
UMLTM Profile for Schedulability, 
Performance, and Time Specification

This OMG document replaces the previous Final Adopted specification (ptc/02-03-02). It is an 
OMG Final Adopted Specification, which has been approved by the OMG board and technical 
plenaries, and is currently in the finalization phase. Comments on the content of this document are 
welcomed, and should be directed to issues@omg.org by December 6, 2002.

You may view the pending issues for this specification from the OMG revision issues web page 
http://www.omg.org/issues/. 

The FTF Recommendation and Report for this specification will be published on February 10, 
2003.

ptc/02-11-01
OMG Adopted Specification





UMLTM Profile for Schedulability, 
Performance, and Time Specification 

Final Adopted Specification
November 2002



Copyright 2001, ARTiSAN Software Tools, Inc.
Copyright 2001, I-Logix, Ind.
Copyright 2001, Rational Software Corp.
Copyright 2001, Telelogic AB
Copyright 2001, TimeSys Corporation
Copyright 2001, Tri-Pacific Software

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid 
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version.  Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the 
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein 
or having conformed any computer software to the specification.

PATENT
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may 
require use of an invention covered by patent rights.  OMG shall not be responsible for identifying patents for which a 
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of 
those patents that are brought to its attention.  OMG specifications are prospective and advisory only.  Prospective users 
are responsible for protecting themselves against liability for infringement of patents.

NOTICE
The information contained in this document is subject to change without notice. The material in this document details an 
Object Management Group specification in accordance with the license and notices set forth on this page.  This document 
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION  IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE  MAKE NO WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF 
TITLE OR OWNERSHIP,  IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR  
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed 
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, 
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above 
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole 
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or 
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in 
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information 
storage and retrieval systems--without permission of the copyright owner. 

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in 
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and 
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, 
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc. 
X/Open is a trademark of X/Open Company Ltd.



ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers 
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on 
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.





Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1 Background and Purpose of This Document  . . . . . . . . . . 1-1

1.2 Proof of Concept  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.3 Compliance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

2. Rationale and General Principles . . . . . . . . . . . . . . . . . . . 2-1
2.1 Modeling Real-Time Characteristics in UML  . . . . . . . . . 2-1

2.2 Guiding Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

2.3 How This specification is to be Used . . . . . . . . . . . . . . . . 2-3
2.3.1 Provide Analysis Method  . . . . . . . . . . . . . . . . 2-4
2.3.2 Provide Analysis Resource Model . . . . . . . . . . 2-4
2.3.3 Synthesize Model  . . . . . . . . . . . . . . . . . . . . . . 2-5
2.3.4 Analyze Model  . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.3.5 Implement System . . . . . . . . . . . . . . . . . . . . . . 2-5

3. Approach and Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.1 Approach to Modeling Real-Time Applications  . . . . . . . 3-1

3.2 Approach to Modeling for Model Analysis  . . . . . . . . . . . 3-2
3.2.1 Modeling Resources  . . . . . . . . . . . . . . . . . . . . 3-4
3.2.2 Modeling Time  . . . . . . . . . . . . . . . . . . . . . . . . 3-5
3.2.3 Modeling Schedulability  . . . . . . . . . . . . . . . . . 3-5
3.2.4 Modeling Performance  . . . . . . . . . . . . . . . . . . 3-6

3.3 Approach to Model Processing (Analysis and Synthesis) .  3-6

3.4 The Structure of the Profile  . . . . . . . . . . . . . . . . . . . . . . . 3-8
3.4.1 Extension Specification Format Conventions  . 3-9
November 2002 UML Profile for Schedulability, Performance, and Time i



4. General Resource Modeling  . . . . . . . . . . . . . . . . . . . . . . . 4-1

4.1 Domain Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.1.1 The Core Resource Model Package . . . . . . . . . 4-3
4.1.2 The Causality Model Package . . . . . . . . . . . . . 4-6
4.1.3 The Resource Usage Model Package . . . . . . . . 4-7
4.1.4 The Static Usage Model Package  . . . . . . . . . . 4-8
4.1.5 The Dynamic Usage Model Package . . . . . . . . 4-9
4.1.6 The Resource Types Package . . . . . . . . . . . . . . 4-10
4.1.7 The Resource Management Package . . . . . . . . 4-12
4.1.8 The Realization Model Package (Deployment 

Modeling)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
4.1.9 Domain Concepts Details  . . . . . . . . . . . . . . . . 4-16

4.2 The UML Viewpoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
4.2.1 Modeling Realization Relationships  . . . . . . . . 4-27
4.2.2 UML Extensions  . . . . . . . . . . . . . . . . . . . . . . . 4-34
4.2.3 Modeling Guidelines and Examples  . . . . . . . . 4-38
4.2.4 Required UML Metamodel Changes . . . . . . . . 4-38
4.2.5 Proposed Notational Extensions  . . . . . . . . . . . 4-40

5. General Time Modeling  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.1 Domain Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.1 The Time Model  . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.1.2 Timing Mechanisms  . . . . . . . . . . . . . . . . . . . . 5-4
5.1.3 Timed Events Model  . . . . . . . . . . . . . . . . . . . . 5-6
5.1.4 Modeling Timing Services . . . . . . . . . . . . . . . . 5-8
5.1.5 Domain Concept Details and Usage  . . . . . . . . 5-8

5.2 UML Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
5.2.1 Mapping Timing Domain Concepts into UML 

Equivalents  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
5.2.2 UML Extensions  . . . . . . . . . . . . . . . . . . . . . . . 5-19
5.2.3 Required UML Metamodel Changes . . . . . . . . 5-34
5.2.4 Proposed Notational Extensions  . . . . . . . . . . . 5-35

6. General Concurrency Modeling . . . . . . . . . . . . . . . . . . . . 6-1
6.1 Domain Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.1.1 Concurrency Domain Model . . . . . . . . . . . . . . 6-2
6.1.2 Domain Concepts (Detailed) . . . . . . . . . . . . . . 6-3

6.2 UML Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
6.2.1 Mapping Concurrency Domain Concepts into UML 

Equivalents  . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
6.2.2 UML Extensions  . . . . . . . . . . . . . . . . . . . . . . . 6-6
ii UML Profile for Schedulability, Performance, and Time November 2002



6.2.3 Required UML Metamodel Changes . . . . . . . . 6-9
6.2.4 Modeling Guidelines and Examples  . . . . . . . . 6-10
6.2.5 Proposed Notational Extensions  . . . . . . . . . . . 6-11

7. Schedulability Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.1 Domain Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

7.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
7.1.2 Types of Model Analysis Methods  . . . . . . . . . 7-3
7.1.3 Domain Concepts Details  . . . . . . . . . . . . . . . . 7-4

7.2 UML Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
7.2.1 Mapping Schedulability Domain Concepts into UML 

Equivalents  . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
7.2.2 UML Extensions  . . . . . . . . . . . . . . . . . . . . . . . 7-15
7.2.3 Modeling Guidelines and Examples  . . . . . . . . 7-22
7.2.4 Required UML Metamodel Changes . . . . . . . . 7-27
7.2.5 Proposed Notational Extensions  . . . . . . . . . . . 7-27

8. Performance Modeling  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.1 Domain Viewpoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-2

8.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.1.2 Types of Performance Analysis Methods  . . . . 8-3
8.1.3 Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
8.1.4 Domain Concept Details  . . . . . . . . . . . . . . . . . 8-5

8.2 UML Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11
8.2.1 Mapping Performance Domain Concepts into UML 

Equivalents  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11
8.2.2 UML Extensions  . . . . . . . . . . . . . . . . . . . . . . . 8-14
8.2.3 Modeling Guidelines and Examples  . . . . . . . . 8-22
8.2.4 Required UML Metamodel Changes . . . . . . . . 8-30
8.2.5 Proposed Notational Extensions  . . . . . . . . . . . 8-30

9. Real-Time CORBA Applications  . . . . . . . . . . . . . . . . . . . 9-1
9.1 Domain Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

9.1.1 Domain Concept Details and Usage  . . . . . . . . 9-3

9.2 UML Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
9.2.1 Mapping RT CORBA Application Concepts to UML 

Equivalents  . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
9.2.2 UML Extensions  . . . . . . . . . . . . . . . . . . . . . . . 9-7
9.2.3 Modeling Guidelines and Example  . . . . . . . . . 9-12
9.2.4 Required Metamodel Changes . . . . . . . . . . . . . 9-14
9.2.5 Proposed Notational Extensions  . . . . . . . . . . . 9-14
November 2002 UML Profile for Schedulability, Performance, and Time iii



10. Model Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

10.1 Domain Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.1.1 Use Cases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.1.2 Domain Concepts  . . . . . . . . . . . . . . . . . . . . . . 10-2
10.1.3 The Model Configurer . . . . . . . . . . . . . . . . . . . 10-3
10.1.4 The Model Processor . . . . . . . . . . . . . . . . . . . . 10-5

10.2 UML Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
10.2.1 UML Extensions  . . . . . . . . . . . . . . . . . . . . . . . 10-7
10.2.2 Required Metamodel Changes . . . . . . . . . . . . . 10-7
10.2.3 Proposed Notational Extensions  . . . . . . . . . . . 10-7

Appendix A - Tag Value Language  . . . . . . . . . . . . . . . . . . . A-1

 Appendix B - Model of Real-Time CORBA . . . . . . . . . . . . B-1

Appendix C - Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . C-1
iv UML Profile for Schedulability, Performance, and Time November 2002



Preface 
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported 
by over 600 members, including information system vendors, software developers and 
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented 
technology in software development. The organization's charter includes the 
establishment of industry guidelines and object management specifications to provide a 
common framework for application development. Primary goals are the reusability, 
portability, and interoperability of object-based software in distributed, heterogeneous 
environments. Conformance to these specifications will make it possible to develop a 
heterogeneous applications environment across all major hardware platforms and 
operating systems. 

OMG’s objectives are to foster the growth of object technology and influence its 
direction by establishing the Object Management Architecture (OMA). The OMA 
provides the conceptual infrastructure upon which all OMG specifications are based. 

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object 
Management Group’s answer to the need for interoperability among the rapidly 
proliferating number of hardware and software products available today. Simply stated, 
CORBA allows applications to communicate with one another no matter where they 
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object 
Management Group (OMG) and defined the Interface Definition Language (IDL) and 
the Application Programming Interfaces (API) that enable client/server object 
interaction within a specific implementation of an Object Request Broker (ORB). 
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying 
how ORBs from different vendors can interoperate. 
November 2002 UML Profile for Schedulability, Performance, and Time v



OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications. 

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications, 
and CORBA Component Model (CCM). 

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG 
Embedded Intelligence specifications, and OMG Security specifications. 

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing 
Requests for Information, Requests for Proposals, and Requests for Comment and, 
with its membership, evaluating the responses. Specifications are adopted as standards 
only when representatives of the OMG membership accept them as such by vote. (The 
policies and procedures of the OMG are described in detail in the Object Management 
Architecture Guide.) 

OMG formal documents are available from our web site in PostScript and PDF format. 
To contact the Object Management Group, Inc. at: 

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org
vi UML Profile for Schedulability, Performance, and Time November 2002



Typographical Conventions

The type styles shown below are used in this document to distinguish programming 
statements from ordinary English. However, these conventions are not used in tables or 
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax 
elements. 

Courier bold - Programming language elements. 

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the 
name of a document, specification, or other publication. 

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• ARTiSAN Software Tools, Inc.

• I-Logix Inc.

• Rational Software Corp.

• Telelogic AB

• TimeSys Corporation

• Tri-Pacific Software Inc.

The team has sought the opinion of many experts in the real-time domain. The authors 
of this document would like to acknowledge in particular the contributions of the 
following individuals1: Hamish Blair (Marconi), Prof. Alan Burns (University of 
York), Bruce Douglass (I-Logix, Inc.), Sebastien Gerard (CEA/LETI), Prof. Michael 
Gonzalez Harbour (Universidad de Cantabria), Luciano Lavagno (Cadence Design 
Systems, Inc.), Doug Locke (TimeSys Corp.), Jim McGee (Rational Software), Miguel 
de Miguel (Thales), Prof. Dorina Petriu (Carleton University), Prof. Jean-Paul Rigault 
(Esterel Technologies), James Rumbaugh (Rational Software), Therese Smith (Air 
Traffic Software Architecture, Inc.), Francois Terrier (CEA/LETI), Srini Vasan 
(TimeSys Corp.), Prof. Murray Woodside (Carleton University), and Ken Zink 
(HyPerformix, Inc.).

1. Note that the views expressed in this submission do not necessarily represent the opinions of 
the individuals cited in this acknowledgement.
November 2002 UML Profile for Schedulability, Performance, and Time vii



viii UML Profile for Schedulability, Performance, and Time November 2002



Introduction 1
1.1 Background and Purpose of This Document

In March of 1999, the Analysis and Design Platform Task Force of the OMG issued a 
request for proposal (RFP) asking for a UML profile for “schedulability, performance 
and time”.

The RFP called for “proposals for a UML profile that defines standard paradigms of use 
for modeling of time-, schedulability-, and performance-related aspects of real-time 
systems” that would:

• Enable the construction of models that could be used to make quantitative 
predictions regarding these characteristics.

• Facilitate communication of design intent between developers in a standard way. 

• Enable interoperability between various analysis and design tools.

This is just the first part of a larger initiative created by the Real-Time Analysis and 
Design Work Group to develop a comprehensive solution to the modeling of real-time 
systems. Subsequent parts are expected to deal with more general quality of service 
aspects (i.e., beyond time-related issues, including availability, reliability, etc.) and also 
with complex real-time systems.

In response to this RFP, a group of OMG member companies formed a working 
consortium for a joint response to this RFP. The group consists primarily of vendors of 
different kinds of real-time tools.

1.2 Proof of Concept

The essentials of the approach described in this document have been validated through 
several prototypes that involved automated interworking between analysis tools (from 
Tri-Pacific and TimeSys) on one hand, and UML modeling tools (from Artisan and 
Rational) on the other. The results were successful and were demonstrated at a number of 
real-time and embedded system trade shows and conferences. 
November 2002 UML Profile for Schedulability, Performance, and Time 1-1



1

In addition, the major elements of this profile have been validated by applying them to a 
variety of detailed and representative examples. The examples were defined and solutions 
to them developed by a team whose expertise covered fully the key technical areas 
encompassed by the document: the UML metamodel, real-time domain modeling, and 
schedulability analysis.

1.3 Compliance Statement

Compliance with this specification is defined as compliance with any of the following 
packages:

• The SAProfile sub-profile

• The PAProfile subprofile

• The RSAProfile subprofile

Compliance with a package implies complying with all prerequisite packages.
1-2 UML Profile for Schedulability, Performance, and Time November 2002



Rationale and General Principles 2
In this chapter we will look closer at the motivation behind the specification and some of 
its major goals. 

Since the adoption of the UML standard, it has been used in a large number time-critical 
and resource-critical systems. (A significant number of these can be found in the various 
books, papers, and reports listed in the Bibliography at the end of this specification.) 
Based on this experience, a consensus has emerged that, while a useful tool, UML is 
lacking in some key areas that are of particular concern to real-time system designers and 
developers. In particular, it was noticed that the lack of a quantifiable notion of time and 
resources was an impediment to its broader use in the real-time and embedded domain. 
Therefore, as a general rule, we focused our attention on these areas. 

Fortunately, and contrary to an often expressed opinion, in our work we discovered that 
UML had all the requisite mechanisms for addressing these issues, in particular through 
its extensibility faculties. This made our job much easier, since we did not find it 
necessary to add new fundamental modeling concepts to UML – so-called “heavyweight” 
extensions. Consequently, our job consisted of defining a standard way of using these 
capabilities to represent concepts and practices from the real-time domain.

2.1 Modeling Real-Time Characteristics in UML

Over time, a number of different modeling techniques and concepts have emerged within 
the real-time software community. Each technique has fostered its own diverse set of 
terminology and notations. One of the intentions behind this specification is to provide a 
common framework within UML that fully encompasses this diversity but still leaves 
enough flexibility for different specializations. In particular, we focused on properties 
that are related to modeling of time and time-related aspects such as the key 
characteristics of timeliness, performance, and schedulability. 

The ability to predict these characteristics based on analyzing models of 
software—including notably models that are constructed prior to a line of code being 
written—is a fundamental objective of this specification. Accurate and trustworthy 
November 2002 UML Profile for Schedulability, Performance, and Time 2-1



2

predictions invariably involve formal quantitative analyses. Rather than relying 
exclusively on intuition and “feel”, an all too common and regrettable practice in 
software development, it is far better to rely on mathematically derived results stemming 
from accurate models. Problems detected early on during the development life cycle can 
be removed at a much lower cost, and with substantially less rework. 

Therefore, we invested special effort in defining modeling capabilities that enable 
predictive quantitative analyses, such as the ability to determine the schedulability of a 
planned piece of software. A large part of this is based on the ability to model quality of 
service aspects, such as deadlines and priorities.

Note, in particular, that we are not inventing new model analysis techniques as part of 
this specification. Rather, the intention is to be able to annotate a UML model in such a 
way that various existing and future model analysis techniques will be able to take 
advantage of the provided features. There are, of course, additional benefits as well; the 
specification enables the communication of design intent between developers in a 
standard way, and further allows inter operability between tools utilizing the information 
(such as between various kinds of model analysis tools and design tools). 

The concept of predictability associates parametric understanding of an implementation 
with functional requirements that are met by the system under consideration. Systems are 
typically designed and refined into elements exhibiting functional coherence. Each of 
these functions must then be scrutinized regarding its performance as implemented; this 
is typically done by executing test cases and measuring the results. In addition to after 
the fact measurements, model analysis and simulation are both used to provide 
indications or predictions about future performance. A combination of measurements, 
simulation, and model analysis is extremely meaningful to determine the quantitative 
relevance of a system implementation against its performance expectations.

Measurements provide insight and quantitative help. The ability by which measurements 
can be extrapolated into performance projections is not as straightforward as it seems. 
There is a continuum of understanding between measurements, statistical prediction, and 
guaranteed response.

Predictability refers to the quantitative assessment about an implementation of some 
expected functionality. These quantities refer to all aspects of a system - for example the 
amount of heat that it generates, the power that it consumes, etc.

One of the more predominant areas of discussion relating to predictability refers to 
timing and timing behavior of systems. Since we're dealing with real-time, the focus with 
which we discuss predictability centers on timeliness - e.g. execution prediction, timing, 
and expectations. 

2.2 Guiding Principles

In putting together this specification, we adhered to a number of general principles to 
ensure a systematic and consistent response. These particular principles were chosen 
because they closely reflect the requirements of the RFP and because they embody the 
essential elements of a vision shared within the team regarding the future of real-time 
software development.
2-2 UML Profile for Schedulability, Performance, and Time November 2002



2

The main guiding principles are as follows:

• As much as possible, modelers should not be hindered in the way they use UML to 
represent their systems just to be able to do model analysis. That is, rather than 
enforcing a specific approach or modeling style for real-time systems, the profile 
should allow modelers to choose the style and modeling constructs that they feel are 
the best fit to their needs of the moment. 

• It must be possible to construct UML models that can be used to analyze and 
predict the salient real-time properties of a system. In particular, it is important to 
be able to perform such analyses early in the development cycle.

• Modelers should be able to take advantage of different types of model analysis 
techniques without requiring a deep understanding of the inner workings of those 
techniques. (The steep learning curve behind many of the current model analysis 
methods has been one of the major impediments to their adoption.) 

• The profile must support all the current mainstream real-time technologies, design 
paradigms, and model analysis techniques. However, it should also be fully open to 
new developments in all of these areas.

• It should be possible to automatically construct different analysis-specific models 
directly from a given UML model. Such tools should be able to read the model, 
process it, and feed the results back to the modeler in terms of the original UML 
model.

2.3 How This specification is to be Used

We assume a number of use cases for how we expect the profile to be used. In so doing, 
we rely on the following actors:

• The modeler: This is the category of system analysts, software designers and 
developers who construct UML models, and who would like to analyze these 
models in order to determine whether they will meet their performance and 
schedulability requirements.

• The model analysis method provider: These are the individuals and teams who are 
responsible for defining model analysis methods such as RMA or queuing theory, as 
well as tool vendors providing tools and processes for supporting particular model 
analysis methods.

• The infrastructure provider: These are the developers and vendors of run-time 
technologies such as Real-Time CORBA, real-time operating systems, real-time 
component libraries, etc.
November 2002 UML Profile for Schedulability, Performance, and Time 2-3



2

The use cases that we will consider are summarized in Figure 2-1.

Figure 2-1 Some Use Cases Describing How to Use The Profile

Of course, neither the actors nor use cases described in this section represent an exclusive 
set for how this specification can be used, but rather reflect on some of the ways that we 
expect it to be used or (in most cases) expanded. 

2.3.1 Provide Analysis Method

• Actor: analysis method provider

• Description: The provision of a new model analysis method includes a description 
of how it works and which attributes are essential. Furthermore, it needs to be tied 
in with the general resource model. It is advantageous if the model analysis method 
can be automated.

• Deliverables: The outcome of this use case is a model analysis method, which 
includes a process and a set of required techniques that applies to the model 
analysis method.

2.3.2 Provide Analysis Resource Model

• Actor. analysis method provider

• Description: It is the task of the analysis method provider to supply the relevant 
stereotypes and tagged values that are required to adequately model a specific 
model analysis method to make it analyzable. Note that this may provide several 
levels of fidelity, from very simple analysis to very detailed. Some base packages 
are provided as part of the specification, but it is expected that others will be 
defined.

Provide Analysis
Resource Model

Provide
Infrastructure

Provide
Infrastructure

Model

Infrastructure
Provider

Analysis
Method
Provider

Modeler

Provide
Analysis
Method

Synthesize
Model

Analyze
Model

Implement
System
2-4 UML Profile for Schedulability, Performance, and Time November 2002



2

• Deliverables: The outcome of this use case is a package containing the appropriate 
stereotypes to be able to annotate a UML model according to the given model 
analysis method. This package will import and likely provide a specialization of the 
basic resource model. 

2.3.3 Synthesize Model

• Actor: modeler

• Description: A modeler synthesizes a model, iterating it through several stages, 
many of which may produce an analyzable model. Such a model uses the 
stereotypes and tagged values from the appropriate analysis method package, and 
possibly also from a chosen infrastructure package. Some basic property 
manipulation, such as aggregating up the actual work of composite actions may be 
automated by the modeling tool.

• Deliverables: The result of synthesizing the model is a system model, the eventual 
state of which is reached when the application is deemed sufficiently detailed to 
satisfy the project demands.

2.3.4 Analyze Model

• Actor: modeler

• Description: A model may undergo a number of different analyses, perhaps based 
on different model analysis methods, and certainly with varying levels of detail and 
completeness. In order for the model to be analyzed it needs to be well formed, i.e., 
model analysis must be possible based on the given information. An analysis tool 
provides results in a form that is not specified by the specification, and may suggest 
updates to the model based on those results.

• Deliverables: The primary result of analyzing a model is a set of discrepancies 
between offered and required resource attributes. Suggested changes to the model is 
a secondary result, and may offer either recommendations that will make the model 
correct or updates to the offered resource attributes.

2.3.5 Implement System

• Actor: modeler

• Description: At some point, the model has served its purpose, and it is necessary to 
create the actual running application. This may involve applying some infrastructure 
package. In order to verify that the model analysis is still valid, it may be necessary 
to provide a physical model of the system (including components and nodes) that 
can be checked against the earlier model analysis results.

• Deliverables. The result of implementing the system is the actual (real) system.
November 2002 UML Profile for Schedulability, Performance, and Time 2-5



2

2-6 UML Profile for Schedulability, Performance, and Time November 2002



Approach and Structure 3
The guiding principles described in the previous chapter can be realized in a number of 
different ways. In this chapter, we describe the particular set of design strategies 
(approaches) that we have adopted in this specification as well as the overall structure of 
the profile itself. 

3.1 Approach to Modeling Real-Time Applications

The term “real-time” is applied to a very broad spectrum of diverse categories of 
software systems including soft real-time systems and hard real-time systems, time-
driven systems and event-driven systems, distributed systems and centralized systems, 
fault-tolerant systems and non-fault-tolerant systems, and so on. This has led to a large 
variety of different design styles and modeling approaches. Hence, there is no single 
canonical set of modeling and design concepts that will satisfy this tremendous diversity.

For example, in fault-tolerant real-time systems, it is often necessary to explicitly model 
major elements of the operating system infrastructure on which the real-time application 
is founded. This is because it may be necessary for the application to directly manipulate 
this infrastructure; for instance, to restart individual processes or processors, to 
dynamically load new software modules, or to relocate them on another site. 

What is the “right” way to represent an operating system process in those circumstances?

The answer clearly depends on the level of detail that is required by the application. In 
some cases, the OS process may be represented by something as simple as an object, 
while in others it may be necessary to model it in greater detail including its heap, stack, 
and address space.

Therefore, the overall approach taken in this specification is not to pre-define a canonical 
library of “real-time” modeling concepts. Instead, we leave modelers the full power of 
UML to represent their real-time solutions in the way that is most suitable to their needs.
November 2002 UML Profile for Schedulability, Performance, and Time 3-1



3

3.2 Approach to Modeling for Model Analysis

Unfortunately, the flexibility provided by the above approach makes it rather difficult to 
support the kinds of analyses that are required by the need for predictability. This is 
because most model analysis methods use a much simplified representation of a software 
system that focuses only on those aspects that are relevant to the model analysis. Thus, 
when an application model is presented for analysis, there is a need to reduce its inherent 
complexity to a small number of base abstractions. 

One of the problems in achieving this is that the model analysis concepts rarely map one-
for-one to application-level modeling concepts. That is, the same model analysis concept 
may be manifested in a variety of different ways within a single application model. For 
instance, in schedulability analysis, a key abstraction is the notion of a unit of scheduling, 
representing some work item that requires the services of a CPU. However, application 
models are rarely constructed to show the units of scheduling explicitly. Instead, they are 
implied by the presence of model elements such as active (concurrent) objects and 
asynchronous messages.

This is further exacerbated by the fact that different model analysis methods focus on 
different aspects of the model. In schedulability analysis, for example, thread priorities 
are of primary concern but are irrelevant for calculating program memory requirements. 
We will refer to these different perspectives as model analysis views. A model analysis 
view is a simplified version of the complete model and is extracted on the basis of a 
particular model analysis or domain viewpoint representative of a specific model analysis 
method (e.g., the “schedulability analysis viewpoint”).

Traditionally, domain viewpoints were the prerogative of model analysis method experts. 
With their deep understanding of a particular model analysis technique, they could 
examine the application model and extract the corresponding analysis model. However, 
this required highly specialized and usually scarce expertise. As a consequence, these 
highly useful methods were not used very often in practice, leading to many preventable 
software disasters.

To overcome this problem, we have provided a single unifying framework that captures 
the common elements of different real-time specific model analysis methods. This 
framework captures all the essential patterns used in deriving time-based analysis models 
from application models. The core of this framework is a common model of resources (of 
all kinds) and their quality of service (QoS) attributes. This core model is called the 
general model of resource usage or, general resource model. It is described in the 
following chapter. 

How is this framework to be used?

The intent is for every different model analysis method to start with the concepts from 
the general resource model (and, thereby, gain the benefit of a proven approach) and then 
to specialize them according to the needs of the domain. The result of this is a conceptual 
domain model. Note that these conceptual models are non-normative. Their purpose is 
twofold:

• to define and explain the key concepts and relationships of the domain as well as 
their relationship to the general resource modeling framework and 
3-2 UML Profile for Schedulability, Performance, and Time November 2002



3

• to serve as a guideline for defining the UML corresponding extensions (stereotypes, 
tagged values, and constraints)

The relationship of the various models and their components is illustrated in Figure 3-1. 
The conceptual models are on the left while the actual normative UML profile elements 
are shown on the right. The conceptual models are rendered in the form of UML package 
and class diagrams, with the classes in those diagrams representing domain concepts. 
The normative extensions packages, on the other hand, consist of UML stereotypes that 
map to the corresponding domain concepts.

Specific domain model elements, such as AnalysisResource1 in Figure 3-1 capture 
analysis-specific notion of a resource, but it is presented as a specialization of the more 
general notion of Resource in the general resource model. In the corresponding profile 
(ADprofile), it is represented by the stereotype ADresource, which can be applied to 
either Class-type elements or Object-type model elements in a UML model. (The ability 
to apply the same stereotype to different kinds of model elements is a common technique 
used in this profile to achieve maximum flexibility in modeling real-time systems.) 

Figure 3-1 Domain models and corresponding profiles and the mappings between them

Note that not every domain concept will result directly in a UML stereotype or tagged 
value. This is because many domain concepts are abstract, representing generalizations 
that will not appear directly in any analysis model. For instance, the abstract notion of a 
“QoS characteristic” is very useful as an abstraction in our framework, but will only be 
manifested in its concrete forms (delay, throughput, capacity, etc.) in analysis models. 
While a corresponding stereotype could have been defined for this abstract concept, it 

1. Note that this is just a hypothetical analysis domain defined purely for illustrative purposes.

General Resource Model

Resource

Client

etc.

Specialized Analysis Domain Model

Analysis
Resource

Analysis
Client

etc.

«import»

«profile»
RTresourceModeling

«profile»
ADprofile

«stereotype»
ADresource

«import»

«metaclass»
Class

«metaclass»
Object

«stereotype»

etc.
November 2002 UML Profile for Schedulability, Performance, and Time 3-3



3

would never be used in practice. Therefore, we have chosen to only define stereotypes for 
concepts that we envisage are actually going to be used in practical model analysis 
situations. This results in a simpler and more compact profile.

The intent is also to allow further specializations of the individual model analysis sub-
profiles where this is appropriate. For example, in this specification, we have provided a 
specialization of the schedulability analysis sub-profile specifically for Real-Time 
CORBA (refer to the Real-Time CORBA Applications chapter).

The separation of the domain model from the UML equivalent is reflected in the 
structure of the chapters in this document that describe individual domains. Each such 
chapter is partitioned into two sections: a “domain viewpoint” and a “UML viewpoint.”

3.2.1 Modeling Resources

The modeling of resources is fundamental to this specification, and used as the basis for 
most other packages, including the other ones that are part of the common base. The 
general resource model specifies patterns that are present in many real-time model 
analysis methods, and defines a common terminology and conceptual framework that are 
intended to remove ambiguities arising for lack thereof. 

The quantification of the constraints that apply to a real-time system is of great concern, 
and therefore QoS characteristics are an integral part of the resource model. However, 
such constraints are meaningless unless put in some context where there are resources 
and specific statements of intended loads (demands) on those resources. The model 
analysis problem is then reduced to comparing the demand (required QoS) against the 
offered QoS of the resources.

We distinguish between two ways of looking at the resource model. In the first, the so-
called peer interpretation, a client and its used resource coexist at the same 
computational level. In this situation, quality of service is often compared using 
associations. 

The layered interpretation is structurally very similar, but appears in a different context 
where a client (such as an application) is related to the resources that are used to 
implement it (such as the software and hardware environments used). Thus the client and 
the resource are not really co-existing, but rather two complementary perspectives of the 
same modeling constructs. We generically refer to these levels as the logical model and 
the engineering model, where the engineering model realizes the logical model. In this 
case, the client is an element in the logical model and the resource is a corresponding 
element in the engineering model.

The quantitative constraints that apply in the layered interpretation are similar in nature 
to the ones that appear in the peer interpretation, but are usually applied to realizes 
dependencies rather than to associations. Note that the engineering model may in turn be 
realized by yet another engineering model, in which case it would also be regarded as a 
logical model. 
3-4 UML Profile for Schedulability, Performance, and Time November 2002



3

3.2.2 Modeling Time

Time is of course an ever-present aspect of real-time systems, and it has impact in several 
different areas. Only metric time is covered as part of this specification, as real-time 
systems are usually concerned only with the cardinality of time, such as the deadline for 
a response. In particular, we find it useful to distinguish between physical (continuous) 
time and simulated time where time does not necessarily increase monotonically.

Another case where time comes into play is in conjunction with services provided for 
example by a real-time operating system in the form of timers and clocks, and the 
specification provides a framework for modeling these facilities and their related 
characteristics.

Timing patterns of different kinds are essential in supporting schedulability and 
performance analysis, and include modeling whether something is periodic or not, and in 
the former case also modeling of period, distribution functions, and jitter. 

3.2.3 Modeling Schedulability

Real-time systems comprise systems where the question of when a response to an event 
occurs is as important for the correct behavior of the system as its algorithmic behavior. 
A common distinction in this regard is between soft and hard real-time, the difference 
being that in the former a late reply is a good reply as long it is within some acceptable 
range, while in the latter case a late reply is useless, and sometimes totally unacceptable 
(fatal). 

In the former category, statistical prediction is a way to model the relevant 
characteristics, which can usually be quantified as average performance and standard 
deviation. In the latter category, the problem is usually in making sure that there is an 
upper bound for response to a stimulus, i.e., there has to be a guaranteed response time. 
Actual systems often combine traits of both categories.

As part of the specification, we particularly focus on systems having hard timeliness 
requirements1, and how to annotate the model in ways that allow a wide variety of 
schedulability techniques to be applied. The goal is of course to make it possible to 
determine whether or not a model is schedulable, i.e., if it will be able to meet its 
guaranteed response times.

Since there is a quite a lot of conflicting terminology in this domain (which occasionally 
also clashes with UML conventions) we have defined a single coherent terminology that 
is used throughout the specification. 

Some of the model analysis methods that have provided valuable input to this 
specification are Rate Monotonic Analysis (RMA), Deadline Monotonic Analysis 
(DMA), and Earliest Deadline First (EDA). Note that the specification is not restricted to 
cover only these methods, but is flexible enough to handle a variety of other techniques.

1. By “hard” we mean timeliness requirements that must be satisfied without exception. Note 
that this is orthogonal to the notion of criticality, that is, whether the consequences of miss-
ing a hard deadline are unacceptable or not.
November 2002 UML Profile for Schedulability, Performance, and Time 3-5



3

The set of annotations included in the specification is sufficient to perform basic 
schedulability analysis, but it is expected that individual schedulability tool vendors will 
provide specialized profiles to allow for more extensive analysis.    

3.2.4 Modeling Performance

Performance analysis is primarily about determining the rate at which a system can 
perform its function given that it has finite resources with finite QoS characteristics 
Although not necessarily so, most performance analysis techniques are statistical, 
yielding statistical results. Hence, they are more appropriate for so-called soft real-time 
systems.

Note that, as in the case of schedulability analysis, the ability to model resources and 
their performance related characteristics, such as delay and throughput, is fundamental. 
In fact, there is much similarity between the concepts used in performance analysis and 
schedulability analysis. This commonality is reflected in the fact that the two share a 
common model – the general resource model.

The model that we have provided is fairly minimal, with the expectation that further 
specialized profiles will be defined by tool vendors or specialists by specializing the 
concepts defined in this profile. However, even without such specializations the concepts 
are sufficient for basic performance analysis of complex systems. We have tried to avoid 
any assumptions about whether the model analysis method will be based on queueing 
theory or simulation.

3.3 Approach to Model Processing (Analysis and Synthesis)

Since we want to support both model analysis and model synthesis, from here on we will 
use the general term model processing to encompass both. A schedulability analysis tool, 
for instance, which accepts a UML model and analyzes the schedulability of that model, 
is a kind of model processor. A different example is a synthesis tool that accepts a model 
with some characteristics unspecified and generates an appropriate optimal set of values 
for those characteristics. In this section, we describe a model-processing framework that 
is common to all forms of model analysis and synthesis.

The diagram in Figure 3-2 represents a conceptual model of the process envisaged for 
analyzing or synthesizing models based on the proposed profile. The modeler constructs 
a UML model that includes supplementary annotations required by the different model 
processors. The model is then passed to the model processor where it is analyzed and the 
results are fed back to the modeler. A key aspect of this process is that the exchange with 
3-6 UML Profile for Schedulability, Performance, and Time November 2002



3

the model processor can be automated and that the details of model processing, including 
the specifics of its internal algorithms and data representations, are all hidden from the 
modeler. Details of this process are described in the Model Processing chapter. 

Figure 3-2 The model processing paradigm

To protect the modeler from the specifics of individual tools, all information entered and 
viewed by the modeler is included as part of the model. This means that the information 
exchanged between the model processor and the model editing tools consists of complete 
or partial UML models. This has the additional advantage that the standard XMI-based 
UML interchange format is sufficient. 

In practice, of course, some knowledge of the model processor and its techniques is both 
necessary and useful. This is no different than explicit control of the options on a 
compiler. It allows the user to optimally utilize the capabilities of model processing tools, 
but without being overwhelmed by detail. The mechanisms that allow this type of control 
are also defined in this specification (see the Model Processing chapter).

UML
Model

Model
Processor

Modeler/
Analyst
November 2002 UML Profile for Schedulability, Performance, and Time 3-7



3

3.4 The Structure of the Profile

Figure 3-3, describes the overall structure of the profile specified in this specification. 
The structure is modularized to allow users to only use those elements of the profile that 
they need. This structure is also well suited to future extensions.

Figure 3-3 The structure of the profile

The profile for schedulability, performance and time is partitioned into a number of sub-
profiles, profile packages dedicated to specific aspects and model analysis techniques. At 
the core of the profile is the set of sub-profiles that represent the general resource 
modeling framework. These provide a common base for all the analysis sub-profiles in 
this specification. However, it is anticipated that future profiles dealing with other types 
of QoS (e.g., availability, fault tolerance, security) may need to reuse only a portion of 
this core. Hence, the general resource model is itself partitioned into three separate parts.

The innermost part is the resource modeling sub-profile, which introduces the basic 
concepts of resources and QoS. These are general enough and independent of any 
concurrency and time-specific concepts. Since concurrency and time are at the core of 
the requirements behind this specification, they each have a separate sub-profile.

Analysis Models Infrastructure Models

«modelLibrary»
RealTimeCORBAModel

General Resource Modeling Framework

«profile»
RTresourceModeling

«profile»
RTtimeModeling

«profile»
RTconcurrencyModeling

«import» «import»

«profile»
SAProfile

«profile»
PAprofile

«profile»
RSAprofile

«import»

«import»

«import»«import»
3-8 UML Profile for Schedulability, Performance, and Time November 2002



3

The three different model analysis profiles defined in this specification are all based on 
the general resource modeling framework. One sub-profile is dedicated to performance 
analysis and another is dedicated to schedulability analysis. The latter is then further 
specialized to deal with schedulability analysis of Real-Time CORBA applications.

In addition, we have included in this specification a model library that contains a high-
level UML model of Real-Time CORBA. The expectation is that this can be used as a 
basis for complex models in which it is important not only to model the application but 
also the infrastructure that supports it – in this case, the Real-Time CORBA 
infrastructure. 

The modular structure shown in Figure 3-3 allows users to use only the subset of the 
profile that they need. This means choosing the particular profile package and the 
transitive closure of any profiles that it imports. For example, a user interested in 
performance analysis, would need the PAprofile, RTtimeModeling, and 
RTresourceModeling packages.

3.4.1 Extension Specification Format Conventions

Note that this profile is based on the extension mechanisms defined in version 1.4 of the 
UML specification [37]. Both stereotypes and tag specifications are defined using the tabular 
form as shown in the following example:.

This table defines a stereotype, «RTstimulus», which can be applied to any of the five 
UML modeling concepts listed (Stimulus, ActionExecution, Action, ActionSequence, 
and Method) or to their respective subclasses. This stereotype has two associated tagged 
values, RTstart and RTend, which are defined by a separate table::

This second table defines the type of each tag (in this example, both tagged values are 
instances of the RTtimeValue data type). Each tag also has a multiplicity indicating how 
many individual values can be assigned to each tag. A lower bound of zero implies that 
the tagged value is optional. Finally, the “Domain Attribute Name” column identifies the 

Stereotype Base Class Tags

«RTstimulus» Stimulus RTstart
RTend

ActionExecution

Action

ActionSequence

Method

Tag Type Multiplicity Domain Attribute Name

RTstart RTtimeValue [0..1] TimedStimulus::start

RTend RTtimeValue [0..1] TimedStimulus::end
November 2002 UML Profile for Schedulability, Performance, and Time 3-9



3

attribute (or association end) in the domain model to which the tag corresponds. For 
example, TimedStimulus::start indicates that the RTstart tag corresponds to the start attribute 
of the TimedStimulus concept in the domain model (see Figure 5-4).
3-10 UML Profile for Schedulability, Performance, and Time November 2002



General Resource Modeling 4
This chapter describes the essential framework for modeling real-time systems using 
UML. At the core of this framework is the notion of quality of service (QoS), which 
provides a uniform basis for attaching quantitative information to UML models. 
Specifically, QoS information represents, either directly or indirectly, the physical 
properties of the hardware and software environments of the application represented by 
the model. We refer to this framework as the general resource modeling framework, or, in 
abbreviated form, as the GRM.

The GRM is envisaged as the foundation required for any quantitative analysis of UML 
models. It comprises two closely related viewpoints. One is a domain viewpoint that 
captures, in a generic way, the common structural and behavioral concepts and patterns 
that characterize: (1) real-time systems and (2) real-time system analyses methods. To 
ensure that this model accurately reflects the real-time domain and is not influenced 
unduly by metamodelling concerns, this part of the GRM is to a great extent defined 
independently of the UML metamodel. 

The second viewpoint in the GRM is the UML viewpoint—a specification of how the 
elements of the domain model are realized in UML. This consists of a set of UML 
extensions (stereotypes, tagged values, constraints) and is supplemented by specifications 
of the mappings of the domain concepts to those extensions. Not all concepts in the 
GRM are reified as concrete extensions. This is because, the GRM provides mostly 
abstract concepts that are not applied directly to elements of a UML model. Their 
purpose, instead, is to provide a basis for more concrete refinements in the various 
specialized parts of profile.

For example, the GRM defines a generic notion of a “QoS characteristic”, but there is no 
corresponding “QoS characteristic” stereotype. Instead, for practical reasons, different 
QoS characteristics are represented in different ways (either as tagged values or as 
stereotypes). Nonetheless, the abstract concept provides a guideline in particular cases 
that helps to identify what needs to be defined and how it should fit in with other related 
concepts.
November 2002 UML Profile for Schedulability, Performance, and Time 4-1



4

This dual viewpoint structure is also used for all the other parts of the real-time profile. 
The nature of the relationship between these two viewpoints and their elements is shown 
in Figure 4-1 (Note that this is merely an informal diagram defined for illustrative 
purposes and does not imply a specific package structure or mapping.).

Figure 4-1 The domain and UML viewpoints and the relationships between their elements

4.1 Domain Viewpoint

In this and subsequent sections we will use UML itself to describe the domain viewpoint. 
This is because we expect readers of this document to be familiar with UML and also 
because UML class diagrams are a particularly convenient means for describing 
conceptual models. However, care must be taken not to confuse elements of the domain 
viewpoint with elements of the UML metamodel. As noted above, the domain viewpoint 
is defined independently of the UML metamodel1.

Note that, although the intent of this domain model is to be precise, it is not fully formal 
since its purpose is primarily to describe the concepts and relationships of the domain. 
Thus, in some cases strict formality was sacrificed for reasons of clarity.

1. This is a bit of an oversimplification. In cases where there was a modeling choice between a 
modeling approach that was easier to map to the UML metamodel and one that is not, we 
naturally chose the former provided that it did not result in reduced modeling accuracy. An 
example of this can be found in the Section4.1.2, “ The Causality Model Package,” on 
page 4-6.

UML viewpointDomainViewpoint

<<mapping>>
DomainConcept

UMLStereotypeDefinition

UMLTaggedValueDefinition
<<mapping>>
4-2 UML Profile for Schedulability, Performance, and Time November 2002



4

The GRM has many facets that are grouped in individual packages. The overall package 
structure is shown in Figure 4-2 The purpose and contents of each package are described 
in subsequent sections. 

Figure 4-2 Structure of the general resource modeling framework 

4.1.1 The Core Resource Model Package

This package defines the essential concepts of resources and quality of service (QoS), 
upon which most of the concepts in the rest of the specification are based. Although we 
have defined these concepts in the context of time-related QoS issues, it is anticipated 
that the domain concepts in this package may serve as a foundation for other types of 
QoS domains such as reliability or availability.

For our purposes, it is fundamental to distinguish between design-time descriptor 
elements, such as classes and types, and run-time instance elements that are created on 
the basis of those descriptors. This is because practically all time-based analysis methods 
operate on models that describe specific instances and their linkages. Thus, it may not be 
meaningful to apply such analyses on a model described purely by a UML class diagram 
since this model really shows only the relationships between descriptors.

CoreResourceModel

ResourceUsageModel

DynamicUsageModel

(from  ResourceUsageModel)

StaticUsageModel

(from ResourceUsageModel)

CausalityModel ResourceTypes

ResourceManagement

RealizationModel
November 2002 UML Profile for Schedulability, Performance, and Time 4-3



4

However, it is often useful to be able to associate values of QoS characteristics with 
descriptors. This simply means that such values apply to all instances created on the basis 
of those descriptors and not that the descriptor itself has that value. (This requires special 
care, however, and may not always be appropriate. In case of interface specifications, for example, 
there could be many realizations of the same interface, each with different service characteristics.)

This basic partitioning into descriptors and instances is reflected in the top two elements 
of the class diagram that depicts the core resource model (Figure 4-3). Any number of 
instances can be created from a given instance descriptor . The descriptor is referred to as 
the type of the instance. Notice that an instance may have multiple types (which can be 
used either to represent different viewpoints or multiple inheritance). 

Figure 4-3 The core resource model – the instance and descriptor aspects 

All the elements on the left of Figure 4-3 represent instance-based concepts whereas the 
elements on the right represent their corresponding descriptors1. The dashed-line 
dependencies between the top-level association connecting Instance and Descriptor and 
the lower associations are meant to convey that the latter are specializations of the 
former.

Because real-time analyses are instance based, in the rest of this model we will not define 
explicitly any additional descriptor concepts. Instead, we will assume that for each 
instance-based concept that is introduced a corresponding descriptor also exists.

1. Although it is not shown explicitly (in order not to clutter the diagram), both ResourceSer-
vice and QoS characteristic are subclasses of Descriptor. Similarly, ResourceServiceIn-
stance and QoSvalue are subclasses of Instance.

ResourceService

QoScharacterist ic

0.. *

0.. *

0.. *

0.. *

ResourceServiceInstance

10..*

+t ype

1

+instance

0..*

Resource

1..*+offerredService 1..*

l

0..*

0..*

+offerredQoS 0..*

0..*

/

QoSvalue

0..*

0.. *

+offerredQoS0..*

0.. *

10..*

+type

1

+instance

0..*

ResourceInstance

1..*1..*

1..*0..*

+type

1..*

+instance

0..*

0..*

0..*

+offerredQoS0..*

0..*

/

DescriptorInstance
1..*0..*

+type

1..*0..*
4-4 UML Profile for Schedulability, Performance, and Time November 2002



4

The central concept of the GRM is the notion of a resource instance. A resource instance 
represents a run-time entity that offers one or more services for which we need to express 
a measure of effectiveness or quality of service (QoS). For instance, this measure might 
be the execution time of the service or its precision. In all cases, the fact that it is 
necessary to specify the quality of service is simply a reflection of the finite nature 
(limited capacity, limited speed, etc.) of the resource’s physical underpinnings. The 
concept is not useful if one assumes infinitely fast execution times or unlimited 
capacities.

A resource service instance is a specific incarnation of a resource service description that 
is provided by a specific resource instance. Note that a given description could be 
realized in different implementation environments leading to different QoS values for the 
same descriptor. The actual QoS values of a service instance are often referred to as the 
offered QoS (values). Depending on the nature of the service and the characteristic, QoS 
values can vary in complexity from simple numbers to complex structured values (e.g., 
probability distributions).

In some cases it is more convenient to talk about the offered QoS of a resource rather 
than its services. This is useful when the resource offers a single service so that it is not 
necessary to explicitly define the service in the model. For instance, a physical processor 
offers a “processing service” which may include a throughput characteristic of some 
kind. Rather than talk about the QoS of the processing service, it is much more common 
to talk about the throughput of the processor resource rather than its processing service. 
For this reason, we provide the capability to associate QoS characteristics (values) 
directly with resources in the GRM. However, this should be recognized for what it is: a 
convenient shortcut and not an alternative conceptual model.

Although we have represented the notion of a QoS characteristic as an explicit concept in 
this core model, in most cases to follow specific QoS characteristics are represented as 
attributes of other concepts. (On instances, of course, they are represented as attribute 
values.) For example, the execution time characteristic of an action might be represented 
as an attribute of the action rather than as a subclass of the QoS characteristic concept 
that is associated with the action concept. Although this is not quite formally correct, it 
results in a much simpler domain model that is easier to understand.
November 2002 UML Profile for Schedulability, Performance, and Time 4-5



4

4.1.2 The Causality Model Package

This is an important model that is used as a basis for any dynamic modeling associated 
with the profile. It captures the essentials of the cause-effect chains in the behavior of 
run-time instances. The model is based on the dynamic semantics of UML 1.4, but is 
more detailed and more precise in certain aspects.  

Figure 4-4 The basic causal loop model 

A fundamental concept in the causality model is the notion of an event occurrence. This 
corresponds to an instance of the UML event notion (which is a descriptor that specifies 
a kind of change of state). There are many different kinds of event occurrences, but the 
most interesting ones for our purposes are the stimulus generation and stimulus reception 
events. A stimulus, which fully corresponds to the eponymous UML 1.4 concept, is an 
instance of a communication in transit between a calling object and a called object. A 
stimulus generation event occurs when an object executes an action that invokes an 
operation on another object (the receiver) or sends a signal to it. The effect of the 
stimulus generation event is the creation and dispatching of a stimulus that identifies the 
parameters of the communication (the operation invoked, the values of the parameters, 
etc.). The stimulus will eventually result in a stimulus reception event. This event occurs 
when an object executes some kind of reception operation. The occurrence of this event 
will either trigger a transition in the receiver or result in the execution of a method. 
(Details of how the event is received, scheduled, and dispatched are outside the scope of 
the GRM and depend on the specific situation.) 

This, in turn, leads to a scenario execution (or simply, scenario). A scenario execution 
may result in the execution of an ordered set of actions (see Section4.1.5, “ The Dynamic 
Usage Model Package,” on page 4-9 for details), some of which may generate further 
stimuli, and so on.

EventOccurence

Instance
(f ro m CoreRe source M odel )

StimulusGeneration Stimulus

0..1 0..*

+receiver

0..1 0..*

1..*1

+effect

1..*

+cause

1

Scenario

0..*

1.. *

+methodExecution0..*

+executionHost1.. *
0..*

1

+effect 0..*

+cause1

StimulusReception

0..1

1

+effect

0..1

+cause1

0..*1

+effect

0..*

+cause

1

4-6 UML Profile for Schedulability, Performance, and Time November 2002



4

In addition to the stimulus generation and stimulus reception events, in a number of 
analyses it is also useful to consider the events that occur when a scenario starts and ends 
its execution (scenario start event and scenario end event respectively). This is depicted 
in Figure 4-5. 

Figure 4-5 Scenario start and end event occurrences 

4.1.3 The Resource Usage Model Package

Complementing the core resource model is the notion of a resource usage. Whereas the 
core resource model represents the server side of the GRM, the resource usage model 
represents its client side. A resource usage represents a pattern that describes how a set 
of clients uses a set of resources and their services. It closely corresponds to a use-case 
instance. A resource usage can be either static or dynamic, depending on the needs of the 
model analysis. In some cases it is necessary to describe the process of resource usage in 
detail (order, timing, etc.). This is supported by various dynamic usage models (see 
Section 4.1.5, “The Dynamic Usage Model Package,” on page 4-9). In other cases, it is 
sufficient to simply show the static linkages between clients and resources without 
delving into the details of how and when a resource is used by a client (see Section4.1.4, 
“The Static Usage Model Package,” on page 4-8). 

Figure 4-6 The resource usage framework 

EventOccurence

ScenarioEndEvent

ScenarioStartEvent

Scenario
11

+end

11

11

+start

11

StaticUsage DynamicUsage

UsageDemand

AnalysisContext

1..*

1

1..*

1

ResourceInstance
(f rom Co re Reso urceMod el)

1..*

0..*

1..*

0..*

ResourceUsage
1..* 1

+workload

1..* 1 0..* 1..*0..*

+usedResources

1..*

1..*

1

1..*

1

ResourceServiceInstance
(f rom Co re Reso urceMod el)

1..*1..*

0..*

0..*

0..* +usedServices

0..*

EventOccurence
(from Causali tyModel)
November 2002 UML Profile for Schedulability, Performance, and Time 4-7



4

Note that in the model in Figure 4-6 we do not show the client as an explicit concept. 
This is because in some types of analyses a client may be implicit, represented indirectly 
by the load that it imposes on the resource.

In most analyses, it is useful to distinguish the usage from the event that induced it. This 
allows the usage pattern, which occurs within a system, to be specified independently of 
the external factors that lead to it. The event occurrence that causes the resource usage is 
called the usage demand because it represents the externally imposed load on the system. 
In a sense, QoS characteristics associated with the usage demand represent the required 
QoS values of the system for that specific usage.

To assist model analysis tools in determining what part of a model is to be analyzed, we 
introduce the concept of an analysis context. It consists of a set of resource usages with 
corresponding densities and the set of resource instances that are used by the resource 
usages. The main purpose of an analysis context is to define a starting point for model 
analysis. Starting with the analysis context and its elements, a tool can follow the links of 
the model to extract the information that it needs to perform the model analysis.

4.1.4 The Static Usage Model Package

This model (Figure 4-7) is used in cases where the relationship between the clients and 
resources can be viewed as static. This does not necessarily mean that it is static, but 
simply that the dynamics of usage are not relevant to the model analysis on hand. The 
domain model in this case includes an explicit client, which is also a kind of instance. In 
this case, however, the notion of resource services is not required. 

Figure 4-7 The static resource usage model 

Associated with a client is a set of required QoS values. These can be matched against 
the offered QoS values of the resource to determine if the requirements can be met, or 
conversely, to determine the necessary resource characteristics to support the clients in 
the usage.

StaticUsage
(from ResourceUsageModel )

ResourceInstance
(from CoreResourceModel)

Client
1..*1..*

+usedResources

1..*1..*

QoSvalue
(from CoreResourceModel)

0..*

0..*

0..*

+offerredQoS

0..*

/

0..*

1..*

0..*

+requiredQoS 1..*

QoScharacteristic
(from CoreResourceModel)

0..*

1

+ins tance 0..*

+type 1

Instance
(from CoreResourceModel)
4-8 UML Profile for Schedulability, Performance, and Time November 2002



4

The most obvious interpretation of the static model is that the client and the resource 
instances that it uses are peers in the sense that they are collaborating instances at the 
same level of abstraction. For example, the resource may be a semaphore that protects 
some shared data and the client would be a software task that uses the semaphore to 
access the shared data. We will refer to this as the peer interpretation of the client–
resource relationship. 

However, the same static model can be applied to the case where the clients represent 
elements of a software model and the resource instances represent elements of the 
hardware/software environment on which the software elements are deployed. This view 
of resource usage is called the layered interpretation. An expanded description of this is 
provided in Section 4.1.8, “The Realization Model Package (Deployment Modeling),” on 
page 4-12.

4.1.5 The Dynamic Usage Model Package

The dynamic usage model (Figure 4-8) applies in situations where the order and time of 
occurrence of the loads on resources is relevant to the model analysis. In this case, the 
usage is represented by a scenario instance—an ordered series of steps called action 
executions. The ordering of steps follows a predecessor-successor pattern, with the 
possibility of multiple concurrent successors and predecessors, stemming from 
concurrent thread joins and forks respectively.

The granularity of a step is often a modeling choice that depends on the level of detail 
that is being considered. Hence, a step at one level of abstraction may be decomposed 
further into a set of finer-grained steps (action executions). For this reason, we model an 
action execution as a kind of scenario. The recursion ends when a scenario is represented 
by a single indivisible (atomic) step.

Each scenario (and action execution) may use one or more resources and resource 
operations. In those cases, it may specify explicitly the required QoS that it needs in 
order to meet its own obligations. The essential problem of any kind of dynamic real-
time analysis is to compare these QoS requirements against the offered QoS 
characteristics of the resources and services used by the scenario.
November 2002 UML Profile for Schedulability, Performance, and Time 4-9



4

 

Figure 4-8 The dynamic resource usage model

4.1.6 The Resource Types Package

This part of the GRM (Figure 4-9 on page 4-11) deals with the different categorizations 
of resources that are useful for modeling real-time systems. A given resource instance 
may belong to more than one type, although it can be classified by at most one type from 
each category.

Based on purpose, resources are classified into:

• processor resources, which represent either virtual or physical processing devices 
capable of storing and executing program code 

• communication resources, whose primary purpose is to enable communications 
between other resources and

• devices, which represents other types of resources that are neither processors nor 
communication resources (e.g., disks, sensors, motors, etc.)

Based on activeness, resources are categorized as:

• active resources, which are capable of generating stimuli concurrently or pseudo-
concurrently without being prompted by an explicit stimulus instance (i.e., devices 
that appear capable of “spontaneous” unprompted behavior such as hardware, 
operating system processes and threads, etc.)

• passive resources, which cannot generate their own behavior, but only react when 
prompted by a stimulus

DynamicUsage
(f rom  Re sou rc eUsageM od el)

ResourceInstance
(from  CoreResourceM odel)

Res ourceServiceInstance
(from  CoreResourceM odel)

1..*1..*

QoSvalue
(from  CoreResourceM odel)

0.. *

0..*

0.. *

+offerredQoS0..*

Scenario
(from  Causal i tyM odel) 1..*1..*

+usedResources

1..*1..* /

1..*

1..*

+usedServices

1..*

1..*

/

ActionExecution

0..*

0..*

+requiredQoS 0..*

0..*

1..*
+step

1..*

0.. *

0.. *

+predecessor

0.. *

+successor

0.. *

{ordered}
4-10 UML Profile for Schedulability, Performance, and Time November 2002



4

Based on protection, resources can be one of:

• protected resources, which are resources that offer one or more exclusive service 
instances; these are services to which concurrent access is restricted according to 
some access control policy 

• unprotected resources, whose services are not subject to any access protection. 

Figure 4-9 .Resource types model

To use the exclusive services of a protected resource, it is necessary to first execute an 
appropriate acquire service action (Figure 4-10). If the action is defined as a blocking 
action, then it will block the caller until the exclusive service is made available. This is 
determined by the associated access control policy. If it is a non-blocking action the 
service will either be made available immediately or a failure result will be returned, 
depending on the access control policy and the state of the resources at the time. The 
action that releases an appropriated service is the release service action. This action is 
non-blocking and can be invoked at any time, whether the service has previously been 
acquired or not. 

Figure 4-10 Exclusive service instances and corresponding actions 

Note that in some cases, it is more convenient to associate the access control policy 
directly with the protected resource. This is merely a conceptual shortcut for resources 
that have only one kind of service or multiple services that are administered using a 
single access control policy.

ActiveResourcePassiveResourceUnprotectedResource

protectionKind activenes sKind

ResourceInstance
(from CoreResourceModel)

ProtectedResource

CommunicationResourceProcessorDevice

purposeKind

ResourceServiceInstance
(from CoreResourceM odel)

ActionExecution
(from DynamicUsageModel)

ProtectedResource

AccessControlPolicy

0..*

0..1

0..*

0..1
AcquireService

isBlocking : Boolean
ReleaseService

Ex clus iveService

1..*1..*

/

0..*1 0..*1

0..*1 0..*1

/

0..*

1

0..*

1

/

November 2002 UML Profile for Schedulability, Performance, and Time 4-11



4

4.1.7 The Resource Management Package

This is a utility package for modeling various resource management services, such as 
those found in most operating systems. In general, we distinguish between a number of 
different roles here: 

• The resource broker, is an entity that is responsible for allocation and deallocation 
of a set of resource instances (or their services) to clients according to a specific 
access control policy. For example, a memory manager will allocate memory from a 
heap upon request from a client and also return it back into the heap once the client 
no longer needs it. The access control policy determines the amount of memory 
provided to individual clients, the prioritization of competing requests, etc.

• The resource manager, on the other hand is responsible for creating and maintaining 
resources according to a resource control policy. For example, a buffer pool manager 
is responsible for creating a set of buffers from one or more chunks of heap 
memory. Once created and initialized, the resources are typically handed over to a 
resource broker. In most practical cases, the resource manager and the resource 
broker are the same entity.. However, since this is not always true the two concepts 
are modeled separately (they can be easily combined by designating the same entity 
as serving both purposes). 

Figure 4-11 Resource management model 

4.1.8 The Realization Model Package (Deployment Modeling)

Layering is one of the most commonly used techniques in software. It is a particular form 
of the general “divide-and-conquer” strategy for dealing with complexity. A layer is an 
environment in which all the constituents are specified at the same level of detail relative 
to a given viewpoint. Note that viewpoints play a key role in the definition of layers, 
although this is often overlooked or left unstated. A viewpoint represents a set of related 
concerns. For instance, the well-known seven-layer OSI model decomposes a system 
from a communications perspective. Layers are differentiated based on the degree of 
technological specificity. Thus, the deeper one descends through the layer hierarchy, the 
communication mechanisms become more and more specific until actual hardware is 
reached.

Instance
(from CoreResourceM odel )

ResourceInstance
(f rom C ore Reso urceM ode l )

ResourceBroker

1..*

0..*

1..*

0..*

AccessControlPolicy
(from ResourceT ypes)

1

1..*

1

1..*

Res ourceManager

1..*

0..*

+managedResource1..*

0..*

ResourceControlPolicy

1

0..*

1

0..*
4-12 UML Profile for Schedulability, Performance, and Time November 2002



4

It turns out that layers can be pure abstractions, which means that they only exist as a 
mental tool to help us understand a complex system by partitioning the problem in some 
graduated fashion. However, when it comes to software systems in particular, layers may 
actually be concrete things with an independent existence. For example, an operating 
system is a layer that exists independently of any application software that runs on top of 
it. The concrete and abstract forms of layering are often confused with each other. To 
reduce the likelihood of such confusion, we examine each in a bit more detail in the 
following two subsections.

4.1.8.1 Refinement

In this case, we have on hand two separate models of the same system such that one is a 
more detailed (i.e., more refined) rendering of the other. By convention, the more abstract 
model is considered as the “upper” layer in the abstraction hierarchy and the more 
refined model is the “lower” layer. For obvious reasons, we will refer to this form of 
layering as refinement layering. 

For instance, in Figure 4-12 below, the upper UML layer depicts a highly-abstract view 
of a specific fragment of some program. The lower layer shows a more detailed rendering 
of the same fragment with explicit details of the C++ implementation.

Figure 4-12 Example of refinement-type layering

A very well-known example of this type of layering is the ISO reference model for open 
distributed processing (RM-ODP). In that case, the abstraction hierarchy is based on the 
degree of technology specificity. The topmost layer, the Enterprise Viewpoint, completely 
abstracts out technology and represents a system from the perspective of a business 
enterprise. In this viewpoint, the need for some type of information processing is 
identified, but without any reference to a specific technology that might realize that need. 
At the next level down is the Information Viewpoint, which starts to bridge the gap 
towards computing technology by expressing the system in terms of abstractions that are 
familiar in the computer world: entities and relationships. This continues on until the 
bottom level is reached, the Technology Viewpoint, in which the actual hardware and 
software implementation technologies are depicted. 

myControl: Control

main () {
   Client Client1();
   Client Client2();
   Control myControl(Client1,Client2);

//.....

Class Client {}
public:

//...
private:

//...

Class Control {}
public:

//...
private:

//...

C++ View (concrete)

UML View (abstract)

Client1: Client Client2: Client
November 2002 UML Profile for Schedulability, Performance, and Time 4-13



4

4.1.8.2 Realization

It is common practice, particularly at higher levels of abstraction, to depict software that 
is executing on some real or virtual machine as a separate layer placed over that machine, 
which is itself shown as a layer. This relationship may extend to multiple levels as shown 
in Figure 4-13 Here, the bottom layer is the computing hardware. The next level up is the 
operating system, shown as a layer running on top of the hardware. Finally, there is an 
application layer, which is executing on top of the “virtual machine” realized by the 
operating system.

Figure 4-13 An example of realization layering

In contrast to refinement, each level in this hierarchy defines a distinct part of the system. 
The information in each layer is unique and the full system is only defined by the 
aggregate of all the layers. The OSI 7-layer model is perhaps the most well known 
example of this form of layering.

Since the lower layer is required to execute the program specified in the upper layer, we 
refer to this form of layering as realization layering. That is, the lower layer realizes the 
upper layer (i.e., in the same sense that computer hardware realizes a software program).

The following are the distinguishing characteristics of realization layering:

• Each layer contains distinct information about the system; this information exists 
only in that layer (in contrast to refinement layering where the same information 
exists in all layers)

• Elements in the upper layer cannot function properly unless its supporting lower 
layers are fully functional1.

• The lower layer is independent of the upper layer, that is, it can exist and function 
(offer its services) independently of the upper layer.

To more easily distinguish realization layering relationships from refinement 
relationships, we will refer to elements of the upper layer as logical model elements and 
to elements of the lower layer as engineering model elements. This was based on the 
view that upper layer elements are generally more abstract (“logical”), whereas the 
lower-layer elements are more technology-specific (i.e., engineering oriented) since they 

1. In fact, it may not even be able to exist independently of the lower layer; e.g., a running soft-
ware program has no existence if the hardware is not operational.

Hardware

Operating System

Word Processing Application 1 Word Processing Application 2 Spreadsheet Application
4-14 UML Profile for Schedulability, Performance, and Time November 2002



4

are responsible for the realization of logical elements. Note that this is a relative 
designation, a layer may be an engineering model for the layers above but is a logical 
model for the layers below. An exception is the bottom layer (usually hardware).

4.1.8.3 Deployment

Realization is synonymous with the notion of “deployment” in UML: the mapping of 
elements of a software model (the upper layer) to elements of an environment model (the 
lower layer). Note that, as shown in Figure 4-13, the environment need not necessarily 
represent hardware, but can also go between software and software. For example, an 
active object may be mapped to (i.e., realized by) an operating system task.

The characteristics of realization layering are fully analogous to the characteristics of the 
relationship between clients and resources instances in the GRM static usage model (see 
Section 4.1.4, “The Static Usage Model Package,” on page 4-8)1. That is, the logical 
layer in a layering relationship is a client of the engineering layer. The engineering layer, 
on the other hand, can be viewed as a resource (e.g., processor) that provides basic 
resource services to the logical layer. This means that deployment can also be 
represented by the GRM domain model. The lower layer defines a set of resources and 
resource services with offered QoS values (e.g., processor throughput, memory capacity, 
communication bandwidth), which can be compared to the required QoS values of the 
elements in the upper layer. The domain model corresponding to this interpretation is 
shown in Figure 4-14 

Figure 4-14 The model of realization (deployment) represented as a static resource usage 

1. In principle, there is no reason why a dynamic usage relationship cannot be used for the lay-
ered interpretation. However, the simpler static model is sufficient for the purposes of this 
specification so we will restrict ourselves to that.

QoSvalue
(from CoreResourceM odel)

Resourc eIns tance
(from CoreResourceM odel)

Client
(from StaticUsageM odel)

+requi redQoS

1.. *

0..*

0..*

0..*

+offerredQoS

0..*

/

+usedResources

1..*

0..*0..*

1.. *

1.. *1.. * 1..*

LogicalM odelElement EngineeringModelElement
1..*0..*

real ization

0..* 1..*
November 2002 UML Profile for Schedulability, Performance, and Time 4-15



4

Note that realization/deployment mappings can be represented at different levels of 
abstraction. For example, the deployment of the spreadsheet application in Figure 4-13 
can be specified either in terms of its deployment to the operating system environment or 
directly to the hardware. In the latter case, we are bypassing, or “abstracting out”, the 
operating system layer. The choice abstraction level depends on the needs of the moment.

4.1.9 Domain Concepts Details 

In this section we provide a precise specification of all the concepts in the GRM.

4.1.9.1 AccessControlPolicy

This is an instance of the policy by which access is controlled to an instance of an 
exclusive service. The responsibility for administering the policy rests with a resource 
broker.

Associations

exclusiveService the exclusive service that is controlled by this instance of the access 
control policy

resourceBroker the resource broker that administers this policy

protectedResource the protected resource instance that is accessed using this policy 
(note that this is a conceptual shortcut for the cases where a 
resource uses only a single control policy for all of its services or it 
has only one exclusive service)

4.1.9.2 AcquireService

An instance of an action execution that is used to gain access to an instance of an 
exclusive service on some protected resource. An exclusive service of a protected 
resource cannot be accessed unless this action is executed successfully. The operation 
may fail, in which case attempts to use the protected resource will also fail. Once the 
resource is no longer needed, it can be released with a “releaseService” action. Until the 
latter action is executed, the resource remains in “possession” of the entity that executed 
the acquire action.

Associations

exclusiveService the instance of a service of some protected resource that is acquired 
by this action

Attributes

isBlocking a Boolean that indicates whether the acquire action is blocking or 
not; if it is blocking, then the scenario executing the action will not 
proceed to the successor steps, until the appropriate resource broker 
gives permission (according to the access control policy), at which 
point the operation has succeeded; if the action is non-blocking, 
then, if the exclusive service is accessible when the action is 
executed, it will be immediately successful, otherwise it will fail 
immediately
4-16 UML Profile for Schedulability, Performance, and Time November 2002



4

4.1.9.3 ActionExecution

This represents a single execution of some action specification. Each execution of the 
same action will result in a different action execution (i.e., each action execution has a 
distinct identity). Action execution is a subclass of scenario and inherits its associations. 
This allows action executions to be decomposed into finer-grained steps, if so required.

Associations

scenario the scenario instance of which this action execution is a part.

successor the action executions, which are part of the same scenario, that 
immediately follow this action execution; if there are no successors, 
then this is the last action in the scenario; if there is more than one 
successor action execution, then it is assumed that they represent 
mutually concurrent actions (concurrent fork).

predecessor the action executions, which are part of the same scenario, that 
immediately precede this action execution; if there are no 
predecessors, then this is the first (top) action in the scenario; 
multiple predecessors imply that this action execution represents a 
point where concurrent execution threads join into a single thread - 
in that case, the action execution will not proceed until all the 
predecessor actions have completed.

requiredQoS an optional set of QoS values that are associated with this action; 
each value represents the minimal QoS that must be provided by the 
resources and/or resource services used by the action execution.

usedResources (inherited from Scenario) the set of resources that the action 
execution accesses during its execution.

usedServices (inherited from Scenario) the set of resource services that the action 
execution accesses during its execution.

executionHost (inherited from Scenario) a resource instance that is executing this 
action execution.

4.1.9.4 ActiveResource

This is a resource that is capable of generating its own stimuli concurrently (i.e., 
asynchronously of other activities) without necessarily being prompted by an explicit 
scenario. This is a subclass of Resource Instance (see Section 4.1.9.25, 
“ResourceInstance,” on page 4-23for association details).

4.1.9.5 AnalysisContext

This is a context that is the root for an analysis of a model (there can be more than one 
context for a given model).

Associations

usageDemand the event occurrences whose required QoS characteristics define 
the external workloads in the analysis context.

resourceUsage the set of resource usage instances that are part of this context; there 
November 2002 UML Profile for Schedulability, Performance, and Time 4-17



4

must be at least one resource usage instance in a context (it may be 
either static or dynamic).

resourceInstance the set of resources involved in this context; there must be at least 
one resource instance in every analysis context (e.g., a processor).

4.1.9.6 Client

This is an explicit run-time instance that uses resources. It is used in static model analysis 
schemes. In dynamic analyses, it is implied by a scenario.

Associations

usedResources (inherited from ResourceUsage) the set of resources that are 
directly used by this client; these resources may have offered QoS 
values specified.

requiredQoS the set of values that characterize the quality of service that this 
client requires of the resources that it uses (where appropriate, these 
values may be used instead of the workload specification).

workload (inherited from ResourceUsage) the set of workloads imposed by 
this client (where appropriate, these may be used instead of the 
required QoS values).

4.1.9.7 CommunicationResource

This is a resource whose primary purpose is to connect two or more other types of 
devices in order to enable them to communicate. This is used to model various kinds of 
networks, channels, etc. This is a subclass of Resource Instance (see Section 4.1.9.25, 
“ResourceInstance,” on page 4-23 for association details).

4.1.9.8 Descriptor [abstract]

An abstract concept representing some kind of design-time specification. This concept 
includes all kinds of descriptors such as classifiers, collaborations, data types, etc. It is 
generally assumed that every instance element in the domain model may have an implicit 
or explicit descriptor.

Associations

instance the set of run-time instances that are incarnated based on this 
descriptor.

4.1.9.9 Device

This is a resource instance that is neither a processor kind of device nor a communication 
device. In real-time systems, it is used for modeling various kinds of specialized devices 
such as sensors, effectors, secondary storage devices, etc. This is a subclass of Resource 
Instance (see Section 4.1.9.25, “ResourceInstance,” on page 4-23 for association details).
4-18 UML Profile for Schedulability, Performance, and Time November 2002



4

4.1.9.10 DynamicUsage

A kind of resource usage instance that involves some kind of dynamic scenario with an 
ordered usage of resources involved in the scenario (see Section 4.1.9.30, “Scenario,” on 
page 4-25). This is typically used for more precise types of analyses.

Associations

workload (inherited from Resource Usage) the event that caused this resource 
usage and which defines the external demand for that usage.

usedResources (inherited from Resource Usage) the set of resources that are 
directly used by this dynamic usage.

usedServices (inherited from ResourceUsage) the set of services that are directly 
used in this dynamic usage.

4.1.9.11 EngineeringModelElement

An instance of a model element that realizes one or more logical model elements in the 
layered interpretation of resource usage (see Section 4.1.8, “The Realization Model 
Package (Deployment Modeling),” on page 4-12). In this role, the model element acts as 
a resource instance with specified offered QoS values.

Associations

logicalModelElement the set of logical model elements that are realized by this 
engineering model element; this association represents the 
“realizes” relationship.

4.1.9.12 EventOccurrence [abstract]

An instance of the occurrence of an event (change of state) of some type. Event 
occurrences are assumed to be instantaneous.

4.1.9.13 ExclusiveService

A resource service instance associated with a protected resource that can only be 
accessed if the appropriate resource broker approves. The resource broker makes these 
decisions on the basis of an access control policy set for each exclusive service. This 
service can only be used after an acquire service action has been executed successfully 
(see Section 4.1.9.2, “AcquireService,” on page 4-16) and up to the time that the release 
service action has been executed (see Section 4.1.9.21, “ReleaseService,” on page 4-22).

Associations

protectedResource the instance of a protected resource that owns this instance of the 
exclusive service (the resource may also serve as the resource 
broker in some cases).

accessControlPolicy the access control policy instance that is used to control access to 
this service instance.
November 2002 UML Profile for Schedulability, Performance, and Time 4-19



4

acquireService the set of acquire service executions that accessed this service 
instance.

releaseService the set of release service action executions that are associated with 
this service instance.

4.1.9.14 Instance

An abstract concept representing some kind of run-time instance that is created based on 
one or more type specifications (descriptors). This concept includes all kinds of 
instances, including objects, data values, etc.

Associations

type the set of design-time descriptors that are used to specify all the 
aspects necessary to run this instance.

stimulus the set of stimuli that are received by this instance; the actual 
handling of the stimulus depends on the kind of instance.

method execution the set of scenario executions that are executed by this instance as a 
result of receiving stimuli; in effect, this is the response of an object 
to the reception of a stimulus.

4.1.9.15 LogicalModelElement

An instance of a model element that is realized by one or more engineering model 
elements in the layered interpretation of resource usage (see Section 4.1.8, “The 
Realization Model Package (Deployment Modeling),” on page 4-12). In this role, the 
model element acts as a client with specified required QoS values. In general, a logical 
model element may be realized by a set of engineering model elements.

Associations

engineeringModelElement   the set of engineering model elements that realize this logical 
model element; this association represents the “realizes” 
relationship.

4.1.9.16 QoScharacteristic [abstract]

This concept represents the descriptor of some kind of resource service characteristic that 
specifies either how well the service needs to be or can be performed. It is an abstract 
concept that is used to describe the overall GRM framework. In case of specific domain 
concepts, however, QoS characteristics are usually modeled by attributes, since this is 
both simpler and easier to understand.

Associations

resourceService the set of different kinds of resource services to which such a 
characteristic may be attached.

instance the set of QoS values used to represent specific instances of this 
characteristic.

resource the set of resources for which this is a QoS characteristic (this is 
4-20 UML Profile for Schedulability, Performance, and Time November 2002



4

used in cases where the modeling of resource services is 
superfluous).

4.1.9.17 QoSvalue [abstract]

The value of a QoS characteristic for a specific resource or resource service instance. The 
value can range from a single number to a complex structured value such as a probability 
distribution.

Associations

type the descriptor that specifies the characteristic to which this value 
corresponds.

resourceServiceInstance the instance of a resource service to which this value applies.

resourceInstance the specific instance of a resource to which this value applies (this 
is used in cases where the modeling of resource services is 
superfluous).

4.1.9.18 PassiveResource

This is a simple resource that is incapable of generating stimuli unless it is prompted by 
a scenario. This is a subclass of Resource Instance (see Section 4.1.9.25, 
“ResourceInstance,” on page 4-23 for association details).

4.1.9.19 Processor

This is a resource instance that is capable of storing and executing a computer program 
and its associated data. It is used for modeling physical CPUs, computers, etc. as well as 
virtual machines (“logical” processors). This is a subclass of Resource Instance (see 
Section 4.1.9.25, “ResourceInstance,” on page 4-23 for association details).

4.1.9.20 ProtectedResource

This is an instance of a resource that provides one or more exclusive services—services 
that can only be accessed according to an access control policy administered by an 
associated resource broker. (The resource broker is a role that may be played by the 
resource itself.) The semantics of those services are described in detail in 
Section 4.1.9.13, “ExclusiveService,” on page 4-19.

Associations

exclusiveService the set of exclusive services offered by this resource; there has to be 
at least one such service for a protected resource (although it may 
be implicit).

accessControlPolicy the access control policy that is used by this resource instance (note 
that this is a conceptual shortcut for the cases where a resource uses 
only a single control policy for all of its services or it has only one 
exclusive service).
November 2002 UML Profile for Schedulability, Performance, and Time 4-21



4

4.1.9.21 ReleaseService

This is an instance of an action that is used to release an instance of an exclusive service 
that was acquired by a previously executed acquire service action (see Section 4.1.9.2, 
“AcquireService,” on page 4-16). This action execution is not bound by access control 
restrictions and can be executed at any time, even if the resource service has not been 
acquired before (in which case it has no effect).

Associations

exclusiveService the instance of an exclusive service that is being released by this 
action execution.

4.1.9.22 Resource

A design-time descriptor that specifies a kind of resource. A resource is an element that 
has resource services whose effectiveness is represented by one or more QoS 
characteristics.

Associations

instance the set of resource instances created on the basis of this descriptor; 
this association is a specialization of the general instance-descriptor 
association (see Section 4.1.9.8, “Descriptor [abstract],” on 
page 4-18).

offeredService the set of specifications (descriptors) that define the services that 
are offered by this resource; there has to be at least one service 
(although it may not be explicitly specified in a model).

qoScharacteristic the set of QoS characteristic descriptors of the quality of service of 
the services offered by instances of this resource; this form is only 
used when explicit specification of resource services is superfluous.

4.1.9.23 ResourceBroker

An instance of a run-time entity responsible for controlling access to the exclusive 
services of a resource. Note that this role may be played by the resource itself. The 
broker processes acquisition requests from clients of the service (see Section 4.1.9.2, 
“AcquireService,” on page 4-16) and, based on the appropriate access control policy for 
that service, it dispenses access to the service. If a service instance is busy, then the reply 
may remain pending until access is possible.

Associations

accessControlPolicy the set of access control policies administered by this resource 
broker; a single broker may administer multiple control policies for 
different resource service instances.

resourceInstance the set of protected resource instances for which this broker acts as 
an access controller.
4-22 UML Profile for Schedulability, Performance, and Time November 2002



4

4.1.9.24 ResourceControlPolicy

An instance of a policy that is used to manage one or more resource instances. This 
policy is used by a resource manager. Note that the role of a resource manager may be 
played by the resource itself.

Associations

resourceManager the set of resource managers which use this instance of the control 
policy; usually there is just one such policy per resource manager 
instance.

4.1.9.25 ResourceInstance

An instance of some resource. A resource is a run-time entity whose services can be 
characterized by QoS values. This is a generic superclass that can be specialized in a 
number of ways (see Section 4.1.6, “The Resource Types Package,” on page 4-10).

Associations

type the set of descriptors that specify the structure and behavior of this 
instance; there may be multiple descriptors for the same type 
representing either multiple viewpoints of multiple inheritance; this 
association is a specialization of the general association between 
Descriptor and Instance (see Section 4.1.9.8, “Descriptor 
[abstract],” on page 4-18).

resourceServiceInstance the set of resource service instances that are provided by this 
resource instance.

qoSvalue the set of values used to define the QoS characteristics of this 
resource instance; this form is used in cases where the specification 
of an explicit resource service instance is superfluous.

stimulus (inherited from Instance) the set of stimuli for which this resource 
instance is a receiver.

methodExecution (inherited from Instance) the set of scenario executions (methods) 
performed by this resource instance in response to stimuli that it 
received.

resourceUsage the set of resource usages in which this resource instance appears.

analysisContext the set of model analysis contexts in which this resource instance 
appears.

4.1.9.26 ResourceManager

The run-time instance responsible for managing one or more resource instances. This is 
primarily a role that can be played even by resource instances. The intent behind this 
concept is to allow modeling of resource managers that typically appear in run-time 
system infrastructures (memory managers, device controllers, etc.). In general, 
management includes the creation, maintenance, and possible destruction of resources 
according to some resource control policy. A resource manager may also play the role of 
a resource broker (see Section 4.1.9.23, “ResourceBroker,” on page 4-22).
November 2002 UML Profile for Schedulability, Performance, and Time 4-23



4

Associations

resourceControlPolicyan instance of a control policy for managing resources.

resourceInstance the set of resource instances managed by this manager instance.

4.1.9.27 ResourceService

A design-time descriptor of a service offered by some resource. This service may have 
QoS characteristics that are used to describe how well instances of the service perform 
their functional responsibilities.

Associations

resource the resource descriptor that owns this resource service descriptor.

instance the set of run-time instances of this resource service; this is a 
specialization of the general association between Instance and 
Descriptor (see Section 4.1.9.8, “Descriptor [abstract],” on 
page 4-18).

qoScharacteristic the set of descriptors of the QoS characteristics associated with this 
service; in most cases, these characteristics are specified as 
attributes of concepts rather than by separate concepts.

4.1.9.28 ResourceServiceInstance

This is a specific instance of a resource service attached to a specific resource instance. 
While it is somewhat unusual to talk about “instances of a service,” it makes sense in 
cases where the service may have QoS characteristic values. Thus, even though two 
service instances may have the same descriptor, the individual instances may have 
different QoS values.

Associations

resourceInstance the resource instance to which this service instance belongs.

type the descriptor used to define this resource instance.

offerredQos the set of QoS values that characterize the service instance; these 
values are based on the QoS characteristics of the corresponding 
resource service descriptor; in most cases, these values are 
associated with the attributes.

resourceUsage the set of resource usage instances that invoke this resource service 
instance.

4.1.9.29 ResourceUsage [abstract]

An abstraction of an instance of a pattern of usage of one or more resources. A resource 
usage instance may be static (Section 4.1.9.33, “StaticUsage,” on page 4-26) or dynamic 
(Section 4.1.9.10, “DynamicUsage,” on page 4-19). The pattern itself is kept separate 
from a specification of the external demand which induces the usage. Although this 
represents a specific instance, in case of periodically occurring usages, a single instance 
is used to represent all repeated incarnations.
4-24 UML Profile for Schedulability, Performance, and Time November 2002



4

Associations

workload the usage demand that causes this resource usage instance (NB: this 
association is an abstraction of part of the causal loop); multiple 
workloads may be used to identify alternatives or to identify 
complex workload specifications (e.g., minimal, maximal, and 
average).

analysisContext the analysis context in which this usage instance appears.

usedResources the set of resources used by this usage instance; there must be at 
least one resource instance for a usage instance.

usedServices the set of resource service instances used by this usage instance.

4.1.9.30 Scenario

An instance of a dynamic usage of a set of resources and resource services that consists 
of an ordered collection of individual steps (action executions). This concept is used for 
modeling complex dynamic situations for more refined types of analyses. The concept is 
defined recursively to allow the modeling of complex hierarchies of scenarios. Thus, the 
components of a scenario may themselves be scenarios and so on. The model of scenario 
instances supports both concurrent and sequential scenarios.

Associations

step the ordered collection of individual action executions that comprise 
a scenario execution; the order may be a partial order that allows 
the modeling of concurrent forks and joins (see Section4.1.9.3, 
“ActionExecution,” on page 4-17).

executionHost the set of run-time instances that acts as the hosts for the scenario 
execution; these run-time instances must be instances of active 
resources (i.e., processors of some kind); a single scenario may be 
hosted on a number of active resources.

start the event occurrence that is the start of the execution of the 
scenario.

end the event occurrence that is the completion of the execution of the 
scenario.

4.1.9.31 ScenarioEndEvent

This event occurrence takes place at the instant when a scenario fully completes 
execution.

Associations

scenario the scenario execution that corresponds to this event occurrence.

4.1.9.32 ScenarioStartEvent

This event occurrence takes place at the instant when a scenario commences execution.
November 2002 UML Profile for Schedulability, Performance, and Time 4-25



4

Associations

scenario the scenario execution that corresponds to this event occurrence.

4.1.9.33 StaticUsage

A kind of resource usage instance that only identifies a set of clients and resources. This 
is typically used for very high-level types of analyses

Associations

workload (inherited from ResourceUsage) the event occurrence that results in 
this resource usage. 

usedResources (inherited from Resource Usage) the set of resources that are 
directly used by this static usage.

4.1.9.34 Stimulus

A concept imported directly form the UML dynamic semantics model. It represents an 
instance of a communication that is in transit between a sender instance and a receiver 
instance (or a set of receiver instances). A stimulus is generated by the occurrence of a 
stimulus generation event, which is, in turn, induced by the execution of an action that 
generates an interaction between run-time instances. This concept is primarily used to 
model various dynamic situations.

Associations

cause the stimulus generation event occurrence that directly results in the 
generation of this stimulus instance.

effect the set of stimulus reception event occurrences that are directly 
caused by this stimulus instance; note that the method by which the 
stimulus reception is induced is not specified (i.e., it can be done in 
a variety of ways).

receiver the run-time instance that is the direct receiver of the stimulus; the 
receiver may represent either an object or some resource (e.g., a 
processor), depending on the level of abstraction being used in the 
model.

4.1.9.35 StimulusGeneration

An occurrence of an event that results in the generation of a stimulus (see above). This 
occurs as a direct consequence of a scenario that includes an action execution step (such 
as a call to an operation or a signal send).

Associations

effect the set of stimuli generated in this event occurrence.

cause the scenario execution instance that resulted in the generation of 
this event occurrence; note that the scenario could be either a single 
action execution or a complex ordered set of action executions -- 
the choice depends on the needs of the model on hand.
4-26 UML Profile for Schedulability, Performance, and Time November 2002



4

4.1.9.36 StimulusReception

An occurrence of an event that represents the acceptance of a stimulus by a receiver 
instance. This is normally the result of some instance executing an implicit or explicit 
receive action. The details of this are outside of the scope of the GRM and may be 
modeled in detail in specific cases where that is important for model analysis.

Associations

cause the stimulus that resulted in this event occurrence.

effect the set of scenarios that are executed as a direct consequence of the 
occurrence of this event; this could be the trigger of a transition in a 
state machine or the invocation of a method; the details of how the 
event occurrence results in scenario executions is outside the scope 
of the GRM; note that a single stimulus reception occurrence may 
result in multiple scenarios being executed (e.g., in a concurrent 
state machine).

4.1.9.37 UnprotectedResource

An instance of a resource which does not offer exclusive services and whose access, 
therefore, is not protected by an access control policy.

4.1.9.38 UsageDemand

A kind of event occurrence that leads to a usage demand. set of values (possibly 
complex) that characterize the external load intensity imposed by a resource usage in a 
given analysis context.

Associations

resourceUsage the resource usage to which this set of values applies.

analysisContext the context to which this demand belongs.

4.2 The UML Viewpoint

The usual method of mapping a domain concept into a UML extension is to define a 
corresponding stereotype. Such a stereotype can then be applied to elements of a UML 
model so that the domain concept can be readily recognized by domain experts or model 
analysis tools. In the case of GRM, however, most of the domain concepts are abstract 
and are intended to be refined further in specialized packages and sub-profiles before 
they are turned into concrete stereotypes. Hence, there are very few stereotypes defined 
for the elements of the GRM domain model.

4.2.1 Modeling Realization Relationships

In this section we propose a method for modeling realization layering with UML. We 
will not consider refinement further in this document, but we will remark that there is a 
lot of homomorphism between the two that probably leads to common solutions. 
November 2002 UML Profile for Schedulability, Performance, and Time 4-27



4

In UML, realization is modeled as a stereotype of the more general Abstraction 
relationship. Specifically, realization is defined as follows:

“[A relationship that relates] a specification model element or elements (the 
supplier) and a model element or elements that implement it (the client).”

Every kind of Abstraction, including realizations, have an associated mapping that 
specifies the relationship between the supplier and the client. The precise nature of the 
mapping is left completely open and is, therefore, a convenient point to specialize in a 
profile. 

4.2.1.1 Realization Mappings

The definition of abstraction allows for both clients and suppliers to be multi-element 
sets. In case of realization, this means that one or more supplier elements may be realized 
by one or more client elements, as illustrated in Figure 4-15.

Figure 4-15 A many-to-many realization mapping

The mapping indicated by a simple realizes relationship in this case is not detailed 
enough for us to understand precisely how the client elements realize the supplier 
elements. For certain kinds of analyses much more detail may be required. 

To specify such detailed mapping information in practical cases where the number of 
elements that need to be mapped may be very large, it is often more convenient to render 
the realization relationship using a tabular form such as:

Logical Elements Engineering Elements Mapping Details

SupplierElement1 ClientElement1
ClientElement2

…

SupplierElement2 ClientElement1
ClientElement3

…

SupplierElement3 ClientElement6
ClientElement9

…

Supplier
Element1

Supplier
Element2

Supplier
ElementM. . .

Client
Element1

Client
ElementN. . .

«realize»
4-28 UML Profile for Schedulability, Performance, and Time November 2002



4

In this table, the “mapping details” column may include further semantic details, such as 
constraints or transformation rules, that apply to individual mappings. We look into 
further details of this in the following subsections.

The mapping details may include a nested mapping table with more refined mapping 
information. This is a way of defining nested realization specifications.

Mapping Semantics

The semantics of the mapping, of course, depend very much on the type of elements that 
are being mapped and the desired effect. Figure 4-16 is an example of some additional 
kinds of realization mappings.

Figure 4-16 Different kinds of realization mappings

The mapping from the two classes in Figure 4-16 to the executable component (artifact) 
is an example of a code mapping, that is, the packaging of program specifications for the 
two classes into a unit of deployable and executable code. The mapping from the 
component to the node is an example of a deployment mapping, such as is usually 
represented in UML deployment diagrams.

Code and deployment realization mappings are specializations of the realizes 
relationship. Others specializations are also possible. For the purposes of the real-time 
profile, we have identified the following kinds:

«code» A mapping from a model element whose corresponding run-time 
behavior is specified by a program of some type (e.g., a classifier, 
state machine, operation, method) to either a UML component 
(usually an artifact) or to a node. This mapping is used to denote 
that the client physically contains the program code for the supplier.

«deploys» A general mapping that indicates that instances of the supplier are 
located on the client. This relationship is often defined implicitly by 
graphically placing the deployed artifact in the context of the 
deploying entity. For example, in the diagram above, instead of an 

«executable»
CompX NodeZ:

«code»

«C++class»
MyClassCPP

OperationQ () : Ta

«C++class»
AuxClassCPP

AttrA2 : T21 1

AttrC1 : T1

«deploys»

«code»
November 2002 UML Profile for Schedulability, Performance, and Time 4-29



4

explicit deployment dependency from the node to the executable 
component, the component could have been placed directly inside 
the node symbol to indicate that it is deployed on that specific node. 

«requires» A specialization of the «deploys» mapping which is used to 
indicate that the client elements represent a generic specification of 
the minimal acceptable deployment environment required by the 
supplier. In effect, it is saying that if the actual deployment 
environment cannot satisfy the minima specified by the client of 
this mapping, it is not possible to guarantee that supplier will 
provide its full functionality or its offered QoS. We describe this 
mapping in more detail later in the document.

Regardless of the type of realization mapping, the following semantics seem to apply to 
all of them (except for the requires mapping):

• If the supplier fails, the client will also likely fail in some way, unless there is a one 
to many realization mapping between a client and a supplier (see below)

• The run-time information/data (state) of the client is collocated with the supplier 
and failures of that supplier may mean loss of information

• The QoS achievable by the client is constrained by the QoS characteristics of the 
supplier. The precise semantics of this constraint depend on the type of QoS and 
type of element.

When a supplier element is mapped to two or more client elements, this can mean one of 
the following (note that if the cardinality of a supplier element is greater than one, then 
this is considered to represent multiple suppliers):

• Inclusive – means that the functionality of the supplier is somehow realized by the 
collection of all of the client elements.

• Exclusive static –means that the client element is realized by exactly one of the 
supplier elements; however, once the choice has been made it will not change 
during the lifetime of the client element.

• Exclusive dynamic – means that the client element is realized by exactly one of the 
supplier elements and that the chosen element may vary over the lifetime of the 
client.

For example, if an active object is to be realized by any thread in a threadpool, it would 
use the exclusive static form.

The Deploys Mapping

The nature of this mapping depends on the combination of source and client types. The 
following combinations are defined:

• synchronous – This type of deployment exists when both the client and supplier are 
software elements and the interaction between them is in the form of procedure 
calls. The direction of the call is usually from the supplier to the client (downcalls) 
but it may also be in the opposite direction (upcalls). The effect of this mapping is 
additive in the sense that the functionalities of the two elements are combined into a 
single complex function.
4-30 UML Profile for Schedulability, Performance, and Time November 2002



4

• asynchronous – This type of deployment exists when both the client and the 
supplier are software elements and the interaction between them is in the form of 
asynchronous interactions (message sends). Other than that, the semantics of this 
deployment form are the same as in the synchronous case. 

• replacement – This type of deployment exists when the client represents hardware 
and the supplier represents software1. In this case, the effect is not additive. Instead, 
the behavior of the supplier becomes the behavior of the client. This is syntactically 
similar to refinement layering, only differentiated by the fact that the software and 
the hardware that runs it are still different entities.

The semantics of the synchronous and asynchronous types of deployment are such that 
the realization relationship can be substituted in a model by a corresponding link (or 
association, if the model elements represent descriptors rather than instances) as shown 
in Figure 4-17. This represents a “collapsed” view of the layered model, which is often 
useful in analyses.

Figure 4-17 Substitution semantics of synchronous and asynchronous forms of deployment

In case of replacement deployment, the supplier element is simply replaced by its client 
elements, whose behavioral definition is augmented with the behavior of the supplier 
element.

The Requires Mapping

In real-time systems, software is often designed with specific technological capabilities 
in mind. For instance, a real-time software component2 may be designed to work in an 
environment that supports a minimal real-time clock resolution or a minimal CPU speed. 
Such a component may not function properly or not function at all in an environment that 
does not support the requisite minima. If we want to do formal validation of such 
software systems, it is clearly necessary to have a means by which the required 
environment of a piece of software can be formally specified. This is simply a formal 
statement of the minimal QoS characteristics that must be met for the software to 
function according to its specifications. 

1. The remaining case of hardware-to-hardware mappings represents refinement layering 
rather than deployment.

2. Note that we are using the term “component” here in the generic sense of the term rather 
than in its UML-specific interpretation. 

SupplierElement

ClientElement1 ClientElement2

«GRMdeploys»

SupplierElement

ClientElement1 ClientElement2
November 2002 UML Profile for Schedulability, Performance, and Time 4-31



4

The specifications of this required environment can be quite complex and may include 
not only basic physical properties such as memory size, CPU power, communication 
throughput, but also more sophisticated characteristics such as levels of availability, 
specific forms of concurrency, and so on. Because these environments can be arbitrarily 
complex, the most general way to define these characteristics is to build a model of a 
complete supporting execution environment whose offered QoS values represent the 
desired minima and then to map the software model to this environment model using 
standard realization mappings1. The underlying required environment model could be as 
simple as a single node but may also represent a complex distributed network of nodes 
and software services.

Consider, for instance, the case of some real-time system in which the external 
temperature is sampled by a dedicated cyclical task at the rate of 50 times a second and 
the current value deposited in a well-known memory location. Concurrently with 
temperature sampling task are two separate tasks one running at 50 times a second and 
the other at 25 times a second. Each of these two tasks needs to consult the current value 
of the external temperature as it executes its run.

Because these tasks access a shared memory location, they need to share a common 
address space and, therefore, must all be allocated to the same operating system process 
(we assume here that a “process” is an operating system entity that defines a virtual 
address space). However, since the three tasks are concurrent, each one has to be mapped 
to a separate lightweight thread within the process that provides the shared address space. 
Let us assume that there is a requirement that the context switching time of these threads 
cannot exceed 10 microseconds. Furthermore, the process that contains these threads 
must not have a context switching time that is greater than 80 microseconds.

The required environment in this case might be described by a model that looks as shown 
in Figure 4-18.

Figure 4-18 Example of a required environment specification

1. Of course, this is not and should not be the only way. In less complex cases, it may be quite 
sufficient to attach the required environment characteristics directly to the model elements 
without forcing modelers to define a complete environment model.

«OSprocess»
HostProcess : P

{ctxtSw = “80 usec”;
heap = “30 kB}

«LWT»
Thread1 : T

{ctxtSw = “10 usec”}

«LWT»
Thread3 : T

{ctxtSw = “10 usec”}

«LWT»
Thread2 : T

{ctxtSw = “10 usec”}
4-32 UML Profile for Schedulability, Performance, and Time November 2002



4

The complete system specification, including the required environment part would then 
be described by the composite model depicted in Figure 4-19.

Figure 4-19 Complete system specification for the example

4.2.1.2 Mapping to UML

The three different kinds of realization mappings are all specializations of the basic UML 
«realize» stereotype (which is itself a specialization of the Abstraction dependency). In 
other words, they map onto appropriate subclasses of the Realization stereotype: 
«GRMcode», «GRMdeploys», and «GRMrequires».

(There is a case to be made that the “requires” mapping is not quite the same as the other 
two and should perhaps be modeled differently. This is because, in contrast to the code 
and deploys variants, the clients of that relationship do not define concrete run-time 
instances but merely represent a convenient means of specifying required QoS 
characteristics. 

One possibility is to not use a relationship at all, but corresponding stereotypes of various 
concepts, such as Node and Classifier that would identify these as required environments 
rather than as actual run-time entities. However, this would require a repeated definition 
of the entire mapping mechanisms described above but in a different form, for each such 
stereotype.)

Further refinements of mapping types is defined by the following tagged values:

• mode – whose values can be any one of the values from the set: {“inclusive”, 
“exclusive static”, “exclusive dynamic”}

• linkage – which indicates the interaction mode between the source and client 
elements and can be any of the values from the enumeration set: {“sync”, “async”, 
“replace”}.

«OSprocess»
HostProcess : P

{ctxtSw = “80 usec”;
heap = “30 kB}

«LWT»
Thread1 : T

{ctxtSw = “10 usec”}

«LWT»
Thread3 : T

{ctxtSw = “10 usec”}

«LWT»
Thread2 : T

{ctxtSw = “10 usec”}

TSensor : TemperatueSensor
{cycle = “20 msec”}

injector: FIControl
{cycle = “20 msec”}

instPanel: Register
{cycle = “40  msec”}

temp : Temperature

«requires»

«requires»

«requires»

«requires»
November 2002 UML Profile for Schedulability, Performance, and Time 4-33



4

In tabular form, this is shown as follows (using the example from Figure 4-19):

4.2.2 UML Extensions

4.2.2.1 Naming Conventions

To minimize the possibility of confusion and conflict with other profiles, we prefix all 
extension names pertaining to this portion of the real-time profile with the “GRM” 
prefix.

4.2.2.2 Profile Package

All the extensions defined in this section are part of the RTresourceModeling package.

4.2.2.3 Stereotypes and Associated Tags

The set of stereotypes and tagged values used for general resource modeling are defined 
in this section and are listed in alphabetical order. The semantic descriptions of the 
concepts that correspond to these stereotypes are provided in the sections Section 4.2, 
“The UML Viewpoint,” on page 4-27.

Logical 
Element

Engineering 
Element

Mode Linkage Additional
Constraints

tsensor Thread1 Inclusive replace --

temp HostProcess Inclusive replace --

instPanel Thread2 Inclusive replace --

injector Thread3 Inclusive replace --
4-34 UML Profile for Schedulability, Performance, and Time November 2002



4

«GRMacquire»

This is a general stereotype that represents the execution of an operation that acquires a 
resource as defined in Section 4.1.9.2, “AcquireService,” on page 4-16.

Tag definitions:

«GRMcode»

This is a specialization of the realizes stereotype that identifies the component instance 
that incorporates the executable code for the logical element.

Stereotype Base Class Tags

«GRMacquire» Stimulus GRMblocking
GRMexclServ

Message

ActionExecution

Action

Operation

Reception

Method

ActionState

Transition

SubactivityState

Tag Type Multiplicity Domain Attribute Name

GRMblocking Boolean [0..1] AcquireService::isBlocking

GRMexclServ Reference to an Action, ActionExecution, 
Operation, Method, ActionState, or 
SubactivityState

[0..1] AcquireService::exclusiveService

If the stereotyped model element is a Stimulus 
or Message then this value can be deduced 
from the model element that plays the 
“receiver” role of the model element

Stereotype Base Class Parent Tags

«GRMcode» Abstraction «GRMrealize» GRMmapping
November 2002 UML Profile for Schedulability, Performance, and Time 4-35



4

The tag definitions are the same as for “«GRMrealize»” on page 4-36.

The following constraint is defined for this stereotype:

• The client (engineering element) of this relationship must be a kind of UML 
Artifact that represents a binary code file

• The supplier (logical element) of this relationship must be a kind of object, link, 
association role, classifier, classifier role, or association.

«GRMdeploys»

This is a specialization of the realizes stereotype that identifies the actual deployment of 
logical elements to engineering elements.

The tag definitions are the same as for “«GRMrealize»” on page 4-36.

The following constants are defined for this stereotype:

• The “replace” linkage value in the mapping expression can only be used if the client 
of the dependency is a kind of Node and the supplier is a kind of Classifier or 
Instance.

• The “sync” and “async” linkage values can only be used if both the client and the 
supplier are kinds of Classifier or Instance.

«GRMrealize»

This is a general stereotype that represents the realization mapping as defined in 
Section 4.2.1.1, “Realization Mappings,” on page 4-28). It is a subclass of the UML 
“realize” concept, which is itself a stereotype of the UML Abstraction concept.

Tag definitions:

The “mapping” tagged value should only be used if the mapping details are not fully 
specified by the realization relationship itself and the details are relevant to the model 
analysis on hand.

Stereotype Base Class Parent Tags

«GRMdeploys» Abstraction «GRMrealize» GRMmapping

Stereotype Base Class Parent Tags

«GRMrealize» Abstraction «realize» GRMmapping

Tag Type Multiplicity Domain Attribute Name

GRMmapping GRMmappingString [0..1] Realization Mapping::mapping table
(see Section 4.2.1.1, “Realization 
Mappings,” on page4-28).
4-36 UML Profile for Schedulability, Performance, and Time November 2002



4

«GRMrelease»

This is a general stereotype that represents the execution of an operation that releases a 
resource as defined in Section 4.1.9.21, “ReleaseService,” on page 4-22.

The tag GRMexclServ has the same interpretation as defined in Section 4.1.9.2, 
“AcquireService,” on page 4-16.

«GRMrequires»

This is a specialization of the realizes stereotype that identifies the required environment 
for a given set of logical elements (see “The Requires Mapping” on page 4-31).

The tag definitions are the same as for “«GRMrealize»” on page 4-36.

4.2.2.4 Tagged Value Types

The following types of tag value strings are defined for use with the stereotypes above. 
We have used TVL to describe these often complex strings. They are all instances of the 
TVL list type. The elements of the list are typically mixtures of strings, numeric literals, 
TVL variable names, and TVL expressions.In representing the syntax of these types, we 
use the following standard BNF notational conventions:

• A string between double quotes (“) represents a literal.

• A token in angular brackets (<element>) is a non-terminal. 

Stereotype Base Class Tags

«GRMacquire» Stimulus GRMexclServ

Message

ActionExecution

Action

Operation

Method

Method

ActionState

Transition

SubactivityState

Stereotype Base Class Parent Tags

«GRMrequires» Abstraction «GRMrealize» GRMmapping
November 2002 UML Profile for Schedulability, Performance, and Time 4-37



4

• A token enclosed in square brackets ([<element>]) implies an optional element of 
an expression.

• A token followed by an asterisk (<element>*) implies an open-ended number of 
repetitions of that element.

• A vertical bar indicates a choice of substitutions.

Note that TVL uses parentheses to identify arrays, commas to separate elements of 
arrays, and single quotes for string literals.

GRMmappingString

This string provides a string representation of the mapping table in a realization 
relationship. The general format for this string is given by the TVL array:

“(“<TableEntry> [“,” <TableEntry>]* ”)”

The format for a single table entry is:

<TableEntry> ::= “(“ <LogicalElementName>* “,” 
<EngineeringElementName>* “,” <MapType> “,” 
<MapLinkage> “,” <Constraints> “)”

where: 

<LogicalElementName> and <EngineeringElementName> are string representing 
the full path name of the appropriate model element

<MapType> ::= ‘inclusive’ | ‘exclusive static’ | ‘exclusive dynamic’ 

<MapLinkage> ::= ‘sync’ | ‘async’ | ‘replace’

<Constraints> is either an empty string or a string representing an expression in some 
constraint language such as OCL1.

4.2.3 Modeling Guidelines and Examples

For examples of the specialization of the abstract concepts of the GRM, refer to the other 
profile packages in this specification. Examples of the use of the stereotypes can be 
found in Section 4.2.1.1, “Realization Mappings,” on page 4-28.

4.2.4 Required UML Metamodel Changes

The concept of an action execution (see Section 4.1.9.3, “ActionExecution,” on 
page 4-17) figures prominently in the GRM and the various kinds of analyses that it 
supports. This represents the run-time execution of some action. Unfortunately, the 

1. This specification does not define the semantics or syntax of such constraint expressions; 
this may be useful to define in future versions of the profile.
4-38 UML Profile for Schedulability, Performance, and Time November 2002



4

current UML 1.4 metamodel does not provide such a concept1. The UML notation 
definition document finesses over this by mapping an activation to the action whose 
execution is represented. Unfortunately, this is not adequate for the needs of real-time 
analyses, which are generally instance based. It is necessary to differentiate between the 
descriptor of an action, which may include its required QoS values, from an instance of 
the execution of that action. The latter may be characterized by some of the same QoS 
characteristics. What is crucial is that different executions of the same action 
specification could have very different individual QoS measures.

Therefore, what is required is an extension to the UML metamodel Common Behavior 
package. The new concept, called ActionExecution, is integrated into the current 
metamodel as indicated in Figure 4-20. 

Figure 4-20 Proposed changes to the UML metamodel (ActionExecution) 

The main part of the proposed metamodel change consists of the following:

• The addition of a new metamodel element called ActionExecution (defined below).

• The replacement of the association between Action and Stimulus by a semantically 
similar association between Stimulus and ActionExecution. This change is not 
strictly necessary, but it more directly relates two closely-coupled run-time concepts 
(Stimulus and ActionExecution). The link back from Stimulus to Action can be 
effected through the link between ActionExecution and Action.

• The addition of a new association between Action and ActionExecution. This takes 
place of the original association between Stimulus and Action.

• The addition of a new association between ActionExecution and Instance. This is 
also not strictly necessary, but allows the direct association between an entity and 
the actions that it executes. (This will also simplify the notation mapping for focus 
of control).

1. Strangely enough, it does have a notational equivalent, which is called an “activation,” and 
which is represented by so-called “focus of control” blocks in collaboration diagrams. 

ModelE lement

Stimulus

Instance

Action

ActionExecution

10..*

0..*

1

0..*

11

0..*

1

+dispatchExecution

0..*

0..*

+host

1

November 2002 UML Profile for Schedulability, Performance, and Time 4-39



4

This has to be supported by the following additional changes to the UML Semantics 
document:

• The well-formedness rules for Stimulus should be amended as follows:

[1] 
self.dispatchExecution.action.actualArgument->size = self.argument->size

[2]
self.dispatchExecution.oclIsKindOf (SendAction) or
self.dispatchExecution.oclIsKindOf (CallAction) or
self.dispatchExecution.oclIsKindOf (CreateAction) or
self.dispatchExecution.oclIsKindOf (DestroyAction) 

• The Action specification should include a description of the association with 
ActionExecution as follows:

actionExecution the set of run-time executions of this action

• The specification of Stimulus should add descriptions for the association to 
ActionExecution instead of action (dispatchAction) as follows:

actionExecution the set of run-time action executions performed by this instance

• The definition of ActionExecution needs to be provided in the CommonBehavior 
section as follows:

ActionExecution

An action execution reifies the execution of an action. There can be many executions of 
the same action specification. An action execution is performed by an instance whose 
behavioral features realization includes the corresponding action. It may result in one or 
more stimuli to other instances (or to itself).

Associations

action the action that is a specification of this execution

stimulus the set of stimuli created as a result of this execution

host the object which is executing this action

4.2.5 Proposed Notational Extensions

The notational extension required to support the GRM is the tabular form used to denote 
the mapping table of the various kinds of realization relationships. See Section 4.2.1.1, 
“Realization Mappings,” on page 4-28 for an example of such a table.
4-40 UML Profile for Schedulability, Performance, and Time November 2002



General Time Modeling 5
In this section, we describe a general framework for representing time and time-related 
mechanisms that are appropriate for modeling real-time software systems. These serve as 
a base for the standard modeling elements defined in subsequent sections. 

Since real-time systems are specifically concerned with the cardinality of time (e.g., 
delay, duration, clock time), we shall only consider metric time. Thus, we do not cover in 
this specification so-called “logical” time models, 

5.1 Domain Viewpoint

The time domain model identifies the set of time-related concepts and semantics that are 
supported, directly or indirectly, by this profile. Hence, any concepts or semantics not 
covered in this domain model are considered to be outside of the scope of this profile and 
must be modeled by some other means. The model is quite general, but a given 
application need only use the subset of the concepts and semantics that it needs. 

The time domain model is partitioned into the following separate but related groups of 
concepts:

• Concepts for modeling time and time values.

• Concepts for modeling events in time and time-related stimuli.

• Concepts for modeling timing mechanisms (clocks, timers).

• Concepts for modeling timing services, such as those found in real-time operating 
systems.
November 2002 UML Profile for Schedulability, Performance, and Time 5-1



5

The concepts are grouped into a set packages as shown below.

Figure 5-1 The modules of the time domain model

Note the mutual dependency between the time modeling package and the time 
mechanisms package. This is because it is impossible to be specific about time without 
referring to clocks.

All of these packages are based on the general resource model. In the following section, 
we provide a high-level description of the concepts in these packages. Detailed 
specifications of each of the concepts and their semantics are provided in the following 
sections.

5.1.1 The Time Model

The conceptual model for representing time and time values that is supported by this 
specification is shown by the UML diagram below. 

Figure 5-2 Basic time modeling concepts 

 

TimeModel

TimedEvents

TimingMechanisms

TimingServices

{ordered}

Physical
Time

Duration

PhysicalInstant

**

1

*

+start 1

*

1

*

+end1

*

TimeInterval

0..*0..*

+measurement

0..*0..*

Clock
(from  T im ingM echanisms)

TimeValue

kind : {discrete, dense}0..*

* +measurement

0..*

*

1

*

+s tart1

*

1

*

+end1

*

1

0.. *

+referenceClock1

0.. *
5-2 UML Profile for Schedulability, Performance, and Time November 2002



5

In an abstract sense, physical time can be thought of as a relationship that imposes a 
partial order on events. We consider physical time as a continuous and unbounded 
progression of physical time instants, as perceived by some observer, such that

it is a fully ordered set, which means that, for any two distinct elements of the set, p and 
q, either p precedes q, or q precedes p.

it is a dense set, which is to say that there is always at least one instant between any pair 
of instants.

The latter property implies that our model of physical time is continuous. However, we 
note that since computers only work with finite precision numbers, it is not always 
possible to represent physical time accurately. For this reason, we distinguish between 
dense time, corresponding to the continuous model of physical time, and discrete time, 
which represents time that is broken up into quanta. Dense time can be represented by 
the set of real numbers whereas discrete time corresponds to the set of integers.

We assume that physical time progresses monotonically (with respect to any particular 
observer) and only in the forward direction. Note that these restrictions apply to our 
model of physical time, but do not necessarily apply to other models of time that may be 
useful in modeling. For example, we may have simulated time in which time does not 
necessarily progress monotonically or “virtual time” that may even regress under certain 
circumstances.

Since physical time is incorporeal, we typically measure its progress by counting the 
number of expired cycles of some strictly periodic reference clock1 starting from some 
origin. This way of measuring time necessarily results in a discretization effect in which 
distinct but temporally close physical instants are associated with the same count. 
However, this granularity is merely a consequence of the measurement method and not 
an inherent property of physical time (at least not in our conceptual model). In other 
words, we can obtain whatever time resolution we need simply by choosing a sufficiently 
short cycle time (resolution) for our reference clock. 

The count associated with a particular instant is called its measurement. In our domain 
model, a time measurement is represented by a special value called time value. Time 
values can be represented by simple integers (discrete time values) or by real numbers 
(dense time values), as well as by more sophisticated structured data types such as dates. 

Duration is the expired time between two instants. Since this too is represented by a time 
value, it is useful to be able to distinguish it from a time value that represents a specific 
instant. Hence, we introduce the semantic notion of a time interval.

1. For simplicity, we assume that the reference process is co-located with the observer (negligi-
ble observation delay).
November 2002 UML Profile for Schedulability, Performance, and Time 5-3



5

5.1.2 Timing Mechanisms

In modeling the support infrastructure of real-time systems it is often necessary to 
explicitly identify those aspects of a model that represent timing mechanisms, that is 
mechanisms that measure time. There are two basic types of timing mechanisms in our 
domain model: timers and clocks. 

Timers are mechanisms that may generate a timeout event when a specified time instant 
occurs. This may either be the instant when some clock reaches a pre-defined value or 
when a pre-specified time interval has expired relative to a given instant (usually the 
instant when the timer is started). Clocks are mechanisms that periodically cause a clock 
tick event to occur. A clock tick may in turn cause a stimulus called a clock interrupt.

These timing mechanisms are kinds of resources as defined in the generic resource 
model. The model fragment shown in Figure 5-3 depicts the timing mechanisms and 
related concepts. 

Figure 5-3 Timing mechanisms concepts 

In general, a timing mechanism is any mechanism that measures the progress of time and 
that generates events as a result. In our domain model, we view all such mechanisms as 
resources, which means that they offer services that may have offered QoS values 
specified. 

ResourceInstance
(from CoreResourceM odel)

ClockInterrupt
(from T imedEvents)

Tim eInterval
(from T imeModel)

Clock

1

0..*

+offset1

0..*

1

0..*

+accuracy 1

0..*

0..*

1

+generatedInterrupts 0..*

1

TimeValue
(from T imeModel)

Timeout
(from T imedEvents)

Timer

isPeriodic : Boolean

1

0..*

1

+generatedTimeouts 0..*

TimingMechanism
stability
drift
skew

set(time :  TimeValue)
get() : TimeValue
reset()
start()
pause()

1

0..*

+resolut ion1

0..*

0..*

1

0..*

+referenceClock1

1

0.. *+currentValue

1

0.. *

1

0..*+maximalValue

1

0..*

TimeValue
(from T imeModel)

10..*

+durat ion

10..*

TimedEvent
(f ro m T i medEvent s)

11

+origin

11

1..*

0..*

+timestamp 1..*

0..*
5-4 UML Profile for Schedulability, Performance, and Time November 2002



5

Regardless of the type of mechanism, certain properties characterize all timing devices1:

• a current value that identifies how far in time it has progressed. 

• a reference clock to which it is somehow related. 

• an origin, which is some clearly identified timed event from which it proceeds to 
measure time.

• a maximal time value which the current value cannot exceed (an offered QoS 
characteristic).

• a resolution, which is the minimal time interval that can be recognized by the 
mechanism (an offered QoS characteristic).

• a stability characteristic, which is the ability of the mechanism to measure the 
progress of time at a consistent rate (an offered QoS characteristic).

• a skew characteristic that identifies how well the mechanism tracks the reference 
clock (an offered QoS characteristic).

• a drift characteristic which is the rate of change of the skew (an offered QoS 
characteristic).

In addition, in our model we assume that timing mechanisms may provide the following 
standard services:

• a set time service for setting the appropriate time value of the mechanism (the 
interpretation of this is mechanisms specific).

• a get time service, for accessing the current value of the mechanism (the 
interpretation of this value is specific to each mechanism).

• a reset service for setting the mechanism to its initial state (which is also specific to 
each mechanism).

• a pause service, which is used to suspend the measurement of time; which means 
that the current value of the mechanism stop progressing. 

• a start service, which is used to resume a paused mechanism.

If a clock has not been paused, then its current time value represents the total amount of 
time that the clock has been running (i.e., generating clock ticks) since the event of its 
origin, or its most recent reset, or since it last reached its maximal value (for clocks that 
automatically roll over when that value is reached). If it had been paused and resumed 
one or more times, then its current value will be reduced by the cumulative duration of 
the intervals during which it was paused. 

The reference clock of a timing mechanism is typically some kind of near-to-ideal clock, 
such as a clock maintained by an international standards organization. It is generally 
considered desirable to keep a clock as closely synchronized with its reference clock as 

1.A more precise definition of each of these characteristics can be found in [32]
November 2002 UML Profile for Schedulability, Performance, and Time 5-5



5

possible. The offset characteristic of a clock at some instant is the absolute time 
difference between the time of its clock tick and the corresponding tick of its reference 
clock. The accuracy of a clock represents the maximum offset of a clock over time. Drift 
represents the maximum absolute difference in the relative frequencies of the clock and 
its reference clock between two successive ticks. 

A timer is a mechanism that generates timeout events. The current value of a timer 
represents the duration of time that must expire before the timeout event occurs. A timer 
is always associated with a particular clock and, therefore, assumes the offered QoS 
characteristics of that clock. 

Timers will generate a single timeout event when their duration expires, unless they are 
periodic. Periodic timers are timers that act like clocks (except that they generate timeout 
events instead of clock ticks), whose resolution is equal to the value of the timer. 

5.1.3 Timed Events Model

In our domain model, as in UML, an event is assumed to occur instantaneously. That is, 
it takes place at a particular time instant and has no duration. An event occurrence can be 
associated with a time value relative to some clock to identify the time when it occurred. 
Of course, different observers in different inertial frames of reference or observers using 
different clocks may associate different time values with a given event. In our 
foundational model, we do not assume or preclude an absolute time reference. The 
choice depends on the modeling needs of the application.  

Figure 5-4 Timed stimulus concepts 

These two associati ons are derived 
from the general  association between 
StimulusGeneration and Stimulus

Stimulus
(from Causali tyModel)

Timeout

ClockInterrupt

StimulusGeneration
(f rom Causali tyModel)

1 1..*

+cause

1

+effect

1..*

1

1..*

+cause1

1..*

/

1

0..*

+cause 1

0..*

/

TimeValue
(from T imeModel)

0..*

0..*

+time 0..*

0..*

TimedStimulus
1..*0..*

+start

1..*0..*

0.. *0..*

+end

0.. *0..*
5-6 UML Profile for Schedulability, Performance, and Time November 2002



5

As specified by the general resource model, when an event occurs, it may cause a number 
of stimuli to be generated. To allow modeling of stimuli that have an associated 
timestamp, we introduce the notion of a timed stimulus into the model (the same event 
may have multiple timestamps corresponding to different clocks). This is a stimulus that 
has at least one associated time value (timestamp).

There are many different kinds of event occurrences (e.g., the sending and receiving of 
signals, the invocation of an operation) and their corresponding stimuli. However, for the 
purposes of time modeling, we identify two specializations of time-related stimuli that 
are of particular interest:

• A clock interrupt represents an asynchronous signal sent by a clock mechanism, and

• a timeout is the generation of an asynchronous timeout signal by some timer.

A common requirement is to be able to discuss the time of occurrence of an event. For 
this purpose, we provide the concept of a timed event as shown in Figure 5-5. A timed 
event is simply an event with an associated timestamp.

It is also very useful to have a common abstraction for an action that takes time to 
complete: a timed action. This provides a generic facility for modeling behavior that has 
a definitive start time and a definitive end time. A special kind of timed action is a 
deliberate delay action, which delays execution for some time interval. 

Figure 5-5 Timed action and timed event concepts 

EventOccurence
(f rom Causal ityMod el)

TimeValue
(from TimeMod el )

TimedEvent

1..*+timestamp 1..*

Delay

Scenario
(from Causal ityModel)

Tim eInterval
(from T imeModel)

TimeValue
(from T imeModel)

TimedAction

1

0..*

+duration 1

0..*

1..*+end 1..*1..*+start 1..*
November 2002 UML Profile for Schedulability, Performance, and Time 5-7



5

5.1.4 Modeling Timing Services

The last part of the domain model deals with concepts required to model timing services, 
such as those found in real-time operating systems. The domain model here is relatively 
straightforward and simple to allow maximum flexibility in dealing with the 
idiosyncrasies of individual realizations of timing services. 

Figure 5-6 Timing service concepts 

The timing service could simply be part of an operating system interface. It offers time 
reading and setting services directly, which is a common feature of many operating 
systems. Hence it too is a type of timing mechanism.

A timing service acts as a clock and timers factory – a resource manager, in effect. This 
means that it will create and provide either of these mechanisms on demand. Once such 
a mechanism is created on request from a client, the mechanism may be passed on to the 
client or may remain the ownership of the timing service itself. 

5.1.5 Domain Concept Details and Usage

In this section we provide a more detailed explanation of each of the concepts in the 
general time model. Note that these are not specifications of the actual UML stereotypes, 
but are used as a basis for deriving such stereotypes. For each domain concept we 
provide a description of the semantics of each feature and association. We distinguish 
between concrete and abstract concepts. Concrete concepts are the ones used directly by 
the modeler, whereas abstract concepts are used to define common features of two or 
more related concepts. Abstract concepts are clearly identified as such below.

ResourceManager
(f ro m ResourceM an agem ent )

TimingMechanism
(from Tim ingM ec hanisms)

Tim er
(f ro m Ti mingM ec hanisms)

Clock
(f rom Ti m in gM echa nisms)

TimeService

newTimer(duration : TimeValue) : Timer
newClock() : Clock

0..*

0..1

0..*

0..1

1.. *

0..1

1.. *

0..1
5-8 UML Profile for Schedulability, Performance, and Time November 2002



5

5.1.5.1 PhysicalTime [abstract]

This is the notion of physical time. A crisp definition of physical time has forever eluded 
scientists and philosophers alike, so we are not going to be presumptuous and attempt to 
do so here. Our fundamental model of physical time is that it is a continuous and 
unbounded progression of instants. Formally, time is viewed merely as a means of 
imposing a partial order on events by associating events with time instants. 

We make no assumptions about whether time is global, which permits the modeling of 
relative time1.

It is an abstract concept since we do not anticipate that real-time system modelers will 
need to represent physical time itself in their models. Instead, it is assumed that they will 
represent it indirectly through time values, time-measuring mechanisms, etc.

Associations

physicalInstant the ordered set of physical instants that constitute physical time

5.1.5.2 PhysicalInstant [abstract]

This is the concept of a physical time instant – a point in time. Like geometrical points, 
instants do not have any extent (duration). Given any two different physical time instants, 
one will always precede the other.  

As with physical time, we do not anticipate that system modelers will need to represent 
physical time instants directly, but only through associated concepts such as time 
measurements or events.

Associations

duration (2) the time instant may be the start or end of any number of time 
intervals.

measurement the set of time values that correspond to (i.e., measure) this instant; 
since a given time instant may be measured by any of a number of 
observers using clocks in the same or different inertial frames of 
reference, there can be more than one measurement corresponding 
to a given instant .

physicalTime an instant is just a precisely positioned point in physical time.

1. However, since we do not provide any framework for identifying frames of temporal refer-
ence the capability to model relative time will require additions to the domain model. We 
consider that to be outside the scope of this profile.
November 2002 UML Profile for Schedulability, Performance, and Time 5-9



5

5.1.5.3 Duration [abstract]

This represents the interval between two physical time instants. As with physical time, 
we do not anticipate that system modelers will need to represent physical durations 
directly, but only through associated concepts that can measure it. Hence, we do not 
provide direct support for modeling physical durations, but only for modeling durations 
as measured by timing mechanisms.

Associations

start the instant at which the interval starts.

end the instant at which the interval ends.

measurement the set of time values that measure this interval; since the 
measurement may be done by any number of observers using 
clocks in the same or different inertial frames of reference, there 
can be more than one measurement corresponding to a given 
duration. 

5.1.5.4 TimeValue

A value that corresponds to a particular physical instant in time as measured by some 
reference clock in some inertial frame of reference. 

Attributes

kind identifies whether the value represents a dense (continuous) time or 
discrete time type.

Associations

clockTick the clock tick event occurrence of the reference clock which 
corresponds to this time value; this information is generally not 
expected to be used in modeling but we include it here for 
completeness of the domain model.

physicalInstant the physical instants measured by this time value; note that the 
same value may represent multiple instance either due to clock roll-
over effects or due to measurements taken in multiple inertial 
frames of reference.

timeInterval (2) the time interval in which this time value is either the start or end 
instant.

referenceClock the clock associated with this time value; note that a reference clock 
always exists, but it may be implicit.

5.1.5.5 TimeInterval

A kind of time value corresponding to a duration. There are two kinds of durations: 
absolute and relative. The former start and end at specific points in time whereas the 
latter are not rooted to any particular time.

Associations

duration the set of physical time durations corresponding to this time 
5-10 UML Profile for Schedulability, Performance, and Time November 2002



5

interval.

end the time value that represents the end instant of the measured 
duration.

start the time value that represents the initial instant of the measured 
duration.

5.1.5.6 TimingMechanism [abstract]

An abstract concept that captures the common features of resources that specialize in 
performing time measurement and timing-related functions. The operations of the timing 
mechanisms represent its offered resource services and its attributes represent the 
corresponding QoS characteristics. Also included in the model are certain common 
operations that might be useful in certain types of more detailed analyses. For example, 
in analyzing a complex scenario, it may be important to determine that a participating 
timing mechanism has been reset or stopped.

Of course, since not all clocks will have available all of the QoS characteristics listed 
here, only those that are relevant to the case on hand need be used in modeling.

Attributes

stability the ability of a timing mechanism to report consistent intervals in 
time; this is usually measured by a small number of derivatives of 
the clock tick rate.

drift the maximum absolute difference between the frequency of the 
timing mechanism relative to the frequency of its reference clock.

skew the rate of change of the offset between the timing mechanism and 
its reference clock.

Operations

set (time:TimeValue) an operation that sets the current value of the timing mechanism to 
the argument.

get() an operation that reads the value of the timing mechanism.

reset() an operation that stops the timing mechanism and sets it back into 
its initial state.

start() an operation that start the timing mechanism; if the mechanism had 
been stopped before, this operation resumes its function, otherwise 
it has no effect.

pause() an operation that suspends the timing mechanism; if it is running, it 
stops all time measurement until the start operation is invoked; 
otherwise, it has no effect.

Associations

origin the event occurrence relative to which the timing mechanism 
measures time; the current time value of the timing mechanism 
represents the duration between the time of this event and the 
present (modulo any pauses, resets, and maximum value rollovers).

currentValue the current value of the timing mechanism.
November 2002 UML Profile for Schedulability, Performance, and Time 5-11



5

generatedEvents an ordered set of timed events generated by this mechanism (this is 
only included for completeness of the domain model and is not 
expected to be modeled explicitly in user models).

maximalValue the maximum value that the current value of the timing mechanism 
can take. 

referenceClock the reference clock whose QoS characteristics serve as a reference 
for specifying the QoS characteristics of this timing mechanism.

resolution an offered QoS attribute that identifies the minimal duration that 
can be distinguished by the timing mechanism.

5.1.5.7 Clock

This is a kind of timing mechanism that generates a clock interrupt periodically. This 
concept inherits most of its features from TimingMechanism.

Associations

generatedInterrupts the ordered set of clock interrupt stimuli generated by this clock 
(this is only included for completeness of the domain model and is 
not expected to be modeled explicitly in user models).

offset the intended time shift between the current value of the clock and 
its reference clock (e.g., time zone adjustment).

resolution an offered QoS attribute that identifies the minimal duration 
between two successive ticks of the clock.

accuracy the difference in the current value between the clock and its 
reference clock.

timingMechanism the set of timing mechanisms for which this clock acts as a 
reference clock.

5.1.5.8 Timer

This is a kind of timing mechanism that generates one or more timeout signals. The 
timeout is generated at the instant when the duration of the timer has expired relative to 
the time the timer was started or to the instant when the preceding timeout was generated 
(for periodic timers) plus any time spent while the timer was paused. It inherits most of 
its features from TimingMechanism.

Attributes

isPeriodic a QoS characteristic that identifies if the timer is periodic (when 
true) or not (when false); periodic timers keep generating timeout 
events until they are paused or destroyed.

Associations

duration the time interval measured by the timer.

generatedTimeouts the set of timeout events generated by this timer (this is only 
included for completeness of the domain model and is not expected 
to be modeled explicitly in user models).
5-12 UML Profile for Schedulability, Performance, and Time November 2002



5

5.1.5.9 TimedAction

This is a generic concept for modeling activities that either have known start and end 
times or that have a known duration. Note that a timed action can also be expressed in 
terms of its start and end events.

Associations

duration the time interval during which the action is occurring.

start the time of the event occurrence when the action started.

end the time of the event occurrence when the action was completed.

5.1.5.10 TimedEvent

This is a generic concept of an event that has an associated timestamp. It can be used for 
all kinds of events, such as action start and end events, stimulus generation events, etc.

Associations

timestamp the set of time values that represent the instant when the event 
occurred; a single event may have multiple timestamps based on 
different reference clocks.

5.1.5.11 TimedStimulus

This represents any stimulus that has an associated timestamp (a time value). The 
timestamp represents the instant of occurrence of the event that generated the stimulus. 
Although there are two special kinds of concrete timed stimuli related to timing 
mechanisms (clock interrupts and timeouts), this concept is more generally applicable 
and can be applied to any kind of stimulus that has a known time of occurrence, not just 
those that are generated by timing mechanisms.

Associations

start the set of time values that represents the instant when the 
occurrence that generated the time event happened; a single event 
may have multiple such timestamps based on different reference 
clocks.

end the set of time values that represents the instant when the reception 

of the stimulus occurred1; a single event may have multiple such 
timestamps based on different reference clocks.

5.1.5.12 ClockInterrupt

A kind of timed stimulus generated by the regular operation of a running clock. 

Associations

1. Reception is defined as the instant of arrival of a stimulus at the receiver, but does not neces-
sarily coincide with the start of processing of the event.
November 2002 UML Profile for Schedulability, Performance, and Time 5-13



5

clock the clock that generates this stimulus.

cause the event occurrence that resulted in this clock interrupt (i.e., the 
“tick” of a clock).

5.1.5.13 Timeout

A kind of timed stimulus generated by a running timer.

Associations

timer the timer that generates this stimulus.

cause the event occurrence that resulted in this timeout (i.e., the expire of 
the timer’s duration).

5.1.5.14 Delay

A kind of timed action execution that represents a null operation for a pre-specified time 
interval. This action has no side-effects except to delay the action execution that follows 
it. 

5.1.5.15 TimeService

This is a model of a time service (or time server). The assumption is that clients can 
either approach the service itself to get basic timing service capabilities or they can ask 
the service to provide them with a mechanism that will perform the desired service. The 
service is viewed as a manufacturer of timing mechanisms but not necessarily their 
owner, since in some systems, the ownership of timing mechanisms may be passed to the 
clients.

Associations

timer the set of timers created by this service.

clock the set of clocks created by this service.

5.2 UML Viewpoint

In this section we describe how the domain concepts can be represented in UML. 
Because of the flexibility built into the generic resource model, there are typically 
multiple different ways of representing a given domain concept in UML. First we discuss 
the mappings for individual domain concepts, and then introduce the actual UML 
extensions defined for this purpose.

5.2.1 Mapping Timing Domain Concepts into UML Equivalents

Based on the general resource model, all the domain concepts represent instances of 
some kind. However, in most cases it is possible to apply the domain concepts to the 
descriptors (classifiers, types, etc.) that define these instances. This is merely a 
5-14 UML Profile for Schedulability, Performance, and Time November 2002



5

convention used to define default QoS attribute values that are inherited by all instances 
based on such descriptors. However, these default values are automatically overridden by 
the values specified directly on the instances themselves.

5.2.1.1 PhysicalTime, PhysicalInstant, and Duration

As noted earlier, it is assumed in this profile that there is no need to support the modeling 
of physical time directly. What is supported is the modeling of time-measuring devices 
and their measurements. 

5.2.1.2 TimeValue

There are two ways to specify time values using this profile. The first is to use the 
«RTtime» stereotype to identify model elements that represent time values. The second is 
to use instances of the TVL data type RTtimeValue (or its subclasses), which is defined 
in this profile. This second approach is used exclusively in situations where it is required 
to specify the value part of a tagged value that represents time. For instance, the 
following tagged value specifies the resolution of a timing mechanism to be 1 
microsecond:

{RTresolution = (1, ‘usec’)}

The «RTtime» stereotype approach can be used on model elements that represent data 
values with time semantics. For example, the initial value of an attribute of a calendar 
might be specified as follows:

Figure 5-7 Example of the use of the «RTtime» stereotype for labelling data values

This could be quite cumbersome, since the stereotype labels will typically take up a lot of 
space in a diagram, possibly obscuring the actual literal value1. It is usually much more 
convenient to stereotype the appropriate data type instead. The semantics of stereotyping 
a classifier with the «RTtime» stereotype is that all instances of that classifier will 
automatically assume time semantics: 

Figure 5-8 Example of the use of the «RTtime» stereotype for labelling classifiers

1. Of course, a tool could hide this information.

Calendar

startDate : Date = <<RTtime>> "01/01/2000"

Date

value : DateString

 

 
Calendar

startDate : Date = "01/01/2000"
Date

value : DateString

<<RTtime>>
November 2002 UML Profile for Schedulability, Performance, and Time 5-15



5

The reference clock of a time value is optional. However, if required, it can be specified 
as described in the section that describes the modeling of clocks below.

The kind of time (discrete or dense) can be specified with an optional tag RTkind, which 
is an enumeration consisting of two elements: ‘dense’ and ‘discrete’. The default value, 
which is assumed if the tagged value is not specified is ‘discrete’.

5.2.1.3 TimeInterval

Since time intervals are subclasses of time values, modeling of time intervals is quite 
similar to the modeling of time values. The «RTinterval» stereotype is used to identify 
instance-based concepts that represent time intervals (data values, instances, objects). 
This stereotype can also be applied to the descriptors of those instance concepts (data 
types and classifiers) as a means of specifying default values. 

A time interval can be represented either as an absolute interval, in which case it has both 
a start and end time specified (tags RTintStart and RTintEnd respectively, or as a duration 
(RTintDuration tag), in which case it is a relative time interval. The values of these tags 
are instances of the TVL RTtimeValue data type.

5.2.1.4 TimingMechanism

The «RTtimingMechanism» stereotype is defined as an abstract stereotype that captures 
the common characteristics of timers and clocks. It is not intended to be used by 
modelers, who are expected to use either «RTtimer» or «RTclock» for their modeling.

The common QoS characteristics of timing mechanisms – stability, drift, skew, maximal 
value, origin, resolution, offset, accuracy) as well as its current value1 – are modelled by 
the appropriate tagged values associated with the stereotype (RTstability, RTdrift, 
RTskew, RTmaxValue, RTorigin, RTresolution, RToffset, RTaccuracy, RTcurrentVal 
respectively). QoS attributes that are not required for a given case can be left out.

Invocations of timing mechanism operations are modelled by appropriate stereotypes of 
action executions or any model element that implies an action execution. These are 
«RTset», «RTreset», «RTstart», and «RTpause»2. Note that the «RTset» stereotype 
includes a tag, RTtimePar, an instance of the TVL RTtimeValue type, which identifies the 
value to which the timing mechanism will be set. Once these operations have been 
identified, a model analysis tool has the capability to detect their usage in a model. 

The reference clock of a timing mechanism is specified as follows:

Identifying Specific Clocks

Specific clock instances can be identified in a number of ways:

1. Note that the current value only makes sense for instance-based concepts. Hence, it should 
not be defined for a descriptor type element.

2.  Note that we do not define the get operation, since it does not seem useful for analyses.
5-16 UML Profile for Schedulability, Performance, and Time November 2002



5

• If the model element is a kind of instance element (e.g., an instance of a UML 
Instance) and it is stereotyped as an «RTclock», then it may have a (unique) string 
name assigned using the RTclockId tag.

• If it is a standard clock, then it is not necessary to have an explicit clock model 
element. Instead, such a clock is identified implicitly by its well-known standard 
string name (UTC, TAI, etc.) as defined in Section , “RTtimeValue,” on page 5-31.

Referencing Specific Clocks

The relative nature of time sometimes requires that the source of a time value is 
identified, i.e., its reference clock. This profile provides the following mechanisms for 
identifying which clock is being used:

• By using the string name of a standard reference clock.

• By specifying a reference value for the RTrefClock tag, as shown in the example in 
Figure 5-9(a). 

• By explicitly naming the clock using the string identified as the value field of an 
RTclockId tag of the appropriate model element (which requires that it had to be 
stereotyped as an «RTclock»), as shown in the two examples in Figure 5-9(b) and 
Figure 5-9(c).

Figure 5-9 Three different ways of denoting references to a specific clock

5.2.1.5 Clock

Clocks are modelled by applying the «RTclock» stereotype to instance-based concepts 
(instances, objects, data values, or classifier roles). If they are applied to the descriptors 
of those entities, then they imply that all instances of that stereotyped element are clocks 
and they all inherit the QoS values specified by the descriptor (unless overridden by the 
instance). 

An instance of a clock can be identified using the RTclockId tag as described above (see 
Section 5.2.1.4, “TimingMechanism,” on page 5-16).

 

Date 
value : DateString 

<<RTtime>> myMasterClock:AClk 
<<RTclock>> 

{RTclockId = 'sysMaster'} 
RTrefClock 

<<taggedValue>> 
a) 

value : DateString 

Date 
<<RTtime>> 

{RTrefClock = 'sysMaster'} 
b) 

c)                 {RToffset  = (60, 'min', ('refClk:', 'sysMaster'))} 
November 2002 UML Profile for Schedulability, Performance, and Time 5-17



5

5.2.1.6 Timer

Timers are modelled by applying the «RTtimer» stereotype to instance-based concepts 
(instances, objects, data values, or classifier roles). If they are applied to the descriptors 
of those entities, then they imply that all instances of that stereotyped element are timers 
and they all inherit the QoS values specified by the descriptor (unless overridden by the 
instance).

5.2.1.7 TimedAction

This very general and very useful concept is modelled by applying the «RTaction» 
stereotype to any model element that specifies an action execution or its specification 
(which is a way of defining defaults for instances of those specifications). This includes 
action executions, methods, actions (including entry and exit actions of state machines), 
action states, subactivity states, states, and transitions. It can also be applied to stimuli 
(and their descriptors) to model stimuli that take time to arrive at their destination.

The start and end times of the action are specified by appropriate tagged values (RTstart 
and RTend respectively). Alternatively, they may be tagged with the RTduration tag. The 
two forms are mutually exclusive. In some cases, it may be more convenient to use a 
timed event designation (see below).

5.2.1.8 TimedEvent

This very general and very useful concept is modelled by applying the «RTevent» 
stereotype to any model element that implies an event occurrence. Since event 
occurrences do not show up explicitly in UML models, this stereotype can be applied to 
any item that implies an event, such as action executions, methods, actions (including 
entry and exit actions of state machines), action states, subactivity states, states, and 
transitions. It can also be applied to stimuli (and their descriptors) to model stimuli that 
take time to arrive at their destination. In all these cases, it specifies the time of the start 
of the associated behavior. Thus, it can be used as an alternative to timed actions where 
the duration or end of the action are not significant.

5.2.1.9 TimedStimulus

This concept is useful for modeling any stimulus that has an associated timestamp. This 
includes invocations of operations, the sending of signals, etc. as well as their descriptors. 
The stereotype used for this purpose is the «RTstimulus» stereotype which can be 
attached to stimuli or action executions of actions that generate stimuli (such as call 
action, send action, method, etc.) as well as their descriptors (messages, actions). In the 
latter case, the stereotypes are used to define default values that apply to all instances 
(signals and action executions) unless they are overridden with explicit tagged values 
associated with the instance.

The start and end times of the stimulus, corresponding to the stimulus generation and 
stimulus reception event occurrences are defined by the RTstart and RTend tagged values.
5-18 UML Profile for Schedulability, Performance, and Time November 2002



5

5.2.1.10 ClockInterrupt

This is a special type of timed stimulus that is generated by a clock. The stereotype is 
called «RTclkInterrupt» and it can be applied either to stimuli or messages. The start 
time (RTstart) represents the time of the interrupt.

5.2.1.11 Timeout

Timeouts are modelled by stimuli or messages that are stereotyped as «RTtimeout». The 
start time (RTstart) represents the time of the timeout.

5.2.1.12 Delay

This is modelled by a model element that is stereotyped as «RTdelay». It can only have 
an RTduration tag associated with it. Delays can be placed on the same model elements 
as timed actions (see above).

5.2.1.13 TimeService

This is represented by any instance (object, instance, classifier role) or its descriptor 
(classifier) that is stereotyped as «RTtimeService». The associations between the service 
and the clocks and timers that it creates and owns are not modelled explicitly, since this 
information is not germane for the type of time-based analyses that are the subject of this 
profile1.

Invocations of the operations of the time service are identified by corresponding 
stereotypes of ActionExecution or any model element that implies an action execution: 
«RTnewTimer» and «RTnewClock». The stereotype «RTnewTimer» has a tag, 
RTtimerPar, an instance of the RTtimeValue TVL type, which can be used to specify the 
value of a requested timer.

5.2.2 UML Extensions

In this section we give formal definitions of the UML extensions that pertain specifically 
to modeling time and timing mechanisms. 

5.2.2.1 Naming Conventions

To minimize the possibility of confusion and conflict with other profiles, we will prefix 
all extension element names pertaining to this portion of the real-time profile with the 
“RT” prefix.

1. One possibility is to define a common stereotype for dependency and composition, which 
can be used to associate a model element with its owner. 
November 2002 UML Profile for Schedulability, Performance, and Time 5-19



5

5.2.2.2 Profile Package

The stereotypes for modeling time and timing mechanisms are all defined in the 
RTtimeModeling package.

5.2.2.3 Stereotypes and Associated Tags

The set of stereotypes and tagged values used for time domain modeling are defined in 
this section. They are listed in alphabetical order. The semantic descriptions 
corresponding to these stereotypes and tagged values are provided in Section 5.2.1, 
“Mapping Timing Domain Concepts into UML Equivalents,” on page 5-14.

«RTaction»

This models any action that takes time (see Section 5.1.5.9, “TimedAction,” on 
page 5-13).

Tag definitions:

The following constraints are defined for this stereotype:

Stereotype Base Class Tags

«RTaction» ActionExecution RTstart
RTend
RTdurationStimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State

Tag Type Multiplicity Domain Attribute Name

RTstart RTtimeValue [0..1] TimedAction::start

RTend RTtimeValue [0..1] TimedAction::end

RTduration RTtimeValue [0..1] TimedAction::duration
5-20 UML Profile for Schedulability, Performance, and Time November 2002



5

• In a given model element stereotyped as RTaction, the tag RTduration is mutually 
exclusive with either the RTstart or RTend tag.

• For a given reference clock, the start value must be lesser than or equal to the end 
value.

• The difference between the end value and the start value, for a given clock, must be 
equal to the duration.

«RTclkInterrupt»

This models a clock interrupt (see Section 5.1.5.12, “ClockInterrupt,” on page 5-13).

«RTclock»

This models a clock mechanism (see Section 5.1.5.7, “Clock,” on page 5-12).

Tag definitions:

Stereotype Base Class Parent Tags

«RTclkInterrupt» Stimulus «RTstimulus» RTstart (inherited)
RTend (inherited)

Message

Stereotype Base Class Parent Tags

«RTclock» DataValue «RTtimingMechanism» RTclockId
(see parent for others)

Instance

Object

ClassifierRole

Classifier

DataType

Tag Type Multiplicity

RTclockId String [0..1]
November 2002 UML Profile for Schedulability, Performance, and Time 5-21



5

«RTdelay»

This models a pure delay action (see Section 5.1.5.14, “Delay,” on page 5-14).

«RTevent»

This models any event that occurs at a known time instant (see Section 5.1.5.10, 
“TimedEvent,” on page 5-13).

Stereotype Base Class Parent Tags

«RTdelay» ActionExecution «RTaction» RTstart (inherited)
RTend (inherited)
RTduration (inherited)Stimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State

Stereotype Base Class Tags

«RTevent» ActionExecution RTat

Stimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State
5-22 UML Profile for Schedulability, Performance, and Time November 2002



5

Tag definitions:

Note that an event may have multiple timestamps, for different clocks.

«RTinterval»

This models a time interval (see Section 5.1.5.5, “TimeInterval,” on page 5-10).

Tag definitions:

The following constraints are defined for this stereotype:

• In a given model element stereotyped as RTinterval, the tag RTintDuration is 
mutually exclusive with either the RTintStart or RTintEnd tag.

• The difference between the end value and the start value, for a given clock, must be 
equal to the duration.

Tag Type Multiplicity Domain Attribute Name

RTat RTtimeValue [0..*] TimedEvent::timestamp

Stereotype Base Class Tags

«RTinterval» DataValue RTintStart
RTintEnd
RTintDurationInstance

Object

DataType

Classifier

Tag Type Multiplicity Domain Attribute Name

RTintStart RTtimeValue [0..1] TimeInterval::start

RTintEnd RTtimeValue [0..1] TimeInterval::end

RTintDuration RTtimeValue [0..1] TimeInterval::duration
November 2002 UML Profile for Schedulability, Performance, and Time 5-23



5

«RTnewClock»

This models an invocation of the operation of a timing service that acquires a new clock 
mechanism (see Section 5.1.5.15, “TimeService,” on page 5-14).

«RTnewTimer» 

This models an invocation of an operation of a time service that returns a new timer (see 
Section 5.1.5.15, “TimeService,” on page 5-14).

Stereotype Base Class

«RTnewClock» ActionExecution

Stimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State

Stereotype Base Class Tags

«RTnewTimer» ActionExecution RTtimerPar

Stimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State
5-24 UML Profile for Schedulability, Performance, and Time November 2002



5

Tag definitions:

«RTpause»

This models the invocation of a pause operation on a timing mechanism (see 
Section 5.2.1.4, “TimingMechanism,” on page 5-16). 

Tag Type Multiplicity Description

RTtimerPar RTtimeValue [0..1] TimeService::timer

Stereotype Base Class

«RTpause» ActionExecution

Stimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State
November 2002 UML Profile for Schedulability, Performance, and Time 5-25



5

«RTreset»

This models the invocation of an operation that resets a timing mechanism (see 
Section 5.2.1.4, “TimingMechanism,” on page 5-16).

«RTset»

This models the invocation of an operation that sets the current value of the timing 
mechanism (see Section 5.2.1.4, “TimingMechanism,” on page 5-16).

Stereotype Base Class

«RTreset» ActionExecution

Stimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State

Stereotype Base Class Tags

«RTset» ActionExecution RTtimePar

Stimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State
5-26 UML Profile for Schedulability, Performance, and Time November 2002



5

Tag definitions:

«RTstart»

This models the invocation of a start operation that can be invoked on a timing 
mechanism (see Section 5.2.1.4, “TimingMechanism,” on page 5-16).

«RTstimulus»

This models a timed stimulus (see Section 5.1.5.11, “TimedStimulus,” on page 5-13).

Tag Type Multiplicity Description

RTtimePar RTtimeValue [0..1] TimingMechanism::
set(time:TimeValue)

Stereotype Base Class

«RTstart» ActionExecution

Stimulus

Action

Message

Method

ActionSequence

ActionState

SubactivityState

Transition

State

Stereotype Base Class Tags

«RTstimulus» Stimulus RTstart
RTend

ActionExecution

Action

ActionSequence

Method
November 2002 UML Profile for Schedulability, Performance, and Time 5-27



5

Tag definitions:

The following constraint is defined for this stereotype:

• For a given reference clock, the start value must be lesser than or equal to the end 
value.

• The difference between the end value and the start value, for a given clock, must be 
equal to the duration.

«RTtime»

This models a time value or object (see Section 5.1.5.4, “TimeValue,” on page 5-10).

Tag definitions:

The following constraints are defined for this stereotype:

Tag Type Multiplicity Domain Attribute Name

RTstart RTtimeValue [0..1] TimedStimulus::start

RTend RTtimeValue [0..1] TimedStimulus::end

Stereotype Base Class Tags

«RTtime» DataValue RTkind
RTrefClk

Instance

Object

DataType

Classifier

Tag Type Multiplicity Domain Attribute Name

RTkind Enumeration of: 
{‘dense’, ‘discrete’}

[0..1] TimeValue::kind

RTrefClk Reference to a 
model element 
stereotyped as 
«RTclock»

[0..1] TimeValue::referenceClock

String (value of an 
RtclkId tag)

String (name of a 
clock standard)
5-28 UML Profile for Schedulability, Performance, and Time November 2002



5

• The reference value of the RTrefClk tagged value must point to a model element 
that is stereotyped as an «RTclock».

• The string value of the RTrefClk tagged value must indicate a model element that is 
stereotyped as an «RTclock».

«RTtimeout»

This models a timeout signal or action (see Section 5.1.5.13, “Timeout,” on page 5-14).

«RTtimer»

This models a timer mechanism (see Section 5.1.5.8, “Timer,” on page 5-12).

Tag definitions (see also the list for “«RTtimingMechanism»” on page 5-30):

Stereotype Base Class Parent Tags

«RTimeout» Stimulus «RTstimulus» RTstart (inherited)
RTend (inherited)

ActionExecution

Action

ActionSequence

Method

Stereotype Base Class Parent Tags

«RTtimer» DataValue RTtimingMechanism RTduration
RTperiodic

See also parent list

Instance

Object

ClassifierRole

Classifier

DataType

Tag Type Multiplicity Domain Attribute Name

RTduration RTtimeValue [0..1] Timer::duration

RTperiodic Boolean [0..1] Timer::isPeriodic
November 2002 UML Profile for Schedulability, Performance, and Time 5-29



5

«RTtimeService»

This models a time service (see Section 5.1.5.15, “TimeService,” on page 5-14).

«RTtimingMechanism»

This is an abstract stereotype that provides a common base for specialized stereotypes 
representing specific timing mechanisms. It is not intended to be used directly in 
modeling (see Section 5.2.1.4, “TimingMechanism,” on page 5-16).

Tag definitions:

Stereotype Base Class

«RTtimeService» Instance

Object

ClassifierRole

Class 

Stereotype Base Class Tags

«RTtimingMechanism» DataValue RTstability
RTdrift
RTskew
RTmaxValue
RTorigin
RTresolution
RToffset
RTaccuracy
RTcurrentVal
RTrefClk

Instance

Object

ClassifierRole

Classifier

DataType

Tag Type Multiplicity Domain Attribute Name

RTstability Real [0..1] TimingMechanism::stability

RTdrift Real [0..1] TimingMechanism::drift

RTskew Real [0..1] TimingMechanism::skew

RTmaxValue RTtimeValue [0..1] TimingMechanism::maximalValue

RTorigin String [0..1] TimingMechanism::origin

RTresolution RTtimeValue [0..1] TimingMechanism::resolution

RToffset RTtimeValue [0..1] TimingMechanism::offset
5-30 UML Profile for Schedulability, Performance, and Time November 2002



5

5.2.2.4 Tagged Value Types

The following types of tag value strings are defined for use with the stereotypes above. 
We have used TVL to describe these often complex strings (see Appendix A - The Tag 
Value Language). They are all instances of the TVL list type. The elements of the list are 
typically mixtures of strings, numeric literals, TVL variable names, and TVL 
expressions.In representing the syntax of these types, we use the following standard BNF 
notational conventions:

• A string between double quotes (“) represents a literal.

• A token in angular brackets (<element>) is a non-terminal.

• A token enclosed in square brackets ([<element>]) implies an optional element of 
an expression.

• A token followed by an asterisk (<element>*) implies an open-ended number of 
repetitions of that element.

• A vertical bar indicates a choice of substitutions.

Note that TVL uses parentheses to identify arrays, commas to separate elements of 
arrays, and single quotes for string literals.

RTtimeValue

The general format for expressing time value expressions is described by the following 
extended BNF (NB: the production names are assumed to be self-explanatory):

RTaccuracy RTtimeValue [0..1] TimingMechanism::accuracy

RTcurrentVal RTtimeValue [0..1] TimingMechanism:currentValue

RTrefClk Reference to a model 
element stereotyped as 
«RTclock»

[0..1] TimeValue::referenceClock

String (value of an RtclkId 
tag)

String (name of a clock 
standard)
November 2002 UML Profile for Schedulability, Performance, and Time 5-31



5

<timeValStr> ::= ( <timeStr> | <dateStr> | <dayStr> | < metricTimeStr> ) 
  [“,” <clock-id>]

<timeStr> ::= <hr> [“:” <min> [“:” <sec> [“:” <centisec>] ] ]
<hr> ::= “00”..”23”
<min> ::= “00”..”59”
<sec> ::= “00”..”59”
<centisec> ::= “00”..”99”
<dateStr> ::= <year> “/” <mon> “/” <dayOfMon>
<year> ::= “0000”..”9999”
<mon> ::= “01”..”12”
<dayOfMon> ::= “01”..”31”
<dayStr> ::= “Mon” | “Tue” | “Wed” | “Thr” | “Fri” | “Sat” | “Sun”
<metricTimeStr> ::= “(“ [<number> | <PDFstring>] “,” <timeUnitStr>”)”
<number> ::= <Integer> | <Real>
<timeUnitStr> ::= “ ’ns’ ” | “ ’us’ ” | “ ’ms’ ” | “ ’s’ ” | “ ’hr’ ” | “ ’days’ ” | “ ’wks’ ” | “ 

  ’mos’ ” | “ ’yrs’ 

<clock-id> ::= ‘TAI’ | ‘UT0’ | ‘UT1’ | ‘UTC’ | ‘TT’ | ‘TDB’ | ‘TCG’ | ‘TCB’ | ‘Sidereal’ |
   ‘Local’ | <clock-string-name>

where the interpretation of the above strings is defined as follows::

<clock-string-name> = a string name of the clock as defined in the model (see 
Section 5.2.1.4, “TimingMechanism,” on page 5-16), or some other 
name, which, however, cannot be the same as any of the strings 
listed above.

The standard probability distribution function values are described by the following 
extended BNF:

<PDFstring> ::= “(“<bernoulliPDF> |  <binomialPDF> | <exponentialPDF> |
 <gammaPDF> | <geometricPDF> | <histogramPDF> |
 <normalPDF> | <poissonPDF> | <uniformPDF> “,” <unitsStr>”)”

where <unitsStr> is a string that identifies the metric units of the sample space (e.g., 
microseconds, seconds). For time-based distributions, this is specified by <timeUnitStr>.

TAI = International Atomic Time

UT0 = diurnal day

UT1 = diurnal day + polar wander

UTC = TAI + leap seconds

TT = terrestrial time

TDB = Barycentric Dynamical Time

TCG = Geocentric Coordinate Time

TCB = Barycentric Coordinate Time

Sidereal = hour angle of vernal equinox

Local = UTC + time zone
5-32 UML Profile for Schedulability, Performance, and Time November 2002



5

• The Bernoulli distribution has one parameter, a probability (a real value no greater 
than 1):

<bernoulliPDF> ::= “ ‘bernoulli’ ,” <Real>

• The binomial distribution has two parameters: a probability and the number of trials 
(a positive integer):

<binomialPDF> ::= “ ‘binomial’ ,” <Integer>

• The exponential distribution has one parameter, the mean value:

<exponentialPDF> ::= “ ‘exponential’ ,”  <Real>

• The gamma distribution [(xk-1 ⋅ e-(x/a)) / (ak ⋅ (k-1)!)] has two parameters (“k” a 
positive integer and “a” the mean):

<gammaPDF> ::= “ ‘gamma’ , “ <Integer> “,” <Real>

• The histogram distribution has an ordered collection of one or more pairs which 
identify the start of an interval and the probability that applies within that interval 
(starting from the leftmost interval) and one end-interval value for the upper 
boundary of the last interval:

<histogramPDF> ::= “ ‘histogram’ , ” { <Real>  “, “ <Real>}* “ , “ <Real>

• The normal (Gauss) distribution has a mean value and a standard deviation value 
(greater than 0):

<normalPDF> ::= “ ‘normal’ ,” <Real> “ , “ <Real>

• The Poisson distribution has a mean value:

<poissonPDF> ::= “ ‘poisson’ , ” <Real>

• The uniform distribution has two parameters designating the start and end of the 
sampling interval:

<uniformPDF> ::= “ ‘uniform’ , ” <Real> “ , “ <Real>

RTarrivalPattern

This string is used to specify concrete values of arrival patterns and has the following 
general format.

<bounded-string> | <bursty-string> | <irregular-string> | <periodic-string> | 
<unbounded-string>

Where:
November 2002 UML Profile for Schedulability, Performance, and Time 5-33



5

<bounded-string> ::= “ ‘bounded’ ,” <time-value> “,” <time-value>

describes a bounded interarrival pattern, where the left time value is the minimal interval 
between successive arrivals and the one on the right is the maximum; both values are 
expressed using the RTtimeValue type.

<bursty-string> ::= “ ‘bursty’ ,” <time-value> “,” <integer>

describes a bursty interarrival pattern, where the time value is the burst interval expressed 
using the RTtimeValue type and the integer identifies the maximum number of events 
that can occur during that interval.

<irregular-string> ::= “ ‘irregular’ ,” <time-value> [ ‘,” <time-value> ]*

describes an irregular interarrival pattern, where the ordered list of time values (expressed 
using the RTtimeValue type) represent successive interarrival times.

<periodic-string> ::= “ ‘periodic’ ,” <time-value> [ “,” <time-value>]

describes periodic interarrival patterns, where the left time value defines the period and 
the optional second time value represents the maximal deviation; both values are 
expressed using the RTtimeValue type.

<unbounded-string> ::= “ ‘unbounded’ ,” <PDF-string>

describes a pattern specified by a probability distribution function defined in 
“RTtimeValue” on page 5-31.

5.2.3 Required UML Metamodel Changes

This package assumes that the UML metamodel is modified to support the action 
execution concept. This is defined in Section 4.2.4, “Required UML Metamodel 
Changes,” on page 4-38. In addition to these, this part of the profile requires the 
following new concepts.

5.2.3.1 Action Execution Timing Marks

UML 1.4 only models two specific kinds of event occurrences: stimulus generation and 
stimulus reception. Although they are not modeled as explicit metamodel elements, they 
are represented by so-called “timing marks”, sendTime() and receiveTime () respectively. 
These are two operations that are defined on both messages and stimuli.

Note that a stimulus that was received may not necessarily be processed immediately 
since it may be queued at an active object (see, for instance, the handling of the 
“helloMsg” stimulus in Figure 5-10 below). For this reason, we introduce a new type of 
expression that can be applied to actions, called “startTime()”. This represents the event 
instant when an action starts executing. Similarly, an “endTime()” expression is also 
useful to designate the instant when an action completes execution. Thus, the duration of 
an action is identified by the difference between the endTime value and the startTime 
value. 
5-34 UML Profile for Schedulability, Performance, and Time November 2002



5

This allows us to write constraint expressions that involve these event occurrences, such 
as:

{(helloHandler.endTime( ) - helloMsg.receiveTime( )) < 20}

which means that the interval between the time the “helloMsg” stimulus was received 
and the “helloHandler” execution completed must be less than 20 time units.

5.2.4 Proposed Notational Extensions

For real-time systems, it is often important to be able to clearly identify when certain 
critical events occur. Four types of event occurrences are important: 

• When a stimulus (message) was generated (corresponding to the “sendTime ( )” 
timing mark).

• When it was received (corresponding to the “receiveTime ( )” timing mark).

• When an action execution was started (corresponding to the “startTime ( )” timing 
mark).

• When it was completed (corresponding to the “endTime ( )” timing mark).

These times can be shown in a diagram using the «RTstimulus» and «RTaction» 
stereotypes (or their subclasses) as shown in Figure 5-10.

Figure 5-10 Time annotations in sequence diagrams

Since this notation clearly leads to visual clutter, we propose a shorthand representation 
of these in sequence diagrams, using so-called anonymous timing marks. These consist of 
only the corresponding time values of the related events. The interpretation of such 
annotations is the following:

InstanceA : InstanceB :

helloMsg

ackMsg

«RTaction»
{RTsart=(2, 'ms'),
RTend=(11,'ms')}

«RTstimulus»
{RTstart=(0,'ms'),
RTend=(1.5, 'ms')}

«RTstimulus»
{RTstart=(4.7,'ms'),
RTend=(10.2, 'ms')}
November 2002 UML Profile for Schedulability, Performance, and Time 5-35



5

• Anonymous timing marks attached to the point where the stimulus (or message) 
originates, represent the time of the stimulus origination event (start time of the 
stimulus), and

• Anonymous timing marks attached to the point where the stimulus (or message) 
joins an object lifeline represents the occurrence of the stimulus reception event 
(end time of the stimulus).

Analogous rules apply to action executions (or actions).

The value of an anonymous timing mark may either represent an absolute or a relative 
time value. If the values are relative, then they are relative to the event whose timing 
mark value is zero. If no timing marks have a value of zero, the interpretation of the 
values is application specific (i.e., they may be relative or absolute depending on 
convention).

The notational convention for timing marks associated with action executions is similar 
to the convention for messages. An anonymous timing mark attached to the start of a 
double solid line that represents an action execution represents a start time mark, while 
one attached to the end of that line represents an end time mark. If the receive time and 
send time coincide, then one mark is sufficient.

The proposed notation for anonymous timing marks is illustrated below.

Figure 5-11 Anonymous timing marks

This diagram is interpreted as follows: at some point in its execution, the instance 
identified as “InstanceA” generates a “helloMsg” signal, which is received 1.5 
microseconds later at the instance identified by “InstanceB”. However, when this 
stimulus arrives, it is not processed immediately (e.g., due to a scheduling delay), but 
half a millisecond later (i.e., its start time is 2 milliseconds after the “helloMsg” signal 
was sent). The action execution caused by the response to “helloMsg” ends 11 
milliseconds from the start, which means that the entire action executed in 9.5 

InstanceA : InstanceB :

helloMsg

ackMsg

{0 ms}

{11 ms}

{10.2 ms}

{4.7 ms}

{2 ms}

{1.5 ms}
5-36 UML Profile for Schedulability, Performance, and Time November 2002



5

milliseconds. While it was executing, the action sent an “ackMsg” signal to “InstanceA”. 
This signal took 5.5 milliseconds (10.2 - 4.7) to arrive at its destination, 10.2 
milliseconds after the original “helloMsg” signal was sent.

To further reduce visual clutter, all the timing marks can be shown on one or the other 
side of the diagram connected to their corresponding events using horizontal dashed lines 
(Figure 5-12).

Figure 5-12 Alternative notation for Figure 5-11

{0 ms}

{11 ms}

{10.2 ms}

{4.7 ms}

{2 ms}

{1.5 ms}

InstanceA : InstanceB :

helloMsg

ackMsg

2.7 ms
November 2002 UML Profile for Schedulability, Performance, and Time 5-37



5

5-38 UML Profile for Schedulability, Performance, and Time November 2002



General Concurrency Modeling 6
The general concurrency model serves two primary purposes:

• It enables modelers to describe a rich enough domain model of concurrently 
executing and communicating objects that can serve as a base for more concrete 
analysis models.

• It enables providers of real-time system infrastructures (e.g., operating systems) to 
describe the concurrency and communication mechanisms of their system.

6.1 Domain Viewpoint

The purpose of the domain viewpoint is to define and describe the basic concepts of the 
concurrency domain and their relationships, as supported in this specification.
November 2002 UML Profile for Schedulability, Performance, and Time 6-1



6

6.1.1 Concurrency Domain Model

The domain model showing the general concurrency concepts is shown in Figure 6-1.  

Figure 6-1 General concurrency modeling concepts

The general concurrency model is based on the causality model of the GRM (see 
Section 4.1.2, “The Causality Model Package,” on page 4-6). As actions (which are parts 
of scenarios) execute, they generate stimuli. In the concurrency model we specifically 
identify so-called message actions. These are action executions that generate one or more 
stimuli. Following the standard causal loop, a stimulus targets a particular service 
instances of a specific object instance. This causes the execution of the scenario 
corresponding to the method associated with the resource service instance. This leads to 
further action executions, and so on.

For the concurrency model, of particular interest is the notion of a concurrent unit1, an 
active resource instance that executes concurrently with other concurrent units. 
Ultimately, all behavior in the system is a consequence of actions executed by concurrent 
units. Following creation2, each concurrent unit commences to execute one main scenario 

1. Concurrent units are also known as “active” units, but we will avoid this term to reduce the 
possibility of confusion with other types of active resources.

2. The direct causal link between object creation and commencement of execution is not 
defined in this model.

DeferredService ImmediateService

threading : {remote, local}

SynchronousInvokeAsynchronousInvoke

ProtectedResource
(from  ResourceTypes)

ActiveResource
(from  ResourceTypes)

ActionExecution
(from  DynamicUsageModel)

isAt omic : Boolean

ResourceServiceInstance
(from  CoreResourceM odel )

1..*1..* /

Scenario
(from  Causal i tyModel)

1..*+step 1..*

0..*1 +methodExecution0..*1 /

ConcurrentUnit

1

1

+main

1

1

StimuliQueue

1..*1..*

St imulus
(f ro m Cau sal i ty Model )

0..*0..*

StimulusGeneration
(f ro m Cau sal i ty Model )

1

1..*

+cause 1

+effect 1..*

MessageAction

1..*

1

+effect

1..*

+cause

1

/

6-2 UML Profile for Schedulability, Performance, and Time November 2002



6

(method execution). This scenario executes until the concurrent unit is terminated. 
During its execution, the main method execution (a scenario) may perform explicit 
receive actions in order to accept any stimuli sent to it. A receive action by a concurrent 
unit leads directly to the activation of the appropriate service instance and its service 
method. During the execution of the service method the main method may either be 
blocked (the so-called “run-to-completion” paradigm), or it may proceed executing 
concurrently.

Of course, a stimulus may arrive before the targeted concurrent object is ready to receive 
it. In such situations it may be necessary to defer the response to the stimulus until the 
corresponding receive action is executed (as we shall see later, whether the decision to 
defer depends on the service that is invoked). For this reason, a concurrent unit needs one 
or more queues for holding deferred stimuli. (Multiple queues may be used to 
differentiate between stimuli of different priorities or sources.)

There are two choices at either end of the communication, which affect the detailed 
causality between concurrent threads of control. 

At the server end, the service request may either be handled immediately, or deferred. In 
the immediate case, a further property describes whether the receiving instance creates its 
own concurrent execution thread to handle the service request (the so-called local 
option), or assumes that there is an existing thread available (the remote option). 

At the receiver end, the message action may either represent an asynchronous or 
synchronous invocation of the service. If the request is asynchronous, then execution 
proceeds immediately; if the request is synchronous then the client is blocked until a 
response is received from the receiver.

Instances that are not concurrent do not have a main method and, hence, have no direct 
choice in controlling how a service request is handled.

6.1.2 Domain Concepts (Detailed)

In this section we provide a detailed explanation of each of the concepts in the general 
concurrency model. Note that these are not specifications of the actual UML stereotypes, 
but are used as a basis for deriving those stereotypes. The actual stereotypes are specified 
in the section Section 9.2.2, “UML Extensions,” on page 9-7. 

Model associations, where they cannot unambiguously be derived from existing UML 
relationships, will be defined as stereotypes of the standard UML Usage dependency. (In 
the UML metamodel, a usage dependency means that the client requires the supplier.)

6.1.2.1 ActionExecution (extended)

This is a direct extension of the action execution concept from the GRM (see 
Section 4.1.9.3, “ActionExecution,” on page 4-17) that explicitly adds the notion of pre-
emption.
November 2002 UML Profile for Schedulability, Performance, and Time 6-3



6

Attributes

isAtomic a Boolean that indicates whether the action is atomic, or can be pre-
empted during its execution.

6.1.2.2 ConcurrentUnit

A kind of resource instance that is capable of executing a single scenario concurrently 
with other concurrent units. This scenario corresponds to the so-called “main” method 
associated with the resource type. It starts execution after the unit is created and 
continues until the object is terminated. In the course of execution of this scenario, 
message actions may be executed as well as actions to explicitly receive stimuli from 
other concurrent units. An explicit receive action may result in the execution of a method 
corresponding to the service invoked by the received stimulus.

Associations

main the unique scenario execution performed by this concurrent unit.

stimuliQueue a set of queues used to hold stimuli whose handling has been 
deferred until they are accepted by an explicit receive action.

resourceServiceInstance (inherited from ResourceInstance) the set of service instances 
supported by this concurrent unit.

6.1.2.3 MessageAction

An action execution that results in the occurrence of a stimulus generation, which leads 
to the creation and dispatching of a stimulus. This is an abstract concept, inspired by the 
work on UML action semantics.

Associations

invoke a service on a deployable unit.

effect the set of stimulus generation occurrences that will lead to stimuli 
generated as a result of this action.

6.1.2.4 StimuliQueue

A protected resource that is used to store stimuli whose processing has been deferred by 
the concurrent unit. This can be used for explicit modeling of queues required in certain 
types of analyses.

Associations

stimulus the set of stimuli instances that are queued on this concurrent unit.

concurrentUnit the instance of the concurrent unit that owns this queue.

6.1.2.5 SynchronousInvoke

A kind of action execution that results in the invoking scenario being blocked until the 
associated service scenario is completed.
6-4 UML Profile for Schedulability, Performance, and Time November 2002



6

6.1.2.6 AsynchronousInvoke

A kind of action execution in which the invoking scenario continues with its execution 
after the stimulus is generated.

6.1.2.7 DeferredService

A kind of service instance that is deferred until the receiving object is willing to receive 
it explicitly.

6.1.2.8 ImmediateService

A kind of service instance that is handled immediately (subject to exclusivity).

Attributes

threading indicates whether a new scenario execution is created to handle this 
reception (the “local” option), or whether the invoking scenario 
execution is used (the “remote” option).

6.2 UML Viewpoint

In this section we describe how the domain concepts are realized in UML including the 
use of extensions defined in this profile.

6.2.1 Mapping Concurrency Domain Concepts into UML Equivalents

6.2.1.1 Representing Concurrency

A concurrently executing entity is indicated by stereotyping any resource (classifier or 
instance) with the «CRconcurrent» stereotype. The main thread of the active instance is 
represented by a tagged value on a classifier, referencing a method; it is always derived 
for a concurrent instance, from its classifier.

6.2.1.2 Representing Causality

Causality within procedures is dealt with largely using standard UML concepts, such as 
Action Sequence and Action. However, methods need to be linked to actions, which is 
represented by a stereotype («CRcontains») of the standard usage relationship.

Causality between procedures is dealt with by stereotyping both actions (in this case Call 
and Send), and Operations and Receptions (or Messages and Stimuli as convenient). 
Calls and Sends may be stereotyped as either «CRasynch» or «CRsynch» to indicate 
whether they wait. Operations and Receptions may be stereotyped either 
«CRimmediate», or «CRdeferred» to indicate how messages are dealt with. In the case of 
immediate handling, the indication of threading is dealt with by a Tag Value.
November 2002 UML Profile for Schedulability, Performance, and Time 6-5



6

The linkage between message action and handling procedure is achieved using standard 
UML associations.

6.2.1.3 Atomicity

Atomicity of actions is dealt with by applying a stereotype («CRaction») and setting the 
‘CRatomic’ Boolean tagged value.

6.2.2 UML Extensions

In this section, we provide formal definitions of the UML extensions that are used to 
denote concurrency domain concepts.

6.2.2.1 Naming Conventions

To minimize the possibility of conflict with other profiles, we will prefix all extensions 
related to this part of the real-time profile with the “CR” prefix.

6.2.2.2 Profile Package

The stereotypes for modeling concurrency concepts are all defined in the 
RTconcurrencyModeling package.

6.2.2.3 Stereotypes

«CRaction»

Represents an action execution in the domain model (see Section 6.1.2.1, 
“ActionExecution (extended),” on page 6-3).

Stereotype Base Class Tags

«CRaction» Action CRatomic

ActionExecution

Message

Stimulus

Method

ActionState

SubactivityState

Transition

State
6-6 UML Profile for Schedulability, Performance, and Time November 2002



6

the tag is defined by:

«CRasynch»

Represents the concept of an asynchronous invocation (see Section 6.1.2.6, 
“AsynchronousInvoke,” on page 6-5).

«CRconcurrent»

Represents a concurrent unit concept (see Section 6.1.2.2, “ConcurrentUnit,” on 
page 6-4).

the tag is defined by:

The tag value must be constrained to point to a method.

Tag Name Tag Type Multiplicity Domain Attribute Name

CRatomic Boolean [0..1] ActionExecution::isAtomic

Stereotype Base Class

«CRasynch» Action

ActionExecution

Stereotype Base Class Tags

«CRconcurrent» Node CRmain

Component

Artifact

Class

Instance

Tag Name Tag Type Multiplicity Domain Attribute Name

CRmain A reference to a Method 
model element

[0..1] ConcurrentUnit::main

A String that contains the 
full path name of a 
method
November 2002 UML Profile for Schedulability, Performance, and Time 6-7



6

«CRcontains»

Represents a stereotype of the standard UML Usage dependency and is used to model 
various domain relationships that may not be present or easily discernible within a 
model.

«CRdeferred»

Represents the concept of deferred receive (see Section 6.1.2.7, “DeferredService,” on 
page 6-5).

«CRimmediate»

Represents the concept of an immediate service instance (see Section 6.1.2.8, 
“ImmediateService,” on page 6-5).

the tag is defined by:

Stereotype Base Class

«CRcontains» Usage

Stereotype Base Class

«CRdeferred» Operation 

Reception

Message

Stimulus

Stereotype Base Class Tags

«CRimmediate» Operation CRthreading

Reception

Message

Stimulus

Tag Name Tag Type Multiplicity Domain Attribute Name

CRthreading Enumeration: 
{‘remote’, ‘local’}

[0..1] ImmediateService::threading
6-8 UML Profile for Schedulability, Performance, and Time November 2002



6

«CRmsgQ»

Represents the concept of a stimuli queue (see Section 6.1.2.4, “StimuliQueue,” on 
page 6-4).

The model element stereotyped with this stereotype must be in a composition 
relationship (as the owned element) with a model element that is stereotyped as 
«CRconcurrent».

«CRsynch

Represents the concept of a synchronous invoke (see Section 6.1.2.5, 
“SynchronousInvoke,” on page 6-4).

6.2.3 Required UML Metamodel Changes

This package assumes that the UML metamodel is modified to support the action 
execution concept. This is defined in Section 4.1.9.3, “ActionExecution,” on page 4-17. 
No other metamodel changes are assumed or required.

6.2.3.1 Relationship to Action Semantics

The notion of procedure is taken from Action Semantics, and the two types of service 
invocation, but as yet nothing else. A more expressive version of this model would need 
to lean heavily on the Action Semantics profile. As yet, although the concepts are taken 
from the Action Semantics work, the profile does not assume it. 

Stereotype Base Class

«CRmsgQ» Instance 

Object

Class

ClassifierRole

Stereotype Base Class

«CRsynch» Action

ActionExecution
November 2002 UML Profile for Schedulability, Performance, and Time 6-9



6

6.2.4 Modeling Guidelines and Examples

Figure 6-2 shows a sequence diagram where the various model elements have been 
stereotyped from the concurrency model.  

Figure 6-2 Use of Concurrency Model - Synchronous Case 

A 100ms clock, which is an active instance, triggers the gathering of telemetry data (in 
its own thread). During the gathering process, data is obtained from the sensor and then 
placed in to storage so that later processing elements can access it.

Notes:

• This is an instance collaboration and so the model elements are instance elements: 
Class Instance (Object); Action Execution, and Stimulus.

• The stereotype indications and property strings are shown in two forms (in 
conformance with UML notational conventions):

• in notes attached to the symbol that maps to the model element being stereotyped;

• in the body of the symbol;

«CRconcurrent»
TGClock

«CRconcurrent»
TelemetryGatherer

: DataGatherer

«RTevent» {RTat=('periodic', 100, 'ms')}
«CRimmediate» {CRthreading=remote}

TelemDataGather( )

Sensor
:SensorInterface

SensorData
:RawDataStorage

«RTevent» {RTat=(1,'ms')}
«CRimmediate» {CRthreading=remote}

GetData ( )

«CRimmediate» {CRthreading=remote} StartStorage ( )

«CRimmediate» {CRthreading=remote} StopStorage ( )

«CRimmediate» {CRthreading=remote} CreateItemData ( )

«CRasynch»

«CRsynch»

«CRsynch»

«CRsynch»

«CRsynch»
6-10 UML Profile for Schedulability, Performance, and Time November 2002



6

• It is assumed that the focus-of-control bars can be used to represent action 
executions as well as actions.

• Often the properties of the action executions may be derived from the actions 
(descriptors), for example whether or not an invocation is synchronous or 
asynchronous.

Figure 6-3 shows how data is displayed in the Telemetry System; this features some 
asynchronous communication. 

Figure 6-3 Concurrency Model - asynchronous case 

In this case a 10ms clock calls TelemetryDisplayer asynchronously and then continues. 
Meanwhile, Telemetry Displayer handles the service in a deferred fashion, although in 
this case it is already waiting for it. It then gets the data from the sensors in one 
operation, and then displays the data. The DisplayData operation needs to be atomic (i.e., 
not be preempted) because the display needs to be updated in one chunk.

6.2.5 Proposed Notational Extensions

No additional notational extensions are provided for modeling concurrency.

«CRdeferred»
«RTevent»
{RTat=('periodic', 10, 'ms')}
TelemDataDisplay ( )

«CRimmediate» {CRthreading=remote}
TelemDataDisplay ( )

«CRimmediate» {CRthreading=remote}
DisplayData ( )

«CRsynch»

«CRsynch»

«CRaction»
{CRatomic=$true}

«CRasynch»

«CRconcurrent»
TGClock

«CRconcurrent»
TelemetryDisplayer

:DataDisplayer

Display
:DisplayInterface

SensorData
:RawDataStorage
November 2002 UML Profile for Schedulability, Performance, and Time 6-11



6

6-12 UML Profile for Schedulability, Performance, and Time November 2002



Schedulability Modeling 7
Note – The team intended this model analysis sub-profile as a general base for 
supporting a wide variety of known and future schedulability analysis methods. 
However, given that (a) the major tools available in the market place are all based on 
rate monotonic analysis and (b) the members of the team had experience and expertise 
predominantly with rate-monotonic analysis, it is possible that this specification may 
be unintentionally biased towards that method.  

In this chapter, we describe a component of the proposed profile that is intended 
specifically for schedulability analysis. Typical tools for this class of model analysis 
provide two important functions. The first is to calculate the schedulability of the system; 
that is, the ability of the system to meet all of the deadlines defined for the individual 
scheduling jobs. Such tools typically indicate which entities are schedulable and which 
are not. The second function is assistance with determining how the system can be 
improved. That may mean suggestions for making an entity schedulable or it may mean 
epitomizing system usage for a more balanced system. A system designer will typically 
want to analyze the system under several scenarios using different parameter values for 
each scenario while maintaining the same overall system structure.

This chapter describes a minimal set of common scheduling annotations. This minimal 
set furnishes enough information to perform very basic schedulability analysis. Each 
vendor is encouraged to supply a profile that extends this set in order to perform model 
analysis that is more extensive. 

The structure of this section follows the convention adopted throughout this document: 
First, a domain viewpoint is described which identifies the basic abstractions used in 
schedulability analyses. The semantics of these abstractions and their relationships are 
explained with the aid of a UML model. The second part of the chapter describes how 
these abstractions are expressed in the UML metamodel. This is done through a series of 
UML extensions (stereotypes, constraints, and tag definitions). Supplementing this 
description is a set of illustrative examples showing common ways of applying this part 
of the profile. 
November 2002 UML Profile for Schedulability, Performance, and Time 7-1



7

7.1 Domain Viewpoint

7.1.1 Background

Scheduling jobs are the granular parts of an application that contend for use of the 
execution resource that executes the schedule – the processor (called more generally an 
execution engine). 

By a schedule, we mean an assignment of all the scheduling jobs in the system on 
available execution engines, produced by the scheduler. For systems of execution 
engines, the schedule is the union of the schedules on the individual execution engines. 

Scheduling jobs are scheduled and any required resources are allocated according to a 
chosen set of scheduling algorithms and resource arbitration policies. The component 
that implements these algorithms is called the scheduler. 

Specifically, schedulers assign execution engines to scheduling jobs, or equivalently, 
assign scheduling jobs to execution engines. We say that a scheduling job is scheduled in 
a time interval on an execution engine if the execution engine is assigned to the 
scheduling job, and hence the scheduling job executes on the execution engine, in the 
interval. The total amount of execution engine time assigned to a scheduling job 
according to a schedule is the total length of all the time intervals during which the 
scheduling job is scheduled on some execution engine.

A scheduling policy is defined to be the methodology used to establish the order of 
scheduling job (e.g. process, or thread) execution. It is a combination of optimality 
criteria and algorithm. 

A scheduling algorithm is chosen to provide schedule optimality according to desired 
scheduling optimization criterion. Example real-time scheduling optimization criteria 
include: meet all hard deadlines; minimize the number of missed deadlines; minimize the 
mean tardiness. (The most common soft-real-time scheduling optimization criterion is to 
maximize flow a.k.a. throughput.). Examples of scheduling algorithms include rate 
monotonic, earliest deadline first, minimum laxity first; maximize accrued utility, and 
minimum slack time. In general, a given scheduling optimization criterion can be 
optimized by more than one scheduling algorithm. For example, the Earliest Deadline 
First (EDF) policy is optimal for different optimization criteria, including meeting all 
hard deadlines, and a more relaxed one of minimizing the maximum lateness. 

A scheduling mechanism defines an implementation technique used by a scheduler to 
make decisions about the order to choose threads for execution. Examples of scheduling 
mechanisms include fixed priority schedulers, and earliest deadline schedulers. The 
algorithms chosen sometimes have the same name as the scheduling mechanism. The 
term rate monotonic scheduler is often used but can be more accurately characterized as 
a rate monotonic scheduling policy and a fixed priority scheduling mechanism. 

To analyze the schedulability of a system, three things must be understood:

• A scheduling policy or algorithm by which to assign scheduling order.

• A resource arbitration scheme (allocation control policy) by which allocation 
decisions about resources can be made.
7-2 UML Profile for Schedulability, Performance, and Time November 2002



7

• A model analysis method by which parameters which affect scheduling and resource 
usage can be assigned.

7.1.2 Types of Model Analysis Methods

Two major categories of scheduling policies, and therefore two types of analysis, are 
available. One category is static in nature - i.e., parametric decisions about scheduling 
importance are all made "up-front" and the entire collection of execution possibilities and 
contexts is known beforehand. The other category involves dynamic scheduling - i.e., 
scheduling decisions are made at runtime using information available within the dynamic 
context of execution. It is the intention of this specification to support both categories.

Depending on the policy, parameters like scheduling priority may be statically 
determined by the analyst, with or without the aid of model analysis tools, or 
dynamically by portions of the system that continuously analyze context and adjust 
internal parameters like priority. Earliest Deadline First scheduling is an example of such 
a dynamic activity. Deadlines- the amount of time remaining in which the defined work 
of a thread must be done – changes continually when that thread is not running. This 
means that the earliest deadline is a dynamically changing value. Rate Monotonic 
Analysis, on the other hand, is determined from the complete static set of schedulable 
threads, their resources, and rates of invocation.

7.1.2.1 Static scheduling and related model analysis

Rate Monotonic Analysis

Rate Monotonic Analysis assigns scheduling priority to periodic scheduling jobs by 
ordering scheduling priority according to the frequency of repetition of execution, i.e. the 
rate by which a periodic scheduling job needs to be scheduled to execute. The name Rate 
Monotonic means that the priority ordering is a monotonic function of the rate of 
execution. This model analysis technique can be extended to include both periodic and 
sporadic scheduling jobs. Detailed discussion of these topics can be found readily in the 
literature.

Deadline Monotonic Analysis

Rate Monotonic Analysis is used for analysis of periodic scheduling jobs where the 
deadline coincides with the next required execution to start – i.e. the period and the 
deadline are the same. Sometimes this is not the case. A slight variation of RMA is 
deadline monotonic analysis where the deadline for a periodic scheduling job need not be 
the same as its period. Detailed discussion of deadline monotonic analysis can be found 
readily in the literature.

Dynamic Scheduling -  value or utility based scheduling

Dynamic Scheduling deals with the condition where the values used to order the 
scheduling of the CPU are a changing function over time.  Therefore, dynamic 
scheduling uses a scheduler that makes decisions based on importance of each 
scheduling job, but the importance is continuously reexamined within the dynamic 
November 2002 UML Profile for Schedulability, Performance, and Time 7-3



7

context of execution of the system containing the scheduler.This class of scheduling 
policy is often called value based or utility based scheduling; it uses a supplied 
function (which may be but doesn't have to be a function of time, v(t)) to obtain a 
value for scheduling importance.

Earliest deadline first is a simple concrete example of a specific value function; it is a 
widely used scheduling policy implemented in a dynamic scheduling manner in many 
domains, including the telecommunications community. Although earliest deadline is a 
popular value function the notion can be generalized to any value function that makes 
sense for a specific domain.

Value based scheduling is currently receiving significant attention.

7.1.3 Domain Concepts Details

It should be noted that schedulability analysis is inherently instance-based. That is, it is 
generally not meaningful to analyze generic (descriptor-based) specifications consisting 
of classes and associations, since they abstract away much of the specific quantitative 
information that is necessary to determine schedulability. Instead, model analysis can 
only be performed on specific instantiations of those generic specifications. However, 
most UML models are typically a mixture of both generic and instance type 
specifications. As a result: 

• Stereotypes apply to both instance concepts as well as generic descriptor concepts.

• The tag values of descriptor-type elements should be viewed as defaults for derived 
instances, which can override the defaults.

• The only way that a descriptor-based specification can be analyzed is in the special 
case where there is precisely one instance created from every descriptor.

There is a one-to-one mapping between the domain concepts and the stereotypes defined 
in the next section. Thus the process for adding schedulability domain concepts to a 
UML model is to add the appropriate stereotype to an existing model element, or in the 
case of the various conceptual associations to add an appropriate UML dependency and 
then to stereotype it with the corresponding stereotype.
7-4 UML Profile for Schedulability, Performance, and Time November 2002



7

Figure 7-1 depicts a general schedulability model that identifies the basic abstractions 
and relationships used in schedulability analysis. This model is defined as a 
specialization of the core models, as shown in Figure 7-2. This allows us to inherit the 
built-in QoS framework. 

Figure 7-1 The core schedulability model 

 

Figure 7-2 Derivation from the GRM 

SchedulingPolicy

SResource

Capacity
Acquis ition Tim e
Deacquis ition Time
IsConsumable
Priority Ceiling
isPreem ptible

SchedulableResource

SAction

Priority
Wors t-case Com pletion Tim e
Delay Time
Preempted Time
Ready Time
Release Tim e
Blocking Tim e
Laxity
Absolute Deadline
Relative Deadline
isAtom ic

0..*0..*

+usedResources

0..*0..* /

1

0..*
+host

1

0..*
<<d ep loys >>

Re alTim eSi tuation

ExecutionEngine

Priority Range
Processing Rate
Context Switch Time
Utilization
isPreem ptible
isSchedulable

0..*

+own ed Reso urces

0..*

1

0..*

+host 1

0..*

<<d ep loys >>

1

0..*

1

0..*

Response

Utilization
Spare Capacity
Overlaps
Slack Time

Trigger

isSchedulable
occurrence Pattern
endtoEndTim e

1

1

+effect 1

+cause 1

/

0 ..*

0..*

0 ..*

+pre ce de nts

0..*

SchedulingJob

0..*

1

0..*

1

1 ..n 1 ..n1 ..n 1 ..n

1..n 1..n1..n 1..n

TriggerSAction RealTimeSituation

SResourceExecutionEngine

SchedulableResource

TimedAction
(from T im edEvents)

UsageDemand
(from ResourceUsageModel)

AnalysisContext
(from ResourceUsageModel)

Processor
(f rom ResourceT y pes)

ProtectedResource
(from ResourceT ypes)

ActiveResource
(f rom Resource T ypes)
November 2002 UML Profile for Schedulability, Performance, and Time 7-5



7

In addition, we include here a model of the schedulability mechanisms that are 
encountered in real-time operating systems (Figure 7-3). This too is based on the GRM. 
A scheduler is responsible for generating a schedule which is used to schedule one or 
more scheduling jobs. A schedule may schedule jobs for one or more execution engines. 
In that case, the global scheduler may consist of a set of local schedulers, one per 
execution engine. The scheduler is a kind of resource broker that is responsible for 
allocating execution engine resources. Each scheduler produces a schedule based on a 
scheduling policy..  

Figure 7-3 Infrastructure concepts and mechanisms pertaining to schedulability 

7.1.3.1 Overview

The conceptual model of the domain has three primary types of entity:

• Scheduling Job, which represent the load on the system.

• Shareable Resource, which the scheduling jobs need to use during execution.

• Execution Engine, which provides the computing power.

Each scheduling job consists of a response, which defines the amount of work in the 
load, and a trigger, which defines how often that work needs to be done. 

There are two types of shareable resources:

• A general resource type that the scheduling jobs need in order to fulfil their 
function. These are often sources/sinks of events and information, such as queues, 
data-stores etc.

• A schedulable resource that the scheduling jobs need in order to execute on the 
execution engine. In a typical real-time operating system, these resources are tasks 
or processes. Often, each such resource is responsible for executing a single 
scheduling job, but in some implementations, they may be shared between a number 
of scheduling jobs, in which case they distribute their execution time between them. 
The resources, particularly the schedulable resources, are realized by (deployed on) 
a set of execution engines, which typically are physical CPUs, although they often 
represent “virtual” CPUs’ such as heavyweight processes, and virtual machines.

ResourceControlPolicy
(f rom ResourceMa nage me nt)

ResourceBroker
(f ro m Resource Manage ment)

SchedulingPolicy

optimalityCriterion
algorithm

Scheduler

schedulingMechanism

1

0..*

1

0..*

SchedulingJob

0..*

11

0..*

ExecutionE ngine
0..*1 0..*1

1..*

1..*

1..*

1..*

/

Schedule1 1..*1 1..*

1

1.. *

1

1.. *

1..*

1

1..*

1

0..*

0..10..1

0..*
7-6 UML Profile for Schedulability, Performance, and Time November 2002



7

7.1.3.2 SAction1

A behavior which may be characterized by its own required QoS characteristics. Note 
that in the GRM, actions are kinds of scenarios, which means that they are nested 
constructs (i.e., actions may contain other actions). The execution time of an action 
corresponds to the sum of the execution times for the set of its subordinate actions. The 
implication is that the whole subordinate set is intended to execute within the duration of 
the containing action.

Attributes

Priority the priority of the action from a scheduling perspective. It may be 
set as a result of static analysis or by dynamic scheduling software. 
Some CPU scheduling policies, such as Harbour, Klein, Lehoczky 
(HKL) allow varying priorities of actions within a response, but 
most do not. 

Blocking Time the length of time that the action is blocked waiting for resources.

Ready Time the effective Release Time expressed as the length of time since the 
beginning of a period; in effect a delay between the time an entity is 
eligible for execution and the actual beginning of execution.

Delay Time the length of time that an action that is eligible for execution waits 
while acquiring and releasing resources.

Release Time the instant of time at which a scheduling job becomes eligible for 
execution.

Preempted Time the length of time that the action is preempted, when runnable, to 
make way for a higher priority action.

Worst-case Completion Time the overall time taken to execute the action, including
all overheads.

Laxity specifies the type of deadline, hard or soft.

Absolute Deadline specifies the final instant by which the action must be complete, 
defined as the Relative Deadline + Release Time. This may be 
either a hard or a soft deadline. 

Relative Deadline for soft deadlines, specifies the desired time by which the action 
should be complete. 

start (inherited from Timed Action – see Section 5.1.5.9, 
“TimedAction,” on page 5-13) the start time of the action.

end (inherited from Timed Action) the completion time of the action.

duration (inherited from Timed Action) the total duration of the action (not 
used if start and end times are defined).

isAtomic (inherited from Concurrent Action – see Section 6.1.2.1, 
“ActionExecution (extended),” on page 6-3) identifies whether the 
action can be pre-empted or not.

1. We have added the prefix “S” to the term, to distinguish this specialization of the concept 
from the general one that is defined in the GRM.
November 2002 UML Profile for Schedulability, Performance, and Time 7-7



7

Associations

trigger the set of triggers that can only execute once this action has 
completed.

usedResources a specialization of the GRM association that identifies the set of 
resources that this action uses during execution.

host the schedulable resource that the action executes on; this is only 
defined if all the internal SActions that constitute the SAction 
execute on the same schedulable resource. This association is, in 
effect, a deployment relationship, as defined in “The Deploys 
Mapping” on page 4-30, between the action execution and the 
schedulable resource (i.e., the action is deployed on the schedulable 
resource). For modeling convenience, it is represented here by a 
stereotype of an association.

7.1.3.3 Execution Engine

An execution engine is an active, protected, executing-type resource that is allocated to 
the execution of schedulable resources, and hence any actions that use those schedulable 
resources to execute. In general, they are processor, network or device.

Attributes

Processing Rate a relative speed factor for the execution engine expressed as a 
percentage. The execution times specified for the entities in the 
schedulability model assume a normative value of 1.0 (100%).

Context Switch Time the length of time (overhead) that it takes to switch from one 
scheduling job to another.

Priority Range the set of valid priorities for this execution engine (often dependent 
on the operating system). These are used to define the scheduling 
priorities of actions.

isPreemptible indicates whether or not the execution engine is preemptible once it 
begins execution of an action.

Utilization this is a result of model analysis and indicates the computed 
utilization of the processing resource expressed as a percentage.

scheduler the set of scheduler instances that schedule jobs on this execution 
engine.

isSchedulable this is the result of model analysis and indicates whether or not the 
processing resource is schedulable under the conditions specified in 
the model.

Associations 

schedulableResource the set of schedulable resources that this execution engine is 
charged with executing; this is, in effect, a deployment relationship 
(as defined in “The Deploys Mapping” on page 4-30) between the 
execution engine and the schedulable resources that it deploys. For 
convenience, it is modeled here as a stereotyped association instead 
of as an explicit deployment association.
7-8 UML Profile for Schedulability, Performance, and Time November 2002



7

ownedResources the resources that this execution engine owns exclusively, i.e., 
doesn’t share with other execution engines.

schedulingJob the set of scheduling jobs that this execution engine needs to 
accommodate in its schedule.

schedulingPolicy the set of rules for assigning execution engine time to a set of 
scheduling jobs: Rate Monotonic, Deadline Monotonic, Earliest 
Deadline First, etc.

accessControlPolicy (inherited from SResource – see Section 7.1.3.12, “SResource,” on 
page 7-12) the set of rules that govern when and under what 
conditions each request for the execution engine is granted, and 
how actions requiring resources are scheduled. This overrides the 
setting for individual resources owned by the execution engine.

real-TimeSituation the set of analysis contexts in which this execution engine 
participates.

7.1.3.4 Real-time Situation

Provides a context for the model analysis. The various resources may be shared between 
different real-time situations, but the scheduling jobs are unique to each.

Associations 

sResource the set of resource instances that are used by the scheduling jobs in 
the situation.

executionEngine the set of execution engines that provide the processing power in 
the situation.

schedulingJob the set of scheduling jobs that comprise the processing load of this 
situation.

7.1.3.5 Response

A response models a sequence of action steps that is separately schedulable on an 
execution engine. Note that it may or may not correspond to a physical thread on an 
execution engine. Its most important characteristic is that it defines the root of a step 
sequence, which allows cumulative totals for end-to-end execution time. It inherits most 
of its attributes from SAction (see Section 7.1.3.2, “SAction,” on page 7-7 – hence the 
specialization in the conceptual model). It also adds the following specific attributes.

Attributes

Utilization the percentage of the period of the trigger during which the 
response is using the schedulable resource.

Slack Time the difference between the amount of work remaining and the 
amount of time left in the period. 

Spare Capacity the amount of execution time that can be added to a scheduling job 
without affecting the schedulability of lower-priority scheduling 
jobs in the system.

Overlaps in case of soft deadlines, this indicates how many instances may 
November 2002 UML Profile for Schedulability, Performance, and Time 7-9



7

overlap their execution because of missed deadlines.

Associations

cause the trigger that causes this response to execute.

schedulingJob the scheduling job for which this is the unit of work.

7.1.3.6 Schedule [abstract]

A specification of a particular ordering of execution of a set of scheduling job instances 
over a set of execution engines. This concept is not explicitly modelled, but is provided 
here for completeness.

Associations

schedule a composite schedule may be composed of a set of finer-grained 
schedules, e.g., one for every execution engine.

schedulingJob the set of jobs scheduled by this schedule instance.

executionEngine the set of execution engines assumed by the schedule.

7.1.3.7 Scheduler

A kind of resource broker for execution engines that is responsible for deriving a 
schedule that allocates a set of scheduling jobs to its set of execution engines.

Associations

schedule a composite schedule may be composed of a set of finer-grained 
schedules, e.g., one for every execution engine.

7.1.3.8 Scheduling Job [abstract]

A unit of work with a defined execution pattern, which contends for use of the execution 
resource that executes the schedule. In other words a representation of system load. This 
is a conceptual entity only, which is represented by its concrete components: Trigger and 
Response.

Associations

trigger the event occurrences that cause the scheduling job to execute. 

response the work to be done when the trigger occurs.

executionEngine the execution engines which realize this scheduling job.

real-timeSituation the analysis context in which this job is defined.

scheduler the scheduler instance responsible for scheduling this job.

7.1.3.9 Scheduling Policy

A kind of resource allocation policy used to schedule scheduling jobs to execution 
engines. This is an offered QoS concept that is manifested as an attribute rather than as a 
separate model element. 
7-10 UML Profile for Schedulability, Performance, and Time November 2002



7

Attributes

optimalityCriterion a criterion used to determine a schedule (e.g., meet all hard 
deadlines, minimize the number of missed deadlines, minimize the 
mean tardiness, maximize flow, etc.).

algorithm the scheduling algorithm. The following scheduling algorithms are 
predefined:

RateMonotonic
DeadlineMonotonic
HKL = Harbour, Klein, Lehoczky
FixedPriority
MinimumLaxityFirst
MaximizeAccruedUtility
MinimumSlackTime

Associations

scheduler the set of scheduler instances that use this policy.

executionEngine the set of execution engines that are characterized by this 
scheduling policy.

7.1.3.10 Schedulable Resource

A kind of active protected resource that is used to execute an action. In a real-time 
operating systems this is the mechanism that represents a unit of concurrent execution, 
such as a task, a process, or a thread. It may be shared by multiple concurrent actions 
and, therefore, must be protected by a locking mechanism. It inherits most of its 
attributes from Protected Resource (see Section 7.1.3.12, “SResource,” on page 7-12), 
and requires a special access control policy, which assigns its priority based on the 
highest priority scheduling job. However, as a resource its capacity is always equal to 1 
and is never preemptible.

Associations

sAction the actions that execute upon this schedulable resource; in other 
words, these are the action executions that are deployed on this 
schedulable resource – hence, this is, in effect, a deployment 
relationship as defined in “The Deploys Mapping” on page 4-30. 
For convenience, it is represented here as a stereotyped association.

host the execution engine that owns and possibly executes the code for 
the services of this schedulable resource; in other words, this is the 
set of execution engines on which this schedulable resource is 
deployed. In effect, this association is a deployment relationship as 
defined in “The Deploys Mapping” on page 4-30, but is rendered 
here as a stereotyped association for modeling convenience. 
November 2002 UML Profile for Schedulability, Performance, and Time 7-11



7

7.1.3.11 Trigger

An event occurrence that causes the execution of a separately schedulable sequence of 
actions (a response) and represents a usage demand (see Section 4.1.9.38, 
“UsageDemand,” on page 4-27). The combination of a trigger and a response is called a 
scheduling job.

Attributes

isSchedulable a model analysis result that indicates whether the trigger can be 
scheduled.

endToendTime the worst case completion time for the complete chain of dependent 
responses measured from the arrival of the trigger

occurrencePattern the pattern of interarrival times between consecutive occurrences of 
the trigger.

Associations

effect the response to this trigger.

schedulingJob the scheduling job, which is triggered by this trigger.

precedents the set of actions that must be executed before this event 
occurrence.

7.1.3.12 SResource2

A kind of protected resource3 (e.g., a semaphore) that is accessed during the execution of 
a scheduling job. It may be shared by multiple concurrent actions and must be protected 
by a locking mechanism. It may represent a physical device or a logical exclusive-access 
object (e.g., a queue). All of its characteristics represent offered QoS values. 

Attributes

accessControlPolicy (inherited from ProtectedResource – see Section 4.1.9.20, 
“ProtectedResource,” on page 4-21) the access control policy for 
handling requests from scheduling jobs. The following policies are 
pre-defined:

FIFO = first-in-first-out
PriorityInheritance = priority inheritance
NoPreemption = no pre-emption
HighestLockers = highest lockers
PriorityCeiling = priority ceiling (note that in this case, we also 
need to provide the actual value of the priority ceiling, which 
generally is the priority of the highest priority scenario step that 
uses the resource)

Capacity the number of permissible concurrent users, for example using a 

2. The “S”prefix has been added to avoid confusion with the GRM concept of the same name.

3. Non-exclusive resources are not considered here since they do not result in resource conten-
tion that can affect the results of model analysis.
7-12 UML Profile for Schedulability, Performance, and Time November 2002



7

counting semaphore.

Acquisition Time the time delay suffered by an action between being granting access 
to a resource and the availability of the resource.

Deacquisition Time the time delay suffered by an action between initiating release of a 
resource and the action becoming eligible for execution again.

isConsumable indicates that the resource is consumed by use.

Priority Ceiling a value calculated in accordance with an access control policy. 
Generally, it is the priority of the highest priority scheduling job 
that uses the resource.

isPreemptible indicates if the resource can be preempted while it is being used.

Associations

sAction the set of actions that use this resource during their execution.

executionEngine the execution engine that has exclusive use of this resource. Non-
exclusive resources may be used from many execution engines and 
generally need a different form of access control.

realTimeSituation the set of real-time situations in which this resource appears.

7.2 UML Viewpoint

We now examine how the domain concepts can be represented (mapped) in the UML 
modeling environment. In general, this is done by applying the stereotypes defined in 
Section 7.2.2, “UML Extensions,” on page 7-15. To provide the flexibility required by 
the RFP for this specification, the same stereotypes may be applied to a number of 
different kinds of modeling elements.

7.2.1 Mapping Schedulability Domain Concepts into UML Equivalents

7.2.1.1 The Collaboration-Based Approach

There are two variants in this approach: one based on collaborations and the other on 
collaboration instances. Either form may be used since there are no semantic differences 
as far as the interpretation of the results is concerned4. The choice depends on 
circumstances (i.e., whichever model is more readily available) or individual preference 
of the modeler.

4. It can be argued that a collaboration is a generic specification for a set of different execu-
tions, whereas a collaboration instance set might specifies a single execution. However, we 
do not make such a distinction in this profile.
November 2002 UML Profile for Schedulability, Performance, and Time 7-13



7

Real-time Situation

A real-time situation is modeled as a stereotype «SAsituation» of a UML collaboration 
(or collaboration instance set). This means that all interactions specified in that 
collaboration represent scheduling jobs (in fact the response part of a scheduling job), 
although this is not the only way of representing responses.

Scheduling Job

A scheduling job maps to an interaction (or interaction instance set). However, since 
interactions are not explicit graphical elements in UML diagrams (they are represented 
by collections of graphical elements), we will not define an explicit stereotype. Instead, a 
scheduling job will be represented by a trigger, which is used to stereotype the first 
Message (Stimulus) in the Interaction, and a response, which is used to stereotype the 
associated Action (Action Execution) of the trigger (although for diagrammatic 
convenience this might also stereotype the initial Message also). The relationship 
between trigger and response is either via collocation of the stereotypes, or by the UML 
metaassociation between Message (Stimulus) and Action (Action Execution).

The schedulable resource that the response uses to execute can be derived from the 
“owner” of the action with the «SAresponse» stereotype.

Resources and Execution Engines

These are indicated by stereotyping classifier roles (instances) with the appropriate 
stereotypes («SAengine», «SAschedulable», «SAresource»). The relationship between 
execution engines and the “shareable” resources is established using the «SAowns» and 
«GRMdeploys» stereotypes of realization (i.e., abstraction).

Actions

Actions are either stereotyped Actions (Action Executions) or, for diagrammatic 
convenience where appropriate, stereotyped Messages (Stimuli). The Uses relationship 
can often be derived from the destination of the Message, but in some cases, where the 
level of granularity is coarse, and messaging actions are not being used, then an explicit 
usage dependency (stereotyped «SAuses») may be inserted between the appropriate 
Action (Action Execution) and the resource.

The precedence relationship to any scheduling job triggers could potentially be modeled 
using an Interaction to model many scheduling jobs, in which case any action preceding 
a Message(Stimulus) tagged as a «SAtrigger» would indicate the presence of a 
“precedes” association. However, we have chosen to represent each scheduling job as  
separate Interactions and so an explicit usage dependency («SAprecedes») is necessary.
7-14 UML Profile for Schedulability, Performance, and Time November 2002



7

7.2.2 UML Extensions

7.2.2.1 Conventions

To minimize the possibility of confusion with other names, we will prefix all names of 
extension elements that are based on the schedulability analysis model with the string 
“SA”. 

Several tag types are defined as enumeration lists. These lists also represent declarations 
of standard string names that can be included as value parts for the corresponding tagged 
values.

7.2.2.2 Profiles

For convenience, all extensions related to this schedulability model that are defined in 
this section of the document are packaged in a single profile package (i.e., a «profile» 
stereotype of Package) called “SAprofile”. This profile should be imported by other 
model analysis profiles that are based on it. This profile imports the GRM profile 
described in the General Resource Modeling chapter.

7.2.2.3 Stereotypes

The following stereotypes and tagged values are defined for the schedulability sub-
profile. The semantics of these stereotypes are defined in Section 7.1.3, “Domain 
Concepts Details,” on page 7-4.

«SAaction»

Represents the Action domain concept. (see Section 7.1.3.2, “SAction,” on page 7-7).

Stereotype Base Class Parent Tags

«SAaction» Action «RTaction»
«CRaction»

SApriority
SAblocking
SAready
SAdelay
SArelease
SApreempted
SAworstCase
SAlaxity
SAabsDeadline
SArelDeadline
SAusedResource
SAhost

ActionExecution

Message

Stimulus

Method

ActionState

SubactivityState

Transition
November 2002 UML Profile for Schedulability, Performance, and Time 7-15



7

The defined tags are:

The type RTtimeValue is defined in “RTtimeValue” on page 5-31.

Tag Name Tag Type Multiplicity Domain Attribute Name

SApriority Integer [0..1] SAction::Priority

SAblocking RTtimeValue [0..1] SAction::Blocking Time

SAdelay RTtimeValue [0..1] SAction::Delay Time

SApreempted RTtimeValue [0..1] SAction::Preempted Time

SAready RTtimeValue [0..1] SAction::Ready Time

SArelease RTtimeValue [0..1] SAction::Release Time

SAworstCase RTtimeValue [0..1] SAction::Worst Case Completion Time

SAabsDeadline RTtimeValue [0..1] SAction::Absolute Deadline

SAlaxity Enumeration: 
{‘Hard’,’Soft’}

[0..1] SAction::Laxity

SArelDeadline RTtimeValue [0..1] SAction::Relative Deadline

SAusedResource Reference to a model 
element that is 
stereotyped as 
«SAresource»

[0..*] SAction::usedResources1

1. Alternatively, this can be modeled using the «SAuses» stereotype.

SAhost Reference to a model 
element that is 
stereotypes as 
«SAschedulable»

[0..1] SAaction::host2

2. Alternatively, this can be modeled using the «SAusedHost» stereotype.
7-16 UML Profile for Schedulability, Performance, and Time November 2002



7

«SAengine»

This stereotype represents the execution engine concept (see Section 7.1.3.3, “Execution 
Engine,” on page 7-8).

The defined tags are:

Stereotype Base Class Tags

«SAengine» 1Classifier

1.  only the deployable types, Component, Artifact, Node and Class

SAschedulingPolicy
SAaccessPolicy,
SAaccessPolParam
SArate
SAcontextSwitch
SApriorityRange
SApreemptible
SAutilization
SAschedulable
SAresources

ClassifierRole

Node

Instance

Object

Tag Name Tag Type Multiplicity Domain Attribute Name

SAaccessPolicy Enumeration: 
{‘FIFO’, 
‘PriorityInheritance’, 
‘NoPreemption’, 
‘HighestLockers’, 
‘PriorityCeiling’}

[0..1] Execution Engine::Access Control Policy

SAaccessPolParam Real [0..*] Execution Engine::Access Control Policy 
(for providing numerical values associ-
ated with the access control policy, such 
as the priority ceiling value)

SAcontextSwitch RTtimeValue [0..1] Execution Engine::Context Switch Time

SAschedulable Boolean [0..1] Execution Engine::isSchedulable

SApreemptible Boolean [0..1] Execution Engine::isPreemptible

SApriorityRange Integer Range [0..1] Execution Engine::Priority Range

SArate Real [0..1] Execution Engine::Processing Rate
November 2002 UML Profile for Schedulability, Performance, and Time 7-17



7

«SAowns»

A kind of “realizes” dependency (see Section 4.2.1, “Modeling Realization 
Relationships,” on page 4-27) that is used to identify which resources are owned by 
which execution engines. This corresponds to the “ownedResources” role of the 
association between ExecutionEngine and SResource in the conceptual model in 
Figure 7-1 (see also Sectio n7.1.3.3, “Execution Engine,” on page 7-8). It is modeled as a 
subclass of the GRM realizes stereotype.

Note that this association can also be modeled using the SAresources tag (whose value is 
a reference to a resource).

«SAprecedes»

A kind of usage dependency that is used to identify any precedence relationship between 
Actions and triggers. This corresponds to the “precedents” role of the association 
between SAction and Triger in the conceptual model in Figure 7-1.

Note that this can also be represented using the SAprecedents tagged value associated 
with the «SAtrigger» stereotype.

SAschedulingPolicy Enumeration: 
{‘FIFO’,
‘RateMonotonic’, 
‘DeadlineMonotonic’, 
‘HKL’,  
‘FixedPriority’, 
‘MinimumLaxityFirst’, 
‘MaximizeAccruedUtility’, 
‘MinimumSlackTime’}

[0..1] Execution Engine::Scheduling Policy

SAutilization Percentage (Real) [0..1] Execution Engine::Utilization

SAresources Reference to an element 
stereotyped as 
«SAresource»

[0..*] Execution Engine::ownedResources1

1. Note that this can also be modeled using the «SAowns» stereotype

Stereotype Base Class Parent

«SAowns» Abstraction «GRMrealize»

Stereotype Base Class

«SAprecedes» Usage
7-18 UML Profile for Schedulability, Performance, and Time November 2002



7

«SAresource»

Represents the resource concept as defined in Section 7.1.3.12, “SResource,” on 
page 7-12.

The defined tags are:

Stereotype Base Class  Tags

«SAresource» Classifier SAaccessControl, 
SAaccessCtrlParam
SAconsumable, 
SAcapacity, 
SAacquistion, 
SAdeacquisition, 
SAptyCeiling
SApreemptible

ClassifierRole

Instance

Node

Object

Tag Name Tag Type Multiplicity Domain Attribute Name

SAacquisition RTtimeValue [0..1] SResource::Acquisition Time

SAcapacity Integer [0..1] SResource::Capacity

SAdeacquisition RTtimeValue [0..1] SResource::Deacquisition Time

 SAconsumable Boolean [0..1] SResource::Consumable

SAaccessControl Enumeration: 
{‘FIFO’, 
‘PriorityInheritance’, 
‘NoPreemption’, 
‘HighestLockers’, 
‘PriorityCeiling’}

[0..1] SResource::Access Control Policy

SAaccessCtrlParam Real [0..*] SResource::Access Control Policy 
(for providing numerical values 
associated with the access control 
policy, such as the priority ceiling 
value)

SAptyCeiling Integer [0..1] SResource::Priority Ceiling

SApreemptible Boolean [0..1] SResource::isPreemptible
November 2002 UML Profile for Schedulability, Performance, and Time 7-19



7

«SAresponse»

This stereotype represents the response concept (see Section 7.1.3.5, “Response,” on 
page 7-9).

The defined tags are:

«SAschedulable»

Represents the schedulable resource concept (see Section 7.1.3.10, “Schedulable 
Resource,” on page 7-11). It inherits the attributes of SResource. 

Stereotype Base Class Parent Tags

«SAresponse» ActionExecution «SAaction» SAutilization
SAspare
SAslack
SAoverlaps

Action

Method

Transition

ActionState

SubactivityState

Tag Name Tag Type Multiplicity Domain Attribute Name

SAutilization Real (percentage) [0..1] Response::Utilization

SAspare RTtimeValue [0..1] Response::Spare Capacity

SAslack RTtimeValue [0..1] Response::Slack Time

SAoverlaps Integer [0..1] Response::Overlaps

Stereotype Base Class Parent

«SAschedulable» Classifier «SAresource»

ClassifierRole

Instance

Object

Node
7-20 UML Profile for Schedulability, Performance, and Time November 2002



7

«SAscheduler»

The representation of a scheduler (see Section 7.1.3.7, “Scheduler,” on page 7-10).

The defined tags are:

«SAsituation»

Represents the concept of a real-time situation that can be used for model analysis 
purposes (see Section 7.1.3.4, “Real-time Situation,” on page 7-9).

«SAtrigger»

Represents the trigger concept (see Section 7.1.3.11, “Trigger,” on page 7-12).

Stereotype Base Class Tags

«SAscheduler» Classifier SAschedulingPolicy
SAexecutionEngine

ClassifierRole

Instance

Object

Tag Name Tag Type Multiplicity Domain Attribute Name

SAexecutionEngine Reference to a model ele-
ment stereotyped as 
«SAengine»

[0..1] Scheduler::executionEngine

SAschedulingPolicy see definition of the simi-
larly named tag in: 
“«SAengine»” on 
page 7-17

[0..1] Scheduler::schedulingMechanism

Stereotype Base Class

«SAsituation» Collaboration

CollaborationInstance

ActivityGraph

Stereotype Base Class Tags

«SAtrigger» Message SAschedulable
SAendToEnd
SAprecedents
SAoccurrence

Stimulus
November 2002 UML Profile for Schedulability, Performance, and Time 7-21



7

The defined tags are:

«SAusedHost»

A kind of usage dependency that is used to identify explicitly which schedulable resource 
an action needs to execute. This corresponds to the “host” role of the association between 
SAction and SchedulableResource in Figure 7-1 in the conceptual model (see also 
Section 7.1.3.2, “SAction,” on page 7-7).

As an alternative, the same relationship can be modeled using the SAhost tagged value of 
the «SAaction» stereotype.

«SAuses»

A kind of usage dependency that is used to identify explicitly which shareable resources 
an action needs while executing. This corresponds to the “usedResources” role of the 
association between SAction and SResource in Figure 7-1 in the conceptual model (see 
also Section 7.1.3.2, “SAction,” on page 7-7).

As an alternative, the same relationship can be modeled using the SAusedResource 
tagged value of the «SAaction» stereotype.

7.2.3 Modeling Guidelines and Examples 

In these examples we have chosen to attach the schedulability stereotypes to UML model 
elements that form a collaboration – this is only one of a number of possibilities.

Tag Name Tag Type Multiplicity Domain Attribute Name

SAendToEnd RTtimeString [0..1] Trigger::endToEndTime

SAschedulable Boolean [0..1] Trigger::isSchedulable

SAprecedents Reference to a model 
element stereotyped as 
«SAaction»

[0..*] Trigger::precedents1

1. Note that this can also be modeled using the «SAprecedes» stereotype.

SAoccurrence RTarrivalPattern [0..1] Trigger::occurrence Pattern

Stereotype Base Class

«SAusedHost» Usage

Stereotype Base Class

«SAuses» Usage
7-22 UML Profile for Schedulability, Performance, and Time November 2002



7

7.2.3.1 Presentation Conventions

In this example, we will use the following presentation conventions for various model 
elements required for the model analysis:

• Stereotypes are shown against the graphical symbol for the underlying base-type if 
the symbol is unambiguous (i.e. only represents one model element); otherwise, the 
appropriate stereotypes for the symbol are shown via attached notes.

• Two choices are available for showing the QoS characteristics of stereotypes: an 
attached note with the stereotype, element name and QoS values; or a set of QoS 
values in {} following other information in the symbol. A note can contain the 
information for several stereotypes if attached to a symbol that represents more than 
one model element.

7.2.3.2 Example System Specification

Figure 7-4 shows the structural specification of a telemetry system example that we wish 
to analyze. It runs on a single processor and consists of three different kinds of classes. 
Note that this class diagram is a descriptor diagram, not an instance-based diagram. To 
enable schedulability analysis, the analyst must define one or more real-time situations, 
consisting of instances, and annotate the elements of the model with appropriate QoS 
values, such as maximum system load.
November 2002 UML Profile for Schedulability, Performance, and Time 7-23



7

The choice of what to represent in a real-time situation is up to the analyst and depends 
on the type of model analysis and level of detail that is required. In the following we 
demonstrate several different choices for the same example. 

Figure 7-4 Example telemetry system specification 

Note that in the system description, the realization relationship is from the node to the 
aggregate class that represents the system (in this case Telemetry System). At the 
instance level, there will be many more such realization relationships (see Figure 7-7).

Ix86Processor

int main ( )

TelemetrySystem

void gatherData ( )

Gatherer

void displayData ( )

DataDisplayer

void getData ( )

SensorInterface

void filterData ( )

DataProcessor

DisplayInterface

TelemetryDisplayer           1

SensorData           1

TelemetryGatherer          1

Sensors               1 Display           1
SensorData       0..1

TelemetryFilter

0..*

SensorData

0..1

SensorData

0..1

«GRMdeploys»Clock

1

void start ( )
void writeData ( )
void readData ( )
void stop ( )

RawData

1

7-24 UML Profile for Schedulability, Performance, and Time November 2002



7

7.2.3.3 Using Sequence Diagrams to Model Real-Time Situations

A sequence diagram is useful for the detailed description of triggers and responses. 
Figure 7-5 shows the data gathering scenario. 

Figure 7-5 Showing a trigger and its response in a Sequence Diagram 

Note that:

• This is an instance diagram, and so all of the symbols represent instance concepts.

• GRM annotations such as «GRMacquire» and «GRMrelease» are used to determine 
the aggregate period of use of “used resources”. In this case, the aggregate use of 
Sensor Data has a duration of 16.5.

• The response, as one might expect, is simply the outermost focus-of-control symbol 
on the “fence-post” of the schedulable resource (in this case Telemetry Gatherer).

«CRconcurrent»
«RTtimer» {RTperiodic,
RTduration=(100, 'ms')}

TGClock : Clock

«SAschedulable»
TelemetryGatherer

: DataGatherer

«SAtrigger» {RTat=('periodic', 100, 'ms')}
gatherData ( )

Sensor
:SensorInterface

«SAresource»
SensorData

:RawDataStorage

«RTevent» {RTat=(1,'ms')}
getData ( )

«GRMacquire» start ( )

«GRMrelease»  stop ( )

writeData (d )

«SAaction»
{RTduration=(0.3,'ms')}

«SAusedHost»

«SAresponse»
{RTduration=(33.5,'ms')}

«SAaction»
{RTduration=(0.2,'ms')}

«SAaction»
{RTduration=(1,'ms')}

«SAaction»
{RTduration=(0.5,'ms')}

«SAaction»
{RTduration=(16.5,'ms')}

*[16]

«SAuses»
«SAaction»
{RTduration=(15,'ms')}

«SAaction»
{RTduration=(1.5,'ms')}

«SAsituation»
November 2002 UML Profile for Schedulability, Performance, and Time 7-25



7

• Dependencies such as «SAuses» may be easy to derive directly from the model 
(they are included here for illustrative purposes). In fact they typically map very 
simply onto UML, so they can easily be derived either by a tool, or by the analyst.

7.2.3.4 Expressing Schedulability Data Using a Collaboration Diagram

Collaboration diagrams are useful for expressing a set of triggers and responses. The 
diagram in Figure 7-6 shows three schedulable resources, and one (shared) used resource, 
as well as two that are not shared. There are three triggers and three responses marked.. 

Figure 7-6 A Collaboration Diagram showing all of the schedulable triggers and responses 

Note the use of TVL variables ($R1, $R2, $R3) for the items that need to be computed 
and returned by the model analysis tools. In this case, they are all associated with the 
SAschedulable tag that specify whether the corresponding response is schedulable. 

Sensors
:SensorInterface

«SAschedulable»

TelemetryGatherer
:DataGatherer

«SAresource»
{SACapacity=1,

SAAccessControl=PriorityInheritance}

SensorData
:RawDataStorage

«SAschedulable»

TelemetryDisplayer :
DataDisplayer

«SAschedulable»

TelemetryProcessor
:DataProcessor

Display
:DisplayInterface

TGClock : Clock

TGClock : Clock

«SAtrigger»
{SAschedulable=$R1,

RTat=('periodic',100,'ms')}
«SAresponse»

{SAabsDeadline=(100,'ms'),
SAworstCase=(93,'ms')}

A.1:gatherData ( )

«SAtrigger»
{SAschedulable=$R2,

RTat=('periodic',60,'ms')}
«SAresponse»

{SAabsDeadline=(60,'ms'),
SAworstCase=(50.5,'ms')}

C.1:displayData ( )

«SAtrigger»
{SAschedulable=$R3,

RTat=('periodic',200,'ms')}
«SAresponse»

{SAabsDeadline=(200,'ms'),
SAworstCase=(177,'ms')}

B.1:filterData ( )

TGClock : Clock

«SAsituation» «SAaction»
{SApriority=2,
RTduration=(33.5,'ms')}
A.1.1:main ( )

«SAaction»
{RTstart=(16.5,'ms'),
RTend=(33.5,'ms')}
A.1.1.1: readStorage ( )

«SAaction»
{SApriority=3,
RTduration=(46.5,'ms')}
B.1.1 : main ( )

«SAaction»
{RTstart=(10,'ms'),
RTend=(31.5,'ms')}
B.1.1.1: readStorage ( )

«SAaction»
{RTstart=(3,'ms'),
RTend=(5,'ms')}
C.1.1.1: readStorage ( )

«SAaction»
{SApriority=1,
RTduration=(12.5,'ms')}
C.1.1 : main ( )
7-26 UML Profile for Schedulability, Performance, and Time November 2002



7

7.2.3.5 Showing Resource Realization

Figure 7-7 shows another view of the model, which makes clear the relationship between 
the objects in the system and the single execution engine. The deployment of instances 
on a given execution engine is required in order to perform schedulability analysis. 

Figure 7-7 Use of the execution engine 

Note that this is an object (instance) diagram, which shows explicitly how the execution 
capability of the processor is used. This contrasts with Figure 7-4, where the system 
description merely identified a realization between a node of this type and the “system” 
class of the telemetry system.

7.2.4 Required UML Metamodel Changes

This package assumes that the UML metamodel is modified to support the action 
execution concept. This is defined in Section 4.1.9.3, “ActionExecution,” on page 4-17. 
No other metamodel changes are assumed or required.

7.2.5 Proposed Notational Extensions

No notational extensions are proposed for this sub-profile.

«SAengine»
{SArate=1,

SAschedulingPolicy=FixedPriority}

:Ix86Processor

«SAschedulable»

TelemetryGatherer
:DataGatherer

«SAresource»

SensorData
:RawDataStorage

«SAschedulable»

TelemetryDisplayer
: DataDisplayer

«SAschedulable»

TelemetryProcessor
:DataProcessor

«SAowns»

«GRMdeploys»
November 2002 UML Profile for Schedulability, Performance, and Time 7-27



7

7-28 UML Profile for Schedulability, Performance, and Time November 2002



Performance Modeling 8
In this section, we describe a component of the profile that is intended for general 
performance analysis of UML models. The profile provides facilities for:

• capturing performance requirements within the design context.

• associating performance-related QoS characteristics with selected elements of a 
UML model.

• specifying execution parameters which can be used by modeling tools to compute 
predicted performance characteristics.

• presenting performance results computed by modeling tools or found in testing. 

Typical tools for this kind of model analysis provide two important functions. The first is 
to estimate the performance of a system instance, using some kind of model. The second 
function is assistance with determining how the system can be improved, by identifying 
bottlenecks or critical resources. A system designer will typically want to analyze the 
system under several scenarios using different parameter values for each scenario while 
maintaining the same overall system structure. 

This chapter describes a minimal set of concepts to support the central ideas of 
performance analysis. The intent is to provide a base for further refinements that might 
perform more extensive analyses. 

The structure of this section follows the convention adopted throughout this document: 
First, a domain viewpoint is described which identifies the basic abstractions used in 
performance analysis. The semantics of these abstractions and their relationships are 
explained with the aid of a UML model. The second part of the chapter describes how 
these abstractions are expressed in terms of lightweight extensions to the UML 
metamodel. The last section contains guidelines and examples showing common ways of 
applying this part of the real-time profile. 
November 2002 UML Profile for Schedulability, Performance, and Time 8-1



8

8.1 Domain Viewpoint

We start with a high-level overview of performance analyses concepts and techniques. 
Next, we introduce the domain model with its essential concepts and relationships.

8.1.1 Background

Scenarios define response paths whose end points are externally visible, so they represent 
responses with response times and throughputs. QoS requirements are placed on 
scenarios. 

In performance-related models, each scenario is executed by a job class or user class 
with an applied load intensity, and these classes are either open or closed. To avoid 
confusion with software classes, such a class is called here a workload. An open 
workload has a stream of requests which arrive at a given rate in some predetermined 
pattern (such as Poisson arrivals), while a closed workload has a fixed number of active 
or potential users or jobs which cycle between executing the scenario, and spending an 
external delay period (some times called a Think Time) outside the system, between the 
end of one response and the next request.

Scenario steps or activities are the elements of scenarios, and are joined in a sequence, 
with predecessor-successor relationships which may include forks, joins and loops. A 
step may be an elementary operation at the finest granularity, or, it may be defined by a 
sub-scenario, to any level of nesting. 

Each step also has a mean execution count, which is the mean number of times it is 
repeated when it is executed, and a host execution demand for its host device (that is, the 
execution time taken on its host device, in the given deployment). A scenario step may 
optionally have its own QoS properties.

Resource demands by a step include its host execution demand as already mentioned, and 
the demands of all its sub-steps. They also may include demands to resources through 
external resource operations (such as file I/Os) which are not defined in the UML 
software model, but are understood by the performance modeling tool. These demands 
are given as an average number of the named operations and may be interpreted 
appropriately by the modeling tool.

Resources are modeled as servers. Active resources are the usual servers in performance 
models, and have service times. Passive resources are acquired and released during 
scenarios, and have holding times. The resource-operations of a resource are the steps, or 
sequences of steps, which require the resource. The resource is obtained at the beginning 
of a resource-operation and released at the end. The resource-operations define the 
classes of service of the resource. 

The service time of an active resource is defined as the host execution demand of the 
steps that are hosted by the resource. Thus different classes of service, given by different 
steps, may have different service times. This places the definition of service times 
squarely within the software specification, however a device may have a speed factor 
which scales all the steps that run on that resource.
8-2 UML Profile for Schedulability, Performance, and Time November 2002



8

Performance measures for a system include resource utilizations, waiting times, 
execution demands (for CPU cycles or seconds) and response time, (the actual or wall-
clock time to execute a scenario step or scenario). Each measure may be defined in 
different versions, several of which may be specified in the same model, such as:

• a required value, coming from the system requirements or from a performance 
budget based on them (e.g., a required response time for a scenario).

• an assumed value, based on experience (e.g., for an execution demand or an external 
delay).

• an estimated value, calculated by a performance tool and reported back into the 
UML model.

• a measured value.

Further, the reported value is one of several possible statistical properties of the given 
measure, such as its average, maximum or xth percentile (90th percentile meaning that 
90% of values are smaller than this).

Multiple statistical properties may be reported for the same measure. For example, the 
measured mean and the 90% and 99% values may all be given. Thus, tagged values for 
measures include fields to identify which version is meant, and which statistical property 
(for instance, ResponseTime: Required Mean 3.13 sec.).

8.1.2 Types of Performance Analysis Methods

A sub-profile for general performance analysis should support modeling tools for 
building different kinds of performance models. Most modeling tools deal with one or 
more of the following common types of models:

• Queueing models define customer classes (workloads) which execute particular 
aspects of the software, which are captured in different scenarios. In the simplest 
queueing models it is only necessary to define the class sizes or arrival rates, and 
the total average demands placed on each device in the system, during one 
execution of each scenario. In more complex queueing models the distribution of 
the demand may be required, there may be passive resources as well as devices, and 
the detailed scenario sequence may be required (for instance if it has parallel 
branches).

• Queueing models calculate average throughput, utilization and response times for 
classes overall, and layered or extended queueing models also can calculate these 
figures for passive resources and for parts of scenarios (scenario steps or resource-
operations).

• Simulation models define multiple logical tokens which execute the software, 
following the detailed scenario structure and using execution time distributions for 
the operations of each step. There may be passive resources and they may have 
complex scheduling (for instance, LRU management of a cache).

Simulation models can calculate a wide range of measures including histograms and 
percentiles as well as average values.
November 2002 UML Profile for Schedulability, Performance, and Time 8-3



8

• Discrete-state models such as Petri Nets define tokens which execute the software, 
following the detailed scenario structure. As in queueing models there may be open 
or closed classes of tokens for different scenarios. Where tokens must be 
differentiated they are said to be colored. Petri Nets use places to define the 
progress of tokens and transitions to describe decisions, and the passage of time. 
Resources are described by additional places and tokens, and resource scheduling 
by transitions which execute scheduling decisions.

Performance Petri Nets typically calculate average measures but can provide more 
detailed measures such as higher moments and distributions.

8.1.3 Domain Model

Performance analysis is inherently instance-based. That is, it applies to models that 
capture either actual or hypothetical execution runs of systems consisting of sets of 
instances. Hence, the domain concepts all refer to instances rather than descriptors (such 
as classes). 

Figure 8-1 depicts a general performance model that identifies the basic abstractions and 
relationships used in performance analysis as described in section Section 8.1.1, 
“Background,” on page 8-2. 

Figure 8-1 The performance analysis domain model 

The concepts in this model are fully consistent with the conceptual framework defined in 
the generic resource model. This allows the performance sub-profile to take advantage of 
the mechanisms (e.g., modeling styles and stereotypes) that are provided for that 
framework. 

ClosedWorkload

population
externalDelay

OpenWorkload

oc currencePat tern

PPassiveRes
ource

waitingTime
responseTime
capacity
accessTime

{ordered}

PerformanceContext

Work load

responseTime
priority

1..*

1

1..*

1

PResource

uti lizat ion
schedul ingPolicy
throughput

1..*

0..*

1..*

0..*

/

PScenario

hostExecutionDemand
res[pnseTime

1..*

1

1..*

1

11..* 11..*
0..*

0..* +resource

0..*

0..*

PProcessingResou
rce

processingRate
contextSwitchTime
priorityRange
isPreemptible

0..1

0..*

+host 0..1

0..*

<<deploys>>

PStep

probabil it y
repet it ion
delay
operat ions
interval
execut ionTim e

1

1

+root 1

1

1..*1..*

0..*

0..*

+successor

0..*

+predecessor 0..*/
8-4 UML Profile for Schedulability, Performance, and Time November 2002



8

The domain model is fully based on the GRM (see the General Resource Modeling 
chapter) The relationship of the performance modeling concepts to corresponding GRM 
concepts is depicted in the class diagram in Figure 8-2.

Since performance modeling is only concerned with resources where contention or 
waiting occurs, the concept of a passive resource inherits from both the passive resource 
and protected resource concepts of the GRM. 

Figure 8-2 The relationship between the performance concepts and the general resource model

8.1.4 Domain Concept Details 

In this section we provide a more detailed explanation of each of the concepts in the 
performance analysis model. Note that these are not specifications of the actual UML 
stereotypes, but are used as a basis for deriving such stereotypes. 

For each concept, we describe all of its features and associations. We distinguish between 
concrete and abstract concepts. Concrete concepts are the ones used directly by the 
modeler, whereas abstract concepts are used to define common features of two or more 
related concepts. Abstract concepts are clearly identified as such below.

8.1.4.1 Performance Context

A performance context specifies one or more scenarios that are used to explore various 
dynamic situations involving a specific set of resources. For instance, a performance 
context may describe a “busy hour”, during which the maximum processor load is 
expected and therefore imposing the greatest likelihood of performance problems, such 
as missed deadlines. For a given system specification, there may be many performance 
contexts with overlapping resources, but the scenarios are specific to the performance 
context.

The QoS values considered here are load intensity and various measures of response 
delay. The components of a performance context may have parameterized QoS values, to 
enable some exploration of different QoS, but the structure of a performance context 
(resources and scenario steps) is fixed.

Perform anceContextWorkload PScenario

UsageDemand
(f rom Re sou rc eUsageMod el)

AnalysisContext
(from ResourceUsageModel )

Scenario
(from Causal i tyModel )

PPassiveResource PProcess ingRes ource

PassiveResource
(from ResourceT ypes)

ProtectedResource
(from ResourceT ypes)

Act iveResource
(from ResourceT ypes)
November 2002 UML Profile for Schedulability, Performance, and Time 8-5



8

Associations

resource the set of resources involved in this performance context; this 
includes both processing resources and passive resources.

scenario the set of scenarios defined in the performance context.

workload the set of workloads applied to the scenarios of this context; a 
context may not necessarily have a workload; in such cases, it 
derives its workload from a higher-level context in which it is 
embedded.

8.1.4.2 Scenario

A scenario is a sequence of one or more scenario steps. The steps are ordered and 
conform to a general precedence/successor relationship. Note that, in the general case, a 
scenario may involve multiple threads due to forking within the scenario. Therefore, a 
step in a scenario can have multiple successors due to forking. Similarly, a step that 
follows a join will have multiple predecessors.

The steps of a scenario execute on host resources, and may use passive protected 
resources. However, a scenario only has a host resource defined if all its sub-steps have 
execute on the same host (i.e. if all the steps in the scenario use the same host resource).

Attributes

hostExecutionDemand  the total execution demand of the scenario on its host resource, if 
defined; it is defined only if all the steps that constitute the scenario 
execute on the same host.

responseTime the total time required to execute the scenario, including all 
resource waiting, synchronization delays and execution times; 
determining the value of this QoS characteristic is often the 
principal objective of performance analysis.

Associations

host the processing resource on which the scenario is executed; this is 
only defined if all the steps that constitute the scenario execute on 
the same host. In effect, this association is an instance of the 
deploys relationship, as defined in “The Deploys Mapping” on 
page 4-30, but is rendered here as a stereotyped association for 
convenience.

step the sequence of steps making up the scenario.

root the first step of this scenario.

workload the set of workloads that drive this scenario.

performanceContext the performance context in which this scenario appears (a scenario 
appears in exactly one performance context).
8-6 UML Profile for Schedulability, Performance, and Time November 2002



8

8.1.4.3 Step

An increment in the execution of a particular scenario that takes may use resources to 
perform its function. In general, a step takes finite time to execute. It is related to other 
steps in predecessor/successor relationships.

The granularity of a step depends on the level of abstraction chosen by the modeller. If 
finer granularity is required, a step at one level of abstraction can be resolved into a 
corresponding scenario comprising finer-grained scenario steps. For this reason, a step is 
modelled as a kind of scenario (the simplest scenario, therefore, consists of just a single 
atomic step). The smallest granularity steps execute on a unique host resource or 
processor. A step defined by a lower-level scenario only has a defined host if all of its 
sub-steps have the same host. 

Attributes

hostExecutionDemand (inherited from Scenario) the total execution demand of the 
step on its host resource, if it has a single host resource (excluding 
any external operations); if the step has a breakdown into a sub-
scenario, with all steps on the same host, then this is the total 
demand of the sub-scenario.

delay the value of an inserted delay (wait or pause) within this step, for 
example for a user interaction.

responseTime (inherited from Scenario) the total delay to execute the step, 
including all resource waiting and all execution times.

probability in situations where its predecessor step has multiple successors (a 
choice of paths within a sequence), this is the probability that this 
step will be executed; in that case, the sum of probabilities of all the 
peer steps has to be equal to 1.

interval the time interval between successive repetitions of this step, when it 
is repeated within a scenario (see repetitions below).

repetition the number of times the step is repeated.

operations this is used to specify the set of operations of resources used in the 
execution of a step but which that not explicitly represented in the 
model; each operation attribute identifies the operation and the 
number of times it is repeated (the execution times of these steps 
are assumed to be defined externally).

Associations

predecessor one of the predecessor steps within its sequence; a step may have 
multiple predecessors if it occurs at a join between two or more 
concurrent threads of execution; if there is no predecessor, the step 
represents the root step of the scenario.

successor one of the successor steps within its sequence; a step may have 
multiple successors if it represents a fork into multiple concurrent 
threads of execution; a step without a successor is the final step of a 
scenario.

scenario the scenario in which this step is included.
November 2002 UML Profile for Schedulability, Performance, and Time 8-7



8

host (inherited from Scenario) the processing resource on which this 
step executes; if the step has a sub-scenario, then this attribute only 
exists if all the steps of the sub-scenario execute on the same host.

resource the set of resources accessed by the step.

8.1.4.4 Resource [abstract]

An abstraction view of passive or active resource, which participates in one or more 
scenarios of the performance context.

Attributes

utilization this is usually the result of model analysis and represents the 
computed utilization of the processing resource expressed as a 
percentage.

throughput the rate at which the resource performs its function.

schedulingPolicy the policy by which access to the resource is controlled.

Associations 

performanceContext the performance context in which this resource instance appears; a 
resource may belong to more than one performance context.

8.1.4.5 ProcessingResource

A processing resource is a device, such as a processor, interface device or storage device, 
which has processing steps allocated to it by the deployment of the system.

Attributes

schedulingPolicy (inherited from Resource) the set of rules for assigning the resource 
to a set of steps; a number of policies are pre-defined: 

FIFO = first-in-first-out
HeadOfLine = head-of-the-line or non-preemptible priorities
PreemptResume = pre-empt resume
ProcSharing = processor sharing (representing round-robin)
PrioProcSharing = priority processor sharing
LIFO = last-in-first-out

processingRate a relative speed factor for the processor expressed as a percentage 
of some normative processor.

contextSwitchTime the length of time (overhead) required by the processing resource to 
switch from the execution of one scenario to a different one.

priorityRange the set of valid priorities for this processor (often dependent on the 
operating system); these are used to define the scheduling priorities 
of resource actions.

isPreemptable indicates whether or not the processor is preemptible once it begins 
execution of an action.

Associations 

scenario the set of scenarios for which this processing resource acts as a 
8-8 UML Profile for Schedulability, Performance, and Time November 2002



8

host; for a processing resource to be a host of a scenario, all of the 
steps of that scenario have to be deployed on this resource. In 
effect, this association is an instance of the deploys relationship, as 
defined in Section , “The Deploys Mapping,” on page 4-30, but is 
rendered here as a stereotyped association for convenience.

8.1.4.6 Passive Resource

A resource protected by an access mechanism (e.g., a semaphore), which is accessed 
during the execution of an operation. It may be shared by multiple concurrent resource 
operations. It may represent either a physical device or a logical protected-access entity.

Attributes

schedulingPolicy (inherited from Resource) the access control policy for handling 
requests from scenario steps. The following policies are predefined:

FIFO = first-in-first-out
PriorityInheritance = priority inheritance
NoPreemption = no pre-emption
HighestLockers = highest lockers
PriorityCeiling = priority ceiling (note that in this case, we also 
need to provide the actual value of the priority ceiling, which 
generally is the priority of the highest priority scenario step that 
uses the resource)

capacity the number of permissible concurrent users, for example using a 
counting semaphore.

accessTime the time delay suffered by a scenario or scenario step in acquiring 
and releasing a resource.

utilization (inherited from Resource) the mean number of concurrent users of 
the resource.

responseTime the total time expired from the moment the resource is requested to 
its release; this includes the time spent waiting to get access to the 
resource (waiting time – see below).

waitingTime the time from the instant an access request for the resource is 
issued, to the time it is granted.

Associations

service the set of resource-operations that require the resource.

resourceUsageStep the set of steps that access this resource.

8.1.4.7 Workload (abstract)

A workload specifies the intensity of demand for the execution of a specific scenario as 
well as the required or estimated response times for that workload. The specification of 
the workload depends on its subtype.

Attributes

response Time the delay between the instant the scenario has started and the instant 
November 2002 UML Profile for Schedulability, Performance, and Time 8-9



8

when the scenario has completed, for the specified workload; 
multiple instances of this attribute may be defined, with different 
modifiers, to represent requirements, estimates from models, and 
measurements.

priority the priority of the workload.

Associations

scenario the scenario corresponding to this workload.

8.1.4.8 OpenWorkload

A workload that is modeled as a stream of requests that arrive at a given rate in some 
predetermined pattern (such as Poisson arrivals).

Attributes

occurrencePattern for an open workload, the pattern of interarrival times between 
consecutive instances of the start event; this is a potentially 
complex specification, depending on the nature of the series of 
intervals. 

8.1.4.9 ClosedWorkload

A workload characterized by a fixed number of active or potential users or jobs which 
cycle between executing the scenario, and spending an external delay period (sometimes 
called “think time”) outside the system, between the end of one response and the next 
request

Attributes

population the size of the workload (number of system users).

externalDelay the delay between the end of one response and the start of the next 
for each member of the population of system users.

8.1.4.10 Performance Values

For performance analyses to be meaningful, it is usually not sufficient to simply provide 
numerical values for performance-related QoS characteristics but also to identify the 
semantics of those values. Thus, a given value may represent an average or maximum, or, 
it may be a prediction or a measurement, etc. Clearly, the interpretation of an analysis 
result depends on such characteristics. For this reason, the values used in performance 
analyses take on the following general structure (expressed using standard BNF 
conventions):

<performance-value> ::= <source-modifier> <type-modifier> <time-value> 

Where: 

<source-modifier> defines how the value was obtained and can be one of: required, 
assumed, predicted, or measured (with the obvious interpretations).

<type-modifier> the statistical meaning of the value which can be one of: average, 
8-10 UML Profile for Schedulability, Performance, and Time November 2002



8

variance, kth moment, maximum, kth percentile, or distribution.

<time-value> the actual time value, which may itself be complex (e.g., a 
probability distribution).

Furthermore, there is often a need to combine multiple such values for a single 
characteristic. For instance, it may be necessary to specify both the mean and variance 
for some QoS characteristic. Consequently, the generic form for a performance QoS 
characteristic may take on the following general form:

<PA-characteristic> ::= <performance-value> [<performance-Value>]*

8.2 UML Viewpoint

In this section we describe how the domain concepts can be represented in UML. First 
we discuss the mappings in general, an then introduce the actual UML extensions defined 
for this purpose.

8.2.1 Mapping Performance Domain Concepts into UML Equivalents 

Since performance is a dynamic property, scenarios play a key role in determining a 
system’s performance characteristics from its UML models. In UML, scenarios are most 
directly modeled either using collaborations or activity graphs. The ways in which the 
performance domain concepts are represented in the two approaches can be quite 
different. When it comes to modeling complex hierarchical scenarios, the activity based 
approach has some significant advantages due to both its conceptual base and also to its 
notational convenience.

8.2.1.1 The Collaboration-Based Approach

There are two variants in this approach: one based on collaborations and the other on 
collaboration instances. Either form may be used since there are no semantic differences 
as far as the interpretation of the results is concerned1. The choice depends on 
circumstances (i.e., whichever model is more readily available) or individual preference 
of the modeller.

PerformanceContext

A performance context is modelled as a stereotype «PAcontext» of a UML collaboration 
(or collaboration instance set). This means that all interactions specified in that 
collaboration represent scenarios in the sense of this sub-profile. (For an example, see 
Figure 8-8 on page 8-27.)

1.  It can be argued that a collaboration is a generic specification for a set of different execu-
tions, whereas a collaboration instance set might specifies a single execution. However, we 
do not make such a distinction in this profile.
November 2002 UML Profile for Schedulability, Performance, and Time 8-11



8

Scenario

A scenario maps to an interaction (or interaction instance set). However, since 
interactions are not explicit graphical elements in UML diagrams (they are represented 
by collections of graphical elements), we will not define an explicit stereotype. Instead, a 
scenario will be represented by its first (root) step. Thus, any performance attributes of a 
scenario (such as its workload specs) will be attached to this model element (see below). 
(For an example, see Figure 8-8 on page 8-27.)

Step

A step represents an execution of some action. There are two alternatives for identifying 
performance steps in collaborations (collaboration instance sets): 

associate a step stereotype («PAstep») directly with an action execution model element1 
or 

associate the stereotype with the message (stimulus) model element that directly causes 
that action execution. 

If action executions are used, then the successor steps of a given step are represented by 
the set of action executions that are directly linked to the messages (stimuli) generated 
from that action execution. If the step is associated with a message, then the successor 
steps are identified by the set of successors of the message (stimulus) in the same 
interaction.

If the step is a root step, then it may optionally be stereotyped with the appropriate 
workload stereotype («PAopenLoad» or «PAclosedLoad»). (For an example, see 
Figure 8-8 on page 8-27).

Workload

A workload is specified as a stereotype of a step (see Section 8.1.4.3, “Step,” on 
page 8-7). The stereotype can only be applied to the first step of a scenario. (For an 
example, see Figure 8-8 on page 8-27.)

ProcessingResource

The modeling of processing resources can be done in one of two ways. The most direct 
is to associate the appropriate stereotype («PAhost») with any classifier role (or instance) 
that executes scenario steps. However, this is only useful in cases where each classifier 
role (instance) is executing on its own host. This is rarely the case.

Much more common is the situation where the different classifier roles (instances) are 
executing on different hosts with the strong possibility that some hosts will be hosting 
more than one role (instance). In that case, the collaboration (collaboration instance set) 
does not contain sufficient information to determine the allocation of roles (instances) to 

1. UML 1.4 does not support the concept of an action execution. However, a proposal for 
amending the UML metamodel to allow this is included in this profile.
8-12 UML Profile for Schedulability, Performance, and Time November 2002



8

hosts. Under those circumstances, it is necessary to determine which processor resource 
is running which classifier role (instance) on the basis of «deploys» relationships to 
nodes that are stereotyped as hosts1 (for an example see Figure 8-4).

PassiveResource

Passive resources are represented directly by classifier roles (or instances) stereotyped 
with the «PAresource» stereotype. Alternatively, they may be modelled indirectly by 
specifying one or more PAextOp tagged values for the steps that access those resources. 
(For an example, see the “sendFrame” step in Figure 8-8 on page 8-27.)

8.2.1.2 Activity-Based Approach

In this approach, a scenario is captured by an activity graph. As noted, this form has 
certain advantages due to the explicit hierarchical nature of activity graphs, which can 
decompose a subactivity into a lower-level activity graph. 

For an illustration of this approach, see Figure 8-9 on page 8-28 and Figure 8-10 on 
page 8-29.

PerformanceContext

A performance context can be modeled by an activity graph that is stereotyped as a 
«PAcontext». Since an activity graph contains only one activity, this approach is 
restricted to just a single scenario per context. The other requirement for this approach is 
that the swimlanes of the diagram represent either the resources themselves or the object 
instances (or roles) that are participating in the activity (see below). 

Note that because subactivity states allow the modeling of hierarchical activity graphs, it 
is possible for one performance context to have a number of related sub-performance 
contexts representing expanded scenario steps. The association of such performance 
contexts is achieved by the link between a subactivity state and its associated submachine 
(activity graph) as defined in the UML metamodel. The topmost performance context in 
this hierarchy is the only one that can have a workload defined.

Scenario

Scenarios are modeled by the set of states/activities and transitions of the activity graph. 
As in the collaboration-based approach, we will not define an explicit scenario 
stereotype, but will identify the scenario with the first step (action or subactivity state) of 
the activity graph. The workload information is attached to this step, which is stereotyped 
appropriately («PAopenLoad» or «PAclosedLoad»).

1. If such a relationship does not exist for a given classifier role (instance) in the model, the 
analyses cannot be performed due to insufficient information.
November 2002 UML Profile for Schedulability, Performance, and Time 8-13



8

Step

Each action or subactivity state of the graph is stereotyped as a «PAstep»1. The successor 
set of a step is identified by the action or subactivity states that are directly linked to that 
step by transitions (or, possibly, via pseudostates).

The initial action or subactivity state may also be stereotyped as a «PAopenLoad» or 
«PAclosedLoad» as appropriate. However, this can only be done at the top-level 
performance context. The subordinate performance contexts assume the load that is 
imposed on them by their hierarchically superior performance contexts.

Workload

The scenario workload is modeled by the tagged values associated with the first step of 
the topmost performance context. In addition to being stereotyped as a scenario step, this 
action or subactivity state can be stereotyped as a «PAopenLoad» or «PAclosedLoad», as 
appropriate.

ProcessingResource

The modeling of processing resources can be done in one of two ways. The most direct 
is to associate the appropriate stereotype («PAhost») with an activity graph partition that 
is linked to the appropriate object (or classifier role) However, this is only useful in cases 
where each classifier role (instance) is executing on its own host. 

Much more common is the situation where the different partitions represent instances 
that are executing on different hosts and that some instances share hosts. In that case, the 
activity graph does not contain sufficient information to determine the allocation of 
objects to hosts. Under those circumstances, it is necessary to determine which processor 
resource is running which instance on the basis of «deploys» relationships to nodes that 
are stereotyped as hosts (for an example see Figure 8-11 on page 8-29).

PassiveResources

Passive resources are represented directly by partitions (swimlanes) stereotyped with the 
«PAresource» stereotype. Alternatively, they may be modelled indirectly by specifying 
one or more PAextOp tagged values for the steps that access those resources. (For an 
example, see the “sendFrame” step in Figure 8-10 on page 8-29.)

8.2.2 UML Extensions

We noted above that performance analysis is based on instances. Hence, the stereotypes 
above were described as applying to instance-based concepts (classifier role, instance, 
action execution, etc.). However, sometimes it is useful for the type specifications 
corresponding to those instances (e.g., classes, actions, etc.) to be stereotyped with the 

1. Of course, we only stereotype UML concepts and not domain concepts. However, saying 
that we are “stereotyping a step,” is merely a shorthand way of saying that we are applying a 
stereotype to a UML model element that has already been stereotyped as a «PAstep». We 
will use this convention throughout this section.
8-14 UML Profile for Schedulability, Performance, and Time November 2002



8

same stereotypes. This is a shortcut that allow us to define default values for all instances 
based on that type. Any such default values, however are overridden by values that 
appear in specific instances that appear in performance contexts.

8.2.2.1 Naming Conventions

To minimize the possibility of confusion and conflict with other profiles, we will prefix 
all extension element names pertaining to this portion of the profile with the “PA”prefix.

8.2.2.2 Profile Package

For convenience, all extensions related to this part of the profile are packaged in a single 
profile package called “PAprofile.” This profile should be imported by other model 
analysis profiles that are based on it.

8.2.2.3 Stereotypes and Associated Tags

Based on the modeling approach identified in section In this section we describe how the 
domain concepts can be represented in UML. First we discuss the mappings in general, 
an then introduce the actual UML extensions defined for this purpose. above, it is not 
necessary to define a separate stereotype for every domain concept, since some of the 
concepts do not appear explicitly in UML models. However, their presence can be 
inferred from the presence of others. For descriptions of the semantics of the stereotypes 
defined here and the rules for their usage, the reader should refer to sections: 
Section 8.1.3, “Domain Model,” on page 8-4 and Section 8.1.4, “Domain Concept 
Details,” on page 8-5. In this section we describe how the domain concepts can be 
represented in UML. First we discuss the mappings in general, and then introduce the 
actual UML extensions defined for this purpose respectively.
November 2002 UML Profile for Schedulability, Performance, and Time 8-15



8

«PAclosedLoad»

This stereotype models a closed workload (see Section 8.1.4.9, “ClosedWorkload,” on 
page 8-10).

Tag definitions:

The following constraint is defined for this stereotype:

• This stereotype can only be applied to be the first step in a performance context.

«PAcontext»

This models a performance analysis context (see Section8.1.4.1, “ Performance Context,” 
on page 8-5). 

The following constraints are defined for this stereotype:

Stereotype Base Class Tags

«PAclosedLoad» Message PArespTime
PApriority
PApopulation
PAextDelay

Stimulus

Action State

SubactivityState

Action

ActionExecution

Operation

Method

Reception

Tag Type Multiplicity Domain Attribute Name

PArespTime PAperfValue [0..*] Workload::responseTime

PApriority Integer [0..1] Workload::priority

PApopulation Integer [0..1] ClosedWorkload::population

PAextDelay PAperfValue [0..1] ClosedWorkload::externalDelay

Stereotype Base Class

«PAcontext» Collaboration

CollaborationInstanceSet

ActivityGraph
8-16 UML Profile for Schedulability, Performance, and Time November 2002



8

• A performance analysis context must contain at least one element that is stereotyped 
as a kind of step.

• A performance analysis context based on collaborations must have exactly one 
model element stereotyped as a workload.

• Only a top-level performance context can have a workload defined.

«PAhost»

This stereotype models a processing resource (see Sectio n8.1.4.5, “ProcessingResource,” 
on page 8-8). 

Tag definitions:

The following constraints are defined for this stereotype:

• This stereotype can only be applied to be the first step in a performance context

Stereotype Base Class Tags

«PAhost» Classifier PAutilization
PAschdPolicy
PArate
PActxtSwT
PAprioRange
PApreemptable
PAthroughput

Node

ClassifierRole

Instance

Partition

Tag Type Multiplicity Domain Attribute Name

PAutilization Real [0..*] Resource::utilization

PAschdPolicy Enumeration: 
{‘FIFO’, 
‘HeadOfLine’, 
‘PreemptResume’, 
‘ProcSharing’, 
‘PrioProcSharing’, 
‘LIFO’}

[0..1] ProcessingResource::schedulingPolicy

PArate Real [0..1] ProcessingResource::processingRate

PActxtSwT PAperfValue [0..1] ProcessingResource::contextSwitchTime

PAprioRange Integer range [0..1] ProcessingResource::priorityRange

PApreemptable Boolean [0..1] ProcessingResource::isPreemptable

PAthroughput Real [0..1] Resource::throughput
November 2002 UML Profile for Schedulability, Performance, and Time 8-17



8

«PAopenLoad»

This models an open workload (see Section 8.1.4.8, “OpenWorkload,” on page 8-10).

Tag definitions:

The RTarrivalPattern type of the occurrence tag is defined in “RTarrivalPattern” on 
page 5-33.

The following constraints are defined for this stereotype:

• This stereotype can only be applied to be the first step in a performance context.

Stereotype Base Class Tags

«PAclosedLoad» Message PArespTime
PApriority
PAoccurrenceStimulus

Action State

SubactivityState

Action

ActionExecution

Operation

Method

Reception

Tag Type Multiplicity Domain Attribute Name

PArespTime PAperfValue [0..*] Workload::responseTime

PApriority Integer [0..1] Workload::priority

PAoccurrence RTarrivalPattern [0..1] OpenWorkload::population
8-18 UML Profile for Schedulability, Performance, and Time November 2002



8

«PAresource»

This stereotype models a passive resource (see Section 8.1.4.6, “Passive Resource,” on 
page 8-9). 

Tag definitions:

The following constraints are defined for this stereotype:

• This stereotype can only be applied to be the first step in a performance context.

Stereotype Base Class Tags

«PAresource» Classifier PAutilization
PAschdPolicy
PAschdParam
PAcapacity
PAaxTime
PArespTime
PAwaitTime
PAthroughput

Node

ClassifierRole

Instance

Partition

Tag Type Multiplicity Domain Attribute Name

PAutilization Real [0..*] Resource::utilization

PAschdPolicy Enumeration: 
{‘FIFO’, 
‘PriorityInheritance’,
‘NoPreemption’,
‘HighestLockers’,
‘PriorityCeiling’}

[0..1] PassiveResource::schedulingPolicy

PAschdParam Real [0..*] PassiveResource::schedulingPolicy
(for providing numerical values associ-
ated with the scheduling policy, such as 
the priority ceiling value)

PAcapacity Integer [0..1] PassiveResource::capacity

PAaxTime PAperfValue [0..n] PassiveResource::accessTime

PArespTime PAperfValue [0..n] PassiveResource::responseTime

PAwaitTime PAperfValue [0..n] PassiveResource::waitTime

PAthroughput Real [0..1] Resource::throughput
November 2002 UML Profile for Schedulability, Performance, and Time 8-19



8

«PAstep»

This models a step in a performance analysis scenario (see Section 8.1.4.3, “Step,” on 
page 8-7). 

Tag definitions:

8.2.2.4 Tagged Value Types

The following types of tag value strings are defined for use with the stereotypes above. 
We have used TVL to describe these often complex strings (see Appendix A - The Tag 
Value Language). They are all instances of the TVL list type. The elements of the list are 
typically mixtures of strings, numeric literals, TVL variable names, and TVL 
expressions.In representing the syntax of these types, we use the following standard BNF 
notational conventions:

• A string between double quotes (“) represents a literal.

• A token in angular brackets (<element>) is a non-terminal.

• A token enclosed in square brackets ([<element>]) implies an optional element of 
an expression.

• A token followed by an asterisk (<element>*) implies an open-ended number of 
repetitions of that element.

• A vertical bar indicates a choice of substitutions.

Stereotype Base Class Tags

«PAstep» Message PAdemand
PArespTime
PAprob
PArep
PAdelay
PAextOp
PAinterval

Stimulus

Action State

SubactivityState

Tag Type Multiplicity Domain Attribute Name

PAdemand PAperfValue [0..*] Step::hostExecutionDemand

PArespTime PAperfValue [0..*] Step::responseTime

PAprob Real [0..1] Step::probability

PArep Integer [0..1] Step::repetition

PAdelay PAperfValue [0..*] Step::delay

PAextOp PAextOpValue [0..*] Step::operations

PAinterval PAperfValue [0..*] Step::interval
8-20 UML Profile for Schedulability, Performance, and Time November 2002



8

Note that TVL uses parentheses to identify arrays, commas to separate elements of 
arrays, and single quotes for string literals.

PAperfValue

These strings are used to specify a complex performance value as defined in 
Section 8.1.4.10, “Performance Values,” on page 8-10. The value is an array in the 
following format:

“(“ <source-modifier> “,” <type-modifier> “,” <time-value> “)”

Where:

<source-modifier> ::= ‘req’ | ‘assm’ | ‘pred’ | ‘msr’

is a string that defines the source of the value meaning respectively: required, assumed, 
predicted, and measured.

<type-modifier> ::= ‘mean’ | ‘sigma’ | ‘kth-mom’ , <Integer> | ‘max’ |’percentile,’ 
     <real> | ‘dist’

is a specification of the type of value meaning: average, variance, kth-moment (integer 
identifies value of k), percentile range (real identifies percentage value), probability 
distribution.

<time-value> is a time value described by the RTtimeValue type (note that this value 
could be a variable such as @T1).

For example, the tagged value expression:

{PAdemand = (‘msr’, ‘mean’, (20, ‘ms’))}

represents a demand in a scenario step with a measured mean value of 20 milliseconds 
(note the parenthesis around the last term can be removed with no change in semantics). 
For more examples of these performance value strings, refer to the example provided in 
Section 8.2.3.1, “Web Video Application,” on page 8-22.

PAextOpValue

This string is used to identify an external operation and either (a) the number of 
repetitions of that operation that are performed or (b) a performance time value. The time 
value of the operation is assumed to be defined elsewhere. The general format for this 
string is given as:

“(“ <String> “,” <integer> | <time-value> “)”

where the string is used to name the external operation, the integer provides a mean 
number of times that the operation is invoked, and time value is of type PAperfValue (see 
“PAperfValue” on page 8-21).
November 2002 UML Profile for Schedulability, Performance, and Time 8-21



8

8.2.3 Modeling Guidelines and Examples

8.2.3.1 Web Video Application

This example is a web-based video-streaming application. A user sitting at a workstation 
needs to access a video over the internet through the services of a centralized web server. 
The logical structure of this application is shown in Figure 8-3.

Figure 8-3 The instance structure of the web video application

The deployment of the logical elements across the engineering environment is shown in 
Figure 8-4..

Figure 8-4 The deployment structure of the web video application

The user makes a selection through the web browser (b), asking the remote web server 
(ws) for a video to be fed back to the user’s site. Based on the selection, the web server 
chooses an appropriate video server (vs), which initiates a video player (vp) on the user’s 
site and then sends it a stream of video frames. The video frames are displayed back to 
the user through a dedicated video window (vw).

b : Browser

ws : WebServer

vs : VideoServer

vp : VideoPlayer

vw : VideoWindow

b : Browser ws : WebServer vs : VideoServervp : VideoPlayer vw : VideoWindow

:ClientWorkstation : WebServerNode : VideoServerNode

: Internet

«GRMdeploys» «GRMdeploys»«GRMdeploys»
8-22 UML Profile for Schedulability, Performance, and Time November 2002



8

The scenario just described can be conveniently represented either by the sequence 
diagram in Figure 8-5 or, even better, by a hierarchical activity graph, as shown in 
Figure 8-6 and Figure 8-7. 

Figure 8-5 Video request and display scenario – sequence diagram representation

The advantage of activity graphs over sequence diagrams for this purpose is that they 
provide more direct ways of modeling 

• concurrent forks and joins, such as the fork that occurs when a confirmation is sent 
to the browser at the same time that an initialization message is sent to the video 
server.

• hierarchical scenarios, since steps can be represented by subactivity states, which, in 
turn, have matching activity graphs. For example, the “send video” step shown in 
Figure 8-6 is expanded in Figure 8-7.

b : Browser ws : WebServer vs : VideoServer vp : VideoPlayer vw : VideoWindow

processSelection

initialPlayout initializePlayer

sendFrame

showFrame

terminalPlayout

confirm

*[$N]
November 2002 UML Profile for Schedulability, Performance, and Time 8-23



8

Figure 8-6 Video request and display scenario – hierarchical activity diagram representation

b : Browser

select
service

vs : VideoServerws : WebServervp : VideoPlayer

handle
selection

initiate
playout

confirm

initialize
player

send video

send
terminate

terminate
player

[more frames]
[no more frames]
8-24 UML Profile for Schedulability, Performance, and Time November 2002



8

Figure 8-7 The activity graph corresponding to the “send video” subactivity in Figure 8-6

QoS Requirements

Next, we introduce the performance requirements of this application. Firstly, there is a 
performance requirement on the response time for the confirmation to the user that the 
request has been received. This requirement is specified as a probability that the delay in 
receiving the confirmation will not take longer than half a second in 95% of the cases:

Probability(Confirmation delay > 500 ms) < 0.05

Or, expressed as a percentile measure:

95th percentile (Confirmation delay) < 500 ms

The next performance requirement is on the video stream that is fed back to the user. 
Frames should be displayed at regular intervals of 30 ms, and there is a performance 
requirement on the jitter, that the probability of a frame being displayed late is less than 
1%:

Probability (Interval between frame display instants < 30 ms) > 0.99

This very high-level view is sufficient to introduce the system and the performance 
issues. The confirmation delay is the interval between the “Select service” and “Receive 
confirmation” activities. The jitter of the video reception is defined over intervals 
between successive showFrame operations. 

send
frame

show
frame

receive
frame

vs : VideoServer vp : VideoPlayer vw : VideoWindow
November 2002 UML Profile for Schedulability, Performance, and Time 8-25



8

To analyze performance, we would require data on the execution of the responsibilities. 
Suppose, purely for the purpose of exposition, that we have the following values (they 
are labeled as to whether they are measured values, estimates, or assumptions):

• (estimate) video server processing demand per frame: mean = 10 ms 

• (estimate) video viewer processing demand per frame: mean = 15 ms, standard 
deviation (stdv) = 10 ms 

• (assumed) network delay distribution: exponential with mean: 10 ms 

• (measured) local network packets per frame: 65 

• (measured) file operations per frame, for retrieval for the video server: 12

Additional parameters that are needed to complete an evaluation include the 
requirements, and a description of the workload intensity. Here, we will use the folowing 
additional parameters:

• the number of users active in the system at one time is limited to $NUsers

• external delay: each user has an average delay between ending one session and 
beginning another of 20 minutes

• frames in a video: $N, a variable

• video frame interval: 30 ms 

• (requirement) confirmation delay: 95% value < 500 ms

• (requirement) interval between successive frame displays: 99% value < 30 ms.

If the client operations are divided between a Browser component and a VideoPlayer 
component, the software design has four components, which will be shown in the 
following analysis.

The Annotated UML Model

For convenience, we have mostly used the comment-based notation for displaying the 
relevant performance-related values in the example. While this increases visual clutter, it 
is much easier to discern which specific QoS attributes apply to which elements. Of 
course, it is assumed that computer-based tools can significantly reduce and possibly 
eliminate such clutter, by hiding elements of a graph that are not of interest at a particular 
point in time. 
8-26 UML Profile for Schedulability, Performance, and Time November 2002



8

First, in Figure 8-8 we show a sequence diagram for the scenario outlined above. The 
QoS attributes associated with the events and actions of this diagram are taken directly 
from the requirements. In this case, the closed workload is associated with the first action 
execution, since there is no explicit user in the model (had there been one, then the 
workload could have been attached to the stimulus coming from the user to the browser).

Figure 8-8 Sequence diagram of web video application with performance annotations (partial 
set)

b : Browser ws : WebServer vs : VideoServer vp : VideoPlayer vw : VideoWindow

processSelection

initialPlayout initializePlayer

sendFrame

showFrame

terminalPlayout

confirm

*[$N]

«PAclosedLoad»
{PApopulation=$NUsers,
PAextDelay=('mean','asgn',20,'ms')}}

«PAcontext»

«PAstep»
{PArespTime=
('req','percentile',95,500,'ms')}}

«PAstep»
{PAdemand=
('est','mean',1,'ms')}}

«PAstep»
{PAdemand=
(('est','mean',15,'ms'),
('est','sigma',10))}

«PAstep»
{PArep=$N,
PAdemand=('est','mean',10,'ms'),
PAextOp=('filesys',12),('network',65)}

«PAstep»
{PAinterval=
('req','percentile',99,30,'ms')}}
November 2002 UML Profile for Schedulability, Performance, and Time 8-27



8

Alternatively, we can annotate the sequence diagram with the same information 
(Figure 8-9 and Figure 8-10). The choice is up to the modeler and the circumstances on 
hand.

Figure 8-9 Annotated activity diagram of the web video application with performance 
annotations

b : Browser

«PAstep»
select

service

vs : VideoServerws : WebServervp : VideoPlayer

«PAstep»
handle

selection

«PAstep»
initiate
playout

«PAstep»
confirm

«PAstep»
initialize
player

«PAstep»
send video

«PAstep»
send

terminate

«PAstep»
terminate

player

[more frames]
[no more frames]

«PAclosedLoad»
{PApopulation=$NUsers,
PAextDelay=('mean','asgn',20,'ms')}}

{PArespTime=
('req','percentile',95,500,'ms')}}

{PAdemand=
('est','mean',1,'ms')}}

{PArep=$N,}

«PAcontext»
8-28 UML Profile for Schedulability, Performance, and Time November 2002



8

Figure 8-10 Details of the “send video” subactivity with performance annotations

Finally, in, Figure 8-11 we also depict the annotated deployment diagram. In this case, to 
reduce visual clutter, we have only shown the QoS attributes of one host processor. 
Notice the use of the $Util variable whose value is to be determined by model analysis.

Figure 8-11 Annotated deployment model for the web video application 

A model annotated in this manner contains sufficient information to be analyzed for 
basic properties such as processor utilization.

«PAstep»
send
frame

«PAstep»
show
frame

«PAstep»
receive
frame

vs : VideoServer vp : VideoPlayer vw : VideoWindow

{PAdemand=
(('est','mean',15,'ms'),
('est','sigma',10))}

{PAdemand=('est','mean',10,'ms'),
PAextOp=('filesys',12),('network',65)}

{PAinterval=
('req','percentile',99,30,'ms')}}

«PAcontext»

b : Browser ws : WebServer vs : VideoServervp : VideoPlayer
vw :

VideoWindow

«PAhost»
:ClientWorkstation

«PAhost»
: WebServerNode

«PAhost»
: VideoServerNode

: Internet

«GRMdeploys» «GRMdeploys»«GRMdeploys»

«PAcontext»

{PAschdPolicy=PreemptResume,
PArate=1,
PAutilization=$Util,
PActxtSwT=('est','mean',40,'us')}
November 2002 UML Profile for Schedulability, Performance, and Time 8-29



8

8.2.4 Required UML Metamodel Changes

This package assumes that the UML metamodel is modified to support the action 
execution concept. This is defined in Section 4.1.9.3, “ActionExecution,” on page 4-17. 
No other metamodel changes are assumed or required.

8.2.5 Proposed Notational Extensions

No special notation is proposed for performance based modeling.
8-30 UML Profile for Schedulability, Performance, and Time November 2002



Real-Time CORBA Applications 9
In this chapter we demonstrate how the general concepts and concrete extensions defined 
in this specification can be used to model applications that use OMG’s Real-Time 
CORBA standard. Note that this is not a model of Real-Time CORBA itself, although 
abstract representation of some client-visible aspects of that standard are included. The 
purpose of these extensions is to facilitate schedulability analyses of Real-Time CORBA 
applications, by annotating UML models of such applications in terms of concepts 
defined in the schedulability framework of this specification as described in the 
Schedulability Modeling chapter. Thus, they constitute a sub-profile of the schedulability 
sub-profile.

(For those who need a detailed UML model of Real-Time CORBA we provide the basic 
class definitions in Appendix B - Model of Real-Time CORBA.)

9.1 Domain Viewpoint

Real-Time (RT) CORBA is a set of extensions built on top of standard CORBA. One of 
its primary purposes is to provide a framework for predictable end-to-end execution 
times of CORBA-based applications in environments that may be distributed and 
heterogeneous (e.g., combining several different real-time OS-based parts into a common 
application).

The basic CORBA model, also supported by RT CORBA, is a client-server model. A 
client makes a series of requests to one or more servers that may be in different address 
spaces from the client. In the real-time context, such execution scenarios (“activities” in 
RT CORBA parlance) typically have deadline constraints. Since there can be multiple 
scenarios running concurrently, possibly sharing some of the same servers and resources, 
conflicts can arise so that special action needs to be taken to ensure that deadlines are 
respected. This requires the knowledge of relative priorities of activities, controlled 
access to shared resources (to prevent deadlocks and to minimize priority inversion), etc. 
RT CORBA provides built-in mechanisms for handling this, provided that it is given 
information of the QoS characteristics of the various scenarios. 
November 2002 UML Profile for Schedulability, Performance, and Time 9-1



9

Figure 9-1 depicts a domain model of RT CORBA applications. The model is fully based 
on the conceptual framework provided by the scheduling domain model (see Figure 7-1 
on page 7-5). This approach was chosen to simplify the schedulability analysis of UML 
models that represent RT CORBA application..  

Figure 9-1 The Real-Time CORBA domain model

RT CORBA clients make requests, which represents “responses” in terms of the 
schedulability model in this specification. It is useful to recall here that a response is a 
kind of composite action (see Section 4.1.9.30, “Scenario,” on page 4-25), which means 
that it can be decomposed into a set of finer-grained actions, allowing a finer-grained 
model if desired (e.g., the individual actions may be accessing different resources). Note 
that we do not show the trigger that activates a response in this model, but it would 
certainly need to be specified in a concrete case if schedulability analysis is to be 
performed.

The client requests (responses) are made through one or more RT CORBA connections, 
which connect clients to servers. These connections may be shared or they may be 
exclusive to the client. In some cases, multiple shared connections may be set up to allow 
priority-based handling of requests. These are known as “banded connections” since each 
connection is dedicated to a particular interval of priority values (delineated by a high 
priority and a low priority).

SchedulableResource
(from Schedulabil i tyAnalysisModel)

SResource
(f rom S ched ulabil i tyAnal ysisMode l)

RTCorb
RTCclient

timeout
clientPriority
private

11..*

+host

11..*

/

<<deploys>>

RTCmutex

0..*

+ownedResources

0..*

/

RTCscheduler

schedulingPolicy
executionEngine

Scheduler
(from Schedulabil i tyAnalysisModel)

ExecutionEngine
(from Schedulabil i tyAnalysisModel)

1..*

1..*

1..*

1..*

/

RTCserver

serverPriority 0..*

1

0..*

+host

1

/

<<deploys>>

Response
(from Schedulabil i tyAnalysisModel)

1

0.. *

1

+clientScenario
0.. *

0..*0..*

+usedMutexes

0..*0..* /

1..*0..*

+usedServers

1..*0..* /

1..*0..*

+distributableThreads

1..*0..* /

RTCconnection

is Shared
hiPriority
loPriority
host

0..*

1

0..*

1

1..*0..*

+usedConnections

1..*0..* /

RTCchannel

schedulingPolicy
averageLatency +host

/

<<deploys>>
9-2 UML Profile for Schedulability, Performance, and Time November 2002



9

Note that request priorities may be set either by clients (“client-propagated priority 
model”) or by servers (“server-declared priority model”). 

An RT CORBA client may also use one or more mutexes which are used as binary 
semaphores. 

Connections, servers, and mutexes are all examples of resources as defined in the 
schedulability model (note that this means that they are all protected resources). The role 
of the execution engine of the schedulability model is played here by the real-time ORB 
(RTCorb in the class diagram), since it is the platform on which all these resources run 
and which is responsible for administering the scheduling policy that is built into the RT 
ORB. (Oddly enough, RT CORBA does not specify an explicit mechanism for defining 
such a policy – that is outside the scope of the standard. All it requires is that it must 
support some type of priority inheritance or priority ceiling protocol.)

Finally, the RT CORBA client acts as a platform for the scenarios that it executes, so it is 
a natural match for the Schedulable Resource Concept of the schedulability model. 

9.1.1 Domain Concept Details and Usage

We now look at each of the domain concepts and explain their characteristics and usage. 
We describe the concepts primarily from a modeling perspective and do not go into the 
finer details of the individual concepts. Those can be found in the appropriate OMG 
document.

9.1.1.1 RTCchannel

This is an instance of a communication channel between RT CORBA ORBs. It represents 
the transport over which tow ORBs communicate.

Attributes

averageLatency the one-way latency (delay) for the communication channel. This is 
a time value expression, so it may be an integer, a distribution 
function, or a histogram.

Associations

schedulingPolicy (inherited from ExecutionEngine) is the scheduling policy for this 
communication channel. The usual policies are FixedPriority or 
FIFO.

rTCconnection the set of RT CORBA connections that are deployed on this 
channel. In effect, this is an instance of a deploys relationship. 
However, for convenience, it is rendered in the domain model as a 
stereotyped association.

9.1.1.2 RTCclient

This is an instance of an RT CORBA client. It encompasses both the application part of 
the client as well as the underlying RT CORBA infrastructure machinery (the IDL 
“stub”). This allows us to view it from both perspectives based on convenience. In its 
November 2002 UML Profile for Schedulability, Performance, and Time 9-3



9

infrastructure role, it represents the platform (e.g., process, task, thread), which runs the 
client response. This is why it is a subclass of SchedulableResource. In its application 
role, it executes the client functionality.

Attributes

clientPriority This attribute is only specified in the client-propagated priority 
model in which priority is specified with the service request as 
made by the client. If this attribute is not specified then we will 
assume that the client propagated priority model is not being used. 
This priority value is used to determine the priority of the responses 
undertaken by this client.

private this Boolean attribute identifies that the client has a private non-
multiplexed transport connection to the server. If this attribute is 
omitted, then it is assumed that there is no private connection 
present.

timeout the round-trip timeout value; that is, the maximum time interval in 
which the response is expected to complete; this value is passed as 
the absolute deadline of the response.

Associations

clientScenario the set of scenario executions performed by the client instance, in 
response to some trigger (e.g., a real-time clock interrupt). 

host the instance of the RT ORB on the client side on which this client is 
deployed. In effect, this is an instance of a deploys relationship as 
defined in “The Deploys Mapping” on page 4-30. However, for 
convenience, it is rendered in the domain model as a stereotyped 
association.

9.1.1.3 RTCconnection

This is a kind of communication resource that is used by a client to communicate with 
the server. It is a kind of protected resource since it may be multiplexed across a number 
of clients and scenarios. The specifics of the modeling of its communication QoS 
characteristics (throughput, delay, etc.) are outside the scope of this specification (for one 
possible approach, refer to “Passive Resource” on page 8-9).

Attributes

capacity (inherited from SResource) this attribute may be used to specify the 
communication QoS characteristic; as noted, the details of this are 
out of scope for this specification.

isShared this Boolean attribute indicates whether this connection is shared or 
dedicated to a single client. In the latter case, the corresponding 
client has to have its “private” attribute set. 

hiPriority the highest priority of communications stimuli that can be passed 
through this connection (the priority is an RT CORBA priority); if 
the loPriority value is omitted, then this connection does not 
represent a banded connection.

loPriority the lowest priority of communication stimuli that can be passed 
9-4 UML Profile for Schedulability, Performance, and Time November 2002



9

through this connection; note that this integer value must be less 
than or equal to the hiPriority attribute.

Associations

response the set of responses that use this connection.

rTCserver the RT CORBA server to which this connection is attached.

accessControlPolicy (inherited from ProtectedResource via SResource) this is the access 
control policy that is used to access the channel.

host the communication channel that implements this connection

9.1.1.4 RTCmutex

This is a representation of an instance of an RT CORBA mutex. This is a kind of 
protected resource which can only be accessed/released using appropriate acquire and 
release operations.

Associations

accessControlPolicy (inherited from ProtectedResource via SResource) this is the access 
control policy that is used by the mutex; it must be some form of 
priority inheritance policy or priority ceiling policy.

response the set of responses that use this mutex.

rTCorb the RT ORB that owns this mutex.

9.1.1.5 RTCorb

This is an instance of an RT CORBA ORB. It represents both the server and client sides. 
The ORB is responsible for administering its built-in scheduling policy. It is modeled as 
a kind of execution engine since it is the “virtual platform” upon which the client and 
server are deployed.

Associations

schedulingPolicy (inherited from Execution Engine) the scheduling policy 
administered by this ORB. According to the standard, it has to be 
some kind of priority inheritance or priority ceiling policy.

rTCserver the set of RT CORBA objects that act as servers and which are 
deployed on this ORB. In effect, this is an instance of a deploys 
relationship as defined in “The Deploys Mapping” on page 4-30 
However, for convenience, it is rendered in the domain model as a 
stereotyped association.

rTCclient the set of clients that are deployed on this ORB. In effect, this is an 
instance of a deploys relationship as defined in “The Deploys 
Mapping” on page 4-30. However, for convenience, it is rendered in 
the domain model as a stereotyped association.

ownedResources the set of mutexes owned by this ORB instance.
November 2002 UML Profile for Schedulability, Performance, and Time 9-5



9

9.1.1.6 RTCscheduler

This is an instance of an RT CORBA scheduler (see Section 7.1.3.7, “Scheduler,” on 
page 7-10). It becomes the scheduling policy for the RT CORBA POA with which it is 
associated. As an infrastructure element, it is the platform for execution of the scheduler 
interface and serves as a resource broker for execution engines. The RT CORBA 2.0 
specification defines four modules for four types of schedulers (fixed priority, earliest 
deadline first, least laxity first, and maximum utility (see “Scheduling Policy” on 
page 7-10)).

Associations

response the set of responses scheduled by this scheduler

9.1.1.7 RTCserver

This is an instance of an RT CORBA object that performs one or more published 
services. Like the client, this concept represents both the application and the CORBA 
infrastructure element. As an infrastructure element, it is the platform for executing the 
server code and is, therefore, a kind of SchedulableResource (as per the schedulability 
model; NB: this derivation is not shown explicitly in Figure 9-1). From an application 
aspect, it represents the server functionality.

Attributes

serverPriority this is the priority that is used in case of the “server declared 
priority model”. If this attribute is not specified, we assume that the 
server declared model is not being used for this server.

Capacity (inherited from SResource) this represents the capacity to handle 
concurrent requests; in case of an RT CORBA server, this reflects 
the size of the threadpools associated with the server/POA. The 
ability to more precisely model the complex threadpool 
mechanisms of RT CORBA (which includes threadpool lanes, 
static and dynamic threads, request buffering, and thread 
borrowing) are outside the scope of this sub-profile and will require 
future specializations.

Associations

response the set of responses that are using this server.

rTCconnection the set of connections bound to this server.

host the execution engine (RT ORB) on which this server is deployed. In 
effect, this is an instance of a deploys relationship as defined in 
“The Deploys Mapping” on page 4-30. However, for convenience, 
it is rendered in the domain model as a stereotyped association.

9.2 UML Viewpoint

We now examine how the domain model concepts map to UML model elements and 
UML extensions.
9-6 UML Profile for Schedulability, Performance, and Time November 2002



9

9.2.1 Mapping RT CORBA Application Concepts to UML Equivalents

Since this is a specialization of the schedulability sub-profile, the approach used is 
identical to the one described in Section 7.2.1, “Mapping Schedulability Domain 
Concepts into UML Equivalents,” on page 7-13.

9.2.2 UML Extensions

9.2.2.1 Conventions

To minimize the possibility of confusion and name clashes, we will prefix all extension 
elements defined for this sub-profile using the “RSA” prefix (which stands for “Real-
Time CORBA Schedulability Analysis). Note that some of the tags will be inherited from 
stereotypes defined in other parts of this specification, notably the stereotypes defined for 
schedulability analysis.

9.2.2.2 Profiles

For convenience, all extensions related to this sub-profile are packaged into a single 
profile package called “RSAprofile”. This profile imports from the schedulability 
analysis profile “SAprofile” and hence must be used with that profile.

9.2.2.3 Stereotypes

The following stereotypes and associated tagged values are defined for this sub-profile.

«RSAchannel»

Represents the RT CORBA channel concept as defined in “RTCchannel” on page 9-3..

Stereotype Base Class Parents  Tags

«RSAchannel» Classifier «SAengine» RSAschedulingPolicy
RSAaverageLatency

ClassifierRole

Instance

Object

Node
November 2002 UML Profile for Schedulability, Performance, and Time 9-7



9

The defined tags are:

«RSAclient»

Represents the RT CORBA client concept as defined in “RTCclient” on page 9-3.

The defined tags are:

If the RSAhost tagged value is not specified, it can still be identified if this element is 
involved as the supplier of a «GRMdeploys» relationship with an element stereotyped as 
«RSAorb». 

Tag Name Tag Type Multiplicity Domain Attribute Name

RSAschedulingPolicy Enumeration: 
{‘FIFO’,
‘RateMonotonic’, 
‘DeadlineMonotonic’, 
‘HKL’,  
‘FixedPriority’, 
‘MinimumLaxityFirst’, 
‘MaximizeAccruedUtility’, 
‘MinimumSlackTime’}

[0..1] RTCchannel::schedulingPolicy

RSAaverageLatency RTtimeValue [0..1] RTCchannel::averagelatency

Stereotype Base Class Parents  Tags

«RSAclient» Classifier «SASchedulable» RSAtimeout
RSAclPrio
RSAprivate
RSAhost

ClassifierRole

Instance

Object

Node

Tag Name Tag Type Multiplicity Domain Attribute Name

RSAtimeout RTtimeValue [0..1] RTCclient::timeout

RSAclPrio Integer [0..1] RTCclient::clientPriority

RSAprivate Boolean [0..1] RTCclient::private

RSAhost Reference to an element 
sterotyped as «RSAorb»

[0..1] RTCclient::host
9-8 UML Profile for Schedulability, Performance, and Time November 2002



9

«RSAconnection»

Represents the RT CORBA connection concept as defined in “RTCconnection” on 
page 9-4.

The defined tags are:

If the RSAserver tagged value is not specified, it can still be identified if this element is 
involved in an association with a model element stereotyped as «RSAorb». 

Stereotype Base Class Parents  Tags

«RSAconnection» Classifier «SASchedulable»
«SAResource»

SAAccessControl
RSAshared
RSAhiPrio
RSAhost
RSAloPrio
RSAserver

ClassifierRole

Instance

Object

Node

Tag Name Tag Type Multiplicity Domain Attribute Name

SAAccessControl Enumeration of:
{PriorityInheritance,
DistributedPriorityCeiling}

[0..1] RTCconnection::Access Control Policy

RSAshared Boolean [0..1] RTCconnection::isShared

RSAhiPrio Integer [0..1] RTCconnection::hiPriority

RSAhost Reference to an element 
stereotyped as 
«RSAchannel»

[0..1] RTCconnection::host

RSAloPrio Integer [0..1] RTCconnection::loPriority

RSAserver Reference to an element 
sterotyped as 
«RSAserver»

[0..1] RTCconnection::server
November 2002 UML Profile for Schedulability, Performance, and Time 9-9



9

«RSAmutex»

Represents the RT CORBA mutex concept as defined in “RTCmutex” on page 9-5.

The defined tags are:

If the RSAhost tagged value is not specified, it can still be identified if this element is 
involved as the contained entity in a composition relationship with an element 
stereotyped as «RSAorb». 

«RSAorb»

Represents the RT CORBA ORB concept as defined in “RTCorb” on page 9-5.

Stereotype Base Class Parents  Tags

«RSAmutex» Classifier «SAResource» SAAccessControl
RSAhost

ClassifierRole

Instance

Object

Node

Tag Name Tag Type Multiplicity Domain Attribute Name

SAAccessControl Enumeration of:
{‘PriorityInheritance’,
‘DistributedPriorityCeiling’}

[0..1] RTCmutex::Access Control Policy

RSAhost Reference to an element 
sterotyped as «RSAorb»

[0..1] RTCmutex::rTCorb

Stereotype Base Class Parents  Tags

«RSAorb» 1Classifier

1. only the deployable type: Component, Artifact, Node, and Class

«SAEngine» SASchedulingPolicy

ClassifierRole

Instance

Object

Node
9-10 UML Profile for Schedulability, Performance, and Time November 2002



9

The defined tag is:

«RSAserver»

Represents the RT CORBA server concept as defined in “RTCserver” on page 9-6.

The defined tags are:

Tag Name Tag Type Multiplicity Domain Attribute Name

SASchedulingPolicy (see “«SAengine»” on 
page 7-17)

[0..1] Execution Engine::SchedulingPolicy

Stereotype Base Class Parents  Tags

«RSAserver» Classifier «SAResource» RSAsrvPrio
SACapacity

ClassifierRole

Instance

Object

Node

Tag Name Tag Type Multiplicity Domain Attribute Name

RSAsrvPrio Integer [0..1] RTCserver::serverPriority

SACapacity Integer [0..1] RTCserver::Capacity
November 2002 UML Profile for Schedulability, Performance, and Time 9-11



9

9.2.3 Modeling Guidelines and Example

We illustrate the use of these extensions on an elementary example consisting of one RT 
CORBA client and two RT CORBA servers. Clearly, such an example does not pose a 
challenging schedulability analysis problem, but our objective is to explain how the 
stereotypes are to be used without complicating things with the intricacies of 
schedulability analysis. The basic real-time situation is shown in Figure 9-2.  

Figure 9-2 Example RT CORBA application 

This model shows three distinct layers of the application in one diagram (successive 
layers are separated by a horizontal intermittent line). The top layer contains the “pure” 
application. This is a logical model that, except for the stereotype annotations, could be 
based on any suitable run-time technology, not necessarily RT CORBA. (Note that we 
could apply a different profile, say a DCOM profile, to this part of the model and its 
structure would remain the same.) 

The next level down is the engineering environment that realizes the application layer. It 
happens to be based on RT CORBA technology comprising a set of interconnected 
ORBs. Of course, a different run-time technology would have a different structure and 
the deployment mappings to the elements of the layer above would also be quite different 
in that case. Hence, the content and structure of this layer is more technology specific. 

«RTclock»
TGClock : Clock

«RSAclient»
{RSAtimeout=(105,'ms),

RSAclPrio=12
TelemetryGatherer

: DataGatherer

«RSAserver»
{SAcapacity=4}

Sensor1
:SensorInterface

«RSAserver»
{SAcapacity=10}

Sensor2
:SensorInterface

«RSAorb»
{SAschedulingPolicy=

'RateMonotonic'}
TG-ORB: RTOrb

«GRMdeploys
»

«RSAorb»
{SAschedulingPolicy=

'RateMonotonic'}
S1-ORB: RTOrb

«GRMdeploys
»

«RSAorb»
{SAschedulingPolicy=

'RateMonotonic'}
S2-ORB: RTOrb

«GRMdeploys
»

«SAengine»
{SAschedulingPolicy=

'RateMonotonic',
SArate=1}
P1 : I586

«SAengine»
{SAschedulingPolicy=

'RateMonotonic',
SArate=0.5}

P2 : Ix86

«GRMdeploys
»

«GRMdeploys
»

«GRMdeploys
»

«GRMdeploys
»

«SAsituation»
9-12 UML Profile for Schedulability, Performance, and Time November 2002



9

At the bottom, we see the actual hardware configuration, which consists of two different 
kinds of processors, each realizing a portion of the functionality of the RT CORBA layer. 
In this case, the RT CORBA layer is the logical model and the hardware is the 
engineering model.

Note that we skipped the operating system level in this example. This is a matter of 
modeling preference. Such a model could have been interspersed between the RT 
CORBA layer and the hardware, but that would have made the problem more complex. 
Such a model would be required in situations where fine-grained detail is relevant to the 
model analysis. 

In our case, we have abstracted away the operating system and absorbed its effects into 
the QoS characteristics of the RT CORBA layer. Of course, the QoS values at each level 
are a function of the values of the layer below. For example, the worst case completion 
time of a server depends on the characteristics of the ORB technology used, which in 
turn, depends on the QoS characteristics of the hardware. For this example, we have 
chosen not to show these dependencies. However, in practice, such dependencies must be 
factored in if a layered model such as this is being analyzed. (In many cases, it is 
sufficient to analyze a system at only one layer.)

When this occurs, the dependencies need to be factored in. For example, if we define a 
nominal CPU processing rate using the TVL variable $CPUrate, then the actual timings 
might be expressed as a function of that rate, for example:

SAWorstCase=(1.5 * $CPUrate,’ms’)

where the value of $CPUrate might be supplied from outside the model.

The application works as follows: a real-time clock, TG Clock, prompts the RT CORBA 
client, which uses RT CORBA to tale a reading from each of two sensors. Once it has 
received a reply, it compares the two and makes an appropriate decision (the details of 
that are not relevant here). The scenario that ensues when the clock triggers the client can 
be seen in Figure 9-3.
November 2002 UML Profile for Schedulability, Performance, and Time 9-13



9

By itself, this application-level diagram may not contain sufficient information to 
perform model analysis. For instance, we do not know which scheduling policy is being 
used. However, if we look down into the layer below, we can determine that the ORBs 
are using a priority inheritance type of policy. 

Figure 9-3 The “response” scenario to a clock trigger 

A complete model analysis would start at the bottom and work out the QoS 
characteristics by moving upwards a layer at a time. One way of avoiding this potentially 
lengthy and complex procedure is to define a “required environment” for a given level 
using the GRMrequires relationship, as described in “The Requires Mapping” on 
page 4-31. In that case, model analysis can start proceed on the assumption that the 
required environment will be met so that the QoS values of this environment can be used 
as a basis for model analysis of all the layers above. This is particularly useful in the 
early phases of system design when the details of the engineering technologies in the 
lower layers are either completely unknown or not known in sufficient detail.

9.2.4 Required Metamodel Changes

This sub-profile assumes that the UML metamodel is modified to support the action 
execution concept. This is described in detail in Section 4.2.4, “Required UML 
Metamodel Changes,” on page 4-38. No other metamodel changes are assume or 
required.

9.2.5 Proposed Notational Extensions

No special notation is proposed for this sub-profile.

«RTclock»
TGClock

«RSAclient»
TelemetryGatherer

: DataGatherer

«RTevent» {RTat=('periodic', 100,
'ms')}
tick ( )

«RSAserver»
Sensor1

:SensorInterface

«SAaction»
{SAworstCase=(15,'ms'),
RTduration=(10,'ms')}
readSensor ( )

«SAresponse»
{SAabsDeadline
=(100,'ms')

«RSAserver»
Sensor2

:SensorInterface

«SAaction»
{SAworstCase=(30,'ms'),
RTduration=(20,'ms')}
readSensor ( )

«SAaction»
{SAworstCase=(25,'ms'),
RTduration=(5,'ms')}
compare ( )

«SAsituation»
9-14 UML Profile for Schedulability, Performance, and Time November 2002



Model Processing 10
Model processing is the process by which a UML model is either analyzed by some 
model analysis technique or supplemented by some synthesis method. Since no specific 
decomposition of tool functionality is prescribed or assumed, it is necessary to define a 
standard format for communicating information between tools. In this chapter we 
describe the mechanisms by which this can be achieved.

10.1 Domain Viewpoint

10.1.1 Use Cases

The following are the basic use cases envisaged for model processing in increasing order 
of complexity:

• The most elementary use case is a simple model analysis. First, the UML model is 
annotated using the appropriate stereotypes as defined in this document. In some 
cases, additional parts of the model may need to be defined to represent specific 
analysis contexts. Note that a given model may be annotated in a number of 
different ways. Once the annotation is complete, the model is passed from the 
model editing tool to the model analysis tool where it is analyzed and the results fed 
back to the editing tool (this allows viewing of the results in the same environment 
and form in which the model was produced).

• A more complex scenario is one of manual experimentation: the model is annotated 
in such a way that some aspects are left unspecified. The result is a parametrized 
model and the intent is to experiment with different parameter values until a suitable 
set of parameter values is discovered.

• The most sophisticated scenario is an automated variant of the manual 
experimentation approach. However, instead of manually searching for appropriate 
parameter values, the search is automated on the basis of some optimality criterion. 
We refer to this as the synthesis use case, since the parameter values are derived 
automatically.
November 2002 UML Profile for Schedulability, Performance, and Time 10-1



10
What can be parameterized in a model for the latter two cases. The most obvious 
candidates are various QoS values. Another possibility is deployment mappings (see 
Section 4.1.8.3, “Deployment,” on page 4-15). This can serve as a basis for determining 
an optimal engineering platform for a given logical model.

10.1.2 Domain Concepts

The diagram in Figure 10-1 represents a conceptual model of the general process 
envisaged for analyzing or synthesizing models. It is important to note that this diagram 
merely identifies the kinds of functionality and information required for this process and 
is not intended to prescribe how, or even whether, that functionality is to be partitioned 
among tools. At one extreme, a single complex tool may realize all of these functions or, 
at the other extreme, a different tool may realize each one. 

Figure 10-1 General model-processing framework 

The arrows in the diagram denote data as well as control flows from one functional box 
to another. The data exchanged between them consists of models, control data, and 
results.

The model editor function is used to create and modify UML models. In principle, the 
model editor does not have to be aware of the semantics of the extensions defined in this 
profile. However, it should be able to enforce the rules and constraints defined in this 
profile, such as restrictions on which kind of stereotype can be applied to a which kind of 
UML model element. (This capability should be standard on any tool that supports the 
UML standard.)

Of course, it may be useful for a UML modeling tool intended specifically for the real-
time domain to provide custom support for the profile and its elements. Such a tool could 
perform domain-specific validations of the model and provide more convenient support 
for real-time concepts and notations.

Model Processor

Model
Configurer

Parametrized
UML Model

(XMI)

Configured
UML Model

(XMI)

Model
Editor

Results
Convertor

Configuration
Data Set

Model
Convertor

Processing
Control

Specification

Domain
Model

Model
Analyzer

Processing
Results

Results
UML Model

(XMI)

1

2

3 4 5

6

7

8910
10-2 UML Profile for Schedulability, Performance, and Time November 2002



10
As noted above, a model produced by a model editor may be parameterized. This allows 
a single model to be analyzed for different parameter values without having to produce a 
new model every time the values change. However, this creates a need for a model 
configurer function, a function that is similar in purpose and form to the C pre-processor. 
It takes a parameterized model and, by substituting an appropriate set of parameter 
values, it produces a different model.

In general, it is convenient to package sets of values that go together into distinct 
configuration data sets. Each set represents the values that are to be applied to one model 
processing (analysis) run. The analyst simply has to choose the set that is of interest for 
the model analysis at hand. 

The model processor function takes in a UML model analyzes it and generates the 
analysis results. We discuss this function in more detail below. A processing control 
specification may be used to control any options in the model analysis (or synthesis) 
process. Given that different model analysis tools produce different results and given that 
it is desirable to minimize the amount of expertise of individual tools and model analysis 
methods that software developers need to have, the results of model analysis must be 
returned in a format that is understandable to the developer and the model editing tool. 

10.1.3 The Model Configurer

The model configurer works simply: it looks for TVL expressions in the value field of 
tagged values and evaluates them (see Appendix A - The Tag Value Language for the 
specification of TVL). If the expression involves a scalar or array variable, and the value 
of that variable is provided in the configuration data set that is being used, it substitutes 
the value for the variable. For instance, a tag value might be expressed as follows: 

{RTduration = ($serverTO, ‘ms’)}

Assuming that the chosen configuration data set contains the Perl1 statement 

$serverTO = 55;

the result of the substitution will be

{RTduration = (55, ‘ms’)}

Note that TVL allows conditional expressions such as

($timeType == ‘discrete’) ? int($myTimeValue) : $myTimeValue

which returns the integer portion of the value of $myTimeValue if the $timeType variable 
is equal to ‘discrete’ and the unaltered value otherwise. 

1.TVL is a small subset of the standard Perl language.
November 2002 UML Profile for Schedulability, Performance, and Time 10-3



10
In fact, configuration data sets represent Perl scripts which can be arbitrarily complex 
(but will typically consist mostly of simple variable assignment statements). The purpose 
of these scripts is to compute the desired variable values. The model configurer works as 
follows:

• it first invokes the Perl interpreter and runs the configuration data set script; this 
script calculates the necessary values.

• it parses the XMI of the UML model seeking tagged value values that contain TVL 
expressions (this means that it has to recognize the stereotypes defined in this 
profile).

• it evaluates such expressions using the Perl interpreter and, if the expression can be 
computed successfully, it substitutes the result of evaluation (as a string) in place of 
the expression string in the XMI.

• any value expressions whose values cannot be computed are left unmodified. 

Expressions whose values cannot computed by the model configurer are used for one of 
two purposes:

• they may represent model analysis result variables, whose values are substituted 
into the model once model analysis completes.

• they may represent configuration values that are to be computed by the model 
processor prior to analysis; the data required to compute these values may be 
supplied with the processor control specifications. 

The last point means that the model processor may have to contain its own model 
configurer. However, this configurer is likely to be analysis specific rather than generic. 
For example, a given time value may be defined by an array that specifies a minimum 
value, a maximum value, and an average. Depending on the type of model analysis 
desired, the model processor might choose one based on the needs of the moment, or it 
may run three separate analyses, one for each value.

Note that the model configurer is only required if configuration data sets are to be used. 
If not, then it can be omitted altogether and a simpler (but more manual) process can be 
used instead, as depicted in Figure 10-2.
10-4 UML Profile for Schedulability, Performance, and Time November 2002



10
 

Figure 10-2 A simplified system without a model configurer 

10.1.4 The Model Processor

The model processor is where the model analysis (or synthesis) is performed. As shown 
in Figure 10-3 on page 10-6, it is decomposed into units of finer functionality.

10.1.4.1 The Model Convertor

In general, the input function of a model processor is a pre-processor or model converter. 
This function might include a domain- and tool-specific configurer as described above, 
but its primary function is to convert the offered UML model into a domain-specific 
model suitable for model analysis. It does this by first detecting the appropriate analysis 
contexts (see Section 4.1.9.5, “AnalysisContext,” on page 4-17) in the model. Using the 
elements in these contexts as the roots of its exploration of the UML model, the 
convertor extracts the information that it needs. It primarily seeks elements that have 
been stereotyped with stereotypes that it recognizes. Note, however, that the model 
convertor cannot depend exclusively on stereotypes, but must be at least partially 
cognizant of the semantics of UML. 

For example, let us assume that we are doing a schedulability analysis of some UML 
model whose fragment is shown in Figure 10-3. Let us say that the exploration of the 
model has led the convertor to the Ix86Processor Node element which is stereotyped as a 
kind of «SAEngine» and, hence, relevant to the domain model. From here, it will need to 
follow any composition links or associations attached to that model element, even if they 
are not stereotyped, to determine if any of them lead to other elements that may be 
relevant to model analysis. In this way it will detect, the attached SensorData element 
and, because it is stereotyped as an «SAResources», it will include that in its model as 

Model Processor

Configured
UML Model

Model
Editor

Results
Convertor

Model
Convertor

Processing
Control

Specification

Domain
Model

Model
Analyzer

Processing
Results

Results
UML Model

1

2 3

4

5

678
November 2002 UML Profile for Schedulability, Performance, and Time 10-5



10
well. However, upon following a similar link to the display unit it will not include that 
element in its domain since that element has not been identified as relevant to 
schedulability analysis.

Figure 10-3 An example of links that need to be followed by a model processor

So how will the convertor know which links to follow and which ones to ignore? This is 
determined by the relationships defined in the domain model. When it finds an element 
that it knows belongs to the domain model, it needs to look for any relationships that this 
domain element might have and find their UML equivalents. These mappings are 
described in the individual model analysis sub-profiles. 

For instance, the above composition link between «SAEngine» and «SAResources» maps 
directly to the composition association (“ownedResource”) between ExecutionEngine 
and SResource shown in Figure 7-1 on page 7-5.

The model converter is responsible for detecting any inconsistencies of the QoS 
annotations that it uses. Any such inconsistencies that are detected must be fed back to 
the UML model editor via the results convertor, possibly bypassing the model analyzer if 
the inconsistency is critical to model analysis as shown by the dashed line in Figur e10-1.

Once the domain model has been extracted, it is passed on to the model analyzer.

10.1.4.2 Model Analyzer

The model analyzer encapsulates the pure model analysis function. It does not require 
any knowledge of UML. The processing specification that may be fed to it identifies 
specific control information for the model processor and is unique to each vendor. 

The results of the model analysis, of course, are also independent of UML and are not 
only analysis specific but also tool specific. For this reason, we need another adaptor 
function: the results convertor.

10.1.4.3 The Results Converter

The purpose of this function is to convert the results of model analysis back into a UML 
model that can be returned to the model editor where it can be viewed in “source” form 
by the software developer.

«SAEngine»
{SARate=1,

SASchedulingPolicy=FixedPriority}

:Ix86Processor

«SAResource»

SensorData
:RawDataStorage

display
:DisplayClass
10-6 UML Profile for Schedulability, Performance, and Time November 2002



10
The model analyzer produces three kinds of results data that needs to be fed back to the 
user. The simplest method is to use the tagged value variable notation. In that case, the 
results converter replaces the dependent variable string with the actual value generated 
by the model analyzer. Producing more complex results that can be expressed within a 
UML model can be returned in the form of the contents of a note. This may be in XML 
or HTML, allowing complex results (e.g., graphs, charts) to be displayed directly in the 
model editor. The final class of “data” for results is to augment the UML with additional 
synthesized model elements. For example, the results of model analysis may add new 
elements to the domain model, which have to be converted by the results convertor into 
corresponding classes, packages, or other UML elements to create a new “results” model. 

In the latter case, it is desirable that the inserted elements be identifiable as changes to 
the existing model. Model differencing or some similar technique would be very helpful. 
The changes should be reversible so that the original model can be preserved. A 
classification system for changes could show which changes are “normal” and which are 
“problem areas.”

10.2 UML Viewpoint

10.2.1 UML Extensions

The use of TVL as a method for specifying tagged values is described in Appendix A - 
The Tag Value Language. Strictly speaking, this is not an extension to UML since it 
adheres fully to the format supported by the current definition of tagged values.

The only useful extension that is necessary to support the model processing framework 
described here is a new stereotype of the UML Comment concept to allow tools to 
recognize a comment that is not simple text, but HTML text instead.

«HTMLtext»

Represents a Comment whose body represents HTML text.

10.2.2 Required Metamodel Changes

No metamodel changes are assumed by the concepts defined in this chapter.

10.2.3 Proposed Notational Extensions

No special UML notation is proposed for the concepts defined in this chapter.

Stereotype Base Class

«HTMLtext» Comment
November 2002 UML Profile for Schedulability, Performance, and Time 10-7



10
10-8 UML Profile for Schedulability, Performance, and Time November 2002



 Tag Value Language A
This appendix defines a formal language for specifying the value fields of tagged values. 
While tagged values are often assumed to be simple values there are certain cases where 
it may be necessary to express such values in a more complex way. For example, it may 
be required for one tagged value to be related in some way to another. This requires both 
a way of referencing the value of another tag as well as the ability to use expressions, 
such as arithmetic expressions.

We propose to base the syntax and semantics of this Tag Value Language (or, TVL) on a 
simple subset of the Perl language. This has two principal advantages: (1) since Perl is a 
widely used language, it is likely to be familiar to many users and (2) Perl is supported 
by a wide range of readily available freeware and shareware tools and utilities.

In this first release, we intentionally restrict TVL to a very small subset of Perl. Once 
there is enough experience with the use of TVL, we anticipate that additional Perl 
features will be included.

TVL expressions are used to specify the value part of a tagged value according to the 
following syntax:

{<tag-name> = <TVL-expression>}

The expression could be a simple literal, such as a number, or it could be a complex 
expression that involves variables and arithmetic functions. Whatever the expression, the 
desired value is produced when the expression is evaluated.

The use of expressions and variables clearly presumes that there is a pre-processor that 
evaluates the TVL-based tagged values before a model can be analyzed. It also requires a 
mechanism for supplying the values of independent variables, since TVL itself does not 
have an assignment operation. However, these additional mechanisms are necessary for 
any system that allows tagged values to be expressed through variables and are not a 
consequence of using TVL. The nature of these mechanisms is described in 
Section 10.1.3, “The Model Configurer,” on page 10-3.
November 2002 UML Profile for Schedulability, Performance, and Time A-1



A

A.1 Literals

Naturally, the ability to describe literals is a fundamental capability for a language that 
serves exclusively to specify values.

A.1.1 Numbers

Numbers are represented, in decimal form only. Both integer and real numbers are 
allowed, as are both positive and negative numbers. No whitespaces or commas are 
allowed within numbers, but an underscore can be used to improve readability (that is, 
the underscore character in the middle of a literal is ignored). Real numbers may be 
expressed using the scientific notation.

The following are typical examples:

12345 #positive integer
–123 #negative integer
1234.56 #positive real
1.2E3 #scientific notation
1_000_000 #represents the value one million

The following is an example of a tagged value specified as a numeric literal:

{timeout = 60}

A.1.2 Booleans

Boolean values are not expressed through literals, but through the values of two pre-
defined global variables $true and $false. For example:

{isPeriodic = $true}

A.1.3 Strings

Strings are specified by bracketing a stream of printable characters between single quotes 
(‘). Any printable character can be included in a string. To include the single quote 
character itself, the two-character combination of backslash and quote (\’) is used, while 
a backslash character can be inserted into a string literal using a double backslash 
combination (\\).

The following are typical examples:

‘A simple string’
‘A string with a quote literal (\’) included within.’
‘The backslash-quote combination (\\\’) appearing literally 
in a string’

There are no predefined upper limits on the size of strings.
A-2 UML Profile for Schedulability, Performance, and Time November 2002



A

A.1.4 Lists

Literals of heterogeneous types can be combined into a list of items between a set of 
parentheses with individual items separated by commas. There are no predefined limits 
on the size of lists.

The following are typical examples:

(1, 2, 3) #a simple numerical list
(‘a’, 2.5) #a heterogeneous list
((1,2,3), (‘a’, 2.5))#a list of lists (equivalent to the 
flattened list)

For example, the following is a tagged value whose value is represented by a list:

{timeout = (60, ‘sec’)}

Note that this is a more realistic example than the earlier one since it explicitly identifies 
the physical measure that the number expresses (i.e., time expressed in seconds). Most 
tagged values, that express physical quantities will likely be expressed using lists rather 
than simple values.

Ordered lists can be specified as ranges using the “range” operator, which returns a list of 
values counting by one from the left value to the right value. For instance, the list (1..5) 
is a shorthand form for the list (1, 2, 3, 4, 5).

Individual items in a list can be accessed by indexing. This is achieved by specifying the 
index of the desired list element to the right of the list, with the left-most element at 
index value 0.  For instance, the result of evaluating the following expression:

(‘a’, ‘b’, ‘c’, ‘d’) [2]

is the literal ‘c’, which is in index position 2. 

A.2 Variables

There are two kinds of variables in TVL, scalars and arrays. Scalar variables store a 
single value, whereas arrays store lists of values. Scalar variables begin with the “$” 
character, whereas lists are identified by the “@” symbol as the first character. The 
second character must be a letter or underscore, followed by a combination of 
alphanumeric characters (including underscore characters) up to a maximum of 255 
characters. Uppercase and lowercase characters are distinct.

All variable names are global to the UML model in which they appear, although the 
scalar and array namespaces are distinct (i.e., $A and @A represent different variables).

A variable is declared by its use in the value part of a tagged value; e.g.:

{clockRate = ($clock_rate, ‘ns’)}
November 2002 UML Profile for Schedulability, Performance, and Time A-3



A

The variable above may then appear in some other TVL expression, such as

{adjustedClockRate = (1.4 * $clock_rate, ‘ns’)}

A.3 Expressions

An expression can be a simple literal or variable, or it can be a compound expression 
formed by combining expressions through operators. The latter provides a relatively 
sophisticated capability to express values that are related to each other in possibly very 
complex ways. 

For instance, the following somewhat contrived example shows a complex case where the 
value of a timeout will depend exponentially on the number of clients configured in the 
system ($clients), unless that number is greater than 6, in which case a single 
maximum value is used:

{timeout = (int ( ($clients < 6) ? (0.5 * exp ($clients)): 
(0.5 * exp (6))), ‘seconds’)}

A.3.1 Arithmetic Operators

TVL supports the following arithmetic operators, listed in order of decreasing 
precedence:

( ) bracketed expression
** exponentiation
- arithmetical negation
*   / multiplication and division
+   - addition and subtraction

Note that parentheses can be used to change precedence in the usual way. For example, 
the following expression will evaluate to 1:

- (1 + 2)**2 + 10

A.3.2 Relational Operators

The relational operators are, in decreasing precedence order:

<   >   <=   >=less than, greater than, less than or equal, 
greater than or equal
==   != equal, not equal

The relational operators are all below the arithmetic operators in the operator precedence 
order.

The result of applying these operators is a Boolean value.
A-4 UML Profile for Schedulability, Performance, and Time November 2002



A

A.3.3 Boolean Operators

The Boolean operators, which are at the bottom of the precedence hierarchy are:

not logical negation
and logical conjunction
or  xor logical disjunction and exclusive disjunction

Like the relational operators, the result of applying these operators is a Boolean value.

A.3.4 Conditional Operator

This operator works like an if-then-else statement, but, it can be used inside an 
expression. It has the following format:

<Boolean-expression> ? <if-true-expression> : <if-false-
expression>

The result of evaluating this expression will be the result of the evaluation of the <if-
true-expression> if the <Boolean-expression> is true. Otherwise, the result 
will be the result of the <if-false-expression>. For instance:

($clock_rate > 5) ? (5) : ($clock_rate)

returns either the value of $clock_rate or 5, whichever is smaller.

The conditional operator has a precedence that is below the relational operators, but 
above the Boolean operators.

A.3.5 Numeric Functions

The following standard numeric functions are pre-defined and can be used in value 
expressions:

abs (arg) returns the absolute value of the argument
exp (arg) returns e to the power of the argument
int (arg) returns the integer portion of the argument
log (arg) returns the base e logarithm of the argument
sqrt (arg) returns the square root of the argument
November 2002 UML Profile for Schedulability, Performance, and Time A-5



A

A-6 UML Profile for Schedulability, Performance, and Time November 2002



 Model of Real-Time CORBA B
In this section we describe a custom model library1 that defines UML extensions for 
modeling the internal elements of Real-Time CORBA [35]. This, in turn, is based on the 
OMG standard UML Profile for CORBA. The overall package structure is shown in 
Figure B-1.

In the remainder of this appendix, we provide definitions of the contents of these 
packages. However, we do not go into a detailed description of any of them, since they 
are all defined in the appropriate OMG CORBA specifications [31], [34], [35].

1.A “model library” is defined in the UML 1.4 standard as “a stereotyped package that 
contains model elements which are intended to be reused by other packages. A model library 
differs from a profile in that a model library does not extend the metamodel using stereotypes 
and tagged definitions.”
November 2002 UML Profile for Schedulability, Performance, and Time B-1



B

.

Figure B-1 The CORBA and Real-Time CORBA packages and their dependencies.

RTCORBA
<<CORBAModule>>

RTPortableServer
<<CORBAModule>>

CORBA
<<CORBAModule>>

IOP
<<CORBAModule>>

PortableServer
<<CORBAModule>>

RTCosScheduling
<<CORBAModule>>

RTScheduling
<<CORBAModule>>

FP_Sc heduling
<<CORBAModule>>

EDF_Scheduling
<<CORBAModule>>

LLF_Scheduling
<<CORBAModule>>

Max_Utility_Scheduling
<<CORBAModule>>

TimeBase
<<CORBAModule>>
B-2 UML Profile for Schedulability, Performance, and Time November 2002



B

The elements of the CORBA and IOP packages are shown in Figure B-2 and Figure B-3 
respectively.

Figure B-2 CORBA module definitions

Figure B-3 IOP module definitions

The types and data structures for the RT CORBA module are based on types inherited 
from the CORBA and IOP modules.

Figure B-4 RTCORBA typedefs and constants

short
<<primitive>>

unsignedLong
<<primi tive>>

native
<<primitive>>

Policy
<<CORBAInterface>>

Current
<<CORBAInterface>>

RepositoryId
<<CORBAStruct>>

CORBAModuleConstants

<<CORBAConstant>> PRIORITY_MODEL_POLICY_TYPE : PolicyType = 40
<<CORBAConstant>> THREADPOOL_POLICY_TYPE : PolicyType = 41
<<CORBAConstant>> SERVER_PROTOCOL_POLICY_TYPE : PolicyType = 42
<<CORBAConstant>> CLIENT_PROTOCOL_POLICY_TYPE : PolicyType = 43
<<CORBAConstant>> PRIVATE_CONNECTION_POLICY_TYPE : PolicyType = 44
<<CORBAConstant>> PRIORITY_BANDED_CONNECTION_POLICY_TYPE : PolicyType = 45

<<CORBAConstants>>

IOPModuleConstants
<<CORBAConstants >>

<<CORBAConstant>> RTCorbaPriority : ServiceId = 10
<<CORBAConstant>> RTCorbaPriorityRange : ServiceId = 11

ProfileId
<<CORBATypedef>>

NativePriority
<<CORBATy pedef>>

short
(from CORBA)

<<primitive>>

Priority
<<CORBATypedef>>

unsignedLong
(from CORBA)

<<primitive>>

ThreadpoolId
<<CORBATypedef>>

RTCORBAModuleConstants

<<CORBAConstant>> minPriority : Priority = 0
<<CORBAConstant>> maxPriority : Priority = 32767

<<CORBAConstants>>

PriorityMapping
<<CORBANative>>

PriorityTransform
<<CORBANative>> PriorityModel

CLIENT_PROPAGATED
SERVER_DECLARED

<<CORBAEnum>>
November 2002 UML Profile for Schedulability, Performance, and Time B-3



B

The structures and interfaces associated with threadpools are shown in Figure B-5, and 
the structures associated with protocols are defined in Figure B-6.

Figure B-5 Structs related to threadpools

Figure B-6 Structs related to protocols

The primary interface for Real-Time CORBA is the Real-Time ORB, shown in 
Figure B-7 (note that, to reduce clutter, we have omitted the full set of individual 
operation parameters since they can be found in the standard definition).

Figure B-7 The Real-Time ORB interface specification

unsignedLong
(from CORBA)

<<primitive>>
ThreadpoolLanes

<<CORBASequence>>
ThreadpoolLane

<<CORBAStruct>>

1

1 +static_threads

1

1

1

1 +dynamic _threads

1

1

10..n 10..n

Priority
<<CORBATypedef>>

1

1

+lane_priority 1

1

PriorityBand
<<CORBAStruct>>

1

1+high

1

1
1

1+low

1

1

PriorityBands
<<CORBASequence>>1 0..n1 0..n

ProfileId
(from  IOP)

<<CORBATypedef>>

ProtocolList
<<CORBASequence>>

ProtocolProperties
<<CORBALocalityConstrainedInterface>>

Protocol
<<CORBAStruct>>

11

+protocol_type

11

1

0..n

1

0..n

1

1

+t rans port_protocol_propert ies 1

1

1

1

+orb_protocol_properties1

1

RT ORB

create_mutex()
Inval idThreadpool()
create_threadpool()
create_threadpool_wi th_lanes()
destroy_threadpool()
create_priori ty_model_pol icy()
create_threadpool_policy()
create_priori ty_banded_connection_pol icy()
create_server_protocol_pol icy()
create_cl ient_protocol_pol icy()
create_private_connection_pol icy()

<<CO RBALoc al i ty ConstrainedI nterfac e>>
B-4 UML Profile for Schedulability, Performance, and Time November 2002



B

The remaining interfaces are for setting policies of various kinds that apply in RT 
CORBA (Figure B-8 and Figure B-9).

Figure B-8 RTCORBA interfaces for setting policies

Figure B-9 RTCORBA locality constrained interfaces for policies

Figure B-10, depicts the interfaces for accessing RTCORBA::Current and for using the 
RTCORBA::Mutex interface.

Figure B-10 RTCORBA::Current and RTCORBA::Mutex interfaces

Priori tyModelPol icy

<<readonly>> priori ty_model : Priori tyModel
<<readonly>> server_priority : Priori ty

<<CORBAInterface>>

ThreadpoolPol icy

<<reado nly>> thre adpool : T hreadpoo lId

<<CORB AInterfac e>>

Pol icy
(from COR...

<<CORBAInterfac...

ServerProtocolPol icy

<<reado nly>> pro tocols : Protoco lList

<<CORBALCInterface>>
ClientProtocolPol icy

<<readonly>> protocols : ProtocolList

<<CORBALCInterface>>

PrivateConnectionPol icy
<<CORBAInterface>>

Priori tyBandedConnectionPol icy

<<readonly>> priori ty_bands : Priori tyBands

<<CORBAInterface>>

ProtocolProperties
<<CORBA Local i tyCo nstrai nedInterfac ...

GIOPProperties
<<CORBAInterfac...TCPProtocolProperties

send_buffer_size : Long
recv_buffer_size : Long
keep_alive : Boolean
dont_route : Boolean
no_delay : Boolean

<<CORBAInterface>>

Current
<<CORBAInterface>>

priori ty : Priori ty

Mutex
<<CORBALocal i tyConstrainedInterfac...

lock() : void
unlock() : void
try_lock(in max_wait : T imeT) : Boolean

Current
(from CORBA)

<<CORBALCI nterface>>
November 2002 UML Profile for Schedulability, Performance, and Time B-5



B

Another part of the RT CORBA interface is the Scheduling Service, shown in 
Figure B-11.

Figure B-11 RTCORBA scheduling service interfaces 

Figure B-12 RTScheduling typedefs

The following four figures describe the interfaces for four well-known scheduling disci-
plines: fixed priority, earliest deadline first, least laxity first, and maximize accrued utility. 
These interfaces are used in conjunction with the RTScheduling::Scheduler interface.

ClientScheduler

schedule_activity(in name : String) : void

<<CORBALocalityConstrainedInterface>>

ServerScheduler

create_POA(in parent : POA, in adapter_name : String, in a_POAManager : POAManager, in policies : PolicyList) : POA
schedule_object(in obj : Object, in name : String) : void

<<CORBALocalityConstrainedInterface>>

IdType
<<CORBATypedef>>

octetSequence
(from  CORBA)

<<CORBASequence>>
stringSequence

(from  CORBA)

<<CORBASequence>>

NameList
<<CORBATypedef>>
B-6 UML Profile for Schedulability, Performance, and Time November 2002



B

Figure B-13 Fixed priority scheduling structs and interfaces

SegmentSchedulingParameterPolicy
<<CORBALocalit yConstrainedInterface>>

value :  Segm ent SchedulingParameter

Policy
(from  CORBA)

<<CORBAInt erface>>

ResourceSchedulingParameterPolicy
<<CORBALocalit yConstrainedInterface>>

value :  ResourceS chedulingParameter

Scheduler
(f rom  RT Sched uling )

<<CORBALocalityConstrainedInterface>>

Scheduler
<<CORBALocalityConstrainedInterface>>

create_segment_scheduling_parameter(in value : ResourceSchedulingParameter) : SegmentSchedulingParameterPolicy
create_resource_scheduling_parameter(in value : ResourceSchedulingParameter) : SegmentSchedulingParameterPolicy
November 2002 UML Profile for Schedulability, Performance, and Time B-7



B

Figure B-14 Earliest deadline first interface

SchedulingParameter

deadline : TimeT
importance : Long

Policy
(from CORBA)

<<CORBAInterface>>

SchedulingParameterPolicy
<<CORBALocalityConstrainedInterface>>

value : SchedulingParameter

Scheduler
(from RT Schedul ing)

<<CORBALocalityConstrainedInterface>>

Scheduler
<<CORBALocalit yConstrainedInterface>>

create_scheduling_parameter(in value : Sc hedul ingParameter) : SchedulingParameterPolicy
B-8 UML Profile for Schedulability, Performance, and Time November 2002



B

Figure B-15 Least laxity first interface

SchedulingParameter
<<CORBAStruct>>

deadline : TimeT
estimated_initial_execution_time : TimeT
importance : Long

Scheduler
(from  RTScheduling)

<<CORBALocalityConstrainedInterface>>

Policy
(from  CORBA)

<<CORBAInterface>>

SchedulingParameterPolicy
<<CORBALocalityConstrainedInterface>>

value : SchedulingParameter

Scheduler
<<CORBALocalit yConstrainedInterface>>

create_scheduling_parameter(in value : Sc hedul ingParameter) : SchedulingParameterPolicy
November 2002 UML Profile for Schedulability, Performance, and Time B-9



B

Figure B-16 Maximize accrued utility interface

Figure B-17 depicts the interfaces that implement the dynamic scheduling functions for 
RTCORBA. RTScheduling::Scheduler creates and sets the scheduling policy for 
RTScheduling::Current. RTScheduling::ThreadAction has a single virtual operation 
RTScheduling::ThreadAction::do() that is the entry point for an application. RTSchedul-
ing::Current controls the allocation of the distributable thread (RTScheduling::Distribut-
ableThread) that is the scheduling unit for RTCORBA. RTScheduling::ResourceManager 
is an abstract interface for defining a scheduling discipline’s resource manager.

SchedulingParameter
<<CORBAStruct>>

deadline : TimeT
importance : Long

SchedulingParameterPolicy
<<CORBALocalityConstrainedInterface>>

value : SchedulingParameter

Policy
(from CORBA)

<<CORBAInterface>>

Scheduler
<<CORBALocalit yConstrainedInterface>>

create_scheduling_parameter(in value : Sc hedul ingParameter) : SchedulingParameterPolicy

Scheduler
(from RT Schedul ing)

<<CORBALocalityConstrainedInterface>>
B-10 UML Profile for Schedulability, Performance, and Time November 2002



B

Figure B-17 RTScheduling interfaces (RTScheduling::Current, RTScheduling::Scheduler, 
RTScheduling::ResourceManager, RTScheduling::ThreadAction, and 
RTScheduling::DistributableThread)

ThreadAction
<<CORBALocalityConstrainedInterface>>

do(in data : CORBA::VoidData) : void

Current
(from RT CORBA)

<<CORBAInterface>>

priority : Priority

Current
<<CORBALocalityConstrainedInterface>>

<<readonly>> id : IdType
<<readonly>> schedul ing_parameter : Policy
<<readonly>> implici t_schedul ing_parameter : Policy
<<readonly>> current_schedul ing_segm ent_names :  Nam eLis t

s pawn(in s tart : ThreadAction, in stack_size : unsignedLong,  in base_priority : Priori ty) :  DistributableThread
begin_schedul ing_segment(in name : St ring,  in s ched_param : Policy,  in im plici t_s ched_param : Policy) :  void
update_schedul ing_segm ent(nam e :  St ring, sched_param : Policy, impl ic it _sched_param  :  Pol ic y) : void
end_scheduling_segment (in name : String) :  void
get_current_id() : IdType
lookup(in id : IdType) : Dist ributableThread

DistributableThread
<<CORBALocalityConstrainedInterface>>

cancel() : voidResourceManager
<<CORBALocalityConstrainedInterface>>

Mutex
<<CORBALocalityConstrainedInterface>>

lock() : void
unlock() : void
try_lock(in max_wait : TimeT) : Boolean

Scheduler
<<CORBALocalityConstrainedInterface>>

scheduling_policies : PolicyList
poa_policies : PolicyList
scheduling_discipline_name : string

create_resource_manager(in name : string, in scheduling_parameter : Policy) : ResourceManager
set_scheduling_parameter(inout resource : Servant, in name : string, in scheduling_parameter : Policy) : void
November 2002 UML Profile for Schedulability, Performance, and Time B-11



B

B-12 UML Profile for Schedulability, Performance, and Time November 2002



 Bibliography C
[1] Awad, M., Kuusela, and J., Ziegler, J., Object-Oriented Technology for Real-Time 
Systems, Prentice-Hall Inc., 1996. 

[2] Beckwith, T. and Moore, A., “UML for real-time? Yes, but…,” Embedded Sys-
tems Engineering, April/May 1998.

[3] Briand, L. P. and Roy, D. M., Meeting Deadlines in Hard Real-Time Systems, 
IEEE Computer Society Press, 1999.

[4] Burns, A., and A. Wellings, Real-Time Systems and Programming Languages 

(2nd ed.), Addison-Wesley, 1997.

[5] Cooling, N., and Moore, A., “Real-Time Perspective – Foundation,” Artisan Soft-
ware White Paper, 1998.

[6] Cortelessa V. and R. Mirandola, “Deriving a Queueing Network based Perfor-
mance Model from UML Diagrams,” Proc. 2nd International Workshop on Soft-
ware and Performance (WOSP 2000), ACM, 2000.

[7] Cortelessa V. and R. Mirandola, “UML Based Performance Modeling of Distrib-
uted Systems,”  Proc. <<UML-2000>> Conference, Springer Verlag, 2000.

[8] Douglass, B., Doing Hard Time, Developing Real-Time Systems with UML, 
Objects, Frameworks, and Patterns, Addison Wesley, 1999.

[9] Douglass, B., Real-Time UML, Developing Efficient Objects for Embedded Sys-
tems – Second Edition, Addison Wesley, 2000.

[10] Drake, J., Gonzalez Harbour, M., Guiterrez, J., and Palencia, J., “Modeling and 
Analysis Suite for Real-Time Applications (MAST), Grupo de Computadores y 
Tiempo Real, Universidad de Cantabria (internal report), 2000.

[11] Gallmeister, B., POSIX.4: Programming for the Real World, O’Reilly and Asso-
ciates, Inc. 1995.

[12] Gomaa, H., Designing Concurrent, Real-Time and Distributed Applications with 
November 2002 UML Profile for Schedulability, Performance, and Time C-1



C

UML, Addison Wesley, 2000.

[13] Herzberg, D., “UML-RT as a Candidate for Modeling Embedded Real-Time Sys-

tems in the Telecommunication Domain,” Proc. 2nd International Conference on 
the Unified Modeling Language («UML»’ 99), Springer (LNCS vol. 1723), 1999 
(pp.331-338).

[14] Hoeben, F. , “Using UML Models for Performance Calculation,” Proc. 2nd Inter-
national Workshop on Software and Performance (WOSP 2000), ACM, 2000.

[15] ISO/IEC/ANSI, Ada 95 Reference Manual: Annex D: Real-Time systems 
ISO/IEC/ANSI 8652:1995. 

[16] ISO/IEC, ITU-T X.901 | ISO/IEC 10746-1 ODP Reference Model Part 1: Over-
view, ISO/IEC JTC1/SC21/WG7 (SC21 N8926rev), 1995.

[17] ISO/IEC, CD 15935 – Information Technology: Open Distributed Processing – 
Reference Model – Quality of Service, ISO/IEC JTC1/SC7 N1996, 1998.

[18] Kabous, L. and Neber, W., “Modeling Hard Real Time Systems with UML: The 

OOHARTS Approach,” Proc. 2nd International Conference on the Unified Mod-
eling Language («UML»’ 99), Springer (LNCS vol. 1723), 1999 (pp.339-355).

[19] Käkhkipuro, P., “UML Based Performance Modeling Framework for Object-Ori-

ented Distributed Systems,” Proc. 2nd International Conference on the Unified 
Modeling Language («UML»’ 99), Springer (LNCS vol. 1723), 1999 (pp.356-
371).

[20] Kelin, M., Ralya, T., Pollak, B., Obenza, R., and Gonzalez Harbour, M., A Prac-
titioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis 
for Real-Time Systems, Kluwer Academic Publishers, 1993.

[21] King, P. and R. Pooley, “Using UML to Derive Stochastic Petri Net Models,” 
Proc. 15th UK Performance Engineering Workshop, U. of Bristol, July 1999.

[22] Kopetz, H., Real-Time Systems: Design Principles for Distributed Embedded 
Applications, Kluwer Academic Publishers, 1997.

[23] Lanusse, A., Gerard, S., and Terrier, F., “Real-Time Modeling with UML: The 

ACCORD Approach,” Proc. 1st International Conference on the Unified Model-
ing Language («UML»’ 98), Springer (LNCS vol. 1618), 1998 (pp.319-335).

[24] Liu, J. W. S., Real-Time Systems, Prentice-Hall, Inc., 2000.

[25] McLaughlin, M. and Moore, A., “Real-Time Extensions to UML”, Dr. Dobbs 
Journal, December 1998 (pp. 82-93).

[26] de Miguel, M. et al., “UML Extensions for the Specification and Evaluation of 
Latency Constraints in Architectural Models,” Proc. 2nd International Workshop 
on Software and Performance (WOSP 2000), ACM, 2000.

[27] Moorehead, P., “Grow Real-Time UML Through Innovation,” Embedded Sys-
tems Development (no 46), October 1998.

[28] Motus, L., and M. G. Rodd, Timing Analysis of Real-Time Software, Pergamon 
Press, 1994

[29] Niehaus, D., Stankovic, J., and Ramamritham, K., “A Real-Time System 
C-2 UML Profile for Schedulability, Performance, and Time November 2002



C

Description Language,” Proc. Of the 1995 IEEE Real-Time Technology and 
Applications Symposium, May 1995 (pp.104-115).

[30] Object Management Group, UML 1.4 with Action Semantics, OMG document 
number ad/02-01-09 (January 2002).

[31] Object Management Group, The Common Object Request Broker: Architecture 
and Specification, OMG document number formal/00-10-01 (October 2000).

[32] Object Management Group, Enhanced View of Time Specification (version 1.1), 
OMG document number formal/02-05-07 (May 2002).

[33] Object Management Group, Object Time Service, OMG document number 95-
11-8 (December 1995).

[34] Object Management Group, Real-Time CORBA (version 1.1), OMG document 
number formal/02-08-02 (August 2002).

[35] Object Management Group, Real-Time CORBA 2.0: Dynamic Scheduling Speci-
fication, OMG document number ptc/01-08-34 (September 2001).

[36] Object Management Group, RFP for Scheduling, Performance, and Time, OMG 
document number ad/99-03-13 (March 1999).

[37] Object Management Group, Unified Modeling Language Specification v. 1.4, 
OMG document number formal/2001-09-67 (September 2001).

[38] Petriu, D. and Y. Sun, “Consistent Behaviour Representation in Activity and 
Sequence Diagrams,”  Proc. <<UML-2000>> Conference, Springer Verlag, 
2000.

[39] Porres Paltor, I., Lilius, J., Digital Sound Recorder: A case study on designing 
embedded systems using the UML notation, TUCS Technical Report No. 234, 
Turku Centre for Computer Science, January 1999.

[40] Ramamritham, K., Stankovic, J., and Zhao, W., “Distributed Scheduling of Tasks 
with Deadlines and Resource Requirements,” IEEE Transactions on Computers 
(vol. 38 no. 8), August 1989 (pp. 1110-1123).

[41] Roubtsova, E., van Katwijk, J., Toetenel, W., Pronk, C., and de Rooij, R., “Speci-

fication of Real-Time Systems in UML,”, Proc. 1st Workshop on Models for 
Time-Critical Systems (MTCS 2000), Pennsylvania State University, August 
2000 (http://univaq.it/~mtcs2000/proceedings.html).

[42] Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language Refer-
ence Manual, Addison Wesley, 1999.

[43] Schneider, F., On Concurrent Programming, Springer-Verlag, 1997.

[44] Selic, B., “A Quality of Service Framework for Object-Oriented Architectures,” 
International Journal of Software Engineering and Knowledge Engineering 
(vol.8 No.3), 1998 (pp. 315-331).

[45] Selic, B., “Turning Clockwise: Using UML in the Real-Time Domain,” Commu-
nications of the ACM (vol. 42, No.10), October 1999 (pp.46-54).

[46] Selic, B., “A Generic Framework for Modeling Resources with UML,” IEEE 
November 2002 UML Profile for Schedulability, Performance, and Time C-3



C

Computer (vol. 33 no.6), June 2000 (pp.64-69).

[47] Smith, C. and L. Willliams, “Software Performance Engineering for Object-Ori-
ented Systems: A Use-Case Approach,” Technical Report, Software Engineering 
Services, 1998.

[48] Woodisde, C., “Resource Architectures from Software Design,” Chapter 3 in 
Software Resource Architecture and Performance Oriented Patterns (manuscript 
in preparation).

[49] Xu, J. and Parnas, D., “On Satisfying Timing Constraints in Hard-Real-Time 
Systems,” IEEE Transactions on Software Engineering (vol. 19, no.1), January 
1993 (pp.70- 84).
C-4 UML Profile for Schedulability, Performance, and Time November 2002


	1.  Introduction
	1.1 Background and Purpose of This Document
	1.2 Proof of Concept
	1.3 Compliance Statement

	2.  Rationale and General Principles
	2.1 Modeling Real-Time Characteristics in UML
	2.2 Guiding Principles
	2.3 How This specification is to be Used
	2.3.1 Provide Analysis Method
	2.3.2 Provide Analysis Resource Model
	2.3.3 Synthesize Model
	2.3.4 Analyze Model
	2.3.5 Implement System


	3.  Approach and Structure
	3.1 Approach to Modeling Real-Time Applications
	3.2 Approach to Modeling for Model Analysis
	3.2.1 Modeling Resources
	3.2.2 Modeling Time
	3.2.3 Modeling Schedulability
	3.2.4 Modeling Performance

	3.3 Approach to Model Processing (Analysis and Synthesis)
	3.4 The Structure of the Profile
	3.4.1 Extension Specification Format Conventions


	4.  General Resource Modeling
	4.1 Domain Viewpoint
	4.1.1 The Core Resource Model Package
	4.1.2 The Causality Model Package
	4.1.3 The Resource Usage Model Package
	4.1.4 The Static Usage Model Package
	4.1.5 The Dynamic Usage Model Package
	4.1.6 The Resource Types Package
	4.1.7 The Resource Management Package
	4.1.8 The Realization Model Package (Deployment Modeling)
	4.1.9 Domain Concepts Details

	4.2 The UML Viewpoint
	4.2.1 Modeling Realization Relationships
	4.2.2 UML Extensions
	4.2.3 Modeling Guidelines and Examples
	4.2.4 Required UML Metamodel Changes
	4.2.5 Proposed Notational Extensions


	5.  General Time Modeling
	5.1 Domain Viewpoint
	5.1.1 The Time Model
	5.1.2 Timing Mechanisms
	5.1.3 Timed Events Model
	5.1.4 Modeling Timing Services
	5.1.5 Domain Concept Details and Usage

	5.2 UML Viewpoint
	5.2.1 Mapping Timing Domain Concepts into UML Equivalents
	5.2.2 UML Extensions
	5.2.3 Required UML Metamodel Changes
	5.2.4 Proposed Notational Extensions


	6.  General Concurrency Modeling
	6.1 Domain Viewpoint
	6.1.1 Concurrency Domain Model
	6.1.2 Domain Concepts (Detailed)

	6.2 UML Viewpoint
	6.2.1 Mapping Concurrency Domain Concepts into UML Equivalents
	6.2.2 UML Extensions
	6.2.3 Required UML Metamodel Changes
	6.2.4 Modeling Guidelines and Examples
	6.2.5 Proposed Notational Extensions


	7.  Schedulability Modeling
	7.1 Domain Viewpoint
	7.1.1 Background
	7.1.2 Types of Model Analysis Methods
	7.1.3 Domain Concepts Details

	7.2 UML Viewpoint
	7.2.1 Mapping Schedulability Domain Concepts into UML Equivalents
	7.2.2 UML Extensions
	7.2.3 Modeling Guidelines and Examples
	7.2.4 Required UML Metamodel Changes
	7.2.5 Proposed Notational Extensions


	8.  Performance Modeling
	8.1 Domain Viewpoint
	8.1.1 Background
	8.1.2 Types of Performance Analysis Methods
	8.1.3 Domain Model
	8.1.4 Domain Concept Details

	8.2 UML Viewpoint
	8.2.1 Mapping Performance Domain Concepts into UML Equivalents
	8.2.2 UML Extensions
	8.2.3 Modeling Guidelines and Examples
	8.2.4 Required UML Metamodel Changes
	8.2.5 Proposed Notational Extensions


	9.  Real-Time CORBA Applications
	9.1 Domain Viewpoint
	9.1.1 Domain Concept Details and Usage

	9.2 UML Viewpoint
	9.2.1 Mapping RT CORBA Application Concepts to UML Equivalents
	9.2.2 UML Extensions
	9.2.3 Modeling Guidelines and Example
	9.2.4 Required Metamodel Changes
	9.2.5 Proposed Notational Extensions


	10.Model Processing
	10.1 Domain Viewpoint
	10.1.1 Use Cases
	10.1.2 Domain Concepts
	10.1.3 The Model Configurer
	10.1.4 The Model Processor

	10.2 UML Viewpoint
	10.2.1 UML Extensions
	10.2.2 Required Metamodel Changes
	10.2.3 Proposed Notational Extensions


	Appendix A - Tag Value Language
	Appendix B - Model of Real-Time CORBA
	Appendix C - Bibliography

