Date: Apri-March 20254

Satellite Operations Language Metamodel
Final Specification, version 1.12

OMG Document Number: dtc/20254-034-0202

Standard document URL: http://www.omg.org/spec/SOLM/1.2+

Associated-SehemaMachine Consumable Files{s): http://www.omg.org/spec/SOLM/20250301 (XMI File)
http://www.omg.org/spec/SOLM/202540242503 (Python
Library)

Primary Contact:

Justin Boss, Kratos S1RTLegie, Inc.
email: wkbrd@gmail.com

http://www.omg.org/spec/SOLM/1.2
http://www.omg.org/spec/SOLM/20250301
http://www.omg.org/spec/SOLM/20250203
mailto:bkizzort@harris.com

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company’s products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create
and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute
this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this
permission notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and
will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred
for commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically
terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any
copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required
by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems—without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY
OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN' NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE,
INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR
USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This disclaimer
of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph © (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph ©(1) and (2) of the
Commercial Computer Software — Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object
Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and IIOP®
are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™, OMG
Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That’s Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are trademarks
of the Object Management Group. All other products or company names mentioned are used for identification purposes only, and
may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report
any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web
page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue
(http://www.omg.org/technology/agreement.htm).

iii

http://www.omg.org/
http://www.omg.org/technology/agreement.htm

Table of Contents

Table of Contents

REVISION HISEOIY ..viiutiitiiite ittt st it sts st s et st e st s ete st e ateete et esteabssbeatsesbeeessbseeessasabsannssnsssesnseaseanseasesssaneeann Xiv

Introduction

I~ Yol o] o 1= T PP O O OO O OO TP PP PP PP PP PP P PP PP PP TP PP PP PP PP PP PP PP PP P PP PP PP PP PP PP PP UPPPPPPPPPPPPPPPTRt

1.2 Environments SUPPOITING SOLIMoiuiiiiiiiiieitiiieiesieiescieseessisaetsssasseessssesesseesseaseesseaseesseessesnns 4
1.3 TranSition t0 SOLIM ...uiiiiiiiiiiiiiiiiieis it s et sts et st s eteeteettestestesteseeassssaeasessasssssnssasssnsssssssssseareanseass 4
2 CON O I MIANCE Lttt etttk et e e ettt ettt ettt eete e et e e shteets e et e e ene e e bt e beeenb e e bt e eheeenbeeenbesanreeabeeaneeenreeneeannes 4

3 REIOIBNCES .ttt ettt ettt e e e e th et e e et e e et e et e b e et e ar e b e areeans

3.1 Normative References

4 Terms and DefinitioNS......coceiiiiiiiiiiisie e

5 GIOSSANY ittt 6

6 Meta-model DefinitioN.......coiveeiiiiiiiiiiiiitssi e 7
6.1 GENEIAl ..o 7
6.2 ProCedure INVOCALION. ... ittt 10

6.2.1 ModeledProcedure
6.2.2 NativeProcedure....

6.2.3 PrOCEAUIE ...cuiuiitiiitiiee et
6.2.4 ProCEAUrEANGUMENTcuitiiisiest ittt 13
6.2.5 COMMENME. . ittt 13
6.2.6 HeaderCOMMENT ..ottt 14
6.2.7 INNECOMMENT ...ttt 14
6.3 ACHIVITIES ooviieeiiiiiiiei it
6.3.1 Action
6.3.2 ACHVILY Lot 18
6.3.3 ACHVIEYEAQE ..ot 18
6.3.4 ACtiVityFINAINOGE. ..cveviiieiiiiiieiicie 19
6.3.5 ACHVIEYGIOUD ..ottt 19
6.3.6 ACHVIEYNOUE. ...ttt 20
6.3.7 CONEPOIFIOW L. 20

6.3.8 CONEIOINOUE.ueiieiei ittt ettt et e s ete et estesetssasestssessbessesnseabessseassesseaseaseanseabesssanessesaness 21

6.3.9 DECISIONNOUE. ..ottt 21
6.3.10 EXECUtADIENOAE ... 21
6.3.11 EXPIESSTION .. 22
6.3.12 FINAINOUE ...
6.3.13 ForkNode....
6.3.14 HandledEXCEPtiONREGION. . .cve.viuiieeiiiiiitiiiisie e 23
6.3.15 INTETAINOGE 23
6.3.16 JOINNOGE. . 24
6.3.17 MEPGENOTE ... 24
6.3.18 OBJECEFIOW .t 25
6.3.19 VaAIUENOUE. .. 25
6.4 PAIAMELEIS ..oveiiiiiiie i 26
6.4.1 SPECIFICTIME .ottt 27
B.4.2 DBVICE ..t 28
6.4.3 EXternalParameter........coocccuiiiiiiiiiiiiiiii s 29
6.4.4 GeMSPArAMELEr .. cuiiiieiieiitiii i 29
6.4.5 GroundParameter veiiieiieiiiseeise s 29
6.4.6 INSEANEVAIUEveuiiieiiiiiee 30
6.4.7 INternalParameter. ... cocoociiiiiiiiiiee e 30
6.4.8 PAIBMETEI ..o 31
6.4.9 ParameterTVPe vttt 31
6.4.10 TIMEINEENVAL ..ot 31
6.4.11 ProcedureENVIrONMENTt 32
6.4.12 ProcedureVariablecceiiiiiisieiscs 33

6.4.13 Restriction
6.4.14 SpaceSystem

6.4.15 UM Lt
6.4.16 KECEPAIAMELEN ...ttt 35
6.5 CoMMANd TraNSMISSION. ...ttt 35
6.5.1 COMMANG. ..ttt 36
6.5.2 COMMANAATGUMENT . ..euiiieiiiiit ittt 37

6.5.3 CommandRequest

8
9

3
.3

CUSTOMDITECTIVE ..veveiieitie ittt setsstiete st e eteeeteaessteassssesessssesesanessssasesnsessesnsesssaresnseareasseases

6.5.4
6.5.5
6.5.6
6.5.7

6.6

DT IV 1ttt ettt e et e ete et eete et e stesteeteeste et e ebeeeeanseabeentetsanteeneeabeeneeaneeneeanes

.39
.39
.40

DireCtIVEATGUMENT L...vitiiiicie ittt st se e st e st e et e st e et e sreesieaneesresesneesneas

GMSDITECEIVE L1uiiiueiiiiti it it et et ste et e et e st e et e ste et e st ereaseessseeeestebeenseabeenbe st enreenseareesseans

PrOCEAUIE ACKIONS .. viitiiiteiie ittt st e st eet et eete e et sateesteateeeteaeesaesseaneesessnesasesneanseaseensasesaseanseareesseanes

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7

L
4
o
>
[

ParameterRead ...

ParameterWIITE ..ottt

.42

U Y ettt ettt et et e et e et e et e ettt et e et e ettt et e e et e e et e eareeanes

.43

SN, ettt e et et et e et et et e ere et e ebe et e ere e bt et e abeereaneeareenreaneeneenreareerearenns

.43

BTy ettt et e et e e et e a e ebeeetesbeetee et e aat et e e tt et nteareateaneebearteareeesareas

.43
.44
.44
.45

VO Y EXDIESSION .ttt ettt ste et se st s ete st s ete st s ete et e stsesteseateebesnsesbeassssnsssessnsisssnesansennas

VO Y R ANGE L.ttt ses ettt e et e s etteeteesesee e e ebeesteaneestesaessnseessasabsanesarssssaneeareas

6.6.8
6.6.9

WVIE. ettt ettt ettt e ettt ettt ettt et et e are e teareenasreeas

WaITONEXDIESSION ..uvitiiiteeitiiteeiteiieitesseseeitessesteeesessssaseesessentesrsaeseesessessseasesssssesseaneeas

6.6.10
6.6.11

.45

MV BTN T 11ttt sttt ieeete st ete et etseeteetteabe e e ateeabeassesbeesesbssasesnseesensesnseseanseaseas

.56
.56
.64

AVITT

SPACEPYINON IMADPING ...ttt ittt s ete et s et st e etteeteettssteatestesseesaeseeasessssaesassessssnssassssasseareasssasessssanes

7.1
7.2

7

GBNEIAL .ttt e st e te et e ete e st eseeteesteetseateens et e e bt e ebe b e ebeeebeeneesbeeesaneereanesaeenis

UPGrading NOTESviiuiiitiiiiitee sttt ee ettt e st e e st et e et e ste e e sseesessseessasareeeseenseareenseases

vHT

eSO HotoT

Ravision Histarny

Introduction

Secobe

General

SCHCT

1

1

Environments- Sunportinag-SOL M
EMHHeRMERSSHPRe RG-S

2
=

1
=

Transitionto- SOL M

Conformancea

2.
=

Refarences

3
=

ive-References

Ve

Terms-and-Definitions

oo RO e T O s s T e e r s s s s T e e ey

[~

Glossanys

SHoooat

Mata-model Definition

Vet THOOC D e OO e e

6
=

Genearal
SehRerH———s

61

I

10
Y

vi

11

TTOCCOUI e e

NativeProcedura

MaodeledProcedura
Aoty

Procedura

621
s
6.2.2
623
6:2-3

13
L2
19

19
21

-2
L
292

22
29
22
23
2

21
24

2
24

2
28

—2
2
20
30

o

eter

HEteT

NG
oo

TNOUTS

—aarbete—

MearaalNaoda
ObiectElow
\/aluaNode

ExecutableNode
Exprassion
FinalNode
EForkNoda
loinNode

etars

oS T T T e T e et

o= 1oV

NGtV It

ExtarnalParamatar
Extefa-afameter-

ActivitvGroun

TXGtHV It

Af‘fi\lif\l:inﬂll\lﬁdﬁuu-“““.“““.““.“““.““““““.“.“““““-““““““-“.“““-““““.““““““““““

TXGEHV It

ActivitvEdaa
ActivitvNode
ControlElows
ControlNoda
SORHeINOEE—~
SpecificTi

NGtV It
NGVt

Activity
Deavica

Action

XGtt

HeoadarComment
AegerfcOmmMet e e e e e e e e
InlineComment

HHHC

Commeant

7

£a
=+
=+
1

=

\SAA= AT 24
6317
\SLA= LT L
6318
\SLA= LT 5°)
6319
a=n

oL

A>3~

634
635
O
636
ASAL= 28
637
O
638
6-3-10.
\or=o
6311
OO
6312
oL
6313
\SLA= LT 5=)
6-3-15.
\or=n
6316
8642

825
AT =Tie)
626

e
631

O o=

832
0oL
633

O

©
684
©

vii

1

3

Instant\/alua

646

AS D 04

1

eter

22

T et T 9%

Paramatar

648
A5

22

Parametervpe

640

oottt ter—+

o=

Timalntarsal

6410
A £ 54

34

la

34
35
—2E
35

REStHCHO e O

o4

SnacraSyctam
YieaParamaeatar

Rastriction

6416
A £ 5

LD
A
b
<

6413
D 5=
6414
A S S

326

smission

o0

7

d

andAraument
R_AIGAFGHReRt
andRaayact

652

Tt Cqutot—=

P

s

©

-39
4o
40

Directivve A raumeant

CustomBDirectiva
HHECHYEAT

Suotort
HECHVE-

Directive

654
655
656

s

o

GemsDirective

657

41

Procedura Act

Invoka

66

43
49

atar\Arita

43
o
44

Tt
\lnr'ﬁ'

Ouepny
Send

6-6-4
665
\SIASIE=)
6-6-6

Ve

45
o

\A/ait

A

660
O

WaitOn
Watoh

6611
\SLASAT 3

SnacePvithon Manpina

PGy tHoVigp g~

wi

General

71

6
b
b
D

viii

Ravision Hictons

3
Y
L
D
7

Introduction

Seobe

D P e e e

Genaral
SehReat—

1
=3

antc Sunnartinag SO MM

Enviraon

12

=

CHSDuUpPoIg =

5
3
li

=

Transition-to-SOL M

13
=

ca

RECHCHCC S T e O

Roafarances

3
=2

Normative Refaranecas

31
9

O HHath T CHe ettt s

=

i
q
B
q
q
d
g
~
q
H

4.

D
i
b
5
D
p

Glossans

5

ﬁ
q
q
q
B
q
g
q
b
q
S
<

I

ta-rHooctocH

VT

General

6-1

X

A5

10

Drocedura Invoecation

862
©

T TOCCOUTC IV OCAtIO T T T e e

=

11

==X

MaodeledProcedura

O =

NativaProecedura

12
z

622

=

Procedure

12
X

623
o

o

13

Comment

625
O

0

HoadarComment

626
O

=4

=0

14

aCommant

14
T4

tias

Action

631

TXGHOH

o

Activiby

18
O

8§32
OO

o

18

ActivitvEdaa

6313
©

oo

ActiviitvGroun
ACHHY SHOUP—

635
\"o-p

ActiviibvNode

636

20
Z0

o0

20

ControlFlows

637
OO

~

21

ControlNode

638
©

OO

|nhl\|nrln

ExacutablaNode

<
6-310.

T
N

EXCCUHtaceNouT—

ASOSrEa-)

Exnrassion

6311

22

ASOS r=n

iX

2
z
3
(=
23
o
24
24
oo
25
25
28
=
1
o
21
ox
33
90
34
o4
o0

2

=

2
4

==
=t

2
—
30

nd Araument
ReAFgEH

13|Naode

toCrarar et

PECt—1OW
YiecaParametar

SpaceSvstem

loinNode

MaraaNoda

ObjectFlowW e e e e e e
\/alueNode

Timelntarnzal

Restriction

CASLIRIR S S]

ForkNode
Timea

CommandReauest
AL = A S S D D D g
)irectiveAraumeaent

PHECHYEATGUERt=

CustomDirectiva
GemsDirectiva
SeMSOHEeEHY e ———

(=g 1avisian avrrn

>pPecHHc+H
Deavica
ExternalRarameter
GemsParameter
GroundParamaeatar
SHotRGaamete—
Instant\/alua
HStERHYaHe -
InternalParamatar
ParametarTyvpe
Command
Diractiva

SO O Ao OO0 e e

Command-Transmission

=
Paramatarc

6-4-13

O

6-4-14

ES
7
=+

o0
6317
O oA
6318
OO0
63190
OO
649
o4
6410
oo
o4
6415
O
6416
o410

6315
OO
6316

6313
B-o

6312
O oL
©

641
O
642
Ot
643
o4
6-4-4
o4a4
645
4o
646
40
647
=4

651
OO
653
oo
654
oo
655
oo
656
SOSns)
657
OO+

84
©
65
O

g
5

O

41

Invoke

HHOK

6-6-1
\"p°p

O

41

et Gt e

ParamatarRaad

662
OO0

42

Daramatar\Alrita

663
-0

O

42

Ouans

664

O

43

Send

OO

43

\arify

6-6-6
\"p°p

070

43

Ve Y X P eSSt O et

\LearifvExpression

667
OO0+

44

\/arifyRanaa

668
-0

OO

\A/ait

660
©-0-

O

45

WaitOnTime

Vot

6-6-11
O 0=

Comet Control l anauaae (CCLY Manping

=

L=y BRALC S SRS

Sritroit=ariguagt—{

OHHET

Genaral

71

SCHCa—

SnacePvithon Mannpina

8

DpPaCEy tHorvViapptHYg—

8.1

General

SeHCat

S

©

xi

FIQUIE 1 SOLIM CONEEXE ..viittitiiiieiteiteitesitsssstesetsstesetssssesssssssesssetssseasessseasesseeasessssssssnsssssnesassaessnsesseasesses 3

Figure 2 ProCeSS MOUEIING ...t 3
Figure 3 Notional System Sequence Diagram (NON-NOrMEtiVe)cocceeeiieiiiiiiiiiiiiiseiicsesee 7
Figure 4 Notional SOLM Procedure Activity Diagram (Non-NOrmative)...........coceoieiiciiiiiiiiciiannen 9
Figure 5 KeY SOLIM CIaSSES ...ceriuiiieiiieiiitii ittt 10
Figure 6 Procedure SIgNatUreso.ueiiiiiiiiiiiiiit e 11
FIQUIE 7 ACHVITIES. ...ttt 15
Figure 8 CONLrOI INOGES ...ttt 15
Figure 9 Control and Data FIOWcccoiiiiiiiiiiiiiisses et 16
Figure 10 EXCeption HANAING w..eveeiiieiiiiiiiiiiei s 17
Figure 11 GEMS and XTCE Parameterscoueeiiiueiiiiiieiiiiiiiiiei et 26
Figure 12 Procedure ENVIFONMENTc.e.viiiieieiieeiei ittt 27
Figure 13 Directives: CommandRequests and GemSDIreCtiVeScceoieiiiiiiiiiitiiiiiiscisisee 36
Figure 14 SOLM Action Nodes for ACtiVity DIaQrams...........coeeuieiiiiiiiiiiiiiiiiesisiis s 40
Figure 15 INVOKE SUDPIOCEAUIEcvuieiiiiiiiicie st 41
Figure 16 Parameter REAM.couiueiiiiiiiiii ittt 46
Figure 17 Parameter WIHTEcvieiiiiiieiiiieeiieese sttt 46
Figure 18 QUEIY OPBIAION ...ttt 47
Figure 19 Send DIFBCHIVEc.uiuieiiiiiiiiis et 47

FIQUIE 20 VI Y SEAL ... ueitiiteeitiitieiteiite it sitses it sete st aetesteeteasesteeseesseasesseaseesseasessseansssesnsssnssansanssarsenseareenes 48
FAQUIE 21 WWIE 1ttt sttt sttt et e et et e ete s et et s ebeetseebeetesbesetssnseebanessnseeneenseabeenbeaneereansareesesanis

xii

28

Eiaura 12 Procadure Environmaent

U I HOCEOUrE EV H O HC e

7
1

TS GV e S

d GemsDirectives

LAS)

41

TS et e

rame

Fiaura 15 Invalka Siihnracadure
=Hgure4o-HYoKeoSUBpreceadre-

Eiaura 16 Paramatar Daad

4

OO C 0Tt et I C U e

47

Fiaura 17 Daramatar \Writa

araHHeter

—gutt—=+

48

l:iﬂlll’ﬂ 1Q nllﬂl’\l nnnrnfnr_““““._““““““““.“_"“._“._“_““““““_.“_“_““““““_“_.“_“_““““““_“““““““““._

Hurc 10Uty

PEiatot

Fiaure-19 Send-Directive

HgH C Iy Ot HO DN CCHVE e o

—gorc o v

=
q
<
g
=
.
q
q
E

Fiaura 1 SOl M- Contaxt

Fiaure 2 Procass Modeling

ram (Non-Normative)
FRHNOR-NOHRNVe

o= Troctoovioa

Fioura 5 Kav SO M Classes

=

Sy =

=gute—o+

11
T

Eiaura 6 Procaedure Sianaturas
=igure-orfreceareSighatir e S e

FHHUre- O o Otr o NOEE s

EFiaure 8 Control Nodes

16
O

AR LT = o e S AT T T T T T

q
3
d
&
<
q
d
q
3
k=
q
q
q
g
a
E
g
L

gure—~

17

Eiaura 10 Execantion-Handling

F GO e o X PO O g s

Eiaura 11 GEMS and XTCE Parametars

ottt otivioant

1

4
Bar

Fiaura 15 Invalke Suhnrocedure

U OV oK SuR POttt e

46

Eiaura 16 Parametar Raad
sigureroraRmeter b

-4+

l:iﬂlll‘n 1Q nllﬂl’\l nnnr:\fnr_“__“_“_“__“_“_“__“_“_“_“__“_“_“__.“.“.“_“_.““_“__“_“_“__.““_“__“_“_“_“__“_“_“__“_“_

pPeratot

gore—oJucthy

47
4t

Fiaure 190 Sand Directive

YO ey OO I ot e e e e e e

48

Eiaura 20 \/arifyv Stata

48

Eiaura 21 \Alait

Xiii

Revision History

Date Version | Description Author
November 181 1.0 Initial version from the submission team. Brad Kizzort,
2005 Jim Cater,
Geri Chaudhri
April 171 2006 11 Revised submission based on Rhea metamodel Brad Kizzort,
Jim Cater,
Geri Chaudhri
May 26" 2008 1.15 Revised submission based on a service modeling approach | Brad Kizzort
August 25" 2008 | 1.2 Revised submission to address issues raised Brad Kizzort
February 23" 1.3 Revised submission to incorporate a UML profile Brad Kizzort,
2008 approach. Geri Chaudhri
February 22M, 1.4 Continue refining UML profile approach, adding a system | Brad Kizzort,
2010 model and an xmi interchange file for the profile. Geri Chaudhri
September 22M, | 1.5 Fully develop mappings to SpacePython and CCL Brad Kizzort
2010
November 8™, 1.6 Add stereotypes and mappings for Verify, Comments, Brad Kizzort
2010 Error Handling
December 2", 1.7 Remove UML profile, add corrections and clarification Brad Kizzort
2010 based on comments from AB.
February 20™, 1.8 Cleanup metamodel based on comments from AB. Make Brad Kizzort
2011 sure all relationship ends are named, attributes and
operations are public. Apply metamodel profile in EA.
Remove UML Activity Diagram / Profile dependencies
and define as standalone MOF metamodel. Provide
semantics for all classes.
March 18", 2011 | 1.9 Remove Java types from model and make private Brad Kizzort
attributes public in the model. Update external spec
references. Clarify Time class names, semantics and
terminology and introduce concept of execution loci.
Update figures affected by model changes.
April 251, 2024 | 2.0 Updates for 1.1 RTF. Added Python version 3 support. Justin Boss
February 11" 2.1 Updates for 1.2 RTF. Justin Boss

2025

Xiv

Introduction

Automation of ground station operations is crucial to efficient and cost-effective spacecraft
operations. Automation is achieved when scripted procedures are used to conduct normal
operations, such as configuration of ground equipment for a satellite contact, commanding the
spacecraft or payload to a new configuration, commanding a spacecraft maneuver, etc. There
are a variety of spacecraft operations scripting languages in use today. These languages are
incompatible between different ground system developers and spacecraft vendors. Transfer of
a satellite from one ground system to another ground system, as would occur during a ground
system upgrade, is therefore more expensive due to the required conversion of thousands of
lines of automation scripts. A common meta-model format for capturing the operations
procedure definition from one implementation and allow conversion into another
implementation scripting language would provide significant cost savings, even if 100%
conversion is not achieved. Another area of benefit would be direct transfer of test and
configuration procedures from spacecraft component test environments into satellite integration
environments and into operations environments.

1 Scope

1.1 General

This specification defines a meta-model, Satellite Operations Language Meta-model (SOLM),
for representing spacecraft operations procedures. These procedures contain sequences of
instructions to conduct spacecraft operations, typically consisting of spacecraft commands and
spacecraft telemetry comparisons. These procedures may also include the configuration of
ground equipment, configuration of spacecraft test equipment, execution of ground testing, and
execution of on-orbit testing. Historically, these procedures have been captured in flowcharts,
text manuals, and a number of different scripting languages used for ground station automation.
A standard meta-model to represent spacecraft operations procedures will facilitate the transfer
of procedures between the spacecraft vendor and the spacecraft operator, as well as allow for
maintenance and transfer of the procedures across different ground systems employed over the
lifetime of the spacecraft.

This specification is primarily aimed at providing procedure portability for earth-orbiting
satellites. While deep-space spacecraft use similar operational procedures, they also use
extensive on-board procedures and there are significant considerations in the representation of
time that are not incorporated in this meta-model.

SOLM allows the definition of a platform independent model (P1M) of a spacecraft procedure.
The PIM can be mapped into a platform-specific model (PSM) for procedure execution. As
shown in Figure 1, the spacecraft operator actor represents the operations group that conducts
spacecraft operations. This actor is the primary user of the SOLM repository and maintains
spacecraft operations procedures in the repository. The SOLM Repository is shown with a
multiplicity association with only one spacecraft, due to dependencies on spacecraft-specific
command and telemetry definitions. Because there may be multiple operations groups that share
control of the spacecraft either simultaneously or over time, the multiplicity relationship is
shown as 1 or more spacecraft operators. The spacecraft integrator/manufacturer may provide an
initial set of procedures in the SOLM format or these procedures may be translated into SOLM.

<<actor, platform-specific>>

Translator
(0.7
Spacecraft Dperatorﬁ /
SOLM Repository <<actors>
1 Spacecraft

/

0.1 [0.7]| <<actor, platform-specific>>

Spacecraft Integrator Direct Executive

Figure 1 SOLM Context

Viewing SOLM as process modeling, SOLM represents the meta-model M2 layer that allows
definition of platform independent models (M1) of spacecraft procedures, as shown in Figure 2.
Occurrences of procedure executions are the MO layer, taking on specific parameter values and
event times. Spacecraft operators and integrators can develop and exchange M1 models for a
specific spacecraft by using SOLM as the common M2 metamodel.

Metamodel Process
(M2)

A
i<<jnstanceOf>>

Model Maneuver
(M1) Spacecraft
<<jnstanceOf >> <"'<"-i.r‘lsta hceOf>>
Occurence East—West North;South
(MO) Maneuver Maneuver
8-Aug-2008 | |[12-Aug-2008

Figure 2 Process Modeling

1.2 Environments Supporting SOLM

There are two environments that support the SOLM. The first environment is the modeling
environment for defining platform independent spacecraft operations procedures, which is
represented as the SOLM Repository in Figure 1. The second environment is the platform-
specific procedure execution environment, represented by the two secondary system actors,
Translator and Direct Executive, in Figure 1. Compliant implementations can provide
translation, modeling or execution in either or both of these environments.

A SOLM Translator reads a spacecraft procedure PIM and translates it to a procedure that can be
executed by a specific ground system. This procedure will typically be in the native scripting
language used by the ground system. Choosing a SOLM Translator as the procedure mapping
environment allows for minimal performance impact when implementing SOLM for an existing
ground system. The target language for a translator is a Domain Specific Language (DSL), and
many DSL’s may be targeted by a translator.

A SOLM Modeling Tool maintains a repository of spacecraft procedure PIM’s and can export
PSM’s for a specific execution environment.

A SOLM execution environment is a specific ground system used for spacecraft test or
operation. A SOLM-compliant ground system may use a Translator or a Direct Executive to
execute procedures provided as SOLM models in an XMI document or as a SpacePython
procedure file. The SpacePython language is a DSL that is designed to accept all of the SOLM-
defined model in the target procedure.

A SOLM Direct Executive executes the spacecraft procedure reading the PIM directly, without
translating it into a specific intermediate representation.

1.3 Transition to SOLM

There is a large body of existing spacecraft operations procedures. Initially, the most desirable
SOLM capabilities will be translation of existing procedures into a SOLM repository and either
translating or direct execution environments for executing SOLM-based procedure models. As
the base of SOLM-compliant execution environments expands, and the body of SOLM-based
procedure models expands, the market for modeling tools to create, validate, and maintain
SOLM-based procedures will develop. A significant part of this specification is the mapping of
existing procedure languages to SOLM, and this mapping is intended to be bi-directional to
speed the transition. Mappings for other existing or new scripting languages for spacecraft
operations may be developed and published as SOLM-related specifications.

2 Conformance

A SOLM modeling tool must be able to read and write a spacecraft procedure PIM as an XMl
document or as a SpacePython procedure file. A modeling tool must support definition of
procedures containing all of the standard SOLM elements, including transformation of XML
Telemetry and Command Exchange (XTCE) documents to define the Command and Parameter
objects that may be referenced by the procedure model, and transformation of GEMS parameter
and directive definition documents into DirectiveTemplate and Parameter objects that may be
referenced by the procedure. A modeling environment may also support simulation of procedure

execution and/or an execution display of the procedure in an execution environment. When a
SOLM modeling tool is requested to write a spacecraft procedure PSM for a target platform that
does not support exception handling or threaded procedure execution defined in the procedure
model, it must generate an error message identifying the activity diagram node or procedure file
line number that causes the inability to translate.

A compliant SOLM execution environment can provide three levels of compliance:

1. Level 1 compliance must provide execution of procedure models containing conditionals,
looping, timed waits, SOLM::NativeProcedure invocations, and Command and Parameter
objects from an XTCE document. It must also support exception handling and early
termination of a procedure due to errors in a procedure step.

2. Level 2 compliance must provide execution of procedure models as in 1, but also
including DirectiveTemplate and Parameter objects from a GEMS equipment definition.

3. Level 3 compliance must provide execution of procedure models as in 2, but also support
parallel execution threads in a procedure.

3 References
3.1 Normative References

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this specification. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply:

The following OMG standards provided the MOF/UML foundation of SOLM:
UML 2.4.1 (formal/11-08-05, formal/11-08-06)
MOF 2.4.1 Core Specification (formal/11-08-07)

XML Metadata Interchange (XMI) provides a syntactic interchange mechanism for models. It is
expected that models conforming to this specification will be interchanged using XMI.

MOF 2 XMI Mapping, v2.4.1 (formal/11-08-09)

The following domain specifications provide the formats for the definition of pre-existing objects
made available to the procedure modeler in a compliant modeling environment.

XML Telemetric and Command Exchange (XTCE) Version 1.1 (formal/2008-03-01),
Ground Equipment Management Specification (GEMS) Version 1.2, (dtc/2011-04-01)

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative references and the
following apply:

Ground System - The target system that performs command and telemetry processing for the
spacecraft and monitors and controls ground equipment.

SOLM execution environment — a software environment for spacecraft operations or testing that
executes SOLM procedures either directly or translated into a native format.

SOLM Modeling Tool — a software environment that supports the development of spacecraft
operations procedures.

5 Glossary
HTTP — Hyper Text Transfer Protocol
SOLM - Satellite Operations Language Metamodel

UML — Unified Modeling Language

URL — Universal Resource Locator

XMI — XML Metadata Interchange

XSD — XML Schema Definition

XSLT — XML Stylesheet Language Transformations
XTCE — XML Telemetry and Command Exchange format

6 Meta-model Definition
6.1 General

In order to leverage existing commercial standards and technologies, this specification defines a MOF-based
meta-model. This approach is intended to allow the application of existing modeling and model
transformation environments for spacecraft operations procedures.

The SOLM procedure execution environment could be modeled as interacting with two external actors, an
operator, and the ground system that controls the spacecraft and ground equipment, as shown in Figure 3.
The procedure execution environment may actually be part of the Ground System, but for the purposes of
defining the procedure, the interactions with the operator and the ground system are the significant features.

The notional sequence diagram illustrates that the interactions with the operator are primarily to obtain
parameter values and permission to continue with procedure execution. A specific procedure will have
specific parameter requirements or may require no interaction with the operator to complete the activity.

Procedure
. Ground
Execution S
Environment Y
Operator

| | |
1Query for parameter 1 1
| | |
Parameter value I
. L Setparameter
1 1 1
1 1 1
! —Request parameter
1
| | |
1 II Ea[_ame_te[value 1
1 1 1
1 1 1
I‘ ngg[y Qr release 1 1
1 1 1
1 |ss e release 1 1

|

Figure 3 Notional System Sequence Diagram (Non-Normative)

The interaction with the Ground System includes parameter values and directives. Parameter values
supplied to the procedure can guide or change procedure execution paths or supply values for directives.
Parameter values set in the Ground System by the procedure may guide or control execution in the ground
system. Directives are an abstraction that covers both spacecraft commands and ground system commands.
Directives result in commands being transmitted to the spacecraft or reconfiguration of the Ground System.

This notional sequence diagram also illustrates the critical actions that must be logged by a procedure
execution environment as an operations log. Each interaction with the Operator or Ground System is a
critical action that must be logged as part of the operations log.

Existing spacecraft procedure definition and development lends itself well to simple flowcharting. Most
procedures are simple sequences of commands, with some conditional checks to verify system state before
or after a command transmission. Existing languages attempt to make it easy to send spacecraft commands
or configure ground equipment, but are not strong in arithmetic or computational performance. The SOLM
proposal uses a metamodel similar to the UML Activity Diagram to capture a workflow for the modeled
procedure.

Reuse of the activity diagram metamodel implies that a target language may be required to support
threading for multi-threaded activities and handling for early/error termination of a procedure or sub-
procedure, in order to handle any procedure defined in an activity diagram. [Not all existing control

Commented [JB1]: [SOLM12-21] Remove mentions of Comet

Control Language - OMG Issue Tracker

https://issues.omg.org/browse/SOLM12-21
https://issues.omg.org/browse/SOLM12-21

act SethMomenturmiwhesl Speed /

Start

Momentumwheel State
HtoeParameter

‘Write'ariable
ParameterRead
P %]

Iz Momentum Wheel On7

[Momentumitth el State=="0ff]

Turn On Momertum
‘Wheel : Send
CommandRequest | Directive
[MomentumiWheelState=="0n"]
Mo mentumwheel On
Carmmand

tormerturnivhesl Speed : TR

HtoeParameter ParameterRead

Farameter WheelSpeed

Speadincrement : ‘Writeariable

Parameter

Parameter Calculate
Farameter
WheelSpeed
Set wheel Speed :
CommandRequest Send
Directive
? L)
Setwheel Speed : Exit thesl Speed
Command Parameter

Figure 4 Notional SOLM Procedure Activity Diagram (Non-Normative)

Figure 4 illustrates the definition of a simple spacecraft operating procedure using an activity diagram. This
procedure will also be used in demonstrating the mapping of SOLM to two existing spacecraft operations

languages.
Figure 5 is an overview of the key classe:

presented as UML in this document, but

s and relationships for SOLM. Each of the following sections will
provide subset of the model and descriptions and semantics for the classes. All classes in SOLM are

the normative metamodel is provided as a MOF XMI file. The
classes outlined with the dashed XTCE and GEMS box represent classes that will be instantiated from

XTCE and GEMS definitions by the SOLM modeling environment.

class Main Classes

«siﬂglEt:_}n» - ~ Domain Objects::
Domain Objects:: SOVINSNs o e nteState OF *state | GroundParameter
ProcedureEnwvironment

+ writable Boolean

+enwvirons 1

executes in

+operation |0..*

Domain Objects:: Procedure Domain Objects:: Domain Objects::

— " Parameter ExternalParameter | _ _
+ desoiption :String r HTCE il
+ lastModified :SpecificTime + name :Sting ,ﬂ, | - :
+ name Sting + desgiption :Sting ! Domain Objects: |
+ wersion String + multiplicity :Integer | }ttc.eF'arameterr]

+ duration Timelnterval + jpe ParameterType | |~ — — — — — — — 7 T

e 2= | GEMS i '
O H !
Domain Objects::] Domain Objects:]
/_’F +pr=cedure’- 1 GemsParameter :: Command I
pass values to = owritable :Boclean :: + name :Sting :
Domain Objects:: H
|

ModeledProcedure

+argument [0

Domain Objects:: -
GemsDirective

Domain Objects::
ProcedureArgument

+prncE::IulE‘ 1 + name :String

definesActionsOf

l______{? _____ |
+camier a.-
+behavior |1

|
I is transmitted by
|
|

Activities::Activity Domain Objects:: Domain Objects::
N Directive <= }——{ CommandRequest
+Ecxi\-'it5-', 0..1 saction | 1
defines
+n:::lE|' +director | 0%
Activities:: Activities:: Activities::Action Domain Actions::
ActivityNode |<T} - ExecutableNode =T

Figure 5 Key SOLM Classes

The ProcedureEnvironment maintains a collection of Procedures with specified ProcedureArguments that
defines how to invoke each Procedure. The Procedures that are ModeledProcedures have an Activity that
defines the procedure step-by-step. The ProcedureEnvironment may also have GroundParameters that are
used within Procedures and are treated as global to all procedures, as are the other ExternalParameters that
are defined for spacecraft and ground equipment in the XTCE and GEMS definitions. One of the key
Actions in an Activite is the Send action, which is causes a Directive to be sent during procedure execution.
Directives include GemsDirectives and CommandRequests that are the primary contents of spacecraft
operations procedures.

6.2 Procedure Invocation

Procedure invocation, either manual or via an Invoke action in a running procedure, is more simplistic than
the UML model. For that reason a simplified procedure signature is modeled as shown in Figure 6. All
ProcedureArguments are input to the procedure, there is no concept of an out or inout ProcedureArgument.
Any outputs use the Send or ParameterWrite action. ProcedureArgument is derived from Parameter and the
types match those of the GEMS and XTCE parameters.

10

class Procedures /

Procedure

+ desoiption Siring

+ lasthodified SpecificTime
+ name Siring

+ wersion (String 1
+ duration :Timelnterval

+procedure

pass values to

%l ﬂubjECt" 1 +argument |0~

intemalParsmeter
ProcedurefArgument
ModeledProcedure HativeProcedurs
Comment
1 +procedure
+ tesxt String
definesAdcionsCf desoribes
1 | +behavior
+header |0..1

Puctivities: tActivity

HeaderComment InlineComment

Figure 6 Procedure Signatures

There may also be sub-procedures that are in the native scripting language that are not translated into the set
of SOLM procedure models shown in the diagram as class NativeProcedure. These sub-procedures must
also be able to be invoked from a SOLM model. Because of the different capabilities of different ground
system languages in passing and returning values to/from sub-procedures, the sub-procedure invocation is
cast as input only Parameters defined in a procedure signature with a single integer returned from the
procedure invocation. Additional output Parameters may be set within the procedure only as
ExternalParameters.

6.2.1 ModeledProcedure
A ModeledProcedure is a Procedure with an Activity definition for all of the operational steps.
6.2.1.1 Generalizations
e Procedure, page 1211
6.2.1.2 Attributes

No additional attributes.
6.2.1.3 Associations
e behaviour:Activity — the modelled behaviour of the Procedure.
6.2.1.4 Constraints
No additional constraints
6.2.1.5 Semantics
A ModeledProcedure has one activity definition with a single InitialNode that is the start of execution.
6.2.2 NativeProcedure

A NativeProcedure is a Procedure that can be invoked by another Procedure in SOLM, but does not have a
modelled behaviour. It is defined in the modelling environment so that it can be invoked by modelled
procedures and must be provided as a procedure executable by name in the execution environment. It is
intended to support procedures that are in the ground system native format that cannot be fully modelled in
SOLM due to system-specific extensions.

6.2.2.1 Generalizations

e Procedure, page 1211
6.2.2.2 Attributes
No additional attributes.
6.2.2.3 Associations
No additional associations.
6.2.2.4 Constraints
No additional constraints
6.2.2.5 Semantics

A NativeProcedure runs to completion when invoked before returning control to the invoking Procedure.
The NativeProcedure may return an error that can be handled by an exception handler

6.2.3 Procedure
6.2.3.1 Generalizations

None
6.2.3.2 Attributes

e description:String — A short text description of the effects of the procedure that can be presented to a
modeller or operator for procedure selection. This text will typically be included in the header of a
script file.

e duration:Timelnterval — An estimated time period that is required for procedure execution that could
be used in planning and scheduling the operation. A negative time value must be used to indicate
that the procedure is too variable to predict or has no time estimate.

o lastModified:SpecificTime — the last time that the procedure was modified. This will typically be
included as a text comment in the procedure to aid configuration management and anomaly
resolution.

e name:String — the name of the procedure

e version:String — a version number assigned to the last modification time.

6.2.3.3 Associations

e argument:ProcedureArgument[0..*] — arguments to the procedure that can receive specific values at
execution time to modify the behaviour and actions of the procedure.

o header:HeaderComment[0..1] — an optional long text description of the procedure that can be
included in the header of a script file.

6.2.3.4 Constraints
No additional constraints
6.2.3.5 Semantics

A Procedure can be invoked with specific ProcedureArgument values at run-time, either directly by an
operator submitting it to the SOLM execution environment, or as a sub-procedure invocation by another
executing procedure.

6.2.4 ProcedureArgument
A ProcedureArgument provides Parameter values to a specific invocation of a Procedure.
6.2.4.1 Generalizations
o InternalParameter, page 3027
6.2.4.2 Attributes
No additional attributes.
6.2.4.3 Associations
e procedure:Procedure — the Procedure this argument supplies values to
6.2.4.4 Constraints
No additional constraints
6.2.4.5 Semantics

The value for a ProcedureArgument can be specified at the time of invocation. The value may be
referenced in expressions defined in the Activity. A ProcedureArgument is input only, it may be set within
the Procedure behaviour, but the changed value is not returned to a calling Procedure.

6.2.5 Comment
A Comment is descriptive text in a Procedure
6.2.5.1 Generalizations
None
6.2.5.2 Attributes
e text:String — the descriptive text
6.2.5.3 Associations
No additional associations.
6.2.5.4 Constraints
No additional constraints

6.2.5.5 Semantics

Comments do not affect the execution of a procedure, but provide a way to capture descriptive text in the
comments of an existing script.

6.2.6 HeaderComment
6.2.6.1 Generalizations

e Comment, page 1312
6.2.6.2 Attributes
No additional attributes.
6.2.6.3 Associations
e subject:Procedure — the Procedure this comment describes.
6.2.6.4 Constraints
No additional constraints
6.2.6.5 Semantics

The text contents of a HeaderComment would normally be included in the header of a translated native scipt
by a SOLM translator.

6.2.7 InlineComment
6.2.7.1 Generalizations

e Comment, page 1312
6.2.7.2 Attributes
No additional attributes.
6.2.7.3 Associations
o subject:ActivityNode — the action/condition/parameter this comment describes.
6.2.7.4 Constraints
No additional constraints
6.2.7.5 Semantics

The text contents of an InlineComment would normally be included inline in the translated native script by a
SOLM translator.

6.3 Activities

The basic model of a ModeledProcedure is captured in an Activity, which is a collection of ActivityEdges
and ActivityNodes. SOLM reuses the abstract syntax of the Activity modeling in UML and Foundational
UML, but there are some simplifications to the meta-model and semantics, since SOLM is not intended as a
general purpose software metamodel. Figure 7 through Figure 10 show the portions of SOLM related to
defining an operations procedure as an Activity.

class Neodes

ControlNode

+activity defines +node
Activity 0.1 Activitylode
+subject
+description |0..1 1 A
Domain Objects:: Comment
Parameter Domain Objects::
InlineComment
Valuehlode ControlNode ExecutableNode
Action
Figure 7 Activities
class Control Nodes
ActivityNods

A

FinalNode

ForkNode

Joinode

Mergehode

InitialMNode

ActivityFinalNode

Decisiontode

Figure 8 Control Nodes

class Flows

PAuctiwity

+ actiwity +edge
0.1 i

+target +incoming

alnwariants

TA guard iz anly allowed if the souree of
the edge iz a DecisionMode}

ActivityEdge

ActivityMode

1 =

+source +outgoing

1 =

+evaluatar +guard

1 0.1

Expression

+ walue: String

«inwariants

IAn Expression that is a guard must
be 3 Boolean exprassion.}

B

Control Flares

ObjectFlow

Figure 9 Control and Data Flow

clas= Structured Modes /

Ativity

+inActivity {subsets muner}

x

+subGroup ®
freadOnly, union, +Aroup | fsybsets omnedElement)

subsetsCDwnedElemeant}

L

+superEroup 0.1
freadOnky, union,
subzets ouner}

ActivityGroup

=

+inGroup
freadOnky, union}

+sender HandledExceptionRegion

+inExceptionRegion | *
fzubzets inGroup} =
+containedMade | freadOnky, union}

winvariants +node
fAn ActivibgNode may anly - ActivityNode
be directly in one

HandledExceptionRegion.

Izubzetz containedode}
+handler 1

Figure 10 Exception Handling
6.3.1 Action
An Action is an abstract executable node in the Activity that defines procedure behaviour .
6.3.1.1 Generalizations
e ExecutableNode, page 2117
6.3.1.2 Attributes
No additional attributes.
6.3.1.3 Associations
No additional associations.
6.3.1.4 Constraints
No additional constraints
6.3.1.5 Semantics

The sequencing of actions are controlled by control edges within activities, which carry control (see
Activity). Except where noted, an action can only begin execution when it has been offered control tokens
on all incoming control flows and values are available for all of the incoming object flows. Note that this

differs from the UML semantics in that there are no dynamic object creations and deletions during the
activity execution. This is a simplification in keeping with the procedural nature of existing spacecraft
operations languages. When the execution of an action is complete, it offers control tokens on its outgoing
control flows and specified Parameter values are replaced by outgoing object flows. The steps of executing
an action with control and object flow are as follows:

[1] An action execution is created when all its control flow prerequisites have been satisfied (implicit
join). Any exceptions to this are listed in the subclass action semantics.

[2] When an action accepts the offers for control tokens, the tokens are removed from the original
sources that offered them. If multiple control tokens are available on a single incoming control flow,
they are all consumed.

[3] An action continues executing until it has completed. The detailed semantic of execution an
action and definition of completion depends on the particular subclass of action.

[4] When completed, an action execution offers control tokens on all its outgoing control flows
(implicit fork), and it terminates. Exceptions to this are listed below. The offered tokens may now
satisfy the control flow prerequisites for other action executions.

[5] After an action execution has terminated, its resources may be reclaimed by an implementation,
but the details of resource management are not part of this specification. All Actions in the current
model are locally reentrant. This means that there may be, within any one execution of the
containing activity, more than one concurrent execution of the action ongoing at any given time.

6.3.2 Activity
An Activity defines the behaviour of a ModeledProcedure
6.3.2.1 Generalizations
None
6.3.2.2 Attributes
No additional attributes.
6.3.2.3 Associations
o edge:ActivityEdge[*] — an edge representing a control or data flow between two ActivityNodes
e node:ActivityNode[*] — the data and control nodes in an Activity
e procedure:ModeledProcedure[1] — the Procedure that the Activity defines the behaviour for.
6.3.2.4 Constraints
No additional constraints
6.3.2.5 Semantics

An Activity has one InitialNode that begins the control flow execution of a Procedure. Activity control flow
terminates if an error is encountered, unless the error occurs in a HandledExceptionRegion defined within
the Activity.

6.3.3 ActivityEdge

An ActivityEdge is an abstract class for directed connections (control or data flow) between two
ActivityNodes.

6.3.3.1 Generalizations

None

6.3.3.2 Attributes

No additional attributes.

6.3.3.3 Associations

activity:Activity[0..1] — the owning activity

target: ActivityNode[1] — the target node of this flow.

source:ActivityNode[1] — the source node of this flow.
guard:Expression[0..1] — an expression limiting control flow on this edge.

6.3.3.4 Constraints

A guard is only allowed if the source of the edge is a DecisionNode
6.3.3.5 Semantics
An ActivityEdge can be either a ControlFlow or an ObjectFlow between two ActivityNodes.
6.3.4 ActivityFinalNode
An ActivityFinalNode ends execution of a Procedure.
6.3.4.1 Generalizations
o FinalNode, page 2218
6.3.4.2 Attributes
No additional attributes.
6.3.4.3 Associations
No additional associations.
6.3.4.4 Constraints
No additional constraints
6.3.4.5 Semantics

An ActivityFinalNode terminates execution of a procedure. All threads of execution of the procedure
terminate. Parallel flows should use a JoinNode or a MergeNode to coalesce with other execution threads
prior to the ActivityFinalNode, otherwise active threads associated with parallel flows will be terminated by
the thread (control flow) that reaches the ActivityFinalNode.

6.3.5 ActivityGroup

An ActivityGroup is a subset of the ActivityNodes in an Activity
6.3.5.1 Generalizations

None

6.3.5.2 Attributes

No additional attributes.

6.3.5.3 Associations

containedNode:ActivityNode[*] — nodes in group

6.3.5.4 Constraints

No additional constraints
6.3.5.5 Semantics

An ActivityGroup is an abstract collection of ActivityNodes. No descendants, other than
HandledExceptionGroup is currently defined for SOLM.
6.3.6 ActivityNode

An ActivityNode is a data or control node in an Activity.

6.3.6.1 Generalizations

None

6.3.6.2 Attributes

No additional attributes.

6.3.6.3 Associations

activity:Activity[0..1] — Activity that the node belongs to.
description:InlineComment[0..1] — description of the ActivityNode effects on procedure.
incoming:ActivityEdge[*] — incoming data or control flow.

outgoing:ActivityEdge[*] — outgoiong data or control flow.

inGroup:ActivityGroup[*] — groups that contain this node
inExceptionRegion:HandledExceptionRegion[*] — exception handler regions that contain this node.

sender:HandledExceptionRegion[*] — regions from which this node receives control when
exceptions occur.

6.3.6.4 Constraints

No additional constraints
6.3.6.5 Semantics
An ActivityNode is an abstract node. See descendants for semantics.
6.3.7 ControlFlow
A ControlFlow transfers execution control from one ActivityNode to the next.
6.3.7.1 Generalizations
e ActivityEdge, page 1814
6.3.7.2 Attributes
No additional attributes.
6.3.7.3 Associations
No additional associations.
6.3.7.4 Constraints
No additional constraints
6.3.7.5 Semantics

A control flow is an activity edge that only passes control tokens. Tokens offered by the source node are all
offered to the target node.

20

6.3.8 ControlNode
A ControlNode exerts control over the incoming ControlFlow(s).
6.3.8.1 Generalizations
e ActivityNode, page 2015
6.3.8.2 Attributes
No additional attributes.
6.3.8.3 Associations
No additional associations.
6.3.8.4 Constraints
No additional constraints
6.3.8.5 Semantics
A ControlNode is an abstract node, see the descendants for specific semantics.
6.3.9 DecisionNode
A DecisionNode selects one exclusive outgoing ControlFlow from a set.
6.3.9.1 Generalizations
e ControlNode, page 2116
6.3.9.2 Attributes
No additional attributes.
6.3.9.3 Associations
No additional associations.
6.3.9.4 Constraints

o A DecisionNode has one incoming edge and at least one outgoing edge.
e The incoming and outgoing edges must be all control flows.

6.3.9.5 Semantics

Each outgoing ControlFlow from a DecisionNode will have a guard expression, except for a default flow, if
one is provided. There is no guaranteed order of guard evaluation, so multiple guards should be exclusive,
otherwise any valid guard expression can be chosen during execution and the execution behaviour is
unspecified. Only one ControlFlow will be activated by a decision node.

6.3.10 ExecutableNode
An ExecutableNode performs domain-specific actions
6.3.10.1 Generalizations
e ActivityNode, page 2015
6.3.10.2 Attributes
No additional attributes.

21

6.3.10.3 Associations

No additional associations.

6.3.10.4 Constraints

No additional constraints

6.3.10.5 Semantics

An ExecutableNode is an abstract action, see the descendants for specific semantics.
6.3.11 Expression

An Expression is a Boolean or arithmetic expression consisting of read only references to the Parameters
visible at the containing Procedure scope.

6.3.11.1 Generalizations
None
6.3.11.2 Attributes
o value:String — the expression string is a valid Python arithmetic expression.
6.3.11.3 Associations
No additional associations.
6.3.11.4 Constraints

The expression must be a valid Python arithmetic expression. The syntax for Python is maintained in an
open-source project at https://docs.python.org/reference.

6.3.11.5 Semantics

An expression is evaluated in a DecisionNode, where the Expression is associated with the outgoing
ControlFlows. An expression is also evaluated in the WaitForExpression and ParameterWrite
ExecutableNodes.

6.3.12 FinalNode

A FinalNode is an abstract node with one descendant, the ActivityFinalNode. No FlowFinalNode is
included in SOLM, because it is generally not necessary to terminate and individual flow in an activity, but
the FinalNode to ActivityFinalNode inheritance in the UML abstract syntax is retained.

6.3.12.1 Generalizations
e ControlNode, page 2116
6.3.12.2 Attributes
No additional attributes.
6.3.12.3 Associations
No additional associations.
6.3.12.4 Constraints
No additional constraints
6.3.12.5 Semantics
See ActivityFinalNode, page 1944.

22

https://docs.python.org/reference

6.3.13 ForkNode
A ForkNode starts one or more parallel threads of execution.
6.3.13.1 Generalizations

e ControlNode, page 2116
6.3.13.2 Attributes
No additional attributes.
6.3.13.3 Associations
No additional associations.
6.3.13.4 Constraints
No additional constraints
6.3.13.5 Semantics

A ForkNode accepts an incoming control token and places an outgoing control token on each outgoing
control flow. This allows the creation of parallel execution paths. These parallel control paths will continue
until an ActivityFinalNode or an execution error terminates all control flows.

6.3.14 HandledExceptionRegion

A HandledExceptionRegion identifies a set of ActivityNodes that will transfer control to an exception
handling ActivityNode, if an error occurs during execution.

6.3.14.1 Generalizations
e ActivityGroup, page 1915
6.3.14.2 Attributes
No additional attributes.
6.3.14.3 Associations
handler:ActivityNode — the ActivityNode that will receive control on an exception.
6.3.14.4 Constraints
e An ActivityNode may only be directly contained in one HandledExceptionRegion.

6.3.14.5 Semantics

If an error occurs during the execution of any ExecutableNode or ControlNode in the set of nodes in the
region, execution on the thread in error will cease and control will be transferred to the ActivityNode
specified as the handler for the HandledExceptionRegion. Parallel control flows will continue. If no
HandledExceptionRegion with a handler is defined for the Activity, an error in the execution of any control
flow path will cause all control flows to cease execution, as if an ActivityFinal node was executed.
ActivityNode containment is constrained so that it is only possible for an error in execution to transfer
control to one handler. It is possible to nest HandledExceptionRegions so that an error in the handler for
one HandledExceptionRegion may transfer control to the owning region.

6.3.15 InitialNode
The InitialNode is where execution begins for an Activity.

23

6.3.15.1 Generalizations

e ControlNode, page 2116
6.3.15.2 Attributes
No additional attributes.
6.3.15.3 Associations
No additional associations.
6.3.15.4 Constraints
No additional constraints
6.3.15.5 Semantics

Only one InitialNode must be specified for an Activity. The InitialNode creates one control token and
transfers it on the outgoing ControlFlow.

6.3.16 JoinNode
A JoinNode ends parallel threads of execution.
6.3.16.1 Generalizations
e ControlNode, page 2116
6.3.16.2 Attributes
No additional attributes.
6.3.16.3 Associations
No additional associations.
6.3.16.4 Constraints
e A JoinNode has exactly one outgoing edge that is a ControlFlow

e All incoming edges are ControlFlows
e There is at least one incoming edge.

6.3.16.5 Semantics

If control tokens are offered on all incoming edges, then one control token is offered to the outgoing edge.
Multiple tokens offered on the same incoming edge are combined into one.

6.3.17 MergeNode

A merge node is a control node that brings together multiple alternate flows. It is not used to synchronize
concurrent flows but to accept one among several alternate flows.

6.3.17.1 Generalizations

e ControlNode, page 2116
6.3.17.2 Attributes
No additional attributes.
6.3.17.3 Associations

24

No additional associations.
6.3.17.4 Constraints
e A MergeNode has exactly one outgoing edge.

e A MergeNode has at least one incoming edge.
e All incoming and outgoing edges are ControlFlows.

6.3.17.5 Semantics

All tokens offered on incoming edges are offered to the outgoing edge. There is no synchronization of flows
or joining of tokens.

6.3.18 ObjectFlow

An ObjectFlow represents a data value being applied to a Parameter, ProcedureArgument, or
DirectiveArgument.

6.3.18.1 Generalizations
e ActivityEdge, page 1814
6.3.18.2 Attributes
No additional attributes.
6.3.18.3 Associations

e incoming:ActivityNode[1] — the ValueNode or ExecutableNode providing a value.
e outgoing:ActivityNode[1] — the ValueNode or ExecutableNode receiving a value.

6.3.18.4 Constraints
No additional constraints
6.3.18.5 Semantics

If the outgoing node is a ValueNode, the value of the Parameter is set to the value provided by the incoming
node. If the outgoing node is an ExecutableNode then the value from the incoming node is provided to the
ExecutableNode.

6.3.19 ValueNode
A ValueNode is a Parameter that participates in an ObjectFlow within an Activity.
6.3.19.1 Generalizations

e Parameter, page 3126

o ActivityNode, page 2015
6.3.19.2 Attributes
No additional attributes.
6.3.19.3 Associations
No additional associations.
6.3.19.4 Constraints
No additional constraints

25

6.3.19.5 Semantics
A ValueNode is a Parameter that participates in an ObjectFlow within an Activity.

6.4 Parameters

In order to leverage the XTCE and GEMS specifications already published by the OMG, SOLM has defined
Parameters with types that are compatible with both the XTCE and GEMS definitions. A Parameter can be
defined in an XTCE document, a GEMS document, or a platform-specific mechanism. In addition to a data
type, a parameter may also be restricted in a manner similar to XML schema restrictions. These restrictions
should be enforced by the modeling and execution environment for SOLM, but not all target platforms will
support all restriction types. Figure 11 illustrates the Parameter relationships for SOLM. Each Parameter
may have a CurrentValue, which is the most recent value received from the Space System or ground
equipment and an associated timestamp for when the value was generated or received.

class Parameters /
, 1 . 0.
wEnumerstions || procedureArgument Parameter restrictsValussCf Restriction
ParameterType L
+ name :Sting *restrictedValue Fresticion| . jength integar
5==|55:' =Kl + desoiption :String N . + fractionDigits :Integer
byte =2 = multiplicity :Inieger | PS/AMEIEr evaluationOf + enumeration :String
ubyte =3] + type :ParameterType + maxExclusive :String
short = -’-= ProcedureVariable 1) + maxinclusive :String
!.Ish:‘:= 5 0.1 +evalustion + maxlength :Integer
int=8 '
K + maxNanos :Integer
:.unt= ?3 %}7 InstantValue + minExclusive :String
ong = ———
uljg-“ + timestamp :SpecificTime + mininclusive :String
bl + vyalug :String + minLength :Integer
float = 10 InternalParameter ExternalParameter value :String N minNsnas 'Int=-;;='
+ pattern :String
+ totalDigits :Integer
posixTime = 13 A
hexBitFisld = 14
uTime =15
interval = 18 +state
GemsParameter KtceParameter GroundParameter
+ wiitable :Boolean + writable :Boolean |0-* of
D..'|+statE ¥ R asingletons
0.r | et representsStateOf ProcedureEnvironment
= ts5tateOf +system
Device ssystem "EPESEN
¥ Space System +environs | ‘SpecificTime
+ name :String 1 + name :String + today() :SpecificTime
1 SpecificTime
. Timelnterval
+ year|) :Integer
+ month{) :Integer n
+ day() :Integer Time
! —| = <'—— +
+ dayOfYear) :Integer n
+ hour) :Integer + toString(String) :String n
+ minute{) :Integer o
+ ;
) Integey + nanos|) :Integer
+ nanos() :Integer

Figure 11 GEMS and XTCE Parameters

26

class Procedure Environmment /

SpaceSystem Dewvice

+zubject

controlled by

0. | +equipment

controlled by

+eontrallar 1 1 +controller

Procedurs wsingletons
+ i . i :
operation exeoutes in +enmvirons FrocedureEnvironmernt

0.r 1]+ nown) SpecificTime
+ todaw: SpecificTime

+en\rir0ns’ 1 +target 1

representsState Of directs

+tate |D"* +director| o.r

ExtemalPaamneter Sirechive
GroundFarameter Custormbirective

+ wwitable: Boolean

Figure 12 Procedure Environment

The SpaceSystem class represents the communications link to the spacecraft or Space System being
operated, and the catalog of all XtceParameters represents the current state of the spacecraft. In a similar
way, the Device class represents an item of ground equipment in the control system, and the catalog of all
GemsParameters for the Device represents the current state of the equipment.

6.4.1 SpecificTime

A SpecificTime represents a point in time at the SOLM Execution Environment. This is normally the
ground system conducting spacecraft operations. SpecificTime values are not specified within an operations
procedure, since that would limit the reusability of the procedure model, but are usually input by the
operations team as a ProcedureArgument at invocation, as a result of a Query during execution, or are
calculated from a current time obtained from the ProcedureEnvironment at execution time. For portability,
the value representation of a SpecificTime will be a String representation of Coordinated Universal Time
(UTC), default input format, YYYY-MM-DDTHH:MM:SS.NNN. Other representations or time
coordinates required for onboard or remote execution should be calculated within a procedure model, or
specified as a ProcedureArgument. Time precision must extend to milliseconds, and future versions of this
specification may require micro or nanosecond precision.

6.4.1.1 Generalizations
e Time, page 3411

6.4.1.2 Attributes

No additional attributes.

6.4.1.3 Associations

27

No additional associations.
6.4.1.4 Constraints

No additional constraints
6.4.1.5 Semantics

A SpecificTime may be used as part of a Wait action, in an Expression, as a value for a DirectiveArgument,
or as a value for a ParameterWrite. A SpecificTime must be convertible to a POSIX seconds and
nanoseconds structure for use with XTCE and GEMS Parameter types. In an expression, the difference
between two SpecificTimes is a Timelnterval. A Timelnterval may also be added or subtracted from a
SpecificTime to yield another SpecificTime.

6.4.1.6 Operations

year() returns the Integer value of the Gregorian year associated with the time.
month() returns the Integer value of the Gregorian month, 1-12.

day() returns the Integer value of the day of the month, 1-31.

dayOfYear() returns the Integer value of the ordinal day of the Gregorian year, 1-366.
hour() returns the Integer value of the hour of the day, 0-23.

minutes() returns the Integer value of the minute of the hour, 0-59.

seconds() returns the Integer value of the second of the minute, 0-59.

nanos() returns the Integer value of the nanoseconds of the second, 0-999,999,999.

6.4.2 Device

A GEMS device has a set of Parameters that can be read and written and may also support GemsDirectives
to change the Device configuration. A GEMS device is usually ground equipment that is part of the
spacecraft ground support.

6.4.2.1 Generalizations
None
6.4.2.2 Attributes
e name:String — unique name for the device.

6.4.2.3 Associations

o state:GemsParameter[0..*] — the set of Parameters that represent the state of the device, some of
which may also be settable to change the configuration of the device.
o director:GemsDirective[0..*] — the set of directives that can be used to change device configuration
or state.
o controller:ProcedureEnvironment[1] — the ProcedureEnvironment in the ground system that controls
this Device.
6.4.2.4 Constraints
No additional constraints
6.4.2.5 Semantics

A Device may be configured by writing GemsParameter values and issuing GemsDirectives associated with
the device. Device state may also be used in a procedure by reading GemsParameter values. The unique

28

name of a Device will be used by the procedure environment to establish a control and status connection to
the device.

6.4.3 ExternalParameter

An ExternalParameter differentiates Parameters that are external to the Procedure. ExternalParameters may
be GemsParameters, XtceParameters, or GroundParameters.

6.4.3.1 Generalizations

e Parameter, page 3113
6.4.3.2 Attributes
No additional attributes.
6.4.3.3 Associations
No additional associations.
6.4.3.4 Constraints
No additional constraints
6.4.3.5 Semantics

The ParameterRead action on an ExternalParameter must cause special processing to obtain a new value. A
ParameterWrite action an ExternalParameter must change the state of the procedure environment or devices
associated with the procedure environment. Because ExternalParameters are, by definition, external to the
Procedure, they act like global parameters.

6.4.4 GemsParameter

A GemsParameter represents part of the state of a GEMS Device. It has a specific value which may be read
from the device. Some GemsParameters are writable, and the configuration of the Device will be changed
by a ParameterWrite with an outgoing ObjectFlow to the GemsParameter.

6.4.4.1 Generalizations
e ExternalParameter, page 291
6.4.4.2 Attributes
o writable:Boolean — indicates whether the GEMS device supports setting the value of the Parameter.
6.4.4.3 Associations
o system:Device — the GEMS device containing the Parameter.
6.4.4.4 Constraints
o A GemsParameter with a False writable attribute value cannot be the target of an ObjectFlow.
6.4.45 Semantics
See description above.
6.4.5 GroundParameter

A GroundParameter represents part of the state of the ground system providing the Procedure environment.
It has a specific value which may be read from the system. Some GroundParameters are writable, in which
case, setting the value changes the configuration of the ground system.

29

6.4.5.1 Generalizations
e ExternalParameter, page 2911
6.4.5.2 Attributes
e writable:Boolean — indicates whether the ground system supports setting the value of the Parameter.
6.4.5.3 Associations
No additional associations.
6.4.5.4 Constraints
e A GroundParameter with a False writable attribute value cannot be the target of an ObjectFlow.
6.4.5.5 Semantics
See description above.
6.4.6 InstantValue
A value with a timestamp for a Parameter.
6.4.6.1 Generalizations
None
6.4.6.2 Attributes

o value:String — the value of the Parameter. The value should be expressed appropriate to the
ParameterType and any Restrictions on the ParameterType
o timestamp:AbsoluteTime — the time when the value was sampled or calculated.

6.4.6.3 Associations
e parameter:Parameter — the valued parameter.
6.4.6.4 Constraints
No additional constraints
6.4.6.5 Semantics
Provides a value for a Parameter to be used in expressions or Procedure invocations.
6.4.7 InternalParameter

An InternalParameter is a Parameter internal to the Procedure. An InternalParameter may be a
ProcedureVariable or a ProcedureArgument.

6.4.7.1 Generalizations

e Parameter, page 3113
6.4.7.2 Attributes
No additional attributes.
6.4.7.3 Associations
No additional associations.
6.4.7.4 Constraints
No additional constraints

30

6.4.7.5 Semantics

The effect of reading or writing an InternalParameter is limited to the Procedure itself. Writing the value of
an InternalParameter will cause all later references to the InternalParameter to use the new value.

6.4.8 Parameter

A Parameter has a type and a value and is read and/or written by Procedures.
6.4.8.1 Generalizations

None

6.4.8.2 Attributes

No additional attributes.

6.4.8.3 Associations

o evaluation:InstantValue[0..1] — value of the Parameter at an instant in time. If the Parameter has
never been reported or calculated it may not have an InstantValue. An Expression that uses a
Parameter with no defined Instantvalue causes an exception in the execution that may be handled in
a HandledExceptionRegion.

o restriction:Restriction[0..*] — the values that Parameter may take are restricted by the
ParameterType and may be additionally restricted by defined Restrictions.

6.4.8.4 Constraints
No additional constraints
6.4.8.5 Semantics

In order to be consistent with XTCE and GEMS Parameters, all values used in SOLM are based on the
Parameter class, and have ParameterTypes and Restrictions that are consistent with those specifications.
Distinguishing between internal and external Parameter types allows special actions to occur when
ExternalParameters are read or written.

6.4.9 ParameterType
6.4.9.1 Generalizations

None
6.4.9.2 Attributes

The type enumeration in SOLM is consistent with the types supported by GEMS, XTCE, and most
spacecraft operations scripting languages.

6.4.9.3 Associations

No additional associations.

6.4.9.4 Constraints

No additional constraints

6.4.9.5 Semantics

The ParameterType constrains the allowable values and allowable Restrictions for a Parameter.
6.4.10 Timelnterval

31

A Timelnterval represents a negative or positive interval of time. A Timelnterval can be added or
subtracted from a SpecificTime to create a new SpecificTime that is later or earlier than the original
SpecificTime. The default value representation of a Timelnterval is SPDTHH:MM:SS.NNNNNNNNN,
where ‘s’ is an optional ‘+’ or ‘-¢, and D represents as many digits of an integer number of 24-hour days as
are necessary or the digit ‘0’. The precision must extend to nanoseconds.

6.4.10.1 Generalizations

e Time, page 3411
6.4.10.2 Attributes
No additional attributes.
6.4.10.3 Associations
No additional associations.
6.4.10.4 Constraints
No additional constraints
6.4.10.5 Semantics

A Timelnterval is the result of an Expression taking the difference between to SpecificTimes. An
Expression may also calculate a new SpecificTime by adding or subtracting a Timelnterval to/from a
SpecificTime. A Timelnterval may be initialized from a POSIX time structure in a GEMS or XTCE
Parameter type. It may also be initialized from an Integer number of seconds or a floating point decimal
number with fractional seconds. A Timelnterval may be used in a Wait action.

6.4.10.6 Operations

days() returns the Integer number of whole days in this interval.

hours() returns the Integer number of whole hours, not including any whole days.
minutes() returns the Integer number of whole minutes, not including any whole hours.
seconds() returns the Integer number of whole seconds, not including any whole minutes.
nanos() returns the Integer number of nanoseconds, not including any whole seconds.
asSeconds() returns the Integer number of seconds in the entire interval.

6.4.11 ProcedureEnvironment
6.4.11.1 Generalizations

None
6.4.11.2 Attributes
No additional attributes.
6.4.11.3 Associations
o director:CustomDirective[0..*] — A collection of CustomDirectives that are part of the procedure
environment. These Directives may be defined by a modeling environment to support ground
system-specific directives.
e equipment:Device[0..*] — GEMS devices that are part of the ground system.

o state:GroundParameter[0..*] — Collection of Parameters that are specific to a ground system.
o operation:Procedure[0..*] — Collection of Procedures defined for a ground system.

32

e subject:SpaceSystem[1..*] — Collection of at least one SpaceSystem that is monitored and controlled
by the ground system.

6.4.11.4 Constraints

No additional constraints

6.4.11.5 Semantics

The ProcedureEnvironment is a singleton that contains all of the definitions associated with Procedure
development for a specific SpaceSystem.

6.4.12 ProcedureVariable
6.4.12.1 Generalizations

e InternalParameter, page 3013.
6.4.12.2 Attributes
No additional attributes.
6.4.12.3 Associations

¢ incoming:ObjectFlow[0..*] — source of new value from Procedure action.
6.4.12.4 Constraints
No additional constraints
6.4.12.5 Semantics

A ProcedureVariable is a Parameter with a local procedure scope. Setting the value of the
ProcedureVariable from an Action in the procedure Activity definition will have no effect on the ground
system or the execution of other procedures.

6.4.13 Restriction

A Restriction restricts the allowed values of a Parameter
6.4.13.1 Generalizations

None

6.4.13.2 Attributes

e enumeration:String — restricts the values of ParameterTypes with a String value to the specific list of
strings.

o fractionDigits:Integer — restricts the number of digits after the decimal place in a ParameterType
with a floating point value.

o length:Integer — restricts the length of a string ParameterType to a specific, exact length.

e maxExclusive:String — restricts the value of a numeric ParameterType, floating point, integer, or the
seconds portion of a time type, to be less than the specified value.

o maxInclusive:String — restricts the value of a numeric ParameterType, floating point, integer, or the
seconds portion of a time type, to be less than or equal to the specified value.

o maxLength:Integer — restricts the length of a string ParameterType to a maximum number of
characters.

o maxNanos:Integer — restricts the nanoseconds portion of a time ParameterType to be less than or
equal to the specified value.

33

e minExclusive:String — restricts the value of a numeric ParameterType, floating point, integer, or the
seconds portion of a time type, to be greater than the specified value.

e minlinclusive:String — restricts the value of a numeric ParameterType, floating point, integer, or the
seconds portion of a time type, to be greater than or equal to the specified value.

e minLength:Integer — restricts the length of a string ParameterType to a minimum number of
characters.

e minNanos:Integer — restricts the nanoseconds portion of a time ParameterType to be greater than or
equal to a specified value.

e pattern:String — restricts the value of a string ParameterType to the pattern defined by a regular
expression.

o totalDigits:Integer — restricts the total number of digits allowed in a floating point ParameterType.

6.4.13.3 Associations
No additional associations.
6.4.13.4 Constraints

The value of specific attributes of the Restriction are constrained to be compatible with the associated
Parameter.

6.4.13.5 Semantics

Writing a value to a Parameter or supplying an argument to a ProcedureArgument or DirectiveArgument
that does not meet the associated restriction criteria will result in an error that halts script execution unless a
HandledExceptionRegion is defined for the ActivityNode where the error occurred. The Query action
should limit accepted data to the values allowed by the associated Parameter.

6.4.14 SpaceSystem

A SpaceSystem represents a link to the spacecraft under control by the Procedure. The name is taken from
the XTCE specification.

6.4.14.1 Generalizations
None
6.4.14.2 Attributes

e name:String — unique name for the SpaceSystem used by the ProcedureEnvironment to establish a
link to the SpaceSystem.

6.4.14.3 Associations
o state:XtceParameter[0..*] — the set of Parameters that represent the state of the spacecraft.
e instruction:Command[0..*] — the set of commands that can be used to change spacecraft
configuration or state.

o controller:ProcedureEnvironment[1] — the ProcedureEnvironment in the ground system that controls
this SpaceSystem.

6.4.14.4 Constraints
No additional constraints
6.4.14.5 Semantics

34

The SpaceSystem is typically defined by an XTCE document, which results in a set of XtceParameter and
Command instances which can be used in the Procedure definition. The unique name of the SpaceSystem is
used at procedure execution time to establish a connection with the SpaceSystem being controlled.

6.4.15 Time
6.4.15.1 Generalizations

None

6.4.15.2 Attributes

None

6.4.15.3 Associations

No additional associations.

6.4.15.4 Constraints

None.

6.4.15.5 Semantics

A Time is an abstract time value. It represents either a Timelnterval or a SpecificTime.
6.4.15.6 Operations

e toString(String) returns the Time value formatted according to the specified format String or the
default format if the String is empty. The format string follows the Python time module
specification for time formatting.

6.4.16 XtceParameter
An XtceParameter represents a part of the state of a SpaceSystem under control.
6.4.16.1 Generalizations
e ExternalParameter, page 2912.
6.4.16.2 Attributes
No additional attributes.
6.4.16.3 Associations
No additional associations.
6.4.16.4 Constraints
No additional constraints
6.4.16.5 Semantics

The telemetry of a SpaceSystem is normally received, calculated, and buffered by the ground system and
made available to the Procedure as last reported values, therefore a ReadParameter action does not usually
cause communication to the SpaceSystem, merely retrieval of the last reported value. Likewise, setting the
value of an XtceParameter does not result in communication with the SpaceSystem under control, but
usually results in the update of a derived (non-telemetered) state value, or is simply overwritten when the
ground system updates the current value of the Parameter.

6.5 Command Transmission

35

SOLM requires a standard way to invoke the transmission of a command defined in an XTCE document.
The modeling environment creates a collection of Command instances based on the MetaCommands
defined in the XTCE document for the spacecraft. In order to transmit a command, a CommandRequest is
created for a specific Command instance in the modeling environment catalog, and describes how the
Command must be handled when transmitted through the link. Parameters required or optionally allowed
for the Command are specified in association with the command. These relationships are shown in Figure
13. A GemsDirective is effectively a command to an item of ground equipment and the Command and the
GemsDirective are generalized as a Directive which is a single step in an operations procedure.

clzss Directives

Action

+action

f Directive . DirectiveArgumert
Dornzin Actions: tdirector t+target madifies +maodifier
Send + defaultValue: Strin

il 0.7 1 1 0.7 {ordered] g

Q 0. 1-value %7

[| 1
Custombirective ComrandRequest GermsDirective Farameter
+ name: String + releazeAt: SpecificTime + name: String
+ prefuthorized: Boolean
+ noEncreption: Boolean A
+director | 0.7 i !gnolel:onst.ralnis: Boolean +director | 0.7
+ ignoreReceipt: Boolean directs
+ ignoreVerification: Boolean| +target
+earier 0.7 Device
i transmitted by
+eontents 1
directs
Cormrand supplies value for
+ name: Sting +arget madifies
1 +modifier|0.7 0.1
+instruction | 0.7 Commandfrgurment fe— |
+target
commands + defaulfvfalue: String 4
+target’1 +target @1
azingletons SpaceSystem

FrocedureEnvironmert

+ nown) @ SpecificTime
+ today]): SpecificTime

Figure 13 Directives: CommandRequests and GemsDirectives
6.5.1 Command

A Command is usually a binary packet sent to a spacecraft to change the onboard configuration. In SOLM
Commands are defined by an XTCE document. The binary format is not important to SOLM, it is
formatted by the ground system.

6.5.1.1 Generalizations
None
6.5.1.2 Attributes

36

e name:String — the name of the Command, unique for a specific SpaceSystem

6.5.1.3 Associations

o modifier:CommandArgument[0..*] — an argument modifies a command, usually altering the contents
of the binary packet sent to the spacecraft.

o carrier:CommandRequest[0..*] —a CommandRequest is part of a procedure that carries a command
to the ground system for transmission.

o target:SpaceSystem[1] — a Command is intended for one target SpaceSystem.

6.5.1.4 Constraints
No additional constraints
6.5.1.5 Semantics

Much of the Command structure defined in an XTCE document is irrelevant for SOLM. The Procedure
determines the sequence, timing, and argument values for each Command, so the only Telecommand
elements SOLM needs from the XTCE document are a list of valid commands and the type and range of
each command argument.

6.5.2 CommandArgument
A CommandArgument modifies the effect of a Command on the target SpaceSystem.
6.5.2.1 Generalizations
e Parameter, page 3114
6.5.2.2 Attributes
o defaultValue:String — provides a default value for the argument, if none is supplied by the Directive
6.5.2.3 Associations

e target:Command[1] — the Command modified by this argument
o value:DirectiveArgument[0..1] — the Directive may supply a DirectiveArgument to be used instead
of the defaultValue attribute.

6.5.2.4 Constraints
No additional constraints
6.5.2.5 Semantics

A CommandArgument that does not have a defaultValue, must have a value supplied by a
directiveArgument.

6.5.3 CommandRequest

A CommandRequest includes additional information about how the Command should be transmitted by the
ground system.

6.5.3.1 Generalizations
e Directive, page 3921
6.5.3.2 Attributes

e ignoreConstraints:Boolean — if true, the ground system must ignore any pre-transmission constraints
defined for the command and allow the transmission to proceed without signalling an error, even if

37

transmission would violate the constraints. Pre-transmission constraints may be defined in XTCE
but are not managed by SOLM.

e ignoreReceipt:Boolean — if true, the ground system must ignore any receipt acknowledgement
normally required for the command and proceed without signalling an error.

o ignoreVerification:Boolean — if true, the ground system must ignore any functional verification
defined for the command, and proceed without signalling an error, even if the function verification
would fail.

e noEncryption:Boolean — if true, the ground system must transmit the command without encrypting
the binary packet.

o preAuthorized:Boolean — if true, the ground system must ignore any requirement for release
authorization before transmission.

o releaseAt:AbsoluteTime — if provided, the ground system must not release the command for
transmission until the specified time.

6.5.3.3 Associations
e contents:Command[1] — the command to request the ground system to transmit.
6.5.3.4 Constraints
No additional constraints
6.5.3.5 Semantics

When the SOLM execution environment provides the CommandRequest directive information to the ground
system, the ground system must format the command and transmit it to the SpaceSystem, conducting any
normal verifications for the command, unless overridden by one of the CommandRequest attributes.

Control must be returned to the executing procedure after transmission is complete, unless the “releaseAt”
time is specified, in which case control must be returned after the Command is queued for transmission at a
later time.

6.5.4 CustomDirective

A CustomDirective is a ground system-specific directive. Many scripting languages have directives that are
not related to a GEMS device or a SpaceSystem. SOLM provides a way to capture CustomDirective
information in a Procedure, but the system-specific behaviour is not directly transferable.

6.5.4.1 Generalizations

o Directive, page 3922.
6.5.4.2 Attributes

name:String — the name of the directive

6.5.4.3 Associations

o target:ProcedureEnvironment[1] — the environment of the CustomDirective
6.5.4.4 Constraints
No additional constraints
6.5.4.5 Semantics

The complete behaviour of a CustomDirective is indeterminate. For the purposes of SOLM, the name and
DirectiveArguments are supplied to the ground system. The ground system either completes the directive

38

without error, returning control to the executing Procedure, or the ground system returns an error, which
will either terminate execution or be handled by an exception handler.

6.5.5 Directive

A Directive instructs the ground system to take an action during Procedure execution.
6.5.5.1 Generalizations

None

6.5.5.2 Attributes

No additional attributes.

6.5.5.3 Associations

modifier:DirectiveArgument[0..*] — supplies additional information to the ground system for completing the
action of the Directive.

6.5.5.4 Constraints
No additional constraints
6.5.5.5 Semantics

A Directive is an abstract representation of a ground system action. See the related concrete Directive
descendants for semantics.

6.5.6 DirectiveArgument
A DirectiveArgument supplies additional information to the ground system for Directive execution.
6.5.6.1 Generalizations
e Parameter, page 3114
6.5.6.2 Attributes
o defaultValue: String — provides a default for the argument value
6.5.6.3 Associations

o target:CommandArgument[0..1] — CommandArgument that will receive the DirectiveArgument
value.

6.5.6.4 Constraints
No additional constraints
6.5.6.5 Semantics

DirectiveArguments are defined during procedure definition and are passed to the ground system during
Directive execution by the Send action. See page 4344.

6.5.7 GemsDirective
A GemsDirective sends a command and parameters to a GEMS device.
6.5.7.1 Generalizations
o Directive, page 3922
6.5.7.2 Attributes

39

e name:String — the directive name
6.5.7.3 Associations
o target:Device — the GEMS device targeted by this GemsDirective
6.5.7.4 Constraints
No additional constraints
6.5.7.5 Semantics

The execution of a GemsDirective issues a directive message to the GEMS device. The GemsDirective is
completed and control returns to the Procedure execution when the GEMS device responds. If the GEMS
device fails to respond or returns an error response, the GemsDirective will return an error, halting
procedure execution or transferring control to an exception handler, if one is defined for the procedure.

6.6 Procedure Actions

Spacecraft operations procedures frequently check the current value of a telemetry parameter to determine if
a command was properly executed or to determine the correct command to send, based on the current
spacecraft state. Requested parameters can be used in conditional expressions or as command arguments
within the procedure. In SOLM, the telemetry Parameter instances are created from the XTCE document in
the modeling environment. The value of the Parameter instance may be referenced in the procedure model
for conditional tests, computation, or setting the value of a Directive Parameter.

Figure 14 through Figure 21 show the action nodes that can be part of an activity diagram defining an
operations procedure.

class Actions.

ExecutsbleNode
Activities::Action

Wait Inwvoke Send Verify

Parameterilirite ParameterRead Gluery

Figure 14 SOLM Action Nodes for Activity Diagrams

40

class Invoke

Action | *target +incoming ActivityEdge
Invoke 1 o Activities::
ObjectFlow

+source +outgoing

1 0.1

+caller

invokes

+procedure | 1

Domain Objects::Procedure,

Figure 15 Invoke Subprocedure
6.6.1 Invoke
A Procedure may invoke another Procedure as a sub-procedure.
6.6.1.1 Generalizations

e Action, page 1716
6.6.1.2 Attributes
No additional attributes.
6.6.1.3 Associations
No additional associations.
6.6.1.4 Constraints
No additional constraints
6.6.1.5 Semantics

The Invoke action calls a Procedure as a sub-procedure. Any ProcedureArguments required by the sub-
procedure definition must be supplied from the associated incoming ObjectFlows. Execution of
ModeledProcedures take place in the same ProcedureEnvironment context, but there may be
InternalParameters that are local to the ModeledProcedure. The Integer result of the Procedure may be
passed to an outgoing ObjectFlow. If the sub-procedure completes normally, the control token is passed to
the outgoing ControlFlow of the Action. If the sub-procedure exits with an error, control is passed to error

handling within the current Activity.

6.6.2 ParameterRead

A ParameterRead is required to obtain a new value for an ExternalParameter.

6.6.2.1 Generalizations
e Action, page 1513
6.6.2.2 Attributes

41

No additional attributes.

6.6.2.3 Associations

¢ incoming:ObjectFlow[1] — ObjectFlow connected to an ExternalParameter providing a new value.
e outgoing:ObjectFlow[1] — ObjectFlow connected to a ProcedureParameter receiving the new value.

6.6.2.4 Constraints
No additional constraints
6.6.2.5 Semantics

An ExternalParameter requires an interaction with the ground system to obtain a new value for the
Parameter.

6.6.3 ParameterWrite
A ParameterWrite sets the value of a Parameter.
6.6.3.1 Generalizations
e Action, page 1513
6.6.3.2 Attributes
No additional attributes.
6.6.3.3 Associations

o value:Expression[1] — Expression evaluated to obtain the new value for the Parameter
e outgoing:ObjectFlow[1] — ObjectFlow connected to a Parameter receiving the new value.

6.6.3.4 Constraints
No additional constraints
6.6.3.5 Semantics
An ExternalParameter requires an interaction with the ground system to set a new value for the Parameter.
6.6.4 Query
A Query obtains a new value for a Parameter from the Operator.
6.6.4.1 Generalizations
e Action, page 1513
6.6.4.2 Attributes
e prompt:String — text to prompt the operator for a value.
6.6.4.3 Associations
e outgoing:ObjectFlow[1] — ObjectFlow connected to the Parameter receiving the new value.
6.6.4.4 Constraints
No additional constraints
6.6.4.5 Semantics

4

There are system-specific ways to prompt the operator for a value. The ParameterType and prompt can be
provided to insure a good value is provided. Failure to provide a value or providing a value that is not
allowed by the ParameterType and Restrictions results in an error.

6.6.5 Send
A Send issues a Directive to the ground system for execution.
6.6.5.1 Generalizations
e Action, page 1513
6.6.5.2 Attributes
No additional attributes.
6.6.5.3 Associations

e action:Directive[1] — the Directive to send to the ground system.
e incoming:ObjectFlow[0..*] — ObjectFlows providing values from InternalParameters
e outgoing:ObjectFlow[0..*] — ObjectFlows providing values to DirectiveArguments

6.6.5.4 Constraints
No additional constraints
6.6.5.5 Semantics

A Send action collects DirectiveArgument values and issues the Directive to the ground system for
completion.

6.6.6 Verify
Verify is an abstract action.
6.6.6.1 Generalizations
e Action, page 1513
6.6.6.2 Attributes
No additional attributes.
6.6.6.3 Associations
No additional associations.
6.6.6.4 Constraints
No additional constraints
6.6.6.5 Semantics
See VerifyExpression and VerifyRange
6.6.7 VerifyExpression
VerifyExpression evaluates a Boolean expression.
6.6.7.1 Generalizations
o Verify, page 4338
6.6.7.2 Attributes

43

e expression:String — string containing a Python Boolean expression.
6.6.7.3 Associations
No additional associations.
6.6.7.4 Constraints

The expression must be a valid Python Boolean expression. The syntax for Python is maintained in an
open-source project at https://docs.python.org/reference.

6.6.7.5 Semantics

The expression is evaluated and if it is true, execution continues at the outgoing ControlFlow. If it is false,
an error is generated and any associated exception handler is executed.

6.6.8 VerifyRange
A VerifyRange tests the equality of a floating point Parameter type.
6.6.8.1 Generalizations
o Verify, page 4338
6.6.8.2 Attributes

e expected:String — the expected value of the Parameter.
o tolerance:String — a plus/minus tolerance value to test for equality within a range.

6.6.8.3 Associations
o readReference:InternalParameter[1] — the Parameter to test for equality
6.6.8.4 Constraints
No additional constraints
6.6.8.5 Semantics

The value of the readReference is compared to the range defined by the value of the expected attribute of
the VerifyRange, plus the tolerance and minus the tolerance. If it is within the range, inclusively, execution
continues at the outgoing ControlFlow. If it is not, an error is generated and any associated exception
handler is executed.

6.6.9 Wait
Wait is an abstract action.
6.6.9.1 Generalizations

e Action, page 1513
6.6.9.2 Attributes
No additional attributes.
6.6.9.3 Associations
No additional associations.
6.6.9.4 Constraints
No additional constraints
6.6.9.5 Semantics

44

https://docs.python.org/reference

See WaitOnExpression and WaitOnTime for specific semantics.
6.6.10 WaitOnExpression
WaitOnExpression waits for the value of a Boolean expression to become true.
6.6.10.1 Generalizations
e Wait, page 4439
6.6.10.2 Attributes
o pollPeriod:Timelnterval — the time period to wait before re-evaluating the expression.
e timeout:Time — the time period or AbsoluteTime to wait before failing due to timeout
6.6.10.3 Associations
o expression:Expression[1] — the Boolean expression to evaluate
6.6.10.4 Constraints
No additional constraints
6.6.10.5 Semantics

This Action repeatedly evaluates the expression, obtaining new values for ExternalParameters referenced,
until the Expression is true or the timeout occurs. Execution continues on the outgoing ControlFlow, if the
expression is true. The timeout error will transfer control to an exception handler, if one is defined for the
Action.

When a Timelnterval is used as the timeout in a WaitOnExpression action, it is used as the time interval to
wait for the expression to become true. A zero or negative interval will result in an immediate timeout error
if the expression is not true. When used as the pollPeriod in a WaitOnExpression action, it is used as the
time interval to wait between expression evaluations. A zero or negative interval in this case will cause an
immediate error.

6.6.11 WaitOnTime
WaitOnTime delays the execution thread.
6.6.11.1 Generalizations
e Wait, page 4439
6.6.11.2 Attributes
o time:Time — the Timelnterval period to wait, or the AbsoluteTime to resume execution.
6.6.11.3 Associations
No additional associations.
6.6.11.4 Constraints
No additional constraints
6.6.11.5 Semantics

Execution suspends until the specified time is reached, then execution continues on the outgoing
ControlFlow. When a Timelnterval is used as the time in a WaitOnTime action, it defines the interval to
delay before continuing execution. A zero or negative interval will result in an immediate completion of the
action. When a SpecificTime is used as the time in a WaitOnTime action, execution will delay until the

45

SpecificTime is reached. If the SpecificTime is in the past, it results in an immediate completion of the
action.

class Parameter Read
1
{ObjectFlow target is 8 ProcedureVarisble}
Action | ¥source +outgoing ActivityEdge
FarameterRead 1| Activities:
+target +incoming i cctFlow
1 1
{ObjectFlow source is an ExternalParametes;
+outgoing .- 0..*| #incoming
+source |1 +arget | 1
Parameter intemalParameter
Domain Objects:: Domain Objects::
ExternalParameter ProcedureVariable
Figure 16 Parameter Read
class Parameter Write
Action ActivityEdge
Farameteririte X Activities::
+zource +outgoing | ObjectFlaw
1 1
ftarget of
ObjectFlow iz
ExtemnalParameter}
+ewaluatar 1 +incoming .
+value |1 +target |1
Activities:: PSR
Expression Domain Objects:
External Pararnater
+ walue: String

Figure 17 Parameter Write

46

class Guery

Action ActivityEdge
Gruery Activities::
+source +outgoing ObjectFlow
a.- 0.*
{CbjectFlow target
isa
ProcedureVariable}
+incoming .-
+target | 1

IntemalParameter

Domain Objects::
ProcedureVariable

Figure 18 Query Operator

class Send

Domain Objects:
Directive

Domain Objects::
DirectiveArgument

i .
Action | F18rEEt incoming ActivityEdge
Send 0.* 0.~ Activities::
Isource of ObjectFlow ObjectFlow
is InternalParameter}
+soUrce +outgoing
1 0.1
{target of ObjectFlow T
+director .- isa +target | 1 +outgeing 0.7
ProcedureVariable]}
+action |1 +incoming 1 +source | 1
FParamefer Fsrameter

Domain Objects:
InternalParameter

+ defaultWalue: String

Figure 19 Send Directive

47

class Werify

Wzt OnExpression

o
+

pollPeriod: Timelntenral

timeout: Time

+evaluatar 1

1
+exprassion

Activities::
Expression

+ walue: String

Ackion
werify
erifyExpression “erifyRange
+ expression: String + tolarance: String
+ expected: String
+readReferance o.r
+parameter
Famameter
Dormain Objects::
Internzl Parameter
Figure 20 Verify State
class Wait
Aclior
Wit

izit OnTi me

+ time:

Time

{Expression must hawe Boolean result}

Figure

21 Wait

48

C d [JB2]: [SOLM12-16] Remove section 6.7 - OMG
Issue Tracker

49

https://issues.omg.org/browse/SOLM12-16
https://issues.omg.org/browse/SOLM12-16

50

)

SOLM12-21] Remove mentions of Comet

Control Language - OMG Issue Tracker

Commented [JB3]

{

4
o
£
&
q
o
H
P
oR
h
1
gl
D,
h
1._
oo
=
==
& &
e jin]
o 4P
Ept €
ar &
Y B
YU |
[« P
b oR
qd w
M & I
d 19
-
<
4P =
P&
H = ~
y o # o)
G
| | i
Ept @ OB
L & Y
W F £ 1
N &
| B X
Bt 4P &
L & =
w 1b
£ M|
o g wn
(ORI
i & 1
EH
(=S RE T [£1]
« H [d

51

https://issues.omg.org/browse/SOLM12-21
https://issues.omg.org/browse/SOLM12-21

52

53

54

55

2417SpacePython Mapping
241171 General

Python is an open-source scripting language for general purpose computing applications that can easily
be extended to specialized applications, such as spacecraft control. This section provides information on
mapping SOLM to a SpacePython script. SpacePython is based on the Python 3 syntax with the addition

of the SOLM extensions defined in this appendix to support spacecraft operations.

Because either direct execution or translation of a SpacePython procedure is an acceptable conformance
to SOLM, additional machine consumable SpacePython script examples are provided with the SOLM
specification, including the SetMomentumWheelSpeed example from Figure 4. All of the examples are
provided in the form of Python package that can be added to any Python installation. The example
module will run all of the example scripts, demonstrating a compliant SpacePython interface. A SOLM-
compliant ground system would use its own database and control mechanisms to run the same
SpacePython scripts rather than modules provided in the demonstration space package.

SpacePython

SOLM

Comments

#

Comment

Delimits comment text

While

Loop defined by
DecisionNode,
ControlFlow

Defines a loop construct with a
conditional entrance. The
Python language also supports
a for construct with iteration
over lists. Indentation is
significant for defining the
span of the loop.

This is in the Python base
language.

If..[elif]..[else]

DecisionNode

Defines conditional execution
paths. Indentation is
significant for defining the
span of each conditional block.

This is in the Python base
language.

Invoke

InitialNode

Defines the primary entry
point for a procedure accepting
keyword arguments for the
parameter values.

This is SpacePython usage of a
function definition as the
procedure entry point.

56

operatorQuery

Query

Python supports numerous
GUI widget sets and console
input, but a SpacePython
procedure uses an
operatorQuery function that
interfaces with the execution
platform GUI

def operatorQuery(prompt,
parameterList):

This is a SpacePython library
function

operatorQuery(‘prompt text’, None)

Query with no associated
Parameters

An operatorQuery with no
parameters is essentially a
PAUSE, waiting for the
operator to continue the
procedure execution.

This is a SpacePython library
function

Iirk{(<SPACESYSTEM>)Asset

SpaceSystem

|An Asset object represents{ ¢

ted [IB4]: [SOLM12-27] Update to align with moc

device including one that (12guage- OMG Issue Tracker

provides command and
telemetry connection through
the ground system to a specific
SpaceSystem. If the underlying

system needs additional
information or settings to
establish the Asset, these may
be supplied in a system-
specific way using the
SpaceSystem name as a key.

This is a SpacePython class

definition. A-Link-ebject

57

https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27

C

ted [IB5]: [SOLM12-27] Update to align with moc

LinkAsset.send(<COMMAND>)

CommandRequest

"""""""""""" (language - OMG Issue Tracker
T

[The send method of an Asg ¢

ted [JB6]: [SOLM12-27] Update to align with mac

Command

obiect issues a command Llanguage - OMG lssue Tracker

transmission request to the
ground system for the
SpaceSystem associated with
the Asset. A fully-specified
command (no required
Arguments) can be specified
by its unique name, otherwise
a Command instance must be
obtained from the
Asset.lookupCommand()
method and completed by
specifying required arguments
to the Command instance.

This is a SpacePython class
method.Fhe-send-method-of a

.
ethod {r

ted [IB7]: [SOLM12-37] Make small edits detailec

}I:'quAsset.IookupParameter(<PARAM ETER>)

XtceParameter

revised section. - OMG Issue Tracker

ted [IB8]: [SOLM12-27] Update to align with moc

ParameterType
Restriction

language - OMG Issue Tracker

Obtain an instance of a L["
Parameter in the SpaceSys

ted [IB9]: [SOLM12-27] Update to align with moc

associated with the Asset. r

language - OMG Issue Tracker

This is a SpacePython class |

58

https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27

C

ted [JB10]: [SOLM12-27] Update to align with

LirkAsset.lookupCommand(<COMMAND>)

Command

"""""""""""""""" (modern language - OMG Issue Tracker
T

Obtain the current values-of

ted [IB11]: [SOLM12-27] Update to align with

list of Parameters specifie& modern language - OMG Issue Tracker

unique names, from a device.

This is a SpacePython class
method.Obtain-a-referencetoa

CamrchetheSaosnt sl

ted [IB12]: [SOLM12-27] Update to align with

Device

C
"""""""""""" (modern language - OMG Issue Tracker

|An Asset object represents{ ¢

ted [JB13]: [SOLM12-27] Update to align with

GemsDeviceAsset(<DEVICE>)|

connection to a SDECiﬁC de modern language - OMG Issue Tracker

The object is created with the
unique name for the device,
which may be mapped via a
system-specific configuration
to the network address of the
device.

This is a SpacePython class
definition.A-GemsBevice
e -

59

https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27

deﬁﬂme#] (r ted [JB14]: [SOLM12-27] Update to align with
"""""""""""" modern language - OMG Issue Tracker
GemsDeviceAsset.get() GemsParameter Obtain the current values o Commented [IB15]: [SOLM12-37] Make small edits detail
ParameterRead list of Parameters, specifie& in l;ewsed section. - OMG lIssue Tracker
unique names, from a device.
This is a SpacePython class
method.Obtain-the-current
values-of-alist-of Parameters;
froma-GEMS device:
method, {r ted [JB16]: [SOLM12-37] Make small edits detail
"""""""""""""""" in revised section. - OMG Issue Tracker
kz-ems—DevieeAsset.setParameters()\ GemsParameter d [IB17]: [SOLM12-37] Make small edits detail

ParameterWrite

Set the values of a list of { ¢
Parameters in a device in revised section. - OMG lIssue Tracker
specified as a list of
name=value pairs.

This is a SpacePython class
method.Set-the-values-ofatist
of Parameters-inaGEMS

(“ ted [JB18]: [SOLM12-37] Make small edits detail
in revised section. - OMG Issue Tracker

GemsDeviceAsset JookupDirectivelookupCommandy()

GemsDirective

Restriction

Obtain an instance of a C ted [IB19]: [SOLM12-27] Update to align with
Command specified bV un modern language - OMG Issue Tracker

name, defined for the device.

This is a SpacePython class
method.Obtair-an-instance-of a
S ‘ i -

C ted [IB20]: [SOLM12-27] Update to align with

GemsDeviceAsset.send()

GemsDirective

"""""""""""""""" {modern language - OMG Issue Tracker
lissues a Command to the { ¢ d [IB21]: [SOLM12-27] Update to align with

device. The Directive insta modern language - OMG Issue Tracker

must be obtained by the
Asset.lookupCommand()
method and completed by
supplying any required

60

https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27

Parameter values.

This is a SpacePython class
method.issues-a-Directive-to
the GEMS-device—The

d [JB22]: [SOLM12-27] Update to align with

raethod: { c

<Parameter>

Parameter

modern language - OMG lIssue Tracker

[Represents a Parameter.

This is a SpacePython abstract

class.Represents-an<XFCE-oF
GEMS-Parameter-

—

ted [IB23]: [SOLM12-27] Update to align with

class,| <

<Parameter>__<Attribute>

Restriction

modern language - OMG Issue Tracker

Provides the attributes of a
parameter including limits and
valid range.

Parameter.value()

XtceParameter
ParameterRead

Returns the engineering unit
value of the Parameter for use
in an expression.

This is a SpacePython class
method.

Parameter.raw()

XtceParameter

Returns the raw (usually
binary or integer) value of the
Parameter for use in an
expression.

This is a SpacePython class
method.

try ... catch HandledExceptionRegion | The try catch block sets up an
exception handler for a
protected section of the
procedure.

verify Verify A statement that accepts a

Boolean expression and raises

61

https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27

an exception if the condition is
false.

GermsParameter

GemsParameter

RRepresents a Parameter C

ted [IB24]: [SOLM12-37] Make small edits detail

definition. Must be obtaine!

in revised section. - OMG Issue Tracker

by a factory method
“lookupParameter” on the

Asset.

This is a SpacePython

class.Represents-a-GEMS

Ci

ted [JB25]: [SOLM12-27] Update to align with

XtceParameter

XtceParameter

modern language - OMG lIssue Tracker

RRepresents an Parameter { ¢

d [JB26]: [SOLM12-37] Make small edits detaile

definition. Must be obtaine!

in revised section. - OMG lIssue Tracker

by a factory method
“lookupParameter” on

Asset.Represents-anXFCE

d [JB27]: [SOLM12-27] Update to align with

Downlink {r

wait(seconds)

WaitOnTime

modern language - OMG lIssue Tracker

Wait for a time interval in
seconds.

waitUntil(<SpecificTime>)

WaitOnTime

Wait for a specific date/time.

waitFor(<expression>,<timeout>,<Polling period>)

WaitOnExpression

Wait for an expression to
become true or a timeout

d [JB28]: [SOLM12-27] Update to align with

modern language - OMG lIssue Tracker

occurs.
SOLM SpacePython Comments
InitiaNode from |[space import Python accepts
LinkAsset param=value style keyword
def invoke (**kwargs) :| arguments. C
SpaceSystem link-asset = IAn Asset must be defined

62

https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27

LinkAsset("2<kinkDevice.SpaceS

in the procedure class

ystem=2)>")

model in order to access c d [IB29]: [SOLM12-37] Make small edits detail
Parameters and in revised section. - OMG Issue Tracker
CommandsA-Link-must-be C d [IB30]: [SOLM12-27] Update to align with
R . modern language - OMG Issue Tracker
class-model-in-erderto

accessXFCE-Parameters

and-Commands

Device

dev =
GemsBDeviceAsset("“<Device.nam
e>')

|An Asset must be defined
in the procedure class
model in order to access
Parameters and
CommandsA-BDevice-must
Bodlenodnthonreacdin
class-model-in-orderto
access GEMS Parameters
and-Directives

DecisionNode

if <guardl expression>:

elif<guard2 expression>:

else <default guard>:

The guard paths should be
exclusive, since there is no
order implied in the activity
diagram other than the
default guard.

JoinNode Thread.join() De-indentation completes a
conditional or loop. Join()
waits for the joined thread
to terminate.

ParameterRead [Value =

dev.lookupParameter(‘'<Parameter.

name>'").value()Vatie—=

3 5

ParameterWrite

[dev.setParameters(<Parameter.na
me>=value)

Send

dev.send(directive)dev-send(direct
ive)

oF

—
transtated-based-on-the
Directive-type-The Send

action is translated based on

63

C d [IB31]: [SOLM12-27] Update to align with
modern language - OMG Issue Tracker

Ci ted [JB32]: [SOLM12-27] Update to align with
modern language - OMG Issue Tracker

C ted [IB33]: [SOLM12-27] Update to align with
modern language - OMG Issue Tracker
C ted [JB34]: [SOLM12-27] Update to align with
modern language - OMG lIssue Tracker

C d [JB35]: [SOLM12-27] Update to align with
modern language - OMG lIssue Tracker

https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-37
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27

link-sene{command)

the Command type.

ParameterWrite

dev.setParameters(<Parameter.na
me>:value)<T#aFiableL.name>—-
<Expression>

1

{

C

ted [IB36]: [SOLM12-27] Update to align with

modern language - OMG Issue Tracker

C

d [IJB37]: [SOLM12-27] Update to align with

modern language - OMG Issue Tracker

{

C

d [IB38]: [SOLM12-6] SOLM and SpacePython

should support spacecraft as a sensor - OMG Issue Tracker

ActivityFinalNode return
HandledExceptionRegion try:
catch:
wait(<seconds>)

WaitOnTime

waitUntil(<SpecificTime)

SpacePython allows
waiting for a specific time

of day or for a time
interval. The time interval
may include fractional
seconds.

waitFor(<Expression>,

WaitOnExpression <Timeout>, <Polling Period>)

SpacePython allows
waiting for an expression to
become true or timeout

period to elapse.

7.2 |Upgrading Notes

Changes in SpacePython 1.2 were made to address several changes in the Python language as well as the
space industry since when SpacePython was originally created. SpacePython 1.2 unifies space and ground
assets, which represents a change in how ground systems are organized. While the SOLM platform
independent model still separately represents space and ground interfaces, the platform-specific model for
SpacePython now utilizes a single construct of Assets to represent both of them. In addition, the construct of
a Downlink have been removed as this is simply a space asset connection. Rather than having different
functions and behaviors between space and ground assets, SpacePython 1.2 allows the same methods and
functionality to be applied to both.

With SpacePython 1.2, the SpacePython library has been updated to have the abstract interface separated
from concrete implementations. This allows different implementations to be developed by implementing the
abstract base classes and could be used simultaneously. It also provides improved procedure development
by simplifying the methods that are made public by the SpacePython library. Additionally, this approach

makes future upgrades to the specification easier for implementers, since the reference implementation has

been separated.

Also, SpacePython has added type hints and documentation to all functions. This allows procedure
developers to be able to significantly improve the guality of procedures being developed to use the correct
data types at development time and likely reduce errors found at run-time. This levers the software
development recommendation to ‘fail fast’. As such, implementers of this specification should add Python
type hints to all function arguments and return values. In addition, implementers should handle all function
return value types properly to account for all possible code paths that may take place.

64

https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-6
https://issues.omg.org/browse/SOLM12-6

Changes of consideration:

* The Asset.send() function takes three arguments (whereby Link.send() only took two arguments).
Please update uses of the send() function to accommodate the additional argument.

* The Asset.updateParameters() function is renamed from Link.get. This reflects a better description of
the function’s purpose. Please note that the use of this function is optional.

« Accessing assets is performed via the lookupAsset function on SpacePython object rather than
directly calling Link(). This is because Assets are a pluggable interface.

« Accessing a procedure is now performed via procedureEngine().loadProcedure rather than calling
the loadProcedure global function. This is because the procedure engine is now a plugable interface.

It is also recommended to review the sample procedures within the ‘test’ directory of the SpacePython
machine readable files to review how to utilize the SpacePython classes.|

65

[

C ted [IB39]: [SOLM12-27] Update to align with
modern language - OMG Issue Tracker

https://issues.omg.org/browse/SOLM12-27
https://issues.omg.org/browse/SOLM12-27

