Date: Newv-Dec 2024202

é | |
OBJECT MANAGEMENT GROUP®

Space Telecommunications
Interface (STI) 4.0

Version 1.0 — beta 2

OMG Document Number: ptc/20212022-1112-2603
Normative reference: https://www.omg.org/spec/STI/1-0/
Machine readable file(s):

Normative:

28https://lwww.omg.org/spec/STI/20221201

This OMG document replaces the submission document (mars/2020-11-01 and ptc/2021-01-03). It is an OMG Adopted Beta

Specification. Comments on the content of this document are welcome and should be directed to issues@omg.org.

You may view the pending issues for this specification from the OMG revision issues web page https://issues.omg.org/is-

sues/lists/sti-ftf.

The FTF Recommendation and Report for this specification will be published in December 2022. If you are reading this after th

date, please download the available specification from the OMG Specifications Catalog.

{ Field Code Changed

{ Formatted: Left

https://www.omg.org/spec/STI/
https://www.omg.org/spec/STI/20221201
https://issues.omg.org/issues/lists/sti-ftf
https://issues.omg.org/issues/lists/sti-ftf

Copyright © 2020-2022, National Aeronautics and Space Administration
Copyright © 20262021-2022, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, con-
ditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change with-
out notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty -
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Pro-
spective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regula-
tions and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems --
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CON-
TAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLI-
CATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVE-
NUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, Needham9C Medway Road |

PMB 274, Milford, MA 0249401757109-Highland Avenue; Needham; MA-02494, U.S.A. ‘

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, I[IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its de-
signees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these mate-
rials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

https://www.omg.org/legal/tm_list.htm

OMG:?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

https://www.omg.org/

Table of Contents

L SOOI ittt ittt ettt ettt ettt ettt e e et e e e ettt e e ebeeehbeeeetteeeenteeeahbeeeeneeeanbbeeaanbbeeanreeeabreeaanneaas 2b
2. CON O MIANCE .ttt ittt ittt st e sttt ettt ate st s ste et eabe st e seeseeabssabestsesbeebseabeaneeseeasssbeanseabsansesrnanseas 25
3. RETEIBINICES .. ittt it iie st e et ee st e ettt e ete e st e s et e ante ettt ateeabeeeiaeesnseeabeeanseeansereeanneeaneeanreeareeareeas 25

3.1 Normative References

b
3.2 Non-normative References.... ... 2p
Terms and DefINITIONS. .. .vuiiiiiitiiiitiiteiiteiseteieeiresteiresseireabesssabesreesbesnsesbesnseseeansesbensesseesns /
SV MNIDIONS. .ttt ettt e ettt e eae et eeeht e st e e b e enteeatteaneenaeesaesanreareearreesneeanns 29
Additional INFOrMIAION L..iiuei ittt s et setessieeseeeeeeseesessseeisesssesasesasnesssesseessesssesans 3P
6.1 Acknowledgments.... .. 3P
6.2 Notation Clause......... . 39
7. GOAalS QN0 ODJECHIVES ..uviiitiiiiiiitieiiesieeiite st sitesitssstesasessssssiseasseessesssssassssasessssssnsessesssesans 3B
7.1 OVEIVIBW .ttiteitiiittite it ettsteststestesseabe st e sbeesseebeanbessesbesbsebeatbesbesbseabeans e st anbesbsesbeaneanss 38
7.2 P U D08 L.ttt ettt ettt ettt e e ettt e e et et ehb e e abe e e e ettt eeeanbeeeabbeeenbreeanbeeaaneaeanns 38
7.3 Key Architecture REQUITEMENTS ...vvieuiiieiesiiiiesiisies s ieesiessssscessrsssesssssessesiesanesssssnessns 38
7.4 Fundamental DeSIONc.ccviiiiiiiiiiiiiiiiiiisie e i
75 Roles and Responsibilities b
8. Hardware ArChiteCtUIE. . .ivuicuiiiiieiieitiiieiiiiisiesiesess e e siesrsseesrecreaneas B
8.1 Generalized Hardware ArchitBCtUIEoiviiiiiiceiiis e iescisieisiis s se s s s s sesee s 38
8.1.1 COMPONENTS ...veiiiiiitii ittt e se ettt et e st et e et e s et e st ite e et e esnseeiseestsesareeasseersesseeanes 39
8.1.2 Functions........ I}
8.1.3 External Interfaces L
8.1.4 Networking INTErfACE .uivuiiiiiiiiiiiitiiiiis it sttt sets st e e sesetesieesrsseesreasesbsssesreaeeanas 4P
8.1.5 INtErNal INTEITACESviieiiiiiiiie ittt st e ste s et s seeeseseabesaneeesbessnreasresasseesaeeanes 49
8.2 MOAUIE SPECIHTICAIION. . .uiiiiiiieiiteiisii it i st eetesisite et satesesseeassearsssesesseessesasesnessesasesseas 48
8.2.1 General-Purpose Processing MOdUIEcccouiiiiiiiiiiiiiiiiiiiieiise s e 48
8.2.2 Signal Processing MOGUIE........uiiuiiiiiiiiiiieiiiiiiiisirsiieiresisirseisssreaesssessssrsesseansesees 45
8.2.3 Radio Frequency MOCUIE........ccuiiiiiiie ittt iie st sie s s se e s e s s srseesaeeans 48
8.2.4 SECUMNLY MOUUIB....cuiiiiiiiii sttt ittt s st et se st ssteeeesbeabe et e sieeeeeabeabesbeeseareananes 49
8.25 NEetworking MOAUIEccuiiiiiii ittt eissr e s see s bssreeceesreareanas 49
8.2.6 OPLICAI IMOAUIE ...ttt eie et e eteeeteesteeebesesseeasesasesasseeseessnsessnesasseeseeannes 50
8.2.7 CogNItiVe MOTUIE ...veieeieiiiscis ittt s e s a st s sis s e s sbesessrseeesreaneeseas 50
8.3 Hardware Interface DeSCIIPLION.eiuiiiieitiicteeiieeiiiiteeiieeeteeseeaiseessesesessesseesnsesanns 50
8.3.1 Control and Data INtErfaCeiiiieiiiiiiiiiiiiii it sisse et siesre e e s sresiseesbesreeseeaneens 51
8.3.2 Operating POWET INTEITACEiicuiiiiiiiiis it cie et cie e st e siesereesiesneearesareesaseeans 5P
Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

8.3.3 Thermal Interface and Power CONSUMPLIONciveiieeiiiiieiiiiiiiesiisiiiesieseiessissesieeanns 52
9. APPlICAtiON ArCHItECIUME. . uitiitiiitiieiiti it s its ittt eite et st s seeeiteabesesssreereeseaseesssrsasseareansesreannaneeas

9.1 Configurable Hardware DESIONcueeueieiiiieiiiieiiisiisiisisssseasisiesssssrsasssessessseessssneaees
9.2 Specialized Hardware Interfaces ..
10. SOFtWAre ArCHITECIUIE . vttt ittt iie e ettesee e s et e st eeteeetessseesbesnseesbeeanseesssessesssesansesnseannes

10.1 SOftware Layer MOGE!uiuiiiiiiiiiiiiiiiicis s iee it sissieseesiesies e sssieesreabeabesreeseesbessesnas
10.2 Infrastructure
10.3 API Overview...............

10.3.1 Interface Structure

10.3.2 ImpIemMentationceeeeiieeiiiiiiiiesie e 62
10.4 Data Types and Predefined Values............ccoeoieoiiciiiiiiiiisesees s 62

10.4.1 Datd TYPES .ottt 62

10.4.2 Predefined ValUeScoceveiiiiiiiiiiiiii ettt 63
10.5 Application and Device Control Interface..........ooceevveiiiiiiiiiiiiiiiiiiiiciiiisce, 63

10.5.1 Infrastructure-Provided Instance Interfacecocooeveeviiiiiiiiisiiiiiiiiiiee 63

10.5.2 Application-Provided Application Control Interfaces........c.ccoceevvieiiiiiiiiiiseene, 64

10.5.3 Data Transfer Interface

10.5.4 Device-Provided Device Control Interface.........cccevveviiviseiiiiiiciiiiiiiiiiieenn 67
10.6 STEAP ettt

10.6.1 General Utility API.......

10.6.2 Application Control API

10.6.3 Device CONrOl APL....cvcieiiiiiieieiiie st 72

10.6.4 Data Transfer APcoccoiiiiiiiiiiiiiiiis sttt 73

10.6.5 LOG AP ..ottt 73

10.6.6 File API......

10.6.7 Messaging API

10.6.8 TIME APL.uciiiiiiiiits et 75

10.6.9 Clock CONtrol API .ottt 77
10.7 Non-STI Software INterfaces........oveveiieiieiiiiiiiisiiiieeesiesse s, 78

10.7.1 Operating System INterface.c.ocoeeeriiiieiiiiiiiiiiiiisiiess i 78

11. External Command and Telemetry INterfacesc.occouvvveiiiiieiiiiiieiiiciiiiieie 81
12. Normative REQUITEMENESceiueiiiiiiiiiiiisstse s 83

12.1 HAMAWANE ..o 83

12.1.1 Provide GPMccooiiiiiiiiiiiiiii ittt 83

12.1.2 Diagnostic Information Availability83

12.1.3 DOCUMENE RE ..ottt 83

12.1.4 Document POWEr-Up STAtcceeveieiiiiiiiiiiiiiiiieie it 83

2 Space Telecommunication Interface (STI), v1.0 -- beta 2 |

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

12.1.5 Document Hardware Capabilitycccccoeviiiviiiiieiiiiiiiiiisireisins

12.1.6 Document Hardware Limitations......c..ccccvveiiiieiirriieeisisiieisssisissineans

12.1.7 DocUMENt INTErfACES ...iviiiieiiiiiciiiieii st st sis e eessteesissieeesaresnaessenns

12.1.8 Document the Control and Data Mechanisms

12.1.9 Document POWEN SUPPIY ..oivieuiiiiiiiiiiii sttt sissie s

12.1.10 Document Thermal and Power LimitSccccovivieiisiiiiiiiiieiieaans

12.1.11 Controllable From OFEccccciiiiiiiiiiiiiiiisiiiisiieisie i iissessiesiss s ane s

12.2 Configurable Hardware DEeSIONccueeieiiiiieiiiiiiesiieeiiissieesiississesneeannes

12.2.1 Platform Specific WIaPPENcuvicveiiiiiiieiieiisiiieieiesssiissiessiesnescnsanens

12.2.2 Document FPGA INtEIrTaCES ...couiiiieiiiiieiiieeiiesieeiisscieesieairesieeesieeans

=TT s T T T 1Y

12.3 SOTEWAIE 1ttt ettt e et e e ereeereaneas

12.3.1 Document System Library Interfaces Provided..........cocooveiveiivnennns

12.3.2 Document System Library Interfaces Usedccocovvuviiiiieriininnns

12.3.3 Document Language Interfaces Provided

12.3.4 STI Infrastructure USES APP APl ...c.cociiiiiiiiiiiiiiciesiisiissiesiieeinaans

12.3.5 Use Language Specific Facilities Specified in ANNeX Accccceveeeens

12.3.6 Use Language Specific INNErtaNCecoveieeiireiiiiiiiesiieiieiiesiieeiieaans

12.3.7 Document STI INtErfaCes .uiviiriiiieiiiiiiiiieiiieiessiessesieseseesiee s

12.3.8 Document Application’s System Library Interfaces

12.4 STI Infrastructure-Provided SOFtWAreccecceeiieieiieiiiieceeiiecieaeieeane

12.4.1 STI Infrastructure-Provided Data TYPES.....ccovviieiiiiiisiiiiiiiisissisienns

12.4.2 Application based on Instance Object

12.4.3 STl Infrastructure-Provided Access Values

12.4.4 STI Infrastructure-Provided CalendarKind Valuescccceceeveennnnns

12.45 STI Infrastructure-Provided HandlelD Valuescccccvivvieieiieinninnnn,

12.4.6 STI Infrastructure-Provided Result Values........ccovieveiniiiiiniiisiisienans

12.4.7 STI Infrastructure-Provided Handle Name Values

12.4.8 STI Infrastructure-Provided Property Name Values

12.4.9 STI Infrastructure-Provided Size Limit Values.........ccocoovveiveiiveennns

12.4.10 STI Infrastructure-Provided TimeWarp Values..........ocoeviviiinineans

12.4.11 STI Infrastructure-Provided CalendarValueCivil Structure............

12.4.12 STI Infrastructure-Provided CalendarVValueGPS Structure

12.4.13 STI Infrastructure-Provided CalendarValueDayNumber Structure

12.4.14 STI Infrastructure-Provided CalendarTime Unionccceevveenenns

125 STI Application-Provided Methods..........cciiviiiiiiiiiiiiiieeiiiisisieeieeanean

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

12.5.1 STI Infrastructure-Provided APP_GetHandlelD Method..........ccccooeveiiiiiiiiennee 94
12.5.2 STl Infrastructure-Provided APP_GetHandleName Methodc.ccoccoevieeienenee. 95
12.5.3 STI Application-Provided APP_Instance Method.........coococeovieiviiiiiiiiicine 96
12.5.4 STI Application-Provided APP_Destroy Method ... 96
12.5.5 STI Application-Provided APP_Initialize Methodcccoovveiviiiiiiiiicene 97
12.5.6 STI Application-Provided APP_ReleaseObject Method...........cccveviicciiceirienene, 97
12.5.7 STI Application-Provided APP_Query Methodcccoceviiiiiciiiiiiiiiiiicisene 98
12.5.8 STI Application-Provided APP_Configure Method............coovviiiiiiiiiiiiiee 99
12.5.9 STI Application-Provided APP_RunTest Method
12.5.10 STI Application-Provided APP_Start Method...........ccoccovveiiiiiiiiiiiiine
12.5.11 STI Application-Provided APP_Stop Methodcccooeeeviiiiiiiiiiiiicice,
12.5.12 STI Application-Provided APP_Read Methodc.ccocuvvviiiiiiiiiiiiiiene,
12.5.13 STI Application-Provided APP_Write Method
12.5.14 STI Application-Provided APP_AddressRead Method
12.5.15 STI Application-Provided APP_AddressWrite Methodccooveieiiiiieenee. 103
12.6 STI Device-Provided Methodscouvuiiiiiiiiiieiiiiiiiesses s 104
12.6.1 STI Device-Provided DEV_Open Methodccoooeviieiiieiiiiiiiciicicee 104
12.6.2 STI Device-Provided DEV_Load Method.........cocooviiiiiiieiiiiiiieiiiiiiiicieee 105
12.6.3 STI Device-Provided DEV_Reset Methodccoviviiiiiiiiiiiiiiiiiiicnen 105
12.6.4 STI Device-Provided DEV_Flush Method.........ccoooveiiiiiieiiiiiiiiiiiiiiiiieee 106
12.6.5 STI Device-Provided DEV_Unload Methodcccoviviieriiiiiiieiiiiiiiiiiieee 106
12.6.6 STI Device-Provided DEV_Close Method........c.ccocevviiiiieiiiiiiiiiiiiicee 107
12.7 STI Infrastructure-Provided Methods.........ccocceeiiiiiiiiiiiiiiieiiss
12.7.1 STI Infrastructure-Provided 1sOK Method
12.7.2 STl Infrastructure-Provided ValidateHandlelD Methodc.ccooeveiiiiiiiienenee, 112
12.7.3 STl Infrastructure-Provided ValidateSize Methodccccoeviiiiiiiiiiiine
12.7.4 STI Infrastructure-Provided InstantiateApp Methodccococeviiiiiiiiiiiiee,
12.7.5 STI Infrastructure-Provided GetErrorQueue Method.........ccococeviiiiiiiiiiiee,
12.7.6 STI Infrastructure-Provided GetHandleName Method
12.7.7 STI Infrastructure-Provided HandleRequest Methodcccoceviiiiiiiiiiisine,
12.7.8 STI Infrastructure-Provided AbortApp Methodcoccovviiiiiiiiiiiiciiciene
12.7.9 STI Infrastructure-Provided Initialize Methodccccooeeeiiiiiiiiiiiiiiiiicn,
12.7.10 STI Infrastructure-Provided ReleaseObject Method
12.7.11 STI Infrastructure-Provided Configure Method

Space Telecommunication Interface (STI), v1.0 -- beta 2 |

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

12.7.12 STI Infrastructure-Provided Query Method..........cocceveeeiiiiiiiiiiiiiiiicnnn,
12.7.13 STl Infrastructure-Provided RunTest Methodccoovvvieiiiiiiiiciiine
12.7.14 STI Infrastructure-Provided Start Methodcccooveiiieiiiiiiiiiiiiiice
12.7.15 STI Infrastructure-Provided Stop Method
12.7.16 STI Infrastructure-Provided DeviceOpen Method..........cooeeveiciiiiieiiicenne
12.7.17 STI Infrastructure-Provided DevicelLoad Methodcocceviieiiiiiiiiiiee,
12.7.18 STI Infrastructure-Provided DeviceReset Method........c.ccoveviiiiiiiiiiiine,
12.7.19 STI Infrastructure-Provided DeviceFlush Method...........coccoveiiiiiiiiiiiinee,
12.7.20 STI Infrastructure-Provided DeviceUnload Method
12.7.21 STI Infrastructure-Provided DeviceClose Methodccoeerieiiiiieiiiinee,
12.7.22 STI Infrastructure-Provided Read Method.........oooeieiineiiiiiieiiiiiiiiciee
12.7.23 STI Infrastructure-Provided Write Method.........c..coccoviviiiiiiiiiiiiiiiiiine,
12.7.24 _ STI Infrastructure-Provided AddressRead Method.............ccovceiiiisisinnnee

12.7.25 STI Infrastructure-Provided AddressWrite Method b
12.7.26 STI Infrastructure-Provided Log Methodc..cccooieiiieiiiiiiiiiiiiicee b
12.7.27 STI Infrastructure-Provided FileOpen Methodcccoieiiiiciiiiiiiiciiiesiieeeseeens b
12.7.28 STI Infrastructure-Provided FileClose Method..........ccocviiiiiiiiiiiiiiiiiene, 12y
12.7.29 STI Infrastructure-Provided FileGetSize Method 3
12.7.30 _ STI Infrastructure-Provided FileRemove Method B
12.7.31 STI Infrastructure-Provided FileRename Method)
12.7.32 __ STI Infrastructure-Provided FileGetFreeSpace Methodc.cccoevivieirienne. 129
12.7.33 STI Infrastructure-Provided MessageQueueCreate Method.........c..cccovveeneeee.. 130
12.7.34 STI Infrastructure-Provided MessageQueueDelete Method.........c..cccovveeeeee.. 130
12.7.35 STI Infrastructure-Provided PubSubCreate Method L
12.7.36 STI Infrastructure-Provided PubSubDelete Method p
12.7.37 STI Infrastructure-Provided Register Method..........coocooevviiiiiiiiiiiiiicnnn, p
12.7.38 STI Infrastructure-Provided Unregister Methodcoocoviniiiiiiiiiiiiene, 138
12.7.39 STI Infrastructure-Provided GetNanoseconds Method...........c.cccoeecviiiiennene. 138
12.7.40 STI Infrastructure-Provided GetSeconds Method f
12.7.41 STI Infrastructure-Provided GetTimeWarp Method..........ocooveeevieieiiinenee. 134
12.7.42 STI Infrastructure-Provided TimeAdd Method..........ccoceiiiiiiiiiiiiiiiiine, 135
12.7.43 STI Infrastructure-Provided TimeSubtract Methodcoccovviiiiiiiiinne, 135
12.7.44 STI Infrastructure-Provided GetTime Method.........coocoovevviiiiiiiiiiiiiienen, 136
12.7.45 STl Infrastructure-Provided SetTime Method 5 Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 b

12.7.46 STI Infrastructure-Provided GetCalendarTime Methodcooeveeiieiecneene, 137
12.7.47 STI Infrastructure-Provided SetTimeAdjust Method...........ccooccovviiiiiiinne 140
12.7.48 STI Infrastructure-Provided GetTimeAdjust Methodccoeeeiiiiiiiiiiinene, 141
12.7.49 STI Infrastructure-Provided TimeSynch Methodccccocvvieeiiiiiiiiniiiiciisiians 141
12.7.50 STI Infrastructure-Provided Sleep Methodc.ccooeviiiiiiiiiiiiiiiiiiice,
12.7.51 STI Infrastructure-Provided DelayUntil Method

12.7.52 STI Infrastructure-Provided ConvertToTimeWarp Methodc..cccovvveenneee. 144

12.8 External Command and TelemMEtrY . ..o.uiiueiceiiie it ciessiessieeseae e s sneeanes

12.8.1 Respond to External COMMANGS......ceevieiiiiiiiiiiiiiiiisisii st
12.8.2 External Commands Use STI API
12.8.3 Document External ComMmMAandScocviviiiiieiiiiiiieiiiisesiieseseei e
12.8.4 Use STI Query for External Data..
12.9 Clock Control INterfacecueeveiiseiiiiiiiieiiieisisi e
12.9.1 STI Infrastructure-Provided CLK_GetTime Methodcccooveniiiiiiiiiiiee, 146
12.9.2 STl Infrastructure-Provided CLK_SetTime Methodcccoccvvviiiiiiiiiieiie, 146
12.9.3 STI Infrastructure-Provided CLK SetTimeAdjust Methodccccoevvieiiciiinnnns 147
12.9.4 STI Infrastructure-Provided CLK_GetTimeAdjust Method.... . 147
12.9.5 STl Infrastructure-Provided CLK_Sleep Method......oo..ovveeeveeeiseceseccssicesnes 148 | Formatted: Default Paragraph Font
Formatted: Default Paragraph Font

12.9.6

STI Infrastructure-Provided CLK DelayUntil Method........cccccovviiiiiiiiicieiiinnnas 148

Formatted

: Default Paragraph Font

Formatted:

Default Paragraph Font

/ /| Formatted:

Default Paragraph Font

Formatted:

Default Paragraph Font

/| Formatted:

Default Paragraph Font

" | Formatted:

Default Paragraph Font

| Formatted:

Default Paragraph Font

Default Paragraph Font

‘| Formatted:

Default Paragraph Font

" | Formatted:

Default Paragraph Font

" | Formatted

: Default Paragraph Font

| Formatted:

Default Paragraph Font

‘| Formatted:

Default Paragraph Font

| Formatted:

Default Paragraph Font

| Formatted:

Default Paragraph Font

[
[
[
(
(
{
(
{
[Formatted:
A
(
{
{
{
{
{
{

/ | Formatted:

Default Paragraph Font

o G G JU L U U U)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

6 Space Telecommunication Interface (STI), v1.0 -- beta 2

{ Formatted
! { Formatted
[Formatted

1

Formatted

Formatted

[Formatted
) [Formatted

A

' [Formatted

Formatted

' [Formatted

[Formatted

Formatted

) [Formatted

Formatted

Formatted

{ Formatted

A

Formatted

[Formatted

7

/' [Formatted

Formatted

) [Formatted

b

Formatted

[Formatted

P

Formatted

{ Formatted
) { Formatted
/) [Formatted

Formatted

{ Formatted
4 { Formatted

{ Formatted

g

' { Formatted

-]
[
]
s
(]
£
A
)
'S
J

L

Formatted
Formatted

°
[
]
s
(]
£
A
)
™

| Formatted
‘| Formatted

) { Formatted

2k

Ovepsiew
Diuirnnaca

Eundamantal Dacian

oo e e P e S g

oYV o e G GO s s s e e ey

8 Hardwara Architactura
oo

81

Combponents
SOMPORERS—

1

St

Funetions

2

U LA Al S I O O O O O O O E L L LN

8.1

Extarnal Ilntarfacas
exteaHte e S

3

91

5o

24
o

Neabworking Intarfaca
NEtWOHHGHHEHaCe—

4
4

a1
©

Intarnal Intarfaecacs

24

O HI TG S T T T e T e e e e

5

81

82

Module-Snecification
MOt eopecHGa O e

Sianal Processinag Modula

=

829
E=0

Dt T HoOCE SO VIOt

Radia Eraauaneyvy Maodula

o

8213
=5

Netwaorkina Modula
NEWOHARg VOGS

At equCHSy VOO o e

Securib.Modula

824

Ontical Maodula
SpHEAVIOGHHE—

Coanitive Modula

SogHthy

827

8246
=)

ha=x

Control and Data Interfaca

ot ata H e oGt e e

831
=4

Onarating Powar Intarfaca
pertRgr-ower+HeHace—

Anplication-Architectura
AppHEHeR-ArfcHte et e e

839
Fooaa

9-

Softwara Architectura
SwWare-Afreteetr e —

102

10-.

s

S0
o

APl Ouarviaw

X+

Infrastruetura

103

i

Intarface Structure

1031
g

HCHACC OtHHCtHH e T T

[~
o

Imnlemeantation
tHpreReatHO e e e e e

1032

1041

9o

5B
>

Data Tvnas

iy

Constants

042
O

1
e

IS

(ST, v1.0 -- beta 2

Space Telecommunication Interface

[Formatted

{
{
[
[
[
(
(

[Formatted
(

[Formatted
[Formatted
[Formatted

Formatted

Data Trancfar Intarfaca

105 4
Too4a

Formatted

57
<

Pt TR RGeS T T e e e

Formatted

58
20

AL N O O O O O L E O NN

STILAP}

59
©

Geanaral Uil AR

Formatted

10 61
e

106
o

Formatted

59
=4

OO A I T T e

Annlication Control AP

\PRHEaton

1062
Faacaa

Formatted

82
oL

Davica Control APR]
VeSO oAt e e e e

1063
AT

Formatted

63
OO

Data Transfar API
Hatd— RS A

1064
oo

4
4

A
©

| og- APl

1065
o

Formatted

{ Formatted

{

684

Eila ADI

1066
900

Formatted

AT L A L T

Messaaina-APRl

(AL

{ Formatted

{
{
{
{
{
{
[

66
A

1067
i

1068 Time APJ

s

Formatted

680
O

Onarating Svuctam Intarfaeca

1071

Formatted

Rty oy ottt e Habt =

i

Formatted

Formatted

3
=4

_7

Normative Reauirameaents
Ot e-<egquHemeMmsS—

A2

=7

Formatted

73
4
73

Formatted

Pravida GPMNM

121

Hardwara
g

=

Formatted

Formatted

[Formatted
' [Formatted
4 [Formatted

73

Document RE

123
et

127

74
4

Document-Interfaces
PO e ACe S

[Formatted

i

Formatted

74

Controllahle Erom OFE

12 11

{ Formatted

{ Formatted

“r

1c \Wrannar

OHtroHacHe 1o

Platfarm Snae

ST

12 12
T

[Formatted

Documeaent EPGA _Intarfacas

ot opPeS

p [Formatted
[Formatted
S [Formatted
~ [Formatted

75

ST Infrastructura Llsas APD ADI

DOCoHHCHt T o/ v H R aCe o=
O HHH Aot Gt e o Sto 7/t

12 13
Faarad
Softwara
OOHWaAre——
1217

=t

{ Formatted

[
{

[Formatted
[

, [Formatted

Formatted

Formatted

Formatted

Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted

Formatted

Formatted

/| Formatted

Formatted

Formatted

' /| Formatted

Formatted

/' /" /| Formatted

Formatted

/ | Formatted

£ | Formatted

V4 | Formatted

/ | Formatted

~ | Formatted

" | Formatted

Formatted

| Formatted

Formatted

Formatted

| Formatted

| Formatted

Formatted

Formatted

| Formatted

x Formatted

) Formatted

N Formatted

: " | Formatted

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

b Formatted

| Formatted

| Formatted

| Formatted

" | Formatted

Formatted

Formatted

Formatted

| Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

[
[
[
[
[
[
[
(
(
{
(
(
{
{
{
{
[
[
[
[
[
[
[
[Formatted
[
[
(
[
(
(
(
[
[
[
[
[
[
[
[
[
[
[
[
(
(
{
{

Formatted

alalnialala)slslsialalalslslslalsla)slsislslsllelslsiells)slsielslsls)elsislellis)elselsl

Formatted

Formatted

Formatted

/| Formatted

Formatted

Formatted

' /| Formatted

Formatted

/' /" /| Formatted

Formatted

/ | Formatted

' | Formatted

V4 | Formatted

/ | Formatted

~ | Formatted

" | Formatted

Formatted

| Formatted

Formatted

Formatted

| Formatted

| Formatted

Formatted

Formatted

| Formatted

x Formatted

) Formatted

N Formatted

: " | Formatted

Annex A:

Language Translations

10

Space Telecommunication Interface (STI), v1.0 -- beta 2 -

[
[
[
[
[
[
[
(
(
{
(
(
{
{
{
{
[
[
[
[
[
B
[Formatted
[
[
[
(
[
(
(
(
[
[
[
[
[
[
[
[
[
[
[
[
(
(

\\ Formatted

| Formatted

| Formatted

| Formatted

" | Formatted

Formatted

Formatted

Formatted

| Formatted

Formatted

Formatted

Formatted

Formatted

N\ _ | Formatted

Formatted

nlalaialalalalslslslalsls)slsislslsla)slsisislslslslslsisisl)elslssialls)slseislimm)

Formatted: Default Paragraph Font

Al C LaNQUAQE MaPPING ..uveirieieeiiitieitssitesiieisssesessseeeisssssssasssasssassssnsesanesasssssssesnsesaness 151

A2 C++ Language MaPPING ..ueeeeireieeiriiresseissasiessssiseissaseassssesissaseaseasssssssssseansesssans 158

A.3 Python Mapping .. 155

A4 PEIT MAPDING 11ttt ittt et s it see s et e steseteeeiessssessesssesasesansesssesssesssseasessrsansesanees /

A5 RUDY IMADDING 1ttt se et steebesessresnbesbeabessseseeanssebesrsesreansearensesnnssns /

A.6 JAVA IMADDING . ettt ettt e it e st e et e stteesbtesnbeetsesbesabeeasesenssabeeaneeanesanreanes B

A7 LU MAPDING 1ttt ettt e st e e et e stteeeheestesatees et eansesabeesnseeaneeanseesnsesnseanneesnsaans B

. i b {Formatted: Default Paragraph Font

; [Formatted: Default Paragraph Font
) [Formatted: Default Paragraph Font

Al PRef-Mappirg——rrrreeee e 13 {Formatted: Default Paragraph Font

A5 T T e 13 [Formatted; Default Paragraph Font

A6 Tava Mannina 12

Ab JavaMappiig e ——————————— 132 {Formatted: Default Paragraph Font

A7 I 1ua Manning 12

F bbbl o i B L L L TOLr [

Formatted: Default Paragraph Font

(D U WD, U W W |

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 1

Index of Tables

Table 1: Module Interface CharaCterizationcc.ciceiiieiiiieiiiiiesiissiiesieecisssiesseeasesssieesseeanes 51
Table 2: Example Operating POWEr INtErfaCe .. .ciiiiiiiiiiiiiiiiiisieiisiisitisissssesitesississssieeseeaneans 52
Table 3: Software ComMPONENT DESCIIDTIONS ... uriieieeiiieietriesirereieresiseresiseesssseresiseresieresssseeesseees 58
Table 4: FUNCLION AIEINAIIVES. .. .uiiiueeiieiitt it sie st s st eeiesetesseessresssteseeeisesasesasseaseesnsesnseaneees 81
Table 5: STI Variable Types. .

TaDIE 6: ACCESS WVAIUBS ...ttt ettt setessieeitesstteseteestsssstsstessntssasseanseessssasesanseassasesssesansees

Table 7: CalendarKind ValUES........ceeiuiiiieiiieiiieeiitsiiesieesiteeiseesiseeisssesesseeisesssesaseeaseessesnsesnees 88
Table 8: HANGIEID VAIUESoveiiiieii ittt etteesiseetessiesssesasesssesessessssssasesanesesnsassesanees 89
Table 9: RESUIE WaAIUESeiiuiiiitie ittt sie e it s st s eteeeeteessseasessnsesssseanseessssssesanseasessnsesasssanses 89
Table 10: HANAIe NAME VAIUESviiuiiiiiiiiiiiiiiitiiisitssissesitsasessiesisesssssssssassssseesseasesnsessessseassanssnens 90
Table 11: Property NAME VaAIUEBScoiuiiiiitiieiittieestiesitteseiisetesesesssessesssstssasesssssssresirerssaseresaens 90
Table 12: Size LIMIt VAIUESeeiiiiiieiiieiiie it eiieittesieseteesiteessessisessssssseeanseeisssssesaseeaseesssessesannees 91
Table 13: TimeWarp Values.... .92

Table 4315: GetErrorQueug() DefINItION. .. .cuiiuii it cie et cie st esieeereeeeeesreasressreesssee e 113

Table 16: SetTimeAdjust() DefinitioNioueiiiieici i sce s ssisse s ereserseesessreeeresneeseeans 140

Table 17: GetTimEAdJUSE() DEFINITIONiiiriiiiitiiiiitiiisiteiieseresessreesisreesseserssaeresseressseessaseeesaes 141

Table 18: TimeSyNnch() DefiNitiONccucieiiieiiieeiieiiiiee s iissiteeeeeeeieeetsseteeieeesseesnreesseeesseesneeanes 141

Table 19: Sleep() Definition

Table 20: DelayUntil() Definition Formatted: Default Paragraph Font
Table 21: C Lanquage HEAAEE FIlES.ottt eiissiissiieesisssiessieeesseseeaessenanes 151 Formatted: Default Paragraph Font
Table 22: C Language Data TYPe MapPPiNg.......cueeiiiiiieiiiiiieiiiieeii i 152 Formatted: Default Paragraph Font
Table 23: C++ Language Header FileS.........c.coccoioiiiiiiciiiiciisc 153 Formatted: Default Paragraph Font
Table 24: C++ Language Data TYPe MapPRiNg ..civeiriieiiriiiiiriiiiiiiiisieaisesssiissisesssesssssessesseeseas 154 :

Table 25: Python Language Data TYPE MaDDING ceueeeereriesesesiesssssssrssesssssssessesssessssssssssssesesees 156 Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

-~

el AR AR i

ahla Funes | 1
Tape-d—uneHeR-AteratVe S T R R 1
Table 5- ST \/ariable Tvpes 75 Formatted: Default Paragraph Font
eBteo—oH-Yaranie es o
Fable-6-Aeeess - Formatted: Default Paragraph Font
ahla C 77
a6 —
Tabhle 8- H 78
Jante8H 3
ahla Q- -9 /| Formatted: Default Paragraph Font
antedR 1
. /| Formatted: Default Paragraph Font
Tabledd-Nreperyblame-Constertt—rmre e 80 Formatted: Default Paragraph Font
Fable-12:-Size-Limit-Constants 80
A el Ll Formatted: Default Paragraph Font
Table-13-TimeWarmp-Constants e e e 81
. /| Formatted: Default Paragraph Font

/| Formatted: Default Paragraph Font

12 Space Telecommunication Interface (STI), v1.0 -- beta 2

" | Formatted: Default Paragraph Font

" | Formatted: Default Paragraph Font

" | Formatted: Default Paragraph Font

[
[
[
(
[
[
[
[
[
[
[Formatted: Default Paragraph Font
[
[
[
(
(
{
[
[
(

o G G G JU U JC U)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

[Formatted
[Formatted
[Formatted

Formatted

{ Formatted

IR I I AR AR AR AR AR AR AR IR IR IR AR AR AR AR A AR AR AR A AN AR A AR AR AR A A - A - A - A - A - A
ARAR IR IR AR AR IR IR AR IRARAR AR AR AR AR IR IRARAR AR AR AR AR AR AR AR IR IR AR AR AN AN AN AN
- -
b 2 = e 3w e 3 = A =2 T N 3 = = = e | o3 = O = A = = O =3 (= = I N =20 = e 3 = = = A = = - =
IRARIRIRIRARIRIRIRIRIARIARIRIRIRIRIRIRIRIRARIARIR IR IRIRIR IR IR IRIR IR IR IR AR
E|E|E|E|E|E|E|/E E|E|E|E|E|E|E|E|E|E E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E
E E E E Y Y 1 1 1 1 1 1 - - E E E E 1 1 1 1 1 1 A - - - - - 1 1 1 1 1 1
6| 6|/o6|o6|o|oc|/c|/c/6/6/6|6|6|o6|c|oc|oc|loc 6|/6|c|o6|6|o6|/oc|c|oc|oc|loc|oc|oc|o6|o6|o|o|s
'S 'S
LD D oD ob ch. b e~ L =3 L D oD
ob|ab op ab|op|ap od P S| SH| P =) DD DD TN
HE H N H N H HEHE : o | - H | T

I o o g HIA:

T o g <) : 2.9. PRI
=D D E : BE T EFE
&EFF : £'F 3D =
<R £ g RN : GE | T €.

G g W L r r b 'S 4
mu/ﬁ“ FE DS DD DEG b A mw T .E D
TP pP RD 5 b E : %% Q
% QaQ TR bap) h @ . <8} T ‘g hnw. [aYles
PrrasFFES P F o La, FhEEEDT F £ ey
HEa3882283 L 2 e AEEE IS B & g P
5 i e T h - @ & DA
38D o P2 S @ 3 bl F D [a)] S D W
& oo DO < . T3 LLT D F< Ry
[NININENENENG 3 P& IHFSL L. T D 0|d ¢
alaad x> 222 >aa qF b o g g X E & T > D DD
of o o Wi o a; (@ D - I FELDD RS D = = =
<DL i) L Q’aciop op b D o= I TRITRIT
i NI oD P D0 DD N T LD & Ni OIN P DD i E) @ | 6D D DIt N DS
il et D op|ep op F S 9 5 5 0w LO | Lp D D D D
PP QPR D P 2 4 Lreeee L2 LR
DR DD DD DD e B DD DD D) DD DD
G206 G G AG 20 20 A0 A0 A s G 5 G0 206 20 10 s GG G GG
A3f3RSR IS IR IS 3 S3fIpdIfINg 3fIpsudfaIpspsng

Formatted

[Formatted
{ Formatted
{ Formatted
{ Formatted
{ Formatted

[
[

1B

(ST, v1.0 -- beta 2

Space Telecommunication Interface

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

| Formatted: Default Paragraph Font

-~

Formatted: Default Paragraph Font

N
VI PP m

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

| Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

| Formatted: Default Paragraph Font

| Formatted: Default Paragraph Font

| Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

[
[
[
[
[
[
{
{
{
{
{
[
[
{Formatted: Default Paragraph Font
(
[
[
[
{
{
{
[
{
{
{
[
[

Formatted: Default Paragraph Font

o JC U JC G JC A A A U U

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

14 Space Telecommunication Interface (STI), v1.0 -- beta 2

Table of Figures

Figure 1:

RolEeS and RESPONSIDIITIES. .. .viiiueeiiieiisiitieiieeiitesteseteeiiessisessessseesiessseassesaseessessseeases

Figure 2:

Notional STI Hardware ArChiteCtUIEuicueiiiieiiiiieiiiiis it iesisss s e e seesisseesesseeaneaes

Figure 3:

GPM Architecture Details (Detail Of FIQUIE 2)....uuiiuiiiiiiiieiiiiiieciisiiiesiessiessssesseeanes

Figure 4.

SPM Architecture Details (Detail Of FIQUIE 2) ..ooiveiiiiiieiiiiiiiieiiccesieeesie s ssieeaneas

Figure 5:

RFM Architecture Details (Detail of Figure 2)...

Figure 6:

Software EXECUtION IMOUE]uuiiiuieiiiiitisiie s ceiieie s etiesteseiessieesiissresssesesssesnesaresaeeeas

Figure 7:

LaYEIe0 STIUCKUIE 1.oviiiieiitie it e it st seeeteeseteesteesetesaseeanbeesnseaseeaseesssesaseeasseenseesnseaseeansees

Figure 8:

Standards Conformance vs. Standards ComplianCe..........oocviiiuiiiiiiiiiieiiiieiieiieeeiinaes

Figure 9:

Application and DEVICE STIUCKUIEcvueiiueeiieiiieeiiieeiisseeiieeisessieesisessseessesaisesnseasseeannes

Figure 10

. Sequence Diagram for Application Control COMPONENtccccvieeiiiiiicieiiriireiresiens

Figure 11

: Sequence Diagram for INStantiateAPD ..ueiceiiceeiieeiiesciiiciiiieseresieeeiiesiessseesseereanes

Figure 12

: Sequence Diagram fOr ADOITADD ...iieei ittt eite st citeeieeeieesteeeiteeseeesbeesseesiseenreeanes

Figure 13

: Sequence Diagram for Device Control Component..

Figure 14

: Calendar Time Valug RepreSentatioNScueicueeieeiiriiiieiisiiiesiseeiseeiiessseesseesseesseans

Figure 15

2 Profile BUilding BIOCKScciiiiiiiiiiiiiiiiiieiieisiisssisiieasssssassssesssasssssessssssasssasesnsssanans

: Command and Telemetry INTEIFACES ...oiuiiiiiieii i iiiiie e s eieseieecieeeiesaneeseseereans

Figure 16

OO T T IO = TO O =T T T T TS T TG

[Formatted: Default Paragraph Font

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

| Formatted: Default Paragraph Font, (Asian) Chinese

(China), (Other) English (United States)

| Formatted: Default Paragraph Font, (Asian) Chinese

(China)

| Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Space Tel

ecommunication Interface—— (STI), v1.0 -- beta 2

16

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

Formatted: Default Paragraph Font, (Asian) Chinese
(China)

color: Auto, Pattern: Clear

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235904
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235905
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235906
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235907
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235908
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235909
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235910
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235911
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235912
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235913
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235914
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235918
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235919

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https.//www.omg.org.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the- OMG-websitethis URL at: htips.//www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

LOMG Headquarters,

9C Medway Road, PMB 274

Milford109-Highland-Avenue
Needham, MA 0249401757, «

el e
Needham, MA 02494
USA

Tel: +1-781-444-0404,

Formatted:

Font: Italic

Formatted: Body, Space Before: 7.9 pt, Line spacing:
At least 5 pt, No widow/orphan control, Don't allow
hanging punctuation, Don't adjust space between Latin

and Asian text

Formatted:

Font: Times New Roman

Font: Times New Roman, 10 pt

Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

[
[
[Formatted:
[
[
[

Formatted:

Font: Times New Roman, 10 pt

L

Formatted:

Indent: Left: 0.02", Right: 0.03", Space
After: 0.5 pt, Line spacing: Multiple 1.03 li, Allow
hanging punctuation, Adjust space between Latin and
Asian text, Tab stops: Not at -0.35" + 0.15" + 0.65" +
115" + 1.65" + 2.15" + 2.65" + 3.15" + 3.65" +

415" + 4.65"

Formatted:

Font: Times New Roman

Formatted:

Font: Times New Roman

Formatted:

Font: Times New Roman

Formatted:

Font: Times New Roman, 10 pt

JFax: +1-781-444-0320,

[Email: pubs@omg.org,

Certain OMG specifications are also available as ISO/IEC standards. Please consult https://www.iso.org/

16 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted:

Font: Times New Roman

Font: Times New Roman, 10 pt

Formatted:

Font: Times New Roman

Formatted:

Font: Times New Roman, 10 pt

Formatted:

Font: Times New Roman

Formatted:

Font: 10 pt, Italic

Formatted:

Font: Times New Roman, 10 pt

Formatted:

[
[
[
[
[
[Formatted:
[
[
[
[
[
[

Font: 10 pt

Formatted:
color: Auto,

Default Paragraph Font, Font: 10.5 pt, Font

Pattern: Clear

|
|
|
|
|
|
|
|
|
|
|
|
|

https://www.omg.org/
mailto:pubs@omg.org
https://www.iso.org/

4+ Rold:-—Pp 1ne lanagus H lement
€= —TEOGE g—=anguayq €5~

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification via-the-report
form-atto:

https://www.omg.org/report _issue.htmhttps:#issues.omg.orglissuesicreate-new-issue

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 17

https://www.omg.org/report_issue.htm

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
/| color: Auto, Pattern: Clear

18 Space Telecommunication Interface (STI), v1.0 -- beta 2

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

1P

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

20

Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 2l

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
" | color: Auto, Pattern: Clear

22 Space Telecommunication Interface (STI), v1.0 -- beta 2

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

2%

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

24 Space Telecommunication Interface (STI), v1.0 -- beta 2

1. Scope

This document, the Space Telecommunication Interface (STI), specifies the data types, application programming
interface, and associated operational patterns that compliant software defined radio (SDR) platforms are required to
implement. This is intended to promote portability of SDR applications between radio platform providers by
providing a common programming interface.

In order to be adaptable to a wide variety of platforms and applications, this specification focuses on a metamodel
for the hardware and software architecture of an SDR, rather than prescribing a specific implementation. As such,
an adequate level of knowledge capture must be documented to facilitate portability and reuse of hardware and
software architecture.

2. Conformance

In this document, conformance or compliance is used to indicate normative elements; that is, they are to be followed
in order to comply with the specified requirements. Shall is used to indicate a requirement that is contractually
binding, meaning it must be implemented, and its implementation verified. Will is used to indicate a statement of
fact. Will statements are not subject to verification. Should is used to indicate a goal which must be addressed by
the design team but is not formally verified.

The primary point of conformance is support of the given platform independent model (PIM) described in section l
12, Normative Requirements,-+2;- Normative Requirements; in this document. This specification concerns multipl
aspects of SDRs, with different specific points of conformance for each aspect. Hardware architecture conformance
is indicated mainly through a hardware interface document (HID), which specifies how the PIM is realized in a
given design. Software architecture conformance is based on the implementation and usage of the various software
interfaces prescribed in this document. Ellipses (...) are used to indicate continuation or user-defined values,
whether enclosed in braces or not. The platform specific model (PSM) language-specific requirements are indicated
in Annex A. To summarize, section 12 and portions of Annex A that pertain to the language of implementation are
normative.

3. References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do
not apply.

Object Management Group (OMG):

CPP C++ Language Mapping Specification (https://www.omg.org/spec/CPP/)
DDS-JAVA Java 5 Language PSM for DDS (https:/www.omg.org/spec/DDS-Java)

IDL Interface Definition Language Specification (https:/www.omg.org/spec/IDL)
PYTH Python Language Mapping Specification (https://www.omg.org/spec/PYTH)
SysML Systems Modeling Language Specification (https:/www.omg.org/spec/SysML/)
UML Unified Modeling Language Specification (https://www.omg.org/spec/UML/)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 25

https://www.omg.org/spec/CPP
https://www.omg.org/spec/CPP/
https://www.omg.org/spec/DDS-Java
https://www.omg.org/spec/IDL
https://www.omg.org/spec/IDL
https://www.omg.org/spec/PYTH
https://www.omg.org/spec/PYTH
https://www.omg.org/spec/SysML
https://www.omg.org/spec/SysML/
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML/

Institute of Electrical and Electronics Engineers (IEEE):

IEEE Standard for Information Technology—Standardized Application Environment Profile
1003.13 (AEP)—POSIX® Realtime and Embedded Application Support (e.g.
https://standards.globalspec.com/std/896855/I[EEE%201003.13)

International Organization for Standardization (1ISO):

Data elements and interchange formats - Information interchange -
8601 Representation of Dates and Times (e.g. https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70908.html)

Information technology—Programming languages—C (e.g.

899 https:/standards.globalspec.com/std/10395283/ISO/IEC%209899)

9945 Information technology—Portable Operating System Interface (POSIX®) Base Specifications
(e.g. https:/standards.globalspec.com/std/10153436/DS/ISO/IEC/IEEE%209945)

14882 Information technology—Programming languages—C++ (e.g.
https://standards.globalspec.com/std/10194484/ISO/TEC%2014882)

30170 Information technology — Programming languages — Ruby (e.g.
https://standards.globalspec.com/std/1518370/ISO/TIEC%2030170)

Other:

JAVA Java Language Specification (https://docs.oracle.com/javase/specs/jls/sel1/jls11.pdf")

LUA Lua 5.3 Reference Manual (https://www.lua.org/manual/5.3/)

PERL Perl Language Specification (https:/perldoc.perl.org/)

PYTHON Python Language Mapping Specification (https://www.python.org/doc/)

3.2 Non-normative References

The following documents provide additional guidelines, historical context or rationale for elements of this
specification.

Object Management Group (OMG):

Model Driven Architecture (MDA) Guide (https://www.omg.org/cgi-
bin/doc?ormsc/14-06-01)

PIM and PSM for Software Radio Components Specification (SWRADIO)
(formal/07-03-01) (https://www.omg.org/spec/SDRP/)

ORMSC/14-06-01

SDRP/1.0

National Aeronautics and Space Administration (NASA):

Space Telecommunications Radio Systems (STRS) Architecture Standard

NASA-STD-4009A (https://standards.nasa.gov/standard/oce/nasa-std-4009)

Space Telecommunications Radio Systems (STRS) Architecture Standard

NASA-HDBK-4009A Rationale (https://standards.nasa.gov/standard/oce/nasa-hdbk-4009)

Space Telecommunications Radio System (STRS) Architecture Goals/Objectives
NASA/TM—2007-215042 and Level 1 Requirements

(https:/ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008862.pdf) Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

26 Space Telecommunication Interface (STI), v1.0 -- beta 2

https://standards.ieee.org/standard/1003_13-2003.html
https://standards.globalspec.com/std/896855/IEEE%201003.13
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70908.html
https://www.iso.org/standard/74528.html
https://standards.globalspec.com/std/10395283/ISO/IEC%209899
https://www.iso.org/standard/50516.html
https://standards.globalspec.com/std/10153436/DS/ISO/IEC/IEEE%209945
https://standards.globalspec.com/std/10194484/ISO/IEC%2014882
https://standards.globalspec.com/std/1518370/ISO/IEC%2030170
https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf
https://www.lua.org/manual/5.3/
https://perldoc.perl.org/
https://www.omg.org/spec/PYTH
https://www.python.org/doc/
https://www.omg.org/mda/index.htm
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/spec/SDRP
https://www.omg.org/spec/SDRP
https://www.omg.org/spec/SDRP/
https://standards.nasa.gov/standard/nasa/nasa-std-4009
https://standards.nasa.gov/standard/nasa/nasa-std-4009
https://standards.nasa.gov/standard/oce/nasa-std-4009
https://standards.nasa.gov/standard/nasa/nasa-hdbk-4009
https://standards.nasa.gov/standard/nasa/nasa-hdbk-4009
https://standards.nasa.gov/standard/oce/nasa-hdbk-4009
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008862.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008862.pdf

Space Telecommunications Radio System Software Architecture Concepts and

NASA/TP—2008-214813 Analysis (https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080024190.pdf)

United States Department of Defense:

Digital Time Division Command/Response Multiplex Data Bus (e.g.

MIL-STD-1553 hitps://www.milstd1553.com/)

Software Communications Architecture Specification, Version 2.2.2

SCA (https:/sds.wirelessinnovation.org/assets/sca_version 2 _2_2.pdf)

4. Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Adaptability
Adaptability is the ease with which a system satisfies differing system constraints and user needs.

Application Program Interface (API)
An application program interface (API) is a formalized set of software calls and routines that can be referenced by
the application program in order to access supporting system or network services.

Board Support Package (BSP)

A board support package (BSP) provides the hardware abstraction of the GPM module for the POSIX -compliant
Operating System. It contains the boot and the generic and processor specific drivers required for the specific hard-
ware. The BSP leverages commercial off the shelf (COTS) device drivers and other software necessary for applica-
tions to access the specific hardware.

Component

A component represents a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment. A component exposes a set of provided and required interfaces that specify the
component behavior and operation.

Device

A hardware device is a physical entity that is capable of performing a function. A software device is a software
abstraction of a hardware device(s). A STI device is a software device that is part of the STI Infrastructure having a
well defined and portable API which may use the HAL to read, write, and control hardware devices.

External Interface
An external interface consists of software and/or hardware that enable signals to be transported to and/or from a
radio. Examples include interfaces to/from the flight computer, power, data sources/sinks, and antenna.

Facility
The realization of certain functionality through a set of well-defined interfaces.

Fault Management
Fault management is the set of functions that detect, isolate, and correct malfunctions within the system or provide
notifications.

General-purpose Processing Module (GPM) Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 2y

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080024190.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080024190.pdf
http://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=36973
https://www.milstd1553.com/
http://www.wirelessinnovation.org/assets/work_products/sca_version_2_2_2.pdf
https://sds.wirelessinnovation.org/assets/sca_version_2_2_2.pdf

A general-purpose processing module (GPM) is a hardware module used for general purpose processing that
contains the STI OE. The GPM consists of the general-purpose processor, appropriate memory both volatile and
non-volatile, system bus, the spacecraft (or host) telemetry, tracking and command (TT&C) interface, ground
support telemetry and test interface, and the components to support the radio configuration.

Hardware Abstraction Layer (HAL)

The hardware abstraction layer (HAL) is the library of functions that provides a platform independent view of the
specialized hardware by abstracting the physical hardware interfaces. The HAL implements any software or
firmware that is directly dependent on the underlying hardware. The HAL is the part of the operating environment
(OE) that the STI Infrastructure uses to access hardware.

Hardware Interface Description (HID)
The hardware interface description (HID) describes physical and electrical interfaces, hardware performance,
capability, capacity, size, weight, and power requirements.

Logical Device
A software component that is an abstraction of a hardware device it represents.

Mapping
The specification of a mechanism for transforming the elements of a model conforming to a particular metamodel
into elements of another model that conforms to another (possibly the same) metamodel.

Metamodel
A model of models.

Model
A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA)
An approach to IT system specification that separates the specification of functionality from the specification of the
implementation of that functionality on a specific technology platform.

Module

Module is a self-contained hardware or software component that interacts with a larger system. A software module
(program module) performs specific tasks within a software system. A hardware module is a physical grouping of
devices capable of implementing specific functions.

Platform
A set of subsystems or technologies that provide a coherent set of functionality through interfaces and specified
usage patterns.

Platform Independent Model (PIM)
A model of a subsystem that contains no information specific to the platform, or the technology that is used to
realize it.

Platform Specific Model (PSM)
A model of a subsystem that includes information about the specific technology that is used in the realization of it on
a specific platform, and hence possibly contains elements that are specific to the platform.

Portability
Portability is the ease with which a system application or service can be transferred from one hardware or software
environment to another.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
Portable Operating System Interface (POSIX) color: Auto, Pattern: Clear

28 Space Telecommunication Interface (STI), v1.0 -- beta 2

Portable operating system interface (POSIX) refers to a family of IEEE standards 1003.n which describes the funda-
mental operating system services and functions necessary to provide a UNIX-like kernel interface to applications.
POSIX is not an operating system but assures guaranteed programming interfaces available to the application pro-
grammer.

Radio Frequency (RF) Module (RFM)

The radio frequency module (RFM) performs the conversion to and from carrier frequencies and provides the signal
processing module with baseband or IF signals and the transmission and reception equipment with RF signals. RFM
associated components may include filters, RF switches, diplexers, low noise amplifiers (LNAs), power amplifiers,
and analog to digital (and vice-versa) converters. This module handles the interfaces that control the final stage of
transmission or first stage of reception of the wireless signals, including antennas.

Radio Platform
The Radio Platform is a platform that provides radio functionality.

Real-Time Operating System (RTOS)
Real-time operating system (RTOS) is an operating system that guarantees a certain capability within a specified
time constraint.

Reconfigurable Transceiver (RT)
A reconfigurable transceiver (RT) is a radio with limited processing and selectable remote reconfiguration (e.g.,
filter parameters and modulations).

Service
A software program that provides functionality available for use by other applications.

Signal Processing Module (SPM)

The signal processing module (SPM) contains the implementations of the signal processing used to handle the trans-
formation of received digitally-formatted signals into data packets and/or the conversion of data packets into digi-
tally-formatted signals to be transmitted. Also included is the spacecraft data interface. Components include applica-
tion specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), digital signal processors (DSPs),
memory, and connection fabric or bus.

Space Telecommunications Radio System (STRS)
Space telecommunications radio system (STRS) is the name of the project that defines and maintains the SDR
architecture for NASA.

STl Infrastructure

The STI infrastructure is that part of the STI operating environment which configures and controls STI waveforms
and services as well as specialized hardware via the HAL. Additional functionality may be required for radio robust-
ness and mission dependent requirements.

STI Operating Environment (OE)
The STI operating environment (OE) is the portion of the STI radio that contains the STI Infrastructure, the POSIX
conformant RTOS, the HAL, and optional middleware software.

STI Radio

A STl radio is a software defined radio compliant with the STI architecture standard, running one or more wave-
forms.

5. Symbols

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

The following acronyms and abbreviations are used in this document
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 2p

A
A2D
ADC
AEP
AGC
ANSI
API
APP
ASCII
ASIC
BIT
BSP
C&DH
CCSDS
COTS
B2A
DAC
DEC
DLL
DSpP
EDIF
EEPROM
FFRDC
FIFO
FIPS
FPGA
GPIO
GPM
GPP
GPS
HAL
HDBK
HDL
HID
HwW
1/0

I’)C

ID
IDL
IEC

30

Ampere
A oy, ﬁgtﬁ) gti
Analog-to-Digital Converter
Application Environment Profile
Automatic Gain Control
American National Standards Institute
Application Programming Interface
Application
American Standard Code for Information Interchange
Application-Specific Integrated Circuit
Built-in Test
Board Support Package
Command and Data Handling
Consultative Committee for Space Data Systems
Commercial Off the Shelf
.
Digital-to-Analog Converter
Digital Equipment Corporation
Dynamic Link Library
Digital Signal Processor
Electronic Design Interchange Format
Electrically Erasable, Programmable Read-Only Memory
Federally Funded Research and Development Center
First In, First Out
Federal Information Processing Standard
Field Programmable Gate Array
General Purpose Input Output
General-purpose Processing Module
General Purpose Processor
Global Positioning System
Hardware Abstraction Layer
Handbook
Hardware Description Language
Hardware Interface Description
Hardware
Input/Output
Inter-Integrated Circuit
Identification, Identifier
Interface Definition Language

International Electrotechnical Commission

Space Telecommunication Interface (STI

v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

IEEE
IF
INCITS
P

I1SO
ISR
LLC
LNA
MAC
MARS
MDA
MIL
MID
MMU
NASA
NM
NTP
OAL
OE
OEM
oM
OMG
ORMSC
0s
0SS
PIM
PLD
POSIX®
PROM
RAM
RF
RFM
ROI
ROM
RTOS
SCA
SDR
SEC
SEU
SNC TF

The Institute of Electrical and Electronics Engineers

Intermediate Frequency

Inter-National Committee for Information Technology Standards

Internet Protocol
International Organization for Standardization
HR‘F‘I. Pt 5 SFy 7.(\ =y %9]FHE‘

Logical Link Control or Limited Liability Company

Low Noise Amplifier

Media Access Control

OMG’s Middleware and Related Services
Model Driven Architecture

Military

Modified Julian Date

Memory Management Unit

National Aeronautics and Space Administration
Network Module

Network time protocol

OEM adaptation layer

Operating Environment

Original Equipment Manufacturer
Optical Module

Object Management Group

Operational Research MSc Programmes
Operating System

Open Source Software
Platform-Independent Model
Programmable Logic Device

Portable Operating System Interface
Programmable Read-Only Memory
Random Access Memory

Radio Frequency

Radio Frequency Module

Return on Investment

Read-Only Memory

Real-Time Operating System

Software Communications Architecture
Software-Defined Radio

Security Module

Single Event Upset

OMG’s MARS Secure Network Communications task force

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

SPM
SRAM
STD
STI
SysML
TAI
TCP
TMR
TT&C
UML
UTC

V&V
VDD
VHDL
VHSIC
XML

6.

6.1

Signal Processing Module

Static Random-Access Memory
Standard

Space Telecommunication Interface
Systems Modeling Language
International Atomic Time (temps atomique international)
Transmission Control Protocol
Triple-Mode Redundancy

Telemetry, tracking, and command
Unified Modeling Language
Coordinated Universal Time

Volt

Verification and Validation

Version Description Document

VHSIC Hardware Description Language
Very High Speed Integrated Circuit
Extensible Markup Language

Additional Information

Acknowledgments

The following companies contributed to the development of this specification:

6.2

NASA Glenn Research Center
Sierra Nevada Corporation
Vantage Partners, LLC

HX5, LLC

Notation Clause

Colors are provided for clarification purposes only and are non-normative.

32

Space Telecommunication Interface (STI

v1.0 -- beta 2

[Formatted: Font: 10 pt

Formatted: Text body (user), Adjust space between
Asian text and numbers, Font Alignment: Auto

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

7. Goals and Objectives

7.1 Overview

The goals and objectives of the Space Telecommunication Interface (STI) architecture for software-defined radios
(SDRs) is to provide a common, consistent framework that abstracts the application software from the platform
hardware to reduce the cost and risk of using complex reconfigurable and reprogrammable radio interfaces across
different space and satellite projects. It achieves this objective by defining an architecture to enable the reuse of
applications (waveforms and services implemented on the SDR) across heterogeneous SDR platforms and thereby
reduces dependence on a single vendor or platform type.

The specification provides a detailed description and set of requirements to implement the architecture. The
specification focuses on the key components and facilities by prescribing their functionality and interfaces for both
the hardware and the software. The intended audience for this specification is composed of software and hardware
developers who need architecture specification details to develop an STI platform or application.

7.2 Purpose

The purpose of this specification is to establish an open architecture specification for space and ground SDRs.
Many space projects either use hardware radios, which cannot be modified once deployed, or software-defined
radios with an architecture that depends on the radio provider and involves significant effort to add new
applications.

This specification is intended to assist in the development of software-defined, reconfigurable technology to meet
future space communications and navigation system needs. Software-based SDRs enable advanced operations that
potentially reduce mission life-cycle costs for space or ground platforms. Since SDR technology allows radios to be
reconfigured to perform different functions, it may reduce the number of discrete radio devices required to achieve
desired objectives, which also decreases mass and power requirements for the overall system.

7.3 Key Architecture Requirements

The key goals in the development of the STI architecture are to decrease the development time, cost, and risk of
using SDRs while still accommodating advances in technology. The advent of software-based applications allows
minimal rework to reuse applications and to adapt to evolving requirements.

The requirements for the architecture are derived from the following STI goals and objectives:
+ Usable across most space project types (scalability and flexibility).
+ Decrease development time and cost.
Increase reliability of SDRs.
Accommodate advances in technology with minimal rework (extensibility).
Adaptable to evolving requirements (adaptability).

Leverage existing or developing standards, resources, and experience (state-of-the-art and state-of-
practices).

+ Maintain vendor independence.
+ Enhance waveform application portability and re-usability.

Interoperable with existing radios

Conversely, the architecture does not specify mission-specific functional and performance requirements such as:

Any specific hardware
Formatted: Default Paragraph Font, Font: 10.5 pt, Font

Contents or format of the external interfaces to the SDR color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 3B

+ Waveform-specific requirements such as data rate, coding scheme, and modulation and demodulation
techniques.

+ Security, fault tolerance, redundancy, and fault mitigation approaches.

Instead, the architecture is careful to enable all solutions that the project might require as they relate to the mission-
specific functional and performance specifications. The architecture does not preclude the implementation of
mission-developed services on the SDR, including but not limited to:

« Multiple waveforms operating simultaneously across any RF band defined in the SDR specification.
+ Commanded built-in-test (BIT) and status reporting.

+ Real-time operational diagnostics.

+ Automated system recovery and initialization.

+ Networking and navigation within the SDR.

+ Secure transmission.

+ Shared processing among on-board elements.

To meet these goals and objectives, the STI architecture has an open architecture design that accommodates a
varying range of radio form factors. Historically, users have experienced up to 98% software reuse. The
architecture has allowed parallel and independent software and platform development as well as reduced
dependence on a single SDR provider by separating application development from the hardware platform
development. The architecture has also allowed the software to be modified late in development or after deployment
for new requirements opportunities or to fix bugs. The architecture provides standardized interfaces for cognitive
engine inclusions across different platforms.

7.4 Fundamental Design

This STI Standard consists of hardware, configurable hardware design, and software architectures with
accompanying description, guidance, and requirements.

The terms “software” and “configurable hardware design” are used in this specification to distinguish the
architecture items that apply to code (source code, object code, executables, etc.) implemented on a processor; and
designs (hardware description language/HDL source, loadable files, data tables, etc.) implemented in a configurable
hardware device such as a field programmable gate array (FPGA). Both items can change the functionality of the
radio in-situ using program control. The term “software” is also used in a generic sense in this specification to
discuss all configurable items of the radio, including configurable hardware design. The terminology used is not
meant to imply design and implementation process.

The STI hardware architecture is specified at a facility level. The hardware architecture requirements are written so
that the hardware provider defines the functional breakdown (modules or components) of the system and publishes
the functions and interfaces for each module and for the entire platform in a hardware interface description (HID)
document. This information enables others developing applications or additional modules, or interfacing to the
platform, to have the knowledge to integrate and test the hardware interfaces and understand the features and
limitations of the platform. This specification encourages the development of applications that are modular,
portable, reconfigurable, and reusable.

The software architecture is the focus of this STI Standard. STI applications use the STI infrastructure-provided
application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload
an application. The software architectural model describes the relationship between the software elements, defined
in layers, in an STI-compliant radio. The model illustrates the different software elements used in the software
execution and defines the API layers between an STI application and the Operational Environment (OE), and
between the OE and the hardware platform.

The STI software layers are separated to enable developers to implement the software layers differently according to
their requirements while still complying with the STI architecture. A key aspect is the abstraction of the STI

application, which is either a waveform or service, from the underlying OE software to promote portability and Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

34 Space Telecommunication Interface (STI), v1.0 -- beta 2

reusability of the STI application. Interfaces in STI software architecture can be divided into three general
categories, as follows:

The STI APIs, defined in this document, and the application-specific data structures associated with these
APIs.

The operating system interface, such as POSIX®.

- The interface to external software modules, Hibsarieslibrarics. or dependencies, such as third-party signal |
processing software, mathematical toolkits, or an interface to any application-specific hardware.

The STI APIs provide the interfaces that allow applications to be instantiated and use platform services. These APIs
also enable communication between STI applications and the STI infrastructure. The hardware abstraction layer
(HAL) provides a software view of the specialized hardware by abstracting the physical hardware of interfaces. It is
to be published so that software and configurable hardware design running on the platform’s specialized hardware
can integrate with the STI infrastructure.

7.5 Roles and Responsibilities

The final configuration of an SDR and its applications is generally a product of multiple organizations performing
various tasks. The separation of requirements, responsibilities, and resulting tasks is assigned in this specification
by logical role where each role has requirements that may be satisfied by an individual or delegated to a subordinate
organization(s). As ‘ﬁgure 1, Roles and Responsibilities, illustrates, the effort begins with a mission need for a radio,
which could support communications, navigation, and in some instances even networking functions. The mission
system engineer defines radio interface requirements. For each mission, the system integrators, platform providers,
and application developers are selected. Eventually, the platform and applications are integrated into the STI-
compliant radio product. Both the hardware and software are tailored to meet mission-specific needs.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 3b

Commented [HLM(L1]: JIRA issue STI_5: Correct
SysML in figures

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0

=D oo e et P Pt i R T o Sy e
L]
e e
| Becserenis
Grma i1
Tt i
ke 08 e
mmiremenes t
e s | .
oMG Project System Engineer Platiorm Provider Waveform Application Developer Radio Integrator “System Integrator
iput (" :Create
/‘E] Application
Requirements
Create sTI) s
‘ = Application
n W‘;q' Write WF |
STi Standard eettion
input | :Create |
(] ardware oot
WF Documentation
output
= Other Subsystems

input,_[* i Create/Buy S |
output
os

input_ (" Create FPGA |
1220 *Wrapper

nputt jnput

[iCreate Radio |

st (" iCreate)
] ntrastructure
T
puiput
Infrastructure
e ey
[} nput ~ [jnputt
output
(" :Create system
HAL ‘
output

oot _ SRR \

Formatted: Font: 10 pt, Not Italic

The STI platform provider is the organization responsible for the design and development of the SDR hardware { }
platform, including the STI OE (e.g., infrastructure, OS), and associated documentation. The OE and hardware { Formatted: Font: 10 pt, Not Italic }
platform are a unique set and become the SDR platform. { Formatted: Font: 10 pt, Not Italic }

The STI platform provider is responsible for following: F tted: Centered
ormatted: Centere

+ All documentation associated with the platform.
Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

+ Any platform-specific FPGA wrapper for adaptation of FPGA code to the platform

Vi
<

A J
36 Space Telecommunication Interface (STI), v1.0 -- beta 2

Software header files specifying the required interface, including keﬂstamspredeﬁned valuesL type | Commented [HLM(L2]: JIRA issue STI_31: Change
definitions, and structures. “constants” to “predefined values”

Script or software configuration file formats, any extensible markup language (XML) schema, and any
transformation tool for controlling instantiation, and their associated documentation, if deemed necessary.

If the STI platform provider delegates responsibility for part of the OE to a separate infrastructure provider, the
responsibility for the appropriate files and documentation may be delegated to that provider as well. If the STI
platform provider delegates responsibility for part of the hardware to a separate hardware provider, the responsibility
for the pertinent HID documentation may be delegated to that hardware provider as well. The STI platform provider
is ultimately responsible to integrate and deliver all aspects of the platform and OE documentation.

A primary objective of STI is to facilitate the re-use of SDR components, and as such, one or more repositories
containing existing, previously-developed STI components may be available for project development efforts. Any
such components may be publicly available and distributed under an open-source license or a
commercial/proprietary license, or may be held in a private, non-public repository that is maintained internally
within the same organization.

The project design team and the STI application developer have the responsibility to evaluate the contents of any
available component repositories against the SDR application requirements to determine if an existing application in
a repository may be re-used by porting it to the target platform. Depending on the results of this decision, the STI
application developer either creates a new application or ports an existing STI application. The STI application
developer performs unit tests;-andtests and documents the functionality. |

The STI integrator brings the hardware platform and software application together on the SDR platform. The STI
integrator could be the STI platform provider, the STI application developer(s), a mission engineer, or even a third
party. The STI integrator’s role is to have the application properly running on the SDR platform to meet the
communication, navigation, or other functions of the mission. Once the STI radio integration is complete, it is
delivered to a system integrator who incorporates it into the mission spacecraft system. ‘

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 3y

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

8. Hardware Architecture

In addition to providing benefits by defining a standard software infrastructure for software defined radios, this
specification also defines standards for the hardware portion of the radio. Hardware technologies may change more
rapidly than software, and each radio implementation generally has very specific spacecraft dependencies and
requirements. Therefore, the STI hardware architecture is specified as an abstract set of facilities rather than at the
physical implementation level.

The architecture does not prescribe a specific hardware implementation approach. An STI hardware platform is to

be delivered with a complete HID, which is described in section 8.3, Hardware Interface DescriptionHardware [Formatted: Font: 10 pt

Interface Deseription. The HID specifies the electrical interfaces, logic interfaces, connector requirements, and
physical requirements for the delivered radio. Each module’s HID abstracts and defines the module functionality
and performance.

8.1 Generalized Hardware Architecture
The STI radio hardware is divided logically into:

a. a general-purpose processing module (GPM) containing the software,

b. signal processing modules (SPM) containing programmable logic devices (PLDs), which perform any high-
speed digital signal processing, and

c. RF modules (RFM) containing the analog to digital and digital to analog converters with interfaces to the
antennas.

Configurable hardware designs are realized using a hardware device such as an FPGA or other type of
programmable logic device (PLD).

The hardware diagrams illustrate some likely radio functions and the interconnects for each module. The modules
are a logical and functional division of common radio functions that comprise an STI platform. Modules are not
intended to represent physical entities of the platform. As developers choose how to distribute and implement the
radio functions among hardware elements, the specification provides the guidance on the interfaces and abstractions
that are to be provided to comply with the architecture. The module and function connections provided in the
diagrams are data path, control, signal clock, and external interfaces.

TFigure 2L Notional STI Hardware Architecture, shows the high-level STI hardware architecture. The figure Commented [HLM(L3]: JIRA issue STI_5: Correct
illustrates the functional attributes and interfaces for each module. A module is a combination of logical and SysML in figures

functional representations of platform and applications implemented in a radio. The modules are divided into their
typical functions to provide a common description and terminology reference. Each STI platform provider has the
flexibility to combine these modules and their functionality as necessary during the radio design process to meet the
specific mission requirements.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

38 Space Telecommunication Interface (STI), v1.0 -- beta 2

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0

- General Purpose Processing Module_GPM (1]

: General Purpose Processor

Ground Test round Test +Ground Test intertace (1] ki
Test
+Waveform Application [1.] < Low Speed Signal Processing (1]
Contro Cootrol *Host_TTC interface (1] i
T el - Operating Environment (1]
ontrol
Sysiem 808
*Work Area Memory (1]]
System Bus
— T Radio Configuration and System Control (1]
 Peraistent Memory (1.7] A =

SystemBus.

>
Contrl
+ Signal Processing Module_SPM (1.1 + Radio Frequency Module_RFM [1]
, SystemBus
High Speed Digial Signai Processor 1.1 ol e B conrol
*Waveform Appication (1]
 Digital o Analog +Transmit RE ol
Data
[] e
e I |
Data Formatting [1] Testand Status [1] Control - eat o Mot e
+Data Butfer Storage (1] + System Control (1) Contro Clairol L Variable Gain Frequency Py g
= 1 , o + Antenna Control Int
Corirol
oata osts
SR spacecraft Data Interface [1] Clock Distribution [1] cock +Clock Interface ‘Antenna laterfoce 1 | 5
. =

Figure 2: Notional STI Hardware Architecture

Additional modules can be added for increased capability. The hardware architecture does not specify a physical
implementation internally on each module, nor does it mandate the standards or ratings of the hardware used to
construct the radios. Thus, a radio supplier can encapsulate company proprietary circuit or software designs,
provided the modules meet the specific architecture rules and expose the interfaces defined for each module. There
is flexibility to physically combine or split these modules as necessary during the radio design process to meet the
specific mission requirements or to optimize the design. For example, all RF and signal-processing components or
functions may be integrated onto a single printed circuit board, easing footprint, interface, and integration issues, or
an approach with multiple boards and enclosures could be used. Similarly, an FPGA could potentially contain both
the Signal Processing Module (SPM) functions and the General Purpose Processor (GPP), or the Signal Processing
Module (SPM) functions could be split between an FPGA and the GPM.

Each project or organization may choose to further standardize certain interfaces and physical packaging. This
approach provides organizations with the flexibility to adopt different implementation standards for various project
classes. Thus, if a series of radios are required with common operating requirements, physical construction details,
such as bus chassis or card slice, these radios can be part of the acquisition strategy. This modularity may improve
the overall cost-effectiveness of a radio system over its service lifetime.

Another example of the flexibility is where a large organization or space mission may choose to standardize the
details of the RF-to-signal-processing interface. This might be done to facilitate the use of different RF modules, but
the same signal processing module, for radios used for several similar missions. Figure 2 depicts radio facilities, or
elements, expected for each module in a notional sense. Not all the elements shown in each module are necessarily
required for implementation. This architecture specifies the functionality of each module, but it does not necessarily
specify how they are implemented. Mission requirements will dictate the implementation approach to each module,
and the modules required in each radio.

8.1.1 Components

The approach taken in the STI is to describe the radio hardware architecture in a modular fashion. The generic

hardware architecture diagram identifies three main functional components or modules of the STI radio. Although
Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 3p

not shown in figure 2, additional modules (e.g., optical, networking, and security) can be added for increased
capability and will be included in the specification as it matures.

The hardware architecture currently consists of the following modules:

General-purpose Processing Module (GPM), which consists of:

A suitable general purpose processor (GPP),

Appropriate memory (both volatile and nonvolatile),

System bus,

The spacecraft or host telemetry, tracking, and command (TT&C) interface,

Ground test interface,

Any required components to support the radio configuration.
Signal-Processing Module (SPM), which consists of:

o The signal processing used to handle the transformation of received digitally formatted signals into
data packets, and/or

The conversion of data packets into digitally formatted signals to be transmitted.

The spacecraft data interface, which represents any required Application-Specific Integrated Circuits
(ASICs), Digital Signal Processors (DSPs), FPGAs, memory, and connection fabric or bus.

Radio Frequency Module (RFM), which consists of:

The interfaces that control the final stage of transmission or the first stage of reception of the wireless
signals, including antennas.

Any required RF functionality to provide the SPM with the filtered, amplified, and correctly formatted
signal if acting as a receiver, and/or

o Any required RF functionality to format, filter, and amplify the signal from the SPM if acting as a
transmitter.

Its associated components include filters, radio frequency (RF) switches, diplexer, low noise amplifiers
(LNAs), power amplifiers, analog to digital converters (ADCs), and digital to analog converters
(DACs).

+ Security Module (SEC). Though not directly identified in the generic hardware diagram, an SEC is also
being proposed to allow STI radios to support future security requirements. The details of this module will
be defined in later revisions of the architecture.

Network Module (NM): The architecture supports Consultative Committee for Space Data Systems
(CCSDS) and Internet Protocol (IPs) networking functions. However, the Network Module (NM) may be
realized as a combination of both the GPM and SPM.

Optical Module (OM): This module supports the integration of optical equipment when used. The detail
of this module will be defined in later revisions of the architecture. (It has many similarities to RFM, but
for optical carriers)

Cognitive Module (COG): Though not directly identified in the generic hardware diagram, a COG is often
desired to allow STI to support interference mitigation, anti-jamming, and alternate relay paths to Earth
stations.

8.1.2 Functions

Test and status, fault monitoring and recovery, and radio and TT&C data-handling functions are to be implemented
on all modules to some level. The details of the implementation are mission specific. The related control and
interface requirements for the shared module functions are stated in the corresponding module section.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

40 Space Telecommunication Interface (STI), v1.0 -- beta 2

Test and Status

Each module (or combination of modules) should provide a means to query the current health of the module and run
diagnostics. The software methods for Query and RunTest are provided such that they may check the hardware state
as well as software values.

Fault Monitoring and Recovery

Each module (or combination of modules) should incorporate detection of operational errors, upsets, and major
component failures. These may be caused by the radiation environment, for example, including single-event upsets
(SEUs), temperature fluctuations, or power supply anomalies. In addition to detection, mitigation and fail -safe
techniques should be employed. Each module should have a default power-up mode to provide the minimal
functionality required by the mission. This fail-safe mode should have minimal software and/or configurable
hardware design dependency. Autonomous recovery is needed in the space environment when no operator is
available.

Radio Data Path

SDRs can be implemented with or without the GPM in the data path. The STI architecture supports the separation
of the RFM and SPM data paths from the GPM. Giving the GPM access to the data path as an optional capability
rather than a required capability allows for a more efficient implementation for medium and small mission classes
and improves the overall performance for near-term implementations. If space-qualified GPM components mature
with the performance capabilities required for signal processing, the GPM can exist within the data path and take on
more signal-processing functionality, increasing flexibility.

Radio Startup Process

The startup of the STI infrastructure is expected to be initiated by the STI platform boot process, so that it can
receive and send external commands and instantiate applications. The startup process might include built-in tests for
self-diagnostics to verify nominal system functionality. In order to control an STI platform at power-up and to
recover from error conditions, an STI platform is to have a known power-up condition that sets the state of all
modules. To support upgrades to the OE, an STI platform requires the ability to alter the state (boot parameters)
and/or select a boot image. The exact mechanisms and procedures used will be platform and mission specific but
need to be sufficient to support upgrades to OE components, such as the OS, BSP, and STI infrastructure.

8.1.3 External Interfaces

There may be several external interfaces in this architecture:

Host TT&C

The host TT&C interface represents the typically low-latency, low-rate interface for the spacecraft (or other host) to
communicate with the radio. The host telemetry typically carries all information sourced within the radio. This type
of information traditionally is called the telemetry data and includes health, status, and performance parameters of
the radio as well as the link in use. In addition, this telemetry often includes radiometric tracking and navigation
data. The command portion of this interface contains the information that has the radio itself as the destination of
the information. Configuration parameters, configuration data files, new software data files, and operational
commands are the typical types of information found on this interface.

Ground Test

The Ground Test Interface provides a “development-level” view of the radio and is exclusively used for ground-
based integration and testing functions. It typically provides low-level access to internal parameters not typically
available to the Spacecraft TT&C Interface. It can also provide access when the GPM is not functioning (i.e., during
boot).

Data

The Data Interface is the primary interface for data that are sourced from the other end of the link and for data that
are sunk to the other end of the link. This interface is separate from the TT&C interface because it typically has a
different set of transfer parameters (protocol, speeds, volumes, etc.) than the TT&C information. A common

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 4

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

interface point in the spacecraft for this type of interface is the spacecraft solid-state recorder rather than the
spacecraft command and data-handling (C&DH) subsystem. This interface is also characterized by medium to high
latency and high data rates.

Clock

The Clock Interface is used to input to the radio the frequency reference sufficient for supporting navigation and
tracking. This type of input frequency reference is essential to the operation of the radio and provides references to
the SPM and RFM. There does not have to be an external clock interface if the SPM or RFM contains an oscillator
that performs this function

Antenna

The Antenna Interface is used to connect the electromagnetic signal (input or output) to the radiating element or
elements of the spacecraft. It also includes the necessary capability for switching among the elements if required by
the mission. Steering the elements, if a function of the overall telecommunications system, is possible through this
interface, but it is not typically employed because of overall operational constraints.

Power

The Power Interface, which is not included on the diagram, is described as part of this specification at the highest
levels. The Power Interface defines the types and conditions of the input energy to power the radio.

Mission defined

The Mission-defined Interface, which is not included in the diagram, could monitor conditions that the radio
encounters such as external temperature, solar radiation, magnetic field strength, attitude, etc. The mission would
assign what to do with these values. A thermal interface that monitors temperature could be used to activate a
heating element or adjust dynamic factors dependent on temperature in a known way.

8.1.4 Networking Interface

A networking interface does not necessarily map directly to the SPM, GPM, or RFM. The networking interface
might handle only spacecraft TT&C data or both spacecraft TT&C data and radio data. This architecture allows for
those capabilities.

8.1.5 Internal Interfaces

To support the overall goals of the architecture, the internal interfaces (GPM system bus, GPM RFM control, SPM-
to-GPM test, frequency reference, and data path) should be well documented and available without restriction. The
GPM system bus (see figure 2) provides the primary interconnect between elements of the GPM.

The GPM system bus may provide an interface between the microprocessor, the memory elements, and the external
interfaces (TT&C and Test) of the GPM. The GPM system bus is the primary interface between the GPM and the
SPM, as shown in the interconnection with the major SPM processing elements. Finally, the GPM system bus
provides the interface by which the re-programmable and re-configurable elements of the SDR are modified. It
supports both the read and write access to the SPM elements, as well as the reloading of hardware configuration files
to the FPGAs.

The interface between the GPM and the RFM is primarily a control/status interface. Various RFM elements are
controlled by the set of GPM RFM control lines (see figure 2). Coming from the System Control block in the GPM,
this control bus can be either fixed by the System Control function or programmed by the GPM software and
validated and routed by the System Control function. It is important to have a hardware-based confirmation and
limit-check on the software controlling any RFM elements. The System Control module of the GPM provides this
functionality, thus keeping the GPM RFM Control bus within operational limits.

The Ground Test Interface (see figure 2) provides specific control and status signals from different modules or
functions to the Ground Test Interface block. This interface is used during development and testing to validate the
operation of the various radio functions. This interface is very specific to the implementation and realization of the

different modules.
Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

42 Space Telecommunication Interface (STI), v1.0 -- beta 2

The Frequency Reference Interface provides an important interface between the RFM and the SPM functions. It ties
the two modules together in a way that allows for the SDR to implement tracking and navigation functions. The
characteristics of this interface are defined by the various amounts of tracking accuracy required by the mission for
the SPM to accomplish. This interface can be as simple as a single, common frequency reference that is conditioned
from an outside source and distributed in the least degrading fashion possible to the SPM. Finally, the data paths are
the various streams of bits, symbols, and RF waves connecting the major blocks of the primary data path. For any
particular implementation, the data path or bit streams are defined by the particular application implemented in the
functional blocks.

The interface between the RFM and SPM should be well-defined and have characteristics suitable for that level of
conversion between the analog and digital domains. The hardware architecture can be further specified in a manner
that is important for implementers to consider and follow, if the implementation dictates the necessity of particular
components. Details of the GPM, SPM, and RFM are provided in subsequent sections.

8.2 Module Specification

8.2.1 General-Purpose Processing Module

Figure 3Figure-3, GPM Architecture Details, provides a closeup of the GPM. The GPM consists of one or more
general purpose or digital signal-processing elements and support hardware components, embedded OS, software
applications and interfaces to support the configuration, control, and status of the radio. The number of processing
elements and the extent of support hardware will vary depending on the mission-class processing and data-handling
requirements from a single system on a chip implementation for smaller mission classes to multiple logical
replaceable units (LRUs) for the largest mission classes. In addition, fault tolerance requirements can also increase
the number of hardware processing elements, support hardware components, and interface points required to meet

: General Purpose Processing Module_GPM [1]

Grourjd Test - : Ground Test Interface [1]] : General Purpose Processor

. [Systemus
Test Sl

| : wavetorm Application [1.] | ‘ : Low Speed Signal Processing [1]

|
= | | [:operating 0]

Control T 7 ‘

Gontrol | + Host_TTC Interface [1]

SystemBus |

‘ : Work Area Memory [1] |
1 System Bus ‘
T

L} ZHAD ‘ + Radio Configuration and System Control [1]

3
‘ : Persistent Memory [1."] 1 systemBus .

Control

b &
System Bus

Control Control
Figure 3: GPM Architecture Details_(Detail of Figure 2)

the range of mission classes. The majority of processing functions of the GPM will be under software control and
supported by an OS. Mission-specific data handling speeds may require the use of separate specialized support
hardware (FPGA or ASIC chips) to alleviate the burden on the processing elements. Such specialized support
hardware could include encryption, packet routing, and network processing functions.

GPM Components

The GPM contains, as necessary, a GPP and various memory elements as shown in Figure 3Figure-3. Depending 0*1
the particular project requirements, not all memory elements are required. The GPP will typically be implemented
as a microprocessor, but it could take many forms, depending on the type of deployment. Because the GPM is the
primary control component of the radio, it is a required module for an STI radio. A description of each element
follows.

The GPP functions include the OE, the Hardware Abstraction Layer (HAL), and potentially application functions.
The OE contains the STI infrastructure, which provides the interfaces defined by the STI APIs specification. The

OE also contains the operating system and any related libraries. Formatted: Default Paragraph Font, Font: 105 pt, Font

color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 48

The HAL is the library of software functions in the STI OE that provides a platform-vendor-specific view of the
specialized hardware by abstracting the underlying physical hardware interfaces. The HAL allows specialized
hardware to be integrated with the GPM so that the STI OE can access functions implemented on the specialized
hardware of the STI platform.

The Persistent Memory Storage element holds both the permanent (e.g. read-only memory) and reprogrammable
storage for the GPP element. This is likely to be implemented using a technology such as electrically erasable,
programmable read-only memory (EEPROM) or flash memory, depending on system requirements. The Persistent
Memory also provides the storage for the SPM FPGA elements (i.e. configurable hardware design). The GPM may
be responsible for programming and scrubbing the SPM FPGAs and, if so, would have access to the appropriate
“code” for the FPGAs.

The Work Area Memory element is provided as operational, scratch memory for the GPP element. This memory
element is implemented in concert with the GPP element and may contain both data and code, as appropriate for the
execution of the radio application running in the GPM.

Finally, the GPM contains a System Control element to control and moderate the GPM system bus. This element
provides the necessary control for the System Bus, including the various memory and SPM elements interfaced by
the System Bus. In addition, the System Control element provides a validated interface to the RFM hardware via the
GPM RFM Control Interface. As the software running on the GPP element commands the RFM elements into
certain states, those commands are interpreted by the System Control element and validated in a manner that will
prevent damaging configurations of the RFM; for example, tying the transmit amplifier directly to the receive
amplifier, bypassing the diplexer element. This level of validation in the GPM-to-RFM interfaces is intended to
prevent physical damage to the radio arising from a software bug. The System Control element may also be
implemented by an FPGA, but if so, it should have appropriate safeguards to ensure that the FPGA cannot be
modified inadvertently during flight (e.g. such as using a “permanently programmed” device or by otherwise
disabling the reprogramming capabilities).

GPM Functions

The GPM will provide the overall configuration and control of the STI architecture and may include any or all of the
following functions:

+ Management and Control
o Module discovery
> Configuration control
Command, control, and status
Fault recovery
Encryption
STI infrastructure, radio configuration and control.
Radio control
System management
Application upload management
Device control
Message center
+ External network interface processing
+ Internal data routing
+ Waveform data link layer
Media Access Control (MAC) and Logical Link Control (LLC) layer
o Physical layer processing

+ Onboard data switching

44 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

GPM Interfaces

TT&C

Ground Test

General-purpose input output (GPIO), supporting but not limited to:
Interrupt source/sink
Application data transfer

Control/configuration interface, supporting but not limited to:
RFM & SPM

o Antenna

o Power amplifier

+ System Bus interface

For GPM Requirements
See 12.1.142-4, Provide GPMProvide-GPM, and 12.1.2422, Diagnostic Information AvailabilityDiagnestie |

8.2.2 Signal Processing Module

Figure 4Figure-4, SPM Architecture Details, illustrates the SPM module. An SPM is optional for an STI platform. |
The SPM may implement the signal processing used to transform received digital signals into data packets and/or
the conversion of data packets into digital signals to transmit. The complexity of this module is based on the
applications and data rates selected for a mission. The SPM modules contain components and capabilities to
manipulate and manage digital signals that need higher processing capabilities than that supplied by the GPM. The
configurable hardware design architecture describes a common interface for the application on the SPM, as

described in section 9.1, Configurable Hardware DesignConfigurable Hardware Desien. '

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 4b

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

y
System Bus

: Signal Processing Module_SPM [1.."]

r——:l System Bus
: High Speed Digital Signal Processor [1.."] |
: Waveform Application [1]]
]
g Data

-

= >

] 38

F §

Data

Data [j : Data Formatting [1] ’ ’ : Test and Status [1] [:] Control
_.._4.._
Control
Data |Data [: Data Buffer Storage [1] ’ ‘ : System Control [1] Control
>
D Control

AData Data

‘ : Clock Distribution [1] L_Clock

F

I Clock

] : Spacecraft Data Interface [1]

A 4

Data T

Figure 4: SPM Architecture Details_ (Detail of Figure 2)

SPM Components

The SPM will initially be implemented primarily with FPGAs, DSPs, reconfigurable processors, ASICs, and other
integrated circuits. However, technologies will change over time, so the specific implementation is left to the STI
platform provider. It is also anticipated that STI platforms may use dedicated physical hardware slices (e.g.,
separate circuit boards) to implement specialized applications and technologies. For example, a dedicated global
positioning system (GPS) receiver slice can complement the existence of reconfigurable SPM slices in the same
radio. The dedicated slice offloads demand on the less specific SPM. If an STI platform contains an SPM slice, the
slice should meet the module interface specifications for control and configuration and have an inter face with the
GPM via the GPM system bus and the SPM-to-GPM test interface. These two interfaces work in concert to provide
a control and reprogramming path to the SPM from the GPM and the application running on the GPM.

SPM Functions

The SPM implements the digital signal processing functions that convert symbols to bits and vice versa. These
functions are typically implemented on FPGAs, DSPs, or ASICs. It is recommended that reconfigurable and
reprogrammable devices be used because this allows for new applications to be implemented on the SDR in the
future without a hardware modification. However, mission-specific requirements may dictate that the application be
implemented on a non-reprogrammable hardware device.

In addition to the digital signal processing functions, a data formatting function is typically provided to convert
blocks of data stored in the data storage element into bit streams appropriate for encoding into symbols and vice
versa. The STI architecture does not require that these are discrete entities; in some cases, it may be possible to
implement the data formatting function in the same device as the digital signal processing function.

A data storage element may be used to provide a buffer between the data interface and the bit stream
coders/decoders. This data storage function can be implemented in either volatile or nonvolatile memory, depending
on the operational requirements. An SPM may implement any or all of the following digital communication
functions depending upon the mission waveforms:

46 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Digital up conversion—interpolation, filtering, and “local oscillator” multiplication of baseband samples to
obtain an IF or RF output sample stream appropriate for digital-to-analog conversion. This is typically the
last transmit function implemented in the SPM, and the output samples are sent to the RFM.

+ Digital down conversion—multiplication with “local oscillator,” downsampling, and filtering IF or RF
samples to obtain a baseband output sample stream. This is typically the first receive function implemented
in the SPM, with input samples coming from the analog-to-digital conversion in the RFM.

Digital filtering—averaging, low-pass, high-pass, band-pass, polyphase, and other filters used for pulse
shaping, matched filter, etc. This may overlap with some of the functionality in the up and down
conversion.

Carrier recovery and tracking—retrieval of the waveform carrier within the receive sample stream. Typical
SPM functions for carrier recovery include shifting the recovered carrier frequency to compensate for local
oscillator variations and Doppler shifts in the link.

+ Synchronization (data, symbol, etc.)—alignment of received samples with symbol and data boundaries.
There may be some integration with the digital down conversion and carrier recovery and tracking
functions.

Forward error correction coding—encoding transmit data so that receive data errors may be corrected to
some level, enhancing the waveform performance.

+ Digital automatic gain control (AGC)—scaling of the receive samples to optimize downstream operations.
+ Symbol mapping (modulation)—translating transmit data bits to modulation symbol samples.
Data detection (demodulation)—translating receive symbol samples to data bits.

Spreading and despreading—a form of encoding data to obtain certain energy dispersion in the frequency
domain.

Scrambling and descrambling—a form of encoding data to ensure a certain level of randomness in the
digital data stream, usually for synchronization of the receiver.

Encryption and decryption—a form of encoding data for security purposes.

+ Data Input/Output (I/O) (high-speed direct from or to source or sink)—interface for transmit and/or receive
data to come in or out of the module. This may involve buffering and some protocol handling.

SPM Interfaces

The SPM’s functions and external interfaces are shown in Figure 4Figure4. Interfaces shown include those
common to all module types as well as those specific for the SPM. These SPM-specific interfaces may not all be
required for some radios. Note that the implementation of these interfaces may combine two or more on one
physical transport. For example, the Data Interface and Control and Configuration Interfaces may both use the same
physical Serial Rapid I/O connection.

Data I/O to or from RFM—This is the digital sample stream going to the RFM’s DACs for transmission,
and the digital samples from the RFM’s ADCs. However, if the DACs and ADCs are preferred to be a part
of the SPM, then this interface is replaced with analog baseband or IF signals.

+ Waveform control and feedback to REM—This interface will be waveform dependent. It may be used, for
example, to send feedback to an AGC or control frequency hopping.

Data interface external to the radio—High-data-rate waveforms may need a direct interface to the SPM if
the GPM is not designed to handle the data.

System bus—Data to or from GPM—This interface exchanges the packetized data for transmission and
reception.

Control and configuration from GPM—Waveform loads and reconfigurable parameters are managed
through this interface.

+ Test and status to GPM—Tests are initiated through this interface by the GPM, and results are returned.

This is a more basic interface (electrically and protocol-wise) than the Control and Configuration interface.
Formatted: Default Paragraph Font, Font: 10.5 pt, Font

Radiometric tracking.
& color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 4f

The HID is to contain the characteristics of each reconfigurable device. Reconfigurable capacity is usually
measured by the number of FPGA gates, slices, logic elements, or bytes. This information can be used by future STI
application developers to determine the waveforms that can be implemented on a given platform.

8.2.3 Radio Frequency Module

The RFM handles the conversion to and from the carrier frequency, providing the SPM and/or the GPM with digital
baseband or IF signals, and the transmission and reception equipment with RF to support the SPM and GPM
functions. Its components typically include DACs, ADCs, RF switches, up converters, down converters, diplexers,
filters, LNAs, power amplifiers, etc. Current and near-term RF technologies cannot be expected to allow multiband
operation using a single channel RFM, and thus multiband radios will need to use multiple RFM slices. The RFM
provides a band of frequency tunability on each slice. This tunability can be software controlled through the
provided interfaces.

The RF module handles the interfaces that control the final stage of transmission or first stage of reception of the
wireless signals, including antennas, optical telescopes, steerable antennas, external power amplifiers, diplexers,
triplexers, RF switches, etc. These external radio equipment components would otherwise be integrated with the
RFM except for the physical size and location constraints for transmission and reception. The interfaces are
primarily the associated control interfaces for these components. The RFM HID encompasses the control and
interface mechanism to the external components. The focus of the RF HID is to provide a standardized interface to
the control of each of these devices, to synchronize the operation of the radio with any of these devices.

The other primary capability of the RFM is the conditioning and distribution of the frequency reference, as defined
by the Frequency Reference Interface. This provides a common reference for the RFM and SPM modules to enable
the tracking and navigation functionality typically provided by SDRs. Figure 5Figure-5, RFM Architecture Details,
illustrates the RFM module.

Control

: Radio Frequency Module_RFM [1]

[

. Control ,j : Analog to Digital ‘.—_qj(j : Receive RF]
5%
Control ? | 1iE ’ DControl
Control L : Digital to Analog B : Transmit RF |
l_J Control
Data L [:;
> | |
Lad
a
-
Data A
1R Data| : Test and Status Control
v
[2 P -
Control D : Variable Gain / Frequency S Anienna Conaliniariacs [jcontm'
Control [I
r r - Data Data
Clocki : Clock Interface : Antenna Interface »
_%
Clock I
Clock

Figure 5: RFM Architecture Details (Detail of Figure 2)

RFM Components

The RFM can be implemented with a variety of integrated circuits. The control of these circuits can be implemented
with a variety of different component technologies, including ASICs, discrete electronics, programmable logic

48 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

devices, including FPGAs and DSPs, or even microprocessors. The choice of technologies is left up to the
developer of the particular implementation.
RFM Functions

The RFM transforms the antenna signal to or from a signal usable to the radio. The RFM functions are likely to
include the following:

+ Frequency conversion and gain control
Analog filtering
Analog-to-digital and digital-to-analog conversion.

Radiometric tracking

RFM Interface
The RFM implements the following interfaces:
+ External RF interface(s) to the radio.

Read and write access to interface registers to monitor and perform control, status, and failure and fault-
recovery functions (e.g., via RS-422 or SpaceWire).

Control: power level tunability, frequency tunability, antenna parameter tunability, etc.
Status: report status of components and system operation.

o Failure and fault-recovery functions: detect component or system failure and determine appropriate
action.

Diagnostic test functions

I/0O for exchanging digitized waveform signal data.

For RFM Requirements
See 12.1.342-3, Document RFBecumentRE

The behavior and performance of the RF modular components should be sufficiently described such that future
waveform developments may take advantage of the RF capability and/or account for its performance.
Information in the HID may include such items as center frequency, IF and RF frequency(s), bandwidth(s), IF
and RF input/output level(s), dynamic range, sensitivity, overall noise figure, AGC, frequency accuracy and
stability, and frequency-tuning resolution.

8.2.4 Security Module

The goal of the security module is to address the security services required from an SDR. There are no specific
requirements for this module, but a future revision of the STI standard may add requirements or specific details.
This approach supports the evolutionary nature of the STI architecture; it is expected that this module will become
more well-defined as feedback is received and common interfaces are identified.

If implemented, the architecture should support selectable data-protection services for entities requiring them,
providing for both confidentiality and authentication. Missions may select security options provided by the
infrastructure or may develop their own.

The authentication of commands sent to SDRs is supported, including changing the configuration or uploading new
programs for either the infrastructure or new applications. The security section of the architecture will include
support for key management, encryption standards, and mitigating threats other than the information and
communication security threats currently identified.

8.2.5 Networking Module

The STI architecture has been structured such that networks can be implemented in an SDR; that is, an SDR can be
anode in a network. The SDR may be connected to another node using the appropriate logical and physical
interfaces that may be wired or wireless. The STI architecture can accommodate network protocols as services that

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 4p

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

can be made available to applications and devices. STI supports the ability to upload new software and dynamic
hardware images. Advancements and replacement of existing protocols can be accomplished without affecting a
spacecraft’s mission resources. There are no specific requirements for this module, but a future revision of the STI
standard may add requirements or specific details.

8.2.6 Optical Module

The STI architecture also supports the use of optical communications in SDRs. The optical module, if present,
would logically replace the Radio Frequency Module (RFM) that is typically used for RF communication. There are
no specific requirements for this module, but a future revision of the STI standard may add requirements or specific
details.

STI interfacing to optical communication equipment follows the same techniques shown in integration with high-
data-rate hardware. The OM would be controlled through the STI HAL interface that allows configuration and
control of the digital components in the module, which abstracts the optical functionality.

8.2.7 Cognitive Module

The STI architecture supports the use of a cognitive engine used to enhance communications of SDRs. A cognitive
module can be used to optimize many complex facets of the communications channel including changing the
parameters of the waveform to support interference mitigation, avoid jamming, or to bypass Earth stations blocked
by weather or the rotation of the Earth. A cognitive module could use sensor data about the dynamic environment to
adapt to changing conditions, even learning from past experience, to respond in an optimal manner for mitigating
obstacles; for example, it could use temperature data to adjust power usage or turn on climate control. By
considering automation techniques including recent advances in artificial intelligence and machine learning,
cognitive algorithms and related approaches enable improved resource utilization and resiliency in unpredictable or
unplanned environments. There are no specific requirements for this module, but it is expected to be implemented
as a service application.

8.3 Hardware Interface Description

The STI platform provider is to provide a HID document, which describes the physical interfaces, functionality, and
performance of the entire platform and each platform module. The HID specifies the electrical interfaces, connector
requirements, and all physical requirements for the delivered radio. The HID abstracts and describes the
functionality and performance of each module. In this manner, STI application developers can know the features
and limitations of the platform for their applications. The information in the HID provides the knowledge for OMG
and others to integrate and test the hardware interfaces. The information in the HID may allow future module
replacement or additions without the design of a completely new platform. For example, a Security Module could
be added that was not originally planned, or a follow-on mission could use a different frequency band and only an
RFM change would be needed. Include all waveform interfaces and any other interfaces that could be important to a
waveform developer or a hardware integrator.

In addition to the GPM, SPM, and RFM HID requirements stated within each module section, the following
interface descriptions and requirements are also specified for an STI platform.

For HID Requirements

See 12.1.442:4, Document Power-Up StateDecumentPower-Up-State.
See 12.1.542.5, Document Hardware Capability: £ 2 “apability.

See 12.1.642-6, Document Hardware LimitationsDeeument Hardware Limitations.

The description of the behavior and capability of modules or components available to STI application
developers or reconfigurable components may include device type, processing capability, clock speeds,
memory size(s), types(s), and speed(s), noting any constraints, as well as any limitation on the number of
configurable hardware design reloads, as applicable, partial reload ability, built-in functionality, and any
corresponding restriction on the number of gates.

See 12.1.742-7, Document InterfacesPeeumentInterfaces.

50 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

The specific modular components or hardware slices of an STI platform will vary among different
implementations. The STI platform provider or STI integrator is expected to describe each modular
component and their respective physical and logical interfaces as described in this section. Table 1, Module
Interface Characterization, provides typical interface characteristics to be included when identifying external
interfaces or internal interfaces between modules for STI.

Table 1: Module Interface Characterization

Parameter Description and Comments
Name Interface name (data, control, operating power, RF, security, etc.).
Interface type Point to point, point-multipoint, multipoint, serial, bus, other.

Implementation level

Component, module, board, chassis, remote node.

Reference documents and
standards

Applicable documents for interface standards or description of custom interfaces.

Notes and constraints

Variances from standards, physical and logical functional limitations.

Transfer speed

Clock speed, throughput speed.

Signal definition

Description of functionality and intended use.

Physical Implementation

Technology For example, GPP, DSP, FPGA, ASIC, and description.
Connectors Model number, pin out (including unused pins).
Data plane Width, speed, timing, data encoding, protocols.

Control plane

Control signals, control messages or commanding, interrupts, message protocol.

Functional Implementation

Models Data plane model, control plane model, test bench model.
Power Voltages, currents, noise, conducted immunity, susceptibility.
APIL Custom or standard, particular to OS environment.

Software Device drivers, development environment, and tool chain.

Logical Implementation

Addressing

Method, schemes.

Channels

Open, close.

Connection Type

Forward, terminate, test.

8.3.1 Control and Data Interface

The control and data communications buses and links between modules within the radio are to be described by the
STI platform provider to the level of detail necessary to facilitate integration of another vendor’s module. If
modules communicate using the IEEE 1394, A High Performance Serial Bus, interface, for example, this will be
specified in the HID with appropriate connector and pinout information. Any nonstandard protocols used should
also be specified. In some cases, this may be handled by the software HAL. Module interfaces will be completely
described, including any unused pins.

For Requirements for Control and Data Interface

[Formatted: Font: 10 pt]

See 12.1.8142:8, Document the Control and Data MechanismsDecument Control-and Data Mechanisms. ‘

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 5

Besides the interface descriptions already provided for each modular component, developers should provide
specific information necessary for future STI application developers to know how to interact with the
command and control aspects of the platform. The description of the control, telemetry, and data mechanism
of each modular component should facilitate the porting of the application software to the platform.

8.3.2 Operating Power Interface
The operating power interface description for the radio has two parts:
1. the platform as a supplier to the various modules; and
2. the power consumption of the different modules, if multiple modules are provided.

Table 2, Example Operating Power Interface, shows an example listing of a platform operating power interface.
There are four distinct sets of power requirements for the platform shown. For each module delivered with the
radio, as well as those built by other vendors, the HID is to specify the needed voltages, currents, and connections.
Voltages are to be specified with a maximum and minimum tolerance, and associated currents are to be specified
with nominal and maximum values. Connectors for operating power are to be specified, including pinouts. If power
is routed through a multipurpose connector such as a backplane connector, then the pins actually used are to be
documented. Power is a limited commodity for most missiens-andmissions and understanding the STI platform
power needs is critical.

Table 2: Example Operating Power Interface

Parameter Values

Voltage Rail -15V +2.5V +5V +15V
Maximum current/chassis (platform) 2A 1.7A 3A 2A

Maximum current/slot (module) 1A 1A 1A 1A

Backplane supply pins 17,19 59,61 44,46,48 21,23
Backplane return pins 18,20 60,62 43,4547 22,24

Voltage Ripple 100 mVpp 1 mVpp 5 mVpp 100 mVpp
Notes Slot 1 & 2 only Slot 1 & 2 only

For Requirements for Operating Power Interface
See 12.1.942:9, Document Power SupplyDeeumentPowerSupply. [Formatted: Font: 10 pt]

8.3.3 Thermal Interface and Power Consumption

The power consumption and resulting heat generation of a reprogrammable FPGA will vary according to the amount
of logic used, the switching rate of the waveform logic, and the clock frequency(s). The power consumption may
not be constant for each possible waveform that can be loaded on the platform. The STI platform provider should
document the maximum allowable power available and thermal dissipation of the FPGA(s) on the basis of the
maximum allowable thermal constraints of FPGA(s) of the platform. For human spaceflight environments, touch
temperature requirements may limit dissipation further; therefore, these reductions are to be factored into the given
dissipation limits.

For Requirements for Thermal and Power System
See 12.1.1042-30, Document Thermal and Power LimitsBoecumentThermal-and PowerLimits.

[Formatted: Font: 10 pt J

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

52 Space Telecommunication Interface (STI), v1.0 -- beta 2

9. Application Architecture

An example STI platform consists of one or more GPMs with GPPs, and optionally one or more SPMs containing
DSPs, FPGAs, and ASICs. Application functionality may be split up according to the type of processor the function
may be accomplished most efficiently on. The application component is loaded and executed on these modules to
provide the signal-processing algorithms necessary to generate or receive RF signals. To aid portability and
reusability, the applications use the appropriate infrastructure APIs to access platform services. Using “direct to
hardware” access would increase the effort to port the application to a platform with different hardware and is
discouraged. The STI infrastructure provides the APIs and services necessary to load, verify, execute, change
parameters, terminate, or unload an application. The STI infrastructure implements device components that utilize
the HAL or vendor-specific API to abstract communications with the specialized hardware, whereas the HID
identifies the hardware interfaces and how modules are physically integrated on a platform.

The STI infrastructure utilizes separate device components to serve as a hardware abstraction layer for devices
accessed by STI applications. These devices may in turn use the underlying platform HAL APIs, such as a device
driver implemented to a standardized software interface. Alternatively, the device may use a custom vendor-specific
API to communicate with application components on the platform specialized hardware via the physical interface
defined by the STI platform provider.

9.1 Configurable Hardware Design

A configurable hardware design is one where data is used to configure a portion of the hardware without physical
modification of the hardware. Configurable hardware designs are realized using a hardware device such as an
FPGA or other type of programmable logic device (PLD). This section addresses the use of configurable hardware
design from design and development through testing and verification and operations. It addresses aspects of model
based design techniques and design for space environment applications.

Proper testing of configurable hardware design is critical to the development of reliable and reusable code.
Development tools that enable early development and testing should be used so that problems can be identified and
resolved early in the SDR life cycle. Many real-world signal degradations and SEUs can be simulated to identify
potential issues with the waveform and waveform functions early in development, even before hardware is available.
Applications implemented in configurable hardware should be modular with clear interfaces to enable individual
application component simulations and incremental testing.

The configurable hardware design architecture supports the modeling of STI applications implemented in
configurable hardware at the system, subsystem, and functional levels. Model-based design techniques aid in the
development of modular application functions. Application development models done in a platform (or target)
independent manner aid in application testing, reuse, and portability. A PIM design shall be specialized to PSMs to
target different platforms. PSM design flows might include high-level models combined with manual code writing.
On resource-constrained platforms, optimized code would be written. On non-resource-constrained platforms,
PSMs may be used to auto generate code. These design flows can be employed to significantly reduce the porting
effort.

Application portability and reusability should be considered in all facets of the design process from concept to
implementation to testing. The coding technique of the application is also essential to reduce the application porting
effort. Having defined syntax standards for HDLs (e.g., Verilog or VHDL) makes them appear to be easily portable
across devices and software synthesizers, but this is an incorrect assumption. There are many things that can make
hardware description languages hard to port. For example, the use of device-specific fixed hardware logic on the
FPGA will decrease the portability. The use of specialized hardware may be necessary to meet the timing
constraints of the application; however, the STI application developer should document any application function that
uses the specialized hardware so that the effort to port the application function(s) can be determined. N on-boolean-
type logic such as clock generation can also reduce portability. One method to decrease the porting effort would be
to create a module that does the clock generation from which the rest of the application functions receive the
necessary clock(s).

Development of configurable hardware design for STI radios should include provisions for mitigating space
environmental effects such as SEUs. Near-term application of static random-access memory (SRAM)-based FPGAs
may require triple-mode redundancy (TMR), configuration memory scrubbing, and other mitigation techniques,

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 5B

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

depending on the intended mission environment and desired reliability. Commercial design tools are becoming
available to aid in this process and some newer FPGAs have versions available with embedded TMR.

A key feature of SDRs is that they can be reconfigured after deployment. The ability to load new applications and
services will benefit missions in several ways, including using one SDR (instead of several separate radios) to
handle different applications for various phases of a mission, some planned and some unplanned. An STI platform
should receive STI application software and configurable hardware design updates after deployment.

9.2 Specialized Hardware Interfaces

Standardizing and documenting the interface from the waveform applications on the GPP to the portion of the
waveform in the specialized processing hardware, such as FPGAs, is intended to provide commonality among
different STI platforms and to aid portability of application functional components implemented in configurable
hardware design.

The STI architecture provides a common mechanism for the software to instantiate, configure, and execute the
software and configurable hardware design applications on various platforms using different hardware devices.
Reconfiguration may include changing the parameters of installed applications and uploading new applications after
deployment.

The application accepts configuration and control commands from the GPM and uses STI APIs that interface to the
device drivers associated with the SPM and RFM modules. The device drivers communicate via the HAL on the
GPM that abstracts the physical interface specification described in the HID in transferring command and data
information between the modules.

For FPGAs, the interface to the application is through a platform-specific wrapper. The platform-specific wrapper
accepts command and data information from the GPM and provides them to the application. The platform-specific
wrapper also abstracts details of the platform from the STI application developer, such as pinout information. The
platform-specific wrapper should also provide clock generation, signal registering, and synchronization functions,
and any other non-waveform-specific functions that the platform requires.

Documentation of the platform-specific wrapper is necessary so that STI application developers can interface
applications to the platform. This documentation should include detailed timing constraints, such as signal hold
times, minimum pulse widths, and duty cycles. The signal timing constraints refer to the protocol of a particular
interface describing events happening on a particular clock cycle. For clock generation, one should document what
clock domains are in the design, how each clock is generated, and the resources that are involved. Signal
synchronization describes any additional logic needed when clock domains are changed across the interface. The
signal registering methods refer to any configurable hardware design interfaces between modules and if the input
and output were registered, latched, or neither.

For Requirements for Specialized Interfaces
See 12.1.1142-H, Controllable From OECentrellable From-OE;

See 12.2.14242, Platform Specific WrapperPlatform Speeifie- Wrapper;
See 12.2.21213, Document FPGA InterfacesPocumentEFRPGA Interfaces.

54 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

10.

Software Architecture

The STI architecture is predicated on the need to provide a consistent and extensible development environment on
which to construct SDR applications. The breadth of this goal implies that the specification be based on the
following:

1.
2.

Core interfaces that allow flexibility in the development of application software; and

Hardware and software interface documentation that enable technology infusion.

10.1 Software Layer Model

The software architecture model shows the relationship between the software layers expected in an STI-compliant
radio. The model illustrates the different software elements used in the software execution and defines the software
interface layers between applications and the OE and the interface between the OE and the hardware platform.
Figure 6Figure-6, Software Execution Model, represents the software architecture execution model. The software |
model achieves the following objectives:

a)
b)

©)

d)

€)

Abstracts the application from the underlying OE software to promote portability and reusability of the
application.

Within the abstraction layer, minimizes custom routines by using commercial software standard interfaces
such as POSIX®.

Depicts the STI software components as layers to specify their relationship to each other and their
separation from each other which enables developers to implement the layers differently according to their
needs while still complying with the architecture.

Introduces a lower-level abstraction layer between the OE and the platform hardware. Note that although
software abstraction for general processors is typically accomplished with board support packages and
device drivers, the abstraction of hardware languages or configurable hardware design is less defined. The
model represents the software and configurable hardware design abstraction in this layer.

Indicates the relationship between the OE software and the different hardware processing elements (e.g.,
processor and specialized hardware).

The OE adheres to the interface descriptions provided in Figure 6Figure-6. This specification provides two primary|
interface definitions, as follows: (1) The STI APIs; and (2) The STI HAL specification, each with a control and data
plane specification for interchanging configuration and run-time data. The STI APIs provide the interfaces that
allow applications to be instantiated and use platform services. These APIs also enable communication between
application components. The HAL specification describes the physical and logical interfaces for inter-module and
intra-module integration.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 55

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

System Libraries

Waveform Applications and High Level Services

System Libraries API STI API

STI Infrastructure

os ! Network Stack |
HAL API|
BSP Drivers
GPM Specialized HW

Figure 6: Software Execution Model

The STI software architecture presents a consistent set of APIs to allow waveform applications, services, and
communication equipment to interoperate in meeting an application specification. Figure 7Figure-7, Layered
Structure, represents a view of the platform OE that depicts the boundaries between the STI infrastructure provided
by the STI platform provider and the components that can be developed by third-party vendors (e.g., waveform

applications and services).

A key enabler of application portability and reusability is the removal of application dependencies on the
infrastructure that take advantage of explicit knowledge of the infrastructure implementation. When waveforms and
services conform to the API specification, they are easier to port to other STI platform implementations.

56

Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

EgumuzAimm‘Aa_d;g s A £ ln o Bnin s ldn b Faninn 4l Aininon Db A and D Tinien BT £ 4y [commented [HLM(L4]: JIRA issue STI_5: Correct

eBbChs 1=
e SysML in figures
JIRA issue STI_78: Missing Clock Methods

man I trastructure FAL AP
mote
_ OPTIONAL B
{ 7 waTranater AR
fooprcanon | - nrasructre
[Tivete H
| J ssecaized Kardware!
abiocts !
! osta Tanstecan | |
|
|
Vi e
(
|
|
|
|
bdd [Package] Software Architecture [Figure 7: Software Architecture] |
[=]
eblocks
«<Sofiwares = «Softwares L]
Application
sblocks. = abiocks wblocks =
—QA TeatshControl «Softwares «Softwares «Softwares
PPl Infrastructure os HAL
|
(Q e |
STiARIs SystenifLibrary ‘
|
OPTIONAL |
777777 I
|
Soifce |
|
|
|

Signals are sent across
connector between HAL
|and Specialized Hardware:

Clockinterface

/| Formatted: Default Paragraph Font, Font: 10.5 pt, Font

Figure 7: Layered Structure / color: Auto, Pattern: Clear

5 /

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

include additional detail of the infrastructure, operating system, and hardware platform using Systems Modeling
Language (SysML) symbols. This approach clarifies the interfaces between components, adding additional detail.

The Operating Environment (OE) contains the OS and Infrastructure, which include System Libraries documented
as allowed for that platform. In the case that the OS or platform does not support the full set of dependencies, the
missing functionality is to be implemented in the STI infrastructure using a compatibility layer. For example, when
using non-POSIX® OS, the compatibility layer would implement any POSIX® functions required but not
implemented by the OS. The waveform applications will not directly call the driver or HAL API but use the
provided STI APIs, thus providing the “abstraction layer” that helps isolate the application from the platform.

In table 3, Software Component Descriptions, the different layers of the software model shown in Figure 7Figure7
are further described.

Table 3: Software Component Descriptions

Layer Description

Waveform application and services provide the radio GPP functionality using

Waveform Application and services the STI infrastructure.

The STI infrastructure implements the behavior and functionality identified by

STl infrastructure the STI APIs as well as other required radio functionality.

The STI APIs provides consistent interfaces for the STI infrastructure to
STI API control applications and services, and for the applications and services to
access STI infrastructure services.

The APP API is the interface implemented by waveforms and services whose

APP API functions are used by the STI infrastructure.

The HAL provides the device control interfaces that are responsible for all
HAL access to the hardware devices in the STI radio. The HAL API is the interface
to the software drivers and BSP that communicates with the hardware.

The specific subset of system library functions utilized by the STT waveform
System Library API application. For POSIX®-based environments, this is the minimum
Application Environment Profile required by the waveforms.

This is the operating system that supports the POSIX® API and other OS
[N services. The POSIX® Abstraction Layer will provide applications with a
consistent AEP interface that is mapped into the chosen OS functions

This is the implementation of the system library provided by the operating

System Library system or programming language environment.

The hardware drivers provide the platform independence to the software and
HW drivers/BSP infrastructure by abstracting the physical hardware interfaces into a consistent
device control APL

Driver API OS-supplied APIs are abstracted from applications via the device control API.

58 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

The BSP is the software that implements the device drivers and parts of the
kernel for a specific piece of hardware. It provides the hardware abstraction of’
the GPM module for the POSIX®-compliant OS. A BSP contains source files,
binary files, or both. A BSP contains an original equipment manufacturer

BSP (OEM) adaptation layer (OAL), which includes a boot loader for initializing
the hardware and loading the OS image. Essentially, the OAL is all of the
software that is hardware specific. The OAL is compiled and linked into the
embedded OS.

GPM This is the general-purpose processing module on which the STI infrastructure

executes.

Specialized hardware

This is the physical layer of the hardware modules existing on the STI
platform.

Conformant OS: Compliant OS:

Compatibility
Interface

Figure 8: Standards Conformance vs. Standards Compliance

Figure 8Figure 8Figure-8 illustrates the difference between a standards-conformant OS and a nonconformant OS.
On the left side, the prescribed set of application interfaces is provided entirely by the OS. On the right side, the OS
is not directly conformant but is partially compliant. This occurs mainly when porting to a different platform with
different system library support. The application profile is shown in two parts: one part shows the compliant APIs
that are directly included in the OS, and the other part shows the portion of the profile that is provided through some
form of abstraction or compatibility layer. For support of waveforms implemented in C/C++, the STI OE should
include at least a POSIX® PSES51-conformant OS or POSIX® abstraction layer for missing APIs.

For System Library Requirements

See section 12.3.142-44, Document System Library Interfaces ProvidedDeeument-System-Library-Interfaces |

Provided.

For C/C++ environments, this interface should be based on the POSIX® standard and the supported profile(s)
should be indicated. For other environments, the relevant details such as the library/module name and version

information should be indicated.

See section 12.3.242-15, Document System Library Interfaces UsedDoecument-System-Library Interfaces Used. |

For maximum compatibility, C/C++ applications should only invoke the system library though POSIX®-
compliant API calls and adhere to the smallest profile that is sufficient for application performance (e.g.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 59

{ Formatted: Font: 10 pt

{ Formatted: Font: 10 pt

J

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

PSES51). For other environments, the application should use a reasonable and customary interface for the
environment.

10.2 Infrastructure

The STI infrastructure is the part of the OE that provides the functionality for the interfaces defined by the STI APIs
specification. The infrastructure exposes a standard set of method names to the applications to facilitate portability.
Although the STT infrastructure may use any combination of OS, BSP functions, or other infrastructure methods to
implement a radio function, which may vary on different platforms, the STT APIs will be the same to allow
portability. The STI APIs are the well-defined set of interfaces used by STI applications to access specific radio
functions or used by the infrastructure to control the applications.

The infrastructure is composed of multiple subsystems that provide the functionality to operate the radio. The
components shown in Figure 7: Layered StructureFigure-9:-ayered-Structure, represent the high-level subsystems
and services needed to control STI applications within the STI platform. These services are provided by the
platform infrastructure and support applications as they execute within the STI platform. The infrastructure
functions will include fault management techniques, which are necessary to increase radio robustness and support
mission-dependent requirements.

10.3 API Overview

The STI APIs provide an open software specification so that the application engineers can develop STI applications.
The goal is to have a standard API available to cover all application program requirements so that the application
programs can be reused on other hardware systems with minimal porting effort and cost for the application
implemented in software and/or configurable hardware design with increased reliability. Size, weight, and power
constraints may limit the functionality of the radio by imposing a tradeoff among the following:

The size of the API implementation,
The size of other internal operations, and
The size of the waveforms and services.

The size of the selected GPP should be sufficient to contain the OS, the STI infrastructure, and the appropriate
portion of the waveforms and services to implement the required mission functionality, along with sufficient margin
to support software upgrades. The STI APIs are defined to support internal radio commands. Any external interface

commands, described in section 11, 11. External Command and Telemetry InterfacesExternal-Command-and [Formatted: Font: 10 pt

TFelemetry-Interfaces, use the internal commands defined by the STI APIs to accomplish normal radio operations.

The API layer specification decouples the intellectual property rights of platform, application, and module
developers. This allows development and interoperability of different radio aspects while protecting the investment
of the developers.

The APIs in the following sections are grouped by type to simplify the description of the APIs while providing the
detail for each requirement in tabular form. The table contains the name, description, parameters, return type, any
additional information that is pertinent to the usage of that function. The examples shown in the table for each
requirement are written from the point of view of the STI application developer.

Handle names and identifiers (i.e. Hand1leID values) have global scope within the operating environment. A
handle ID is a single value that represents an STI application, device, file, or queue. A given handle identifier refers
to the same application, device, file, queue, timer, or service across all applications.

A key aspect of a software architecture is the definition of the APIs that are used to facilitate software configuration
and control of the target platform. The philosophy on which the STI architecture is based avoids the conflict
between open architecture and proprietary implementations by specifying a minimum set of APIs that are used to
execute waveform applications and to deliver data and control messages to installed hardware components. The
following APIs exhibit similar functionality to a resource interface in the Object Management Group
(OMG)/software radio (SWRADIO) or Software Communications Architecture (SCA 2.2.2) specifications.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

60 Space Telecommunication Interface (STI), v1.0 -- beta 2

10.3.1 Interface Structure

Figure 9Figure-9, Application and Device Structure, shows a high-level overview of the STI software interface and
object definitions.

(4pP_intializo()
(4PF_Releasebiject() - Resuit

bdd [Package] Software Archicture Figure 9 Application and Device Structure |]

[4Pes vt riame Prpecttie Res
[4RE-Confgure{ propNome - PropertyNiame propvaie - PropertyVaiue) - Resalt

«intorfaceBlocks
P Sef

pValue * PropertyValuo)

winterfaceBlocks
Ilabls nt

|AP_start(
(Apr-Sio) Rest

«Softwares
«STI DataTypen

Instance
(Semantics = Struchure or Class (Bssa Typs))

|APP_GethandielD() : HandieD
|APP_GetHandleliame() : Strng

(APP_RunTest(testiD : TestlD) : Resut

«interfaceBlocks
TestableObjoct

7

|APP_instance(id - HandielD,

name : String) : nstance

|APP_Destroy{ inst . nstance) : Resul

sinterfaceBlocks
DeviceControl

Open()

Resul
gv Load(fleName :Sing) :Resut

eaet() R

VR
DEV_Fushg Rt

v Close() - Result

DEV_Unload() : Result

|APP_Road(butter : Messago

winterfaceBlocks
sink

|APP_Write(buffer : Message) Resut

«interfaceBlocks
sou

Rosult

|APP_AddressRead(offset

winterfaceBlocks
RandomAccess

Offsel, buffer Mesaage) : Result
[APPTAGaresswite(ffset Offset butter essape) Resun

bdd [Package] Software Archtecture | Figure S:Appicafion and Device Structure] J

winterfaceBlocks
LifeGycle

winterfaceBlocks
PropertySet

«interfaceBlocks
ControllableCompenent

As shown in [Figure 9Figtre-9,

definitions.

The operations include:

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

all applications and devices within the environment are derived from the Instancg
type, which is provided by the infrastructure and serves as a common basis point for every entity. This base type ha
only a minimal set of infrastructure-defined methods. All operations are defined through several control interface

A means for the application or device to obtain the corresponding name and ID.

A means to configure or query the entity state from other applications, using name/value pairs.

A means to execute tests on the application or device

A means to dynamically start or stop a device or service from other applications

A means to dynamically allocate/initialize system resources when needed and release resources when no

longer necessary.

A means to “read” or pull data from this entity to other applications

Commented [HLM(L5]: JIRA issue STI_5: Correct

SysML in figures
JIRA issue STI_78: Missing Clock Methods

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

A means to “write” or push data to this entity from other applications

An STI application implementation (e.g., waveform) would typically implement the ApplicationControl
interface, which includes all operations relevant for applications except those related to data transfer. An STI device
would implement the DeviceControl interface, which provides operations specific to devices as well as all
operations defined by ApplicationControl. Any application or device may selectively choose to implement
any of the data transfer interfaces as necessary, including Source, Sink, and RandomAccess.

Note that from the STI perspective, “Applications” and “Devices” are very similar concepts, differing only in that a
device implements the operations specified in the DeviceControl interface, whereas an application typically
does not implement these operations. Otherwise, the two software modules are identical. Throughout the remainder
of this section, the term “Application” is used, but the same features and requirements generally apply to devices as
well.

For Infrastructure Software Requirements

See Section 12.3.342-16, Document Language Interfaces ProvidedDecument-Language Interfaces Provided and
12.3.442-17, STI Infrastructure Uses APP APISTHnfrastruetare Uses APP-APL.

10.3.2 Implementation

An STI operating environment may support applications written in any language, so long as it provides the
infrastructure API in an appropriate form for the language in use. The software interfaces in this specification utilize
the OMG Interface Definition Language (IDL) syntax, and IDL language mappings provide a method to consistently
translate the semantics of a given interface to many different programming languages.

For Requirements for Software Modules
See Section 12.3.54218, Use Language Specific Facilities Specified in Annex A UseLansuage Speeific Faeilities
All STI applications and devices should encapsulate their state in an object or structure of some type, referred to as

the “base object”. Even for “singleton” objects of which there can only be one, STI requires that there is still a base
object associated with the instance, even if this object does not contain any extra information.

Figure 9Figure 9Figure-13 also shows several different optional interfaces that an application or device may
implement, depending on its specific design needs.

For Requirements instance object definition
See Section 12.3.642-19, Use Language Specific InheritanceUse-Language-Speeifie Inheritanee.
See Section 12.4.242:21, Application based on Instance ObjectApplication-based-onInstance-Objeet.

10.4 Data Types and CenstantsPredefined Values|

The following data types are defined by the infrastructure. These types serve as the basis for the STI interfaces and
API calls described in the subsequent sections. The types are written in a general way that will be particularized for
the implementation language and platform selected.

10.4.1 Data Types

The STI infrastructure uses the basic data types, integer, string, or enumeration. For these data types, the
specification allows some flexibility in how they are implemented by the infrastructure according to the language
used. Likewise, Table 5 indicates only the general behavioral semantics of the type, such as an integer, string, or
enumeration. For instance, all types with integer semantics should be compatible with the standard integer
assignment and relational operators per the language in use.

For enumerated types, the possible values and definitions are shown in section 10.4.2, Predefined ValuesConstants.

62 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

Commented [HLM(L6]: JIRA issue STI_31: Change
“constants” to “predefined values”

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

For STI Infrastructure-provided Data Types
See Section 12.4.142:20 with Table 5: Infrastructure-provided Data Types

10.4.2ConstantsPredefined Values

The STI infrastructure defines the following eenstantspredefined values. In strongly typed languages, the constant
predefined value evaluates to a value of the specific data type as indicated.

For Constants Requirements see

Section 12.4.312.22 with Table 6: Access ConstantsValues

Section 12.4.412.23 with Table 7: CalendarKind CenstantsValues
Section 12.4.512.24-with Table 8: HandleID CeonstantsValues
Section 12.4.612.25 with Table 9: Result ConstantsValues

Section 12.4.742.26 with Table 10: Handle Name CenstantsValues
Section 12.4.842.27 with Table 11: Property Name ConstantsValues
Section 12.4.912.28 with Table 12: Size Limit CenstantsValues
Section 12.4.1042-29 with Table 13: TimeWarp CenstantsValues

10.5 Application and Device Control Interface

The application and device interface, illustrated in Figure 9Figure-11, is the mechanism through which local |
applications receive requests from the STI infrastructure.

All operations described in this section operate on a single context object, which is a data structure stored in local
memory that contains the state of the application instance. The specific semantics of this context object depend on
the language in use. In C, this context object is passed explicitly as a pointer argument to each call, which can then
be cast or converted to the correct structure type. In C++ or Java, these operations are implemented as class member
functions, and as such the context object is passed implicitly through the this reference. Other object-oriented
languages have a similar paradigm to reference the context object, such as the “self” object in Python.

As a general convention, interfaces that apply to all components (applications, devices, etc.) have operations named
with an APP prefix, and interfaces that apply only to devices have operations named with a DEV prefix. Further
details on each of these operations are provided in the following sections.

Note that the operations listed in this section are not invoked directly by other applications or components in the
system. The infrastructure is responsible for managing the life cycle of all context objects, and these objects are not
directly exposed to other components in the system. All operation requests from other components go through the
STI infrastructure, which may in turn invoke a context switch or middleware as needed, to provide the correct
context for the subsequent operation. For every interface operation described in this section, there is a
corresponding infrastructure-provided API call that operates on an abstract handle value rather than a context object.
These handle-based API calls, as described in section 10.6, STI APISTFAPI, are intended to be invoked from other I
entities.

10.5.1 Infrastructure-Provided Componentldentifierlnstance Interface ‘

The interface operations described in this section are provided by the infrastructure and may be invoked by an
application or device to obtain information from the infrastructure. The interface provides a consistent means for an
application or device to obtain identification information about itself.

For Infrastructure-Provided Compeonentldentifierlnstance Software Requirements
See Section 12.5.142:39 with Table 14Table 18: APP_GetHandleID() Definition.
See Section,12.5.242.31 with Fable+5Table 19: APP_GetHandleName() Definition.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 6B

Commented [HLM(L7]: JIRA issue STI_31: Change
“constants” to “predefined values”

[Formatted: Font: 10 pt

[Formatted: Underline

]

[Formatted: Underline

J

color: Auto, Pattern: Clear

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

10.5.2 Application-Provided Application Control Interfaces

The operations detailed in this section are provided by the application developer.

10.5.2.1 Constructor and Destructor

For all applications, constructor and destructor functions are provided by the application developer. These functions
will create and destroy an instance of the respective application’s state structure, as an object of the Instance base
type.

For applications or services that are instantiated multiple times within a single environment, the constructor will be
invoked by the infrastructure for each instance. After construction, the Instance reference identifies the specific
context object to work with for all subsequent calls interface operations. In C++ terminology, it equates to the this
pointer.

The notion of a statically allocated “singleton” object is allowed, but the application still needs to supply a stub
function for use as a constructor and destructor. In this case, the constructor may directly return the statically
allocated instance, and the destructor may be empty.

Note that these methods implement the “factory” pattern in object-oriented design. As such, they are not instance
methods, but rather static methods when translated to object-oriented environments.

For Application-Provided Application Control Software Requirements
See Section 12.5.312.32 with Fable+6Table 20: APP_Instance() Definition.
See Section 12.5.44233 with Fable+7Table 21: APP_Destroy() Definition.

10.5.2.2 Life Cycle Interface

The Life Cycle interface is intended to provide additional control over the application start up/initialization and
shutdown processes. In many cases, an application will require some allocation steps which are dependent on
configuration, such as storage buffer sizes, and these configuration items may not be known at the time the
constructor is invoked. This interface allows the initialization of the application to be separated from the
instantiation of the application. The required application properties can then be configured after instantiation but
before the initialization takes place. The shutdown process includes stopping execution of the application, releasing
any resources obtained during the initialization and execution of the application, and destroying the instance created.

For Application -Provided Life Cycle Software Requirements
See Section 12.5.512.34 with Fable+8Table 22: APP_Initialize() Definition.
See Section,12.5.612.35 with Fable- 19Table 23: APP_ReleaseObject() Definition.

10.5.2.3 Property Set Interface

The Property Set interface consists of two operations, configure and query, which operate on name/value pairs. The
implementation should perform all necessary validation of the input parameters, including whether the property
name specified is valid, and whether it is permissible to set or retrieve the value in the current application state. The
notion of a “read-only” property is also allowed, where any attempt to configure such properties returns the ERROR
status code.

For Application -Provided Property Set Software Requirements
See Section 12.5.742.36 with Fable 20Table 24: APP_Query() Definition.
See Section,12.5.812.37 with Fable 2+ Table 25: APP_Configure() Definition.

10.5.24 Test Interface

The test interface provides a means to invoke any built-in testing routines. Test routines are identified by a test ID,
which is an application-defined numeric value.

64 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

The application developer is responsible for documenting the test ID’s which are implemented, including the
purpose and any restrictions or dependencies associated with the test. For example, tests targeted toward finding
manufacturing or assembly defects may only be executable as a “ground test” when the system is connected to a
designated test facility. Other tests may be permissible during run-time or flight operations but may interfere with
normal radio communication.

Tests may be implemented either synchronously or asynchronously (i.e. as a background operation). For
synchronous tests, the status returned indicates the complete test result, with passing indicated by returning a
successful status code. For asynchronous tests, the status returned indicates only if the test has been initiated. The
application implementation should utilize the PropertySet interface and specify property names/values to
communicate the progress and results of the test.

For Application -Provided Test Interface Software Requirements
See Section,12.5.912.38 with Fable 22Table 26: APP_RunTest() Definition. |

10.5.2.5 Controllable Component Interface

The ControllableComponent interface is intended for applications or devices to enter or exit their normal operation
mode after initialization. Typically, this should not involve any additional allocation or resource acquisition, but it
should only activate or deactivate the previously allocated resources.

For example, in an application designed to estimate incoming signal power, the Initialize operation (described
in section 10.5.2.2 , Life Cycle Interface) would allocate any buffer storage and set up the resources necessary to
“tap” the incoming signal samples, but would not actually start or activate the power estimation algorithm. The
Start operation described here would begin the process of taking snapshots of the incoming data and executing the
power estimation algorithm. Similarly, the Stop operation would stop the active process, but it would not tear
down or release any buffers or other system resources, which is the domain of the LifeCycle interface.

This interface is also applicable to devices which have the notion of a “standby” state; after initialization, the device
would become ready but not active. The Start and Stop operations would put the device into its active or
standby state, respectively.

For Application -Provided Controllable Component Software Requirements
See Section,12.5.1042:39 with Table 23Table 27: APP_Start() Definition.
See Section,12.5.1142:40 with Fable24Table 28: APP_Stop() Definition.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 6b

[Formatted: Underline

{ Formatted: Underline

{ Formatted: Underline

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

40.5.410.5.3 Data Transfer Interface

The interfaces described in this section allow bulk data transfer between the component and the infrastructure. Like
all other operations, this interface exists only between the infrastructure and the respective target components. The
infrastructure is responsible for transporting the data between entities in the system.

The use of the interfaces described in this section are optional. Applications or devices choosing to implement this
interface indicate this in the application declaration. In object-oriented languages, this is done by inheriting or
implementing the Source and/or Sink interface. In non-object-oriented languages, it is indicated in an OE-specific
manner.

10.5.4.1-10.5.3.1 Source Interface

The Source interface is intended for applications or devices that supply arbitrary data to other entities using a “pull”
model. The specific nature of the data is not defined by this specification and should be documented by the
application developer. It may represent a stream of raw data, such as ADC samples, or it may be processed data,
such as a power profile or constellation of the received signal.

For Application-Provided Source Interface Software Requirements

See Section 12.5.1242.47 with Fable 31 Table 29: APP_Read() Definition. [Formatted: Underline
10-5.4.210.5.3.2 Sink Interface

The Sink interface is intended for applications or devices that accept arbitrary data from other entities using a “push”
model. Like the Source interface, the specific nature of the data is not defined by this specification and should be
documented by the application developer. It may represent a stream of raw data, such as ADC samples, or it may be
higher-level data structures.

For Application-Provided Sink Interface Software Requirements

See Section,12.5.1342:48 with Table32Table 30: APP_Write() Definition. [Formatted: Underline
10.-54.3-10.5.3.3 Random Access Interface

This optional device interface provides a means to read or write data directly to a specific location within a file or
device. The location specified indicates the offset from the beginning of the file, address space, or memory map of
the file or device. For memory-mapped entities or devices attached to some other physical bus (e.g. IC) this should
translate to the respective bus cycles to read or write from the given location on that bus.

The register set exposed via this interface may be emulated; the implementation is free to translate or modify the
request as needed by the underlying devices or hardware infrastructure. The physical bus access, if any, may go
through one or more levels of indirection, and the actual physical addresses accessed may be different than the
address requested.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

66 Space Telecommunication Interface (STI), v1.0 -- beta 2

For Application-Provided Random-Access Software Requirements
See Section 12.5.1442:49 with Fable 33Table 31: APP_AddressRead() Definition.

See Section 12.5.1542-50 with Fable34Table 32: APP_AddressWrite() Definition

10.5.4 Device-Provided Device Control Interface

An STI Device is a proxy for the data and/or control path to the actual hardware. An STI Device is a “bridge” used
to decouple an abstraction from its implementation so that the two can vary independently. All operations detailed
in this section are provided by the device developer or platform provider. Like the application control interface, all
operations described in this section are invoked by the STI infrastructure based on requests from other entities
within the environment. The operations listed below are not invoked directly by other applications.

The STI Device may be implemented using any available platform-specific hardware access layer to communicate
with and control the specialized hardware. While portability is not a specific goal for devices, if the hardware
access layer is also standardized and/or adheres to commonly implemented patterns, then the STI device itself can

also potentially be re-used in other environments with minimal modifications.

For example, many UNIX and UNIX-like RTOS operating systems implement a very similar pattern to configure

and access a serial device, using a pseudo-file in the /dev filesystem combined with a defined set of ioctl ()
operations and “termios” C library calls. As such, an STI device abstraction for UNIX-style serial ports and other
serially connected devices could be shared among any operating environment using this style of operating system
and device model. In contrast, an operating system such as Microsoft Windows® utilizes a driver architecture
specific to itself, and as such any STI device abstractions written using this driver model are not likely to be portabl
to any other operating system. However, in either case, an STI-compliant application that accesses serial devices
using the STI device abstraction would be portable to either environment.

The basic operations listed in this section correspond to the DeviceControl interface as illustrated in Figure 9.

For Device-Provided Device Control Software Requirements
See Section,12.6.1 with Table 33: DEV_Open() Definition.

See Section 12.6.2 with Table 34: DEV_Load() Definition.

See Section,12.6.3 with Table 35: DEV_Reset() Definition.

See Section,12.6.4 with Table 36: DEV_Flush() Definition.

See Section 12.6.5 with Table 37: DEV_Unload() Definition.

See Section,12.6.6 with Table 38: DEV_Close() Definition.-

10.6 STIAPI

The API calls in this section comprise the “public” interface into the STI infrastructure and may be used by all
components in the system to initiate actions in other components. Operations primarily utilize handle ID values,
which are opaque/abstract values that uniquely reference a single component within the STI infrastructure. The
specific format or structure of the handle ID value is implementation-defined, but the following criteria apply:

+ Handle ID values apply within a single run-time instance of an STI operating environment. They are not
meaningful outside the operating environment, nor are they meaningful in a different instance of an STI
operating environment. Note that a “reboot” of an environment is considered a different run-time instance;
handle ID values are not required to be persistent across restarts and may be assigned differently.

+ Handle ID values refer to the same component for that respective component’s lifetime; a component
cannot ever change its handle ID unless that component is destroyed and re-created.

« All components within the same operating environment can refer to the same set of handle IDs, and a given
handle ID referenced from one component refers to the same entity as the same handle ID referenced from
a different component.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 6f

[
[
{
{ Formatted: Underline
{
{

{ Formatted: Underline }

{ Formatted: Underline }

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

O JC L L

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Two Handle ID values may be tested for equality using the programming language’s normal equality check
operator (e.g. 1f (Handlel == Handle2)),butall other inquiries or tests are to be performed via
the infrastructure.

Portable applications and devices treat handle ID values as opaque objects, without any assumptions regarding the

validity of specific values or the data type(s) capable of storing the value. Only the infrastructure-supplied
HandleID type may be used to store a handle ID value.

It is recommended that the infrastructure implement handle IDs as an integer or a type derived from an integer, for
speed and simplicity of operation, although this is not required. As such, a handle ID value should not be compared
to any other integers.

10.6.1 General Utility API

The utility functions described in this section allow an application to make inquiries about the state of the
infrastructure or a previous operation, and generally do not perform any operation of their own. These functions
may be used at any time by any application.

10.6.1.1 Response Handling and Analysis

The function calls described in this section allow analysis of the return value of a previous call. Many STI API calls
return one of four data types:

+ Astatus code (Result)
A handle ID (HandleID)
+ Asize(FileSize)
A string (language-dependent)

In most circumstances, calls returning a Result type could test for the defined value OK to indicate a successful
result. However, there are some API calls, mainly those that use variably-sized data buffers for reading or writing,
for which partial success is permissible. In these cases, the function returns an actual size or count value rather than
a fixed value upon success. For this reason, portable applications should not directly check for the specific return
value OK to determine success of any STI call. Instead, applications should use a second operation to check if a
given status code is represents success or failure.

Similarly, operations that return a HandleID or FileSize type may also fail, where failure is indicated by an
invalid value. A secondary check operation should be employed to determine whether the returned value is valid or
not.

Finally, for functions that directly return the name of components as a string, the language in use defines the
semantics of invalid responses. In C, where strings are direct pointers to memory, this is the special pointer value
“NULL”. Other languages have differing representations of an “undefined value” such as None (Python) or nil
(Lua), but the semantics vary from language to language. In these cases, portable applications should check the
return value using the string semantics for the language in use, before passing the value to another operation.

For Infrastructure-Provided Response Handling Software Requirements
See Section 12.7.142-51 with Table 35Table 39: IsOK() Definition. [Formatted: Underline }
See Section,12.7.212.52 with Fable-36Table 40: ValidateHandleID() Definition.
See Section 12.7.312.53 with Fable 37Table 41: ValidateSize() Definition.

[Formatted: Underline }

[Formatted: Underline }

Name to Handle ID Mappings

All components operating within an environment have an associated name and handle ID value. The name is more
user-friendly, and as such is generally more useful for user interaction, whereas the numeric ID value is generally
simpler and more efficient for software use. The functions described in this section provide a means to convert
between these two forms of identification.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

68 Space Telecommunication Interface (STI), v1.0 -- beta 2

For Infrastructure-Provided Handle ID Mappings Software Requirements

See Section 12.7.512.55 with Fable 39Table 43: GetErrorQueue() Definition. [Formatted: Underline
See Section 12.7.642-56 with Fable40Table 44: GetHandleName() Definition. [Formatted: Underline

See Section,12.7.712.57 with Fable 4+ Table 45: HandleRequest() Definition. [Formatted: Underline

10.6.2 Application Control API

The operations in this section are used for controlling applications or devices from other components in the system.

In Figure 10, the Initialize() method call may be replaced by one of the methods in the comment titled | [Formatted: Font: Not Italic

REPLACEMENT METHOD CALLS and if so, the APP_Initialize() method is replaced by the correspondingly
named method in the comment tittled MATCHING METHOD CALLS. Each operation corresponds to a matching
operation in the application control interface documented in section 10.4.

sd [Interaction] ApplicationControl[ApplicationControl 1)

Component [OE Application

T

T

|
|
: 1: Initialize()

2: APP_Initialize
T

MATCHING METHOD CALLS: |

APP_Configure()
RunTest() APP_Query()
APP_Start()
APP_Stop()
APP_Release()
APP_RunTest()

3: Result

4: Result

Figure 10: Sequence Diagram for Application Control Component

Figure 10Figure-10 illustrates the general pattern of operations between the infrastructure API calls and the |
corresponding interface in the target application. The left side is the request originator component, or the “from”
entity in terms of the API descriptions and is identified as handle 1. The right side is the request target, or the “to”
entity in terms of the API descriptions and is identified as handle 2. The originator uses the API calls described in
this section, which in turn trigger the infrastructure to invoke the corresponding call on the target side. Upon
completion, the return value follows the inverse path, through the infrastructure, and back to the originating
component.

10.6.2.1 Setup and Teardown

The following API calls support the dynamic creation and deletion of components within the environment. See the

corresponding application interface description in section 10.5.2.1 for more information. Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 6

For Infrastructure-Provided Application Setup and Teardown Software Requirements

See Section ,12.7.412.54 with Table 38Table 42: InstantiateApp() Definition. [Formatted: Underline

See Section 12.7.842-58 with Fable-42Table 46: AbortApp() Definition. [Formatted: Underline

The interaction between the originating component, the operating environment, and the target application for an
InstantiateApp call is illustrated in Figure 11 igure-11.

sd [Interaction] pp [pp]J
Component | OE
T T
| |
1 1
i 1 op() i
2. Parse Configuration Options
_______ Create Application
| Instance.
3 APPl\nstﬂn:e a{ ‘Application |

T

|

|

|

|

|

4: Object i

= - — - — — — = — — — — — — |

|

5: HandlelD |

|

|

|

|

L |

T |

| |

T ! i

| | |

Figure 11: Sequence Diagram for InstantiateApp

The interaction between the originating component, the operating environment, and the target application for an
AbortApp call is illustrated in_Figure 12-Figure-12..

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

70 Space Telecommunication Interface (STI), v1.0 -- beta 2

1: AbOTAPP() |
2: APP_Stop() i
3: Result
(Com i ST e T
4: APP_ReleaseObject() |
i e AURE s e e
i
6: APP_Destroy \‘/
7: Result
< - -——--——--"—-—-—- - - T
i
i
o i
i i
Figure 12: Sequence Diagram for AbortApp
10.6.2.2 Life Cycle Control

The following API calls correspond to the LifeCycle interface on the target component. See the corresponding
application interface description in section 10.5.2.2 for more information.

For Infrastructure-Provided Life Cycle Software Requirements
See Section 12.7.942.59 with Fable43Table 47: Initialize() Definition.
See Section,12.7.1042-60 with Fable-44Table 48: ReleaseObject() Definition.

10.6.2.3 Property Set Control

The following API calls correspond to the PropertySet interface on the target component. See the corresponding
application interface description in 10.5.2.3 for more information.

For Infrastructure-Provided PropertySet Software Requirements
See Section 12.7.1142-6+ with Fable 45Table 49: Configure() Definition.
See Section 12.7.1242.62 with Fable46Table 50: Query() Definition.

10.6.2.4 Test Control

The following API calls correspond to the TestableObject interface on the target component. See the corresponding

application interface description in section 10.5.2.4 for more information.

For Infrastructure-Provided Test Control Software Requirements
See Section,12.7.1342:63 with Table-47Table 51: RunTest() Definition.

JLEIREE Db D s

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

10.6.2.5 Operational Control

The following API calls correspond to the ControllableComponent interface on the target component. See the
corresponding application interface description in section 10.5.2.5 for more information.

For Infrastructure-Provided Operation Control Software Requirements
See Section 12.7.1442.64 with Fable48Table 52: Start() Definition.
See Section,12.7.1542.65 with Table-49Table 53: Stop() Definition.

10.6.3 Device Control API

The following API calls allow applications to interact with STI devices. These operations provide a means to
establish a path of communication to the device, and correlate to the DeviceControl interface on the target
component. In Figure 1313Figure-13, the DeviceOpen() method call may be replaced by one of the methods in the
comment titled REPLACEMENT METHOD CALLS and if so, the Dev_open() method is replaced by the
correspondingly named method in the comment titled MATCHING METHOD CALLS. Each operation corresponds
to a matching operation in the device control interface documented in section 10.5.410-53.

sd [Interaction] DeviceControl [DeviceControl])

.

1: DeviceOpen()

I |
. 2: DEV_Open() !

REPLACEMENT METHOD
CALLS:

DeviceLoad()
DeviceReset()
DeviceFlush()
DeviceUnload()
DeviceClose()

3. Result

4: Result

Figure 1313: Sequence Diagram for Device Control Component

For Infrastructure-Provided Device Control Software Requirements
See Section 12.7.1642-66 with Fable 50Table 54: DeviceOpen() Definition.
See Section,12.7.1742:67 with Fable 5t Table 55: DeviceLoad() Definition.
See Section 12.7.1842-68 with Fable-52Table 56: DeviceReset() Definition.
See Section 12.7.1942-69 with Fable 53 Table 57: DeviceFlush() Definition.
See Section,12.7.2042.70 with Fable-54Table 58: DeviceUnload() Definition.
See Section,12.7.2142.71 with Fable-55Table 59: DeviceClose() Definition.

72 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Underline J
[Formatted: Underline J
[Formatted: Font: Not Italic J

Formatted:

Underline

Formatted:

Underline

Formatted:

Underline

Formatted:

Underline

Formatted:

[
[
[
[Formatted:
[
[

Underline

Formatted:
color: Auto, Pattern: Clear

Default Paragraph Font, Font: 10.5 pt, Font

)
)
)
Underline]
)
)
|

10.6.4 Data Transfer API

The following API calls correspond to the data transfer (Source, Sink, RandomAccess) interfaces on the target
component. These functions are also used to transfer data to or from files or message queues.

10.6.4.1 Data Source

The data source operation described in this section is applicable to any application or device that implements the
“Source” interface. See the corresponding application interface description in section 10.5.3.1 +0.5-4-+ for more |
information.

For Infrastructure-Provided Source Software Requirements
See Section 12.7.2242.72 with Fable 56Table 60: Read() Definition. ‘

10.6.4.2 Data Sink

The data sink operation described in this section is applicable to any application or device that implements the
“Sink” interface. See the corresponding application interface description in section 10.5.3.2 +0-5-4-2- for more |
information.

For Infrastructure-Provided Sink Software Requirements
See Section 12.7.2342.73 with Fable 57Table 61: Write() Definition. ‘

10.6.4.3 Random Access

These operations provide a means to directly access specific locations within a device or file, and correlate to the
RandomAccess interface on the target component. See the corresponding application interface description in section
10.5.3.3 +6-5:4-3- for more information. |

For Infrastructure-Provided Random Access Software Requirements
See Section 12.7.2442.74 with Fable 58Table 62: AddressRead() Definition.
See Section 12.7.2542.75 with Fable 59Table 63: AddressWrite() Definition.

10.6.5 Log API

The Log API provides a means to record contextual information regarding errors or other conditions present in
applications. The log data is maintained by the infrastructure and may be sent to the operating system log facility if
one exists. The platform provider indicates the specific manner with which log data may be retrieved and examined
by the operator, such as a file location or system log viewer.

See Section 12.7.2642.76 with Fable-60Table 64: Log() Definition. }

10.6.6 File API

The API calls described in this section allow an STI application or device to open, close, and manipulate files, in an
abstract sense, within the operating environment. Note that the file system implemented by the STI infrastructure
may or may not correspond to an actual file system in the underlying operating system. The file system may be
virtualized, and the presence of these API functions does not imply a requirement that the operating system actually
implements a conventional file system.

The basic requirements of the file system abstraction are:

All applications and devices access the same file system (real or virtual). A file created by one application
or device, may be subsequently opened by a different application or device, using the same file name.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 7B

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

The files are persistent for at least the lifetime of the current infrastructure. A virtual file system backed in
RAM or other volatile storage may be cleared when the infrastructure is restarted, or the host system is
rebooted. File systems should have longer persistence (i.e. across reboots) when backed by a non-volatile
storage device.

The platform developer must indicate the level of persistence offered by the file system abstraction.

The methods defined in this section pertain to file system manipulation and provide a means to open or close file
handles. For actual data transfer operations, file handles will respond to the data transfer methods as defined in

section 10.6.4, Data Transfer APIData Transfer APL [Formatted: Font: 10 pt J
10.6.6.1 File Handle Operations

Like other components, files in STI operating environment are identified using a handle ID, and as such file handles

share many of the same semantics with other applications and devices. The difference lies in that file handles are

obtained using the specific API methods described here, rather than the previously described methods used for

applications or devices. The operations in this section manipulate file handles within the environment.

See Section 12.7.2742:77 with Fable-6+Table 65: FileOpen() Definition. [Formatted: Underline]

See Section 12.7.2842.78 with Fable-62Table 66: FileClose() Definition.

[Formatted: Underline }

[Formatted: Underline }

10.6.6.2 File System Operations

The operations in this section manipulate or query the file system itself, rather than on file handles within the file
system.

See Section,12.7.2942.79 with Fable-63Table 67: FileGetSize() Definition. [
See Section 12.7.3042-80 with Fable-64Table 68: FileRemove() Definition. [
See Section,12.7.3112.81 with Table-65Table 69: FileRename() Definition. [

Formatted: Underline

Formatted: Underline

Formatted: Underline

See Section 12.7.3242.82 with Table-66Table 70: FileGetFreeSpace() Definition.

Formatted: Underline

Formatted: Underline

(Y D U D

10.6.7 Messaging API

The STI applications use the Messaging API to establish facilities to send messages between components using a
common handle ID. The ability for applications, services, devices, or files to communicate with other STI
applications, services, devices, or files is crucial for the separation of radio functionality among independent
components. When using the message passing API, the final destination of a message is not necessarily known to
the producer of the message.

For example, the receive and transmit telecommunication functionalities can be separated between two applications.
Another example is when commands or log messages come from several independent sources and are merged
appropriately. Some examples of independent components that may need to interact with others could be for
navigation, GPS, file upload, file download, and computations.

There are two models for passing messages: queues (first in, first out, or FIFO) and publish/subscribe (PubSub). In

a queue, messages are written to a queue by one entity and read from the queue by another entity. In a PubSub

model, messages written to the message passing facility by one application are delivered to all subscribers of that

publisher.

To write to or read from a FIFO queue, the Read () and Write () operations are used, respectively, as described in

section 10.6.4, Data Transfer APIBataTFransferAPE. In this model, the originating entity pushes data to the queue, [Formatted: Font: 10 pt J
where it is temporarily stored. The receiving entity pulls data from the queue later, at which time it is removed from
the queue. By definition, FIFO queues only provide sequential data, they do not support random access.

In the publish/subscribe (PubSub) messaging model, the data is pushed to all subscribers using a one -to-many
distribution. All applications subscribing to receive data using this model are required to implement the “Sink”
interface as described in section 10.5.4.2. Note that any handle ID capable of acting as a data sink may be
subscribed to a PubSub message distribution, including files and FIFO queues. By registering an open file handle
ID, one can effectively create a “tap” to log all published data. Likewise, by registering a FIFO queue, the two

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

74 Space Telecommunication Interface (STI), v1.0 -- beta 2

messaging models may be combined, allowing broadcast data to be buffered and then “pulled” by the receiver as
time permits.

10.6.7.1 FIFO Queue Model
The API calls described in this section implement the “first-in, first-out” (FIFO) queue model.
See Section 12.7.33412-83 with Fable-67Table 71: MessageQueueCreate() Definition. [Formatted: Underline

See Section,12.7.3412.84 with Table-68Table 72: MessageQueueDelete() Definition. [Formatted: Underline

10.6.7.2 Publish/Subscribe Model

The API calls described in this section implement the publish/subscribe messaging model.

See Section 12.7.3512:85 with Fable-69Table 73: PubSubCreate() Definition. Formatted: Underline

See Section 12.7.3642-86 with Fable70Table 74: PubSubDelete() Definition.

See Section 12.7.3742-87 with Fable- 7+ Table 75: Register() Definition. Formatted: Underline

See Section 12.7.3842-88 with Fable72Table 76: Unregister() Definition.

[Formatted: Underline
[Formatted: Underline

10.6.8 Time API

The STI Infrastructure Time methods are used to access the hardware and software timers. Methods are also defined
to support synchronization of oscillators or other timing sources to a reference signal.

Many time operations utilize an object type called TimeWarp, which represents an abstract time interval.
Nominally, the TimeWarp object is expected to be some form of timer tick counter, with the specific
resolution/units and epoch being implementation-defined. A TimeWarp object may represent time in standardized
units, such as milliseconds or microseconds, or it may be based on the CPU clock or timer interrupt frequency.
Although some API methods are defined to a nanosecond time resolution, that does not imply that the actual timer
resolution is nanoseconds or that the underlying TimeWarp object contains its data in nanoseconds.

The following is true of TimeWarp objects:

+ The resolution or units of TimeWarp objects is a fixed constant defined by the infrastructure and does
not change for the lifetime of the infrastructure. For instance, if a clock is sampled at times A, B, and C,
and the time interval between B-A and C-B is equal, then the corresponding difference between the
successive TimeWarp values will also be equal.

« All eloekdevieeclock components within an infrastructure will share the same definition of TimeWarp,
with respect to range and resolution, even if the eleck-devieeclock components do not share the same
epoch.

+ TimeWarp objects will be capable of differentiating between positive intervals (time in the future) and
negative intervals (time in the past).

Depending on the application, time intervals may be of a long duration (years or decades) and/or high resolution
(microseconds or nanoseconds). To support a wide range of time while also maintaining a high resolution, it may
not be possible to represent a TimeWarp value as a single value on a particular CPU. For instance, if a timer has a
resolution of 1 microsecond and is represented using a 32-bit signed integer, which is the largest native integer type
on some microcontrollers, then the measurable time intervals would be limited to only (23!-1) microseconds, or
approximately 35.7 minutes. Therefore, TimeWarp may be implemented as a structure or other extended-range
numeric type in order to achieve the necessary range and resolution requirements.

10.6.8.1 Time Conversion and Arithmetic

The TimeWarp object is defined by the infrastructure as a value that represents a specific interval in time. The
specific structure of this object is implementation-defined. For example, the underlying TimeWarp object could

count ticks from some epoch, such as the infrastructure boot time, and then Get Seconds and GetNanoseconds Formatted: Default Paragraph Font, Font: 10.5 pt, Font
compute the seconds and nanoseconds, respectively, based on the tick rate. color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 75

The following methods provide a means to work with TimeWarp objects, and to convert or translate these objects
into other representations. As the specific implementation of the TimeWarp object may vary, applications cannot
assume that normal arithmetic or logical operations are possible (i.e. addition or subtraction, equality testing, etc.).
Therefore, the infrastructure needs to explicitly provide these operations in the API.

In order to make these operations as efficient as possible, all operations defined in this section may be implemented
as macros or inline functions on platforms that offer this feature. There is also no need for error checking and no
possibility of failure on these operations, as any input value is valid.

See Section 12.7.3942.89 with Fable 73 Table 77: GetNanoseconds() Definition.
See Section 12.7.4042.90 with Fable 74 Table 78: GetSeconds() Definition.

See Section 12.7.4142.91 with Fable 75Table 79: GetTimeWarp() Definition.
See Section 12.7.4242.92 with Fable76Table 80: TimeAdd() Definition.

See Section 12.7.4312.93 with Fable77Table 81: TimeSubtract() Definition.
See Section 12.7.52 with Table 90: ConvertToTimeWarp() Definition

10.6.8.2 Basic Clock Get/Set Operations

The API calls described in this section implement the basic clock operations such as getting the time, setting the
time, or suspending/delaying operation until the clock reaches a specific value.

See Section 12.7.4442.94 with Fable 78Table 82: GetTime,
See Section ,12.7.4512.95 with Table 79Table 83: SetTime,
See Section ,12.7.4612:96 with Table-80Table 84: GetCalendarTime,

Several predefined eenstantsvalues for the CalendarKind type are specified in section 10.4.2. A compliant
platform does not necessarily need to implement all the calendar types listed and may implement additional types
not listed as application-specific extensions. To support the various time representations, several structures are
provided by the infrastructure. The time representations are illustrated in Figure 14, Calendar Time Value
Representations.

«dataType»
CalendarTime
—_— bt
«dataType» «dataType» «dataTypex»
CalendarValueDayNumber CalendarValueCivil CalendarValueGPS
date: float[l] nanoseconds - Integer tow :Integer
seconds : Integer [1] week : Integer

minutes : Integer [1]
hours : Integer [1]
day : Integer [1]
month : Integer [1]
year : Integer [1]

Figure 1414: Calendar Time Value Representations

76 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Underline

Formatted: Underline

Formatted: Underline

[
[
[Formatted: Underline
[
[

Formatted: Underline

A

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The CalendarTime type may be expressed as an IDL union of all possible time representations, as indicated
below.

See Section 12.4.1142-97 with Fable-8+Table 14: CalendarValueCivil Structure Definition.

See Section,12.4.1212.98 with Fable-82Table 15: CalendarValueGPS Structure Definition.

See Section 12:9912.4.13 with Fable-83Table 16: CalendarValueDayNumber Structure Definition.
See Section +2:106,12.4.14 with Table-84Table 17: CalendarTime Union Definition.

10.6.8.3 Clock Rate Adjustment and Drift Compensation
If eleek-devieeclock components require synchronization with external signals, a dedicated service should I

continuously monitor for drift and handle the adjustment as needed. Common synchronization sources include a
“time at tone” signal from a ground station, a 1 pulse per second (PPS) input from a GPS receiver, or via the
network time protocol (NTP). Differences between the synchronization source and the eleek-devieeclock
component can be compensated by either directly stepping the eloek-deviceclock component using SetTime (), of,
if the underlying device supports it, by low-level adjustment of the clock source tick rate such that the drift is
gradually absorbed and corrected over time.

The SetTime () API sets the clock directly and will step the timer forward or backward as indicated. However, a
timer step may have undesirable consequences for some software, particularly control loops that rely on relative
time differences between successive samples. This can sometimes be mitigated by making many small steps rather
than one large step. However, even the smallest step still might cause unacceptable effects on a control loop that
relies on precise relative timing measurements.

The adjustment functions are intended to address this by providing an alternative method to adjust for clock drift. In
many eloek-devieeclock component implementations, the underlying “tick™ or reference signal is supplied using a |
hardware PLL/oscillator or clock divider of some type, driving a periodic timer tick interrupt to the CPU.
Furthermore, if the source allows some level of control during operation, such as increasing or decreasing the
oscillator rate by a certain ratio (e.g. parts per million) or by modifying the clock divider ratio by a small amount,
then this can be used to provide for a more stable drift compensation method. By increasing or decreasing the
underlying timekeeping tick rate, small differences between the elock devieeclock component and the reference |
source can be compensated over time without ever “stepping” the clock.

Support for these adjustment routines is platform dependent. If a platform does not support clock drift adjustment,
an appropriate error code will be returned.

See Section 12.7.4742140+ with Table 85: SetTimeAdjust() Definition.
See Section 12.7.4842402 with Table 86: GetTimeAdjust() Definition.
See Section 12.7.4942403 with Table 87: TimeSynch() Definition

10.6.8.4 Delay Operations

The Sleep and DelayUntil functions provide a means for an algorithm to delay its own execution or wait for a clock
to reach a certain deadline.

See Section 12.7.5042-+04 with Table 88: Sleep() Definzition
See Section,12.7.5142-165 with table 89: DelayUntil() Definition.

10.6.9 Clock Control API

The following API calls allow applications or devices to act as STI clock components. The operations below
provide a means to establish a path of communication to the STI clock components, and correlate to the
ClockControl interface on the target component. There are corresponding OE methods without the “CLK_" prefix
in Section 12.7.44 to Section 12.7.51 as described above.

For Infrastructure-Provided Clock Control Software Requirements
See Section 12.9.1 with Table 91: CLK_GetTime() Definition

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 77

Formatted: Underline

Formatted: Underline

[Formatted: Underline
[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

[Formatted: Underline

Commented [HLM(L8]: JIRA issue STI_78: Missing
Clock Methods

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

See Section 12.9.2 with Table 92: CLK_SetTime() Definition

See Section 12.9.3 with Table 93: CLK_SetTimeAdjust() Definition
See Section 12.9.4 with Table 94: CLK_GetTimeAdjust() Definition
See Section 12.9.5 with Table 95: CLK_Sleep() Definition

See Section 12.9.6 with Table 96: CLK_DelayUntil() Definition

10.7 Non-STI Software Interfaces

STI applications and services may need to utilize libraries or services outside the scope of STI, such as the services
provided by the operating system or additional software libraries. As such, an STI module can only be ported to an
environment that also provides a compatible set of services or libraries, so it is critical to identify these
dependencies.

Examples of software libraries include, but are not limited to:

Operating system operations such as task/thread creation or synchronization

Floating-Point mathematical operations

Complex algorithms, such as machine learning
Most programming languages, including C/C++, also define a “standard library” in addition to the language syntax
and semantics. This library is defined by the respective standards body, such as ISO/IEC for C and C++, as a set of
interfaces that all compliant implementations must meet. For instance, in ISO/IEC 9899 (C), this standard library

includes a minimum set of header files specifying a core set of function calls, including basic memory access,
mathematical operations, and string manipulation (e.g. memset (), strcmp (), sqrt (), etc.).

An STI application may use any operations defined in the standard library of the respective programming language.
However, the application developer should avoid the use of any library functions which are marked as deprecated,
non-cross-platform, or non-thread-safe, where applicable. If no replacement or alternative exists, this dependency
should be expressly noted in the application documentation.

Beyond the standard library, additional software libraries may be used for specific functions. These include, but are
not limited to:

+ Accessing operating system or task scheduling resources (e.g. POSIX® or other operating system
abstraction library)

Additional mathematical computations beyond those provided by the standard library (e.g. BLAS,
LAPACK, NumPy, etc.)

Scientific or Machine Learning packages (e.g. SciPy, TensorFlow™, etc.)

10.7.1 Operating System Interface

STI applications implemented in C or C++ which do not leverage a specific 3™ party operating system abstraction
library may use a subset of the POSIX® API as shown in Figure 6Figure-8, Software Execution Model. POSIX®
refers to a family of IEEE standards 1003.n that describe the fundamental services and functions necessary to
provide a UNIX®-like kernel interface to applications. POSIX® itself is not an OS but is instead specifies the
programming interfaces available to the application programmer.

POSIX® specifies a set of OS interfaces and services. The specification is not bound to a single operating system
and has in fact been implemented on top of operating systems such as Digital Equipment Corporation’s (DEC’s)
OpenVMS™ (Virtual Memory System) and Microsoft Windows®. However, the creation of POSIX® is closely
coupled to the UNIX® OS and its evolution. The goal was to create a standard set of interfaces that all the UNIX®
flavors would support in order to facilitate software portability. Even though POSIX® technically refers to the
family of specifications, it is more commonly used to refer specifically to IEEE 1003.1, Information Technology -

Portable Operating System Interface (POSIX®), which is the core POSIX® specification. Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

78 Space Telecommunication Interface (STI), v1.0 -- beta 2

Characteristics of POSIX® include the following:
Application-oriented.
Interface, not implementation.
Source, not object, portability.
The C-language/system interfaces written in terms of the ISO C standard.
No superuser, no system administration.

Minimal interface, minimally defined—core facilities of this specification have been kept as minimal as
possible.

Broadly implementable.
Minimal changes to historical implementations.
Minimal changes to existing application code.

The original POSIX® specification was based on a general-purpose computing platform, but a series of amendments
addressed the unique requirements of real-time computing. These amendments follow:

IEEE 1003.1B-Realtime Extension.

IEEE 1003.1C-Threads Extension.

IEEE 1003.1D-Additional Realtime Extensions.

IEEE 1003.1J-Advanced Realtime Extensions.
+ IEEE 1003.1Q-Tracing.

These amendments were rolled into the base specification in version IEEE 1003.1-1996. IEEE 1003.13 provides a
standards-based option for an STI AEP.

10.7.11 STI Application Environment Profile

The subset of the POSIX® API described below is used by STI applications to access platform services when no
STI Infrastructure-provided API is available. The IEEE 1003.1 standard provides a means to implement a subset of
the interfaces by using “Subprofiling Option Groups.” These option groups specify “Units of Functionality” that can
be removed from the base POSIX® specification.

IEEE 1003.13 created four AEPs that specified subsets of 1003.1 more suitable to embedded applications. These
profiles follow:

PSE51—Minimal Realtime Systems Profile.
PSE52—Realtime Controller System Profile.
PSE53—Dedicated Realtime System Profile.
PSE54—Multi-Purpose Realtime System Profile.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 79

\

==y — P \ Multi-Purpose
/ / : ————_ PSE54
Netiiid Asynchronous (Multiple
| Networking \ ro Processes / Shell &
\ Utilities

Message o
Qe / Multiple

Users

Simple

File System

Dedicated
PSES3

_—
/ Full

File Syste
Others !

=5
m

S

Figure 15: Profile Building Blocks

The profiles are each upwardly compatible and consist of the basic building blocks shown in figure 15, Profile
Building Blocks. Each of these profiles has increasing capabilities, which increase requirements on resources.
Profiles 51 and 52 runs on a single processor with no Memory Management Unit (MMU), and thus imply a single
process containing one or more threads. Profile 52 adds a file system interface and asynchronous I/0. Profile 53
adds support for multiple processes, thus requiring an MMU. The last and largest profile 54 adds support for
interactive users and is almost a full POSIX® 1003.1 environment. The higher numbered profiles are supersets of
the lower numbered profiles, such that PSES2 includes all the features of a PSES1.

Upward portability between profiles is supported by requiring certain APIs, such as memory locking, for profiles
PSES51 and PSE52. Even though there is no MMU support on the PSES1 and PSE52 profiles, code written as if
there is an MMU present will be portable among all four profiles by requiring such APIs to be defined in all four
profiles. The signature of these APIs will be identical on all profiles, but the functionality will differ according to
the capabilities. For example, calling a memory-locking API on a PSES1 platform with no MMU will always return
success. When this example application is ported to a PSE53 platform, the memory locking will work as intended
without modification to the source code.

Currently, this specification supports platforms based on profiles PSE51 through PSE54, although PSE54 will only
be used for development platforms and ground stations. Allowing multiple profiles allows the architecture to scale
to different platforms. Applications developed for a specific profile are compatible with higher profiles; that is, a
profile 52 application could be ported to profile PSE53 and PSE54 platform, but not vice versa. This upward
scalability anticipates that smaller platforms will desire smaller profiles and will not have the resources to run larger
applications that comply with the larger profiles.

For Requirements for Operating System Interface
See- 12.3.742-106, Document STI InterfacesPocument- ST nterfaces.
For POSIX® interfaces this should indicate the supported application profiles as described in standard IEEE

1003.13. For other operating systems or operating system abstraction layers, this should indicate the specific
API or abstraction layer and associated version, where applicable.

See1216%
Interfaces.

s-12.3.8, Document Application’s System Library

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

80 Space Telecommunication Interface (STI), v1.0 -- beta 2

For POSIX® interfaces this should indicate the required application profiles as described in standard IEEE
1003.13. For other operating systems or operating system abstraction layers, this should indicate the specific
API or abstraction layer and associated version, where applicable.

Regardless of the POSIX® profile implemented, STI applications should avoid use of any POSIX® function which
is not thread safe, to preserve portability of application code to multi-threaded STI platforms. In addition, STI
applications should not invoke any function which would cause the parent process to abort or exit (e.g. exit () or
abort ()) as these functions may disrupt the operation of other STI applications.

In areas where there is overlap between an STI API and a function provided by POSIX®, such as messages queues
and file system access, applications should use the STI provided API.

Table 4 lists a set of common POSIX® functions and the alternative function to use in an STI application. Note that
this list only contains a subset of the possible non thread-safe functions and should not be considered exhaustive or
complete. Refer to the POSIX® specification for a complete set of non thread-safe functions.

Table 4: Function Alternatives

POSIX® Function(s) Suggested Alternate

asctime (), ctime () [strftime ()|

open (), close () STIFileOpen(),FileClose ()

Commented [HLM(L9]: JIRA issue STI _29: STI Pro-
posal: Change GetCalendarTime to strftime in Table 4

mg_open () STI MessageQueueCreate ()

read (), write () STI Read (), Write ()

strtok () strtok_r()

rand () rand_r ()

abort (), exit () STI AbortApp ()

ioctl (), mmap () STI AddressRead () , AddressWrite ()
system(), atexit () None; do not use

11. External Command and Telemetry Interfaces

An STI radio cannot perform the necessary application and platform functions without an external system providing
commands, accepting responses, and monitoring the radio’s health and status. The STI radio implements an external
interface to receive and act on the commands from the external system, translates the commands into the format
expected by the application, and provides the information for monitoring the health and status of the radio. If the
STI radio has the capability for new or modified OE, application software, or configurable hardware design, the
external command and telemetry interfaces should be able to accept and store new files. The interface in the STI
radio and in the external system, which is to provide the control, via a command sequence, to the STI radio and
receive responses from an STI radio, is referred to as the STI command and telemetry interfaces. The external STI
command and telemetry functionality illustrated in ‘ﬁgure 16L Command and Telemetry Interfaces, typically resides
on the spacecraft’s flight computer, and/or it may reside on a ground station or another spacecraft.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 8l

Commented [HLM(L10]: JIRA issue STI_5: Correct
SysML in figures

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-29&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=SjQWstCKKjknmCA1eng4Kuz361x9gD2LPBW0jGW62Wg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-29&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=SjQWstCKKjknmCA1eng4Kuz361x9gD2LPBW0jGW62Wg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0

1

Spacecraft

=

]
Over the Air Command and Telemetry” —— ———— |

«Subsystemn
Radio

o —
Process Commands

“Create Telemetry -

S

Space Vehicle Ground Station

% R

Flight Computer

/” Communicate with the
\ Flight Computer

 — %
| ExtemalPort

Spacecraft

T Radio
Ie N
St c -
Ci R R — Command and Telemetry
tt | e ®
d +—k
. Payload
1
ir (

ol 2 <<use»» 2 ®)
W i i . Uses another | = \ N

Other Space Vehicle Ground Station radio link 10 tak to Flight Computer External Port

b the Flight Computer
te

such as MIL—> 1 D—1533, Digital 11me D1vision Lommand/Kesponse Viultiplex Data Bus; command and telemetry
interpretation; and translation of the command set to the STI standard necessary for application control. The
protocol, command set, and telemetry set for the STI command and telemetry interfaces are not standardized and can
be customized according to the needs of any particular deployment. However, some interface and behavioral

requirements are required.

The telemetry set should contain some or all of the following parameters:

+ Electrical Conditions: Voltage, current, and power consumption.

+ Environmental Conditions: Temperature, pressure.

+ Module Configuration: Module type/location, hardware revision.

+ Self-test Status: RAM/ROM, file system, software revision, and individual module test status.

+ Operating Environment Status: Infrastructure software revision, name/ID/state of components, available

memory for data and files

+ Other Application-specific parameters

The command set may contain some or all of the following actions:

+ Application Instantiation and Deletion: Manually create or delete a waveform or device.

+ Property Set: Query or Configure a specific component property via the STI PropertySet API.

+ File Operations: Query, delete, or rename files via the STI File APL.

82

Space Telecommunication Interface (STI

v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Invoke Self-tests: Interface to the STI TestableObject API.
Device Operations: Manually load, flush, or reset a device via the STI Device API.

If the command interface lies on a network containing other devices, the infrastructure should implement some form
of command authentication, to reduce the likelihood that commands are received in error or from an unauthorized
source. Furthermore, the infrastructure may also implement encryption on the command and telemetry interfaces to
ensure that the data is not disclosed to other entities in the system while in transit. Any such security procedures
should be implemented at the network transport level, which is outside the scope of this specification.

The specific command or telemetry set available for use is always at the discretion of the system integrator. While
the set described here is potentially useful for a development platform, flight operations may choose to use an
entirely different set. The use of additional data transmission specification standards is encouraged but
not required by this standard

For Requirements for External Command and Telemetry Interfaces

See 12.8.142-108, Respond to External Commands

See 12.8.212109, External Commands Use STI API

See 12.8.312-H0, Document External Commands

See 12-110,-12.8.4, Use STI Query for External DataDocumentExternal- Commands.

12. Normative Requirements

12.1 Hardware

Document hardware and interfaces.

12412.1.1 Provide GPM

STI-1 An STI platform shall have a GPM that contains and executes the STI OE and the control portions of the
STI applications and services software.

42.212.1.2 Diagnostic Information Availability
STI-2 A module’s diagnostic information shall be available via the STI APIs.

42.312.1.3 Document RF

STI-3 The STI platform provider shall describe, in the HID document, the behavior and performance of the RF
modular component(s).

42.412.1.4 Document Power-Up State

STI-4 The STI platform provider shall describe, in the HID document, the state of all hardware devices in-the
system-after completion of power-up process.

42.512.1.5 Document Hardware Capability

STI-5 The STI platform provider shall describe, in the HID document, the behavior and capability of each major
module or component available for use by a waveform, service, or other application (e.g., FPGA, GPP, DSP, or
memory), noting any operational limitations.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 8B

[Formatted: Text body

[Formatted: Heading 3, Indent: Left:

: 0" First line: 0"]

[Formatted: Heading 3, Indent: Left:

: 0", First line: 0" J

[Formatted: Heading 3, Indent: Left:

: 0", First line: 0" J

[Formatted: Heading 3, Indent: Left:

- 0", First line: 0"]

[Formatted: Heading 3, Indent: Left:

: 0", First line: 0" J

color: Auto, Pattern: Clear

Formatted: Default Paragraph Font, Font: 10.5 pt, Font ‘

12.612.1.6 Document Hardware Limitations “

STI-6 The STI platform provider shall describe, in the HID document, the various capabilities, capacities, and any
limitations of each reconfigurable component.

12.712.1.7 Document Interfaces “

STI-7 The STI platform provider shall describe, in the HID document, the interfaces that are provided to and from
each modular component of the STI platform.

12.812.1.8 Document the Control and Data Mechanisms “

STI-8 The STI platform provider shall describe, in the HID document, the control, telemetry, and data
mechanisms of each modular component (i.e., how to program or control each modular component of the platform,
and how to use or access each device or software component, noting any proprietary and nonstandard aspects).

42.912.1.9 Document Power Supply -

STI-9 The STI platform provider shall describe, in the HID document, the behavior and performance of any
power supply or power converter modular component(s).

412-1012.1.10 Document Thermal and Power Limits “

STI-10 The STI platform provider shall describe, in the HID document, the thermal and power limits of the
hardware at the smallest modular level to which power is controlled.

124412.1.11 Controllable From OE -

STI-11 If the STI application has a component resident outside the GPM (e.g., in configurable hardware design),
then the component shall be controllable from the STI OE.

12.2 Configurable Hardware Design

42.4212.2.1 Platform Specific Wrapper

STI-12 The STI SPM developer shall provide a platform specific wrapper for each FPGA, which performs the
following functions:

1. Provides an interface for command and data from the GPM to the waveform application.

2. Provides the platform-specific pinout for the STI application developer. This may be a complete
abstraction of the actual FPGA pinouts with only waveform application signal names provided.

4124312.2.2 Document FPGA Interfaces

STI-13 The STI SPM developer shall provide documentation on the configurable hardware design interfaces of the
platform-specific wrapper for each FPGA, which describes the following:

1. Signal names and descriptions.
Signal polarity, format, and data type.
Signal direction.

Signal-timing constraints.

Clock generation and synchronization methods.

o gk~ wDd

Signal-registering methods.

84 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Indent: Left: 0", Hanging: 0.81", Outline
numbered + Level: 2 + Numbering Style: 1,2, 3, ... +
Start at: 1 + Alignment: Left + Aligned at: 0" + Indent
at: 0"

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

7. Identification of development tool set used.

8. Any included non-interface functionality.

12.3 Software -
4121441231 Document System Library Interfaces Provided -

STI-14 The STI infrastructure provider shall document the supported system library interface(s) that are provided
by the infrastructure, specifying any relevant standards or revisions.

42.1512.3.2 Document System Library Interfaces Used “

STI-15 The STI application provider shall document the supported system library interface(s) that are required by
the application, specifying any relevant standards or revisions.

42.4612.3.3 Document Language Interfaces Provided

STI-16 The STI infrastructure provider shall document the supported language interface(s) that are provided by the
infrastructure, specifying any relevant standards or language revisions.

12.1712.3.4 STl Infrastructure Uses APP API

STI-17 The STI infrastructure shall use the STI Application-provided Application Control Interfaces to control STI
applications.

42.4812.3.5 Use Language Specific Facilities Specified in Annex A

STI-18 Applications shall use the respective programming language’s designated facilities, such as a package,
module, or header file(s), to refer to all STI infrastructure-provided entities as prescribed in Annex A: Language
Translations.

42.1912.3.6 Use Language Specific Inheritance “

STI-19 Application object definitions shall use the programming language’s inheritance mechanisms to specify the
set of STI interfaces that are implemented by the application (for object-oriented languages only).

12.3.7 Document STI Interfaces

STI-106 The STI infrastructure provider shall document the set of interfaces provided by the infrastructure.

12.3.8 Document Application’s System Library Interfaces,

STI-107 The STI application developer shall document the set of operating system interfaces required by the

application.

12.4 STI Infrastructure-Provided Software

The following items in section 12.4 are expected to appear in module STI,

42.2012.4.1 STl Infrastructure-Infrastructure-Provided Data Types “
STI-20 The STI infrastructure shall define the basic data types as specified in Table 5.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 8b

Formatted: Indent: Left: 0", Hanging: 0.81", Outline
numbered + Level: 2 + Numbering Style: 1,2, 3, ... +
Start at: 1 + Alignment: Left + Aligned at: 0" + Indent
at: 0"

[Formatted: Heading 3, Indent: Left: 0", First line: 0" }

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

[Formatted: Font: (Default) Arial, 12 pt

Commented [HLM(L11]: Just moved during renumbering
to organize requirements into sections

Formatted: Font: 10.5 pt

[
[Formatted: Font: (Default) Arial, 14 pt, Bold
[
[

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

Formatted: Font: (Default) Arial, 14 pt, Bold]
color: Auto, Pattern: Clear ‘

Table 5: STI Variable Types

N

Type Name

Semantics

Usage/Description

1

Access

Enumeration

Indicates desired access to a file. The specific
possible values are described in Table 6.

index numbers in table

Commented [HLM(L12]: JIRA issue STI_45: STI-20 add

|

[Formatted Table

]

2

CalendarKind

Enumeration

Identifies a specific method of time representation,
such as TAI or UTC. The specific possible values are
described in Table 7, CalendarKind [Constants Values|
Because some time representations apply to space,
date and time may be defined beyond the ISO
standard for Date and Time [8601] on Earth.

Tw

CalendarTime

Abstract Structure or Class

An abstract object that identifies a specific time for a
particular CalendarKind. All possible
CalendarTime values are representable as a
pointer or reference to this type.

T

FileSize

Integer

Represents a file size in bytes. The variable type
should be able to represent the maximum file size
among all the filesystems in the system, as well as
uniquely identifiable values to indicate error
conditions

o

HandleID

Integer

A handle ID is a single value that represents an STI
application, device, file, or queue. It may be an index
into a table or a pointer to more information for the
item. The infrastructure defines the set of valid
values for this type.

Toy

Instance

Structure or Class (base type)

The base type of all application and device context
objects. All STI components have a corresponding
object of this type stored by the infrastructure,
although the object itself is not exposed to other
applications.

T3

Message

Abstract Structure or Class

The base type of all data exchange (Read, Write)
buffers. All STI data exchange messages are
representable as a pointer or reference to this type.

Too

Nanoseconds

Integer

Indicates the number of nanoseconds (fractional part)
within a TimeWarp object. This type can represent
at least the range of [0, 999999999], and may be
implemented using an “unsigned” value type, if
available.

3

Offset

Integer

Indicates an offset from the beginning of a file or
device address space. This type has a range capable
of representing the last position in the largest file or
device in the system. May be implemented using an
“unsigned” value type, if available.

PropertyName

Integer, Enumeration or String

Identifies properties by name. May be implemented
as a numeric enumeration in languages which support
this, or as a string value in other environments.

PropertyValue

Abstract Structure or Class

The base type of all property values used with the
property set interface (Configure, Query). All
STI property values are representable as a pointer or
reference to this type.

86

Space Telecommunication Interface (STI

v1.0 -- beta 2

Commented [HLM(L13]: JIRA issue STI 31: Change
“constants” to “predefined values”

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-45&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=tBWmMs6IoKEv8kX2rukdzknKiEUgSGlUuovDm3MxZyg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-45&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=tBWmMs6IoKEv8kX2rukdzknKiEUgSGlUuovDm3MxZyg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

M Type Name

Semantics

Usage/Description

— |QueueMaxMessages

Integer

Represents the maximum number of messages
allowed in a FIFO queue.

Commented [HLM(L12]: JIRA issue STI_45: STI-20 add
index numbers in table

|

[Formatted Table

J

Result

Integer

Represents a status value, returned by many STI API
calls. Specific predefined values represent error
conditions, which are distinct from the set of valid
results. See constantspredefined values defined in
Table 9, Result Geﬁ%%an%s\/alues.‘

Seconds

Integer

Indicates the number of seconds (whole number part)
of a TimeWarp object. Negative values represent
time intervals in the past, and positive values indicate
time intervals in the future.

— |TestID

Integer

Represents the built-in test or ground test to be

performed by APP_RunTest.

TimeRate

Integer

Indicates the adjustment factor of elock-devieeclock g
components during adaptive sync and drift
compensation. Positive values represent increased
clock frequency/tick rates, negative values represent
decreased frequency/tick rates, and a value of zero
represents the nominal or “free-run” clock frequency.
Units are implementation defined.

%

TimeWarp

Integer or Aggregate value
(non-abstract)

The #Rrepresentsation of an arbitrary time interval. |
Logically, this is a single, large value of fixed-point
precision. The value should be at least 64 bits in size.
If the largest native integer size is less than 64 bits on
a given architecture, this may be defined as a
structure or array to achieve the necessary range and
precision. Units are implementation defined but are
convertible to seconds and nanoseconds using the STI
methods GetSeconds and GetNanosecondsAPE.

42.2412.4.2 Application based on Instance Object
STI-21 The application base object shall be convertible to an Instance object as defined by the STI infrastructure.

42.2212.4.3 STl Infrastructure-Provided Access ConstantsValues
STI-22 The STI infrastructure shall provide the Access Constantsvalues as specified in Table 6.

A

Table 6: Access ConstantsValues
Declaration enum Access {
READ,
WRITE,
APPEND,
BOTH
}
Description EnumeratesEnumerate types of access to a file. |

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

8y

Commented [HLM(L14]: JIRA issue STI_31: Change
“constants” to “predefined values”

[Formatted Table

[Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L15]: JIRA issue STI_31: Change
“constants” to “predefined values”

|

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-45&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=tBWmMs6IoKEv8kX2rukdzknKiEUgSGlUuovDm3MxZyg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-45&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=tBWmMs6IoKEv8kX2rukdzknKiEUgSGlUuovDm3MxZyg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

Usage

» READ: Indicates file exclusive “read only” permission.

» WRITE: Indicates file exclusive “write only” permission, i.e. writing to beginning of
file.

» APPEND: Indicates file exclusive “append” permission, i.e. writing to end of file.

» BOTH: Combination of READ and WRITE permissions.

Infrastructure]

Notes

Used exclusively by the FileOpen () API call. See Section 12.7.27.

Commented [HLM(L16]: JIRA issue STI_33: Remove
Unnecessary Table Fields

42.2312.4.4 STl Infrastructure-Provided_CalendarKind ConstantsValues
STI-23 The STI infrastructure shall provide the CalendarKind Cesnstantsvalues as specified in Table 7.

Table 7: CalendarKind CenstantsValues
Declaration enum CalendarKind {

TAI,

uTC,

GPS,

MJD,

[EOCALLOCAL TIME

}
Description EnumeratesEnumerate several well-defined time and date representations.
Usage » TATI: Corresponds to the International Atomic Time, a monotonically increasing time
scale based on the weighted average of numerous Earth-based atomic clocks

» UTC: Corresponds to the Coordinated Universal Time, which is offset from TAI by a
number of leap seconds that is occasionally updated through international consensus

» GPS: Corresponds to the GPS time scale, a count of weeks and seconds since the
GPS epoch. Since GPS time does not adjust for leap seconds, it is ahead of UTC by
the integer number of leap seconds that have occurred since January 6, 19861980,
plus or minus a small number of nanoseconds.

» MJD: Corresponds to Modified Julian Date, which is a floating-point representation
of Earth days since the MJD epech:epoch, i.e., the number of days since midnight on
November 17, 1858, which corresponds to 2400000.5 days after day O of the Julian
calendar. MJD is still in common usage in tabulations by the U. S. Naval
Observatory.

> }-L@GA—LLOCAL TIME; Corresponds to the default local time representation. This is
implementation-defined.

Provided By Iafrastructure)

Notes Platforms do not need to implement every defined calendar system. For those that are

implemented, they should be implemented in a manner consistent with the name and
specification indicated. Implementations may also define custom CalendarKind
values for application-specific needs.
Use of the }-L@GA—LLOCAL TIME kime and date representation in applications is
discouraged, due to the inherent ambiguity. This is intended only for a user interface or
display purpose.

For more information on the specific time structures associated with these time and date

representations, see section +0:6-812.4.14.

88 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L17]: JIRA issue STI 41: local is a
reserved word in IDL, change local to localTime and LO-
CAL to LOCAL_TIME

Commented [HLM(L18]: JIRA issue STI 41: local is a
reserved word in IDL, change local to localTime and LO-
CAL to LOCAL_TIME

Commented [HLM(L19]: JIRA issue STI_33: Remove
Unnecessary Table Fields

|

[Formatted Table

J

Commented [HLM(L20]: JIRA issue STI 41: local is a
reserved word in IDL, change local to localTime and LO-
CAL to LOCAL_TIME

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0

42.2412.4.5 STl Infrastructure-Provided HandlelD ConstantsValues
STI-24 The STI infrastructure shall provide the HandleID Censtantsvalues as specified in Table 8.

Table 8: HandleID CenstantsValues

Declaration

(values are examples)

konstHandlelD HANDLEID_INVALID = £}:-1;
constHandleID WARNING_QUEUE = .12
const HandleID ERROR_QUEUE = £...1:3;

const HandleID FATAL_QUEUE = {...1:4:

const HandlelD TELEMETRY_QUEUE = {.}:1]

Description

Usage

A set of pre-definepredefined values of the Hand1eID type that will be constant after
initialization.

» HANDLEID INVALID: A reserved value that will never alias a valid handle ID

» WARNING QUEUE: The default queue to use in conjunction with fer-the Log() API I
for context information related to WARNING responses

» ERROR_QUEUE: The default queue to use in conjunction with forthe Log() API for I
context information related to ERROR responses

» FATAL QUEUE: The default queue to use in conjunction with forthe Log() API for I
context information related to FATAL responses

» TELEMETRY QUEUE: The default queue for general system telemetry data. The
purpose and usage of this queue handle is implementation-defined.

Infrastructure

Notes

The HANDLEID INVALID eenstant-value is intended for use as an initializer, to avoid
ambiguity in locally instantiated Hand1eID values. For instance, this can be used
within an initializer list in a C++ class constructor, before the member is set to a real
handle ID, to avoid potential undefined behavior if the destructor is invoked before the
value is set to an actual handle ID.

The actual queues do not need to be defined as "const" as long as they are defined
during initialization of the OE before the need arises to log messages and not changed
thereafter.

Note: H - ss-aApplications should never check for specifically for
the HANDLEID INVALID value, but rather use the ValidateHandleID () API
call.

42.2512.4.6 STl Infrastructure-Provided Result ConstantsValues
STI-25 The STI infrastructure shall provide the Result Censtantsvalues as specified in Table 9.

Table 9: Result ConstantsValues

Declaration

(values are examples)

const Result OK = +—}-0;

const Result WARNING = {}:-2;

const Result ERROR = {—}:-3;

const Result FATAL = {—:-4;

const Result UNIMPLEMENTED = +—:-5]

Description

A set of
values.

predefined eenstantsvalues bf the Result type used as return

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

8b

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Commented [HLM(L21]: JIRA issue STI_31: Change
“constants” to “predefined values”
JIRA issue STI_51: Add suggested values for ellipses in 12.4

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Commented [HLM(L22]: JIRA issue STI_51: Add sug-
gested values for ellipses in 12.4

“constants” to “predefined values”

{Commented [HLM(L23]: JIRA issue STI_31: Change }

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

Usage

» OK: Indicates the operation was successful

» WARNING: Indicates the operation was not successful, but little or no corrective
action is required. The component is still operational; this may be a transient error.

» ERROR: Indicates the operation was not successful, and some corrective action may
be required. The component is still operational.

» FATAL: Indicates the operation was not successful, and significant corrective action
is required. The component is not able to function.

» UNIMPLEMENTED: Indicates that the operation it-iwas not implemented by the
component or by the infrastructure.

Notes

Values other than OK may also indicate success. Applications should never check for
this value specifically, but rather use IsOK () to determine if an operation succeeded.
An ERROR indicates component is operational, but the request may not be applicable to
the component or may not be valid per the current component state. The caller should
take action to correct the underlying issue before attempting the call again.

The UNIMPLEMENTED value is intended to differentiate between a request that was
successfully sent to the target but failed to execute, versus a request that was not sent to
the target because it does not implement an optional interface. This may be treated
similarly to an ERROR response.

On error, a corresponding HandleID may be obtained using GetErrorQueue() to use
with the Log() API for context information.

42.2612.4.7 STl Infrastructure-Provided Handle Name CenstantsValues
STI-26 The STI infrastructure shall provide the Handle Name Censtantsvalues as specified in Table 10.

Table 10: Handle Name CenstantsValues

Declaration [const string OE_HANDLE_NAME = "“STI OE NAME"-—";

(values are examples) const string DEFAULT_CLOCK_NAME = "“STI DEFAULT CLOCK"--";

Description A set of pre-definepredefined eenstant-handle names.

Usage OE_HANDLE NAME: A name identifying the operating environment
DEFAULT CLOCK_ NAME: A name identifying the default system eleek-devieeclock
component

Notes These names may be passed to HandleRequest () to find the corresponding handle
ID, which can then be used to interact with the target component.

42.2712.4.8 STl Infrastructure-Provided Property Name ConstantsValues
STI-27 The STI infrastructure shall provide the Property Name Censtantsvalues as specified in Table 11.

Table 11: Property Name ConstantsValues

90

Space Telecommunication Interface (STI

<

v1.0 -- beta 2

Commented [HLM(L24]: JIRA issue STI_33: Remove
Unnecessary Table Fields

[Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L25]: JIRA issue STI 51: Add sug-
gested values for ellipses in 12.4

|

[Formatted: Heading 3, Indent: Left: 0", First line: 0"

color: Auto, Pattern: Clear

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0

Declaration
(values are examples)

COMPONENT PROVIDER";

const PropertyName COMPONENT_VERSION =

const PropertyName COMPONENT_STATE = " COMPONENT STATE {—}]

[const PropertyName COMPONENT_PROVIDER = {—:” ’

"COMPONENT VERSION"{—3}; ’

Description A set of pre-definepredefined property names. |
Usage » COMPONENT PROVIDER: A name associated with the provider of the component.
» COMPONENT VERSION: A name associated with the version of a component.
» COMPONENT STATE: A name associated with the state of a component.
I
Notes All applications, as well as the operating environment, will implement these property

names. Devices may also implement these property names, but it is not required; for
any devices provided by the platform, the values would generally match that of the OE.
The values associated with these property names should be free-form strings.

The PROVIDER value is usually a company name or university, followed by a
subsidiary, division, or department name.

The VERSION value is implementation-specific and may be of the format
MAJOR.MINOR.REVISION and may also include additional identification
information, such as a baseline version control revision ID or tag/branch if relevant.
The STATE value is implementation-specific, and the meaning should be indicated by
the application developer.

42.2812.4.9 STl Infrastructure-Provided Size Limit ConstantsValues
STI-28 The STI infrastructure shall provide the Size Limit Constantsvalues as specified in Table 12.

Table 12: Size Limit ConstantsValues

Declaration

!values are examples[

[const Integer MAX_PROPERTY_NAME_SIZE = {—}:63;

const Integer MAX_PROPERTY_VALUE_SIZE = {—:1023;

const Integer MAX_PATH_NAME_SIZE = {—+:255;

const Integer MAX_HANDLE_NAME_SIZE = {}:63;

const Integer MAX_LOG_MESSAGE_SIZE = {--;1023;

const MaxQueueMaxMessages MAX_QUEUE_MESSAGES = H&]

Description Establishes a set of eenstantspredefined values of known maximum size limits for
various items.
Usage » MAX PROPERTY NAME SIZE: The maximum size, in bytes, of any

PropertyName object
» MAX PROPERTY VALUE SIZE: The maximum size, in bytes, of any
Proge rtyValug object B
» MAX PATH NAME SIZE: The maximum length, in characters, of a file name
» MAX HANDLE NAME SIZE: The maximum length, in characters, of a handle name
» MAX LOG MESSAGE SIZE: The maximum length, in characters, of strings
acceﬁted b; the Log () API
» MAX QUEUE_MESSAGES: The maximum number of messages that can be stored in

a queue.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 of

Commented [HLM(L26]: JIRA issue STI_51: Add sug-
gested values for ellipses in 12.4

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Commented [HLM(L27]: - JIRA issue STI_51: Add sug-
gested values for ellipses in 12.4

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0

Infrastructur

[Formatted Table }

Notes

These constant-definitionsvalues are mainly intended for use in languages such as
C/C++ where application developers are responsible for buffer allocation. In other
languages, buffer allocation may occur automatically and as such these size limits may
not be relevant.

In C/C++ environments, these eenstantsvalues will evaluate at compile time, such that
they may be used as array dimensions. Note that for string length sizes, the value
reflects the maximum number of actual characters in the string and does not take into
account any terminating NUL character ('“\0'2). The value should always be increased
by 1 if the eenstant-value is used in the dimension of a char [] array.

42.2912.4.10

STl Infrastructure-Provided TimeWarp CenstantsValues

STI-29 The STI infrastructure shall provide the TimeWarp Censtantsvalues as specified in Table 13.

Table 13: TimeWarp ConstantsValues

Declaration [const TimeWarp TIME_INTERVAL_ZERO = {—-+0;

(values are examples) const TimeWarp TIME_INTERVAL_UNLIMITED = {—’rill

Description Ceonstant-vValues suitable for usage with functions accepting a TimeWarp value.

Usage » TIME INTERVAL ZERO: Represents the value of zero
» TIME INTERVAL UNLIMITED: A value indicating no limit to the respective time

interval or step size.

Notes The TIME INTERVAL UNLIMITED eeastant-value is intended be used with
functions such as TimeSynch (). When this value is passed as the stepMax
argument, it indicates that the infrastructure may directly step the clock to any value.

42.29-412.4.11 STl Infrastructure-Provided CalendarValueCivil Structure

STI-97 The STI infrastructure shall provide the CalendarValueCivil Structure definition and implementation as

specified in Table 14.

Table 14: CalendarValueCivil Structure Definition

Declaration

struct CalendarValueCivil {
long nanoseconds;
octet seconds;
octet minutes;
octet hours;
octet day;
octet month;
short year;

92

Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Commented [HLM(L28]: JIRA issue STI_51: Add sug-
gested values for ellipses in 12.4

[Formatted Table }

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0

Description

Definition of time representation type for the common era / Gregorian calendar.
Member Detailsdetails:

nanoseconds: The number of nanoseconds, range of [0-999999999]
seconds: The seconds value, range of [0-60]

minutes: The minutes value, range of [0-59]

hours: The hours value, range of [0-23]

day: The day number within the month, range of [0-30]

month: The month number within the year, range of [0-11]

year: The full year number, expressed as an integer (i.e. 2019)

VYVVYYVYYY

Notes

This format is applicable to UTC and, usually, the local time representations. For local
time representations, the specific offset from UTC and daylight savings configuration
should be configured or queried separately through the property set interface.

The nanoseconds field is intended to support applications that require higher precision |
time values. This does not imply that the underlying clock has nanosecond precision.
For clocks that do not support higher precision timing, this field should always be set as
Zero.

42:29.212.4.12

STI Infrastructure-Provided CalendarValueGPS Structure

STI-98 The STI infrastructure shall provide the CalendarValueGPS Structure definition and implementation as

specified in Table 15.

Table 15: CalendarValueGPS Structure Definition

Formatted: Table List, Outline numbered + Level: 1 +
Numbering Style: Bullet + Aligned at: 0" + Indent at:
0.15"

Declaration struct CalendarValueGPS {
long tow;
short week;
3
Description Definition of time representation expressed in weeks and seconds, similar to the style
used in GPS navigation messages. Member details:
» tow: The time of week in milliseconds, range of [0-604799999]
» week: The number of weeks elapsed since the epoch
MemberDetails ‘
Notes This is not an exact representation of GPS time codes, but rather a method of expressing

time in terms that facilitate easy conversion to/from actual GPS navigation code formats
while also providing higher precision.

Legacy GPS navigation signals express the week number as a 10-bit integer, which rolls
over every 1024 weeks, with time of week expressed as a 19-bit integer with 1.5 second
resolution. Other navigation signals have a different format, using 13-bit week number
along with a 2-hour interval time of week and 18-second time of interval.

This structure expresses the time of week value in units of milliseconds. Conversion
from legacy GPS time of week values is accomplished via multiplication by 1500 (1.5
seconds), and conversion from 18-second time of interval codes is accomplished via
multiplication by 18000. Likewise, a conversion to whole seconds can be achieved by
dividing the tow by 1000, and the day of week can be determined by dividing by
86400000.

Commented [HLM(L29]: JIRA issue STI_47: Merge table
fields Member details into Description

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 9B

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-47&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=jLjVyulyEK3qXkmN675jK1aYHTYEbEiEx1CNWoCtUc0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-47&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=jLjVyulyEK3qXkmN675jK1aYHTYEbEiEx1CNWoCtUc0%3D&reserved=0

42.29.312.4.13 STl Infrastructure-Provided CalendarValueDayNumber
Structure

STI-99 The STI infrastructure shall provide the CalendarValueDayNumber Structure definition and
implementation as specified in Table 16.

Table 16: CalendarValueDayNumber Structure Definition

Declaration struct CalendarValueDayNumber {
double date;
¥

Description Definition of time representation expressed as a fractional day number. Member details:

» date: The day number expressed as a fractional / floating point value f«
Member Details »-date: The day number expressed-asa-fractional / floating point|value
Notes The whole number (integer portion) of the value expresses the number of Earth days

since the epoch, and the fractional part expresses the time of day.

42.29.412.4.14 STl Infrastructure-Provided CalendarTime Union

STI-100 The STI infrastructure shall provide the CalendarTime Union definition and implementation as specified in
Table 17.

Table 17: CalendarTime Union Definition

Declaration union CalendarTime switch(CalendarKind) {

case MJD: CalendarValueDayNumber dayNumber;

case GPS: CalendarValueGPS weekSeconds;]
case EOCALLOCAL_TIME: CalendarValueCivil localtimeHere;
case TAI: CalendarValueCivil tai;

case UTC: CalendarValueCivil civil;

13

Description Definition of CalendarTime type based on CalendarKind value.

Notes

Formatted: Table List, Outline numbered + Level: 1 +
Numbering Style: Bullet + Aligned at: 0" + Indent at:
0.15"

Commented [HLM(L30]: JIRA issue STI 47: Merge table
fields Member details into Description

CalendarValueWeekSeconds is undefined

Commented [HLM(L31]: JIRA issue STI 27: STI-100: }

reserved word in IDL, change local to localTime and LO-
CAL to LOCAL_TIME

Commented [HLM(L32]: JIRA issue STI 41: local is a

1230 P
42.3412.5 STI Application-Application-Provided Methods

“Provide a definition” implies supplying a consistent interface, which may be used or inherited
by other methods. The implementation of such an interface may be supplied by others. For
functions, an abstract method or class, a virtual method, or prototype is usually supplied.

Any apparent discrepancy between application-provided and infrastructure-provided of the titles «
and requirements is easily resolved by noting that the infrastructure provides the definition while
the application inherits an implementation or provides the implementation directly.

42.3212.5.1 STl Infrastructure-Provided APP_GetHandlelD Method “

STI-30 The STI infrastructure shall provide the APP_GetHandleID-Befinition-() -definition and implementation
as specified in Fable14Table 18.

94 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Normal J

[Formatted: Normal]

introductory remarks to 12.5, 12.6, and 12.7.
JIRA issue STI_37: Clarify definition vs implementation

Commented [HLM(L33]: JIRA issue STI_35: Add extra

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-47&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=jLjVyulyEK3qXkmN675jK1aYHTYEbEiEx1CNWoCtUc0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-47&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=jLjVyulyEK3qXkmN675jK1aYHTYEbEiEx1CNWoCtUc0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-27&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Y7%2FJPgS34he4C6DGukKne4TbEpLzFXG02Wcrwz7pynA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-27&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Y7%2FJPgS34he4C6DGukKne4TbEpLzFXG02Wcrwz7pynA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-27&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Y7%2FJPgS34he4C6DGukKne4TbEpLzFXG02Wcrwz7pynA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-27&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Y7%2FJPgS34he4C6DGukKne4TbEpLzFXG02Wcrwz7pynA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-37&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2F4dSBlxu6yd4QlcmxffMWez0qBj6uUABjUGY1faO3w8%3D&reserved=0

Table 1418: APP_GetHandleID() Definition

Declaration interface Instance {
HandlelD APP_GetHandlelD();
1
Description Obtain the handle ID for the application, stored by the STI Infrastructure.
Return The actual handle ID of the ealling-called application, eran-invalid-handle I1D-on
fattureor predefined HANDLEID INVALID on failure
Implemented By Infrastruetare
Notes This call should never fail when invoked from a normal, fully constructed application or

device context. If invoked from an application or device context that is not fully
constructed, an invalid ID may be returned. Specifically, this condition may occur
while the constructor or destructor are currently executing-(see-seetion+0-5:2-1.

If the infrastructure cannot obtain the correct handle ID, the infrastructure will return &
valge-sueh-as- HANDLEID INVALID that does not alias a valid handle ID._The caller
should always validate the returned handle ID using ValidateHandleID() to determine
success or failure.

42.3312.5.2 STl Infrastructure-Provided APP_GetHandleName Method

STI-31 The STI infrastructure shall provide the APP_GetHandleName(-Pefinition() -definition and
implementation as specified in Fable+5Table 19.

Table +514: APP_GetHandleName() Definition

Declaration interface Instance {
string-Result APP_GetHandleName(out string handleName);
}
Description Obtain the name for the application, stored by the STI Infrastructure.

IParameters

» handleName: A string representing the handle name of the called STI
application|

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. The name ol the calling applications ora NUE L undefined valuc on
fatlure

hmplemented By Tfrastructure

Notes The caller is responsible for preallocating the size of handleName to

[MAX_HANDLE NAME SIZE+1].
This call should never fail when invoked from a normal, fully constructed application or
device context. If invoked from an application or device context that is not fully
constructed, this call may fail. Specifically, this condition may occur while the
constructor or destructor are currently executing-(see-seetion+0-52-1).

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 9b

| Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Commented [HLM(L34]: JIRA issue STI_33: Remove
Unnecessary Table Fields

{Formatted: Heading 3, Indent: Left: 0", First line: 0" }

| Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

{ Formatted: Font: (Default) Courier New

Formatted: Default, Indent: Left: 0.02", Right: 0.5",
Bulleted + Level: 1 + Aligned at: 0.25" + Indent at:

Commented [HLM(L35]: JIRA issue STI_15: STI-16:
There are items in the calling sequence but the parameters
are not described

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0

42.3412.5.3 STI Application-Provided APP_Instance Method
STI-32 The STI infrastructure shall provide the APP_Instance()-Definition- definition as specified in Fable+6Table

20.

Table +620: APP_Instance
Declaration

) Definition
interface ApplicationControl : LifeCycle, PropertySet, ControllableComponent,

TestableObject, Instance {

__Instance APP_lInstance(
in HandlelD id,
in string name

<

)i
IS
Description Construct an instance of the application, identified by the id and name indicated in the
parameters.
Parameters » id: The handle ID of this SFRS-STI application.
» name: The handle name of this STRS-STI application.
Return On success, return a reference to the constructed instance. On failure, return an invalid
reference (i.e. NULL in C/C++, or the respective undefined value in other languages)
Notes The id and name values passed to this constructor become valid only affer the

constructor has completed successfully and returned a valid object reference/pointer. As
such, other infrastructure calls should not be invoked from the constructor using these
values. Use of the values during the construction of the object itself is not defined, as
the infrastructure may still consider it an invalid ID or name.

For statically allocated objects, a pointer to the pre-allocated structure may be returned,
without performing any additional allocation.

In all cases, the object returned will be of the Instance type, either directly or as a
derivative type. In object-oriented languages, the instance object will inherit from the
correct base object or class. In C, this can be done by ensuring the first member of the
returned structure object is an Instance object as defined by the infrastructure.

42.3512.5.4 STI Application-Provided APP_Destroy Method
STI-33 The STI infrastructure shall provide the APP_Destroy()-BPefinition- definition as specified in Fable-17Table

21.

Table +721: APP_Destroy(

Definition

Declaration

linterface ApplicationControl : LifeCycle, PropertySet, ControllableComponent,
TestableObject, Instance {
__void APP_Destroy(
in Instance inst
)
i3

le

96

Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Commented [HLM(L36]: JIRA issue STI_49: Add inher-
itance to APP and DEV Declarations

|

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Commented [HLM(L37]: JIRA issue STI_49: Add inher-
itance to APP and DEV Declarations

|

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0

Description Delete an instance of the application, identified by the inst parameter.
Parameters » inst: pointer to application instance.

Return None

Notes This function will be defined but may be empty or a “no-op” for statically allocated

entities. After this call completes, the object referred to by the inst parameter is
considered invalid, and the infrastructure ensures that any internally stored references to
the instance have been deleted.

12.3612.5.5 STI Application-Provided APP_Initialize Method < | Formatted: Heading 3, Indent: Left: 0", First line: 0" |
STI-34 The STI infrastructure shall provide the APP_Initialize()-Befinition- definition as specified in Table
+8Table 22 to be implemented by an STI application or device.
Table 1822: APP_Initialize() Definition
Declaration interface APPMWLWEC cle { r Formatted: Border: Top: (No border), Bottom: (No
Y Result APP_Initialize(); border), Left: (No border), Right: (No border)
Description Initialize the application. Obtain any underlying system resources as required for
further operation and set all internal variables to a known initial state.
Return On success, return the predefined Result value OK:; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.Status—¢ ie ¢ 5 alide 51
Invoked By Infrastructure
Notes If initialization is unsuccessful for any reason, the implementation will ensure that any

external system resources obtained before the failure are returned to their original state.
There is no provision to permit “partial” initialization sequences to occur.
If not successful, the implementation should log details of the failure to the log facility.

42.3712.5.6 STI Application-Provided APP_ReleaseObject Method

STI-35 The STI infrastructure shall provide the APP_ReleaseObject()-Befinition- definition as specified in Fable
19Table 23 to be implemented by an STI application or device.

Table +923: APP_ReleaseObject() Definition

“ [Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Declaration

interface ApplicationControl-LifeCycle {

Result ~ APP_ReleaseObject();
1

[Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

of

Description Release any system resources that were obtained during the initialization or normal
operation.

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. S%atuyeed%wh&elﬁh%eaﬂepsheuldwakéa&%usmg—}se%&

Implemented By

Tnvoked By

Notes This operation should be the inverse of the APP_Initialize () operation, returning

the application or device to the same state as it was prior to initialization. After this
operation, the infrastructure will either destroy the instance or initialize it again.

42.3812.5.7 STI Application-Provided APP_Query Method

STI-36 The STI infrastructure shall provide the APP_Query()-Definition- definition as specified in Fable20Table
24 to be implemented by an STI application or device.

Table 2024: APP_Query() Definition

Declaration interface ApphicationControl-PropertySet {
Result APP_Query(
in PropertyName propName,
out PropertyValue propValue
)i
Y
Description Obtain or “get” the value for one property in the component.
Parameters » propName: The name or identifier of the property to get
» propValue: A buffer to store the property value
Return On success, return the predefined Result value OK, which, indicates that the property
value has been retrieved in its entirety; otherwise, return one of the predefined Result
values indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.Statas
Implemented By Application
98 Space Telecommunication Interface (STI), v1.0 -- beta 2

{Formatted: Heading 3, Indent: Left: 0", First line: 0" }

| Formatted: Border: Top: (No border), Bottom: (No ‘

border), Left: (No border), Right: (No border)

[Formatted: Font: 10.5 pt }

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Notes

If an error is returned by an implementation, a corresponding message indicating details
of the failure should be written to the log facility for diagnostic purposes.

Return status-codesResult values other than the predefined status-Result constantsvalues|
are permissible for backward compatibility but are to be validated using the IsOX ()
function. Use of additional eedesreturn values are is-not recommended-fornew ’
software; for maximum portability, custom status-eoedesreturn values or “partial
success” return codes should be avoided.

For C/C++ implementations, the abstract propValue parameter is translated to two

parameters, a base object pointer and size.

42.3912.5.8 STI Application-Provided APP_Configure Method

STI-37 The STI infrastructure shall provide the APP_Configure()-Befinition- definition as specified in Fable
21 Table 25 to be implemented by an STI application or device.

Table 2425: APP_Configure() Definition

{Formatted: Heading 3, Indent: Left: 0", First line: 0"

Declaration interface AppHeaﬁeHGemH_}LPro ertySet { Formatted: Border: Top: (No border), Bottom: (No
Resul.t APP_Configure(border), Left: (No border), Right: (No border)
in PropertyName propName,
in PropertyValue propValue
)
¥
Description Configure or "set" the value for one property in the component.
Parameters » propName: The name of the property to set
» propValue: The value to set the property to
Return On success, return the predefined Result value OK, which, indicates that the property {Formatted: Font: 10.5 pt
value has been configured; otherwise, return one of the predefined Result values
indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.Statas-cede
0 e, returns one of the detined 2es:2 1 error con The status code 0%
Inveked By Infrastructure | Formatted Table
Notes If an error is returned by an implementation, a corresponding message indicating details

of the failure should be written to the log facility for diagnostic purposes.
Status-eodesReturn Result values (other than the predefined status-Result
constantsvalues) are permissible for backward compatibility but are to be validated
using the IsOK () function. FhisUse of additional return Result values Fhis-is not
recommended-for-new-seftware; for maximum portability, custom status-codesResult
values or “partial success” return codes should be avoided.

For C/C++ implementations, the abstract propValue parameter is translated to two

parameters, a base object pointer and size.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 9b

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

42.4012.5.9 STI Application-Provided APP_RunTest Method - [Formatted: Heading 3, Indent: Left: 0", First line: 0"

STI-38 The STI infrastructure shall provide the APP_RunTest()-Pefinitien- definition as specified in Fable 22Table
26 to be implemented by an STI application or device.

Table 2226: APP_RunTest() Definition
Declaration interface ApphicationCentrol-TestableObject { [‘

Formatted: Border: Top: (No border), Bottom: (No

Result APP_RunTest(border), Left: (No border), Right: (No border)

in TestID testID

)i
1
Description Invokes the test of the target application as indicated by the test ID.
Parameters » testID:the ID of the test to be performed. Values of testID are mission
dependent.
Return On success or if the test is running in the background, return the predefined Result

value OK; otherwise, return one of the predefined Result values indicating failure. See
12 4 6 STI Infrastl ucture-Provided Result Values.Status-code-which-the-ealler should

Hmplemented By
Invoked By
Notes Tests which are not appropriate for a given system state, such as invoking a ground-
specific test while in a flight operation mode, should generate an error status return and
record the issue in the system log.
42.4112.5.10 STI Application-Provided APP_Start Method « | Formatted: Heading 3, Indent: Left: 0", First line: 0" |

STI-39 The STI infrastructure shall provide the APP_Start()-Befinition- definition as specified in Fable 23 Table 27
to be implemented by an STI application or device.

Table 2327: APP_Start() Definition
Declaration interface ApplicationCentrel-ControllableComponent { « ‘

Formatted: Border: Top: (No border), Bottom: (No
Result APP_Start();

border), Left: (No border), Right: (No border)

1
Description Begin normal target component (application or device) processing.
Return On success, return the predefined Result value OK: otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.Statuscode-which-the-ealler should-validate using FsOKk (-

Inveked By Infrastrueture o [Formatted Table]

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

100 Space Telecommunication Interface (STI), v1.0 -- beta 2

Notes If the application is not in the appropriate internal state, then nothing is done and an |
error is returned.
If an error is returned by an implementation, a corresponding message to indicate detaild
of the failure should be written to the log facility for diagnostic purposes.
42.4212.5.11 STI Application-Provided APP_Stop Method

STI-40 The STI infrastructure shall provide the APP_Stop()-Definition- definition as specified in Fable24Table 28§
to be implemented by an STI application or device.

Table 2428: APP_Stop() Definition

Declaration interface ApplicationGentrel-ControllableComponent {
Result APP_Stop();
1
Description End normal target component (application or device) processing.
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.Status-code-which-the-ealler should-validate-using Ts0K -
code O«
Inveked By Tnfrastructure
Notes If the application is not in the appropriate internal state, then nothing is done and an

error is returned.

If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.

12.5.12 STI Application-Provided APP_Read Method

STI-47 The STI infrastructure shall provide the APP_Read() definition as specified in Table 29 to be implemented

as needed, by an STI application or device.

Table 29: APP_Read() Definition

Declaration

interface Source {
Result APP_Read(out Message buffer);
L

Description

The buffer is filled with data from the component.

Parameters

» buffer: a storage area for data transferred from the target

Return

On success, the return value indicates the number of units of data (records or bytes)
actually obtained from the application or device, which may be less than the complete
buffer size. Otherwise, return one of the predefined Result values indicating failure.
See 12.4.6 STI Infrastructure-Provided Result Values.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 10ft

{Formatted: Heading 3, Indent: Left: 0", First line: 0" }

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

{ Formatted Table

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Notes

The actual storage for the buffer is allocated by the caller or infrastructure prior to
invoking this function. The application should fill the buffer to the maximum extent
possible and return the amount of buffer actually filled.

The application developer defines the specific format and units for the buffer. In
languages with direct memory access (e.g. C), it may be an arbitrary memory buffer
with the units specified in bytes. In other languages, the units should reflect logical
records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character ("\0") as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.

If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buf fer parameter is translated to two
parameters, a base object pointer and size.

12.5.13

STI Application-Provided APP_Write Method

STI-48 The STI infrastructure shall provide the APP_Write() definition as specified in Table 30 to be implemented,

as needed, by an STI application or device.

Table 30: APP_Write() Definition

Declaration

interface Sink {
Result ~ APP_Write(in Message buffer);
h

Description

The buffer data is sent to the target component.

Parameters

» buffer: an abstract data set that should be transferred to the target

Return

On success, the return value indicates the number of units of data (records or bytes)
actually sent to the application or device, which may be less than the buffer size.
Otherwise, return one of the predefined Result values indicating failure. See 12.4.6 STI
Infrastructure-Provided Result Values.

Notes

The actual storage for the buffer is allocated and filled by the caller or infrastructure
prior to invoking this function. The application should transfer the data to the maximum
extent possible and return the amount of buffer actually transferred to the device.

The application developer defines the specific format and units for the buffer. In
languages with direct memory access (e.g. C), it may be an arbitrary memory buffer
with the units specified in bytes. In other languages, the units should reflect logical
records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character ("\0") as
required for C-style strings. If a terminating character is required, the caller will ensure
that it has been added to the buffer prior to invoking this operation.

If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buf fer parameter is translated to two
parameters, a base object pointer and size.

102

Space Telecommunication Interface (STI), v1.0 -- beta 2

| Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

/| color: Auto, Pattern: Clear

12.5.14

STI Application-Provided APP_AddressRead Method

STI-49 The STI infrastructure shall provide the APP_AddressRead() definition as specified in Table 31 to be

implemented, as needed, by an STI application or device.

Table 31: APP_AddressRead() Definition

Declaration

interface RandomAccess {
Result APP_AddressRead(
in Offset offset,
out Message buffer

%
1A

Description

The buffer is filled with data from the component at the specified location.

Parameters

» offset: the location to read data from

» buffer: a storage area for data transferred from the target

Return

On success, the return value indicates the number of units of data (defined by the
platform developer) actually obtained from the application or device, which may be less
than the complete buffer size. Otherwise, return one of the predefined Result values
indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.

Notes

The actual storage for the buffer is allocated by the caller or infrastructure prior to
invoking this function. The application should fill the buffer to the maximum extent
possible and return the amount of buffer actually filled.

The application developer defines the specific format and units for the buffer. In
languages with direct memory access (e.g. C), it may be an arbitrary memory buffer
with the units specified in bytes. In other languages, the units should reflect logical
records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character ("\0") as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.

If an error is returned by an implementation, a corresponding message to indicate detailg
of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buf fer parameter is translated to two
parameters, a base object pointer and size.

12.5.15

STI Application-Provided APP_AddressWrite Method

STI-50 The STI infrastructure shall provide the APP_AddressWrite() definition as specified in Table 32 to be

implemented, as needed, by an STI application or device.

Table 32: APP_AddressWrite() Definition

Declaration

interface RandomAccess {
Result APP_AddressWrite(

in Offset offset,
in Message buffer

— %
h

Description

The buffer data is written to the target component at the specified location.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 108

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Parameters » offset: the location to write the data

» buffer: an abstract data set that should be transferred to the target

Return On success, the return value indicates the number of units of data (records or bytes)

actually sent to the application or device, which may be less than the buffer size.

Otherwise, return one of the predefined Result values indicating failure. See 12.4.6 STI

Infrastructure-Provided Result Values.

Notes The actual storage for the buffer is allocated and filled by the caller or infrastructure

prior to invoking this function. The application should transfer the data to the maximum

extent possible and return the amount of buffer actually transferred to the device.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character ("\0") as

required for C-style strings. If a terminating character is required, the caller will ensure

that it has been added to the buffer prior to invoking this operation.

If an error is returned by an implementation, a corresponding message to indicate details
of the failure should be written to the log facility for diagnostic purposes.
For C/C++ implementations, the abstract buf fer parameter is translated to two

parameters, a base object pointer and size.

{ Formatted Table J

12.6 STI Device-Provided Methods

) [Formatted: Normal, Indent: Left: 0", First line: 0"

FProvide a definition” implies supplying a consistent interface, which may be used or inherited

by other methods. The implementation of such an interface may be supplied by others. For

functions, an abstract method or class, a virtual method, or prototype is usually supplied.

Any apparent discrepancy between device-provided and infrastructure-provided of the titles and

requirements is easily resolved by noting that the infrastructure provides the definition while the

device inherits an implementation or provides the implementation directly.|

'y

42.4312.6.1 STI Device-Provided DEV_Open Method

STI-41 The STI infrastructure shall provide the DEV_Open()-Befinition- definition as specified in Fable-25Table

33 to be implemented by an STI device.

Table 2533: DEV_Open() Definition

Declaration interface DeviceControl ; ApplicationControl {]

Result ~ DEV_Open();

1
Description Open the device for command and control.
Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

sueeess, return status-code OK.

Result Values.On-crror, returns one of the defined 2eswl e crror constants. On

Devi Platform Provid

104 Space Telecommunication Interface (STI), v1.0 -- beta 2

J

{Formatted: Font: 14 pt }
{Formatted: Font: 14 pt }
. [Formatted: Normal }

introductory remarks to 12.5, 12.6, and 12.7.
JIRA issue STI_37: Clarify definition vs implementation

Commented [HLM(L38]: JIRA issue STI_35: Add extra

[Formatted: Font: 12 pt }

{ Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Commented [HLM(L39]: JIRA issue STI_49: Add inher-
itance to APP and DEV Declarations

| Formatted: Border: Top: (No border), Bottom: (No ‘

border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-37&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2F4dSBlxu6yd4QlcmxffMWez0qBj6uUABjUGY1faO3w8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0

h [Formatted Table }

Notes

The implementation should obtain whatever operating system or HAL resources are ’
necessary to initiate communication or data transfer with the hardware device.
Depending on the underlying device and operating system driver infrastructure, use of a|
hardware device may be limited to one process at a time, so a successful call to this
function may prevent other processes in the system from using the device. Likewise, if
another process is using the device, or the device is otherwise not able to accept control
requests, this operation may fail or block until the device becomes available.

If no specific operating system resources are required for communication with the
device, this implementation may be a no-op. In this case, this operation should return
the predefined Result value OK to maintain compatibility.

A

42.4412.6.2 STI Device-Provided DEV_Load Method

STI-42 The STI infrastructure shall provide the DEV_Load()-Pefinition- definition as specified in Fable26Table
34 to be implemented by an STI device.

Table 2634: DEV_Load() Definition

« [Formatted: Font: 14 pt J
[Formatted: Heading 2, Indent: Left: 0.81" J

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

N Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Declaration interface DeviceControl : ApplicationControl {
Result DEV_Load(in string fileName);
}
Description Load a binary application image or configuration file to the device.
Parameters » fileName: name of the image or configuration file to load to the device
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-error;returns-one-of the defined Resul+—errorconstants—On
sHCeess, Feturn- status-code-Ok-
Implemented By Deviee-orPlatformProvider
Notes If the device is an FPGA, this operation would load a specific hardware design image to

the device. If the device represents a microcontroller or DSP, this should load a
firmware or application image to the device.

42.4512.6.3 STI Device-Provided DEV_Reset Method

STI-43 The STI infrastructure shall provide the DEV_Reset()-Definition- definition as specified in Fable 27Table
35 to be implemented by an STI device.

Table 2735: DEV_Reset() Definition

“ [Formatted: Heading 3, Indent: Left: 0", First line: 0" }

Declaration

interface DeviceControl : ApplicationControl {
Result DEV_Reset();

13

N Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Description

Initialize a device to a known state.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

10b

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On-error+ ns-onc- ol the defined ===+ crror ~On
Notes This operation should bring a device into a known clean state, if possible. This

operation may utilize a hardware reset function if available, or it may reconfigure all
internal registers to a known initial value.

This function should not “unload” programming information from an FPGA device. Ifa
hardware reset function is used and this clears the programming information, the
implementation should ensure that previously loaded image is restored before returning.

42.4612.6.4 STI Device-Provided DEV_Flush Method « | Formatted: Heading 3, Indent: Left: 0", First line: 0" |

STI-44 The STI infrastructure shall provide the DEV_Flush()-Befinition- definition as specified in Fable28Table
36 to be implemented by an STI device.

Table 2836: DEV_Flush() Definition

Declaration interface DeviceControl : ApplicationControl { r Formatted: Border: Top: (No border), Bottom: (No
Result DEV_Flush(); border), Left: (No border), Right: (No border)

1
Description Clear any pending input/output buffers associated with the device.
Return On success, return the predefined Result value OK:; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. On-crrorreturns-onc-of the- defined = —=0—t—crrorconstants— On

Notes This operation should ensure that any existing data that may be buffered within the

hardware device or control software is cleared, such that subsequent read operations (for
source devices) or write operations (for sink devices) only transfer new data.

It is implementation-defined how existing data that has not yet been fully transferred is
handled. On a sink device, the operation may wait until the data is transferred, or the
data may be discarded, depending on what is more appropriate for the device and the
system context. On a source device, any received but unread data should typically be
discarded. The device developer or platform provider should document the behavior of
this operation.

42.4712.6.5 STI Device-Provided DEV_Unload Method - [Formatted: Heading 3, Indent: Left: 0", First line: 0" }

STI-45 The STI infrastructure shall provide the DEV_Unload()-Befinition- definition as specified in Fable-29Table
37 to be implemented by an STI device.

Table 2937: DEV_Unload() Definition

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

106 Space Telecommunication Interface (STI), v1.0 -- beta 2

Declaration interface DeviceControl : ApplicationControl {
Result ~ DEV_Unload();
1

Description Unload a binary image or configuration file to-from the device.

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-errorreturns-one-of the defined Result—errorconstants—On
suceess, return-status-code-OK-

Inveked By Infrastrueture

Notes This operation clears any programming information from the device. Ideally this should

be the inverse of the DEV_Load () operation. If the device does not support this

operation, this may be implemented as a “no-op”.

42.4812.6.6 STI Device-Provided DEV_Close Method

STI-46 The STI infrastructure shall provide the DEV_Close()-Befinition- definition as specified in Fable-30Table
38 to be implemented by an STI device.

Table 3038: DEV_Close() Definition

Declaration interface DeviceControl : ApplicationControl {
Result DEV_Close();
1

Description Closes the device.

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-error;returns-one-of the defined Resul+—errorconstants—On
suceess; tatus-code OK.

Invoked By Tnfrastructure

Notes This operation should be the inverse of the DEV_Open () operation. If the open

operation was a no-op, this operation should also be empty and it should return the
predefined Result value OK for compatibility.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 10y

| Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

{Formatted: Heading 3, Indent: Left: 0", First line: 0" }

border), Left: (No border), Right: (No border)

| Formatted: Border: Top: (No border), Bottom: (No ‘

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

42.50STI Application-Provided APP_Write Method « | Formatted: Heading 3, Indent: Left: 0", First line: 0" |

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
/| color: Auto, Pattern: Clear

108 Space Telecommunication Interface (STI), v1.0 -- beta 2 |

42.54 STl Application-Provided APP_AddressRead Method « | Formatted: Heading 3, Indent: Left: 0", First line: 0" |

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
/| color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 109

« { Formatted: Heading 3, Indent: Left: 0", First line: 0" }

On-errorreturns-onercturn one-of the-defined Resul-t—errorconstantsvalues—On

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
/| color: Auto, Pattern: Clear

ool 1 .
Invoked By Inlrastructure
110 Space Telecommunication Interface (STI), v1.0 -- beta 2 |

. {Formatted: Normal, Indent: Left: 0", First line: 0" }
12.7 STI Infrastructure-Provided Methods | Formatted: Font: 14 pt)
“Provide a definition” implies supplying a consistent interface, which may be used or inherited
by other methods. The implementation of such an interface may be supplied by others. For
functions, an abstract method or class, a virtual method, or prototype is usually supplied.
The following items in section 12.7 are expected to appear in module STI.J

42.5312.7.1 STl Infrastructure-Provided IsOK Method
STI-51 The STI infrastructure shall provide the ISOKGBefinition-() -definition and implementation as specified in

TFable35Table 39.

Table 3539: IsOK() Definition

Declaration b00|e_an 1SOK(
in Result status
)
Description Determine if a Result value represents a successful response.
Parameters » status: Areturn value from a previous call
Return If the Result status-cedestatus value represents a successful result, evaluates as TRUE.
If the Result status-ecedestatus value represents a failure, evaluates as FALSE.
hmplemented By Infrastrueture
ieation. Service. .
Notes Converts a Result status eede-value from any previous API call into a boolean value that
can be used in conjunction with the programming language conditional statements.
For efficiency reasons, this may be implemented as a macro or inline function in
languages which support this concept.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 1}

introductory remarks to 12.5, 12.6, and 12.7.
JIRA issue STI_37: Clarify definition vs implementation

Cc ted [HLM(L40]: JIRA issue STI_35: Add extra

. {Formatted: Font: 10.5 pt }

[Formatted: Heading 3, Indent: Left: 0", First line: 0" }

| Formatted: Border: Top: (No border), Bottom: (No ‘

border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-37&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2F4dSBlxu6yd4QlcmxffMWez0qBj6uUABjUGY1faO3w8%3D&reserved=0

42.5412.7.2 STl Infrastructure-Provided ValidateHandlelD Method

STI-52 The STI infrastructure shall provide the ValidateHandleIDG-Befinitien-() -definition and implementation as

specified in Fable-36Table 40.

Table 3640: ValidateHandleID() Definition

Declaration Result ValidateHandlelD(
in HandlelD id
)
Description Determine if a Hand1eID value is valid.
Parameters » id: A return value from a previous call
Return If the handle ID value is valid, returns-thereturn the statas-predefined Result value OK.
Hethe handle D-is notvalidoreturns-onc- ot the defined-crror-constants. Otherwise. return
one of the predefined Result values indicating failure. See 12.4.6 STI Infrastructure-
Provided Result Values.
Implemented By Infrastruetore
Notes This is used to check the result of any function returning a Hand1eID value.
The result of this function should be passed to IsOK () for use in any conditional test.

42.5512.7.3 STl Infrastructure-Provided ValidateSize Method

STI-53 The STI infrastructure shall provide the ValidateSize()-Definition-() -definition and implementation as
specified in Fable 37Table 41.

Table 3741: ValidateSize() Definition

Declaration Result ValidateSize(
in FileSize size
);
Description Determine if a FileSize value is valid.
Parameters » size: Areturn value from a previous call
Return If the size value is valid, returns-thereturn the predefined Resultstatus value OK.
Otherwise, return one of the predefined Result values indicating failure. See 12.4.6 STI
Infrastructure-Provided Result Values.H-the-size-is-not-valid, returns-one-of the-defined
error-constants:
Implemented By Infrastructure
Notes This is used to check the result of any function returning a FileSize value.
The result of this function should be passed to IsOK () for use in any conditional test.

112 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

{ Formatted Table]

{Formatted: Heading 3, Indent: Left: 0", First line: 0" }

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

42.5612.7.4 STI Infrastructure-Provided InstantiateApp Method - [Formatted: Heading 3, Indent: Left: 0", First line: 0" J

STI-54 The STI infrastructure shall provide the Instantiate AppO-Pefinitien() -definition and implementation as
specified in Fable-38Table 42.

Table 3842: InstantiateApp() Definition

Declaration HandlelD InstantiateApp(N ‘ Formatted: Border: Top: (No border), Bottom: (No ‘

!n Ha_ndIeID fromiD, border), Left: (No border), Right: (No border)
in string handleName,

in string configuration

)

Description Instantiate an application or service.

Parameters » fromID: The handle ID of the current component making the request. N [Formatted Table J

» handleName: The name of the new component to be instantiated.

» configuration: Configuration data to be associated with the new instance. If
NULL or undefined, the STI Infrastructure should use defaults if
appropriate/possible.

Return On success, retaras-return a Handle ID value identifying the newly created instance. O
errerotherwise, an-invalid-handle 1D-value-isreturnedreturn the predefined
HANDLEID_INVALID.

cdeb =l e B AP call todet ature
cation ‘e, .
Notes The caller should validate the return HandleID value using the ValidateHandleID()

API call to determine success or failure.

The handle name specified for the application, service, or device is to be unique within
the scope of the current STI environment.

The STI Infrastructure may also impose additional operations to be performed during
instantiation, such as the loading of dynamic link libraries or shared objects, as
documented by the platform provider. It is up to the STI Infrastructure to determine
whether any additional resources are to be loaded to accomplish the instantiation.

The configuration parameter will be a free-form string, defined by the platform
provider, and intended as a generic means to pass additional instructions to the
infrastructure as part of the instantiation process. This string may directly contain a set
of encoded configuration data (e.g. XML), or it may refer to a filename on the system
storage device containing additional information about the instance.

42.5712.7.5 STl Infrastructure-Provided GetErrorQueue Method - | Formatted: Heading 3, Indent: Left: 0", First line: 0" |

STI-55 The STI infrastructure shall provide the GetErrorQueue)-Befinition-() -definition and implementation as
specified in Fable39Table 43.

Table 431539: GetErrorQueue() Definition

Declaration HandlelD GetErrorQueue(Formatted: Border: Top: (No border), Bottom: (No
. in Result status border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 1B

Description Obtain the error queue associated with the given status value.

Parameters » status: A Resultn error status-eode-value from a previous call

Return Retarns-Return a handle ID value identifying the queue to which any associated log
message should be written.

Implemented By Infrastructure

Notes This call is intended for use in conjunction with the Log () function for preserving

error-related context information. The platform may direct different types of errors to
different log queues to aid with diagnostics. For any given error response, this locates
the proper queue for logging of any related information.

In general, this should only be used for error status-cedesResult values (i.e. those for
which IsOK () returns FALSE). However, in all cases, the return value from this
function will be passable directly to the Log () routine, without further validation, for
any status-codeResult value.

42.5812.7.6 STl Infrastructure-Provided GetHandleName Method “ {Formatted: Heading 3, Indent: Left: 0", First line: 0" }

STI-56 The STI infrastructure shall provide the GetHandleName()-Befinition-() -definition and implementation as
specified in Fable-40Table 44.

Table 4044: GetHandleName() Definition
Declaration string-Result GetHandleName(.
in HandlelD fromiD,
in HandlelD tolD,

out string handleName

| Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

)
Description Obtain the handle name associated with the given handle ID (toID).
Parameters » fromID: The handle ID of the current component making the request-

» toID: The handle ID of the component for which the name is to be obtained
» handleName: A string representing the handle name of the referenced (toID)
application

Return oo ," o o ot g 3 - P . - . o
undefined-orinvalid-valae: On success, return the predefined Result value; otherwise
return one of the predefined Result values indicating failure. See 12.4.6 STI
Infrastructure-Provided Result Values.
Implemented By Ifrastraetare
Notes The caller is responsible for preallocating the size of handleName to N [Formatted: Don't keep with next }

[MAX HANDLE NAME SIZEH] Mﬁﬁ#ﬁ%&l&%&aﬂﬂe%eb&}&%eeﬁe&

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

114 Space Telecommunication Interface (STI), v1.0 -- beta 2

42.5912.7.7 STl Infrastructure-Provided HandleRequest Method
STI-57 The STI infrastructure shall provide the HandleRequesti-Befinition-() -definition and implementation as

specified in Fable-41Table 45.
Table 4+45: HandleRequest() Definition
Declaration HandlelD HandleRequest(
in HandlelD fromID,
in string toName
)i
Description Obtain the handle ID associated with the given handle name.
Parameters » fromID: The handle ID of the current component making the request.
» toName: The handle name of the component for which the ID should be obtained
Return On success, returas-return a Handle ID value identifying the component. On error, an
invalid-handle 1D-value-isreturnedreturn the predefined HANDLEID _INVALID.
1 1 Pl call tod . faitrre.
Notes The caller should always validate the returned value using the
ValidateHandleID () API call to determine success or failure.

42.6012.7.8 STI Infrastructure-Provided AbortApp Method

STI-58 The STI infrastructure shall provide the AbortApp()-Definition-() -definition and implementation as
specified in Fable-42Table 46.

Table 4246: AbortApp() Definition

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

‘ Formatted: Border: Top: (No border), Bottom: (No ‘

border), Left: (No border), Right: (No border)

{Formatted: Heading 3, Indent: Left: 0", First line: 0" }

associated with it should be released.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

1p

Declaration ReSUl_t AbortApp(| Formatted: Border: Top: (No border), Bottom: (No
in HandlelD fromiD, border), Left: (No border), Right: (No border)
in HandlelD tolD
)i
Description Abort an application or service. { Formatted Table }
Parameters » fromID: The handle ID of the current component making the request.
» toID: The handle ID of the target component that should respond to the request
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.Status-code-which-the-ealler should-validate-using Ts0K-
Implemented By Infrastruetare
Notes The target component will be removed from the environment, and any system resources

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

42.6412.7.9 STI Infrastructure-Provided Initialize Method
STI-59 The STI infrastructure shall provide the Initialize(-Befinition-() -definition and implementation as specified

in Fable-43Table 47.

Table 4347: Initialize() Definition

« [Formatted: Heading 3, Indent: Left: 0", First line: 0"]

N Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Declaration Result Initialize(
in HandlelD fromID,
in HandlelD tolD
)i
Description Initialize the target component.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
Return On success, return the predefined Result value OK: otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-error teturns-onc-of the-defined-crror-constants—On-suceess, returns
oK
Implemented By Infrastruetare
Notes This sets the component to a known initial state. The specific definition of this state is
application-defined. This triggers the APP Initialize () operation on the target
interface.
42.6212.7.10 STl Infrastructure-Provided ReleaseObject Method

STI-60 The STI infrastructure shall provide the ReleaseObject()}-Definition-() -definition and implementation as
specified in Fable-44Table 48.

Table 4448: ReleaseObject() Definition

< [Formatted: Heading 3, Indent: Left: 0", First line: 0"]

N Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Declaration Result ReleaseObject(
in HandlelD fromID,
in HandlelD tolD
)i
Description Releases any system resources held by the application or component.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-error,retarns-one-of the-defined-error constants—On-suceess, returns
oK
Implemented By Infrastruetare
116 Space Telecommunication Interface (STI), v1.0 -- beta 2

Notes This triggers the APP_ReleaseObject () operation on the target interface. ‘

42.6312.7.11 STI Infrastructure-Provided Configure Method - | Formatted: Heading 3, Indent: Left: 0", First line: 0" |

STI-61 The STI infrastructure shall provide the Configure(}-BDefinition-() -definition and implementation as
specified in Fable-45Table 49.

Table 4549: Configure() Definition

Declaration Result Configure([‘ Formatted: Border: Top: (No border), Bottom: (No ‘

in HandlelD fromID, border), Left: (No border), Right: (No border)
in HandlelD tolD,

in PropertyName propName,
in PropertyValue propValue

);

Description Configures or sets a single property in the target component.

Parameters » fromID: The handle ID of the current component making the request

» toID: The handle ID of the component that should respond to the request
» propName: The name or identifier of the property to set

» propValue: A buffer containing the value to set the property to

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. On-crror-returns-onc-of the-defined-crrorconstants—On-suecessretirns
oK-

Implemented By Infrastructure

Invoked By Application;Serviee;or Devi

Notes The caller manages the memory associated with the value buffer.

This triggers the APP_Configure () operation in the target interface.

42.6412.7.12 STl Infrastructure-Provided Query Method - | Formatted: Heading 3, Indent: Left: 0", First line: 0" |
STI-62 The STI infrastructure shall provide the Query -Befinition-() -definition and implementation as specified i
TFable-46Table 50.

Table 4650: Query() Definition

Declaration Result Query([‘ Formatted: Border: Top: (No border), Bottom: (No ‘

in HandlelD fromID, border), Left: (No border), Right: (No border)
in HandlelD tolD,

in PropertyName propName,
out PropertyValue propValue

);

Description Obtains or gets a single property from the target component.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 1"y

Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
» propName: The name or identifier of the property to get
» propValue: A buffer into which the current value should be stored

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. FOFFELIIRS i constants
o=

Inveked By ApplicationServiee;or Devi

Notes The caller manages the memory associated with the value buffer.

This triggers the APP_Query () operation in the target interface.

42.6512.7.13

STI-63 The STI infrastructure shall provide the RunTest()-Definition-() -definition and implementation as specified
in Fable47Table 51.

STI Infrastructure-Provided RunTest Method

Table 4751: RunTest() Definition

Declaration Result RunTest(
in HandlelD fromID,
in HandlelD tolD,
in TestID testID
)
Description Obtain the handle ID associated with the given handle name.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
» testID: The ID of the test to be performed
Return On success, return the predefined Result value OK: otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. — . - e s
ok
Notes The specific values and meaning of the test ID parameter are application specific.
This triggers the APP_RunTest () operation in the target interface.
42.6612.7.14 STl Infrastructure-Provided Start Method

STI-64 The STI infrastructure shall provide the Start()-Definition-() -definition and implementation as specified in

TFable-48Table 52.

Table 4852: Start() Definition

118

Space Telecommunication Interface (STI), v1.0 -- beta 2

“ [Formatted: Heading 3, Indent: Left: 0", First line: 0" J

N ‘ Formatted: Border: Top: (No border), Bottom: (No ‘

border), Left: (No border), Right: (No border)

“ [Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Declaration Result Start(
in HandlelD fromID,
in HandlelD tolD
)i
Description Begin normal application or device processing.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. — . - e e
ok
Notes This triggers the APP_Start () operation in the target interface.
42.6712.7.15 STI Infrastructure-Provided Stop Method
STI-65 The STI infrastructure shall provide the Stop-Befinition-() -definition and implementation as specified in
TFable49Table 53.
Table 4953: Stop() Definition
Declaration Result Stop(
in HandlelD fromID,
in HandlelD tolD
)i
Description End normal application or device processing.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. = S s i stants- S 555
ok
Notes This triggers the APP_Stop () operation in the target interface.

42.6812.7.16

STl Infrastructure-Provided DeviceOpen Method

STI-66 The STI infrastructure shall provide the DeviceOpen)-Befinition-() -definition and implementation as
specified in Fable 50Table 54.

Table 5054: DeviceOpen() Definition

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

19

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

[Formatted Table J

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Declaration Resul_t DeviceOpen(N | Formatted: Border: Top: (No border), Bottom: (No
in HandlelD fromID, border), Left: (No border), Right: (No border)

in HandlelD tolD
);

Description Open the device.

Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. ¥ 5 - sonstants. SHEEess;
ok:

Implemented By Infrastrueture

InvekedB jcation, ce. -

Notes This triggers the DEV_Open () operation in the target interface. This will be the first

call issued before invoking any other device control operations.

42.6912.7.17 STl Infrastructure-Provided DeviceLoad Method - | Formatted: Heading 3, Indent: Left: 0", Frst line: 0"

STI-67 The STI infrastructure shall provide the DeviceLoad)-Befinition-() -definition and implementation as
specified in Fable-51Table 55.

Table 5155: DeviceLoad() Definition

Declaration Resul_t DeviceLoad(h | Formatted: Border: Top: (No border), Bottom: (No
in HandlelD fromID, border), Left: (No border), Right: (No border)

in HandlelD tolD,
in string fileName

);

Description Load an application, hardware design, or configuration file into the device.

Parameters » fromID: The handle ID of the current component making the request N { Formatted Table

» toID: The handle ID of the component that should respond to the request
» fileName: The name of the file to load

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. . 5 2 i Stants: 5 555
ok:

Implemented By Ifrastraetare

Hvoked By Appheation—Servicerorb

Notes This triggers the DEV_Load () operation in the target interface.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

120 Space Telecommunication Interface (STI), v1.0 -- beta 2

42:7012.7.18

STI Infrastructure-Provided DeviceReset Method

STI-68 The STI infrastructure shall provide the DeviceReset()}-Definition() -definition and implementation as
specified in Fable-52Table 56.

Table 5256: DeviceReset() Definition

« [Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[| Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Declaration Result DeviceReset(
in HandlelD fromID,
in HandlelD tolD
)i
Description Resets the device into a known state.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-errorreturns-one-of the-defined-errorconstants—On-suecess; retarns
oK
Implemented By Infrastruetare
Notes The specific state after reset is device-defined. This triggers the DEV_Reset ()
operation in the target interface.
42.7412.7.19 STI Infrastructure-Provided DeviceFlush Method

STI-69 The STI infrastructure shall provide the DeviceFlush()-Befinition-() -definition and implementation as
specified in Fable-53Table 57.

Table 5357: DeviceFlush() Definition

« [Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[| Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Declaration Result DeviceFlush(
in HandlelD fromID,
in HandlelD tolD
)
Description Clears any pending input/output data buffers in the device.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. - S 2 i Stants: S S5
ok
Implemented By Infrastructure
Hvoked By Appheation—ServeerorPev
Notes This triggers the DEV_Flush () operation in the target interface.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

12

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

42:7212.7.20

STI Infrastructure-Provided DeviceUnload Method

STI-70 The STI infrastructure shall provide the DeviceUnload-Definition-() -definition and implementation as
specified in Fable-54Table 58.

Table 5458: DeviceUnload() Definition

Declaration Result DeviceUnload(
in HandlelD fromID,
in HandlelD tolD
)i
Description Unload any previously loaded application, hardware design image, or configuration file.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-errorreturns-one-of the-defined-errorconstants—On-suecess; retarns
oK
Notes This triggers the DEV_Unload () operation in the target interface.
42.7312.7.21 STI Infrastructure-Provided DeviceClose Method

STI-71 The STI infrastructure shall provide the DeviceClose()-Pefinition-() -definition and implementation as
specified in Fable-55Table 59.

Table 5559: DeviceClose() Definition

Declaration Result DeviceClose(
in HandleID fromiD,
in HandlelD tolD
)i
Description Closes the device.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. ror, S i cons 5 suceess. returns
o=
Notes This triggers the DEV_Close () operation in the target interface. The device will not
be used by the application after this call unless opened again.
122 Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

{Formatted: Heading 3, Indent: Left: 0", First line: 0" }

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

12.7412.7.22 STl Infrastructure-Provided Read Method - | Formatted: Heading 3, Indent: Left: 0", First line: 0" |

STI-72 The STI infrastructure shall provide the Read)-Befinition-() -definition and implementation as specified in
Fable-56Table 60.

Table 5660: Read() Definition

Declaration Result Read([‘ Formatted: Border: Top: (No border), Bottom: (No ‘

!n HandlelD fromID, border), Left: (No border), Right: (No border)
in HandlelD tolD,

out Message buffer

)

Description Read or “pull” arbitrary data from another application or device.

Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
» buffer: A buffer to hold the transferred data

Return On-error, returns one of the defined error constants.—_On success, returns return a Rebuli
status value indicating the actual number of records or bytes of data that was transferred
into the supplied buffer. Otherwise, return one of the predefined Result values
indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.

Notes The storage for the buffer will be managed by the caller. The target application defines
the specific binary format for the data.

In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory
location with the units specified in bytes. In other languages, the units should reflect
logical records, such as a number of characters, samples or objects.

The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0°) as
required for C-style strings. If a terminating character is required, the caller will ensure
that sufficient space is available in the buffer to store the termination character.

12.7512.7.23 STI Infrastructure-Provided Write Method “« [Formatted: Heading 3, Indent: Left: 0", First line: 0" J
STI-73 The STI infrastructure shall provide the Write-Befinition-() -definition and implementation as specified i
TFable-57Table 61.

Table 5761: Write() Definition

Declaration Result Write(N ‘ Formatted: Border: Top: (No border), Bottom: (No ‘

in HandlelD fromID, border), Left: (No border), Right: (No border)
in HandlelD tolD,

in Message buffer

);

Description Write or “push” arbitrary data to another application or device.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 12B

Parameters

» fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
» buffer: A buffer containing the data to be transferred

Return

On-errorreturns-one-of the-defined-error-constants—On success, returns-return a status
value indicating the actual number of records or bytes of data that was transferred from
the supplied buffer._Otherwise, return one of the predefined Result values indicating
failure. See 12.4.6 STI Infrastructure-Provided Result Values.

h [Formatted Table J

Notes

The storage for the buffer will be managed by the caller. The target application defines
the specific binary format for the data.

In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory
location with the units specified in bytes. In other languages, the units should reflect
logical records, such as a number of characters, samplessamples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0”) as
required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

42.7612.7.24

STl Infrastructure-Provided AddressRead Method <

STI-74 The STI infrastructure shall provide the AddressRead()-Definition-() -definition and implementation as
specified in Fable 58 Table 62.

Table 6258: AddressRead() Definition

Declaration

Result AddressRead(
in HandleID fromID,
in HandlelD tolD,
in Offset offset,
out Message buffer

)

Description

Read data from a specific offset or address within a device or file.

Parameters

» fromID: The handle ID of the current component making the request

» toID: The handle ID of the component that should respond to the request
» offset: The location to read data from

» buffer: A buffer to hold the transferred data

Return

On-errorreturns-one-of the-defined-error-constants—On success, returns-return a Result
status value indicating the actual number of records or bytes of data that was transferred
into the supplied buffer. Otherwise, return one of the predefined Result values
indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

124

Space Telecommunication Interface (STI), v1.0 -- beta 2

color: Auto, Pattern: Clear

Notes

The storage for the buffer will be managed by the caller. The target application defines
the specific binary format for the data.

In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory
location with the units specified in bytes. In other languages, the units should reflect
logical records, such as a number of characters, samplessamples. or objects.

The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0°) as
required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

42-7712.7.25

Table 5963: AddressWrite(

Declaration

STI Infrastructure-Provided AddressWrite Method «

STI-75 The STI infrastructure shall provide the AddressWrite()-Definition-() -definition and implementation as
specified in Fable-59Table 63.

Definition

Result AddressWrite(
in HandlelD fromID,
in HandlelD tolD,
lin Offset offset,
in Message buffer

)
Description Write data to a specific offset or address within a device or file.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the component that should respond to the request
» of fset: The location to write data to
» buffer: A buffer containing the data to be transferred
Return On-errorreturns-one-of the-defined-error-constants—On success, returns-return a status
value indicating the actual number of records or bytes of data that was transferred from
the supplied buffer._Otherwise, return one of the predefined Result values indicating
failure. See 12.4.6 STI Infrastructure-Provided Result Values.
I
Notes The storage for the buffer will be managed by the caller. The target application defines

the specific binary format for the data.

In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory
location with the units specified in bytes. In other languages, the units should reflect
logical records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the
presence or expectation of a terminating entity, such as a NUL character (‘\0”) as
required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 12b

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Commented [HLM(L41]: JIRA issue STI_7: Calling se-
quence is inconsistent

|

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-7&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=2cYVKDLiGg5hpA8jBvC7iRI%2FReQSXLbK873gsrGonT8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-7&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=2cYVKDLiGg5hpA8jBvC7iRI%2FReQSXLbK873gsrGonT8%3D&reserved=0

42.7812.7.26 STI Infrastructure-Provided Log Method -

STI-76 The STI infrastructure shall provide the Log-Pefinitien() -definition and implementation as specified in
TFable-60Table 64.

Table 6064: Log() Definition
Declaration Result Log(e
in HandlelD fromID,

in HandlelD tolD,

lin string-Message legMsgbuffer]

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Commented [HLM(L42]: JIRA issue STI_39: Incon-
sistency in signature between Log and Write/APP_Write

Description Sends an information message to the specified log facility.

Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the log queue to which the message should be sent
» logMssbuf fer: A message to send to the log facility

may be used to determine the proper value to use for the toID parameter. In other
cases, the predefined error queue eenstantsvalues may be used, as listed in Table 8,
HandleID CenstantsValues.

Behavior is not specified if the toID parameter does not refer to a component capable
of accepting log messages (i.e. one of the defined log facilities).

42.7912.7.27 STl Infrastructure-Provided FileOpen Method “

STI-77 The STI infrastructure shall provide the FileOpen©-Befinition() -definition and implementation as
specified in Fable-61+Table 65.

Table 6+65: FileOpen() Definition

Declaration HandlelD FileOpen(r
in HandleID fromID,

in string fileName,

in Access fileAccess,

lin boolean fileTypeText

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On-errorreturns-one-of the-defined-errorconstants—On-sueecess, retarns

oK
Invoked By Apphication: ServiceorPeviee [[Formatted Table
Notes When logging context information related to errors, the GetErrorQueue () function

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Commented [HLM(L43]: JIRA issue STI_21: Add file
type parameter to the FileOpen method. (Done in FTF1.)

|

Description Opens a file within the infrastructure file system.

126 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-39&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=sOQ%2BWkbvzpavXgDdoBRT3nHfo1lcYiJuWpeGQ30hM%2BY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-39&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=sOQ%2BWkbvzpavXgDdoBRT3nHfo1lcYiJuWpeGQ30hM%2BY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-39&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=sOQ%2BWkbvzpavXgDdoBRT3nHfo1lcYiJuWpeGQ30hM%2BY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-21&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=TGVluok3CB2I1aiTYlfuA95nn12bP57VXBshDH0fFiw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-21&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=TGVluok3CB2I1aiTYlfuA95nn12bP57VXBshDH0fFiw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-21&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=TGVluok3CB2I1aiTYlfuA95nn12bP57VXBshDH0fFiw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-21&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=TGVluok3CB2I1aiTYlfuA95nn12bP57VXBshDH0fFiw%3D&reserved=0

Parameters

» fromID: The handle ID of the current component making the request

» fileName: The name of the file to be opened

» fileAccess: Whether the file is to be opened for reading, writing, appending, or
both (reading and writing).

» fileTypeText: indicator whether the file is text or binary; use true for text and false for
binary.

{ Formatted: Font color: Auto }

Return

On success, retaras-return a Handle ID value identifying the open file. O
errerOtherwise, return the predefined aninvalidhandle tD-valaeis
retarned HANDLEID INVALID.

Notes

The caller should always validate the returned HandleID value using
ValidateHandleID ()to determine success or failure. After successfully opening a
file, data transfer can be performed using the read-Read and wite-Write functions

described in sections +0:6:412.7.22 and 12.7.23.

For the file access types, which provide the appropriate constraints, see Table 6, Access
CeonstantsValues.

42.8012.7.28

STI-78 The STI infrastructure shall provide the FileClose()-Befinition-() -definition and implementation as
specified in Fable-62Table 66.

Table 6266: FileClose() Definition

STI Infrastructure-Provided FileClose Method

< [Formatted: Heading 3, Indent: Left: 0", First line: 0"]

FileOpen (). Behavior is undefined if this function is called with other types of

handle IDs.

Declaration Res'-”'t FileClose(" Formatted: Border: Top: (No border), Bottom: (No
in HandlelD fromiD, border), Left: (No border), Right: (No border)
in HandlelD tolD
)
Description Closes a file handle. N { Formatted Table J
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the file that should be closed
Return On success, retarns-okreturn the predefined Result value OK. On-errerOtherwise,
retarns-onereturn one of the predefined error-Result eonstantsvalues indicating failure.
Notes The toID parameter should reflect a file handle that was previously obtained using

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

12f

42.8412.7.29 STl Infrastructure-Provided FileGetSize Method -
STI-79 The STI infrastructure shall provide the FileGetSize(-BDefinition-() -definition and implementation as
specified in Fable-63Table 67.
Table 6367: FileGetSize() Definition
Declaration FileSize FileGetSize(le
in HandlelD fromID,
in string fileName
)i
Description Get the size of the specified file.
Parameters » fromID: The handle ID of the current component making the request
» fileName: The name of the file to obtain the size of
Return On success, returns-thercturn the size of the file. On error, returas-return an invalid size.
Notes The return value should be validated by the caller using the ValidateSize ()
operation as described in section +0-6-1-1-12.7.3.
42.8212.7.30 STI Infrastructure-Provided FileRemove Method -

STI-80 The STI infrastructure shall provide the FileRemove()-Befinition-() -definition and implementation as
specified in Fable-64Table 68.

Table 6468: FileRemove() Definition

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

[Formatted: Heading 3, Indent: Left: 0", First line: 0" }

Declaration Resul_t FileRemove(h Formatted: Border: Top: (No border), Bottom: (No
in HandlelD fromID, border), Left: (No border), Right: (No border)
in string fileName
)

Description Removes a specified file from the system.
Parameters » fromID: The handle ID of the current component making the request

» fileName: The name of the file to remove
Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values. SHECEesS; Feturns 2 5 F

€O San t!‘.
Implemented By Infrastructure
Inveked By Application;Servieeror Devi < [Formatted Table }
Notes Behavior of this function is implementation-defined if the specified file is currently

open within the infrastructure. Some systems may support this by “unlinking” the file

name but deferring the actual removal (and recovery of space) until the file is closed.

On other systems, the function may return an error if the file is currently open.

Portable applications should ensure that a file has been closed prior to removal.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

128 Space Telecommunication Interface (STI), v1.0 -- beta 2

42:8312.7.31

STI Infrastructure-Provided FileRename Method

STI-81 The STI infrastructure shall provide the FileRename}-Pefinitien() -definition and implementation as
specified in Fable-65Table 69.

Table 6569: FileRename() Definition

Declaration

Result FileRename(
in HandlelD fromID,
in string oldName,
in string newName

)

« [Formatted: Heading 3, Indent: Left: 0", First line: 0"]

[Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Description

Renames a specified file in the file system.

Parameters

» fromID: The handle ID of the current component making the request
» oldName: The existing/current name of the file
» newName: The desired name of the file

Return

On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-suceess—returns-OK—On-errorreturns-one-of the defined-error
constants:

Infrastructure

Notes

Behavior of this function is implementation-defined if the specified file is currently
open within the infrastructure. Some systems may support renaming an open file, but
on other systems the function may return an error.

Portable applications should ensure that a file has been closed prior to rename.

42:8412.7.32

STI-82 The STI infrastructure shall provide the FileGetFreeSpace()-BPefinition-() -definition and implementation a

STI Infrastructure-Provided FileGetFreeSpace Method

specified in Fable-66Table 70.

Table 6670: FileGetFreeSpace() Definition

“ [Formatted: Heading 3, Indent: Left: 0", First line: 0" J

[Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Declaration FileSize FileGetFreeSpace(
in HandlelD fromID,
in string fileSystem
)i
Description Get the total free space available for file storage on the indicated file system.
Parameters » fromID: The handle ID of the current component making the request
» fileSystem: Identifies the file system to check
Return On success, returns-thereturn the amount of free space. On error, returas-return an
invalid size.

[[Formatted Table J

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

12b

Notes

42.8512.7.33

The specific format and options for the fileSystem parameter will be defined by the
platform provider. An invalid (undefined/NULL) or empty string value should always
be interpreted to refer to the “default” or root storage device, if available. A non-empty
string may refer to a physical device name, drive identifier, or a mount point, depending
on the system.

STl Infrastructure-Provided MessageQueueCreate Method

STI-83 The STI infrastructure shall provide the MessageQueueCreate()-DPefinition-() -definition and
implementation as specified in Fable-67Table 71.

Table 6771: MessageQueueCreate() Definition

<

Declaration

HandlelD MessageQueueCreate(
in HandleID fromiD,
in string queueName,
in QueueMaxMessages nmax,
in BufferSize-Integer nb

);

Description

Create a FIFO message queue.

Parameters

» fromID: The handle ID of the current component making the request
» queueName: The name of the queue to create

» nmax: The maximum number of messages (depth) of the FIFO queue
» nb: The maximum size of each entry in the queue

Return

On success, returns-return a Handle ID value identifying the FIFO queue. On
errorOtherwise, return an-invalid-handle 1D-value-isreturnedthe predefined
HANDLEIDfINVALID.

Infrastructure

Annlication—Serd + Devie
Ypprecation; Dervice; or Devt

Notes

The returned handle value should always be validated by the caller using
ValidateHandleID () to determine success or failure.

The queue name will be unique in within the current environment.

Once a queue depth reaches its maximum (nmax), applications will be unable to write
new data into the queue. Data does not “expire” from a FIFO queue; any data
successfully written to the input side of a queue is removed only by reading the data
from the output side of the queue, or by deleting the entire queue.

If the nb parameter is omitted or specified as 0, the interpretation is implementation-
defined. Specifically, this may be used for languages that employ automatic memory

management and do not expose the size of objects in memory to applications.

42.8612.7.34

STl Infrastructure-Provided MessageQueueDelete Method

STI-84 The STI infrastructure shall provide the MessageQueueDelete()-Definition-() -definition and
implementation as specified in Fable-6&Table 72.

130

Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Table 6872: MessageQueueDelete() Definition

Declaration Result MessageQueueDelete(
in HandlelD fromID,
in HandlelD tolD
)
Description Delete a FIFO queue.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the queue that should be deleted
Return On success, return the predefined Result value OK:; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-sueeess;returns-Ok—On-error; returns-one-of the-defined-error
€ORSs Ed’ ES.
Notes Any written but unread data messages in the queue are discarded.
42.8712.7.35 STI Infrastructure-Provided PubSubCreate Method

STI-85 The STI infrastructure shall provide the PubSubCreate()-Befinition-() -definition and implementation as
specified in Fable-69Table 73.

Table 6973: PubSubCreate() Definition

Declaration

HandlelD PubSubCreate(
in HandlelD fromID,
in string pubSubName

Description

Create a PubSub entity.

Parameters

» fromID: The handle ID of the current component making the request
» pubSubName: The name of the PubSub entity to be created

Return

On success, retaras-return a Handle ID value identifying the PubSub entity. O#
errerOtherwise, return the predefined an-invalidhandle tD-valaeis

returred HANDLEID_INVALID.

Annlication—Seprpd r Devt
Yppreations

Fvee;or 2

The returned handle value should always be validated by the caller using
ValidateHandleID () to determine success or failure.

The name will be unique in within the current environment.

Unlike FIFO queues, PubSub entities do not store messages; any messages pushed to a
PubSub entity are immediately distributed to all currently registered subscribers at the
time the message is pushed.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

13}

‘ Formatted: Border: Top: (No border), Bottom: (No ‘

border), Left: (No border), Right: (No border)
[Formatted Table }

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

42.8812.7.36 STl Infrastructure-Provided PubSubDelete Method -
STI-86 The STI infrastructure shall provide the PubSubDelete (-Befinition-() -definition and implementation as
specified in Fable 70Table 74.
Table 7074: PubSubDelete() Definition
Declaration Result PubSubDelete(ke
in HandlelD fromID,
in HandlelD tolD
)
Description Delete a PubSub entity.
Parameters » fromID: The handle ID of the current component making the request [
» toID: The handle ID of the PubSub entity to be deleted
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. 5 . 5 5 2 i
e
Notes Any registered subscribers will be automatically unregistered upon deletion.
42.8912.7.37 STI Infrastructure-Provided Register Method «

STI-87 The STI infrastructure shall provide the Register-Befinition() -definition and implementation as specified

in Fable- 7+ Table 75.

Table 7175: Register() Definition

[Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

{ Formatted Table J

{Formatted: Heading 3, Indent: Left: 0", First line: 0" }

Declaration Result Register(r Formatted: Border: Top: (No border), Bottom: (No
in HandlelD fromID, border), Left: (No border), Right: (No border)
in HandlelD tolD,
in HandlelD recipientID
)
Description Add a handle to the recipient list of the PubSub entity.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the PubSub entity
» recipientID: The handle ID of another application, device, file, or queue that
should receive all messages written to the PubSub entity
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. 5 . 5 5 f i
: J zkﬁplle‘dnElL Se{ Yieew of Be 16%
Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear
132 Space Telecommunication Interface (STI), v1.0 -- beta 2

Notes A single recipient cannot be registered multiple times. If a recipient is already
registered within the PubSub entity, this function returns a success code without making
any change.

42:9012.7.38 STl Infrastructure-Provided Unregister Method « | Formatted: Heading 3, Indent: Left: 0", First line: 0" |

STI-88 The STI infrastructure shall provide the Unregister(-Befinition-() -definition and implementation as
specified in Fable72Table 76.

Table 7276: Unregister() Definition

Declaration Result Unregister(r ‘ Formatted: Border: Top: (No border), Bottom: (No ‘

in HandlelD fromID, border), Left: (No border), Right: (No border)
in HandlelD tolD,

in HandlelD recipientID

)

Description Remove a handle from the recipient list of the PubSub entity.

Parameters » fromID: The handle ID of the current component making the request N [Formatted Table]

» toID: The handle ID of the PubSub entity

» recipientID: The handle ID of the other application, device, file, or queue that
should no longer receive messages written to the PubSub entity

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On-sueeess; s : FOT e s - cd-¢
Implemented By Infrastructure
Invoked By Application. Service, or D
Notes
12.9412.7.39 STl Infrastructure-Provided GetNanoseconds Method « [Formatted: Heading 3, Indent: Left: 0", Firstline: 0" |
STI-89 The STI infrastructure shall provide the GetNanoseconds()-Befinition-() -definition and implementation as
specified in Fable 73 Table 77.
Table 7377: GetNanoseconds() Definition
Declaration Nano_seco_nds GetNanoseponds(N Formatted: Border: Top: (No border), Bottom: (No

) in TimeWarp twObj border), Left: (No border), Right: (No border)
Description Get the number of nanoseconds (fractional quantity) from the TimeWarp object.
Parameters » twObj: The value from which the nanoseconds portion of the time is extracted
Return Returns-theReturn the number of nanoseconds
Tvoked-By
: Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 13B

Notes The nanoseconds value is always non-negative, and reflects the difference between the
actual interval time and the number of whole seconds in the interval as reported by
GetSeconds ()

42.9212.7.40 STI Infrastructure-Provided GetSeconds Method “« [Formatted: Heading 3, Indent: Left: 0", First line: 0" J

STI-90 The STI infrastructure shall provide the GetSeconds()}-DPefinition-() -definition and implementation as
specified in Fable 74 Table 78.

Table 7478: GetSeconds() Definition
Declaration Seconds GetSeconds(e ‘

105 & i Formatted: Border: Top: (No border), Bottom: (No
in TimeWarp twObj

border), Left: (No border), Right: (No border)

)

Description Get the number of seconds (whole number quantity) from the TimeWarp object.

Parameters » twObj: The value from which the seconds portion of the time is extracted

Return Returas-theReturn the number of seconds

Tl e

Notes The seconds value may be negative, which indicates an interval back in time.
For fractional intervals, the seconds value reflects the largest integral value not greater
than the interval length in seconds, similar to the POSIX flooxr () operation applied to
a floating-point value.
For example, given a TimeWarp interval corresponding to -1.1s, the GetSeconds ()
function will return -2, and the GetNanoseconds () function will return
900,000,000.

12.9312.7.41 STI Infrastructure-Provided GetTimeWarp Method “ [Formatted: Heading 3, Indent: Left: 0", First line: 0" J

STI-91 The STI infrastructure shall provide the GetTimeWarp ()-Definition-() -definition and implementation as
specified in Fable-75Table 79.

Table 7579: GetTimeWarp() Definition
Declaration TimeWarp GetTimeWarp(e ‘

in Seconds isec,

Formatted: Border: Top: (No border), Bottom: (No ‘
in Nanoseconds nsec

border), Left: (No border), Right: (No border)

)

Description Get the TimeWarp object value corresponding to the seconds and nanoseconds.

Parameters » isec: The number of seconds in the time interval (whole number portion)
» nsec: The number of nanoseconds in the time interval (fractional portion)

Return Returns-theReturn the corresponding time value as a TimeWarp value
l’H‘VQ‘ked—BV' Annlication—Servd r Devi
3 \pplication. Service.or D

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

134 Space Telecommunication Interface (STI), v1.0 -- beta 2

Notes

The nsec parameter value should be between 0 and 999,999,999, inclusive. If the
nsec value is not within this range, the infrastructure should adjust the i sec and
nsec values by decrementing/incrementing nsec by 1,000,000,000 and
incrementing/decrementing isec by 1, respectively, until the nsec value is within this
range.

42.9412.7.42

STI-92 The STI infrastructure shall provide the TimeAdd()-Pefinition-() -definition and implementation as
specified in Fable-76Table 80.

Table 7680: TimeAdd() Definition

STI Infrastructure-Provided TimeAdd Method «

Declaration TimeWarp TimeAdd(N
in TimeWarp t1,
in TimeWarp t2
)
Description Compute the sum of two TimeWarp values.
Parameters » t1, t2:Any previously obtained time values
Return Thesum (t1 + t2) expressed asa TimeWarp value
Notes
42.9512.7.43 STl Infrastructure-Provided TimeSubtract Method -

STI-93 The STI infrastructure shall provide the TimeSubtract(}-Definition-() -definition and implementation as
specified in Fable 77Table 81.

Table 7781: TimeSubtract(

Definition

Declaration

TimeWarp TimeSubtract([
in TimeWarp t1,
in TimeWarp t2

[Formatted: Heading 3, Indent: Left: 0", First line: 0" }

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

[Formatted: Heading 3, Indent: Left: 0", First line: 0" }

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 13b

)
Description Compute the difference between two TimeWarp values. N [Formatted Table J
Parameters » t1, t2:Any previously obtained time values
Return The difference (t1 - t2) expressed asa TimeWarp value
Hnveked By

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Notes This operation may be implemented as a macro or inline function for efficiency, on
languages that offer this feature.
This operation may be used by software to compute the elapsed time between two
successive calls to GetTime (). The result can be converted back to engineering units
via the GetSeconds () and GetNanoseconds () operations

42.9612.7.44 STl Infrastructure-Provided GetTime Method « [Formatted: Heading 3, Indent:Left: 0", First line: 0" |

STI-94 The STI infrastructure shall provide the GetTime-Befinition-() -definition and implementation as specified
in Fable-78Table 82.

Table 7882: GetTime() Definition
Declaration Result GetTime(L ‘

in HandlelD fromID,
in HandlelD tolD,
out TimeWarp currentTime

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

)i
Description Obtains the current value of the clock.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the eleek-devieeclock component that should respond to the
request

» currentTime: A buffer to store the current time, as an interval since the epoch

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. : Fett

constants:
Invoked By
Notes The output value returned represents a direct measurement of elapsed time since its
respective epoch according to the clock’s time scale and is not adjusted for nor
dependent upon any locale-specific time representations (i.e. time zone, daylight
savings time, etc.) or effects of relativity.
12.9712.7.45 STI Infrastructure-Provided SetTime Method “ [Formatted: Heading 3, Indent: Left: 0", First line: 0" J

STI-95 The STI infrastructure shall provide the SetTime()-Befinition-() -definition and implementation as specified
in Fable-79Table 83.

Table 7983: SetTime() Definition
Declaration Result SetTime(ke ‘

in HandlelD fromID,
in HandlelD tolD,
in TimeWarp deltaTime

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

);

Description Sets the current value of the clock.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

136 Space Telecommunication Interface (STI), v1.0 -- beta 2

Parameters

» fromID: The handle ID of the current component making the request [

» toID: The handle ID of the elock-deviceclock component- that should respond to the
request
» deltaTime: The step size, relative to the current clock value

Return

On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. SHEEESS 5 > 5 Fthe-defi

Infrastructure

Notes

This function will “step” the base clock. Since the offset is applied against the base
clock measurement, it affects all calendar representations of the clock accordingly. It
may be used to synchronize a clock based on information obtained after start up.

Not all eloek-devieeclock s-components are required to support this operation. If a ’
eloek-devieeclock -component is read-only and not settable from an application, this
function should return UNIMPLEMENTED.

Note that this is not intended for implementing the concept of a “time zone” or “local
time” (i.e. the time as commonly expressed in a given geopolitical region). If the
platform implements the concept of local time, then the specific local time offset or
conversion rules should be configured using the PrepertySet APIConfigure and Query
methods as described in sections +0:6:2.312.7.11 and 12.7.12.

The specific property name and value format for time zone configuration is platform-
defined. On some systems, it may be directly configured as a number (i.e. minutes
ahead of GMT) or it may be configured as a string reflecting a predefined rule (i.e.
“US/Eastern”) if the system is capable of automatic daylight savings time adjustments.

42.9812.7.46

Table 8084: GetCalendarTime() Definition

STI Infrastructure-Provided GetCalendarTime Method <

STI-96 The STI infrastructure shall provide the GetCalendarTime()}-Pefinition-() -definition and implementation ag
specified in Fable-80Table 84.

Declaration

Description

Result GetCalendarTime(
in HandlelD fromID,
——in-Handle!D-tolD;
in TimeWarp referenceTime,
in CalendarKind calendarKind,
out CalendarTime calendarTime

);

Convert the base clock time value to a defined calendar representation.

Parameters

» fromID: The handle ID of the current component making the request

» referenceTime: The time to convert, expressed as an interval since the clock
epoch

» calendarKind: The calendar system to convert the reference time to

» calendarTime: A buffer to store the calendar representation of the reference time

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 13f

[Formatted Table }

[Formatted: Heading 3, Indent: Left: 0", First line: 0" J

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.Onsuecess.returns S On-errorreturns-one-of the-defined-crror
constants:
hmplemented By Infrastrueture
ication, ice; .
Notes This call is used by-applications-to convert an abstract TimeWarp value (of which the

definition is platform-specific) into a value in one of the defined calendar systems, such
that portable applications can interpret it in a consistent manner.

If the system or clock does not support the requested calendarKind, the
implementation should return UNIMPLEMENTED.

If the referenceTime is zero, such as the result of a call to GetTimeWarp (0, 0)

then this-will-return the respective calendar representation of the clock epoch.

S [Formatted: Heading 3, Indent: Left: 0", First line: 0" }

138

Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

b { Formatted: Heading 3, Indent: Left: 0", First line: 0" }
N | [Formatted: Text body, Space Before: 0 pt }
b { Formatted: Heading 3, Indent: Left: 0", First line: 0" }
e { Formatted: Text body, Space Before: 0 pt J
{ Formatted: Heading 3, Indent: Left: 0", First line: 0" }
-
/| Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 13p

Fable-84-CalendarFime UnionDefinition N | [Formatted: Text body, Space Before: 0 pt

42.40312.7.47 STl Infrastructure-Provided SetTimeAdjust Method - | Formatted: Heading 3, Indent: Left: 0", Frst line: 0"

STI-101 The STI infrastructure shall provide the SetTimeAdjust)-Befinition-() -definition and implementation as
specified in Table 85.

Table 1685: SetTimeAdjust() Definition

Declaration Result SetTimeAdjust(PR
in HandlelD fromID,

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

in HandlelD tolD,
in TimeRate rateAdjustment

)
Description Adjusts the tick rate of the eleek-devieeclock component.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the eloek-devieeclock -component that should respond to the
request

» rateAdjustment: The amount of adjustment to apply

Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values.On-sueeess;returns-Ok—On-error; returns-one-of the-defined-error

eeﬂﬁ't‘dﬂt‘b" € S+
Implemented By Infrastructure

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

140 Space Telecommunication Interface (STI), v1.0 -- beta 2

Notes The rateAdjustment parameter is a signed integer, where the value of 0 represents
the nominal or free-run rate of the clock without any adjustment applied. If any
adjustment had been previously applied, calling this function with a value of 0 will
restore a clock to its default rate.

A positive value will cause the clock frequency to increase from the nominal rate, and a
negative value will cause the clock frequency to decrease from the nominal rate. The
specific unit of rate increase/decrease is platform defined, although typically might
reflect a number of parts per million or parts per billion depending on clock design.

If the underlying device does not support rate adjustment, then this function will return
the predefined Result value UNIMPLEMENTED status code.

A typical use-case of this function would periodically compute the difference between
the reference clock and the local eleck-devieeclock component, which is then multipliedl
by a feedback ratio (proportional coefficient) to compute the adjustment value to pass
into this function.

42-10412.7.48 STI Infrastructure-Provided GetTimeAdjust Method - [Formatted: Heading 3, Indent: Left: 0", First line: 0" }

STI-102 The STI infrastructure shall provide the GetTimeAdjustO-Befinition-() -definition and implementation as
specified in Table 86.

Table 1786: GetTimeAdjust() Definition

Declaration TimeRate GetTimeAdjust(r Formatted: Border: Top: (No border), Bottom: (No
In HandlelD fromiD, border), Left: (No border), Right: (No border)
in HandlelD tolD
)i
Description Obtain the current tick rate adjustment value of the eleek-devieeclock component.
Parameters » fromID: The handle ID of the current component making the request N [Formatted Table }
» toID: The handle ID of the eleek-devieeclock -component that should respond to the|
request
Return Returns-theReturn the current tick rate adjustment value
Hmplemented By Infrastruetare
Notes A return value of 0 indicates the clock is operating at its nominal or free-run frequency.
If the underlying device does not support rate adjustment, then this function always
returns 0.
A positive value indicates the clock frequency is above nominal, and a negative value
indicates the clock frequency is below nominal.
The specific units of the TimeRate value are platform defined, although typically
might reflect a number of parts per million or parts per billion depending on clock
design.
4240512.7.49 STI Infrastructure-Provided TimeSynch Method - [Formatted: Heading 3, Indent: Left: 0", First line: 0"]

STI-103 The STI infrastructure shall provide the TimeSynch()-Befinition-() -definition and implementation as
specified in Table 87.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font ‘

Table 1887: TimeSynch() Definition | color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 14/

Declaration

Result TimeSynch(R

in HandleID fromID,

in HandlelD tolD,

in HandlelD referencelD,
in TimeWarp stepMax

)

Description

Synchronizes a-one eloek-devieeclock -component with another waveform-or
dewvieeclock component-in-thesystem.

Parameters

» fromID: The handle ID of the current component making the request

» toID: The handle ID of the eloek-devieeclock -component that should respond to the
request

» referencelID: The handle ID of another deviee-orwaveformclock component -int
the-system-that provides a synchronization source for the target elock-deviceclock

component.
> ‘stepMax: The maximum amount that the target clock should be modiﬁedL A value

| Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Cc ted [HLM(L44]: JIRA issue STI_19: Typo

of either TIME INTERVAL ZERO or TIME INTERVAL UNLIMITED
indicates no limit to the maximum step size.

Return

If the synchronization is successful with a single call to TimeSynch(), such that no
further action is required, return the predefined Result value OK.

If the synchronization is partially successful such that additional calls to TimeSynch()
are required, due to constraints such as those imposed by stepMax, return a positive
integer value indicating the anticipated number of calls required.

If synchronization is not possible under the given constraints. return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values. A-status-code that should be cheeked using Ts0% ()

“TIME_INTERVAL_MAX” should be “TIME_INTER-
VAL_UNLIMITED”

{ Formatted Table }

142

Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-19&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=S9ZbwBr%2Bq%2BcKJfpa74Ph7brjJlfrNsKu6TnRPtetG4k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-19&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=S9ZbwBr%2Bq%2BcKJfpa74Ph7brjJlfrNsKu6TnRPtetG4k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-19&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=S9ZbwBr%2Bq%2BcKJfpa74Ph7brjJlfrNsKu6TnRPtetG4k%3D&reserved=0

Notes

This function is intended for use in systems where a-loecal-general-purpose-cloek/timer
servieeone clock component may be selectively synchronized with ether-devieesanother]

clock component-en-thesystem. Support for this function is implementation-defined,
and this function may return the predefined value UNIMPLEMENTED if the eloek
devieeclock -component does not support synchronization with any other devieesclock
component.
The infrastructure provider will document the set of applications. devices, or services
suitable for use with-the referencetD-parameter—This reference devieeas
synchronizable clock components with a handle ID parameter. This reference clock

Formatted: Font: (Default) Times New Roman, 10 pt,

component may be another infrastructure-provided clock/timer service, or it may be
another form of timing reference, such as a software service implementing a protocol
such as NTP or IEEE-1588, or a device capable of recovering timing signals from
received bit streams.

The stepMax parameter specifies the maximum amount that the target eloek
devieeclock -component may be modified in a single step change. The eenstant
predefined TIME INTERVAL UNLIMITED value may be specified to indicate no
limit to the step size, permitting the target deviee-clock component to be directly set to
any value.

Font color: Auto, Pattern: Clear

« [Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

[‘

42.10612.7.50 STI Infrastructure-Provided Sleep Method
STI-104 The STI infrastructure shall provide the Sleep()-Befinition-() -definition and implementation as specified in
Table 88.
Table 1988: Sleep() Definition
Declaration Result Sleep(
in HandlelD fromiD,
in HandlelD tolD,
in TimeWarp interval
)
Description Delays the caller until the specified interval has elapsed, as measured by the eloek
devieeclock component.
Parameters » fromID: The handle ID of the current component making the request
» toID: The handle ID of the elock-devieeclock -component that should respond to thel
request
» interval: The amount of time that the caller should be delayed, relative to the
current clock value
Return On success, return the predefined Result value OK; otherwise, return one of the
predefined Result »alues mdlcatmg failure. See 12.4.6 STI Infrastluctule Provided
Result Values. 5

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

14B

Notes

The call may be interrupted under some circumstances, causing the infrastructure to
return to the caller before the interval has elapsed. In these cases, the infrastructure
should return the WARNING response.

Note that the actual sleep time may be longer than requested due to the resolution of the

eloek-devieeclock -component and operating system scheduling variances.
Setting a clock using SetTime () while this operation is in progress has undefined
effects on the delay operation.

42.40712.7.51

STl Infrastructure-Provided DelayUntil Method

STI-105 The STI infrastructure shall provide the DelayUntil(-Definition-() -definition and implementation as

specified in Table 89.

Table 2089: DelayUntil() Definition

« [Formatted: Heading 3, Indent: Left: 0", First line: 0"]

Declaration

Result DelayUntil(
in HandlelD fromID,
in HandlelD tolD,
in TimeWarp endTime

)

Formatted: Border: Top: (No border), Bottom: (No
border), Left: (No border), Right: (No border)

Description

Delays the caller until the clock reaches the indicated value.

Parameters

» fromID: The handle ID of the current component making the request

» toID: The handle ID of the component that should respond to the request

» endTime: The time value at which the function should return, relative to the clock
epoch

Return

On success, return the predefined Result value OK; otherwise, return one of the
predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided
Result Values. On-sueecess—retirns-ok—On-crrortetirns-onc-ol the defined-crror
constants:

Infrastruetare

Notes

The call may be interrupted under some circumstances, causing the infrastructure to
return to the caller before the end time has been reached. In these cases, the
infrastructure should return the WARNING response.

Note that the actual sleep time may be longer than requested due to the resolution of the
eloek-devieeclock -component and operating system scheduling variances.

Setting a clock using SetTime () while this operation is in progress has undefined
effects on the delay operation.

Commented [HLM(L45]: JIRA issue STI_78: Missing
Clock Methods

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: (Default) Times New Roman, 10 pt,

12.7.52 ISTI Infrastructure-Provided ConvertToTimeWarp Method

Not Bold, Font color: Auto

STI-112 The STI infrastructure shall provide the ConvertToTimeWarp() definition and implementation as specified

in Table 90.

Table 90: ConvertToTimeWarp() Definition,

Formatted: Font: 10 pt

Formatted: Interface Heading, Left

Formatted Table

Result ConvertToTimeWarp (

Formatted: Font: 10 pt, Not Bold

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

G |
[)
[)
| |
[Formatted Table, Space Before: 9 pt]
[)
[)
[)
| |

color: Auto, Pattern: Clear

Declaration, in HandleID fromID,
in CalendarKind calendarKind,
144 Space Telecommunication Interface (STI), v1.0 -- beta 2

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

in CalendarTime calendarTime,
out TimeWarp twTime

) ;

LDescriptionA LConvert the defined calendar representation to a TimeWarp clock time value.

» fromID: The handle ID of the current component making the

i

request
» calendarKind: The calendar system of the calendar time to

be converted

Parameters,

» calendarTime: A buffer to store the calendar
representation of the calendar time to be converted

» twTime: The converted time, expressed as an interval since the clock epoch

| Formatted:

HTML Preformatted

Formatted:

Font: Not Bold

Formatted:

Font: 10 pt

Interface Heading, Left

Formatted

: Font: 10 pt, Not Bold

Formatted:

Font: 10 pt

Formatted:

{
[
[
{ Formatted:
{
[
[

U L)

Source Text, Font: 10 pt

On success, return the predefined Result value OK. On error, return one of the prede-

eturn, fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

)

Values,

This call is used by applications to convert a value in one of the defined calendar sys-

tems into a TimeWarp value (of which the definition is platform-specific), such that
portable applications can interpret it in a consistent manner. If the system or clock does

Notes,

K

not support the requested calendarKind, the implementation should return UNIMPLE-
MENTED. If the calendarTime is prior to the epoch for TimeWarp, an error is returned.

12.8

External Command and Telemetry

12.41012.8.1 Respond to External Commands

STI-108 An STI platform shall accept, validate, and respond to external commands.

1214141282 External Commands Use STI API
STI-109 An STI platform shall execute external application control commands using the standardized STI APIs.

421121283

STI-110 An STI platform provider shall document any external commands describing their format, function, and
any STI methods invoked.

Document External Commands

12.41312.8.4 Use STI Query for External Data

STI-111 The STI infrastructure shall use the STI Query method to service external system requests for information
and to provide telemetry data about an STI application.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

145

Formatted:

Table List, Space Before: 0 pt, After: 0 pt,

Outline numbered + Level: 1 + Numbering Style: Bullet
+ Aligned at: 0" + Indent at: 0.15"

Formatted:

Font: 10 pt

Formatted:

Interface Heading, Left

Formatted:

Font: 10 pt, Not Bold

Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

Formatted

: Font: 10 pt

Formatted:

Font: 10 pt, Not Bold

Formatted:

Font: 10 pt

Interface Heading, Left

Formatted:

Font: 10 pt

Formatted:

Formatted:

Font: 10 pt

Formatted:

Interface Heading, Left

Formatted:

Font: 10 pt, Not Bold

Formatted:

Heading 3, Indent: Left: 0", First line: 0"

Formatted

[
[
[
[
{
{
{
{
{ Formatted:
{
[
[
[
[
[
[

: Heading 3, Indent: Left: 0, First line: 0"

Formatted:

Indent: Left: 0", Hanging: 0.81", Outline

numbered + Level: 2 + Numbering Style: 1,2, 3, ... +
Start at: 1 + Alignment: Left + Aligned at: 0" + Indent

at: 0"

Formatted:

Heading 3, Indent: Left: 0", First line: 0"

Formatted:

Heading 3, Indent: Left: 0", First line: 0"

Heading 3, Indent: Left: 0", First line: 0"

Formatted:

[
[
[Formatted:
[

)
)
)
)
)
)
)
)
)
)
Font: 10 pt]
)
]
)
)
)
)
)
)
J

Heading 3, Indent: Left: 0", First line: 0"

Formatted:
color: Auto, Pattern: Clear

Default Paragraph Font, Font: 10.5 pt, Font ‘

12.9 Clock Control Interface

Clock components must also be STI applications or devices to be able to be accessed by a handle ID.

"Provide a definition" implies supplying a consistent interface, which may be used or inherited by other
methods. The implementation of such an interface may be supplied by others. For functions, an abstract
method or class, a virtual method, or prototype is usually supplied.

Any apparent discrepancy between clock-provided and infrastructure-provided of the titles and requirements is
casily resolved by noting that the infrastructure provides the definition while the clock inherits an
implementation or provides the implementation directly.

Clock components must be STI applications or devices or services to be able to be accessed by a
handle ID.

12.9.1 STl Infrastructure-Provided CLK GetTime Method
STI-113 The STI infrastructure shall provide the CLK_GetTime() definition as specified in Table 91, to be imple-

mented by an STI clock.

Table 91; CLK_GetTime() Definition,

Commented [HLM(L46]: JIRA issue STI_78: Missing
Clock Methods

|

Formatted: Heading 3

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 9 pt

Formatted: Font: 10 pt

Formatted Table

Formatted: HTML Preformatted

12.9.2 STl Infrastructure-Provided CLK SetTime Method
STI-114 The STI infrastructure shall provide the CLK_SetTime() definition as specified in Table 92 to be imple-

mented by an STI clock.

interface ClockControl Formatted: Font: Not Bold
_{) Formatted: Font: 10 pt
| . Result CLK GetTime (.
Declaration outTimeWarp currentTim Formatted: Space Before: 0 pt, After: 0 pt
7 Vi Formatted: Font: 10 pt
; [«
| Description [Obtain the current value of the clock. Formatted: Font: 10 pt
| Parameters | o currentTime: A buffer to store the current time, as an interval since the epoch |+
On success, return the predefined Result value OK; otherwise, return one of the prede- Formatted: Font: 10 pt
Return fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result Formatted: Heading 3
Values,
- - - - Formatted: Font: 10 pt
The output value returned represents a direct measurement of elapsed time since its re-
otes spective epoch according to the clock's time scale and is not adjusted for nor dependent Formatted: Font: 10 pt
Notes | 'up0ﬂ'anv"Iocale'—'gpf_emﬁc'nme'representatlorls'f|;er't|me'zone;dayhqht'savmqs'tlme;'etc;)""" Formatted: Font: 10 pt
or effects of relativity.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

/| Formatted: Font: 9 pt

Formatted: Font: 10 pt

Table 92: CLK SetTime() Definition,

interface ClockControl

{

Result CLK SetTime (

Declaration

in- TimeWarp deltaTim
)5
N [
| Description [set the current value of the clock.
| Parameters | e deltaTime: The step size, relative to the current clock value «

[
[
[
[
(
[
[
{
[
[
[
[
[
/A
/ [Formatted: Font: 10 pt
[
(
{
{
[
[
[
{
[
(
[
(
{
[
[

146 Space Telecommunication Interface (STI), v1.0 -- beta 2

/| Formatted Table

Formatted: HTML Preformatted

/| Formatted: Font: Not Bold

Formatted: Font: 10 pt

" | Formatted: Space Before: 0 pt, After: 0 pt

A Formatted: Font: 10 pt

o A G JC JC JU U JC U U U JC L U)

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

On success, return the predefined Result value OK; otherwise, return one of the prede-

Return fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

Values,

This function will "step” the base clock. Since the offset is applied against the base clock

measurement, it affects all calendar representations of the clock accordingly. It may be

used to synchronize a clock based on information obtained after start up. Not all clock

components, are required to support this operation. If a clock component, is read-only and

not settable from an application, this function should return UNIMPLEMENTED. Note

that this is not intended for implementing the concept of a "time zone" or "local time"

(i.e. the time as commonly expressed in a given geopolitical region). If the platform im-

{ Formatted:

Font: 10 pt

[Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

| Formatted:

Font: 10 pt

Formatted

: Font: 10 pt

otes | 'ﬂIements'the'coneept'ofrlocal t;lllc, then the apcb;ﬁb local time offset or conversion rules

should be configured using the Configure and Query methods as described in sec-

tions 12.7,11,and 12.7,12, The specific property name and value format for time zone

configuration is platform-defined. On some systems, it may be directly configured as a

number (i.e. minutes ahead of GMT) or it may be configured as a string reflecting a pre-

defined rule (i.e. "US/Eastern™) if the system is capable of automatic daylight savings

time adjustments.

12.9.3 STl Infrastructure-Provided CLK SetTimeAdjust Method

STI1-115 The STI infrastructure shall provide the CLK_SetTimeAdjust() definition as specified in Table 93 to be

implemented by an STI clock.

| Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

Formatted:

Hyperlink, Font: 10 pt

| Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

| Formatted:

Heading 3

ATabIe 93: CLK_SetTimeAdjust() Definition,

interface ClockControl

{

Result CLK SetTimeAdjust (

Declaration

i T3 Rat £ RE! £ £
in—limerRat rateAajustment

)i

i

| Description |Adjust the tick rate of the clock component,

| Parameters | e _rateAdjustment: The amount of adjustment to apply

On success, return the predefined Result value OK; otherwise, return one of the prede-

Return fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

Values,

The rateAdjustment parameter is a signed integer, where the value of 0 represents the

nominal or free-run rate of the clock without any adjustment applied. If any adjustment

had been previously applied, calling this function with a value of 0 will restore a clock to

its default rate. A positive value will cause the clock frequency to increase from the nom-

inal rate, and a negative value will cause the clock frequency to decrease from the nomi-

nal rate. The specific unit of rate increase/decrease is platform defined, although typicallyf

'quht'fef‘rect'a'ﬁumberofﬁaftsﬁermiﬂien'or'parts per billion dcu\:ll\]‘illq on-clock de-

sign. If the underlying device does not support rate adjustment, then this function will re-

turn the Predefined UNIMPLEMENTED Result value, A typical use-case of this func-

tion would periodically compute the difference between the reference clock and the local

clock component, which is then multiplied by a feedback ratio (proportional coefficient)

to compute the adjustment value to pass into this function.

12.9.4 STI Infrastructure-Provided CLK GetTimeAdjust Method

STI-116 The STl infrastructure shall provide the CLK_GetTimeAdjust() definition as specified in Table 94 to be

implemented by an STI clock.

‘Table 94: CLK_GetTimeAdjust() Definition,

Space Telecommunication Interface—— (STI), v1.0 -- beta 2

14f

| Formatted:

Font: 10 pt

: Formatted:

Font: 10 pt

Formatted:

Font: 9 pt

Formatted:

Font: 10 pt

Formatted:

HTML Preformatted

| Formatted:

Font: Not Bold

| Formatted:

Font: 10 pt

" | Formatted:

Font: 10 pt

Formatted:

Space Before: 0 pt, After: 0 pt

Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

Formatted:

Font: 10 pt

Formatted

: Font: 10 pt

‘| Formatted:

Font: 10 pt

Formatted:

Heading 3

Formatted:

Font: 10 pt

" /| Formatted:

Font: 10 pt

Formatted:

(
(
(
(
(
(
(
(
[
(
(
(
(
(
N
[Formatted Table
(
(
(
(
[
[
[
(
(
(
(
(
(
(
(

Font: 9 pt

o A G JC JC JU U JC U U U JC L U)

Formatted:

Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Formatted

(
{ Formatted Table
A

STI-118 The STl infrastructure shall provide the CLK DelayUntil() definition as specified in Table 96, to be imple-

mented by an STI clock.

Table 96; CLK DelayUntil() Definition,

Declaration

interface ClockControl
{

Result CLK DelayUntil (

W

Formatted [—j
interface ClockControl / { Formatted [_j
Declaration L e s e W // { Formatted ﬁ
TimeRat LK -GetTimeddiust ()
BN [Formatted [_j
| Description |Obtain the current tick rate adjustment value of the clock component, [Formatted ﬂ
| Parameters | [Formatted [_j
| Return |Return the current tick rate adjustment value [Formatted ﬁ
A return value of 0 indicates the clock is operating at its nominal or free-run frequency. [F d ﬁ
If the underlying device does not support rate adjustment, then this function always re- ormatte
otes turns 0. A positive value indicates the clock frequency is above nominal, and a negative | [Formatted ﬁ
Dotes | ivalue-indicates the clock frequency-is below nominal.The specific units of the TimeRate | [F d ﬁ
value are platform defined, although typically might reflect a number of parts per million ormatte
or parts per billion depending on clock design. { Formatted ﬁ
[Formatted [—j
12.9.5 STl Infrastructure-Provided CLK Sleep Method g/ [F <ted ﬁ
STI-117 The STl infrastructure shall provide the CLK_Sleep() definition as specified in Table 95 to be implemented ;* / ormatte
by an STI clock. 4 { Formatted [—j
A
Table 95; CLK_Sleep() Definition, { Formatted ﬁ
interface ClockControl [Formatted Table [_j
_{ / [Formatted [_j
larati Result CLK Sleep(/
Declaration in TimeWarp interval [Formatted [—j
) ' { Formatted ﬁ
oy
o Delay the caller until the specified interval has elapsed, as measured by the clock compo- [Formatted ﬁ
Description N
nent, Formatted
Parameters ° |ntervzilz .Th.e amount of time that the caller should be delayed, relative to the * [Formatted ﬁ
current clock value [Formatted ﬁ
On success, return the predefined Result value OK; otherwise, return one of the prede- 7
Return fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result / { Formatted ﬁ
Values, [Formatted [—j
The call may be interrupted under some circumstances, causing the infrastructure to re- { Formatted ﬁ
turn to the caller before the interval has elapsed. In these cases, the infrastructure should
otes return the WARNING response. Note that the actual Sleep time may be longer than re- {FOfmatted ﬁ
Notes J iquested due to the resolution of the clock component and operating system scheduling — |- [Formatted [—j
variances. Setting a clock using CLK_SetTime() while this operation is in progress has
undefined effects on the delay operation. { Formatted ﬁ
/ [Formatted [_j
12.9.6 STl Infrastructure-Provided CLK DelayUntil Method N/ { Formatted [—j

. e s
in—rimewarp oL Im

)

148

" | Formatted

Formatted

/| Formatted

" | Formatted Table

Space Telecommunication Interface (STI), v1.0 -- beta 2

‘| Formatted

‘| Formatted

Formatted

| Description |DeI§v the caller until the clock reaches the indicated value. [Formatted: Font: 10 pt
Parameters e endTime: The time value at which the function should return, relative to the [« [Formatted: Space Before: 0 pt, After: 0 pt
LHULI}\ C‘EUbh [
. - F tted: Font: 10 pt
On success, return the predefined Result value OK; otherwise, return one of the prede- ormattec: fon P
Return fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result [Formatted: Font: 10 pt
Values,
- . . - { Formatted: Font: 10 pt
The call may be interrupted under some circumstances, causing the infrastructure to re-
turn to the caller before the end time has been reached. In these cases, the infrastructure
otes should return the WARNING response. Note that the actual Sleep time may be longer
Notes ithan requested-due to-the-resolution-of the clock-component.and-operating system-sched={|— {FWmatte“: Font: 10 pt
uling variances. Setting a clock using CLK_SetTime() while this operation is in progress [Formatted: Font: 10 pt
has undefined effects on the delay operation.

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
/| color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 14p

Annex A: Language Translations

This appendix describes some specific mappings to programming languages for STI interfaces. This section is
intended to clarify certain aspects of the IDL mappings to ensure that different implementations will remain
consistent with regard to these interface definitions.

Many of the interface definitions in this specification are provided as OMG Interface Definition Language (IDL)
fragments. OMG also specifies a specific method for mapping these interfaces to source code in various common
programming languages, and the STI implementation of these interfaces will adhere to these mappings where
relevant.

Earlier versions of the OMG IDL specification were specifically designed for defining the interfaces within a
CORBA environment. IDL has since been revised as a general-purpose interface definition language and has been
released independently from CORBA since version 3.5. While a compliant implementation of STI may utilize a
CORBA-like layer to exchange data between modules, there is no requirement for nor assumption of a CORBA
environment within STI. As such, the function prototypes or interface definitions based on the IDL fragments in this
specification will not directly include any CORBA references.

Al IDL fragments in this document shall be interpreted as belonging to an IDL module called “STI”, with interface
and identifier names mapped accordingly. To ensure naming consistency across differing OE implementations, a
specific header file/module/namespace needs to be implemented such that the same function names are present and
available on all STI implementations. Each programming language environment has differences in the paradigms
used for this purpose.

The general STI architecture can also be implemented in programming languages using the translations prescribed
by the IDL specification. Additional directives on how the IDL translations apply to the STI applications and
infrastructure is available in this section. This section is intended to clarify certain aspects of the interface
translation for commonly used programming languages, but other language translations beyond what is specified
here are also possible. The appendix may be extended in a future revision of this specification to contain additional
language mappings.

Nearly all modern high-level programming languages support some notion of “packages” or “modules” to separate
functionality into logical entities. Whenever possible, all STI functionality should be encapsulated in a single
package or module called “STI”. Note that some languages, such as Java, dictate additional package naming
recommendations. Any such language-specific package name recommendations should also be adhered to. In C
and C++, the interfaces are available through multiple header files.

All object-oriented languages such as C++, Java, and Python generally support the same fundamental concepts of
inheritance and interfaces. For these languages, the interface translation is fairly straightforward, and the application
will use the language’s native inheritance mechanisms. For other languages such as C, which are not natively
object-oriented, the approach differs slightly, but many of the same concepts can still be employed even if not
directly supported by the language. Therefore, a different set of requirements will apply to applications
implemented in C versus other object-oriented languages.

All STI applications and devices should encapsulate their state in an object or structure of some type, referred to as
the “base object”. Even for “singleton” objects of which there can only be one, STI requires that there is still a base
object associated with the instance, even if this object does not contain any extra information.

Figure 9Figure-9 also shows several different optional interfaces that an application or device may implement,
depending on its specific design needs. In object-oriented languages, the set of interfaces is indicated in the object
definition, using the language’s inheritance mechanisms. In these languages, a “‘connection” between the
implementation and interface is automatically made through the language’s type system. In non-object-oriented
languages, such as C, a separate mechanism is necessary to explicitly create the connection between a given
implementation to the interface it implements. For STI, a naming convention is employed to facilitate this
connection.

In object-oriented languages, the conversion to an Instance object is achieved by simply inheriting from the proper
base class. In non-object-oriented languages, the application developer will implement this conversion, and it is not
specified how the conversion takes place. For a singleton object, this can be a simple global. In C, this could be
performed using a pointer conversion of some sort. Alternatively, this could be implemented using a lookup table or
dictionary.

150 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

A.1 C Language Mapping

The C programming language is standardized as ISO/IEC 9899, with a specific revision to the standard identified by
a year number suffix (e.g. ISO/IEC 9899:1999). The STI architecture should be implementable in any current or
future version of the C programming language.

A.1.1 Naming Conventions

Unlike other languages, the C language does not include the concept of a “namespace” or “module” to avoid
identifier name collisions between global-scope symbols in separate libraries or code units. As such, it is common
practice to add a prefix to all global identifier names supplied by a library or module as a means of differentiation.
All infrastructure-provided functions, constants, and types defined in this specification shall be denoted with an
“STI_” prefix when mapped to identifiers in the C programming language. For example, the “Instance” type is
named “STI Instance”, the “OK” result value constant is named “STI OK”, the “Write” method is named
“STI Write”,and so forth.

All application-provided implementation written in the C language shall be denoted with a prefix defined by the
application. For instance, if an application were named “Example”, the application-provided application control
methods may be called “Example APP Instantiate”, “Example APP Start”, and so forth.

A.1.2 Header Files

The following header files shall be provided by the infrastructure, such that applications can use the #include
preprocessor directive to incorporate the respective resources:

Table 2196: C Language Header Files |

Include File Provides

C language STI data types and abstract object definitions. This
STI.h file provides declarations of all data types described in section
104124, |

C language function prototype declarations for all infrastructure-
STI_APIs.h provided API calls. This file provides declarations of all calls
described in section +6-612.7. |

C language function prototype declarations associated with
STI ApplicationControl.h ApplicationControl interface, as described in sections +6-5:212.5.
—12.5.11.

C language function prototype declarations associated with

STI DeviceControl.h . X . . .
- DeviceControl interface, as described in section +0-5-312.6. |

C language function prototype declarations associated with the

STI Source.h . . R .
- Source interface, as described in section +0-5-4-112.5.12. |

C language function prototype declarations associated with the

STI Sink.h L X . . -
- Sink interface, as described in section 10:5:4.212.5.13. |
C language function prototype declarations associated with the
STI_RandomAccess.h RandomAccess interface, as described in sections +6-5-4312.5.14]

—12.5.15.

After utilizing the language-specific import statement, all components of the STT API can be referenced using the
paradigm of the respective language’s package/module facility.
A.1.3 Interface Type Mappings

Table 5, Infrastructure-provided Data Types, in section +8-4-+12.4 indicates the general semantics of each STI- |
defined type. These general semantics, in turn, determine the proper method to pass a value or object of that type
through an IDL-defined interface or function definition.

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 15}

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

The table below indicates the basic type mappings for the C language. This table also indicates whether an operand
should be passed as value or as a pointer/reference, and how the pointer type should be qualified, if applicable. For
operations which utilize an abstract base type containing application-defined data of arbitrary size (e.g. Message and
PropertyValue types), the size of this data will also be specified. In these cases, a single object in the IDL fragment
will translate to two arguments in the C function prototype. This also applies to strings, as the C language
implements strings as a pointer to the char type, rather than as a distinct value type in itself.

Table 2294: C Language Data Type Mapping

Semantics Usage

Pass As

C Data Type(s) Applicable to

in, return

Integer,

Enumeration, or

Value

Access, CalendarKind,
FileSize, HandleID.
Nanoseconds, Offset

QueueMaxMessages,

STI <type>

aggregate value

Result, Seconds,
TestID, TimeRate

<

out, inout Pointer to Value STI <type>*
- HandlelD, TimeWarp;
X in, return ~ Pointer const char *)

string - - - - Object Names

out, inout Pointer and Size char *, size t

in Pointer and Size const STI <type> *, size t
Abstract Object - Message,

out Pointer and Size STI <type> *, size t PropertyValue
Base Type any Pointer STI_ Instance * Context Objects
A.1.4 Inheritance and Base Types

Although C is not an object-oriented language by nature, the same basic concepts can still be manually implemented
by the programmer through use of specific patterns and by utilizing type casting where necessary. The main
requirement is that structure definitions be defined appropriately such that a pointer to a base structure can be
reliably converted to a derived structure and vice versa.

The first element of a C structure is guaranteed to be at the same memory address as the structure itself, as specified
in ISO/TEC 9899 section 6.7.2.1, as follows:

A pointer to a structure object, suitably converted, points to its initial member, and vice versa. There
may be unnamed padding within a structure object, but not at its beginning.

Given this requirement, the concept of single inheritance may be implemented simply by ensuring that the “base
type” of a given structure is declared as its first element. For STI, the base type of all context objects is the
Instance type. The specific content of the Instance type is implementation-defined, but the infrastructure will
provide this type such that it is suitable for use as a base type, as in this example:

typedef struct

{

STI_Instance Base;

int LocalValue;

} Example Object;

Using this definition, a pointer to the base object (STI_Instance*) may be safely typecast by the application to
the derived object (Example Object*) and vice-versa. Note that while this approach generally works for simple
cases, more complex applications may necessitate a different approach. The STI infrastructure only stipulates that
interaction with the infrastructure takes place using an Instance object; more complex applications may in turn use
this object to index into a larger state table or database.

152

Space Telecommunication Interface (STI), v1.0 -- beta 2

[Formatted Table

Commented [HLM(L47]: JIRA issue STI_43: Remove
"etc." from Tables

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0

A.1.5 Interface Operations
All methods defined in the STI application or device control interfaces in section +6:-512.5 — 12.6, Application and

Device Control InterfaceAppheation-and-Deviee-Contrel-nterface shall have a context object as the first parameter

in the calling sequence.

All operations defined in the STI application or device control interfaces in section +0-512.5 — 12.6, Application dnd
Device Control InterfaceAppheation-andDeviee-ContrelHnterface, require a context object, which is the in- memor}}
data structure comprising the device or application state. This is an application defined structure that may contain
any arbitrary state information needed by the application. In object-oriented languages this object is often referred
to as the “self” or “this” object and is usually implicitly supplied through the respective language internal
mechanisms.

Since the C programming language does not provide these object-oriented features, the context object shall be
explicitly included as the first argument in the function prototype, followed by the remainder of the operands
specified in the interface definition.

STI requires that all such context objects in-the-system-are derivatives of the infrastructure-defined Instance type#.
Therefore, in the C programming language, all interaction between the infrastructure and the application will use a
pointer to the “STI Instance” type to identify the target of the operation. For example, the C prototype for the
APP Instance () and APP_Start () operations in the “Example” application would be:

STI Instance* Example APP Instance(STI HandleID id, const char *name);

STI_Result Example APP_Start (STI_Instance *inst);

A.2 C++ Language Mapping

The C++ programming language is standardized as ISO/IEC 14882, with a specific revision to the standard
identified by a year number suffix (e.g. ISO/IEC 14882:2003). The STI architecture should be implementable in any
current or future version of the C++ programming language.

Mapping of the STI interfaces to C++ should follow the guidelines set forth in the OMG IDL C++ language
mapping. However, in STI there is no assumption or dependence on CORBA types or interfaces. This section is
intended to clarify how the C++ language mapping applies to STI.

A.2.1 Naming Conventions

All STI infrastructure-provided functions, constants, and types shall be defined within a C++ namespace called
“STI”. For example, the “Instance” type is named “STI: :Instance”, the “OK” result value constant is
named “STI: :OK”, the “Write” method is named “STI: :Write”, and so forth.

A.2.2 Header Files

The following header files shall be provided by the infrastructure, such that applications can use the # include
preprocessor directive to incorporate the respective resources:

Table 2392: C++ Language Header Files |

Include File Provides

Fundamental STI data types and abstract object definitions. This
STI.hh file provides declarations of all data types described in section
104124, |

Function prototype declarations for all infrastructure-provided
STI_APIs.hh API calls. This file provides declarations of all calls described in
section +0:612.7. |

ApplicationControl interface class definition, as described in

STI ApplicationControl.hh .
—Sppricatrontontro section +0-5.212.5.1 — 12.5.11. |

STT DeviceControl.hh DeviceControl interface class definition, as described in section
- 10:5312.6. |

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 15B

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Include File Provides

Source interface class definition, as described in section

TI .hh
STI_Source 10.54112.5.12.

Sink interface class definition, as described in section

TI ink.hh
STI_sin 10.5.42.12.5.13.

RandomAccess interface class definition, as described in section

TI R A .hh
STI_RandomAccess 10.54312.5.14 — 12.5.15.

After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility.

A.2.3 Constructor and Destructor

STI defines the APP_Instance () and APP_Destroy () methods as a means to construct and destruct
instances, rather than relying on language-specific paradigms to invoke a class constructor or destructor. These
should be implemented as static methods in the C++ application class. This aligns with a “factory” design pattern
that allows additional application control over the construction process. When the infrastructure invokes the factory
function, the application should invoke the class constructor appropriately, and return the newly constructed object.

A.2.4 Interface Classes

All other application and device control interfaces defined in section +6-512.5 — 12.6, Application and Device [Formatted: Font: 10 pt J

Control InterfaceApplicationand Device-ControlHnterface, shall each be mapped to a C++ abstract interface base

class provided by the infrastructure.

The class shall declare each of the operations as a pure virtual function, which in turn requires that any derivative
class provide an implementation as a prerequisite to being instantiated.

For example, the following class definition would represent the ControllableComponent interface:

namespace STI
{
class ControllableComponent
public:
virtual Result APP_Start() = 0;
virtual Result APP_Stop() = 0;
b
}

All application-provided methods shall be class member functions of an application-defined class inheriting from
some or all of these abstract interface classes.

Table 5, Infrastructure-provided Data Types, in section +0-4-+12.4 indicates the general semantics of each STI-
defined type. These general semantics, in turn, determine the proper method to pass a value or object of that type
through an IDL-defined interface or function definition.

Table 2493: C++ Language Data Type Mapping

Semantics Usage Pass As C++ Data Type(s) Applicable to “ [Formatted Table]
Integer, [Access }
Enumeration, or in, return Value STI::<type> CalendarKind

FileSize, HandleID
Nanoseconds, Offset,

aggregate value

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

154 Space Telecommunication Interface (STI), v1.0 -- beta 2

ctes Commented [HLM(L48]: JIRA issue STI_43: Remove

Result, Seconds
TestID, TimeRate
out, inout Pointer to Value STI::<type>* TimeWarpResult;
Handle!D:
string in, return Pointer const char *) "etc." from Tables
. . . ; Object Names
(see note) out, inout Pointer and Size char *, size t
in Pointer and Size const STI::<type> *, size_t g
Abstract Object : essage,
out Pointer and Size STI::<type> *, size t Property Value
Base Type any Pointer STI::Instance * Context Objects

The “string” types in C++ shall utilize C-style string representations (pointer to char) rather than the
std::stringtype. This is because the C++ string type typically relies on dynamic memory allocation, and usage
of this type may also introduce additional compile-time and run-time dependencies on the C++ standard library.
Using C-style strings also facilitates an infrastructure implementation supporting both C and C++.

A.3 Python Mapping

Python is an object-oriented programming language developed by the Python Software Foundation. The language
has seen significant adoption by the scientific and research communities and is often used for prototyping software
algorithms.

Python is an interpreted language and utilizes a dynamic type system with automatic memory management. As
such, it may not be suitable for flight software environments where strict deterministic behavior is required.
However, during the SDR development stages, the ability to integrate existing Python applications into an SDR may
be highly useful and beneficial. This can be accomplished by mapping the STI interfaces to a Python language
environment.

A.3.1 Naming Conventions

All STI infrastructure-provided functions, constants, and types shall be provided through a Python module called
“STI”.

All infrastructure-provided types and methods shall be available through this module. For example, the
“Instance” type is identified as “STI.Instance”, the “OK” result value constant is named “STI .OK”, the
“Write” method is named “STI.Write”, and so forth.

A.3.2 Application Classes

Applications utilizing the STI infrastructure shall use the standard Python module import mechanisms to access the
STI infrastructure.

All application base classes utilized with STI shall inherit from the “Instance” class provided through this module.

For example, an application would typically have an “import” statement at the beginning of the source file, followed
by an application class definition.

import STI

class ExampleWaveform(STl.Instance):

After utilizing the language-specific import statement, all components of the STI API can be referenced using the Formatted: Default Paragraph Font, Font: 10.5 pt, Font
paradigm of the respective language’s package/module facility. For instance, in languages such as Python, Ruby and color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 15b

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0

Lua, the module contents are designated by the module name and a period (.) separator, for example the term
“STIInitialize” would refer to the Initialize function within the STI module.
A.3.3 Constructor and Destructor

The Python application module shall also provide an implementation of the APP_Instance and APP_Destroy
methods, implementing a “factory” design pattern that can be invoked by the infrastructure. These are be
implemented as static methods in the application class.

A.3.4 Interface Operations

Unlike C++, the methods in a Python class are dynamic and do not need to be explicitly declared at compile time.
Therefore, applications do not need to inherit from an interface class as in C++. Instead, implementation of any

application-provided interface method defined in section 46-512.5 or 12.6, Application and Device Control [Formatted: Font: 10 pt

InterfaceApplication-and Device-Control-Interface, is simply a matter of defining a matching method within the

application class.

For example, the following class definition would implement the ControllableComponent interface:

class ExampleWaveform(STI.Instance):

def APP_Start(self):
Implementation-defined action...
return STI.OK

def APP_Stop(self):
Implementation-defined action...
return STI.OK

All application-provided methods shall be class member functions of an application-defined class inheriting from
some or all of these abstract interface classes.

Being a fully object-oriented language with automatic memory management, Python represents all values in
software code as a logical object of some type. Unlike C and C++, the actual memory storage and representation of
these objects is hidden from the developer, and there is no direct equivalent of a “pointer” type. However, Python
does provide some data types that can directly deal with memory reservation and access, and these can be used to
exchange data directly with C/C++ software. Since all Python objects are fundamentally self-describing, with a type
and size known to the interpreter, the STI interfaces do not need to explicitly indicate size information when passing
abstract buffer objects through the interface.

Python classifies certain object types as “immutable”, which include strings, integers, and other fundamental value
types. Once instantiated, these values can never be modified; instead, a new, distinct value object will be created,
and the previous object can be destroyed. On the other hand, aggregate types such as classes, dictionaries, and lists
are “mutable”, meaning that the content can be modified after instantiation. Some fundamental objects have both
mutable and immutable variants (e.g. byte/bytearray, frozenset/set, etc.). When translating from IDL, immutable
types can only be used to implement “in” or “return” parameter values from an operation definition. Parameters
designated as “out” or “inout” will only use mutable types.

Table 5, Infrastructure-provided Data Types, in section +0-4-112.4 indicates the general semantics of each STI-
defined type. These general semantics, in turn, define the expected mutability of a value of the given type, and
therefore its applicability to IDL-defined operations.

Table 2594: Python Language Data Type Mapping

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

156 Space Telecommunication Interface (STI), v1.0 -- beta 2

Semantics Mutability Python Data Type Applicable to
FileSize, HandleID
Nanoseconds, Offset

Integer immutable STI.<type> Result, Seconds,
TestID, TimeRate

TimeWarpResult;
etes Commented [HLM(L49]: JIRA issue STI_43: Remove
"etc." from Tables

Enumeration immutable Integer, see below Access, CalendarKind
string immutable str Object Names
Aggregate Value mutable STI.TimeWarp TimeWarp
At muabie A OO ume leming ey i Mesoge

Base Type mutable STI.Instance Context Objects

Note that Python does not implement enumerated data types as C/C++ do

Access enumerated values shall be implemented as integer constant named values of type Access, with each value
being one more than the preceding one.

CalendarKind enumerated values shall be implemented as integer constant named values of type CalendarKind with
each value being one more than the preceding one.

A4]Perl Mapping\ Commented [HLM(L50]: JIRA issue STI_11: Update
Perl, Ruby, Java, and Lua Sections (Completed in FTF1)

Only certain features have been determined to be required when software is implemented in Perl.
The STI module/package namespace for Perl shall be OMG::STI.
An example of its use is:

use OMG::STI

After utilizing the language-specific import statement, all components of the STT API can be referenced using the
paradigm of the respective language’s package/module facility. For instance, in Perl, the module contents are
designated by the module name and a double-colon (:) separator, for example the term “OMG::STI::Initialize()”
would refer to the Initialize function within the OMG::STI package.

Perl has built-in strings but not enumerations. Enumerations are implemented as a set of constant Integer values. It
is possible to implement an enumeration pragma function for this purpose. Perl does not have built-in Integer types.
On those platforms without floating point hardware, using a Perl pragma to tell the compiler to use integer
operations instead of floating point within the block can make a big difference in performance.

A.5 Ruby Mapping
Only certain features have been determined to be required when software is implemented in Ruby.
The STI module namespace for Ruby shall be STI.
An example of its use is:
require 'STI'

After utilizing the language-specific import statement, all components of the STI API can be referenced using the

paradigm of the respective language’s package/module facility. For instance, in Ruby, the module contents are Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

Space Telecommunication Interface—— (STI), v1.0 -- beta 2 15¥

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-11&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=h%2Fp72PVH5SyPYjeDvpnvjZgvrGlT465Gt68H%2FGHvDeg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-11&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=h%2Fp72PVH5SyPYjeDvpnvjZgvrGlT465Gt68H%2FGHvDeg%3D&reserved=0

designated by the module name and a period (.) separator, for example the term “STI.Initialize()” would refer to the
Initialize function within the STI module.

Ruby has built-in strings but not enumerations. Enumerations are implemented as a set of constant Integer values.
These values are not considered to be Enumerable.

A.6 Java Mapping

Only certain features have been determined to be required when software is implemented in Java.
The STI module namespace for Java shall be org.omg.STI package.
An example of its use is:

import org.omg.STI.*

After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility. For instance, in Java, the module contents are
designated by the package name and a period (.) separator, for example the term “org.omg.STLInitialize()” would
refer to the Initialize function within the STI module.

Java has built-in strings and enumerations.

A.7 Lua Mapping

Only certain features have been determined to be required when software is implemented in Lua.
The STI module namespace for Lua shall be STI.
An example of its use is:

STI = require("STI")

After utilizing the language-specific import statement, all components of the STI API can be referenced using the
paradigm of the respective language’s package/module facility. For instance, in Lua, the module contents are
designated by the module name and a period (.) separator, for example the term “STLInitialize()” would refer to the
Initialize function within the STI module.

Lua has built-in strings but not enumerations. Enumerations are implemented as a set of constant Integer values.

158 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font
color: Auto, Pattern: Clear

	STDTable9y
	STDTable90
	HB12.9.2
	STDTable91
	HB12.9.3
	STDTable92
	HB12.9.4
	STDTable93
	HB12.9.5
	STDTable94
	HB12.9.6
	STDTable95
	HB12.9.7
	STDTable96
	HB12.9.8
	STDTable97

