

 Date: April 2008

Software & Systems Process Engineering
Meta-Model Specification

Version 2.0
with change bars

OMG Document Number: formal/08-04-02
Standard document URL: http://www.omg.org/spec/SPEM/2.0/PDF
Associated Files:

http://www.omg.org/spec/SPEM/20071101/SPEM2-Process-Behavior-Content.merged.cmof
http://www.omg.org/spec/SPEM/20071101/Infrastructure.cmof
http://www.omg.org/spec/SPEM/20071101/LM.cmof
http://www.omg.org/spec/SPEM/20071101/SoftwareProcessEngineeringMetamodel.cmof
http://www.omg.org/spec/SPEM/20071101/SPEM2-Method-Content.cmof
http://www.omg.org/spec/SPEM/20071101/SPEM2-Process-Behavior-Content.cmof
http://www.omg.org/spec/SPEM/20071101/SPEM2.cmof
http://www.omg.org/spec/SPEM/20071101/SPEM2.merged.cmof
http://www.omg.org/spec/SPEM/20071101/SPEM2-Method-Content.merged.cmof
http://www.omg.org/spec/SPEM/20071101/SPEM 2.0 Base Plugin Profile.xmi
http://www.omg.org/spec/SPEM/20071101/SPEM 2.0 UML2 Profile.xmi

* original files: ptc/07-08-08, ptc/07-08-09

Copyright © 2004-2007, Adaptive Ltd.
Copyright © 2004-2007, Fujitsu
Copyright © 2004-2007, Fundacion European Software Institute
Copyright © 2004-2007, International Business Machines Corporations
Copyright © 1997-2008, Object Management Group
Copyright © 2004-2007, Softeam

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™, and OMG Systems Modeling
Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ..vii

1 Scope ... 1

2 Conformance ... 1
2.1 Design Principles and Overall Packaging of the SPEM 2.0 Meta-Model 1
2.2 SPEM 2.0 Meta-Model Architecture Overview .. 2
2.3 Compliance Point "SPEM Complete" .. 4
2.4 Compliance Point "SPEM Process with Behavior and Content" 5
2.5 Compliance Point "SPEM Method Content" .. 6
2.6 Additional SPEM 2.0 Implementation Scenarios .. 7

3 Normative References ... 7

4 Terms and Definitions .. 8

5 Symbols ... 8

6 Additional Information .. 8
6.1 Background and Rationale .. 8
6.2 General Introduction to SPEM 2.0 .. 9
6.3 Key New Capabilities of SPEM 2.0 ... 11

6.3.1 Clear separation of method content definitions from the development process
 application of method content .. 12

6.3.2 Consistent maintenance of many alternative development processes 15
6.3.3 Many different lifecycle models .. 16
6.3.4 Flexible process variability and extensibility plug-in mechanism 17
6.3.5 Reusable process patterns of best practices for rapid process assembly 18
6.3.6 Replaceable and reusable Process Components realizing the principles of

 encapsulation ... 19

6.4 Specification Formalism .. 20
6.5 Statement of proof of concept and commercial availability ... 22
6.6 Changes to Adopted OMG Specifications .. 23
6.7 How to Read this Specification ... 23
6.8 Acknowledgements ... 23
Software & Systems Process Engineering Meta-Model, v2.0 i

7 Using SPEM 2.0 as a UML 2 Superstructure Profile 25
7.1 SPEM 2.0 Profile Overview ... 25
7.2 Describing Work Definitions and Work Breakdown as UML Behavior Models 28
7.3 Describing Work Product Evolution with State Machines ... 31
7.4 Relating Work Product State to Work Definitions .. 32

8 Core ... 35
8.1 Extensible Element ... 36
8.2 Kind ... 37
8.3 Parameter Direction Kind .. 37
8.4 Work Definition .. 38
8.5 Work Definition Parameter .. 40
8.6 Work Definition Performer ... 41

9 Process Structure .. 43
9.1 Activity ... 45
9.2 Activity Use Kind ... 48
9.3 Breakdown Element .. 54
9.4 Milestone ... 55
9.5 Process Element ... 56
9.6 Process Parameter ... 57
9.7 Process Performer .. 57
9.8 Process Responsibility Assignment .. 58
9.9 Role Use ... 59
9.10 Work Breakdown Element ... 60
9.11 Work Product Use ... 62
9.12 Work Product Use Relationship .. 63
9.13 Work Sequence ... 66
9.14 Work Sequence Kind .. 68

10 Process Behavior .. 67
10.1 Activity_ext .. 68
10.2 Control Flow_ext ... 68
10.3 External Reference ... 68
10.4 State_ext ... 69
10.5 Transition_ext .. 69
ii Software & Systems Process Engineering Meta-Model, v2.0

10.6 Work Definition Parameter .. 69

11 Managed Content ... 71
11.1 Category ... 72
11.2 Content Description .. 74
11.3 Describable Element ... 75
11.4 Guidance ... 76
11.5 Metric .. 76
11.6 Section .. 77

12 Method Content .. 79
12.1 Default Responsibility Assignment .. 81
12.2 Default Task Definition Parameter .. 82
12.3 Default Task Definition Performer ... 82
12.4 Method Content Element .. 83
12.5 Optionality Kind ... 84
12.6 Qualification .. 84
12.7 Role Definition ... 85
12.8 Step ... 86
12.9 Task Definition .. 87
12.10 Tool Definition ... 89
12.11 Work Product Definition .. 90
12.12 Work Product Definition Relationship ... 91

13 Process with Methods ... 93
13.1 Activity ... 95
13.2 Breakdown Element .. 97
13.3 Composite Role .. 98
13.4 Method Content Kind .. 99
13.5 Method Content Package ... 100
13.6 Method Content Packageable Element .. 101
13.7 Method Content Use ... 102
13.8 Planning Data ... 104
13.9 Process Kind ... 105
13.10 Process Package .. 106
13.11 Process Packageable Element ... 107
Software & Systems Process Engineering Meta-Model, v2.0 iii

13.12 Process Performer .. 107
13.13 Role Use ... 108
13.14 Task Use ... 109
13.15 Team Profile .. 111
13.16 Work Product Use ... 114

14 Method Plugin ...115
14.1 Activity ... 117
14.2 Method Configuration .. 118
14.3 Method Library .. 120
14.4 Method Library Packageable Element .. 121
14.5 Method Plugin ... 122
14.6 Method Plugin Packageable Element .. 124
14.7 Process Component .. 125
14.8 Process Component Use .. 129
14.9 Section .. 130
14.10 Variability Element .. 131
14.11 Variability Type .. 135
14.12 Work Product Port ... 139
14.13 Work Product Port Connector ... 140

15 Process Diagrams ...141
15.1 Workflow Diagram ... 141
15.2 Activity Detail Diagram .. 142
15.3 Work Product Dependency Diagram ... 143
15.4 Team Profile Diagram ... 143
15.5 Process Component Diagram ... 144

16 Enacting SPEM 2.0 Processes ... 145
16.1 Process Enactment with Project Planning Systems .. 145
16.2 Process Enactment with a Workflow Engine ... 147

17 Migrating SPEM 1.1 Models to SPEM 2.0 ..149

18 The SPEM 2.0 Base Plug-in ... 153
18.1 Activity Kinds ... 153

18.1.1 Phase ... 154
18.1.2 Iteration ... 154
iv Software & Systems Process Engineering Meta-Model, v2.0

18.1.3 Process ... 154
18.1.4 Delivery Process ... 155
18.1.5 Process Pattern .. 156
18.1.6 Process Planning Template .. 158

18.2 Category Kinds ... 158
18.2.1 Discipline .. 159
18.2.2 Role Set .. 159
18.2.3 Domain ... 159
18.2.4 Tool Category ... 159

18.3 Guidance Kinds ... 160
18.3.1 Checklist ... 161
18.3.2 Concept .. 161
18.3.3 Estimate (metric kind) ... 161
18.3.4 Estimation Considerations (metric kind) ... 161
18.3.5 Estimating Metric (metric kind) ... 161
18.3.6 Example .. 161
18.3.7 Guideline .. 161
18.3.8 Practice ... 162
18.3.9 Report ... 162
18.3.10 Reusable Asset .. 162
18.3.11 Roadmap .. 162
18.3.12 Supporting Material .. 162
18.3.13 Template ... 162
18.3.14 Term Definition ... 162
18.3.15 Tool Mentor .. 163
18.3.16 Whitepaper ... 163

18.4 Work Product Kinds .. 163
18.4.1 Outcome ... 163
18.4.2 Deliverable .. 164
18.4.3 Artifact .. 164

18.5 Work Product Relationship Kinds ... 165

Annex A: SPEM 2.0 UML 2 Profile Summary .. 167
Annex B: Additional Variability Examples .. 173
Annex C: Case Studies and Examples .. 185
Software & Systems Process Engineering Meta-Model, v2.0 v

vi Software & Systems Process Engineering Meta-Model, v2.0

List of Figures

Figure 2.1 Structure of the SPEM 2.0 Meta-Model ...2
Figure 2.2 Definition of the "SPEM Complete" compliance point ..5
Figure 2.3 Definition of the "SPEM Process with Behavior and Content" compliance point... 6
Figure 2.4 Definition of the "SPEM Method Content" compliance point ...6

Figure 6.1 SPEM 2.0's conceptual usage framework ... 10
Figure 6.2 Applying the same Method Content (left) in different Processes (right) and different parts of the
 breakdown structure of the same Process (right-top) .. 12
Figure 6.3 Method Content definition versus the application of Method Content in a Proces ..13
Figure 6.4 An alternative presentation for method content versus process ... 13
Figure 6.5 Key terminology defined in this specification mapped to Method Content versus Process14
Figure 6.6 A process with variations: A replacement of an Activity depicted in blue color and suppressed
 Activities in gray color... 15
Figure 6.7 A process with an optional step (Define Owner Models) .. 15
Figure 6.8 Two processes with different lifecycle models. One common SPEM 2.0 structure to represent
 any of these lifecycles .. 16
Figure 6.9 An agile process in Macroscope. It comprises three sub-processes, each of which each follows
 a different lifecycle model ... 17
Figure 6.10 Example for a method plug-in extending method content and processes with additional
 capabilities ... 17
Figure 6.11 A Process Pattern applied three times to a process; each with individual modifications 18
Figure 6.12 Process Components connected via Work Product Ports ... 19
Figure 6.13 Model Layers for UML and SPEM 2.0 .. 20
Figure 6.14 Exemplary instantiations of the modeling layers ...21

Figure 7.1 UML 2 Class Diagram using SPEM 2.0 Profile with stereotyped classes ... 26
Figure 7.2 The same SPEM 2.0 class diagram of Figure 7-1 using SPEM 1.1 stereotype icons .. 27
Figure 7.3 Syntactically correct SPEM 1.1 representation of Figure 7-2 .. 27
Figure 7.4 Task represented as stereotyped UML 2 Activity diagram (left) and model objects needed (right)

showing Steps as CallBehavior Actions invoking Activities (step icons with the same name) and
performing Roles ..29

Figure 7.5 Example for an Activity with Task Use ...30
Figure 7.6 SPEM 2.0 Activity Workflow represented as UML Activity diagram .. 31
Figure 7.7 Examples for work product state machines (left) and how states can be used in object flow

diagrams to qualify the inputs and outputs of activities ... 32
Figure 7.8 State transition annotated with mapping work definitions ... 33
Figure 7.9 Another view of how state transitions relate to work definitions ... 34

Figure 8.1 The SPEM 2.0 UML 2 Profile stereotypes defined in the Core package ... 35
Figure 8.2 Extensible Elements can have a Kind ... 36
Figure 8.3 Work Definition and its related elements ... 38

Figure 9.1 The SPEM 2.0 UML 2 Profile stereotypes defined in the Process Structure package ... 43
Figure 9.2 Overview of the main classes and associations of Process Structure package
 (this diagram does not include all generalizations, see Figure 9-11 for the complete taxonomy)44
Figure 9.3 Process Structure example: Multi-phased light-weight activity breakdown defining work product
 use responsibilities .. 45
Software & Systems Process Engineering Meta-Model, v2.0 vii

Figure 9.4 The Work Definition Activity in relationship to its work performers and input/outputs 46
Figure 9.5 Activity Use and Activity Use Kinds ... 48
Figure 9.6 Example of an activity reusing another activity ... 50
Figure 9.7 Using Extends to dynamically bind a Process Pattern to a Delivery Process .. 50
Figure 9.8 Representation of the Delivery Process from Figure 35 before interpretation of the
 Extends relationship ... 51
Figure 9.9 Modeling Local Contribution and Local Replacement .. 52
Figure 9.10 The resulting Delivery Process after interpreting the Variability Specializations ... 53
Figure 9.11 A breakdown structure is defined by Activities nesting Breakdown Elements ... 54
Figure 9.12 Taxonomy of classes defined in Process Structure package .. 56
Figure 9.13 Work Product composition example .. 64
Figure 9.14 Simple Work Product Dependency Diagram drawing impacts relations as arrows... 64
Figure 9.15 Detailed UML 2-based Work Product Dependency diagram showing States as well
 Deliverable aggregation (Software Requirements Specification) and Work Product
 composition (Use Case Model) .. 65
Figure 9.16 Two views on the same process showing a Work Breakdown Structure as well as Work
 Product Breakdown Structure .. 66

Figure 10.1 Traceability links from key behaviour model abstraction to key Process Elements. ... 67

Figure 11.1 The SPEM 2.0 UML 2 Profile stereotypes defined in the Managed Content package .. 71
Figure 11.2 The Describable Element parts and subclasses .. 72
Figure 11.3 Example for categories and catgorized content .. 73

Figure 12.1 The SPEM 2.0 UML 2 Profile stereotypes defined in the Method Content package .. 79
Figure 12.2 Taxonomy of Core Describable Elements .. 80
Figure 12.3 Key Method Content Elements and their relationships.. 81
Figure 12.4 Example for a UML2 diagram with role stereotypes and artifact responsibility ... 86
Figure 12.5 Steps represent Sections of Tasks ... 86
Figure 12.6 Example Task with related content elements represented using the UML 2 SPEM 2.0 Profile 89
Figure 12.7 Work Product taxonomy ... 90

Figure 13.1 The SPEM 2.0 UML 2 Profile stereotypes defined in the Process with Methods package 93
Figure 13.2 Taxonomy of the meta-model classes defined in the Process with Methods meta-model package 94
Figure 13.3 Taxonomy and key relationships of Breakdown .. 95
Figure 13.4 Example for an Activity ‘Define the System’ with associations .. 96
Figure 13.5 Refined Method Content and Process Kinds .. 99
Figure 13.6 ContentPackage redefines its inherited owned Members association to only allow
 Method Content Elements .. 100
Figure 13.7 Example for a Content Package with its Content Elements ... 101
Figure 13.8 Relationships of concrete Method Content Use classes ... 102
Figure 13.9 Examples for Method Content Uses (right) referencing Method Content (left) .. 103
Figure 13.10 Method Content Uses in a Work Breakdown Structure .. 104
Figure 13.11 Process Packages contains Process specific elements ... 106
Figure 13.12 A Team Profile consists of Role Uses and/or Composite Roles ... 108
Figure 13.13 Selecting Steps for a Task Use .. 109
Figure 13.14 Example of a Team Profile with nested Team Profiles and Role Uses ... 112
Figure 13.15 Example for Team Profiles used in a Team Breakdown Structure ... 113

Figure 14.1 The SPEM 2.0 UML 2 Profile stereotypes defined in the Method Plugin package ... 115
Software & Systems Process Engineering Meta-Model, v2.0 viii

Figure 14.2 Taxonomy of the classes defined in Method Plugin meta-model package ..116
Figure 14.3 Definition of Method Library and Method Configurations ..118
Figure 14.4 Illustration of a Method Configuration: all colored packages a part of a Configuration119
Figure 14.5 A Method Library is a container for Plugins and Configurations ..120
Figure 14.6 Method Plugins are containers for Method Packages ..122
Figure 14.7 Example Method Plugin with sample contents and its relationships ...123
Figure 14.8 Specification of Process Components and their relationships ..125
Figure 14.9 Graphical Representation of a Process Component ...126
Figure 14.10 Three Process Components to be assembled ...127
Figure 14.11 Assembling Process Components ..127
Figure 14.12 Introduction of an intermediary Work Product in the assembly process..128
Figure 14.13 Introduction of a missing input Work Product ..128
Figure 14.14 Defining correspondences between different model elements ..129
Figure 14.15 Overview to Variability for Content Elements and Processes ...131
Figure 14.16 Example for variability using Contribution on Roles, Task, and Work Products ...133
Figure 14.17 Result after interpreting Contribution in Figure 14-15 ..134

Figure 16.1 Mapping between Activity Diagram, Process, and Project Plan ...146
Figure 16.2 A second Process to Plan mapping example ..147

Figure 18.1 The Activity Kinds Stereotypes. ...153
Figure 18.2 Example for Process Pattern defining Requirements Management work ..157
Figure 18.3 Relationships amongst Processes ...157
Figure 18.4 The Category Kinds Stereotypes ..158
Figure 18.5 The Guidance Kinds Stereotypes ...160
Figure 18.6 The Work Product Kinds Stereotypes ..163
Figure 18.7 The Work Product Relationship Kinds ...165

Figure C.1 Conceptual mapping of MSF Agile to SPEM 2.0 concepts ...188
Figure C.2 Side-by-side comparison of a Role presentation and associated concepts in MF Agile (left)
 and modeled with SPEM 2.0 concepts (right) ...189
Figure C.3 Mapping of an MSF Activity to a SPEM 2.0 Task ..190
Figure C.4 Mapping of MSF Agile Workstreams to SPEM 2.0 Process Patterns ...191
Figure C.5 Modeling MSF Agile process Views as SPEM 2.0 Process Patterns ...192
Figure C.6 Eclipse Process Framework Ecosystem accommodating content from many different sources193
Figure C.7 Overview to OpenUp/Basic showing its key roles, disciplines that categorize tasks, and work
 products as well as the overall lifecycle model ..194
Figure C.8 Typical OpenUP process presented as a breakdown structure as well as activity diagram195
Figure C.9 ‘Platform Export’ Role Overview ...196
Figure C.10 Process Patterns realizing MDA ...196
Figure C.11 ‘Outline PSM Model’ Capability ..197
Figure C.12 Some of the 17 IT processes (left) represented by ITUP as Process Patterns and so-called
 process scenario that also have been assembled as Process Patterns using elements from
 the IT processes as building blocks ..198
Figure C.13 Asset Management IT Process represented as a SPEM 2.0 Process Pattern that uses
 ITUP’s own proprietary behavior modeling approach to present the process’ workflow199
Figure C.14 A process scenario illustrating how IT processes work together to perform common IT functions. 200
Figure C.15 Overview to the SPI – PM Portal PMBOK representation ..201
Figure C.16 Overview to the Project Manager role ..202
Figure C.17 PMBOK Process Group modeled as an activity diagram ..203
Software & Systems Process Engineering Meta-Model, v2.0 ix

Figure C.18 A role defined by the SOA Governance Method defining its key tasks, responsible work
 products, and work products the role modifies when performing the tasks .. 204
Figure C.19 SOA lifecycle for introducing or improving SOA Governance in an organization .. 205
Figure C.20 Documented CMM Practices are linked to enactable process models (Process Patterns)
 and artifacts used and produced in the practice ... 206
Figure C.21 List of Process Patterns that model so-called OPAL procedures that can be used as
 reusable building blocks to assemble larger end-to-end processes .. 207
Figure C.22 A workflow in the ASIC method (top) defining control flow amongst task uses as well as list
 of the same task uses grouped by performing role ... 208
Figure C.23 General ISPW-6 example breakdown structure ... 209
Figure C.24 Flow of activities in the ISPW-6 example ... 210
Figure C.25 Role Definition for Design Engineer in the ISPW-6 Example .. 211
Figure C.26 The Money Lover website ... 212
Figure C.27 Investment club lifecycle model defining three phases and the detailed workflow for the
 first phase .. 213
Software & Systems Process Engineering Meta-Model, v2.0 x

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
Software & Systems Process Engineering Meta-Model, v2.0 xi

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A - Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
xii Software & Systems Process Engineering Meta-Model, v2.0

1 Scope

The purpose of this document is to provide a comprehensive definition of the Software & Systems Process Engineering
Meta-Model 2.0 (SPEM 2.0). It serves as a guide for understanding the semantics of this meta-model as well as its direct
application for all method and process modeling activities.

The scope of the specification itself is defined in the OMG Request for Proposal RFP-04-11-04.

2 Conformance

This specification defines three compliance points for SPEM 2.0. Implementations are encouraged to conform to one of
these compliance points if their goal is to ensure successful data exchange with other compliance point implementers. In
addition to these compliance points, the specification provides the freedom to implementers to choose any combination of
meta-model packages and package merges that they wish to implement (see Section 2.6 for a discussion). However, if
data exchange is a major goal for an implementer, we encourage implementing one of these compliance points.

SPEM 2.0 is defined as a meta-model as well as a UML 2 Profile. If the SPEM 2.0 UML 2 Profile is used by the
implementer, then the same compliance points apply in the sense that stereotypes get introduced in the same specification
chapters as their respective meta-model classes. Hence a compliance point includes all stereotypes defined in the chapters
that have been listed for inclusion in the definition of each compliance point below. However, only one profile including
all stereotypes is provided as part of this specification (OMG document ad/06-11-05).

The specification provides individual XMI schemata for all three compliance points (OMG document ad/06-11-04). The
compliance points listed here are defined by the inclusion and merge of specific meta-model packages. The following
Section 2.1 and Section 2.2 provide an overview to all meta-model packages available in SPEM 2.0. Section 2.3 to
Section 2.5 will then define the three compliance points. Finally, Section 2.6 discusses other non-compliant implantation
scenarios that might be useful for specific audiences of SPEM 2.0.

2.1 Design Principles and Overall Packaging of the SPEM 2.0
Meta-Model

The SPEM 2.0 Meta-Model is a MOF-based [MOF 2] model that reuses other OMG specifications. SPEM 2.0 reuses the
UML 2 Infrastructure library [UML 2 Infrastructure] wherever possible. Key concepts and structures such as Classifier
and Package have been directly reused by sub-classing SPEM 2.0 classes from these. A SPEM 2.0 implementer should
also utilize the UML 2 diagram interchange [UML 2 Diagrams] for the presentation of various diagram types as presented
in examples throughout this document and summarized in Chapter 15.

Within the package named "SPEM" you will find the actual architecture of the SPEM meta-model as depicted in Figure
2.1. SPEM 2.0 applies the UML 2 Infrastructure's package merge mechanism to gradually build up the meta-model,
providing optional meta-model packages or modular units as building blocks for a specification implementer. In other
words an implementer or adopter can choose to utilize different levels of capabilities, number of concepts, and levels of
formalism for expressing their processes by using or realizing only certain packages of this architecture. We define the
three most typical selections as the SPEM 2.0 Compliance Points, but also discuss other possibilities of combining the
meta-model packages to address more specific process modeling needs.
Software & Systems Process Engineering Meta-Model, v2.0 1

2.2 SPEM 2.0 Meta-Model Architecture Overview

SPEM 2.0 is used to define software and systems development processes and their components. The scope of SPEM is
purposely limited to the minimal elements necessary to define any software and systems development process, without
adding specific features for particular development domains or disciplines (e.g., project management). The goal is to
accommodate a large range of development methods and processes of different styles, cultural backgrounds, levels of
formalism, lifecycle models, and communities. However, the focus of SPEM is development projects. SPEM 2.0 does not
aim to be a generic process modeling language, nor does it even provide its own behavior modeling concepts. SPEM 2.0
rather defines the ability for the implementer to choose the generic behavior modeling approach that best fits their needs.
It also provides specific structures to enhance such generic behavior models that are characteristic for describing
development processes. In other words, SPEM 2.0 focuses on providing the additional information structures that you
need for processes modeled with UML 2.0 Activities or BPMN/BPDM to describe an actual development process.

The SPEM 2.0 meta-model is structured into seven main meta-model packages as depicted in Figure 2.1. The structure
divides the model into logical units. Each unit extends the units it depends upon, providing additional structures and
capabilities to the elements defined below. Overall, the UML 2 package merge mechanism applied to the packages
realizes a gradual extension of the capabilities modeled unit by unit. As a result, units defined on a lower layer can be
realized by a SPEM 2.0 subset-implementation without the higher level units. In many cases, meta-model classes are
introduced in a lower level package as simply as possible, and are then extended in higher level units via the package
merge mechanism with additional properties and relationships to realize more complex process modeling requirements.

Figure 2.1 - Structure of the SPEM 2.0 Meta-Model
2 Software & Systems Process Engineering Meta-Model, v2.0

The packages depicted in Figure 2.1 provide the following capabilities:

• Core: The Core meta-model package contains those meta-model classes and abstractions that build the base for classes
in all other meta-model packages. In other words, all the common classes amongst all compliance levels defining the
core of SPEM 2.0 have been placed here. Core mainly defines classes for two SPEM 2.0 capabilities: (1) The ability
for a SPEM 2.0 user to create user-defined qualifications for a SPEM 2.0 classes allowing users to distinguish different
'kinds' of SPEM 2.0 class instances. (2) A set of abstract classes to define work expressed as SPEM 2.0 processes. All
SPEM 2.0 classes that derive from these classes are intended to map to behavior classes of behavior models (e.g., can
be assigned as stereotypes to UML 2.0 Activities or linked to behaviored classifiers).

• Process Structure: This package defines the base for all process models. It supports the creation of simple and flexible
process models. Its core data structure is a breakdown or decomposition of nested Activities that maintain lists of
references to performing Role classes as well as input and output Work Product classes for each Activity. In addition,
it provides mechanisms for process reuse such as the dynamic binding of process patterns that allow users to assemble
processes with sets of dynamically linked Activities. These structures are used to represent high-level and basic
processes that are not textually documented. The structures are ideal for the ad-hoc assembly of processes, especially
the representation of agile processes and self-organizing team approaches.

• Process Behavior: The concepts of the Process Structure package represent a process as a static breakdown structure,
allowing nesting of activities and defining predecessor dependencies amongst them. The Process Behavior meta-
model package allows extending these structures with behavioral models. However, it does not define its own behavior
modeling approach, but rather provides 'links' to existing externally-defined behavior models, enabling reuse of these
approaches from other OMG or third party specifications. For example, a process defined with the Process Structure
concepts can be linked to UML 2 Activity diagrams that represent the behavior of such process; or a Work Product
Definition from the Method Content package can be linked to a state machine model that represents its typical
lifecycle. Chapter 7 shows examples for such process models that utilize the UML 2 profile defined in this
specification for a consistent presentation for such UML 2 models in addition to the 'links' defined in this Process
Behavior meta-model package.

• Managed Content: Development processes are in many cases not only represented as models, but documented and
managed as natural language descriptions. For many software development approaches and methods, human-
consumable documentation providing understandable guidance for best development practices is more important than
precise models. In other words, the practicality of techniques and methods expressed with these practices is in many
cases perceived to provide higher value than strict obedience to a formally defined process. The reasons for this are
that many development approaches see software development as a creative process that requires constant reevaluation
and adoption rather than a strict sequence of activities. For example, for modern agile development teams, best
practices of software development are communicated through mentoring and short practice descriptions in white paper
format, rather than formally defined models. They assume that certain values and a development culture (in other
words the social engineering required for agile development) cannot be formalized with models, but can only be
captured in natural language documentation. The Managed Content meta-model package introduced concepts for
managing the textual content of such descriptions. These concepts can either be used standalone or in combination
with process structure concepts. For example, a SPEM 2.0 based process could be solely comprised of a set of
instances of the guidance meta-class defining development best practices in whitepaper format. It could also be
comprised of a combination of these guidance elements with a process structure using relationships defined in the
Managed Content meta-model package that allows associating guidance elements with process structure elements.

• Method Content: The Method Content meta-model package provides the concepts for SPEM 2.0 users and
organizations to build up a development knowledge base that is independent of any specific processes and development
projects. It adds concepts for defining lifecycle and process-independent reusable method content elements that
provide a base of documented knowledge of software development methods, techniques, and concrete realizations of
best practices. Method Content comprises of textual step-by-step explanations, describing how specific fine-granular
development goals are achieved by which roles with which resources and results, independent of the placement of these
Software & Systems Process Engineering Meta-Model, v2.0 3

steps within a specific development lifecycle. Processes would reuse these method content elements and relate them
into partially-ordered sequences that are customized to specific types of projects (see 6.3.1, ’Clear separation of method
content definitions from the development process application of method content’ for more details). A SPEM 2.0 user
can define Method Content as general guidance and build up a knowledge base of development methods without ever
creating a process, but adding a little more structure for her content as provided by the generic meta-classes defined in
the Managed Content package. These structures selected for the Method Content package have been derived from best
practices in the industry. Development processes can be based on reusable method content (as defined in the Process
with Methods meta-model package), but they can also be independent of method content (by just using the Process
Structure meta-model package), thus defining ad-hoc processes that are not based on reusable methods.

• Process With Methods: The Process with Methods meta-model package defines new and redefines existing structures
for integrating processes defined with Process Structure meta-model package concepts with instances of Method
Content meta-model package concepts. Whereas Method Content defines fundamental methods and techniques for
software development, processes place these methods and techniques into the context of a lifecycle model comprising,
for example, of phases and milestones. When applying method content, such as Tasks, Roles, and Work Products, to
specific parts of the process, reference classes (referred to as Method Content Use in this specification) are created that
can store individual changes to their referenced Method Content classes. These changes express how and which parts
of the method will be applied in that particular point in the process.

• Method Plugin: The Method Plug-in meta-model package introduces concepts for 'designing' and managing
maintainable, large scale, reusable, and configurable libraries or repositories of method content and processes. The
concepts introduced in this package allow arranging different parts of such a library based on different layers of
concern similar to layered software architectures. With concepts such as Method Plug-in, Process Component, and
Variability, one can define processes that are granularly extended with more and more capabilities. Users can then
select the process capabilities they are interested in by defining so-called method configurations. Only those selected
capabilities will then be surfaced within these configurations to the end-user, allowing process authors to define
consistent and maintainable processes for different audiences that are configurable for specific end-user needs.

2.3 Compliance Point "SPEM Complete"

Audience: Large scale process and method library tool providers.

The compliance point “SPEM Complete” comprises all seven SPEM meta-model packages described in 2.2, ’SPEM 2.0
Meta-Model Architecture Overview.’ Figure 2.2 shows that the compliance point creates a namespace called “SPEM2”
which merges the LM compliance level from the UML 2 Infrastructure Library, UML 2 Profiles, as well as the SPEM 2.0
meta-model packages Method Plugin and Process Behavior, which transitively merge in all other SPEM 2.0 meta-model
packages (see Figure 2.1). These seven meta-model packages are described in Chapters 8 to 14 of this specification.
4 Software & Systems Process Engineering Meta-Model, v2.0

Figure 2.2 - Definition of the "SPEM Complete" compliance point

This compliance point is recommended for implementers who need all capabilities defined in this meta-model. It is aimed
at CASE tool providers that want to provide support for large scale libraries of textual method content and reusable
process models. The focus is on managing many processes for complex multi-tiered organizations that manage
interrelated processes. It is also the only compliance point that merges the Profiles package from the UML 2
Infrastructure, which provides a more complete extensibility mechanism than the light extensibility mechanisms provided
in SPEM 2.0 itself. Whereas SPEM 2.0 provides the ability to define instances of a Kind class that allow associating
special semantics to meta class instances, UML Profiles allow in addition to that creating and managing stereotype
application instances that can store user-defined property values defined for the stereotype with the stereotype instance.
SPEM Complete implementers shall either provide both extensibility mechanisms or a mapping of UML Profile
stereotypes to SPEM 2 Kinds. The other compliance levels defined in the specification do not require realizing Profiles
because the light-weight extensibility mechanisms of SPEM should be sufficient for the audiences listed, but
implementers have the option to do so for these levels as well.

The CASE tools mentioned in 6.5, ’Statement of proof of concept and commercial availability’ implement this
compliance point.

2.4 Compliance Point "SPEM Process with Behavior and Content"

Audience: SPEM 1.x backwards-compatible and modeling focused tool providers.

The compliance point “SPEM Process with Behavior and Content” comprises four of the SPEM meta-model packages
described in 2.2, ’SPEM 2.0 Meta-Model Architecture Overview.’ Figure 2.3 shows that the compliance point creates a
namespace called “SPEM2-Process-Behavior-Content” which merges the LM compliance level from the UML 2
Infrastructure Library as well as the SPEM 2.0 meta-model packages Managed Content (Chapter 11) and Process
Behavior (Chapter 10), which transitively merge in (see Figure 2.1) Process Structure (Chapter 9) and Core (Chapter 8).
Software & Systems Process Engineering Meta-Model, v2.0 5

Figure 2.3 - Definition of the "SPEM Process with Behavior and Content" compliance point

This compliance point is recommended for implementers who want to focus on the modeling aspects of SPEM. It aims at
audiences that focus on one process at a time and primarily work on process model representations such as work
breakdown structures or workflow diagrams. Although this compliance point provides the ability to document the
processes textually using the Managed Content concepts, its audience does not require the capabilities of Method Content
or Method Plug-in to provide reusable method descriptions nor do they require variability concepts that allow different
configurations of variable models and text.

This compliance point is also very close to capturing the capabilities of the predecessor SPEM 1.x specification and does
not comprise the additional capabilities introduced in SPEM 2.0 for development knowledge bases of method content,
scaling, and variability.

2.5 Compliance Point "SPEM Method Content"

Audience: Method documenter and book authors, organizational knowledge base provider.

The compliance point “SPEM Method” comprises three of the SPEM meta-model packages described in Section 2.2.
Figure 2.4 shows that the compliance point creates a namespace called “SPEM2-Method-Content” which merges the LM
compliance level from the UML 2 Infrastructure Library as well as the SPEM 2.0 meta-model package Method Content
(Chapter 12), which transitively merges in (see Figure 2.1) Managed Content (Chapter 11) and Core (Chapter 8).

Figure 2.4 - Definition of the "SPEM Method Content" compliance point

This compliance point is recommended for implementers who primarily focus on managing the documentation of
descriptions of development methods, techniques, and best practices. Implementations of this level can be used to create
development knowledge bases as well as serve as a structure for Wiki-based and other collaborative information systems.
6 Software & Systems Process Engineering Meta-Model, v2.0

The typical audience of this level in many cases does not need or want formal process models as a representation for their
content. They provide descriptions of their methods with a minimal set of concepts (which could be even a sub-set of
concepts available in this compliance point) such as Work Product, Task, and Role Definitions, or even less formal
Guidance concepts such as guidelines or white papers that adequately represent their agile view of communicating
development knowledge.

This compliance point is also ideal for book and technical report authors that could augment their publication of
development methods, technique, or best practice with a semi-formal SPEM Method Content-based documentation
providing a reusable and interchangeable format of their content using these SPEM concepts.

2.6 Additional SPEM 2.0 Implementation Scenarios

Section 2.3 to Section 2.5 specify three compliance points defining the most typical levels for implementers to choose
from. However, as the meta-model packages gradually provide more capabilities along their merge dependencies, many
other combinations of meta-model packages are possible and might provide value for other purposes. For example, one
could choose to implement the following combinations below: (All of these combinations would need to include the Core
package. It has therefore not been explicitly listed below.)

• Process Structure and Process Behavior: An implementer might choose to provide a pure modeling solution for SPEM
2.0 or a solution in which the UML 2 Infrastructure ability of attaching comments to each model element is sufficient.
He would therefore not realize the Managed Content package that provides additional documentation as well as content
categorization capabilities.

• Process Structure and Managed Content: This combination does not include Process Behavior. If an implementer
wants to solely focus on breakdown structure representations of processes, but wants to document and publish his
process models with textual documentation, she can choose to implement these two meta-model packages only. As a
result, every Process Element (Section 9.1) of a process breakdown structure can be documented with textual Content
Descriptions (Section 11.1). Furthermore, textual Guidance elements (Section 11.4) such as checklists, templates,
examples, guidelines, and Metrics (Section 11.5) can be created and systematically linked to these process elements.

• Process Structure, Process Behavior, and Method Plugin: If an implementer's focus is on providing libraries of reusable
process models without documenting these process models, she could choose to combine the Process Structure and
Behavior meta-model packages with the Method Plug-in package. This will enable him to define libraries (Section
14.3) of reusable Processes (Section 9.1) as well as dynamic process extensions using variability (Section 14.10) and to
organize these processes and extensions in configurable plug-ins (Section 14.1 and Section 14.2).

• Process with Methods, Process Structure, Method Content, Managed Content: This combination would be of interest
for an implementer that might want to provide a small-scale realization of SPEM 2.0. She might be interested in fully
utilizing the separation of method content from processes, but does not need the capabilities of variability and
managing Method Libraries, Method Plugins, and Configurations defined in the Method Plugin meta-model package.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• [MOF 2] OMG, Meta-Object Facility Version 2, www.omg.org/mof.
Software & Systems Process Engineering Meta-Model, v2.0 7

• [UML 2 Infrastructure] OMG, UML 2 Infrastructure Specification, www.omg.org/uml.

• [UML 2 Diagrams] OMG, Unified Modeling Language Version 2 Diagram Interchange, www.omg.org/uml.

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Background and Rationale

This is the third specification defined for the Software and Systems Process Engineering Meta-Model. The specification
of SPEM 1.0 was released in 2002 (final FTF report in May 2002). SPEM 1.1 incorporated minor updates that were
formally released in 2005 (final RTF report in March 2004).

SPEM 1.x was defined as both a standalone meta-model built upon UML 1.4, and a UML Profile, and was accompanied
by an XML DTD. The meta-model used UML 1.4 as a notation and took an object-oriented approach to representing
behavior of developers as their operations. SPEM 1.x saw low uptake. Since its issuance, few implementations have been
released and it has not been recognized by industry analysts who also failed to acknowledge its relevance to the
methodology and process tools market. There have been a number of low-profile or casual adopters of the specification as
well as few commercial implementations. It is suspected that ease of adoption has been an issue, and some of the SPEM
1.x semantics were ambiguous and hard to understand by adopters and hence not used in their practices.

Now that major revisions to the underlying UML standard have been developed in UML 2, there are major benefits to be
reaped in SPEM. UML 2 includes new features such as greatly improved modeling techniques, and graphic interchange
capability, which are of obvious use in process modeling. Furthermore, UML 2 is organized in a more modular fashion so
as to allow related specifications to reuse only the required parts of the UML meta-model. The ability to leverage these
features, as well as the ability to work with UML 2 tools are powerful enhancements to SPEM 2.0. In addition, there was
specific feedback from implementers of SPEM 1.x that have been addressed to make SPEM process models easier to
enact and automate. This specification addresses the following requirements from the RFP:

• Update SPEM to be compliant with UML 2, taking advantage of the new functionality to improve process modeling
techniques and capabilities.

• Define a new SPEM XML Schema, based on MOF 2.0. XML Schemas provide greater richness and control beyond
what is available in the SPEM 1.1 XMI DTD.

• Provide guidance on migrating existing process models from SPEM 1.1 to SPEM 2.0.
8 Software & Systems Process Engineering Meta-Model, v2.0

• Address feedback from first implementers to address identified inconsistencies and concerns regarding the practicality
and functional coverage of SPEM 1.1.

• Define extensions to SPEM that will be of use to process automation tools.

• Align SPEM with evolving and emerging standards other than UML; specifically, the Business Process Definition
Meta-model and the Business Process Runtime Interfaces submission may be able to be used in conjunction with
SPEM to provide greater value to the user community.

• Introduce process meta-model extensions that may be used equally in software development processes and systems
engineering processes.

6.2 General Introduction to SPEM 2.0

Throughout the software industry there are a lot of great ideas and knowledge available about how to effectively develop
software. Nowadays, development teams need and have access to a wide range of information. Not only do they need to
acquire detailed information about specific development technologies such as Java, Java EE, Eclipse, SOA technologies,
.NET, as well as various development and tool environments, but they also need to figure out how to organize their work
along modern development best practices such as agile, iterative, architecture-centric, risk- and quality-driven software
development.

Some problems development organizations face when they leave their developers to find such information for themselves
are:

• team members will not have centralized and easy access to the samebody of information when they need it, i.e.,
different developers might rely on different sources and versions of the same information;

• it is difficult to combine and integrate content and development processes that are made available in their own
proprietary format, as every book and publication presents method content and process using a different representation
and presentation style;

• it is hard to define an organized and systematic development approach that is right-sized to their needs, i.e., addresses
their specific culture, standardized practices, and compliance requirements.

The Software and Systems Process Engineering Meta-model (SPEM) is a process engineering meta-model as well as
conceptual framework, which can provide the necessary concepts for modeling, documenting, presenting, managing,
interchanging, and enacting development methods and processes. An implementation of this meta-model would be
targeted at process engineers, project leads, project and program managers who are responsible for maintaining and
implementing processes for their development organizations or individual projects.
Software & Systems Process Engineering Meta-Model, v2.0 9

Figure 6.1 - SPEM 2.0's conceptual usage framework

Figure 6.1 presents a conceptual framework for the usage of a SPEM 2.0 implementation:

• To provide a standardized representation and managed libraries of reusable method content: Developers need to
understand the methods and key practices of software development. They need to be familiar with the basic
development tasks, such as how to elicit and manage requirements, how to do analysis and design, how to implement
for a design or for a test case, how to test implementations against requirements, how to manage the project scope and
change, and so on. They further need to understand the work products such tasks create as well as which skills are
required. SPEM 2.0 aims to support development practitioners in setting-up a knowledge base of intellectual capital
for software and systems development that would allow them to manage and deploy their content using a standardized
format. Such content could be licensed, acquired, and, more importantly, their own homegrown content consisting of,
for example, method definitions, whitepapers, guidelines, templates, principles, best practices, internal procedures and
regulations, training material, and any other general descriptions of how to develop software. This knowledge base can
be used for reference and education and forms the basis for developing processes (see the next bullet point).

• To support systematic development, management, and growth of development processes: Development teams
need to define how to apply their development methods and best practices throughout a project lifecycle. In other
words, they need to define or select a development process. For example, requirements management methods have to
be applied in one fashion during the early phases of a project, where the focus is more on elicitation of stakeholder
needs and requirements and scoping a vision. The same methods have to be performed in a different fashion during
later phases, where the focus is on managing requirements updates and changes and performing impact analysis of
these requirements changes. The same requirements methods might also be applied differently if the project develops a
new system or maintains an existing system as well as depending on the teams and distribution of the teams. A
development process model needs to support expressing these differences. Teams also need a clear understanding of
how the different tasks within the methods relate to each other: for example, how the change management method
impacts the requirements management method as well as the regression testing method through out the lifecycle.
SPEM 2.0 supports the systematic creation of processes based on reusable method content. Lifecycle independent
method content can be placed into a process for a specific development lifecycle. Such processes can be represented as
workflows and/or breakdown structures. Within these process the reused method content can then be refined for its
specific context. SPEM 2.0 also provides the conceptual foundation for process engineers and project managers for

Enactable project
plan templates

Process for
Custom Application

Development with J2EE

Content on
managing

iterative development

Corporate
guidelines
on compliance

Content on agile
development

JUnit user
guidance

Content
on J2EE

Configure a cohesive process framework
customized for my project needs

Create project plan templates for
Enactment of process in the context of my project

Standardize representation and
manage libraries of reusable

Method Content

Develop and manage Processes
for performing projects

Process assets
patterns
Standard or
reference processes

Guidance on
serialized java beans

Configuration
mgmt
guidelines

Process for
Embedded System

Development

Process for
SOA Governance
10 Software & Systems Process Engineering Meta-Model, v2.0

selecting, tailoring, and rapidly assembling processes for their concrete development projects. The vision for SPEM 2.0
is that vendors can sell with their SPEM 2.0 implementation catalogs of pre-defined processes for typical project
situations that can be adapted to individual needs. Within these catalogs, the implementation could offer process
building blocks or process patterns that represent references processes for specific disciplines, technologies, or
development styles. These process patterns could form a toolkit for quickly assembling processes based on project
specific needs.

• To support deployment of just the method content and process needed by defining configurations of processes
and method content: No development project is exactly like another and the same development process is never
executed twice. Reference frameworks for development processes such as CMMI define different levels of maturity
for processes. Each level entails different characteristics for the process definition as well as enactment in an
organization or project for each level. For example, CMMI defines a “managed process” as performed activities that
can be recognized as implementations of development practices. Such a process has certain characteristics: it is
planned and executed in accordance with policies; it employs skilled people, having adequate resources to produce
controlled outputs; it involves relevant stakeholders; it is monitored, controlled, and reviewed; and it is evaluated for
adherence to its process description. By contrast, a “defined process” is a managed process that is tailored from the
organization’s set of standard processes according to the organization’s tailoring guidelines. A defined process has a
maintained process description and contributes work products, measures, and other process-improvement information
to the organizational process assets. The notions of Activity Use, Configurability, and Variability for development
processes (as well as method content) in SPEM 2.0 exactly address the needs for defined processes. These concepts
provide capabilities for reuse of processes or process patterns, for modeling variability (i.e. processes that comprise of
configurable alternative parts) and for tailoring allowing users to define their own extensions, omissions, and
variability points on reused standard processes. Hence, the SPEM usage scenario is that organizations can provide
libraries of reusable process and method using the capabilities describes in the first two bullet points. Team leads can
then select and tailor the method content and processes that they require. They can then describe these selections and
customizations with a SPEM Method Configuration, which they can deploy to their teams, only providing the content
they really need.

• To support the enactment of a process for development projects: A process definition only provides value if it
impacts and steers development teams' behavior. Processes as well as guiding method content need to be available in
the context of daily work of project managers, technical leads, and developers. They therefore need to be deployed in
formats that are ready for enactment with the process enactment systems of the team's choice. Typical enactment
systems are project and resource planning systems, work backlog tracking systems, and workflow engines. SPEM 2.0
provides process definition structures that allow process engineers to express how a process shall be enacted within
these systems. For example, SPEM 2.0 process definition can include information that indicates that modeled work
definitions shall be repeated several times in a project (modeling iterations) or that there could be multiple occurrences
of work definitions that can be performed in parallel.

Although, the SPEM 2.0 meta-model has been designed around the support for this framework, many other usage
scenarios could be realized as well. For example, Chapter 2 defines different compliance points and discusses different
implementation scenarios that might realize a variation of the scenarios depicted in Figure 6.1.

6.3 Key New Capabilities of SPEM 2.0

In addition to addressing the RFP requirements listed above, this specification provides the following new capabilities for
process authors.
Software & Systems Process Engineering Meta-Model, v2.0 11

6.3.1 Clear separation of method content definitions from the development process
application of method content

As outlined in Section 6.2, SPEM 2.0 separates reusable method content from its application in processes. Method content
provides step-by-step explanations, describing how specific development goals are achieved independent of the placement
of these steps within a development lifecycle. Processes take these method content elements and relate them into
partially-ordered sequences that are customized to specific types of projects.

For example, a software development project that develops an application from scratch performs development tasks such
as “Find Actors and Use Cases,” “Develop Vision,” or “Design Use Case” similarly to a project that extends an existing
software system. However, the two projects will perform the Tasks at different points in time with a different emphasis,
i.e., they will perform the steps of these tasks differently, assume different inputs, and perhaps apply individual variations
and additions.

Figure 6.2 - Applying the same Method Content (left) in different Processes (right) and different parts of the
breakdown structure of the same Process (right-top)

Figure 6.2 depicts an example from a SPEM 2.0 implementation. It shows that SPEM 2.0 allows each process on the right to
reference common method content, such as definitions for roles, tasks, and work products, as well as general guidance from a
common method content pool depicted on the right. These references realize traceability for processes to their underlying
method content, allowing changes in the methods to be reflected in all processes using it. Moreover, SPEM 2.0 still allows
overriding certain method related content within a process as well as defining individual process-specific relationships for
each process element (such as work breakdown and new relations to work products and roles).

Method Content Element
“Task Definition”
referenced in more then
one Process.

Individual customization
of a “Task Use” by
selecting steps,
providing additional
documentation, etc.

Underlying technical
concept to support reuse
and smart customization:
“Task Use”
12 Software & Systems Process Engineering Meta-Model, v2.0

Figure 6.3 - Method Content definition versus the application of Method Content in a Proces

Figure 6.3 (taken from the Unified Process) shows the difference between method content and process by representing
them as two different dimensions. Method content describing how development work is being performed is categorized
by disciplines in this example. Each discipline is comprised of task definitions (not visible in Figure 6.3) that provide
step-by-step descriptions of how specific development goals are achieved. In a process, task definitions will be selected
from the method content and placed into workflows as task uses ready for instantiation. Instantiation would allocate
resources to perform the work and assign real work products as the inputs and outputs of the tasks. The workload graphs
of Figure 6.3 show work effort for each discipline over time (from left to right).

Figure 6.4 - An alternative presentation for method content versus process

Figure 6.4 shows an alternative presentation (taken from Fujitsu Macroscope) for the separation of method content from
processes. It shows how common method content (Deliverables and Key Roles) definition and structure are used by a variety
of standard processes. A process determines the scope and level of details of the deliverables and orchestrates their production
by key roles.

Method
Content

Process
Software & Systems Process Engineering Meta-Model, v2.0 13

Figure 6.5 - Key terminology defined in this specification mapped to Method Content versus Process

Figure 6.5 provides an overview of how the key concepts defined in this specification are positioned to represent method
content or process. Method content is primarily expressed using work product definitions, role definitions, task
definitions, and guidance. Guidance, such as guidelines, whitepapers, checklists, examples, or roadmaps, are defined in
the intersection of Method Content and Process, because Guidance can be defined to provide background for method
content as well as for specific processes (e.g., exemplary process walkthroughs). On the right-hand side of the diagram,
you see the elements used to represent processes in SPEM 2.0. The main element is the activity that can be nested to
define breakdown structures as well as related to each other to define a flow of work. Activities also manage references
to method content. These references are represented by matching ‘use’ concepts. Activities are used to define processes.
14 Software & Systems Process Engineering Meta-Model, v2.0

6.3.2 Consistent maintenance of many alternative development processes

Figure 6.6 - A process with variations: A replacement of an Activity depicted in blue color and suppressed
Activities in gray color

SPEM 2.0’s goal is to not only support the representation of one specific development process or the maintenance of
several unrelated processes, but to provide process engineers with mechanisms to consistently and effectively manage
whole families of related processes.

SPEM 2.0 utilizes an extended set of relationships for reuse and variability to realize inheritance-like and aspect-
orientation-like semantics as well as concepts for process patterns and so-called method plug-ins. This allows a process
engineer to maintain consistent families of processes which on the one hand are specific to a project type and on the other
hand are also variations of the same base method and process content. The results are different variants of specific
processes based on the same core method content and process structures but applied with different levels of detail and
scale - for example, process variants for small versus large scale development projects.

Figure 6.7 - A process with an optional step (Define Owner Models)

A Process is reused, with
Context specific
variations applied
(in blue and grayed out)
Software & Systems Process Engineering Meta-Model, v2.0 15

Figure 6.7 shows another process example (taken from Fujitsu’s Macroscope) representing different variants on the same
process. It depicts a process segment containing an optional process element Define Owner Models. Optional elements can be
shown or hidden with the +/- toggle button in the upper left, which adds or removes it from a concrete process instance. The
exact circumstances of applying or not applying the optional element are documented in the process description.

6.3.3 Many different lifecycle models

Figure 6.8 - Two processes with different lifecycle models. One common SPEM 2.0 structure to represent any of
these lifecycles

A generic meta-model specification for development processes needs to be able to support different varieties and even
combinations of lifecycle models such as Waterfall, Iterative, Incremental, Evolutionary, and so on for process-based
planning.

The SPEM 2.0 meta-model is designed to accommodate multiple approaches. It provides a rich set of customization
attributes for specifying temporal guidance for the process elements, allowing these to be mapped to project plans that are
realized based on the underlying lifecycle model of the process. For example, the mapping would allow an iterative
process to generate a plan that provides the user-defined number of iterations required for a specific project situation.

Additionally, SPEM 2.0 provides alternative, but consistently maintained, process presentation formalizations such as
break-down structures versus workflow diagrams. This allows the Process Engineer to choose the presentation of his
preference that best fits the lifecycle model used.

GSMethod Incremental Process RUP Iterative Process

represents
instances of represents

instances of

One meta-model structure that
enables the application of a
number of different development
lifecycle types
16 Software & Systems Process Engineering Meta-Model, v2.0

Figure 6.9 - An agile process in Macroscope. It comprises three sub-processes, each of which each follows a
different lifecycle model

6.3.4 Flexible process variability and extensibility plug-in mechanism

Figure 6.10 - Example for a method plug-in extending method content and processes with additional capabilities

SPEM 2.0 defines Method Plug-Ins providing capabilities for tailoring and customizing method content without directly
modifying the original content. Instead, plug-ins just define the differences (contributions, replacements, suppressions)
relative to the original.

OOD for J2EE OOD for J2EE
process
extensio ns

Plug-In

Framework
Method Elements Delivery Processes

Requi rements
with Use Cases

Component-
based
Architecture

OOAD

Large/High Risk
Projects D. Process

Agile Projects
Delivery Process

Maintenance
Projects D. Process

Req. w. Use
Cases process

OOAD process

CB Arch.
WBS Al t.1 p rocess

CB Arch.
WBS Al t.2 p rocess

Extensions on Content
Elements using Contributes,
Replaces, and Extends
rela tionsh ips.

Extensions on breakdown
structures “weaving”
changes into processes
using Contributes and
Replace relationships.
Software & Systems Process Engineering Meta-Model, v2.0 17

SPEM 2.0 supports plug-in mechanisms for method content as well as processes represented as breakdown structures.
SPEM 2.0 supports the definition of contributions to and replacements in a breakdown structure without directly
modifying it, but by building a plug-in to it.

6.3.5 Reusable process patterns of best practices for rapid process assembly

Figure 6.11 - A Process Pattern applied three times to a process; each with individual modifications

SPEM 2.0’s Process Patterns are reusable building blocks for creating new development processes. Selecting and applying
a Process Pattern can be done in one of two flexible ways:

• A pattern can be applied in a sophisticated copy and modify operation, which allows the process engineer to
individually customize the pattern’s content to his needs during the pattern application.

• SPEM 2.0 supports the application of a pattern through the Activity Use mechanisms, which is a way of reusing
process structures of commonly reoccurring Activities. Activities can be factored out into patterns that can then be
applied over and over again in a process. Activity Use defines relationship kinds so that when the pattern is being
revised or updated, all changes will automatically be reflected in all processes that applied that pattern.

One Pattern applied three times
in this delivery process. Process
Engineer only needs to work on
differences.

A Pattern can applied to
(i.e. reused in) many different
processes.

Dynamic binding ensure that when
patterns change that processes
can be automatically updated.

Process Pattern
18 Software & Systems Process Engineering Meta-Model, v2.0

6.3.6 Replaceable and reusable Process Components realizing the principles of
encapsulation

Figure 6.12 - Process Components connected via Work Product Ports

Certain situations in a software development project might require that parts of the process remain undecided or will be
decided by the executing team itself (e.g., in outsourcing situations).

SPEM 2.0 provides a component concept that features ports for declaring work product input and output, allowing the
user to treat the actual definition of the work that produces the outputs as a “black box.” At any point during a project, the
component “realization” detailing the work can be added to the process.

The component approach also allows different styles or techniques of doing work to be replaced with others. For example,
a software code output of a component could be produced with model-driven development or a code-centric technique.
The component concept encapsulates the actual work and lets the development team choose the appropriate technique. It
allows the team to fill the component's realization with their choice of Activities that produce the required outputs.

 My Process

√√

√√

√√

√√

Requirements
Application

Analysis

Design

:Analysis

√√ √√
Requirements Analysis

:Development
√√ √√

Application

Design

:Design
√√ √√ √√
Software & Systems Process Engineering Meta-Model, v2.0 19

6.4 Specification Formalism

This specification documents the Software & Systems Process Engineering Meta-Model 2.0 Meta-Model (SPEM 2.0
Meta-Model) and the Software & Systems Process Engineering Meta-Model 2.0 UML 2 Profile (SPEM 2.0 Profile).

The SPEM 2.0 process engineering meta-model describes the structures needed to formally express and maintain
development method content and processes, i.e., it describes a language and representation schema for method contents
and processes. A meta-model itself is expressed using a meta-modeling language (i.e., a meta-meta-model). The MOF
standard [MOF 2.0] provides such a language by applying and extending the UML [UML 2], i.e., it describes how one
would use UML 2 to describe Meta-Models. In that sense, MOF based on UML 2 is used to describe the UML 2 in a
bootstrapping way.

Figure 6.13 - Model Layers for UML and SPEM 2.0

The SPEM 2.0 Meta-Model is a MOF 2.0 compliant Meta-Model
This document provides an MOF 2.0 compliant meta-model specification of the SPEM 2.0 Meta-Model as depicted on the
left hand side of Figure 6.13. Here you can see the different instantiation layers of the formalism used for this
specification. A model defined on a higher layer defines the language to be used on the next lower layer. MOF is the
universal language that can be used on any layer, but in our case MOF is instantiated from the M3 layer by SPEM 2.0 on
the M2 layer. The UML 2 meta-model itself, as depicted on the right-hand side of the M2 layer, instantiates MOF2
defined on M3 layer in the same way. “Method Library A” is an example of a concrete instance of the SPEM 2.0 meta-
model using SPEM 2.0 as a schema to represent its content. In that sense, “Method Library “ represents a method model.
For example, SPEM 2.0 defines the concepts of Roles, Tasks, and Artifacts as well as relationships between them.
Method Library A on the M1 layer provides concrete instances of Roles and Artifacts from the M2 layer such as “System
Analyst” and “Use Case.” As you see in Figure 6.14, “Use Case” is a direct instance of the meta-class “Artifact,” which
is an instance of the Meta-Meta Class “Class” from the M3 layer. A use-case instance that one would create during a
development project such as “Browse Catalog” for a Web-based sales system would now be an instance of the class “Use
Case” on the M0 layer.
20 Software & Systems Process Engineering Meta-Model, v2.0

The SPEM 2.0 Meta-Model reuses parts of UML 2
The SPEM 2.0 meta-model describes all structures and attributes needed to represent SPEM 2.0-based methods and
processes. However, SPEM 2.0 does not define all of its elements from scratch, but actually reuses elements from the
UML 2 meta-model. Figure 6.13 shows a dependency on the M2 layer from SPEM 2.0 to UML2. This dependency
expresses that parts of the SPEM 2.0 are based on definitions in the UML 2. For example, core elements of SPEM 2.0
such as “Process Element” and “Method Package” have been derived through specialization from classes from the UML 2
Infrastructure Library inheriting relationships that allow the definition of packages and packageable elements. SPEM 2.0
also reused packages from the UML 2 Superstructure, such as packages from UML 2 Activities.

The SPEM 2.0 Meta-Model has a reference implementation
The SPEM 2.0 meta-model can be directly instantiated for an implementation, i.e., a CASE tool could represent all
classes from the M2 layer as Java classes and database tables. Although the SPEM 2.0 MOF meta-model is defined in
UML, an instance of the model (i.e., a concrete method or process) can be represented independent of the UML.

Figure 6.14 - Exemplary instantiations of the modeling layers

The SPEM 2.0 Profile is a UML 2 Profile that provides an alternative representation to the SPEM 2.0 Meta-
Model
In addition to representing a method library such as “Method Library A” with these structures, creating your own
implementation of these classes (e.g., using the Java classes mentioned above), one could also decide to represent classes
from the M1 layer with a generic UML 2 modeling tool such as Magic Draw or IBM Rational Software Modeler. In this
Software & Systems Process Engineering Meta-Model, v2.0 21

case, one would use UML Superstructure classes on the M2 layer and extend these with the official UML2 extension
mechanisms by providing profiles with stereotypes and OCL constraints as depicted on the right hand side of Figure 6.13.
For example, on the right hand side of Figure 6.14 you see a stereotype declaration for Artifact extending the UML 2
class concept. An instance on the M1 layer would be a UML 2 class which has this stereotype assigned. An M0 instance
would still look the same. The only difference is the formalized representation used for the meta-model (M2) and model
(M1).

The advantage of the profile approach is that one does not need to develop CASE tools to maintain methods and
processes, but could use a generic UML 2 modeling tool to do so. The disadvantage of this approach is that such a UML
2 modeling tool would be very generic and that all the specific structuring rules defined in SPEM 2.0 Meta-Model as
simple relationships would need to be enforced with complicated OCL constraints, constraining the user much more than
when modeling with UML. For example, restricting the number of associations a Task can have with Roles when a
specific stereotype is applied enforces the simple constraint of one primary performer Role for a Task. Enforcing all basic
SPEM 2.0 rules in OCL constraints would result in the tool user dealing with very generic OCL error messages and
interactions, resulting in a bad user experience.

SPEM 2.0 defines a Meta-Model as well as a UML Profile
However, this specification provides definitions for both representations:

• The SPEM 2.0 Meta-Model: Defines all structures and structuring rules and is in itself complete. It has been specified
as a MOF model and reuses some key classes from the UML 2 Infrastructure. It also defines the notation of specific
process diagrams.

• The SPEM 2.0 UML Profile: Defines a set of UML 2 stereotypes which allows presenting SPEM 2.0 methods and
processes using the UML 2. However, the definition of these stereotypes in this specification only covers their
presentation, but relies on the SPEM 2.0 Meta-Model for all semantic definitions and constraints. In other words, this
version of the profile does not contain any OCL constraints, but relies on the SPEM 2.0 Meta-Model semantics to
define all of its constraints.

Every section defining concepts will describe both representations.

6.5 Statement of proof of concept and commercial availability

Major parts of this specification that have been implemented are freely available in open source at the Eclipse Process
Framework (www.eclipse.org/epf/). See Annex C for several case studies modeling processes from different sources and
domains that have been created using this technology. There are several organizations and companies that have announced
they will model their free or commercial processes with this technology. Some of them are Armstrong Process Group,
Open Group, Number Six Software, and Telelogic.

There is also a commercial product available from IBM that has been built on top of this open source implementation. A
large number of commercial processes from IBM Software Group, IBM Rational, IBM Tivoli, and IBM Global Services
as well as Sierra Systems and the DSDM Consortium have been modeled with this implementation, and are or will be
available for purchase. See Annex C for examples from these processes.

Other authors of this specification such as Adaptive and Fujitsu have expressed their intent of implementing this
specification and representing their processes with the concepts of this specification within a year after adoption.
22 Software & Systems Process Engineering Meta-Model, v2.0

6.6 Changes to Adopted OMG Specifications

This specification completely replaces the adopted SPEM specification Version 1.1, formal/05-01-06.

6.7 How to Read this Specification

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference specification
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search. Section 2.1 provides a detailed overview to the organization of the SPEM meta-model and its
presentation in the subsequent chapters. Chapters 7 to 14 follow that structure and present the content of the meta-model
packages one by one. Chapters 15 to 18 provide additional background information for the meta-model such as examples
for Process Diagrams, how to use SPEM 2.0 as a UML 2 model profile, etc.

6.8 Acknowledgements

The following companies submitted parts of this specification:

• Adaptive Ltd.

• Fujitsu & Fujtsu Consulting

• Fundacion European Software Institute

• International Business Machines Corporations

• Softeam

The following companies support this specification:

• Alcatel

• Armstrong Process Group, Inc.

• Aubry Conseil

• BAE Systems

• Borland Software Corporation

• Capgemini

• EDS

• HP

• Kabira

• Laboratoire d'Informatique Paris 6 LIP6

• Lockheed Martin

• MEGA
Software & Systems Process Engineering Meta-Model, v2.0 23

• MetaMatrix

• Mitre

• Number Six Software

• Sierra Systems

• SINTEF ICT

• Telelogic

• Unisys

The specification was written by Peter Haumer (IBM Rational Software, phaumer@us.ibm.com) with direct contributions
by Todd Fredrickson (IBM Global Services, toddfr@us.ibm.com) and Philippe Desfray [Process Components] (Softeam,
Philippe.Desfray@softeam.fr). It incorporates additional concepts and direct feedback from Kamal Ahluwalia (Osellus),
Chris Armstrong (Armstrong Process Group), Claude Aubry (Aubry Conseil), Reda Bendraou (Laboratoire d'Informatique
Paris 6 LIP6), Philippe Desfray (Softeam), Tony Di Salvo, Serge Deschamps (Fujitsu Consulting), Karl Frank (Borland),
Kenneth Hussey (IBM Rational), Sridhar Iyengar (IBM Rational), Xabier Larrucea (ESI), Hiroshi Miyazaki (Fujitsu),
Pete Rivett (Adaptive).

We also would like to thank Eric Aker, Ricardo Balduino, Alfredo Bencomo, Stefan Bergstrom, Amanda Brijpaul, James
Bruck, Trevor Collins, Michael Darmody, Phil Edwards, Carl Engel, Jonathan Foo, David Gerber, Daniel Giraudeau,
Carlos Goti, Bjorn Gustafsson, Michael Hanford, Margaret Hedstrom, John Hollingsworth, Sigurd Hopen, Kelli Houston,
Volker Kopetzky, Mark Krol, Per Kroll, Phong Le, Guillermo Lois, Kelvin Low, Brian Lyons, Bruce MacIsaac, Jas
Madhur, Sumeet Malhotra, Jason Xabier Mansell, Andrew Mirsky, Erik O'Neil, Russell Pannone, Thierry Paradan, Steve
Pendergrass, Cecile Peraire, Dan Popescu, Brian Schlosser, Gordon Schneemann, John Smith, Ian Spence, Vivienne Suen,
Shilpa Toraskar, Bobbi Underbakke, Gerard Vahee, Steve Von Wald, Jinhua Xi, Bingxue Xu, Charles Yan as well as many
other process stakeholders and reviewers.
24 Software & Systems Process Engineering Meta-Model, v2.0

7 Using SPEM 2.0 as a UML 2 Superstructure Profile

As outlined in Section 6.4, “Specification Formalism,” on page 20 this specification defines the Software Process
Engineering Meta-Model 2.0 as a MOF 2.0-based Meta-Model (referred to as the 'SPEM 2.0 Meta-Model') as well as a
UML 2 Superstructure-based Profile (referred to as the 'SPEM 2.0 Profile'). Therefore, every concept definition in this
specification defines in detail the meta-model classes as well as the UML Stereotypes. However, because the focus of the
descriptions throughout Chapters 8 to 14 is on the meta-model, this chapter provides a general overview, rationale, and
summary for the SPEM 2.0 Profile. In other words, it condenses the definitions distributed over the different chapters into
one coherent overview. The chapter assumes general knowledge of the key meta-model concepts defined in Chapters 8 to
14. “Annex A: SPEM 2.0 UML 2 Profile Summary” provides the complete alphabetical overview to all of these
stereotypes.

The specification defines in addition to the SPEM 2.0 Profile a second non-standard convenience profile called “SPEM
2.0 Base Plugin Profile,” which provides useful stereotypes for many typical Kind (Section 8.2) class instances. Many
examples presented in this specification use this profile as well. See Chapter 18 for the definition of this profile.

7.1 SPEM 2.0 Profile Overview

The SPEM 2.0 Profile defines stereotypes for UML 2 Superstructure model elements for almost every meta-model
concept introduced in the following chapters that can be represented in UML 2 diagrams in a meaningful way. Every
stereotype definition is listed in each section defining the concept and summarized again in an alphabetical list in Annex
A. All of these stereotypes can be applied as extensions to the specified UML 2 meta-model classes as specified for each
SPEM 2.0 meta-model class in the subsection “UML 2 Profile Notation.” Every stereotype is defined throughout Chapters
8 to 14 in a UML 2 stereotype diagrams as well as in a table as the one shown below that lists

• the stereotype name
• the name of the metaclass it extends as well as the names of superclass stereotypes it is derived from
• the keyword that is used for presentation of the stereotype
• the names of properties that it defines
• a statement indicating if the stereotype is abstract
• a graphical presentation icon

Figure 7.1 shows an example with a UML Class Diagram that represents several SPEM 2.0 concepts as UML classes with
their respective stereotypes applied.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

TaskDefinition MethodContentElement,
WorkDefinition /
Classifier

task definition n/a no

Software & Systems Process Engineering Meta-Model, v2.0 25

Figure 7.1 - UML 2 Class Diagram using SPEM 2.0 Profile with stereotyped classes

The example shows that the Task Definition “Use Case Analysis” has mandatory and optional input and output types, as
well as is being performed by two Role Definitions: Designer, being the primary performer as well as System Analyst,
being the additional or optional performer. Note that the stereotypes ‘primary’ and ‘additional’ are actually not part of the
SPEM 2.0 UML Profile, but have been defined as Kinds of the Task Definition Performer and are therefore part of the
SPEM Base Plugin defined in Chapter 18.

Figure 7.1 also provides an example for how stereotypes can be presented in different ways. The default presentation
option used for almost all diagrams created for this specification is to define and use an icon for every stereotype defined
for classes derived from the UML 2 Classifier. In addition, stereotypes have textual presentations. Figure 7.1 shows
examples for using the icon presentation as well as one example (Use Case Realization) that is presented using the textual
stereotype presentation and an iconic decoration.

For backwards compatibility to SPEM 1.1 models it is also valid to use stereotype icons defined in the 1.1 version of this
specification. Figure 7.2 shows the same classes of Figure 7.1 but with the SPEM 1.1 icons. All of these alternative
backwards-compatible icons are listed with the classes they apply to. Note that SPEM 2.0 introduces several new
concepts and that not all SPEM 2.0 concepts have mapping version 1.1 stereotypes.
26 Software & Systems Process Engineering Meta-Model, v2.0

Figure 7.2 - The same SPEM 2.0 class diagram of Figure 7-1 using SPEM 1.1 stereotype icons

It is also important to point out that the diagram of Figure 7.2 does actually not represent valid SPEM 1.1 syntax. In
SPEM 2.0 Work Definitions such as Tasks and Activities are represented as stereotyped UML 2 Activities. SPEM 1.1
required Work Definitions to be modeled as operations of Roles and Process Performers. Therefore, the correct SPEM 1.1
equivalent of Figure 7.2 is depicted in Figure 7.3 for reference. It shows the Designer owning the Use Case Analysis
Work Definition as an operation.

Figure 7.3 - Syntactically correct SPEM 1.1 representation of Figure 7-2

The examples of Figure 7.2 and Figure 7.3 also show the limitations of SPEM 1.1, in which it was not possible to show
assisting (or additional performing) roles as part of a class diagram. They had to be specified via tagged values and/or
annotated with notes. Assisting roles could have been specified in Use Case diagrams in SPEM 1.1, but this approach
caused a lot of confusion because the SPEM semantics heavily contradicted the UML use case semantics. Use Case
diagrams have therefore been invalidated for the SPEM 2.0 Profile. Specific reasons were that SPEM 1.1 applied the
Activity stereotype to UML use cases, which was confusing as use cases were derived from classifier in UML and not
operation as SPEM 1.1 activities. Also the use of UML actors for SPEM 1.1 Roles contradicts UML semantics as SPEM
Roles are not external interacting entities as required for UML actors, but are the actual performers and therefore part of
the behavior described by SPEM activities. Finally, it was also not possible to specify in SPEM 1.1 if a parameter was
optional or mandatory as can be done with new SPEM 2.0 stereotypes for modeling inputs and outputs for a Task or
Activity.
Software & Systems Process Engineering Meta-Model, v2.0 27

The SPEM 2.0 Profile defined in this specification focuses on utilizing Class, Activity, and State Model Diagrams. All
proprietary diagrams defined in this specification such as the Work Product Dependency diagram (Section 13.15, class
diagram) or the Team Profile diagram (Section 13.15, class diagram) can be represented with any of these three diagram
types. The use of other UML 2 diagram types is not discouraged, but has not been considered in this release.

The use of these stereotypes for the UML diagrams has to be restricted to the rules defined by the SPEM 2.0 meta-model.
It is, for example, not valid to define a Step which is composed of Task. Although, UML 2 would allow you to model
such a construct, it would not represent a valid SPEM 2.0 model. However, this version of the specification does not
define detailed OCL constraints formulating the exact rules for using the SPEM 2.0 Profile stereotypes. The rules would
be redundant with the information already captured in the SPEM 2.0 meta-model and would not provide additional value
(except for supporting UML 2 CASE tool vendors in implementing the SPEM 2.0 Profile).

The following sections define more specific principles and applications of the SPEM 2.0 Profile stereotypes defined
throughout this specification.

7.2 Describing Work Definitions and Work Breakdown as UML
Behavior Models

The Software Process Engineering Meta-Model 2.0 (SPEM 2.0) separates reusable Method Content from its application in
Processes (see Section 6.3.1, “Clear separation of method content definitions from the development process application of
method content,” on page 12 and Chapter 13). For example, a Task Definition (Section 12.9) defined as Method Content
can be invoked many times throughout a development process. Each invocation is defined with an individual Task Use
(Section 13.14), which can manage its own invocation specifics such as a change in the Roles involved in performing the
Task or an omission of specific work product input types.

The UML 2 Superstructure specification defines a very similar approach for representing behavior. It allows defining
reusable behavior with UML Activities which are invoked by Actions presented in Activity diagrams. The behavior
expressed by UML Activities can either be bound to objects and related to the invocation of specific object’s operations
by Actions, but also be defined independent of objects as so-called ‘first class behavior.’ Further, UML Activities can be
nested. In other words, a UML Activity can be defined by workflow of Actions, which in turn can invoke other Activities,
etc. Finally, UML Activities derive from the UML Classifier and can therefore have structural relationships such as
association to other UML Classes. All of the UML 2 capabilities described in this paragraph have been utilized when
representing sub-classes SPEM 2.0 Work Definitions (Section 8.4) in the SPEM 2.0 Profile.

Work Definitions (Task, Step, Activity) are represented by UML 2 Activities
The Work Definition’s Task Definition and Step (Section 12.8) specify ‘first class behavior’ describing development
work. These descriptions define the behavior of either one Role Definition performing the work or many Role Definitions
participating and collaborating with each other during the Task Definition’s performance. On the other hand, formalizing
the exact behavior or collaboration of Role Definitions, in addition to defining Steps for a Task Definition and describing
them in natural language, is often regarded as over-specification and not common practice. Therefore, additional UML
Collaborations expressing Role Definition interactions are not encouraged by this specification. Instead it is recommended
to describe Task Definition and Steps, the involvement of specific Roles, as well as their collaboration needs, with textual
descriptions using the mainDescription attribute defined in Section 11.2.
28 Software & Systems Process Engineering Meta-Model, v2.0

As a result, Task Definitions and Steps extend UML 2 Classifier and can be represented as UML 2 Activities with
respective stereotypes (defined in Section 12.8 and Section 12.9). A Task Definition is represented as an Activity which
contains a diagram with CallBehavior Actions that invoke Steps represented as UML Activities as well, which are owned
by the Task's UML Activity. Steps can be refined into sub-Steps, which are represented as owned UML Activities as
well.

Figure 7.4 - Task represented as stereotyped UML 2 Activity diagram (left) and model objects needed (right)
showing Steps as CallBehavior Actions invoking Activities (step icons with the same name) and performing Roles

Figure 7.4 shows the “Use Case Analysis” example from Figure 7.1 providing a more detailed representation for the Task,
which has been now described using Steps. The picture shows on the left a UML 2 Activity diagram nested in a UML 2
class diagram with stereotyped model elements. It shows on the right an overview to the model objects created for this
diagram. Figure 7.4 shows the Steps as Actions that invoke Activities with the same name. It further represents the
primary performing role System Analyst as well as the additional performing role Designer. Further, it defines Activity
Parameters which refer to the Artifacts Analysis Model, Use Case Model, and Use Case Realization.

Processes represent Task Uses with Actions.
When defining a Process with breakdown structures, two additional SPEM 2.0 meta-model concepts are used to represent
work:

• SPEM Activities (Section 13.8), which are special Work Definitions and can be represented as UML Activities just as
any other SPEM 2.0 Work Definition. Activities can be nested and they can contain any Method Content Use element
(Section 13.7) in particular Task Uses.
Software & Systems Process Engineering Meta-Model, v2.0 29

• Task Uses (Section 13.14), which are not Work Definitions by themselves, but refer to Tasks and represent invocations
of Task in the Process. Therefore, Task Uses are represented in the SPEM 2.0 Profile as stereotyped Actions.

Figure 7.5 provides an example of a SPEM 2.0 Activity which has been modeled as a UML Activity. The Activity
diagram shows Actions representing SPEM 2.0 Task Uses. Input and Output pins can be used to specify the specific input
and output Work Product Uses needed for these specific Task Uses for this specific Activity. For example, although the
Task “Use Case Analysis” has been defined in Figure 7.5 to have an Analysis Model input, this particular Task Use
overrides the Task Definition in this particular Activity to not require this input by not specifying such an input pin (see
Section 13.7 for more details and example for Activity-local changes defined with Method Content Uses).

Figure 7.5 - Example for an Activity with Task Use

UML Activity Diagrams can be used to represent nesting of SPEM 2.0 Activities defining workflow and the breakdown
of work.
30 Software & Systems Process Engineering Meta-Model, v2.0

Figure 7.6 - SPEM 2.0 Activity Workflow represented as UML Activity diagram

7.3 Describing Work Product Evolution with State Machines

In addition to or instead of modeling the flow of work with UML 2 Activity diagrams, many process engineers focus on
describing the 'flow of state' that many key development work products go through. For example, Figure 7.7 shows on the
left-hand side two typical 'lifecycles' for two artifacts.
Software & Systems Process Engineering Meta-Model, v2.0 31

Figure 7.7 - Examples for work product state machines (left) and how states can be used in object flow diagrams
to qualify the inputs and outputs of activities

A use case, for instance, is typically only briefly described when identified and modeled. During use case workshops,
interviews, or other collaborations it will be outlined to gain a better understanding and agreement of the use case’s main
flows. Later it is detailed and reviewed. Using the SPEM 2.0 UML Profile UML 2 State Machines can be utilized to
define and model such work product lifecycles as depicted in Figure 7.7 (left).

As one can already see from the description of these states for use case example in the text above, it is quite straight
forward to link the state transitions to work definitions that actually cause the state transition. Hence, the right-hand side
of Figure 7.7 shows how the SPEM 2.0 UML Profile extends UML 2 Activity diagrams with the ability to annotate states
to input and output PINs. Thus, state machines and activity diagrams can be related to each other such that activities can
cause a state transition for one or more work products. In the case of Figure 7.7, we see three work products participating
in the activity “Find Actors and Use Cases.” The diagram specifies that the states listed for the inputs are to be interpreted
as a precondition for both the activity to be performed and the state listed for the Use Case Model output (the state the
activity is supposed to establish for the work product before it can be considered to be finished). See Section 10.1 on how
these so-called entry and exit states for work definitions have been modeled in the SPEM 2.0 meta-model.

7.4 Relating Work Product State to Work Definitions

As we have seen in the last section, transitions of work product state models can be systematically linked to work
definitions. In that sense, processes can be described entirely from a work product lifecycle’s perspective and still
comprise all the information that breakdown structure oriented processes provide, such as work definitions, roles, and
guidance.

Work Product: Associated state chart Tasks (Activities): Entry + Exit States
32 Software & Systems Process Engineering Meta-Model, v2.0

Figure 7.8 - State transition annotated with mapping work definitions

Figure 7.8 provides two more examples using UML 2 state models with the SPEM 2.0 UML profile for the Use Case
artifact. These examples define two alternative ways of working with use cases that reflect alternative processes for
process users to choose from when instantiating a process, such as processes that require high ceremony ways of working
and artifact management as well as low ceremony ones. Each transition is annotated with reference to work definitions
such as Tasks or Activities that define how the use case would be brought from one state to another state. Thus, the task
Find Actors and Use Cases would result in use cases in the state of Briefly Described, whereas the task Detail Use Case
assumes/requires this state on a use case and transitions it to the state Detailed. Transitions can be linked to one or more
work definition such as a Step, Task, Activity, or Process.
Software & Systems Process Engineering Meta-Model, v2.0 33

Figure 7.9 - Another view of how state transitions relate to work definitions

Systematically utilizing the relationships between states, transitions, and work definitions can help process engineers in
finding the right work definitions when developing the process starting with work products and their state models. To that
extent, Figure 7.9 provides another view on how state transitions and work definitions relate to each other. It shows how
state transitions can be directly mapped to processes represented as breakdown structures. Different levels of the
breakdown structure relate to different work products. For example, the top-level phases of the process shown in
Figure 7.9 link to a work product that tracks the state of the overall project, while state transitions for a work product
(such as defect) link to low-level work definitions in the breakdown structure.

Every Level in th is breakdown represents
a Work Definition (Process, Iteration, Activity, Task)

Work Definitions relate to State Transitions
34 Software & Systems Process Engineering Meta-Model, v2.0

8 Core

SPEM 2.0 defines several compliance points that enable implementers to freely choose amongst the process modeling
capability they need by selecting specific meta-model combinations for implementation (see Section 2.2 and Section 2.6
for details). The Core meta-model package, however, contains the meta-model classes and abstractions that build the
foundation for all other meta-model packages. In other words, all the common classes amongst all compliance levels
defining the core of SPEM 2.0 have been placed in this meta-model package.

Core defines classes for two SPEM 2.0 capabilities:

• The ability for a SPEM 2.0 user to create user-defined qualifications for a SPEM 2.0 classes allowing users to
distinguish different ‘kinds’ SPEM 2.0 class instances.

• A set of abstract classes to define work expressed as SPEM 2.0 processes. All SPEM 2.0 classes that derive from these
classes are intended to map to behavior classes of behavior models (e.g., can be assigned as stereotypes to UML 2
Activities (as in Chapter 7) or linked to behaviored classifiers (as in Chapter 9)).

Figure 8.1 - The SPEM 2.0 UML 2 Profile stereotypes defined in the Core package
Software & Systems Process Engineering Meta-Model, v2.0 35

8.1 Extensible Element

Super Class
Classifier (from Constructs in UML 2 Infrastructure)

Figure 8.2 - Extensible Elements can have a Kind

Description
Extensible Element is an abstract generalization that represents any SPEM 2.0 class for which it is possible to assign a
Kind to its instances expressing a user-defined qualification. Every SPEM 2.0 class that allows such a qualification
derives directly or indirectly from Extensible Element.

Association Properties

Semantics
Extensible Element provides the property of relating a Kind class to its sub-classes. Such Kinds cannot be reused for
many different subtypes of Extensible Element and therefore can only be related to exactly one meta-model class.

Extensible Element defines a constraint called Applicable MetaClass. The constraint defines that the Kind an instance of
Extensible Element links to has to link to an applicable Meta Class that is either of the same class as Extensible Element
or a superclass of the Extensible Element class. See Semantics of Kind (Section 8.2) for more details.

SPEM 2.0 Profile Notation

• kind: Kind An instance of Extensible Element can be linked to zero or one Kind in which the Kind
instance expresses a specific user-defined qualification for that Extensible Element instance.

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

ExtensibleElement Classifier extensible element kind yes
36 Software & Systems Process Engineering Meta-Model, v2.0

8.2 Kind

Super Class
Extensible Element

Description
Kind is an Extensible Element. It instances are used to qualify other SPEM 2.0 Extensible Element instances with a user-
defined type or kind.

Association Properties

Semantics
As many methods and processes to be modeled with SPEM 2.0 need to define their own refined vocabulary, Kind
provides the ability to a SPEM 2.0 modeler to expresses such user-defined qualifications for instances of Extensible
Element. Because Kind is an Extensible Element itself one can define Kinds for the Kind class itself as well.

For example, a subclass of Extensible Elements that typically utilizes Kinds is the meta-model class Guidance (Section
11.4). Typical Guidance kinds would be: White Paper, Guideline, Checklist, Template, Reports, etc. Because of the
Applicable MetaClass constraints, these Kinds can only be related to instances of the Guidance class as well as instances
of any subclasses of Guidance such as Metric (Section 11.5).

Other examples are Kinds for Breakdown Elements such as Phase, Iteration, Sprint, or Increment; Kinds of Work
Products such as Artifact, Deliverable, or Outcome; Kinds of Categories such as Classification, View, Grouping, Practice,
Discipline, Domain, etc. All of these allow SPEM 2.0 users to distinguish the special kinds of SPEM 2.0 elements that
play important role in their method or process. See Chapter 18, which defines the SPEM 2.0 base plug-in containing a
collection of typical predefined Software Engineering Kinds, for many more examples.

SPEM 2.0 Profile Notation
Modeled as a string property of Extensible Element (Section 8.1).

8.3 Parameter Direction Kind

Super Class
n/a : Enumeration

Description
This enumeration defines for Work Definition Parameter instances whether the parameter represents an input, output, or
input as well as output.

• applicableMetaClass: Class An instance of Kind can only be used for instances of exactly one SPEM 2.0
Extensible Element subclass or its subclasses. This property specifies which one.
Software & Systems Process Engineering Meta-Model, v2.0 37

Enumeration Literals

SPEM 2.0 Profile Notation
See Work Definition Parameter (Section 8.5).

8.4 Work Definition

Super Class
Classifier (from Constructs in UML 2 Infrastructure)

Figure 8.3 - Work Definition and its related elements

Description
Work Definition is an abstract Classifier that generalizes all definitions of work within SPEM 2.0. Work Definition
defines some default associations to Work Definition Parameter and Constraint. Work Definitions can contain sets of pre-
and post-conditions defining constraints that need to be valid before the described work can begin or before it can be
declared as finished. Note that general UML constraints inherited via Classifier can be used to define additional
constraints and rules for Work Definitions.

• in A Work Definition Parameter instance with this direction value represents an input.

• out A Work Definition Parameter instance with this direction value represents an output.

• inout A Work Definition Parameter instance with this direction value represents an input and output.
38 Software & Systems Process Engineering Meta-Model, v2.0

Association Properties

Semantics
Work Definitions represent the behavior for doing work. In contrast to SPEM 1.1 the Work Definition behavior is not
bound to one specific classifier as an operation, but is a performer independent definition of work represented as a
classifier itself. For example, a Work Definition could represent work that is being performed by one specific Role (e.g.,
a Role performing a specific Activity), by many Roles working in close collaboration (many Roles all working together
on the same interdisciplinary Activity), or complex work that is performed throughout the lifecycle (e.g., a process
defining a breakdown structure for organizing larger composite units of work performed by many Roles working in
collaboration).

Work Definitions can be modeled with behavior model representations such as UML 2 Activity diagrams by merging this
UML 2 meta-model package into the Process Behavior package. However, it is also a common practice to just textually
describe the behavior of work definitions. Such descriptions can be added by merging this package into the Managed
Content package.

• /ownedParameter: Work
DefinitionParameter

Work Definition can define an ordered set of parameters to specify inputs and
outputs. The concrete subclasses of Work Definition need to define their own
subclasses of Work Definition Parameter to add reference to concrete input/output
meta types.

• precondition: Constraint This composition association adds an optional pre-condition to a Work Definition. A
pre-condition defines any kind of constraint that must evaluate to true before the work
described for the Work Definition can start. For example, a pre-condition could define
that an input Work Product needs to be in a specific state or that other related work
must be in a certain state (e.g., ‘Input document X has been reviewed and signed by
customer AND the work defined by Work Definition “Management Review” is
complete’) before the work can begin.

• postcondition: Constraint This composition association adds an optional post-condition to a Work Definition.
A post-condition defines any kind of constraint that must evaluate to true before the
work described for the Work Definition can be declared completed or finished and
which other Work Definitions might depend upon (e.g., for their pre-conditions). For
example, a post-condition could define that a work product defined to be the output
must be in a specific state before the Work Definition can end (e.g., ‘Use Case must
be in state fully described and reviewed by System Analyst’).
Software & Systems Process Engineering Meta-Model, v2.0 39

SPEM 2.0 Profile Notation

8.5 Work Definition Parameter

Super Class
Classifier (from Constructs in UML 2 Infrastructure)

Description
A Work Definition Parameter is an abstract generalization for Process Elements that represent parameter for Work
Definitions. It is used for declarations of inputs and outputs. The meta-classes for the input/output types are to be defined
by Work Definition Parameters concrete subclasses.

Attributes

Semantics
This class is to be specialized by a class defining an association to the class that defines the input/output meta-class.
SPEM 2.0 distinguishes between Work Product Definitions and Work Product Use. The general parameter class Work
Definition Parameter defines common properties used by Work Definition specialization that either use Work Product
Definitions or Work Product Uses.

SPEM 2.0 Profile Notation
The UML 2 Profile does not represent Work Definition Parameter instances as classes, but creates association between
Work Definitions and Work Products using the following stereotypes to indicate the Parameter Direction Kind. For
simplification, the stereotype is not abstract. All subclasses of Work Definition Parameter use the same keywords.

 Stereotype Metaclass Keyword Properties Abstract Icon

WorkDefiniton Classifier,
Action

n/a precondition,
postcondition

yes n/a

• direction: ParameterDirectionKind = inout This attribute represents the kind of the input as specified by the
enumeration Parameter Direction Kind.
40 Software & Systems Process Engineering Meta-Model, v2.0

8.6 Work Definition Performer

Super Class
Classifier (from Constructs in UML 2 Infrastructure)

Description
Work Definition Performer is an abstract Classifier that represents the relationship of a work performer to a Work
Definition. Different specialization of Work Definition will introduce different kinds of performers. Work Definition
Performer is intended to be specialized adding the association to the concrete performer meta class.

Association Properties

Semantics
No additional semantics. See its subclasses.

SPEM 2.0 Profile Notation
The UML 2 Profile represents Work Definition Performer as concrete association extension. The different Kinds of
performers shall be modeled with additional stereotypes.

Stereotype Metaclass Keyword Properties Abstract Icon

ParameterIn Association input n/a no n/a

ParameterOut Association output n/a no n/a

ParameterInOut Association inoutput n/a no n/a

• /linkedWorkDefinition: WorkDefinition This derived union provides access to all the Work Definitions a Work
Definition Performer instance is related to.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

Performer ExtensibleElement /
Association

performs n/a no n/a
Software & Systems Process Engineering Meta-Model, v2.0 41

42 Software & Systems Process Engineering Meta-Model, v2.0

9 Process Structure

The Process Structure meta-model package contains the basic structural elements for defining development processes.
Development processes define how development projects shall be executed. One of the most common characteristics
found within the many different definitions of process in literature is sequencing of phases and milestones expressing a
lifecycle of the product under development. Processes also define how to get from one milestone to the next by defining
sequences of work, operations, or events that usually take up time, expertise, or other resource and which produce some
outcome.

Figure 9.1 - The SPEM 2.0 UML 2 Profile stereotypes defined in the Process Structure package

In the SPEM 2.0 Meta-Model, processes are represented with a breakdown structure mechanism that defines a breakdown
of Activities which are comprised of other Activities or leaf Breakdown Elements such as Milestones or Role Uses. This
breakdown structure mechanism is defined independent of the concrete lifecycle models the process engineer wants to
express with them. In other words, the meta-model is able to represent ‘different types of’ processes, such as waterfall
processes as well as iterative or incremental process models, by modeling them all as breakdown structures, but applying
different structural relationships and descriptive attributes expressing their lifecycle specifics.

Moreover, the generic SPEM 2.0 meta-model mechanisms enable different types of presentations for breakdown
structures, as illustrated with examples in the sections below. For instance, processes modeled as SPEM 2.0 breakdown
structures can be presented as project plan-like structured list, workflow or activity diagrams, as well as static structure
diagrams showing inputs/outputs to work as well as the performing roles.
Software & Systems Process Engineering Meta-Model, v2.0 43

Although a Process aims to describe the work to be performed in a development project, it keeps certain decision that are
too project specific open. For example, the breakdown structure defines which Breakdown Elements have multiple
occurrences or is repeatable via it respective attributes, but does not say how many occurrences and how many repeats/
iterations it will have. These decisions have to be made by a project manager when planning a concrete project, project
phase, or project iterations utilizing the attributes of Breakdown Element and Work Breakdown Element to identify the
elements that need to instantiated multiple times (allowing parallel execution) or repeatedly (being executed sequentially).

Figure 9.2 - Overview of the main classes and associations of Process Structure package
(this diagram does not include all generalizations, see Figure 9-11 for the complete taxonomy)

Processes defined with this meta-model package’s structures can represent ad-hoc processes that do not refer to any
specific explicit methods to be applied within the process, but that do organize work as a breakdown of activities and
role-work product responsibility allocation that typically rely on tacit knowledge for understanding what work such
responsibilities entail. Popular examples for such processes are Scrum-based processes, which assume self-organizing
teams, but define a general process for every sprint and across sprints defining key deliverables and milestones. Figure
9.3 depicts an example for such a process, which is organized into phases and iterations, as well as a breakdown of
activities that comprise of role use instances as well as work products each role use is responsible for. The activities listed
44 Software & Systems Process Engineering Meta-Model, v2.0

for an iteration in Figure 9.3 are high level and do not explicitly define what concrete work needs to be done on the work
products listed (e.g., managing an iteration with an iteration plan and work items list can be done following many
different management methods).

Figure 9.3 - Process Structure example: Multi-phased light-weight activity breakdown defining work product use
responsibilities

Behavior of processes can be modeled by merging this package into Process Behavior (Chapter 10). Textual descriptions
for development process structure elements and behavior can be added by merging this meta-model package into the
Managed Content package (Chapter 11).

9.1 Activity

Super Class
Work Breakdown Element

Work Definition (from Core)
Software & Systems Process Engineering Meta-Model, v2.0 45

Figure 9.4 - The Work Definition Activity in relationship to its work performers and input/outputs

Description
An Activity is a Work Breakdown Element and Work Definition that defines basic units of work within a Process as well
as a Process itself. In other words, every Activity represents a Process in SPEM 2.0. It relates to Work Product Use
instances via instances of the Process Parameter class and Role Use instances via Process Performer instances.

Activity supports the nesting and logical grouping of related Breakdown Elements forming breakdown structures (not
shown in Figure 9.4, see Figure 9.9 in Section 9.3). The concrete breakdown structure an Activity defines (i.e., its
contained elements) can be reused by another Activity via the used Activity association (see Figure 9.5), which allows the
second Activity to inherit its complete sub-structure (see Section 9.2 for details).

Attributes

Association Properties

• useKind: ActivityUseKind = na This attribute is set to a value of the enumeration Activity Use Kind other than its
default ‘na’ when the Activity instance is associated to another Activity via the
useActivity association for reuse. The value of the attribute of the Activity of the
to-many end defines the semantics of the association according to the definitions
in Section 9.2, Activity Use Kind.

• nestedBreakdownElement: BreakdownElement This association represents breakdown structure nesting. It defines
an n-level hierarchy of Activities grouping together other
Breakdown Elements such as other Activities, Milestones, etc. (see
Figure 9.9)
46 Software & Systems Process Engineering Meta-Model, v2.0

Semantics
Activity is a concrete Work Definition that represents a general unit of work assignable to specific performers represented
by Role Use. An Activity can rely on inputs and produce outputs represented by Work Product Uses. Activity also
represents a grouping element for other Breakdown Elements such as Activities, Method Content Uses, Milestones, etc.
It is not per-se a ‘high-level’ grouping of only work as in other meta-models, but groups any kind of Breakdown
Elements. For example, one can define valid Activities that group only Work Product Uses without any matching Role
Uses or Parameters. Such a structure expresses the information that the Activity requires work on these Work Products,
without specifying how and who, thus providing the flexibility required for modeling partial or Agile processes. Activity
instances can inherit, contribute, or replace properties from other reused activities. The semantics for the three kinds of
reuse are specified in Section 9.2, Activity Use Kind.

SPEM 2.0 Profile Notation
The Activity stereotype is a subclass of the Work Definition stereotype. Actions can also be assigned the Activity
stereotype as SPEM 2.0 uses Activity Use instead of Actions.

• ownedProcessParameter: ProcessParameter This composition association manages a list of ordered
ProcessParameters for an Activity instance. The association
property subsets the ownedWorkDefinitionParamter of Work
Definition.

• suppressedBreakdownElement: Breakdown
Element

The suppressed association allows hiding any Breakdown Element
from the interpretation of a process structure. It is used in
combination with the usedActivity association for elements that are
inherited by usedActivity. The reusing activity can define its own
local elements that refer to the base activity’s element to denote the
suppression (see Figure 9.5 and Section 9.2 for more details).

• usedActivity: Activity This association defines a reuse generalization for Activities
according to the semantics defined in Section 9.2, Activity Use
Kind. Activity instances on the to-many end of the association can
reuse properties of the Activity instance on the to-one end (base) of
the association.
Software & Systems Process Engineering Meta-Model, v2.0 47

9.2 Activity Use Kind

Super Class
n/a : Enumeration

Figure 9.5 - Activity Use and Activity Use Kinds

Stereotype
Meta-/
Superclass Keyword Properties Abstract Icon

Activity WorkDefinition,
Action

activity n/a no

SPEM 1.1
backwards
compatibility
icon:

NestedBreakdownElement Association nesting n/a no n/a

UsedActivityExtension Generalization activity
extension

n/a no n/a

UsedActivityLocalContribution Dependency local
contribution

n/a no n/a

UsedActivityLocalReplacement Dependency local
replacement

n/a no n/a

Suppressed Dependency suppressed n/a no n/a
48 Software & Systems Process Engineering Meta-Model, v2.0

Description
This enumeration defines the nature of the reuse for an Activity that relates to exactly one other Activity via the used
Activity association. Activity Use in SPEM defines the ability to reuse the structures defined for one Activity via its
nested Breakdown Element composition in a second Activity without the need to physically copy these structures.
Instead, Activity Use defines a way to dynamically inherit these structures from the referenced the activity. Such reuse is
typically established via an Extension relationship, and then further refined using additional local Contribution and local
Replacement relationships amongst substructure elements of the extending activities.

Enumeration Literals

Semantics
The Extension Activity Use Kind provides mechanisms for dynamically linking Activities for reuse to other Activities or
Processes as shown in the following example depicted in Figure 9.6.

• na This is the default value for Activities that do not instantiate the usedActivity association.

• extension Extends provides a mechanism for dynamically reusing Activity substructures (elements
contained via the nested Breakdown Element composition) in other Activities. Typical
applications of Extension are to represent reusable process patterns as activities, which are then
dynamically bound to different activities via the Extension use Kind in a larger process. An
Activity is linked via extension by defining a usedActivity association instance from an Activity
within the Processes to the Activity representing the process pattern and setting the useKind
attribute to the Extension value. The source Activity inherits all association instances and sub-
structures from the base Activity, and the Activity appears to be part of the resulting Process after
interpretation of the used Activity association.

• localContribution Local Contribution defines a mechanism for defining specific local additions (or contributions) to
breakdown elements inherited via the extension Activity Use Kind within the context of the
reusing Activity. Hence, usedActivity relationships of this kind are used in addition to a
usedActivity relationship of the kind Extension. For example, an Activity could be defined as a
child of a second Activity which defines an extension relationship to a third Activity adding
additional new sub-elements (such as new sub-Activities) to the set of sub-elements the second
Activity inherited from the third Activity via the extension relationship.

• localReplacement Local Replace defines a mechanism for defining local replacements to specific breakdown
elements inherited via the Extension Activity Use Kind in the context of the reusing Activity.
UsedActivity relationships of this kind are used in addition to a usedActivity relationship of the
kind Extension. Instances of this type replace inherited Activity sub-elements with their own
sub-elements. For example, an Activity could be defined as a child of a second Activity which
defines an extension relationship to a third Activity, replacing with its own set of sub-elements
the inherited sub-elements (such as its sub-Activities) that the second Activity inherited from the
third Activity via the extension relationship.
Software & Systems Process Engineering Meta-Model, v2.0 49

Figure 9.6 - Example of an activity reusing another activity

Figure 9.6 shows two processes modeled as activities with the SPEM 2 UML 2 Profile. Process 1 comprises of a
breakdown of Activities. Process 2 reuses the structure of Process 1 via an activity extension through which Process 2
inherits the complete physical structure of Process 1. Hence, the interpretation of the activity extension relationship
results in Process 2 comprising of all the Activity 1.x activities that Process 1 comprises of. However, the author who
created Process 2 decided that he does not need all of the elements inherited from Process 1. He uses a suppressed
relationship between a local activity that he created named Activity 2.1 and Activity 1.1 to indicate that he suppresses this
activity from being inherited. Further, he models a local contribution with which he adds Activity 2.2.1 as an additional
child to Activity 1.2. Finally, he creates a local replacement with Activity 2.3 replacing Activity 1.3 with a complete new
set of children. The right side of Figure 34 shows the resulting interpretation of Process 2 with all the relationships
modeled to Process 1. Note that the incoming predecessor relationship that pointed to Activity 1.3 now points to the
replacing Activity 2.3.

Figure 9.7 - Using Extends to dynamically bind a Process Pattern to a Delivery Process

interpretation

One Pattern applied three times
in this delivery process. Process
Engineer only needs to work on
differences.

A Pattern can applied to
(i.e. reused in) many different
processes

Dynamic binding ensures that
when pattern changes process
is automatically updated.

Capability Pattern
50 Software & Systems Process Engineering Meta-Model, v2.0

The example in Figure 9.7 shows a Process Pattern (which is an example for a typical Kind (Section 8.2) for an Activity
(Section 9.1)) on the right-hand side that defines a standard way of doing Requirements Management. The left-hand side
shows a Delivery Process (another Process Kind) which is dynamically linking - one can also say applying - this Process
Pattern via the Extension Activity Use Kind three times in three different locations (assuming that requirements work is
iterated three times). These so-called pattern applications have been created not by copying the breakdown structure of
the Process Pattern into the breakdown structure of the Delivery Process, but by creating an Extension Activity Use
association from an Activity in the Delivery Process to the top-level Activity in the Process Pattern. Through the
interpretation of the Extension relationship, all sub-Activities and Method Content Uses typed in blue in Figure 9.7 have
been applied through value inheritance and appear in the Delivery Process. In addition to just applying the pattern as is,
the example also shows that for every application, specific modifications have been specified. Using the Process Element
attribute 'suppressed', elements can be suppressed from the pattern application. Figure 9.7 shows that in the first pattern
application, three Activities have been suppressed (indicated by gray color as well as the text in the Model Info column).
Suppression means that these Activities will not be performed in that particular application of the pattern. In the second
application of the pattern, one can see that fewer, and in the third application no, activities have been suppressed. This is
because in these instances of the pattern, these activities shall be performed. The true power of using Extension for
applying Process Patterns to a Process is the increase in maintainability. We see in this small example that the pattern has
been applied three times. In a real Delivery Process definition they might be applied many more times. If a process
engineer now wants to make a change to the Process Pattern, she only has to make this change once in the original pattern
definition. Through the dynamic binding and interpretation, all changes will be automatically visible in all pattern
application. In cases where she does not want those changes to be propagated to specific pattern application, she could
create a physical deep copy of the pattern and break the Extension link.

Figure 9.8 shows another view of the same Delivery Process, which does not yet apply the interpretation of the Extension
relationship. Whereas Figure 9.7 presented the results of fully interpreting the Extension relationships, this example
shows what actually gets modeled to achieve this result. One can see that the Activity “Discipline.Requirements” defines
the extension to the Process Pattern. All sub-elements of that Activity will be inherited from that base Activity when the
relationship is interpreted. Only the elements to be suppressed have been modeled and added to the Activity as nested
elements to set their suppression attribute. By matching the name, the interpretation will suppress these Activities with all
their nested sub-elements from the Extends interpretation.

Figure 9.8 - Representation of the Delivery Process from Figure 35 before interpretation of the Extends relationship
Software & Systems Process Engineering Meta-Model, v2.0 51

Local Contribution allows adding process elements into a process structure inherited via a second Extension Activity Use
relationship. It allows updating a Process Pattern or activity that is dynamically linked into a process a-posteriori with
new capabilities. Local Replacement allows replacing process structures inherited via Extension Activity Use relationship
with new breakdown elements.

Figure 9.9 - Modeling Local Contribution and Local Replacement

Figure 9.9 and Figure 9.10 depict examples for Local Contribution and Local Replacement. They show two Activities that
each refers to Activities in the Delivery Process depicted earlier in Figure 9.7. Figure 9.10 shows the resulting process
after interpretation of the activity use relationships. The first Activity defines a replacing Activity that relates to the
Inception Phase’s “Analyze the Problems” Activity. It replaces this Activity with a complete new breakdown structure.
Figure 9.9 only depicts the Work Breakdown Structure view showing the Activities new sub-Activities, but a Local
Replacement could provide updates starting at any levels of the breakdown. The second Activity in Figure 9.9 defines a
Local Contribution Activity that adds to the Delivery Process’ “Understand Stakeholder Needs” Activity in Inception an
additional Activity “Goal Operationalization Workshop.” It also defines a predecessor for this contributed new Activity
in the Delivery Process.
52 Software & Systems Process Engineering Meta-Model, v2.0

Figure 9.10 - The resulting Delivery Process after interpreting the Variability Specializations

The resulting Process after interpreting the Activity Use relationships for the Delivery Process is depicted in Figure 9.10.
The blue entries show the Breakdown Elements that arrive via the Local Replacement and Local Contribution
interpretation.

SPEM 2.0 Profile Notation
See Activity (Section 9.1)
Software & Systems Process Engineering Meta-Model, v2.0 53

9.3 Breakdown Element

Super Class
Process Element

Figure 9.11 - A breakdown structure is defined by Activities nesting Breakdown Elements

Description
Breakdown Element is an abstract generalization for any type of Process Element that is part of a breakdown structure. It
defines a set of properties available to all of its specializations. Any of its concrete subclasses can be ‘placed inside’ an
Activity (via the nested Breakdown Element association) to become part of a breakdown of Activities as well as the
Activities namespace. As Activities are Breakdown Elements themselves and therefore can be nested inside other
activities, an n-level breakdown structure is defined by n nested Activities. In addition to Activities, other Breakdown
Elements as shown in Figure 9.11 can be nested inside Activities as leaf elements of the breakdown.

Attributes

• hasMultipleOccurrences: Boolean =
false

The hasMultipleOccurrences attribute set to ‘true’ expresses that when the
process is enacted, the respective Breakdown Element will typically occur in
more than one instance (i.e., more than one instance for the Breakdown
Element instance).
This might provide important guidance for creating plans from a Process. For
example, a Work Definition such as “Detail Use Case” would be performed for
every use case identified for a particular Iteration or Activity. Generating a
plan would list one Work Definition instance per use case, each listing a
different use case instance as the input/output. In contrast to the isRepeatable
attribute defined for Work Breakdown Element (Section 9.10) the
hasMultipleOccurrences attribute does not assume any dependencies amongst
the occurrences of the Breakdown Element. For example, the “Detail Use
Case” Work Definition occurrences mentioned above can be performed in
parallel as well as one after the other.
54 Software & Systems Process Engineering Meta-Model, v2.0

Semantics
No additional semantics. See subclasses.

SPEM 2.0 Profile Notation

9.4 Milestone

Super Class
Work Breakdown Element

Description
A Milestone is a Work Breakdown Element that represents a significant event for a development project.

Association Properties

Semantics
A Milestone describes a significant event in a development project, such as a major decision, completion of a deliverable,
or meeting of a major dependency (like completion of a project phase). Because Milestone is commonly used to refer to
both the event itself and the point in time at which the event is scheduled to happen, it is modeled as a Work Breakdown
Element (i.e., it appears as part of a breakdown structure and can have predecessors).

• isOptional: Boolean = false The isOptional attribute indicates that the Breakdown Element describes work,
a work product, or even work performer, which inclusion is not mandatory
when performing a project that is planned based on a process containing this
element.

Stereotype Superclass Keyword Properties Abstract Icon

BreakdownElement ProcessElement n/a hasMultipleOccurences,
isOptional

yes n/a

• requiredResults: WorkProductUse This association links the Work Product Uses instances to a Milestone
instance that need to be produced for that Milestone.
Software & Systems Process Engineering Meta-Model, v2.0 55

SPEM 2.0 Profile Notation

9.5 Process Element

Super Class
Extensible Element (Core)

Figure 9.12 - Taxonomy of classes defined in Process Structure package

Description
Process Elements is an Extensible Element that represents abstract generalization for all elements that are part of a SPEM
2.0 Process.

Semantics
A Process Element is any element that is part of a Process. See Figure 9.12 for a complete taxonomy of all Process
Elements defined in the Process Structure meta-model package.

Stereotype Superclass/Metaclass Keyword Properties Abstract Icon

Milestone WorkBreakdownElement /
Classifier

milestone n/a no

RequiredResults Association required results n/a no n/a
56 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation

9.6 Process Parameter

Super Class
Work Definition Parameter

Breakdown Element

Description
A Process Parameter is a Work Definition Parameter and Breakdown Element that is used for process definitions. It
defines input and output meta-types to be Work Product Uses.

Association Properties

Semantics
No additional semantics defined.

SPEM 2.0 Profile Notation
Use Work Definition Parameter (see Section 8.5).

9.7 Process Performer

9.7.1 Super Class

Breakdown Element

Work Definition Performer (from Core)

Description
A Process Performer is a Breakdown Element and Work Definition Performer that represents a relationship between
Activity instances and Role Use instances. An instance of Process Performer links one or more Role Use instances to one
Activity. (Modeled as 0..1 Activities because the Process with Methods meta-model package will add an alternative class
to Activity.)

Stereotype Superclass Keyword Properties Abstract Icon

ProcessElement BreakdownElement n/a n/a yes n/a

• parameterType: WorkProductUse This association links zero or one Work Product Use instances to a parameter.
Processes could leave the type specification open and not specify a concrete
Work Product Use.
Software & Systems Process Engineering Meta-Model, v2.0 57

Association Properties

Semantics
The Process Performer links Role Uses to Activities, indicating that these Role Use instances participate in the work
defined by the activity in one or another way. The kind of involvement of the Role Use in the Activity needs to be
defined by Kind (Section 8.2) class instances that qualify the Process Performer instances. Typical examples for Kinds of
Process Performers would be Primary Performer, Additional Performer, Assisting Performer, Supervising Performer,
Consulted Performer, etc. The popular RACI-VS diagram defines another set of commonly used Kinds for the Process
Performer: Responsible, Accountable, Consulted, Informed, Verifies, and Signs.

SPEM 2.0 Profile Notation
Use Work Definition Performer (see Section 8.6).

9.8 Process Responsibility Assignment

Super Class
Breakdown Element

Description
A Process Responsibility Assignment is a Breakdown Element that represents a relationship between instances of Role
Use and Work Product Use. An instance of the Process Responsibility Assignment links one or more Role Use instances
to exactly one Work Product Use.

Association Properties

Semantics
The Process Responsibility Assignment links Role Uses to Work Product Uses indicating that the Role Use has a
responsibility relationship with the Work Product Use. The Kind of responsibility of the Role Use for the Work Product
Use needs to be defined by Kind (Section 8.2) class instances that qualify the Process Responsibility Assignment. The
popular RACI-VS diagram defines a set of commonly used Kinds which cannot only be applied for the Process
Performer, but are also often used for work product responsibility: Responsible, Accountable, Consulted, Informed,
Verifies and Signs.

• linkedActivity: Activity A Process Performer links to zero or one Activity. The linked Activity property
subsets the linked Work Definition property from the Work Definition Performer
defined in Core.

• linkedRoleUse: RoleUse A Process Performer links to one or more Role Use.

• linkedRoleUse: RoleUse A Process Responsibility Assignment links to one or more Role Use.

• linkedWorkProductUse: WorkProductUse A Process Responsibility Assignment links to exactly one Work
Product Use.
58 Software & Systems Process Engineering Meta-Model, v2.0

Note that for many processes the Process Performer and Process Responsibility represent two quite different sets of
information as a Role Use can be involved in an Activity that modifies a work product without being responsible for the
Work Product itself and vice versa: A Role Use can be responsible for a Work Product Use without participating in all the
Activities that modify it. Other processes might chose to only use one of these relationships. For example, there are
processes for self-organizing teams that do not define detailed Activities describing which Role Use performs which
work. These approaches might just utilize the Process Responsibility Assignment to express that a Role Use has a certain
responsibility, but that the process does not prescribe how that responsibility is achieved. In such a case the Kinds defined
might express work product states such as ‘detailed,’ ‘implemented,’ ‘documented,’ ‘reviewed,’ and so on.

SPEM 2.0 Profile Notation

9.9 Role Use

Super Class
Breakdown Element

Description
A Role Use is a special Breakdown Element that either represents a performer of an Activity or a participant of the
Activity. If it is a performer, the Role Use and Activity need to be related via a Process Performer. If it is a participant
then the Role Use is stored in the nestedBreakdownElement composition of the Activity and might be used by one of the
sub-activities as a performer and/or a Process Responsibility Assignment. Role Uses are only valid within and specific to
the context of an Activity. They are not to be reused across activities.

Semantics
A Role Use represents an activity-specific occurrence of an activity performer or participant. A Role Use is an activity-
specific object and not a general reusable definition of an organizational role. (The meta-model package Method Content
defines a concepts call Role Definition for that in Section 12.7). A Role Use represents the occurrence of a real person
performing activity-specific work and having activity-specific responsibilities. A Role Use participant stored with an
Activity can be only accessed and reused by the Activity’s sub-Activities and not by any parent or sibling Activities in the
Activity breakdown structure. This scoping of Role Use in the local namespace of Activities allows different Performers
as well as different Responsibility Assignments for every Activity. This has been done to reflect the fact that work
product responsibilities and performance of activities might change throughout the development lifecycle. In other
words, Role Use instances with the same name, but different responsibilities and performing different work, can be
created in different Activities.

Many processes do not comprise of Role Definitions and just define the occurrence of a role and imply that all team
members know what the Role Use represents (e.g., by just interpreting the Role Use name). In these situations, fitting
individuals for the Role Uses are assigned when the process is enacted. Assigning Role Uses in such a way is also often
referred to as ‘self-organizing’ teams in which team members choose by themselves or via their managers which roles
they play during development.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

ResponsibilityAssignment ExtensibleElement /
Association

responsible n/a no n/a
Software & Systems Process Engineering Meta-Model, v2.0 59

SPEM 2.0 Profile Notation

9.10 Work Breakdown Element

Super Class
Breakdown Element

Description
A Work Breakdown Element is a special Breakdown Element that provides specific properties for Breakdown Elements
that represent work (see Figure 9.11). The properties are specific to breakdown structures and do not apply to all Work
Definition subclasses.

Attributes

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

RoleUse BreakdownElement / Classifier role use n/a no

SPEM 1.1
backwards
compatibility
icon:

• isRepeatable: Boolean = false This attribute is used to define repetition of work, e.g. iterations. A Work
Breakdown Element with this attribute set to True shall be repeated more than once
on the same set of artifacts. For example, if one wants to model that a specific
Activity instance shall represent an iteration in a process then this attribute shall be
set to true indicating that the Activity and therefore all of its sub-Activities will be
performed more than once.
The difference to the hasMultipleOccurrences attribute defined for Breakdown
Element is that Work Breakdown Elements with the isRepeatable flag will be
performed one after the other (i.e., not in parallel). For Breakdown Elements with
hasMultipleOccurrences set to true this is undefined and up to the project planner.
If both attributes are set to true then isRepeatable takes precedence.
60 Software & Systems Process Engineering Meta-Model, v2.0

Association Properties

Semantics
Work Breakdown Element represents a work-specific breakdown element to be used in a work breakdown structure.

• isOngoing: Boolean = false If the isOngoing attribute is set to true for a Work Breakdown Element instance,
then the element describes an ongoing piece of work without a fixed duration or
end state. For example, the Work Breakdown Element could represent work of an
administrator continuously (e.g., 3h a day) working to ensure that systems are kept
in a certain state. Another example would be program management work
overseeing many different projects being scheduled for one particular project at
specific reoccurring intervals during the whole lifecycle of the project.

• isEventDriven: Boolean = false The isEventDriven attribute indicates that the Work Breakdown Element describes
an instance of work which is not started because it has been scheduled to start at a
certain point of time, preceding work is being completed, or input work products
are available, but because another specific event has occurred.
Examples for such events are exceptions or problem situations which require
specific work to be performed as a result. Also, change management work can be
modeled as event driven work analyzing a change request or defect and allocating
work dynamically to resources to deal with it following the work described with
such Work Breakdown Element. The events themselves are not modeled in this
version of the specification. They shall be described as part of the normal
descriptions fields available.

• linkToPredecessor: WorkSequence This association links a Work Breakdown Element to its predecessor. Every
Work Breakdown Element can have predecessor information associated to it.
This predecessor information is stored in instances of the class Work Sequence
that defines the kind of predecessor another Work Breakdown Element
represents for another.

• linkToSuccessor: WorkSequence This association links a Work Breakdown Element to its successor. Every
Work Breakdown Element can have successor information associated to it.
This successor information is stored in instances of the class Work Sequence
that defines the kind of successor another Work Breakdown Element represents
for another.
Software & Systems Process Engineering Meta-Model, v2.0 61

SPEM 2.0 Profile Notation

9.11 Work Product Use

Super Class
Breakdown Element

Description
A Work Product Use is a special Breakdown Element that either represents an input and/or output type for an Activity or
represents a general participant of the Activity. If it is an input/output, then the Work Product Use needs to be related to
the Activity via the Process Parameter class. If it is a participant, then the Work Product Use is stored in the
nestedBreakdownElement composition of the Activity and might be used by one of the sub-activities as an input/output
and/or be related to a Role Use via a Process Responsibility Assignment. Role Use instances are only valid within and
specific to the context of an Activity and not to be reused across activities.

Semantics
A Work Product Use represents an activity-specific occurrence of a Work Product input/output type or an Activity
participant. A Work Product Use instance is an activity-specific object and not a general reusable definition of a work
product. (The meta-model package Method Content defines a concepts call Work Product Definition for that in Section
12.5). A Work Product Use represents the occurrence of a real Work Product in the context of an activity. A Work
Product Use participant stored with an Activity can only be accessed and reused by the Activity’s sub-Activities and not
by any parent or sibling Activities in the Activity breakdown structure. This scoping of Work Product Use in the local
namespace of Activities allows the modeling of different Responsibility Assignments for every Activity, which reflects
the fact that work product responsibilities might change throughout the development lifecycle. In other words, Role Use
instances with the same name can be created in different Activities. All of these Role Use instance could all have
different Work Product Use responsibilities.

Many processes do not comprise of Work Product Definitions and just define the occurrence of a work product and imply
that all team members know what the Work Product Use represents (e.g., by just interpreting the Work Product Use
name). For example a process might define that Stakeholder Requests need to be captured, but does not formally define
what a Stakeholder Request is nor prescribes any templates or forms for them. Team members could choose by
themselves which form of representation they choose, as well as shift responsibilities for the Work Product during the
lifecycle phases (i.e., Activities).

Stereotype Superclass Keyword Properties Abstract Icon

WorkBreakdownElement BreakdownElement n/a isReatable,
isOngoing,
isEventDriven

yes n/a
62 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation

9.12 Work Product Use Relationship

Super Class
Breakdown Element

Description
A Work Product Use Relationship expresses a general relationship amongst work products. Kind (Section 8.2) class
instances shall be used to specify the nature of this relationship.

Association Properties

Semantics
The Work Product Use Relationship can be used to express different kinds of relationships amongst Work Products Uses.
Typical Kinds are ‘composition’ expressing that a work product use instance of an instance is part of another work
product instance of an instance. For example, as depicted in Figure 9.13 (using the SPEM 2.0 UML 2 Profile in which the
creator of the ‘composition’ Kind has decided to use the UML composition association), an instance of Actor is part of an
instance of Use Case Model. In contrast to composition, another Kind could express ‘aggregation’ indicating that a Work
Product Use is used with another Work Product Use. For example, a customer design deliverable could be defined as a
compilation of other different work product uses that are assembled as a report that is delivered to the customer for
review.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

WorkProductUse BreakdownElement
/ Classifier

work product use n/a no

• source: Work Product Use This association links to the exact one source of the Work Product Use
Relationship.

• target: Work Product Use This association links to one or more targets of the Work Product Use
Relationship.
Software & Systems Process Engineering Meta-Model, v2.0 63

Figure 9.13 - Work Product composition example

A third commonly used Kind is ‘dependency’ or ‘impactedBy’ indicating that a work product use impacts another work
product use. For example, if a use case model work product changes, then the use case realization work product needs to
be updated with these changes. This dependency Work Product Use Relationship is used for work products diagrams as
shown in Figure 9.15, specifying traceability dependencies amongst instances of work products to be considered when
creating and changing these work products. Such dependencies are typically defined in a process for specific parts of a
lifecycle, i.e., diagrams such as Figure 9.15 might be different for each project phase or even each Activity.

Work Product Uses represent work product references with unique attributes and associations within the scope of an
Activity (including iterations or phases, which are modeled as Activities with these Kinds). A process engineer could
model a phase for a process not only by defining Activities in a work breakdown structure, but also by first deciding
which key work products shall be used, produced, and updated by the Activities of that phase. She would begin by
producing a Work Product Dependency diagram as depicted below in Figure 9.14, continue by defining different states for
each work product type as depicted in Figure 9.15, and then continue by allocating the achievement of states to specific
Activities as depicted in Figure 9.16. (Note that Figure 9.14 and Figure 9.15 show to different presentation options:
Whereas Figure 9.14 uses a proprietary arrow notation, Figure 9.15 uses SPEM 2.0 Profile stereotypes on a UML 2 class
diagram based notation.)

Figure 9.14 - Simple Work Product Dependency Diagram drawing impacts relations as arrows
64 Software & Systems Process Engineering Meta-Model, v2.0

Figure 9.15 - Detailed UML 2-based Work Product Dependency diagram showing States as well Deliverable
aggregation (Software Requirements Specification) and Work Product composition (Use Case Model)

The lower part of Figure 9.15 presents the outcome of such a procedure. It shows a Work Product Breakdown Structure
(WPBS) of a process’ Inception Phase in which Work Product Uses have been allocated to the Activities “Understand
Stakeholder Needs” and “Define the System.” Work Product Uses for the Artifacts “Glossary,” “Vision” (one Method
Content Use for each Activity), and “Use Case Model” have been created for each Activity. Moreover, Entry and Exit
States have been defined for the Work Product Uses indicating the state change expected for each Work Product instance
during each Activity. We see for example that the “Vision” document shall be in the state “Needs defined” after
performing the Activity “Understand Stakeholder Needs” and in the state “Features defined” after the Activity “Define
the System.”

Once these states have been defined, sub-Activities (or alternatively Task Uses which get introduced in the meta-model
package Process with Methods in Section 13.14) that establish these states can be allocated to the Activities by
instantiating respective sub-Activities (or Task Uses), completing the work breakdown as shown in the upper part of
Figure 9.16. A CASE tool implementing SPEM 2.0 would be able to propose fitting Activities (or Task Uses) to the user
for inclusion in this breakdown by searching available Activities (or Task Uses) that have these Work Product Uses as
output. In this example, the result uses the concept of Task Uses (introduced in Section 13.14). You can see two Task
Uses for “Develop Vision” in Figure 9.16. This Task itself as it would be defined as a Task Definition in Method Content.
It would describe all aspects of developing a Vision document. However, for each of the shown Activities, a Task Use
would point out only those parts of the Task that need to be performed to provide the specified state change. This way,
processes define what parts of a method shall be performed at what point in time, providing the user with a unique focus
on the work at hand by proving a selection of the complete method description.

Work Breakdown Structure and Work Product Breakdown Structure provide alternative but consistent views on a process
as depicted in Figure 9.16. As described above, the picture shows the same process from the Work Breakdown Structure
view showing the breakdown of Activities with Task Uses as well as from the Work Product Breakdown Structure view
showing participating Work Products under Activities. The later view can be further refined by distinguishing Work
Products Uses that are used as input versus output (or both) within the Activity.
Software & Systems Process Engineering Meta-Model, v2.0 65

Figure 9.16 - Two views on the same process showing a Work Breakdown Structure as well as Work Product
Breakdown Structure

SPEM 2.0 Profile Notation
SPEM 2.0 user can define their own stereotypes for the Kind classes that they produce or use the Kind property inherited
from the Extensible Element stereotype. The Base Plugin defines a set of typical Kinds and stereotypes in Section 18.5.

9.13 Work Sequence

Super Class
Breakdown Element

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

WorkProductRelationship ExtensibleElement
/ Association

related work product n/a no n/a
66 Software & Systems Process Engineering Meta-Model, v2.0

Description
Work Sequence is a Breakdown Element that represents a relationship between two Work Breakdown Elements in which
one Work Breakdown Elements depends on the start or finish of another Work Breakdown Elements in order to begin or
end (see Figure 9.2).

Attributes

Association Properties

Semantics
The Work Sequence class defines predecessor and successor relations amongst Work Breakdown Elements. This
information is in particular critical for use of the process in planning applications. See more details on the different kinds
of Work Sequence relationships in Section 9.14.

SPEM 2.0 Profile Notation

• linkKind: WorkSequenceKind This attribute expresses the type of the Work Sequence relationship by assigning
a value from the Work Sequence Kind enumeration.

• successor: WorkBreakdownElement This association links a Work Breakdown Element to its successor. Every
Work Breakdown Element can have successor information associated to it.
This successor information is stored in instances of the class Work
Sequence that defines the kind of successor another Work Breakdown
Element represents for another.

• predecessor: WorkBreakdownElement This association links a Work Breakdown Element to its predecessor.
Every Work Breakdown Element can have predecessor information
associated to it. This predecessor information is stored in instances of the
class Work Sequence that defines the kind of predecessor another Work
Breakdown Element represents for another.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

WorkSequence BreakdownElement /
Dependency

predecessor linkKind no n/a
Software & Systems Process Engineering Meta-Model, v2.0 67

9.14 Work Sequence Kind

Super Class
n/a : Enumeration

Description
Work Sequence represents a relationship between two Work Breakdown Element in which one Work Breakdown Element
(referred to as (B) below) depends on the start or finish of another Work Breakdown Element (referred to as (A) below)
in order to begin or end. This enumeration defines the different kinds of Work Sequence relationships available in SPEM
2.0 and is used to provide values for Work Order’s linkKind attribute.

Enumeration Literals

SPEM 2.0 Profile Notation
Modeled as an enumeration.

• finishToStart Work Breakdown Element (B) cannot start until Work Breakdown Element (A) finishes. For
example, if you have two Work Breakdown Elements, “Construct fence” and “Paint fence,” “Paint
fence” can’t start until “Construct fence” finishes. This is the most common type of dependency and
the default for a new Work Sequence instance.

• finishToFinish Breakdown Element (B) cannot finish until Work Breakdown Element (A) finishes. For example, if
you have two Work Breakdown Elements, “Add wiring” and “Inspect electrical,” “Inspect
electrical” can't finish until “Add wiring” finishes.

• startToStart Breakdown Element (B) cannot start until Work Breakdown Element (A) starts. For example, if you
have two Work Breakdown Elements, “Pour foundation” and “Level concrete,” “Level concrete”
can’t begin until “Pour foundation” begins.

• startToFinish Breakdown Element (B) cannot finish until Work Breakdown Element (A) starts. This dependency
type can be used for just-in-time scheduling up to a milestone or the project finish date to minimize
the risk of a Work Breakdown Element finishing late if its dependent Work Breakdown Elements
slip. If a related Work Breakdown Element needs to finish before the milestone or project finish
date, but it doesn't matter exactly when and you don't want a late finish to affect the just-in-time
Work Breakdown Element, you can create an SF dependency between the Work Breakdown
Element you want scheduled just in time (the predecessor) and its related Work Breakdown Element
(the successor). Then, if you update progress on the successor Work Breakdown Element, it won't
affect the scheduled dates of the predecessor Work Breakdown Element.
68 Software & Systems Process Engineering Meta-Model, v2.0

10 Process Behavior

SPEM 2.0 does not aim to be a generic process modeling language, nor does it even provide its own behavior modeling
concepts. SPEM 2.0 rather defines the ability for the implementer to choose the generic behavior modeling approach that
best fits their needs. It provides specific additional structures to enhance such generic behavior models that are
characteristic for describing development processes. The rationale for this approach is to provide the choice and flexibility
to the SPEM 2.0 specification implementer to select the appropriate behavior model formalism herself. For example, she
could use UML 2 Activity and State Machine diagrams or alternatively BPDM/BPMN.

The Process Behavior package therefore does not introduce its own formalism for behavior models, but instead defines
how to generally link process models defined with a third-party representation to the process elements defined in the
meta-model package Process Structure. It does this by identifying typical candidate classifiers from such behavior model
formalism (in this case classes defined in UML 2's Superstructure) and introduces association for relating SPEM 2.0
classifiers to these elements.

Figure 10.1 - Traceability links from key behavior model abstraction to key Process Elements

Figure 10.1 lists the classes from Process Structure and Method Content that shall be linked to external behavior model
classes represented with proxy classes that have been named according to respective UML 2 Superstructure classes using
an ‘_ext prefix. If a link to a different formalism shall be established, the implementer has to map these to respective
similar classes. For example, one would link the proxy classes to OMG’s BPMN as depicted in Table 10.1. Because
BPMN focuses on representing the flow of control, messages, and objects no mapping to State_ext and Transition_ext can
be found. However, one could link to more than one formalism to complete the representation of behavior models.
Software & Systems Process Engineering Meta-Model, v2.0 69

10.1 Activity_ext

Super Class
External Reference

Description
The Activity_ext represents a reference to a model class in an external behavior model representing a definition of
behavior.

10.2 Control Flow_ext

Super Class
External Reference

Description
The ControlFlow_ext represents a reference to a model class in an external behavior model representing a control flow.

10.3 External Reference

Super Class
Classifier (from Constructs in UML 2 Infrastructure)

Description
External Reference is a Classifier that represents an abstract generalization of all classes representing references to
external behavior models.

Table 10.1 - Example of mapping SPEM 2.0 External References classes to BPMN

SPEM 2.0 External Reference class BPMN class

State_ext n/a

Activity_ext Activity

Transition_ext n/a

ControlFlow_ext SequenceFlow
70 Software & Systems Process Engineering Meta-Model, v2.0

Association Properties

10.4 State_ext

Super Class
External Reference

Description
The State_ext represents a reference to a model class in an external behavior model representing a state.

10.5 Transition_ext

Super Class
External Reference

Description
The Transition_ext represents a reference to a model class in an external behavior model representing a transition between
states.

10.6 Work Definition Parameter

Super Class
Classifier (from Constructs in UML 2 Infrastructure)

Description
This package extends the Work Definition Parameter class introduced in the Core package with associations to entry and/
or exist states for its Work Product Use or Work Definition parameter values.

• reference: Element The reference association pointing to an element representing an element of an external
behavior model. If the external behavior model is not represented using the UML
Infrastructure library, then the implementer shall define a different way of linking to
such elements using the same role name.
Software & Systems Process Engineering Meta-Model, v2.0 71

Association Properties

• entryState: State_ext Given that an instance of Work Product Definition or Work Product Use has been specified
as an input for a specific Work Definition, then the Entry State attribute specifies the desired
state of instances of the referenced work product instance when work on the Work
Definition is initiated.
For some Work Products Definition or Uses, state is expressed in percentage of completion,
compliance to work product checklist, informal state descriptions, etc. Others have very
specific states expressed as enumerations such as [identified, briefly described, outlined,
detailed] for use cases. Other Work Product states relate to some quality measures or
lifecycle states such as [reviewed, implemented, tested].

• exitState: State_ex Given that an instance of Work Product Definition or Work Product Use has been specified
as output for a specific Work Definition, then the Exist State attribute specifies the desired
state of instances of the referenced work product instances when work on the Work
Definition is finished.
72 Software & Systems Process Engineering Meta-Model, v2.0

11 Managed Content

The Managed Content package defines the fundamental concepts for managing textual descriptions for process and
method content elements. It introduces the abstract class Describable Element that, through package merges, serves as the
super class for Process Elements defined in the meta-model package Process Structure (Chapter 9) as well as Method
Content Element in the meta-model package Method Content (Section 11.6). Describable Element contains Content
Description classes that store the actual textual description.

Figure 11.1 - The SPEM 2.0 UML 2 Profile stereotypes defined in the Managed Content package

Figure 11.2 provides an overview to the description parts of Describable Element as well as the classes that have been
derived from Describable Element. Note that when Process Structure is not included into the package merge, as in the
compliance point “SPEM Method Content,” then Process Element defined here will not be used and will be ignored.
Software & Systems Process Engineering Meta-Model, v2.0 73

Figure 11.2 - The Describable Element parts and subclasses

11.1 Category

Super Class
Describable Element

Description
A Category is a Describable Element used to categorize, i.e., group any number of Describable Elements of any subtype
based on user-defined criteria. Because Categories are Describable Elements themselves, they can be used to recursively
categorize other Category instances as well. Categories can also be nested using the subCategory association.

Association Properties

• categorizedElement: ContentElement A Category groups together any number of Describable Elements (including
other Categories).

• subCategory: ContentCategory A Category can have any number of Categories defined as sub-categories.
Therefore, one could define Categories as n-level hierarchies. This
relationship does not define a strict nesting, i.e., a Category can be a
subcategory of many other Categories.
74 Software & Systems Process Engineering Meta-Model, v2.0

Semantics
Categories can be used to categorize content based on the user’s criteria as well as to define whole tree-structures of
nested categories allowing the user to systematically navigate and browse method content and processes based on these
categories. For example, one could create a Category to logically organize content relevant for the user's development
organization departments; e.g., a “Testing” category that groups together all Roles, Work Products, Tasks, and Guidance
elements relevant to testing. Another example would be Categories that express licensing levels of the content, grouping
freely distributable method content versus content that represents intellectual property and requires a purchased license
for use. Whereas Kinds are limited to one Kind instance per meta-model instance and stored as properties of the
Extensible Element, Categories store the relationships to Describable Elements. Describable Elements can be categorized
by as many Categories as needed. Categories can categorize Categories as well as well as can be hierarchical.

Figure 11.3 - Example for categories and catgorized content

Figure 11.3 shows examples for categorized method content (define in Chapter 12). It defines the Discipline Grouping
“Software Engineering Discipline” that categorizes three Disciplines. The Disciplines categorize Tasks such as “Develop
Use Case,” “Use Case Analysis,” etc. Two of these Tasks have also been categorized by a Category “Use Case Based
Development” that a user might have defined to provide a ‘filter’ on the content related to use cases. The user has also
assigned the use case work product from the “Analysis & Design” domain, as well as specific Guidance (template and
workshop guideline) to this category.

A CASE tool implementation of SPEM 2.0 would now be able to present a structure such as Figure 11.3 as a navigation
tree browser or other navigation structure on the description pages for these Describable Elements, providing hyperlinks
along the associations. For example, every Describable Element description would provide a list of the Categories it
belongs to, or the other way round Category descriptions would provide lists of all the elements that have been
categorized.

• kind: CategoryKind Every Content Category instance shall be classified to be of exactly one
Category Kind.
Software & Systems Process Engineering Meta-Model, v2.0 75

SPEM 2.0 Profile Notation

11.2 Content Description

Super Class
Class (from Constructs in UML 2 Infrastructure)

Description
Content Description is a Class that is used to store the textual description for a Describable Element. It defines standard
attributes applicable for all Describable Element subtypes.

Implementers of this specification can subclass Content Description to define their own matching Content Description
subtypes that add user-defined description attributes to all instances of a specific Describable Element’s Content
Description. Additionally, user-defined attributes can be added to individual Content Description instances when the
SPEM 2.0 meta-model is instantiated creating UML 2 Infrastructure attributes for the Content Description class accessible
via the ownedAttribute inherited from Class. Content Descriptions are typically localized using a resource allocation
mechanism for its String type attributes.

Attributes

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

Category DescribableElement / Class category n/a no

• presentationName: String Every Describable Element described by a Content Description has a name (inherited
from Named Element in Constructs in UML 2 Infrastructure), which is used for
internal references of the element. In addition to name every Describable Element can
maintain a presentation name as part of the Content Description, where the
presentation name is the externally visible/published name of the element and can be
localized.

• briefDescription: String Every Describable Element shall be briefly described with one or two sentences
summarizing the element.

• mainDescription: String This attribute stores the main descriptive text for the Describable Element. All text
that is not part of any of the more specific attributes shall be stored here. If the
description is divided into sections using the Section class, then only the text from the
‘head’ of the content description to the first section will be stored here (similar to a
normal document where you can place text between its beginning and its first section
heading).

• purpose: String This attribute summarizes the main reason or rationale for having or performing this
Describable Element as part of a Process or Method. It describes what is intended to be
achieved with it and why the Process Practitioner should include it.
76 Software & Systems Process Engineering Meta-Model, v2.0

Association Properties

Semantics
This class provides a container for defining textual descriptions for Describable Elements. It can be extended with user-
defined sub-classes adding user defined description attributes.

SPEM 2.0 Profile Notation
Because UML 2 Profile-based models are not suited for large-scale content management application, Content Description
and Describable Element have merged into one stereotype.

11.3 Describable Element

Super Class
Extensible Element (from Core)

Description
Describable Element is an Extensible Element that represents an abstract generalization for all elements in SPEM 2.0 that
can be documented with textual descriptions. Examples for Describable Elements are Roles or Work Products, which have
descriptive text associated that textually define the element as well as providing guidance on how to use it.

Association Properties

Semantics
Describable Element is the superclass for elements in Process Structure as well as Method Content for which concrete
textual descriptions are defined in the form of documenting attributes grouped in a matching Content Description instance
(see Section 11.2). Describable Elements are intended to be published in method or process publications. Describable
Element defines that the element it represents will have content ‘attached’ to it. Content Description is the abstraction for
the actual places in which the content is being represented. This separation allows a distinction between core model
elements describing the structure of the model from the actual description container providing, for example, the
documentation of the Describable Element in different alternatives languages, audiences, licensing levels, etc.

• section: Section A Content Description can optionally be structured into Sections. This association is use to
decompose the mainDescription attribute into a hierarchy of Sections. Text stored in
mainDescription when Sections are defined represents text presented before the first Section.

• description: ContentDescription A Describable Element can contain one Content Description element that stores
textual descriptions for this Describable Element.

• guidance: Guidance A Describable Element can be related to many Guidance elements.
Software & Systems Process Engineering Meta-Model, v2.0 77

SPEM 2.0 Profile Notation

11.4 Guidance

Super Class
Describable Element

Description
Guidance is a Describable Element that provides additional information related to Describable Elements. The particular
Guidance should be classified with Kinds (Section 8.2) that indicates a specific type of guidance for which perhaps a
specific structure and type of content is assumed. Examples for Kinds for Guidance are Guidelines, Templates, Checklists,
Tool Mentors, Estimates, Supporting Materials, Reports, Concepts, etc. See Section 18.3 for more examples and
definitions for typical Kinds for Guidance.

Semantics
No additional semantics.

SPEM 2.0 Profile Notation

11.5 Metric

Super Class
Describable Element

Stereotype Superclass Keyword Properties Abstract Icon

DescribableElement ExtensibleElement n/a presentatioName,
briefDescription,
purpose,
mainDescription

yes n/a

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

Guidance DescribableElement / Class guidance n/a no

SPEM 1.1
backwards
compatibility
icon:
78 Software & Systems Process Engineering Meta-Model, v2.0

Description
A Metric is a special Describable Element that contains one or more constraints that provide measurements for any
Describable Element. Because Metric is an Extensible Element, different Kinds (Section 8.2) can be defined for Metrics
to distinguish different groups of Metrics such as Productivity, Quality, or Scale.

Association Properties

Semantics
A Metric defines a standard measurement for instances of a Describable Element in SPEM 2.0. For example, a process
engineer can define Metrics for Work Definitions such as Activities (estimated effort in man hours), Metrics for Work
Products (quality averages such as error per klocs), or Metrics for Roles (costs per hour; cost per delivered results). A
Metric is documented with Content Descriptions associated to the Metric as well as formalized using instances of the
UML 2 Value Specification class. Metrics can be qualified with Kinds.

SPEM 2.0 Profile Notation

11.6 Section

Super Class
Class (from Constructs in UML 2 Infrastructure)

Description
A Section is a special Class that represents a structural subsection of a Content Description’s mainDescription attribute.
It is used for large scale documentation of Describable Elements organized into sections, as well as to flexibly add new
Sections to Describable Elements using contribution variability (added to the Section concept for Method Plug-ins in
Section 14.9).

Attributes

• expression: ValueSpecification A Metric defines one or more Value Specification (from UML 2 Infrastructure
Constructs). The property subsets the inherited ownedMember property from
UML 2 Infrastructure’s Namespace in Constructs.

Stereotype Superclass Keyword Properties Abstract Icon

Metric Guidance metric constraint no

• sectionName: String This attributes stores the name or the header of the section.

• sectionDescription: String This attribute stores the description text for a Content Description’s Section.
Software & Systems Process Engineering Meta-Model, v2.0 79

Association Properties

Semantics
This class represents Content Descriptions structured into Sections.

SPEM 2.0 Profile Notation
Not available.

• subSection: Section Sections can be further decomposed into n levels of sub-sections.
80 Software & Systems Process Engineering Meta-Model, v2.0

12 Method Content

The Method Content package defines the core elements of every method such as Roles, Tasks, and Work product
Definitions.

Figure 12.1 - The SPEM 2.0 UML 2 Profile stereotypes defined in the Method Content package

Figure 12.2 shows the taxonomy of the elements defined in this package. All Method Content, with the exception of Step,
is derived from the class Describable Element. Step is not a Describable Element because it is defined as a special
Section classifier (defined in Section 11.6 as a part of Content Description). Hence, Step already is a description for
content and therefore does not require being a Describable Element with its own Content Description part. Step and Task
Definition are derived from an abstraction called Work Definition (introduced in the meta-model package Core,
Chapter 8), which represents behavioral descriptions for units of work.
Software & Systems Process Engineering Meta-Model, v2.0 81

Figure 12.2 - Taxonomy of Core Describable Elements

Method Content is fundamentally described by defining Task Definitions organized into Steps, having Work Product
Definitions as input and output, and performed by Roles Definitions. Role Definitions define important responsibility
relationships to work products.

Figure 12.3 depicts these core elements with their relationships model as subclasses of Method Content Element. The
relationships are labeled with a “Default_” prefix, because they describe the ‘standard’ or ‘normal’ way of performing the
method described; i.e., doing the work under ‘normal’ circumstances, with ‘normal’ being what the method author
perceives as the most general case. However, different processes would apply these elements in different parts of a
lifecycle differently (cf. with Section 6.3.1 and Chapter 13) and then might define changes on these relationships. For
example, if a Task is performed in more than one iteration of an iterative lifecycle model, different Roles could be added
to (or removed from) performing the Task as well as different inputs might be considered at different points in time. Such
changes would be defined on process specific Method Content Uses that reference and have been defined based on these
method Describable Elements (see Chapter 13 for more details).
82 Software & Systems Process Engineering Meta-Model, v2.0

Figure 12.3 - Key Method Content Elements and their relationships

12.1 Default Responsibility Assignment

Super Class
Method Content Element

Description
A Default Responsibility Assignment is a Method Content Element that represents a relationship between instances of
Role Definition and Work Product Definition. An instance of the Default Responsibility Assignment links one or more
Role Definition instances to exactly one Work Product Definition.

Association Properties

Semantics
The Process Responsibility Assignment links Role Definitions to Work Product Definitions, indicating that the Role
Definition has a responsibility relationship with the Work Product Definition. The Kind of responsibility of the Role
Definition for the Work Product Definition needs to be defined by Kind (Section 8.2) class instances that qualify the

• linkedRoleDefinition: RoleDefinition A Process Responsibility Assignment links to one or more Role
Definition.

• linkedWorkProductDefinition: WorkProduct-
Definition

A Process Responsibility Assignment links to exactly one Work
Product Definition.
Software & Systems Process Engineering Meta-Model, v2.0 83

Default Responsibility Assignment. The popular RACI-VS diagram defines a set of commonly used Kinds which cannot
only be applied for the Default Task Definition Performer, but also often used for work product responsibility:
Responsible, Accountable, Consulted, Informed, Verifies, and Signs.

SPEM 2.0 Profile Notation

12.2 Default Task Definition Parameter

Super Class
Work Definition Parameter

Description
A Task Definition Parameter is a special Work Definition Parameter that uses Work Product Definitions as well as adds
an Optionalilty attribute.

Attributes

Association Properties

SPEM 2.0 Profile Notation
Use Work Definition Parameter (see Section 8.5).

12.3 Default Task Definition Performer

Super Class
Work Definition Performer (from Core)

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

ResponsibilityAssignment ExtensibleElement /
Association

responsible n/a no n/a

• Optionality: OptionalityKind This attribute represents whether the input or output parameter is
optional, i.e., mandatory to provide to the Task or to be produced by the
Task respectively.

• parameterType : WorkProductDefinition This association links zero or one Work Product Definitions instances to
a parameter. Task Definitions can leave the type specification open and
not specify a concrete Work Product Definition at all.
84 Software & Systems Process Engineering Meta-Model, v2.0

Description
A Default Task Definition Performer is a Work Definition Performer that represents a relationship between Task
Definition instances and Role Definition instances. An instance of Default Task Definition Performer links one or more
Role Definition instances to one Task Definition instance.

Association Properties

Semantics
The Default Task Definition Performer links Role Definition to Task Definitions indicating that these Role Definition
instances participate in the work defined by the Task Definition in one or another way. The kind of involvement of the
Role Definition in the Task Definition needs to be defined by Kind (Section 8.2) class instances that qualify the Default
Task Definition Performer instances. Typical examples for Kinds of Default Task Definition Performer would be Primary
Performer, Additional Performer, Assisting Performer, Supervising Performer, Consulted Performer, etc. The popular
RACI-VS diagram defines another set of commonly used Kinds for the Default Task Definition Performer: Responsible,
Accountable, Consulted, Informed, Verifies, and Signs.

SPEM 2.0 Profile Notation
Use Work Definition Performer (see Section 8.6).

12.4 Method Content Element

Super Class
Describable Element

Description
Method Content Element is an abstract Describable Element that represents an abstract generalization for all Method
Content Elements in SPEM 2.0. Because Method Content Element derives from Describable Element, it contains textual
descriptions.

Semantics
No additional semantics define. See subclasses.

SPEM 2.0 Profile Notation

• linkedTaskDefinition:
TaskDefinition

A Default Task Definition Performer links to exactly one Task Definition. The
linked Task Definition property subsets the linkedWorkDefinition property from the
Work Definition Performer defined in Core.

• linkedRoleUse: RoleUse A Default Task Definition Performer links to one or more Role Definition.

Stereotype Superclass Keyword Properties Abstract Icon

MethodContentElement DescribableElement n/a n/a yes n/a
Software & Systems Process Engineering Meta-Model, v2.0 85

12.5 Optionality Kind

Super Class

n/a: Enumeration

Description
This enumeration provides the values for the Task Definition Parameter attribute optionality.

Enumeration Literals

SPEM 2.0 Profile Notation

12.6 Qualification

Super Class
Method Content Element

Description
Qualification is a Method Content Element that documents zero or more required qualifications, skills, or competencies
for Role and/or Task Definitions. In addition to informally describing the qualification using its Content Element
documentation properties, Qualification can be further categorized by defining specific Kinds.

Semantics
A Qualification documents one specific skill or competency that is used to model and represent the qualifications
provided by instances of a Role Definition and/or the qualifications required for the performance of a Task. These
qualifications can be used to find and map roles for tasks when assembling method content and assigning organization
specific roles to these tasks dynamically. Qualifications can also be used to find individuals (i.e., people) as instances of
the Role Definition instances. For example, Qualifications of the Kind “Soft Skills” associated to the “System Analyst”
Role Definition could be “captures stakeholder needs,” “selects elicitation techniques,” “adapts elicitation techniques,”
“negotiates scope,” etc.

• mandatory It is mandatory to provide the Work Product Definition specified in this parameter as input or
to provide an instance of the Work Product Definition as output respectively.

• optional It is optional to provide the Work Product Definition specified in this parameter as input or to
provide an instance of the Work Product Definition as output respectively.

Stereotype Metaclass Keyword Properties Abstract Icon

OptionalityMandatory Association mandatory n/a no n/a

OptionalityOptional Association optional n/a no n/a
86 Software & Systems Process Engineering Meta-Model, v2.0

A Role Use (see Section 13.13) can select a sub-set of valid Qualifications for the use of the Role Definitions in the
context of a particular Activity. One can then express that for the Role Use within a particular Activity, only the “selects
elicitation techniques” Qualification of the “System Analyst” Role Definition is required.

SPEM 2.0 Profile Notation

12.7 Role Definition

Super Class
Method Content Element

Description
A Role Definition is a Method Content Element that defines a set of related skills, competencies, and responsibilities.
Roles are used by Task Definitions to define who performs them as well as to define a set of Work Product Definitions
they are responsible for.

Association Properties

Semantics
A Role Definition defines a set of related skills, competencies, and responsibilities of an individual or a set of individuals.
Roles are not individuals or resources. Individual members of the development organization will wear different hats, or
perform different roles. The mapping from individual to Role, performed by the project manager when planning and
staffing for a project, allows different individuals to act as several different roles, and for a role to be played by several
individuals (also refer to Composite Role in Section 13.3).

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

Qualification MethodContentElement /
Class

qualification n/a no n/a

• providedQualification: Qualification Provides a list of qualifications that the role typically provides. This list can
be mapped against the required qualifications list defined for Task Definitions
(see Section 12.9). The qualifications need to be present by individual that are
represented as instances of instances of the Role Definitions.
Software & Systems Process Engineering Meta-Model, v2.0 87

SPEM 2.0 Profile Notation

Figure 12.4 - Example for a UML2 diagram with role stereotypes and artifact responsibility

12.8 Step

Super Class
Section

Work Definition

Figure 12.5 - Steps represent Sections of Tasks

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

RoleDefinition MethodContentElement /
Class

role definition n/a no

SPEM 1.1
backwards
compatibility
icon:
88 Software & Systems Process Engineering Meta-Model, v2.0

Description
A Step is a Section and Work Definition that is used to organize a Task Definition’s Content Description into parts or
subunits of work. Steps inherit the subSection decomposition from Section and can therefore describe sub-Steps nested
into Steps.

Semantics
A Step describes a meaningful and consistent part of the overall work described for a Task Definition. The collection of
Steps defined for a Task Definition represents all the work that should be done to achieve the overall development goal of
the Task Definition. Not all steps are necessarily performed each time a Task is invoked in a Process (see Task Use
defined in Section 13.14), so they can also be expressed in the form of alternate ‘flows’ of work. Different ways of
achieving the same development goal can then be ‘assembled’ by selecting different combinations of steps when applying
the Task Definition in a Process. Typical kinds of steps that a Task Definition author should consider are:

• Thinking steps: where the individual roles understand the nature of the task, gathers and examines the input artifacts,
and formulates the outcome.

• Performing steps: where the individual roles create or update some artifacts.
• Reviewing steps: where the individual roles inspects the results against some criteria.

SPEM 2.0 Profile Notation
As there is no Content Description and Section stereotype, Step has been directly derived from Method Content Element.

12.9 Task Definition

Super Class
Method Content Element

Work Definition

Description
A Task Definition is a Method Content Element and a Work Definition that defines work being performed by Roles
Definition instances. A Task is associated to input and output Work Products. Inputs are differentiated in mandatory
versus optional inputs. The relationships to Work Products via Work Definition Parameters are not instantiatable/variable-
like parameters. They rather express (hyper-)links to the descriptions of the work products types that are related to the
Task as inputs and outputs. In other words, these associations are not intended to be used to capture which concrete
instances will be passed along when instantiating the method in a project. All of the Task Definition’s default associations
and Parameters can be overridden in an actual process definition (see Chapter 13).

Stereotype Superclass Keyword Properties Abstract Icon

Step MethodContentElement,
WorkDefinition

step n/a no
Software & Systems Process Engineering Meta-Model, v2.0 89

Association Properties

Semantics
A Task Definition describes an assignable unit of work. Every Task Definition is assigned to specific Role Definitions.
The granularity of a Task Definition is generally a few hours to a few days. It usually affects one or only a small number
of work products. A Task Definition is used as an element of defining a process. Tasks Definition are further used for
planning and tracking progress; therefore, if they are defined too fine-grained, they will be neglected, and if they are too
large, progress would have to be expressed in terms of a Task Definition’s parts (e.g., Steps, which is not recommended).

A Task Definition has a clear purpose in which the performing roles achieve a well defined goal. It provides complete
step-by-step explanations of doing all the work that needs to be done to achieve this goal. This description is complete
independent of when in a process lifecycle the work would actually be done. It therefore does not describe when you do
what work, but describes all the work that gets done throughout the development lifecycle that contributes to the
achievement of this goal. When the Task Definition instance is applied in a process, then this process application (defined
as Task Use in Section 13.14) provides the information of which pieces of the Task Definition will actually be performed
at any particular point in time. This assumes that the Task Definition will be performed in the process over and over
again, but each time with a slightly different emphasis on different steps or aspects of the task description (also see
Section 6.3.1 summarizing the difference between Method Content and Process).

For example, a Task Definition such as “Develop Use Case Model” describes all the work that needs to be done to
develop a complete use case model. This would comprise of the identification and naming of use cases and actors, the
writing of a brief description, the modeling of use cases and their relationships in diagrams, the detailed description of a
basic flow, the detailed description of alternatives flows, performing of walkthroughs workshops and reviews, etc. All of
these parts contribute to the development goal of developing the use case model, but the parts will be performed at
different points in time in a process. Identification, naming, and brief descriptions would be performed early in a typical
development process versus the writing of detailed alternative flows which would be performed much later. All these
parts or steps within the same Task define the “method” of Developing a Use Case Model. Applying such a method in a
lifecycle (i.e., in a process) is defining which steps are done when going from one iteration to the next.

• ownedTaskDefinitionParameter:
Default_TaskDefinitionParameter

This ordered association subsets ownedParamter from Work Definition.
Tasks Definitions manage Task Definition Parameter instances which are
subclasses of the Work Definition Parameters. Task Definition Parameter add
an optionality property to the parameter.

• usedTool: ToolDefinition A Task Definition can recommend a specific set of tools to be used to support
the Task.

• /step: Step This derived association is a shortcut for navigation along the association
properties self.description.section.

• requiredQualification: Qualification Provides a list of qualifications that the task typically requires to be performed
by one or more roles. This list can be mapped against the provided
qualifications list defined for Role Definitions (see Section 12.7).
90 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation

Figure 12.6 - Example Task with related content elements represented using the UML 2 SPEM 2.0 Profile

12.10 Tool Definition

Super Class
Method Content Element

Description
A Tool Definition is a special Method Content Element that can be used to specify a tool’s participation in a Task
Definition.

Stereotype Superclass Keyword Properties Abstract Icon

TaskDefinition MethodContentElement,
WorkDefinition

task definition n/a no

SPEM 1.1
backwards
compatibility
icon:
Software & Systems Process Engineering Meta-Model, v2.0 91

Association Properties

Semantics
A Tool Definition describes the capabilities of a CASE tool, general purpose tool, or any other automation unit that
supports the associated instances of Role Definitions in performing the work defined by a Task Definition. A Tool
Definition can identify a resource as useful, recommended, or necessary for a task’s completion. The Task Definition can
refer to the associated list of Tool Definitions to clarify their role.

SPEM 2.0 Profile Notation

12.11 Work Product Definition

Super Class
Method Content Element

Figure 12.7 - Work Product taxonomy

Description
Work Product Definition is Method Content Element that is used, modified, and produced by Task Definitions. Work
Product Definitions can be related to other Work Product Definitions via the Work Product Definition Relationship.

Semantics
Work Products are in most cases tangible work products consumed, produced, or modified by Tasks. They may serve as a
basis for defining reusable assets. Roles use Work Products to perform Tasks and produce Work Products in the course of
performing Tasks. Work Products are the responsibility of Role Definitions, making responsibility easy to identify and

• managedWorkProduct: WorkProductDefinition A Tool can manage instances of one or more Work Product
Definitions. For example, a Tool can be modeled that specializes
in managing Use Case Models or another Tool that manages
Analysis and Design Models.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

ToolDefinition MethodContentElement /
Class

tool definition n/a no
92 Software & Systems Process Engineering Meta-Model, v2.0

understand, and promoting the idea that every piece of information produced in the method requires the appropriate set of
skills. Even though one Role Definition might “own” a specific type of Work Product, other roles can still use the Work
Product for their work, and perhaps even update them if the Role Definition instance instance has been given permission
to do so.

SPEM 2.0 Profile Notation

12.12 Work Product Definition Relationship

Super Class
Method Content Element

Description
A Work Product Definition Relationship expresses a general relationship amongst Work Products Definitions. Kind (
Section 8.2) class instances shall be used to specify the nature of this relationship.

Association Properties

Semantics
Work Product Definition Relationship has almost the same semantics as Work Product Use Relationship (see Section 9.12
for details). However, it is used to represent generic or default relationships amongst Work Product Definitions that have
been defined in the general methods around these Work Products. They are generic and completely lifecycle independent.
Work Product Use Relationships are more accurate towards a concrete application of Work Product Definitions in a
specific process or even specific activities (such as phases or iterations within a Process).

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

WorkProductDefinition MethodContentElement /
Class

work product
definition

n/a no

SPEM 1.1
backwards
compatibility
icon:

• source: Work Product Definition This association links to the exact one source of the Work Product Definition
Relationship.

• target: Work Product Definition This association links to one or more targets of the Work Product Definition
Relationship.
Software & Systems Process Engineering Meta-Model, v2.0 93

SPEM 2.0 Profile Notation
SPEM 2.0 user need to define their own stereotypes for the Kind classes that they produce. The Base Plugin defines a set
of typical Kinds and stereotypes in Section 18.5.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

WorkProductRelationship ExtensibleElement
/ Association

work product relationship n/a no n/a
94 Software & Systems Process Engineering Meta-Model, v2.0

13 Process with Methods

SPEM 2.0 separates reusable core method content from its application in processes. A Development Process defines the
structured work definitions that need to be performed to develop a system, e.g., by performing a project that follows the
process. Such structured work definitions delineate the work to be performed along a timeline or lifecycle and organize it
in so-called breakdown structures.

Figure 13.1 - The SPEM 2.0 UML 2 Profile stereotypes defined in the Process with Methods package

Task Definitions (introduced as part of the core method content in Section 12.9) provide complete step-by-step
explanations for work that needs to be performed to achieve a particular development goal. Tasks not look at the 'big
picture' of how the work described relates to other Task's work. They have been defined as reusable core method content
independent of their placement within a development lifecycle. All that is defined for a Task are the types of the input and
output work products, the concrete steps to perform, as well as what skills are required to perform the work (by defining
an relating to Roles). Which Tasks have to precede and succeed a Task as well as what steps to focus on at what point of
time in the lifecycle are intentionally not defined for core method content. The goal is to provide Tasks that can be reused
for many different development situations.

The scope of a process is to provide extended as well as concrete breakdown structures for a specific development
situation. Therefore, a process with methods takes reusable core method content elements such as Tasks and Work
Product Definitions and relates them into partially-ordered sequences that are customized to specific types of projects. To
do so, SPEM 2.0’s Process with Methods package provides data structures that reflect the industry's best practices such as
the separation of Actions from Activities found in UML 2 Superstructure. This section refines the Breakdown Structures
introduced in the Process Structure package (Chapter 9) with mappings to Method Content Elements. It also refines the
notion of Activity to represent higher level groupings of work that now also comprise of references to Task Definitions
(which are similar to UML 2 Activities), called Task Uses (which are similar to UML 2 Actions).
Software & Systems Process Engineering Meta-Model, v2.0 95

Figure 13.2 - Taxonomy of the meta-model classes defined in the Process with Methods meta-model package

Figure 13.2 depicts the taxonomy of classifiers introduced or refined in the Process with Methods package. It shows that
a few new abstract classes have been introduced that serve as new superclasses to classes introduced in other meta-model
packages such a Process Structure and Method Content. These have been added to enforce the separation of method
content from processes. For example, the classes Method Content Packageable Element and Process Packageable Element
are superclasses for all classes introduced so far, categorizing each class into either method content or process. Two
redefinitions of the UML 2 Infrastructure class Package, which served as the packaging concept in the other meta-model
packages, have been created here to ensure that instances of the different categories are not packaged together.

The key static structure for describing processes is the breakdown structure defined around the class Breakdown Element,
which detailed taxonomy and structural relationships are depicted in Figure 13.3. This diagram presents the different
types of Breakdown Elements that have been extended in this meta-model package as well as their key new relationships
introduced here.
96 Software & Systems Process Engineering Meta-Model, v2.0

Figure 13.3 - Taxonomy and key relationships of Breakdown

13.1 Activity

Super Class
Work Breakdown Element

Work Definition

Semantics
Activity from Process Structure (Section 9.1) is extended in this meta-model package with the ability to also contain Task
Uses, Team Profiles, and Composite Roles.

Activity represents a grouping of nested Breakdown Elements such as other Activity instances, Task Uses, Role Uses,
Milestones, etc. It is not just a ‘high-level’ grouping of work such as Work Definitions as in other similar meta-models. It
also aims to be a grouping for all different kinds of Breakdown Elements defining a namespace for these elements. The
goal for this approach is that instances of specific Breakdown Element instances need to define different relationships and
textual documentation properties for occurrences in different activities. For example, a SPEM 2.0 user could create three
instances of Role Use that represent a Role Definition called “System Analyst” for three different activities. In each of
these activities, the different Role Use instances all representing the same Role Definition “System Analyst” could be
modeled with different relationships, such as different responsibilities for Work Products, to represent the fact that the
System Analyst has to focus on different responsibilities in different activities (e.g., he might be responsible for quite
different work product in an early phase of a project than in a later phase; with phases modeled as Activities).
Software & Systems Process Engineering Meta-Model, v2.0 97

Figure 13.4 - Example for an Activity ‘Define the System’ with associations

Figure 13.3 depicts a SPEM 2.0 Profile presentation of an Activity called “Define the System” which groups two Task
Uses, two Work Product Uses, and one Role Use. It also defines that Activity “Understand Stakeholder Needs” is its
predecessor that has to be completed before work on “Define the System” can start (Tagged Value:
“linkType=FinishToStart”, cf. with Work Sequence in Section 9.11). The diagram is an alternative UML-based
presentation. A more common presentation of Activities and work breakdown structures is depicted in Figure 13.4, which
shows the same Activity “Define the System.”

SPEM 2.0 Profile Notation

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

Activity WorkDefinition, Planned
Element / Action

activity n/a no

SPEM 1.1
backwards
compatibility
icon:
98 Software & Systems Process Engineering Meta-Model, v2.0

13.2 Breakdown Element

Super Class
Process Element

Description
Breakdown Element is an abstract generalization for any type of Process Element that is part of a breakdown structure. It
defines a set of properties available to all of its specializations.

Attributes

Association Properties

Semantics
No additional semantics. See subclasses.

• isPlanned: Boolean = true A key application for Development Processes expressed with Breakdown structures
is to generate a project plan from it. A process as defined in SPEM 2.0 (cf.
Section 9.1) is a multi-dimensional structure defining what work is being performed
at what time by which roles using which input and producing what outputs. A
project plan as it is represented in project planning tools such as IBM Rational
Portfolio Manager or Microsoft Project normally does not need all this information
and is normally limited to just representing a subset. For example, a typical MS
Project plan only represents the work breakdown consisting of tasks and activities
(sometimes referred to as summary tasks). It does not show the input and output
Work Products for a task, but it can show which roles shall be staffed for
performing the task. However, such role allocation needs to be replaced with
concrete resources when instantiating the plan for a concrete project. Sometimes
project plans can then again be organized differently by organizing work by
deliverables in which Work Products are mapped to the plan’s summary tasks and
Task that have these work products as output mapped below such as summary task.
Therefore, a process can make recommendations about which elements to include
and which to exclude when generating a plan.

When the isPlanned attribute is set to False for an instance of a Breakdown
Element, then this element shall not be not included when a concrete project plan is
being generated from the breakdown structure that contains this element.

• planningData: PlanningData The PlanningData class factors out specific optional data needed for
representing planning templates. This association allows accessing planning
data if it is stored for the Breakdown Element.
Software & Systems Process Engineering Meta-Model, v2.0 99

SPEM 2.0 Profile Notation

13.3 Composite Role

Super Class
Role Use

Description
A Composite Role is a special Role Use that relates to more than one Role Definition. It represents an aggregation of
Roles Definition references for an Activity with the main purpose of simplification, i.e., reducing the number of roles
defined in method content for a process.

Association Properties

Semantics
A Composite Role is a grouping of Role Definitions that can be used in an Activity or Process to reduce the number of
Roles defined in Method Content. A typical application would be a process for a small team in which a standard set of
Roles Definitions from the method content would be all performed by one or more Role Use instance. By using
Composite Roles, the process would suggest a typical clustering of Role Definitions to just one instantiatable element in
the process. A Composite Role instance would then perform all Tasks defined for the Roles Definitions it refers to.

Figure 13.15 shows an example for Composite Role named Developer that groups together the Implementer and Tester
Roles. Every time one of the Role Implementer or Tester would be used within the breakdown structure of Figure 13.15,
Developer is used instead. Hence, if a Task Use would be added to the Process represented in Figure 13.15 that has
Implementer or Tester defined to be the primary performer as a Role Use, this Role Use would be automatically
substituted by a Composite Role instance Developer that links back to either Tester or Implementer (or both if both were
listed a Task performers).

Stereotype Superclass Keyword Properties Abstract Icon

BreakdownElement ProcessElement n/a hasMultipleOccurences,
isOptional, isPlanned

yes n/a

• aggregatedRole: Role This association lists all the Roles Definitions represented by the Composite Role.
100 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation

13.4 Method Content Kind

Super Class
Kind (from Core)

Method Content Element

Figure 13.5 - Refined Method Content and Process Kinds

Description
Method Content Kind is a Kind and Method Content Element that represents a method content specific refinement of the
Kind class defined in Core (Section 8.2). Only Method Content Elements can be used for Method Content Kinds. Method
Content Elements can be packaged in Method Content Packages (Section 13.5).

Semantics
See Kind (Section 8.2).

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

CompositeRole RoleUse composite role n/a no

AggregatedRole Association aggregated role n/a no n/a
Software & Systems Process Engineering Meta-Model, v2.0 101

13.5 Method Content Package

Super Class
Package (from Constructs in UML 2 Infrastructure)

Method Content Packageable Element

Figure 13.6 - ContentPackage redefines its inherited owned Members association to only allow Method Content
Elements

Description
A Method Content Package is a Method Content Packageable Element and Package that contains Method Content
Elements only. Examples for Method Content Element are Work Product Definition, Task Definition, Role Definition,
etc.

Association Properties

Semantics
A key separation of concerns in SPEM 2.0 is the distinction between Method Content and Process as outlined in Section
6.3.1. This separation is enforced by special package types, which do not allow the mixing of method content with
processes. See Section 13.9 for the definition of Process Package.

Method Content Elements are organized in Method Content Packages to structure large scales of method content as well
as to define a mechanism for reuse. Method Content Elements from one package can reuse element from other packages
by defining an imports dependency (defined in the UML 2 Infrastructure) between them. For example, a Work Product
Definition defined in one package can be used as an input for Task Definitions defined in other packages. Reusing it from
one common place (i.e., the package in which it has been defined) ensures that no redundant definitions of the same
elements are required. Also, maintenance of method content is greatly improved as changes can be performed in only one
place.

• ownedMethodContentMember: Method-
ContentPackageableElement

A Method Content Package contains Method Content Packageable
Elements. A Method Content Element instance can be part of only one
package instance.
102 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation

Figure 13.7 - Example for a Content Package with its Content Elements

13.6 Method Content Packageable Element

Super Class
Packageable Element (from Constructs in UML 2 Infrastructure)

Description
Method Content Packageable Element is an abstract generalization for Method Content Package and Method Content
Element supporting the redefinition of the packagedElement association of Method Content Package inherited from the
UML 2 class.

Semantics
Method Content Packageable Element represents an element that can be packaged in a Method Content Package.

Stereotype Metaclass Keyword Properties Abstract Icon

MethodContentPackage Package method content
package

n/a no
Software & Systems Process Engineering Meta-Model, v2.0 103

13.7 Method Content Use

Super Class
Breakdown Element

Figure 13.8 - Relationships of concrete Method Content Use classes

Description
A Method Content Use is an abstract generalization for special Breakdown Elements that references one concrete Method
Content Element. A Method Content Use provides a proxy-like representation of a Method Content Element within
breakdown structures. In addition to just referencing Method Content Elements, it allows overriding the Method Content
Elements structural relationships by defining its own sets of associations and adding its own Content Description.

Semantics
Method Content Uses are the key concept for realizing the separation of processes from method content. A Method
Content Use can be characterized as a reference object for one particular Method Content Element, which has its own
relationships and properties. When a Method Content Use is created, it shall be provided with congruent copies of the
relationships defined for the referenced content element. However, a user can modify these relationships for the particular
process situation for which the Method Content Use has been created.

Figure 13.9 depicts an example in which for a Task Definition, its performing Roles Definitions, as well as its input/
output Work Product Definitions have been created. The situation of this example could be that the Task “Prioritize Use
Cases” shall be performed differently in a project’s Inception phase than in its Elaboration phase (i.e., with different foci
on different steps, utilizing different inputs, etc.). We see that the Task in Inception has an additional assisting role
(Customer.Project Manager) and does not provide a relationship to the Risk List Work Product that had been defined as
an optional input in the method content (i.e., steps of the Task that work with the Risk List will be omitted in this phase).
The Method Content Use concept allows, in addition to defining new relationships, also defining specific process related
properties. For example, Work Products can now express specific states they are in throughout the lifecycle. As we see in
Figure 13.9, two different types of Use Case Models are distinguished here: a Use Case Model as it is normally being
used during Inception, which describes use cases only briefly, versus use cases that have been detailed as it is the case
during the Elaboration phase (note, that states have been annotated in the name for this example diagram, but that Work
104 Software & Systems Process Engineering Meta-Model, v2.0

Product Use provides formally defined tagged values for this information). Method Content Uses are not Content
Elements and do not contain their own full descriptions. They rather refer back to their original Content Elements using
the trace dependencies as depicted in the diagram and might define changes for the Content Element’s descriptions, valid
only for this particular occurrence of the Method Content Use. Note that for simplicity of the example diagram not all
trace dependencies have been drawn, but that all other Method Content Uses also need to trace back to their respective
method content counter parts.

Figure 13.9 - Examples for Method Content Uses (right) referencing Method Content (left)

Note that Method Content Uses can be presented with UML diagrams using the SPEM 2.0 Profile as shown in Figure
13.9. However, a process definition for a typical development project will comprise of many more Method Content Use
instances and many more relationships instantiating many more relationship types such as predecessor association or
presentation order associations. Therefore, a more practical presentation than diagrams allowing flexibly for filtering
information is required. This practical presentation is depicted in Figure 13.10, showing a typical Work Breakdown
Structure presentation as it is also being utilized by popular project planning tools. In this breakdown structure example,
we see two Method Content Use instances for each of the Tasks “Develop Vision,” “Find Actors and Use Cases.” The
only Breakdown Element associations shown in this example are the Nesting and Predecessor associations, though. One
can see that the first “Find Actors and Use Cases” Task Use has a different predecessor then the second one (i.e., none
defined for the second one, indicating that it can be performed in parallel to the “Develop Vision” Task). Nonetheless,
other associations such as the inputs for the Task Uses can also be depicted in such breakdown structure presentations as
it will be shown later in this specification with more examples (e.g., see Figure 9.16).

Figure 13.10 also illustrates that Method Content Uses are defined within the context of a specific Activity. For example,
the figure shows the Method Content Use for the “Develop Vision” Task within the scope of the “Understand Stakeholder
Needs” Activity as well as the “Define the System” Activity. Within the scope of each of these Activities, individual
Software & Systems Process Engineering Meta-Model, v2.0 105

Method Content Use relationships and properties will be defined. Thus, the “Develop Vision” Task can be performed by
different Roles and with different input/output Work Products in the first Activity than the second Activity (as depicted in
Figure 13.9 as well; however not showing the relationship of the Task Uses to Activities).

Figure 13.10 - Method Content Uses in a Work Breakdown Structure

The concrete Method Content Use classes defined in subsequent sections below have specific associations and attributes.
Figure 13.8 provides an overview to all Method Content Use types defined in the Process package, their attributes and
associations. We see that each Method Content Use traces back to the core content element they refer to. Method Content
Uses also define additional associations than the associations defined amongst the core content elements. For example,
External Inputs between Task Uses and Work Product Uses are not defined in Core Method Content, because it expresses
information that is specific to a process and not available/known for method content.

SPEM 2.0 Profile Notation
No stereotype defined. See subclasses

13.8 Planning Data

Super Class
Process Element

Description
Planning Data is a Process Element that adds planning data to Breakdown Elements when it is used for generating project
plans from a process.

Association Properties

startDate: String Defines the absolute start date for the Breakdown Element.

finishDate: String Defines the absolute finish date for the Breakdown Element.

rank: Integer Defines the ranking of the Breakdown Element relative to other Breakdown Elements in same
Activity.

duration: String Duration of a Breakdown Element. Could be an exact recommended duration, or a ratio.
106 Software & Systems Process Engineering Meta-Model, v2.0

Semantics
Planning Data factors out specific optional data needed for populating plans.

SPEM 2.0 Profile Notation
The Planned Element stereotype can be used as a superclass for other stereotypes that need to store planning data such as
Activity (Section 13.1) or Task Use (Section 13.14).

13.9 Process Kind

Super Class
Kind (from Core)

Process Element

Description
Process Kind is a Kind and Process Element (see Figure 13.5) that represents a process specific refinement of the Kind
class defined in Core (Section 8.2). Only Process Elements can be used for Process Kinds. It can be packaged in Process
Packages (Section 13.10).

Semantics
See Kind (Section 8.2).

Stereotype Metaclass Keyword Properties Abstract Icon

PlannedElement n/a n/a startDate, finishDate,
rank, duration

yes n/a
Software & Systems Process Engineering Meta-Model, v2.0 107

13.10 Process Package

Super Class
Package (from Constructs in UML 2 Infrastructure)

Figure 13.11 - Process Packages contains Process specific elements

Description
Process Package is a special Package that can only contain Process Packageable Elements. It redefines the
packagedElement and ownedMembers association to only allow elements of these two types.

Association Properties

Semantics
A process package can only contain Process Elements. A key separation of concerns in SPEM 2.0 is the distinction
between Method Content and Process as outlined in Section 6.3.1. This separation is enforced by special package types,
which do not allow the mixing of method content with processes. Method Content, introduced in Section 11.6, is managed
in Method Content Packages.

• ownedProcessElements: ProcessElement A Process Package can contain Process Elements which are used to
define Breakdown and Processes. A Process Element instance can be part
of only one Process Package instance.
108 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation

13.11 Process Packageable Element

Super Class
Packageable Element (from Constructs in UML 2 Infrastructure)

Description
Process Packageable Element is an abstract generalization for Process Package and Process Element supporting the
redefinition of the packagedElement association of Process inherited from the UML 2 class.

Semantics
Process Packageable Element represents an element that can be packaged in a Process Package.

13.12 Process Performer

Super Class
Breakdown Element

Description
Process Performer in this meta-model package extends the Process Performer of the Process Structure meta-model
package (Section 9.7) with an additional association to Task Use (see Figure 13.8). Process Performer can be used
optionally to indicate performance of an Activity or a Task Use.

Association Properties

Semantics
See Process Performer in Process Structure (Section 9.7).

SPEM 2.0 Profile Notation
Use Work Definition Performer (see Section 8.6).

Stereotype Metaclass Keyword Properties Abstract Icon

ProcessPackage Package process package n/a no

• linkedTaskUse: TaskUse This association links exactly one Task Use to a Process Performer.
Software & Systems Process Engineering Meta-Model, v2.0 109

13.13 Role Use

Super Class
Method Content Use

Figure 13.12 - A Team Profile consists of Role Uses and/or Composite Roles

Description
A Role Use represents a Role in the context of one specific Activity. Every breakdown structure can define different
relationships of Role Uses to Task Uses and Work Product Uses. Therefore, one role can be represented by many Role
Uses, each within the context of an Activity with its own set of relationships.

Association Properties

Semantics
Every breakdown structure can define different teams comprising of specific sets of Role Uses and Composite Roles.
Within such a Team Profile, every Role Use can define different relationships as depicted in Figure 13.8.

• role: RoleDefinition This association represents the reference from the Method Content Use to the method
content element it refers to. Every Role Use can reference only one Role Definition.
However, a Role Definition can be represented by many Role Uses. In the SPEM 2.0
Profile, this association is instantiated by a dependency relationship with a trace
stereotype.

• appliedQualification:
Qualification

A Role Use can select a sub-set of valid Qualifications defined for the Role Definition
for this one use of the Role Definition in the context of a particular Activity.
110 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation

13.14 Task Use

Super Class
Method Content Use

Work Breakdown Element

Figure 13.13 - Selecting Steps for a Task Use

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

RoleUse BreakdownElement /
Classifier

role use n/a no

SPEM 1.1
backwards
compatibility
icon:

MethodContentTrace / Dependency content trace n/a no n/a
Software & Systems Process Engineering Meta-Model, v2.0 111

Description
A Task Use is a Method Content Use and Work Breakdown Element that represents a proxy for a Task Definition in the
context of one specific Activity. Every breakdown structure can define different relationships of Task Uses to Work
Product Uses and Role Uses. Therefore, one Task Definition can be represented by many Task Uses each within the
context of an Activity with its own set of relationships.

A key difference between Method Content and Process is that a Method Content Element, such as Task Definition,
describes all aspects of doing work defined around this task. This description is managed in steps, which are modeled as
Sections of the Task Definitions’ Content Descriptions. When applying a Task Definition in a Process’ Activity with a
Task Use, a Process Engineer needs to indicate that at that particular point in time in the Process definition for which the
Task Use has been created, only a subset of steps shall be performed. She defines this selection using the selectedSteps
association depicted in Figure 13.11. If she wants to add steps to a Task Use, she can describe these either pragmatically
in the refinedDescription attribute, or ‘properly’ by creating a contributing Task Definition to the Task the Task Use refers
to (see Section 14.6 on Contribution).

Association Properties

Semantics
See Method Content Use in Section 13.7 for details.

• task: TaskDefinition This association represents the reference from the Method Content Use
to the Method Content Element it refers to. Every Task Use can
reference only one Task Definition. However, a Task Definition can be
represented by many Task Uses. In the SPEM 2.0 Profile this
association is instantiated by a dependency relationship with a trace
stereotype.

• ownedProcessParameter: ProcessParamter This ordered association links a Task Use to its Process Parameters.

• selectedStep: Step List the steps that have been selected to be performed for the instance
of the Task Use.

• usedQualification: Qualification A Task Use can select a sub-set of valid Qualifications defined for the
Task Definition for this one use of the Task Definition in the context of
a particular Activity.
112 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation

13.15 Team Profile

Super Class
Breakdown Element

Description
A Team Profile is a Breakdown Element that groups Role Uses or Composite Roles defining a nested hierarchy of teams
and team members.

Association Properties

Semantics
Work assignments and Work Product responsibilities can be different from Activity to Activity in a development project.
Different phases require different staffing profiles, i.e., different skills and resources doing different types of work.
Therefore, a process needs to define such different profiles in a flexible manner. Whereas Core Method Content defines
standard responsibilities and assignments, a process expressed in breakdown structures needs to be able to refine and
redefine these throughout its definition. Role Uses, Composite Roles, as well as Team Profiles provide the data structure
necessary to achieve this flexibility and to provide a process user with the capability to define different teams and role
relationships for every Activity (including Activities on any nesting-level as well as Iterations or Phases).

Hence, in addition to the work breakdown and work product breakdown structures defined so far, Team Profiles are used to
define a third type of breakdown structure: team breakdown structures. These are created as an activity-specific hierarchy of
Team Profiles comprising of Role Uses and Composite Roles. These structures can be presented as well-known
Organizational Charts as depicted in Figure 13.14. The diagram shows three instances of Team Profile forming a hierarchy
(the top-level node being just a logical node just grouping all the teams and roles defined for an Activity together). Every
Team Profile instance has a number of Roles associated which will be represented as Role Uses.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

TaskUse WorkBreakdownElement,
PlannedElement / Classifier,
Action

task use n/a no

MethodContentTrace / Dependency content trace n/a no n/a

• subTeam: TeamProfile This composition association relates a Sub-Team to its Super-Team, i.e., the Team that it is
part of.

• teamRole: RoleUse This association specifies the roles of team members with Role Uses.
Software & Systems Process Engineering Meta-Model, v2.0 113

Figure 13.14 - Example of a Team Profile with nested Team Profiles and Role Uses

Just as with any other Breakdown Element and Method Content Uses, Team Profiles can be defined within the scope of
any Activity in a breakdown structure. In other words, every Activity can define its own Team Profiles consisting of
activity-specific Role Uses and Composite Roles that are reusable for lower level Activities. Typically, Team Profiles are
defined on the level of Iterations (as depicted in Figure 13.15), Phases or other higher-level Activity.

Iteration E1 TeamsIteration E1 Teams

Project ManagerProject Manager Team CustomerTeam Customer Team IGSTeam IGS

System AnalystSystem Analyst ReviewerReviewer System AnalystSystem Analyst ArchitectArchitect Team UITeam UI

UI DesignerUI Designer UI ReviewerUI Reviewer

Iteration E1 TeamsIteration E1 Teams

Project ManagerProject Manager Team CustomerTeam Customer Team IGSTeam IGS

System AnalystSystem Analyst ReviewerReviewer System AnalystSystem Analyst ArchitectArchitect Team UITeam UI

UI DesignerUI Designer UI ReviewerUI Reviewer
114 Software & Systems Process Engineering Meta-Model, v2.0

Figure 13.15 - Example for Team Profiles used in a Team Breakdown Structure

Figure 13.15 provides an example of a Team Breakdown Structure that applies the Team Profiles from Figure 13.14
locally to an Iteration called ‘Iteration E.1.’ It defines the Team Profiles in Rows 8 to 17 and then applies these in sub-
Activities. For example, the Activity ‘Understand Stakeholder Needs’ utilizes several roles from the different teams, e.g.,
an Architect from the IGS team, the System Analysts from both teams, etc. A project manager using this process for
planning can directly see in this Team Breakdown Structure Activity for Activity which roles she has to find resources
for. Every occurrence of a Team Profile Role is represented by another Role Use which is used for relationships to Task
Uses and Work Product Uses relating to the other two breakdown structures. The rules for matching the Method Content
Uses from a lower Activity such as ‘Understand Stakeholder Needs’ to a higher level Activity such as ‘Iteration.E1’ are
straight-forward:

• If a Role Use links to the same Role Definition (or contributed/replaced Role Definition; see Chapter 14, Method-
Plugins for more details) in Method Content then a Role Use in a parent Activity and both Role Uses are linked to the
same Team Profile, then the two Role Uses represent the same role.
(Examples from Figure 13.15 are Architect, UI Designer, etc.)

• If the two Role Uses relate to different teams, two separate Roles are represented.
(Examples from Figure 13.15 are the two System Analyst, which represent two different Roles.)

• If the Role Use links to a Role that is not part of any Team or listed in a higher level Activity, then the Role Use is
defined an Activity local Role, which can be ‘reused’ for lower level Activities.
(Example from Figure 13.15 are the Project Manager, which is defined as local in Activity ‘Iteration.E1’ and then
reused in Activity ‘Understand Stakeholder Needs’, or the Requirements Specifier which is locally defined on the
lowest Activity level.)
Software & Systems Process Engineering Meta-Model, v2.0 115

SPEM 2.0 Profile Notation

13.16 Work Product Use

Super Class
Method Content Use

Description
A Work Product Use represents a Work Product Definition in the context of one specific Activity. Every breakdown
structure can define different relationships of Work Product Uses to Task Uses and Role Uses. Therefore, one Work
Product Definition can be represented by many Work Product Uses each within the context of an Activity with its own set
of relationships.

Association Properties

Semantics
See Method Content Use in Section 13.7 for details.

SPEM 2.0 Profile Notation

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

TeamProfile BreakdownElement / Classifier team profile n/a no

• workProduct: WorkProductDefinition This association represents the reference from the Method Content Use to
the core content element it refers to. Every Work Product Use can
reference only one Work Product Definition. However, a Work Product
can be represented by many Work Product Uses. In the SPEM 2.0 Profile
this association is instantiated by a dependency relationship with a trace
stereotype.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

WorkProductUse BreakdownElement /
Classifier

work product use n/a no

MethodContentTrace / Dependency content trace n/a no n/a
116 Software & Systems Process Engineering Meta-Model, v2.0

14 Method Plugin

The Method Plugin package defines capabilities around managing whole libraries of Method Content and Processes. It
addresses the concern of scaling to large Method Libraries by defining Method Plugins and Method Configurations.

The Method-Plugin package defines extensibility and variability mechanisms for method content and processes. It
provides more flexibility in defining different variants of method content and processes by allowing content and process
fragments to be plugged-in on demand, thus creating tailored or specialized content only when it is required and which
can be maintained as separate units worked on by distributed teams.

Figure 14.1 - The SPEM 2.0 UML 2 Profile stereotypes defined in the Method Plugin package

Methods and Processes are never developed in isolation. Many concurrent teams of process engineers might work on
different or the same parts of a Method Content or particular Processes. They have to either coordinate their work or
preferably to modularize Method Content and Process definitions that they can work on in isolation without any shared
resource problems.

Moreover, work on a development Process is never final because they have to be tailored for every specific project
situation. To avoid developing Delivery Processes from scratch for every specific project situation, a truly reusable
Process allows defining many different variations on it. Therefore, tailoring and extension of pre-defined processes is a
key requirement for organizations adopting and implementing processes. For example, imagine a scenario in which a
development organization purchases a third-party Delivery Process from a method vendor and its underlying method
content. While implementing the process in their organization, they might discover that they would like to tailor the
process to their particular needs and organization specific variations. If they would directly modify the purchased process,
they would mingle their additions and changes with the original process. If a new version of the original process is
released by the vendor, it would be very hard for them to find and reproduce these changes to the new process version.

The package Method Plugin adds the capabilities of modularization and extensibility of Method Content and Processes to
SPEM 2.0. In other words, it supports tailoring of Method Content and Processes without directly modifying them, but by
describing changes from a separate unit called a Method Plug-in. This new capability is achieved by adding new concepts
to the meta-model:
Software & Systems Process Engineering Meta-Model, v2.0 117

A. All SPEM Elements are organized in Method Plugins. Method Plugins are containers for Content and Process Pack-
ages. Every SPEM element instance is part of exactly one Method Plugin, i.e., Method Plugins partition the space of
all elements.

B. Method Plugins can define extensions to other Method Plugins. One Method Plugin can define extensions for many
other Plugins and can be extended by many Plugins.

C. The Method Plugin meta-model package adds a new set of relationships and semantics to specific SPEM Elements
that define how these SPEM Elements can extend each other across the boundary of Method Plugins or Method Pack-
ages (to allow modularization even within one Method Plugin).

Method Configurations define specify visibility spaces or working sets for Method Content and Process, allowing a
Process Engineer to focus on relevant parts of Library instead of seeing the whole library all at once. By defining
Configurations as subsets of Plugins and Method Packages that shall be considered for process authoring only,
Configurations also define the space of variability interpretation to avoid conflicts amongst 'competing' content (e.g.,
content that replaces the same elements).

The Library Configuration classifier adds additional capabilities for packaging Method Plugins and scaling method and
process authoring work. It defines the key concept of Library which comprises of Method Plugins and Method
Configurations. A Library represents the overall physical container for all SPEM Elements. Libraries represent a separate
Method ‘universe,’ i.e., a Method Library cannot reference elements from another Method Library. A Configuration is a
logical subset of Plugins and Method Packages, i.e., selections of Method Packages. They are used to define working sets
for process authoring, providing a process engineer with lists of elements to be used for creating process within such a
Configuration. Configurations also define the space of variability interpretation to avoid conflicts amongst ‘competing’
content (e.g., more then one variability elements that replace the same element) as well as define sets of Method Content
and Processes for export and distribution.

Figure 14.2 - Taxonomy of the classes defined in Method Plugin meta-model package
118 Software & Systems Process Engineering Meta-Model, v2.0

14.1 Activity

Super Class
Variability Element

Description
Activity in the package Method Plugin inherits from Variability Element to extend Activity with new capabilities for
variability. It extends the class with association relating a Process to one default and many optional valid Configurations
(see Figure 14.3).

Association Properties

Semantics
Activity inherits the semantics of Variability Element which provides key mechanism to enable dynamic modification of
Activities in a process from a Method Plugin. The relationships to configurations describe valid contexts for the Process
within a Method Library indicating under which Configurations an Activity is well defined.

• defaultContext: MethodConfiguration An Activity that represents a process can have one default configuration
defining the visibility space of the activity’s sub-elements. Every child
activity will automatically inherit its parent’s default configuration unless it
defines its own overriding configuration.

• validContexts: MethodConfiguration An Activity that represents a process can have many additional
configurations that have been verified to also produce valid results. Process
Elements (e.g., Method Content Uses) that refer to content packages that
are defined outside the scope of such a configuration would not be shown in
the process when published or used under such a configuration. This allows
easily removing content from a process by removing content packages from
the related configuration.
Software & Systems Process Engineering Meta-Model, v2.0 119

14.2 Method Configuration

Super Class
Classifier (from UML 2 Infrastructure)

Figure 14.3 - Definition of Method Library and Method Configurations

Description
A Method Configuration is a collection of selected Method Plugins, as well as subsets of Method Content Packages and
Process Packages of respective Method Plugins. The definition of a configuration can be further refined by subtraction of
all Content Elements categorized by a Category associated via the subtracted Category association.

Association Properties

• /methodPluginSelection: MethodPlugin This derived association includes all Method Plugin that own packages
that have been selected as part of the Method configuration using the
methodPackageSelection association.

• contentPackageSelection: ContentPackage A selection of packages to be included in the configuration.

• processPackageSelection: ProcessPackage A selection of packages to be included in the configuration.
120 Software & Systems Process Engineering Meta-Model, v2.0

Semantics
A Method Configuration defines a logical subset on a Method Library. It is defined by selection of Method Packages.
Figure 14.4 depicts an example of a Method Configuration by shading the packages that have been selected for a Method
Configuration in red. As a result, the Configuration of Figure 14.4 consists of the plug-ins ‘Base Model,’ ‘RUP Software
Family,’ ‘Framework RUP,’ and ‘COTS Plug-in’ as well as only the packages of those plug-ins that have been selected
(i.e., the red ones).

Figure 14.4 - Illustration of a Method Configuration: all colored packages a part of a Configuration

A Method Configuration defines a visibility space within a Method Library that can be used to filter Method Content and
Processes. An Activity representing a Process can be valid for many different Method Configurations (see association
validContext for Activity in Section 14.1), but each Configuration includes or excludes particular content for specific
situations. For example, a Process can be defined to include content for developing schemas for different types of
database management systems such as content for RDBMS and OODBMS. When using such a Process, a user might want
to select just one type of DBMS support for his project. Hence, she wants to exclude all content for the alternative
development methods for the other type of DBMS. She achieves this by defining a configuration that excludes the
respective content; in other words she removes this unwanted content from the current visibility space defined by the
configuration. An implementation of this specification would interpret the absence of specific Method Content Packages
from a selected Method Configuration, which contain elements referred to by the Method Content Uses in the Process
Definition, in the way that these Method Content Uses would also not be visible, i.e., ignored by the Process presentation.
Using this configuration technique, a Process can be defined to include many alternative development techniques, but

• baseConfigurations: MethodConfiguration The definition of a configuration can be based on the definitions of
other configurations. For example, a configuration A could be defined
as the superset of configurations B, C, and D plus additional Plugins
and Packages. In such a case, A would list B, C, and D as its
baseConfigurations. If any of these base configurations changes, all
updates would be automatically valid for A as well,thus reducing
maintainability overhead for overlapping/dependent configurations.

Library

Base Model

RUP Software Family

Framework RUP Framework Agile

J2EE Plug-in

Framework SA

IGS Family

Framework ITS

Framework NetworkCOTS Plug-in

: Extends : Method Plugin : Method Package: Extends : Method Plugin : Method Package
Software & Systems Process Engineering Meta-Model, v2.0 121

ultimately the configurations would decide which techniques would be actually used. A Process maintains lists of valid
configurations in the validContext association, i.e., configurations that have been ”tested” by the process author to prove
a valid and useful process variant.

Another application of Method configuration is to create new Libraries by exporting all contents of a configuration into
its own new standalone Library. A prerequisite for such an export would be that the configuration needs to include the full
transitive closure of all elements all other elements depend on. Such a configuration-based export functionality is useful
for selling and shipping only parts of a Method Library to customers.

SPEM 2.0 Profile Notation

14.3 Method Library

Super Class
Package (from UML 2 Infrastructure)

Figure 14.5 - A Method Library is a container for Plugins and Configurations

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

MethodConfiguration / Class configuration n/a no n/a

PackageSelection / Dependency package selection n/a no n/a

BaseConfiguration / Dependency base configuration n/a no n/a
122 Software & Systems Process Engineering Meta-Model, v2.0

Description
A Method Library is a physical container for Method Plugins and Method Configuration definitions. All SPEM 2.0
elements are stored in a Method Library.

Association Properties

Semantics
No additional semantics defined.

SPEM 2.0 Profile Notation

14.4 Method Library Packageable Element

Super Class
Packageable Element (from Constructs in UML 2 Infrastructure)

Description
Method Library Element is an abstract generalization for Method Plugin and Method Configuration supporting the
redefinition of the packagedElement association of Method Library inherited from the UML 2 class.

Semantics
Method Library Packageable Element represents an element that can be packaged in a Method Library. It prevents SPEM
2.0 user from nesting Method Libraries.

• /ownedMethodPlugins: MethodPlugin A Method Library physically comprises of Method Plugins. A
Method Plugin can only be part of one Method Library. This
property subsets the redefined packagedElement.

• /predefinedConfigurations: MethodConfiguration A Method Library stores a set of predefined Method
Configurations that are regularly used by the library authors (e.g.,
the configurations that they ship to their users). This property
subsets the redefined packagedElement.

• packagedElement: MethodLibraryPackage-
ableElement

This association redefines the association from UML
Infrastructure Package to only allow
MethodLibraryPackageableElements.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

MethodLibrary / Package library n/a no
Software & Systems Process Engineering Meta-Model, v2.0 123

14.5 Method Plugin

Super Class
Package (from UML2 Infrastructure Library)

Figure 14.6 - Method Plugins are containers for Method Packages

Description
A Method Plugin is a Package that represents a physical container for Content and Process Packages. It defines a
granularity level for the modularization and organization of method content and processes. A Method Plugin can extend
many other Method Plugins and it can be extended by many Method Plugins. It can also be used stand-alone with no
Extension relationship to other plug-ins.

Association Properties

• /ownedMethodContentPackage: Method-
ContentPackage

This composition association represents that every Content Package is
part of exactly one Method Plugin. This property subsets the redefined
packagedElement.

• /ownedProcessPackage: ProcessPackage This composition association represents that every Process Package is
part of exactly one Method Plugin. This property subsets the redefined
packagedElement.

• packagedElement: MethodPlugin
PackageableElement

This association redefines the association from UML Infrastructure
Package to only allow MethodPluginPackageableElements.
124 Software & Systems Process Engineering Meta-Model, v2.0

Semantics
Method Plugin conceptually represents a physical storage unit for configuration, modularization, extension, packaging,
and deployment of method content and processes. A Process Architect would design his Plugins and allocate his content
to these Plugins with requirements for extensibility, modularity, reuse, and maintainability in mind.

Figure 14.7 shows an example for a Method Plugin called “Rational Unified Process Framework.” The diagram shows
samples from the Plugin’s contents as well as two other Plugins extending it. As most Method Plugins, this Plugin is
structured into two main packages separating method content from processes: A Content Package with a hierarchy of sub-
Content Packages as well as a Process Package containing the Plugin’s Processes. The Content Packages contain typical
Content Elements such as Task, Roles, Work Products, and their relationships. The Process Package contains different
Kinds of Processes.

Figure 14.7 - Example Method Plugin with sample contents and its relationships

In addition to showing the typical structure of a Method Plugin, Figure 14.7 also depicts that two other Plugins have been
defined that extend the RUP Framework Plugin with additional capabilities. Specific context-sensitive content has been
factored out into separate Method Plugins; in this case content which is dependent on the concrete development
technology to be considered for a development process. This factoring allows one to alternatively choose one Plugin over
the other, depending whether design for the J2EE or .NET platform is required.

Special extensibility mechanisms defined for the meta-classes Variability Element (Section 14.10) allow Method Plugin
content to directly contribute new content, replace existing content, or to cross-reference to any Content Element or
Process within another Plugin that it extends. Similar to UML 2’s ‘package merge’ mechanism transformation

• basePlugin: MethodPlugin This association defines that Method Plugins could extend many other
Method Plugins. The extending plug-in contains new SPEM Elements,
extends existing SPEM Elements and processes using Variability (e.g.,
contribution, replace, etc.) provides additional Processes, etc.
Software & Systems Process Engineering Meta-Model, v2.0 125

interpretations, interpreting these Method Plugin mechanisms results into new extended Method Content and Processes.
For example, the J2EE Extensions Plugin depicted in Figure 14.7 might contain additional steps for Tasks identifying
design elements, new Work Products, extensions to existing Roles to be responsible for the new Work Products, additional
relationships of existing Content Elements to new J2EE specific Guidance elements (such as Guidelines, White Papers,
Checklists), additional Activities for a Delivery Process, new Process Patterns, etc. The Method Plugin defines these
extension using Variability Element relationships, and interpretation of these leads to new Method Content and Processes.
See Section 14.6 and Section 14.11 for more Details.

SPEM 2.0 Profile Notation

14.6 Method Plugin Packageable Element

Super Class
Packageable Element (from Constructs in UML 2 Infrastructure)

Description
Method Plugin Element is an abstract generalization for Method Content Package and Process Package supporting the
redefinition of the packagedElement association of Method Plugin inherited from the UML 2 class.

Semantics
Method Plugin Packageable Element represents an element that can be packaged in a Method Plugin. It prevents SPEM
2.0 user from nesting Method Plugins.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

MethodPlugin / Package method plugin n/a no

BasePlugin / Dependency base plugin n/a no n/a
126 Software & Systems Process Engineering Meta-Model, v2.0

14.7 Process Component

Super Class
Process Package

Figure 14.8 - Specification of Process Components and their relationships

Description
A Process Component is a special Process Package that applies the principles of encapsulation. A Process Component
contains exactly one Process represented by an Activity, and defines a set of Work Product Ports that define the inputs and
outputs for a Process Component. There might be many components defining the same Work Product Ports, but using
different techniques (i.e., Process) to achieve similar outputs for similar inputs. Whereas the Work Product Port represents
the component specifications (black box view on the component), good candidates for component realizations can be
found in Process Patterns (a Process Kind for white box descriptions for the component, see Section 18.4.2).

Association Properties

• process: Activity A Process Component contains exactly one Process that is physically encapsulated
by the component.

• ownedPort: WorkProductPort This association defines the ports required or provided by the Process Component.
They define work product types used, produced, or changed by the process
component.
Software & Systems Process Engineering Meta-Model, v2.0 127

Semantics
SPEM 2.0 supports replaceable and reusable Process Components realizing the principles of encapsulation. Certain
situations in a software development project might require that concrete realizations of parts of the process remain
undecided or will be decided by the executing team itself (e.g., in outsourcing situations). Process components support an
assembly mechanism that is based on the “black box” principle. At any point during a project, the component
“realization” detailing the work can be added to the process. The component approach also allows that different styles or
techniques of doing work can be replaced with one another. For example, a software code output of a component could be
produced with a model-driven development or a code-centric technique. The component concept encapsulates the actual
work and lets the development team choose the appropriate technique and fill the component’s realization with their
choice of Activities that produce the required outputs.

Assembling Process components is used typically in subcontracting context, where different processes and approaches are
adopted by the subcontractors, and where the assembler process component is only focusing on the inputs and outputs of
each subcontractor's process component, namely the required and provided deliverables.

Figure 14.9 - Graphical Representation of a Process Component

Figure 14.9 shows an example for a graphical UML 2-based representation using stereotypes. It shows a Process
Component named ‘Development’ that defines two input Work Product Ports ‘Analysis Model’ and ‘Design Model’ as
well as an output port ‘Application.’

Assembling process components starts simply by connecting process components, through their input and output work
product ports. That seems to be trivial, but there are several problems to solve:

• The number and types of input and output work products may not correspond within a set of process components.

• The invariant required for connected inputs and outputs may be contradictory.

• The names and constitution of work products may vary from one process component to another.

• The name and definition of roles may vary from one process component to another.

There is no guarantee that different process components will match, in particular if process components are complex, and
originate from sources having different development approaches, the matching can be impossible. However, one can
follow the following guidance for assembling and mapping different process component, in order to adjust the variations
that can exist between process components:
128 Software & Systems Process Engineering Meta-Model, v2.0

Figure 14.10 - Three Process Components to be assembled

An assembly mechanism similar to the UML2.0 notion of ports is used for that purpose. Connectors are lines between the
various ports, in order to express the connections that one wants to establish between the process components. Optional input
or output Work Products Ports do not need to be assembled, whereas it is mandatory to assemble every non-optional input or
output Work Product Port.

Figure 14.11 - Assembling Process Components

The assembly depicted in Figure 14.11 can also be established between Process Components: one Process Component can
assemble several other Process Components. Once assembled, a Process can reuse the elements of the Process
Components, such as the phases defined by the process components.
Software & Systems Process Engineering Meta-Model, v2.0 129

Figure 14.12 - Introduction of an intermediary Work Product in the assembly process

The assembly of process components may not be as immediate as depicted in Figure 14.11. There can exist name
incompatibilities, and unresolved correspondences that will interfere with the assembly. In that situation, extra modeling
efforts are necessary to adapt the existing elements of the assembled pieces. In particular, the process engineer can define
additional activities within redefined phases, or add the missing work products within the assembling PC or process.

When input or output work product invariants do not match, such as when the provided state of an output work product
does not match the required state of a connected input work product, there needs to be additional modeling precisions
provided by the model of the assembler process. This can be solved by expressing that the assembling process does
actions on the work product issued by a process component before passing it to the consumer process component as
shown Figure 14.12. This states that the coordination of the phases provided by the assembled process components needs
some additional activities within the assembler process.

Another typical case is where no existing process component can provide a required (input) work product of an assembled
process component. In that case, it is up to the assembler process to provide the missing element (see the case of
“technical requirements” in Figure 14.13). This states that there will be activities within the assembler process that will
provide that element.

Figure 14.13 - Introduction of a missing input Work Product

Problems become more important when there is no defined correspondence between elements that need to be correlated.
This happens typically when assembled work products have different names, and no established correspondence. This
happens also when the name of roles changes between different process components, even if they correspond to each
other. The correspondence between elements has to then be explicitly stated in the model by the process engineer, using
Extends generalization links between these elements Figure 14.14.
130 Software & Systems Process Engineering Meta-Model, v2.0

Figure 14.14 - Defining correspondences between different model elements

SPEM 2.0 Profile Notation

14.8 Process Component Use

Super Class
Method Content Use

Description
A Process Component Use represents a Process Component application in any other Process defined by a breakdown
structure. In other words, it represents a reference of the Process Component from within another Process. The Process
Component Use is also the representation of the encapsulated Process in the context of another Process that applies it,
hiding the details of the component realization in a breakdown structure. The Process Component Use can define its own
set of relationships such as it own predecessors and successors as well its own Ports that can be connected within the
breakdown structure in which it is defined.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

ProcessComponent / Package, Class process component n/a no

SPEM 1.1
backwards
compatibility
icon:
Software & Systems Process Engineering Meta-Model, v2.0 131

Association Properties

SPEM 2.0 Profile Notation

14.9 Section

Super Class
Variability Element

Semantics
Section in the package Method Plugin inherits from Variability Element and extends Section defined in Managed Content
(Section 11.6) with new capabilities for variability.

For example, when a Task Definition contributes to another Task Definition its description association is contributed
including its Sections (i.e., its Steps), which are modeled as parts of the Content Description instance. Sections can be
nested and therefore the Task Definition’s descriptions can be flexibly organized in Steps with sub-Steps. Sections are
Variability Elements themselves, so they can contribute to each other. For example, one could model a Task Definition
Step as a Section instance without relating it to a Task Definition’s Content Description that directly contributes to (or
replaces) another Section which is part of a Content Description. This contribution (or replacement) would add new
description text to the original step description (or replace the original step description). Another example would be to
contribute to Guidance; for example, contribute new check list items organized as Sections to an existing check list
guidance element.

Association Properties

Semantics
Section inherits the semantics of Variability Element.

• processComponent: ProcessComponent This association represents the reference from the Method Content Use to
the Process Component it refers to. A Process Component Use represents
exactly one Process Component.

• usedPort: WorkProductPort This association links the Process Component Use to used Work Product
Ports of the Process Component.

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

ProcessComponentUse BreakdownElement /
Classifier

process component use n/a no n/a

• predecessor: Section This association defines the predecessor for contributed Sections to be inserted into an
existing list of Sections of a Content Description.
132 Software & Systems Process Engineering Meta-Model, v2.0

14.10 Variability Element

Super Class
Classifier (from Constructs in UML 2 Infrastructure)

Figure 14.15 - Overview to Variability for Content Elements and Processes

Description
Variability Element is an abstract class derived from Classifier that provides capabilities for content variation and
extension to a specific list of SPEM 2.0 classes. It defines a superclass for Activity (Section 9.1), and Section (11.6), and
Method Content Element (Section 12.4) in the overall SPEM 2.0 taxonomy of classes using the UML 2 package merge
mechanism. The association Variability Specialization shall only be instantiated between two subclasses of Variability
Element of the same concrete type. The element on varaibilitySpecialElement side of the relationship defines a value for
the attribute variabilityType defining the nature of the relationship using a literal from the enumeration Variability Type.

Attributes

• variabilityType: VariabilityType If in instance of the variabilitySpecialization association between two
Variability Elements of the same type exists, then the variabilityType attribute
specifies how the element at the variabilitySpecialElement end of the
association changes the Content Element at the variabilityBasedOnElement end.
See the Variability Type enumeration class for definitions for the different types
of variability.
Software & Systems Process Engineering Meta-Model, v2.0 133

Association Properties

Semantics
Variability Element of the meta-model package Method Plugins adds the capabilities of variation and extension to SPEM
Elements that derive from it. Variability provides a mechanism for customizing Variability Elements without actually
directly modifying their original structures or textual content. Instead, variability allows you to describe with separate
objects the differences (additions, changes, omissions) relative to the original. This Method Plugin concept allows users
to factor their method content and processes in interrelated units and even to architect method content and processes in
layers that extend each other with new capabilities. The resulting method and process design can be dynamically
combined and applied on demand using the interpretation rules defined for Variability Element Specializations. This
allws practitioners to assemble the most accurate method and process descriptions possible. It also allows process
practitioners to extend and tailor method content and processes they do not own and to easily upgrade to newer versions
by simply reapplying their personal changes to these upgrades.

Variability Element defines two types of variability and one type of extension which are formally defined for the
enumeration Variability Type in Section 14.11. Figure 14.16 shows an example of how the first of these types named
Contribution can be applied to Core Content Elements, where all Core Content Elements have been derived from the
meta-model class Variability Element via package merge.

• variabilityBasedOnElement: VariabilityElement This 1-to-many association defines, in combination with the
variabilityType attribute, that a number of special Variability
Elements of the same type represent a variation of exactly one
other Variability Element. See the Variability Type enumeration
class for definitions for the different types of variability.
134 Software & Systems Process Engineering Meta-Model, v2.0

Figure 14.16 - Example for variability using Contribution on Roles, Task, and Work Products

The diagram of Figure 14.16 shows Content Elements from two potential Method Plugins. Elements starting with a “b_”
in the name would be placed in a ‘Base’ Plugin and elements beginning with “p_” would be placed in a Method Plugin
that extends the Base-Plugin. The model example depicted covers several cases of using contribution to extend the
elements from the base. Overall, it models how the method of requirements management (in particular the part in which
a Vision document is being developed) has been extended by the Plugin elements with the new capability of identifying
and managing traceability dependencies amongst requirements. Applying the Method Plugin would add this capability.
Removing the Plugin would remove this capability. One can see based in this example that such Method Plugins provide
a key way to modularize method content and to dynamically generate specific variants of method content on demand (in
this case with or without doing traceability work).
Software & Systems Process Engineering Meta-Model, v2.0 135

Figure 14.17 - Result after interpreting Contribution in Figure 14-15

Looking at the details of Figure 14.16, one can see that the Task p_develop_vision adds a relationship to a new output
Artifact p_req_attributes via the Contributes generalization relationship. The base Task b_develop_vision had only one
output Artifact type associated. After interpretation of the ‘contributes’ relationship, the resulting Task has two Artifact
types as output: The vision document and the requirements attributes. Note that in addition to just adding new outputs, a
process engineer would also model additional Steps for the Task’s textual descriptions to be contributed to the base Task
as well. In the same way, the Plugin defines a new Tool Mentor guidance element describing how to use the tool ReqPro
to manage traceability dependencies from within the vision document, which is contributed to the base’s b_vision artifact.
As a result the artifact will have two Tool Mentors associated. Further, it contributes to the b_system_analyst role a new
work product responsibility, modeling that the system analyst is also responsible for the new Artifact p_req_attributes.
136 Software & Systems Process Engineering Meta-Model, v2.0

SPEM 2.0 Profile Notation
This stereotype is abstract and intended to serve as the base for the three concrete stereotypes defined for Variability Type
(Section 14.11).

14.11 Variability Type

Super Class
n/a : Enumeration

Description
Variability Type is an Enumeration used for values for instances of Variability Element’s attribute variabilityType. It
defines the nature of how a Variability Element extends another Variability Element.

Enumeration Values

Stereotype Super-/Metaclass Keyword Properties Abstract Icon

VariabilitySpecialization Generalization n/a n/a yes n/a

• na This is the default "not assigned" value of a Variabillity Element’s variabilityType attribute which
is set in the case that no variability association is present between the Variability Element and
other Variability Elements.

• contributes Contributes provides a way for instances of Variability Elements to contribute their properties
into their base Variability Element without directly altering any of its existing properties, i.e., in
an additive fashion. Properties contributed are: attribute values and association instances. The
effect after interpretation of contribution is that the base Variability Element is logically
replaced with an augmented variant of the element that combines attribute values and
association instances. The way this combination is realized depends on the type of the attribute
or association. For example, String attributes are concatenated, resolving embedded commands
for dependent text or merging text fragments (e.g., descriptions for content elements).
Additional elements in to-many associations are added (e.g., additional Guidance elements or
Task Uses of an Activity). Different elements in to-one associations are ignored (e.g., the one
Primary Performer of a Task). Multiple Variability Elements can contribute to the same base
element and all of these contributions properties are added to the base in the same fashion. The
following table provides the detailed list of interpretation rules:
Software & Systems Process Engineering Meta-Model, v2.0 137

• replaces Replaces provides a way for Variability Elements to define a replacement of a base Variability
Element without directly changing any of its existing properties. This is commonly used for
Method Plugins that aim to replace specific Content Elements such as Role Definitions, Task
Definitions, or Activities with either a complete new variant or to change fundamental
relationships of these elements (e.g., Role-Artifact responsibility). Properties replaced are attribute
values and association instances. The effect of this is that the base Variability Element is logically
replaced with this new variant of the element to which all incoming associations still point as
before, but which has potentially new attribute values and outgoing association properties. This
provides a very powerful mechanism to replace, for example, whole Activities in a Process with
complete new realizations of the Activity. For instance, one can replace an Activity doing use
case-based design with an activity doing agile code-centric development, thus doing the same
work using a different development technique utilizing different Roles, Tasks, etc. Another
example would be to replace an Activity that describes database design for an RDBMS with an
Activity that describes database design for an OODBMS. A Variability Element can only be
replaced by one other element at a time. For example, if two Method Plugins replace the same
element, only one Method Plugin can be used for interpretation (see Method Configuration
concept in Section 14.2 which accomplishes this and for more details on how to resolve such
conflicts). The following table provides the detailed list of interpretation rules:

attribute values: String values from the special Variability Element are concatenated
with values from the based-on Variability Element. Other values from
the special Variability Element of any other type such as Integer,
Date, URI are ignored. The identifying attributes such as names of
Variability Elements are exempt from this rule and will not be
modified.

0..1-association instances A to-one association instance of the based-on Variability Element is
replaced with the association instance from the replacing special
Variability Element. If the special Variability Element does not have
an association instance then resulting element will also not have an
association.

0..n-association instances: Association instances of the special Variability Element are added to
the already existing association instances of the based-on element. If
both Variability Elements refer to the same object then only one
instance of the association will remain.
138 Software & Systems Process Engineering Meta-Model, v2.0

• extends Extension allows Method Plugins to easily reuse elements from a Base Plugin by providing a kind
of inheritance for the special Variability Element. Attribute values and Association instances are
inherited from the based-on Variability Element to the special Variability Element. The result of
interpretation is that the special element has the same properties as the based-on has, but might
override the inherited properties with its own values. Hence, extends is not used to modify content
of the base Plugin, but to provide the ability for the extending Plugin to define its own content
which is a variant of content already defined (e.g., a special version of a generic Review Record
for a specific type of review). The effect of this is that the base Variability Element and any
number of extending Variability Elements can be used side by side, but refer to each other via the
extends relationship.

attribute values: Values from the special Variability Element are replaced with values
from the based-on Variability Element including unassigned values.
This rule also applies to identifying attributes. In other words, after
the replacement, the resulting object has the object id of the replacing
element.

0..1-association instances A to-one association instance of the based-on Variability Element is
replaced with the association instance from the replacing special
Variability Element. If the special Variability Element does not have
an association instance then resulting element will also not have an
association.

0..n-association instances: Association instances of the special Variability Element replace all
association instances of the based-on Variability Element. If the
replacing special Variability Element does not define any association
instances, but the base does, then the resulting element will also not
have an association instance. The special element could recreate any
of the lost association instances if necessary.
Software & Systems Process Engineering Meta-Model, v2.0 139

• extends-replaces Extends-replaces combines the effects of extends and replace variability into one new variability
type. Whereas the replaces variability completely replaces all attributes and outgoing association
instances of the base variability element with new values and instances, or removes all values or
association instances if the replacing element does not define any. Extends-replaces variability
only replaces the values that have been redefined and leaves all other values of the base element as
is. In other words, extends-replace allows selectively replacing only parts of the base elements
attributes and association instances. This type of variability can be used for method plug-ins that,
for example, would like to rename elements or replace some descriptions with new ones without
completely remodeling all other relationships and attributes it needs to keep intact.

attribute values: Values from the based-on Variability element are inherited and used
to populate the special Variability Elements attributes. If the special
element attributes are already populated, the inherited values are
ignored. The identifying attributes are exempt from this rule and will
not be modified.

0..1-association instances: The one association instance of the based-on Variability Element is
inherited to the special Variability Element. If the special Variability
Element defines its own association instance, then the inherited one is
ignored.

0..n-association instances: Association instances defined for the based-on Variability Element are
inherited to the special Variability Element. If the special Variability
Element defines its own association instances, then the inherited ones
are ignored.

attribute values: Values from the special Variability Element are replaced with values
from the based-on Variability Element not including unassigned
values. This rule also applies to identifying attributes. In other words,
after the replacements the resulting object has the object id of the
extends-replaces element.

0..1-association instances A to-one association instance of the based-on Variability Element is
replaced with the association instance from the replacing special
Variability Element. If the special Variability Element does not have
an association instance, then resulting element will keep its
association instance from the base element.

0..n-association instances: Association instances of the special Variability Element replace all
association instances of the based-on Variability Element. If the
replacing special Variability Element does not define any association
instances, but the base element does, then the resulting element will
keep these association instances.
140 Software & Systems Process Engineering Meta-Model, v2.0

Semantics
SPEM 2.0 supports four different types of variability, which are represented in the UML2 profile as different
Generalization stereotypes. Each variability type extends the semantics of UML2’ generalization as described below.
Varability can only be defined between Variability Elements of the same subtype, e.g., Role Definition with Role
Definition, but not Role Definition and Task Definitions.

SPEM 2.0 Profile Notation

14.12 Work Product Port

Super Class
Process Element

Description
A Work Product Port defines the work products input and outputs for a Process Component. It is defined based on exactly
one type of Work Product and defines for exactly one Process Component if this Work Product type is to be expected as
a required (input) or supplied (output) by the Process Component. It also specifies if this input or output is optional or
not.

Attributes

Association Properties

Semantics
No additional Semantics defined.

Stereotype Superclass Keyword Properties Abstract Icon

VariabilityContributes VariabilitySpecialization contributes n/a no n/a

VariabilityReplaces VariabilitySpecialization replaces n/a no n/a

VariabilityExtends VariabilitySpecialization extends n/a no n/a

VariabilityExendsReplaces VariabilitySpecialization extends-replaces n/a no n/a

• portKind : ParamterDirectionKind =
inoutput

This attribute defines if the port represents and input or output Work Product.

• isOptional: Boolean = false This attribute specifies if the port represents a mandatory or optional Work
Product input or output.

• portType: WorkProduct This association defines the exact type of the Work Product Port.
Software & Systems Process Engineering Meta-Model, v2.0 141

SPEM 2.0 Profile Notation

14.13 Work Product Port Connector

Super Class
Process Element

Description
A Work Product Port Connector is used to connect Work Product Ports for assembling Process Components. See Section
14.7 for more details and examples.

Association Properties

Stereotype Superclass Keyword Properties Abstract Icon

WorkProductPort ProcessElement / Port work product port portKind,
isOptional

no n/a

• connectedPort: WorkProductPort This association connects many Work Product Ports with many other Work
Product Ports.
142 Software & Systems Process Engineering Meta-Model, v2.0

15 Process Diagrams

15.1 Workflow Diagram
Software & Systems Process Engineering Meta-Model, v2.0 143

15.2 Activity Detail Diagram
144 Software & Systems Process Engineering Meta-Model, v2.0

15.3 Work Product Dependency Diagram

15.4 Team Profile Diagram

Iteration E1 TeamsIteration E1 Teams

Project ManagerProject Manager Team CustomerTeam Customer Team IGSTeam IGS

System AnalystSystem Analyst ReviewerReviewer System AnalystSystem Analyst ArchitectArchitect Team UITeam UI

UI DesignerUI Designer UI ReviewerUI Reviewer

Iteration E1 TeamsIteration E1 Teams

Project ManagerProject Manager Team CustomerTeam Customer Team IGSTeam IGS

System AnalystSystem Analyst ReviewerReviewer System AnalystSystem Analyst ArchitectArchitect Team UITeam UI

UI DesignerUI Designer UI ReviewerUI Reviewer
Software & Systems Process Engineering Meta-Model, v2.0 145

15.5 Process Component Diagram

 My Process

√√

√√

√√

√√

Requirements
Application

Analysis

Design

:Analysis

√√ √√
Requirements Analysis

:Development
√√ √√

Application

Design

:Design
√√ √√ √√
146 Software & Systems Process Engineering Meta-Model, v2.0

16 Enacting SPEM 2.0 Processes

This chapter summarizes SPEM 2.0 capabilities and mechanisms for process enactment and illustrates different scenarios
for enacting processes created with the SPEM 2.0 meta-model.

Process described with the SPEM 2.0 meta-model can be enacted in different ways. The two most common ways of
enactment are:

• Mapping the processes into Project Plans and enacting these with project planning and enactment systems such as IBM
Rational Portfolio Manager or Microsoft Project (Section 16.1).

• Mapping the process to a business flow or execution language and then executing this representation of the processes
using a workflow flow engine such as a BPEL-based workflow engine (Section 16.2).

16.1 Process Enactment with Project Planning Systems

The following examples illustrate how SPEM 2.0 supports process enactment with planning and resource management
tools such as IBM Rational Portfolio Manager or Microsoft Project by providing the means to map Processes to project
plans. A SPEM 2.0 Process can be systematically mapped to a project plan by instantiating the different Process’
breakdown structure views.

As illustrated in Figure 16.1, a Process can be represented as an Activity diagram (see Section 7.2) as well as a
Breakdown Structure (see Section 9.1). A work breakdown structure can be mapped directly to a plan using a mechanism
called ‘instantiation.’ Deriving a plan from a process is an interactive procedure in which a project planer substitutes
concrete work product instances for the process’ work product type declarations as well as resources for roles. If work
product types have multiple instances, then certain Tasks defined in the process need be replicated to allow assignment of
different resources working on these different work products (e.g., the Task ‘Use Case Analysis’ in Figure 16.1 is
replicated for every use case defined for the concrete project or every resource assigned to work on use cases).
Software & Systems Process Engineering Meta-Model, v2.0 147

Figure 16.1 - Mapping between Activity Diagram, Process, and Project Plan

Processes defined using a SPEM 2.0 breakdown structures provide key information attributes that provide the Project
Planner with the right guidance to make these instantiation decisions (see attributes defined for Breakdown Elements,
Section 13.1 and Work Breakdown Element, Section 13.3). For example, a hasMultipleOccurrence attribute indicates that
a Breakdown Element such as a Task Use will be mapped to multiple plan tasks (or summary tasks) as in the example of
Figure 16.1. An isRepeatable flag indicates for a Work Breakdown Element, such as an Activity, that it defines an
Iteration and that these Iterations will be repeated one after the other (in contrast to the multiple occurrences elements that
could be performed in parallel by different resources). The example in Figure 16.2 shows several examples of repeatable
Work Breakdown Elements such as the ‘Build Cycle’ or the nested ‘Program and Test Cycle.’

M

R

Design DatabaseA

A

A

A

I

I

Use Case AnalysisT

Architectural Analysis T

Design Components

Refine Architecture

Analyze Behavior

Access Viability of PoCT

Construct Architectural PoCT

Define Candidate ArchitectureA

Perform Architectural
Synthesis

A

Early Elaboration Iteration

Inception Iteration

M

R

Design DatabaseA

A

A

A

I

I

Use Case AnalysisT

Architectural Analysis T

Design Components

Refine Architecture

Analyze Behavior

Access Viability of PoCT

Construct Architectural PoCT

Define Candidate ArchitectureA

Perform Architectural
Synthesis

A

Early Elaboration Iteration

Inception Iteration

Activity Diagram Authored Process Project Plan instantiation

Use Case Analysis UC3T

Use Case Analysis UC2T

Design DatabaseA

A

A

A

I

I

Use Case Analysis UC1T

Architectural Analysis T

Design Components

Refine Architecture

Analyze Behavior

Access Viability of PoCT

Construct Architectural PoCT

Define Candidate ArchitectureA

Perform Architectural
Synthesis

A

Early Elaboration Iteration

Inception Iteration

Use Case Analysis UC3T

Use Case Analysis UC2T

Design DatabaseA

A

A

A

I

I

Use Case Analysis UC1T

Architectural Analysis T

Design Components

Refine Architecture

Analyze Behavior

Access Viability of PoCT

Construct Architectural PoCT

Define Candidate ArchitectureA

Perform Architectural
Synthesis

A

Early Elaboration Iteration

Inception Iteration

Shipped as reusable Capability
Pattern. Can be adapted for every
Delivery Process application (i.e. be
different for every iteration shown
above)

has_multiple_occurances = true

I = Iteration; A = Activity; T = Task

Is_repeatable = true
148 Software & Systems Process Engineering Meta-Model, v2.0

Figure 16.2 - A second Process to Plan mapping example

In addition to these work-centric plans, an alternative mapping could take the work product breakdown structure and map
it to plan by mapping Activities to a plan's summary tasks and Work Products to the plan’s tasks. Resource profiles can
then be allocated to the plan’s task by using the responsible and modifies relationship defined between Work Products and
Roles. Plan instantiation would then map the Work Products to concrete work product instances, the work product entry
and exist states to task annotations, and Roles to concrete resources. The resulting plans would be suitable for a very agile
project environments that do not intend to follow strict plans of activities that prescribe the work to be done step-by-step,
but rather just define which resource produces which work products (e.g., features or stories) in which state for which
date.

16.2 Process Enactment with a Workflow Engine

The separation of SPEM 2.0 models from behavior models (see Chapter 10) opens up the possibility to utilize enactment
machines for many different kinds of behavior modeling approaches. In other words, as SPEM 2.0 models can be linked
to behavior model elements from any behavior modeling approach, any enactment machine created for these behavior
models can be used.

For example, activities in a SPEM 2.0 delivery process could be linked to one or more BPNM diagrams. An enactment
machine for BPMN models can then be used to run these models.

I = Iteration; P = Phase; A = Activity; T = Task

Is_repeatable = true

P Solution Outline
P Macro Design
I Release R
P Micro Design
A Detail Requirements and Application Model (CD)
T Refine Business Models
T Complete Release Use Cases M
T Detail Usability Requirements
T Finalize Release Nonfunctional Requirements (CD) M
A Refine Architecture Model (CD)
A Perform Static Testing (CD)
A Define Training and User Support (CD)
P Build Cycle (CD) R
A Develop Support Materials (CD)
A Prepare for Testing (CD)
I Program & Test Cycle R
A Perform Programming Cycle (CD)
T Refine Goals for the Programming Cycle (CD)
T Build Object Source Code R
T Build Structured Source Code R
T Update Release Design Models (CD)
T Update Physical Application Structure (CD)
A Perform Development Testing (CD)
A Perform System Testing (CD)
A Plan Deployment (CD)
P Deployment (CD)

has_multiple_occurances = true

P Solution Outline
P Macro Design
I Release 1
P Micro Design
A Detail Requirements and Application Model (CD)
T Refine Business Models
T Complete Release Use Cases (order entry)
T Complete Release Use Cases (admin/maint)
T Detail Usability Requirements
T Finalize Release Nonfunctional Requirements (CD)
A Refine Architecture Model (CD)
A Perform Static Testing (CD)
A Define Training and User Support (CD)
P Build Cycle 1A (CD)
A Develop Support Materials (CD)
A Prepare for Testing (CD)
I Program & Test Cycle
A Perform Programming Cycle (CD)
A Perform Development Testing (CD)
I Program & Test Cycle
A Perform Programming Cycle (CD)
A Perform Development Testing (CD)
A Perform System Testing (CD)
A Plan Deployment (CD)
P Build Cycle 1B (CD)
P Build Cycle 1C (CD)
P Deployment (CD)
I Release 2
P Solution Close (CD)
Software & Systems Process Engineering Meta-Model, v2.0 149

150 Software & Systems Process Engineering Meta-Model, v2.0

17 Migrating SPEM 1.1 Models to SPEM 2.0

SPEM version 2.0 is a major revision of SPEM version 1.1. Many issues and defects have been fixed in version 2, new
capabilities have been added, as well as gaps and limitations of version 1.1 have been closed. SPEM 1.1 was based on
UML 1.4 and SPEM 2.0 is now based on UML version 2.0, which represents a major revision of the UML.

The following table provides an overview to how the concrete SPEM 1.1 meta-classes defined in this specification map to
SPEM 2.0 classes. It lists the SPEM 1.1 concepts in the order as they have been defined in the SPEM 1.1 specification
[SPEM 1.1]. It shows the corresponding SPEM 2.0 concepts as well as provides brief explanations and rationale of the
changes. If specific RFP (OMG ad/2004-11-04) requirements have been addressed, then it lists the requirement’s section
number in parentheses. For example: “(RFP 1.2.3)” would indicate that the requirement or constraint described in
“Section 1.2.3” of the RFP has been addressed or that the change relates to it.

SPEM 1.1 SPEM 2.0 Comment / Change Rationale

External Description Content Description Renamed, because the meaning of ‘external’ was not clear and
implied a design decision. Removed ‘language’ attribute as
localization can be implemented in different ways independent of
such an attribute. Removed ‘medium’ as implementations will
have their own design dependent realizations of this information.

Guidance Guidance Same in both specifications.

Guidance Kind Kind (instance) The specific Guidance Kind has been replaced with a generic
Kind mechanism that can be applied to any SPEM element. The
Base Plugin defined in Chapter 18 provides predefined
stereotypes for Guidance Kinds for backwards compatibility.

Categorizes
Dependency

Category Changed from ‘package to model element dependency’ to
Category classifier that manages associations to all categorized
elements. The SPEM 1.1 dependency did not work well with
packages, because process modelers wanted to define multiple
categories that all categorize the same element independent of
package boundaries and strict compositions.

Impacts Dependency Work Product Relationship Replaced with a generic Work Product Relationship. The Base
Plugin defined in Chapter 18 provides an ‘impacted by’
stereotype for backwards compatibility.

Import Dependency <UML 2 Infrastructure>
Element Import

Reused from UML 2 Infrastructure. (RFP 6.6.8)

Precedes Dependency Work Sequence Made a bidirectional association for improved navigability.
Added missing fourth type (start-finish).

Refers To Dependency <deprecated> This dependency required modeling redundant information in the
process model which leads to maintenance problems. Deprecated
for lack of usefulness (RPF 6.6.12).
Software & Systems Process Engineering Meta-Model, v2.0 151

Trace Dependency <deprecated> Deprecated because of lack of semantics and overlap with other
concepts (such as Impacts). Specific traces have been introduced
such as the trace for Method Content Use to Method Content
Definitions.

Work Product Work Product Almost unchanged. Deliverable flag did not work for many users
because deliverables normally package parts of many other work
products with additional content describing the delivery. SPEM
2.0 defined general Work Product Relationship as well as
provides a Deliverable stereotype as part of the Base Plugin
(Chapter 18).

Work Product Kind Kind (instance) The specific Work Product Kind has been replaced with a generic
Kind mechanism that can be applied to any SPEM element. The
Base Plugin defined in Chapter 18 provides predefined
stereotypes for Work Product Kinds for backwards compatibility.

Work Definition Work Definition / Activity Derived from Classifier, not Operation anymore to utilize the
new UML 2 ability to model behavior as standalone classifier.
This adds more flexibility to the way work is represented in
SPEM (e.g. with multiple performing roles) (RFP 6.6.7, RPF
6.6.12). Made it abstract class to avoid the confusion of SPEM
1.1 of when to use Activity and when to use Work Definition
(RPF 6.6.12). Introduced more subclasses to support the
differentiation of work definitions representing method content
versus work definitions in processes.

Activity Parameter Work Definition Parameter Renamed, because every work definition can have parameters not
only activities.

Activity Activity / Task Definition /
Task Use

For implementer of the process structure meta-model package
(e.g. for compliance point “Process with Behavior and Content”)
no real change to SPEM 1.1 applies on the activity concept
except that there is no separate notion of Steps anymore. Steps
would be expressed as sub-activities assuming that a process is
only described by an n-level breakdown of just activities
providing a simpler view on process to the end-user than SPEM
1.1.
For implementers of the “Complete” compliance point, SPEM 2.0
adds the separation of method content definitions from the use of
method content in processes to SPEM 1.1. Method content is
defined with task definitions and can be applied in many different
processes composed of activities that refer to the method content
via task usages. For that purpose the SPEM 1.1 concept of
activity has been refined into activity, task definition, and task
use. The word task was used to apply a terminology familiar to
many project-management oriented users of SPEM as well as
BPMN as the non-decomposable unit of work.
152 Software & Systems Process Engineering Meta-Model, v2.0

Step Step Same as SPEM 1.1, but now derived from Work Definition to
represent them in UML 2 Activity diagrams with actions and
activities, instead of action states as in the UML 1.4-based SPEM
1.1, which are deprecated in UML 2 (RFP 6.2.1).

Process Performer Role Use
(Composite Role,
Team Profile)

In SPEM 1.1 Process Performer was a generalization of Process
Role that would physically own work definitions as operations, in
particular high-level work definitions such as Iterations. Process
Performer led to the creating of many special instances with low
reusability (RPF 6.6.12). SPEM 2 does not separate the Process
Performer and Process Role anymore, but allows assigning Role
Use instances to any Work Definition reducing the number of
objects defined for processes as well as increasing reusability of
these concepts. For modeling more general roles or role
groupings SPEM 2.0 introduces the concepts of Composite Role
and Team Profile instead. The concepts provide more flexibility
in terms of defining and reusing them independent of specific
Work Definitions. Process Performer required strict
compositions.

Process Role Role Definition / Role Use For implementers of the compliance point “Process with
Behavior and Content,” the Role Use concept works equivalently
to the Process Role concept of SPEM 1.1. When implementing
the “Complete” compliance point, SPEM 2.0 distinguishes the
reusable definition of a role from its concrete use in a process
increases reusability and adaptability at the same time. A Role is
then defined and fully documented in one place. It can then be
referred to via Role Usages in many different places of many
different processes. Each Role Use can define its own context
specific properties. For an example, a Designer role might be
responsible in one particular process or one phase of a process for
an Analysis and a Design Model, and in another process or
another phase of the same process responsible for a Design
Model only, because that process or phase does not require the
creation and maintenance of an Analysis Model. SPEM 1.1 did
not provide the flexibility of reusing and adapting roles, but
required the definition of separate new roles each time new
properties were required.

Package Method Package / Process
Package

Derived from the UML 2 package with additional constraints that
enforce the physical separation of method content and process
definitions.

Process Component Process Component Removed flawed self-containedness constraints and
“Unification” mechanism of SPEM 1.1 and replaced with Ports
and Work Product correspondence concepts as part of the
component definition. (RPF 6.6.12, RFP 6.7.1)
Software & Systems Process Engineering Meta-Model, v2.0 153

Process Process In SPEM 2 Process is not defined as a specialization of Package
as in SPEM 1.1, but as a Work Definition to be consistent with
other OMG definitions of process (e.g., BPMN, BPDM drafts).
A process is generally seen in these specifications as the model or
structure of objects that describe a behavior rather than just a
physical container for these behavioral models.

Discipline Category (instance) Defining discipline as a specialization of Package in SPEM 1.1
created unnecessary restrictions on the way elements could be
packaged. In SPEM 2, Disciplines can be represented as one
instance of Category that allows any element in any package to
be categorized to be part of a specific Discipline independent of
its physical location. The Base Plugin provides a stereotype for
Discipline for backward compatibility.

Phase Kind (instance) Phases can be represented in SPEM 2.0 as normal Activities.
One can use the general Kind mechanism to qualify such
Activities as Phases. The Base Plugin provides a stereotype for
Phase for backward compatibility.

Lifecycle Process In SPEM 2 Process is not defined as a Package anymore, but as a
specialization of Work Definition. The SPEM 1.1 Lifecycle
concept would have been synonym to the SPEM 2 Process
concept and was therefore redundant and deprecated.

Iteration Kind (instance) Iterations can be represented in SPEM 2.0 as normal Activities.
One can use the general Kind mechanism to qualify such
Activities as Phases. The Base Plugin provides a stereotype for
Phase for backward compatibility.

Precondition Precondition No change except for reusing UML 2 constraints (RFP 6.2.1).
The specializations of Constraint in SPEM 1.1 were unnecessary
because they did not provide any additional properties and have
been removed. SPEM 2 defines direct associations to the UML 2
Constraint class.

Goal Postcondition / Purpose The term Goal caused confusion. Postcondition is less
ambiguous. Purpose is a text attribute of all content elements in
SPEM 2, expressing the purpose of a process element within its
specific context.
154 Software & Systems Process Engineering Meta-Model, v2.0

18 The SPEM 2.0 Base Plug-in

The SPEM 2.0 Base Plug-in is a pre-defined Method Plugin (created as an instance of Method Plugin defining instances
of SPEM 2.0 meta-model classes) that already provides commonly used instances for many SPEM 2.0 meta-model
concepts for the domain of Software Engineering. It is intended to provide a starting point and provide potential reusable
assets for software development processes. SPEM 2.0 provides, in addition to this Method Plug-in, a profile that contains
stereotypes for many of the elements defined here, especially for reusable Kind classes that are meant to express
stereotypes for use-define process models.

18.1 Activity Kinds

Figure 18.1 - The Activity Kinds Stereotypes

Activity Kinds provides the capability for a process engineer to define life-cycle models using the terminology they are
used to. For example, if a process engineer would like to distinguish specific levels of his breakdown to represent a
special kind of Activities, she can define instances Activity Kinds and assign these to her Activities. ‘Phase’ and
‘Iteration’ are popular examples for Breakdown Element Kinds. They would be represented in a breakdown structure as
Activities with respective Kinds assigned. Another example can be found in the IBM Rational’s Summit Ascendant
Method. The first level of Summit’s breakdown structure is not referred to as Activity, but as a ‘Module.’ The Kind class
allows defining and modeling such specific interpretation of the breakdown level.

Profile Notation

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

ActivityKind Classifier n/a n/a yes n/a
Software & Systems Process Engineering Meta-Model, v2.0 155

18.1.1 Phase

Phase represent a significant period in a project, ending with major management checkpoint, milestone, or set of
Deliverables. It is included in the model as a predefined special Activity, because of its significance in defining
breakdowns. Typically, Phase is an Activity for which its attribute isRepeatable attribute is set to ‘False.’

Profile Notation

18.1.2 Iteration

Iteration groups a set of nested Activities that are repeated more than once. It represents an important structuring element
to organize work in repetitive cycles. The concept of Iteration can be associated with different rules in different methods.
For example, the IBM Rational Unified Process method framework (RUP) defines a rule that Iterations are not allowed to
span across Phases. In contrast, IBM Global Services Method (GSMethod), based method frameworks, this rule does not
apply and Iterations can be defined which nest Phases. (Note: Any Breakdown Element can be repeated; however,
Iterations play a special role for repeated units of work with key milestones.) Typically, Iteration is an Activity for which
the default value for its attribute isRepeatable is ‘True.’

Profile Notation

18.1.3 Process

A Process is a special Activity that describes a structure for particular types of development projects or parts of them. To
perform such a development project, a Process would be adapted for the specific organizational or project situation and
then ‘instantiated’ by assigning concrete resources to Role Uses, creating multiple instances for Work Product Uses, etc.

Development processes define how development projects shall be executed. Development processes are recognized as
sequences of phases and milestones, expressing a lifecycle of the product under development. Processes also define how
to get from one milestone to the next by defining sequences of work, operations, or events that usually take up time,

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

Phase ActivityKind phase n/a no

SPEM 1.1 backwards
compatibility icon:

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

Iteration ActivityKind iteration n/a no
156 Software & Systems Process Engineering Meta-Model, v2.0

expertise, or other resource and which produce some outcome. Processes are represented in SPEM 2.0 as a set of
partially ordered work definitions intended to reach development milestones, such as the release of a specific software
system. A process focuses on the lifecycle and the sequencing of work in breakdown structures.

Reference frameworks for development processes such as CMMI define different levels of maturity for processes. Each
level entails different characteristics for the process definition as well as enactment in an organization or project for each
level. For example, CMMI defines a “managed process” as performed activities that can be recognized as
implementations of development practices. Such a process has certain characteristics: it is planned and executed in
accordance with policy; it employs skilled people having adequate resources to produce controlled outputs; it involves
relevant stakeholders; it is monitored, controlled, and reviewed; and it is evaluated for adherence to its process
description. By contrast, a “defined process” is a managed process that is tailored from the organization’s set of standard
processes according to the organization’s tailoring guidelines. A defined process has a maintained process description and
contributes work products, measures, and other process-improvement information to the organizational process assets.
SPEM 2.0 processes aim to support these characteristics with its reuse (Section 9.2), customization (Section 8.1, Section
8.2), descriptive specification (Section 9.3, Section 9.10), and variability (Section 14.6) features for tailoring and dynamic
assembly of processes based on reusable process patterns of best practices.

Profile Notation

18.1.4 Delivery Process

Description
A Delivery Processes is a special Process describing a complete and integrated approach for performing a specific project
type. It describes a complete project lifecycle end-to-end and shall be used as a reference for running projects with similar
characteristics as defined for the process.

A Delivery Process is a Process that covers a whole development lifecycle from beginning to end. A Delivery Process
shall be used as a template for planning and running a project. It provides a complete lifecycle model with predefined
phases, iterations, and activities that have been detailed by sequencing referencing method content in breakdown
structures. It is defined on the basis of experience with past projects or engagements, and/or the best practice use of a
development or delivery approach. It defines what gets produced, how those items are produced, and the required staffing
in the form of integrated Work, Work Product, and Team Breakdown Structures. For example, a process engineer can
define alternative Delivery Processes for software development projects that differ in the scale of the engagement and
staffing necessary, the type of the software application to be developed, the development methods and technologies to be
used, etc.

SPEM 2.0 Profile Notation

Stereotype Superclass Keyword Properties Abstract Icon

Process ActivityKind process n/a no

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

DeliveryProcess / Process delivery process n/a no
Software & Systems Process Engineering Meta-Model, v2.0 157

18.1.5 Process Pattern

A Process Pattern is a special Process that describes a reusable cluster of Activities in a general process area that provides
a consistent development approach to common problems. Examples of Process Patterns include “use case-based
requirements management,” “develop components,” “validate build,” or “ongoing management and support.” Typically
but not necessarily, Process Patterns have the scope of one discipline providing a breakdown of reusable complex
Activities, relationships to the Roles which perform Tasks within these Activities, as well as to the Work Products that are
used and produced. A Process Pattern does not relate to any specific phase or iteration of a development lifecycle, and
should not imply any. In other words, a pattern should be designed in a way that it is applicable anywhere in a Delivery
Process. This enables its Activities to be flexibly assigned to whatever phases there are in the Delivery Process to which
it is being applied.

It is a good practice to design a Process Pattern to produce one or more work product use representing a deliverable. This
enables the process engineer to select and integrate Patterns by deciding which deliverables are required as outputs and
inputs.

Key applications areas of / areas of reuse for Process Patterns are:

• To serve as building blocks for assembling Delivery Processes or larger Process Patterns. Normally developing a
Delivery Process is not done from scratch but by systematically applying and binding patterns. In addition to the
standard pattern application of ‘copy-and-modify,’ which allows the process engineer to individually customize the
pattern’s content to the particular situation it is applied for, Process Variability concepts (Section 9.2) introduce even
more sophisticated inheritance relationships that support dynamic binding of patterns (i.e., the pattern is referenced and
not copied). This unique new way of reusing process knowledge allows to factor out commonly reoccurring Activities
into patterns and to apply them over and over again in a process. When the pattern is being revised or updated, all
changes will be automatically reflected in all pattern application in all processes because of the dynamic binding.

• To support direct execution in a development project that does not work following a well-defined process, but works
based on loosely connected process fragments of best practices in a flexible manner (e.g., Agile Development).

• To support process education by describing knowledge for a key area such as best practices on how to perform the work
for a Discipline (e.g., Requirements Management), for a specific development technique (aspect-oriented
development), or a specific technical area (e.g., relational database design) that is used for education and teaching (e.g.,
see Figure 18.2 providing an example pattern for the Requirements Management Discipline).

Figure 18.2 shows an example Process Pattern from a work breakdown perspective representing the Requirements
Management discipline of the IBM Rational Unified Process. It provides the most typical breakdown structure of doing
this work under generic or normal circumstances (including Role and Work Product Uses, which are not presented here).
Different applications of this pattern in different Delivery Processes might define individual differences. Also when such
a pattern is applied more then once, e.g., in every phase and iteration of an iterative development process, every
application might focus on different parts of this pattern and leave out different parts of the pattern in every pattern
application.
158 Software & Systems Process Engineering Meta-Model, v2.0

Figure 18.2 - Example for Process Pattern defining Requirements Management work

SPEM 2.0 Profile Notation

Figure 18.3 shows an example using the SPEM 2.0 Profile Notation representing a Delivery Process named RUP that has
been assembled using the four Process Patterns depicted in the lower right-hand corner. We see that a Capability itself can
be assembled using patterns. In the diagram a pattern describing relational database (RDBMS) design has been applied to
the OOAD pattern. Further, the diagram shows that two Process Planning Templates (Section 18.4.3) for different types
of Iteration plans have been derived from the RUP Delivery Process.

Figure 18.3 - Relationships among Processes

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

ProcessPattern / Process process pattern n/a no
Software & Systems Process Engineering Meta-Model, v2.0 159

18.1.6 Process Planning Template

A Process Planning Template is a special Process that is prepared for instantiation by a project planning tool. Typically, it
is created based on a Process such as a Delivery Process as a whole (e.g., in case of a waterfall-based development
approach) or in parts (e.g., in case of an iterative development approach).

A Process Planning Template represents a partially finished plan for a concrete project. It uses the same information
structures as all other Process Types to represent templates for project plans. However, certain planning decisions have
already been applied to the template, and information has been removed and/or reformatted to be ready for export to a
specific planning tool. Examples for such decisions are: a template has been created to represent a plan for a particular
Iteration in an iterative development project as depicted in Figure 18.3, which distinguishes early from late iterations in
the Elaboration phase of a project; if the targeted planning tool cannot represent input and output of Task, then these have
been removed from the structure; certain repetitions have been already applied, e.g., stating that a cycle of specific Task
grouped in an Activity have to be repeated n-times; etc.

SPEM 2.0 Profile Notation

18.2 Category Kinds

Figure 18.4 - The Category Kinds Stereotypes

Category Kinds are a flexible way of defining different groupings for Content Categories.

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

ProcessPlanningTemplate / Process process planning
template

n/a no
160 Software & Systems Process Engineering Meta-Model, v2.0

18.2.1 Discipline

A Discipline is a categorization of work (i.e., Tasks for Method Content), based upon similarity of concerns and
cooperation of work effort.

A discipline is a collection of Tasks that are related to a major ‘area of concern’ within the overall project. The grouping
of Tasks into disciplines is mainly an aid to understanding the project from a ‘traditional’ waterfall perspective. For
example, it is more common to perform certain requirements activities in close coordination with analysis and design
activities. Separating these activities into separate disciplines makes the activities easier to comprehend.

18.2.2 Role Set

A Role Set organizes Roles into categories.

Role Set is used to group roles together that have certain commonalities. For example, the “Analysts” Role Set could
group the “Business Process Analyst,” “System Analyst,” as well as “Requirements Specifier” roles. All of these work
with similar techniques and have overlapping skills, but are required as distinct roles for a method (e.g., the method the
IBM Rational Unified Process is based on).

18.2.3 Domain

Domain is a refineable hierarchy grouping related work products. In other words, Domains can be further divided into
sub-domains, with work product elements to be categorized only at the leaf-level of this hierarchy.

Domain is a logical grouping of work products that have an affinity to each other based on resources, timing, or
relationship. A Domain may be divided into subdomains. For example, GS Method uses six predefined Domains for
Work Products: Application, Architecture, Business, Engagement, Operations, and Organization.

18.2.4 Tool Category

A Tool Category is a container/aggregate for Tool Mentors. It can also provide general descriptions of the tool and its
general capabilities.

Stereotype
Meta-/
Superclass Keyword Properties Abstract Icon

CategoryKind Class n/a n/a yes n/a

Discipline CategoryKind discipline n/a no n/a

RoleSet CategoryKind role set n/a no n/a

Domain CategoryKind domain n/a no n/a

Tool Category CategoryKind tool category n/a no n/a
Software & Systems Process Engineering Meta-Model, v2.0 161

18.3 Guidance Kinds

Figure 18.5 - The Guidance Kinds Stereotypes

The following section provides the semantics for commonly used guidance kinds.

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

GuidanceKind Class n/a n/a yes n/a

Checklist GuidanceKind checklist n/a no n/a

Concept GuidanceKind concept n/a no n/a

Estimate GuidanceKind estimate n/a no n/a

EstimationConsideration GuidanceKind estimation consideration n/a no n/a

EstimationMetric GuidanceKind estimation metric n/a no n/a

Example GuidanceKind example n/a no n/a

Guideline GuidanceKind guideline n/a no n/a

Practice GuidanceKind practice n/a no n/a

Report GuidanceKind report n/a no n/a

ReusableAsset GuidanceKind reusable asset n/a no n/a

Roadmap GuidanceKind roadmap n/a no n/a

SupportingMaterial GuidanceKind supporting material n/a no n/a

Template GuidanceKind template n/a no n/a

TermDefinition GuidanceKind term definition n/a no n/a

ToolMentor GuidanceKind tool mentor n/a no n/a

WhitePaper GuidanceKind white paper n/a no n/a
162 Software & Systems Process Engineering Meta-Model, v2.0

18.3.1 Checklist

A Checklist is a specific type of guidance that identifies a series of items that need to be completed or verified.
Checklists are often used in reviews such as walkthroughs or inspections.

18.3.2 Concept

A Concept is a specific type of guidance that outlines key ideas associated with basic principles underlying the referenced
item. Concepts normally address more general topics than Guidelines and span across several work product and/or tasks/
activities.

18.3.3 Estimate (metric kind)

An Estimate is a specific type of Guidance that provides sizing measures, or standards for sizing the work effort
associated with performing a particular piece of work and instructions for their successful use. It may be comprised of
estimation considerations and estimation metrics.

18.3.4 Estimation Considerations (metric kind)

Estimation Considerations qualify the usage and application of estimation metrics in the development of an actual
estimate.

18.3.5 Estimating Metric (metric kind)

Estimation Metric describes a metric or measure that is associated with an element and which is used to calculate the size
of the work effort as well as a range of potential labor.

18.3.6 Example

An Example is a specific type of Guidance that represents a typical, partially completed, sample instance of one or more
work products or scenario-like description of how Task may be performed. Examples can be related to Work Products as
well as Tasks that produce them and any other Content Element.

18.3.7 Guideline

A Guideline is a specific type of guidance that provides additional detail on how to perform a particular task or grouping
of tasks (e.g., grouped together as activities), or that provides additional detail, rules, and recommendations on work
products and their properties. Amongst other, it can include details about best practices and different approaches for doing
work, how to use particular types of work products, information on different subtypes and variants of the work product
and how they evolve throughout a lifecycle, discussions on skills the performing roles should acquire or improve upon,
measurements for progress and maturity, etc.
Software & Systems Process Engineering Meta-Model, v2.0 163

18.3.8 Practice

A Practice represents a proven way or strategy of doing work to achieve a goal that has a positive impact on work product
or process quality. Practices are defined orthogonal to methods and processes. They could summarize aspects that impact
many different parts of a method or specific processes. Examples for practices would be “Manage Risks,” “Continuously
verify quality,” “Architecture-centric and component-based development,” etc.

18.3.9 Report

A Report is a predefined template of a result that is generated on the basis of other work products as an output from some
form of tool automation. An example for a report would be a use case model survey, which is generated by extracting
diagram information from a graphical model and textual information from documents, and then combines these two types
of information into a report.

18.3.10 Reusable Asset

A Reusable Asset provides a solution to a problem for a given context. The asset may have a variability point, which is a
location in the asset that may have a value provided or customized by the asset consumer. The asset has rules for usage
which are the instructions describing how the asset should be used.

18.3.11 Roadmap

A Roadmap is a special Guidance Kind which is only related to Activities. A Roadmap represents a linear walkthrough of
an Activity, typically a Process. An instance of a Roadmap represents important documentation for the Activity or Process
it is related to. Often a complex Activity, such as a Process, can be much easier understood by providing a walkthrough
with a linear thread of a typical instantiation of this Activity. In addition to making the process practitioner understand
how work in the process is being performed, a Roadmap provides additional information about how Activities and Tasks
relate to each other over time. Roadmaps are also used to show how specific aspects are distributed over a whole process,
providing a kind of filter on the process for this information.

18.3.12 Supporting Material

Supporting Materials is a catch-all for other types of guidance not specifically defined elsewhere. It can be related to all
kinds of Content Elements, i.e., including other guidance elements.

18.3.13 Template

A Template is a specific type of guidance that provides for a work product a predefined table of contents, sections,
packages, and/or headings, a standardized format, as well as descriptions how the sections and packages are supposed to
be used and completed. Templates can be provided for documents and also for conceptual models or physical data stores.

18.3.14 Term Definition

Term Definitions define concepts and are used to build up the Glossary. They are not directly related to Content Elements,
but their relationship is derived when the Term is used in the Content Elements description text.
164 Software & Systems Process Engineering Meta-Model, v2.0

18.3.15 Tool Mentor

A Tool Mentor is a specific type of guidance that shows how to use a specific tool to accomplish some piece of work
either in the context of or independent from a Task or Activity.

18.3.16 Whitepaper

Whitepapers are a special Concept guidance that have been externally reviewed or published and can be read and
understood in isolation from other content elements and guidance.

18.4 Work Product Kinds

Figure 18.6 - The Work Product Kinds Stereotypes

18.4.1 Outcome

Outcome Definition is a Work Product Definition that provides a description and definition for non-tangible work
products. An outcome describes intangible work products that are a result or state. Outcomes may also be used to describe
work products that are not formally defined. A key differentiator of outcomes versus artifacts is that outcomes are not
candidates for harvesting as reusable assets.

SPEM 2.0 Profile Notation

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

WorkProductKind Class n/a n/a yes n/a

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

Outcome WorkProductKind outcome n/a no
Software & Systems Process Engineering Meta-Model, v2.0 165

18.4.2 Deliverable

A Deliverable Definition is a Work Product Definition that provides a description and definition for packaging other Work
Products, and may be delivered to an internal or external party. Therefore, a Deliverable aggregates other Work Products.

A Deliverable is used to pre-define typical or recommended content in the form of work products that would be packaged
for delivery. The packaging of the Deliverable in a process or project could be a modification of this recommendation.
Deliverables are used to represent an output from a process that has value, material or otherwise, to a client, customer, or
other stakeholder. A Deliverable is a work product that aggregates other work products. Method content maintains
preconfigured potential deliverables.

SPEM 2.0 Profile Notation

18.4.3 Artifact

Artifact Definition is a Work Product Definition that provides a description and definition for tangible work product
types. Artifacts may be composed of other artifacts. For example, a model artifact can be composed of model elements,
which are also artifacts.

Artifacts are tangible work products consumed, produced, or modified by Tasks. They may serve as a basis for defining
reusable assets. Roles use Artifacts to perform Tasks and produce Artifacts in the course of performing Tasks. Artifacts
are the responsibility of a single Role, making responsibility easy to identify and understand, and promoting the idea that
every piece of information produced in the method requires the appropriate set of skills. Even though one role might
“own” a specific type of Artifact, other roles can still use the Artifacts, and perhaps even update them if the Role has been
given permission to do so.

SPEM 2.0 Profile Notation

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

Deliverable WorkProductKind deliverable n/a no

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

Artifcat WorkProductKind artifact n/a no
166 Software & Systems Process Engineering Meta-Model, v2.0

18.5 Work Product Relationship Kinds

Figure 18.7 - The Work Product Relationship Kinds

Work Product Relationship Kinds define relationships amongst work products. Typical Kinds are ‘composition’
expressing that a work product use instance of an instance is part of another work product instance of an instance. For
example, an instance of Actor is part of an instance of Use Case Model. In contrast to composition, another Kind could
express ‘aggregation’ indicating that a Work Product Use is used with another Work Product Use. For example, a
customer design deliverable could be defined as a compilation of different other work product uses that are assemble as a
report that is delivered to the customer for review. A third key Kind is ‘impacted by’ indicating that a work product use
impacts another work product use. For example, if a use case model work product changes, the use case realization work
product needs to be updated with these changes.

Profile Notation

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

WorkProductRelationshipKind association n/a n/a yes n/a

Composition WorkProductRelationshipKind composition n/a no n/a

Aggregation WorkProductRelationshipKind aggregation n/a no n/a

ImpactedBy WorkProductRelationshipKind impacted by n/a no n/a
Software & Systems Process Engineering Meta-Model, v2.0 167

168 Software & Systems Process Engineering Meta-Model, v2.0

Annex A: SPEM 2.0 UML 2 Profile Summary

(normative)

The following table provides a summary of all UML 2 stereotypes defined in the main part of this specification.

Stereotype Meta-/Superclass Keyword Properties Abstract Icon

Activity WorkDefinition, Planned
Element / Action

activity n/a no

SPEM 1.1
backwards
compatibility
icon:

AggregatedRole Association aggregated role n/a no n/a

BaseConfiguration / Dependency base
configuration

n/a no n/a

BasePlugin / Dependency base plugin n/a no n/a

BreakdownElement ProcessElement n/a hasMultiple
Occurences,
isOptional,
isPlanned

yes n/a

Category DescribableElement /
Class

category n/a no

CompositeRole RoleUse composite role n/a no

DescribableElement ExtensibleElement n/a presentation
Name, brief
Description,
purpose, main
Description

yes n/a

ExtensibleElement Classifier extensible
element

kind yes
Software & Systems Process Engineering Meta-Model, v2.0 169

Guidance DescribableElement /
Class

guidance n/a no

SPEM 1.1
backwards
compatibility
icon:

MethodConfiguration / Class configuration n/a no n/a

MethodContentElement DescribabaleElement n/a n/a yes n/a

MethodContentPackage Package method content
package

n/a no

MethodContentTrace / Dependency content trace n/a no n/a

MethodLibrary / Package library n/a no

MethodPlugin / Package method plugin n/a no

Metric Guidance metric constraint no

Milestone WorkBreakdownElement
/ Classifier

milestone n/a no

NestedBreakdownElement Association nesting n/a no n/a

OptionalityMandatory Association mandatory n/a no n/a

OptionalityOptional Association optional n/a no n/a

PackageSelection / Dependency package selection n/a no n/a

ParameterIn Association input n/a no n/a

ParameterInOut Association inoutput n/a no n/a

ParameterOut Association output n/a no n/a

Performer ExtensibleElement /
Association

performs n/a no n/a

PlannedElement n/a n/a startDate,
finishDate,
rank, duration

yes n/a
170 Software & Systems Process Engineering Meta-Model, v2.0

Process Activity process n/a no

ProcessComponent / Package, Class process
component

n/a no

SPEM 1.1
backwards
compatibility
icon:

ProcessComponentUse BreakdownElement /
Classifier

process
component use

n/a no n/a

ProcessElement BreakdownElement n/a n/a yes n/a

ProcessPackage Package process package n/a no

Qualification MethodContent
Element / Class

qualification n/a no n/a

RequiredResults Association required results n/a no n/a

ResponsibilityAssignment ExtensibleElement /
Association

responsible n/a no n/a

RoleDefinition MethodContent
Element / Class

role definition n/a no

SPEM 1.1
backwards
compatibility
icon:

RoleUse BreakdownElement /
Classifier

role use n/a no

SPEM 1.1
backwards
compatibility
icon:
Software & Systems Process Engineering Meta-Model, v2.0 171

Step MethodContentElement,
WorkDefinition

step n/a no

Suppressed Dependency suppressed n/a no n/a

TaskDefinition MethodContentElement,
WorkDefinition

task definition n/a no

SPEM 1.1
backwards
compatibility
icon:

TaskUse WorkBreakdownElement,
PlannedElement /
Classifier, Action

task use n/a no

TeamProfile BreakdownElement /
Classifier

team profile n/a no

ToolDefinition MethodContent
Element / Class

tool definition n/a no

UsedActivity (extension) Dependency activity extension n/a no n/a

UsedActivity
(localContribution)

Dependency local contribution n/a no n/a

UsedActivity (localReplace) Dependency local replacement n/a no n/a

VariabilityContributes Variability
Specialization

contributes n/a no n/a

VariabilityExendsReplaces VariabilitySpecialization extends-replaces n/a no n/a

VariabilityExtends VariabilitySpecialization extends n/a no n/a

VariabilityReplaces VariabilitySpecialization replaces n/a no n/a

VariabilitySpecialization Generalization n/a n/a yes n/a

WorkBreakdownElement BreakdownElement n/a isReatable,
isOngoing,
isEventDriven

yes n/a

WorkDefiniton Classifier, Action n/a precondition,
postcondition

yes n/a

WorkProductDefinition MethodContent
Element / Class

work product
definition

n/a no
172 Software & Systems Process Engineering Meta-Model, v2.0

WorkProductPort ProcessElement / Port work product port portKind,
isOptional

no n/a

WorkProductRelationship ExtensibleElement /
Association

related work
product

n/a no n/a

WorkProductUse BreakdownElement /
Classifier

work product use n/a no

WorkSequence BreakdownElement /
Association

predecessor linkKind no n/a
Software & Systems Process Engineering Meta-Model, v2.0 173

174 Software & Systems Process Engineering Meta-Model, v2.0

Annex B: Additional Variability Examples

(normative)

This annex provides additional background and examples for the Variability Types defined in 14.11.

B.1 General Principles

The rules defined in the following sections are all derived from these three simple principles:

• Contribution: Only adds attributes and associations to the base. It never overrides or replaces any information from the
base, i.e., if the base is allowed an association to exactly one other element and has this one already defined, it is not
replaced by a contributors association.

• Replace: Always replaces attributes and associations of the base element with the replacing elements attributes and
associations, except for incoming associations, which are only added to the base but do not replace the base’s incoming
associations.

• Extends: Only defines inheritance for the extending element. The base remains untouched. The extending element can
override inherited attribute values and association instances by defining their own. If no new values are defined for the
extending element it will inherit these values from the base element.

B.2 Contributes

Background
Contributes provides a way for instances of Variability Elements to contribute their properties into their base Variability
Element without directly altering any of its existing properties, i.e., in an additive fashion. Properties contributed are:
attribute values and association instances. The effect after interpretation of contribution is that the base Variability
Element is logically replaced with an augmented variant of the element that combines attribute values and association
instances. The way this combination is realized depends on the type of the attribute or association. For example, String
attributes are concatenated resolving embedded commands for dependent text or merging text fragments (e.g.,
descriptions for content elements). Additional elements in to-many associations are added (e.g., additional Guidance
elements or Task Uses of an Activity). Different elements in to-one associations are ignored (e.g., the one Primary
Performer of a Task). Multiple Variability Elements can contribute to the same base element and all of these contributions
properties are added to the base in the same fashion.

Rules
• Attributes are appended except for identifying/naming attributes and non-string attributes such as boolean, date, etc.

• Outgoing to-one associations of the contributor will be ignored if the base already has such an association or if the base
element has more than one contributing element (i.e., it cannot be decided which contribution should be chosen, then
non will be chosen).

• Outgoing to-many associations are added to the base elements of a contribution.
Software & Systems Process Engineering Meta-Model, v2.0 175

• Incoming associations to the contributing element with a to-one constraint on the other association end will be ignored
if the base already has such an incoming association or if there is more than one contribution to consider for the base
element.

• Other incoming associations to the contributing element are added to the base elements of a contribution.

• A base element of a contribution can have more then one contributor.

• Contribution works transitively, i.e., a contribution element contributes its own contributors.

Examples
• This example shows three contributions and the overall result when the relationships are interpreted and published.

Note that the primary performer association between p_develop_vision and p_system_analyst is not needed, but if it is
modeled then the contribution interpretation will ignore the second association:
176 Software & Systems Process Engineering Meta-Model, v2.0

Example for incoming association: if contributor is part of a composition, then the base element will be also part of this
composition:
Software & Systems Process Engineering Meta-Model, v2.0 177

Second example for incoming associations (as well as outgoing association):

This examples shows an incoming association that has a to-many constraint on the other association end (i.e., a work
product can have many content categories such as work product kinds). As a result, contributions are added to the base:

This example shows that Sections of Describable Elements can also be contributed to base elements:

178 Software & Systems Process Engineering Meta-Model, v2.0

Software & Systems Process Engineering Meta-Model, v2.0 179

B.3 Replace

Background
Replaces provides a way for Variability Elements to replace a base Variability Element without directly changing any of
its existing properties. This is in most cases used for Method Plugins that aim to replace specific Content Elements such
as Roles, Task, or Activities with either a complete new variant or to change fundamental relationships of these elements
(e.g., Role-Artifact responsibility). Properties replaced are attribute values and association instances. The effect of this is
that the base Content Element is logically replaced with this new variant of the element to which all incoming
associations still point as before, but which has potentially new attribute values and outgoing association properties. This
provides a very powerful mechanism to replace, for example, whole Activities in a Process with complete new
realizations of the Activity. For instance, replacing an Activity doing use case-based design with an activity doing agile
code-centric development doing the same work using a different development technique utilizing different Roles, Tasks,
etc. Another example would be to replace an Activity that describes database design for an RDBMS with an Activity that
describes database design for an OODBMS. A Variability Element can only be replaced by one other element at a time.
For example, if two Method Plugins replace the same element, only one Method Plugin can be used for interpretation.

Rules
• Attributes of the base element are replaced with attributes of the replacing element, including identifiers of the base

element.

• Outgoing to-one and to-many associations of the replacing element replace any outgoing associations of the base
element. If the contributor does not have any outgoing associations, then the resulting element will also not have any.

• Incoming association with a to-many constraint on the other association end to the replaced element will be preserved
and augmented with incoming associations of the replacing element.

• Incoming associations with a to-one constraint on the other association end to the replaced element will be replaced
with the respective incoming association of the replacing element. If the replacing element does not have such an
association, then the resulting element will also keep the incoming association of the base element.

• A base element of a replacement can have only one replacing element per configuration. If more than one replacing
element is present, no replacement at all will take place.

• Replacement works transitively, i.e., if a replacing element is replaced itself, the final replacer will prevail.

• Contribution precedes Replacement, i.e., contribution is evaluated first and then replacement performed afterwards.
The evaluation of contribution and replacement is performed top-down in the specialization hierarchy.

Examples
This example shows how a work product is replaced and its associations reinterpreted: Incoming to-many associations to
both the base and replacing element are preserved. Outgoing associations are replaced.
180 Software & Systems Process Engineering Meta-Model, v2.0

This example shows transitive definition of replacement plus the combination of contribution with replace. The work
product hierarchy relationships are evaluated top-down and then contribution first replacement second. Hence,
p_business_process replaces b_bus_use_case_realization first, then the contribution of pp2_process_model are added and
then everything is replaced with pp_process. The result shows that incoming associations from Tasks are preserved at that
only the outgoing association to the pp_process_template guideline is preserved, because of the final replace of
pp_process.

Software & Systems Process Engineering Meta-Model, v2.0 181

182 Software & Systems Process Engineering Meta-Model, v2.0

B.4 Extends

Background
Extension allows Method Plugins to easily reuse elements from a Base Plugin by providing a kind of inheritance for the
special Variability Element. Attribute values and Association instances are inherited from the based-on Variability
Element to the special Variability Element. The result of interpretation is that the special element has the same properties
that the based-on has, but might define its own overrides. Hence, extends is not used to modify content of the base Plugin,
but to provide the ability for the extending Plugin to define its own content which is a variant of content already defined
(e.g., a special version of a generic Review Record for a specific type of review). The effect of this is that the base
Variability Element and any number of extending Variability Elements can be used side by side, but refer to each other via
the extends relationship. Extends also provides the key mechanism for binding Process Patterns to Processes: A pattern is
applied by defining an extends relationships from an Activity of the applying Processes to the Pattern. The Activity
inherits association instances from the pattern and the pattern appears to be part of the resulting Process after
Interpretation.

Rules
• Attribute values of the base element are inherited to the extending element if the extending element has not defined its

own values.

• Outgoing to-many associations of the base element are inherited to the extending element if the extending element
does not define its own association instances.

• Outgoing to-one association are only inherited if the extending element does not define its own association instance.

• Extends works transitively, i.e., if an extending element is extended itself the second extension inherits from its direct
and indirect base elements.

• Contribution precedes Extends, i.e., contribution is evaluated first and then extending elements inherit afterwards from
the base element (including all of its contribution).

• Replace precedes Extends, i.e., if a base element has a replace and extends relationship, the extending element inherits
from the replacing element.

Example
The example shows how different associations will be interpreted when an extends relationship is published.
p_user_story inherits the relationship to guidance (b_managing_expectations) related from the base element.
Software & Systems Process Engineering Meta-Model, v2.0 183

184 Software & Systems Process Engineering Meta-Model, v2.0

B.5 Extends-Replaces

Background
The extends and replaces variability relationship combines the effects of extends and replaces variability into one
variability type. Whereas replaces variability completely replaces all attributes and outgoing associations of the base
element with new values and instances, or removes all values or associations if the replacing element does not define any,
extends and replaces variability only replaces values that have been redefined. All other values of the base element are
unaffected. In other words, extends and replaces allows users to selectively replace specific attributes and associations of
the base elements. This type of variability can be used to generate method plug-ins that rename elements, or replace some
descriptions of method elements with new ones, without completely remodeling all other relationships and attributes
needed by the base plug-in.

Rules
• Extends and replace variability combines the effects of the extends and the replaces variability. The evaluation will

first perform the effects of the extends and then the effects of the replaces variability. This implies the following:

• First, the new element will inherit all attributes and associations from the base element.

• Second, the new elements might override inherited attributes or associations.

• Third, the base element will be replaced with new element using the overridden values and if no override was
specified keeping the inherited values.

• If the extends and replaces element defines outgoing associations, they will replace all outgoing associations of the
base elements. If the extends and replaces element does not define any new associations, the resulting element will
retain the associations of the base element.

• Incoming associations from the base element are added to the replacing element.

• If the extends and replaces element defines attributes, these attributes are replaced in the resulting element including
the base element's identifier. Undefined attributes retain values used in the base element.

• The base element of a replaces relationship or an extends and replaces relationship can have only one replaces or
extends and replaces element per configuration. If more than one element is present, no replacement takes place.

• The extends and replaces relationship is transitive and evaluated top-down relative to the direction of the replacement.
If a replacing element is also replaced, the final replacing element prevails.

• Contributes variability relationships are resolved before replaces and extends and replaces relationships. Extends
relationships are resolved last. Variability is always resolved top-down from the base to the variability elements.
Within the same level, contributes relationships are resolved first. Replaces or extends and replaces are resolved
afterwards.

Example
The example below shows how extends-replace works by having the extends-replacing element p_business_process
inherit is base's relationships, but overriding the relationships to guidance elements as part of the replacement.
Software & Systems Process Engineering Meta-Model, v2.0 185

186 Software & Systems Process Engineering Meta-Model, v2.0

Annex C: Case Studies and Examples

(normative)

This annex provides a set of case studies and examples of processes that have been already successfully modeled or re-
modeled with SPEM 2.0 concepts. These case studies have been used to validate and verify the SPEM 2.0 concepts
defined in this specification.

C.1 Fujitsu DMR Macroscope

This first example has been directly ported from the SPEM 1.1 specification (formal/05-01-06, Appendix C) as a case
study how SPEM 1.1 processes can be easily migrated into the SPEM 2.0 format. This example, taken from the Fujitsu
DMR Macroscope method, only represents a portion of a typical information system delivery process. Process meta-
model (M2) classes, associations and attributes are represented in courier while the corresponding M1 instances appear
in bold times font.

Activity {kind: Phase}: Preliminary Analysis
Process: Information System Delivery Process

Activity {kind: Iteration}: First Joint Requirements Planning (JRP) Workshop
TaskUse: Define Owner Requirements

ProcessPerformer {kind: primary}
RoleUse: System Architect {kind : in}

WorkDefinitionParameter {kind : in}
WorkProductUse: EnterpriseArchitecture

WorkDefinitionParameter {kind : out}
WorkProductUse: Assessment of Current System {state: initial draft}
WorkProductUse: Owner Requirements {state: initial draft }

Steps
Step : Define objectives based on stated needs
Step : Define the key issues
Step : Determine the relevant enterprise principles

TaskUse: Draft Owner Models
ProcessPerformer {kind: primary}

RoleUse: System Architect
WorkDefinitionParameter {kind : in}

WorkProductUse: Assessment of Current System {state: initial draft }
WorkProductUse: Owner Requirements {state: initial draft }

WorkDefinitionParameter {kind : out}
WorkProductUse: Business Structure {state: initial draft }
WorkProductUse: Business Dynamics {state: initial draft }

Steps
Software & Systems Process Engineering Meta-Model, v2.0 187

Step: Determine System context
Step: Model structural and dynamic aspects of the enterprise
Step: Define work resources
Step: Explore with prototypes

TaskUse: Define User Requirements
ProcessPerformer {kind: primary}

RoleUse: System Architect
WorkDefinitionParameter {kind : in}

WorkProductUse: Assessment of Current System {state: initial draft }
WorkProductUse: Owner Requirements {state: initial draft }

WorkDefinitionParameter {kind : out}
WorkProduct : User Alternatives {state: initial draft }
WorkProduct : User Principles {state: initial draft }

Steps
Step: Consider user interface aspects
Step: Consider distribution aspects
Step: Explore with prototypes

TaskUse: Draft User Models
ProcessPerformer {kind: primary}

RoleUse: System Architect
WorkDefinitionParameter {kind: in}

WorkProductUse: User Alternatives {state: initial draft }
WorkProductUse: User Principles {state: initial draft }
WorkProductUse: Business Structure {state: initial draft }
WorkProductUse: Business Dynamics {state: initial draft }

WorkDefinitionParameter {kind: out}
WorkProductUse: System Structure {state: initial draft }
WorkProductUse: System Dynamics {state: initial draft }

Steps
Step : Determine System context
Step : Model structural and dynamic aspects of the system
Step : Define work resources
Step : Explore with prototypes

TaskUse: Define Developer Requirements
ProcessPerformer {kind: primary}

RoleUse: Technical Architect
WorkDefinitionParameter {kind: in}

WorkProductUse: User Alternatives {state: initial draft }
WorkProductUse: User Principles {state: initial draft }

WorkDefinitionParameter {kind : out}
WorkProductUse: Developer Alternatives {state: initial draft }
WorkProductUse: Developer Principles {state: initial draft }
WorkProductUse: Technology Infrastructure {state: initial draft }
188 Software & Systems Process Engineering Meta-Model, v2.0

Steps
Step: Revise work process and class definitions
Step: Revise user interface models

TaskUse: Draft Developer Models
ProcessPerformer {kind: primary}

RoleUse: Technical Architect
WorkDefinitionParameter {kind : in}

WorkProductUse: Developer Alternatives {state: initial draft }
WorkProductUse: Developer Principles {state: initial draft }
WorkProductUse: Technology Infrastructure {state: initial draft }
WorkProductUse: System Structure {state: initial draft }
WorkProductUse: System Dynamics {state: initial draft }

WorkDefinitionParameter {kind : out}
WorkProductUse: Software Architecture {state: initial draft }
WorkProductUse: Persistent Information {state: initial draft }

Steps
Step : Define process and data aspects of the system
Step : Consider user interface aspects
Step : Consider distribution aspects
Step : Explore with prototypes

Activity (kind: Iteration): Second Joint Requirements Planning (JRP) Workshop
TaskUse…

Similar to First Joint Requirements Planning (JRP) Workshop iteration:
• reuse and cumulate existing WorkProductUse assets as input to activities
• change «initial draft » output WorkProductUse states with «revised draft »

Activity (kind: Phase): System Architecture
Process: Information System Delivery Process

Activity (kind: Iteration): First Joint Application Design (JAD) Workshop
TaskUse: Revise User Models

ProcessRole : System Architect
ActivityParameters {kind : input}

WorkProduct : System Structure {state: revised draft }
WorkProduct : System Dynamics {state: revised draft }

ActivityParameters {kind : output}
WorkProduct : System Structure {state: revised }
WorkProduct : System Dynamics {state: revised }

Steps
Step : Revise work process and class definitions
Step : Revise user interface models
Step : Realize/improve prototype

etc.
Software & Systems Process Engineering Meta-Model, v2.0 189

Activity (kind: Phase): System Architecture
etc.

C.2 Microsoft Solution Framework Agile Case Study

This case study is a proof of concept showing how Microsoft’s publicly available Team System process “Microsoft
Solution Framework (MSF) Agile” can be represented using SPEM 2.0 concepts. The aim of the proof of concept was to
show that SPEM 2.0’s concepts are sufficient to model all of MSF Agile’s process concepts and structures; in other words
the MSF Agile meta-model can be projected onto the SPEM 2.0 meta-model.

The following table of Figure C.1 shows the conceptual mapping of the MSF Agile concepts to SPEM 2.0 concepts. It
further shows the parts of MSF Agile that have been modeled exemplarily with these SPEM 2.0 concepts. The full case
study is available on request from Peter Haumer, phaumer@us.ibm.com.

Figure C.1 - Conceptual mapping of MSF Agile to SPEM 2.0 concepts

The SPEM 2.0 models produced for this case study have been deliberately presented in a similar fashion as the original
as html published content to allow a side by side comparison. Figure C.2 shows an example of how Roles are presented.
Figure C.2, left shows the original MSF Agile presentation of a Role and the Figure C.2, right shows the equivalent
modeled with SPEM 2.0 concepts. One can see that all key relationships of the Role have been represented on the right
side as well. For example, a Role is linked to a set of Work Products, which has been modeled by the responsibility as
190 Software & Systems Process Engineering Meta-Model, v2.0

well as modifies association in SPEM. Although MSF Agile does not specify the nature of the Role-Work Product
relationship, we modeled these relationships to show how they can be mapped. Responsibility had been modeled directly
by connecting roles and work products listed for a Role.

Figure C.2 - Side-by-side comparison of a Role presentation and associated concepts in MF Agile (left) and modeled
with SPEM 2.0 concepts (right)

Modifies links are derived links in SPEM 2.0 by evaluating the outputs of Tasks that the Role performs. Although MSF
Agile does not model outputs of Activities (SPEM 2.0 Tasks), we interpreted what the output would be by looking at the
MSF Agile Activity’s Exit Criteria and Activity descriptions. This shows the advantages of SPEM 2.0 which makes this
information explicit in the model (in addition to modeling the same structures MSF Agile defines) rather than keeping it
informal in the textual descriptions as done by MSF Agile.
Software & Systems Process Engineering Meta-Model, v2.0 191

Figure C.3 - Mapping of an MSF Activity to a SPEM 2.0 Task

Thus, Figure C.3 shows an example of representing an MSF Agile Activity as a SPEM 2.0 Task with the additions
mentioned above: an explicitly modeled output work product. One can also see in Figure C.3 the one to one mappings of
other relationships such as the responsible Role and the consulting Roles of the Activity mapped to primary performer
and additional performer in SPEM 2.0. MSF Agile’s Sub-Activities have been modeled as Steps in SPEM 2.0.
192 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.4 - Mapping of MSF Agile Workstreams to SPEM 2.0 Process Patterns

We modeled MSF Agile’s Workstreams as SPEM 2.0’s Process Patterns since both concepts represent the grouping of
work into higher level units. As one can see in Figure C.4, both approaches use breakdown structures to represent the
concept. In addition to the information modeled in MSF Agile, you see in Figure C.4 a visualization of the input/output
relationships of tasks to work products.
Software & Systems Process Engineering Meta-Model, v2.0 193

Figure C.5 - Modeling MSF Agile process Views as SPEM 2.0 Process Patterns

Finally, we show in Figure C.5 how MSF Agile’s different process views can be represented as SPEM 2.0 Process
Patterns as well. Cycle views, such as the “Daily Build” depicted in Figure C.5 is a collection of MSF Agile Workstreams
in which specific Activities are not being ‘used.’ We modeled these as Process Patterns that are composed of other
Process Patterns that represent the Workstreams and for which the unused Tasks have been suppressed.

C.3 Eclipse Process Framework OpenUP/Basic

The Eclipse Process Framework (EPF) project (www.eclipse.org/epf) is a new Eclipse Technology open source project
that aims to provide an extensible framework and exemplary tools based on SPEM 2.0 concepts for defining and
managing software development processes. Within this framework, the project develops extensible process content for a
range of software development and management processes supporting iterative, agile, and incremental development, and
applicable to a broad set of development platforms and applications. Figure C.6 provides an overview of the process
ecosystem EPF aims to provide. It shows how the tool architecture which currently realizes a major subset of the SPEM
2.0 specification accommodates content from various sources and for many different target audiences.
194 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.6 - Eclipse Process Framework Ecosystem accommodating content from many different sources

A key content package, i.e., Method Plug-in depicted in Figure C.6 is the OpenUP/Basic method framework, which is
developed by key committers of the EPF project. OpenUP/Basic is an iterative software development process that is
minimal, complete, and extensible.

• The process is minimal in that only fundamental content is included.

• The process is complete in that it can be manifested as an entire process to build a system.

• The process is extensible in that it can be used as a foundation on which process content can be added or tailored as
needed.

OpenUP/Basic takes an agile approach to development, valuing team collaboration and benefits to the stakeholders over
unproductive deliverables and formality. The process provides this progressive approach to building systems within a
proven, structured lifecycle.

OpenUP/Basic is driven by the following core principles:

• Application of an iterative lifecycle that mitigates risk early and often, and shows results early and often

• Focus on the collaboration within a development team including the product stakeholders to maximize results

• Management of requirements in a form that represents stakeholder value and drives the development process

• Cognizance of architecture as a means to increase quality and technical understandability

EPF Ecosystem

TOOLING (Authoring, Publishing) TOOLING (Authoring, Publishing)

Free Process
Content
Plug-ins

Free Process
Content
Plug-ins

META MODEL (Unified Method Architecture)META MODEL (Unified Method Architecture)

ECLIPSEECLIPSE

Commercial
Process
Content
Plug-ins

Commercial
Process
Content

Plug-ins

Tool
Extensions

Tool
Extensions

Extensible, Customizable, FlexibleExtensible, Customizable, Flexible

Common Language & VocabularyCommon Language & Vocabulary

Open Source DevelopmentOpen Source Development

Inhouse
Content
Plug-ins

Inhouse
Content
Plug-ins

Basic Unified
Process

Adapted from RUP

Basic Unified
Process

Adapted from RUP ScrumScrum

TOOLING (Authoring, Publishing) TOOLING (Authoring, Publishing)

Free Process
Content
Plug-ins

Free Process
Content
Plug-ins

META MODEL (Unified Method Architecture)META MODEL (Unified Method Architecture/SPEM 2.0)

ECLIPSEECLIPSE

Commercial
Process
Content
Plug-ins

Commercial
Process
Content

Plug-ins

Tool
Extensions

Tool
Extensions

Extensible, Customizable, FlexibleExtensible, Customizable, Flexible

Common Language & VocabularyCommon Language & Vocabulary

Open Source DevelopmentOpen Source Development

EXTENSIONS
• Project Mgmt.
• Oper. Mgmt.
• Systems Mgmt.

EXTENSIONS
• Project Mgmt.
• Oper. Mgmt.
• Systems Mgmt.

EXTENSIONS
• Project Mgmt.
• Oper. Mgmt.
• Systems Mgmt.

EXTENSIONS
• Project Mgmt.
• Oper. Mgmt.
• Systems Mgmt.

EXTENSIONS
• Project Mgmt.
• Oper. Mgmt.
• Systems Mgmt.

EXTENSIONS
• Project Mgmt.
• Oper. Mgmt.
• Systems Mgmt.

EXTENSIONS
• Project Mgmt.
• Oper. Mgmt.
• Systems Mgmt.

EXTENSIONS
• Project Mgmt.
• Oper. Mgmt.
• Systems Mgmt.

Inhouse
Content
Plug-ins

Inhouse
Content
Plug-ins

Adapted from RUP

OpenUP/Basic

Adapted from RUP Scrum

Value-Based
Software Eng.
Value-Based

Software Eng.
Model-Driven
Architecture

Model-Driven
Architecture

• XP
• Scrum

Agile “Box”
OPEN Process OPEN Process

FrameworkFramework

Open Unified Process (OpenUP)

• DSDM
• AMDD
Software & Systems Process Engineering Meta-Model, v2.0 195

Figure C.7 - Overview to OpenUp/Basic showing its key roles, disciplines that categorize tasks, and work products as
well as the overall lifecycle model

Figure C.7 provides an overview of how OpenUP/Basic is presented to the end-user. The underlying method content and
process models for OpenUP/Basic have been created and are managed with EPF Composer, which is a SPEM 2.0
implementation, comprises of instances of all major SPEM 2.0 concepts.
196 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.8 - Typical OpenUP process presented as a breakdown structure as well as activity diagram

OpenUP provides a library of reusable method content elements such as roles, work products, and task definitions, as well
as guidance. It also provides a list of Process Patterns for typical development situations that can be used to assemble
larger organization and project specific Process Patterns and delivery processes. Figure C.8 drills into the OpenUP
reference delivery process that represents an example of how OpenUP’s Process Patterns can be assembled to an end-to-
end process. The figure shows how the process is modeled using the SPEM 2.0 representation that allows it to be
presented as an extended breakdown structure presenting performing roles and input/output work products as well as a
UML 2 activity diagram.

OpenUP can be downloaded at http://www.eclipse.org/epf/.
Software & Systems Process Engineering Meta-Model, v2.0 197

C.4 MDA Process (OpenUP/MDD)

OpenUP/MDD (http://www.eclipse.org/epf/openup_component/mdd.php) is an extension to OpenUP/Basic (see C.2,
’Microsoft Solution Framework Agile Case Study’) that models OMG’s Model-Driven Architecture (MDA) approach.
The OpenUP/MDD method content and process models represent the MDA approach with six key Role Definitions:
Platform Expert (depicted in Figure C.9), Business Analyst, Domain Expert, Language Engineer, Test Designer, and the
Transformation Specifier. These roles are responsible for altogether 57 different Work Products, and perform 90 standard
Tasks.

Figure C.9 - ‘Platform Export’ Role Overview

This method content has then been applied to 21 Process Patterns as depicted in Figure C.10 that describe the key
processes to be performed in an MDA project.

Figure C.10 - Process Patterns realizing MDA
198 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.11 shows one of these Process Patterns in more detail depicting its two key presentations. It shows the pattern
being presented as a breakdown structure (left) and as an UML 2 activity diagram (right).

Figure C.11 - ‘Outline PSM Model’ Capability

Download and review OpenUP/MDD from here: http://www.eclipse.org/epf/openup_component/mdd.php.

C.5 Tivoli Unified Process (ITIL-based process)

The IBM Tivoli Unified Process (ITUP) provides detailed documentation of IT Service Management processes and
governance based on industry best practices. The processes described within ITUP are strongly aligned with the ITIL
(Information Technology Infrastructure Library). ITIL provides high-level guidance for what should be implemented, but
does not provide guidance for how to implement. ITUP models detailed processes using SPEM 2.0 concepts and guidance
to help users understand these processes and their relationships, making ITIL recommendations directly actionable
utilizing SPEM’s Process Pattern and process reuse capabilities (see Section 9.2, “Activity Use Kind,” on page 48). ITUP
also contains mappings to other process models, such as CobiT (Control Objectives for Information and related
Technology).

SPEM 2.0 Specific Breakdown Structure ‘Linked’ UML 2.0 Activity Diagram
Software & Systems Process Engineering Meta-Model, v2.0 199

Figure C.12 - Some of the 17 IT processes (left) represented by ITUP as Process Patterns and so-called process
scenario that also have been assembled as Process Patterns using elements from the IT processes as building blocks

ITUP provides detailed method content models centered around 68 role definitions in IT Management documenting the
artifacts they are responsible for, the tasks they perform, and detailed guidance including step by step description for
using tools to support these tasks. This method content is applied in 17 core IT processes (see a selection in Figure C.12,
left and an example for an IT process in Figure C.13) that represent the fundamental Process Patterns that can be used as
a process pool to assemble organization specific processes. ITUP provides examples for such organization-specific
processes, such as so-called process scenarios (Figure C.12, right and an example for a process scenario in Figure C.14)
that are also Process Patterns that have been assembled with elements from the IT processes using activity use to link
these elements.
200 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.13 - Asset Management IT Process represented as a SPEM 2.0 Process Pattern
that uses ITUP’s own proprietary behavior modeling approach to present the process’ workflow

Figure C.13 depicts the ITUP IT process for Asset Management. This IT process has been modeled as a SPEM 2.0
Process Pattern using SPEM 2.0 activities. Furthermore, it as been modeled with ITUP’s own a behavior model
representation that is very similar to UML 2 activity diagrams, but provides some ITUP specific extensions. Each activity
in Asset Management Process Pattern has been mapped to a node of Figure C.13 using the associations of linking SPEM
2.0 activities with external behavior model activities defined in Chapter 10 of this specification keeping a consistent link
between the SPEM 2.0 model and the external behavior model.
Software & Systems Process Engineering Meta-Model, v2.0 201

Figure C.14 - A process scenario illustrating how IT processes work together to perform common IT functions.

Figure C.14 depicts an excerpt of ITUP’s Analyze Impacts process scenario, which has been modeled as a SPEM 2.0
Process Pattern. This pattern has been assembled by directly reusing activities that have been defined in different IT
Processes. For example, you see in Figure C.15 the Manage Asset Lifecycle activity from the upper left of Figure C.14.
This activity reuse has been modeled using the activity use association between activities and the Extends activity use
kind (see Section 9.2).

ITUP can be downloaded at http://www-306.ibm.com/software/tivoli/features/it-serv-mgmt/itup/overview.html.
202 Software & Systems Process Engineering Meta-Model, v2.0

C.6 PMBOK (Sierra System Process Interface Portals)

Sierra System used the SPEM 2.0 concepts to re-model the Project Management Body of Knowledge (PMBOK, IEEE Std
1490-2003). Their SPI – PM Portal models the nine PMBOK knowledge areas as method content and guidance as well
as represents the five basic process groups as SPEM 2.0 Process Patterns as depicted in Figure C.15.

Figure C.15 - Overview to the SPI – PM Portal PMBOK representation

Sierra modeled PMBOK using all major SPEM 2.0 concepts. For example, it represents key roles such as the Project
Manager depicted in Figure C.16, standard task definitions, and work products used and produced by these tasks.
Software & Systems Process Engineering Meta-Model, v2.0 203

Figure C.16 - Overview to the Project Manager role

Sierra also models key guidance provided by PMBOK such as checklists for PMBOK work products and tasks such as
Activity Definition, Cost Baseline, or Detailed Scope Statement for which each individual checkpoint has been modeled
using SPEM’s Section (11.6) concept. Other guidance provides links to the original PMBOK documentation or guides
such as PMI’s PMBOK Guide.
204 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.17 - PMBOK Process Group modeled as an activity diagram

Finally, Figure C.17 shows an example of how a PMBOK process group is modeled as a SPEM 2.0 Process Pattern
presented using an UML 2 Activity diagram.

C.7 SOA Governance Lifecycle and Management Method

In addition to the Software and IT management processes shown so far, the Software and Systems Process Engineering
Meta-model SPEM 2.0 has also been used to represent organizational governance processes. The IBM SOA Governance
Lifecycle and Management Method defines best practices and processes for establishing SOA governance in an
enterprise. It defines processes for projects, structured along the IBM SOA Governance Lifecycle phases, to introduce or
improve SOA Governance in an organization. This process does not perform SOA Governance, but enables an
organization to exercise good governance through the identification, definition and deployment of governance roles,
chains of responsibilities, processes and mechanisms for measurements, policy, and control.
Software & Systems Process Engineering Meta-Model, v2.0 205

Figure C.18 - A role defined by the SOA Governance Method defining its key tasks, responsible work products, and
work products the role modifies when performing the tasks

Figure C.18 depicts the key role of SOA Architect of the SOA Governance Lifecycle and Management Method. It shows
on the right hand side that this role has been modeled as a SPEM 2.0 role definition performing a list of tasks and being
responsible for a set of artifacts. The tree browser on the left hand side of Figure C.18 depicts a hierarchy of SPEM 2.0
Content Categories (see Section 11.1) that have been modeled to classify the role as a SOA Governance Architect. The
tasks displayed have been categorized as well, in this case by a content category labeled SOA Governance Definition.
The examples illustrate how SPEM 2.0 users can utilize the Custom Category concept to define hierarchical indexing and
organization structures to manage and present large amounts of modeled method content.
206 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.19 - SOA lifecycle for introducing or improving SOA Governance in an organization

The method content shown in Figure C.18 has been applied to a four phase SOA lifecycle model represented in SPEM 2.0
as a delivery process as depicted in Figure C.19. The delivery process is presented in Figure C.19 as a UML 2 Activity
diagram as well as a breakdown structure.

The SOA Governance Lifecycle and Management Method is available at: http://www.ibm.com/software/solutions/soa/gov

C.8 OnDemand Process Asset Library (CMM-based Application
Services Process)

A key goal for the design of SPEM 2.0 was to provide effective process modeling and reuse mechanisms for
organizations to build up or acquire libraries of reusable method content and process building blocks. Such libraries can
represent repositories of best software or system development practices and capabilities that can be effectively utilized by
these organizations to build up their group or project-specific processes. Such process repositories could be repopulated
with practice and capability building blocks defined by standards or de-facto standards such as CMMi. Such building
blocks could then be selected and assembled into a process based on the maturity level and the process needs of
organizations and development teams.

IBM's OPAL (OnDemand Process Asset Library) represents such a CMMi process repository developed with SPEM 2.0.
It has been developed by a CMM-level 5 organization within the IBM Global Services Application Services. It governs
the way Application Services staffs, plans, and executes projects and programs, as well as performs related organizational
functions. It has been designed as single reference point for all teams regarding project management, program
management, and related engineering.
Software & Systems Process Engineering Meta-Model, v2.0 207

Figure C.20 - Documented CMM Practices are linked to enactable process models (Process Patterns) and artifacts
used and produced in the practice

Using SPEM 2.0 Content Categories and different Guidance Kinds (see Section 18.3, “Guidance Kinds,” on page 162),
the OPAL process asset library defines, organizes, and documents several views on the detailed method content and the
processes it contains. Amongst other, it lets process users access content via CMM maturity levels. As depicted in Figure
C.20, for each maturity level, key CMM-practices are documented and then mapped to key artifacts. These practices are
also mapped to so-called OPAL Procedures that define mini-processes that realize the documented practices that have
been modeled as SPEM 2.0 Process Patterns.
208 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.21 - List of Process Patterns that model so-called OPAL procedures that can be used as reusable building
blocks to assemble larger end-to-end processes

Figure C.21 depicts a list of Process Patterns (referred to as Capability Patterns) that have been modeled as SPEM 2.0
Process Patterns in OPAL. These patterns represent building blocks for assembling processes. OPAL users can start
selecting patterns by reviewing the CMM Practices depicted in Figure C.20 and then navigating to these patterns that
show how the practice can be realized. The Process Pattern can then be applied to a delivery process using SPEM 2.0
concepts such as the activity use kind Extends, and then finally tailored towards specific needs using SPEM 2.0 activity
use kinds local contributions and local replacement.

C.9 E&TS Application Specific Integrated Circuits Method

This case study shows that SPEM 2.0 has not only been used to model software development processes, but processes for
developing hardware systems as well. Engineering & Technology Services (E&TS) is a division of IBM focused on
design and implementation of electronic components, systems, and consulting for external customers spanning a wide
variety of industries from aerospace to consumer to semiconductor. SPEM 2.0-based methods were recently developed to
improve project consistency and provide documentation for training and business growth. They are used by both project
managers to better plan and guide execution, as well as the technical teams to document their development approach.
Software & Systems Process Engineering Meta-Model, v2.0 209

Figure C.22 - A workflow in the ASIC method (top) defining control flow amongst task uses as well as list of the same
task uses grouped by performing role

Application Specific Integrated Circuits (ASIC) are electronic components which are designed and built to solve a
particular need. The first three phases of the E&TS ASIC Method focus on the design and specification of the hardware
solution, followed by preparing the design for manufacture, semiconductor fabrication of the design and finally, validating
that the hardware component operates the way in which it was designed. Figure C.22 shows one of workflows defined in
E&TS ASIC method's Design phase called Physical Design. This workflow represents a SPEM 2.0 activity that contains
task uses as well as role uses performing these tasks.

C.10 SPW-6 Software Process Example

The ISPW-6 Software Process Example was originally published in the “Proceedings of the 6th International Software
Process Workshop: Support for the Software Process” (Hakodate, Hokkaido, Japan; 28-31 October, 1990; edited by
Takuya Katayama; published by IEEE Computer Society Press, 1991), under the title “Software Process Modeling
Example Problem.” It has been designed to aid in understanding and comparing various approaches to software process
modeling. Members of the Laboratoire d'Informatique Paris 6 (LIP6) have modeled this example using SPEM 2.0
concepts. The full example is available on request from Reda Bendraou, Reda.Bendraou@lip6.fr.
210 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.23 - General ISPW-6 example breakdown structure

The ISPW-6 example is scoped as a relatively confined portion of the software change process. It focuses on the
designing, coding, unit testing, and management of a rather localized change to a software system. This is prompted by a
change in requirements, and can be thought of as occurring either late in the development phase or during the support
(maintenance and enhancements) phase of the life-cycle. The example is presented as a breakdown structure describing
activities and tasks, which LIP6 represented as a SPEM 2.0 process as depicted in Figure C.23.
Software & Systems Process Engineering Meta-Model, v2.0 211

Figure C.24 - Flow of activities in the ISPW-6 example

The flow of key activities of this breakdown structure has been represented as the UML 2 activity diagram of Figure
C.24.
212 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.25 - Role Definition for Design Engineer in the ISPW-6 Example

Finally, LIP6 extracted method content from the breakdown structure representation and modeled this as role, work
product, and task definitions. Figure C.25 depicts the role definition for Design Engineer and the task this role performs
in the example.

C.11 Money-Lover (Process for Investment Clubs)

The final case study shows that SPEM 2.0 concepts can also be used to represent and document processes that are not
related to software and systems development projects at all. The web site http://www.money-lover.us publishes best
practices and processes for investing and investment clubs based on the BetterInvesting (NAIC) organization's
recommendations. It uses SPEM 2.0 concepts to represent and document these models.
Software & Systems Process Engineering Meta-Model, v2.0 213

Figure C.26 - The Money Lover website

Figure C.26 shows a glimpse at the SPEM 2.0 Content Categories hierarchy Money Lover created to organize its method
content, which is also used navigate the web site. On the right-hand side, it depicts the model of the role definition
Investor with the work products it is responsible for (or better in this case it cares about). It also models tasks definitions
that define the Investor as a performer. These task document the 'things' an investor does providing a role-based
information scheme of presenting and retrieving instructions and tips for better investing.
214 Software & Systems Process Engineering Meta-Model, v2.0

Figure C.27 - Investment club lifecycle model defining three phases and the detailed workflow for the first phase

In addition to modeling individual investment practices as method content, Money Lover also defines a set of simple
processes that define workflows for investment activities that go through a 'lifecycle'. For examples, it defines a Portfolio
lifecycle or an Investment Club lifecycle as depicted in Figure C.27.

Investment Club Lifecycle Model

Inception Phase
Software & Systems Process Engineering Meta-Model, v2.0 215

216 Software & Systems Process Engineering Meta-Model, v2.0

INDEX

A
Activity 46, 97, 119
Activity Kinds 155
Activity Use 49
Artifact 166

B
Background 8
Breakdown Element 99
business flow 147

C
Capabilities 11
Case studies and examples 187
Category 74
Category Kinds 160
Checklist 163
Commercial product 22
Compliance points 1
Composite Role 100
Concept 163
Content Description 76
Contribution Activity 52
Core meta-model package 3, 35

D
Default Responsibility Assignment 83
Default Task Definition Parameter 84
Default Task Definition Performer 85
Deliverable 166
Delivery Process 157
Describable Element 77
Discipline 161
Domain 161

E
enactment machine 149
Estimate 163
Example 163
execution language 147
Extensible Element 36

G
Guidance 78
Guidance kinds 162
Guideline 163

I
Icon presentation 26
Introduction 9
issues/problems xii
Iteration 156

K
Kind 37

L
Library Configuration 118
Local contribution 52

Local replacement 52

M
Managed Content package 3, 73
Mapping SPEM 1.1 to SPEM 2.0 151
Meta-model packages 2
Method Configuration 120
Method Content Element 85
Method Content Kind 101
Method Content Package 3, 81, 102
Method Content Packageable Element 103
Method Content Use 104
Method Library 123
Method Library Element 123
Method Library Packageable Element 123
Method Plugin 117, 124
Method plug-in package 4
Method Plugin Packageable Element 126
Metric 79
MOF 2.0-based Meta-Model 25

O
Object Management Group, Inc. (OMG) xi
OMG specifications xi
Optionality Kind 86
Outcome 165
Overview 25

P
Packages 3
Parameter direction kind 37
Phase 156
Planning Data 106
Practice 164
Process 156
Process Behavior package 3, 69
Process Component 127
Process Component Use 131
Process Kind 107
Process Package 108
Process Packageable Element 109
Process Pattern 158
Process Performer 57
Process Planning Template 160
Process Responsibility Assignment 58
Process Structure meta-model package 43
Process structure package 3
Process with methods package 4
Project Plans 147

Q
Qualification 86

R
References 7
Report 164
Reusable Asset 164
Roadmap 164
Role Definition 87
Role Set 161
Role Use 59, 110
Software & Systems Process Engineering Meta-Model, v2.0 217

S
Section 79, 132
SPEM 1.1 27
SPEM 2.0 Base Plug-in 155
SPEM 2.0 breakdown structures 148
SPEM 2.0 UML 2 Profile 1
SPEM Complete 4
State_ext 71
Step 88
superclasses 96
Supporting Materials 164

T
Task Definition 89
Task Definition Parameter 84
Task Definition Performer 85
Task Definitions 95
Task Use 112
Task uses with actions 29
Team Profile 113
Template 164
Term Definitions 164
Tool Category 161
Tool Definition 91
Tool Mentor 165
Transition_ext 71
typographical conventions xii

U
UML 2 diagram interchange 1
UML 2 Infrastructure library 1
UML 2 stereotypes 169
UML Activities 28

V
Variability Element 133
Variability Examples 175
Variability Type 137

W
Whitepapers 165
Work Breakdown Element 60, 148
Work Definition 38
Work Definition Parameter 40, 71
Work Definition Performer 41
Work Definitions 28
Work Product Definition 92
Work Product Definition Relationship 93
Work Product Kinds 165
Work Product Port 142
Work Product Port Connector 142
Work Product Relationship Kinds 167
Work Product Use 62, 116
Work Product Use Relationship 63
Work Sequence 67
Work Sequence Kind 68
218 Software & Systems Process Engineering Meta-Model, v2.0

	Preface
	1 Scope
	2 Conformance
	2.1 Design Principles and Overall Packaging of the SPEM 2.0 Meta-Model
	2.2 SPEM 2.0 Meta-Model Architecture Overview
	2.3 Compliance Point "SPEM Complete"
	2.4 Compliance Point "SPEM Process with Behavior and Content"
	2.5 Compliance Point "SPEM Method Content"
	2.6 Additional SPEM 2.0 Implementation Scenarios

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Background and Rationale
	6.2 General Introduction to SPEM 2.0
	6.3 Key New Capabilities of SPEM 2.0
	6.3.1 Clear separation of method content definitions from the development process application of method content
	6.3.2 Consistent maintenance of many alternative development processes
	6.3.3 Many different lifecycle models
	6.3.4 Flexible process variability and extensibility plug-in mechanism
	6.3.5 Reusable process patterns of best practices for rapid process assembly
	6.3.6 Replaceable and reusable Process Components realizing the principles of encapsulation

	6.4 Specification Formalism
	6.5 Statement of proof of concept and commercial availability
	6.6 Changes to Adopted OMG Specifications
	6.7 How to Read this Specification
	6.8 Acknowledgements

	7 Using SPEM 2.0 as a UML 2 Superstructure Profile
	7.1 SPEM 2.0 Profile Overview
	7.2 Describing Work Definitions and Work Breakdown as UML Behavior Models
	7.3 Describing Work Product Evolution with State Machines
	7.4 Relating Work Product State to Work Definitions

	8 Core
	8.1 Extensible Element
	8.2 Kind
	8.3 Parameter Direction Kind
	8.4 Work Definition
	8.5 Work Definition Parameter
	8.6 Work Definition Performer

	9 Process Structure
	9.1 Activity
	9.2 Activity Use Kind
	9.3 Breakdown Element
	9.4 Milestone
	9.5 Process Element
	9.6 Process Parameter
	9.7 Process Performer
	9.7.1 Super Class

	9.8 Process Responsibility Assignment
	9.9 Role Use
	9.10 Work Breakdown Element
	9.11 Work Product Use
	9.12 Work Product Use Relationship
	9.13 Work Sequence
	9.14 Work Sequence Kind

	10 Process Behavior
	10.1 Activity_ext
	10.2 Control Flow_ext
	10.3 External Reference
	10.4 State_ext
	10.5 Transition_ext
	10.6 Work Definition Parameter

	11 Managed Content
	11.1 Category
	11.2 Content Description
	11.3 Describable Element
	11.4 Guidance
	11.5 Metric
	11.6 Section

	12 Method Content
	12.1 Default Responsibility Assignment
	12.2 Default Task Definition Parameter
	12.3 Default Task Definition Performer
	12.4 Method Content Element
	12.5 Optionality Kind
	12.6 Qualification
	12.7 Role Definition
	12.8 Step
	12.9 Task Definition
	12.10 Tool Definition
	12.11 Work Product Definition
	12.12 Work Product Definition Relationship

	13 Process with Methods
	13.1 Activity
	13.2 Breakdown Element
	13.3 Composite Role
	13.4 Method Content Kind
	13.5 Method Content Package
	13.6 Method Content Packageable Element
	13.7 Method Content Use
	13.8 Planning Data
	13.9 Process Kind
	13.10 Process Package
	13.11 Process Packageable Element
	13.12 Process Performer
	13.13 Role Use
	13.14 Task Use
	13.15 Team Profile
	13.16 Work Product Use

	14 Method Plugin
	14.1 Activity
	14.2 Method Configuration
	14.3 Method Library
	14.4 Method Library Packageable Element
	14.5 Method Plugin
	14.6 Method Plugin Packageable Element
	14.7 Process Component
	14.8 Process Component Use
	14.9 Section
	14.10 Variability Element
	14.11 Variability Type
	14.12 Work Product Port
	14.13 Work Product Port Connector

	15 Process Diagrams
	15.1 Workflow Diagram
	15.2 Activity Detail Diagram
	15.3 Work Product Dependency Diagram
	15.4 Team Profile Diagram
	15.5 Process Component Diagram

	16 Enacting SPEM 2.0 Processes
	16.1 Process Enactment with Project Planning Systems
	16.2 Process Enactment with a Workflow Engine

	17 Migrating SPEM 1.1 Models to SPEM 2.0
	18 The SPEM 2.0 Base Plug-in
	18.1 Activity Kinds
	18.1.1 Phase
	18.1.2 Iteration
	18.1.3 Process
	18.1.4 Delivery Process
	18.1.5 Process Pattern
	18.1.6 Process Planning Template

	18.2 Category Kinds
	18.2.1 Discipline
	18.2.2 Role Set
	18.2.3 Domain
	18.2.4 Tool Category

	18.3 Guidance Kinds
	18.3.1 Checklist
	18.3.2 Concept
	18.3.3 Estimate (metric kind)
	18.3.4 Estimation Considerations (metric kind)
	18.3.5 Estimating Metric (metric kind)
	18.3.6 Example
	18.3.7 Guideline
	18.3.8 Practice
	18.3.9 Report
	18.3.10 Reusable Asset
	18.3.11 Roadmap
	18.3.12 Supporting Material
	18.3.13 Template
	18.3.14 Term Definition
	18.3.15 Tool Mentor
	18.3.16 Whitepaper

	18.4 Work Product Kinds
	18.4.1 Outcome
	18.4.2 Deliverable
	18.4.3 Artifact

	18.5 Work Product Relationship Kinds

	Annex A: SPEM 2.0 UML 2 Profile Summary
	Annex B: Additional Variability Examples
	B.1 General Principles
	B.2 Contributes
	B.3 Replace
	B.4 Extends
	B.5 Extends-Replaces

	Annex C: Case Studies and Examples
	C.1 Fujitsu DMR Macroscope
	C.2 Microsoft Solution Framework Agile Case Study
	C.3 Eclipse Process Framework OpenUP/Basic
	C.4 MDA Process (OpenUP/MDD)
	C.5 Tivoli Unified Process (ITIL-based process)
	C.6 PMBOK (Sierra System Process Interface Portals)
	C.7 SOA Governance Lifecycle and Management Method
	C.8 OnDemand Process Asset Library (CMM-based Application Services Process)
	C.9 E&TS Application Specific Integrated Circuits Method
	C.10 SPW-6 Software Process Example
	C.11 Money-Lover (Process for Investment Clubs)

