

Date: Nov 2020

Space Telecommunication
Interface (STI) 1.0

Submission to MARS SNC TF in Response to STI RFP (mars/19-09-21)

Version 1.0

__

OMG Document Number: mars/2020-11-01

Normative reference: https://www.omg.org/spec/STI/
Machine readable file(s): https://www.omg.org/spec/STI/20201101

Normative: https://www.omg.org/spec/STI/20201101/STI.xmi

__

Object Management Group
109 Highland Avenue
Needham, MA 02494

USA

Telephone: +1-781-444-0404
Facsimile: +1-781-444-0320

rfp@omg.org

Copyright © 2020, National Aeronautics and Space Administration
Copyright © 2020, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, con-
ditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change with-
out notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Pro-
spective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regula-
tions and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CON-
TAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLI-
CATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVE-
NUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue,
Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its de-
signees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these mate-
rials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Space Telecommunication Interface i

Table of Contents

0 Submission-Specific Material ... xii

0.1 Submission Preface .. xii
0.2 Copyright Waiver ... xii
0.3 Submitter Representative ... xii
0.4 Author Team .. xii
0.5 Mapping to RFP Requirements .. xii
0.6 Responses to RFP Issues to Be Discussed ... xvi
0.7 Proof of Concept .. xvii
0.8 Applicability to RFP (This section will be deleted when incorporated above) xviii

1 Scope ... 1
2 Conformance ... 1
3 References ... 1

3.1 Normative References ... 1
3.2 Non-normative References .. 2

4 Terms and Definitions ... 3
5 Symbols ... 5
6 Additional Information .. 8

6.1 Acknowledgments ... 8
7 Goals and Objectives ... 8

7.1 Overview ... 8
7.2 Purpose .. 8
7.3 Key Architecture Requirements .. 9
7.4 Fundamental Design .. 10
7.5 Roles and Responsibilities .. 10

8 Hardware Architecture .. 12
8.1 Generalized Hardware Architecture .. 12

8.1.1 Components ... 13
8.1.2 Functions ... 14
8.1.3 External Interfaces ... 15
8.1.4 Networking Interface ... 16
8.1.5 Internal Interfaces .. 16

8.2 Module Specification .. 17
8.2.1 General-Purpose Processing Module .. 17
8.2.2 Signal Processing Module ... 19
8.2.3 Radio Frequency Module .. 22
8.2.4 Security Module .. 23
8.2.5 Networking Module ... 23
8.2.6 Optical Module .. 24
8.2.7 Cognitive Module .. 24

8.3 Hardware Interface Description .. 24

ii Space Telecommunication Interface

8.3.1 Control and Data Interface .. 25
8.3.2 Operating Power Interface ... 26
8.3.3 Thermal Interface and Power Consumption .. 26

9 Application Architecture ... 27
9.1 Configurable Hardware Design ... 27
9.2 Specialized Hardware Interfaces ... 28

10 Software Architecture .. 28
10.1 Software Layer Model ... 29
10.2 Infrastructure ... 32
10.3 API Overview .. 33

10.3.1 Interface Structure ... 34
10.3.2 Implementation .. 35

10.4 Data Types and Constants ... 35
10.4.1 Data Types ... 35
10.4.2 Constants ... 35

10.5 Application and Device Control Interface .. 36
10.5.1 Infrastructure-Provided Component Identifier Interface ... 36
10.5.2 Application-Provided Application Control Interfaces ... 36
10.5.3 Device-Provided Device Control Interface ... 38
10.5.4 Data Transfer Interface .. 39

10.6 STI API ... 40
10.6.1 General Utility API .. 40
10.6.2 Application Control API .. 41
10.6.3 Device Control API ... 44
10.6.4 Data Transfer API .. 45
10.6.5 Log API ... 46
10.6.6 File API ... 46
10.6.7 Messaging API .. 47
10.6.8 Time API ... 48

10.7 Non-STI Software Interfaces .. 50
10.7.1 Operating System Interface ... 51

11 External Command and Telemetry Interfaces ... 53
12 Normative Requirements ... 55

Hardware ... 55
12.1 Provide GPM ... 55
12.2 Diagnostic Information Availability ... 55
12.3 Document RF .. 55
12.4 Document Power-Up State .. 55
12.5 Document Hardware Capability .. 55
12.6 Document Hardware Limitations .. 55
12.7 Document Interfaces ... 56
12.8 Document the Control and Data Mechanisms .. 56
12.9 Document Power Supply ... 56

Space Telecommunication Interface iii

12.10 Document Thermal and Power Limits .. 56
12.11 Controllable From OE ... 56
Configurable Hardware Design ... 56
12.12 Platform Specific Wrapper .. 56
12.13 Document FPGA Interfaces .. 56
Software ... 57
12.14 Document System Library Interfaces Provided .. 57
12.15 Document System Library Interfaces Used .. 57
12.16 Document Language Interfaces Provided ... 57
12.17 STI Infrastructure Uses APP API ... 57
12.18 Use Language Specific Facilities Specified in Annex A .. 57
12.19 Use Language Specific Inheritance ... 57
12.20 STI Infrastructure Provided Data Types ... 57
12.21 Application based on Instance Object ... 59
12.22 STI Infrastructure-Provided Access Constants ... 59
12.23 STI Infrastructure-ProvidedCalendarKind Constants ... 59
12.24 STI Infrastructure-ProvidedHandleID Constants .. 60
12.25 STI Infrastructure-ProvidedResult Constants ... 61
12.26 STI Infrastructure-ProvidedHandle Name Constants ... 61
12.27 STI Infrastructure-Provided Property Name Constants .. 62
12.28 STI Infrastructure-Provided Size Limit Constants .. 62
12.29 STI Infrastructure-Provided TimeWarp Constants ... 63
12.30 STI Infrastructure-Provided APP_GetHandleID Method ... 63
12.31 STI Infrastructure-Provided APP_GetHandleName Method 64
12.32 STI Application-Provided APP_Instance Method .. 64
12.33 STI Application-Provided APP_Destroy Method ... 65
12.34 STI Application-Provided APP_Initialize Method ... 65
12.35 STI Application-Provided APP_ReleaseObject Method .. 66
12.36 STI Application-Provided APP_Query Method ... 66
12.37 STI Application-Provided APP_Configure Method ... 67
12.38 STI Application-Provided APP_RunTest Method .. 68
12.39 STI Application-Provided APP_Start Method .. 68
12.40 STI Application-Provided APP_Stop Method .. 69
12.41 STI Device-Provided DEV_Open Method ... 69
12.42 STI Device-Provided DEV_Load Method .. 70
12.43 STI Device-Provided DEV_Reset Method ... 70
12.44 STI Device-Provided DEV_Flush Method ... 70
12.45 STI Device-Provided DEV_Unload Method .. 71
12.46 STI Device-Provided DEV_Close Method ... 71
12.47 STI Application-Provided APP_Read Method ... 72
12.48 STI Application-Provided APP_Write Method .. 73
12.49 STI Application-Provided APP_AddressRead Method .. 73
12.50 STI Application-Provided APP_AddressWrite Method ... 74

iv Space Telecommunication Interface

12.51 STI Infrastructure-Provided IsOK Method ... 75
12.52 STI Infrastructure-Provided ValidateHandleID Method ... 75
12.53 STI Infrastructure-Provided ValidateSize Method ... 76
12.54 STI Infrastructure-Provided InstantiateApp Method .. 76
12.55 STI Infrastructure-Provided GetErrorQueue Method ... 77
12.56 STI Infrastructure-Provided GetHandleName Method ... 78
12.57 STI Infrastructure-Provided HandleRequest Method ... 78
12.58 STI Infrastructure-Provided AbortApp Method .. 79
12.59 STI Infrastructure-Provided Initialize Method .. 79
12.60 STI Infrastructure-Provided ReleaseObject Method ... 79
12.61 STI Infrastructure-Provided Configure Method .. 80
12.62 STI Infrastructure-Provided Query Method .. 80
12.63 STI Infrastructure-Provided RunTest Method .. 81
12.64 STI Infrastructure-Provided Start Method .. 81
12.65 STI Infrastructure-Provided Stop Method .. 82
12.66 STI Infrastructure-Provided DeviceOpen Method .. 82
12.67 STI Infrastructure-Provided DeviceLoad Method .. 83
12.68 STI Infrastructure-Provided DeviceReset Method .. 83
12.69 STI Infrastructure-Provided DeviceFlush Method .. 84
12.70 STI Infrastructure-Provided DeviceUnload Method ... 84
12.71 STI Infrastructure-Provided DeviceClose Method ... 85
12.72 STI Infrastructure-Provided Read Method .. 85
12.73 STI Infrastructure-Provided Write Method ... 86
12.74 STI Infrastructure-Provided AddressRead Method .. 86
12.75 STI Infrastructure-Provided AddressWrite Method .. 87
12.76 STI Infrastructure-Provided Log Method ... 88
12.77 STI Infrastructure-Provided FileOpen Method ... 88
12.78 STI Infrastructure-Provided FileClose Method .. 89
12.79 STI Infrastructure-Provided FileGetSize Method ... 90
12.80 STI Infrastructure-Provided FileRemove Method .. 90
12.81 STI Infrastructure-Provided FileRename Method .. 90
12.82 STI Infrastructure-Provided FileGetFreeSpace Method ... 91
12.83 STI Infrastructure-Provided MessageQueueCreate Method 91
12.84 STI Infrastructure-Provided MessageQueueDelete Method 92
12.85 STI Infrastructure-Provided PubSubCreate Method ... 93
12.86 STI Infrastructure-Provided PubSubDelete Method ... 93
12.87 STI Infrastructure-Provided Register Method .. 94
12.88 STI Infrastructure-Provided Unregister Method ... 94
12.89 STI Infrastructure-Provided GetNanoseconds Method ... 95
12.90 STI Infrastructure-Provided GetSeconds Method ... 95
12.91 STI Infrastructure-Provided GetTimeWarp Method ... 95
12.92 STI Infrastructure-Provided TimeAdd Method .. 96
12.93 STI Infrastructure-Provided TimeSubtract Method .. 96

Space Telecommunication Interface v

12.94 STI Infrastructure-Provided GetTime Method .. 97
12.95 STI Infrastructure-Provided SetTime Method .. 97
12.96 STI Infrastructure-Provided GetCalendarTime Method ... 98
12.97 STI Infrastructure-Provided CalendarValueCivil Structure .. 99
12.98 STI Infrastructure-Provided CalendarValueGPS Structure 100
12.99 STI Infrastructure-Provided CalendarValueDayNumber Structure 100
12.100 STI Infrastructure-Provided CalendarTime Union ... 101
12.101 STI Infrastructure-Provided SetTimeAdjust Method .. 101
12.102 STI Infrastructure-Provided GetTimeAdjust Method ... 102
12.103 STI Infrastructure-Provided TimeSynch Method ... 102
12.104 STI Infrastructure-Provided Sleep Method ... 103
12.105 STI Infrastructure-Provided DelayUntil Method .. 104
12.106 Document STI Interfaces .. 105
12.107 Document Application’s System Library Interfaces ... 105
External Command and Telemetry .. 105
12.108 Respond to External Commands ... 105
12.109 External Commands Use STI API .. 105
12.110 Document External Commands .. 105
12.111 Use STI Query for External Data .. 105

Annex A: Language Translations ... 106

A.1 C Language Mapping .. 107
A.2 C++ Language Mapping ... 109
A.3 Python Mapping .. 111
A.4 Perl Mapping ... 112
A.5 Ruby Mapping ... 113
A.6 Java Mapping .. 113
A.7 Lua Mapping ... 113

vi Space Telecommunication Interface

Index of Tables
Table 1: Module Interface Characterization .. 25
Table 2: Example Operating Power Interface ... 26
Table 3: Software Component Descriptions .. 30
Table 4: Function Alternatives .. 53
Table 5: STI Variable Types ... 57
Table 6: Access Constants ... 59
Table 7: CalendarKind Constants .. 59
Table 8: HandleID Constants .. 60
Table 9: Result Constants .. 61
Table 10: Handle Name Constants .. 61
Table 11: Property Name Constants .. 62
Table 12: Size Limit Constants ... 62
Table 13: TimeWarp Constants ... 63
Table 14: APP_GetHandleID() Definition .. 63
Table 15: APP_GetHandleName() Definition ... 64
Table 16: APP_Instance() Definition .. 64
Table 17: APP_Destroy() Definition ... 65
Table 18: APP_Initialize() Definition ... 65
Table 19: APP_ReleaseObject() Definition .. 66
Table 20: APP_Query() Definition ... 66
Table 21: APP_Configure() Definition ... 67
Table 22: APP_RunTest() Definition .. 68
Table 23: APP_Start() Definition .. 68
Table 24: APP_Stop() Definition .. 69
Table 25: DEV_Open() Definition .. 69
Table 26: DEV_Load() Definition .. 70
Table 27: DEV_Reset() Definition .. 70
Table 28: DEV_Flush() Definition .. 71
Table 29: DEV_Unload() Definition ... 71
Table 30: DEV_Close() Definition ... 71
Table 31: APP_Read() Definition ... 72
Table 32: APP_Write() Definition .. 73
Table 33: APP_AddressRead() Definition .. 73
Table 34: APP_AddressWrite() Definition ... 74
Table 35: IsOK() Definition .. 75
Table 36: ValidateHandleID() Definition ... 75
Table 37: ValidateSize() Definition .. 76
Table 38: InstantiateApp() Definition ... 76
Table 39: GetErrorQueue() Definition .. 77
Table 40: GetHandleName() Definition .. 78
Table 41: HandleRequest() Definition .. 78
Table 42: AbortApp() Definition ... 79

Space Telecommunication Interface vii

Table 43: Initialize() Definition ... 79
Table 44: ReleaseObject() Definition .. 79
Table 45: Configure() Definition ... 80
Table 46: Query() Definition ... 80
Table 47: RunTest() Definition ... 81
Table 48: Start() Definition ... 81
Table 49: Stop() Definition ... 82
Table 50: DeviceOpen() Definition ... 82
Table 51: DeviceLoad() Definition ... 83
Table 52: DeviceReset() Definition ... 83
Table 53: DeviceFlush() Definition ... 84
Table 54: DeviceUnload() Definition .. 84
Table 55: DeviceClose() Definition .. 85
Table 56: Read() Definition ... 85
Table 57: Write() Definition .. 86
Table 58: AddressRead() Definition ... 86
Table 59: AddressWrite() Definition ... 87
Table 60: Log() Definition .. 88
Table 61: FileOpen() Definition .. 89
Table 62: FileClose() Definition ... 89
Table 63: FileGetSize() Definition .. 90
Table 64: FileRemove() Definition ... 90
Table 65: FileRename() Definition ... 91
Table 66: FileGetFreeSpace() Definition .. 91
Table 67: MessageQueueCreate() Definition .. 92
Table 68: MessageQueueDelete() Definition .. 92
Table 69: PubSubCreate() Definition .. 93
Table 70: PubSubDelete() Definition .. 93
Table 71: Register() Definition ... 94
Table 72: Unregister() Definition .. 94
Table 73: GetNanoseconds() Definition .. 95
Table 74: GetSeconds() Definition .. 95
Table 75: GetTimeWarp() Definition .. 95
Table 76: TimeAdd() Definition ... 96
Table 77: TimeSubtract() Definition ... 96
Table 78: GetTime() Definition ... 97
Table 79: SetTime() Definition ... 97
Table 80: GetCalendarTime() Definition .. 98
Table 81: CalendarValueCivil Structure Definition .. 99
Table 82: CalendarValueGPS Structure Definition .. 100
Table 83: CalendarValueDayNumber Structure Definition .. 100
Table 84: CalendarTime Union Definition .. 101
Table 85: SetTimeAdjust() Definition ... 101

viii Space Telecommunication Interface

Table 86: GetTimeAdjust() Definition .. 102
Table 87: TimeSynch() Definition .. 102
Table 88: Sleep() Definition .. 103
Table 89: DelayUntil() Definition ... 104
Table 90: C Language Header Files .. 107
Table 91: C Language Data Type Mapping .. 108
Table 92: C++ Language Header Files .. 109
Table 93: C++ Language Data Type Mapping .. 110
Table 94: Python Language Data Type Mapping .. 112

Space Telecommunication Interface ix

Table of Figures
Figure 1: Roles and Responsibilities ... 11
Figure 2: Notional STI Hardware Architecture ... 13
Figure 3: GPM Architecture Details .. 17
Figure 4: SPM Architecture Details .. 20
Figure 5: RFM Architecture Details .. 22
Figure 6: Software Execution Model .. 29
Figure 7: Layered Structure ... 30
Figure 8: Standards Conformance vs. Standards Compliance .. 32
Figure 9: Application and Device Structure .. 34
Figure 10: Sequence Diagram for Application Control Component ... 42
Figure 11: Sequence Diagram for InstantiateApp ... 43
Figure 12: Sequence Diagram for AbortApp .. 43
Figure 13: Sequence Diagram for Device Control Component .. 45
Figure 14: Calendar Time Value Representations ... 49
Figure 17: Profile Building Blocks .. 52
Figure 18: Command and Telemetry Interfaces .. 54

x Space Telecommunication Interface

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.
OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.
More information on the OMG is available at http://www.omg.org.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:

http://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org
Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary Eng-
lish.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Space Telecommunication Interface xi

Times/Times New Roman/Liberation Serif – 10 pt.: Standard body text

Helvetica/Arial – 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier – 10 pt. Bold: Programming language elements.

Helvetica/Arial – 10 pt.: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification via the report
form at:

http://issues.omg.org/issues/create-new-issue

xii Space Telecommunication Interface

0 Submission-Specific Material
0.1 Submission Preface
This submission is in response to the Space Telecommunication Interface (STI) RFP, document number

mars/19-09-21.
The proposal describes an architecture for software-defined radios (SDRs) based on existing NASA standards. The
proposed Space Telecommunication Interface (STI) provides a common, consistent framework to abstract the
application software from the platform hardware to increase portability and reduce the cost and risk of using
complex reconfigurable and reprogrammable radio interfaces across environments from Earth to outer space.

0.2 Copyright Waiver
The National Aeronautics and Space Administration grants to the Object Management Group, Inc. (OMG) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this
document and distribute copies of the modified version.

0.3 Submitter Representative
Janette C. Briones, PhD.
Louis M. Handler
NASA Glenn Research Center, Cleveland, OH

Joseph P. Hickey
Vantage Partners, LLC, Brook Park, OH
William T. Dark
HX5, LLC

Jeffrey Smith, PhD.
Sierra Nevada Corporation, Herndon, VA

0.4 Author Team
Janette C. Briones, PhD.
Louis M. Handler
NASA Glenn Research Center, Cleveland, OH

Joseph P. Hickey
Vantage Partners, LLC, Brook Park, OH
William T. Dark
HX5, LLC

Jeffrey Smith, PhD.
Sierra Nevada Corporation, Herndon, VA

0.5 Mapping to RFP Requirements
This specification resolves the mandatory requirements as shown in Table 0.1.

Table 0.1: Mandatory RFP Requirements

Space Telecommunication Interface xiii

Require-
ment

Description How Is the Requirement Addressed

6.3.1 The Space PIM specification shall make maximum
use of the SWRadio specification where applicable.

Not a consideration after the initial design was
modified. Configure, Query, Start, Stop, and
other method names are used.

6.5 Proposals shall 1) provide a PIM for data and inter-
face definition (data and control planes including
hardware abstractions) along with other require-
ments specific to each API such as which part of the
SWRadio specification it could use as a foundation,
2) build off of the SWRadio specification and 3)
provide a section specific to PSMs.

(1) Tables contain PIM/IDL methods (2) simi-
lar to SWRadio (3) with Annex A for PSM

6.5.1 Proposals shall reuse the UML Profile for SWRadio
(PIM and PSM for SWRadio Components [SWR])
where appropriate to accommodate special space
SDR constraints for communication equipment and
physical layer facilities of the solicited PIM

Configure, Query, Start, Stop, and other
method names are used. Because of our need
in space for low weight and power (SWaP), a
C-language implementation was needed. The
need for a C-language implementation led to
the elimination of exceptions and the replace-
ment of object pointers with handle IDs in the
calls where necessary.

6.5.1 Proposals shall specify a PIM and at least one nor-
mative PSM for Space SDR interfaces.

PIM and PSM both specified. PIM is specified
throughout and PSM specified in Annex A.

6.5.1 This specification shall consist of at least two pri-
mary interface definitions, each with a control and
data plane specification for interchanging configura-
tion and run-time data: 1) the STI Application Pro-
gramming Interface (API) and 2) the STI Hardware
Interface Definition (HID) API.

(1) API in 10.5 and 10.6, (2) HID in 8.2 and
8.3

6.5.1 The STI APIs shall provide an open software speci-
fication for the application engineer to develop STI
waveform application programs.

When it is adopted and published by the
OMG.

6.5.1 The STI response shall provide a space platform in-
frastructure to support waveform implementations.
Additionally, the response to this RFP shall identify
services required for waveform deployment and
management.

10.6.2 Application Control API;

6.5.1 The STI proposal shall separate application and in-
frastructure APIs in its design.

10.5 vs 10.6

6.5.2 Proposals shall define compliance points to which
COTS vendors must conform. The following is the
minimum set of acceptable compliance points. Re-
sponses may include additional compliance points.

Section 12 is a summary.

xiv Space Telecommunication Interface

Require-
ment

Description How Is the Requirement Addressed

6.5.2.1 Standard interfaces for control, management and sta-
tus retrieval of the subsystems.

10.5.2 Application-Provided Application Con-
trol Interfaces; 10.6.2 Application Control;
10.5.3 Device-Provided Device Control Inter-
face; 10.6.3 Device Control API

6.5.2.2 Control interfaces with functionality to control the
synchronization of subsystems.

10.5.2 Application-Provided Application Con-
trol Interfaces; 10.6.2 Application Control;
10.5.3 Device-Provided Device Control Inter-
face; 10.6.3 Device Control API

6.5.2.3 Interfaces that allow setting and querying parame-
ters defined in the hardware abstraction of subsys-
tem elements.

10.5.2 Application-Provided Application Con-
trol Interfaces; 10.6.2 Application Control;
10.5.3 Device-Provided Device Control Inter-
face; 10.6.3 Device Control API

6.5.2.4 Application interfaces and related metadata defined
separately for each subsystem.

10.5.2 Application-Provided Application Con-
trol Interfaces; 10.6.2 Application Control;
10.5.3 Device-Provided Device Control Inter-
face; 10.6.3 Device Control API

6.5.3 Proposals shall specify the following networking aspects and functionality of Space Telecommunica-
tion Interfaces:

6.5.3.1 Support different kinds of missions, such as legacy,
new science, and new exploration.

Discusses optional capability.

6.5.3.2 Support IP routing and internet applications for
space and ground elements.

Networking module in 8.1 and 8.2

6.5.3.3 Accommodate both scheduled and unscheduled
communications.

Log, Query, PubSub, MessageQueues, Read,
Write, AddressRead, AddressWrite

6.5.3.4 Accommodate both continuous and intermittent con-
nectivity.

Allows either continuous or intermittent con-
nectivity as programmed into the SDR.

6.5.3.5 Support space data links characterized by large and
small signal propagation latencies; uni-directionality
and bi-directionality; and both low and high bit error
rates.

Doesn't specify a type of networking and al-
lows Delay Tolerant Networking (DTN), User
Datagram Protocol (UDP), Transmission Con-
trol Protocol (TCP), or other protocols to be
used.

6.5.3.6 Support data flows that: originate at arbitrary user
locations on Earth and in space, terminate at arbi-
trary user locations or sets of user locations (i.e.,
multi-point delivery) on Earth and in space, and
traverse N-hop transmission paths where N > 1.

No restriction as to the origin of the data flow
as long as the data meets the appropriate secu-
rity criteria.

6.5.3.7 Support transmission of the following types of data:
command, telemetry, files (including web pages),
messages (e.g., electronic mail), voice, video, and
range safety.

Section 11 for External Command and Telem-
etry Interfaces; 10.6.6 for files; 10.6.7 for
messaging; 10.6.3 and 10.6.4 for connection
to hardware devices.

Space Telecommunication Interface xv

Require-
ment

Description How Is the Requirement Addressed

6.5.3.8 Provide the following qualities of data communica-
tion service (not necessarily in all combinations):
isochrony, reliability, transmission order preserva-
tion, timeliness, and priority.

Digital to Analog (D2A) and Analog to Digi-
tal (A2D) are implied for SDR. Signal ampli-
fication, reliability, and packet transmission
order preservation are not considered since
this is not a performance or operations stand-
ard.

6.5.3.9 Provide data communication performance metrics
and accountability.

STI encourages capture of performance met-
rics to allow cognitive improvement of func-
tionality.

6.5.4 Proposals shall implement the following security aspects of the Space Telecommunication Interfaces:

6.5.4.1 End-to-end protection of the authenticity of control
information, specifically the ability to prevent unau-
thorized access to and alteration of data.

Non-conformant to STI RFP.

6.5.4.2 End-to-end protection of the confidentiality of sensi-
tive control information, specifically the ability to
prevent inappropriate disclosure of sensitive data.

Non-conformant to STI RFP.

6.5.4.3 Timely delivery of, and access to, critical control in-
formation with minimal delay caused by security
services.

 Non-conformant to STI RFP.

6.5.4.4 Bulk encryption for legacy assets. Non-conformant to STI RFP.
6.5.4.5 The ability to manage and control security key mate-

rial over-the-network using Federal Information Pro-
cessing Standard (FIPS)-approved key generation
and distribution.

 Non-conformant to STI RFP.

6.5.4.6 The ability to conduct Certification and Accredita-
tion of the security service end-to-end system ac-
cording to FIPS SP 800-37 [FIPS], using FIPS-ap-
proved cryptographic modules and devices.

 Non-conformant to STI RFP.

Table 0.2 lists the non-mandatory requirements in the RFP and how this submission addresses them.

Table 0.2: Non-Mandatory Requirements
Require-
ment

Description How Is The Requirement Addressed

6.6.1 Design Requirements
6.6.1.1 The ability to isolate waveform applications from

hardware specific implementations.
Not always entirely possible but architecture
allows isolating non-hardware-specific parts
of waveform applications in software from
hardware-specific parts.

6.6.1.2 The ability of a radio to maintain reliable operation
during remote software and firmware uploads.

Necessary but not part of STI.

6.6.1.3 The ability of a radio to control external hardware in
real-time.

Documentation of HID, HAL, and Devices
describe the use of application/resources.

xvi Space Telecommunication Interface

Require-
ment

Description How Is The Requirement Addressed

6.6.1.4 The ability of a radio to operate legacy, current
standard, and defined waveforms according to its
hardware.

Allowed but not an STI requirement.

6.6.1.5 The ability of a radio to use both narrowband and
wideband waveforms for voice, video, and data
space communications.

Allowed but not an STI requirement.

6.6.1.6 The ability of a radio to use current, and be adapta-
ble to new, networking protocols.

Allowed but not an STI requirement. See 7.3

6.6.1.7 The ability of a radio to maintain compatibility with
current, and be adaptable to new, security measures.

Allowed but not an STI requirement.

6.6.1.8 Views/viewpoints used to express the deployment
side of the previously described HID, and patterns,
e.g., application and resource factories to control ap-
plication/resources, may be used to subdivide the
STI profile for clarity and modularity.

Documentation of HID, HAL, and Devices
describe the use of application/resources.

6.6.2 Interface Requirements
6.6.3 Proposals may support the ability of a radio to use

existing commercial off-the-shelf spacecraft inter-
faces.

Hardware is not specified by STI. Example is
shown by STRS on 3 different radios by 3 dif-
ferent companies on SCaN Testbed on ISS.

6.6.3 Functional Requirements
6.6.4.1 The ability of a radio to operate multiple waveforms

simultaneously.
See 7.3

6.6.4.2 The ability of a radio to operate in several communi-
cation bands simultaneously.

See 7.3

6.6.4.3 The ability of a radio to operate multiple simultane-
ous channels in a single communication band.

See 7.3

6.6.4.4 The ability of a radio to autonomously monitor its
communications environment and a) self-adapt in or-
der to optimize its communications link and b) report
on or respond to remote interrogations regarding its
health and configuration status.

See 7.3

6.6.4.5 The ability of a radio to be reconfigurable and to
provide additional computing resources at times
when communications are low or zero.

See 7.3

6.6.4.6 The ability of radio to detect extended loss of opera-
tion either due to signal degradation or internal mal-
function.

See 7.3

6.6.4.7 The ability of a radio to autonomously recover from
fault conditions after a reboot or power cycle event.

See 7.3

6.6.4.8 The ability of a radio to use current and be adaptable
to new radiometric tracking and navigation wave-
forms and services.

Allowed but not an STI requirement.

0.6 Responses to RFP Issues to Be Discussed
Table 0.3 lists the Issues to Discussed in the RFP and how this submission addresses them.

Table 0.3: Issues to be Discussed

Space Telecommunication Interface xvii

Issue Description How Is the Issue Discussed

6.7.1 Proposals shall discuss how legacy systems are sup-
ported by an implementation of this specification.

Waveform applications may be programmed to
communicate with legacy systems.

6.7.2 Proposals shall discuss how it provides advantages
for the space environment.

NASA’s previous version, STRS, was used
successfully on SCaN Testbed, 2012-2020.
SWRP modified for SWaP and C-language in-
terface.

6.7.3 Proposals shall discuss how the proposed specifica-
tion handles external commands.

Section 11 External Command and Telemetry
Interfaces

6.7.4 Proposals shall discuss how the proposed specifica-
tion meets all stated requirements and associated ra-
tionale.

See rest of this matrix

6.7.5 Proposals shall discuss the rationale for not satisfying
non-mandatory features.

The security aspects in 6.5.4 of the RFP were
considered to be possible within this standard
but were not standardized further.

6.7.6 Proposals shall discuss how interfaces from a HID to
FPGAs and other signal-processing specific based
platforms are specified, e.g., reuse of existing hard-
ware abstraction layers or new design to satisfy mod-
ern signal processing hardware.

STI response states that standards for API and
documentation encourage reuse ability.

6.7.7 Proposals shall discuss metrics that determine quality
of service elements, e.g., timeliness and reliability.

Metrics such as signal to noise ratio, visual,
Doppler, and radar allow for cognitive, radio-
metric tracking, navigation, and other services
that are integrated with communication ser-
vices. In addition, a heartbeat signal and
watchdog timer aid in autonomous operation
allowing rebooting as necessary.

6.7.8 Proposals shall discuss existing commercial off-the-
shelf spacecraft interfaces that may be used to satisfy
one or more requirements.

Generally, newer COTS components are not
designed with the space radiation environment
in mind, nor are they built to withstand the ri-
gors of launch into space. However, certain
hardware and firmware (e.g. using triple mode
redundancy) have enough use in space that
they may be considered COTS.

0.7 Proof of Concept
The foundation of this proposal evolved from a National Aeronautics and Space Administration (NASA) project
whose goal was to improve the portability of components utilized in software defined radio (SDR) deployments.
The intent is to improve the return on investment in software development by allowing the related components to be
deployed in more than one project/mission without incurring significant additional development time.
A predecessor to this STI specification was developed by NASA as part of a technology demonstration of software-
defined radio technology. The use of SDRs for NASA missions was a new concept in 2002, made possible by the
development of reconfigurable components suitable for use in space radios. A need to reduce the cost and risk of
using SDRs was identified and the development of a common SDR architecture was initiated as a means to achieve
this.

xviii Space Telecommunication Interface

In 2007, the architecture was determined to be ready for flight implementation in a technology development project.
This project was originally called the Communication, Navigation, and Networking reConfigurable Testbed
(CoNNeCT), and later renamed the Space Communications and Navigation (SCaN) Testbed. Three SDRs were
procured in 2008 and 2009 for the SCaN Testbed, using the architecture defined in a technical memorandum and
referred to in the procurement specifications as Space Telecommunications Radio System version 1.02.1.
The SCaN Testbed was launched in July 2012 and operated on an external truss on the International Space Station
(ISS). The SCaN Testbed was an experimental communications system that provided the capability for S-Band, Ka-
Band, and L-Band communication with space and ground assets. Investigation of SDR technology and the STI
architecture was the primary focus of the SCaN Testbed. As a completely reconfigurable testbed, the SCaN Testbed
provided experimenters an opportunity to develop and demonstrate experimental waveforms and applications for
communication, networking, and navigation concepts and to advance the understanding of operating SDRs in space.
Lessons learned from the SDR platform provider, application developers, and integrators of the SCaN Testbed
provided critical insight for the development of future versions of the Space Telecommunications Radio System
(STRS), which was released as NASA standard NASA-STD-4009. The most recent revision to the NASA standard,
designated as NASA-STD-4009A, serves as the basis for this STI specification.
As part of this effort, NASA has developed a reference implementation of this architecture as a C/C++ library.
Additionally, NASA has deployed several complete STRS operating environments on different radio platforms from
different vendors and maintains a library of portable applications that are compliant with the architecture.

0.8 Applicability to RFP (This section will be deleted when incorporated above)
This proposal addresses the issues presented in the STI RFP in the following ways:

• This proposal submission is based on NASA STRS, which is an architecture for SDRs that has been
deployed and used in space flight applications.

• STRS has been successfully implemented on space-grade, radiation tolerant hardware which has limited
computing resources (memory capacity, processing power, etc.). It has relatively small footprint compared
to other software radio architectures, and minimal external software dependencies.

• This proposal does not require a specific middleware to exist between components, permitting these
interfaces these interfaces to be a direct path (e.g. a function call) with minimal overhead. However, the
model also does not exclude the use of middleware/remote procedure calls where warranted, so it has the
wide applicability to a variety of system footprints.

• It facilitates re-use of investments in signal processing software and FPGA designs for software defined
radios through abstraction layers.

• It contains provisions for independent unit testing of the SDR components in isolation.
• It allows for independent updates/lifecycles of each SDR component, allowing the radio functionality to

evolve over time.
• It allows for components to be developed in parallel by different vendors and facilitates vendor

independence.
• It provides a common, abstract interface for higher level software applications to communicate with the

radio, such as cognitive link optimization algorithms.
• It permits the interfaces to be accessed via an external Remote Procedure Call (RPC) mechanism, where

warranted, to provide an external command/control interface for the radio.
• The relationship to NASA STRS means that existing software/programmable logic already developed in

compliance with STRS will be portable to STI with minimal changes, thereby offering an upgrade path for
existing products.

• The general system/hardware architecture is prescribed in section 8, Hardware Architecture, and the
software API is documented in section 10, Software Architecture.

Space Telecommunication Interface 1

1 Scope
This document, the Space Telecommunication Interface (STI), specifies the data types, application programming
interface, and associated operational patterns that compliant software defined radio (SDR) platforms are required to
implement. This is intended to promote portability of SDR applications between radio platform providers by
providing a common programming interface.
In order to be adaptable to a wide variety of platforms and applications, this specification focuses on a metamodel
for the hardware and software architecture of an SDR, rather than prescribing a specific implementation. As such,
an adequate level of knowledge capture must be documented to facilitate portability and reuse of hardware and
software architecture.

2 Conformance
In this document, conformance or compliance is used to indicate normative elements; that is, they are to be followed
in order to comply with the specified requirements. Shall is used to indicate a requirement that is contractually
binding, meaning it must be implemented, and its implementation verified. Will is used to indicate a statement of
fact. Will statements are not subject to verification. Should is used to indicate a goal which must be addressed by
the design team but is not formally verified.
The primary point of conformance is support of the given platform independent model (PIM) described in section
12, Normative Requirements, in this document. This specification concerns multiple aspects of SDRs, with
different specific points of conformance for each aspect. Hardware architecture conformance is indicated mainly
through a hardware interface document (HID), which specifies how the PIM is realized in a given design. Software
architecture conformance is based on the implementation and usage of the various software interfaces prescribed in
this document. Ellipses (…) are used to indicate continuation or user-defined values, whether enclosed in braces or
not. The platform specific model (PSM) language-specific requirements are indicated in Annex A.

3 References
3.1 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do
not apply.

Object Management Group (OMG):
CPP C++ Language Mapping Specification (https://www.omg.org/spec/CPP/)

DDS-JAVA Java 5 Language PSM for DDS (https://www.omg.org/spec/DDS-Java)

IDL Interface Definition Language Specification (https://www.omg.org/spec/IDL/)

PYTH Python Language Mapping Specification (https://www.omg.org/spec/PYTH)

SysML Systems Modeling Language Specification (https://www.omg.org/spec/SysML/)

UML Unified Modeling Language Specification (https://www.omg.org/spec/UML/)

Institute of Electrical and Electronics Engineers (IEEE):

1003.13 IEEE Standard for Information Technology—Standardized Application Environment Profile
(AEP)—POSIX® Realtime and Embedded Application Support

2 Space Telecommunication Interface

International Organization for Standardization (ISO):

8601
Data elements and interchange formats - Information interchange -
Representation of Dates and Times (e.g. https://www.iso.org/standard/70907.html,
https://www.iso.org/standard/70908.html)

9899 Information technology—Programming languages—C (e.g.
https://standards.globalspec.com/std/10395283/ISO/IEC%209899)

9945 Information technology—Portable Operating System Interface (POSIX®) Base Specifications
(e.g. https://standards.globalspec.com/std/10153436/DS/ISO/IEC/IEEE%209945)

30170 Information technology — Programming languages — Ruby (e.g.
https://standards.globalspec.com/std/1518370/ISO/IEC%2030170)

14882 Information technology—Programming languages—C++ (e.g.
https://standards.globalspec.com/std/896855/IEEE%201003.13)

Other:
JAVA Java Language Specification (https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf)

LUA Lua 5.3 Reference Manual (https://www.lua.org/manual/5.3/)

PERL Perl Language Specification (https://perldoc.perl.org/)

PYTHON Python Language Mapping Specification (https://www.python.org/doc/)

3.2 Non-normative References
The following documents provide additional guidelines, historical context or rationale for elements of this
specification.

Object Management Group (OMG):

ORMSC/14-06-01 Model Driven Architecture (MDA) Guide

SDRP/1.0 PIM and PSM for Software Radio Components Specification (SWRADIO)
(formal/07-03-01) (https://www.omg.org/spec/SDRP/)

National Aeronautics and Space Administration (NASA):

NASA-STD-4009A Space Telecommunications Radio Systems (STRS) Architecture Standard
(https://standards.nasa.gov/standard/oce/nasa-std-4009)

NASA-HDBK-4009A Space Telecommunications Radio Systems (STRS) Architecture Standard
Rationale (https://standards.nasa.gov/standard/oce/nasa-hdbk-4009)

NASA/TM—2007-215042
Space Telecommunications Radio System (STRS) Architecture Goals/Objectives
and Level 1 Requirements
(https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008862.pdf)

NASA/TP—2008-214813 Space Telecommunications Radio System Software Architecture Concepts and
Analysis (https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080024190.pdf)

United States Department of Defense:

MIL-STD-1553 Digital Time Division Command/Response Multiplex Data Bus (MIL-STD-1553

Space Telecommunication Interface 3

Digital Time Division Command/Response Multiplex Data Bus)

SCA Software Communications Architecture Specification, Version 2.2.2
(https://sds.wirelessinnovation.org/assets/sca_version_2_2_2.pdf)

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Adaptability
Adaptability is the ease with which a system satisfies differing system constraints and user needs.

Application Program Interface (API)
An application program interface (API) is a formalized set of software calls and routines that can be referenced by
the application program in order to access supporting system or network services.

Board Support Package (BSP)
A board support package (BSP) provides the hardware abstraction of the GPM module for the POSIX-compliant
Operating System. It contains the boot and the generic and processor specific drivers required for the specific hard-
ware. The BSP leverages commercial off the shelf (COTS) device drivers and other software necessary for applica-
tions to access the specific hardware.

Component
A component represents a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment. A component exposes a set of provided and required interfaces that specify the
component behavior and operation.

Device
A hardware device is a physical entity that is capable of performing a function. A software device is a software
abstraction of a hardware device(s). A STI device is a software device that is part of the STI Infrastructure having a
well defined and portable API which may use the HAL to read, write, and control hardware devices.

External Interface
An external interface consists of software and/or hardware that enable signals to be transported to and/or from a
radio. Examples include interfaces to/from the flight computer, power, data sources/sinks, and antenna.

Facility
The realization of certain functionality through a set of well-defined interfaces.

Fault Management
Fault management is the set of functions that detect, isolate, and correct malfunctions within the system or provide
notifications.

General-purpose Processing Module (GPM)
A general-purpose processing module (GPM) is a hardware module used for general purpose processing that
contains the STI OE. The GPM consists of the general-purpose processor, appropriate memory both volatile and
non-volatile, system bus, the spacecraft (or host) telemetry, tracking and command (TT&C) interface, ground
support telemetry and test interface, and the components to support the radio configuration.

Hardware Abstraction Layer (HAL)
The hardware abstraction layer (HAL) is the library of functions that provides a platform independent view of the
specialized hardware by abstracting the physical hardware interfaces. The HAL implements any software or

4 Space Telecommunication Interface

firmware that is directly dependent on the underlying hardware. The HAL is the part of the operating environment
(OE) that the STI Infrastructure uses to access hardware.

Hardware Interface Description (HID)
The hardware interface description (HID) describes physical and electrical interfaces, hardware performance,
capability, capacity, size, weight, and power requirements.

Logical Device
A software component that is an abstraction of a hardware device it represents.

Mapping
The specification of a mechanism for transforming the elements of a model conforming to a particular metamodel
into elements of another model that conforms to another (possibly the same) metamodel.

Metamodel
A model of models.

Model
A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA)
An approach to IT system specification that separates the specification of functionality from the specification of the
implementation of that functionality on a specific technology platform.

Module
Module is a self-contained hardware or software component that interacts with a larger system. A software module
(program module) performs specific tasks within a software system. A hardware module is a physical grouping of
devices capable of implementing specific functions.

Platform
A set of subsystems or technologies that provide a coherent set of functionality through interfaces and specified
usage patterns.

Platform Independent Model (PIM)
A model of a subsystem that contains no information specific to the platform, or the technology that is used to
realize it.

Platform Specific Model (PSM)
A model of a subsystem that includes information about the specific technology that is used in the realization of it on
a specific platform, and hence possibly contains elements that are specific to the platform.

Portability
Portability is the ease with which a system application or service can be transferred from one hardware or software
environment to another.

Portable Operating System Interface (POSIX)
Portable operating system interface (POSIX) refers to a family of IEEE standards 1003.n which describes the funda-
mental operating system services and functions necessary to provide a UNIX-like kernel interface to applications.
POSIX is not an operating system but assures guaranteed programming interfaces available to the application pro-
grammer.

Radio Frequency (RF) Module (RFM)
The radio frequency module (RFM) performs the conversion to and from carrier frequencies and provides the signal
processing module with baseband or IF signals and the transmission and reception equipment with RF signals. RFM

Space Telecommunication Interface 5

associated components may include filters, RF switches, diplexers, low noise amplifiers (LNAs), power amplifiers,
and analog to digital (and vice-versa) converters. This module handles the interfaces that control the final stage of
transmission or first stage of reception of the wireless signals, including antennas.

Radio Platform
The Radio Platform is a platform that provides radio functionality.

Real-Time Operating System (RTOS)
Real-time operating system (RTOS) is an operating system that guarantees a certain capability within a specified
time constraint.

Reconfigurable Transceiver (RT)
A reconfigurable transceiver (RT) is a radio with limited processing and selectable remote reconfiguration (e.g.,
filter parameters and modulations).

Service
A software program that provides functionality available for use by other applications.

Signal Processing Module (SPM)
The signal processing module (SPM) contains the implementations of the signal processing used to handle the trans-
formation of received digitally-formatted signals into data packets and/or the conversion of data packets into digi-
tally-formatted signals to be transmitted. Also included is the spacecraft data interface. Components include applica-
tion specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), digital signal processors (DSPs),
memory, and connection fabric or bus.

Space Telecommunications Radio System (STRS)
Space telecommunications radio system (STRS) is the name of the project that defines and maintains the SDR
architecture for NASA.

STI Infrastructure
The STI infrastructure is that part of the STI operating environment which configures and controls STI waveforms
and services as well as specialized hardware via the HAL. Additional functionality may be required for radio robust-
ness and mission dependent requirements.

STI Operating Environment (OE)
The STI operating environment (OE) is the portion of the STI radio that contains the STI Infrastructure, the POSIX
conformant RTOS, the HAL, and optional middleware software.

STI Radio
A STI radio is a software defined radio compliant with the STI architecture standard, running one or more wave-
forms.

5 Symbols
The following acronyms and abbreviations are used in this document

A Ampere
A2D Analog to Digital
ADC Analog-to-Digital Converter
AEP Application Environment Profile
AGC Automatic Gain Control
ANSI American National Standards Institute

6 Space Telecommunication Interface

API Application Programming Interface
APP Application
ASCII American Standard Code for Information Interchange
ASIC Application-Specific Integrated Circuit
BIT Built-in Test
BSP Board Support Package
C&DH Command and Data Handling
CCSDS Consultative Committee for Space Data Systems
COTS Commercial Off the Shelf
D2A Digital to Analog
DAC Digital-to-Analog Converter
DEC Digital Equipment Corporation
DLL Dynamic Link Library
DSP Digital Signal Processor
EDIF Electronic Design Interchange Format
EEPROM Electrically Erasable, Programmable Read-Only Memory
FFRDC Federally Funded Research and Development Center
FIFO First In, First Out
FIPS Federal Information Processing Standard
FPGA Field Programmable Gate Array
GPIO General Purpose Input Output
GPM General-purpose Processing Module
GPP General Purpose Processor
GPS Global Positioning System
HAL Hardware Abstraction Layer
HDBK Handbook
HDL Hardware Description Language
HID Hardware Interface Description
HW Hardware
I/O Input/Output
I2C Inter-Integrated Circuit
ID Identification, Identifier
IDL Interface Definition Language
IEC International Electrotechnical Commission
IEEE The Institute of Electrical and Electronics Engineers
IF Intermediate Frequency
INCITS Inter-National Committee for Information Technology Standards
IP Internet Protocol
ISO International Organization for Standardization
ISR Interrupt Service Routine

Space Telecommunication Interface 7

LLC Logical Link Control
LNA Low Noise Amplifier
MAC Media Access Control
MARS OMG’s Middleware and Related Services
MDA Model Driven Architecture
MIL Military
MJD Modified Julian Date
MMU Memory Management Unit
NASA National Aeronautics and Space Administration
NM Network Module
OAL OEM adaptation layer
OE Operating Environment
OEM Original Equipment Manufacturer
OM Optical Module
OMG Object Management Group
ORMSC Operational Research MSc Programmes
OS Operating System
OSS Open Source Software
PIM Platform-Independent Model
PLD Programmable Logic Device
POSIX® Portable Operating System Interface
PROM Programmable Read-Only Memory
RAM Random Access Memory
RF Radio Frequency
RFM Radio Frequency Module
ROI Return on Investment
ROM Read-Only Memory
RTOS Real-Time Operating System
SCA Software Communications Architecture
SDR Software-Defined Radio
SEC Security Module
SEU Single Event Upset
SNC TF OMG’s MARS Secure Network Communications task force
SPM Signal Processing Module
SRAM Static Random-Access Memory
STD Standard
STI Space Telecommunication Interface
SysML Systems Modeling Language
TAI International Atomic Time (temps atomique international)
TCP Transmission Control Protocol

8 Space Telecommunication Interface

TMR Triple-Mode Redundancy
TT&C Telemetry, tracking, and command
UML Unified Modeling Language
UTC Coordinated Universal Time
V Volt
V&V Verification and Validation
VDD Version Description Document
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
XML Extensible Markup Language

6 Additional Information
6.1 Acknowledgments
The following companies contributed to the development of this specification:

• NASA Glenn Research Center

• Sierra Nevada Corporation

• Vantage Partners, LLC

• HX5, LLC

7 Goals and Objectives
7.1 Overview
The goals and objectives of the Space Telecommunication Interface (STI) architecture for software-defined radios
(SDRs) is to provide a common, consistent framework that abstracts the application software from the platform
hardware to reduce the cost and risk of using complex reconfigurable and reprogrammable radio interfaces across
different space and satellite projects. It achieves this objective by defining an architecture to enable the reuse of
applications (waveforms and services implemented on the SDR) across heterogeneous SDR platforms and thereby
reduces dependence on a single vendor or platform type.
The specification provides a detailed description and set of requirements to implement the architecture. The
specification focuses on the key components and facilities by prescribing their functionality and interfaces for both
the hardware and the software. The intended audience for this specification is composed of software and hardware
developers who need architecture specification details to develop an STI platform or application.

7.2 Purpose
The purpose of this specification is to establish an open architecture specification for space and ground SDRs.
Many space projects either use hardware radios, which cannot be modified once deployed, or software-defined
radios with an architecture that depends on the radio provider and involves significant effort to add new
applications.
This specification is intended to assist in the development of software-defined, reconfigurable technology to meet
future space communications and navigation system needs. Software-based SDRs enable advanced operations that

Space Telecommunication Interface 9

potentially reduce mission life-cycle costs for space or ground platforms. Since SDR technology allows radios to be
reconfigured to perform different functions, it may reduce the number of discrete radio devices required to achieve
desired objectives, which also decreases mass and power requirements for the overall system.

7.3 Key Architecture Requirements
The key goals in the development of the STI architecture are to decrease the development time, cost, and risk of
using SDRs while still accommodating advances in technology. The advent of software-based applications allows
minimal rework to reuse applications and to adapt to evolving requirements.
The requirements for the architecture are derived from the following STI goals and objectives:

• Usable across most space project types (scalability and flexibility).
• Decrease development time and cost.
• Increase reliability of SDRs.
• Accommodate advances in technology with minimal rework (extensibility).
• Adaptable to evolving requirements (adaptability).
• Leverage existing or developing standards, resources, and experience (state-of-the-art and state-of-

practices).
• Maintain vendor independence.
• Enhance waveform application portability and re-usability.
• Interoperable with existing radios

Conversely, the architecture does not specify mission-specific functional and performance requirements such as:

• Any specific hardware
• Contents or format of the external interfaces to the SDR
• Waveform-specific requirements such as data rate, coding scheme, and modulation and demodulation

techniques.
• Security, fault tolerance, redundancy, and fault mitigation approaches.

Instead, the architecture is careful to enable all solutions that the project might require as they relate to the mission-
specific functional and performance specifications. The architecture does not preclude the implementation of
mission-developed services on the SDR, including but not limited to:

• Multiple waveforms operating simultaneously across any RF band defined in the SDR specification.
• Commanded built-in-test (BIT) and status reporting.
• Real-time operational diagnostics.
• Automated system recovery and initialization.
• Networking and navigation within the SDR.
• Secure transmission.
• Shared processing among on-board elements.

To meet these goals and objectives, the STI architecture has an open architecture design that accommodates a
varying range of radio form factors. Historically, users have experienced up to 98% software reuse. The
architecture has allowed parallel and independent software and platform development as well as reduced
dependence on a single SDR provider by separating application development from the hardware platform
development. The architecture has also allowed the software to be modified late in development or after deployment
for new requirements opportunities or to fix bugs. The architecture provides standardized interfaces for cognitive
engine inclusions across different platforms.

10 Space Telecommunication Interface

7.4 Fundamental Design
This STI Standard consists of hardware, configurable hardware design, and software architectures with
accompanying description, guidance, and requirements.
The terms “software” and “configurable hardware design” are used in this specification to distinguish the
architecture items that apply to code (source code, object code, executables, etc.) implemented on a processor; and
designs (hardware description language/HDL source, loadable files, data tables, etc.) implemented in a configurable
hardware device such as a field programmable gate array (FPGA). Both items can change the functionality of the
radio in-situ using program control. The term “software” is also used in a generic sense in this specification to
discuss all configurable items of the radio, including configurable hardware design. The terminology used is not
meant to imply design and implementation process.
The STI hardware architecture is specified at a facility level. The hardware architecture requirements are written so
that the hardware provider defines the functional breakdown (modules or components) of the system and publishes
the functions and interfaces for each module and for the entire platform in a hardware interface description (HID)
document. This information enables others developing applications or additional modules, or interfacing to the
platform, to have the knowledge to integrate and test the hardware interfaces and understand the features and
limitations of the platform. This specification encourages the development of applications that are modular,
portable, reconfigurable, and reusable.
The software architecture is the focus of this STI Standard. STI applications use the STI infrastructure-provided
application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload
an application. The software architectural model describes the relationship between the software elements, defined
in layers, in an STI-compliant radio. The model illustrates the different software elements used in the software
execution and defines the API layers between an STI application and the Operational Environment (OE), and
between the OE and the hardware platform.
The STI software layers are separated to enable developers to implement the software layers differently according to
their requirements while still complying with the STI architecture. A key aspect is the abstraction of the STI
application, which is either a waveform or service, from the underlying OE software to promote portability and
reusability of the STI application. Interfaces in STI software architecture can be divided into three general
categories, as follows:

• The STI APIs, defined in this document, and the application-specific data structures associated with these
APIs.

• The operating system interface, such as POSIX®.
• The interface to external software modules, libraries or dependencies, such as third-party signal processing

software, mathematical toolkits, or an interface to any application-specific hardware.
The STI APIs provide the interfaces that allow applications to be instantiated and use platform services. These APIs
also enable communication between STI applications and the STI infrastructure. The hardware abstraction layer
(HAL) provides a software view of the specialized hardware by abstracting the physical hardware of interfaces. It is
to be published so that software and configurable hardware design running on the platform’s specialized hardware
can integrate with the STI infrastructure.

7.5 Roles and Responsibilities
The final configuration of an SDR and its applications is generally a product of multiple organizations performing
various tasks. The separation of requirements, responsibilities, and resulting tasks is assigned in this specification
by logical role where each role has requirements that may be satisfied by an individual or delegated to a subordinate
organization(s). As figure 1, Roles and Responsibilities, illustrates, the effort begins with a mission need for a radio,
which could support communications, navigation, and in some instances even networking functions. The mission
system engineer defines radio interface requirements. For each mission, the system integrators, platform providers,
and application developers are selected. Eventually, the platform and applications are integrated into the STI-
compliant radio product. Both the hardware and software are tailored to meet mission-specific needs.

Space Telecommunication Interface 11

The STI platform provider is the organization responsible for the design and development of the SDR hardware
platform, including the STI OE (e.g., infrastructure, OS), and associated documentation. The OE and hardware
platform are a unique set and become the SDR platform.
The STI platform provider is responsible for following:

• All documentation associated with the platform.
• Any platform-specific FPGA wrapper for adaptation of FPGA code to the platform
• Software header files specifying the required interface, including constants, type definitions, and structures.
• Script or software configuration file formats, any extensible markup language (XML) schema, and any

transformation tool for controlling instantiation, and their associated documentation, if deemed necessary.
If the STI platform provider delegates responsibility for part of the OE to a separate infrastructure provider, the
responsibility for the appropriate files and documentation may be delegated to that provider as well. If the STI
platform provider delegates responsibility for part of the hardware to a separate hardware provider, the responsibility
for the pertinent HID documentation may be delegated to that hardware provider as well. The STI platform provider
is ultimately responsible to integrate and deliver all aspects of the platform and OE documentation.
A primary objective of STI is facilitate the re-use of SDR components, and as such, one or more repositories
containing existing, previously-developed STI components may be available for project development efforts. Any
such components may be publicly available and distributed under an open-source license or a
commercial/proprietary license, or may be held in a private, non-public repository that is maintained internally
within the same organization.

Figure 1: Roles and Responsibilities

12 Space Telecommunication Interface

The project design team and the STI application developer have the responsibility to evaluate the contents of any
available component repositories against the SDR application requirements to determine if an existing application in
a repository may be re-used by porting it to the target platform. Depending on the results of this decision, the STI
application developer either creates a new application or ports an existing STI application. The STI application
developer performs unit tests, and documents the functionality.
The STI integrator brings the hardware platform and software application together on the SDR platform. The STI
integrator could be the STI platform provider, the STI application developer(s), a mission engineer, or even a third
party. The STI integrator’s role is to have the application properly running on the SDR platform to meet the
communication, navigation, or other functions of the mission. Once the STI radio integration is complete, it is
delivered to a system integrator who incorporates it into the mission spacecraft system.

8 Hardware Architecture
In addition to providing benefits by defining a standard software infrastructure for software defined radios, this
specification also defines standards for the hardware portion of the radio. Hardware technologies may change more
rapidly than software, and each radio implementation generally has very specific spacecraft dependencies and
requirements. Therefore, the STI hardware architecture is specified as an abstract set of facilities rather than at the
physical implementation level.
The architecture does not prescribe a specific hardware implementation approach. An STI hardware platform is to
be delivered with a complete HID, which is described in section 8.3, Hardware Interface Description. The HID
specifies the electrical interfaces, logic interfaces, connector requirements, and physical requirements for the
delivered radio. Each module’s HID abstracts and defines the module functionality and performance.

8.1 Generalized Hardware Architecture
The STI radio hardware is divided logically into:

a. a general-purpose processing module (GPM) containing the software,
b. signal processing modules (SPM) containing programmable logic devices (PLDs), which perform any high-

speed digital signal processing, and
c. RF modules (RFM) containing the analog to digital and digital to analog converters with interfaces to the

antennas.
Configurable hardware designs are realized using a hardware device such as an FPGA or other type of
programmable logic device (PLD).
The hardware diagrams illustrate some likely radio functions and the interconnects for each module. The modules
are a logical and functional division of common radio functions that comprise an STI platform. Modules are not
intended to represent physical entities of the platform. As developers choose how to distribute and implement the
radio functions among hardware elements, the specification provides the guidance on the interfaces and abstractions
that are to be provided to comply with the architecture. The module and function connections provided in the
diagrams are data path, control, signal clock, and external interfaces.
Figure 2, Notional STI Hardware Architecture, shows the high-level STI hardware architecture. The figure
illustrates the functional attributes and interfaces for each module. A module is a combination of logical and
functional representations of platform and applications implemented in a radio. The modules are divided into their
typical functions to provide a common description and terminology reference. Each STI platform provider has the
flexibility to combine these modules and their functionality as necessary during the radio design process to meet the
specific mission requirements.

Space Telecommunication Interface 13

Additional modules can be added for increased capability. The hardware architecture does not specify a physical
implementation internally on each module, nor does it mandate the standards or ratings of the hardware used to
construct the radios. Thus, a radio supplier can encapsulate company proprietary circuit or software designs,
provided the modules meet the specific architecture rules and expose the interfaces defined for each module. There
is flexibility to physically combine or split these modules as necessary during the radio design process to meet the
specific mission requirements or to optimize the design. For example, all RF and signal-processing components or
functions may be integrated onto a single printed circuit board, easing footprint, interface, and integration issues, or
an approach with multiple boards and enclosures could be used. Similarly, an FPGA could potentially contain both
the Signal Processing Module (SPM) functions and the General Purpose Processor (GPP), or the Signal Processing
Module (SPM) functions could be split between an FPGA and the GPM.
Each project or organization may choose to further standardize certain interfaces and physical packaging. This
approach provides organizations with the flexibility to adopt different implementation standards for various project
classes. Thus, if a series of radios are required with common operating requirements, physical construction details,
such as bus chassis or card slice, these radios can be part of the acquisition strategy. This modularity may improve
the overall cost-effectiveness of a radio system over its service lifetime.
Another example of the flexibility is where a large organization or space mission may choose to standardize the
details of the RF-to-signal-processing interface. This might be done to facilitate the use of different RF modules, but
the same signal processing module, for radios used for several similar missions. Figure 2 depicts radio facilities, or
elements, expected for each module in a notional sense. Not all the elements shown in each module are necessarily
required for implementation. This architecture specifies the functionality of each module, but it does not necessarily
specify how they are implemented. Mission requirements will dictate the implementation approach to each module,
and the modules required in each radio.

8.1.1 Components
The approach taken in the STI is to describe the radio hardware architecture in a modular fashion. The generic
hardware architecture diagram identifies three main functional components or modules of the STI radio. Although

Figure 2: Notional STI Hardware Architecture

14 Space Telecommunication Interface

not shown in figure 2, additional modules (e.g., optical, networking, and security) can be added for increased
capability and will be included in the specification as it matures.
The hardware architecture currently consists of the following modules:

• General-purpose Processing Module (GPM), which consists of:
◦ A suitable general purpose processor (GPP),
◦ Appropriate memory (both volatile and nonvolatile),
◦ System bus,
◦ The spacecraft or host telemetry, tracking, and command (TT&C) interface,
◦ Ground test interface,
◦ Any required components to support the radio configuration.

• Signal-Processing Module (SPM), which consists of:
◦ The signal processing used to handle the transformation of received digitally formatted signals into

data packets, and/or
◦ The conversion of data packets into digitally formatted signals to be transmitted.
◦ The spacecraft data interface, which represents any required Application-Specific Integrated Circuits

(ASICs), Digital Signal Processors (DSPs), FPGAs, memory, and connection fabric or bus.
• Radio Frequency Module (RFM), which consists of:

◦ The interfaces that control the final stage of transmission or the first stage of reception of the wireless
signals, including antennas.

◦ Any required RF functionality to provide the SPM with the filtered, amplified, and correctly formatted
signal if acting as a receiver, and/or

◦ Any required RF functionality to format, filter, and amplify the signal from the SPM if acting as a
transmitter.

◦ Its associated components include filters, radio frequency (RF) switches, diplexer, low noise amplifiers
(LNAs), power amplifiers, analog to digital converters (ADCs), and digital to analog converters
(DACs).

• Security Module (SEC). Though not directly identified in the generic hardware diagram, an SEC is also
being proposed to allow STI radios to support future security requirements. The details of this module will
be defined in later revisions of the architecture.

• Network Module (NM): The architecture supports Consultative Committee for Space Data Systems
(CCSDS) and Internet Protocol (IPs) networking functions. However, the Network Module (NM) may be
realized as a combination of both the GPM and SPM.

• Optical Module (OM): This module supports the integration of optical equipment when used. The detail
of this module will be defined in later revisions of the architecture. (It has many similarities to RFM, but
for optical carriers)

• Cognitive Module (COG): Though not directly identified in the generic hardware diagram, a COG is often
desired to allow STI to support interference mitigation, anti-jamming, and alternate relay paths to Earth
stations.

8.1.2 Functions
Test and status, fault monitoring and recovery, and radio and TT&C data-handling functions are to be implemented
on all modules to some level. The details of the implementation are mission specific. The related control and
interface requirements for the shared module functions are stated in the corresponding module section.

Space Telecommunication Interface 15

Test and Status
Each module (or combination of modules) should provide a means to query the current health of the module and run
diagnostics. The software methods for Query and RunTest are provided such that they may check the hardware state
as well as software values.

Fault Monitoring and Recovery
Each module (or combination of modules) should incorporate detection of operational errors, upsets, and major
component failures. These may be caused by the radiation environment, for example, including single-event upsets
(SEUs), temperature fluctuations, or power supply anomalies. In addition to detection, mitigation and fail-safe
techniques should be employed. Each module should have a default power-up mode to provide the minimal
functionality required by the mission. This fail-safe mode should have minimal software and/or configurable
hardware design dependency. Autonomous recovery is needed in the space environment when no operator is
available.

Radio Data Path
SDRs can be implemented with or without the GPM in the data path. The STI architecture supports the separation
of the RFM and SPM data paths from the GPM. Giving the GPM access to the data path as an optional capability
rather than a required capability allows for a more efficient implementation for medium and small mission classes
and improves the overall performance for near-term implementations. If space-qualified GPM components mature
with the performance capabilities required for signal processing, the GPM can exist within the data path and take on
more signal-processing functionality, increasing flexibility.

Radio Startup Process
The startup of the STI infrastructure is expected to be initiated by the STI platform boot process, so that it can
receive and send external commands and instantiate applications. The startup process might include built-in tests for
self-diagnostics to verify nominal system functionality. In order to control an STI platform at power-up and to
recover from error conditions, an STI platform is to have a known power-up condition that sets the state of all
modules. To support upgrades to the OE, an STI platform requires the ability to alter the state (boot parameters)
and/or select a boot image. The exact mechanisms and procedures used will be platform and mission specific but
need to be sufficient to support upgrades to OE components, such as the OS, BSP, and STI infrastructure.

8.1.3 External Interfaces
There may be several external interfaces in this architecture:

Host TT&C
The host TT&C interface represents the typically low-latency, low-rate interface for the spacecraft (or other host) to
communicate with the radio. The host telemetry typically carries all information sourced within the radio. This type
of information traditionally is called the telemetry data and includes health, status, and performance parameters of
the radio as well as the link in use. In addition, this telemetry often includes radiometric tracking and navigation
data. The command portion of this interface contains the information that has the radio itself as the destination of
the information. Configuration parameters, configuration data files, new software data files, and operational
commands are the typical types of information found on this interface.

Ground Test
The Ground Test Interface provides a “development-level” view of the radio and is exclusively used for ground-
based integration and testing functions. It typically provides low-level access to internal parameters not typically
available to the Spacecraft TT&C Interface. It can also provide access when the GPM is not functioning (i.e., during
boot).

Data
The Data Interface is the primary interface for data that are sourced from the other end of the link and for data that
are sunk to the other end of the link. This interface is separate from the TT&C interface because it typically has a
different set of transfer parameters (protocol, speeds, volumes, etc.) than the TT&C information. A common

16 Space Telecommunication Interface

interface point in the spacecraft for this type of interface is the spacecraft solid-state recorder rather than the
spacecraft command and data-handling (C&DH) subsystem. This interface is also characterized by medium to high
latency and high data rates.

Clock
The Clock Interface is used to input to the radio the frequency reference sufficient for supporting navigation and
tracking. This type of input frequency reference is essential to the operation of the radio and provides references to
the SPM and RFM. There does not have to be an external clock interface if the SPM or RFM contains an oscillator
that performs this function

Antenna
The Antenna Interface is used to connect the electromagnetic signal (input or output) to the radiating element or
elements of the spacecraft. It also includes the necessary capability for switching among the elements if required by
the mission. Steering the elements, if a function of the overall telecommunications system, is possible through this
interface, but it is not typically employed because of overall operational constraints.

Power
The Power Interface, which is not included on the diagram, is described as part of this specification at the highest
levels. The Power Interface defines the types and conditions of the input energy to power the radio.

Mission defined
The Mission-defined Interface, which is not included in the diagram, could monitor conditions that the radio
encounters such as external temperature, solar radiation, magnetic field strength, attitude, etc. The mission would
assign what to do with these values. A thermal interface that monitors temperature could be used to activate a
heating element or adjust dynamic factors dependent on temperature in a known way.

8.1.4 Networking Interface
A networking interface does not necessarily map directly to the SPM, GPM, or RFM. The networking interface
might handle only spacecraft TT&C data or both spacecraft TT&C data and radio data. This architecture allows for
those capabilities.

8.1.5 Internal Interfaces
To support the overall goals of the architecture, the internal interfaces (GPM system bus, GPM RFM control, SPM-
to-GPM test, frequency reference, and data path) should be well documented and available without restriction. The
GPM system bus (see figure 2) provides the primary interconnect between elements of the GPM.
The GPM system bus may provide an interface between the microprocessor, the memory elements, and the external
interfaces (TT&C and Test) of the GPM. The GPM system bus is the primary interface between the GPM and the
SPM, as shown in the interconnection with the major SPM processing elements. Finally, the GPM system bus
provides the interface by which the re-programmable and re-configurable elements of the SDR are modified. It
supports both the read and write access to the SPM elements, as well as the reloading of hardware configuration files
to the FPGAs.
The interface between the GPM and the RFM is primarily a control/status interface. Various RFM elements are
controlled by the set of GPM RFM control lines (see figure 2). Coming from the System Control block in the GPM,
this control bus can be either fixed by the System Control function or programmed by the GPM software and
validated and routed by the System Control function. It is important to have a hardware-based confirmation and
limit-check on the software controlling any RFM elements. The System Control module of the GPM provides this
functionality, thus keeping the GPM RFM Control bus within operational limits.
The Ground Test Interface (ee figure 2) provides specific control and status signals from different modules or
functions to the Ground Test Interface block. This interface is used during development and testing to validate the
operation of the various radio functions. This interface is very specific to the implementation and realization of the
different modules.

Space Telecommunication Interface 17

The Frequency Reference Interface provides an important interface between the RFM and the SPM functions. It ties
the two modules together in a way that allows for the SDR to implement tracking and navigation functions. The
characteristics of this interface are defined by the various amounts of tracking accuracy required by the mission for
the SPM to accomplish. This interface can be as simple as a single, common frequency reference that is conditioned
from an outside source and distributed in the least degrading fashion possible to the SPM. Finally, the data paths are
the various streams of bits, symbols, and RF waves connecting the major blocks of the primary data path. For any
particular implementation, the data path or bit streams are defined by the particular application implemented in the
functional blocks.
The interface between the RFM and SPM should be well-defined and have characteristics suitable for that level of
conversion between the analog and digital domains. The hardware architecture can be further specified in a manner
that is important for implementers to consider and follow, if the implementation dictates the necessity of particular
components. Details of the GPM, SPM, and RFM are provided in subsequent sections.

8.2 Module Specification

8.2.1 General-Purpose Processing Module
Figure 3, GPM Architecture Details, provides a closeup of the GPM. The GPM consists of one or more general
purpose or digital signal-processing elements and support hardware components, embedded OS, software
applications and interfaces to support the configuration, control, and status of the radio. The number of processing
elements and the extent of support hardware will vary depending on the mission-class processing and data-handling
requirements from a single system on a chip implementation for smaller mission classes to multiple logical
replaceable units (LRUs) for the largest mission classes. In addition, fault tolerance requirements can also increase
the number of hardware processing elements, support hardware components, and interface points required to meet

the range of mission classes. The majority of processing functions of the GPM will be under software control and
supported by an OS. Mission-specific data handling speeds may require the use of separate specialized support
hardware (FPGA or ASIC chips) to alleviate the burden on the processing elements. Such specialized support
hardware could include encryption, packet routing, and network processing functions.

GPM Components
The GPM contains, as necessary, a GPP and various memory elements as shown in Figure 3. Depending on the
particular project requirements, not all memory elements are required. The GPP will typically be implemented as a
microprocessor, but it could take many forms, depending on the type of deployment. Because the GPM is the
primary control component of the radio, it is a required module for an STI radio. A description of each element
follows.
The GPP functions include the OE, the Hardware Abstraction Layer (HAL), and potentially application functions.
The OE contains the STI infrastructure, which provides the interfaces defined by the STI APIs specification. The
OE also contains the operating system and any related libraries.

Figure 3: GPM Architecture Details

18 Space Telecommunication Interface

The HAL is the library of software functions in the STI OE that provides a platform-vendor-specific view of the
specialized hardware by abstracting the underlying physical hardware interfaces. The HAL allows specialized
hardware to be integrated with the GPM so that the STI OE can access functions implemented on the specialized
hardware of the STI platform.
The Persistent Memory Storage element holds both the permanent (e.g. read-only memory) and reprogrammable
storage for the GPP element. This is likely to be implemented using a technology such as electrically erasable,
programmable read-only memory (EEPROM) or flash memory, depending on system requirements. The Persistent
Memory also provides the storage for the SPM FPGA elements (i.e. configurable hardware design). The GPM may
be responsible for programming and scrubbing the SPM FPGAs and, if so, would have access to the appropriate
“code” for the FPGAs.
The Work Area Memory element is provided as operational, scratch memory for the GPP element. This memory
element is implemented in concert with the GPP element and may contain both data and code, as appropriate for the
execution of the radio application running in the GPM.
Finally, the GPM contains a System Control element to control and moderate the GPM system bus. This element
provides the necessary control for the System Bus, including the various memory and SPM elements interfaced by
the System Bus. In addition, the System Control element provides a validated interface to the RFM hardware via the
GPM RFM Control Interface. As the software running on the GPP element commands the RFM elements into
certain states, those commands are interpreted by the System Control element and validated in a manner that will
prevent damaging configurations of the RFM; for example, tying the transmit amplifier directly to the receive
amplifier, bypassing the diplexer element. This level of validation in the GPM-to-RFM interfaces is intended to
prevent physical damage to the radio arising from a software bug. The System Control element may also be
implemented by an FPGA, but if so, it should have appropriate safeguards to ensure that the FPGA cannot be
modified inadvertently during flight (e.g. such as using a “permanently programmed” device or by otherwise
disabling the reprogramming capabilities).

GPM Functions
The GPM will provide the overall configuration and control of the STI architecture and may include any or all of the
following functions:

• Management and Control
◦ Module discovery
◦ Configuration control
◦ Command, control, and status
◦ Fault recovery
◦ Encryption

• STI infrastructure, radio configuration and control.
◦ Radio control
◦ System management
◦ Application upload management
◦ Device control
◦ Message center

• External network interface processing
• Internal data routing
• Waveform data link layer

◦ Media Access Control (MAC) and Logical Link Control (LLC) layer
◦ Physical layer processing

• Onboard data switching

Space Telecommunication Interface 19

GPM Interfaces
• TT&C
• Ground Test
• General-purpose input output (GPIO), supporting but not limited to:

◦ Interrupt source/sink
◦ Application data transfer

• Control/configuration interface, supporting but not limited to:
◦ RFM & SPM
◦ Antenna
◦ Power amplifier

• System Bus interface

For GPM Requirements
See 12.1, Provide GPM, and 12.2, Diagnostic Information Availability.

8.2.2 Signal Processing Module
Figure 4, SPM Architecture Details, illustrates the SPM module. An SPM is optional for an STI platform. The SPM
may implement the signal processing used to transform received digital signals into data packets and/or the
conversion of data packets into digital signals to transmit. The complexity of this module is based on the
applications and data rates selected for a mission. The SPM modules contain components and capabilities to
manipulate and manage digital signals that need higher processing capabilities than that supplied by the GPM. The
configurable hardware design architecture describes a common interface for the application on the SPM, as
described in section 9.1, Configurable Hardware Design.

20 Space Telecommunication Interface

SPM Components
The SPM will initially be implemented primarily with FPGAs, DSPs, reconfigurable processors, ASICs, and other
integrated circuits. However, technologies will change over time, so the specific implementation is left to the STI
platform provider. It is also anticipated that STI platforms may use dedicated physical hardware slices (e.g.,
separate circuit boards) to implement specialized applications and technologies. For example, a dedicated global
positioning system (GPS) receiver slice can complement the existence of reconfigurable SPM slices in the same
radio. The dedicated slice offloads demand on the less specific SPM. If an STI platform contains an SPM slice, the
slice should meet the module interface specifications for control and configuration and have an interface with the
GPM via the GPM system bus and the SPM-to-GPM test interface. These two interfaces work in concert to provide
a control and reprogramming path to the SPM from the GPM and the application running on the GPM.

SPM Functions
The SPM implements the digital signal processing functions that convert symbols to bits and vice versa. These
functions are typically implemented on FPGAs, DSPs, or ASICs. It is recommended that reconfigurable and
reprogrammable devices be used because this allows for new applications to be implemented on the SDR in the
future without a hardware modification. However, mission-specific requirements may dictate that the application be
implemented on a non-reprogrammable hardware device.
In addition to the digital signal processing functions, a data formatting function is typically provided to convert
blocks of data stored in the data storage element into bit streams appropriate for encoding into symbols and vice
versa. The STI architecture does not require that these are discrete entities; in some cases, it may be possible to
implement the data formatting function in the same device as the digital signal processing function.
A data storage element may be used to provide a buffer between the data interface and the bit stream
coders/decoders. This data storage function can be implemented in either volatile or nonvolatile memory, depending
on the operational requirements. An SPM may implement any or all of the following digital communication
functions depending upon the mission waveforms:

Figure 4: SPM Architecture Details

Space Telecommunication Interface 21

• Digital up conversion—interpolation, filtering, and “local oscillator” multiplication of baseband samples to
obtain an IF or RF output sample stream appropriate for digital-to-analog conversion. This is typically the
last transmit function implemented in the SPM, and the output samples are sent to the RFM.

• Digital down conversion—multiplication with “local oscillator,” downsampling, and filtering IF or RF
samples to obtain a baseband output sample stream. This is typically the first receive function implemented
in the SPM, with input samples coming from the analog-to-digital conversion in the RFM.

• Digital filtering—averaging, low-pass, high-pass, band-pass, polyphase, and other filters used for pulse
shaping, matched filter, etc. This may overlap with some of the functionality in the up and down
conversion.

• Carrier recovery and tracking—retrieval of the waveform carrier within the receive sample stream. Typical
SPM functions for carrier recovery include shifting the recovered carrier frequency to compensate for local
oscillator variations and Doppler shifts in the link.

• Synchronization (data, symbol, etc.)—alignment of received samples with symbol and data boundaries.
There may be some integration with the digital down conversion and carrier recovery and tracking
functions.

• Forward error correction coding—encoding transmit data so that receive data errors may be corrected to
some level, enhancing the waveform performance.

• Digital automatic gain control (AGC)—scaling of the receive samples to optimize downstream operations.
• Symbol mapping (modulation)—translating transmit data bits to modulation symbol samples.
• Data detection (demodulation)—translating receive symbol samples to data bits.
• Spreading and despreading—a form of encoding data to obtain certain energy dispersion in the frequency

domain.
• Scrambling and descrambling—a form of encoding data to ensure a certain level of randomness in the

digital data stream, usually for synchronization of the receiver.
• Encryption and decryption—a form of encoding data for security purposes.
• Data Input/Output (I/O) (high-speed direct from or to source or sink)—interface for transmit and/or receive

data to come in or out of the module. This may involve buffering and some protocol handling.

SPM Interfaces
The SPM’s functions and external interfaces are shown in Figure 4. Interfaces shown include those common to all
module types as well as those specific for the SPM. These SPM-specific interfaces may not all be required for some
radios. Note that the implementation of these interfaces may combine two or more on one physical transport. For
example, the Data Interface and Control and Configuration Interfaces may both use the same physical Serial Rapid
I/O connection.

• Data I/O to or from RFM—This is the digital sample stream going to the RFM’s DACs for transmission,
and the digital samples from the RFM’s ADCs. However, if the DACs and ADCs are preferred to be a part
of the SPM, then this interface is replaced with analog baseband or IF signals.

• Waveform control and feedback to RFM—This interface will be waveform dependent. It may be used, for
example, to send feedback to an AGC or control frequency hopping.

• Data interface external to the radio—High-data-rate waveforms may need a direct interface to the SPM if
the GPM is not designed to handle the data.

• System bus—Data to or from GPM—This interface exchanges the packetized data for transmission and
reception.

• Control and configuration from GPM—Waveform loads and reconfigurable parameters are managed
through this interface.

• Test and status to GPM—Tests are initiated through this interface by the GPM, and results are returned.
This is a more basic interface (electrically and protocol-wise) than the Control and Configuration interface.

• Radiometric tracking.

22 Space Telecommunication Interface

The HID is to contain the characteristics of each reconfigurable device. Reconfigurable capacity is usually
measured by the number of FPGA gates, slices, logic elements, or bytes. This information can be used by future STI
application developers to determine the waveforms that can be implemented on a given platform.

8.2.3 Radio Frequency Module
The RFM handles the conversion to and from the carrier frequency, providing the SPM and/or the GPM with digital
baseband or IF signals, and the transmission and reception equipment with RF to support the SPM and GPM
functions. Its components typically include DACs, ADCs, RF switches, up converters, down converters, diplexers,
filters, LNAs, power amplifiers, etc. Current and near-term RF technologies cannot be expected to allow multiband
operation using a single channel RFM, and thus multiband radios will need to use multiple RFM slices. The RFM
provides a band of frequency tunability on each slice. This tunability can be software controlled through the
provided interfaces.
The RF module handles the interfaces that control the final stage of transmission or first stage of reception of the
wireless signals, including antennas, optical telescopes, steerable antennas, external power amplifiers, diplexers,
triplexers, RF switches, etc. These external radio equipment components would otherwise be integrated with the
RFM except for the physical size and location constraints for transmission and reception. The interfaces are
primarily the associated control interfaces for these components. The RFM HID encompasses the control and
interface mechanism to the external components. The focus of the RF HID is to provide a standardized interface to
the control of each of these devices, to synchronize the operation of the radio with any of these devices.
The other primary capability of the RFM is the conditioning and distribution of the frequency reference, as defined
by the Frequency Reference Interface. This provides a common reference for the RFM and SPM modules to enable
the tracking and navigation functionality typically provided by SDRs. Figure 5, RFM Architecture Details,
illustrates the RFM module.

RFM Components
The RFM can be implemented with a variety of integrated circuits. The control of these circuits can be implemented
with a variety of different component technologies, including ASICs, discrete electronics, programmable logic

Figure 5: RFM Architecture Details

Space Telecommunication Interface 23

devices, including FPGAs and DSPs, or even microprocessors. The choice of technologies is left up to the
developer of the particular implementation.

RFM Functions
The RFM transforms the antenna signal to or from a signal usable to the radio. The RFM functions are likely to
include the following:

• Frequency conversion and gain control
• Analog filtering
• Analog-to-digital and digital-to-analog conversion.
• Radiometric tracking

RFM Interface
The RFM implements the following interfaces:

• External RF interface(s) to the radio.
• Read and write access to interface registers to monitor and perform control, status, and failure and fault-

recovery functions (e.g., via RS-422 or SpaceWire).
◦ Control: power level tunability, frequency tunability, antenna parameter tunability, etc.
◦ Status: report status of components and system operation.
◦ Failure and fault-recovery functions: detect component or system failure and determine appropriate

action.
◦ Diagnostic test functions

• I/O for exchanging digitized waveform signal data.

For RFM Requirements
See 12.3, Document RF

The behavior and performance of the RF modular components should be sufficiently described such that future
waveform developments may take advantage of the RF capability and/or account for its performance.
Information in the HID may include such items as center frequency, IF and RF frequency(s), bandwidth(s), IF
and RF input/output level(s), dynamic range, sensitivity, overall noise figure, AGC, frequency accuracy and
stability, and frequency-tuning resolution.

8.2.4 Security Module
The goal of the security module is to address the security services required from an SDR. There are no specific
requirements for this module, but a future revision of the STI standard may add requirements or specific details.
This approach supports the evolutionary nature of the STI architecture; it is expected that this module will become
more well-defined as feedback is received and common interfaces are identified.
If implemented, the architecture should support selectable data-protection services for entities requiring them,
providing for both confidentiality and authentication. Missions may select security options provided by the
infrastructure or may develop their own.
The authentication of commands sent to SDRs is supported, including changing the configuration or uploading new
programs for either the infrastructure or new applications. The security section of the architecture will include
support for key management, encryption standards, and mitigating threats other than the information and
communication security threats currently identified.

8.2.5 Networking Module
The STI architecture has been structured such that networks can be implemented in an SDR; that is, an SDR can be
a node in a network. The SDR may be connected to another node using the appropriate logical and physical
interfaces that may be wired or wireless. The STI architecture can accommodate network protocols as services that

24 Space Telecommunication Interface

can be made available to applications and devices. STI supports the ability to upload new software and dynamic
hardware images. Advancements and replacement of existing protocols can be accomplished without affecting a
spacecraft’s mission resources. There are no specific requirements for this module, but a future revision of the STI
standard may add requirements or specific details.

8.2.6 Optical Module
The STI architecture also supports the use of optical communications in SDRs. The optical module, if present,
would logically replace the Radio Frequency Module (RFM) that is typically used for RF communication. There are
no specific requirements for this module, but a future revision of the STI standard may add requirements or specific
details.
STI interfacing to optical communication equipment follows the same techniques shown in integration with high-
data-rate hardware. The OM would be controlled through the STI HAL interface that allows configuration and
control of the digital components in the module, which abstracts the optical functionality.

8.2.7 Cognitive Module
The STI architecture supports the use of a cognitive engine used to enhance communications of SDRs. A cognitive
module can be used to optimize many complex facets of the communications channel including changing the
parameters of the waveform to support interference mitigation, avoid jamming, or to bypass Earth stations blocked
by weather or the rotation of the Earth. A cognitive module could use sensor data about the dynamic environment to
adapt to changing conditions, even learning from past experience, to respond in an optimal manner for mitigating
obstacles; for example, it could use temperature data to adjust power usage or turn on climate control. By
considering automation techniques including recent advances in artificial intelligence and machine learning,
cognitive algorithms and related approaches enable improved resource utilization and resiliency in unpredictable or
unplanned environments. There are no specific requirements for this module, but it is expected to be implemented
as a service application.

8.3 Hardware Interface Description
The STI platform provider is to provide a HID document, which describes the physical interfaces, functionality, and
performance of the entire platform and each platform module. The HID specifies the electrical interfaces, connector
requirements, and all physical requirements for the delivered radio. The HID abstracts and describes the
functionality and performance of each module. In this manner, STI application developers can know the features
and limitations of the platform for their applications. The information in the HID provides the knowledge for OMG
and others to integrate and test the hardware interfaces. The information in the HID may allow future module
replacement or additions without the design of a completely new platform. For example, a Security Module could
be added that was not originally planned, or a follow-on mission could use a different frequency band and only an
RFM change would be needed. Include all waveform interfaces and any other interfaces that could be important to a
waveform developer or a hardware integrator.
In addition to the GPM, SPM, and RFM HID requirements stated within each module section, the following
interface descriptions and requirements are also specified for an STI platform.

For HID Requirements
See 12.4, Document Power-Up State.
See 12.5, Document Hardware Capability.
See 12.6, Document Hardware Limitations.

The description of the behavior and capability of modules or components available to STI application
developers or reconfigurable components may include device type, processing capability, clock speeds,
memory size(s), types(s), and speed(s), noting any constraints, as well as any limitation on the number of
configurable hardware design reloads, as applicable, partial reload ability, built-in functionality, and any
corresponding restriction on the number of gates.

See 12.7, Document Interfaces.

Space Telecommunication Interface 25

The specific modular components or hardware slices of an STI platform will vary among different
implementations. The STI platform provider or STI integrator is expected to describe each modular
component and their respective physical and logical interfaces as described in this section. Table 1, Module
Interface Characterization, provides typical interface characteristics to be included when identifying external
interfaces or internal interfaces between modules for STI.

Table 1: Module Interface Characterization

Parameter Description and Comments

Name Interface name (data, control, operating power, RF, security, etc.).

Interface type Point to point, point-multipoint, multipoint, serial, bus, other.

Implementation level Component, module, board, chassis, remote node.

Reference documents and
standards Applicable documents for interface standards or description of custom interfaces.

Notes and constraints Variances from standards, physical and logical functional limitations.

Transfer speed Clock speed, throughput speed.

Signal definition Description of functionality and intended use.

Physical Implementation

Technology For example, GPP, DSP, FPGA, ASIC, and description.

Connectors Model number, pin out (including unused pins).

Data plane Width, speed, timing, data encoding, protocols.

Control plane Control signals, control messages or commanding, interrupts, message protocol.

Functional Implementation

Models Data plane model, control plane model, test bench model.

Power Voltages, currents, noise, conducted immunity, susceptibility.

API Custom or standard, particular to OS environment.

Software Device drivers, development environment, and tool chain.

Logical Implementation

Addressing Method, schemes.

Channels Open, close.

Connection Type Forward, terminate, test.

8.3.1 Control and Data Interface
The control and data communications buses and links between modules within the radio are to be described by the
STI platform provider to the level of detail necessary to facilitate integration of another vendor’s module. If
modules communicate using the IEEE 1394, A High Performance Serial Bus, interface, for example, this will be
specified in the HID with appropriate connector and pinout information. Any nonstandard protocols used should
also be specified. In some cases, this may be handled by the software HAL. Module interfaces will be completely
described, including any unused pins.

For Requirements for Control and Data Interface
See 12.8, Document the Control and Data Mechanisms.

26 Space Telecommunication Interface

Besides the interface descriptions already provided for each modular component, developers should provide
specific information necessary for future STI application developers to know how to interact with the
command and control aspects of the platform. The description of the control, telemetry, and data mechanism
of each modular component should facilitate the porting of the application software to the platform.

8.3.2 Operating Power Interface
The operating power interface description for the radio has two parts:

1. the platform as a supplier to the various modules; and
2. the power consumption of the different modules, if multiple modules are provided.

Table 2, Example Operating Power Interface, shows an example listing of a platform operating power interface.
There are four distinct sets of power requirements for the platform shown. For each module delivered with the
radio, as well as those built by other vendors, the HID is to specify the needed voltages, currents, and connections.
Voltages are to be specified with a maximum and minimum tolerance, and associated currents are to be specified
with nominal and maximum values. Connectors for operating power are to be specified, including pinouts. If power
is routed through a multipurpose connector such as a backplane connector, then the pins actually used are to be
documented. Power is a limited commodity for most missions, and understanding the STI platform power needs is
critical.

Table 2: Example Operating Power Interface
Parameter Values

Voltage Rail -15V +2.5V +5V +15V

Maximum current/chassis (platform) 2A 1.7A 3A 2A

Maximum current/slot (module) 1A 1A 1A 1A

Backplane supply pins 17,19 59,61 44,46,48 21,23

Backplane return pins 18,20 60,62 43,45,47 22,24

Voltage Ripple 100 mVpp 1 mVpp 5 mVpp 100 mVpp

Notes Slot 1 & 2 only Slot 1 & 2 only

For Requirements for Operating Power Interface
See 12.9, Document Power Supply.

8.3.3 Thermal Interface and Power Consumption
The power consumption and resulting heat generation of a reprogrammable FPGA will vary according to the amount
of logic used, the switching rate of the waveform logic, and the clock frequency(s). The power consumption may
not be constant for each possible waveform that can be loaded on the platform. The STI platform provider should
document the maximum allowable power available and thermal dissipation of the FPGA(s) on the basis of the
maximum allowable thermal constraints of FPGA(s) of the platform. For human spaceflight environments, touch
temperature requirements may limit dissipation further; therefore, these reductions are to be factored into the given
dissipation limits.

For Requirements for Thermal and Power System
See 12.10, Document Thermal and Power Limits.

Space Telecommunication Interface 27

9 Application Architecture
An example STI platform consists of one or more GPMs with GPPs, and optionally one or more SPMs containing
DSPs, FPGAs, and ASICs. Application functionality may be split up according to the type of processor the function
may be accomplished most efficiently on. The application component is loaded and executed on these modules to
provide the signal-processing algorithms necessary to generate or receive RF signals. To aid portability and
reusability, the applications use the appropriate infrastructure APIs to access platform services. Using “direct to
hardware” access would increase the effort to port the application to a platform with different hardware and is
discouraged. The STI infrastructure provides the APIs and services necessary to load, verify, execute, change
parameters, terminate, or unload an application. The STI infrastructure implements device components that utilize
the HAL or vendor-specific API to abstract communications with the specialized hardware, whereas the HID
identifies the hardware interfaces and how modules are physically integrated on a platform.
The STI infrastructure utilizes separate device components to serve as a hardware abstraction layer for devices
accessed by STI applications. These devices may in turn use the underlying platform HAL APIs, such as a device
driver implemented to a standardized software interface. Alternatively, the device may use a custom vendor-specific
API to communicate with application components on the platform specialized hardware via the physical interface
defined by the STI platform provider.

9.1 Configurable Hardware Design
A configurable hardware design is one where data is used to configure a portion of the hardware without physical
modification of the hardware. Configurable hardware designs are realized using a hardware device such as an
FPGA or other type of programmable logic device (PLD). This section addresses the use of configurable hardware
design from design and development through testing and verification and operations. It addresses aspects of model
based design techniques and design for space environment applications.
Proper testing of configurable hardware design is critical to the development of reliable and reusable code.
Development tools that enable early development and testing should be used so that problems can be identified and
resolved early in the SDR life cycle. Many real-world signal degradations and SEUs can be simulated to identify
potential issues with the waveform and waveform functions early in development, even before hardware is available.
Applications implemented in configurable hardware should be modular with clear interfaces to enable individual
application component simulations and incremental testing.
The configurable hardware design architecture supports the modeling of STI applications implemented in
configurable hardware at the system, subsystem, and functional levels. Model-based design techniques aid in the
development of modular application functions. Application development models done in a platform (or target)
independent manner aid in application testing, reuse, and portability. A PIM design shall be specialized to PSMs to
target different platforms. PSM design flows might include high-level models combined with manual code writing.
On resource-constrained platforms, optimized code would be written. On non-resource-constrained platforms,
PSMs may be used to auto generate code. These design flows can be employed to significantly reduce the porting
effort.
Application portability and reusability should be considered in all facets of the design process from concept to
implementation to testing. The coding technique of the application is also essential to reduce the application porting
effort. Having defined syntax standards for HDLs (e.g., Verilog or VHDL) makes them appear to be easily portable
across devices and software synthesizers, but this is an incorrect assumption. There are many things that can make
hardware description languages hard to port. For example, the use of device-specific fixed hardware logic on the
FPGA will decrease the portability. The use of specialized hardware may be necessary to meet the timing
constraints of the application; however, the STI application developer should document any application function that
uses the specialized hardware so that the effort to port the application function(s) can be determined. Non-boolean-
type logic such as clock generation can also reduce portability. One method to decrease the porting effort would be
to create a module that does the clock generation from which the rest of the application functions receive the
necessary clock(s).
Development of configurable hardware design for STI radios should include provisions for mitigating space
environmental effects such as SEUs. Near-term application of static random-access memory (SRAM)-based FPGAs
may require triple-mode redundancy (TMR), configuration memory scrubbing, and other mitigation techniques,

28 Space Telecommunication Interface

depending on the intended mission environment and desired reliability. Commercial design tools are becoming
available to aid in this process and some newer FPGAs have versions available with embedded TMR.
A key feature of SDRs is that they can be reconfigured after deployment. The ability to load new applications and
services will benefit missions in several ways, including using one SDR (instead of several separate radios) to
handle different applications for various phases of a mission, some planned and some unplanned. An STI platform
should receive STI application software and configurable hardware design updates after deployment.

9.2 Specialized Hardware Interfaces
Standardizing and documenting the interface from the waveform applications on the GPP to the portion of the
waveform in the specialized processing hardware, such as FPGAs, is intended to provide commonality among
different STI platforms and to aid portability of application functional components implemented in configurable
hardware design.
The STI architecture provides a common mechanism for the software to instantiate, configure, and execute the
software and configurable hardware design applications on various platforms using different hardware devices.
Reconfiguration may include changing the parameters of installed applications and uploading new applications after
deployment.
The application accepts configuration and control commands from the GPM and uses STI APIs that interface to the
device drivers associated with the SPM and RFM modules. The device drivers communicate via the HAL on the
GPM that abstracts the physical interface specification described in the HID in transferring command and data
information between the modules.
For FPGAs, the interface to the application is through a platform-specific wrapper. The platform-specific wrapper
accepts command and data information from the GPM and provides them to the application. The platform-specific
wrapper also abstracts details of the platform from the STI application developer, such as pinout information. The
platform-specific wrapper should also provide clock generation, signal registering, and synchronization functions,
and any other non-waveform-specific functions that the platform requires.
Documentation of the platform-specific wrapper is necessary so that STI application developers can interface
applications to the platform. This documentation should include detailed timing constraints, such as signal hold
times, minimum pulse widths, and duty cycles. The signal timing constraints refer to the protocol of a particular
interface describing events happening on a particular clock cycle. For clock generation, one should document what
clock domains are in the design, how each clock is generated, and the resources that are involved. Signal
synchronization describes any additional logic needed when clock domains are changed across the interface. The
signal registering methods refer to any configurable hardware design interfaces between modules and if the input
and output were registered, latched, or neither.

For Requirements for Specialized Interfaces
See 12.11, Controllable From OE;
See 12.12, Platform Specific Wrapper;
See 12.13, Document FPGA Interfaces.

10 Software Architecture
The STI architecture is predicated on the need to provide a consistent and extensible development environment on
which to construct SDR applications. The breadth of this goal implies that the specification be based on the
following:

1. Core interfaces that allow flexibility in the development of application software; and
2. Hardware and software interface documentation that enable technology infusion.

Space Telecommunication Interface 29

10.1 Software Layer Model
The software architecture model shows the relationship between the software layers expected in an STI-compliant
radio. The model illustrates the different software elements used in the software execution and defines the software
interface layers between applications and the OE and the interface between the OE and the hardware platform.
Figure 6, Software Execution Model, represents the software architecture execution model. The software model
achieves the following objectives:

a) Abstracts the application from the underlying OE software to promote portability and reusability of the
application.

b) Within the abstraction layer, minimizes custom routines by using commercial software standard interfaces
such as POSIX®.

c) Depicts the STI software components as layers to specify their relationship to each other and their
separation from each other which enables developers to implement the layers differently according to their
needs while still complying with the architecture.

d) Introduces a lower-level abstraction layer between the OE and the platform hardware. Note that although
software abstraction for general processors is typically accomplished with board support packages and
device drivers, the abstraction of hardware languages or configurable hardware design is less defined. The
model represents the software and configurable hardware design abstraction in this layer.

e) Indicates the relationship between the OE software and the different hardware processing elements (e.g.,
processor and specialized hardware).

The OE adheres to the interface descriptions provided in Figure 6. This specification provides two primary interface
definitions, as follows: (1) The STI APIs; and (2) The STI HAL specification, each with a control and data plane
specification for interchanging configuration and run-time data. The STI APIs provide the interfaces that allow
applications to be instantiated and use platform services. These APIs also enable communication between
application components. The HAL specification describes the physical and logical interfaces for inter-module and
intra-module integration.

The STI software architecture presents a consistent set of APIs to allow waveform applications, services, and
communication equipment to interoperate in meeting an application specification. Figure 7, Layered Structure,

Figure 6: Software Execution Model

30 Space Telecommunication Interface

represents a view of the platform OE that depicts the boundaries between the STI infrastructure provided by the STI
platform provider and the components that can be developed by third-party vendors (e.g., waveform applications
and services).
A key enabler of application portability and reusability is the removal of application dependencies on the
infrastructure that take advantage of explicit knowledge of the infrastructure implementation. When waveforms and
services conform to the API specification, they are easier to port to other STI platform implementations.

Figure 7 extends the view of the software architecture from the diagram introduced in Figure 6 to include additional
detail of the infrastructure, operating system, and hardware platform using Systems Modeling Language (SysML)
symbols. This approach clarifies the interfaces between components, adding additional detail.
The Operating Environment (OE) contains the OS and Infrastructure, which include System Libraries documented
as allowed for that platform. In the case that the OS or platform does not support the full set of dependencies, the
missing functionality is to be implemented in the STI infrastructure using a compatibility layer. For example, when
using non-POSIX® OS, the compatibility layer would implement any POSIX® functions required but not
implemented by the OS. The waveform applications will not directly call the driver or HAL API but use the
provided STI APIs, thus providing the “abstraction layer” that helps isolate the application from the platform.
In table 3, Software Component Descriptions, the different layers of the software model shown in figure 10 are
further described.

Table 3: Software Component Descriptions
Layer Description

Waveform Application and services Waveform application and services provide the radio GPP functionality using
the STI infrastructure.

Figure 7: Layered Structure

Space Telecommunication Interface 31

STI infrastructure The STI infrastructure implements the behavior and functionality identified by
the STI APIs as well as other required radio functionality.

STI API
The STI APIs provides consistent interfaces for the STI infrastructure to
control applications and services, and for the applications and services to
access STI infrastructure services.

APP API The APP API is the interface implemented by waveforms and services whose
functions are used by the STI infrastructure.

Infrastructure-provided
compatibility interface

This optional interface (see Figure 8, Standards Compliance vs. Standards
Compliance) provides compatible services to the waveform application on
platforms which do not implement these services natively.

Radio control services
These services are responsible for handling the radio commands and telemetry
for the STI. Applications use the STI interface to communicate telemetry and
receive commands from flight computer.

HAL
The HAL provides the device control interfaces that are responsible for all
access to the hardware devices in the STI radio. The HAL API is the interface
to the software drivers and BSP that communicates with the hardware.

System Library API
The specific subset of system library functions utilized by the STI waveform
application. For POSIX®-based environments, this is the minimum
Application Environment Profile required by the waveforms.

OS
This is the operating system that supports the POSIX® API and other OS
services. The POSIX® Abstraction Layer will provide applications with a
consistent AEP interface that is mapped into the chosen OS functions

System Library This is the implementation of the system library provided by the operating
system or programming language environment.

Direct service support This layer identifies the ability for the STI infrastructure to have a direct
interface to the hardware drivers on the platform.

HW drivers/BSP
The hardware drivers provide the platform independence to the software and
infrastructure by abstracting the physical hardware interfaces into a consistent
device control API.

Registered OS services These are services that are integrated with the chosen OS to provide services
such as MAC-layer interface to physical Ethernet hardware.

Driver API OS-supplied APIs are abstracted from applications via the device control API.

BSP

The BSP is the software that implements the device drivers and parts of the
kernel for a specific piece of hardware. It provides the hardware abstraction of
the GPM module for the POSIX®-compliant OS. A BSP contains source files,
binary files, or both. A BSP contains an original equipment manufacturer
(OEM) adaptation layer (OAL), which includes a boot loader for initializing
the hardware and loading the OS image. Essentially, the OAL is all of the
software that is hardware specific. The OAL is compiled and linked into the
embedded OS.

HW I/O interfaces Device drivers have been created for these physical interfaces.

GPM This is the general-purpose processing module on which the STI infrastructure
executes.

Specialized hardware This is the physical layer of the hardware modules existing on the STI
platform.

32 Space Telecommunication Interface

Figure 8 illustrates the difference between a standards-conformant OS and a nonconformant OS. On the left side,
the prescribed set of application interfaces is provided entirely by the OS. On the right side, the OS is not directly
conformant but is partially compliant. This occurs mainly when porting to a different platform with different system
library support. The application profile is shown in two parts: one part shows the compliant APIs that are directly
included in the OS, and the other part shows the portion of the profile that is provided through some form of
abstraction or compatibility layer. For support of waveforms implemented in C/C++, the STI OE should include at
least a POSIX® PSE51-conformant OS or POSIX® abstraction layer for missing APIs.

For System Library Requirements
See section 12.14, Document System Library Interfaces Provided.

For C/C++ environments, this interface should be based on the POSIX® standard and the supported profile(s)
should be indicated. For other environments, the relevant details such as the library/module name and version
information should be indicated.

See section 12.15, Document System Library Interfaces Used.
For maximum compatibility, C/C++ applications should only invoke the system library though POSIX®-
compliant API calls and adhere to the smallest profile that is sufficient for application performance (e.g.
PSE51). For other environments, the application should use a reasonable and customary interface for the
environment.

10.2 Infrastructure
The STI infrastructure is the part of the OE that provides the functionality for the interfaces defined by the STI APIs
specification. The infrastructure exposes a standard set of method names to the applications to facilitate portability.
Although the STI infrastructure may use any combination of OS, BSP functions, or other infrastructure methods to
implement a radio function, which may vary on different platforms, the STI APIs will be the same to allow
portability. The STI APIs are the well-defined set of interfaces used by STI applications to access specific radio
functions or used by the infrastructure to control the applications.
The infrastructure is composed of multiple subsystems that provide the functionality to operate the radio. The
components shown in Figure 7: Layered Structure, represent the high-level subsystems and services needed to
control STI applications within the STI platform. These services are provided by the platform infrastructure and
support applications as they execute within the STI platform. The infrastructure functions will include fault

Figure 8: Standards Conformance vs. Standards Compliance

Space Telecommunication Interface 33

management techniques, which are necessary to increase radio robustness and support mission-dependent
requirements.

10.3 API Overview
The STI APIs provide an open software specification so that the application engineers can develop STI applications.
The goal is to have a standard API available to cover all application program requirements so that the application
programs can be reused on other hardware systems with minimal porting effort and cost for the application
implemented in software and/or configurable hardware design with increased reliability. Size, weight, and power
constraints may limit the functionality of the radio by imposing a tradeoff among the following:

• The size of the API implementation,
• The size of other internal operations, and
• The size of the waveforms and services.

The size of the selected GPP should be sufficient to contain the OS, the STI infrastructure, and the appropriate
portion of the waveforms and services to implement the required mission functionality, along with sufficient margin
to support software upgrades. The STI APIs are defined to support internal radio commands. Any external interface
commands, described in section 11, External Command and Telemetry Interfaces, use the internal commands
defined by the STI APIs to accomplish normal radio operations.
The API layer specification decouples the intellectual property rights of platform, application, and module
developers. This allows development and interoperability of different radio aspects while protecting the investment
of the developers.
The APIs in the following sections are grouped by type to simplify the description of the APIs while providing the
detail for each requirement in tabular form. The table contains the name, description, parameters, return type, any
additional information that is pertinent to the usage of that function. The examples shown in the table for each
requirement are written from the point of view of the STI application developer.
Handle names and identifiers (i.e. HandleID values) have global scope within the operating environment. A
handle ID is a single value that represents an STI application, device, file, or queue. A given handle identifier refers
to the same application, device, file, queue, timer, or service across all applications.
A key aspect of a software architecture is the definition of the APIs that are used to facilitate software configuration
and control of the target platform. The philosophy on which the STI architecture is based avoids the conflict
between open architecture and proprietary implementations by specifying a minimum set of APIs that are used to
execute waveform applications and to deliver data and control messages to installed hardware components. The
following APIs exhibit similar functionality to a resource interface in the Object Management Group
(OMG)/software radio (SWRADIO) or Software Communications Architecture (SCA 2.2.2) specifications.

34 Space Telecommunication Interface

10.3.1 Interface Structure
Figure 9, Application and Device Structure, shows a high-level overview of the STI software interface and object
definitions.

As shown in Figure 9, all applications and devices within the environment are derived from the Instance type,
which is provided by the infrastructure and serves as a common basis point for every entity. This base type has only
a minimal set of infrastructure-defined methods. All operations are defined through several control interface
definitions.
The operations include:

• A means for the application or device to obtain the corresponding name and ID.
• A means to configure or query the entity state from other applications, using name/value pairs.
• A means to execute tests on the application or device
• A means to dynamically start or stop a device or service from other applications
• A means to dynamically allocate/initialize system resources when needed and release resources when no

longer necessary.
• A means to “read” or pull data from this entity to other applications
• A means to “write” or push data to this entity from other applications

An STI application implementation (e.g., waveform) would typically implement the ApplicationControl
interface, which includes all operations relevant for applications except those related to data transfer. An STI device
would implement the DeviceControl interface, which provides operations specific to devices as well as all
operations defined by ApplicationControl. Any application or device may selectively choose to implement
any of the data transfer interfaces as necessary, including Source, Sink, and RandomAccess.

Figure 9: Application and Device Structure

Space Telecommunication Interface 35

Note that from the STI perspective, “Applications” and “Devices” are very similar concepts, differing only in that a
device implements the operations specified in the DeviceControl interface, whereas an application typically
does not implement these operations. Otherwise, the two software modules are identical. Throughout the remainder
of this section, the term “Application” is used, but the same features and requirements generally apply to devices as
well.

For Infrastructure Software Requirements
See Section 12.16, Document Language Interfaces Provided and 12.17, STI Infrastructure Uses APP API.

10.3.2 Implementation
An STI operating environment may support applications written in any language, so long as it provides the
infrastructure API in an appropriate form for the language in use. The software interfaces in this specification utilize
the OMG Interface Definition Language (IDL) syntax, and IDL language mappings provide a method to consistently
translate the semantics of a given interface to many different programming languages.

For Requirements for Software Modules
See Section 12.18, Use Language Specific Facilities Specified in Annex A.
All STI applications and devices should encapsulate their state in an object or structure of some type, referred to as
the “base object”. Even for “singleton” objects of which there can only be one, STI requires that there is still a base
object associated with the instance, even if this object does not contain any extra information.
Figure 9 also shows several different optional interfaces that an application or device may implement, depending on
its specific design needs.

For Requirements instance object definition
See Section 12.19, Use Language Specific Inheritance.
See Section 12.21, Application based on Instance Object.

10.4 Data Types and Constants
The following data types are defined by the infrastructure. These types serve as the basis for the STI interfaces and
API calls described in the subsequent sections. The types are written in a general way that will be particularized for
the implementation language and platform selected.

10.4.1 Data Types
The STI infrastructure uses the basic data types, integer, string, or enumeration. For these data types, the
specification allows some flexibility in how they are implemented by the infrastructure according to the language
used. Likewise, Table 5 indicates only the general behavioral semantics of the type, such as an integer, string, or
enumeration. For instance, all types with integer semantics should be compatible with the standard integer
assignment and relational operators per the language in use.
For enumerated types, the possible values and definitions are shown in section 10.4.2, Constants.

For STI Infrastructure-provided Data Types
See Section 12.20 with Table 5: Infrastructure-provided Data Types

10.4.2 Constants
The STI infrastructure defines the following constants. In strongly typed languages, the constant evaluates to a
value of the specific data type as indicated.

36 Space Telecommunication Interface

For Constants Requirements see
Section 12.22 with Table 6: Access Constants
Section 12.23 with Table 7: CalendarKind Constants
Section 12.24 with Table 8: HandleID Constants
Section 12.25 with Table 9: Result Constants
Section 12.26 with Table 10: Handle Name Constants
Section 12.27 with Table 11: Property Name Constants
Section 12.28 with Table 12: Size Limit Constants
Section 12.29 with Table 13: TimeWarp Constants

10.5 Application and Device Control Interface
The application and device interface, illustrated in Figure 9, is the mechanism through which local applications
receive requests from the STI infrastructure.
All operations described in this section operate on a single context object, which is a data structure stored in local
memory that contains the state of the application instance. The specific semantics of this context object depend on
the language in use. In C, this context object is passed explicitly as a pointer argument to each call, which can then
be cast or converted to the correct structure type. In C++ or Java, these operations are implemented as class member
functions, and as such the context object is passed implicitly through the this reference. Other object-oriented
languages have a similar paradigm to reference the context object, such as the “self” object in Python.
As a general convention, interfaces that apply to all components (applications, devices, etc.) have operations named
with an APP prefix, and interfaces that apply only to devices have operations named with a DEV prefix. Further
details on each of these operations are provided in the following sections.
Note that the operations listed in this section are not invoked directly by other applications or components in the
system. The infrastructure is responsible for managing the life cycle of all context objects, and these objects are not
directly exposed to other components in the system. All operation requests from other components go through the
STI infrastructure, which may in turn invoke a context switch or middleware as needed, to provide the correct
context for the subsequent operation. For every interface operation described in this section, there is a
corresponding infrastructure-provided API call that operates on an abstract handle value rather than a context object.
These handle-based API calls, as described in section 10.6, STI API, are intended to be invoked from other entities.

10.5.1 Infrastructure-Provided Component Identifier Interface
The interface operations described in this section are provided by the infrastructure and may be invoked by an
application or device to obtain information from the infrastructure. The interface provides a consistent means for an
application or device to obtain identification information about itself.

For Infrastructure-Provided Component Identifier Software Requirements
See Section 12.30 with Table 14: APP_GetHandleID() Definition.
See Section 12.31 with Table 15: APP_GetHandleName() Definition.

10.5.2 Application-Provided Application Control Interfaces
The operations detailed in this section are provided by the application developer.

10.5.2.1 Constructor and Destructor
For all applications, constructor and destructor functions are provided by the application developer. These functions
will create and destroy an instance of the respective application’s state structure, as an object of the Instance base
type.

Space Telecommunication Interface 37

For applications or services that are instantiated multiple times within a single environment, the constructor will be
invoked by the infrastructure for each instance. After construction, the Instance reference identifies the specific
context object to work with for all subsequent calls interface operations. In C++ terminology, it equates to the this
pointer.
The notion of a statically allocated “singleton” object is allowed, but the application still needs to supply a stub
function for use as a constructor and destructor. In this case, the constructor may directly return the statically
allocated instance, and the destructor may be empty.
Note that these methods implement the “factory” pattern in object-oriented design. As such, they are not instance
methods, but rather static methods when translated to object-oriented environments.

For Application-Provided Application Control Software Requirements
See Section 12.32 with Table 16: APP_Instance() Definition.
See Section 12.33 with Table 17: APP_Destroy() Definition.

10.5.2.2 Life Cycle Interface
The Life Cycle interface is intended to provide additional control over the application start up/initialization and
shutdown processes. In many cases, an application will require some allocation steps which are dependent on
configuration, such as storage buffer sizes, and these configuration items may not be known at the time the
constructor is invoked. This interface allows the initialization of the application to be separated from the
instantiation of the application. The required application properties can then be configured after instantiation but
before the initialization takes place. The shutdown process includes stopping execution of the application, releasing
any resources obtained during the initialization and execution of the application, and destroying the instance created.

For Application -Provided Life Cycle Software Requirements
See Section 12.34 with Table 18: APP_Initialize() Definition.
See Section 12.35 with Table 19: APP_ReleaseObject() Definition.

10.5.2.3 Property Set Interface
The Property Set interface consists of two operations, configure and query, which operate on name/value pairs. The
implementation should perform all necessary validation of the input parameters, including whether the property
name specified is valid, and whether it is permissible to set or retrieve the value in the current application state. The
notion of a “read-only” property is also allowed, where any attempt to configure such properties returns the ERROR
status code.

For Application -Provided Property Set Software Requirements
See Section 12.36 with Table 20: APP_Query() Definition.
See Section 12.37 with Table 21: APP_Configure() Definition.

10.5.2.4 Test Interface
The test interface provides a means to invoke any built-in testing routines. Test routines are identified by a test ID,
which is an application-defined numeric value.
The application developer is responsible for documenting the test ID’s which are implemented, including the
purpose and any restrictions or dependencies associated with the test. For example, tests targeted toward finding
manufacturing or assembly defects may only be executable as a “ground test” when the system is connected to a
designated test facility. Other tests may be permissible during run-time or flight operations but may interfere with
normal radio communication.
Tests may be implemented either synchronously or asynchronously (i.e. as a background operation). For
synchronous tests, the status returned indicates the complete test result, with passing indicated by returning a
successful status code. For asynchronous tests, the status returned indicates only if the test has been initiated. The

38 Space Telecommunication Interface

application implementation should utilize the PropertySet interface and specify property names/values to
communicate the progress and results of the test.

For Application -Provided Test Interface Software Requirements
See Section 12.38 with Table 22: APP_RunTest() Definition.

10.5.2.5 Controllable Component Interface
The ControllableComponent interface is intended for applications or devices to enter or exit their normal operation
mode after initialization. Typically, this should not involve any additional allocation or resource acquisition, but it
should only activate or deactivate the previously allocated resources.
For example, in an application designed to estimate incoming signal power, the Initialize operation (described
in section 10.5.2.2 , Life Cycle Interface) would allocate any buffer storage and set up the resources necessary to
“tap” the incoming signal samples, but would not actually start or activate the power estimation algorithm. The
Start operation described here would begin the process of taking snapshots of the incoming data and executing the
power estimation algorithm. Similarly, the Stop operation would stop the active process, but it would not tear
down or release any buffers or other system resources, which is the domain of the LifeCycle interface.
This interface is also applicable to devices which have the notion of a “standby” state; after initialization, the device
would become ready but not active. The Start and Stop operations would put the device into its active or
standby state, respectively.

For Application -Provided Controllable Component Software Requirements
See Section 12.39 with Table 23: APP_Start() Definition.
See Section 12.40 with Table 24: APP_Stop() Definition.

10.5.3 Device-Provided Device Control Interface
An STI Device is a proxy for the data and/or control path to the actual hardware. An STI Device is a “bridge” used
to decouple an abstraction from its implementation so that the two can vary independently. All operations detailed
in this section are provided by the device developer or platform provider. Like the application control interface, all
operations described in this section are invoked by the STI infrastructure based on requests from other entities
within the environment. The operations listed below are not invoked directly by other applications.
The STI Device may be implemented using any available platform-specific hardware access layer to communicate
with and control the specialized hardware. While portability is not a specific goal for devices, if the hardware
access layer is also standardized and/or adheres to commonly implemented patterns, then the STI device itself can
also potentially be re-used in other environments with minimal modifications.
For example, many UNIX and UNIX-like RTOS operating systems implement a very similar pattern to configure
and access a serial device, using a pseudo-file in the /dev filesystem combined with a defined set of ioctl()
operations and “termios” C library calls. As such, an STI device abstraction for UNIX-style serial ports and other
serially connected devices could be shared among any operating environment using this style of operating system
and device model. In contrast, an operating system such as Microsoft Windows® utilizes a driver architecture
specific to itself, and as such any STI device abstractions written using this driver model are not likely to be portable
to any other operating system. However, in either case, an STI-compliant application that accesses serial devices
using the STI device abstraction would be portable to either environment.
The basic operations listed in this section correspond to the DeviceControl interface as illustrated in Figure 9.

For Device-Provided Device Control Software Requirements
See Section 12.41 with Table 25: DEV_Open() Definition.
See Section 12.42 with Table 26: DEV_Load() Definition.
See Section 12.43 with Table 27: DEV_Reset() Definition.

Space Telecommunication Interface 39

See Section 12.44 with Table 28: DEV_Flush() Definition.
See Section 12.45 with Table 29: DEV_Unload() Definition.
See Section 12.46 with Table 30: DEV_Close() Definition.

10.5.4 Data Transfer Interface
The interfaces described in this section allow bulk data transfer between the component and the infrastructure. Like
all other operations, this interface exists only between the infrastructure and the respective target components. The
infrastructure is responsible for transporting the data between entities in the system.
The use of the interfaces described in this section are optional. Applications or devices choosing to implement this
interface indicate this in the application declaration. In object-oriented languages, this is done by inheriting or
implementing the Source and/or Sink interface. In non-object-oriented languages, it is indicated in an OE-specific
manner.

10.5.4.1 Source Interface
The Source interface is intended for applications or devices that supply arbitrary data to other entities using a “pull”
model. The specific nature of the data is not defined by this specification and should be documented by the
application developer. It may represent a stream of raw data, such as ADC samples, or it may be processed data,
such as a power profile or constellation of the received signal.

For Application-Provided Source Interface Software Requirements
See Section 12.47 with Table 31: APP_Read() Definition.

10.5.4.2 Sink Interface
The Sink interface is intended for applications or devices that accept arbitrary data from other entities using a “push”
model. Like the Source interface, the specific nature of the data is not defined by this specification and should be
documented by the application developer. It may represent a stream of raw data, such as ADC samples, or it may be
higher-level data structures.

For Application-Provided Sink Interface Software Requirements
See Section 12.48 with Table 32: APP_Write() Definition.

10.5.4.3 Random Access Interface
This optional device interface provides a means to read or write data directly to a specific location within a file or
device. The location specified indicates the offset from the beginning of the file, address space, or memory map of
the file or device. For memory-mapped entities or devices attached to some other physical bus (e.g. I2C) this should
translate to the respective bus cycles to read or write from the given location on that bus.
The register set exposed via this interface may be emulated; the implementation is free to translate or modify the
request as needed by the underlying devices or hardware infrastructure. The physical bus access, if any, may go
through one or more levels of indirection, and the actual physical addresses accessed may be different than the
address requested.

For Application-Provided Random-Access Software Requirements
See Section 12.49 with Table 33: APP_AddressRead() Definition.
See Section 12.50 with Table 34: APP_AddressWrite() Definition.

40 Space Telecommunication Interface

10.6 STI API
The API calls in this section comprise the “public” interface into the STI infrastructure and may be used by all
components in the system to initiate actions in other components. Operations primarily utilize handle ID values,
which are opaque/abstract values that uniquely reference a single component within the STI infrastructure. The
specific format or structure of the handle ID value is implementation-defined, but the following criteria apply:

• Handle ID values apply within a single run-time instance of an STI operating environment. They are not
meaningful outside the operating environment, nor are they meaningful in a different instance of an STI
operating environment. Note that a “reboot” of an environment is considered a different run-time instance;
handle ID values are not required to be persistent across restarts and may be assigned differently.

• Handle ID values refer to the same component for that respective component’s lifetime; a component
cannot ever change its handle ID unless that component is destroyed and re-created.

• All components within the same operating environment can refer to the same set of handle IDs, and a given
handle ID referenced from one component refers to the same entity as the same handle ID referenced from
a different component.

• Two Handle ID values may be tested for equality using the programming language’s normal equality check
operator (e.g. if (Handle1 == Handle2)), but all other inquiries or tests are to be performed via
the infrastructure.

Portable applications and devices treat handle ID values as opaque objects, without any assumptions regarding the
validity of specific values or the data type(s) capable of storing the value. Only the infrastructure-supplied
HandleID type may be used to store a handle ID value.
It is recommended that the infrastructure implement handle IDs as an integer or a type derived from an integer, for
speed and simplicity of operation, although this is not required. As such, a handle ID value should not be compared
to any other integers.

10.6.1 General Utility API
The utility functions described in this section allow an application to make inquiries about the state of the
infrastructure or a previous operation, and generally do not perform any operation of their own. These functions
may be used at any time by any application.

10.6.1.1 Response Handling and Analysis
The function calls described in this section allow analysis of the return value of a previous call. Many STI API calls
return one of four data types:

• A status code (Result)

• A handle ID (HandleID)
• A size (FileSize)
• A string (language-dependent)

In most circumstances, calls returning a Result type could test for the defined value OK to indicate a successful
result. However, there are some API calls, mainly those that use variably-sized data buffers for reading or writing,
for which partial success is permissible. In these cases, the function returns an actual size or count value rather than
a fixed value upon success. For this reason, portable applications should not directly check for the specific return
value OK to determine success of any STI call. Instead, applications should use a second operation to check if a
given status code is represents success or failure.
Similarly, operations that return a HandleID or FileSize type may also fail, where failure is indicated by an
invalid value. A secondary check operation should be employed to determine whether the returned value is valid or
not.
Finally, for functions that directly return the name of components as a string, the language in use defines the
semantics of invalid responses. In C, where strings are direct pointers to memory, this is the special pointer value
“NULL”. Other languages have differing representations of an “undefined value” such as None (Python) or nil

Space Telecommunication Interface 41

(Lua), but the semantics vary from language to language. In these cases, portable applications should check the
return value using the string semantics for the language in use, before passing the value to another operation.

For Infrastructure-Provided Response Handling Software Requirements
See Section 12.51 with Table 35: IsOK() Definition.
See Section 12.52 with Table 36: ValidateHandleID() Definition.
See Section 12.53 with Table 37: ValidateSize() Definition.

Name to Handle ID Mappings
All components operating within an environment have an associated name and handle ID value. The name is more
user-friendly, and as such is generally more useful for user interaction, whereas the numeric ID value is generally
simpler and more efficient for software use. The functions described in this section provide a means to convert
between these two forms of identification.

For Infrastructure-Provided Handle ID Mappings Software Requirements
See Section 12.55 with Table 39: GetErrorQueue() Definition.
See Section 12.56 with Table 39: GetHandleName() Definition.
See Section 12.57 with Table 40: HandleRequest() Definition.

10.6.2 Application Control API
The operations in this section are used for controlling applications or devices from other components in the system.
In Figure 10, the Initialize() method call may be replaced by one of the methods in the comment titled
REPLACEMENT METHOD CALLS and if so, the APP_Initialize() method is replaced by the correspondingly
named method in the comment titled MATCHING METHOD CALLS. Each operation corresponds to a matching
operation in the application control interface documented in section 10.4.

42 Space Telecommunication Interface

Figure 10 illustrates the general pattern of operations between the infrastructure API calls and the corresponding
interface in the target application. The left side is the request originator component, or the “from” entity in terms of
the API descriptions and is identified as handle 1. The right side is the request target, or the “to” entity in terms of
the API descriptions and is identified as handle 2. The originator uses the API calls described in this section, which
in turn trigger the infrastructure to invoke the corresponding call on the target side. Upon completion, the return
value follows the inverse path, through the infrastructure, and back to the originating component.

10.6.2.1 Setup and Teardown
The following API calls support the dynamic creation and deletion of components within the environment. See the
corresponding application interface description in section 10.5.2.1 for more information.

For Infrastructure-Provided Application Setup and Teardown Software Requirements
See Section 12.54 with Table 38: InstantiateApp() Definition.
See Section 12.58 with Table 41: AbortApp() Definition.

The interaction between the originating component, the operating environment, and the target application for an
InstantiateApp call is illustrated in Figure 11.

Figure 10: Sequence Diagram for Application Control Component

Space Telecommunication Interface 43

The interaction between the originating component, the operating environment, and the target application for an
AbortApp call is illustrated in Figure 12.

Figure 12: Sequence Diagram for AbortApp

Figure 11: Sequence Diagram for InstantiateApp

44 Space Telecommunication Interface

10.6.2.2 Life Cycle Control
The following API calls correspond to the LifeCycle interface on the target component. See the corresponding
application interface description in section 10.5.2.2 for more information.

For Infrastructure-Provided Life Cycle Software Requirements
See Section 12.59 with Table 43: Initialize() Definition.
See Section 12.60 with Table 44: ReleaseObject() Definition.

10.6.2.3 Property Set Control
The following API calls correspond to the PropertySet interface on the target component. See the corresponding
application interface description in 10.5.2.3 for more information.

For Infrastructure-Provided PropertySet Software Requirements
See Section 12.61 with Table 45: Configure() Definition.
See Section 12.62 with Table 46: Query() Definition.

10.6.2.4 Test Control
The following API calls correspond to the TestableObject interface on the target component. See the corresponding
application interface description in section 10.5.2.4 for more information.

For Infrastructure-Provided Test Control Software Requirements
See Section 12.63with Table 47: RunTest() Definition.

10.6.2.5 Operational Control
The following API calls correspond to the ControllableComponent interface on the target component. See the
corresponding application interface description in section 10.5.2.5 for more information.

For Infrastructure-Provided Operation Control Software Requirements
See Section 12.64 with Table 48: Start() Definition.
See Section 12.65 with Table 49: Stop() Definition.

10.6.3 Device Control API
The following API calls allow applications to interact with STI devices. These operations provide a means to
establish a path of communication to the device, and correlate to the DeviceControl interface on the target
component. In Figure 13, the DeviceOpen() method call may be replaced by one of the methods in the comment
titled REPLACEMENT METHOD CALLS and if so, the Dev_open() method is replaced by the correspondingly
named method in the comment titled MATCHING METHOD CALLS. Each operation corresponds to a matching
operation in the device control interface documented in section 10.5.3.

Space Telecommunication Interface 45

Figure 13: Sequence Diagram for Device Control Component

For Infrastructure-Provided Device Control Software Requirements
See Section 12.66 with Table 50: DeviceOpen() Definition.
See Section 12.67 with Table 51: DeviceLoad() Definition.
See Section 12.68 with Table 52: DeviceReset() Definition.
See Section 12.69 with Table 53: DeviceFlush() Definition.
See Section 12.70 with Table 54: DeviceUnload() Definition.
See Section 12.71 with Table 55: DeviceClose() Definition.

10.6.4 Data Transfer API
The following API calls correspond to the data transfer (Source, Sink, RandomAccess) interfaces on the target
component. These functions are also used to transfer data to or from files or message queues.

10.6.4.1 Data Source
The data source operation described in this section is applicable to any application or device that implements the
“Source” interface. See the corresponding application interface description in section 10.5.4.1 for more
information.

For Infrastructure-Provided Source Software Requirements
See Section 12.72 with Table 56: Read() Definition.

10.6.4.2 Data Sink
The data sink operation described in this section is applicable to any application or device that implements the
“Sink” interface. See the corresponding application interface description in section 10.5.4.2 for more information.

46 Space Telecommunication Interface

For Infrastructure-Provided Sink Software Requirements
See Section 12.73 with Table 57: Write() Definition.

10.6.4.3 Random Access
These operations provide a means to directly access specific locations within a device or file, and correlate to the
RandomAccess interface on the target component. See the corresponding application interface description in section
10.5.4.3 for more information.

For Infrastructure-Provided Random Access Software Requirements
See Section 12.74 with Table 58: AddressRead() Definition.
See Section 12.75 with Table 59: AddressWrite() Definition.

10.6.5 Log API
The Log API provides a means to record contextual information regarding errors or other conditions present in
applications. The log data is maintained by the infrastructure and may be sent to the operating system log facility if
one exists. The platform provider indicates the specific manner with which log data may be retrieved and examined
by the operator, such as a file location or system log viewer.
See Section 12.76 with Table 60: Log() Definition.

10.6.6 File API
The API calls described in this section allow an STI application or device to open, close, and manipulate files, in an
abstract sense, within the operating environment. Note that the file system implemented by the STI infrastructure
may or may not correspond to an actual file system in the underlying operating system. The file system may be
virtualized, and the presence of these API functions does not imply a requirement that the operating system actually
implements a conventional file system.
The basic requirements of the file system abstraction are:

• All applications and devices access the same file system (real or virtual). A file created by one application
or device, may be subsequently opened by a different application or device, using the same file name.

• The files are persistent for at least the lifetime of the current infrastructure. A virtual file system backed in
RAM or other volatile storage may be cleared when the infrastructure is restarted, or the host system is
rebooted. File systems should have longer persistence (i.e. across reboots) when backed by a non-volatile
storage device.

The platform developer must indicate the level of persistence offered by the file system abstraction.
The methods defined in this section pertain to file system manipulation and provide a means to open or close file
handles. For actual data transfer operations, file handles will respond to the data transfer methods as defined in
section 10.6.4, Data Transfer API.

10.6.6.1 File Handle Operations
Like other components, files in STI operating environment are identified using a handle ID, and as such file handles
share many of the same semantics with other applications and devices. The difference lies in that file handles are
obtained using the specific API methods described here, rather than the previously described methods used for
applications or devices. The operations in this section manipulate file handles within the environment.
See Section 12.77with Table 61: FileOpen() Definition.
See Section 12.78with Table 62: FileClose() Definition.

Space Telecommunication Interface 47

10.6.6.2 File System Operations
The operations in this section manipulate or query the file system itself, rather than on file handles within the file
system.
See Section 12.79 with Table 63: FileGetSize() Definition.
See Section 12.80 with Table 64: FileRemove() Definition.
See Section 12.81 with Table 65: FileRename() Definition.
See Section 12.82 with Table 66: FileGetFreeSpace() Definition.

10.6.7 Messaging API
The STI applications use the Messaging API to establish facilities to send messages between components using a
common handle ID. The ability for applications, services, devices, or files to communicate with other STI
applications, services, devices, or files is crucial for the separation of radio functionality among independent
components. When using the message passing API, the final destination of a message is not necessarily known to
the producer of the message.
For example, the receive and transmit telecommunication functionalities can be separated between two applications.
Another example is when commands or log messages come from several independent sources and are merged
appropriately. Some examples of independent components that may need to interact with others could be for
navigation, GPS, file upload, file download, and computations.
There are two models for passing messages: queues (first in, first out, or FIFO) and publish/subscribe (PubSub). In
a queue, messages are written to a queue by one entity and read from the queue by another entity. In a PubSub
model, messages written to the message passing facility by one application are delivered to all subscribers of that
publisher.
To write to or read from a FIFO queue, the Read() and Write() operations are used, respectively, as described in
section 10.6.4, Data Transfer API. In this model, the originating entity pushes data to the queue, where it is
temporarily stored. The receiving entity pulls data from the queue later, at which time it is removed from the queue.
By definition, FIFO queues only provide sequential data, they do not support random access.
In the publish/subscribe (PubSub) messaging model, the data is pushed to all subscribers using a one-to-many
distribution. All applications subscribing to receive data using this model are required to implement the “Sink”
interface as described in section 10.5.4.2. Note that any handle ID capable of acting as a data sink may be
subscribed to a PubSub message distribution, including files and FIFO queues. By registering an open file handle
ID, one can effectively create a “tap” to log all published data. Likewise, by registering a FIFO queue, the two
messaging models may be combined, allowing broadcast data to be buffered and then “pulled” by the receiver as
time permits.

10.6.7.1 FIFO Queue Model
The API calls described in this section implement the “first-in, first-out” (FIFO) queue model.
See Section 12.83 with Table 67: MessageQueueCreate() Definition.
See Section 12.84 with Table 68: MessageQueueDelete() Definition.

10.6.7.2 Publish/Subscribe Model
The API calls described in this section implement the publish/subscribe messaging model.
See Section 12.85 with Table 69: PubSubCreate() Definition.
See Section 12.86 with Table 70: PubSubDelete() Definition.
See Section 12.87 with Table 71: Register() Definition.
See Section 12.88 with Table 72: Unregister() Definition.

48 Space Telecommunication Interface

10.6.8 Time API
The STI Infrastructure Time methods are used to access the hardware and software timers. Methods are also defined
to support synchronization of oscillators or other timing sources to a reference signal.
Many time operations utilize an object type called TimeWarp, which represents an abstract time interval.
Nominally, the TimeWarp object is expected to be some form of timer tick counter, with the specific
resolution/units and epoch being implementation-defined. A TimeWarp object may represent time in standardized
units, such as milliseconds or microseconds, or it may be based on the CPU clock or timer interrupt frequency.
Although some API methods are defined to a nanosecond time resolution, that does not imply that the actual timer
resolution is nanoseconds or that the underlying TimeWarp object contains its data in nanoseconds.

The following is true of TimeWarp objects:
• The resolution or units of TimeWarp objects is a fixed constant defined by the infrastructure and does

not change for the lifetime of the infrastructure. For instance, if a clock is sampled at times A, B, and C,
and the time interval between B-A and C-B is equal, then the corresponding difference between the
successive TimeWarp values will also be equal.

• All clock devices within an infrastructure will share the same definition of TimeWarp, with respect to
range and resolution, even if the clock devices do not share the same epoch.

• TimeWarp objects will be capable of differentiating between positive intervals (time in the future) and
negative intervals (time in the past).

Depending on the application, time intervals may be of a long duration (years or decades) and/or high resolution
(microseconds or nanoseconds). To support a wide range of time while also maintaining a high resolution, it may
not be possible to represent a TimeWarp value as a single value on a particular CPU. For instance, if a timer has a
resolution of 1 microsecond and is represented using a 32-bit signed integer, which is the largest native integer type
on some microcontrollers, then the measurable time intervals would be limited to only (231-1) microseconds, or
approximately 35.7 minutes. Therefore, TimeWarp may be implemented as a structure or other extended-range
numeric type in order to achieve the necessary range and resolution requirements.

10.6.8.1 Time Conversion and Arithmetic
The TimeWarp object is defined by the infrastructure as a value that represents a specific interval in time. The
specific structure of this object is implementation-defined. For example, the underlying TimeWarp object could
count ticks from some epoch, such as the infrastructure boot time, and then GetSeconds and GetNanoseconds
compute the seconds and nanoseconds, respectively, based on the tick rate.
The following methods provide a means to work with TimeWarp objects, and to convert or translate these objects
into other representations. As the specific implementation of the TimeWarp object may vary, applications cannot
assume that normal arithmetic or logical operations are possible (i.e. addition or subtraction, equality testing, etc.).
Therefore, the infrastructure needs to explicitly provide these operations in the API.
In order to make these operations as efficient as possible, all operations defined in this section may be implemented
as macros or inline functions on platforms that offer this feature. There is also no need for error checking and no
possibility of failure on these operations, as any input value is valid.
See Section 12.89 with Table 73: GetNanoseconds() Definition.
See Section 12.90 with Table 74: GetSeconds() Definition.
See Section 12.91 with Table 75: GetTimeWarp() Definition.
See Section 12.92 with Table 76: TimeAdd() Definition.
See Section 12.93 with Table 77: TimeSubtract() Definition.

10.6.8.2 Basic Clock Get/Set Operations
The API calls described in this section implement the basic clock operations such as getting the time, setting the
time, or suspending/delaying operation until the clock reaches a specific value.

Space Telecommunication Interface 49

See Section 12.94 with Table 78: GetTime,
See Section 12.95 with Table 79: SetTime,
See Section 12.96 with Table 80: GetCalendarTime,

Several predefined constants for the CalendarKind type are specified in section 10.4.2. A compliant platform
does not necessarily need to implement all the calendar types listed and may implement additional types not listed as
application-specific extensions. To support the various time representations, several structures are provided by the
infrastructure. The time representations are illustrated in Figure 14, Calendar Time Value Representations.

Figure 14: Calendar Time Value Representations

The CalendarTime type may be expressed as an IDL union of all possible time representations, as indicated
below.
See Section 12.97 with Table 81: CalendarValueCivil Structure Definition.
See Section 12.98 with Table 82: CalendarValueGPS Structure Definition.
See Section 12.99 with Table 83: CalendarValueDayNumber Structure Definition.
See Section 12.100 with Table 84: CalendarTime Union Definition.

10.6.8.3 Clock Rate Adjustment and Drift Compensation
If clock devices require synchronization with external signals, a dedicated service should continuously monitor for
drift and handle the adjustment as needed. Common synchronization sources include a “time at tone” signal from a
ground station, a 1 pulse per second (PPS) input from a GPS receiver, or via the network time protocol (NTP).
Differences between the synchronization source and the clock device can be compensated by either directly stepping
the clock device using SetTime(), or, if the underlying device supports it, by low-level adjustment of the clock
source tick rate such that the drift is gradually absorbed and corrected over time.
The SetTime() API sets the clock directly and will step the timer forward or backward as indicated. However, a
timer step may have undesirable consequences for some software, particularly control loops that rely on relative
time differences between successive samples. This can sometimes be mitigated by making many small steps rather
than one large step. However, even the smallest step still might cause unacceptable effects on a control loop that
relies on precise relative timing measurements.

50 Space Telecommunication Interface

The adjustment functions are intended to address this by providing an alternative method to adjust for clock drift. In
many clock device implementations, the underlying “tick” or reference signal is supplied using a hardware
PLL/oscillator or clock divider of some type, driving a periodic timer tick interrupt to the CPU. Furthermore, if the
source allows some level of control during operation, such as increasing or decreasing the oscillator rate by a certain
ratio (e.g. parts per million) or by modifying the clock divider ratio by a small amount, then this can be used to
provide for a more stable drift compensation method. By increasing or decreasing the underlying timekeeping tick
rate, small differences between the clock device and the reference source can be compensated over time without ever
“stepping” the clock.
Support for these adjustment routines is platform dependent. If a platform does not support clock drift adjustment,
an appropriate error code will be returned.
See Section 12.101 with Table 85: SetTimeAdjust() Definition.
See Section 12.102 with Table 86: GetTimeAdjust() Definition.
See Section 12.103 with Table 87: TimeSynch() Definition

10.6.8.4 Delay Operations
The Sleep and DelayUntil functions provide a means for an algorithm to delay its own execution or wait for a clock
to reach a certain deadline.
See Section 12.104 with Table 88: Sleep() Definnition
See Section 12.105 with table 89: DelayUntil() Definition.

10.7 Non-STI Software Interfaces
STI applications and services may need to utilize libraries or services outside the scope of STI, such as the services
provided by the operating system or additional software libraries. As such, an STI module can only be ported to an
environment that also provides a compatible set of services or libraries, so it is critical to identify these
dependencies.
Examples of software libraries include, but are not limited to:

• Operating system operations such as task/thread creation or synchronization
• Floating-Point mathematical operations
• Complex algorithms, such as machine learning

Most programming languages, including C/C++, also define a “standard library” in addition to the language syntax
and semantics. This library is defined by the respective standards body, such as ISO/IEC for C and C++, as a set of
interfaces that all compliant implementations must meet. For instance, in ISO/IEC 9899 (C), this standard library
includes a minimum set of header files specifying a core set of function calls, including basic memory access,
mathematical operations, and string manipulation (e.g. memset(), strcmp(), sqrt(), etc.).

An STI application may use any operations defined in the standard library of the respective programming language.
However, the application developer should avoid the use of any library functions which are marked as deprecated,
non-cross-platform, or non-thread-safe, where applicable. If no replacement or alternative exists, this dependency
should be expressly noted in the application documentation.

Beyond the standard library, additional software libraries may be used for specific functions. These include, but are
not limited to:

• Accessing operating system or task scheduling resources (e.g. POSIX® or other operating system
abstraction library)

• Additional mathematical computations beyond those provided by the standard library (e.g. BLAS,
LAPACK, NumPy, etc.)

• Scientific or Machine Learning packages (e.g. SciPy, TensorFlow™, etc.)

Space Telecommunication Interface 51

10.7.1 Operating System Interface
STI applications implemented in C or C++ which do not leverage a specific 3rd party operating system abstraction
library may use a subset of the POSIX® API as shown in Figure 6, Software Execution Model. POSIX® refers to a
family of IEEE standards 1003.n that describe the fundamental services and functions necessary to provide a
UNIX®-like kernel interface to applications. POSIX® itself is not an OS but is instead specifies the programming
interfaces available to the application programmer.
POSIX® specifies a set of OS interfaces and services. The specification is not bound to a single operating system
and has in fact been implemented on top of operating systems such as Digital Equipment Corporation’s (DEC’s)
OpenVMS™ (Virtual Memory System) and Microsoft Windows®. However, the creation of POSIX® is closely
coupled to the UNIX® OS and its evolution. The goal was to create a standard set of interfaces that all the UNIX®
flavors would support in order to facilitate software portability. Even though POSIX® technically refers to the
family of specifications, it is more commonly used to refer specifically to IEEE 1003.1, Information Technology -
Portable Operating System Interface (POSIX®), which is the core POSIX® specification.
Characteristics of POSIX® include the following:

• Application-oriented.
• Interface, not implementation.
• Source, not object, portability.
• The C-language/system interfaces written in terms of the ISO C standard.
• No superuser, no system administration.
• Minimal interface, minimally defined—core facilities of this specification have been kept as minimal as

possible.
• Broadly implementable.
• Minimal changes to historical implementations.
• Minimal changes to existing application code.

The original POSIX® specification was based on a general-purpose computing platform, but a series of amendments
addressed the unique requirements of real-time computing. These amendments follow:

• IEEE 1003.1B-Realtime Extension.
• IEEE 1003.1C-Threads Extension.
• IEEE 1003.1D-Additional Realtime Extensions.
• IEEE 1003.1J-Advanced Realtime Extensions.
• IEEE 1003.1Q-Tracing.

These amendments were rolled into the base specification in version IEEE 1003.1-1996. IEEE 1003.13 provides a
standards-based option for an STI AEP.

10.7.1.1 STI Application Environment Profile
The subset of the POSIX® API described below is used by STI applications to access platform services when no
STI Infrastructure-provided API is available. The IEEE 1003.1 standard provides a means to implement a subset of
the interfaces by using “Subprofiling Option Groups.” These option groups specify “Units of Functionality” that can
be removed from the base POSIX® specification.
IEEE 1003.13 created four AEPs that specified subsets of 1003.1 more suitable to embedded applications. These
profiles follow:

• PSE51—Minimal Realtime Systems Profile.
• PSE52—Realtime Controller System Profile.
• PSE53—Dedicated Realtime System Profile.
• PSE54—Multi-Purpose Realtime System Profile.

52 Space Telecommunication Interface

The profiles are each upwardly compatible and consist of the basic building blocks shown in figure 15, Profile
Building Blocks. Each of these profiles has increasing capabilities, which increase requirements on resources.
Profiles 51 and 52 runs on a single processor with no Memory Management Unit (MMU), and thus imply a single
process containing one or more threads. Profile 52 adds a file system interface and asynchronous I/O. Profile 53
adds support for multiple processes, thus requiring an MMU. The last and largest profile 54 adds support for
interactive users and is almost a full POSIX® 1003.1 environment. The higher numbered profiles are supersets of
the lower numbered profiles, such that PSE52 includes all the features of a PSE51.
Upward portability between profiles is supported by requiring certain APIs, such as memory locking, for profiles
PSE51 and PSE52. Even though there is no MMU support on the PSE51 and PSE52 profiles, code written as if
there is an MMU present will be portable among all four profiles by requiring such APIs to be defined in all four
profiles. The signature of these APIs will be identical on all profiles, but the functionality will differ according to
the capabilities. For example, calling a memory-locking API on a PSE51 platform with no MMU will always return
success. When this example application is ported to a PSE53 platform, the memory locking will work as intended
without modification to the source code.
Currently, this specification supports platforms based on profiles PSE51 through PSE54, although PSE54 will only
be used for development platforms and ground stations. Allowing multiple profiles allows the architecture to scale
to different platforms. Applications developed for a specific profile are compatible with higher profiles; that is, a
profile 52 application could be ported to profile PSE53 and PSE54 platform, but not vice versa. This upward
scalability anticipates that smaller platforms will desire smaller profiles and will not have the resources to run larger
applications that comply with the larger profiles.

For Requirements for Operating System Interface
See 12.106, Document STI Interfaces.

For POSIX® interfaces this should indicate the supported application profiles as described in standard IEEE
1003.13. For other operating systems or operating system abstraction layers, this should indicate the specific
API or abstraction layer and associated version, where applicable.

See 12.107, Document Application’s System Library Interfaces .
For POSIX® interfaces this should indicate the required application profiles as described in standard IEEE
1003.13. For other operating systems or operating system abstraction layers, this should indicate the specific
API or abstraction layer and associated version, where applicable.

Figure 15: Profile Building Blocks

Space Telecommunication Interface 53

Regardless of the POSIX® profile implemented, STI applications should avoid use of any POSIX® function which
is not thread safe, to preserve portability of application code to multi-threaded STI platforms. In addition, STI
applications should not invoke any function which would cause the parent process to abort or exit (e.g. exit() or
abort()) as these functions may disrupt the operation of other STI applications.
In areas where there is overlap between an STI API and a function provided by POSIX®, such as messages queues
and file system access, applications should use the STI provided API.
Table 4 lists a set of common POSIX® functions and the alternative function to use in an STI application. Note that
this list only contains a subset of the possible non thread-safe functions and should not be considered exhaustive or
complete. Refer to the POSIX® specification for a complete set of non thread-safe functions.

Table 4: Function Alternatives
POSIX® Function(s) Suggested Alternate

asctime(), ctime(), localtime() STI GetCalendarTime()

open(), close() STI FileOpen(), FileClose()

mq_open() STI MessageQueueCreate()

read(), write() STI Read(), Write()

strtok() strtok_r()

rand() rand_r()

abort(), exit() STI AbortApp()

ioctl(), mmap() STI AddressRead(),AddressWrite()

system(), atexit() None; do not use

11 External Command and Telemetry Interfaces
An STI radio cannot perform the necessary application and platform functions without an external system providing
commands, accepting responses, and monitoring the radio’s health and status. The STI radio implements an external
interface to receive and act on the commands from the external system, translates the commands into the format
expected by the application, and provides the information for monitoring the health and status of the radio. If the
STI radio has the capability for new or modified OE, application software, or configurable hardware design, the
external command and telemetry interfaces should be able to accept and store new files. The interface in the STI
radio and in the external system, which is to provide the control, via a command sequence, to the STI radio and
receive responses from an STI radio, is referred to as the STI command and telemetry interfaces. The external STI
command and telemetry functionality illustrated in figure 16, Command and Telemetry Interfaces, typically resides
on the spacecraft’s flight computer, and/or it may reside on a ground station or another spacecraft.

54 Space Telecommunication Interface

This shared capability implies that the STI radio is capable of performing the interface functions. Within the STI
radio, if there are data stored on the radio that are to be transferred to an external system, the capability is to exist to
send data using a mission-specific protocol to the receiver (flight computer, ground station, or other spacecraft) and
capability in the receiver to process those data or write those data to a file or download service or to a storage area
that is accessible from both. The reverse capability for STI radio control is also necessary: The external system is
capable of sending commands using a mission-specific protocol and the STI radio is capable of validating,
deciphering, and processing those commands. For example, data coming over the Flight Computer Interface are
interpreted by the Command and Control Manager as shown in figure 16 and are processed by the STI
infrastructure.
Within the STI radio, components of the command and telemetry interfaces are necessary to provide the interfaces
between the STI OE and the STI command and telemetry functionality on the external system. The command and
telemetry interfaces may include a standard type of mechanical, electrical, and functional spacecraft bus interface,
such as MIL–STD–1553, Digital Time Division Command/Response Multiplex Data Bus; command and telemetry
interpretation; and translation of the command set to the STI standard necessary for application control. The
protocol, command set, and telemetry set for the STI command and telemetry interfaces are not standardized and can
be customized according to the needs of any particular deployment. However, some interface and behavioral
requirements are required.
The telemetry set should contain some or all of the following parameters:

• Electrical Conditions: Voltage, current, and power consumption.
• Environmental Conditions: Temperature, pressure.
• Module Configuration: Module type/location, hardware revision.
• Self-test Status: RAM/ROM, file system, software revision, and individual module test status.
• Operating Environment Status: Infrastructure software revision, name/ID/state of components, available

memory for data and files
• Other Application-specific parameters

The command set may contain some or all of the following actions:
• Application Instantiation and Deletion: Manually create or delete a waveform or device.
• Property Set: Query or Configure a specific component property via the STI PropertySet API.
• File Operations: Query, delete, or rename files via the STI File API.
• Invoke Self-tests: Interface to the STI TestableObject API.
• Device Operations: Manually load, flush, or reset a device via the STI Device API.

Figure 16: Command and Telemetry Interfaces

Space Telecommunication Interface 55

If the command interface lies on a network containing other devices, the infrastructure should implement some form
of command authentication, to reduce the likelihood that commands are received in error or from an unauthorized
source. Furthermore, the infrastructure may also implement encryption on the command and telemetry interfaces to
ensure that the data is not disclosed to other entities in the system while in transit. Any such security procedures
should be implemented at the network transport level, which is outside the scope of this specification.
The specific command or telemetry set available for use is always at the discretion of the system integrator. While
the set described here is potentially useful for a development platform, flight operations may choose to use an
entirely different set. The use of additional data transmission specification standards is encouraged but
not required by this standard

For Requirements for External Command and Telemetry Interfaces
See 12.108, Respond to External Commands
See 12.109, External Commands Use STI API
See 12.110, Document External Commands
See 12.110, Document External Commands.

12 Normative Requirements
Hardware

12.1 Provide GPM
STI-1 An STI platform shall have a GPM that contains and executes the STI OE and the control portions of the
STI applications and services software.

12.2 Diagnostic Information Availability
STI-2 A module’s diagnostic information shall be available via the STI APIs.

12.3 Document RF
STI-3 The STI platform provider shall describe, in the HID document, the behavior and performance of the RF
modular component(s).

12.4 Document Power-Up State
STI-4 The STI platform provider shall describe, in the HID document, the state of all hardware devices in the
system after completion of power-up process.

12.5 Document Hardware Capability
STI-5 The STI platform provider shall describe, in the HID document, the behavior and capability of each major
module or component available for use by a waveform, service, or other application (e.g., FPGA, GPP, DSP, or
memory), noting any operational limitations.

12.6 Document Hardware Limitations
STI-6 The STI platform provider shall describe, in the HID document, the various capabilities, capacities, and any
limitations of each reconfigurable component.

56 Space Telecommunication Interface

12.7 Document Interfaces
STI-7 The STI platform provider shall describe, in the HID document, the interfaces that are provided to and from
each modular component of the STI platform.

12.8 Document the Control and Data Mechanisms
STI-8 The STI platform provider shall describe, in the HID document, the control, telemetry, and data
mechanisms of each modular component (i.e., how to program or control each modular component of the platform,
and how to use or access each device or software component, noting any proprietary and nonstandard aspects).

12.9 Document Power Supply
STI-9 The STI platform provider shall describe, in the HID document, the behavior and performance of any
power supply or power converter modular component(s).

12.10 Document Thermal and Power Limits
STI-10 The STI platform provider shall describe, in the HID document, the thermal and power limits of the
hardware at the smallest modular level to which power is controlled.

12.11 Controllable From OE
STI-11 If the STI application has a component resident outside the GPM (e.g., in configurable hardware design),
then the component shall be controllable from the STI OE.

Configurable Hardware Design

12.12 Platform Specific Wrapper
STI-12 The STI SPM developer shall provide a platform specific wrapper for each FPGA, which performs the
following functions:

1. Provides an interface for command and data from the GPM to the waveform application.
2. Provides the platform-specific pinout for the STI application developer. This may be a complete

abstraction of the actual FPGA pinouts with only waveform application signal names provided.

12.13 Document FPGA Interfaces
STI-13 The STI SPM developer shall provide documentation on the configurable hardware design interfaces of the
platform-specific wrapper for each FPGA, which describes the following:

1. Signal names and descriptions.
2. Signal polarity, format, and data type.
3. Signal direction.
4. Signal-timing constraints.
5. Clock generation and synchronization methods.
6. Signal-registering methods.
7. Identification of development tool set used.
8. Any included non-interface functionality.

Space Telecommunication Interface 57

Software

12.14 Document System Library Interfaces Provided
STI-14 The STI infrastructure provider shall document the supported system library interface(s) that are provided
by the infrastructure, specifying any relevant standards or revisions.

12.15 Document System Library Interfaces Used
STI-15 The STI application provider shall document the supported system library interface(s) that are required by
the application, specifying any relevant standards or revisions.

12.16 Document Language Interfaces Provided
STI-16 The STI infrastructure provider shall document the supported language interface(s) that are provided by the
infrastructure, specifying any relevant standards or language revisions.

12.17 STI Infrastructure Uses APP API
STI-17 The STI infrastructure shall use the STI Application-provided Application Control Interfaces to control STI
applications.

12.18 Use Language Specific Facilities Specified in Annex A
STI-18 Applications shall use the respective programming language’s designated facilities, such as a package,
module, or header file(s), to refer to all STI infrastructure-provided entities as prescribed in Annex A: Language
Translations.

12.19 Use Language Specific Inheritance
STI-19 Application object definitions shall use the programming language’s inheritance mechanisms to specify the
set of STI interfaces that are implemented by the application (for object-oriented languages only).

12.20 STI Infrastructure Provided Data Types
STI-20 The STI infrastructure shall define the basic data types as specified in Table 5.

Table 5: STI Variable Types
Type Name Semantics Usage/Description

Access Enumeration Indicates desired access to a file. The specific possible values are
described in Table 6.

CalendarKind Enumeration

Identifies a specific method of time representation, such as TAI or
UTC. The specific possible values are described in Table 7,
CalendarKind Constants. Because some time representations apply
to space, date and time may be defined beyond the ISO standard for
Date and Time [8601] on Earth.

CalendarTime Abstract Structure
or Class

An abstract object that identifies a specific time for a particular
CalendarKind. All possible CalendarTime values are
representable as a pointer or reference to this type.

58 Space Telecommunication Interface

FileSize Integer

Represents a size in bytes. The range of the number is to be long
enough to contain the largest possible number of bytes in a file, as
well as uniquely identifiable invalid values to indicate error
conditions. If there are different filesystems, each may have a
different maximum file size; however, the variable type should be
able to handle the largest file among all of them.

HandleID Integer

A handle ID is a single value that represents an STI application,
device, file, or queue. It may be an index into a table or a pointer to
more information for the item. The infrastructure defines the set of
valid values for this type.

Message Abstract Structure
or Class

The base type of all data exchange (Read, Write) buffers. All
STI data exchange messages are representable as a pointer or
reference to this type.

Instance Structure or Class
(base type)

The base type of all application and device context objects. All STI
components have a corresponding object of this type stored by the
infrastructure, although the object itself is not exposed to other
applications.

Nanoseconds Integer

Indicates the number of nanoseconds (fractional part) within a
TimeWarp object. This type can represent at least the range of [0,
999999999], and may be implemented using an “unsigned” value
type, if available.

Offset Integer

Indicates an offset from the beginning of a file or device address
space. This type has a range capable of representing the last
position in the largest file or device in the system. May be
implemented using an “unsigned” value type, if available.

PropertyName
Integer,
Enumeration or
String

Used to identify properties by name. May be implemented as a
numeric enumeration in languages which support this, or as a string
value in other environments.

PropertyValue Abstract Structure
or Class

The base type of all property values used with the property set
interface (Configure, Query). All STI property values are
representable as a pointer or reference to this type.

QueueMaxMessages Integer Represents the maximum number of messages allowed in a FIFO
queue.

Result Integer

Represents a status value, returned by many STI API calls.
Specific predefined values represent error conditions, which are
distinct from the set of valid results. See constants defined in Table
9, Result Constants.

Seconds Integer
Indicates the number of seconds (whole number part) of a
TimeWarp object. Negative values represent time intervals in the
past, and positive values indicate time intervals in the future.

TimeWarp
Integer or
Aggregate value
(non-abstract)

The representation of an arbitrary time interval. Logically, this is a
single, large value of fixed-point precision. The value should be at
least 64 bits in size. If the largest native integer size is less than 64
bits on a given architecture, this may be defined as a structure to
achieve the necessary range and precision. Units are
implementation defined but are convertible to seconds and
nanoseconds using the STI API.

Space Telecommunication Interface 59

TimeRate Integer

Indicates the adjustment factor of clock devices during adaptive
sync and drift compensation. Positive values represent increased
clock frequency/tick rates, negative values represent decreased
frequency/tick rates, and a value of zero represents the nominal or
“free-run” clock frequency. Units are implementation defined.

12.21 Application based on Instance Object
STI-21 The application base object shall be convertible to an Instance object as defined by the STI infrastructure.

12.22 STI Infrastructure-Provided Access Constants
STI-22 The STI infrastructure shall provide the Access Constants as specified in Table 6.

Table 6: Access Constants
Declaration enum Access {

 READ,
 WRITE,
 APPEND,
 BOTH
};

Description Enumerates types of access to a file.

Usage ► READ: Indicates file exclusive “read only” permission.
► WRITE: Indicates file exclusive “write only” permission, i.e. writing to beginning of

file.
► APPEND: Indicates file exclusive “append” permission, i.e. writing to end of file.
► BOTH: Combination of READ and WRITE permissions.

Provided By Infrastructure

Notes Used exclusively by the FileOpen() API call

12.23 STI Infrastructure-ProvidedCalendarKind Constants
STI-23 The STI infrastructure shall provide the CalendarKind Constants as specified in Table 7.

Table 7: CalendarKind Constants
Declaration enum CalendarKind {

TAI ,
UTC,
GPS,
MJD,
LOCAL

};

Description Enumerates several well-defined time and date representations

60 Space Telecommunication Interface

Usage ► TAI: Corresponds to the International Atomic Time, a monotonically increasing time
scale based on the weighted average of numerous Earth-based atomic clocks

► UTC: Corresponds to the Coordinated Universal Time, which is offset from TAI by a
number of leap seconds that is occasionally updated through international consensus

► GPS: Corresponds to the GPS time scale, a count of weeks and seconds since the
GPS epoch. Since GPS time does not adjust for leap seconds, it is ahead of UTC by
the integer number of leap seconds that have occurred since January 6, 1980 plus or
minus a small number of nanoseconds.

► MJD: Corresponds to Modified Julian Date, which is a floating-point representation
of Earth days since the MJD epoch; i.e., the number of days since midnight on
November 17, 1858, which corresponds to 2400000.5 days after day 0 of the Julian
calendar. MJD is still in common usage in tabulations by the U. S. Naval
Observatory.

► LOCAL: Corresponds to the default local time representation. This is
implementation-defined.

Provided By Infrastructure

Notes Platforms do not need to implement every defined calendar system. For those that are
implemented, they should be implemented in a manner consistent with the name and
specification indicated. Implementations may also define custom CalendarKind
values for application-specific needs.
Use of the LOCAL time and date representation in applications is discouraged, due to
the inherent ambiguity. This is intended only for a user interface or display purpose.
For more information on the specific time structures associated with these time and date
representations, see section 10.6.8.

12.24 STI Infrastructure-ProvidedHandleID Constants
STI-24 The STI infrastructure shall provide the HandleID Constants as specified in Table 8.

Table 8: HandleID Constants
Declaration const HandleID HANDLEID_INVALID = {…};

const HandleID WARNING_QUEUE = {…};
const HandleID ERROR_QUEUE = {…};
const HandleID FATAL_QUEUE = {…};
const HandleID TELEMETRY_QUEUE = {…};

Description A set of pre-defined values of the HandleID type

Usage ► HANDLEID_INVALID: A reserved value that will never alias a valid handle ID
► WARNING_QUEUE: The default queue to use in conjunction with for the Log() API

for context information related to WARNING responses
► ERROR_QUEUE: The default queue to use in conjunction with for the Log() API for

context information related to ERROR responses
► FATAL_QUEUE: The default queue to use in conjunction with for the Log() API for

context information related to FATAL responses
► TELEMETRY_QUEUE: The default queue for general system telemetry data. The

purpose and usage of this queue handle is implementation-defined.

Provided By Infrastructure

Space Telecommunication Interface 61

Notes The HANDLEID_INVALID constant is intended for use as an initializer, to avoid
ambiguity in locally instantiated HandleID values. For instance, this can be used
within an initializer list in a C++ class constructor, before the member is set to a real
handle ID, to avoid potential undefined behavior if the destructor is invoked before the
value is set to an actual handle ID.
Note: If checking return values, applications should never check for specifically for the
HANDLEID_INVALID value, but rather use the ValidateHandleID() API call.

12.25 STI Infrastructure-ProvidedResult Constants
STI-25 The STI infrastructure shall provide the Result Constants as specified in Table 9.

Table 9: Result Constants
Declaration const Result OK = {…};

const Result WARNING = {…};
const Result ERROR = {…};
const Result FATAL = {…};
const Result UNIMPLEMENTED = {…};

Description A set of pre-defined constants of the Result type used as return values.

Usage ► OK: Indicates the operation was successful
► WARNING: Indicates the operation was not successful, but little or no corrective

action is required. The component is still operational; this may be a transient error.
► ERROR: Indicates the operation was not successful, and some corrective action may

be required. The component is still operational.
► FATAL: Indicates the operation was not successful, and significant corrective action

is required. The component is not able to function.
► UNIMPLEMENTED: Indicates that the operation it is not implemented by the

component or by the infrastructure.

Provided By Infrastructure

Notes Values other than OK may also indicate success. Applications should never check for
this value specifically, but rather use IsOK() to determine if an operation succeeded.
An ERROR indicates component is operational, but the request may not be applicable to
the component or may not be valid per the current component state. The caller should
take action to correct the underlying issue before attempting the call again.
The UNIMPLEMENTED value is intended to differentiate between a request that was
successfully sent to the target but failed to execute, versus a request that was not sent to
the target because it does not implement an optional interface. This may be treated
similarly to an ERROR response.

12.26 STI Infrastructure-Provided Handle Name Constants
STI-26 The STI infrastructure shall provide the Handle Name Constants as specified in Table 10.

Table 10: Handle Name Constants
Declaration const string OE_HANDLE_NAME = “…”;

const string DEFAULT_CLOCK_NAME = “…”;

62 Space Telecommunication Interface

Description A set of pre-defined constant handle names

Usage OE_HANDLE_NAME: A name identifying the operating environment
DEFAULT_CLOCK_NAME: A name identifying the default system clock device

Provided By Infrastructure

Notes These names may be passed to HandleRequest() to find the corresponding handle
ID, which can then be used to interact with the target component.

12.27 STI Infrastructure-Provided Property Name Constants
STI-27 The STI infrastructure shall provide the Property Name Constants as specified in Table 11.

Table 11: Property Name Constants
Declaration const PropertyName COMPONENT_PROVIDER = {…};

const PropertyName COMPONENT_VERSION = {…};
const PropertyName COMPONENT_STATE = {…};

Description A set of pre-defined property names

Usage ► COMPONENT_PROVIDER: A name associated with the provider of the component.
► COMPONENT_VERSION: A name associated with the version of a component.
► COMPONENT_STATE: A name associated with the state of a component.

Provided By Infrastructure

Notes All applications, as well as the operating environment, will implement these property
names. Devices may also implement these property names, but it is not required; for
any devices provided by the platform, the values would generally match that of the OE.
The values associated with these property names should be free-form strings.
The PROVIDER value is usually a company name or university, followed by a
subsidiary, division, or department name.
The VERSION value is implementation-specific and may be of the format
MAJOR.MINOR.REVISION and may also include additional identification
information, such as a baseline version control revision ID or tag/branch if relevant.
The STATE value is implementation-specific, and the meaning should be indicated by
the application developer.

12.28 STI Infrastructure-Provided Size Limit Constants
STI-28 The STI infrastructure shall provide the Size Limit Constants as specified in Table 12.

Table 12: Size Limit Constants
Declaration const Integer MAX_PROPERTY_NAME_SIZE = {…};

const Integer MAX_PROPERTY_VALUE_SIZE = {…};
const Integer MAX_PATH_NAME_SIZE = {…};
const Integer MAX_HANDLE_NAME_SIZE = {…};
const Integer MAX_LOG_MESSAGE_SIZE = {…};
const MaxQueueMessages MAX_QUEUE_MESSAGES = {…};

Description Establishes a set of constants of known maximum size limits for various items

Space Telecommunication Interface 63

Usage ► MAX_PROPERTY_NAME_SIZE: The maximum size, in bytes, of any
PropertyName object

► MAX_PROPERTY_VALUE_SIZE: The maximum size, in bytes, of any
PropertyValue object

► MAX_PATH_NAME_SIZE: The maximum length, in characters, of a file name
► MAX_HANDLE_NAME_SIZE: The maximum length, in characters, of a handle name
► MAX_LOG_MESSAGE_SIZE: The maximum length, in characters, of strings

accepted by the Log() API
► MAX_QUEUE_MESSAGES: The maximum number of messages that can be stored in

a queue.

Provided By Infrastructure

Notes These constant definitions are mainly intended for use in languages such as C/C++
where application developers are responsible for buffer allocation. In other languages,
buffer allocation may occur automatically and as such these size limits may not be
relevant.
In C/C++ environments these constants will evaluate at compile time, such that they
may be used as array dimensions. Note that for string length sizes, the value reflects the
maximum number of actual characters in the string and does not take into account any
terminating NUL character (‘\0’). The value should always be increased by 1 if the
constant is used in the dimension of a char[] array.

12.29 STI Infrastructure-Provided TimeWarp Constants
STI-29 The STI infrastructure shall provide the TimeWarp Constants as specified in Table 13.

Table 13: TimeWarp Constants
Declaration const TimeWarp TIME_INTERVAL_ZERO = {…};

const TimeWarp TIME_INTERVAL_UNLIMITED = {…};

Description Constant values suitable for usage with functions accepting a TimeWarp value

Usage ► TIME_INTERVAL_ZERO: Represents the value of zero
► TIME_INTERVAL_UNLIMITED: A value indicating no limit to the respective time

interval or step size.

Provided By Infrastructure

Notes The TIME_INTERVAL_UNLIMITED constant is intended be used with functions such
as TimeSynch(). When this value is passed as the stepMax argument, it indicates
that the infrastructure may directly step the clock to any value.

12.30 STI Infrastructure-Provided APP_GetHandleID Method
STI-30 The STI infrastructure shall provide the APP_GetHandleID() Definition as specified in Table 14.

Table 14: APP_GetHandleID() Definition
Declaration interface Instance {

 HandleID APP_GetHandleID();
};

64 Space Telecommunication Interface

Description Obtain the handle ID for the application, stored by the STI Infrastructure.

Return The actual handle ID of the calling application, or an invalid handle ID on failure

Implemented By Infrastructure

Invoked By Application

Notes This call should never fail when invoked from a normal, fully constructed application or
device context. If invoked from an application or device context that is not fully
constructed, an invalid ID may be returned. Specifically, this condition may occur
while the constructor or destructor are currently executing (see section 10.5.2.1).
If the infrastructure cannot obtain the correct handle ID, the infrastructure will return a
value such as HANDLEID_INVALID that does not alias a valid handle ID.

12.31 STI Infrastructure-Provided APP_GetHandleName Method
STI-31 The STI infrastructure shall provide the APP_GetHandleName() Definition as specified in Table 15.

Table 15: APP_GetHandleName() Definition
Declaration interface Instance {

 string APP_GetHandleName();
};

Description Obtain the name for the application, stored by the STI Infrastructure.

Return The name of the calling application, or a NULL/undefined value on failure

Implemented By Infrastructure

Invoked By Application

Notes This call should never fail when invoked from a normal, fully constructed application or
device context. If invoked from an application or device context that is not fully
constructed, this call may fail. Specifically, this condition may occur while the
constructor or destructor are currently executing (see section 10.5.2.1).
If the infrastructure cannot obtain the correct handle name, the infrastructure will return
a value that does not alias a valid handle name, such as NULL in C/C++ or the
corresponding undefined value representation in other languages.

12.32 STI Application-Provided APP_Instance Method
STI-32 The STI infrastructure shall provide the APP_Instance() Definition as specified in Table 16.

Table 16: APP_Instance() Definition
Declaration Instance APP_Instance(

 in HandleID id,
 in string name
);

Description Construct an instance of the application, identified by the id and name indicated in the
parameters.

Space Telecommunication Interface 65

Return On success, return a reference to the constructed instance. On failure, return an invalid
reference (i.e. NULL in C/C++, or the respective undefined value in other languages)

Implemented By Application

Invoked By Infrastructure

Notes The id and name values passed to this constructor become valid only after the
constructor has completed successfully and returned a valid object reference/pointer. As
such, other infrastructure calls should not be invoked from the constructor using these
values. Use of the values during the construction of the object itself is not defined, as
the infrastructure may still consider it an invalid ID or name.
For statically allocated objects, a pointer to the pre-allocated structure may be returned,
without performing any additional allocation.
In all cases, the object returned will be of the Instance type, either directly or as a
derivative type. In object-oriented languages, the instance object will inherit from the
correct base object or class. In C, this can be done by ensuring the first member of the
returned structure object is an Instance object as defined by the infrastructure.

12.33 STI Application-Provided APP_Destroy Method
STI-33 The STI infrastructure shall provide the APP_Destroy() Definition as specified in Table 17.

Table 17: APP_Destroy() Definition
Declaration void APP_Destroy(

 in Instance inst
);

Description Delete an instance of the application, identified by the inst parameter.

Return None

Implemented By Application

Invoked By Infrastructure

Notes This function will be defined but may be empty or a “no-op” for statically allocated
entities. After this call completes, the object referred to by the inst parameter is
considered invalid, and the infrastructure ensures that any internally stored references to
the instance have been deleted.

12.34 STI Application-Provided APP_Initialize Method
STI-34 The STI infrastructure shall provide the APP_Initialize() Definition as specified in Table 18 to be
implemented by an STI application or device.

Table 18: APP_Initialize() Definition
Declaration interface ApplicationControl {

 Result APP_Initialize();
};

Description Initialize the application. Obtain any underlying system resources as required for
further operation and set all internal variables to a known initial state.

66 Space Telecommunication Interface

Return Status code which the caller should validate using IsOK()
On failure, returns one of the defined Result error constants. On success, return the
status code OK.

Implemented By Application

Invoked By Infrastructure

Notes If initialization is unsuccessful for any reason, the implementation will ensure that any
external system resources obtained before the failure are returned to their original state.
There is no provision to permit “partial” initialization sequences to occur.
If not successful, the implementation should log details of the failure to the log facility.

12.35 STI Application-Provided APP_ReleaseObject Method
STI-35 The STI infrastructure shall provide the APP_ReleaseObject() Definition as specified in Table 19 to be
implemented by an STI application or device.

Table 19: APP_ReleaseObject() Definition
Declaration interface ApplicationControl {

 Result APP_ReleaseObject();
};

Description Release any system resources that were obtained during the initialization or normal
operation.

Return Status code which the caller should validate using IsOK()
On failure, returns one of the defined Result error constants. On success, return the
status code OK.

Implemented By Application

Invoked By Infrastructure

Notes This operation should be the inverse of the APP_Initialize() operation, returning
the application or device to the same state as it was prior to initialization. After this
operation, the infrastructure will either destroy the instance or initialize it again.

12.36 STI Application-Provided APP_Query Method
STI-36 The STI infrastructure shall provide the APP_Query() Definition as specified in Table 20 to be
implemented by an STI application or device.

Table 20: APP_Query() Definition
Declaration interface ApplicationControl {

 Result APP_Query(
 in PropertyName propName,
 out PropertyValue propValue
);
};

Description Obtain or “get” the value for one property in the component

Space Telecommunication Interface 67

Parameters ► propName: The name or identifier of the property to get
► propValue: A buffer to store the property value

Return Status code which the caller should validate using IsOK()
On failure, returns one of the defined Result error constants. The status code OK
indicates that the property value has been retrieved in its entirety.

Implemented By Application

Invoked By Infrastructure

Notes If an error is returned by an implementation, a corresponding message indicating details
of the failure should be written to the log facility for diagnostic purposes.
Return status codes other than the defined status constants are permissible for backward
compatibility but are to be validated using the IsOK() function. Use of additional
codes is not recommended for new software; for maximum portability, custom status
codes or “partial success” return codes should be avoided.
For C/C++ implementations, the abstract propValue parameter is translated to two
parameters, a base object pointer and size.

12.37 STI Application-Provided APP_Configure Method
STI-37 The STI infrastructure shall provide the APP_Configure() Definition as specified in Table 21 to be
implemented by an STI application or device.

Table 21: APP_Configure() Definition
Declaration interface ApplicationControl {

 Result APP_Configure(
 in PropertyName propName,
 in PropertyValue propValue
);
};

Description Configure or "set" the value for one property in the component

Parameters ► propName: The name of the property to set
► propValue: The value to set the property to

Return Status code which the caller should validate using IsOK()
On failure, returns one of the defined Result error constants. The status code OK
indicates that the property value has been configured.

Implemented By Application

Invoked By Infrastructure

Notes If an error is returned by an implementation, a corresponding message indicating details
of the failure should be written to the log facility for diagnostic purposes.
Status codes (other than the defined status constants) are permissible for backward
compatibility but are to be validated using the IsOK() function. This is not
recommended for new software; for maximum portability, custom status codes or
“partial success” return codes should be avoided.
For C/C++ implementations, the abstract propValue parameter is translated to two
parameters, a base object pointer and size.

68 Space Telecommunication Interface

12.38 STI Application-Provided APP_RunTest Method
STI-38 The STI infrastructure shall provide the APP_RunTest() Definition as specified in Table 22 to be
implemented by an STI application or device.

Table 22: APP_RunTest() Definition
Declaration interface ApplicationControl {

 Result APP_RunTest(
 in TestID testID
);
};

Description Invokes the test of the target application as indicated by the test ID.

Return Status code which the caller should validate using IsOK()
On error, returns one of the defined Result error constants. A successful result
(status code OK) indicates that the test is successful or that the test is running in the
background.

Implemented By Application

Invoked By Infrastructure

Notes Tests which are not appropriate for a given system state, such as invoking a ground-
specific test while in a flight operation mode, should generate an error status return and
record the issue in the system log.

12.39 STI Application-Provided APP_Start Method
STI-39 The STI infrastructure shall provide the APP_Start() Definition as specified in Table 23 to be implemented
by an STI application or device.

Table 23: APP_Start() Definition
Declaration interface ApplicationControl {

 Result APP_Start();
};

Description Begin normal target component (application or device) processing.

Return Status code which the caller should validate using IsOK()
On error, returns one of the defined Result error constants. On success, return the
status code OK.

Implemented By Application

Invoked By Infrastructure

Notes If the application is not in the appropriate internal state, then nothing is done and an
error is returned.
If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.

Space Telecommunication Interface 69

12.40 STI Application-Provided APP_Stop Method
STI-40 The STI infrastructure shall provide the APP_Stop() Definition as specified in Table 24 to be implemented
by an STI application or device.

Table 24: APP_Stop() Definition
Declaration interface ApplicationControl {

 Result APP_Stop();
};

Description End normal target component (application or device) processing.

Return Status code which the caller should validate using IsOK()
On error, returns one of the defined Result error constants. On success, return status
code OK.

Implemented By Application

Invoked By Infrastructure

Notes If the application is not in the appropriate internal state, then nothing is done and an
error is returned.
If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.

12.41 STI Device-Provided DEV_Open Method
STI-41 The STI infrastructure shall provide the DEV_Open() Definition as specified in Table 25 to be
implemented by an STI device.

Table 25: DEV_Open() Definition
Declaration interface DeviceControl {

 Result DEV_Open();
};

Description Open the device for command and control

Return On error, returns one of the defined Result error constants. On success, return status
code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes The implementation should obtain whatever operating system or HAL resources are
necessary to initiate communication or data transfer with the hardware device.
Depending on the underlying device and operating system driver infrastructure, use of a
hardware device may be limited to one process at a time, so a successful call to this
function may prevent other processes in the system from using the device. Likewise, if
another process is using the device, or the device is otherwise not able to accept control
requests, this operation may fail or block until the device becomes available.
If no specific operating system resources are required for communication with the
device, this implementation may be a no-op. In this case, this operation should return
OK to maintain compatibility.

70 Space Telecommunication Interface

12.42 STI Device-Provided DEV_Load Method
STI-42 The STI infrastructure shall provide the DEV_Load() Definition as specified in Table 26 to be implemented
by an STI device.

Table 26: DEV_Load() Definition
Declaration interface DeviceControl {

 Result DEV_Load(in string fileName);
};

Description Load a binary application image or configuration file to the device

Parameters ► fileName: name of the image or configuration file to load to the device

Return On error, returns one of the defined Result error constants. On success, return status
code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes If the device is an FPGA, this operation would load a specific hardware design image to
the device. If the device represents a microcontroller or DSP, this should load a
firmware or application image to the device.

12.43 STI Device-Provided DEV_Reset Method
STI-43 The STI infrastructure shall provide the DEV_Reset() Definition as specified in Table 27 to be
implemented by an STI device.

Table 27: DEV_Reset() Definition
Declaration interface DeviceControl {

 Result DEV_Reset();
};

Description Initialize a device to a known state.

Return On error, returns one of the defined Result error constants. On success, return status
code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes This operation should bring a device into a known clean state, if possible. This
operation may utilize a hardware reset function if available, or it may reconfigure all
internal registers to a known initial value.
This function should not “unload” programming information from an FPGA device. If a
hardware reset function is used and this clears the programming information, the
implementation should ensure that previously loaded image is restored before returning.

12.44 STI Device-Provided DEV_Flush Method
STI-44 The STI infrastructure shall provide the DEV_Flush() Definition as specified in Table 28 to be
implemented by an STI device.

Space Telecommunication Interface 71

Table 28: DEV_Flush() Definition
Declaration interface DeviceControl {

 Result DEV_Flush();
};

Description Clear any pending input/output buffers associated with the device

Return On error, returns one of the defined Result error constants. On success, return status
code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes This operation should ensure that any existing data that may be buffered within the
hardware device or control software is cleared, such that subsequent read operations (for
source devices) or write operations (for sink devices) only transfer new data.
It is implementation-defined how existing data that has not yet been fully transferred is
handled. On a sink device, the operation may wait until the data is transferred, or the
data may be discarded, depending on what is more appropriate for the device and the
system context. On a source device, any received but unread data should typically be
discarded. The device developer or platform provider should document the behavior of
this operation.

12.45 STI Device-Provided DEV_Unload Method
STI-45 The STI infrastructure shall provide the DEV_Unload() Definition as specified in Table 29 to be
implemented by an STI device.

Table 29: DEV_Unload() Definition
Declaration interface DeviceControl {

 Result DEV_Unload();
};

Description Unload a binary image or configuration file to the device

Return On error, returns one of the defined Result error constants. On success, return status
code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes This operation clears any programming information from the device. Ideally this should
be the inverse of the DEV_Load() operation. If the device does not support this
operation, this may be implemented as a “no-op”.

12.46 STI Device-Provided DEV_Close Method
STI-46 The STI infrastructure shall provide the DEV_Close() Definition as specified in Table 30 to be
implemented by an STI device.

Table 30: DEV_Close() Definition

72 Space Telecommunication Interface

Declaration interface DeviceControl {
 Result DEV_Close();
};

Description Closes the device

Return On error, returns one of the defined Result error constants. On success, return status
code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes This operation should be the inverse of the DEV_Open() operation. If the open
operation was a no-op, this operation should also be empty and it should return OK for
compatibility.

12.47 STI Application-Provided APP_Read Method
STI-47 The STI infrastructure shall provide the APP_Read() Definition as specified in Table 31 to be implemented,
as needed, by an STI application or device.

Table 31: APP_Read() Definition
Declaration interface Source {

 Result APP_Read(out Message buffer);
};

Description The buffer is filled with data from the component.

Parameters ► buffer: a storage area for data transferred from the target

Return Status code which the caller should validate using IsOK()
On error, returns one of the defined Result error constants. On success, the return
value indicates the number of units of data (records or bytes) actually obtained from the
application or device, which may be less than the complete buffer size.

Implemented By Application

Invoked By Infrastructure

Notes The actual storage for the buffer is allocated by the caller or infrastructure prior to
invoking this function. The application should fill the buffer to the maximum extent
possible and return the amount of buffer actually filled.
The application developer defines the specific format and units for the buffer. In
languages with direct memory access (e.g. C), it may be an arbitrary memory buffer
with the units specified in bytes. In other languages, the units should reflect logical
records, such as a number of characters, samples or objects.
The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0’) as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.
If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.
For C/C++ implementations, the abstract buffer parameter is translated to two
parameters, a base object pointer and size.

Space Telecommunication Interface 73

12.48 STI Application-Provided APP_Write Method
STI-48 The STI infrastructure shall provide the APP_Write() Definition as specified in Table 32 to be
implemented, as needed, by an STI application or device.

Table 32: APP_Write() Definition
Declaration interface Sink {

 Result APP_Write(in Message buffer);
};

Description The buffer data is sent to the target component.

Parameters ► buffer: an abstract data set that should be transferred to the target

Return Status code which the caller should validate using IsOK()
On error, returns one of the defined Result error constants. On success, the return
value indicates the number of units of data (records or bytes) actually sent to the
application or device, which may be less than the buffer size.

Implemented By Application

Invoked By Infrastructure

Notes The actual storage for the buffer is allocated and filled by the caller or infrastructure
prior to invoking this function. The application should transfer the data to the maximum
extent possible and return the amount of buffer actually transferred to the device.
The application developer defines the specific format and units for the buffer. In
languages with direct memory access (e.g. C), it may be an arbitrary memory buffer
with the units specified in bytes. In other languages, the units should reflect logical
records, such as a number of characters, samples or objects.
The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0’) as
required for C-style strings. If a terminating character is required, the caller will ensure
that it has been added to the buffer prior to invoking this operation.
If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.
For C/C++ implementations, the abstract buffer parameter is translated to two
parameters, a base object pointer and size.

12.49 STI Application-Provided APP_AddressRead Method
STI-49 The STI infrastructure shall provide the APP_AddressRead() Definition as specified in Table 33 to be
implemented, as needed, by an STI application or device.

Table 33: APP_AddressRead() Definition
Declaration interface RandomAccess {

 Result APP_AddressRead(
 in Offset offset,
 out Message buffer
);
};

74 Space Telecommunication Interface

Description The buffer is filled with data from the component at the specified location

Parameters ► offset: the location to read data from
► buffer: a storage area for data transferred from the target

Return Status code which the caller should validate using IsOK()
On error, returns one of the defined Result error constants. On success, the return
value indicates the number of units of data (defined by the platform developer) actually
obtained from the application or device, which may be less than the complete buffer
size.

Implemented By Application

Invoked By Infrastructure

Notes The actual storage for the buffer is allocated by the caller or infrastructure prior to
invoking this function. The application should fill the buffer to the maximum extent
possible and return the amount of buffer actually filled.
The application developer defines the specific format and units for the buffer. In
languages with direct memory access (e.g. C), it may be an arbitrary memory buffer
with the units specified in bytes. In other languages, the units should reflect logical
records, such as a number of characters, samples or objects.
The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0’) as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.
If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.
For C/C++ implementations, the abstract buffer parameter is translated to two
parameters, a base object pointer and size.

12.50 STI Application-Provided APP_AddressWrite Method
STI-50 The STI infrastructure shall provide the APP_AddressWrite() Definition as specified in Table 34 to be
implemented, as needed, by an STI application or device.

Table 34: APP_AddressWrite() Definition
Declaration interface RandomAccess {

 Result APP_AddressWrite(
 in Offset offset,
 in Message buffer
);
};

Description The buffer data is written to the target component at the specified location

Parameters ► offset: the location to write the data
► buffer: an abstract data set that should be transferred to the target

Return Status code which the caller should validate using IsOK()
On error, returns one of the defined Result error constants. On success, the return
value indicates the number of units of data (records or bytes) actually sent to the
application or device, which may be less than the buffer size.

Space Telecommunication Interface 75

Implemented By Application

Invoked By Infrastructure

Notes The actual storage for the buffer is allocated and filled by the caller or infrastructure
prior to invoking this function. The application should transfer the data to the maximum
extent possible and return the amount of buffer actually transferred to the device.
The application developer defines the specific format and units for the buffer. In
languages with direct memory access (e.g. C), it may be an arbitrary memory buffer
with the units specified in bytes. In other languages, the units should reflect logical
records, such as a number of characters, samples or objects.
The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0’) as
required for C-style strings. If a terminating character is required, the caller will ensure
that it has been added to the buffer prior to invoking this operation.
If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.
For C/C++ implementations, the abstract buffer parameter is translated to two
parameters, a base object pointer and size.

12.51 STI Infrastructure-Provided IsOK Method
STI-51 The STI infrastructure shall provide the IsOK() Definition as specified in Table 35.

Table 35: IsOK() Definition
Declaration boolean IsOK(

 in Result status
);

Description Determine if a Result value represents a successful response

Parameters ► status: A return value from a previous call

Return If the status code represents a successful result, evaluates as TRUE. If the status code
represents a failure, evaluates as FALSE.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Converts a status code from any previous API call into a boolean value that can be used
in conjunction with the programming language conditional statements.
For efficiency reasons, this may be implemented as a macro or inline function in
languages which support this concept.

12.52 STI Infrastructure-Provided ValidateHandleID Method
STI-52 The STI infrastructure shall provide the ValidateHandleID() Definition as specified in Table 36.

Table 36: ValidateHandleID() Definition
Declaration Result ValidateHandleID(

 in HandleID id
);

76 Space Telecommunication Interface

Description Determine if a HandleID value is valid

Parameters ► id: A return value from a previous call

Return If the handle ID value is valid, returns the status value OK. If the handle ID is not valid,
returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This is used to check the result of any function returning a HandleID value.
The result of this function should be passed to IsOK() for use in any conditional test.

12.53 STI Infrastructure-Provided ValidateSize Method
STI-53 The STI infrastructure shall provide the ValidateSize() Definition as specified in Table 37.

Table 37: ValidateSize() Definition
Declaration Result ValidateSize(

 in FileSize size
);

Description Determine if a FileSize value is valid

Parameters ► size: A return value from a previous call

Return If the size value is valid, returns the status value OK. If the size is not valid, returns one
of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This is used to check the result of any function returning a FileSize value.
The result of this function should be passed to IsOK() for use in any conditional test.

12.54 STI Infrastructure-Provided InstantiateApp Method
STI-54 The STI infrastructure shall provide the InstantiateApp() Definition as specified in Table 38.

Table 38: InstantiateApp() Definition
Declaration HandleID InstantiateApp(

 in HandleID fromID,
 in string handleName,
 in string configuration
);

Description Instantiate an application or service.

Space Telecommunication Interface 77

Parameters ► fromID: The handle ID of the current component making the request.
► handleName: The name of the new component to be instantiated.
► configuration: Configuration data to be associated with the new instance. If

NULL or undefined, the STI Infrastructure should use defaults if
appropriate/possible.

Return On success, returns a Handle ID value identifying the newly created instance. On error,
an invalid handle ID value is returned.
The returned handle value should always be validated by the caller using the
ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The handle name specified for the application, service, or device is to be unique within
the scope of the current STI environment.
The STI Infrastructure may also impose additional operations to be performed during
instantiation, such as the loading of dynamic link libraries or shared objects, as
documented by the platform provider. It is up to the STI Infrastructure to determine
whether any additional resources are to be loaded to accomplish the instantiation.
The configuration parameter will be a free-form string, defined by the platform
provider, and intended as a generic means to pass additional instructions to the
infrastructure as part of the instantiation process. This string may directly contain a set
of encoded configuration data (e.g. XML), or it may refer to a filename on the system
storage device containing additional information about the instance.

12.55 STI Infrastructure-Provided GetErrorQueue Method
STI-55 The STI infrastructure shall provide the GetErrorQueue() Definition as specified in Table 39.

Table 39: GetErrorQueue() Definition
Declaration HandleID GetErrorQueue(

 in Result status
);

Description Obtain the error queue associated with the given status value

Parameters ► status: An error status code from a previous call

Return Returns a handle ID value identifying the queue to which any associated log message
should be written.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This call is intended for use in conjunction with the Log() function for preserving
error-related context information. The platform may direct different types of errors to
different log queues to aid with diagnostics. For any given error response, this locates
the proper queue for logging of any related information.
In general, this should only be used for error status codes (i.e. those for which IsOK()
returns FALSE). However, in all cases, the return value from this function will be
passable directly to the Log() routine, without further validation, for any status code.

78 Space Telecommunication Interface

12.56 STI Infrastructure-Provided GetHandleName Method
STI-56 The STI infrastructure shall provide the GetHandleName() Definition as specified in Table 40.

Table 40: GetHandleName() Definition
Declaration string GetHandleName(

 in HandleID fromID,
 in HandleID toID
);

Description Obtain the handle name associated with the given handle ID

Parameters ► fromID: The handle ID of the current component making the request.
► toID: The handle ID of the component for which the name is to be obtained

Return On success, returns a string representing the handle name. On error, returns an
undefined or invalid value.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes If the infrastructure cannot obtain the correct handle name, the infrastructure will return
a value that does not alias a valid handle name, such as NULL in C/C++ or the
corresponding undefined value representation in other languages.

12.57 STI Infrastructure-Provided HandleRequest Method
STI-57 The STI infrastructure shall provide the HandleRequest() Definition as specified in Table 41.

Table 41: HandleRequest() Definition
Declaration HandleID HandleRequest(

 in HandleID fromID,
 in string toName
);

Description Obtain the handle ID associated with the given handle name

Parameters ► fromID: The handle ID of the current component making the request.
► toName: The handle name of the component for which the ID should be obtained

Return On success, returns a Handle ID value identifying the component. On error, an invalid
handle ID value is returned.
The returned value should always be validated by the caller using the
ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes

Space Telecommunication Interface 79

12.58 STI Infrastructure-Provided AbortApp Method
STI-58 The STI infrastructure shall provide the AbortApp() Definition as specified in Table 42.

Table 42: AbortApp() Definition
Declaration Result AbortApp(

 in HandleID fromID,
 in HandleID toID
);

Description Abort an application or service.

Parameters ► fromID: The handle ID of the current component making the request.
► toID: The handle ID of the target component that should respond to the request

Return Status code which the caller should validate using IsOK()
On error, returns one of the defined Result error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The target component will be removed from the environment, and any system resources
associated with it should be released.

12.59 STI Infrastructure-Provided Initialize Method
STI-59 The STI infrastructure shall provide the Initialize() Definition as specified in Table 43.

Table 43: Initialize() Definition
Declaration Result Initialize(

 in HandleID fromID,
 in HandleID toID
);

Description Initialize the target component.

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This sets the component to a known initial state. The specific definition of this state is
application-defined. This triggers the APP_Initialize() operation on the target
interface.

12.60 STI Infrastructure-Provided ReleaseObject Method
STI-60 The STI infrastructure shall provide the ReleaseObject() Definition as specified in Table 44.

Table 44: ReleaseObject() Definition

80 Space Telecommunication Interface

Declaration Result ReleaseObject(
 in HandleID fromID,
 in HandleID toID
);

Description Releases any system resources held by the application or component

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the APP_ReleaseObject() operation on the target interface.

12.61 STI Infrastructure-Provided Configure Method
STI-61 The STI infrastructure shall provide the Configure() Definition as specified in Table 45.

Table 45: Configure() Definition
Declaration Result Configure(

 in HandleID fromID,
 in HandleID toID,
 in PropertyName propName,
 in PropertyValue propValue
);

Description Configures or sets a single property in the target component

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► propName: The name or identifier of the property to set
► propValue: A buffer containing the value to set the property to

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The caller manages the memory associated with the value buffer.
This triggers the APP_Configure() operation in the target interface.

12.62 STI Infrastructure-Provided Query Method
STI-62 The STI infrastructure shall provide the Query() Definition as specified in Table 46.

Table 46: Query() Definition

Space Telecommunication Interface 81

Declaration Result Query(
 in HandleID fromID,
 in HandleID toID,
 in PropertyName propName,
 out PropertyValue propValue
);

Description Obtains or gets a single property from the target component

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► propName: The name or identifier of the property to get
► propValue: A buffer into which the current value should be stored

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The caller manages the memory associated with the value buffer.
This triggers the APP_Query() operation in the target interface.

12.63 STI Infrastructure-Provided RunTest Method
STI-63 The STI infrastructure shall provide the RunTest() Definition as specified in Table 47.

Table 47: RunTest() Definition
Declaration Result RunTest(

 in HandleID fromID,
 in HandleID toID,
 in TestID testID
);

Description Obtain the handle ID associated with the given handle name

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► testID: The ID of the test to be performed

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The specific values and meaning of the testID parameter are application specific.
This triggers the APP_RunTest() operation in the target interface.

12.64 STI Infrastructure-Provided Start Method
STI-64 The STI infrastructure shall provide the Start() Definition as specified in Table 48.

Table 48: Start() Definition

82 Space Telecommunication Interface

Declaration Result Start(
 in HandleID fromID,
 in HandleID toID
);

Description Begin normal application or device processing

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the APP_Start() operation in the target interface.

12.65 STI Infrastructure-Provided Stop Method
STI-65 The STI infrastructure shall provide the Stop() Definition as specified in Table 49.

Table 49: Stop() Definition
Declaration Result Stop(

 in HandleID fromID,
 in HandleID toID
);

Description End normal application or device processing

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the APP_Stop() operation in the target interface.

12.66 STI Infrastructure-Provided DeviceOpen Method
STI-66 The STI infrastructure shall provide the DeviceOpen() Definition as specified in Table 50.

Table 50: DeviceOpen() Definition
Declaration Result DeviceOpen(

 in HandleID fromID,
 in HandleID toID
);

Description Open the device

Space Telecommunication Interface 83

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Open() operation in the target interface. This will be the first
call issued before invoking any other device control operations.

12.67 STI Infrastructure-Provided DeviceLoad Method
STI-67 The STI infrastructure shall provide the DeviceLoad() Definition as specified in Table 51.

Table 51: DeviceLoad() Definition
Declaration Result DeviceLoad(

 in HandleID fromID,
 in HandleID toID,
 in string fileName
);

Description Load an application, hardware design, or configuration file into the device

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► fileName: The name of the file to load

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Load() operation in the target interface.

12.68 STI Infrastructure-Provided DeviceReset Method
STI-68 The STI infrastructure shall provide the DeviceReset() Definition as specified in Table 52.

Table 52: DeviceReset() Definition
Declaration Result DeviceReset(

 in HandleID fromID,
 in HandleID toID
);

Description Resets the device into a known state

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

84 Space Telecommunication Interface

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The specific state after reset is device-defined. This triggers the DEV_Reset()
operation in the target interface.

12.69 STI Infrastructure-Provided DeviceFlush Method
STI-69 The STI infrastructure shall provide the DeviceFlush() Definition as specified in Table 53.

Table 53: DeviceFlush() Definition
Declaration Result DeviceFlush(

 in HandleID fromID,
 in HandleID toID
);

Description Clears any pending input/output data buffers in the device

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Flush() operation in the target interface.

12.70 STI Infrastructure-Provided DeviceUnload Method
STI-70 The STI infrastructure shall provide the DeviceUnload() Definition as specified in Table 54.

Table 54: DeviceUnload() Definition
Declaration Result DeviceUnload(

 in HandleID fromID,
 in HandleID toID
);

Description Unload any previously loaded application, hardware design image, or configuration file

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Unload() operation in the target interface.

Space Telecommunication Interface 85

12.71 STI Infrastructure-Provided DeviceClose Method
STI-71 The STI infrastructure shall provide the DeviceClose() Definition as specified in Table 55.

Table 55: DeviceClose() Definition
Declaration Result DeviceClose(

 in HandleID fromID,
 in HandleID toID
);

Description Closes the device

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Close() operation in the target interface. The device will not
be used by the application after this call unless opened again.

12.72 STI Infrastructure-Provided Read Method
STI-72 The STI infrastructure shall provide the Read() Definition as specified in Table 56.

Table 56: Read() Definition
Declaration Result Read(

 in HandleID fromID,
 in HandleID toID,
 out Message buffer
);

Description Read or “pull” arbitrary data from another application or device

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► buffer: A buffer to hold the transferred data

Return On error, returns one of the defined error constants. On success, returns a status value
indicating the actual number of records or bytes of data that was transferred into the
supplied buffer.
The caller will check the return status using IsOK()

Implemented By Infrastructure

Invoked By Application, Service, or Device

86 Space Telecommunication Interface

Notes The storage for the buffer will be managed by the caller. The target application defines
the specific binary format for the data.
In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory
location with the units specified in bytes. In other languages, the units should reflect
logical records, such as a number of characters, samples or objects.
The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0’) as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.

12.73 STI Infrastructure-Provided Write Method
STI-73 The STI infrastructure shall provide the Write() Definition as specified in Table 57.

Table 57: Write() Definition
Declaration Result Write(

 in HandleID fromID,
 in HandleID toID,
 in Message buffer
);

Description Write or “push” arbitrary data to another application or device

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► buffer: A buffer containing the data to be transferred

Return On error, returns one of the defined error constants. On success, returns a status value
indicating the actual number of records or bytes of data that was transferred from the
supplied buffer.
The caller will check the return status using IsOK()

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The storage for the buffer will be managed by the caller. The target application defines
the specific binary format for the data.
In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory
location with the units specified in bytes. In other languages, the units should reflect
logical records, such as a number of characters, samples or objects.
The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0’) as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.

12.74 STI Infrastructure-Provided AddressRead Method
STI-73 The STI infrastructure shall provide the AddressRead() Definition as specified in Table 58.

Table 58: AddressRead() Definition

Space Telecommunication Interface 87

Declaration Result AddressRead(
 in HandleID fromID,
 in HandleID toID,
 in Offset offset,
 out Message buffer
);

Description Read data from a specific offset or address within a device or file

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► offset: The location to read data from
► buffer: A buffer to hold the transferred data

Return On error, returns one of the defined error constants. On success, returns a status value
indicating the actual number of records or bytes of data that was transferred into the
supplied buffer.
The caller will check the return status using IsOK()

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The storage for the buffer will be managed by the caller. The target application defines
the specific binary format for the data.
In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory
location with the units specified in bytes. In other languages, the units should reflect
logical records, such as a number of characters, samples or objects.
The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0’) as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.

12.75 STI Infrastructure-Provided AddressWrite Method
STI-75 The STI infrastructure shall provide the AddressWrite() Definition as specified in Table 59.

Table 59: AddressWrite() Definition
Declaration Result AddressWrite(

 in HandleID fromID,
 in HandleID toID,
 in Message buffer
);

Description Write data to a specific offset or address within a device or file

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► offset: The location to write data to
► buffer: A buffer containing the data to be transferred

88 Space Telecommunication Interface

Return On error, returns one of the defined error constants. On success, returns a status value
indicating the actual number of records or bytes of data that was transferred from the
supplied buffer.
The caller will check the return status using IsOK()

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The storage for the buffer will be managed by the caller. The target application defines
the specific binary format for the data.
In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory
location with the units specified in bytes. In other languages, the units should reflect
logical records, such as a number of characters, samples or objects.
The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0’) as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.

12.76 STI Infrastructure-Provided Log Method
STI-76 The STI infrastructure shall provide the Log() Definition as specified in Table 60.

Table 60: Log() Definition
Declaration Result Log(

 in HandleID fromID,
 in HandleID toID,
 in string logMsg
);

Description Sends an information message to the specified log facility

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the log queue to which the message should be sent
► logMsg: A message to send to the log facility

Return On error, returns one of the defined error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes When logging context information related to errors, the GetErrorQueue() function
may be used to determine the proper value to use for the toID parameter. In other
cases, the predefined error queue constants may be used, as listed in Table 8, HandleID
Constants.
Behavior is not specified if the toID parameter does not refer to a component capable
of accepting log messages (i.e. one of the defined log facilities).

12.77 STI Infrastructure-Provided FileOpen Method
STI-77 The STI infrastructure shall provide the FileOpen() Definition as specified in Table 61.

Space Telecommunication Interface 89

Table 61: FileOpen() Definition
Declaration HandleID FileOpen(

 in HandleID fromID,
 in string fileName,
 in Access fileAccess
);

Description Opens a file within the infrastructure file system

Parameters ► fromID: The handle ID of the current component making the request
► fileName: The name of the file to be opened
► fileAccess: Whether the file is to be opened for reading, writing, appending, or

both (reading and writing).

Return On success, returns a Handle ID value identifying the open file. On error, an invalid
handle ID value is returned.
The returned handle value should always be validated by the caller using the
ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes After successfully opening a file, data transfer can be performed using the read and
write functions described in section 10.6.4.
For the file access types, see Table 6, Access Constants.

12.78 STI Infrastructure-Provided FileClose Method
STI-78 The STI infrastructure shall provide the FileClose() Definition as specified in Table 62.

Table 62: FileClose() Definition
Declaration Result FileClose(

 in HandleID fromID,
 in HandleID toID
);

Description Closes a file handle

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the file that should be closed

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The toID parameter should reflect a file handle that was previously obtained using
FileOpen(). Behavior is undefined if this function is called with other types of
handle IDs.

90 Space Telecommunication Interface

12.79 STI Infrastructure-Provided FileGetSize Method
STI-79 The STI infrastructure shall provide the FileGetSize() Definition as specified in Table 63.

Table 63: FileGetSize() Definition
Declaration FileSize FileGetSize(

 in HandleID fromID,
 in string fileName
);

Description Get the size of the specified file

Parameters ► fromID: The handle ID of the current component making the request
► fileName: The name of the file to obtain the size of

Return On success, returns the size of the file. On error, returns an invalid size.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The return value should be validated by the caller using the ValidateSize()
operation as described in section 10.6.1.1 .

12.80 STI Infrastructure-Provided FileRemove Method
STI-80 The STI infrastructure shall provide the FileRemove() Definition as specified in Table 64.

Table 64: FileRemove() Definition
Declaration Result FileRemove(

 in HandleID fromID,
 in string fileName
);

Description Removes a specified file from the system

Parameters ► fromID: The handle ID of the current component making the request
► fileName: The name of the file to remove

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Behavior of this function is implementation-defined if the specified file is currently
open within the infrastructure. Some systems may support this by “unlinking” the file
name but deferring the actual removal (and recovery of space) until the file is closed.
On other systems, the function may return an error if the file is currently open.
Portable applications should ensure that a file has been closed prior to removal.

12.81 STI Infrastructure-Provided FileRename Method
STI-81 The STI infrastructure shall provide the FileRename() Definition as specified in Table 65.

Space Telecommunication Interface 91

Table 65: FileRename() Definition
Declaration Result FileRename(

 in HandleID fromID,
 in string oldName,
 in string newName
);

Description Renames a specified file in the file system

Parameters ► fromID: The handle ID of the current component making the request
► oldName: The existing/current name of the file
► newName: The desired name of the file

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Behavior of this function is implementation-defined if the specified file is currently
open within the infrastructure. Some systems may support renaming an open file, but
on other systems the function may return an error.
Portable applications should ensure that a file has been closed prior to rename.

12.82 STI Infrastructure-Provided FileGetFreeSpace Method
STI-82 The STI infrastructure shall provide the FileGetFreeSpace() Definition as specified in Table 66.

Table 66: FileGetFreeSpace() Definition
Declaration FileSize FileGetFreeSpace(

 in HandleID fromID,
 in string fileSystem
);

Description Get the total free space available for file storage on the indicated file system

Parameters ► fromID: The handle ID of the current component making the request
► fileSystem: Identifies the file system to check

Return On success, returns the amount of free space. On error, returns an invalid size.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The specific format and options for the fileSystem parameter will be defined by the
platform provider. An invalid (undefined/NULL) or empty string value should always
be interpreted to refer to the “default” or root storage device, if available. A non-empty
string may refer to a physical device name, drive identifier, or a mount point, depending
on the system.

12.83 STI Infrastructure-Provided MessageQueueCreate Method
STI-83 The STI infrastructure shall provide the MessageQueueCreate() Definition as specified in Table 67.

92 Space Telecommunication Interface

Table 67: MessageQueueCreate() Definition
Declaration HandleID MessageQueueCreate(

 in HandleID fromID,
 in string queueName,
 in QueueMaxMessages nmax,
 in BufferSize nb
);

Description Create a FIFO message queue

Parameters ► fromID: The handle ID of the current component making the request
► queueName: The name of the queue to create
► nmax: The maximum number of messages (depth) of the FIFO queue
► nb: The maximum size of each entry in the queue

Return On success, returns a Handle ID value identifying the FIFO queue. On error, an invalid
handle ID value is returned.
The returned handle value should always be validated by the caller using the
ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The queue name will be unique in within the current environment.
Once a queue depth reaches its maximum (nmax), applications will be unable to write
new data into the queue. Data does not “expire” from a FIFO queue; any data
successfully written to the input side of a queue is removed only by reading the data
from the output side of the queue, or by deleting the entire queue.
If the nb parameter is omitted or specified as 0, the interpretation is implementation-
defined. Specifically, this may be used for languages that employ automatic memory
management and do not expose the size of objects in memory to applications.

12.84 STI Infrastructure-Provided MessageQueueDelete Method
STI-84 The STI infrastructure shall provide the MessageQueueDelete() Definition as specified in Table 68.

Table 68: MessageQueueDelete() Definition
Declaration Result MessageQueueDelete(

 in HandleID fromID,
 in HandleID toID
);

Description Delete a FIFO queue

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the queue that should be deleted

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Any written but unread data messages in the queue are discarded.

Space Telecommunication Interface 93

12.85 STI Infrastructure-Provided PubSubCreate Method
STI-85 The STI infrastructure shall provide the PubSubCreate() Definition as specified in Table 69.

Table 69: PubSubCreate() Definition
Declaration HandleID PubSubCreate(

 in HandleID fromID,
 in string pubSubName
);

Description Create a PubSub entity

Parameters ► fromID: The handle ID of the current component making the request
► pubSubName: The name of the PubSub entity to be created

Return On success, returns a Handle ID value identifying the PubSub entity. On error, an
invalid handle ID value is returned.
The returned handle value should always be validated by the caller using the
ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The name will be unique in within the current environment.
Unlike FIFO queues, PubSub entities do not store messages; any messages pushed to a
PubSub entity are immediately distributed to all currently registered subscribers at the
time the message is pushed.

12.86 STI Infrastructure-Provided PubSubDelete Method
STI-86 The STI infrastructure shall provide the PubSubDelete() Definition as specified in Table 70.

Table 70: PubSubDelete() Definition
Declaration Result PubSubDelete(

 in HandleID fromID,
 in HandleID toID
);

Description Delete a PubSub entity

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the PubSub entity to be deleted

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Any registered subscribers will be automatically unregistered upon deletion.

94 Space Telecommunication Interface

12.87 STI Infrastructure-Provided Register Method
STI-87 The STI infrastructure shall provide the Register() Definition as specified in Table 71.

Table 71: Register() Definition
Declaration Result Register(

 in HandleID fromID,
 in HandleID toID,
 in HandleID recipientID
);

Description Add a handle to the recipient list of the PubSub entity

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the PubSub entity
► recipientID: The handle ID of another application, device, file, or queue that

should receive all messages written to the PubSub entity

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes A single recipient cannot be registered multiple times. If a recipient is already
registered within the PubSub entity, this function returns a success code without making
any change.

12.88 STI Infrastructure-Provided Unregister Method
STI-88 The STI infrastructure shall provide the Unregister() Definition as specified in Table 72.

Table 72: Unregister() Definition
Declaration Result Unregister(

 in HandleID fromID,
 in HandleID toID,
 in HandleID recipientID
);

Description Remove a handle from the recipient list of the PubSub entity

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the PubSub entity
► recipientID: The handle ID of the other application, device, file, or queue that

should no longer receive messages written to the PubSub entity

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes

Space Telecommunication Interface 95

12.89 STI Infrastructure-Provided GetNanoseconds Method
STI-89 The STI infrastructure shall provide the GetNanoseconds() Definition as specified in Table 73.

Table 73: GetNanoseconds() Definition
Declaration Nanoseconds GetNanoseconds(

 in TimeWarp twObj
);

Description Get the number of nanoseconds (fractional quantity) from the TimeWarp object.

Parameters ► twObj: The value from which the nanoseconds portion of the time is extracted

Return Returns the number of nanoseconds

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The nanoseconds value is always non-negative, and reflects the difference between the
actual interval time and the number of whole seconds in the interval as reported by
GetSeconds()

12.90 STI Infrastructure-Provided GetSeconds Method
STI-90 The STI infrastructure shall provide the GetSeconds() Definition as specified in Table 74.

Table 74: GetSeconds() Definition
Declaration Seconds GetSeconds(

 in TimeWarp twObj
);

Description Get the number of seconds (whole number quantity) from the TimeWarp object.

Parameters ► twObj: The value from which the seconds portion of the time is extracted

Return Returns the number of seconds

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The seconds value may be negative, which indicates an interval back in time.
For fractional intervals, the seconds value reflects the largest integral value not greater
than the interval length in seconds, similar to the POSIX floor() operation applied to
a floating-point value.
For example, given a TimeWarp interval corresponding to -1.1s, the GetSeconds()
function will return -2, and the GetNanoseconds() function will return
900,000,000.

12.91 STI Infrastructure-Provided GetTimeWarp Method
STI-91 The STI infrastructure shall provide the GetTimeWarp() Definition as specified in Table 75.

Table 75: GetTimeWarp() Definition

96 Space Telecommunication Interface

Declaration TimeWarp GetTimeWarp(
 in Seconds isec,
 in Nanoseconds nsec
);

Description Get the TimeWarp object value corresponding to the seconds and nanoseconds

Parameters ► isec: The number of seconds in the time interval (whole number portion)
► nsec: The number of nanoseconds in the time interval (fractional portion)

Return Returns the corresponding time value as a TimeWarp value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The nsec parameter value should be between 0 and 999,999,999, inclusive. If the
nsec value is not within this range, the infrastructure should adjust the isec and
nsec values by decrementing/incrementing nsec by 1,000,000,000 and
incrementing/decrementing isec by 1, respectively, until the nsec value is within this
range.

12.92 STI Infrastructure-Provided TimeAdd Method
STI-92 The STI infrastructure shall provide the TimeAdd() Definition as specified in Table 76.

Table 76: TimeAdd() Definition
Declaration TimeWarp TimeAdd(

 in TimeWarp t1,
 in TimeWarp t2
);

Description Compute the sum of two TimeWarp values

Parameters ► t1, t2: Any previously obtained time values

Return The sum (t1 + t2) expressed as a TimeWarp value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes

12.93 STI Infrastructure-Provided TimeSubtract Method
STI-93 The STI infrastructure shall provide the TimeSubtract() Definition as specified in Table 77.

Table 77: TimeSubtract() Definition
Declaration TimeWarp TimeSubtract(

 in TimeWarp t1,
 in TimeWarp t2
);

Space Telecommunication Interface 97

Description Compute the difference between two TimeWarp values

Parameters ► t1, t2: Any previously obtained time values

Return The difference (t1 - t2) expressed as a TimeWarp value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This operation may be implemented as a macro or inline function for efficiency, on
languages that offer this feature.
This operation may be used by software to compute the elapsed time between two
successive calls to GetTime(). The result can be converted back to engineering units
via the GetSeconds() and GetNanoseconds() operations

12.94 STI Infrastructure-Provided GetTime Method
STI-94 The STI infrastructure shall provide the GetTime() Definition as specified in Table 78.

Table 78: GetTime() Definition
Declaration Result GetTime(

 in HandleID fromID,
 in HandleID toID,
 out TimeWarp currentTime
);

Description Obtains the current value of the clock

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the clock device that should respond to the request
► currentTime: A buffer to store the current time, as an interval since the epoch

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The output value returned represents a direct measurement of elapsed time since its
respective epoch according to the clock’s time scale and is not adjusted for nor
dependent upon any locale-specific time representations (i.e. time zone, daylight
savings time, etc.) or effects of relativity.

12.95 STI Infrastructure-Provided SetTime Method
STI-95 The STI infrastructure shall provide the SetTime() Definition as specified in Table 79.

Table 79: SetTime() Definition

98 Space Telecommunication Interface

Declaration Result SetTime(
 in HandleID fromID,
 in HandleID toID,
 in TimeWarp deltaTime
);

Description Sets the current value of the clock

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the clock device that should respond to the request
► deltaTime: The step size, relative to the current clock value

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This function will “step” the base clock. Since the offset is applied against the base
clock measurement, it affects all calendar representations of the clock accordingly. It
may be used to synchronize a clock based on information obtained after start up.
Not all clock devices are required to support this operation. If a clock device is read-
only and not settable from an application, this function should return
UNIMPLEMENTED.
Note that this is not intended for implementing the concept of a “time zone” or “local
time” (i.e. the time as commonly expressed in a given geopolitical region). If the
platform implements the concept of local time, then the specific local time offset or
conversion rules should be configured using the PropertySet API as described in section
10.6.2.3.
The specific property name and value format for time zone configuration is platform-
defined. On some systems, it may be directly configured as a number (i.e. minutes
ahead of GMT) or it may be configured as a string reflecting a predefined rule (i.e.
“US/Eastern”) if the system is capable of automatic daylight savings time adjustments.

12.96 STI Infrastructure-Provided GetCalendarTime Method
STI-96 The STI infrastructure shall provide the GetCalendarTime() Definition as specified in Table 80.

Table 80: GetCalendarTime() Definition
Declaration Result GetCalendarTime(

 in HandleID fromID,
 in HandleID toID,
 in TimeWarp referenceTime,
 in CalendarKind calendarKind,
 out CalendarTime calendarTime
);

Description Convert the base clock time value to a defined calendar representation

Space Telecommunication Interface 99

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the clock device that should respond to the request
► referenceTime: The time to convert, expressed as an interval since the clock

epoch
► calendarKind: The calendar system to convert the reference time to
► calendarTime: A buffer to store the calendar representation of the reference time

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This call is used by applications to convert an abstract TimeWarp value (of which the
definition is platform-specific) into a value in one of the defined calendar systems, such
that portable applications can interpret it in a consistent manner.
If the system or clock does not support the requested calendarKind, the
implementation should return UNIMPLEMENTED.
If the referenceTime is zero, such as the result of a call to GetTimeWarp(0,0)
then this will return the respective calendar representation of the clock epoch.

12.97 STI Infrastructure-Provided CalendarValueCivil Structure
STI-97 The STI infrastructure shall provide the CalendarValueCivil Structure Definition as specified in Table 81.

Table 81: CalendarValueCivil Structure Definition
Declaration struct CalendarValueCivil {

 integer nanoseconds;
 integer seconds;
 integer minutes;
 integer hours;
 integer day;
 integer month;
 integer year;
};

Description Definition of time representation type for the common era / Gregorian calendar

Member Details ► nanoseconds: The number of nanoseconds, range of [0-999999999]
► seconds: The seconds value, range of [0-60]
► minutes: The minutes value, range of [0-59]
► hours: The hours value, range of [0-23]
► day: The day number within the month, range of [0-30]
► month: The month number within the year, range of [0-11]
► year: The full year number, expressed as an integer (i.e. 2019)

Implemented By Infrastructure

100 Space Telecommunication Interface

Notes This format is applicable to UTC and, usually, the local time representations. For local
time representations, the specific offset from UTC and daylight savings configuration
should be configured or queried separately through the property set interface.
The nanoseconds field is intended to support applications that require higher precision
time values. This does not imply that the underlying clock has nanosecond precision.
For clocks that do not support higher precision timing, this field should always be set as
zero.

12.98 STI Infrastructure-Provided CalendarValueGPS Structure
STI-98 The STI infrastructure shall provide the CalendarValueGPS Structure Definition as specified in Table 82.

Table 82: CalendarValueGPS Structure Definition
Declaration struct CalendarValueGPS {

 long tow;
 short week;
};

Description Definition of time representation expressed in weeks and seconds, similar to the style
used in GPS navigation messages

Member Details ► tow: The time of week in milliseconds, range of [0-604799999]
► week: The number of weeks elapsed since the epoch

Implemented By Infrastructure

Notes This is not an exact representation of GPS time codes, but rather a method of expressing
time in terms that facilitate easy conversion to/from actual GPS navigation code formats
while also providing higher precision.
Legacy GPS navigation signals express the week number as a 10-bit integer, which rolls
over every 1024 weeks, with time of week expressed as a 19-bit integer with 1.5 second
resolution. Other navigation signals have a different format, using 13-bit week number
along with a 2-hour interval time of week and 18-second time of interval.
This structure expresses the time of week value in units of milliseconds. Conversion
from legacy GPS time of week values is accomplished via multiplication by 1500 (1.5
seconds), and conversion from 18-second time of interval codes is accomplished via
multiplication by 18000. Likewise, a conversion to whole seconds can be achieved by
dividing the tow by 1000, and the day of week can be determined by dividing by
86400000.

12.99 STI Infrastructure-Provided CalendarValueDayNumber
Structure

STI-99 The STI infrastructure shall provide the CalendarValueDayNumber Structure Definition as specified in
Table 83.

Table 83: CalendarValueDayNumber Structure Definition
Declaration struct CalendarValueDayNumber {

 double date;
};

Description Definition of time representation expressed as a fractional day number

Space Telecommunication Interface 101

Member Details ► date: The day number expressed as a fractional / floating point value

Implemented By Infrastructure

Notes The whole number (integer portion) of the value expresses the number of Earth days
since the epoch, and the fractional part expresses the time of day.

12.100 STI Infrastructure-Provided CalendarTime Union
STI-100 The STI infrastructure shall provide the CalendarTime Union Definition as specified in Table 84.

Table 84: CalendarTime Union Definition
Declaration union CalendarTime switch(CalendarKind) {

 case MJD: CalendarValueDayNumber dayNumber;
 case GPS: CalendarValueWeekSeconds weekSeconds;
 case LOCAL: CalendarValueCivil local;
 case TAI: CalendarValueCivil tai;
 case UTC: CalendarValueCivil civil;
};

Description Definition of CalendarTime type based on CalendarKind value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes

12.101 STI Infrastructure-Provided SetTimeAdjust Method
STI-101 The STI infrastructure shall provide the SetTimeAdjust() Definition as specified in Table 85.

Table 85: SetTimeAdjust() Definition
Declaration Result SetTimeAdjust(

 in HandleID fromID,
 in HandleID toID,
 in TimeRate rateAdjustment
);

Description Adjusts the tick rate of the clock device

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the clock device that should respond to the request
► rateAdjustment: The amount of adjustment to apply

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

102 Space Telecommunication Interface

Notes The rateAdjustment parameter is a signed integer, where the value of 0 represents
the nominal or free-run rate of the clock without any adjustment applied. If any
adjustment had been previously applied, calling this function with a value of 0 will
restore a clock to its default rate.
A positive value will cause the clock frequency to increase from the nominal rate, and a
negative value will cause the clock frequency to decrease from the nominal rate. The
specific unit of rate increase/decrease is platform defined, although typically might
reflect a number of parts per million or parts per billion depending on clock design.
If the underlying device does not support rate adjustment, then this function will return
the UNIMPLEMENTED status code.
A typical use-case of this function would periodically compute the difference between
the reference clock and the local clock device, which is then multiplied by a feedback
ratio (proportional coefficient) to compute the adjustment value to pass into this
function.

12.102 STI Infrastructure-Provided GetTimeAdjust Method
STI-102 The STI infrastructure shall provide the GetTimeAdjust() Definition as specified in Table 86.

Table 86: GetTimeAdjust() Definition
Declaration TimeRate GetTimeAdjust(

 in HandleID fromID,
 in HandleID toID
);

Description Obtain the current tick rate adjustment value of the clock device

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the clock device that should respond to the request

Return Returns the current tick rate adjustment value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes A return value of 0 indicates the clock is operating at its nominal or free-run frequency.
If the underlying device does not support rate adjustment, then this function always
returns 0.
A positive value indicates the clock frequency is above nominal, and a negative value
indicates the clock frequency is below nominal.
The specific units of the TimeRate value are platform defined, although typically
might reflect a number of parts per million or parts per billion depending on clock
design.

12.103 STI Infrastructure-Provided TimeSynch Method
STI-103 The STI infrastructure shall provide the TimeSynch() Definition as specified in Table 87.

Table 87: TimeSynch() Definition

Space Telecommunication Interface 103

Declaration Result TimeSynch(
 in HandleID fromID,
 in HandleID toID,
 in HandleID referenceID,
 in TimeWarp stepMax
);

Description Synchronizes a clock device with another waveform or device in the system

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the clock device that should respond to the request
► referenceID: The handle ID of another device or waveform in the system that

provides a synchronization source for the target clock device.
► stepMax: The maximum amount that the target clock should be modified.

Return A status code that should be checked using IsOK().
If the synchronization is successful with a single call to TimeSynch(), such that no
further action is required, the implementation will return OK.
If the synchronization is successful but requires multiple calls (e.g. due to constraints
imposed by stepMax) the implementation will return a positive integer value
indicating the anticipated number of calls required.
If synchronization is not possible under the given constraints the implementation will
return a suitable error response.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This function is intended for use in systems where a local general-purpose clock/timer
service may be selectively synchronized with other devices on the system. Support for
this function is implementation-defined, and this function may return
UNIMPLEMENTED if the clock device does not support synchronization with any other
devices.
The infrastructure provider will document the set of devices or services suitable for use
with the referenceID parameter. This reference device may be another infrastructure-
provided clock/timer service, or it may be another form of timing reference, such as a
software service implementing a protocol such as NTP or IEEE-1588, or a device
capable of recovering timing signals from received bit streams.
The stepMax parameter specifies the maximum amount that the target clock device
may be modified in a single step change. The constant TIME_INTERVAL_MAX may
be specified to indicate no limit to the step size, permitting the target device to be
directly set to any value.

12.104 STI Infrastructure-Provided Sleep Method
STI-104 The STI infrastructure shall provide the Sleep() Definition as specified in Table 88.

Table 88: Sleep() Definition
Declaration Result Sleep(

 in HandleID fromID,
 in HandleID toID,
 in TimeWarp interval
);

104 Space Telecommunication Interface

Description Delays the caller until the specified interval has elapsed, as measured by the clock
device.

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the clock device that should respond to the request
► interval: The amount of time that the caller should be delayed, relative to the

current clock value

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The call may be interrupted under some circumstances, causing the infrastructure to
return to the caller before the interval has elapsed. In these cases, the infrastructure
should return the WARNING response.
Note that the actual sleep time may be longer than requested due to the resolution of the
clock device and operating system scheduling variances.
Setting a clock using SetTime() while this operation is in progress has undefined
effects on the delay operation.

12.105 STI Infrastructure-Provided DelayUntil Method
STI-105 The STI infrastructure shall provide the DelayUntil() Definition as specified in Table 89.

Table 89: DelayUntil() Definition
Declaration Result DelayUntil(

 in HandleID fromID,
 in HandleID toID,
 in TimeWarp endTime
);

Description Delays the caller until the clock reaches the indicated value

Parameters ► fromID: The handle ID of the current component making the request
► toID: The handle ID of the component that should respond to the request
► endTime: The time value at which the function should return, relative to the clock

epoch

Return On success, returns OK. On error, returns one of the defined error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The call may be interrupted under some circumstances, causing the infrastructure to
return to the caller before the end time has been reached. In these cases, the
infrastructure should return the WARNING response.
Note that the actual sleep time may be longer than requested due to the resolution of the
clock device and operating system scheduling variances.
Setting a clock using SetTime() while this operation is in progress has undefined
effects on the delay operation.

Space Telecommunication Interface 105

12.106 Document STI Interfaces
STI-106 The STI infrastructure provider shall document the set of interfaces provided by the infrastructure.

12.107 Document Application’s System Library Interfaces

STI-107 The STI application developer shall document the set of operating system interfaces required by the
application.

External Command and Telemetry

12.108 Respond to External Commands
STI-108 An STI platform shall accept, validate, and respond to external commands.

12.109 External Commands Use STI API
STI-109 An STI platform shall execute external application control commands using the standardized STI APIs.

12.110 Document External Commands
STI-110 An STI platform provider shall document any external commands describing their format, function, and
any STI methods invoked.

12.111 Use STI Query for External Data
STI-111 The STI infrastructure shall use the STI Query method to service external system requests for information
and to provide telemetry data about an STI application.

106 Space Telecommunication Interface

Annex A: Language Translations
This appendix describes some specific mappings to programming languages for STI interfaces. This section is
intended to clarify certain aspects of the IDL mappings to ensure that different implementations will remain
consistent with regard to these interface definitions.
Many of the interface definitions in this specification are provided as OMG Interface Definition Language (IDL)
fragments. OMG also specifies a specific method for mapping these interfaces to source code in various common
programming languages, and the STI implementation of these interfaces will adhere to these mappings where
relevant.
Earlier versions of the OMG IDL specification were specifically designed for defining the interfaces within a
CORBA environment. IDL has since been revised as a general-purpose interface definition language and has been
released independently from CORBA since version 3.5. While a compliant implementation of STI may utilize a
CORBA-like layer to exchange data between modules, there is no requirement for nor assumption of a CORBA
environment within STI. As such, the function prototypes or interface definitions based on the IDL fragments in this
specification will not directly include any CORBA references.
All IDL fragments in this document shall be interpreted as belonging to an IDL module called “STI”, with interface
and identifier names mapped accordingly. To ensure naming consistency across differing OE implementations, a
specific header file/module/namespace needs to be implemented such that the same function names are present and
available on all STI implementations. Each programming language environment has differences in the paradigms
used for this purpose.
The general STI architecture can also be implemented in programming languages using the translations prescribed
by the IDL specification. Additional directives on how the IDL translations apply to the STI applications and
infrastructure is available in this section. This section is intended to clarify certain aspects of the interface
translation for commonly used programming languages, but other language translations beyond what is specified
here are also possible. The appendix may be extended in a future revision of this specification to contain additional
language mappings.
Nearly all modern high-level programming languages support some notion of “packages” or “modules” to separate
functionality into logical entities. Whenever possible, all STI functionality should be encapsulated in a single
package or module called “STI”. Note that some languages, such as Java, dictate additional package naming
recommendations. Any such language-specific package name recommendations should also be adhered to. In C
and C++, the interfaces are available through multiple header files.
All object-oriented languages such as C++, Java, and Python generally support the same fundamental concepts of
inheritance and interfaces. For these languages, the interface translation is fairly straightforward, and the application
will use the language’s native inheritance mechanisms. For other languages such as C, which are not natively
object-oriented, the approach differs slightly, but many of the same concepts can still be employed even if not
directly supported by the language. Therefore, a different set of requirements will apply to applications
implemented in C versus other object-oriented languages.
All STI applications and devices should encapsulate their state in an object or structure of some type, referred to as
the “base object”. Even for “singleton” objects of which there can only be one, STI requires that there is still a base
object associated with the instance, even if this object does not contain any extra information.
Figure 9 also shows several different optional interfaces that an application or device may implement, depending on
its specific design needs. In object-oriented languages, the set of interfaces is indicated in the object definition,
using the language’s inheritance mechanisms. In these languages, a “connection” between the implementation and
interface is automatically made through the language’s type system. In non-object-oriented languages, such as C, a
separate mechanism is necessary to explicitly create the connection between a given implementation to the interface
it implements. For STI, a naming convention is employed to facilitate this connection.
In object-oriented languages, the conversion to an Instance object is achieved by simply inheriting from the proper
base class. In non-object-oriented languages, the application developer will implement this conversion, and it is not
specified how the conversion takes place. For a singleton object, this can be a simple global. In C, this could be
performed using a pointer conversion of some sort. Alternatively, this could be implemented using a lookup table or
dictionary.

Space Telecommunication Interface 107

A.1 C Language Mapping
The C programming language is standardized as ISO/IEC 9899, with a specific revision to the standard identified by
a year number suffix (e.g. ISO/IEC 9899:1999). The STI architecture should be implementable in any current or
future version of the C programming language.

A.1.1 Naming Conventions
Unlike other languages, the C language does not include the concept of a “namespace” or “module” to avoid
identifier name collisions between global-scope symbols in separate libraries or code units. As such, it is common
practice to add a prefix to all global identifier names supplied by a library or module as a means of differentiation.
All infrastructure-provided functions, constants, and types defined in this specification shall be denoted with an
“STI_” prefix when mapped to identifiers in the C programming language. For example, the “Instance” type is
named “STI_Instance”, the “OK” result value constant is named “STI_OK”, the “Write” method is named
“STI_Write”, and so forth.
All application-provided implementation written in the C language shall be denoted with a prefix defined by the
application. For instance, if an application were named “Example”, the application-provided application control
methods may be called “Example_APP_Instantiate”, “Example_APP_Start”, and so forth.

A.1.2 Header Files
The following header files shall be provided by the infrastructure, such that applications can use the #include
preprocessor directive to incorporate the respective resources:

Table 90: C Language Header Files
Include File Provides

STI.h
C language STI data types and abstract object definitions. This
file provides declarations of all data types described in section
10.4.

STI_APIs.h
C language function prototype declarations for all infrastructure-
provided API calls. This file provides declarations of all calls
described in section 10.6.

STI_ApplicationControl.h C language function prototype declarations associated with
ApplicationControl interface, as described in section 10.5.2.

STI_DeviceControl.h C language function prototype declarations associated with
DeviceControl interface, as described in section 10.5.3.

STI_Source.h C language function prototype declarations associated with the
Sink interface, as described in section 10.5.4.1.

STI_Sink.h C language function prototype declarations associated with the
Source interface, as described in section 10.5.4.2.

STI_RandomAccess.h C language function prototype declarations associated with the
RandomAccess interface, as described in section 10.5.4.3.

After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility.

A.1.3 Interface Type Mappings
Table 5, Infrastructure-provided Data Types, in section 10.4.1 indicates the general semantics of each STI-defined
type. These general semantics, in turn, determine the proper method to pass a value or object of that type through an
IDL-defined interface or function definition.
The table below indicates the basic type mappings for the C language. This table also indicates whether an operand
should be passed as value or as a pointer/reference, and how the pointer type should be qualified, if applicable. For

108 Space Telecommunication Interface

operations which utilize an abstract base type containing application-defined data of arbitrary size (e.g. Message and
PropertyValue types), the size of this data will also be specified. In these cases, a single object in the IDL fragment
will translate to two arguments in the C function prototype. This also applies to strings, as the C language
implements strings as a pointer to the char type, rather than as a distinct value type in itself.

Table 91: C Language Data Type Mapping
Semantics Usage Pass As C Data Type(s) Applicable to

Integer,
Enumeration, or
aggregate value

in, return Value STI_<type> Result, HandleID,
TimeWarp, Access, etc. out, inout Pointer to Value STI_<type> *

string
in, return Pointer const char *

Object Names
out, inout Pointer and Size char *, size_t

Abstract Object
in Pointer and Size const STI_<type> *, size_t Message,

PropertyValue out Pointer and Size STI_<type> *, size_t

Base Type any Pointer STI_Instance * Context Objects

A.1.4 Inheritance and Base Types
Although C is not an object-oriented language by nature, the same basic concepts can still be manually implemented
by the programmer through use of specific patterns and by utilizing type casting where necessary. The main
requirement is that structure definitions be defined appropriately such that a pointer to a base structure can be
reliably converted to a derived structure and vice versa.
The first element of a C structure is guaranteed to be at the same memory address as the structure itself, as specified
in ISO/IEC 9899 section 6.7.2.1, as follows:

A pointer to a structure object, suitably converted, points to its initial member, and vice versa. There
may be unnamed padding within a structure object, but not at its beginning.

Given this requirement, the concept of single inheritance may be implemented simply by ensuring that the “base
type” of a given structure is declared as its first element. For STI, the base type of all context objects is the
Instance type. The specific content of the Instance type is implementation-defined, but the infrastructure will
provide this type such that it is suitable for use as a base type, as in this example:
typedef struct

{

 STI_Instance Base;

 int LocalValue;

} Example_Object;

Using this definition, a pointer to the base object (STI_Instance*) may be safely typecast by the application to
the derived object (Example_Object*) and vice-versa. Note that while this approach generally works for simple
cases, more complex applications may necessitate a different approach. The STI infrastructure only stipulates that
interaction with the infrastructure takes place using an Instance object; more complex applications may in turn use
this object to index into a larger state table or database.

A.1.5 Interface Operations
All methods defined in the STI application or device control interfaces in section 10.5, Application and Device
Control Interface shall have a context object as the first parameter in the calling sequence.
All operations defined in the STI application or device control interfaces in section 10.5, Application and Device
Control Interface, require a context object, which is the in-memory data structure comprising the device or
application state. This is an application defined structure that may contain any arbitrary state information needed by

Space Telecommunication Interface 109

the application. In object-oriented languages this object is often referred to as the “self” or “this” object and is
usually implicitly supplied through the respective language internal mechanisms.
Since the C programming language does not provide these object-oriented features, the context object shall be
explicitly included as the first argument in the function prototype, followed by the remainder of the operands
specified in the interface definition.
STI requires that all such context objects in the system are derivatives of the infrastructure-defined Instance type.
Therefore, in the C programming language, all interaction between the infrastructure and the application will use a
pointer to the “STI_Instance” type to identify the target of the operation. For example, the C prototype for the
APP_Instance() and APP_Start() operations in the “Example” application would be:
STI_Instance* Example_APP_Instance(STI_HandleID id, const char *name);

STI_Result Example_APP_Start(STI_Instance *inst);

A.2 C++ Language Mapping
The C++ programming language is standardized as ISO/IEC 14882, with a specific revision to the standard
identified by a year number suffix (e.g. ISO/IEC 14882:2003). The STI architecture should be implementable in any
current or future version of the C++ programming language.
Mapping of the STI interfaces to C++ should follow the guidelines set forth in the OMG IDL C++ language
mapping. However, in STI there is no assumption or dependence on CORBA types or interfaces. This section is
intended to clarify how the C++ language mapping applies to STI.

A.2.1 Naming Conventions
All STI infrastructure-provided functions, constants, and types shall be defined within a C++ namespace called
“STI”. For example, the “Instance” type is named “STI::Instance”, the “OK” result value constant is
named “STI::OK”, the “Write” method is named “STI::Write”, and so forth.

A.2.2 Header Files
The following header files shall be provided by the infrastructure, such that applications can use the #include
preprocessor directive to incorporate the respective resources:

Table 92: C++ Language Header Files
Include File Provides

STI.hh
Fundamental STI data types and abstract object definitions. This
file provides declarations of all data types described in section
10.4.

STI_APIs.hh
Function prototype declarations for all infrastructure-provided
API calls. This file provides declarations of all calls described in
section 10.6.

STI_ApplicationControl.hh ApplicationControl interface class definition, as described in
section 10.5.2.

STI_DeviceControl.hh DeviceControl interface class definition, as described in section
10.5.3.

STI_Source.hh Sink interface class definition, as described in section 10.5.4.1.
STI_Sink.hh Source interface class definition, as described in section 10.5.4.2.

STI_RandomAccess.hh RandomAccess interface class definition, as described in section
10.5.4.3.

After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility.

110 Space Telecommunication Interface

A.2.3 Constructor and Destructor
STI defines the APP_Instance() and APP_Destroy() methods as a means to construct and destruct
instances, rather than relying on language-specific paradigms to invoke a class constructor or destructor. These
should be implemented as static methods in the C++ application class. This aligns with a “factory” design pattern
that allows additional application control over the construction process. When the infrastructure invokes the factory
function, the application should invoke the class constructor appropriately, and return the newly constructed object.

A.2.4 Interface Classes
All other application and device control interfaces defined in section 10.5, Application and Device Control Interface,
shall each be mapped to a C++ abstract interface base class provided by the infrastructure.
The class shall declare each of the operations as a pure virtual function, which in turn requires that any derivative
class provide an implementation as a prerequisite to being instantiated.
For example, the following class definition would represent the ControllableComponent interface:

namespace STI
{

 class ControllableComponent
 {
 public:
 virtual Result APP_Start() = 0;
 virtual Result APP_Stop() = 0;
 };

}

All application-provided methods shall be class member functions of an application-defined class inheriting from
some or all of these abstract interface classes.
Table 5, Infrastructure-provided Data Types, in section 10.4.1 indicates the general semantics of each STI-defined
type. These general semantics, in turn, determine the proper method to pass a value or object of that type through an
IDL-defined interface or function definition.

Table 93: C++ Language Data Type Mapping
Semantics Usage Pass As C++ Data Type(s) Applicable to

Integer,
Enumeration, or
aggregate value

in, return Value STI::<type> Result, HandleID,
TimeWarp, Access,
etc. out, inout Pointer to Value STI::<type> *

string
(see note)

in, return Pointer const char *
Object Names

out, inout Pointer and Size char *, size_t

Abstract Object
in Pointer and Size const STI::<type> *, size_t Message,

PropertyValue out Pointer and Size STI::<type> *, size_t

Base Type any Pointer STI::Instance * Context Objects

The “string” types in C++ shall utilize C-style string representations (pointer to char) rather than the
std::string type. This is because the C++ string type typically relies on dynamic memory allocation, and usage
of this type may also introduce additional compile-time and run-time dependencies on the C++ standard library.
Using C-style strings also facilitates an infrastructure implementation supporting both C and C++.

Space Telecommunication Interface 111

A.3 Python Mapping
Python is an object-oriented programming language developed by the Python Software Foundation. The language
has seen significant adoption by the scientific and research communities and is often used for prototyping software
algorithms.
Python is an interpreted language and utilizes a dynamic type system with automatic memory management. As
such, it may not be suitable for flight software environments where strict deterministic behavior is required.
However, during the SDR development stages, the ability to integrate existing Python applications into an SDR may
be highly useful and beneficial. This can be accomplished by mapping the STI interfaces to a Python language
environment.

A.3.1 Naming Conventions
All STI infrastructure-provided functions, constants, and types shall be provided through a Python module called
“STI”.
All infrastructure-provided types and methods shall be available through this module. For example, the
“Instance” type is identified as “STI.Instance”, the “OK” result value constant is named “STI.OK”, the
“Write” method is named “STI.Write”, and so forth.

A.3.2 Application Classes
Applications utilizing the STI infrastructure shall use the standard Python module import mechanisms to access the
STI infrastructure.
All application base classes utilized with STI shall inherit from the “Instance” class provided through this module.
For example, an application would typically have an “import” statement at the beginning of the source file, followed
by an application class definition.

import STI

class ExampleWaveform(STI.Instance):
 …

After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility. For instance, in languages such as Python, Ruby and
Lua, the module contents are designated by the module name and a period (.) separator, for example the term
“STI.Initialize” would refer to the Initialize function within the STI module.

A.3.3 Constructor and Destructor
The Python application module shall also provide an implementation of the APP_Instance and APP_Destroy
methods, implementing a “factory” design pattern that can be invoked by the infrastructure. These are be
implemented as static methods in the application class.

A.3.4 Interface Operations
Unlike C++, the methods in a Python class are dynamic and do not need to be explicitly declared at compile time.
Therefore, applications do not need to inherit from an interface class as in C++. Instead, implementation of any
application-provided interface method defined in section 10.5, Application and Device Control Interface, is simply a
matter of defining a matching method within the application class.
For example, the following class definition would implement the ControllableComponent interface:

class ExampleWaveform(STI.Instance):

 def APP_Start(self):
 # Implementation-defined action…
 return STI.OK

 def APP_Stop(self):

112 Space Telecommunication Interface

 # Implementation-defined action…
 return STI.OK

All application-provided methods shall be class member functions of an application-defined class inheriting from
some or all of these abstract interface classes.
Being a fully object-oriented language with automatic memory management, Python represents all values in
software code as a logical object of some type. Unlike C and C++, the actual memory storage and representation of
these objects is hidden from the developer, and there is no direct equivalent of a “pointer” type. However, Python
does provide some data types that can directly deal with memory reservation and access, and these can be used to
exchange data directly with C/C++ software. Since all Python objects are fundamentally self-describing, with a type
and size known to the interpreter, the STI interfaces do not need to explicitly indicate size information when passing
abstract buffer objects through the interface.
Python classifies certain object types as “immutable”, which include strings, integers, and other fundamental value
types. Once instantiated, these values can never be modified; instead, a new, distinct value object will be created,
and the previous object can be destroyed. On the other hand, aggregate types such as classes, dictionaries, and lists
are “mutable”, meaning that the content can be modified after instantiation. Some fundamental objects have both
mutable and immutable variants (e.g. byte/bytearray, frozenset/set, etc.). When translating from IDL, immutable
types can only be used to implement “in” or “return” parameter values from an operation definition. Parameters
designated as “out” or “inout” will only use mutable types.
Table 5, Infrastructure-provided Data Types, in section 10.4.1 indicates the general semantics of each STI-defined
type. These general semantics, in turn, define the expected mutability of a value of the given type, and therefore its
applicability to IDL-defined operations.

Table 94: Python Language Data Type Mapping
Semantics Mutability Python Data Type Applicable to

Integer immutable STI.<type> Result, HandleID, etc.

Enumeration immutable Integer, see below Access, CalendarKind

string immutable str Object Names

Aggregate Value mutable STI.TimeWarp TimeWarp

Abstract Object mutable Any object type implementing the Python “buffer
protocol”, such as bytearray.

Message,
PropertyValue

Base Type mutable STI.Instance Context Objects

Note that Python does not implement enumerated data types as C/C++ do

Access enumerated values shall be implemented as integer constant named values of type Access, with each value
being one more than the preceding one.

CalendarKind enumerated values shall be implemented as integer constant named values of type CalendarKind with
each value being one more than the preceding one.

A.4 Perl Mapping
Only certain features have been determined to be required when software is implemented in Perl.
The STI module namespace for Perl shall be OMG::STI.
An example of its use is:

use OMG::STI

Space Telecommunication Interface 113

After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility.

A.5 Ruby Mapping
Only certain features have been determined to be required when software is implemented in Ruby.
The STI module namespace for Ruby shall be STI.
An example of its use is:

require 'STI'
After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility. For instance, in Ruby, the module contents are
designated by the module name and a period (.) separator, for example the term “STI.Initialize” would refer to the
Initialize function within the STI module.

A.6 Java Mapping
Only certain features have been determined to be required when software is implemented in Java.
The STI module namespace for Java shall be org.omg.STI package.
An example of its use is:

import org.omg.STI.*
After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility. For instance, in Java, the module contents are
designated by the package name and a period (.) separator, for example the term “org.omg.STI.Initialize” would
refer to the Initialize function within the STI module.

A.7 Lua Mapping
Only certain features have been determined to be required when software is implemented in Lua.
The STI module namespace for Lua shall be STI.
An example of its use is:

STI = require "STI"
After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility. For instance, in Lua, the module contents are
designated by the module name and a period (.) separator, for example the term “STI.Initialize” would refer to the
Initialize function within the STI module.

