
Software Process Engineering
Metamodel Specification

This OMG document replaces the draft adopted specification (ptc/2001-11-01). It is an OMG Final
Adopted Specification, which has been approved by the OMG board and technical plenaries, and is
currently in the finalization phase. Comments on the content of this document are welcomed, and
should be directed to issues@omg.org by April 12, 2002.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on July 1, 2002. If
you are reading this after that date, please download the available specification from the OMG for-
mal specifications web page.

OMGAdopted Specification
December 2001

Software Process Engineering
Metamodel Specification

Final AdoptedSpecification
December 2001

Copyright 2001, Alcatel
Copyright 2001, DMR Consulting
Copyright 2001, Fujitsu Limited
Copyright 2001, International Business Machines Corporation
Copyright 2001, Q-Labs
Copyright 2001, Rational Software Corporation
Copyright 2001, SOFTEAM
Copyright 2001, Unisys Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY
OF FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or
cover damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright hold-
ers listed above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all
times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials. This document contains
information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may
be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including photocopying, record-
ing, taping, or information storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®

and Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group,
Inc. X/Open is a trademark of X/Open Company Ltd. RUP, Rational Unified Process, Rational Process Workbench are

registered trademarks of Rational Software. DMR Macroscope is a trademark of DMR. SDEM is a registered trademark
of Fujitsu in Japan.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by several hundred members, including information system vendors, software
developers and users. Founded in 1989, the OMG promotes the theory and practice of
object-oriented technology in software development. The organization’s charter
includes the establishment of industry guidelines and object management specifications
to provide a common framework for application development. Primary goals are the
reusability, portability, and interoperability of object-based software in distributed,
heterogeneous environments. Conformance to these specifications will make it possible
to develop a heterogeneous applications environment across all major hardware
platforms and operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

OMG Documents

The OMG documentation is organized as follows:

OMG Modeling

• Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems.

• Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and
their corresponding models.
December 2001 Software Process Engineering Metamodel: Final Adopted Specification vii

• OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including
both model and metamodel information.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes
the conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue

Needham, MA 02494

USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of the SPEM specification:

• Adaptive Ltd.

• Alcatel

• Computer Associates

• France Telecom
viii Software Process Engineering Metamodel: Final Adopted Specification December 2001

• Fujitsu/DMR

• IBM

• Nihon Unisys Ltd.

• Q-Labs

• Rational Software

• Siemens

• SOFTEAM

• Toshiba

• Unisys

• Valtech

The following people contributed directly or indirectly to the writing of this
specification:

Donald Baisley, Mariano Belaunde, Alan Birchenough, Alan Bradbury, John Cameron,
Steve Cook, Daniel D’Elena, Philippe Desfray, Julian Edwards, Ed Ferrara, Björn
Gustafsson, Brian Henderson-Sellers, Hiromichi Iwata, Sridhar Iyengar, Olaf Kaestner,
Ed Kahan, Philippe Kruchten, Annie Kunzmann-Combelles, Craig Larman, Hiroshi
Miyazaki, Pierre Montminy, Mari Natori, Van-Si Nguyen, Jean-Marc Proulx, Gilbert
Raymond, Laurent Rioux, Pete Rivett, Pierre Robillard, Phillip Rossomando, Kiyoshi
Sakaguchi, John Smith, Steve Tockey, Gail Trotter, and Norbert Weber.
December 2001 SPEM Final Adopted Specification: Acknowledgments ix

Spem in alium numquam habui (I have never placed my hope in any other). Motet in
40 parts, Thomas Tallis (c. 1505-1585)
x Software Process Engineering Metamodel: Final Adopted Specification December 2001

Introduction 1
Contents

This chapter includes the following topics.

1.1 Overview

This document presents the Software Process Engineering Metamodel (SPEM). This
metamodel is used to describe a concrete software development process or a family of
related software development processes. Process enactment is outside the scope of
SPEM, although some examples of enactment are included for explanatory purposes.

1.2 Modeling Approach

We take an object-oriented approach to modeling a family of related software
processes and we use the UML as a notation. Figure 1-1 shows the four -layered
architecture of modeling as defined by the OMG. A performing process—that is, the
real-world production process—as it is enacted, is at level M0. The definition of the
corresponding process is at level M1. For example, the Rational Unified Process 2001

Topic Page

“Overview” 1-1

“Modeling Approach” 1-1

“Scope” 1-2

“Terminology” 1-2

“Relationships to Other OMG Specifications” 1-3

“Compliance Points” 1-5
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 1-1

1

(RUP2001), DMR Macroscope, the IBM Global Services Method and Fujitsu SDEM
are defined at level M1. Both a generic process like RUP and a specific customization
of this process used by a given project, are at level M1. We focus here on the
metamodel, which stands at level M2 and serves as a template for level M1.

Figure 1-1 Levels of modeling

The SPEM specification is structured as a UML profile, and also provides a complete
MOF-based metamodel. This approach facilitates exchange with both UML tools and
MOF-based tools/repositories.

1.3 Scope

The SPEM is a metamodel for defining processes and their components. A tool based
on SPEM would be a tool for process authoring and customizing. The actual enactment
of processes—that is, planning and executing a project using a process described with
SPEM, is not in the scope of this model.

In this proposal, we are limiting ourselves to defining the minimal set of process
modeling elements necessary to describe any software development process, without
adding specific models or constraints for any specific area or discipline, such as project
management or analysis.

We believe this is the appropriate approach for the software-process engineering
domain, and any attempt to standardize a more complex and detailed model at this time
would be both unwise and ineffective. The standard wants to accommodate a large
range of existing and described software development processes, and not exclude them
by having too many features or constraints.

1.4 Terminology

There are a large number of process models and standards. Each one uses slightly
different terminology, sometimes with different meaning for the same English word or
phrase. For example, a ‘phase’ in Fusion [13] is called a ‘core workflow’ in the

Process Metamodel

MOF

M0

M1M1M1M1

M2

M3

UPM, UML

e.g., RUP,
SI Method, Open

Process as really enacted
on a given project

Process Model

Performing process

MetaObject Facility
1-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

1

Rational Unified Process (RUP) [1] and a ‘domain’ in IBM’s Global Services Method.
We will designate it as a ‘discipline’ here. OPEN [4] and the Rational Unified Process
[1] both use the word ‘activity’ but with a different meaning. We have provided
“translations” (aliases or synonyms) to help in understanding. This also allows the
naming of various process elements by the appropriate term in various languages:
Japanese, French, and so on. See Appendix B for a comparison table and the Glossary.

1.5 Relationships to Other OMG Specifications

The Unified Modeling Language (UML) is a graphical language for modeling discrete
systems. Although the UML is not necessarily tied to any particular application area or
modeling process, its greatest applicability is in the area of object-oriented software
design. Version 1.1 of the UML was submitted to the Object Management Group in
September 1997 in response to an OMG RFP requesting a standard approach to object-
oriented modeling. The proposal was ratified by the OMG in November 1997.
Version 1.3 of the UML was finalized in June 1999. UML 1.4 (January 2001) is the
version referred to throughout this document.

The UML is defined by a metamodel, which is itself defined as an instance of the MOF
(Meta-Object Facility) metametamodel. A subset of the UML graphical notation is
used to depict this metamodel. The SPEM metamodel is defined similarly, and is
formally defined as an extension of a subset of UML called SPEM_Foundation.
Chapter 2 describes SPEM_Foundation in detail.

The purpose of the Software Process Engineering Metamodel (SPEM) is to support the
definition of software development processes specifically including those processes
that involve or mandate the use of UML, such as the Rational Unified Process®.

1.5.1 UML Profile

A UML profile is a kind of variant of UML that uses the extension mechanisms of
UML in a standardized way, for a particular purpose.

The UML 1.4 semantics (OMG document ad/01-02-13)) provides the following
definition in the section 2.14.4 “Semantics:”

A profile stereotype of Package contains one or more related extensions of standard
UML semantics (refer to Section 2.6, “Extension Mechanisms”). These are
normally intended to customize UML for a particular domain or purpose. Profiles
can contain stereotypes, tag definitions, and constraints. They can also contain data
types that are used by tag definitions for informally declaring the types of the
values that can be associated with tag definitions.

In addition, a profile package can specify a related model library and identify a
subset of the UML metamodel that is applicable for the profile. In principle,
profiles merely refine the standard semantics of UML by adding further constraints
and interpretations that capture domain-specific semantics and modeling patterns.
They do not add any new fundamental concepts.
December 2001 SPEM Final Adopted Spec: Relationships to Other OMG Specifications 1-3

1

The SPEM is defined both as a metamodel and as a UML profile, which allows SPEM
modelers to use the UML as a concrete notation. Chapter 11 of this specification
discusses the profile.

1.5.2 MOF 1.3 and XMI

The Meta-Object Facility (MOF) is the OMG’s adopted technology for defining
metadata and representing it as CORBA objects. The MOF 1.3 specification was
finalized in September 1999 (OMG document ad/99-09-05). A MOF metamodel
defines the abstract syntax of the metadata in the MOF representation of a model. The
MOF model itself describes the abstract syntax for representing MOF metamodels.
MOF metamodels can be represented using a subset of UML syntax.

In addition to defining SPEM as a UML profile, it is defined as a MOF metamodel,
based on a subset of UML. This gives a more restricted version of SPEM, in which the
basic SPE elements can be described, without some of the diagramming and
structuring facilities, which are added by the profile version of SPEM. Chapter 11
describes the additional facilities gained when SPEM is treated as a UML profile.

XMI (XML Metadata Interchange) is the OMG’s adopted technology for interchanging
models in a serialized form (OMG document ad/98-10-05). XMI version 1.1 was
formally adopted by the OMG in February 2000 (OMG document ad/99-10-04). XMI
focuses on the interchange of MOF metadata; that is, metadata conforming to a MOF
metamodel.

XMI is based on the W3C’s eXtensible Markup Language (XML) and has two major
components:

• The XML DTD Production Rules for producing XML Document Type Definitions
(DTDs) for XMI encoded metadata. XMI DTDs serve as syntax specifications for
XML documents, and allow generic XML tools to be used to compose and validate
XMI documents.

• The XML Document Production Rules for encoding metadata into an XML
compatible format. The production rules can be applied in reverse to decode XMI
documents and reconstruct the metadata.

XMI can be used to manipulate the SPEM metamodel as follows:

• To create a SPEM Document Type Definition.

• To transfer process models based on SPEM as XML documents, either by
describing the model as a direct SPEM instance (usage of the SPEM DTD) or by
describing it as a UML model conforming to the UML profile for SPEM (usage of
the UML DTD).

• To transform the SPEM metamodel itself into an XML document, based on the
MOF DTD, for interchange between MOF-compliant repositories.

OMG documents ptc/2002-05-05 and ptc/2002-05-06 contain the normative DTD and
MOF XMI for the SPEM.
1-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

1

1.5.3 Workflow

Within the OMG there are three initiatives that come under this heading.

The first is the Joint Workflow Management Facility (OMG document
bom/99-03-01). The scope of this facility is workflow enactment and it supports
Workflow Client Applications, Interoperability, and Process Monitoring as described
in the Workflow Reference Model. None of these areas overlaps the SPEM
specification, which addresses the domain of process description, not process
enactment.

The second is the Workflow Resource Assignment Interfaces RFP (OMG document
bom/2000-01-03), which asks for submissions to extend the capabilities of the adopted
workflow management specification in the areas of the assignment and selection of
resources. The scope of this facility is also process enactment and so does not overlap
the SPEM specification.

The third area of interest is Process Definition. At this time no request for proposals
has been issued. The matter is still under consideration, pending discussions within the
UML RTF and the UML 2.0 working group about how UML Activity Diagrams will
be supported and/or extended. This discussion somewhat overlaps the scope of the
current specification.

1.5.4 Proof of Concept

The (meta)model and the UML Profile presented here supports at least the Rational
Unified Process, DMR Macroscope, IBM’s Global Services Method and the Unisys
QuadCycle method. Examples throughout the text show how particular elements in the
model are used in these and other processes. The SPEM is supported by the Rational
Process Workbench (RPW), which is a process authoring tool based on UML. The
SPEM profile has been implemented using the “Objecteering/UML Profile Builder”
tool of SOFTEAM, and then applied to the “Objecteering/UML Modeler” tool, which
has been used as a “SPEM modeler” to represent various processes. All the SPEM
extensions have been implemented with most of the SPEM well-formedness rules. The
SPEM metamodel server has been generated in the Unisys XMI/MOF tools. Finally
see Appendix C for an example based on the DMR Macroscope.

1.6 Compliance Points

When specifying their compliance to SPEM, vendors should refer to the compliance
points defined in this section, and not loosely say they are “SPEM compliant.” Being
compliant to one point means that all elements belonging to this point are
implemented. As a general rule, all elements defined in the SPEM metamodel
(chapters 5 to 10) shall be supported except for the following optional elements:

• Kinds of Guidance (see section 6.2)

• Steps (see section 8.3)

• Discipline (see section 9.4)
December 2001 SPEM Final Adopted Spec: Compliance Points 1-5

1

Also it is not mandated that a SPEM implementation use the same terminology. Other
terminologies, and natural languages other than English, can be used. In this case, a
correspondence list must present a mapping of this terminology with the SPEM
terminology.

The compliance points are as follow :

• UML Profile for SPEM: the compliant implementation shall implement all the
UML parts extended by SPEM, and shall define all the SPEM extensions. The
compliant specification should specify whether it implements the SPEM constraints
by an automated check or not. A SPEM Profile compliant implementation shall
provide the UML XMI exchange mechanism that supports all UML features
extended by SPEM, and the UML extension mechanism (UML Profiles).

• Metamodel: the compliant implementation shall support the SPEM Metamodel,
except possibly some of the optional elements as noted above.

• MOF/XMI DTD: the compliant specification should implement all the MOF based
metamodel provided by the SPEM specification. It shall implement the XMI DTD
specified by the SPEM standard.

• Notation: the compliant implementation shall recognizably support all the notation
defined by the SPEM specification.

Any combination of the four compliance points can be used.

1.6.1 Examples

Implementers declare their SPEM compliance in the following form:

• The XXX tool is SPEM compliant (UML Profile for SPEM without constraint
checks implementation, Notation).

• The XXX tool is SPEM compliant (Metamodel, MOF/XMI DTD, Notation).

• The XXX tool is SPEM compliant (Notation).

This list is not exhaustive.
1-6 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Foundation 2
Contents

This chapter includes the following topics.

The SPEM stand-alone metamodel is built by extending a subset of the UML 1.4
physical metamodel. This UML subset is called SPEM_Foundation, as shown in
Figure 2-1 on page 2-2. This chapter describes the content of the SPEM_Foundation
package.

Topic Page

“SPEM_Foundation::Data_Types” 2-2

“SPEM_Foundation::Core” 2-4

“SPEM_Foundation::Actions” 2-7

“SPEM_Foundation::State_Machines” 2-8

“SPEM_Foundation::Activity_Graphs” 2-9

“SPEM_Foundation::Model_Management” 2-10
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 2-1

2

Figure 2-1 The SPEM_Foundation and SPEM_Extensions packages

2.1 SPEM_Foundation::Data_Types

The SPEM_Foundation::Data_Types package is a subset of the UML 1.4 Data_Types
package, and contains definitions of the following data types as shown in Figure 2-2 on
page 2-3: Integer, UnlimitedInteger, String, AggregationKind, Boolean,
ParameterDirectionKind, PseudoStateKind, Name, Multiplicity and MultiplicityRange.

The Data_Types package also contains definitions of Expression and
BooleanExpression as shown in Figure 2-3 on page 2-3. The SPEM Foundation data
types and expressions are defined exactly as in UML 1.4 section 2.4.

SPEM_Foundat ion
<<metamodel>>

SPEM_Extensions
<<metamodel>>
2-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

2

Figure 2-2 Foundation Data Types Package — Data Types

Figure 2-3 Foundation Data Types Package — Expressions

Aggregat ionKind

ak_none
ak_aggregate
ak_composite

<<enumeration>>

Boolean
<<datatype>>

Name
<<datatype>>

Integer
<<datatype>>

ParameterDirectionKind

pdk_in
pdk_inout
pdk_out
pdk_return

<<enumeration>>

String
<<datatype>>

Multipl icityRange

lower : Integer
upper : UnlimitedInteger
/ multiplicity : Multiplici ty

Multiplicity

/ range : MultiplicityRange

1..n

1

+range1..n

+multiplicity1

UnlimitedInteger
<<datatype>>

PseudoStateKind

pk_fork
pk_initial
pk_join
pk_junction

<<Enumeration>>

BooleanExpression

Expression

language : Name
body : String
December 2001 SPEM Final Adopted Spec: SPEM_Foundation::Data_Types 2-3

2

2.2 SPEM_Foundation::Core

The SPEM_Foundation::Core package is structured similarly to the UML 1.4 Core
packages and is shown diagrammatically in the following figures. Figure 2-4 on
page 2-5 shows the model elements that form the structural backbone of the
metamodel.

Figure 2-5 on page 2-6 shows the model elements that define relationships. Figure 2-6
on page 2-6 shows the model elements that define dependencies. Figure 2-7 on
page 2-7 shows the model elements that define auxiliary elements.

In each case, classes and associations have been omitted from the UML 1.4
metamodel, and in many cases, attributes have been omitted from included classes.
What remains are the parts of the UML1.4 definition that are required to define SPEM
models. These parts are defined exactly as in UML 1.4 section 2.5, except that some of
the classes have been made abstract. There are also three small variations as follows:

• In Relationships (Figure 2-5 on page 2-6) the connection end of the association
between Association and AssociationEnd has multiplicity 2, instead of the 2..*
specified by UML 1.4. This is because only binary associations are supported by
SPEM.

• In Dependencies (Figure 2-6 on page 2-6) the supplier and client associations
between Dependency and ModelElement have multiplicity 1, instead of the 1..*
specified by UML 1.4. This is because only binary dependencies are supported by
SPEM.

• SPEM Associations are not Generalizable.
2-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

2

Figure 2-4 Foundation Core Package — Backbone

Element

GeneralizableElement

/ generalizat ion : Generalizat ion

Namespace

/ ownedElement : ModelElement

Constraint

body : BooleanExpression
/ constrainedElement : ModelElement

ModelElement

name : Name
/ namespace : Namespace
/ clientDependency : Dependency

0..1

0..*

+namespace
0..1

+ownedElement 0..*

0..*

0..*

+constraint0..*

+constrainedElement

0..*{ordered}

Feature

BehavioralFeature

/ parameter : Parameter

Parameter

kind : ParameterDirectionKind
/ type : Classifier
/ behavioralFeature : BehavioralFeature

0..1

0..*

+behavioralFeature

0..1

+parameter0..*
{ordered}

Classifier

0..*

1

+typedParameter0..*

+type

1

Operation
December 2001 SPEM Final Adopted Spec: SPEM_Foundation::Core 2-5

2

Figure 2-5 Foundation Core Package — Relationships

Figure 2-6 Foundation Core Package — Dependencies

Relationship

Association

/ connection : AssociationEnd

Class ifier

AssociationEnd

isNavigable : Boolean
aggregation : AggregationKind
multiplicity : Multiplicity
/ association : Association
/ participant : Classifier

2

1+connection

2

{ordered}

+association

11 0..*

+part icipant

1

+association

0..*

GeneralizableElement

/ generalization : Generalization

Generalization

/ child : GeneralizableElement
/ parent : GeneralizableElement

0..* 1

+generalization

0..*

+child

1

10.. *

+parent

1

+specialization

0.. *

ModelElement

Usage Permission

ModelElement

name : Name
/ namespace : Namespace
/ clientDependency : Dependency

Dependency

/ client : ModelElement
/ supplier : ModelElement

1 0..*

+supplier

1

+supplierDependency

0..*

1 0..*

+client
1

+clientDependency

0..*

Relationship

Abstraction
2-6 Software Process Engineering Metamodel: Final Adopted Specification December 2001

2

Figure 2-7 Foundation Core Package — Auxiliary Elements

2.3 SPEM_Foundation::Actions

The SPEM_Foundation::Actions package is a subset of the UML 1.4
Common_Behavior package, and is shown in Figure 2-8. The elements in this package
are defined as in UML 1.4 section 2.9.

Figure 2-8 Foundation Actions Package.

Element

PresentationElement

/ subject : ModelElement

ModelElement

name : Name
/ namespace : Namespace
/ clientDependency : Dependency

0..*1

+presentation

0..*

+subject

1

ModelElement
(from Core)

Action

Operation
(from Core)

CallAction

/ operation : Operation

1

0..*

+operation 1

+callAction 0..*
December 2001 SPEM Final Adopted Spec: SPEM_Foundation::Actions 2-7

2

2.4 SPEM_Foundation::State_Machines

The SPEM_Foundation::State_Machines package is a subset of the UML 1.4
State_Machines package, and is shown in Figure 2-9. The elements in this package are
defined as in UML 1.4 section 2.12, with the exception that the context of a
StateMachine is a composition, rather than a shared aggregation.

Figure 2-9 Foundation State Machines Package

PseudoState

kind : PseudoStateKind

FinalState SimpleStateCompositeState

/ subvertex : StateVerte. ..

Guard

express ion : BooleanExpression
/ t ransit ion : Transition

StateVertex

/ outgoing : Transition
/ incoming : Transition
/ container : CompositeSta. ..

0..*

0..1

+subvertex

0..*

+container

0..1

Transition

/ guard : Guard
/ source : StateVertex
/ target : StateVertex
/ stateMachine : StateMachin...

0..1

1

+guard0..1

+transition1

0..*1

+outgoing

0..*

+source

1

0..*1

+incoming

0..*

+target

1

ModelElement
(from Core)

StateMachine

/ context : ModelEleme...
/ top : State
/ transitions : Transition

0.. *

0..1

+transitions 0.. *

+s tateMachine

0..1

0..*

0..1

+behavior 0..*

+context
0..1

Action
(from Actions)

State

/ entry : Actio. ..

1

0..1

+top1

+stateMachine 0..1

0..10..1

+entry

0..10..1
2-8 Software Process Engineering Metamodel: Final Adopted Specification December 2001

2

2.5 SPEM_Foundation::Activity_Graphs

The SPEM_Foundation::Activity_Graphs package is a subset of the UML 1.4
Activity_Graphs package, and is shown in Figure 2-10. The elements in this package
are defined as in UML 1.4 section 2.13.

Figure 2-10 Foundation Activity Graphs Package

SimpleState
(from State_Machines)

StateMachine
(from Sta te_M achines)

ActionState

Act ivityGraph

State
(from State_Machines)

ClassifierInState

/ type : Classifier
/ inState : State

1..*

0..*

+inState

1..*

+classifierInState

0..*

Parameter
(from Core)

Classifier

1

0..*

+type 1

+classifierInState 0..*

ObjectFlowState

/ parameter : Paramet...
/ type : Classifier

0..*0..*

+parameter

0..*

+state

0..*

1

0..*

+type

1

+objectFlowState0..*
December 2001 SPEM Final Adopted Spec: SPEM_Foundation::Activity_Graphs 2-9

2

2.6 SPEM_Foundation::Model_Management

The SPEM_Foundation::Model_Management package is a subset of the UML 1.4
Model_Management package, and is shown in Figure 2-11. The elements in this
package are defined exactly as in UML 1.4 section 2.14. Note that there is no
ElementImport metaclass, used in UML to reify the concepts of aliasing and visibility;
in SPEM there is no concept of visibility – all elements have public visibility - and
elements imported into packages cannot be renamed.

Figure 2-11 Foundation Model Management Package

ModelElement
(from Core)

Namespace
(from Core)

n

0..1

+ownedElement

n

+namespace

0..1

Package
2-10 Software Process Engineering Metamodel: Final Adopted Specification December 2001

2

2.7 SPEM_Foundation Well-Formedness Rules

The following well-formedness rules from the UML 1.4 specification apply to the
SPEM_Foundation package. Numberings such as [2.5.3.26.1] are cross-references to
the numbering of the well-formedness rules under the corresponding class in the UML
1.4 specification. OCL for these rules is found in the UML 1.4 specification.

2.7.1 Namespace

[C1][2.5.3.26.1]If a contained element, which is not an Association or Gen-
eralization has a name, then the name must be unique in the
Namespace.

[C2][2.5.3.26.2]All Associations must have a unique combination of name
and associated Classifiers in the Namespace.

2.7.2 GeneralizableElement

[C3][2.5.3.20.3]Circular inheritance is not allowed.

[C4][2.5.3.20.4]The parent must be included in the Namespace of the
GeneralizableElement.

[C5][2.5.3.20.5]A GeneralizableElement may only be a child of Generaliz-
ableElementof the same kind.

2.7.3 Constraint

[C6][2.5.3.11.1]A Constraint cannot be applied to itself.

2.7.4 Classifier

[C7][2.5.3.8.3]No opposite AssociationEnds may have the same name in a
Classifier.

2.7.5 BehavioralFeature

[C8][2.5.3.5.1]All Parameters should have a unique name.

[C9][2.5.3.5.2]The type of the Parameters should be included in the
namespace of the Classifier.

2.7.6 AssociationEnd

[C10][2.5.3.3.2]An Instance may not belong by composition to more than
one composite Instance.
December 2001 SPEM Final Adopted Spec: SPEM_Foundation Well-Formedness Rules 2-11

2

2.7.7 Association

[C11][2.5.3.1.1]The AssociationEnds must have a unique name within the
Association.

[C12][2.5.3.1.2]At most one AssociationEnd may be an aggregation or com-
position.

2.7.8 CompositeState

[C13][2.12.3.11]A composite state can have at most one initial vertex.

[C14][2.12.3.1.6]The substates of a composite state are part of only that
composite state.

2.7.9 FinalState

[C15][2.12.3.21]A final state cannot have any outgoing transitions.

2.7.10 PseudoState

[C16][2.12.3.4.1]An initial vertex can have at most one outgoing transition
and no incoming transitions.

[C17][2.12.3.4.3]A join vertex must have at least two incoming transitions
and exactly one outgoing transition.

[C18][2.12.3.4.5]A fork vertex must have at least two outgoing transitions
and exactly one incoming transition.

[C19][2.12.3.4.7]A junction vertex must have at least one incoming and one
outgoing transition.

[C20][2.13.3.6.2]All of the paths leaving a fork must eventually merge in a
subsequent join. Furthermore, multiple layers of forks and joins
must be well nested.

2.7.11 StateMachine

[C21][2.12.3.5.2]A top state is always a composite.

[C22][2.12.3.5.3]A top state cannot have any containing states.

[C23][2.12.3.5.4]A top state cannot be the source of a transition.

2.7.12 ActivityGraph

[C24][2.13.3.1.1]An ActivityGraph specifies the dynamics of (i) a Package,
2-12 Software Process Engineering Metamodel: Final Adopted Specification December 2001

2

or (ii) a Classifier, or (iii) a BehavioralFeature.

2.7.13 ActionState

[C25][2.13.3.2.1]An ActionState has a non-empty entry action.

[C26] The entry action of an ActionState is a call action. Note: this is a
modified version of the UML 1.4 constraint on CallState.

context ActionState inv:

self.entry.oclIsKindOf(CallAction)

2.7.14 ClassifierInState

[C27][2.13.3.4.1]Classifiers-in-state have no namespace contents.

2.7.15 ObjectFlowState

[C28][2.13.3.5.1]Parameters of an ObjectFlowState must have a type and
direction compatible with the associated classifier.

[C29][2.13.3.5.2]Downstream states must have entry actions that match.

[C30][2.13.3.5.3]Upstream states must have entry actions that match.
December 2001 SPEM Final Adopted Spec: SPEM_Foundation Well-Formedness Rules 2-13

2

2-14 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Conceptual Model 3
At the core of the Software Process Engineering Metamodel (SPEM) is the idea that a
software development process is a collaboration between abstract active entities called
process roles that perform operations called activities on concrete, tangible entities
called work products [20].

Figure 3-1 depicts this fundamental conceptual model using the UML notation for a
class. Figure 3-1 and Figure 3-2 are not part of the specification and are given solely
for explanatory reasons. They are intentionally very incomplete.

Figure 3-1 Conceptual Model

Multiple roles interact or collaborate by exchanging work products and triggering the
execution, or enactment, of certain activities. The overall goal of a process is to bring
a set of work products to a well-defined state.

From this model, a first step consists of “reifying” role, activity, and work product.
This leads to the simple model shown in Figure 3-2.

Role

activity1(WorkProduct1)
activity2(WorkProduct2)
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 3-1

3

Figure 3-2 Reifying the Conceptual Model: Roles, Work Products, and Activities

Role

Activity
0..*

1

0..*

1

Performs

WorkProduct
0..*1 0..*1 IsResponsibleFor

0..*

0..*

0..*

input
0..*

Uses

0..*

0..*

0..*

output
0..*

Produces
3-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Package Structure 4
Chapter 2 explained how SPEM is built from the SPEM_Foundation package, which is
a subset of UML 1.4, and the SPEM_Extensions package, which adds the constructs
and semantics required for software process engineering.

Figure 4-1 shows the internal structure of the SPEM_Extensions package, in terms of
its sub-packages, and shows the dependencies between these packages and the
SPEM_Foundations packages. We address each of the SPEM_Extensions subpackages
in turn in the next five chapters: Basic Elements, Dependencies, Process Structure,
Process Components and Process Lifecycle.
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 4-1

4

Figure 4-1 SPEM Package Structure

Data_Types
<<metamodel>>

(from SPEM_Foundation)

Core
<<metamodel>>

(from SPEM_Foundation)

Model_Management
<<metamodel>>

(from SPEM_Foundation)

BasicElements
<<metamodel>>

(from SPEM_Extensions)

ProcessComponents
<<metamodel>>

(from SPEM_Extensions)

ProcessStructure
<<metamodel>>

(from SPEM_Extensions)

ProcessLifecycle
<<metamodel>>

(from SPEM_Extensions)

Dependencies
<<metamodel>>

(from SPEM_Extensions)

State_Machines
<<metamodel>>

(from SPEM_Foundat ion)

Actions
<<metamodel>>

(from SPEM_Foundat ion)

ActivityGraphs
<<metamodel>>

(from SPEM_Foundation)
4-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

yBasic Elements 5
Contents

This chapter includes the following topics.

This package, detailed in Figure 5-1 on page 5-2, defines the basic elements used for
process description.

5.1 ExternalDescription

With every ModelElement is associated one or more ExternalDescriptions, which
contain a description of the ModelElement suitable for a reader of the process
description. ExternalDescriptions comprise the user-visible surface of the Software
Process Description.

An ExternalDescription has four attributes of type String:

• content: A natural language description of the ModelElement.

• name: The name of the ModelElement in a natural language.

• language: The name of the natural language used for the value of content and name.

• medium: A description of the medium and format of the ExternalDescription.

Topic Page

“ExternalDescription” 5-1

“Guidance” 5-2
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 5-1

5

Figure 5-1 Basic Elements package

5.2 Guidance

Guidance elements may be associated with ModelElements, to provide more detailed
information to practitioners about the associated ModelElement.

Possible types of Guidance depend on the process family and can be for example:
Guidelines, Techniques, Metrics, Examples, UML Profiles, Tool mentors, Checklist,
Templates.

SPEM is designed to be flexible about the kinds of Guidance used in a process model,
by reifying GuidanceKind as a separate class in the metamodel. Every Guidance is
associated with a GuidanceKind, and the name of the GuidanceKind indicates what
kind of Guidance it is. The following list of kinds of Guidance provides a basic
repertoire; processes based on SPEM may add new kinds if required.

5.2.1 Kinds of Guidance

Technique is a kind of Guidance. A Technique is a detailed, precise “algorithm” used
to create a work product. Techniques help to define the skills required to perform
specific types of activities. The OPEN process uses the term ‘technique.’ Other
processes use ‘procedure’ or ‘directive.’

UMLProfile is a kind of Guidance. A UML profile provides mechanisms that
specialize UML for a specific target such as C++, Java, and CORBA or for a specific
purpose such as analysis, design, and so on. Every development activity using UML
can be ruled by a profile that dictates those UML consistency rules that need to be
applied or which UML model element is relevant for the current context and focus of
the activity.

For example, “UML for EJB,” “UML for Analysis,” “UML for CORBA.”

ExternalDescription

name : String
content : String
medium : String
language : String

PresentationElement
(from Core)

GuidanceKind

ModelElement
(from Core)

1 0..*

+subject

1

+presentation

0..*

Guidance

/ annotatedElement : ModelElement
/ kind : GuidanceKind 0..* 1

+guidance

0..*

+kind

1

1..*

0..*

+annotatedElement
1..*

+guidance 0..*
5-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

5

Figure 5-2 presents a diagram example of such an approach, where activities are
connected to UML profiles. In this example, we see connections from ProcessRole
occurrences such as “Analyst” as performers, to Activity occurrences such as
“Elaborate Analysis,” and from Activity occurrences to a UMLProfile occurrence such
as “UML analysis.”

Checklist is a kind of Guidance. A checklist is a document representing a list of
elements that need to be completed.

ToolMentor is a kind of Guidance. A ToolMentor shows how to use a specific tool to
accomplish an activity. Each ToolMentor is associated with a single Tool and inherits
the association with the Activity it supports from Guidance. For example, “Using
Rational ClearCase to Check Out and Check In Configuration Items” is a tool mentor
in the RUP.

Figure 5-2 Example of a process connecting activities to UML profiles

Guideline is a kind of Guidance. A Guideline is a set of rules and recommendations on
how a given work product must look or must be organized.

For example, in the Rational Unified Process, the Java Programming Guidelines are
guidance used in the implementation of a design class, as well as input for the activity
of code review.

Template is a kind of Guidance. A Template is a predefined document that provides a
standardized format for a particular kind of WorkProduct; for example, “Microsoft
Word template for Business Use Case Modeling.”

Estimate is a kind of Guidance. An Estimate describes an effort associated with a
particular element. The description associated with an Estimate gives a context and
interpretation for the effort.

/Elaborat e A naly s is ()

/C heck A naly s is ()

/P roduce A naly s is D ocum ent at ion()

A naly s t

Q ualit y C ont rol

C ode G enerat or

U M L A naly s is
December 2001 SPEM Final Adopted Spec: Guidance 5-3

5

QuadCycle defines also Technology Roadmaps: an explicit directive for technology
use in the implementation of architectural styles, patterns, and frameworks within the
Global Industries Technology Architecture (GITA), and Tacit Knowledge: the
experience and expertise of senior architects represented as a knowledge map in the
Unisys Knowledge Management Initiative.
5-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Dependencies 6
Contents

This chapter includes the following topics.

6.1 SPEM Dependencies

Figure 6-1 shows the Dependencies defined in SPEM. They are defined as subclasses
of the SPEM_Foundation Dependency classes Abstraction, Usage, and Permission,
which have the semantics defined for UML 1.41.

Topic Page

“SPEM Dependencies” 6-1

“Well-formedness Rules” 6-4

1. In UML, specific types of Dependency are defined using stereotypes. In stand-alone
SPEM, stereotypes are not available, so they are defined using subclasses.
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 6-1

6

Figure 6-1 Dependencies

The following dependencies are supported by SPEM for process engineering:

• Categorizes. A Categorizes dependency acts from a Package to an individual
process element in another package, and provides a means to associate process
elements with multiple categories. This feature is both generally useful, and in
particular acts in conjunction with Discipline (see Section 8.4, “Discipline,” on
page 8-3) to provide a top-level categorization of all elements.

• Impacts. An Impacts dependency acts from one WorkProduct to another
WorkProduct to indicate that the modification of a WorkProduct could invalidate
another.

For example, an important document in IBM’s Global Services Method is the Work
Product Dependency diagram, represented in Figure 6-2. The icons in this diagram
indicate Work Product Descriptions—in SPEM terms, instances of WorkProduct as
described in Section 7.1, “WorkProduct and WorkProductKind,” on page 7-2. The
arrows represent instances of the Impacts Dependency in the IBM Global Services
Method.

Dependency
(from Core)

Abstraction
(from Core)

Usage
(from Core)

Permission
(from Core)

Trace RefersTo Impacts Import

Precedes

kind : PrecedenceKind
PrecedenceKind

pk_start_start
pk_finish_start
pk_finish_finish

<<enumeration>>
Categorizes
6-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

6

Figure 6-2 Work Product Dependency Diagram from IBM’s Global Services Method

• Import. An Import dependency denotes that the contents of the target Package are
added to the namespace of the source Package. This has the same semantics as
UML Import except that in SPEM all elements have public visibility.

• Precedes. A Precedes dependency acts from one Activity to another, or one
WorkDefinition to another, to indicate start-start, finish-start or finish-finish
dependencies between the work described, depending on the value of the kind
attribute.

• If activity B has a finish-start dependency on activity A, then B can start only after
A has finished (strict sequencing, no parallelism).

• If activity B has a finish-finish dependency on activity B, then B can finish only
after A has finished (parallelism is possible, synchronization at the end).

• If activity B has a start-start dependency on activity A, then B can start only after A
has started (parallelism is possible, synchronization at the beginning).

• RefersTo. A RefersTo dependency acts from one process element to another, to
ensure that they are included in the same ProcessComponent, see Section 9.2,
“Lifecycle,” on page 9-3. The normal situation where this applies is where the text
of one process element refers, by name or content, to another element. In order to
ensure consistency of meaning of the text, a RefersTo dependency should be
established to give an explicit structural representation of such a dependency, so
that when the referring element is included in a ProcessComponent, the referred-to
element must also be included.

Non-Functional Requirements

Performance Model

Deployment Un it

Architectural Template

Reference Architecture Fit/Gap Analysis

Standards

Component Model

Architecture Overview Diagram

Use Case Mode l

Class Diagram

O perational Model

Cu rrent IT Environ ment
Service Level Characteristic Analysis

Technical Prototype

System Context

UI Design Guidelines
UI Conceptual Model

Viability Assessment
December 2001 SPEM Final Adopted Spec: SPEM Dependencies 6-3

6

• Trace. A Trace dependency acts between WorkDefinitions and is mainly used to
trace requirements and changes across models. It has the same semantics as UML
Trace.

6.2 Well-formedness Rules

Categorizes:

[C31] The client must be a kind of Package.

context Categorizes inv:
self.client.oclIsKindOf(Package)

Impacts:

[C32] The supplier and client must be kinds of WorkProduct.

context Impacts inv:
self.supplier.oclIsKindOf(WorkProduct) and
self.client.oclIsKindOf(WorkProduct)

Import:

[C33] The supplier and client must be kinds of Package.

context Import inv:
self.supplier.oclIsKindOf(Package) and
self.client.oclIsKindOf(Package)

Precedes:

[C34The supplier and client must be kinds of WorkDefinition.

context Precedes inv:
self.supplier.oclIsKindOf(WorkDefinition) and
self.client.oclIsKindOf(WorkDefinition)

RefersTo:

No additional rules.

Trace:

No additional rules.
6-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

ProcessStructure 7
Contents

This chapter includes the following topics.

This package, shown in Figure 7-1, defines the main structural elements from which a
process description is constructed.

Topic Page

“WorkProduct and WorkProductKind” 7-2

“WorkDefinition and ActivityParameter” 7-3

“Activity and Step” 7-4

“ProcessPerformer and ProcessRole” 7-5

“Well-formedness Rules” 7-6
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 7-1

7

Figure 7-1 Process Structure package

7.1 WorkProduct and WorkProductKind

A work product or artifact is anything produced, consumed, or modified by a process.
It may be a piece of information, a document, a model, source code, and so on. A
WorkProduct describes one class of work product produced in a process.

A WorkProductKind describes a category of work product, such as Text Document,
UML Model, Executable, Code Library and so on. The range of work product kinds is
dependent on the process being modeled.

Associations

• WorkProduct is a specialization of Classifier. Thus they can participate in
associations and contain nested definitions. They do not possess Features.

• A work product description can describe WorkProducts that are aggregates of other
WorkProducts. For example a software development plan (à la MIL-STD-498)
consists of several other plans: Staffing plan, Configuration management plan, etc.
This can be represented using normal UML aggregation.

Classifier
(from Core)

Parameter
(from Core)

ActivityParameter

hasWorkPerArtifact : Boolea...

WorkDefinition

/ performer : ProcessPerform...
/ parentWork : WorkDefinition

0..*
0.. *

+subWork

0..*

+parentWork
0.. *

ProcessPerformer

/ work : WorkDefinition
0..* 1

+work

0..*
{ordered}

+performer

1

Operation
(f rom Co re)

ActionState
(f rom Acti vi tyGra phs)

ModelElement
(from Core)

Step
Activity

/ assistant : ProcessRo...
/ step : Step

0..*1

+step

0..*

+activity

1
ProcessRole

0..*

0..*

+assistant 0..*
+activity

0..*

WorkProduct

isDeliverable : Boolean
/ kind : WorkProductKind
/ responsibleRole : ProcessRo...

0..*

0..1

+workProduct0..*

+responsibleRole

0..1

WorkProductKind

0..*

1

0..*

+kind 1
7-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

7

• A WorkProduct may be associated with a responsibleRole, representing the role that
is formally responsible for the production of this WorkProduct

• A WorkProduct must be associated with a WorkProductKind.

• A WorkProduct may be associated (via the behavior association inherited from
SPEM_Foundation::State_Machines) with a state machine that describes the states
that the work product may be in, and the transitions allowed between those states.

Attributes

The isDeliverable attribute on WorkProduct is true if that WorkProduct is defined as a
formal deliverable of the process.

Note

Deliverable is not a major model element in SPEM because not all WorkProducts are
deliverable, and whether a WorkProduct is delivered or not may change during the
enactment.

Examples

”Design Model” is a WorkProduct that describes design models, which are
workproducts. “Software development plan” is a WorkProduct that is an aggregate of
several other WorkProducts, such as documents and plans, designated by name; for
example, “Risk Plan.”

Synonyms

‘Artifact’ is the term used in the RUP and QuadCycle for the description of the
WorkProduct; the IBM process uses the term ‘Work Product Description.’ Other
processes use the terms ‘deliverable’ or ‘product.’

7.2 WorkDefinition and ActivityParameter

WorkDefinition is a kind of Operation that describes the work performed in the
process. Its main subclass is Activity, but Phase, Iteration, and Lifecycle (in the
Process Lifecycle package) are also subclasses of WorkDefinition. WorkDefinition is
not an abstract class, and instances of WorkDefinition itself can be created to represent
composite pieces of work that are further decomposed. It has explicit inputs and
outputs referred to via ActivityParameter.

Associations

• A WorkDefinition can be composed of other WorkDefinitions using the association
called subWork. The decomposition may also be modeled using an activity graph,
in which case the subWork association is derived from the activity graph structure
as shown in well-formedness rule C42.
December 2001 SPEM Final Adopted Spec: WorkDefinition and ActivityParameter 7-3

7

• A WorkDefinition is related to the WorkProducts it uses through the
ActivityParameter class, which specifies whether they are used as input or output.
The work described in the WorkDefinition uses the input workproducts, and creates
or updates the output workproducts.

• A WorkDefinition has an owning ProcessPerformer, representing the primary role
that performs that WorkDefinition in the process. In the case of Activities carried
out by an individual or small group, this will be a ProcessRole. In the case of
higher-level WorkDefinitions this will often be a single instance of
ProcessPerformer that corresponds to the complete Process.

• A WorkDefinition may be referred to by an ActionState in an ActivityGraph

Attributes

The attribute kind on Parameter is used to indicate whether the associated work
product is an input, output, a modifiable input, or a returned value to the
WorkDefinition.

The attribute hasWorkPerArtifact indicates that multiple instances of the
WorkDefinition are needed, one per instance of the corresponding WorkProduct. For
example, Write the code of a class may have Coding standards and Class as inputs, but
it is replicated once per class (not per coding standard). This attribute can be true for at
most one ActivityParameter per WorkDefinition.

Note

The familiar concept of Work-Breakdown Structure (WBS) can be described using
several SPEM constructs:

• Decomposition using subWork provides the means to describe that one
WorkDefinition is composed of another and, therefore, the hierarchical nature of the
WBS.

• Decomposition of WorkDefinitions may be represented in detail by activity graphs,
limited to one level of nesting.

• The Precedes dependency provides the ability to sequence between elements of the
WBS at the same level, see the Dependencies chapter.

Example

In the Fujitsu SDEM21 development process, there are 3 levels of WorkDefinition
layers, the last of which corresponds to activities.

7.3 Activity and Step

Activity is the main subclass of WorkDefinition. It describes a piece of work performed
by one ProcessRole: the tasks, operations, and actions that are performed by a role or
with which the role may assist. An Activity may consist of atomic elements called
Steps.
7-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

7

Associations

• Activity inherits from WorkDefinition the fact that it has input and output
parameters, of type WorkProduct.

• An Activity is owned by a ProcessRole that is the performer of the described
activity. It may refer to additional ProcessRoles that are the assistants in the
activity.

• Although this is not explicitly prohibited, an Activity does not normally use the
subWork structure inherited from WorkDefinition; instead decomposition within
Activity is done using Steps. A Step is described in the context of the enclosing
Activity in terms of the ProcessRoles and WorkProducts it uses.

• Step inherits from ActionState, so that the flow of Steps within an Activity can be
represented by activity graphs.

Examples

In the RUP, Find use case and actors is an example of Activity. It is decomposed in
half a dozen “steps” in the RUP: Find actors, …., Check the results.

In IBM’s Global Services Method, Specify Solution Requirements is an example of a
WorkDefinition. It is decomposed into several “tasks,” modeled by SPEM’s Activity,
such as Detail Usability Requirements.

Synonyms

The Rational Unified Process and QuadCycle use ‘activity’ composed of a partially
ordered set of ‘steps.’ The IBM process defines ‘activities’ that corresponds to SPEM
WorkDefinition, consisting of ‘tasks’ and ‘subtasks’ that corresponds to SPEM
Activities. OPEN uses ‘task.’

7.4 ProcessPerformer and ProcessRole

A ProcessPerformer defines a performer for a set of WorkDefinitions in a process.
ProcessPerformer has a subclass, ProcessRole. ProcessPerformer represents abstractly
the “whole process” or one of its components, and is used to own WorkDefinitions that
do not have a more specific owner. ProcessRole defines responsibilities over specific
WorkProducts, and defines the roles that perform and assist in specific activities.

Associations

• ProcessPerformer is a specialization of Classifier, and thus may participate in
inheritance relationships and associations within the process definition.

• A ProcessRole is responsible for a set of WorkProducts.

• A ProcessRole is the performer of Activities.

• A ProcessPerformer is the performer of higher level aggregate WorkDefinitions that
cannot be associated with individual ProcessRoles.
December 2001 SPEM Final Adopted Spec: ProcessPerformer and ProcessRole 7-5

7

Synonyms

ProcessRole is called ‘role’ in the IBM Global Services Method, DMR Macroscope
and in OPEN [4], and it was called ‘worker’ in the Rational Unified Process [1, 3],
prior to RUP 2001. We have also encountered ‘agent.’

Examples

In the Rational Unified Process, examples of ProcessRole are Architect, Analyst,
Technical Writer, and Project Manager to name a few.

Note

A ProcessRole is not a person. A given person may be acting in several roles and
several persons may act as a single given role.

7.5 Well-formedness Rules

Activity

[C35] Each Activity is imported by exactly one Discipline.

context Activity inv:
self.supplierDependency.select (d |

d.oclIsKindOf(Import)).client.select (c
c.oclIsKindOf(Discipline))->size = 1

[C36] Every Activity is owned by a ProcessRole.

context Activity inv:
self.performer.oclIsKindOf(ProcessRole)

ActivityParameter

No additional rules.

ProcessRole

[C37] Every work must be a kind of Activity.

context ProcessRole inv:
self.work->forall(f | f.oclIsKindOf(Activity))

Step

[C38] A Step has no associated Action.

context Step inv:

self.entry->isEmpty()
7-6 Software Process Engineering Metamodel: Final Adopted Specification December 2001

7

WorkProduct

No additional rules.

StateMachine

[C39] Every StateMachine (but not ActivityGraph) has a WorkProduct as its
context.

context StateMachine inv:
self oclIsTypeOf(StateMachine) implies

self.context->nonEmpty() and
self.context.oclIsKindOf(WorkProduct)

[C40] Nesting for state machines and activity graphs is limited to one level.

context StateMachine inv:
self.top.subvertex->forall(sv |

not sv.oclIsKindOf(CompositeState))

ActionState

[C41] The operation of an ActionState must be a kind of WorkDefinition.

context ActionState inv:
self.entry.operation.oclIsKindOf(WorkDefinition)

ObjectFlowState

[C42] The type of an ObjectFlowState must be a kind of WorkProduct.

context ObjectFlowState inv:
self.type.oclIsKindOf(WorkProduct)

WorkDefinition

[C43] Where there is an activity graph, subWork is derived.

context WorkDefinition inv:
self.behavior->notEmpty() implies

self.behavior.top.subvertex->select(v |
v.oclIsKindOf(ActionState))->collect(v |

v.entry.operation) = self.subWork
December 2001 SPEM Final Adopted Spec: Well-formedness Rules 7-7

7

7-8 Software Process Engineering Metamodel: Final Adopted Specification December 2001

ProcessComponents 8
Contents

This chapter includes the following topics.

Figure 8-1 on page 8-3 details the Process Components package. The classes in this
package are concerned with dividing one or more process descriptions into self-
contained parts that can be placed under configuration management and version
control.

8.1 Package

Just as in UML, a Package is a container that can both own and import process
definition elements. Activities and WorkDefinitions are owned, respectively, by
ProcessRoles and ProcessPerformers; StateMachines are owned by WorkProducts and
own their internal states and transitions; ActivityGraphs can be owned by Packages,
Classifiers, or BehavioralFeatures; other SPEM ModelElements can be owned by
Packages.

Packages and the Categorizes dependency can be used to implement general
categorization of process description elements. A Package is created to represent each
category, and all of the elements linked via a Categorizes dependency into that

Topic Page

“Package” 8-1

“ProcessComponent” 8-2

“Process” 8-3

“Discipline” 8-3

“Well-formedness Rules” 8-4
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 8-1

8

Package to represent membership of the category. A package represents a category
when it is the source of at least one Categorizes dependency. The name of the
category is the name of the package. Multiple overlapping categories can be created to
serve various purposes in process engineering. A more specific kind of categorization
of Activities is implemented by Discipline, see Section 8.4, “Discipline,” on page 8-3.

8.2 ProcessComponent

A ProcessComponent is a chunk of process description that is internally consistent and
may be reused with other ProcessComponents to assemble a complete process.

A ProcessComponent imports a non-arbitrary set of process definition elements,
modeled in SPEM by ModelElements. Such a set must be self-contained; this means
that there are no RefersTo dependencies from within the component to elements not
within the component. It must be internally consistent in the sense that the
multiplicities and constraints defined for the metamodel as a whole must be satisfied
within the scope of the component.

Example

Composition of ProcessComponents is done by a process of unification. For example,
consider both of these:

• A ProcessComponent P1 containing WorkDefinitions that take a set of high-level
use cases and non-functional requirements as input and delivers an architecture as
output.

• A ProcessComponent P2 containing WorkDefinitions that take an architecture and a
set of detailed use cases as input, and delivers an executable, unit-tested body of
code as output.

To combine these two components, at least the output WorkProducts from P1 must be
unified (that is, made identical) with the inputs to P2. Other elements may possibly be
unified in addition, such as Templates, ProcessRoles, and so on. Composition of
ProcessComponents can only be fully automated if they originate from a common
family so that the unification is obviously capable of being automated. If the
components originate from different sources, the unification would involve human
intervention that normally would consist of some re-writing of the elements, and
possibly associated elements, to be unified. Note that SPEM permits both of these
kinds of composition but provides no explicit support for either.
8-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

8

Figure 8-1 Process Components package

8.3 Process

A Process is a ProcessComponent intended to stand alone as a complete, end-to-end
process. It is distinguished from normal process components by the fact that it is not
intended to be composed with other components. In a tooling context, the instance of
Process is the “root” of the process model, from which a tool can start to compute the
transitive closure of an entire process.

A Lifecycle, as defined in Section 9.2, “Lifecycle,” on page 9-3 is associated with a
Process.

The class Process can also represent a family of processes, which is a process
component out of which multiple overlapping processes can be defined.

8.4 Discipline

A Discipline is a particular specialization of Package that partitions the Activities
within a process according to a common “theme”. Partitioning the Activities in this
way implies that the associated Guidance and output WorkProducts are similarly
categorized under the theme. The inclusion of an Activity in a Discipline is
represented by the Categorizes dependency, with the additional constraint that every
Activity is categorized by exactly one Discipline.

Package
(from Model_Management)

ProcessComponent

Process Discipline
December 2001 SPEM Final Adopted Spec: Process 8-3

8

Example

Nine disciplines are described in the Rational Unified Process 2001: Business
Modeling, Requirement Management, Analysis & Design, Implementation, Test,
Deployment, Project Management, Configuration and Change Management, and
Environment. The Fujitsu SDEM21 development process defines 7 disciplines:
Business System, Business System Specification, Application, Infrastructure, Operation
and Migration, Development Support, and Project Management.

Synonyms

• The IBM processes use the term ‘domain.’

• The Rational Unified Process uses ‘core workflow.’

• The Fujitsu SDEM21 uses ‘category.’

• Objectory used ‘process component.’

• Fusion uses the term ‘phase.’

• OPEN uses the work ‘activity.’

8.5 Well-formedness Rules

ProcessComponent

A process component must be self-contained; that is, there are no links (associations or
dependencies) to anything outside the component.

[C44] No dependencies outside the component.

context ProcessComponent inv:
let includedElements : Set(ModelElement) =

self.clientDependency->select
(d | d.oclIsKindOf(Import)).supplier in

includedElements->forall (e |
e.clientDependency.supplier->forall (m |

includedElements->includes(m))) and
includedElements->forall (e |

e.supplierDependency.client->forall (m |
includedElements->includes(m)))

[C45] No associations outside the component.

context ProcessComponent inv:
let includedElements : Set(ModelElement) =

self.clientDependency->select
(d | d.oclIsKindOf(Import)).supplier in

includedElements->forall (e |
e.allAssociatedInstances-> forall (i |

includedElements -> includes(i))
8-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

8

where allAssociatedInstances cannot easily be defined in OCL, but could be defined by
slightly extending OCL as follows:

i.allAssociatedInstances =
i.type.associationEnds->collect(ae |

i.navigate(ae))

Process

No additional rules.

Discipline

[C46] Disciplines only categorize Activities.

context Discipline inv:
self.clientDependency->select(d |

d.oclIsKindOf(Categorizes)).supplier->forall(m |
m.oclIsKindOf(Activity))
December 2001 SPEM Final Adopted Spec: Well-formedness Rules 8-5

8

8-6 Software Process Engineering Metamodel: Final Adopted Specification December 2001

ProcessLifecycle 9
Contents

This chapter includes the following topics.

In this package, shown in Figure 9-1, we introduce process definition elements that
help define how the process will be run. They describe or constrain the overall
behavior of the performing process, and are used to assist with planning, executing,
and monitoring the process. As we stated earlier, a process can be seen as a
collaboration between roles to achieve a certain goal or an objective. To guide its
enactment, we can constrain the order in which activities must be, or can be, executed.
Also there is a need to define the “shape” of the process over time, and its lifecycle
structure in terms of phases and iterations.

Note that these elements do not describe the enactment itself: they are elements of the
process description that are used to help plan and execute enactments of that
description.

Topic Page

“Phase” 9-2

“Lifecycle” 9-3

“Iteration” 9-3

“Precondition and Goal” 9-4

“Well-formedness Rules” 9-5
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 9-1

9

Figure 9-1 Process Lifecycle package

9.1 Phase

A Phase is a specialization of WorkDefinition such that its precondition defines the
phase entry criteria and its goal (often called a "milestone") defines the phase exit
criteria. Phases are defined with the additional constraint of sequentiality; that is, their
enactments are executed with a series of milestone dates spread over time and often
assume minimal (or no) overlap of their activities in time.

Examples

The Rational Unified Process (RUP) defines four sequential phases: Inception,
Elaboration, Construction, and Transition. The RUP defines a phase as consisting of a
certain number of iterations, which are workflows with minor milestones. The DMR
Macroscope system delivery process describes five phases: Opportunity Evaluation,

Constraint
(from Core)

Goal Precondition

WorkDefinition
(from ProcessStructure)

0..*

1

+/constraint 0..*

+/constrainedElement 1

0..*

1

+/constraint 0..*

+/constrainedElement
1

Iteration Phase Process
(f rom ProcessCom po nents)

Lifecycle

/ governedProcesses : Process

0..*

0..1 +governedProcesses

0..*+governingLifecycle

0..1
9-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

9

Preliminary Analysis, System Architecture, Release Design and Construction, and
Implementation. OOSP has four phases: Initiate, Construct, Deliver, and Maintain &
Support [15].

9.2 Lifecycle

A process Lifecycle is defined as a sequence of Phases that achieve a specific goal. It
defines the behavior of a complete process to be enacted in a given project or program.

Associations

A Lifecycle is associated with a sequence of Phases by the use of the subWork
association, see Section 7.2, “WorkDefinition and ActivityParameter,” on page 7-3.

A Lifecycle is associated with one or more Processes via the governedProcesses
association that associates a Lifecycle (describing the behavior of the process) with a
Process (that packages up all of the descriptive material contained in the process).

Example

The DMR Macroscope describes 3 system delivery lifecycles: a Generic Development
path, an Accelerated Development path, and a Package Solution Delivery path. The
Fujitsu SDEM21 provides a specific lifecycle for component-based development called
ComponentAA.

9.3 Iteration

An Iteration is a composite WorkDefinition with a minor milestone.

Example

The following example work breakdown structure showing Iterations is from the DMR
Macroscope:

Phase
Iteration

Activity
Step

Preliminary Analysis
First Joint Requirements Planning (JRP) Workshop

Define Owner Requirements
Define objectives based on stated needs
Define key issues
Determine relevant enterprise principles

Draft Owner Models
Determine System context
Model structural and dynamic aspects of the enterprise
Define work resources
Explore with prototypes

Define User Requirements
Consider user interface aspects
Consider distribution aspects
Explore with prototypes
December 2001 SPEM Final Adopted Spec: Lifecycle 9-3

9

Draft User Models
Determine System context
Model structural and dynamic aspects of the system
Define work resources
Explore with prototypes

Define Developer Requirements
Revise work process and class definitions
Revise user interface models

Second Joint Requirements Planning (JRP) Workshop
Refine Owner Requirements

Define objectives based on stated needs
Define key issues
Determine relevant enterprise principles

Review Owner Models
Determine System context
Model structural and dynamic aspects of the enterprise
Define work resources
Explore with prototypes

Refine User Requirements
Consider user interface aspects
Consider distribution aspects
Explore with prototypes

Review User Models
Determine System context
Model structural and dynamic aspects of the system
Define work resources
Explore with prototypes

Refine Developer Requirements
Revise work process and class definitions
Revise user interface models

Draft Developer Models
Define process and data aspects of the system
Consider user interface aspects
Consider distribution aspects
Explore with prototypes

9.4 Precondition and Goal

With each WorkDefinition can be associated a Precondition and a Goal. Preconditions
and Goals are Constraints, where the constraint is expressed in the form of a
BooleanExpression (which is a string) following syntax similar to that of a guard
condition in UML. The condition is expressed in terms of the states of the
WorkProducts that are the parameters of the WorkDefinition or of an enclosing
WorkDefinition.

Example

If a WorkDefinition called DesignReview has input parameters DesignModel and
DesignStandards and output parameter ReviewActions, then a Precondition can have
the form

(DesignModel in state Ready) and (DesignStandards in state Approved)

and a Goal
(ReviewActions in state Drafted)
9-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

9

9.5 Well-formedness Rules

Goal

No additional rules.

Iteration

No additional rules.

Lifecycle

[C47] Lifecycles only contain Phases.

context Lifecycle inv:
self.subWork->forall(ph | ph.oclIsKindOf(Phase))

Phase

No additional rules.

Precondition

No additional rules.

WorkDefinition

[C48] A WorkDefinition can have no more than 1 goal.

context WorkDefinition inv:
not (constraint->select(c |

c.oclIsKindOf(Goal)))->size() > 1

[C49] A WorkDefinition can have no more than 1 precondition.

context WorkDefinition inv:
not constraint->select(c |

c.oclIsKindOf(Precondition))->size() > 1
December 2001 SPEM Final Adopted Spec: Well-formedness Rules 9-5

9

9-6 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Management of ProcessAssets 10
The management of multiple processes, variants, derivatives, or versions is beyond the
scope of this metamodel. As all techniques and tools used in the area of configuration
management and change management for software can be applied literally to a
software process product, it does not make sense to replicate these aspects in the
SPEM. See standards IEEE 610.12-1990 or ISO 12207.

All SPEM Elements (modeled as ModelElements) are configuration items. As such,
they can have multiple versions. The versions of a given configuration item are linked
to each other to form histories. Variants can be introduced by creating parallel
histories. A specific process configuration is formed by selecting one version, at the
most, for each SPEM Element. If a process definition element is required in two forms
within a single process configuration, it must be cloned and given a specific identity;
for example, “simple design review” versus a “complex and critical review.” Process
variants are defined similarly by selecting Process Definition Elements from a
consistent set of version histories all belonging to the same variant.
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 10-1

10
10-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

SPEM as a UMLProfile 11
Contents

This chapter includes the following topics.

In the chapters so far, SPEM has been directly defined as a metamodel. SPEM can be
used by directly instantiating this stand-alone metamodel. But SPEM is also defined as
a UML Profile.

SPEM is dedicated to software processes modeling. Many features of the UML provide
the necessary basis for modeling processes, and many other UML features provide
useful additional modeling capacities. Being a UML profile, SPEM both defines
modeling capacities dedicated to the software process domain, and gains the benefit of
the expressiveness of UML. For example, Use Case modeling, which is sometimes
used for modeling processes, is not defined as a specific SPEM facility, but can be
inherited from UML.

Also, a wide community of software developers is familiar with UML and uses a UML
case tool environment. Defining a UML profile allows this important community to
reuse its modeling knowledge and tools in the software-process modeling domain.

Topic Page

“Identified subset of the UML Metamodel” 11-2

“Mapping to UML base classes” 11-3

“Notes” 11-4

“Associations” 11-5

“Use of Activity Diagrams and Use Case Diagrams” 11-6

“Stereotypes of the SPEM Profile” 11-7

“Well-formedness Rules” 11-10
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 11-1

11
The UML 1.4 definition of profile is given in section 1.5 of this document, and is
repeated here:

A profile stereotype of Package contains one or more related extensions of standard
UML semantics (refer to Section 2.6, “Extension Mechanisms”). These are
normally intended to customize UML for a particular domain or purpose. Profiles
can contain stereotypes, tag definitions, and constraints. They can also contain data
types that are used by tag definitions for informally declaring the types of the
values that can be associated with tag definitions.

In addition, a profile package can specify a related model library and identify a
subset of the UML metamodel that is applicable for the profile. In principle,
profiles merely refine the standard semantics of UML by adding further constraints
and interpretations that capture domain-specific semantics and modeling patterns.
They do not add any new fundamental concepts.

In order to define a UML profile for SPEM, the following must be done.

1. Identify that subset of the UML metamodel classes to be included in the profile.

2. For most classes in the SPEM metamodel, identify a “base class” in the UML
metamodel subset that will, when stereotyped appropriately, act in place of the
SPEM class. The technique used here is specified in section 3.35.2 of the UML 1.4
specification. The fact that SPEM is itself defined as an extension of a subset of
UML makes this very straightforward. For the one class (GuidanceKind) in the
SPEM metamodel to which the base class technique does not apply, the semantics
of instances of that class are emulated using UML stereotypes.

3. For each attribute and association in the SPEM metamodel, define a way to emulate
that attribute or association. In the SPEM profile, attributes are emulated by means
of TaggedValues. Most associations have close analogues in the UML metamodel.
Those that don’t, get special treatment as detailed below.

4. For those parts of the UML subset that have a plausible mapping into SPEM
concepts, but are not used directly to emulate the SPEM metamodel, show how they
are mapped into SPEM-related concepts. For SPEM, this applies particularly to the
use of Use Case diagrams.

5. Give additional constraints over the UML metamodel that are implied by the use of
the profile.

6. Define notational icons for SPEM concepts that are represented by UML
stereotypes.

The remaining parts of this chapter deal with each of these topics.

11.1 Identified subset of the UML Metamodel

The SPEM profile retains the following packages from the UML Metamodel:

Core
except Method (from Backbone)
except Binding (from Dependencies)
11-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

11
except Node, Interface, Artifact and Component (from Classifiers)
except TemplateParameter and TemplateArgument (from AuxiliaryElements)

ExtensionMechanisms

DataTypes

CommonBehavior
except ComponentInstance, NodeInstance

Collaboration

UseCases
except Extend, ExtensionPoint

StateMachines

ActivityGraphs

ModelManagement
except Subsystem

All of the classes in the SPEM_Foundation package (see Chapter 2) together with their
attributes and associations, are directly represented by the equivalent UML classes,
attributes, and associations.

11.2 Mapping to UML base classes

Most mappings are very simple, see Figure 11-2 as they follow the pattern shown in
Figure 11-1.

Figure 11-1 Pattern for most classes, from a SPEMClass to the UML Base Class it maps to.

aSPEMclass
<<stereotype>>

UMLBaseClass
(from Core)

<<metaclass>>

<<stereotype>>
December 2001 SPEM Final Adopted Spec: Mapping to UML base classes 11-3

11
Figure 11-2 Simple Mappings

Notes

• Instances of GuidanceKind, such as Technique, UMLProfile, ToolMentor, etc. (see
Section 5.2.1, “Kinds of Guidance,” on page 5-2) are represented in the profile as
stereotypes of Guidance.

• Instances of WorkProductKind, such as UMLModel, Document, etc are represented
in the profile as stereotypes of WorkProduct.

• WorkProduct is a stereotype of UML Class. Aggregation and association of
WorkProduct descriptions can use the normal UML aggregation and association.

Attributes

Attributes in the SPEM_Extensions package are represented by TaggedValues, as
shown in the following table.

All tag definitions have the multiplicity 1.

WorkDefinition
<<stereotype>>

WorkProduct
<<stereotype>>

Act ivityParameter
<<stereotype>>

precondition
<<stereotype>>

postcondit ion
<<stereotype>>

Precondition
<<stereotype>>

Goal
<<stereotype>>

ProcessRole
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>>

Parameter
(from Core)

<<metaclass>>

<<stereotype>>

0..*1 0..*

+type

1
/

Constraint
<<metaclass>>

<<stereotype>>

Operation
(from Core)

<<metaclass>>

<<stereotype>>

0..* 0..1

+parameter

0..* 0..1
{ordered}

*

0..*

+constrainedElement

*

0..*

Actor
<<metaclass>><<stereotype>>

Guidance
<<stereotype>>

ExternalDescription
<<stereotype>>

Comment
(from Core)

<<metaclass >>
<<stereotype>>

<<stereotype>>

PresentationElement
(f rom Core)

<<metaclass>>

<<stereotype>>
11-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

11
Associations

Associations in the SPEM_Extensions package are represented in a variety of ways, as
follows.

Guidance::kind. This is not required, because instances of GuidanceKind are
represented as stereotypes of Guidance.

Guidance::annotatedElement. This is represented by the UML association
Comment::annotatedElement.

ActivityParameter::type. This is represented by the UML association
Parameter::type.

WorkDefinition::performer. This is represented by the UML association
Feature::owner.

WorkDefinition::subWork. This is not represented directly. Instead it is
represented using ActivityGraphs, as shown in Figure 11-3 on page 11-6. This
shows the UML base classes that together correspond to the subWork association:
ActivityGraph, CompositeState, ActionState, CallAction.

Activity::step. This is also represented by ActivityGraphs, as shown in Figure 11-3
on page 11-6.

Activity::assistant. This is not represented directly in the profile. Instead, those
ProcessRoles that represent assistants to the activity are included as additional input
parameters to the Activity.

WorkProduct::responsibleRole. This is not represented directly in the profile.
Instead, in an application of the profile, this would be modeled by creating M1-
level associations between the ProcessRole and the relevant WorkProducts.

TagDefinition Type on stereotype description

hasWorkPerArtifact Boolean ActivityParameter When true, the WorkDefinition will be enacted
once for every instance of the corresponding
WorkProduct

content String ExternalDescription Description of the annotated model element

name String ExternalDescription Name of the external description

medium String ExternalDescription Medium of the external description (e.g.,
textual, audio, graphics, etc.).

language String ExternalDescription Language, such as English, French, Japanese,
in which the description is provided

kind {s_s,
f_s}

Precedes Which kind of precedence dependency is being
described

isDeliverable Boolean WorkProduct True when the work product is defined as a
formal deliverable of the process
December 2001 SPEM Final Adopted Spec: Mapping to UML base classes 11-5

11
WorkProduct::kind. This is not required, because instances of WorkProductKind
are represented as stereotypes of WorkProduct.

ProcessPerformer::work. This is represented by the UML association
Classifier::feature.

WorkDefinition::goal and WorkDefinition::precondition. These are represented
by the UML association ModelElement::constraint.

Process::governingLifecycle. This is represented by a new stereotype of
Abstraction called «governs», which acts between a Lifecycle and the processes that
it is related to.

Figure 11-3 Decomposition of WorkDefinition

11.3 Use of Activity Diagrams and Use Case Diagrams

In the Notation chapter this document defines a set of icons for use in process
definitions. In particular, there are particular icons used to represent the classes
WorkProduct, Activity, and WorkDefinition.

In SPEM, these icons may appear uniformly on all UML diagrams in which these
concepts are referred to. However, in the case of Activity diagrams, these elements are
not referred to directly. Instead, instances of ActionState appear, which may be thought

WorkDefinition
<<stereotype>>

Decomposit ion of WorkDefinit ion is
implemented with activity diagrams
using
- ActivityGraph
- Composite State
- ActionState
- CallAction

Step
<<stereotype>>

CallAction
(f rom CommonBehav ior)

<<metaclass>>

Operation
(from Core)

<<metaclass>>

1

0..*

+operation 1

0..*

<<stereotype>>

Action
(f rom CommonBehav ior)

<<metaclass>>

ActivityGraph
(f rom Activ ity Graphs)

<<metaclass>>

0..*0..1

+behavior

0..*

+context

0..1

/

ActionState
(f rom Activ ity Graphs)

<<metaclass>>

0..1 0..1

+entry

0..1 0..1

CompositeState
(f rom StateMachines)

<<metaclass>>

1

0..1

+top 1

0..1

0..*

0..1

+subvertex 0..*

0..1
<<stereotype>>
11-6 Software Process Engineering Metamodel: Final Adopted Specification December 2001

11
of as “notational proxies” for corresponding instances of WorkDefinition and Activity.
Similarly, instances of ObjectFlowState act as proxies for corresponding instances of
WorkProduct.

To resolve this issue, the SPEM profile allows ActionState to appear as an alternative
base class for the stereotypes Activity and WorkDefinition. In both cases, the idea is
that the notational element is a proxy for the stereotyped Operation associated with the
CallAction of the ActionState. Similarly, the profile allows ObjectFlowState to appear
as an alternative base class for WorkProduct, with the interpretation that the notational
element is a proxy for the stereotyped Classifier associated with the ObjectFlowState.

A similar issue arises because SPEM uses Use Case diagrams to illustrate the
relationships between ProcessRole/ProcessPerformer and Activity/WorkDefinition. To
enable this the profile allows UseCase to be a further alternative base class for
WorkDefinition and Activity. To complete this interpretation, a UML «realize»
dependency should be created between the WorkDefinition or Activity and the Use
Case that it represents. When two work definitions are represented as Use Cases, and
those two work definitions are related by the subWork association, a UML Include
relationship may be shown referring from the containing to the contained work
definition. Stereotypes «perform» and «assist» of UML Association can used to
represent the performer and assistant relationships between an Actor and a Use Case.
The UML Extends relationship is not used.

11.4 Stereotypes of the SPEM Profile

The following table gives a complete summary of all of the SPEM profile stereotypes,
based on the discussion above.

Note that the following stereotypes are added for notational convenience:
ProcessPackage (special notation for packages in a SPEM context), Document and
UMLModel (special notation for different kinds of WorkProduct). Apart from the
icons and their implied connotations, these stereotypes have no additional semantics
above those of their base classes.

Stereotype Base Class
Stereotype

Parent Comment Constraints
(see below)

Notation
(chapter 12)

WorkProduct Core::Class
ActivityGraphs::ObjectFlow
State

See “WorkProduct and
WorkProductKind” on
page 7-2

ActivityParameter Core::Parameter See “WorkDefinition and
ActivityParameter” on
page 7-3

Goal Core::Constraint postcondition See “Precondition and
Goal” on page 9-4
December 2001 SPEM Final Adopted Spec: Stereotypes of the SPEM Profile 11-7

11
Precondition Core::Constraint precondition See “Precondition and
Goal” on page 9-4

WorkDefinition Core::Operation
ActivityGraphs::ActionState
UseCases::UseCase

See “WorkDefinition and
ActivityParameter” on
page 7-3

P2

Step ActivityGraphs::ActionState See “Activity and Step”
on page 7-4

Guidance Core::Comment See “Guidance” on
page 5-2

ExternalDescription Core::PresentationElement See “ExternalDescription”
on page 5-1

Activity Core::Operation
ActivityGraphs::ActionState
UseCases::UseCase

WorkDefinition See “Activity and Step”
on page 7-4

ProcessPerformer UseCases::Actor See “ProcessPerformer
and ProcessRole” on
page 7-5

ProcessRole UseCases::Actor ProcessPerformer See “ProcessPerformer
and ProcessRole” on
page 7-5

ProcessPackage ModelManagement::Package Introduced so that SPEM
packages have their own
icon

ActivityParameter Core::Parameter See “WorkDefinition and
ActivityParameter” on
page 7-3

Phase Core::Operation
ActivityGraphs::ActionState
UseCases::UseCase

WorkDefinition See “Phase” on page 9-2

Iteration Core::Operation
ActivityGraphs::ActionState
UseCases::UseCase

WorkDefinition See “Iteration” on
page 9-3

LifeCycle Core::Operation
ActivityGraphs::ActionState
UseCases::UseCase

WorkDefinition See “Lifecycle” on
page 9-3

Discipline ModelManagement::Package ProcessPackage See “Discipline” on
page 8-3
11-8 Software Process Engineering Metamodel: Final Adopted Specification December 2001

11
ProcessComponent ModelManagement::Package ProcessPackage See “ProcessComponent”
on page 8-2

Process ModelManagement::Package ProcessPackage See “Process” on page 8-3

Document Core::Class
ActivityGraphs::ObjectFlow
State

WorkProduct

UMLModel Core::Class
ActivityGraphs::ObjectFlow
State

WorkProduct

Guideline Core::Comment Guidance See “Guidance” on
page 5-2

Technique Core::Comment Guidance See “Guidance” on
page 5-2

UMLProfile Core::Comment Guidance See “Guidance” on
page 5-2

ToolMentor Core::Comment Guidance See “Guidance” on
page 5-2

CheckList Core::Comment Guidance See “Guidance” on
page 5-2

Template Core::Comment Guidance See “Guidance” on
page 5-2

trace Core::Abstraction See the Dependencies
chapter

refersTo Core::Usage See the Dependencies
chapter

categorizes Core::Usage See the Dependencies
chapter

precedes Core::Usage See the Dependencies
chapter

impacts Core::Usage See the Dependencies
chapter

import Core::Permission See the Dependencies
chapter

governs Core::Abstraction See the Dependencies
chapter

P1

assist Core::Association
December 2001 SPEM Final Adopted Spec: Stereotypes of the SPEM Profile 11-9

11
11.5 Well-formedness Rules

In translating the stand-alone model to a UML profile, there are various sources of
additional or changed well-formedness rules.

11.5.1 Restricted multiplicities

As pointed out in the SPEM Foundation chapter, the stand-alone SPEM metamodel is
based on a subset of UML with some restrictions on the multiplicities. These
restrictions also apply to the UML profile.

11.5.2 Use of Context and oclIsKindOf

In the presence of stereotypes, the use of oclIsKindOf needs in principle to be
modified. We assume that the meaning of oclIsKindOf can be extended in the
presence of stereotypes, so that if oclIsKindOf refers to a stereotype name, it
delivers true if the tested element has that stereotype or a sub-stereotype.

Similarly, constraints on stereotypes are written under the assumption that it is valid to
use a stereotype name in the context part of the constraint. Strictly-speaking this is a
shorthand, for example:

context ProcessPackage inv: X

can be considered as a shorthand for

context Package inv:
(self.stereotype.name = “ProcessComponent” or
self.stereotype.name = “Process” or
self.stereotype.name = “Discipline”) implies X

With these provisos, all of the well-formedness rules in earlier chapters apply to the
profile.

11.5.3 Profile-specific rules

The following rules apply to the construction of the profile itself.

11.5.3.1 governs

[P1]A governs dependency acts between a Lifecycle and a
ProcessPerformer

context Dependency inv:
self.stereotype.name = “governs” implies

self.supplier->exists(stereotype.name=“Lifecycle”)

perform Core::Association
11-10 Software Process Engineering Metamodel: Final Adopted Specification December 2001

11
and
self.client >exists(stereotype.name=”ProcessPerformer”)

11.5.3.2 WorkDefinition

[P2]A WorkDefinition behavior is defined using no more than a single
Activity Graph and in no other way.

context WorkDefinition inv:
self.behavior->size <= 1

and
self.behavior->forall(b | b.OCLIsTypeOf(ActivityGraph))

11.5.3.3 ActionState

[P3]An ActionState is either a Step or refers to a CallAction for another
WorkDefinition:

context ActionState inv:
self.stereotype.name = “Step” or
(self.entry->size = 1 and
self.entry.oclIsKindOf(CallAction) and
self.entry.operation.oclIsKindOf(WorkDefinition))
December 2001 SPEM Final Adopted Spec: Well-formedness Rules 11-11

11
11-12 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Notation 12
Contents

This chapter includes the following topics.

12.1 Diagrams

Basic UML diagrams can be used to present different perspectives of a software
process model. In particular, the following UML notations are useful:

• Class diagram

• Package diagram

• Activity diagram

• Use case diagram

• Sequence diagram

Topic Page

“Diagrams” 12-1

“Suggested Icons” 12-2

“Class Diagrams” 12-2

“Package Diagrams” 12-4

“Use case Diagrams” 12-4

“Sequence Diagrams” 12-5

“Statechart Diagrams” 12-5

“Activity Diagrams” 12-5
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 12-1

12
• Statechart diagram

Because some semantic elements of UML have been excluded from SPEM, the
following notations should not be used:

• implementation diagrams

• component or node diagrams.

There are some notation and diagrams that are not excluded, but for which we have not
specified any mapping nor meaning.

12.2 Suggested Icons

Column “Notation” in table “Stereotypes” in Section 11.4, “Stereotypes of the SPEM
Profile,” on page 11-7 suggests alternate representations for most frequently used
concrete classes of the metamodel. These icons can be used in modeling a software
development process to represent activities, work products, process roles, etc. It is
suggested to replace the regular symbol with these icons as shown in the examples
below.

OMG document ptc/2002-05-08 contains source versions of the SPEM icons in various
formats.

OMG document ptc/2002-05-10 contains the example diagrams from this chapter
together with a corresponding human-readable textual notation that shows how the
examples map into the metamodel.

12.3 Class Diagrams

Class diagrams allow the representation of the following aspects of a software process:

• Inheritance

• Dependencies

• Simple associations

• Comments to point to the guidance (for example URL link)

• Relations between ProcessPerformer or ProcessRole and WorkProduct

• Structure, decomposition and dependencies of WorkProducts (see example in
Figure 12-1)

However, some restrictions apply when using class diagrams in conjunction with
SPEM. More specifically, the following notational elements should not be used:

• Interface

• Template

• White diamond

• Qualified associations

• N-ary associations
12-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

12
Figure 12-1 Example of Class Diagram

Software ArchitectSoftware Architect

Process ModellerProcess Modeller

kind=BPML

kind=IDL3

CORBA
UML Profile

CORBA
UML Profile

kind=Swing
December 2001 SPEM Final Adopted Spec: Class Diagrams 12-3

12
12.4 Package Diagrams

Package diagrams allow the representation of Process, ProcessComponents,
ProcessPackages and Disciplines. Nested and non-nested forms can be used, but
subsystems should not appear in such diagrams.

Figure 12-2 Example of Package Diagram

12.5 Use case Diagrams

Use case diagrams show the relationship between process roles and the main work
definitions. No particular restrictions apply. See example in Figure 12-4 on page 12-6.

<<Discipline>>
Requirements

<<Discipline>>
Analysis and Design

<<Discipline>>
Implementation

My RUP Based
Process

Requirements

Capture a Common Based Vocabulary ()

System Analyst

Develop Vision ()

Manage Dependencies ()

Structure the Use Case Model ()

Prioritize Use Cases ()

Software Architect

Glossary
My Use Case

Model
Use Case Model

Guidelines

<<Discipline>>
Test

Vision

<<Discipline>>
Requirements
<<Discipline>>
Requirements

<<Discipline>>
Analysis and Design

<<Discipline>>
Analysis and Design

<<Discipline>>
Implementation
<<Discipline>>
Implementation

My RUP Based
Process

Requirements

Capture a Common Based Vocabulary ()

System Analyst

Develop Vision ()

Manage Dependencies ()

Structure the Use Case Model ()

Prioritize Use Cases ()

Software Architect

Glossary
My Use Case

Model
Use Case Model

Guidelines
Use Case Model

Guidelines

<<Discipline>>
Test

<<Discipline>>
Test

Vision
12-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

12
Figure 12-3 Example of Use Case diagram

12.6 Sequence Diagrams

Sequence diagrams can be used to illustrate interaction patterns among SPEM model
element instances. Only stick arrowheads should be used.

12.7 Statechart Diagrams

Statechart diagrams can be used to illustrate the behavior of SPEM model elements.
Nesting and parallelism are allowed, but signal declaration and history indicators are
not.

12.8 Activity Diagrams

Activity diagrams allow presenting the sequencing of activities with their input and
output work products as well as object flow states. Swimlanes can be used to separate
the responsibilities of different process roles.

Technical
Architect

Define Owner Requirements

Define User Requirements

Define Developer Requirement

Draft Owner Models

Draft User Models

Draft Developer Models

User

System
ManagerSystem

Architect

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

First Joint JRP Workshop

<<include>>

<<include>>

First Joint JRP
Workshop

Second Joint JRP
Workshop

Preliminary
Analysis

System
Architecture

<<include>>

<<include>>

First Joint JRP
Workshop

Second Joint JRP
Workshop

Information System Delivery Process

Technical
Architect

Define Owner Requirements

Define User Requirements

Define Developer Requirement

Draft Owner Models

Draft User Models

Draft Developer Models

User

System
ManagerSystem

Architect

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

First Joint JRP Workshop

Define Owner Requirements

Define User Requirements

Define Developer Requirement

Draft Owner Models

Draft User Models

Draft Developer Models

User

System
ManagerSystem

Architect

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<perform>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

<<assist>>

First Joint JRP Workshop

<<include>>

<<include>>

First Joint JRP
Workshop

Second Joint JRP
Workshop

Preliminary
Analysis

System
Architecture

<<include>>

<<include>>

First Joint JRP
Workshop

Second Joint JRP
Workshop

Information System Delivery Process

<<include>>

<<include>>

First Joint JRP
Workshop

Second Joint JRP
Workshop

Preliminary
Analysis

System
Architecture

<<include>>

<<include>>

First Joint JRP
Workshop

Second Joint JRP
Workshop

Information System Delivery Process
December 2001 SPEM Final Adopted Spec: Sequence Diagrams 12-5

12
Figure 12-4 Example of Activity diagram

Functional Analyst Interface Designer Technical Designer

Define Requirements

User Requirements

Draft User Interface
Design Process Model

User Work Processes

User Interface {draft}

Define Tech. Requirements

Refine User Interface

User Interface {refined}

Build Application
12-6 Software Process Engineering Metamodel: Final Adopted Specification December 2001

References A
This chapter is not by any means intended to cover the whole literature on process and
process modeling (see the extensive bibliography given in [6]), but to give the
principal sources we have used in elaborating this specification.

[1] Rational Unified Process (RUP) 2000, Rational Software Corporation, Cupertino,
CA (2000)

[2] Ivar Jacobson, et al., Object-oriented Software Engineering—A Use Case Driven
Approach, Addison-Wesley (1992).

[3] Philippe Kruchten, The Rational Unified Process—An Introduction, 2nd ed,
Addison-Wesley-Longman, Reading, MA (2000)

[4] Ian Graham, Brian Henderson-Sellers, and HoumanYounessi, The OPEN Process
Specification, Addison-Wesley, London, UK, 1997, 314pp

[5] B. Henderson-Sellers, S. Mellor, “Tailoring process methodologies,” ROAD/JOOP,
Volume 12 no 4, July/Aug 1999

[6] Jean-Claude Derniame, et al., Software Process: Principles, Methodology, and
Technology, LNCS #1500, Springer-Verlag, 1999.

[7] Ivar Jacobson, Grady Booch, Jim Rumbaugh, The Unified Software Development
Process, Addison-Wesley-Longman (1999)

[8] Grady Booch, et al., UML User’s Guide, Addison-Wesley-Longman, Reading, MA
(1999)

[9] Desmond D’Souza & Alan Wills, Objects, Components and Framework with
UML—The Catalysis Approach, Addison-Wesley–Longman (1998)

[10] Jennifer Stapleton, DSDM—Dynamic Systems Development Method, Addison-
Wesley (1998)
December 2001 Software Process Engineering Metamodel: Final Adopted Specification A-1

[11] Walker Royce, Software Project Management—A Unified Framework, Addison-
Wesley-Longman (1998)

[12] IBM, Developing Object-Oriented Software—An Experience-Based Approach,
Prentice-Hall (1997)

[13] Derek Coleman et al., OOD—The Fusion Method, Prentice-Hall (1994)

[14] Alfonso Fuggetta & Alexander Wolf (eds.), Software Process, J. Wiley & Sons
(1996)

[15] Scott Ambler, Process Patterns—Building Large-Scale Systems using Object
technology, SIGS Books Cambridge University Press (1998)

[16] Barry Boehm, “Anchoring the Software Process,” IEEE Software, July 1996, 73-82.

[17] OMG, RFP for Software Process Engineering, 1.0, November 1999

[18] ISO/IEC 12207 Information technology–Software life-cycle processes, ISO,
Geneva, 1995

[19] IEEE 1074-1997, Standard for developing software life cycle processes, NY, NY
1997

[20] I. Jacobson and S. Jacobson, “ Reengineering your software engineering process,”
Object Magazine, March 1995.

[21] C. Larman, Applying UML and Patterns—An Introduction to Object-Oriented
Analysis and Design, Prentice-Hall (1997)

[22] S. Cook and J. Daniels, Designing Object Systems: object-oriented modelling with
Syntropy, Prentice-Hall (1994)

[23] DMR Consulting, DMR Macroscope, Version 3.1, April 2000

[24] M. J. Presso, G. Raymond, M. Belaunde, “PILOTE: A Tool Suite to Support UML-
based Engineering Processes,” Proc. of 4th International EDOC Conference,
Makuhari, Japan,, IEEE Computer Society, Sept. 2000

[25] Jun Ginbayashi, Rieko Yamamoto, Keiji Hashimoto, "Business Component
Framework and Modeling Method for Component-based Application Architecture,"
Proc. of 4th International EDOC Conference, Makuhari, Japan, IEEE Computer
Society, Sept.2000, pp184-193.

[26] Itakura, M., “SDEM90: A framework for system development activities and
responsibilities,” Proc. of the 2nd International Conf. on System Integration,
Morristown, N.J., 1992, pp. 359-363

[27] Unisys QuadCycle : A full life cycle component based development and deployment
methodology based on Rational Unified Process and Unisys TeamMethod
http://www.unisys.com/news/releases/1999/oct/10276812.html

[28] France Telecom Universalis, http: /universalis.elibel.tm.fr/site/
A-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Translation Table B
This appendix maps the terminology from different sources.

SPEM ProcessRole Activity
Step

WorkProduct
Information-

Element

Discipline Lifecycle Phase Iteration Guidance

Rational
Unified
Process

Role Activity
Step

Artifact Discipline Process Phase Iteration Guidelines
ToolMentors
Templates

IBM Global
Services
Method

Role Task Work Product
Description

Domain Engage-
ment Model

Phase Iteration Technique

DMR
Macroscope

Role Activity Deliverable
Product

Domain Path Phase Iteration Guideline
Technique

Unisys
QuadCycle

Role Activity
Step

Artifact
Asset

Discipline Process Phase Iteration Guideline
Technique
Technology
Roadmap
Tacit
Knowledge

OPEN Rôle
Direct
producer

Task
Subtask

Work product Activity Lifecycle
process

Phase Technique

Fujitsu
SDEM21

Role WorkItem Document
File

Category Lifecycle
process

Phase Guidelines
Technique

OOSP Task
Activity

Deliverable Phase Guideline
Standard

Promoter Role Activity Product Lifecycle Direction

IEEE 1074-
1997

Activity Product Activity group Lifecycle
process

Phase
December 2001 Software Process Engineering Metamodel: Final Adopted Specification B-1

ISO/IEC
12207

Role Task Product Process Lifecycle
model

PMBOK Staff Task Deliverable Activity Phase Technique
B-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Example from the DMRMacroscope C
Following is a Software Process Engineering Model instantiation example. This
example only represents a portion of a typical information system delivery process.
Process metamodel (M2) classes, associations and attributes are represented in
courier while the corresponding M1 instances appear in bold times font.

Phase : Preliminary Analysis
Process : Information System Delivery Process

Subactivities

Iteration : First Joint Requirements Planning (JRP) Workshop
Subactivities

Activity : Define Owner Requirements
ProcessRole : System Architect
ActivityParameters {kind : input}

WorkProduct : EnterpriseArchitecture
ActivityParameters {kind : output}

WorkProduct : Assessment of Current System
{state: initial draft}

WorkProduct : Owner Requirements {state: initial draft }
Steps

Step : Define objectives based on stated needs
Step : Define the key issues
Step : Determine the relevant enterprise principles

Activity : Draft Owner Models
ProcessRole : System Architect
ActivityParameters {kind : input}

WorkProduct : Assessment of Current System
{state: initial draft }
December 2001 Software Process Engineering Metamodel: Final Adopted Specification C-1

WorkProduct : Owner Requirements {state: initial draft }
ActivityParameters {kind : output}

WorkProduct : Business Structure {state: initial draft }
WorkProduct : Business Dynamics {state: initial draft }

Steps

Step : Determine System context
Step : Model structural and dynamic aspects of the enterprise
Step : Define work resources
Step : Explore with prototypes

Activity : Define User Requirements
ProcessRole : System Architect
ActivityParameters {kind : input}

WorkProduct : Assessment of Current System
{state: initial draft }

WorkProduct : Owner Requirements {state: initial draft }
ActivityParameters {kind : output}

WorkProduct : User Alternatives {state: initial draft }
WorkProduct : User Principles {state: initial draft }

Steps

Step : Consider user interface aspects
Step : Consider distribution aspects
Step : Explore with prototypes

Activity : Draft User Models
ProcessRole : System Architect
ActivityParameters {kind : input}

WorkProduct : User Alternatives {state: initial draft }
WorkProduct : User Principles {state: initial draft }
WorkProduct : Business Structure {state: initial draft }
WorkProduct : Business Dynamics {state: initial draft }

ActivityParameters {kind : output}

WorkProduct : System Structure {state: initial draft }
WorkProduct : System Dynamics {state: initial draft }

Steps

Step : Determine System context
Step : Model structural and dynamic aspects of the system
Step : Define work resources
Step : Explore with prototypes

Activity : Define Developer Requirements
ProcessRole : Technical Architect
ActivityParameters {kind : input}
C-2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

WorkProduct : User Alternatives {state: initial draft }
WorkProduct : User Principles {state: initial draft }

ActivityParameters {kind : output}

WorkProduct : Developer Alternatives {state: initial draft }
WorkProduct : Developer Principles {state: initial draft }
WorkProduct : Technology Infrastructure

{state: initial draft }
Steps

Step : Revise work process and class definitions
Step : Revise user interface models

Activity : Draft Developer Models
ProcessRole : Technical Architect
ActivityParameters {kind : input}

WorkProduct : Developer Alternatives {state: initial draft }
WorkProduct : Developer Principles {state: initial draft }
WorkProduct : Technology Infrastructure

{state: initial draft }
WorkProduct : System Structure {state: initial draft }
WorkProduct : System Dynamics {state: initial draft }

ActivityParameters {kind : output}

WorkProduct : Software Architecture {state: initial draft }
WorkProduct : Persistent Information {state: initial draft }

Steps

Step : Define process and data aspects of the system
Step : Consider user interface aspects
Step : Consider distribution aspects
Step : Explore with prototypes

Subactivities

Iteration : Second Joint Requirements Planning (JRP) Workshop
Subactivities

Similar to First Joint Requirements Planning (JRP) Workshop iteration:

• reuse and cumulate existing WorkProduct assets as input to activities

• change «initial draft » output WorkProduct states with «revised draft »

Phase : System Architecture
Process : Information System Delivery Process
Subactivities

Iteration : First Joint Application Design (JAD) Workshop
Subactivities

Activity : Revise User Models
ProcessRole: System Architect
ActivityParameters {kind : input}
December 2001 Software Process Engineering Metamodel: Final Adopted Specification C-3

WorkProduct : System Structure {state: revised draft }
WorkProduct : System Dynamics {state: revised draft }

ActivityParameters {kind : output}

WorkProduct : System Structure {state: revised }
WorkProduct : System Dynamics {state: revised }

Steps
Step : Revise work process and class definitions
Step : Revise user interface models
Step : Realize/improve prototype

etc.

Phase : System Architecture
Process : Information System Delivery Process
Subactivities

Iteration : Second Joint Application Design (JAD) Workshop
etc.
C-4 Software Process Engineering Metamodel: Final Adopted Specification December 2001

Glossary
Activity A Work Definition describing what a Process Role performs. Activities are the main
element of work.

Component (see Process Component)

Dependency A Dependency is a process-specific relationship between process Model Elements.

Discipline A Discipline is a process package organized from the perspective of one of the
software engineering disciplines: Configuration Management, Analysis & Design, and
so forth.

Element (see Model Element)

Guidance Guidance is a Model Element associated with the major process definition elements,
which contains additional descriptions such as techniques, guidelines and UML
profiles, procedures, standards, templates of work products, examples of work
products, definitions, and so on.

Iteration An Iteration is a large-grained Work Definition that represents a set of Activities
focusing on a portion of the system development that results in a release (internal or
external) of the software product.

Model Element An element describing one aspect of a software engineering process.

Process Role A Model Element describing the roles, responsibilities and competencies of an
individual carrying out Activities within a Process, and responsible for certain Work
Products.

Phase A high-level Work Definition, bounded by a Milestone.

Process A Process is a complete description of a software engineering process, in term of
Process Performers, Process Roles, Work Definitions, Work Products, and associated
Guidance.
December 2001 Software Process Engineering Metamodel: Final Adopted Specification 1

Process Component A Process Component is a coherent grouping of process Model Elements organized
from a given vantage point such as a discipline, for example, testing, or the production
of some specific work product, for example, requirements management.

Process Performer A Process Performer is a Model Element describing the owner of Work Definitions.
Process Performer is used for Work Definitions that cannot be associated with
individual Process Roles, such as a Life Cycle or a Phase.

Step An atomic and fine-grained Model Element used to decompose Activities. Activities
are partially ordered sets of Steps.

Work Definition A Model Element of a process describing the execution, the operations performed, and
the transformations enacted on the Work Products by the roles. Activity, Iteration,
Phase, and Lifecycle are kinds of work definition.

Work Product A Work Product is a description of a piece of information or physical entity produced
or used by the activities of the software engineering process. Examples of work
products include models, plans, code, executables, documents, databases, and so on.
2 Software Process Engineering Metamodel: Final Adopted Specification December 2001

