
Smalltalk Language Mapping
Specification

New Edition: June 1999

 paid up,
fied ver-
pyright in
g con-

ire use
y be
at are
r protect

 an
ent does

iable for
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1998, Borland International
Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996, 1997 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998 Inprise Corporation
Copyright 1996, 1997 International Business Machines Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1996, 1997 Micro Focus Limited
Copyright 1991, 1992, 1995, 1996 NCR Corporation
Copyright 1995, 1996 Novell USG
Copyright 1991,1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1998 Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright 1996 Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the co
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo-
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be l

 profi
 Object

ize devel
 to indi-

-graphic,
thout
s sub-
at
, Inc.
e

ers to
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss ofts,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may author-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means-
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--wi
permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government i
ject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause
DFARS 252.227.7013 OMGÆ and Object Management are registered trademarks of the Object Management Group
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of th
Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

iii
 iii
ii

iv

iv

v

1
1-3

1-4

-5

1-5
-5
6

1-6

1-7

1-8

1-8

1-8

1-8

1-9
-10

-10

-12

-12

-13

-14

-14
4
5

1-15

-15

-15

-15

-15

-16

-16
Preface .
0.1 About CORBA Language Mapping Specifications

0.1.1 Alignment with CORBA i

0.2 Definition of CORBA Compliance

0.3 Acknowledgements .

0.4 References .

1. Smalltalk Language Mapping . 1-
1.1 Mapping Summary .

1.2 Key Design Decisions .
1.2.1 Consistency of Style, Flexibility and Portability of

Implementation . 1

1.3 Implementation Constraints .
1.3.1 Avoiding Name Space Collisions 1
1.3.2 Limitations on OMG IDL Types 1-

1.4 Smalltalk Implementation Requirements

1.5 Conversion of Names to Smalltalk Identifiers

1.6 Mapping for Interfaces .

1.7 Memory Usage .

1.8 Mapping for Objects .

1.9 Invocation of Operations .

1.10 Mapping for Attributes .
1.10.1 Mapping for Constants 1

1.11 Mapping for Basic Data Types . 1

1.12 Mapping for the Any Type . 1

1.13 Mapping for Enums . 1

1.14 Mapping for Struct Types . 1

1.15 Mapping for Fixed Types . 1

1.16 Mapping for Union Types . 1
1.16.1 Implicit Binding . 1-1
1.16.2 Explicit Binding . 1-1

1.17 Mapping for Sequence Types .

1.18 Mapping for String Types . 1

1.19 Mapping for Wide String Types . 1

1.20 Mapping for Array Types . 1

1.21 Mapping for Exception Types . 1

1.22 Mapping for Operations . 1

1.23 Implicit Arguments to Operations 1
Smalltalk Language Mapping i

Contents

1-17

-17

-18
19
-19

-19

-20

-21

-22

-23

24
1.24 Argument Passing Considerations

1.25 Handling Exceptions . 1

1.26 Exception Values . 1
1.26.1 The CORBAExceptionValue Protocol 1-
1.26.2 Pseudo-Objects Mapping Overview 1

1.27 CORBA::Request . 1

1.28 CORBA::Context . 1

1.29 CORBA::Object . 1

1.30 CORBA::ORB . 1

1.31 CORBA::NamedValue . 1

1.32 CORBA::NVList . 1-
ii Smalltalk Language Mapping

Preface
tion

this
0.1 About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping informa
for the following languages:

• Ada

• C

• C++

• COBOL

• IDL to Java

• Java to IDL

• Smalltalk

Each language is described in a separate stand-alone volume.

0.1.1 Alignment with CORBA

The following table lists each language mapping and the version of CORBA that
language mapping is aligned with.

Language Mapping Aligned with CORBA version

Ada CORBA 2.0

C CORBA 2.1

C++ CORBA 2.3

COBOL CORBA 2.1
 Smalltalk Language Mapping June 1999 iii

ng is

hey
e,
ng

d

 by
0.2 Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mappi
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, t
must adhere to the CORBA specifications to be called CORBA-compliant. For instanc
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ bindi
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to the Common Object Request
Broker: Architecture and Specification, Interworking Architecture chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core an
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA specifications are divided into these volumes:

1. The Common Object Request Broker: Architecture and Specification, which
includes the following chapters:

• CORBA Core, as specified in Chapters 1-11

• CORBA Interoperability , as specified in Chapters 12-16

• CORBA Interworking , as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

• Mapping of OMG IDL to the Ada programming language

• Mapping of OMG IDL to the C programming language

• Mapping of OMG IDL to the C++ programming language

• Mapping of OMG IDL to the COBOL programming language

• Mapping of OMG IDL to the Java programming language

• Mapping of Java programming language to OMG/IDL

• Mapping of OMG IDL to the Smalltalk programming language

0.3 Acknowledgements

The following companies submitted parts of the specifications that were approved
the Object Management Group to become CORBA (including the Language Mapping
specifications):

IDL to Java CORBA 2.3

Java to IDL CORBA 2.3

Smalltalk CORBA 2.0

Language Mapping Aligned with CORBA version
iv Smalltalk Language Mapping June 1999

rk

2,

C
• BNR Europe Ltd.

• Defense Information Systems Agency

• Expersoft Corporation

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• IBM Corporation

• ICL plc

• Inprise Corporation

• IONA Technologies Ltd.

• Digital Equipment Corporation

• Hewlett-Packard Company

• HyperDesk Corporation

• Micro Focus Limited

• MITRE Corporation

• NCR Corporation

• Novell USG

• Object Design, Inc.

• Objective Interface Systems, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Ma
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping specification.

0.4 References

The following list of references applies to CORBA and/or the Language Mapping
specifications:

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG T
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
Smalltalk Language Mapping References June 1999 v

o-

, S.

E

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micr
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version)
(Martin) O’Donnell, June 1994.

RPC Runtime Support For I18N Characters — Functional Specification, OSF DC
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.
vi Smalltalk Language Mapping June 1999

Smalltalk Language Mapping 1
on
Note – The Smalltalk Language Mapping specification is aligned with CORBA versi
2.0.

Contents

This chapter contains the following sections.

Section Title Page

Smalltalk Overview

“Mapping Summary” 1-3

“Key Design Decisions” 1-4

Mapping of OMG IDL to Smalltalk

“Implementation Constraints” 1-5

“Smalltalk Implementation Requirements” 1-6

“Conversion of Names to Smalltalk Identifiers” 1-7

“Mapping for Interfaces” 1-8

“Memory Usage” 1-8

“Mapping for Objects” 1-8

“Invocation of Operations” 1-8

“Mapping for Attributes” 1-9

“Mapping for Basic Data Types” 1-10

“Mapping for the Any Type” 1-12
 Smalltalk Language Mapping July 1996 1-1

1

“Mapping for Enums” 1-12

“Mapping for Struct Types” 1-13

“Mapping for Fixed Types” 1-14

“Mapping for Union Types” 1-14

“Mapping for Sequence Types” 1-15

“Mapping for String Types” 1-15

“Mapping for Wide String Types” 1-15

“Mapping for Array Types” 1-15

“Mapping for Exception Types” 1-15

“Mapping for Operations” 1-16

“Implicit Arguments to Operations” 1-16

“Argument Passing Considerations” 1-17

“Handling Exceptions” 1-17

“Exception Values” 1-18

Mapping of Pseudo Objects to Smalltalk

“CORBA::Request” 1-19

“CORBA::Context” 1-20

“CORBA::Object” 1-21

“CORBA::ORB” 1-22

“CORBA::NamedValue” 1-23

“CORBA::NVList” 1-24

Appendix A, “Glossary Terms” 1-25

Section Title Page
1-2 Smalltalk Language Mapping July 1996

1

1.1 Mapping Summary

Table 1-1 provides a brief description of the mapping of OMG IDL constructs to the
Smalltalk language, and where in this chapter they are discussed.

Table 1-1 Summary of this Chapter

OMG IDL
Construct

Smalltalk Mapping See Section

Interface Set of messages that Smalltalk objects which
represent object references must respond to.
The set of messages corresponds to the
attributes and operations defined in the
interface and inherited interfaces.

“Mapping for
Interfaces” on page 1-8

Object
Reference

Smalltalk object that represents a CORBA
object. The Smalltalk object must respond to
all messages defined by a CORBA object’s
interface.

“Mapping for Objects”
on page 1-8

Operation Smalltalk message. “Mapping for
Operations” on
page 1-16

Attribute Smalltalk message “Mapping for
Attributes” on page 1-9

Constant Smalltalk objects available in the
CORBAConstants dictionary.

“Mapping for
Constants” on page 1-10

Integral Type Smalltalk objects that conform to the
Integer class.

“Mapping for Basic
Data Types” on
page 1-10

Floating Point
Type

Smalltalk objects which conform to the
Float class.

“Mapping for Basic
Data Types” on
page 1-10

Boolean Type Smalltalk true or false objects. “Mapping for Basic
Data Types” on
page 1-10

Enumeration
Type

Smalltalk objects which conform to the
CORBAEnum protocol.

“Mapping for Enums”
on page 1-12

Any Type Smalltalk objects that can be mapped into an
OMG IDL type.

“Mapping for the Any
Type” on page 1-12

Structure Type Smalltalk object that conforms to the
Dictionary class.

“Mapping for Struct
Types” on page 1-13

Fixed Type “Mapping for Fixed
Types” on page 1-14

Union Type Smalltalk object that maps to the possible
value types of the OMG IDL union or that
conform to the CORBAUnion protocol.

“Mapping for Union
Types” on page 1-14
Smalltalk Mapping Mapping Summary July 1996 1-3

1

ith

lk
ame

asses

and

lk

ns

he

1.2 Key Design Decisions

The mapping of OMG IDL to the Smalltalk programming language was designed w
the following goals in mind:

• The Smalltalk mapping does not prescribe a specific implementation. Smallta
class names are specified, as needed, since client code will need the class n
when generating instances of datatypes. A minimum set of messages that cl
must support is listed for classes that are not documented in the Smalltalk
Common Base. The inheritance structure of classes is never specified.

• Whenever possible, OMG IDL types are mapped directly to existing, portable
Smalltalk classes.

• The Smalltalk constructs defined in this mapping rely primarily upon classes
methods described in the Smalltalk Common Base document.

• The Smalltalk mapping only describes the public (client) interface to Smallta
classes and objects supporting IDL. Individual IDL compilers or CORBA
implementations might define additional private interfaces.

• The implementation of OMG IDL interfaces is left unspecified. Implementatio
may choose to map each OMG IDL interface to a separate Smalltalk class;
provide one Smalltalk class to map all OMG IDL interfaces; or allow arbitrary
Smalltalk classes to map OMG IDL interfaces.

• Because of the dynamic nature of Smalltalk, the mapping of the any and union
types is such that an explicit mapping is unnecessary. Instead, the value of t
any and union types can be passed directly. In the case of the any type, the
Smalltalk mapping will derive a TypeCode which can be used to represent the
value. In the case of the union type, the Smalltalk mapping will derive a
discriminator which can be used to represent the value.

• The explicit passing of environment and context values on operations is not
required.

Sequence Type Smalltalk object that conforms to the
OrderedCollection class.

“Mapping for Sequence
Types” on page 1-15

String Type Smalltalk object that conforms to the
String class.

“Mapping for String
Types” on page 1-15

Wide String
Type

“Mapping for Wide
String Types” on
page 1-15

Array Type Smalltalk object that conforms to the Array
class.

“Mapping for Array
Types” on page 1-15

Exception Type Smalltalk object that conforms to the
Dictionary class.

“Mapping for Exception
Types” on page 1-15

Table 1-1 Summary of this Chapter (Continued)

OMG IDL
Construct

Smalltalk Mapping See Section
1-4 Smalltalk Language Mapping July 1996

1

 for
ts
ge

or's

t
d

lk

must
d in
ce

alk

ler to
lltalk
score

to
• Except in the case of object references, no memory management is required
data parameters and return results from operations. All such Smalltalk objec
reside within Smalltalk memory, so garbage collection will reclaim their stora
when they are no longer used.

• The proposed language mapping has been designed with the following vend
Smalltalk implementations in mind: VisualWorks, Smalltalk/V, and VisualAge.

1.2.1 Consistency of Style, Flexibility and Portability of Implementation

To ensure flexibility and portability of implementations, and to provide a consisten
style of language mapping, the Smalltalk chapters use the programming style an
naming conventions as described in the following documents:

• Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-
Wesley Publishing Company, Reading, MA. 1989.

• Smalltalk Portability: A Common Base. ITSC Technical Bulletin GG24-3093,
IBM, Boca Raton, FL. September 1992.

(Throughout the Smalltalk chapter, Smalltalk Portability: A Common Base is referred
to as Smalltalk Common Base.)

The items listed below are the same for all Smalltalk classes used in the Smallta
mapping:

• If the class is described in the Smalltalk Common Base document, the class
conform to the behavior specified in the document. If the class is not describe
the Smalltalk Common Base document, the minimum set of class and instan
methods that must be available is described for the class.

• All data types (except object references) are stored completely within Smallt
memory, so no explicit memory management is required.

The mapping is consistent with the common use of Smalltalk. For example, sequence
is mapped to instances of OrderedCollection , instead of creating a Smalltalk
class for the mapping.

1.3 Implementation Constraints

This section describes how to avoid potential problems with an OMG IDL–to–
Smalltalk implementation.

1.3.1 Avoiding Name Space Collisions

There is one aspect of the language mapping that can cause an OMG IDL compi
map to incorrect Smalltalk code and cause name space collisions. Because Sma
implementations generally only support a global name space, and disallow under
characters in identifiers, the mapping of identifiers used in OMG IDL to Smalltalk
identifiers can result in a name collision. See Section 1.5, “Conversion of Names
Smalltalk Identifiers,” on page 1-7 for a description of the name conversion rules.

As an example of a name collision, consider the following OMG IDL declaration:
Smalltalk Mapping Implementation Constraints July 1996 1-5

1

ism,
ier.

MG

le
riate
annot

both
ap

g
interface Example {
void sample_op () ;
void sampleOp () ;
};

Both of these operations map to the Smalltalk selector sampleOp . To prevent name
collision problems, each implementation must support an explicit naming mechan
which can be used to map an OMG IDL identifier into an arbitrary Smalltalk identif
For example, #pragma directives could be used as the mechanism.

1.3.2 Limitations on OMG IDL Types

This language mapping places limitations on the use of certain types defined in O
IDL.

For the any and union types, specific integral and floating point types may not be ab
to be specified as values. The implementation will map such values into an approp
type, but if the value can be represented by multiple types, the one actually used c
be determined.1 For example, consider the union definition below.

union Foo switch (long) {
case 1: long x;
case 2: short y;
};

When a Smalltalk object corresponding to this union type has a value that fits in
a long and a short , the Smalltalk mapping can derive a discriminator 1 or 2, and m
the integral value into either a long or short value (corresponding to the value of the
discriminator determined).

1.4 Smalltalk Implementation Requirements

This mapping places requirements on the implementation of Smalltalk that is bein
used to support the mapping. These are:

• An integral class, conforming to the Integer class definition in the Smalltalk
Common Base.

• A floating point class, conforming to the Float class definition in the Smalltalk
Common Base.

• A class named Character conforming to the Character class definition in
the Smalltalk Common Base.

• A class named Array conforming to the Array class definition in the Smalltalk
Common Base.

1. To avoid this limitation for union types, the mapping allows programmers to specify an
explicit binding to retain the value of the discriminator. See Section 1.16, “Mapping for
Union Types,” on page 1-14 for a complete description.
1-6 Smalltalk Language Mapping July 1996

1

e

ism
• A class named OrderedCollection conforming to the
OrderedCollection class definition in the Smalltalk Common Base.

• A class named Dictionary conforming to the Dictionary class definition
in the Smalltalk Common Base.

• A class named Association conforming to the Association class definition
in the Smalltalk Common Base.

• A class named String conforming to the String class definition in the
Smalltalk Common Base.

• Objects named true , false conforming to the methods defined for Boolean
objects, as specified in the Smalltalk Common Base.

• An object named nil , representing an object without a value.

• A global variable named Processor , which can be sent the message
activeProcess to return the current Smalltalk process, as defined in the
document Smalltalk-80: The Language. This Smalltalk process must respond to
the messages corbaContext: and corbaContext .

• A class that conforms to the CORBAParameter protocol. This protocol defines
Smalltalk instance methods used to create and access inout and out parameters.
The protocol must support the following instance messages:

value
Answers the value associated with the instance

value: anObject
Resets the value associated with the instance to anObject

To create an object that supports the CORBAParameter protocol, the message
asCORBAParameter can be sent to any Smalltalk object. This will return a
Smalltalk object conforming to the CORBAParameter protocol, whose value will be
the object it was created from. The value of that CORBAParameter object can be
subsequently changed with the value : message.

1.5 Conversion of Names to Smalltalk Identifiers

The use of underscore characters in OMG IDL identifiers is not allowed in all
Smalltalk language implementations. Thus, a conversion algorithm is required to
convert names used in OMG IDL to valid Smalltalk identifiers.

To convert an OMG IDL identifier to a Smalltalk identifier, remove each underscor
and capitalize the following letter (if it exists). In order to eliminate possible
ambiguities which may result from these conventions, an explicit naming mechan
must also be provided by the implementation. For example, the #pragma directive
could be used.

For example, the OMG IDL identifiers:

add_to_copy_map
describe_contents

become Smalltalk identifiers
Smalltalk Mapping Conversion of Names to Smalltalk Identifiers July 1996 1-7

1

 have

 that

 pure
tem-
 to
ge
nters

t's

A

ters
sult

f an
s out
 class
addToCopyMap
describeContents

Smalltalk implementations generally require that class names and global variables
an uppercase first letter, while other names have a lowercase first letter.

1.6 Mapping for Interfaces

Each OMG IDL interface defines the operations that object references with that
interface must support. In Smalltalk, each OMG IDL interface defines the methods
object references with that interface must respond to.

Implementations are free to map each OMG IDL interface to a separate Smalltalk
class, map all OMG IDL interfaces to a single Smalltalk class, or map arbitrary
Smalltalk classes to OMG IDL interfaces.

1.7 Memory Usage

One of the design goals is to make every Smalltalk object used in the mapping a
Smalltalk object: namely datatypes used in mappings do not point to operating sys
defined memory. This design goal permits the mapping and users of the mapping
ignore memory management issues, since Smalltalk handles this itself (via garba
collection). Smalltalk objects which are used as object references may contain poi
to operating system memory, and so must be freed in an explicit manner.

1.8 Mapping for Objects

A CORBA object is represented in Smalltalk as a Smalltalk object called an object
reference. The object must respond to all messages defined by that CORBA objec
interface.

An object reference can have a value which indicates that it represents no CORB
object. This value is the standard Smalltalk value nil .

1.9 Invocation of Operations

OMG IDL and Smalltalk message syntaxes both allow zero or more input parame
to be supplied in a request. For return values, Smalltalk methods yield a single re
object, whereas OMG IDL allows an optional result and zero or more out or inout
parameters to be returned from an invocation. In this binding, the non-void result o
operation is returned as the result of the corresponding Smalltalk method, wherea
and inout parameters are to be communicated back to the caller via instances of a
conforming to the CORBAParameter protocol, passed as explicit parameters.

For example, the following operations in OMG IDL:

boolean definesProperty(in string key);
1-8 Smalltalk Language Mapping July 1996

1

ple

 value,
void defines_property(
in string key,
out boolean is_defined);

are used as follows in the Smalltalk language:

aBool := self definesProperty: aString.

self
definesProperty: aString
isDefined: (aBool := nil asCORBAParameter).

As another example, these OMG IDL operations:

boolean has_property_protection(in string key,
out Protection pval);

ORBStatus create_request (in Context ctx,
in Identifier operation,
in NVList arg_list,
inout DynamicInvocation::NamedValue result,
out Request request,
in Flags req_flags);

would be invoked in the Smalltalk language as:

aBool := self
hasPropertyProtection: aString

pval: (protection := nil asCORBAParameter).
aStatus := ORBObject

createRequest: aContext
operation: anIdentifier
argList: anNVList
result: (result := aNamedValue asCORBAParameter)
request: (request := nil asCORBAParameter)
reqFlags: aFlags.

The return value of OMG IDL operations that are specified with a void return type is
undefined.

1.10 Mapping for Attributes

OMG IDL attribute declarations are a shorthand mechanism to define pairs of sim
accessing operations; one to get the value of the attribute and one to set it. Such
accessing methods are common in Smalltalk programs as well, thus attribute
declarations are mapped to standard methods to get and set the named attribute
respectively.

For example:

attribute string title;
readonly attribute string my_name;
Smalltalk Mapping Mapping for Attributes July 1996 1-9

1

ace
d

he

case

sses

s are
n.
means that Smalltalk programmers can expect to use title and title: methods to
get and set the title attribute of the CORBA object, and the myName method to retrieve
the my_name attribute.

1.10.1 Mapping for Constants

OMG IDL allows constant expressions to be declared globally as well as in interf
and module definitions. OMG IDL constant values are stored in a dictionary name
CORBAConstants under the fully qualified name of the constant, not subject to t
name conversion algorithm. The constants are accessed by sending the at: message to
the dictionary with an instance of a String whose value is the fully qualified name.

For example, given the following OMG IDL specification,

module ApplicationBasics{
const CopyDepth shallow_cpy = 4;
};

the ApplicationBasics::shallow_cpy constant can be accessed with the following
Smalltalk code

value := CORBAConstants at:
'::ApplicationBasics::shallow_cpy'.

After this call, the value variable will contain the integral value 4.

1.11 Mapping for Basic Data Types

The following basic datatypes are mapped into existing Smalltalk classes. In the
of short , unsigned short , long , unsigned long , long long , unsigned long
long , float , double , long double and octet , the actual class used is left up to the
implementation, for the following reasons:

• There is no standard for Smalltalk that specifies integral and floating point cla
and the valid ranges of their instances.

• The classes themselves are rarely used in Smalltalk. Instances of the classe
made available as constants included in code, or as the result of computatio

The basic data types are mapped as follows.

1.11.0.1 short

An OMG IDL short integer falls in the range [-215,215-1]. In Smalltalk, a short is
represented as an instance of an appropriate integral class.

1.11.0.2 long

An OMG IDL long integer falls in the range [-231,231-1]. In Smalltalk, a long is
represented as an instance of an appropriate integral class.
1-10 Smalltalk Language Mapping July 1996

1

ass.

ance

t

 at
rd
nce

)
1.11.0.3 long long

An OMG IDL long long integer falls in the range [-263,263-1]. In Smalltalk, a long
long is represented as an instance of an appropriate integral class.

1.11.0.4 unsigned short

An OMG IDL unsigned short integer falls in the range [0,216-1]. In Smalltalk, an
unsigned short is represented as an instance of an appropriate integral class.

1.11.0.5 unsigned long

An OMG IDL unsigned long integer falls in the range [0,232-1]. In Smalltalk, an
unsigned long is represented as an instance of an appropriate integral class.

1.11.0.6 unsigned long long

An OMG IDL unsigned long long integer falls in the range [0,264-1]. In Smalltalk,
an unsigned long long is represented as an instance of an appropriate integral cl

1.11.0.7 float

An OMG IDL float conforms to the IEEE single-precision (32-bit) floating point
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a float is represented as an inst
of an appropriate floating point class.

1.11.0.8 double

An OMG IDL double conforms to the IEEE double-precision (64-bit) floating poin
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a double is represented as an
instance of an appropriate floating point class.

1.11.0.9 long double

An OMG IDL long double conforms to the IEEE double extended (a mantissa of
least 64 bits, a sign bit, and an exponent of at least 15 bits) floating point standa
(ANSI/IEEE Std 754-1985). In Smalltalk, a long double is represented as an insta
of an appropriate floating-point class.

1.11.0.10 char

An OMG IDL character holds an 8-bit quantity mapping to the ISO Latin-1 (8859.1
character set. In Smalltalk, a character is represented as an instance of Character .
Smalltalk Mapping Mapping for Basic Data Types July 1996 1-11

1

a

te

ined

ct
re

lk

hm.

rs are
1.11.0.11 wchar

An OMG IDL wchar defines a wide character from any character set. A wide
character is represented as an instance of the Character class.

1.11.0.12 boolean

An OMG IDL boolean may hold one of two values: TRUE or FALSE. In Smalltalk,
boolean is represented by the values true or false , respectively.

1.11.0.13 octet

An OMG IDL octet is an 8-bit quantity that undergoes no conversion during
transmission. In Smalltalk, an octet is represented as an instance of an appropria
integral class with a value in the range [0,255].

1.12 Mapping for the Any Type

Due to the dynamic nature of Smalltalk, where the class of objects can be determ
at runtime, an explicit mapping of the any type to a particular Smalltalk class is not
required. Instead, wherever an any is required, the user may pass any Smalltalk obje
which can be mapped into an OMG IDL type. For instance, if an OMG IDL structu
type is defined in an interface, a Dictionary for that structure type will be mapped.
Instances of this class can be used wherever an any is expected, since that Smalltalk
object can be mapped to the OMG IDL structure.

Likewise, when an any is returned as the result of an operation, the actual Smallta
object which represents the value of the any data structure will be returned.

1.13 Mapping for Enums

OMG IDL enumerators are stored in a dictionary named CORBAConstants under the
fully qualified name of the enumerator, not subject to the name conversion algorit
The enumerators are accessed by sending the at: message to the dictionary with an
instance of a String whose value is the fully qualified name.

These enumerator Smalltalk objects must support the CORBAEnum protocol, to allow
enumerators of the same type to be compared. The order in which the enumerato
named in the specification of an enumeration defines the relative order of the
enumerators. The protocol must support the following instance methods:

< aCORBAEnum

Answers true if the receiver is less than aCORBAEnum, otherwise answers false .

<= aCORBAEnum

Answers true if the receiver is less than or equal to aCORBAEnum, otherwise
answers false .
1-12 Smalltalk Language Mapping July 1996

1

= aCORBAEnum

Answers true if the receiver is equal to aCORBAEnum, otherwise answers false .

> aCORBAEnum

Answers true if the receiver is greater than aCORBAEnum, otherwise answers
false .

>= aCORBAEnum

Answers true if the receiver is greater than or equal to aCORBAEnum, otherwise
answers false .

For example, given the following OMG IDL specification,

module Graphics{
enum ChartStyle

{lineChart, barChart, stackedBarChart, pieChart};
};

the Graphics::lineChart enumeration value can be accessed with the following
Smalltalk code

value := CORBAConstants at: '::Graphics::lineChart'.

After this call, the value variable is assigned to a Smalltalk object that can be
compared with other enumeration values.

1.14 Mapping for Struct Types

An OMG IDL struct is mapped to an instance of the Dictionary class. The key for
each OMG IDL struct member is an instance of Symbol whose value is the name of
the element converted according to the algorithm in Section 1.5. For example, a
structure with a field of my_field would be accessed by sending the at: message with
the key #myField .

For example, given the following OMG IDL declaration:

struct Binding {
Name binding_name;
BindingType binding_type;
};

the binding_name element can be accessed as follows:

aBindingStruct at: #bindingName

and set as follows:

aBindingStruct at: #bindingName put: aName
Smalltalk Mapping Mapping for Struct Types July 1996 1-13

1

s

es

tics

 for

alues

alk

,
1.15 Mapping for Fixed Types

An OMG IDL fixed is represented as an instance of an appropriate fractional clas
with a fixed denominator.

1.16 Mapping for Union Types

For OMG IDL union types, two binding mechanisms are provided: an implicit binding
and an explicit binding.2 The implicit binding takes maximum advantage of the
dynamic nature of Smalltalk and is the least intrusive binding for the Smalltalk
programmer. The explicit binding retains the value of the discriminator and provid
greater control for the programmer.

Although the particular mechanism for choosing implicit vs. explicit binding seman
is implementation-specific, all implementations must provide both mechanisms.

Binding semantics is expected to be specifiable on a per-union declaration basis,
example using the #pragma directive.

1.16.1 Implicit Binding

Wherever a union is required, the user may pass any Smalltalk object that can be
mapped to an OMG IDL type, and whose type matches one of the types of the v
in the union. Consider the following example:

structure S { long x; long y; };

union U switch (short) {
case 1: S s;
case 2: long l;
default: char c;
};

In the example above, a Dictionary for structure S will be mapped. Instances of
Dictionary with runtime elements as defined in structure S, integral numbers, or
characters can be used wherever a union of type U is expected. In this example,
instances of these classes can be mapped into one of the S, long, or char types, and
an appropriate discriminator value can be determined at runtime.

Likewise, when a union is returned as the result of an operation, the actual Smallt
object which represents the value of the union will be returned.

2. Although not required, implementations may choose to provide both implicit and explicit
mappings for other OMG IDL types, such as structs and sequences. In the explicit mapping
the OMG IDL type is mapped to a user specified Smalltalk class.
1-14 Smalltalk Language Mapping July 1996

1

and

lk

th
1.16.2 Explicit Binding

Use of the explicit binding will result in specific Smalltalk classes being accepted
returned by the ORB. Each union object must conform to the CORBAUnion protocol.
This protocol must support the following instance methods:

discriminator
Answers the discriminator associated with the instance.

discriminator: anObject
Sets the discriminator associated with the instance.

value
Answers the value associated with the instance.

value: anObject
Sets the value associated with the instance

To create an object that supports the CORBAUnion protocol, the instance method
asCORBAUnion: aDiscriminator can be invoked by any Smalltalk object. This
method will return a Smalltalk object conforming to the CORBAUnion protocol,
whose discriminator will be set to aDiscriminator and whose value will be set to
the receiver of the message.

1.17 Mapping for Sequence Types

Instances of the OrderedCollection class are used to represent OMG IDL
elements with the sequence type.

1.18 Mapping for String Types

Instances of the Smalltalk String class are used to represent OMG IDL elements
with the string type.

1.19 Mapping for Wide String Types

An OMG IDL wide string is represented as an instance of an appropriate Smallta
string class.

1.20 Mapping for Array Types

Instances of the Smalltalk Array class are used to represent OMG IDL elements wi
the array type.

1.21 Mapping for Exception Types

Each defined exception type is mapped to an instance of the Dictionary class. See
Section 1.25, “Handling Exceptions,” on page 1-17 for a complete description.
Smalltalk Mapping Mapping for Sequence Types July 1996 1-15

1

d to
tion,
 of

ector
L

text
ot

 So
on

ding
1.22 Mapping for Operations

OMG IDL operations having zero parameters map directly to Smalltalk unary
messages, while OMG IDL operations having one or more parameters correspon
Smalltalk keyword messages. To determine the default selector for such an opera
begin with the OMG IDL operation identifier and concatenate the parameter name
each parameter followed by a colon, ignoring the first parameter. The mapped sel
is subject to the identifier conversion algorithm. For example, the following OMG ID
operations:

void add_to_copy_map(
in CORBA::ORBId id,
in LinkSet link_set);

void connect_push_supplier(
in EventComm::PushSupplier push_supplier);

void add_to_delete_map(
in CORBA::ORBId id,
in LinkSet link_set);

become selectors:
addToCopyMap:linkSet:

connectPushSupplier:
addToDeleteMap:linkSet:

1.23 Implicit Arguments to Operations

Unlike the C mapping, where an object reference, environment, and optional con
must be passed as parameters to each operation, this Smalltalk mapping does n
require these parameters to be passed to each operation.

The object reference is provided in the client code as the receiver of a message.
although it is not a parameter on the operation, it is a required part of the operati
invocation.

This mapping defines the CORBAExceptionEvent protocol to convey exception
information in place of the environment used in the C mapping. This protocol can
either be mapped into native Smalltalk exceptions or used in cases where native
Smalltalk exception handling is unavailable.

A context expression can be associated with the current Smalltalk process by sen
the message corbaContext: to the current process, along with a valid context
parameter. The current context can be retrieved by sending the corbaContext
message to the current process.

The current process may be obtained by sending the message activeProcess to the
Smalltalk global variable named Processor .
1-16 Smalltalk Language Mapping July 1996

1

ke
hus,

nters
citly

of

s are

rm

The
 The
has

1.24 Argument Passing Considerations

All parameters passed into and returned from the Smalltalk methods used to invo
operations are allocated in memory maintained by the Smalltalk virtual machine. T
explicit free() ing of the memory is not required. The memory will be garbage
collected when it is no longer referenced.

The only exception is object references. Since object references may contain poi
to memory allocated by the operating system, it is necessary for the user to expli
free them when no longer needed. This is accomplished by using the operation
release of the CORBA::Object interface.

1.25 Handling Exceptions

OMG IDL allows each operation definition to include information about the kinds
run-time errors which may be encountered. These are specified in an exception
definition which declares an optional error structure which will be returned by the
operation should an error be detected. Since Smalltalk exception handling classe
not yet standardized between existing implementations, a generalized mapping is
provided.

In this binding, an IDL compiler creates exception objects and populates the
CORBAConstants dictionary. These exception objects are accessed from the
CORBAConstants dictionary by sending the at: message with an instance of a
String whose value is the fully qualified name. Each exception object must confo
to the CORBAExceptionEvent protocol. This protocol must support the following
instance methods:

corbaHandle: aHandlerBlock do: aBlock

Exceptions may be handled by sending an exception object the message
corbaHandle:do: with appropriate handler and scoping blocks as parameters.
aBlock parameter is the Smalltalk block to evaluate. It is passed no parameters.
aHandlerBlock parameter is a block to evaluate when an exception occurs. It
one parameter: a Smalltalk object which conforms to the CORBAExceptionValue
protocol.

corbaRaise

Exceptions may be raised by sending an exception object the message corbaRaise .

corbaRaiseWith: aDictionary

Exceptions may be raised by sending an exception object the message
corbaRaiseWith :. The parameter is expected to be an instance of the Smalltalk
Dictionary class, as described below.

For example, given the following OMG IDL specification,
Smalltalk Mapping Argument Passing Considerations July 1996 1-17

1

 are

re

interface NamingContext {
...

exception NotEmpty {};
void destroy ()

raises (NotEmpty);
...

};

the NamingContext::NotEmpty exception can be raised as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaRaise.

The exception can be handled in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle: [:ev | "error handling logic here"]

do: [aNamingContext destroy].

1.26 Exception Values

OMG IDL allows values to be returned as part of the exception. Exception values
constructed using instances of the Smalltalk Dictionary class. The keys of the
dictionary are the names of the elements of the exception, the names of which a
converted using the algorithm in “Conversion of Names to Smalltalk Identifiers” on
page 1-7. The following example illustrates how exception values are used:

interface NamingContext {
 ...

 exception CannotProceed {
NamingContext cxt;

Name rest_of_name;
};
Object resolve (in Name n)

raises (CannotProceed);
 ...

};

would be raised in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::CannotProceed')
corbaRaiseWith: (Dictionary

with: (Association key: #cxt value:
aNamingContext)

with: (Association key: #restOfName value:
aName)).
1-18 Smalltalk Language Mapping July 1996

1

ons
r
L

ces
IDL
. This
1.26.1 The CORBAExceptionValue Protocol

When an exception is raised, the exception block is evaluated, passing to it one
argument that conforms to the CORBAExceptionValue protocol. This protocol
must support the following instance messages:

corbaExceptionValue

Answers the Dictionary the exception was raised with.

Given the NamingContext interface defined in the previous section, the following
code illustrates how exceptions are handled:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle:[:ev |
cxt:=ev corbaExceptionValue at: #cxt.
restOfName :=ev corbaExceptionValue at:
#restOfName]
do:[aNamingContext destroy].

In this example, the cxt and restOfName variables will be set to the respective
values from the exception structure, if the exception is raised.

1.26.2 Pseudo-Objects Mapping Overview

CORBA defines a small set of standard interfaces which define types and operati
for manipulating object references, for accessing the Interface Repository, and fo
Dynamic Invocation of operations. Other interfaces are defined in pseudo OMG ID
(PIDL) to represent in a more abstract manner programmer access to ORB servi
which are provided locally. These PIDL interfaces sometimes resort to non-OMG
constructs, such as pointers, which have no meaning to the Smalltalk programmer
chapter specifies the minimal requirements for the Smalltalk mapping for PIDL
interfaces. The operations are specified below as protocol descriptions.

Parameters with the name aCORBAObject are expected to be Smalltalk objects,
which can be mapped to an OMG IDL interface or data type.

Unless otherwise specified, all messages are defined to return undefined objects.

1.27 CORBA::Request

The CORBA::Request interface is mapped to the CORBARequest protocol, which
must include the following instance methods:

addArg: aCORBANamedValue

Corresponds to the add_arg operation.
Smalltalk Mapping CORBA::Request July 1996 1-19

1

invoke

Corresponds to the invoke operation with the invoke_flags set to 0.

invokeOneway

Corresponds to the invoke operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE.

send

Corresponds to the send operation with the invoke_flags set to 0.

sendOneway

Corresponds to the send operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE.

pollResponse

Corresponds to the get_response operation, with the response_flags set to
CORBA::RESP_NO_WAIT. Answers true if the response is complete, false
otherwise.

getResponse

Corresponds to the get_response operation, with the response_flags set to 0.

1.28 CORBA::Context

The CORBA::Context interface is mapped to the CORBAContext protocol, which
must include the following instance methods:

setOneValue: anAssociation

Corresponds to the set_one_value operation.

setValues: aCollection

Corresponds to the set_values operation. The parameter passed in should be a
collection of Association s.

getValues: aString

Corresponds to the get_values operation without a scope name and op_flags =
CXT_RESTRICT_SCOPE. Answers a collection of Association s.

getValues: aString propName: aString
1-20 Smalltalk Language Mapping July 1996

1

Corresponds to the get_values operation with op_flags set to
CXT_RESTRICT_SCOPE. Answers a collection of Association s.

getValuesInTree: aString propName: aString

Corresponds to the get_values operation with op_flags set to 0. Answers a
collection of Association s.

deleteValues: aString

Corresponds to the delete_values operation.

createChild: aString

Corresponds to the create_child operation. Answers a Smalltalk object
conforming to the CORBAContext protocol.

delete

Corresponds to the delete operation with flags set to 0.

deleteTree

Corresponds to the delete operation with flags set to
CTX_DELETE_DESCENDENTS.

1.29 CORBA::Object

The CORBA::Object interface is mapped to the CORBAObject protocol, which
must include the following instance methods:

getImplementation

Corresponds to the get_implementation operation. Answers a Smalltalk object
conforming to the CORBAImplementationDef protocol.

getInterface

Corresponds to the get_interface operation. Answers a Smalltalk object
conforming to the CORBAInterfaceDef protocol.

isNil

Corresponds to the is_nil operation. Answers true or false indicating whether or
not the object reference represents an object.

createRequest: aCORBAContext
operation: aCORBAIdentifier
argList: aCORBANVListOrNil
Smalltalk Mapping CORBA::Object July 1996 1-21

1

an

result: aCORBAParameter
request: aCORBAParameter
reqFlags: flags

Corresponds to the create_request operation.

duplicate

Corresponds to the duplicate operation. Answers a Smalltalk object representing
object reference, conforming to the interface of the CORBA object.

release 3

Corresponds to the release operation.

1.30 CORBA::ORB

The CORBA::ORB interface is mapped to the CORBAORB protocol, which must
include the following instance methods:

objectToString: aCORBAObject

Corresponds to the object_to_string operation. Answers an instance of the
String class.

stringToObject: aString

Corresponds to the string_to_object operation. Answers an object reference,
which will be an instance of a class which corresponds to the InterfaceDef of the
CORBA object.

createOperationList: aCORBAOperationDef

Corresponds to the create_operation_list operation. Answers an instance of
OrderedCollection of Smalltalk objects conforming to the CORBANamedValue
protocol.

getDefaultContext

Corresponds to the get_default_context operation. Answers a Smalltalk object
conforming to the CORBAContext protocol.

sendMultipleRequests: aCollection

3. The semantics of this operation will have no meaning for those implementations that rely
exclusively on the Smalltalk memory manager.
1-22 Smalltalk Language Mapping July 1996

1

alk

t
Corresponds to the send_multiple_requests operation with the
invoke_flags set to 0. The parameter passed in should be a collection of Smallt
objects conforming to the CORBARequest protocol.

sendMultipleRequestsOneway: aCollection

Corresponds to the send_multiple_requests operation with the
invoke_flags set to CORBA::INV_NO_RESPONSE. The parameter passed in
should be a collection of Smalltalk objects conforming to the CORBARequest
protocol.

pollNextResponse

Corresponds to the get_next_response operation, with the response_flags
set to CORBA::RESP_NO_WAIT. Answers true if there are completed requests
pending, false otherwise.

getNextResponse

Corresponds to the get_next_response operation, with the response_flags
set to 0.

1.31 CORBA::NamedValue

PIDL for C defines CORBA::NamedValue as a struct while C++-PIDL specifies it as
an interface. CORBA::NamedValue in this mapping is specified as an interface tha
conforms to the CORBANamedValue protocol. This protocol must include the
following instance methods:

name

Answers the name associated with the instance.

name: aString

Resets the name associated with instance to aString .

value

Answers the value associated with the instance.

value: aCORBAObject

Resets the value associated with instance to aCORBAObject .

flags

Answers the flags associated with the instance.
Smalltalk Mapping CORBA::NamedValue July 1996 1-23

1

h

flags: argModeFlags

Resets the flags associated with instance to argModeFlags .

To create an object that supports the CORBANamedValue protocol, the instance
method asCORBANamedValue: aName flags: argModeFlags can be
invoked by any Smalltalk object. This method will return a Smalltalk object
conforming to the CORBANamedValue protocol, whose attributes associated wit
the instance will be set appropriately.

1.32 CORBA::NVList

The CORBA::NVList interface is mapped to the equivalent of the OMG IDL
definition typedef sequence<NamedValue> NVList;

Thus, Smalltalk objects representing the NVList type should be instances of the
OrderedCollection class, whose elements are Smalltalk objects conforming to
the CORBANamedValue protocol.
1-24 Smalltalk Language Mapping July 1996

1

e
Appendix A- Glossary

This appendix includes a list of Smalltalk terms.

A.1 Glossary Terms

Smalltalk object An object defined using the Smalltalk language.

Message Invocation of a Smalltalk method upon a Smalltalk
object.

Message Selector The name of a Smalltalk message. In this document,
the message selectors are denoted by just the messag
name when the class or protocol they are associated
with is given in context, otherwise the notation
class >>method or protocol >>method will be
used to explicitly denote the class or protocol the
message is associated with.

Method The Smalltalk code associated with a message.

Class A Smalltalk class.

Protocol A set of messages that a Smalltalk object must
respond to. Protocols are used to describe the
behavior of Smalltalk objects without specifying their
class.

CORBA Object An object defined in OMG IDL, accessed and
implemented through an ORB.

Object Reference A value which uniquely identifies an object.

IDL compiler Any software that accesses OMG IDL specifications
and generates or maps Smalltalk code that can be
used to access CORBA objects.
Smalltalk Mapping CORBA::NVList July 1996 1-25

1

1-26 Smalltalk Language Mapping July 1996

Index
A
aBool 1-9
aCORBAObject 1-19, 1-23
addArg 1-19
aDiscriminator instance method 1-15
Alternative Mappings for C++ 1-25
any type 1-4, 1-12

B
boolean type 1-12

C
compliance iv
CORBA

contributors iv
getResponse instance method 1-20

CORBAConstants 1-10, 1-12, 1-17, 1-18
CORBAContext protocol 1-20, 1-22
CORBAEnum protocol 1-12
CORBAExceptionEvent 1-17
CORBAExceptionEvent protocol 1-16
CORBAExceptionValue protocol 1-17, 1-19
CORBANamedValue protocol 1-22, 1-24
CORBAObject protocol 1-21
CORBAORB protocol 1-22
CORBAParameter 1-8
corbaRaise message 1-17
CORBARequest protocol 1-19
CORBAUnion protocol 1-15
core, compliance iv
createRequest 1-9

D
Dictionary 1-18
discriminator instance method 1-15
double 1-11

F
float type 1-11

G
global name

and Smalltalk 1-5

I
interoperability, compliance iv
interworking

compliance iv

L
long double type 1-11
long long type 1-11
long type 1-10

N
namespace 1-6
NamingContext interface

mapped to Smalltalk 1-18
nil 1-8
NVList 1-24

O
octet type 1-12

P
pragma directive

use in Smalltalk mapping 1-14

S
sequence type 1-15
short type 1-10
Smalltalk 1-11

aBindingStruct 1-13
aBool 1-9
aCORBAObject 1-19, 1-23
active Process message 1-16
add_arg operation 1-19
addArg instance method 1-19
aDiscriminator instance method 1-15
any 1-12
argList 1-9
array class 1-15
array type 1-15
Association 1-20
at message 1-12, 1-17
boolean 1-12
char 1-11
Character 1-11
Common Base 1-5
CORBAConstants 1-10, 1-12, 1-17
corbaContext message 1-16
CORBAContext protocol 1-20, 1-22
CORBAEnum protocol 1-12
CORBAExceptionEvent protocol 1-16
CORBAExceptionValue protocol 1-17, 1-19
CORBANamedValue protocol 1-22, 1-24
CORBAObject protocol 1-21
CORBAORB protocol 1-22
CORBAParameter protocol 1-8
corbaRaise message 1-17
CORBARequest protocol 1-19
CORBAUnion protocol 1-15
create_child operation 1-21
create_operation_list operation 1-22
create_request operation 1-22
createChild instance method 1-21
createOperationList instance method 1-22
createRequest 1-9, 1-22
cxt 1-19
delete instance method 1-21
delete operation 1-21
design of mapping 1-4
Dictionary 1-18
Dictionary class 1-13, 1-15
discriminator instance method 1-15
duplicate 1-22
exceptions 1-15
explicit vs implicit mappings 1-14
flags instance method 1-24
float 1-11
garbage collection 1-8, 1-17
get_next_response operation 1-23
get_response operation 1-20
getDefaultContext instance method 1-22
invoke instance method 1-20
Smalltalk Language Mapping Index-1

Index
invoke operation 1-20
invokeOneway instance method 1-20
long 1-10
long double 1-11
long long 1-11
memory management 1-8, 1-22
memory management for object references 1-17
mini-glossary 1-25
name instance method 1-23
namespace 1-6
nil 1-8
NVlist type and OrderedCollection class 1-24
obect_to_string operation 1-22
objectToString instance method 1-22
octet 1-12
operation 1-9
OrderedCollection class 1-15
overview of mapping 1-3
pollNextResponse instance method 1-23
pollResponse instance method 1-20
Processor variable 1-16
reference books 1-5
release operation 1-22
reqFlags 1-9
request 1-9
restOfName 1-19
result 1-9
send instance method 1-20
send operation 1-20
send_multiple_requests operation 1-22
sendMultipleRequests instance method 1-22

sequence 1-15
set and get value instance methods 1-20
set and get value operations 1-20
set value operations 1-20
short 1-10
String class 1-15
string type 1-15
struct type 1-13
underscore characters in mapping 1-7
unsigned long 1-11
unsigned long long 1-11
unsigned short and long 1-11
value instance method 1-15, 1-23
Value instance methods 1-20
wchar 1-12

T
typecode 1-4

U
union type 1-4
unsigned long long type 1-11
unsigned long type 1-11
unsigned short type 1-11

V
value instance method 1-15

W
wchar type 1-12
Index-2 Smalltalk Language Mappings

	0.1 About CORBA Language Mapping Specifications
	0.1.1 Alignment with CORBA

	0.2 Definition of CORBA Compliance
	0.3 Acknowledgements
	0.4 References
	Smalltalk Language Mapping
	1.1 Mapping Summary
	1.2 Key Design Decisions
	1.2.1 Consistency of Style, Flexibility and Portability of Implementation

	1.3 Implementation Constraints
	1.3.1 Avoiding Name Space Collisions
	1.3.2 Limitations on OMG IDL Types

	1.4 Smalltalk Implementation Requirements
	1.5 Conversion of Names to Smalltalk Identifiers
	1.6 Mapping for Interfaces
	1.7 Memory Usage
	1.8 Mapping for Objects
	1.9 Invocation of Operations
	1.10 Mapping for Attributes
	1.10.1 Mapping for Constants

	1.11 Mapping for Basic Data Types
	1.12 Mapping for the Any Type
	1.13 Mapping for Enums
	1.14 Mapping for Struct Types
	1.15 Mapping for Fixed Types
	1.16 Mapping for Union Types
	1.16.1 Implicit Binding
	1.16.2 Explicit Binding

	1.17 Mapping for Sequence Types
	1.18 Mapping for String Types
	1.19 Mapping for Wide String Types
	1.20 Mapping for Array Types
	1.21 Mapping for Exception Types
	1.22 Mapping for Operations
	1.23 Implicit Arguments to Operations
	1.24 Argument Passing Considerations
	1.25 Handling Exceptions
	1.26 Exception Values
	1.26.1 The CORBAExceptionValue Protocol
	1.26.2 Pseudo-Objects Mapping Overview

	1.27 CORBA::Request
	1.28 CORBA::Context
	1.29 CORBA::Object
	1.30 CORBA::ORB
	1.31 CORBA::NamedValue
	1.32 CORBA::NVList

	Index

