Generalizations
	6.3.7.2 Attributes
	6.3.7.3 Associations
	6.3.7.4 Constraints
	6.3.7.5 Semantics

	6.3.8 ControlNode
	6.3.8.1 Generalizations
	6.3.8.2 Attributes
	6.3.8.3 Associations
	6.3.8.4 Constraints
	6.3.8.5 Semantics

	6.3.9 DecisionNode
	6.3.9.1 Generalizations
	6.3.9.2 Attributes
	6.3.9.3 Associations
	6.3.9.4 Constraints
	6.3.9.5 Semantics

	6.3.10 ExecutableNode
	6.3.10.1 Generalizations
	6.3.10.2 Attributes
	6.3.10.3 Associations
	6.3.10.4 Constraints
	6.3.10.5 Semantics

	6.3.11 Expression
	6.3.11.1 Generalizations
	6.3.11.2 Attributes
	6.3.11.3 Associations
	6.3.11.4 Constraints
	6.3.11.5 Semantics

	6.3.12 FinalNode
	6.3.12.1 Generalizations
	6.3.12.2 Attributes
	6.3.12.3 Associations
	6.3.12.4 Constraints
	6.3.12.5 Semantics

	6.3.13 ForkNode
	6.3.13.1 Generalizations
	6.3.13.2 Attributes
	6.3.13.3 Associations
	6.3.13.4 Constraints
	6.3.13.5 Semantics

	6.3.14 HandledExceptionRegion
	6.3.14.1 Generalizations
	6.3.14.2 Attributes
	6.3.14.3 Associations
	6.3.14.4 Constraints
	6.3.14.5 Semantics

	6.3.15 InitialNode
	6.3.15.1 Generalizations
	6.3.15.2 Attributes
	6.3.15.3 Associations
	6.3.15.4 Constraints
	6.3.15.5 Semantics

	6.3.16 JoinNode
	6.3.16.1 Generalizations
	6.3.16.2 Attributes
	6.3.16.3 Associations
	6.3.16.4 Constraints
	6.3.16.5 Semantics

	6.3.17 MergeNode
	6.3.17.1 Generalizations
	6.3.17.2 Attributes
	6.3.17.3 Associations
	6.3.17.4 Constraints
	6.3.17.5 Semantics

	6.3.18 ObjectFlow
	6.3.18.1 Generalizations
	6.3.18.2 Attributes
	6.3.18.3 Associations
	6.3.18.4 Constraints
	6.3.18.5 Semantics

	6.3.19 ValueNode
	6.3.19.1 Generalizations
	6.3.19.2 Attributes
	6.3.19.3 Associations
	6.3.19.4 Constraints
	6.3.19.5 Semantics

	6.4 Parameters
	6.4.1 SpecificTime
	6.4.1.1 Generalizations
	6.4.1.2 Attributes
	6.4.1.3 Associations
	6.4.1.4 Constraints
	6.4.1.5 Semantics
	6.4.1.6 Operations

	6.4.2 Device
	6.4.2.1 Generalizations
	6.4.2.2 Attributes
	6.4.2.3 Associations
	6.4.2.4 Constraints
	6.4.2.5 Semantics

	6.4.3 ExternalParameter
	6.4.3.1 Generalizations
	6.4.3.2 Attributes
	6.4.3.3 Associations
	6.4.3.4 Constraints
	6.4.3.5 Semantics

	6.4.4 GemsParameter
	6.4.4.1 Generalizations
	6.4.4.2 Attributes
	6.4.4.3 Associations
	6.4.4.4 Constraints
	6.4.4.5 Semantics

	6.4.5 GroundParameter
	6.4.5.1 Generalizations
	6.4.5.2 Attributes
	6.4.5.3 Associations
	6.4.5.4 Constraints
	6.4.5.5 Semantics

	6.4.6 InstantValue
	6.4.6.1 Generalizations
	6.4.6.2 Attributes
	6.4.6.3 Associations
	6.4.6.4 Constraints
	6.4.6.5 Semantics

	6.4.7 InternalParameter
	6.4.7.1 Generalizations
	6.4.7.2 Attributes
	6.4.7.3 Associations
	6.4.7.4 Constraints
	6.4.7.5 Semantics

	6.4.8 Parameter
	6.4.8.1 Generalizations
	6.4.8.2 Attributes
	6.4.8.3 Associations
	6.4.8.4 Constraints
	6.4.8.5 Semantics

	6.4.9 ParameterType
	6.4.9.1 Generalizations
	6.4.9.2 Attributes
	6.4.9.3 Associations
	6.4.9.4 Constraints
	6.4.9.5 Semantics

	6.4.10 TimeInterval
	6.4.10.1 Generalizations
	6.4.10.2 Attributes
	6.4.10.3 Associations
	6.4.10.4 Constraints
	6.4.10.5 Semantics
	6.4.10.6 Operations

	6.4.11 ProcedureEnvironment
	6.4.11.1 Generalizations
	6.4.11.2 Attributes
	6.4.11.3 Associations
	6.4.11.4 Constraints
	6.4.11.5 Semantics

	6.4.12 ProcedureVariable
	6.4.12.1 Generalizations
	6.4.12.2 Attributes
	6.4.12.3 Associations
	6.4.12.4 Constraints
	6.4.12.5 Semantics

	6.4.13 Restriction
	6.4.13.1 Generalizations
	6.4.13.2 Attributes
	6.4.13.3 Associations
	6.4.13.4 Constraints
	6.4.13.5 Semantics

	6.4.14 SpaceSystem
	6.4.14.1 Generalizations
	6.4.14.2 Attributes
	6.4.14.3 Associations
	6.4.14.4 Constraints
	6.4.14.5 Semantics

	6.4.15 Time
	6.4.15.1 Generalizations
	6.4.15.2 Attributes
	6.4.15.3 Associations
	6.4.15.4 Constraints
	6.4.15.5 Semantics
	6.4.15.6 Operations

	6.4.16 XtceParameter
	6.4.16.1 Generalizations
	6.4.16.2 Attributes
	6.4.16.3 Associations
	6.4.16.4 Constraints
	6.4.16.5 Semantics

	6.5 Command Transmission
	6.5.1 Command
	6.5.1.1 Generalizations
	6.5.1.2 Attributes
	6.5.1.3 Associations
	6.5.1.4 Constraints
	6.5.1.5 Semantics

	6.5.2 CommandArgument
	6.5.2.1 Generalizations
	6.5.2.2 Attributes
	6.5.2.3 Associations
	6.5.2.4 Constraints
	6.5.2.5 Semantics

	6.5.3 CommandRequest
	6.5.3.1 Generalizations
	6.5.3.2 Attributes
	6.5.3.3 Associations
	6.5.3.4 Constraints
	6.5.3.5 Semantics

	6.5.4 CustomDirective
	6.5.4.1 Generalizations
	6.5.4.2 Attributes
	6.5.4.3 Associations
	6.5.4.4 Constraints
	6.5.4.5 Semantics

	6.5.5 Directive
	6.5.5.1 Generalizations
	6.5.5.2 Attributes
	6.5.5.3 Associations
	6.5.5.4 Constraints
	6.5.5.5 Semantics

	6.5.6 DirectiveArgument
	6.5.6.1 Generalizations
	6.5.6.2 Attributes
	6.5.6.3 Associations
	6.5.6.4 Constraints
	6.5.6.5 Semantics

	6.5.7 GemsDirective
	6.5.7.1 Generalizations
	6.5.7.2 Attributes
	6.5.7.3 Associations
	6.5.7.4 Constraints
	6.5.7.5 Semantics

	6.6 Procedure Actions
	6.6.1 Invoke
	6.6.1.1 Generalizations
	6.6.1.2 Attributes
	6.6.1.3 Associations
	6.6.1.4 Constraints
	6.6.1.5 Semantics

	6.6.2 ParameterRead
	6.6.2.1 Generalizations
	6.6.2.2 Attributes
	6.6.2.3 Associations
	6.6.2.4 Constraints
	6.6.2.5 Semantics

	6.6.3 ParameterWrite
	6.6.3.1 Generalizations
	6.6.3.2 Attributes
	6.6.3.3 Associations
	6.6.3.4 Constraints
	6.6.3.5 Semantics

	6.6.4 Query
	6.6.4.1 Generalizations
	6.6.4.2 Attributes
	6.6.4.3 Associations
	6.6.4.4 Constraints
	6.6.4.5 Semantics

	6.6.5 Send
	6.6.5.1 Generalizations
	6.6.5.2 Attributes
	6.6.5.3 Associations
	6.6.5.4 Constraints
	6.6.5.5 Semantics

	6.6.6 Verify
	6.6.6.1 Generalizations
	6.6.6.2 Attributes
	6.6.6.3 Associations
	6.6.6.4 Constraints
	6.6.6.5 Semantics

	6.6.7 VerifyExpression
	6.6.7.1 Generalizations
	6.6.7.2 Attributes
	6.6.7.3 Associations
	6.6.7.4 Constraints
	6.6.7.5 Semantics

	6.6.8 VerifyRange
	6.6.8.1 Generalizations
	6.6.8.2 Attributes
	6.6.8.3 Associations
	6.6.8.4 Constraints
	6.6.8.5 Semantics

	6.6.9 Wait
	6.6.9.1 Generalizations
	6.6.9.2 Attributes
	6.6.9.3 Associations
	6.6.9.4 Constraints
	6.6.9.5 Semantics

	6.6.10 WaitOnExpression
	6.6.10.1 Generalizations
	6.6.10.2 Attributes
	6.6.10.3 Associations
	6.6.10.4 Constraints
	6.6.10.5 Semantics

	6.6.11 WaitOnTime
	6.6.11.1 Generalizations
	6.6.11.2 Attributes
	6.6.11.3 Associations
	6.6.11.4 Constraints
	6.6.11.5 Semantics

	6.7 Operations Language Metamodel RFP Requirements

	7 Comet Control Language (CCL) Mapping
	7.1 General

	8 SpacePython Mapping
	8.1 General

