
Date: Nov Dec 20212022

Space Telecommunications
Interface (STI) 1.0

Submission to MARS SNC TF in Response to STI RFP (mars/19-09-21)

Version 1.0 – beta 2

__

OMG Document Number: ptc/20212022-1112-2603

Normative reference: https://www.omg.org/spec/STI/1.0/

Machine readable file(s):

Normative: https://www.omg.org/spec/STI/20211101/ptc/21-11-
28https://www.omg.org/spec/STI/20221201

__

 This OMG document replaces the submission document (mars/2020-11-01 and ptc/2021-01-03). It is an OMG Adopted Beta

Specification. Comments on the content of this document are welcome and should be directed to issues@omg.org.

You may view the pending issues for this specification from the OMG revision issues web page https://issues.omg.org/is-

sues/lists/sti-ftf.

The FTF Recommendation and Report for this specification will be published in December 2022. If you are reading this after that

date, please download the available specification from the OMG Specifications Catalog.

Field Code Changed

Formatted: Left

https://www.omg.org/spec/STI/
https://www.omg.org/spec/STI/20221201
https://issues.omg.org/issues/lists/sti-ftf
https://issues.omg.org/issues/lists/sti-ftf

Copyright © 2020-2022, National Aeronautics and Space Administration

Copyright © 20202021-2022, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, con-

ditions and notices set forth below. This document does not represent a commitment to implement any portion of

this specification in any company's products. The information contained in this document is subject to change with-

out notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-

free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute

copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed

to have infringed the copyright in the included material of any such copyright holder by reason of having used the

specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use

this specification to create and distribute software and special purpose specifications that are based upon this

specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:

(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;

(2) the use of the specifications is for informational purposes and will not be copied or posted on any network

computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)

no modifications are made to this specification. This limited permission automatically terminates without notice if

you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the

specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which

a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or

scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Pro-

spective users are responsible for protecting themselves against liability for infringement of paten ts.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regula-

tions and statutes. This document contains information which is protected by copyright. All Rights Reserved. No

part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,

electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--

without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CON-

TAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED

ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLI-

CATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED

WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR

USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED

ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPE-

CIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVE-

NUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE

FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)

(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph

(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as

specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.

12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners

are as indicated above and may be contacted through the Object Management Group, Needham9C Medway Road,

PMB 274, Milford, MA 0249401757109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT

GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,

OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube

Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names

mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its de-

signees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these mate-

rials.

Software developed under the terms of this license may claim compliance or conformance with this specification if

and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification but may not claim compliance or conformance with this specification. In

the event that testing suites are implemented or approved by Object Management Group, Inc., software developed

using this specification may claim compliance or conformance with the specification only if the software

satisfactorily completes the testing suites.

https://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage

readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting

Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

https://www.omg.org/

Space Telecommunication Interface (STI), v1.0 -- beta 2 1

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Table of Contents

1. Scope ... 25

2. Conformance ... 25

3. References ... 25

3.1 Normative References .. 25

3.2 Non-normative References ... 26

4. Terms and Definitions... 27

5. Symbols... 29

6. Additional Information ... 32

6.1 Acknowledgments .. 32

6.2 Notation Clause .. 32

7. Goals and Objectives .. 33

7.1 Overview .. 33

7.2 Purpose ... 33

7.3 Key Architecture Requirements ... 33

7.4 Fundamental Design ... 34

7.5 Roles and Responsibilities .. 35

8. Hardware Architecture .. 38

8.1 Generalized Hardware Architecture ... 38

8.1.1 Components .. 39

8.1.2 Functions ... 40

8.1.3 External Interfaces .. 41

8.1.4 Networking Interface .. 42

8.1.5 Internal Interfaces ... 42

8.2 Module Specification .. 43

8.2.1 General-Purpose Processing Module .. 43

8.2.2 Signal Processing Module... 45

8.2.3 Radio Frequency Module .. 48

8.2.4 Security Module .. 49

8.2.5 Networking Module .. 49

8.2.6 Optical Module ... 50

8.2.7 Cognitive Module ... 50

8.3 Hardware Interface Description .. 50

8.3.1 Control and Data Interface .. 51

8.3.2 Operating Power Interface .. 52

2 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

8.3.3 Thermal Interface and Power Consumption ... 52

9. Application Architecture ... 53

9.1 Configurable Hardware Design .. 53

9.2 Specialized Hardware Interfaces .. 54

10. Software Architecture .. 55

10.1 Software Layer Model .. 55

10.2 Infrastructure .. 60

10.3 API Overview ... 60

10.3.1 Interface Structure ... 61

10.3.2 Implementation ... 62

10.4 Data Types and Predefined Values ... 62

10.4.1 Data Types .. 62

10.4.2 Predefined Values ... 63

10.5 Application and Device Control Interface .. 63

10.5.1 Infrastructure-Provided Instance Interface ... 63

10.5.2 Application-Provided Application Control Interfaces .. 64

10.5.3 Data Transfer Interface ... 66

10.5.4 Device-Provided Device Control Interface ... 67

10.6 STI API ... 67

10.6.1 General Utility API ... 68

10.6.2 Application Control API ... 69

10.6.3 Device Control API... 72

10.6.4 Data Transfer API ... 73

10.6.5 Log API ... 73

10.6.6 File API ... 73

10.6.7 Messaging API .. 74

10.6.8 Time API ... 75

10.6.9 Clock Control API .. 77

10.7 Non-STI Software Interfaces .. 78

10.7.1 Operating System Interface... 78

11. External Command and Telemetry Interfaces ... 81

12. Normative Requirements ... 83

12.1 Hardware .. 83

12.1.1 Provide GPM .. 83

12.1.2 Diagnostic Information Availability ... 83

12.1.3 Document RF .. 83

12.1.4 Document Power-Up State ... 83

Space Telecommunication Interface (STI), v1.0 -- beta 2 3

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.1.5 Document Hardware Capability ... 83

12.1.6 Document Hardware Limitations .. 84

12.1.7 Document Interfaces ... 84

12.1.8 Document the Control and Data Mechanisms .. 84

12.1.9 Document Power Supply .. 84

12.1.10 Document Thermal and Power Limits .. 84

12.1.11 Controllable From OE ... 84

12.2 Configurable Hardware Design .. 84

12.2.1 Platform Specific Wrapper ... 84

12.2.2 Document FPGA Interfaces .. 84

12.3 Software .. 85

12.3.1 Document System Library Interfaces Provided .. 85

12.3.2 Document System Library Interfaces Used .. 85

12.3.3 Document Language Interfaces Provided ... 85

12.3.4 STI Infrastructure Uses APP API ... 85

12.3.5 Use Language Specific Facilities Specified in Annex A .. 85

12.3.6 Use Language Specific Inheritance .. 85

12.3.7 Document STI Interfaces .. 85

12.3.8 Document Application’s System Library Interfaces... 85

12.4 STI Infrastructure-Provided Software .. 85

12.4.1 STI Infrastructure-Provided Data Types ... 85

12.4.2 Application based on Instance Object... 87

12.4.3 STI Infrastructure-Provided Access Values .. 87

12.4.4 STI Infrastructure-Provided CalendarKind Values .. 88

12.4.5 STI Infrastructure-Provided HandleID Values ... 89

12.4.6 STI Infrastructure-Provided Result Values ... 89

12.4.7 STI Infrastructure-Provided Handle Name Values ... 90

12.4.8 STI Infrastructure-Provided Property Name Values ... 90

12.4.9 STI Infrastructure-Provided Size Limit Values .. 91

12.4.10 STI Infrastructure-Provided TimeWarp Values .. 92

12.4.11 STI Infrastructure-Provided CalendarValueCivil Structure 92

12.4.12 STI Infrastructure-Provided CalendarValueGPS Structure 93

12.4.13 STI Infrastructure-Provided CalendarValueDayNumber Structure 94

12.4.14 STI Infrastructure-Provided CalendarTime Union ... 94

12.5 STI Application-Provided Methods.. 94

4 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.5.1 STI Infrastructure-Provided APP_GetHandleID Method 94

12.5.2 STI Infrastructure-Provided APP_GetHandleName Method 95

12.5.3 STI Application-Provided APP_Instance Method .. 96

12.5.4 STI Application-Provided APP_Destroy Method .. 96

12.5.5 STI Application-Provided APP_Initialize Method ... 97

12.5.6 STI Application-Provided APP_ReleaseObject Method .. 97

12.5.7 STI Application-Provided APP_Query Method ... 98

12.5.8 STI Application-Provided APP_Configure Method ... 99

12.5.9 STI Application-Provided APP_RunTest Method.. 100

12.5.10 STI Application-Provided APP_Start Method .. 100

12.5.11 STI Application-Provided APP_Stop Method .. 101

12.5.12 STI Application-Provided APP_Read Method ... 101

12.5.13 STI Application-Provided APP_Write Method .. 102

12.5.14 STI Application-Provided APP_AddressRead Method 103

12.5.15 STI Application-Provided APP_AddressWrite Method 103

12.6 STI Device-Provided Methods ... 104

12.6.1 STI Device-Provided DEV_Open Method ... 104

12.6.2 STI Device-Provided DEV_Load Method.. 105

12.6.3 STI Device-Provided DEV_Reset Method ... 105

12.6.4 STI Device-Provided DEV_Flush Method ... 106

12.6.5 STI Device-Provided DEV_Unload Method .. 106

12.6.6 STI Device-Provided DEV_Close Method ... 107

12.7 STI Infrastructure-Provided Methods ... 111

12.7.1 STI Infrastructure-Provided IsOK Method ... 111

12.7.2 STI Infrastructure-Provided ValidateHandleID Method 112

12.7.3 STI Infrastructure-Provided ValidateSize Method ... 112

12.7.4 STI Infrastructure-Provided InstantiateApp Method .. 113

12.7.5 STI Infrastructure-Provided GetErrorQueue Method ... 113

12.7.6 STI Infrastructure-Provided GetHandleName Method ... 114

12.7.7 STI Infrastructure-Provided HandleRequest Method ... 115

12.7.8 STI Infrastructure-Provided AbortApp Method ... 115

12.7.9 STI Infrastructure-Provided Initialize Method ... 116

12.7.10 STI Infrastructure-Provided ReleaseObject Method ... 116

12.7.11 STI Infrastructure-Provided Configure Method .. 117

Space Telecommunication Interface (STI), v1.0 -- beta 2 5

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.7.12 STI Infrastructure-Provided Query Method .. 117

12.7.13 STI Infrastructure-Provided RunTest Method .. 118

12.7.14 STI Infrastructure-Provided Start Method .. 118

12.7.15 STI Infrastructure-Provided Stop Method... 119

12.7.16 STI Infrastructure-Provided DeviceOpen Method .. 119

12.7.17 STI Infrastructure-Provided DeviceLoad Method .. 120

12.7.18 STI Infrastructure-Provided DeviceReset Method .. 121

12.7.19 STI Infrastructure-Provided DeviceFlush Method .. 121

12.7.20 STI Infrastructure-Provided DeviceUnload Method ... 122

12.7.21 STI Infrastructure-Provided DeviceClose Method ... 122

12.7.22 STI Infrastructure-Provided Read Method .. 123

12.7.23 STI Infrastructure-Provided Write Method ... 123

12.7.24 STI Infrastructure-Provided AddressRead Method... 124

12.7.25 STI Infrastructure-Provided AddressWrite Method .. 125

12.7.26 STI Infrastructure-Provided Log Method ... 126

12.7.27 STI Infrastructure-Provided FileOpen Method ... 126

12.7.28 STI Infrastructure-Provided FileClose Method... 127

12.7.29 STI Infrastructure-Provided FileGetSize Method ... 128

12.7.30 STI Infrastructure-Provided FileRemove Method .. 128

12.7.31 STI Infrastructure-Provided FileRename Method... 129

12.7.32 STI Infrastructure-Provided FileGetFreeSpace Method 129

12.7.33 STI Infrastructure-Provided MessageQueueCreate Method 130

12.7.34 STI Infrastructure-Provided MessageQueueDelete Method 130

12.7.35 STI Infrastructure-Provided PubSubCreate Method ... 131

12.7.36 STI Infrastructure-Provided PubSubDelete Method ... 132

12.7.37 STI Infrastructure-Provided Register Method... 132

12.7.38 STI Infrastructure-Provided Unregister Method ... 133

12.7.39 STI Infrastructure-Provided GetNanoseconds Method 133

12.7.40 STI Infrastructure-Provided GetSeconds Method ... 134

12.7.41 STI Infrastructure-Provided GetTimeWarp Method ... 134

12.7.42 STI Infrastructure-Provided TimeAdd Method... 135

12.7.43 STI Infrastructure-Provided TimeSubtract Method .. 135

12.7.44 STI Infrastructure-Provided GetTime Method .. 136

12.7.45 STI Infrastructure-Provided SetTime Method .. 136

6 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.7.46 STI Infrastructure-Provided GetCalendarTime Method 137

12.7.47 STI Infrastructure-Provided SetTimeAdjust Method .. 140

12.7.48 STI Infrastructure-Provided GetTimeAdjust Method 141

12.7.49 STI Infrastructure-Provided TimeSynch Method ... 141

12.7.50 STI Infrastructure-Provided Sleep Method ... 143

12.7.51 STI Infrastructure-Provided DelayUntil Method .. 144

12.7.52 STI Infrastructure-Provided ConvertToTimeWarp Method 144

12.8 External Command and Telemetry ... 145

12.8.1 Respond to External Commands ... 145

12.8.2 External Commands Use STI API .. 145

12.8.3 Document External Commands .. 145

12.8.4 Use STI Query for External Data.. 145

12.9 Clock Control Interface .. 146

12.9.1 STI Infrastructure-Provided CLK_GetTime Method ... 146

12.9.2 STI Infrastructure-Provided CLK_SetTime Method .. 146

12.9.3 STI Infrastructure-Provided CLK_SetTimeAdjust Method 147

12.9.4 STI Infrastructure-Provided CLK_GetTimeAdjust Method 147

12.9.5 STI Infrastructure-Provided CLK_Sleep Method ... 148

12.9.6 STI Infrastructure-Provided CLK_DelayUntil Method .. 148

0 Submission-Specific Material .. 12

0.1 Submission Preface... 12

0.2 Copyright Waiver ... 12

0.3 Submitter Representative .. 12

0.4 Author Team ... 12

0.5 Mapping to RFP Requirements .. 12

0.6 Responses to RFP Issues to Be Discussed .. 16

0.7 Proof of Concept ... 17

1. Scope ... 19

2. Conformance ... 19

3. References ... 19

3.1 Normative References .. 19

3.2 Non-normative References ... 20

4. Terms and Definitions... 21

5. Symbols... 23

6. Additional Information ... 26

6.1 Acknowledgments .. 26

7. Goals and Objectives .. 26

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Space Telecommunication Interface (STI), v1.0 -- beta 2 7

Formatted ...

7.1 Overview .. 26

7.2 Purpose ... 26

7.3 Key Architecture Requirements ... 27

7.4 Fundamental Design ... 28

7.5 Roles and Responsibilities .. 28

8. Hardware Architecture .. 30

8.1 Generalized Hardware Architecture ... 30

8.1.1 Components .. 31

8.1.2 Functions ... 32

8.1.3 External Interfaces .. 33

8.1.4 Networking Interface .. 34

8.1.5 Internal Interfaces ... 34

8.2 Module Specification .. 35

8.2.1 General-Purpose Processing Module .. 35

8.2.2 Signal Processing Module... 37

8.2.3 Radio Frequency Module .. 40

8.2.4 Security Module .. 41

8.2.5 Networking Module .. 41

8.2.6 Optical Module ... 42

8.2.7 Cognitive Module ... 42

8.3 Hardware Interface Description .. 42

8.3.1 Control and Data Interface .. 43

8.3.2 Operating Power Interface .. 44

8.3.3 Thermal Interface and Power Consumption ... 44

9. Application Architecture ... 45

9.1 Configurable Hardware Design .. 45

9.2 Specialized Hardware Interfaces .. 46

10. Software Architecture .. 46

10.1 Software Layer Model .. 47

10.2 Infrastructure .. 50

10.3 API Overview ... 51

10.3.1 Interface Structure ... 52

10.3.2 Implementation ... 53

10.4 Data Types and Constants .. 53

10.4.1 Data Types .. 53

10.4.2 Constants ... 54

10.5 Application and Device Control Interface .. 54

10.5.1 Infrastructure-Provided Component Identifier Interface .. 54

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

8 Space Telecommunication Interface (STI), v1.0 -- beta 2
Formatted ...

10.5.2 Application-Provided Application Control Interfaces .. 54

10.5.3 Device-Provided Device Control Interface ... 56

10.5.4 Data Transfer Interface ... 57

10.6 STI API ... 58

10.6.1 General Utility API ... 58

10.6.2 Application Control API ... 59

10.6.3 Device Control API... 62

10.6.4 Data Transfer API ... 63

10.6.5 Log API ... 64

10.6.6 File API ... 64

10.6.7 Messaging API .. 65

10.6.8 Time API ... 66

10.7 Non-STI Software Interfaces .. 68

10.7.1 Operating System Interface... 69

11. External Command and Telemetry Interfaces ... 71

12. Normative Requirements ... 73

Hardware ... 73

12.1 Provide GPM .. 73

12.2 Diagnostic Information Availability ... 73

12.3 Document RF .. 73

12.4 Document Power-Up State ... 73

12.5 Document Hardware Capability ... 73

12.6 Document Hardware Limitations ... 73

12.7 Document Interfaces ... 74

12.8 Document the Control and Data Mechanisms .. 74

12.9 Document Power Supply .. 74

12.10 Document Thermal and Power Limits.. 74

12.11 Controllable From OE .. 74

Configurable Hardware Design .. 74

12.12 Platform Specific Wrapper ... 74

12.13 Document FPGA Interfaces.. 74

Software .. 75

12.14 Document System Library Interfaces Provided .. 75

12.15 Document System Library Interfaces Used .. 75

12.16 Document Language Interfaces Provided ... 75

12.17 STI Infrastructure Uses APP API ... 75

12.18 Use Language Specific Facilities Specified in Annex A .. 75

12.19 Use Language Specific Inheritance .. 75

12.20 STI Infrastructure Provided Data Types ... 75

12.21 Application based on Instance Object .. 77

12.22 STI Infrastructure-Provided Access Constants ... 77

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Space Telecommunication Interface (STI), v1.0 -- beta 2 9

Formatted ...

12.23 STI Infrastructure-ProvidedCalendarKind Constants .. 77

12.24 STI Infrastructure-ProvidedHandleID Constants ... 78

12.25 STI Infrastructure-ProvidedResult Constants ... 79

12.26 STI Infrastructure-Provided Handle Name Constants .. 79

12.27 STI Infrastructure-Provided Property Name Constants .. 80

12.28 STI Infrastructure-Provided Size Limit Constants ... 80

12.29 STI Infrastructure-Provided TimeWarp Constants ... 81

12.30 STI Infrastructure-Provided APP_GetHandleID Method .. 81

12.31 STI Infrastructure-Provided APP_GetHandleName Method 82

12.32 STI Application-Provided APP_Instance Method ... 82

12.33 STI Application-Provided APP_Destroy Method .. 83

12.34 STI Application-Provided APP_Initialize Method... 83

12.35 STI Application-Provided APP_ReleaseObject Method .. 84

12.36 STI Application-Provided APP_Query Method ... 84

12.37 STI Application-Provided APP_Configure Method... 85

12.38 STI Application-Provided APP_RunTest Method ... 86

12.39 STI Application-Provided APP_Start Method ... 86

12.40 STI Application-Provided APP_Stop Method ... 87

12.41 STI Device-Provided DEV_Open Method ... 87

12.42 STI Device-Provided DEV_Load Method ... 88

12.43 STI Device-Provided DEV_Reset Method... 88

12.44 STI Device-Provided DEV_Flush Method... 89

12.45 STI Device-Provided DEV_Unload Method .. 89

12.46 STI Device-Provided DEV_Close Method .. 90

12.47 STI Application-Provided APP_Read Method... 90

12.48 STI Application-Provided APP_Write Method .. 91

12.49 STI Application-Provided APP_AddressRead Method ... 92

12.50 STI Application-Provided APP_AddressWrite Method... 93

12.51 STI Infrastructure-Provided IsOK Method ... 94

12.52 STI Infrastructure-Provided ValidateHandleID Method .. 94

12.53 STI Infrastructure-Provided ValidateSize Method ... 95

12.54 STI Infrastructure-Provided InstantiateApp Method .. 95

12.55 STI Infrastructure-Provided GetErrorQueue Method ... 96

12.56 STI Infrastructure-Provided GetHandleName Method .. 96

12.57 STI Infrastructure-Provided HandleRequest Method ... 97

12.58 STI Infrastructure-Provided AbortApp Method ... 97

12.59 STI Infrastructure-Provided Initialize Method ... 98

12.60 STI Infrastructure-Provided ReleaseObject Method .. 98

12.61 STI Infrastructure-Provided Configure Method ... 99

12.62 STI Infrastructure-Provided Query Method ... 99

12.63 STI Infrastructure-Provided RunTest Method .. 100

12.64 STI Infrastructure-Provided Start Method .. 100
12.65 STI Infrastructure-Provided Stop Method .. 101

12.66 STI Infrastructure-Provided DeviceOpen Method ... 101

12.67 STI Infrastructure-Provided DeviceLoad Method .. 102

12.68 STI Infrastructure-Provided DeviceReset Method ... 102

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

10 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted ...

12.69 STI Infrastructure-Provided DeviceFlush Method ... 103

12.70 STI Infrastructure-Provided DeviceUnload Method .. 103

12.71 STI Infrastructure-Provided DeviceClose Method ... 103

12.72 STI Infrastructure-Provided Read Method ... 104

12.73 STI Infrastructure-Provided Write Method .. 105

12.74 STI Infrastructure-Provided AddressRead Method .. 105

12.75 STI Infrastructure-Provided AddressWrite Method ... 106

12.76 STI Infrastructure-Provided Log Method ... 107

12.77 STI Infrastructure-Provided FileOpen Method .. 107

12.78 STI Infrastructure-Provided FileClose Method .. 108

12.79 STI Infrastructure-Provided FileGetSize Method .. 108

12.80 STI Infrastructure-Provided FileRemove Method .. 109

12.81 STI Infrastructure-Provided FileRename Method .. 109

12.82 STI Infrastructure-Provided FileGetFreeSpace Method ... 110

12.83 STI Infrastructure-Provided MessageQueueCreate Method 110

12.84 STI Infrastructure-Provided MessageQueueDelete Method 111

12.85 STI Infrastructure-Provided PubSubCreate Method .. 112

12.86 STI Infrastructure-Provided PubSubDelete Method .. 112

12.87 STI Infrastructure-Provided Register Method .. 113

12.88 STI Infrastructure-Provided Unregister Method .. 113

12.89 STI Infrastructure-Provided GetNanoseconds Method .. 114

12.90 STI Infrastructure-Provided GetSeconds Method .. 114

12.91 STI Infrastructure-Provided GetTimeWarp Method .. 114

12.92 STI Infrastructure-Provided TimeAdd Method .. 115

12.93 STI Infrastructure-Provided TimeSubtract Method ... 115

12.94 STI Infrastructure-Provided GetTime Method ... 116

12.95 STI Infrastructure-Provided SetTime Method .. 116

12.96 STI Infrastructure-Provided GetCalendarTime Method ... 117

12.97 STI Infrastructure-Provided CalendarValueCivil Structure 118

12.98 STI Infrastructure-Provided CalendarValueGPS Structure 119

12.99 STI Infrastructure-Provided CalendarValueDayNumber Structure 119

12.100 STI Infrastructure-Provided CalendarTime Union ... 120

12.101 STI Infrastructure-Provided SetTimeAdjust Method ... 120

12.102 STI Infrastructure-Provided GetTimeAdjust Method .. 121

12.103 STI Infrastructure-Provided TimeSynch Method ... 121

12.104 STI Infrastructure-Provided Sleep Method .. 122

12.105 STI Infrastructure-Provided DelayUntil Method ... 123

12.106 Document STI Interfaces .. 124

12.107 Document Application’s System Library Interfaces .. 124

External Command and Telemetry ... 124

12.108 Respond to External Commands .. 124

12.109 External Commands Use STI API .. 124
12.110 Document External Commands .. 124

12.111 Use STI Query for External Data ... 124

Annex A: Language Translations .. 150

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Space Telecommunication Interface (STI), v1.0 -- beta 2 11

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

A.1 C Language Mapping ... 151

A.2 C++ Language Mapping ... 153

A.3 Python Mapping ... 155

A.4 Perl Mapping .. 157

A.5 Ruby Mapping .. 157

A.6 Java Mapping .. 158

A.7 Lua Mapping... 158

Annex A: Language Translations .. 125

A.1 C Language Mapping ... 126

A.2 C++ Language Mapping ... 128

A.3 Python Mapping ... 130

A.4 Perl Mapping .. 131

A.5 Ruby Mapping .. 132

A.6 Java Mapping .. 132

A.7 Lua Mapping... 132

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

12 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Index of Tables

Table 1: Module Interface Characterization ... 51

Table 2: Example Operating Power Interface ... 52

Table 3: Software Component Descriptions ... 58

Table 4: Function Alternatives.. 81

Table 5: STI Variable Types ... 86

Table 6: Access Values ... 87

Table 7: CalendarKind Values .. 88

Table 8: HandleID Values .. 89

Table 9: Result Values .. 89

Table 10: Handle Name Values .. 90

Table 11: Property Name Values .. 90

Table 12: Size Limit Values ... 91

Table 13: TimeWarp Values ... 92

Table 4315: GetErrorQueue() Definition .. 113

Table 16: SetTimeAdjust() Definition .. 140

Table 17: GetTimeAdjust() Definition ... 141

Table 18: TimeSynch() Definition .. 141

Table 19: Sleep() Definition ... 143

Table 20: DelayUntil() Definition .. 144

Table 21: C Language Header Files.. 151

Table 22: C Language Data Type Mapping .. 152

Table 23: C++ Language Header Files ... 153

Table 24: C++ Language Data Type Mapping ... 154

Table 25: Python Language Data Type Mapping ... 156

Table 1: Module Interface Characterization ... 43

Table 2: Example Operating Power Interface ... 44

Table 3: Software Component Descriptions ... 49

Table 4: Function Alternatives.. 71

Table 5: STI Variable Types ... 75

Table 6: Access Constants .. 77

Table 7: CalendarKind Constants ... 77

Table 8: HandleID Constants .. 78

Table 9: Result Constants ... 79

Table 10: Handle Name Constants ... 79

Table 11: Property Name Constants ... 80

Table 12: Size Limit Constants ... 80

Table 13: TimeWarp Constants .. 81

Table 14: APP_GetHandleID() Definition ... 81

Table 15: APP_GetHandleName() Definition .. 82

Table 16: APP_Instance() Definition .. 82

Table 17: APP_Destroy() Definition .. 83

Table 18: APP_Initialize() Definition ... 83

Table 19: APP_ReleaseObject() Definition .. 84

Table 20: APP_Query() Definition ... 84

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Space Telecommunication Interface (STI), v1.0 -- beta 2 13

Formatted ...

Table 21: APP_Configure() Definition ... 85

Table 22: APP_RunTest() Definition ... 86

Table 23: APP_Start() Definition ... 86

Table 24: APP_Stop() Definition.. 87

Table 25: DEV_Open() Definition ... 87

Table 26: DEV_Load() Definition .. 88

Table 27: DEV_Reset() Definition ... 88

Table 28: DEV_Flush() Definition ... 89

Table 29: DEV_Unload() Definition .. 89

Table 30: DEV_Close() Definition ... 90

Table 31: APP_Read() Definition ... 90

Table 32: APP_Write() Definition .. 91

Table 33: APP_AddressRead() Definition.. 92

Table 34: APP_AddressWrite() Definition ... 93

Table 35: IsOK() Definition.. 94

Table 36: ValidateHandleID() Definition ... 94

Table 37: ValidateSize() Definition .. 95

Table 38: InstantiateApp() Definition ... 95

Table 39: GetErrorQueue() Definition.. 96

Table 40: GetHandleName() Definition ... 96

Table 41: HandleRequest() Definition .. 97

Table 42: AbortApp() Definition .. 97

Table 43: Initialize() Definition .. 98

Table 44: ReleaseObject() Definition ... 98

Table 45: Configure() Definition .. 99

Table 46: Query() Definition .. 99

Table 47: RunTest() Definition ... 100

Table 48: Start() Definition ... 100

Table 49: Stop() Definition ... 101

Table 50: DeviceOpen() Definition .. 101

Table 51: DeviceLoad() Definition ... 102

Table 52: DeviceReset() Definition .. 102

Table 53: DeviceFlush() Definition .. 103

Table 54: DeviceUnload() Definition ... 103

Table 55: DeviceClose() Definition .. 103

Table 56: Read() Definition .. 104

Table 57: Write() Definition ... 105

Table 58: AddressRead() Definition ... 105

Table 59: AddressWrite() Definition .. 106

Table 60: Log() Definition .. 107

Table 61: FileOpen() Definition ... 107

Table 62: FileClose() Definition ... 108
Table 63: FileGetSize() Definition ... 108

Table 64: FileRemove() Definition ... 109

Table 65: FileRename() Definition ... 109

Table 66: FileGetFreeSpace() Definition.. 110

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

14 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Table 67: MessageQueueCreate() Definition ... 111

Table 68: MessageQueueDelete() Definition ... 111

Table 69: PubSubCreate() Definition ... 112

Table 70: PubSubDelete() Definition ... 112

Table 71: Register() Definition ... 113

Table 72: Unregister() Definition ... 113

Table 73: GetNanoseconds() Definition ... 114

Table 74: GetSeconds() Definition ... 114

Table 75: GetTimeWarp() Definition ... 114

Table 76: TimeAdd() Definition ... 115

Table 77: TimeSubtract() Definition .. 115

Table 78: GetTime() Definition .. 116

Table 79: SetTime() Definition ... 116

Table 80: GetCalendarTime() Definition.. 117

Table 81: CalendarValueCivil Structure Definition ... 118

Table 82: CalendarValueGPS Structure Definition .. 119

Table 83: CalendarValueDayNumber Structure Definition ... 119

Table 84: CalendarTime Union Definition ... 120

Table 85: SetTimeAdjust() Definition .. 120

Table 86: GetTimeAdjust() Definition ... 121

Table 87: TimeSynch() Definition .. 121

Table 88: Sleep() Definition ... 122

Table 89: DelayUntil() Definition .. 123

Table 90: C Language Header Files.. 126

Table 91: C Language Data Type Mapping .. 127

Table 92: C++ Language Header Files ... 128

Table 93: C++ Language Data Type Mapping ... 129

Table 94: Python Language Data Type Mapping ... 131

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Space Telecommunication Interface (STI), v1.0 -- beta 2 15

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Table of Figures

Figure 1: Roles and Responsibilities... 36

Figure 2: Notional STI Hardware Architecture .. 39

Figure 3: GPM Architecture Details (Detail of Figure 2) ... 43

Figure 4: SPM Architecture Details (Detail of Figure 2) ... 46

Figure 5: RFM Architecture Details (Detail of Figure 2) ... 48

Figure 6: Software Execution Model .. 56

Figure 7: Layered Structure .. 57

Figure 8: Standards Conformance vs. Standards Compliance .. 59

Figure 9: Application and Device Structure ... 61

Figure 10: Sequence Diagram for Application Control Component .. 69

Figure 11: Sequence Diagram for InstantiateApp .. 70

Figure 12: Sequence Diagram for AbortApp .. 71

Figure 13: Sequence Diagram for Device Control Component .. 72

Figure 14: Calendar Time Value Representations .. 76

Figure 15: Profile Building Blocks ... 80

Figure 16: Command and Telemetry Interfaces ... 82

Figure 1: Roles and Responsibilities... 29

Figure 2: Notional STI Hardware Architecture .. 31

Figure 3: GPM Architecture Details ... 35

Figure 4: SPM Architecture Details .. 38

Figure 5: RFM Architecture Details ... 40

Figure 6: Software Execution Model .. 47

Figure 7: Layered Structure .. 48

Figure 8: Standards Conformance vs. Standards Compliance .. 50

Figure 9: Application and Device Structure ... 52

Figure 10: Sequence Diagram for Application Control Component .. 60

Figure 11: Sequence Diagram for InstantiateApp .. 61

Figure 12: Sequence Diagram for AbortApp .. 61

Figure 13: Sequence Diagram for Device Control Component .. 63

Figure 14: Calendar Time Value Representations .. 67

Figure 15: Profile Building Blocks ... 70

Figure 16: Command and Telemetry Interfaces ... 72

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China), (Other) English (United States)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

Formatted: Default Paragraph Font, (Asian) Chinese

(China)

file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235904
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235905
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235906
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235907
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235908
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235909
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235910
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235911
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235912
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235913
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235914
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235918
file:///C:/Users/lhandler/Documents/NASA/STRS/STRX/STI_Model_FTF2/NewSTI%20FTF2%20ptc_21-11-26-STI.docx%23_Toc117235919

16 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer

industry standards consortium that produces and maintains computer industry specifications for interoperable,

portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes

Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle

approach to enterprise integration that covers multiple operating systems, programming languages, middleware and

networking infrastructures, and software development environments. OMG’s specifications include UML® (Unified

Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse

Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG

Specifications are available from the OMG websitethis URL at: https://www.omg.org/spec

https://www.omg.org/spec/

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing

OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and

PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management

Group, Inc. at:

OMG Headquarters

9C Medway Road, PMB 274

Milford109 Highland Avenue

Needham, MA 0249401757

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult https://www.iso.org/

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary Eng-

lish.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Formatted: Font: Italic

Formatted: Body, Space Before: 7.9 pt, Line spacing:

At least 5 pt, No widow/orphan control, Don't allow

hanging punctuation, Don't adjust space between Latin

and Asian text

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman, 10 pt

Formatted: Font: 10 pt

Formatted: Indent: Left: 0.02", Right: 0.03", Space

After: 0.5 pt, Line spacing: Multiple 1.03 li, Allow

hanging punctuation, Adjust space between Latin and

Asian text, Tab stops: Not at -0.35" + 0.15" + 0.65" +

1.15" + 1.65" + 2.15" + 2.65" + 3.15" + 3.65" +

4.15" + 4.65"

Formatted: Font: 10 pt

Formatted: Font: Times New Roman, 10 pt

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman, 10 pt

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman, 10 pt

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman, 10 pt

Formatted: Font: Times New Roman

Formatted: Font: 10 pt, Italic

Formatted: Font: Times New Roman, 10 pt

Formatted: Font: 10 pt

https://www.omg.org/
mailto:pubs@omg.org
https://www.iso.org/

Space Telecommunication Interface (STI), v1.0 -- beta 2 17

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Times/Times New Roman/Liberation Serif – 10 pt.: Standard body text

Helvetica/Arial – 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier – 10 pt. Bold: Programming language elements.

Helvetica/Arial – 10 pt.: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification via the report

form atto:

https://www.omg.org/report_issue.htmhttps://issues.omg.org/issues/create-new-issue

https://www.omg.org/report_issue.htm

18 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

0 Submission-Specific Material

0.1 Submission Preface

This submission is in response to the Space Telecommunication Interface (STI) RFP, document number

mars/19-09-21.

The proposal describes an architecture for software-defined radios (SDRs) based on existing NASA standards. The

proposed Space Telecommunication Interface (STI) provides a common, consistent framework to abstract the

application software from the platform hardware to increase portability and reduce the cost and risk of using

complex reconfigurable and reprogrammable radio interfaces across environments from Earth to outer space.

0.2 Copyright Waiver

The National Aeronautics and Space Administration grants to the Object Management Group, Inc. (OMG) a

nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this

document and distribute copies of the modified version.

0.3 Submitter Representative

Janette C. Briones, PhD.

Louis M. Handler

NASA Glenn Research Center, Cleveland, OH

Joseph P. Hickey

Vantage Partners, LLC, Brook Park, OH

William T. Dark

HX5, LLC

Jeffrey Smith, PhD.

Sierra Nevada Corporation, Herndon, VA

0.4 Author Team

Janette C. Briones, PhD.

Louis M. Handler

NASA Glenn Research Center, Cleveland, OH

Joseph P. Hickey

Vantage Partners, LLC, Brook Park, OH

William T. Dark

HX5, LLC

Jeffrey Smith, PhD.

Sierra Nevada Corporation, Herndon, VA

0.5 Mapping to RFP Requirements

This specification resolves the mandatory requirements as shown in Table 0.1.

Table 0.1: Mandatory RFP Requirements

Require-

ment
Description How Is the Requirement Addressed

6.3.1 The Space PIM specification shall make maximum

use of the SWRadio specification where applicable.

Not a consideration after the initial design was

modified. Configure, Query, Start, Stop, and

other method names are used.

Space Telecommunication Interface (STI), v1.0 -- beta 2 19

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Require-

ment
Description How Is the Requirement Addressed

6.5 Proposals shall 1) provide a PIM for data and inter-

face definition (data and control planes including

hardware abstractions) along with other require-

ments specific to each API such as which part of the

SWRadio specification it could use as a foundation,

2) build off of the SWRadio specification and 3)

provide a section specific to PSMs.

(1) Tables contain PIM/IDL methods (2) simi-

lar to SWRadio (3) with Annex A for PSM

6.5.1 Proposals shall reuse the UML Profile for SWRadio

(PIM and PSM for SWRadio Components [SWR])

where appropriate to accommodate special space

SDR constraints for communication equipment and

physical layer facilities of the solicited PIM

Configure, Query, Start, Stop, and other

method names are used. Because of our need

in space for low weight and power (SWaP), a

C-language implementation was needed. The

need for a C-language implementation led to

the elimination of exceptions and the replace-

ment of object pointers with handle IDs in the

calls where necessary.

6.5.1 Proposals shall specify a PIM and at least one nor-

mative PSM for Space SDR interfaces.

PIM and PSM both specified. PIM is specified

throughout and PSM specified in Annex A.

6.5.1 This specification shall consist of at least two pri-

mary interface definitions, each with a control and

data plane specification for interchanging configura-

tion and run-time data: 1) the STI Application Pro-

gramming Interface (API) and 2) the STI Hardware

Interface Definition (HID) API.

(1) API in 10.5 and 10.6, (2) HID in 8.2 and

8.3

6.5.1 The STI APIs shall provide an open software speci-

fication for the application engineer to develop STI

waveform application programs.

When it is adopted and published by the

OMG.

6.5.1 The STI response shall provide a space platform in-

frastructure to support waveform implementations.

Additionally, the response to this RFP shall identify

services required for waveform deployment and

management.

10.6.2 Application Control API;

6.5.1 The STI proposal shall separate application and in-

frastructure APIs in its design.

10.5 vs 10.6

6.5.2 Proposals shall define compliance points to which

COTS vendors must conform. The following is the

minimum set of acceptable compliance points. Re-

sponses may include additional compliance points.

Section 12 is a summary.

6.5.2.1 Standard interfaces for control, management and sta-

tus retrieval of the subsystems.

10.5.2 Application-Provided Application Con-

trol Interfaces; 10.6.2 Application Control;

10.5.3 Device-Provided Device Control Inter-

face; 10.6.3 Device Control API

20 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Require-

ment
Description How Is the Requirement Addressed

6.5.2.2 Control interfaces with functionality to control the

synchronization of subsystems.

10.5.2 Application-Provided Application Con-

trol Interfaces; 10.6.2 Application Control;

10.5.3 Device-Provided Device Control Inter-

face; 10.6.3 Device Control API

6.5.2.3 Interfaces that allow setting and querying parame-

ters defined in the hardware abstraction of subsys-

tem elements.

10.5.2 Application-Provided Application Con-

trol Interfaces; 10.6.2 Application Control;

10.5.3 Device-Provided Device Control Inter-

face; 10.6.3 Device Control API

6.5.2.4 Application interfaces and related metadata defined

separately for each subsystem.

10.5.2 Application-Provided Application Con-

trol Interfaces; 10.6.2 Application Control;

10.5.3 Device-Provided Device Control Inter-

face; 10.6.3 Device Control API

6.5.3 Proposals shall specify the following networking aspects and functionality of Space Telecommunica-

tion Interfaces:

6.5.3.1 Support different kinds of missions, such as legacy,

new science, and new exploration.

Discusses optional capability.

6.5.3.2 Support IP routing and internet applications for

space and ground elements.

Networking module in 8.1 and 8.2

6.5.3.3 Accommodate both scheduled and unscheduled

communications.

Log, Query, PubSub, MessageQueues, Read,

Write, AddressRead, AddressWrite

6.5.3.4 Accommodate both continuous and intermittent con-

nectivity.

Allows either continuous or intermittent con-

nectivity as programmed into the SDR.

6.5.3.5 Support space data links characterized by large and

small signal propagation latencies; uni-directionality

and bi-directionality; and both low and high bit error

rates.

Doesn't specify a type of networking and al-

lows Delay Tolerant Networking (DTN), User

Datagram Protocol (UDP), Transmission Con-

trol Protocol (TCP), or other protocols to be

used.

6.5.3.6 Support data flows that: originate at arbitrary user

locations on Earth and in space, terminate at arbi-

trary user locations or sets of user locations (i.e.,

multi-point delivery) on Earth and in space, and

traverse N-hop transmission paths where N > 1.

No restriction as to the origin of the data flow

as long as the data meets the appropriate secu-

rity criteria.

6.5.3.7 Support transmission of the following types of data:

command, telemetry, files (including web pages),

messages (e.g., electronic mail), voice, video, and

range safety.

Section 11 for External Command and Telem-

etry Interfaces; 10.6.6 for files; 10.6.7 for

messaging; 10.6.3 and 10.6.4 for connection

to hardware devices.

6.5.3.8 Provide the following qualities of data communica-

tion service (not necessarily in all combinations):

isochrony, reliability, transmission order preserva-

tion, timeliness, and priority.

Digital to Analog (D2A) and Analog to Digi-

tal (A2D) are implied for SDR. Signal ampli-

fication, reliability, and packet transmission

order preservation are not considered since

this is not a performance or operations stand-

ard.

6.5.3.9 Provide data communication performance metrics

and accountability.

STI encourages capture of performance met-

rics to allow cognitive improvement of func-

tionality.

Space Telecommunication Interface (STI), v1.0 -- beta 2 21

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Require-

ment
Description How Is the Requirement Addressed

6.5.4 Proposals shall implement the following security aspects of the Space Telecommunication Interfaces:

6.5.4.1 End-to-end protection of the authenticity of control

information, specifically the ability to prevent unau-

thorized access to and alteration of data.

Non-conformant to STI RFP.

6.5.4.2 End-to-end protection of the confidentiality of sensi-

tive control information, specifically the ability to

prevent inappropriate disclosure of sensitive data.

Non-conformant to STI RFP.

6.5.4.3 Timely delivery of, and access to, critical control in-

formation with minimal delay caused by security

services.

 Non-conformant to STI RFP.

6.5.4.4 Bulk encryption for legacy assets. Non-conformant to STI RFP.

6.5.4.5 The ability to manage and control security key mate-

rial over-the-network using Federal Information Pro-

cessing Standard (FIPS)-approved key generation

and distribution.

 Non-conformant to STI RFP.

6.5.4.6 The ability to conduct Certification and Accredita-

tion of the security service end-to-end system ac-

cording to FIPS SP 800-37 [FIPS], using FIPS-ap-

proved cryptographic modules and devices.

 Non-conformant to STI RFP.

Table 0.2 lists the non-mandatory requirements in the RFP and how this submission addresses them.

Table 0.2: Non-Mandatory Requirements

Require-

ment

Description How Is The Requirement Addressed

6.6.1 Design Requirements

6.6.1.1 The ability to isolate waveform applications from

hardware specific implementations.

Not always entirely possible but architecture

allows isolating non-hardware-specific parts

of waveform applications in software from

hardware-specific parts.

6.6.1.2 The ability of a radio to maintain reliable operation

during remote software and firmware uploads.

Necessary but not part of STI.

6.6.1.3 The ability of a radio to control external hardware in

real-time.

Documentation of HID, HAL, and Devices

describe the use of application/resources.

6.6.1.4 The ability of a radio to operate legacy, current

standard, and defined waveforms according to its

hardware.

Allowed but not an STI requirement.

6.6.1.5 The ability of a radio to use both narrowband and

wideband waveforms for voice, video, and data

space communications.

Allowed but not an STI requirement.

6.6.1.6 The ability of a radio to use current, and be adapta-

ble to new, networking protocols.

Allowed but not an STI requirement. See 7.3

6.6.1.7 The ability of a radio to maintain compatibility with

current, and be adaptable to new, security measures.

Allowed but not an STI requirement.

6.6.1.8 Views/viewpoints used to express the deployment

side of the previously described HID, and patterns,

Documentation of HID, HAL, and Devices

describe the use of application/resources.

22 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Require-

ment

Description How Is The Requirement Addressed

e.g., application and resource factories to control ap-

plication/resources, may be used to subdivide the

STI profile for clarity and modularity.

6.6.2 Interface Requirements

6.6.3 Proposals may support the ability of a radio to use

existing commercial off-the-shelf spacecraft inter-

faces.

Hardware is not specified by STI. Example is

shown by STRS on 3 different radios by 3 dif-

ferent companies on SCaN Testbed on ISS.

6.6.3 Functional Requirements

6.6.4.1 The ability of a radio to operate multiple waveforms

simultaneously.

See 7.3

6.6.4.2 The ability of a radio to operate in several communi-

cation bands simultaneously.

See 7.3

6.6.4.3 The ability of a radio to operate multiple simultane-

ous channels in a single communication band.

See 7.3

6.6.4.4 The ability of a radio to autonomously monitor its

communications environment and a) self-adapt in or-

der to optimize its communications link and b) report

on or respond to remote interrogations regarding its

health and configuration status.

See 7.3

6.6.4.5 The ability of a radio to be reconfigurable and to

provide additional computing resources at times

when communications are low or zero.

See 7.3

6.6.4.6 The ability of radio to detect extended loss of opera-

tion either due to signal degradation or internal mal-

function.

See 7.3

6.6.4.7 The ability of a radio to autonomously recover from

fault conditions after a reboot or power cycle event.

See 7.3

6.6.4.8 The ability of a radio to use current and be adaptable

to new radiometric tracking and navigation wave-

forms and services.

Allowed but not an STI requirement.

0.6 Responses to RFP Issues to Be Discussed

Table 0.3 lists the Issues to Discussed in the RFP and how this submission addresses them.

Table 0.3: Issues to be Discussed

Issue Description How Is the Issue Discussed

6.7.1 Proposals shall discuss how legacy systems are sup-

ported by an implementation of this specification.

Waveform applications may be programmed to

communicate with legacy systems.

6.7.2 Proposals shall discuss how it provides advantages

for the space environment.

NASA’s previous version, STRS, was used

successfully on SCaN Testbed, 2012-2020.

SWRP modified for SWaP and C-language in-

terface.

6.7.3 Proposals shall discuss how the proposed specifica-

tion handles external commands.

Section 11 External Command and Telemetry

Interfaces

6.7.4 Proposals shall discuss how the proposed specifica-

tion meets all stated requirements and associated ra-

tionale.

See rest of this matrix

Space Telecommunication Interface (STI), v1.0 -- beta 2 23

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Issue Description How Is the Issue Discussed

6.7.5 Proposals shall discuss the rationale for not satisfying

non-mandatory features.

The security aspects in 6.5.4 of the RFP were

considered to be possible within this standard

but were not standardized further.

6.7.6 Proposals shall discuss how interfaces from a HID to

FPGAs and other signal-processing specific based

platforms are specified, e.g., reuse of existing hard-

ware abstraction layers or new design to satisfy mod-

ern signal processing hardware.

STI response states that standards for API and

documentation encourage reuse ability.

6.7.7 Proposals shall discuss metrics that determine quality

of service elements, e.g., timeliness and reliability.

Metrics such as signal to noise ratio, visual,

Doppler, and radar allow for cognitive, radio-

metric tracking, navigation, and other services

that are integrated with communication ser-

vices. In addition, a heartbeat signal and

watchdog timer aid in autonomous operation

allowing rebooting as necessary.

6.7.8 Proposals shall discuss existing commercial off-the-

shelf spacecraft interfaces that may be used to satisfy

one or more requirements.

Generally, newer COTS components are not

designed with the space radiation environment

in mind, nor are they built to withstand the ri-

gors of launch into space. However, certain

hardware and firmware (e.g. using triple mode

redundancy) have enough use in space that

they may be considered COTS.

0.7 Proof of Concept

The foundation of this proposal evolved from a National Aeronautics and Space Administration (NASA) project

whose goal was to improve the portability of components utilized in software defined radio (SDR) deployments.

The intent is to improve the return on investment in software development by allowing the related components to be

deployed in more than one project/mission without incurring significant additional development time.

A predecessor to this STI specification was developed by NASA as part of a technology demonstration of software-

defined radio technology. The use of SDRs for NASA missions was a new concept in 2002, made possible by the

development of reconfigurable components suitable for use in space radios. A need to reduce the cost and risk of

using SDRs was identified and the development of a common SDR architecture was initiated as a means to achieve

this.

In 2007, the architecture was determined to be ready for flight implementation in a technology development project.

This project was originally called the Communication, Navigation, and Networking reConfigurable Testbed

(CoNNeCT), and later renamed the Space Communications and Navigation (SCaN) Testbed. Three SDRs were

procured in 2008 and 2009 for the SCaN Testbed, using the architecture defined in a technical memorandum and

referred to in the procurement specifications as Space Telecommunications Radio System version 1.02.1.

The SCaN Testbed was launched in July 2012 and operated on an external truss on the International Space Station

(ISS). The SCaN Testbed was an experimental communications system that provided the capability for S-Band, Ka-

Band, and L-Band communication with space and ground assets. Investigation of SDR technology and the STI

architecture was the primary focus of the SCaN Testbed. As a completely reconfigurable testbed, the SCaN Testbed

provided experimenters an opportunity to develop and demonstrate experimental waveforms and applications for

communication, networking, and navigation concepts and to advance the understanding of operating SDRs in space.

Lessons learned from the SDR platform provider, application developers, and integrators of the SCaN Testbed

provided critical insight for the development of future versions of the Space Telecommunications Radio System

24 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

(STRS), which was released as NASA standard NASA-STD-4009. The most recent revision to the NASA standard,

designated as NASA-STD-4009A, serves as the basis for this STI specification.

As part of this effort, NASA has developed a reference implementation of this architecture as a C/C++ library.

Additionally, NASA has deployed several complete STRS operating environments on different radio platforms from

different vendors and maintains a library of portable applications that are compliant with the architecture.

Space Telecommunication Interface (STI), v1.0 -- beta 2 25

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

1. Scope

This document, the Space Telecommunication Interface (STI), specifies the data types, application programming

interface, and associated operational patterns that compliant software defined radio (SDR) platforms are required to

implement. This is intended to promote portability of SDR applications between radio platform providers by

providing a common programming interface.

In order to be adaptable to a wide variety of platforms and applications, this specification focuses on a metamodel

for the hardware and software architecture of an SDR, rather than prescribing a specific implementation. As such,

an adequate level of knowledge capture must be documented to facilitate portability and reuse of hardware and

software architecture.

2. Conformance

In this document, conformance or compliance is used to indicate normative elements; that is, they are to be followed

in order to comply with the specified requirements. Shall is used to indicate a requirement that is contractually

binding, meaning it must be implemented, and its implementation verified. Will is used to indicate a statement of

fact. Will statements are not subject to verification. Should is used to indicate a goal which must be addressed by

the design team but is not formally verified.

The primary point of conformance is support of the given platform independent model (PIM) described in section

12, Normative Requirements, 12, Normative Requirements, in this document. This specification concerns multiple

aspects of SDRs, with different specific points of conformance for each aspect. Hardware architecture conformance

is indicated mainly through a hardware interface document (HID), which specifies how the PIM is realized in a

given design. Software architecture conformance is based on the implementation and usage of the various software

interfaces prescribed in this document. Ellipses (…) are used to indicate continuation or user-defined values,

whether enclosed in braces or not. The platform specific model (PSM) language-specific requirements are indicated

in Annex A. To summarize, section 12 and portions of Annex A that pertain to the language of implementation are

normative.

3. References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions

of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do

not apply.

Object Management Group (OMG):

CPP C++ Language Mapping Specification (https://www.omg.org/spec/CPP/)

DDS-JAVA Java 5 Language PSM for DDS (https://www.omg.org/spec/DDS-Java)

IDL Interface Definition Language Specification (https://www.omg.org/spec/IDL)

PYTH Python Language Mapping Specification (https://www.omg.org/spec/PYTH)

SysML Systems Modeling Language Specification (https://www.omg.org/spec/SysML/)

UML Unified Modeling Language Specification (https://www.omg.org/spec/UML/)

https://www.omg.org/spec/CPP
https://www.omg.org/spec/CPP/
https://www.omg.org/spec/DDS-Java
https://www.omg.org/spec/IDL
https://www.omg.org/spec/IDL
https://www.omg.org/spec/PYTH
https://www.omg.org/spec/PYTH
https://www.omg.org/spec/SysML
https://www.omg.org/spec/SysML/
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML/

26 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Institute of Electrical and Electronics Engineers (IEEE):

1003.13
IEEE Standard for Information Technology—Standardized Application Environment Profile

(AEP)—POSIX® Realtime and Embedded Application Support (e.g.

https://standards.globalspec.com/std/896855/IEEE%201003.13)

International Organization for Standardization (ISO):

8601

Data elements and interchange formats - Information interchange -

Representation of Dates and Times (e.g. https://www.iso.org/standard/70907.html,

https://www.iso.org/standard/70908.html)

9899
Information technology—Programming languages—C (e.g.

https://standards.globalspec.com/std/10395283/ISO/IEC%209899)

9945
Information technology—Portable Operating System Interface (POSIX®) Base Specifications

(e.g. https://standards.globalspec.com/std/10153436/DS/ISO/IEC/IEEE%209945)

14882
Information technology—Programming languages—C++ (e.g.

https://standards.globalspec.com/std/10194484/ISO/IEC%2014882)

30170
Information technology — Programming languages — Ruby (e.g.

https://standards.globalspec.com/std/1518370/ISO/IEC%2030170)

Other:

JAVA Java Language Specification (https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf)

LUA Lua 5.3 Reference Manual (https://www.lua.org/manual/5.3/)

PERL Perl Language Specification (https://perldoc.perl.org/)

PYTHON Python Language Mapping Specification (https://www.python.org/doc/)

3.2 Non-normative References

The following documents provide additional guidelines, historical context or rationale for elements of this

specification.

Object Management Group (OMG):

ORMSC/14-06-01
Model Driven Architecture (MDA) Guide (https://www.omg.org/cgi-

bin/doc?ormsc/14-06-01)

SDRP/1.0
PIM and PSM for Software Radio Components Specification (SWRADIO)

(formal/07-03-01) (https://www.omg.org/spec/SDRP/)

National Aeronautics and Space Administration (NASA):

NASA-STD-4009A
Space Telecommunications Radio Systems (STRS) Architecture Standard

(https://standards.nasa.gov/standard/oce/nasa-std-4009)

NASA-HDBK-4009A
Space Telecommunications Radio Systems (STRS) Architecture Standard

Rationale (https://standards.nasa.gov/standard/oce/nasa-hdbk-4009)

NASA/TM—2007-215042
Space Telecommunications Radio System (STRS) Architecture Goals/Objectives

and Level 1 Requirements

(https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008862.pdf)

https://standards.ieee.org/standard/1003_13-2003.html
https://standards.globalspec.com/std/896855/IEEE%201003.13
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70908.html
https://www.iso.org/standard/74528.html
https://standards.globalspec.com/std/10395283/ISO/IEC%209899
https://www.iso.org/standard/50516.html
https://standards.globalspec.com/std/10153436/DS/ISO/IEC/IEEE%209945
https://standards.globalspec.com/std/10194484/ISO/IEC%2014882
https://standards.globalspec.com/std/1518370/ISO/IEC%2030170
https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf
https://www.lua.org/manual/5.3/
https://perldoc.perl.org/
https://www.omg.org/spec/PYTH
https://www.python.org/doc/
https://www.omg.org/mda/index.htm
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/spec/SDRP
https://www.omg.org/spec/SDRP
https://www.omg.org/spec/SDRP/
https://standards.nasa.gov/standard/nasa/nasa-std-4009
https://standards.nasa.gov/standard/nasa/nasa-std-4009
https://standards.nasa.gov/standard/oce/nasa-std-4009
https://standards.nasa.gov/standard/nasa/nasa-hdbk-4009
https://standards.nasa.gov/standard/nasa/nasa-hdbk-4009
https://standards.nasa.gov/standard/oce/nasa-hdbk-4009
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008862.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008862.pdf

Space Telecommunication Interface (STI), v1.0 -- beta 2 27

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

NASA/TP—2008-214813
Space Telecommunications Radio System Software Architecture Concepts and

Analysis (https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080024190.pdf)

United States Department of Defense:

MIL-STD-1553
Digital Time Division Command/Response Multiplex Data Bus (e.g.

https://www.milstd1553.com/)

SCA
Software Communications Architecture Specification, Version 2.2.2

(https://sds.wirelessinnovation.org/assets/sca_version_2_2_2.pdf)

4. Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Adaptability
Adaptability is the ease with which a system satisfies differing system constraints and user needs.

Application Program Interface (API)
An application program interface (API) is a formalized set of software calls and routines that can be referenced by

the application program in order to access supporting system or network services.

Board Support Package (BSP)
A board support package (BSP) provides the hardware abstraction of the GPM module for the POSIX-compliant

Operating System. It contains the boot and the generic and processor specific drivers required for the specific hard-

ware. The BSP leverages commercial off the shelf (COTS) device drivers and other software necessary for applica-

tions to access the specific hardware.

Component
A component represents a modular part of a system that encapsulates its contents and whose manifestation is

replaceable within its environment. A component exposes a set of provided and required interfaces that specify the

component behavior and operation.

Device
A hardware device is a physical entity that is capable of performing a function. A software device is a software

abstraction of a hardware device(s). A STI device is a software device that is part of the STI Infrastructure having a

well defined and portable API which may use the HAL to read, write, and control hardware devices.

External Interface
An external interface consists of software and/or hardware that enable signals to be transported to and/or from a

radio. Examples include interfaces to/from the flight computer, power, data sources/sinks, and antenna.

Facility
The realization of certain functionality through a set of well-defined interfaces.

Fault Management
Fault management is the set of functions that detect, isolate, and correct malfunctions within the system or provide

notifications.

General-purpose Processing Module (GPM)

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080024190.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080024190.pdf
http://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=36973
https://www.milstd1553.com/
http://www.wirelessinnovation.org/assets/work_products/sca_version_2_2_2.pdf
https://sds.wirelessinnovation.org/assets/sca_version_2_2_2.pdf

28 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

A general-purpose processing module (GPM) is a hardware module used for general purpose processing that

contains the STI OE. The GPM consists of the general-purpose processor, appropriate memory both volatile and

non-volatile, system bus, the spacecraft (or host) telemetry, tracking and command (TT&C) interface, ground

support telemetry and test interface, and the components to support the radio configuration.

Hardware Abstraction Layer (HAL)

The hardware abstraction layer (HAL) is the library of functions that provides a platform independent view of the

specialized hardware by abstracting the physical hardware interfaces. The HAL implements any software or

firmware that is directly dependent on the underlying hardware. The HAL is the part of the operating environment

(OE) that the STI Infrastructure uses to access hardware.

Hardware Interface Description (HID)

The hardware interface description (HID) describes physical and electrical interfaces, hardware performance,

capability, capacity, size, weight, and power requirements.

Logical Device
A software component that is an abstraction of a hardware device it represents.

Mapping
The specification of a mechanism for transforming the elements of a model conforming to a particular metamodel

into elements of another model that conforms to another (possibly the same) metamodel.

Metamodel
A model of models.

Model
A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA)
An approach to IT system specification that separates the specification of functionality from the specification of the

implementation of that functionality on a specific technology platform.

Module
Module is a self-contained hardware or software component that interacts with a larger system. A software module

(program module) performs specific tasks within a software system. A hardware module is a physical grouping of

devices capable of implementing specific functions.

Platform
A set of subsystems or technologies that provide a coherent set of functionality through interfaces and specified

usage patterns.

Platform Independent Model (PIM)
A model of a subsystem that contains no information specific to the platform, or the technology that is used to

realize it.

Platform Specific Model (PSM)
A model of a subsystem that includes information about the specific technology that is used in the realization of it on

a specific platform, and hence possibly contains elements that are specific to the platform.

Portability
Portability is the ease with which a system application or service can be transferred from one hardware or software

environment to another.

Portable Operating System Interface (POSIX)

Space Telecommunication Interface (STI), v1.0 -- beta 2 29

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Portable operating system interface (POSIX) refers to a family of IEEE standards 1003.n which describes the funda-

mental operating system services and functions necessary to provide a UNIX-like kernel interface to applications.

POSIX is not an operating system but assures guaranteed programming interfaces available to the application pro-

grammer.

Radio Frequency (RF) Module (RFM)
The radio frequency module (RFM) performs the conversion to and from carrier frequencies and provides the signal

processing module with baseband or IF signals and the transmission and reception equipment with RF signals. RFM

associated components may include filters, RF switches, diplexers, low noise amplifiers (LNAs), power amplifiers,

and analog to digital (and vice-versa) converters. This module handles the interfaces that control the final stage of

transmission or first stage of reception of the wireless signals, including antennas.

Radio Platform
The Radio Platform is a platform that provides radio functionality.

Real-Time Operating System (RTOS)
Real-time operating system (RTOS) is an operating system that guarantees a certain capability within a specified

time constraint.

Reconfigurable Transceiver (RT)

A reconfigurable transceiver (RT) is a radio with limited processing and selectable remote reconfiguration (e.g.,

filter parameters and modulations).

Service
A software program that provides functionality available for use by other applications.

Signal Processing Module (SPM)
The signal processing module (SPM) contains the implementations of the signal processing used to handle the trans-

formation of received digitally-formatted signals into data packets and/or the conversion of data packets into digi-

tally-formatted signals to be transmitted. Also included is the spacecraft data interface. Components include applica-

tion specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), digital signal processors (DSPs),

memory, and connection fabric or bus.

Space Telecommunications Radio System (STRS)

Space telecommunications radio system (STRS) is the name of the project that defines and maintains the SDR

architecture for NASA.

STI Infrastructure
The STI infrastructure is that part of the STI operating environment which configures and controls STI waveforms

and services as well as specialized hardware via the HAL. Additional functionality may be required for radio robust-

ness and mission dependent requirements.

STI Operating Environment (OE)
The STI operating environment (OE) is the portion of the STI radio that contains the STI Infrastructure, the POSIX

conformant RTOS, the HAL, and optional middleware software.

STI Radio
A STI radio is a software defined radio compliant with the STI architecture standard, running one or more wave-

forms.

5. Symbols

The following acronyms and abbreviations are used in this document

30 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

A Ampere

A2D Analog to Digital

ADC Analog-to-Digital Converter

AEP Application Environment Profile

AGC Automatic Gain Control

ANSI American National Standards Institute

API Application Programming Interface

APP Application

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

BIT Built-in Test

BSP Board Support Package

C&DH Command and Data Handling

CCSDS Consultative Committee for Space Data Systems

COTS Commercial Off the Shelf

D2A Digital to Analog

DAC Digital-to-Analog Converter

DEC Digital Equipment Corporation

DLL Dynamic Link Library

DSP Digital Signal Processor

EDIF Electronic Design Interchange Format

EEPROM Electrically Erasable, Programmable Read-Only Memory

FFRDC Federally Funded Research and Development Center

FIFO First In, First Out

FIPS Federal Information Processing Standard

FPGA Field Programmable Gate Array

GPIO General Purpose Input Output

GPM General-purpose Processing Module

GPP General Purpose Processor

GPS Global Positioning System

HAL Hardware Abstraction Layer

HDBK Handbook

HDL Hardware Description Language

HID Hardware Interface Description

HW Hardware

I/O Input/Output

I2C Inter-Integrated Circuit

ID Identification, Identifier

IDL Interface Definition Language

IEC International Electrotechnical Commission

Space Telecommunication Interface (STI), v1.0 -- beta 2 31

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

IEEE The Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

INCITS Inter-National Committee for Information Technology Standards

IP Internet Protocol

ISO International Organization for Standardization

ISR Interrupt Service Routine

LLC Logical Link Control or Limited Liability Company

LNA Low Noise Amplifier

MAC Media Access Control

MARS OMG’s Middleware and Related Services

MDA Model Driven Architecture

MIL Military

MJD Modified Julian Date

MMU Memory Management Unit

NASA National Aeronautics and Space Administration

NM Network Module

NTP Network time protocol

OAL OEM adaptation layer

OE Operating Environment

OEM Original Equipment Manufacturer

OM Optical Module

OMG Object Management Group

ORMSC Operational Research MSc Programmes

OS Operating System

OSS Open Source Software

PIM Platform-Independent Model

PLD Programmable Logic Device

POSIX® Portable Operating System Interface

PROM Programmable Read-Only Memory

RAM Random Access Memory

RF Radio Frequency

RFM Radio Frequency Module

ROI Return on Investment

ROM Read-Only Memory

RTOS Real-Time Operating System

SCA Software Communications Architecture

SDR Software-Defined Radio

SEC Security Module

SEU Single Event Upset

SNC TF OMG’s MARS Secure Network Communications task force

32 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

SPM Signal Processing Module

SRAM Static Random-Access Memory

STD Standard

STI Space Telecommunication Interface

SysML Systems Modeling Language

TAI International Atomic Time (temps atomique international)

TCP Transmission Control Protocol

TMR Triple-Mode Redundancy

TT&C Telemetry, tracking, and command

UML Unified Modeling Language

UTC Coordinated Universal Time

V Volt

V&V Verification and Validation

VDD Version Description Document

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XML Extensible Markup Language

6. Additional Information

6.1 Acknowledgments

The following companies contributed to the development of this specification:

• NASA Glenn Research Center

• Sierra Nevada Corporation

• Vantage Partners, LLC

• HX5, LLC

6.2 Notation Clause

Colors are provided for clarification purposes only and are non-normative.

Formatted: Font: 10 pt

Formatted: Text body (user), Adjust space between

Asian text and numbers, Font Alignment: Auto

Space Telecommunication Interface (STI), v1.0 -- beta 2 33

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

7. Goals and Objectives

7.1 Overview

The goals and objectives of the Space Telecommunication Interface (STI) architecture for software-defined radios

(SDRs) is to provide a common, consistent framework that abstracts the application software from the platform

hardware to reduce the cost and risk of using complex reconfigurable and reprogrammable radio interfaces across

different space and satellite projects. It achieves this objective by defining an architecture to enable the reuse of

applications (waveforms and services implemented on the SDR) across heterogeneous SDR platforms and thereby

reduces dependence on a single vendor or platform type.

The specification provides a detailed description and set of requirements to implement the architecture. The

specification focuses on the key components and facilities by prescribing their functionality and interfaces for both

the hardware and the software. The intended audience for this specification is composed of software and hardware

developers who need architecture specification details to develop an STI platform or application.

7.2 Purpose

The purpose of this specification is to establish an open architecture specification for space and ground SDRs.

Many space projects either use hardware radios, which cannot be modified once deployed, or software-defined

radios with an architecture that depends on the radio provider and involves significant effort to add new

applications.

This specification is intended to assist in the development of software-defined, reconfigurable technology to meet

future space communications and navigation system needs. Software-based SDRs enable advanced operations that

potentially reduce mission life-cycle costs for space or ground platforms. Since SDR technology allows radios to be

reconfigured to perform different functions, it may reduce the number of discrete radio devices required to achieve

desired objectives, which also decreases mass and power requirements for the overall system.

7.3 Key Architecture Requirements

The key goals in the development of the STI architecture are to decrease the development time, cost, and risk of

using SDRs while still accommodating advances in technology. The advent of software-based applications allows

minimal rework to reuse applications and to adapt to evolving requirements.

The requirements for the architecture are derived from the following STI goals and objectives:

• Usable across most space project types (scalability and flexibility).

• Decrease development time and cost.

• Increase reliability of SDRs.

• Accommodate advances in technology with minimal rework (extensibility).

• Adaptable to evolving requirements (adaptability).

• Leverage existing or developing standards, resources, and experience (state-of-the-art and state-of-

practices).

• Maintain vendor independence.

• Enhance waveform application portability and re-usability.

• Interoperable with existing radios

Conversely, the architecture does not specify mission-specific functional and performance requirements such as:

• Any specific hardware

• Contents or format of the external interfaces to the SDR

34 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

• Waveform-specific requirements such as data rate, coding scheme, and modulation and demodulation

techniques.

• Security, fault tolerance, redundancy, and fault mitigation approaches.

Instead, the architecture is careful to enable all solutions that the project might require as they relate to the mission-

specific functional and performance specifications. The architecture does not preclude the implementation of

mission-developed services on the SDR, including but not limited to:

• Multiple waveforms operating simultaneously across any RF band defined in the SDR specification.

• Commanded built-in-test (BIT) and status reporting.

• Real-time operational diagnostics.

• Automated system recovery and initialization.

• Networking and navigation within the SDR.

• Secure transmission.

• Shared processing among on-board elements.

To meet these goals and objectives, the STI architecture has an open architecture design that accommodates a

varying range of radio form factors. Historically, users have experienced up to 98% software reuse. The

architecture has allowed parallel and independent software and platform development as well as reduced

dependence on a single SDR provider by separating application development from the hardware platform

development. The architecture has also allowed the software to be modified late in development or after deployment

for new requirements opportunities or to fix bugs. The architecture provides standardized interfaces for cognitive

engine inclusions across different platforms.

7.4 Fundamental Design

This STI Standard consists of hardware, configurable hardware design, and software architectures with

accompanying description, guidance, and requirements.

The terms “software” and “configurable hardware design” are used in this specification to distinguish the

architecture items that apply to code (source code, object code, executables, etc.) implemented on a processor; and

designs (hardware description language/HDL source, loadable files, data tables, etc.) implemented in a configurable

hardware device such as a field programmable gate array (FPGA). Both items can change the functionality of the

radio in-situ using program control. The term “software” is also used in a generic sense in this specification to

discuss all configurable items of the radio, including configurable hardware design. The terminology used is not

meant to imply design and implementation process.

The STI hardware architecture is specified at a facility level. The hardware architecture requirements are written so

that the hardware provider defines the functional breakdown (modules or components) of the system and publishes

the functions and interfaces for each module and for the entire platform in a hardware interface description (HID)

document. This information enables others developing applications or additional modules, or interfacing to the

platform, to have the knowledge to integrate and test the hardware interfaces and understand the features and

limitations of the platform. This specification encourages the development of applications that are modular,

portable, reconfigurable, and reusable.

The software architecture is the focus of this STI Standard. STI applications use the STI infrastructure-provided

application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload

an application. The software architectural model describes the relationship between the software elements, defined

in layers, in an STI-compliant radio. The model illustrates the different software elements used in the software

execution and defines the API layers between an STI application and the Operational Environment (OE), and

between the OE and the hardware platform.

The STI software layers are separated to enable developers to implement the software layers differently according to

their requirements while still complying with the STI architecture. A key aspect is the abstraction of the STI

application, which is either a waveform or service, from the underlying OE software to promote portability and

Space Telecommunication Interface (STI), v1.0 -- beta 2 35

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

reusability of the STI application. Interfaces in STI software architecture can be divided into three general

categories, as follows:

• The STI APIs, defined in this document, and the application-specific data structures associated with these

APIs.

• The operating system interface, such as POSIX®.

• The interface to external software modules, librarieslibraries, or dependencies, such as third-party signal

processing software, mathematical toolkits, or an interface to any application-specific hardware.

The STI APIs provide the interfaces that allow applications to be instantiated and use platform services. These APIs

also enable communication between STI applications and the STI infrastructure. The hardware abstraction layer

(HAL) provides a software view of the specialized hardware by abstracting the physical hardware of interfaces. It is

to be published so that software and configurable hardware design running on the platform’s specialized hardware

can integrate with the STI infrastructure.

7.5 Roles and Responsibilities

The final configuration of an SDR and its applications is generally a product of multiple organizations performing

various tasks. The separation of requirements, responsibilities, and resulting tasks is assigned in this specifi cation

by logical role where each role has requirements that may be satisfied by an individual or delegated to a subordinate

organization(s). As figure 1, Roles and Responsibilities, illustrates, the effort begins with a mission need for a radio,

which could support communications, navigation, and in some instances even networking functions. The mission

system engineer defines radio interface requirements. For each mission, the system integrators, platform providers,

and application developers are selected. Eventually, the platform and applications are integrated into the STI-

compliant radio product. Both the hardware and software are tailored to meet mission-specific needs.

Commented [HLM(L1]: JIRA issue STI_5: Correct

SysML in figures

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0

36 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The STI platform provider is the organization responsible for the design and development of the SDR hardware

platform, including the STI OE (e.g., infrastructure, OS), and associated documentation. The OE and hardware

platform are a unique set and become the SDR platform.

The STI platform provider is responsible for following:

• All documentation associated with the platform.

• Any platform-specific FPGA wrapper for adaptation of FPGA code to the platform

Figure 1: Roles and Responsibilities

Figure 1: Roles and Responsibilities

Formatted: Font: 10 pt, Not Italic

Formatted: Centered

Formatted: Font: 10 pt, Not Italic

Formatted: Font: 10 pt, Not Italic

Space Telecommunication Interface (STI), v1.0 -- beta 2 37

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

• Software header files specifying the required interface, including constantspredefined values, type

definitions, and structures.

• Script or software configuration file formats, any extensible markup language (XML) schema, and any

transformation tool for controlling instantiation, and their associated documentation, if deemed necessary.

If the STI platform provider delegates responsibility for part of the OE to a separate infrastructure provider, the

responsibility for the appropriate files and documentation may be delegated to that provider as well. If the STI

platform provider delegates responsibility for part of the hardware to a separate hardware provider, the responsibility

for the pertinent HID documentation may be delegated to that hardware provider as well. The STI platform provider

is ultimately responsible to integrate and deliver all aspects of the platform and OE documentation.

A primary objective of STI is to facilitate the re-use of SDR components, and as such, one or more repositories

containing existing, previously-developed STI components may be available for project development efforts. Any

such components may be publicly available and distributed under an open-source license or a

commercial/proprietary license, or may be held in a private, non-public repository that is maintained internally

within the same organization.

The project design team and the STI application developer have the responsibility to evaluate the contents of any

available component repositories against the SDR application requirements to determine if an existing application in

a repository may be re-used by porting it to the target platform. Depending on the results of this decision, the STI

application developer either creates a new application or ports an existing STI application. The STI application

developer performs unit tests, andtests and documents the functionality.

The STI integrator brings the hardware platform and software application together on the SDR platform. The STI

integrator could be the STI platform provider, the STI application developer(s), a mission engineer, or even a third

party. The STI integrator’s role is to have the application properly running on the SDR platform to meet the

communication, navigation, or other functions of the mission. Once the STI radio integration is complete, it is

delivered to a system integrator who incorporates it into the mission spacecraft system.

Commented [HLM(L2]: JIRA issue STI_31: Change

“constants” to “predefined values”

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

38 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

8. Hardware Architecture

In addition to providing benefits by defining a standard software infrastructure for software defined radios, this

specification also defines standards for the hardware portion of the radio. Hardware technologies may change more

rapidly than software, and each radio implementation generally has very specific spacecraft dependencies and

requirements. Therefore, the STI hardware architecture is specified as an abstract set of facilities rather than at the

physical implementation level.

The architecture does not prescribe a specific hardware implementation approach. An STI hardware platform is to

be delivered with a complete HID, which is described in section 8.3, Hardware Interface DescriptionHardware

Interface Description. The HID specifies the electrical interfaces, logic interfaces, connector requirements, and

physical requirements for the delivered radio. Each module’s HID abstracts and defines the module functionality

and performance.

8.1 Generalized Hardware Architecture

The STI radio hardware is divided logically into:

a. a general-purpose processing module (GPM) containing the software,

b. signal processing modules (SPM) containing programmable logic devices (PLDs), which perform any high-

speed digital signal processing, and

c. RF modules (RFM) containing the analog to digital and digital to analog converters with interfaces to the

antennas.

Configurable hardware designs are realized using a hardware device such as an FPGA or other type of

programmable logic device (PLD).

The hardware diagrams illustrate some likely radio functions and the interconnects for each module. The modules

are a logical and functional division of common radio functions that comprise an STI platform. Modules are not

intended to represent physical entities of the platform. As developers choose how to distribute and implement the

radio functions among hardware elements, the specification provides the guidance on the interfaces and abstractions

that are to be provided to comply with the architecture. The module and function connections provided in the

diagrams are data path, control, signal clock, and external interfaces.

Figure 2, Notional STI Hardware Architecture, shows the high-level STI hardware architecture. The figure

illustrates the functional attributes and interfaces for each module. A module is a combination of logical and

functional representations of platform and applications implemented in a radio. The modules are divided into their

typical functions to provide a common description and terminology reference. Each STI platform provider has the

flexibility to combine these modules and their functionality as necessary during the radio design process to meet the

specific mission requirements.

Formatted: Font: 10 pt

Commented [HLM(L3]: JIRA issue STI_5: Correct

SysML in figures

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 39

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Additional modules can be added for increased capability. The hardware architecture does not specify a physical

implementation internally on each module, nor does it mandate the standards or ratings of the hardware used to

construct the radios. Thus, a radio supplier can encapsulate company proprietary circuit or software designs,

provided the modules meet the specific architecture rules and expose the interfaces defined for each module. There

is flexibility to physically combine or split these modules as necessary during the radio design process to meet the

specific mission requirements or to optimize the design. For example, all RF and signal-processing components or

functions may be integrated onto a single printed circuit board, easing footprint, interface, and integration issues, or

an approach with multiple boards and enclosures could be used. Similarly, an FPGA could potentially contain both

the Signal Processing Module (SPM) functions and the General Purpose Processor (GPP), or the Signal Processing

Module (SPM) functions could be split between an FPGA and the GPM.

Each project or organization may choose to further standardize certain interfaces and physical packaging. This

approach provides organizations with the flexibility to adopt different implementation standards for various project

classes. Thus, if a series of radios are required with common operating requirements, physical construction details,

such as bus chassis or card slice, these radios can be part of the acquisition strategy. This modularity may improve

the overall cost-effectiveness of a radio system over its service lifetime.

Another example of the flexibility is where a large organization or space mission may choose to standardize the

details of the RF-to-signal-processing interface. This might be done to facilitate the use of different RF modules, but

the same signal processing module, for radios used for several similar missions. Figure 2 depicts radio facilities, or

elements, expected for each module in a notional sense. Not all the elements shown in each module are necessarily

required for implementation. This architecture specifies the functionality of each module, but it does not necessarily

specify how they are implemented. Mission requirements will dictate the implementation approach to each module,

and the modules required in each radio.

8.1.1 Components

The approach taken in the STI is to describe the radio hardware architecture in a modular fashion. The generic

hardware architecture diagram identifies three main functional components or modules of the STI radio. Although

Figure 2: Notional STI Hardware Architecture

40 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

not shown in figure 2, additional modules (e.g., optical, networking, and security) can be added for increased

capability and will be included in the specification as it matures.

The hardware architecture currently consists of the following modules:

• General-purpose Processing Module (GPM), which consists of:

◦ A suitable general purpose processor (GPP),

◦ Appropriate memory (both volatile and nonvolatile),

◦ System bus,

◦ The spacecraft or host telemetry, tracking, and command (TT&C) interface,

◦ Ground test interface,

◦ Any required components to support the radio configuration.

• Signal-Processing Module (SPM), which consists of:

◦ The signal processing used to handle the transformation of received digitally formatted signals into

data packets, and/or

◦ The conversion of data packets into digitally formatted signals to be transmitted.

◦ The spacecraft data interface, which represents any required Application-Specific Integrated Circuits

(ASICs), Digital Signal Processors (DSPs), FPGAs, memory, and connection fabric or bus.

• Radio Frequency Module (RFM), which consists of:

◦ The interfaces that control the final stage of transmission or the first stage of reception of the wireless

signals, including antennas.

◦ Any required RF functionality to provide the SPM with the filtered, amplified, and correctly formatted

signal if acting as a receiver, and/or

◦ Any required RF functionality to format, filter, and amplify the signal from the SPM if acting as a

transmitter.

◦ Its associated components include filters, radio frequency (RF) switches, diplexer, low noise amplifiers

(LNAs), power amplifiers, analog to digital converters (ADCs), and digital to analog converters

(DACs).

• Security Module (SEC). Though not directly identified in the generic hardware diagram, an SEC is also

being proposed to allow STI radios to support future security requirements. The details of this module will

be defined in later revisions of the architecture.

• Network Module (NM): The architecture supports Consultative Committee for Space Data Systems

(CCSDS) and Internet Protocol (IPs) networking functions. However, the Network Module (NM) may be

realized as a combination of both the GPM and SPM.

• Optical Module (OM): This module supports the integration of optical equipment when used. The detail

of this module will be defined in later revisions of the architecture. (It has many similarities to RFM, but

for optical carriers)

• Cognitive Module (COG): Though not directly identified in the generic hardware diagram, a COG is often

desired to allow STI to support interference mitigation, anti-jamming, and alternate relay paths to Earth

stations.

8.1.2 Functions

Test and status, fault monitoring and recovery, and radio and TT&C data-handling functions are to be implemented

on all modules to some level. The details of the implementation are mission specific. The related control and

interface requirements for the shared module functions are stated in the corresponding module section.

Space Telecommunication Interface (STI), v1.0 -- beta 2 41

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Test and Status

Each module (or combination of modules) should provide a means to query the current health of the module and run

diagnostics. The software methods for Query and RunTest are provided such that they may check the hardware state

as well as software values.

Fault Monitoring and Recovery

Each module (or combination of modules) should incorporate detection of operational errors, upsets, and major

component failures. These may be caused by the radiation environment, for example, including single-event upsets

(SEUs), temperature fluctuations, or power supply anomalies. In addition to detection, mitigation and fail -safe

techniques should be employed. Each module should have a default power-up mode to provide the minimal

functionality required by the mission. This fail-safe mode should have minimal software and/or configurable

hardware design dependency. Autonomous recovery is needed in the space environment when no operator is

available.

Radio Data Path

SDRs can be implemented with or without the GPM in the data path. The STI architecture supports the separation

of the RFM and SPM data paths from the GPM. Giving the GPM access to the data path as an optional capability

rather than a required capability allows for a more efficient implementation for medium and small mission classes

and improves the overall performance for near-term implementations. If space-qualified GPM components mature

with the performance capabilities required for signal processing, the GPM can exist within the data path and take on

more signal-processing functionality, increasing flexibility.

Radio Startup Process

The startup of the STI infrastructure is expected to be initiated by the STI platform boot process, so that it can

receive and send external commands and instantiate applications. The startup process might include built -in tests for

self-diagnostics to verify nominal system functionality. In order to control an STI platform at power-up and to

recover from error conditions, an STI platform is to have a known power-up condition that sets the state of all

modules. To support upgrades to the OE, an STI platform requires the ability to alter the state (boot parameters)

and/or select a boot image. The exact mechanisms and procedures used will be platform and mission specific but

need to be sufficient to support upgrades to OE components, such as the OS, BSP, and STI infrastructure.

8.1.3 External Interfaces

There may be several external interfaces in this architecture:

Host TT&C

The host TT&C interface represents the typically low-latency, low-rate interface for the spacecraft (or other host) to

communicate with the radio. The host telemetry typically carries all information sourced within the radio. This type

of information traditionally is called the telemetry data and includes health, status, and performance parameters of

the radio as well as the link in use. In addition, this telemetry often includes radiometric tracking and navigation

data. The command portion of this interface contains the information that has the radio itself as the destination of

the information. Configuration parameters, configuration data files, new software data files, and operational

commands are the typical types of information found on this interface.

Ground Test

The Ground Test Interface provides a “development-level” view of the radio and is exclusively used for ground-

based integration and testing functions. It typically provides low-level access to internal parameters not typically

available to the Spacecraft TT&C Interface. It can also provide access when the GPM is not functioning (i.e., during

boot).

Data

The Data Interface is the primary interface for data that are sourced from the other end of the link and for data that

are sunk to the other end of the link. This interface is separate from the TT&C interface because it typically has a

different set of transfer parameters (protocol, speeds, volumes, etc.) than the TT&C information. A common

42 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

interface point in the spacecraft for this type of interface is the spacecraft solid-state recorder rather than the

spacecraft command and data-handling (C&DH) subsystem. This interface is also characterized by medium to high

latency and high data rates.

Clock

The Clock Interface is used to input to the radio the frequency reference sufficient for supporting navigation and

tracking. This type of input frequency reference is essential to the operation of the radio and provides references to

the SPM and RFM. There does not have to be an external clock interface if the SPM or RFM contains an oscillator

that performs this function

Antenna

The Antenna Interface is used to connect the electromagnetic signal (input or output) to the radiating element or

elements of the spacecraft. It also includes the necessary capability for switching among the elements if required by

the mission. Steering the elements, if a function of the overall telecommunications system, is possible through this

interface, but it is not typically employed because of overall operational constraints.

Power

The Power Interface, which is not included on the diagram, is described as part of this specification at the highest

levels. The Power Interface defines the types and conditions of the input energy to power the radio.

Mission defined

The Mission-defined Interface, which is not included in the diagram, could monitor conditions that the radio

encounters such as external temperature, solar radiation, magnetic field strength, attitude, etc. The mission would

assign what to do with these values. A thermal interface that monitors temperature could be used to activate a

heating element or adjust dynamic factors dependent on temperature in a known way.

8.1.4 Networking Interface

A networking interface does not necessarily map directly to the SPM, GPM, or RFM. The networking interface

might handle only spacecraft TT&C data or both spacecraft TT&C data and radio data. This architecture allows for

those capabilities.

8.1.5 Internal Interfaces

To support the overall goals of the architecture, the internal interfaces (GPM system bus, GPM RFM control, SPM-

to-GPM test, frequency reference, and data path) should be well documented and available without restriction. The

GPM system bus (see figure 2) provides the primary interconnect between elements of the GPM.

The GPM system bus may provide an interface between the microprocessor, the memory elements, and the external

interfaces (TT&C and Test) of the GPM. The GPM system bus is the primary interface between the GPM and the

SPM, as shown in the interconnection with the major SPM processing elements. Finally, the GPM system bus

provides the interface by which the re-programmable and re-configurable elements of the SDR are modified. It

supports both the read and write access to the SPM elements, as well as the reloading of hardware configuration files

to the FPGAs.

The interface between the GPM and the RFM is primarily a control/status interface. Various RFM elements are

controlled by the set of GPM RFM control lines (see figure 2). Coming from the System Control block in the GPM,

this control bus can be either fixed by the System Control function or programmed by the GPM software and

validated and routed by the System Control function. It is important to have a hardware-based confirmation and

limit-check on the software controlling any RFM elements. The System Control module of the GPM provides this

functionality, thus keeping the GPM RFM Control bus within operational limits.

The Ground Test Interface (see figure 2) provides specific control and status signals from different modules or

functions to the Ground Test Interface block. This interface is used during development and testing to validate the

operation of the various radio functions. This interface is very specific to the implementation and realization of the

different modules.

Space Telecommunication Interface (STI), v1.0 -- beta 2 43

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The Frequency Reference Interface provides an important interface between the RFM and the SPM functions. It ties

the two modules together in a way that allows for the SDR to implement tracking and navigation functions. The

characteristics of this interface are defined by the various amounts of tracking accuracy required by the mission for

the SPM to accomplish. This interface can be as simple as a single, common frequency reference that is conditioned

from an outside source and distributed in the least degrading fashion possible to the SPM. Finally, the data paths are

the various streams of bits, symbols, and RF waves connecting the major blocks of the primary data path. For any

particular implementation, the data path or bit streams are defined by the particular application implemented in the

functional blocks.

The interface between the RFM and SPM should be well-defined and have characteristics suitable for that level of

conversion between the analog and digital domains. The hardware architecture can be further specified in a manner

that is important for implementers to consider and follow, if the implementation dictates the necessity of particular

components. Details of the GPM, SPM, and RFM are provided in subsequent sections.

8.2 Module Specification

8.2.1 General-Purpose Processing Module

Figure 3Figure 3, GPM Architecture Details, provides a closeup of the GPM. The GPM consists of one or more

general purpose or digital signal-processing elements and support hardware components, embedded OS, software

applications and interfaces to support the configuration, control, and status of the radio. The number of processing

elements and the extent of support hardware will vary depending on the mission-class processing and data-handling

requirements from a single system on a chip implementation for smaller mission classes to multiple logical

replaceable units (LRUs) for the largest mission classes. In addition, fault tolerance requirements can also increase

the number of hardware processing elements, support hardware components, and interface points required to meet

the range of mission classes. The majority of processing functions of the GPM will be under software control and

supported by an OS. Mission-specific data handling speeds may require the use of separate specialized support

hardware (FPGA or ASIC chips) to alleviate the burden on the processing elements. Such specialized support

hardware could include encryption, packet routing, and network processing functions.

GPM Components

The GPM contains, as necessary, a GPP and various memory elements as shown in Figure 3Figure 3. Depending on

the particular project requirements, not all memory elements are required. The GPP will typically be implemented

as a microprocessor, but it could take many forms, depending on the type of deployment. Because the GPM is the

primary control component of the radio, it is a required module for an STI radio. A description of each element

follows.

The GPP functions include the OE, the Hardware Abstraction Layer (HAL), and potentially application functions.

The OE contains the STI infrastructure, which provides the interfaces defined by the STI APIs specification. The

OE also contains the operating system and any related libraries.

Figure 3: GPM Architecture Details (Detail of Figure 2)

44 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The HAL is the library of software functions in the STI OE that provides a platform-vendor-specific view of the

specialized hardware by abstracting the underlying physical hardware interfaces. The HAL allows specialized

hardware to be integrated with the GPM so that the STI OE can access functions implemented on the specialized

hardware of the STI platform.

The Persistent Memory Storage element holds both the permanent (e.g. read-only memory) and reprogrammable

storage for the GPP element. This is likely to be implemented using a technology such as electrically erasable,

programmable read-only memory (EEPROM) or flash memory, depending on system requirements. The Persistent

Memory also provides the storage for the SPM FPGA elements (i.e. configurable hardware design). The GPM may

be responsible for programming and scrubbing the SPM FPGAs and, if so, would have access to the appropriate

“code” for the FPGAs.

The Work Area Memory element is provided as operational, scratch memory for the GPP element. This memory

element is implemented in concert with the GPP element and may contain both data and code, as appropriate for the

execution of the radio application running in the GPM.

Finally, the GPM contains a System Control element to control and moderate the GPM system bus. This element

provides the necessary control for the System Bus, including the various memory and SPM elements interfaced by

the System Bus. In addition, the System Control element provides a validated interface to the RFM hardware via the

GPM RFM Control Interface. As the software running on the GPP element commands the RFM elements into

certain states, those commands are interpreted by the System Control element and validated in a manner that will

prevent damaging configurations of the RFM; for example, tying the transmit amplifier directly to the receive

amplifier, bypassing the diplexer element. This level of validation in the GPM-to-RFM interfaces is intended to

prevent physical damage to the radio arising from a software bug. The System Control element may also be

implemented by an FPGA, but if so, it should have appropriate safeguards to ensure that the FPGA cannot be

modified inadvertently during flight (e.g. such as using a “permanently programmed” device or by otherwise

disabling the reprogramming capabilities).

GPM Functions

The GPM will provide the overall configuration and control of the STI architecture and may include any or all of the

following functions:

• Management and Control

◦ Module discovery

◦ Configuration control

◦ Command, control, and status

◦ Fault recovery

◦ Encryption

• STI infrastructure, radio configuration and control.

◦ Radio control

◦ System management

◦ Application upload management

◦ Device control

◦ Message center

• External network interface processing

• Internal data routing

• Waveform data link layer

◦ Media Access Control (MAC) and Logical Link Control (LLC) layer

◦ Physical layer processing

• Onboard data switching

Space Telecommunication Interface (STI), v1.0 -- beta 2 45

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

GPM Interfaces

• TT&C

• Ground Test

• General-purpose input output (GPIO), supporting but not limited to:

◦ Interrupt source/sink

◦ Application data transfer

• Control/configuration interface, supporting but not limited to:

◦ RFM & SPM

◦ Antenna

◦ Power amplifier

• System Bus interface

For GPM Requirements

See 12.1.112.1, Provide GPMProvide GPM, and 12.1.212.2, Diagnostic Information AvailabilityDiagnostic

Information Availability.

8.2.2 Signal Processing Module

Figure 4Figure 4, SPM Architecture Details, illustrates the SPM module. An SPM is optional for an STI platform.

The SPM may implement the signal processing used to transform received digital signals into data packets and/or

the conversion of data packets into digital signals to transmit. The complexity of this module is based on the

applications and data rates selected for a mission. The SPM modules contain components and capabilities to

manipulate and manage digital signals that need higher processing capabilities than that supplied by the GPM. The

configurable hardware design architecture describes a common interface for the application on the SPM, as

described in section 9.1, Configurable Hardware DesignConfigurable Hardware Design.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

46 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

SPM Components

The SPM will initially be implemented primarily with FPGAs, DSPs, reconfigurable processors, ASICs, and other

integrated circuits. However, technologies will change over time, so the specific implementation is left to the STI

platform provider. It is also anticipated that STI platforms may use dedicated physical hardware slices (e.g.,

separate circuit boards) to implement specialized applications and technologies. For example, a dedicated global

positioning system (GPS) receiver slice can complement the existence of reconfigurable SPM slices in the same

radio. The dedicated slice offloads demand on the less specific SPM. If an STI platform contains an SPM slice, the

slice should meet the module interface specifications for control and configuration and have an interface with the

GPM via the GPM system bus and the SPM-to-GPM test interface. These two interfaces work in concert to provide

a control and reprogramming path to the SPM from the GPM and the application running on the GPM.

SPM Functions

The SPM implements the digital signal processing functions that convert symbols to bits and vice versa. These

functions are typically implemented on FPGAs, DSPs, or ASICs. It is recommended that reconfigurable and

reprogrammable devices be used because this allows for new applications to be implemented on the SDR in the

future without a hardware modification. However, mission-specific requirements may dictate that the application be

implemented on a non-reprogrammable hardware device.

In addition to the digital signal processing functions, a data formatting function is typically provided to convert

blocks of data stored in the data storage element into bit streams appropriate for encoding into symbols and vice

versa. The STI architecture does not require that these are discrete entities; in some cases, it may be possible to

implement the data formatting function in the same device as the digital signal processing function.

A data storage element may be used to provide a buffer between the data interface and the bit stream

coders/decoders. This data storage function can be implemented in either volatile or nonvolatile memory, depending

on the operational requirements. An SPM may implement any or all of the following digital communication

functions depending upon the mission waveforms:

Figure 4: SPM Architecture Details (Detail of Figure 2)

Space Telecommunication Interface (STI), v1.0 -- beta 2 47

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

• Digital up conversion—interpolation, filtering, and “local oscillator” multiplication of baseband samples to

obtain an IF or RF output sample stream appropriate for digital-to-analog conversion. This is typically the

last transmit function implemented in the SPM, and the output samples are sent to the RFM.

• Digital down conversion—multiplication with “local oscillator,” downsampling, and filtering IF or RF

samples to obtain a baseband output sample stream. This is typically the first receive function implemented

in the SPM, with input samples coming from the analog-to-digital conversion in the RFM.

• Digital filtering—averaging, low-pass, high-pass, band-pass, polyphase, and other filters used for pulse

shaping, matched filter, etc. This may overlap with some of the functionality in the up and down

conversion.

• Carrier recovery and tracking—retrieval of the waveform carrier within the receive sample stream. Typical

SPM functions for carrier recovery include shifting the recovered carrier frequency to compensate for local

oscillator variations and Doppler shifts in the link.

• Synchronization (data, symbol, etc.)—alignment of received samples with symbol and data boundaries.

There may be some integration with the digital down conversion and carrier recovery and tracking

functions.

• Forward error correction coding—encoding transmit data so that receive data errors may be corrected to

some level, enhancing the waveform performance.

• Digital automatic gain control (AGC)—scaling of the receive samples to optimize downstream operations.

• Symbol mapping (modulation)—translating transmit data bits to modulation symbol samples.

• Data detection (demodulation)—translating receive symbol samples to data bits.

• Spreading and despreading—a form of encoding data to obtain certain energy dispersion in the frequency

domain.

• Scrambling and descrambling—a form of encoding data to ensure a certain level of randomness in the

digital data stream, usually for synchronization of the receiver.

• Encryption and decryption—a form of encoding data for security purposes.

• Data Input/Output (I/O) (high-speed direct from or to source or sink)—interface for transmit and/or receive

data to come in or out of the module. This may involve buffering and some protocol handling.

SPM Interfaces

The SPM’s functions and external interfaces are shown in Figure 4Figure 4. Interfaces shown include those

common to all module types as well as those specific for the SPM. These SPM-specific interfaces may not all be

required for some radios. Note that the implementation of these interfaces may combine two or more on one

physical transport. For example, the Data Interface and Control and Configuration Interfaces may both use the same

physical Serial Rapid I/O connection.

• Data I/O to or from RFM—This is the digital sample stream going to the RFM’s DACs for transmission,

and the digital samples from the RFM’s ADCs. However, if the DACs and ADCs are preferred to be a part

of the SPM, then this interface is replaced with analog baseband or IF signals.

• Waveform control and feedback to RFM—This interface will be waveform dependent. It may be used, for

example, to send feedback to an AGC or control frequency hopping.

• Data interface external to the radio—High-data-rate waveforms may need a direct interface to the SPM if

the GPM is not designed to handle the data.

• System bus—Data to or from GPM—This interface exchanges the packetized data for transmission and

reception.

• Control and configuration from GPM—Waveform loads and reconfigurable parameters are managed

through this interface.

• Test and status to GPM—Tests are initiated through this interface by the GPM, and results are returned.

This is a more basic interface (electrically and protocol-wise) than the Control and Configuration interface.

• Radiometric tracking.

48 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The HID is to contain the characteristics of each reconfigurable device. Reconfigurable capacity is usually

measured by the number of FPGA gates, slices, logic elements, or bytes. This information can be used by future STI

application developers to determine the waveforms that can be implemented on a given platform.

8.2.3 Radio Frequency Module

The RFM handles the conversion to and from the carrier frequency, providing the SPM and/or the GPM with digital

baseband or IF signals, and the transmission and reception equipment with RF to support the SPM and GPM

functions. Its components typically include DACs, ADCs, RF switches, up converters, down converters, diplexers,

filters, LNAs, power amplifiers, etc. Current and near-term RF technologies cannot be expected to allow multiband

operation using a single channel RFM, and thus multiband radios will need to use multiple RFM slices. The RFM

provides a band of frequency tunability on each slice. This tunability can be software controlled through the

provided interfaces.

The RF module handles the interfaces that control the final stage of transmission or first stage of reception of the

wireless signals, including antennas, optical telescopes, steerable antennas, external power amplifiers, diplexers,

triplexers, RF switches, etc. These external radio equipment components would otherwise be integrated with the

RFM except for the physical size and location constraints for transmission and reception. The interfaces are

primarily the associated control interfaces for these components. The RFM HID encompasses the control and

interface mechanism to the external components. The focus of the RF HID is to provide a standardized interface to

the control of each of these devices, to synchronize the operation of the radio with any of these devices.

The other primary capability of the RFM is the conditioning and distribution of the frequency reference, as defined

by the Frequency Reference Interface. This provides a common reference for the RFM and SPM modules to enable

the tracking and navigation functionality typically provided by SDRs. Figure 5Figure 5, RFM Architecture Details,

illustrates the RFM module.

RFM Components

The RFM can be implemented with a variety of integrated circuits. The control of these circuits can be implemented

with a variety of different component technologies, including ASICs, discrete electronics, programmable logic

Figure 5: RFM Architecture Details (Detail of Figure 2)

Space Telecommunication Interface (STI), v1.0 -- beta 2 49

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

devices, including FPGAs and DSPs, or even microprocessors. The choice of technologies is left up to the

developer of the particular implementation.

RFM Functions

The RFM transforms the antenna signal to or from a signal usable to the radio. The RFM functions are likely to

include the following:

• Frequency conversion and gain control

• Analog filtering

• Analog-to-digital and digital-to-analog conversion.

• Radiometric tracking

RFM Interface

The RFM implements the following interfaces:

• External RF interface(s) to the radio.

• Read and write access to interface registers to monitor and perform control, status, and failure and fault-

recovery functions (e.g., via RS-422 or SpaceWire).

◦ Control: power level tunability, frequency tunability, antenna parameter tunability, etc.

◦ Status: report status of components and system operation.

◦ Failure and fault-recovery functions: detect component or system failure and determine appropriate

action.

◦ Diagnostic test functions

• I/O for exchanging digitized waveform signal data.

For RFM Requirements

See 12.1.312.3, Document RFDocument RF

The behavior and performance of the RF modular components should be sufficiently described such that future

waveform developments may take advantage of the RF capability and/or account for its performance.

Information in the HID may include such items as center frequency, IF and RF frequency(s), bandwidth(s), IF

and RF input/output level(s), dynamic range, sensitivity, overall noise figure, AGC, frequency accuracy and

stability, and frequency-tuning resolution.

8.2.4 Security Module

The goal of the security module is to address the security services required from an SDR. There are no specific

requirements for this module, but a future revision of the STI standard may add requirements or specific details.

This approach supports the evolutionary nature of the STI architecture; it is expected that this module will become

more well-defined as feedback is received and common interfaces are identified.

If implemented, the architecture should support selectable data-protection services for entities requiring them,

providing for both confidentiality and authentication. Missions may select security options provided by the

infrastructure or may develop their own.

The authentication of commands sent to SDRs is supported, including changing the configuration or uploading new

programs for either the infrastructure or new applications. The security section of the architecture will include

support for key management, encryption standards, and mitigating threats other than the information and

communication security threats currently identified.

8.2.5 Networking Module

The STI architecture has been structured such that networks can be implemented in an SDR; that is, an SDR can be

a node in a network. The SDR may be connected to another node using the appropriate logical and physical

interfaces that may be wired or wireless. The STI architecture can accommodate network protocols as services that

50 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

can be made available to applications and devices. STI supports the ability to upload new software and dynamic

hardware images. Advancements and replacement of existing protocols can be accomplished without affecting a

spacecraft’s mission resources. There are no specific requirements for this module, but a future revision of the STI

standard may add requirements or specific details.

8.2.6 Optical Module

The STI architecture also supports the use of optical communications in SDRs. The optical module, if present,

would logically replace the Radio Frequency Module (RFM) that is typically used for RF communication. There are

no specific requirements for this module, but a future revision of the STI standard may add requirements or specific

details.

STI interfacing to optical communication equipment follows the same techniques shown in integration with high-

data-rate hardware. The OM would be controlled through the STI HAL interface that allows configuration and

control of the digital components in the module, which abstracts the optical functionality.

8.2.7 Cognitive Module

The STI architecture supports the use of a cognitive engine used to enhance communications of SDRs. A cognitive

module can be used to optimize many complex facets of the communications channel including changing the

parameters of the waveform to support interference mitigation, avoid jamming, or to bypass Earth stations blocked

by weather or the rotation of the Earth. A cognitive module could use sensor data about the dynamic environment to

adapt to changing conditions, even learning from past experience, to respond in an optimal manner for mitigating

obstacles; for example, it could use temperature data to adjust power usage or turn on climate control. By

considering automation techniques including recent advances in artificial intelligence and machine learning,

cognitive algorithms and related approaches enable improved resource utilization and resiliency in unpredictable or

unplanned environments. There are no specific requirements for this module, but it is expected to be implemented

as a service application.

8.3 Hardware Interface Description

The STI platform provider is to provide a HID document, which describes the physical interfaces, functionality, and

performance of the entire platform and each platform module. The HID specifies the electrical interfaces, connector

requirements, and all physical requirements for the delivered radio. The HID abstracts and describes the

functionality and performance of each module. In this manner, STI application developers can know the features

and limitations of the platform for their applications. The information in the HID provides the knowledge for OMG

and others to integrate and test the hardware interfaces. The information in the HID may allow future module

replacement or additions without the design of a completely new platform. For example, a Security Module could

be added that was not originally planned, or a follow-on mission could use a different frequency band and only an

RFM change would be needed. Include all waveform interfaces and any other interfaces that could be important to a

waveform developer or a hardware integrator.

In addition to the GPM, SPM, and RFM HID requirements stated within each module section, the following

interface descriptions and requirements are also specified for an STI platform.

For HID Requirements

See 12.1.412.4, Document Power-Up StateDocument Power-Up State.

See 12.1.512.5, Document Hardware CapabilityDocument Hardware Capability.

See 12.1.612.6, Document Hardware LimitationsDocument Hardware Limitations.

The description of the behavior and capability of modules or components available to STI application

developers or reconfigurable components may include device type, processing capability, clock speeds,

memory size(s), types(s), and speed(s), noting any constraints, as well as any limitation on the number of

configurable hardware design reloads, as applicable, partial reload ability, built-in functionality, and any

corresponding restriction on the number of gates.

See 12.1.712.7, Document InterfacesDocument Interfaces.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Space Telecommunication Interface (STI), v1.0 -- beta 2 51

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The specific modular components or hardware slices of an STI platform will vary among different

implementations. The STI platform provider or STI integrator is expected to describe each modular

component and their respective physical and logical interfaces as described in this section. Table 1, Module

Interface Characterization, provides typical interface characteristics to be included when identifying external

interfaces or internal interfaces between modules for STI.

Table 1: Module Interface Characterization

Parameter Description and Comments

Name Interface name (data, control, operating power, RF, security, etc.).

Interface type Point to point, point-multipoint, multipoint, serial, bus, other.

Implementation level Component, module, board, chassis, remote node.

Reference documents and

standards
Applicable documents for interface standards or description of custom interfaces.

Notes and constraints Variances from standards, physical and logical functional limitations.

Transfer speed Clock speed, throughput speed.

Signal definition Description of functionality and intended use.

Physical Implementation

Technology For example, GPP, DSP, FPGA, ASIC, and description.

Connectors Model number, pin out (including unused pins).

Data plane Width, speed, timing, data encoding, protocols.

Control plane Control signals, control messages or commanding, interrupts, message protocol.

Functional Implementation

Models Data plane model, control plane model, test bench model.

Power Voltages, currents, noise, conducted immunity, susceptibility.

API Custom or standard, particular to OS environment.

Software Device drivers, development environment, and tool chain.

Logical Implementation

Addressing Method, schemes.

Channels Open, close.

Connection Type Forward, terminate, test.

8.3.1 Control and Data Interface

The control and data communications buses and links between modules within the radio are to be described by the

STI platform provider to the level of detail necessary to facilitate integration of another vendor’s module. If

modules communicate using the IEEE 1394, A High Performance Serial Bus, interface, for example, this will be

specified in the HID with appropriate connector and pinout information. Any nonstandard protocols used should

also be specified. In some cases, this may be handled by the software HAL. Module interfaces will be completely

described, including any unused pins.

For Requirements for Control and Data Interface

See 12.1.812.8, Document the Control and Data MechanismsDocument Control and Data Mechanisms.

Formatted: Font: 10 pt

52 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Besides the interface descriptions already provided for each modular component, developers should provide

specific information necessary for future STI application developers to know how to interact with the

command and control aspects of the platform. The description of the control, telemetry, and data mechanism

of each modular component should facilitate the porting of the application software to the platform.

8.3.2 Operating Power Interface

The operating power interface description for the radio has two parts:

1. the platform as a supplier to the various modules; and

2. the power consumption of the different modules, if multiple modules are provided.

Table 2, Example Operating Power Interface, shows an example listing of a platform operating power interface.

There are four distinct sets of power requirements for the platform shown. For each module delivered with the

radio, as well as those built by other vendors, the HID is to specify the needed voltages, currents, and connections.

Voltages are to be specified with a maximum and minimum tolerance, and associated currents are to be specified

with nominal and maximum values. Connectors for operating power are to be specified, including pinouts. If power

is routed through a multipurpose connector such as a backplane connector, then the pins actually used are to be

documented. Power is a limited commodity for most missions, andmissions and understanding the STI platform

power needs is critical.

Table 2: Example Operating Power Interface

Parameter Values

Voltage Rail -15V +2.5V +5V +15V

Maximum current/chassis (platform) 2A 1.7A 3A 2A

Maximum current/slot (module) 1A 1A 1A 1A

Backplane supply pins 17,19 59,61 44,46,48 21,23

Backplane return pins 18,20 60,62 43,45,47 22,24

Voltage Ripple 100 mVpp 1 mVpp 5 mVpp 100 mVpp

Notes Slot 1 & 2 only Slot 1 & 2 only

For Requirements for Operating Power Interface

See 12.1.912.9, Document Power SupplyDocument Power Supply.

8.3.3 Thermal Interface and Power Consumption

The power consumption and resulting heat generation of a reprogrammable FPGA will vary according to the amount

of logic used, the switching rate of the waveform logic, and the clock frequency(s). The power consumption may

not be constant for each possible waveform that can be loaded on the platform. The STI platform provider should

document the maximum allowable power available and thermal dissipation of the FPGA(s) on the basis of the

maximum allowable thermal constraints of FPGA(s) of the platform. For human spaceflight environments, touch

temperature requirements may limit dissipation further; therefore, these reductions are to be factored into the given

dissipation limits.

For Requirements for Thermal and Power System

See 12.1.1012.10, Document Thermal and Power LimitsDocument Thermal and Power Limits.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Space Telecommunication Interface (STI), v1.0 -- beta 2 53

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

9. Application Architecture

An example STI platform consists of one or more GPMs with GPPs, and optionally one or more SPMs containing

DSPs, FPGAs, and ASICs. Application functionality may be split up according to the type of processor the function

may be accomplished most efficiently on. The application component is loaded and executed on these modules to

provide the signal-processing algorithms necessary to generate or receive RF signals. To aid portability and

reusability, the applications use the appropriate infrastructure APIs to access platform services. Using “direct to

hardware” access would increase the effort to port the application to a platform with different hardware and is

discouraged. The STI infrastructure provides the APIs and services necessary to load, verify, execute, change

parameters, terminate, or unload an application. The STI infrastructure implements device components that utilize

the HAL or vendor-specific API to abstract communications with the specialized hardware, whereas the HID

identifies the hardware interfaces and how modules are physically integrated on a platform.

The STI infrastructure utilizes separate device components to serve as a hardware abstraction layer for devices

accessed by STI applications. These devices may in turn use the underlying platform HAL APIs, such as a device

driver implemented to a standardized software interface. Alternatively, the device may use a custom vendor-specific

API to communicate with application components on the platform specialized hardware via the physical interface

defined by the STI platform provider.

9.1 Configurable Hardware Design

A configurable hardware design is one where data is used to configure a portion of the hardware without physical

modification of the hardware. Configurable hardware designs are realized using a hardware device such as an

FPGA or other type of programmable logic device (PLD). This section addresses the use of configurable hardware

design from design and development through testing and verification and operations. It addresses aspects of model

based design techniques and design for space environment applications.

Proper testing of configurable hardware design is critical to the development of reliable and reusable code.

Development tools that enable early development and testing should be used so that problems can be identified and

resolved early in the SDR life cycle. Many real-world signal degradations and SEUs can be simulated to identify

potential issues with the waveform and waveform functions early in development, even before hardware is available.

Applications implemented in configurable hardware should be modular with clear interfaces to enable individual

application component simulations and incremental testing.

The configurable hardware design architecture supports the modeling of STI applications implemented in

configurable hardware at the system, subsystem, and functional levels. Model-based design techniques aid in the

development of modular application functions. Application development models done in a platform (or target)

independent manner aid in application testing, reuse, and portability. A PIM design shall be specialized to PSMs to

target different platforms. PSM design flows might include high-level models combined with manual code writing.

On resource-constrained platforms, optimized code would be written. On non-resource-constrained platforms,

PSMs may be used to auto generate code. These design flows can be employed to significantly reduce the porting

effort.

Application portability and reusability should be considered in all facets of the design process from concept to

implementation to testing. The coding technique of the application is also essential to reduce the application porting

effort. Having defined syntax standards for HDLs (e.g., Verilog or VHDL) makes them appear to be easily portable

across devices and software synthesizers, but this is an incorrect assumption. There are many things that can make

hardware description languages hard to port. For example, the use of device-specific fixed hardware logic on the

FPGA will decrease the portability. The use of specialized hardware may be necessary to meet the timing

constraints of the application; however, the STI application developer should document any application function that

uses the specialized hardware so that the effort to port the application function(s) can be determined. Non-boolean-

type logic such as clock generation can also reduce portability. One method to decrease the porting effort would be

to create a module that does the clock generation from which the rest of the application functions receive the

necessary clock(s).

Development of configurable hardware design for STI radios should include provisions for mitigating space

environmental effects such as SEUs. Near-term application of static random-access memory (SRAM)-based FPGAs

may require triple-mode redundancy (TMR), configuration memory scrubbing, and other mitigation techniques,

54 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

depending on the intended mission environment and desired reliability. Commercial design tools are becoming

available to aid in this process and some newer FPGAs have versions available with embedded TMR.

A key feature of SDRs is that they can be reconfigured after deployment. The ability to load new applications and

services will benefit missions in several ways, including using one SDR (instead of several separate radios) to

handle different applications for various phases of a mission, some planned and some unplanned. An STI platform

should receive STI application software and configurable hardware design updates after deployment.

9.2 Specialized Hardware Interfaces

Standardizing and documenting the interface from the waveform applications on the GPP to the portion of the

waveform in the specialized processing hardware, such as FPGAs, is intended to provide commonality among

different STI platforms and to aid portability of application functional components implemented in configurable

hardware design.

The STI architecture provides a common mechanism for the software to instantiate, configure, and execute the

software and configurable hardware design applications on various platforms using different hardware devices.

Reconfiguration may include changing the parameters of installed applications and uploading new applications after

deployment.

The application accepts configuration and control commands from the GPM and uses STI APIs that interface to the

device drivers associated with the SPM and RFM modules. The device drivers communicate via the HAL on the

GPM that abstracts the physical interface specification described in the HID in transferring command and data

information between the modules.

For FPGAs, the interface to the application is through a platform-specific wrapper. The platform-specific wrapper

accepts command and data information from the GPM and provides them to the application. The platform-specific

wrapper also abstracts details of the platform from the STI application developer, such as pinout information. The

platform-specific wrapper should also provide clock generation, signal registering, and synchronization functions,

and any other non-waveform-specific functions that the platform requires.

Documentation of the platform-specific wrapper is necessary so that STI application developers can interface

applications to the platform. This documentation should include detailed timing constraints, such as signal hold

times, minimum pulse widths, and duty cycles. The signal timing constraints refer to the protocol of a particular

interface describing events happening on a particular clock cycle. For clock generation, one should document what

clock domains are in the design, how each clock is generated, and the resources that are involved. Signal

synchronization describes any additional logic needed when clock domains are changed across the interface. The

signal registering methods refer to any configurable hardware design interfaces between modules and if the input

and output were registered, latched, or neither.

For Requirements for Specialized Interfaces

See 12.1.1112.11, Controllable From OEControllable From OE;

See 12.2.112.12, Platform Specific WrapperPlatform Specific Wrapper;

See 12.2.212.13, Document FPGA InterfacesDocument FPGA Interfaces.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Space Telecommunication Interface (STI), v1.0 -- beta 2 55

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

10. Software Architecture

The STI architecture is predicated on the need to provide a consistent and extensible development environment on

which to construct SDR applications. The breadth of this goal implies that the specification be based on the

following:

1. Core interfaces that allow flexibility in the development of application software; and

2. Hardware and software interface documentation that enable technology infusion.

10.1 Software Layer Model

The software architecture model shows the relationship between the software layers expected in an STI-compliant

radio. The model illustrates the different software elements used in the software execution and defines the software

interface layers between applications and the OE and the interface between the OE and the hardware platform.

Figure 6Figure 6, Software Execution Model, represents the software architecture execution model. The software

model achieves the following objectives:

a) Abstracts the application from the underlying OE software to promote portability and reusability of the

application.

b) Within the abstraction layer, minimizes custom routines by using commercial software standard interfaces

such as POSIX®.

c) Depicts the STI software components as layers to specify their relationship to each other and their

separation from each other which enables developers to implement the layers differently according to their

needs while still complying with the architecture.

d) Introduces a lower-level abstraction layer between the OE and the platform hardware. Note that although

software abstraction for general processors is typically accomplished with board support packages and

device drivers, the abstraction of hardware languages or configurable hardware design is less defined. The

model represents the software and configurable hardware design abstraction in this layer.

e) Indicates the relationship between the OE software and the different hardware processing elements (e.g.,

processor and specialized hardware).

The OE adheres to the interface descriptions provided in Figure 6Figure 6. This specification provides two primary

interface definitions, as follows: (1) The STI APIs; and (2) The STI HAL specification, each with a control and data

plane specification for interchanging configuration and run-time data. The STI APIs provide the interfaces that

allow applications to be instantiated and use platform services. These APIs also enable communication between

application components. The HAL specification describes the physical and logical interfaces for inter-module and

intra-module integration.

56 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The STI software architecture presents a consistent set of APIs to allow waveform applications, services, and

communication equipment to interoperate in meeting an application specification. Figure 7Figure 7, Layered

Structure, represents a view of the platform OE that depicts the boundaries between the STI infrastructure provided

by the STI platform provider and the components that can be developed by third-party vendors (e.g., waveform

applications and services).

A key enabler of application portability and reusability is the removal of application dependencies on the

infrastructure that take advantage of explicit knowledge of the infrastructure implementation. When waveforms and

services conform to the API specification, they are easier to port to other STI platform implementations.

Figure 6: Software Execution Model

Space Telecommunication Interface (STI), v1.0 -- beta 2 57

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Figure 7Figure 7 extends the view of the software architecture from the diagram introduced in Figure 6Figure 6 to

Figure 7: Layered Structure

Commented [HLM(L4]: JIRA issue STI_5: Correct

SysML in figures

JIRA issue STI_78: Missing Clock Methods

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

58 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

include additional detail of the infrastructure, operating system, and hardware platform using Systems Modeling

Language (SysML) symbols. This approach clarifies the interfaces between components, adding additional detail.

The Operating Environment (OE) contains the OS and Infrastructure, which include System Libraries documented

as allowed for that platform. In the case that the OS or platform does not support the full set of dependencies, the

missing functionality is to be implemented in the STI infrastructure using a compatibility layer. For example, when

using non-POSIX® OS, the compatibility layer would implement any POSIX® functions required but not

implemented by the OS. The waveform applications will not directly call the driver or HAL API but use the

provided STI APIs, thus providing the “abstraction layer” that helps isolate the application from the platform.

In table 3, Software Component Descriptions, the different layers of the software model shown in Figure 7Figure 7

are further described.

Table 3: Software Component Descriptions

Layer Description

Waveform Application and services
Waveform application and services provide the radio GPP functionality using

the STI infrastructure.

STI infrastructure
The STI infrastructure implements the behavior and functionality identified by

the STI APIs as well as other required radio functionality.

STI API

The STI APIs provides consistent interfaces for the STI infrastructure to

control applications and services, and for the applications and services to

access STI infrastructure services.

APP API
The APP API is the interface implemented by waveforms and services whose

functions are used by the STI infrastructure.

HAL

The HAL provides the device control interfaces that are responsible for all

access to the hardware devices in the STI radio. The HAL API is the interface

to the software drivers and BSP that communicates with the hardware.

System Library API

The specific subset of system library functions utilized by the STI waveform

application. For POSIX®-based environments, this is the minimum

Application Environment Profile required by the waveforms.

OS

This is the operating system that supports the POSIX® API and other OS

services. The POSIX® Abstraction Layer will provide applications with a

consistent AEP interface that is mapped into the chosen OS functions

System Library
This is the implementation of the system library provided by the operating

system or programming language environment.

HW drivers/BSP

The hardware drivers provide the platform independence to the software and

infrastructure by abstracting the physical hardware interfaces into a consistent

device control API.

Driver API OS-supplied APIs are abstracted from applications via the device control API.

Space Telecommunication Interface (STI), v1.0 -- beta 2 59

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

BSP

The BSP is the software that implements the device drivers and parts of the

kernel for a specific piece of hardware. It provides the hardware abstraction of

the GPM module for the POSIX®-compliant OS. A BSP contains source files,

binary files, or both. A BSP contains an original equipment manufacturer

(OEM) adaptation layer (OAL), which includes a boot loader for initializing

the hardware and loading the OS image. Essentially, the OAL is all of the

software that is hardware specific. The OAL is compiled and linked into the

embedded OS.

GPM
This is the general-purpose processing module on which the STI infrastructure

executes.

Specialized hardware
This is the physical layer of the hardware modules existing on the STI

platform.

Figure 8Figure 8Figure 8 illustrates the difference between a standards-conformant OS and a nonconformant OS.

On the left side, the prescribed set of application interfaces is provided entirely by the OS. On the right side, the OS

is not directly conformant but is partially compliant. This occurs mainly when porting to a different platform with

different system library support. The application profile is shown in two parts: one part shows the compliant APIs

that are directly included in the OS, and the other part shows the portion of the profile that is provided through some

form of abstraction or compatibility layer. For support of waveforms implemented in C/C++, the STI OE should

include at least a POSIX® PSE51-conformant OS or POSIX® abstraction layer for missing APIs.

For System Library Requirements

See section 12.3.112.14, Document System Library Interfaces ProvidedDocument System Library Interfaces

Provided.

For C/C++ environments, this interface should be based on the POSIX® standard and the supported profile(s)

should be indicated. For other environments, the relevant details such as the library/module name and version

information should be indicated.

See section 12.3.212.15, Document System Library Interfaces UsedDocument System Library Interfaces Used.

For maximum compatibility, C/C++ applications should only invoke the system library though POSIX®-

compliant API calls and adhere to the smallest profile that is sufficient for application performance (e.g.

Figure 8: Standards Conformance vs. Standards Compliance

Formatted: Font: 10 pt

Formatted: Font: 10 pt

60 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

PSE51). For other environments, the application should use a reasonable and customary interface for the

environment.

10.2 Infrastructure

The STI infrastructure is the part of the OE that provides the functionality for the interfaces defined by the STI APIs

specification. The infrastructure exposes a standard set of method names to the applications to facilitate portability.

Although the STI infrastructure may use any combination of OS, BSP functions, or other infrastructure methods to

implement a radio function, which may vary on different platforms, the STI APIs will be the same to allow

portability. The STI APIs are the well-defined set of interfaces used by STI applications to access specific radio

functions or used by the infrastructure to control the applications.

The infrastructure is composed of multiple subsystems that provide the functionality to operate the radio. The

components shown in Figure 7: Layered StructureFigure 9: Layered Structure, represent the high-level subsystems

and services needed to control STI applications within the STI platform. These services are provided by the

platform infrastructure and support applications as they execute within the STI platform. The infrastructure

functions will include fault management techniques, which are necessary to increase radio robustness and support

mission-dependent requirements.

10.3 API Overview

The STI APIs provide an open software specification so that the application engineers can develop STI applications.

The goal is to have a standard API available to cover all application program requirements so that the application

programs can be reused on other hardware systems with minimal porting effort and cost for the application

implemented in software and/or configurable hardware design with increased reliability. Size, weight, and power

constraints may limit the functionality of the radio by imposing a tradeoff among the following:

• The size of the API implementation,

• The size of other internal operations, and

• The size of the waveforms and services.

The size of the selected GPP should be sufficient to contain the OS, the STI infrastructure, and the appropriate

portion of the waveforms and services to implement the required mission functionality, along with sufficient margin

to support software upgrades. The STI APIs are defined to support internal radio commands. Any external interface

commands, described in section 11, 11. External Command and Telemetry InterfacesExternal Command and

Telemetry Interfaces, use the internal commands defined by the STI APIs to accomplish normal radio operations.

The API layer specification decouples the intellectual property rights of platform, application, and module

developers. This allows development and interoperability of different radio aspects while protecting the investment

of the developers.

The APIs in the following sections are grouped by type to simplify the description of the APIs while providing the

detail for each requirement in tabular form. The table contains the name, description, parameters, return type, any

additional information that is pertinent to the usage of that function. The examples shown in the table for each

requirement are written from the point of view of the STI application developer.

Handle names and identifiers (i.e. HandleID values) have global scope within the operating environment. A

handle ID is a single value that represents an STI application, device, file, or queue. A given handle identifier refers

to the same application, device, file, queue, timer, or service across all applications.

A key aspect of a software architecture is the definition of the APIs that are used to facilitate software configuration

and control of the target platform. The philosophy on which the STI architecture is based avoids the conflict

between open architecture and proprietary implementations by specifying a minimum set of APIs that are used to

execute waveform applications and to deliver data and control messages to installed hardware components. The

following APIs exhibit similar functionality to a resource interface in the Object Management Group

(OMG)/software radio (SWRADIO) or Software Communications Architecture (SCA 2.2.2) specifications.

Formatted: Font: 10 pt

Space Telecommunication Interface (STI), v1.0 -- beta 2 61

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

10.3.1 Interface Structure

Figure 9Figure 9, Application and Device Structure, shows a high-level overview of the STI software interface and

object definitions.

As shown in Figure 9Figure 9, all applications and devices within the environment are derived from the Instance

type, which is provided by the infrastructure and serves as a common basis point for every entity. This base type has

only a minimal set of infrastructure-defined methods. All operations are defined through several control interface

definitions.

The operations include:

• A means for the application or device to obtain the corresponding name and ID.

• A means to configure or query the entity state from other applications, using name/value pairs.

• A means to execute tests on the application or device

• A means to dynamically start or stop a device or service from other applications

• A means to dynamically allocate/initialize system resources when needed and release resources when no

longer necessary.

• A means to “read” or pull data from this entity to other applications

Commented [HLM(L5]: JIRA issue STI_5: Correct

SysML in figures

JIRA issue STI_78: Missing Clock Methods

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

62 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

• A means to “write” or push data to this entity from other applications

An STI application implementation (e.g., waveform) would typically implement the ApplicationControl

interface, which includes all operations relevant for applications except those related to data transfer. An STI device

would implement the DeviceControl interface, which provides operations specific to devices as well as all

operations defined by ApplicationControl. Any application or device may selectively choose to implement

any of the data transfer interfaces as necessary, including Source, Sink, and RandomAccess.

Note that from the STI perspective, “Applications” and “Devices” are very similar concepts, differing only in that a

device implements the operations specified in the DeviceControl interface, whereas an application typically

does not implement these operations. Otherwise, the two software modules are identical. Throughout the remainder

of this section, the term “Application” is used, but the same features and requirements generally apply to devices as

well.

For Infrastructure Software Requirements

See Section 12.3.312.16, Document Language Interfaces ProvidedDocument Language Interfaces Provided and

12.3.412.17, STI Infrastructure Uses APP APISTI Infrastructure Uses APP API.

10.3.2 Implementation

An STI operating environment may support applications written in any language, so long as it provides the

infrastructure API in an appropriate form for the language in use. The software interfaces in this specification utilize

the OMG Interface Definition Language (IDL) syntax, and IDL language mappings provide a method to consistently

translate the semantics of a given interface to many different programming languages.

For Requirements for Software Modules

See Section 12.3.512.18, Use Language Specific Facilities Specified in Annex AUse Language Specific Facilities

Specified in Annex A.

All STI applications and devices should encapsulate their state in an object or structure of some type, referred to as

the “base object”. Even for “singleton” objects of which there can only be one, STI requires that there is still a base

object associated with the instance, even if this object does not contain any extra information.

Figure 9Figure 9Figure 13 also shows several different optional interfaces that an application or device may

implement, depending on its specific design needs.

For Requirements instance object definition

See Section 12.3.612.19, Use Language Specific InheritanceUse Language Specific Inheritance.

See Section 12.4.212.21, Application based on Instance ObjectApplication based on Instance Object.

10.4 Data Types and ConstantsPredefined Values

The following data types are defined by the infrastructure. These types serve as the basis for the STI interfaces and

API calls described in the subsequent sections. The types are written in a general way that will be particularized for

the implementation language and platform selected.

10.4.1 Data Types

The STI infrastructure uses the basic data types, integer, string, or enumeration. For these data types, the

specification allows some flexibility in how they are implemented by the infrastructure according to the language

used. Likewise, Table 5 indicates only the general behavioral semantics of the type, such as an integer, string, or

enumeration. For instance, all types with integer semantics should be compatible with the standard integer

assignment and relational operators per the language in use.

For enumerated types, the possible values and definitions are shown in section 10.4.2, Predefined ValuesConstants.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Commented [HLM(L6]: JIRA issue STI_31: Change

“constants” to “predefined values”

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 63

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

For STI Infrastructure-provided Data Types

See Section 12.4.112.20 with Table 5: Infrastructure-provided Data Types

10.4.2 ConstantsPredefined Values

The STI infrastructure defines the following constantspredefined values. In strongly typed languages, the constant

predefined value evaluates to a value of the specific data type as indicated.

For Constants Requirements see

Section 12.4.312.22 with Table 6: Access ConstantsValues

Section 12.4.412.23 with Table 7: CalendarKind ConstantsValues

Section 12.4.512.24 with Table 8: HandleID ConstantsValues

Section 12.4.612.25 with Table 9: Result ConstantsValues

Section 12.4.712.26 with Table 10: Handle Name ConstantsValues

Section 12.4.812.27 with Table 11: Property Name ConstantsValues

Section 12.4.912.28 with Table 12: Size Limit ConstantsValues

Section 12.4.1012.29 with Table 13: TimeWarp ConstantsValues

10.5 Application and Device Control Interface

The application and device interface, illustrated in Figure 9Figure 11, is the mechanism through which local

applications receive requests from the STI infrastructure.

All operations described in this section operate on a single context object, which is a data structure stored in local

memory that contains the state of the application instance. The specific semantics of this context object depend on

the language in use. In C, this context object is passed explicitly as a pointer argument to each call, which can then

be cast or converted to the correct structure type. In C++ or Java, these operations are implemented as class member

functions, and as such the context object is passed implicitly through the this reference. Other object-oriented

languages have a similar paradigm to reference the context object, such as the “self” object in Python.

As a general convention, interfaces that apply to all components (applications, devices, etc.) have operations named

with an APP prefix, and interfaces that apply only to devices have operations named with a DEV prefix. Further

details on each of these operations are provided in the following sections.

Note that the operations listed in this section are not invoked directly by other applications or components in the

system. The infrastructure is responsible for managing the life cycle of all context objects, and these objects are not

directly exposed to other components in the system. All operation requests from other components go through the

STI infrastructure, which may in turn invoke a context switch or middleware as needed, to provide the correct

context for the subsequent operation. For every interface operation described in this section, there is a

corresponding infrastructure-provided API call that operates on an abstract handle value rather than a context object.

These handle-based API calls, as described in section 10.6, STI APISTI API, are intended to be invoked from other

entities.

10.5.1 Infrastructure-Provided Component IdentifierInstance Interface

The interface operations described in this section are provided by the infrastructure and may be invoked by an

application or device to obtain information from the infrastructure. The interface provides a consistent means for an

application or device to obtain identification information about itself.

For Infrastructure-Provided Component IdentifierInstance Software Requirements

See Section 12.5.112.30 with Table 14Table 18: APP_GetHandleID() Definition.

See Section 12.5.212.31 with Table 15Table 19: APP_GetHandleName() Definition.

Commented [HLM(L7]: JIRA issue STI_31: Change

“constants” to “predefined values”

Formatted: Font: 10 pt

Formatted: Underline

Formatted: Underline

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

64 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

10.5.2 Application-Provided Application Control Interfaces

The operations detailed in this section are provided by the application developer.

10.5.2.1 Constructor and Destructor

For all applications, constructor and destructor functions are provided by the application developer. These functions

will create and destroy an instance of the respective application’s state structure, as an object of the Instance base

type.

For applications or services that are instantiated multiple times within a single environment, the constructor will be

invoked by the infrastructure for each instance. After construction, the Instance reference identifies the specific

context object to work with for all subsequent calls interface operations. In C++ terminology, it equates to the this

pointer.

The notion of a statically allocated “singleton” object is allowed, but the application still needs to supply a stub

function for use as a constructor and destructor. In this case, the constructor may directly return the statically

allocated instance, and the destructor may be empty.

Note that these methods implement the “factory” pattern in object-oriented design. As such, they are not instance

methods, but rather static methods when translated to object-oriented environments.

For Application-Provided Application Control Software Requirements

See Section 12.5.312.32 with Table 16Table 20: APP_Instance() Definition.

See Section 12.5.412.33 with Table 17Table 21: APP_Destroy() Definition.

10.5.2.2 Life Cycle Interface

The Life Cycle interface is intended to provide additional control over the application start up/initialization and

shutdown processes. In many cases, an application will require some allocation steps which are dependent on

configuration, such as storage buffer sizes, and these configuration items may not be known at the time the

constructor is invoked. This interface allows the initialization of the application to be separated from the

instantiation of the application. The required application properties can then be configured after instantiation but

before the initialization takes place. The shutdown process includes stopping execution of the application, releasing

any resources obtained during the initialization and execution of the application, and destroying the instance created.

For Application -Provided Life Cycle Software Requirements

See Section 12.5.512.34 with Table 18Table 22: APP_Initialize() Definition.

See Section 12.5.612.35 with Table 19Table 23: APP_ReleaseObject() Definition.

10.5.2.3 Property Set Interface

The Property Set interface consists of two operations, configure and query, which operate on name/value pairs. The

implementation should perform all necessary validation of the input parameters, including whether the property

name specified is valid, and whether it is permissible to set or retrieve the value in the current application state. The

notion of a “read-only” property is also allowed, where any attempt to configure such properties returns the ERROR

status code.

For Application -Provided Property Set Software Requirements

See Section 12.5.712.36 with Table 20Table 24: APP_Query() Definition.

See Section 12.5.812.37 with Table 21Table 25: APP_Configure() Definition.

10.5.2.4 Test Interface

The test interface provides a means to invoke any built-in testing routines. Test routines are identified by a test ID,

which is an application-defined numeric value.

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Space Telecommunication Interface (STI), v1.0 -- beta 2 65

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The application developer is responsible for documenting the test ID’s which are implemented, including the

purpose and any restrictions or dependencies associated with the test. For example, tests targeted toward finding

manufacturing or assembly defects may only be executable as a “ground test” when the system is connected to a

designated test facility. Other tests may be permissible during run-time or flight operations but may interfere with

normal radio communication.

Tests may be implemented either synchronously or asynchronously (i.e. as a background operation). For

synchronous tests, the status returned indicates the complete test result, with passing indicated by returning a

successful status code. For asynchronous tests, the status returned indicates only if the test has been initiated. The

application implementation should utilize the PropertySet interface and specify property names/values to

communicate the progress and results of the test.

For Application -Provided Test Interface Software Requirements

See Section 12.5.912.38 with Table 22Table 26: APP_RunTest() Definition.

10.5.2.5 Controllable Component Interface

The ControllableComponent interface is intended for applications or devices to enter or exit their normal operation

mode after initialization. Typically, this should not involve any additional allocation or resource acquisition, but it

should only activate or deactivate the previously allocated resources.

For example, in an application designed to estimate incoming signal power, the Initialize operation (described

in section 10.5.2.2 , Life Cycle Interface) would allocate any buffer storage and set up the resources necessary to

“tap” the incoming signal samples, but would not actually start or activate the power estimation algorithm. The

Start operation described here would begin the process of taking snapshots of the incoming data and executing the

power estimation algorithm. Similarly, the Stop operation would stop the active process, but it would not tear

down or release any buffers or other system resources, which is the domain of the LifeCycle interface.

This interface is also applicable to devices which have the notion of a “standby” state; after initialization, the device

would become ready but not active. The Start and Stop operations would put the device into its active or

standby state, respectively.

For Application -Provided Controllable Component Software Requirements

See Section 12.5.1012.39 with Table 23Table 27: APP_Start() Definition.

See Section 12.5.1112.40 with Table 24Table 28: APP_Stop() Definition.

10.5.3 Device-Provided Device Control Interface

An STI Device is a proxy for the data and/or control path to the actual hardware. An STI Device is a “bridge” used

to decouple an abstraction from its implementation so that the two can vary independently. All operations detailed

in this section are provided by the device developer or platform provider. Like the application control interface, all

operations described in this section are invoked by the STI infrastructure based on requests from other entities

within the environment. The operations listed below are not invoked directly by other applications.

The STI Device may be implemented using any available platform-specific hardware access layer to communicate

with and control the specialized hardware. While portability is not a specific goal for devices, if the hardware

access layer is also standardized and/or adheres to commonly implemented patterns, then the STI device itself can

also potentially be re-used in other environments with minimal modifications.

For example, many UNIX and UNIX-like RTOS operating systems implement a very similar pattern to configure

and access a serial device, using a pseudo-file in the /dev filesystem combined with a defined set of ioctl()

operations and “termios” C library calls. As such, an STI device abstraction for UNIX-style serial ports and other

serially connected devices could be shared among any operating environment using this style of operating system

and device model. In contrast, an operating system such as Microsoft Windows® utilizes a driver architecture

specific to itself, and as such any STI device abstractions written using this driver model are not likely to be portable

to any other operating system. However, in either case, an STI-compliant application that accesses serial devices

using the STI device abstraction would be portable to either environment.

Formatted: Underline

Formatted: Underline

Formatted: Underline

66 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The basic operations listed in this section correspond to the DeviceControl interface as illustrated in Figure 13.

For Device-Provided Device Control Software Requirements

See Section 12.41 with Table 25: DEV_Open() Definition.

See Section 12.42 with Table 26: DEV_Load() Definition.

See Section 12.43 with Table 27: DEV_Reset() Definition.

See Section 12.44 with Table 28: DEV_Flush() Definition.

See Section 12.45 with Table 29: DEV_Unload() Definition.

See Section 12.46 with Table 30: DEV_Close() Definition.

10.5.410.5.3 Data Transfer Interface

The interfaces described in this section allow bulk data transfer between the component and the infrastructure. Like

all other operations, this interface exists only between the infrastructure and the respective target components. The

infrastructure is responsible for transporting the data between entities in the system.

The use of the interfaces described in this section are optional. Applications or devices choosing to implement this

interface indicate this in the application declaration. In object-oriented languages, this is done by inheriting or

implementing the Source and/or Sink interface. In non-object-oriented languages, it is indicated in an OE-specific

manner.

10.5.4.1 10.5.3.1 Source Interface

The Source interface is intended for applications or devices that supply arbitrary data to other entities using a “pull”

model. The specific nature of the data is not defined by this specification and should be documented by the

application developer. It may represent a stream of raw data, such as ADC samples, or it may be processed data,

such as a power profile or constellation of the received signal.

For Application-Provided Source Interface Software Requirements

See Section 12.5.1212.47 with Table 31Table 29: APP_Read() Definition.

10.5.4.2 10.5.3.2 Sink Interface

The Sink interface is intended for applications or devices that accept arbitrary data from other entities using a “push”

model. Like the Source interface, the specific nature of the data is not defined by this specification and should be

documented by the application developer. It may represent a stream of raw data, such as ADC samples, or it may be

higher-level data structures.

For Application-Provided Sink Interface Software Requirements

See Section 12.5.1312.48 with Table 32Table 30: APP_Write() Definition.

10.5.4.3 10.5.3.3 Random Access Interface

This optional device interface provides a means to read or write data directly to a specific location within a file or

device. The location specified indicates the offset from the beginning of the file, address space, or memory map of

the file or device. For memory-mapped entities or devices attached to some other physical bus (e.g. I2C) this should

translate to the respective bus cycles to read or write from the given location on that bus.

The register set exposed via this interface may be emulated; the implementation is free to translate or modify the

request as needed by the underlying devices or hardware infrastructure. The physical bus access, if any, may go

through one or more levels of indirection, and the actual physical addresses accessed may be different than the

address requested.

Formatted: Underline

Formatted: Underline

Space Telecommunication Interface (STI), v1.0 -- beta 2 67

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

For Application-Provided Random-Access Software Requirements

See Section 12.5.1412.49 with Table 33Table 31: APP_AddressRead() Definition.

See Section 12.5.1512.50 with Table 34Table 32: APP_AddressWrite() Definition

10.5.4 Device-Provided Device Control Interface

An STI Device is a proxy for the data and/or control path to the actual hardware. An STI Device is a “bridge” used

to decouple an abstraction from its implementation so that the two can vary independently. All operations detailed

in this section are provided by the device developer or platform provider. Like the application control interface, all

operations described in this section are invoked by the STI infrastructure based on requests from other entities

within the environment. The operations listed below are not invoked directly by other applications.

The STI Device may be implemented using any available platform-specific hardware access layer to communicate

with and control the specialized hardware. While portability is not a specific goal for devices, if the hardware

access layer is also standardized and/or adheres to commonly implemented patterns, then the STI device itself can

also potentially be re-used in other environments with minimal modifications.

For example, many UNIX and UNIX-like RTOS operating systems implement a very similar pattern to configure

and access a serial device, using a pseudo-file in the /dev filesystem combined with a defined set of ioctl()

operations and “termios” C library calls. As such, an STI device abstraction for UNIX-style serial ports and other

serially connected devices could be shared among any operating environment using this style of operating system

and device model. In contrast, an operating system such as Microsoft Windows® utilizes a driver architecture

specific to itself, and as such any STI device abstractions written using this driver model are not likely to be portable

to any other operating system. However, in either case, an STI-compliant application that accesses serial devices

using the STI device abstraction would be portable to either environment.

The basic operations listed in this section correspond to the DeviceControl interface as illustrated in Figure 9.

For Device-Provided Device Control Software Requirements

See Section 12.6.1 with Table 33: DEV_Open() Definition.

See Section 12.6.2 with Table 34: DEV_Load() Definition.

See Section 12.6.3 with Table 35: DEV_Reset() Definition.

See Section 12.6.4 with Table 36: DEV_Flush() Definition.

See Section 12.6.5 with Table 37: DEV_Unload() Definition.

See Section 12.6.6 with Table 38: DEV_Close() Definition..

10.6 STI API

The API calls in this section comprise the “public” interface into the STI infrastructure and may be used by all

components in the system to initiate actions in other components. Operations primarily utilize handle ID values,

which are opaque/abstract values that uniquely reference a single component within the STI infrastructure. The

specific format or structure of the handle ID value is implementation-defined, but the following criteria apply:

• Handle ID values apply within a single run-time instance of an STI operating environment. They are not

meaningful outside the operating environment, nor are they meaningful in a different instance of an STI

operating environment. Note that a “reboot” of an environment is considered a different run-time instance;

handle ID values are not required to be persistent across restarts and may be assigned differently.

• Handle ID values refer to the same component for that respective component’s lifetime; a component

cannot ever change its handle ID unless that component is destroyed and re-created.

• All components within the same operating environment can refer to the same set of handle IDs, and a given

handle ID referenced from one component refers to the same entity as the same handle ID referenced from

a different component.

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

68 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

• Two Handle ID values may be tested for equality using the programming language’s normal equality check

operator (e.g. if (Handle1 == Handle2)), but all other inquiries or tests are to be performed via

the infrastructure.

Portable applications and devices treat handle ID values as opaque objects, without any assumptions regarding the

validity of specific values or the data type(s) capable of storing the value. Only the infrastructure-supplied

HandleID type may be used to store a handle ID value.

It is recommended that the infrastructure implement handle IDs as an integer or a type derived from an integer, for

speed and simplicity of operation, although this is not required. As such, a handle ID value should not be compared

to any other integers.

10.6.1 General Utility API

The utility functions described in this section allow an application to make inquiries about the state of the

infrastructure or a previous operation, and generally do not perform any operation of their own. These functions

may be used at any time by any application.

10.6.1.1 Response Handling and Analysis

The function calls described in this section allow analysis of the return value of a previous call. Many STI API calls

return one of four data types:

• A status code (Result)

• A handle ID (HandleID)

• A size (FileSize)

• A string (language-dependent)

In most circumstances, calls returning a Result type could test for the defined value OK to indicate a successful

result. However, there are some API calls, mainly those that use variably-sized data buffers for reading or writing,

for which partial success is permissible. In these cases, the function returns an actual size or count value ra ther than

a fixed value upon success. For this reason, portable applications should not directly check for the specific return

value OK to determine success of any STI call. Instead, applications should use a second operation to check if a

given status code is represents success or failure.

Similarly, operations that return a HandleID or FileSize type may also fail, where failure is indicated by an

invalid value. A secondary check operation should be employed to determine whether the returned value is valid or

not.

Finally, for functions that directly return the name of components as a string, the language in use defines the

semantics of invalid responses. In C, where strings are direct pointers to memory, this is the special pointer value

“NULL”. Other languages have differing representations of an “undefined value” such as None (Python) or nil

(Lua), but the semantics vary from language to language. In these cases, portable applications should check the

return value using the string semantics for the language in use, before passing the value to another operation.

For Infrastructure-Provided Response Handling Software Requirements

See Section 12.7.112.51 with Table 35Table 39: IsOK() Definition.

See Section 12.7.212.52 with Table 36Table 40: ValidateHandleID() Definition.

See Section 12.7.312.53 with Table 37Table 41: ValidateSize() Definition.

Name to Handle ID Mappings

All components operating within an environment have an associated name and handle ID value. The name is more

user-friendly, and as such is generally more useful for user interaction, whereas the numeric ID value is generally

simpler and more efficient for software use. The functions described in this section provide a means to convert

between these two forms of identification.

Formatted: Underline

Formatted: Underline

Formatted: Underline

Space Telecommunication Interface (STI), v1.0 -- beta 2 69

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

For Infrastructure-Provided Handle ID Mappings Software Requirements

See Section 12.7.512.55 with Table 39Table 43: GetErrorQueue() Definition.

See Section 12.7.612.56 with Table 40Table 44: GetHandleName() Definition.

See Section 12.7.712.57 with Table 41Table 45: HandleRequest() Definition.

10.6.2 Application Control API

The operations in this section are used for controlling applications or devices from other components in the system.

In Figure 10, the Initialize() method call may be replaced by one of the methods in the comment titled

REPLACEMENT METHOD CALLS and if so, the APP_Initialize() method is replaced by the correspondingly

named method in the comment titled MATCHING METHOD CALLS. Each operation corresponds to a matching

operation in the application control interface documented in section 10.4.

Figure 10Figure 10 illustrates the general pattern of operations between the infrastructure API calls and the

corresponding interface in the target application. The left side is the request originator component, or the “from”

entity in terms of the API descriptions and is identified as handle 1. The right side is the request target, or the “to”

entity in terms of the API descriptions and is identified as handle 2. The originator uses the API calls described in

this section, which in turn trigger the infrastructure to invoke the corresponding call on the target side. Upon

completion, the return value follows the inverse path, through the infrastructure, and back to the originating

component.

10.6.2.1 Setup and Teardown

The following API calls support the dynamic creation and deletion of components within the environment. See the

corresponding application interface description in section 10.5.2.1 for more information.

Figure 10: Sequence Diagram for Application Control Component

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Font: Not Italic

70 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

For Infrastructure-Provided Application Setup and Teardown Software Requirements

See Section 12.7.412.54 with Table 38Table 42: InstantiateApp() Definition.

See Section 12.7.812.58 with Table 42Table 46: AbortApp() Definition.

The interaction between the originating component, the operating environment, and the target application for an

InstantiateApp call is illustrated in Figure 11Figure 11.

The interaction between the originating component, the operating environment, and the target application for an

AbortApp call is illustrated in Figure 12 Figure 12..

Figure 11: Sequence Diagram for InstantiateApp

Formatted: Underline

Formatted: Underline

Space Telecommunication Interface (STI), v1.0 -- beta 2 71

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Figure 12: Sequence Diagram for AbortApp

10.6.2.2 Life Cycle Control

The following API calls correspond to the LifeCycle interface on the target component. See the corresponding

application interface description in section 10.5.2.2 for more information.

For Infrastructure-Provided Life Cycle Software Requirements

See Section 12.7.912.59 with Table 43Table 47: Initialize() Definition.

See Section 12.7.1012.60 with Table 44Table 48: ReleaseObject() Definition.

10.6.2.3 Property Set Control

The following API calls correspond to the PropertySet interface on the target component. See the corresponding

application interface description in 10.5.2.3 for more information.

For Infrastructure-Provided PropertySet Software Requirements

See Section 12.7.1112.61 with Table 45Table 49: Configure() Definition.

See Section 12.7.1212.62 with Table 46Table 50: Query() Definition.

10.6.2.4 Test Control

The following API calls correspond to the TestableObject interface on the target component. See the corresponding

application interface description in section 10.5.2.4 for more information.

For Infrastructure-Provided Test Control Software Requirements

See Section 12.7.1312.63 with Table 47Table 51: RunTest() Definition.

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

72 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

10.6.2.5 Operational Control

The following API calls correspond to the ControllableComponent interface on the target component. See the

corresponding application interface description in section 10.5.2.5 for more information.

For Infrastructure-Provided Operation Control Software Requirements

See Section 12.7.1412.64 with Table 48Table 52: Start() Definition.

See Section 12.7.1512.65 with Table 49Table 53: Stop() Definition.

10.6.3 Device Control API

The following API calls allow applications to interact with STI devices. These operations provide a means to

establish a path of communication to the device, and correlate to the DeviceControl interface on the target

component. In Figure 1313Figure 13, the DeviceOpen() method call may be replaced by one of the methods in the

comment titled REPLACEMENT METHOD CALLS and if so, the Dev_open() method is replaced by the

correspondingly named method in the comment titled MATCHING METHOD CALLS. Each operation corresponds

to a matching operation in the device control interface documented in section 10.5.410.5.3.

Figure 1313: Sequence Diagram for Device Control Component

For Infrastructure-Provided Device Control Software Requirements

See Section 12.7.1612.66 with Table 50Table 54: DeviceOpen() Definition.

See Section 12.7.1712.67 with Table 51Table 55: DeviceLoad() Definition.

See Section 12.7.1812.68 with Table 52Table 56: DeviceReset() Definition.

See Section 12.7.1912.69 with Table 53Table 57: DeviceFlush() Definition.

See Section 12.7.2012.70 with Table 54Table 58: DeviceUnload() Definition.

See Section 12.7.2112.71 with Table 55Table 59: DeviceClose() Definition.

Formatted: Underline

Formatted: Underline

Formatted: Font: Not Italic

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Space Telecommunication Interface (STI), v1.0 -- beta 2 73

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

10.6.4 Data Transfer API

The following API calls correspond to the data transfer (Source, Sink, RandomAccess) interfaces on the target

component. These functions are also used to transfer data to or from files or message queues.

10.6.4.1 Data Source

The data source operation described in this section is applicable to any application or device that implements the

“Source” interface. See the corresponding application interface description in section 10.5.3.1 10.5.4.1 for more

information.

For Infrastructure-Provided Source Software Requirements

See Section 12.7.2212.72 with Table 56Table 60: Read() Definition.

10.6.4.2 Data Sink

The data sink operation described in this section is applicable to any application or device that implements the

“Sink” interface. See the corresponding application interface description in section 10.5.3.2 10.5.4.2 for more

information.

For Infrastructure-Provided Sink Software Requirements

See Section 12.7.2312.73 with Table 57Table 61: Write() Definition.

10.6.4.3 Random Access

These operations provide a means to directly access specific locations within a device or file, and correlate to the

RandomAccess interface on the target component. See the corresponding application interface description in section

10.5.3.3 10.5.4.3 for more information.

For Infrastructure-Provided Random Access Software Requirements

See Section 12.7.2412.74 with Table 58Table 62: AddressRead() Definition.

See Section 12.7.2512.75 with Table 59Table 63: AddressWrite() Definition.

10.6.5 Log API

The Log API provides a means to record contextual information regarding errors or other conditions present in

applications. The log data is maintained by the infrastructure and may be sent to the operating system log facility if

one exists. The platform provider indicates the specific manner with which log data may be retrieved and examined

by the operator, such as a file location or system log viewer.

See Section 12.7.2612.76 with Table 60Table 64: Log() Definition.

10.6.6 File API

The API calls described in this section allow an STI application or device to open, close, and manipulate files, in an

abstract sense, within the operating environment. Note that the file system implemented by the STI infrastructure

may or may not correspond to an actual file system in the underlying operating system. The file system may be

virtualized, and the presence of these API functions does not imply a requirement that the operating system actually

implements a conventional file system.

The basic requirements of the file system abstraction are:

• All applications and devices access the same file system (real or virtual). A file created by one application

or device, may be subsequently opened by a different application or device, using the same file name.

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

74 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

• The files are persistent for at least the lifetime of the current infrastructure. A virtual file system backed in

RAM or other volatile storage may be cleared when the infrastructure is restarted, or the host system is

rebooted. File systems should have longer persistence (i.e. across reboots) when backed by a non-volatile

storage device.

The platform developer must indicate the level of persistence offered by the file system abstraction.

The methods defined in this section pertain to file system manipulation and provide a means to open or close file

handles. For actual data transfer operations, file handles will respond to the data transfer methods as defined in

section 10.6.4, Data Transfer APIData Transfer API.

10.6.6.1 File Handle Operations

Like other components, files in STI operating environment are identified using a handle ID, and as such file handles

share many of the same semantics with other applications and devices. The difference lies in that file handles are

obtained using the specific API methods described here, rather than the previously described methods used for

applications or devices. The operations in this section manipulate file handles within the environment.

See Section 12.7.2712.77 with Table 61Table 65: FileOpen() Definition.

See Section 12.7.2812.78 with Table 62Table 66: FileClose() Definition.

10.6.6.2 File System Operations

The operations in this section manipulate or query the file system itself, rather than on file handles within the file

system.

See Section 12.7.2912.79 with Table 63Table 67: FileGetSize() Definition.

See Section 12.7.3012.80 with Table 64Table 68: FileRemove() Definition.

See Section 12.7.3112.81 with Table 65Table 69: FileRename() Definition.

See Section 12.7.3212.82 with Table 66Table 70: FileGetFreeSpace() Definition.

10.6.7 Messaging API

The STI applications use the Messaging API to establish facilities to send messages between components using a

common handle ID. The ability for applications, services, devices, or files to communicate with other STI

applications, services, devices, or files is crucial for the separation of radio functionality among independent

components. When using the message passing API, the final destination of a message is not necessarily known to

the producer of the message.

For example, the receive and transmit telecommunication functionalities can be separated between two applications.

Another example is when commands or log messages come from several independent sources and are merged

appropriately. Some examples of independent components that may need to interact with others could be for

navigation, GPS, file upload, file download, and computations.

There are two models for passing messages: queues (first in, first out, or FIFO) and publish/subscribe (PubSub). In

a queue, messages are written to a queue by one entity and read from the queue by another entity. In a PubSub

model, messages written to the message passing facility by one application are delivered to all subscribers of that

publisher.

To write to or read from a FIFO queue, the Read() and Write() operations are used, respectively, as described in

section 10.6.4, Data Transfer APIData Transfer API. In this model, the originating entity pushes data to the queue,

where it is temporarily stored. The receiving entity pulls data from the queue later, at which time it is removed from

the queue. By definition, FIFO queues only provide sequential data, they do not support random access.

In the publish/subscribe (PubSub) messaging model, the data is pushed to all subscribers using a one-to-many

distribution. All applications subscribing to receive data using this model are required to implement the “Sink”

interface as described in section 10.5.4.2. Note that any handle ID capable of acting as a data sink may be

subscribed to a PubSub message distribution, including files and FIFO queues. By registering an open file handle

ID, one can effectively create a “tap” to log all published data. Likewise, by registering a FIFO queue, the two

Formatted: Font: 10 pt

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Font: 10 pt

Space Telecommunication Interface (STI), v1.0 -- beta 2 75

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

messaging models may be combined, allowing broadcast data to be buffered and then “pulled” by the receiver as

time permits.

10.6.7.1 FIFO Queue Model

The API calls described in this section implement the “first-in, first-out” (FIFO) queue model.

See Section 12.7.3312.83 with Table 67Table 71: MessageQueueCreate() Definition.

See Section 12.7.3412.84 with Table 68Table 72: MessageQueueDelete() Definition.

10.6.7.2 Publish/Subscribe Model

The API calls described in this section implement the publish/subscribe messaging model.

See Section 12.7.3512.85 with Table 69Table 73: PubSubCreate() Definition.

See Section 12.7.3612.86 with Table 70Table 74: PubSubDelete() Definition.

See Section 12.7.3712.87 with Table 71Table 75: Register() Definition.

See Section 12.7.3812.88 with Table 72Table 76: Unregister() Definition.

10.6.8 Time API

The STI Infrastructure Time methods are used to access the hardware and software timers. Methods are also defined

to support synchronization of oscillators or other timing sources to a reference signal.

Many time operations utilize an object type called TimeWarp, which represents an abstract time interval.

Nominally, the TimeWarp object is expected to be some form of timer tick counter, with the specific

resolution/units and epoch being implementation-defined. A TimeWarp object may represent time in standardized

units, such as milliseconds or microseconds, or it may be based on the CPU clock or timer interrupt frequency.

Although some API methods are defined to a nanosecond time resolution, that does not imply that the actual timer

resolution is nanoseconds or that the underlying TimeWarp object contains its data in nanoseconds.

The following is true of TimeWarp objects:

• The resolution or units of TimeWarp objects is a fixed constant defined by the infrastructure and does

not change for the lifetime of the infrastructure. For instance, if a clock is sampled at times A, B, and C,

and the time interval between B-A and C-B is equal, then the corresponding difference between the

successive TimeWarp values will also be equal.

• All clock deviceclock components within an infrastructure will share the same definition of TimeWarp,

with respect to range and resolution, even if the clock deviceclock components do not share the same

epoch.

• TimeWarp objects will be capable of differentiating between positive intervals (time in the future) and

negative intervals (time in the past).

Depending on the application, time intervals may be of a long duration (years or decades) and/or high resolution

(microseconds or nanoseconds). To support a wide range of time while also maintaining a high resolution, it may

not be possible to represent a TimeWarp value as a single value on a particular CPU. For instance, if a timer has a

resolution of 1 microsecond and is represented using a 32-bit signed integer, which is the largest native integer type

on some microcontrollers, then the measurable time intervals would be limited to only (231-1) microseconds, or

approximately 35.7 minutes. Therefore, TimeWarp may be implemented as a structure or other extended-range

numeric type in order to achieve the necessary range and resolution requirements.

10.6.8.1 Time Conversion and Arithmetic

The TimeWarp object is defined by the infrastructure as a value that represents a specific interval in time. The

specific structure of this object is implementation-defined. For example, the underlying TimeWarp object could

count ticks from some epoch, such as the infrastructure boot time, and then GetSeconds and GetNanoseconds

compute the seconds and nanoseconds, respectively, based on the tick rate.

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

76 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The following methods provide a means to work with TimeWarp objects, and to convert or translate these objects

into other representations. As the specific implementation of the TimeWarp object may vary, applications cannot

assume that normal arithmetic or logical operations are possible (i.e. addition or subtraction, equality testing, etc.).

Therefore, the infrastructure needs to explicitly provide these operations in the API.

In order to make these operations as efficient as possible, all operations defined in this section may be implemented

as macros or inline functions on platforms that offer this feature. There is also no need for error checking and no

possibility of failure on these operations, as any input value is valid.

See Section 12.7.3912.89 with Table 73Table 77: GetNanoseconds() Definition.

See Section 12.7.4012.90 with Table 74Table 78: GetSeconds() Definition.

See Section 12.7.4112.91 with Table 75Table 79: GetTimeWarp() Definition.

See Section 12.7.4212.92 with Table 76Table 80: TimeAdd() Definition.

See Section 12.7.4312.93 with Table 77Table 81: TimeSubtract() Definition.

See Section 12.7.52 with Table 90: ConvertToTimeWarp() Definition

10.6.8.2 Basic Clock Get/Set Operations

The API calls described in this section implement the basic clock operations such as getting the time, setting the

time, or suspending/delaying operation until the clock reaches a specific value.

See Section 12.7.4412.94 with Table 78Table 82: GetTime,

See Section 12.7.4512.95 with Table 79Table 83: SetTime,

See Section 12.7.4612.96 with Table 80Table 84: GetCalendarTime,

Several predefined constantsvalues for the CalendarKind type are specified in section 10.4.2. A compliant

platform does not necessarily need to implement all the calendar types listed and may implement additional types

not listed as application-specific extensions. To support the various time representations, several structures are

provided by the infrastructure. The time representations are illustrated in Figure 14, Calendar Time Value

Representations.

Figure 1414: Calendar Time Value Representations

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Space Telecommunication Interface (STI), v1.0 -- beta 2 77

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The CalendarTime type may be expressed as an IDL union of all possible time representations, as indicated

below.

See Section 12.4.1112.97 with Table 81Table 14: CalendarValueCivil Structure Definition.

See Section 12.4.1212.98 with Table 82Table 15: CalendarValueGPS Structure Definition.

See Section 12.9912.4.13 with Table 83Table 16: CalendarValueDayNumber Structure Definition.

See Section 12.10012.4.14 with Table 84Table 17: CalendarTime Union Definition.

10.6.8.3 Clock Rate Adjustment and Drift Compensation

If clock deviceclock components require synchronization with external signals, a dedicated service should

continuously monitor for drift and handle the adjustment as needed. Common synchronization sources include a

“time at tone” signal from a ground station, a 1 pulse per second (PPS) input from a GPS receiver, or via the

network time protocol (NTP). Differences between the synchronization source and the clock deviceclock

component can be compensated by either directly stepping the clock deviceclock component using SetTime(), or,

if the underlying device supports it, by low-level adjustment of the clock source tick rate such that the drift is

gradually absorbed and corrected over time.

The SetTime() API sets the clock directly and will step the timer forward or backward as indicated. However, a

timer step may have undesirable consequences for some software, particularly control loops that rely on relative

time differences between successive samples. This can sometimes be mitigated by making many small steps rather

than one large step. However, even the smallest step still might cause unacceptable effects on a control loop that

relies on precise relative timing measurements.

The adjustment functions are intended to address this by providing an alternative method to adjust for clock drift. In

many clock deviceclock component implementations, the underlying “tick” or reference signal is supplied using a

hardware PLL/oscillator or clock divider of some type, driving a periodic timer tick interrupt to the CPU.

Furthermore, if the source allows some level of control during operation, such as increasing or decreasing the

oscillator rate by a certain ratio (e.g. parts per million) or by modifying the clock divider ratio by a small amount,

then this can be used to provide for a more stable drift compensation method. By increasing or decreasing the

underlying timekeeping tick rate, small differences between the clock deviceclock component and the reference

source can be compensated over time without ever “stepping” the clock.

Support for these adjustment routines is platform dependent. If a platform does not support clock drift adjustment,

an appropriate error code will be returned.

See Section 12.7.4712.101 with Table 85: SetTimeAdjust() Definition.

See Section 12.7.4812.102 with Table 86: GetTimeAdjust() Definition.

See Section 12.7.4912.103 with Table 87: TimeSynch() Definition

10.6.8.4 Delay Operations

The Sleep and DelayUntil functions provide a means for an algorithm to delay its own execution or wait for a clock

to reach a certain deadline.

See Section 12.7.5012.104 with Table 88: Sleep() Definnition

See Section 12.7.5112.105 with table 89: DelayUntil() Definition.

10.6.9 Clock Control API

The following API calls allow applications or devices to act as STI clock components. The operations below

provide a means to establish a path of communication to the STI clock components, and correlate to the

ClockControl interface on the target component. There are corresponding OE methods without the “CLK_” prefix

in Section 12.7.44 to Section 12.7.51 as described above.

For Infrastructure-Provided Clock Control Software Requirements

See Section 12.9.1 with Table 91: CLK_GetTime() Definition

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Formatted: Underline

Commented [HLM(L8]: JIRA issue STI_78: Missing

Clock Methods

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

78 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

See Section 12.9.2 with Table 92: CLK_SetTime() Definition

See Section 12.9.3 with Table 93: CLK_SetTimeAdjust() Definition

See Section 12.9.4 with Table 94: CLK_GetTimeAdjust() Definition

See Section 12.9.5 with Table 95: CLK_Sleep() Definition

See Section 12.9.6 with Table 96: CLK_DelayUntil() Definition

10.7 Non-STI Software Interfaces

STI applications and services may need to utilize libraries or services outside the scope of STI, such as the services

provided by the operating system or additional software libraries. As such, an STI module can only be ported to an

environment that also provides a compatible set of services or libraries, so it is critical to identify these

dependencies.

Examples of software libraries include, but are not limited to:

• Operating system operations such as task/thread creation or synchronization

• Floating-Point mathematical operations

• Complex algorithms, such as machine learning

Most programming languages, including C/C++, also define a “standard library” in addition to the language syntax

and semantics. This library is defined by the respective standards body, such as ISO/IEC for C and C++, as a set of

interfaces that all compliant implementations must meet. For instance, in ISO/IEC 9899 (C), this standard library

includes a minimum set of header files specifying a core set of function calls, including basic memory access,

mathematical operations, and string manipulation (e.g. memset(), strcmp(), sqrt(), etc.).

An STI application may use any operations defined in the standard library of the respective programming language.

However, the application developer should avoid the use of any library functions which are marked as deprecated,

non-cross-platform, or non-thread-safe, where applicable. If no replacement or alternative exists, this dependency

should be expressly noted in the application documentation.

Beyond the standard library, additional software libraries may be used for specific functions. These include, but are

not limited to:

• Accessing operating system or task scheduling resources (e.g. POSIX® or other operating system

abstraction library)

• Additional mathematical computations beyond those provided by the standard library (e.g. BLAS,

LAPACK, NumPy, etc.)

• Scientific or Machine Learning packages (e.g. SciPy, TensorFlow™, etc.)

10.7.1 Operating System Interface

STI applications implemented in C or C++ which do not leverage a specific 3rd party operating system abstraction

library may use a subset of the POSIX® API as shown in Figure 6Figure 8, Software Execution Model. POSIX®

refers to a family of IEEE standards 1003.n that describe the fundamental services and functions necessary to

provide a UNIX®-like kernel interface to applications. POSIX® itself is not an OS but is instead specifies the

programming interfaces available to the application programmer.

POSIX® specifies a set of OS interfaces and services. The specification is not bound to a single operating system

and has in fact been implemented on top of operating systems such as Digital Equipment Corporation’s (DEC’s)

OpenVMS™ (Virtual Memory System) and Microsoft Windows®. However, the creation of POSIX® is closely

coupled to the UNIX® OS and its evolution. The goal was to create a standard set of interfaces that all the UNIX®

flavors would support in order to facilitate software portability. Even though POSIX® technically refers to the

family of specifications, it is more commonly used to refer specifically to IEEE 1003.1, Information Technology -

Portable Operating System Interface (POSIX®), which is the core POSIX® specification.

Space Telecommunication Interface (STI), v1.0 -- beta 2 79

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Characteristics of POSIX® include the following:

• Application-oriented.

• Interface, not implementation.

• Source, not object, portability.

• The C-language/system interfaces written in terms of the ISO C standard.

• No superuser, no system administration.

• Minimal interface, minimally defined—core facilities of this specification have been kept as minimal as

possible.

• Broadly implementable.

• Minimal changes to historical implementations.

• Minimal changes to existing application code.

The original POSIX® specification was based on a general-purpose computing platform, but a series of amendments

addressed the unique requirements of real-time computing. These amendments follow:

• IEEE 1003.1B-Realtime Extension.

• IEEE 1003.1C-Threads Extension.

• IEEE 1003.1D-Additional Realtime Extensions.

• IEEE 1003.1J-Advanced Realtime Extensions.

• IEEE 1003.1Q-Tracing.

These amendments were rolled into the base specification in version IEEE 1003.1-1996. IEEE 1003.13 provides a

standards-based option for an STI AEP.

10.7.1.1 STI Application Environment Profile

The subset of the POSIX® API described below is used by STI applications to access platform services when no

STI Infrastructure-provided API is available. The IEEE 1003.1 standard provides a means to implement a subset of

the interfaces by using “Subprofiling Option Groups.” These option groups specify “Units of Functionality” that can

be removed from the base POSIX® specification.

IEEE 1003.13 created four AEPs that specified subsets of 1003.1 more suitable to embedded applications. These

profiles follow:

• PSE51—Minimal Realtime Systems Profile.

• PSE52—Realtime Controller System Profile.

• PSE53—Dedicated Realtime System Profile.

• PSE54—Multi-Purpose Realtime System Profile.

80 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The profiles are each upwardly compatible and consist of the basic building blocks shown in figure 15, Profile

Building Blocks. Each of these profiles has increasing capabilities, which increase requirements on resources.

Profiles 51 and 52 runs on a single processor with no Memory Management Unit (MMU), and thus imply a single

process containing one or more threads. Profile 52 adds a file system interface and asynchronous I/O. Profile 53

adds support for multiple processes, thus requiring an MMU. The last and largest profile 54 adds support for

interactive users and is almost a full POSIX® 1003.1 environment. The higher numbered profiles are supersets of

the lower numbered profiles, such that PSE52 includes all the features of a PSE51.

Upward portability between profiles is supported by requiring certain APIs, such as memory locking, for profiles

PSE51 and PSE52. Even though there is no MMU support on the PSE51 and PSE52 profiles, code written as if

there is an MMU present will be portable among all four profiles by requiring such APIs to be defined in all four

profiles. The signature of these APIs will be identical on all profiles, but the functionality will differ according to

the capabilities. For example, calling a memory-locking API on a PSE51 platform with no MMU will always return

success. When this example application is ported to a PSE53 platform, the memory locking will work as intended

without modification to the source code.

Currently, this specification supports platforms based on profiles PSE51 through PSE54, although PSE54 will only

be used for development platforms and ground stations. Allowing multiple profiles allows the architecture to scale

to different platforms. Applications developed for a specific profile are compatible with higher profiles; that is, a

profile 52 application could be ported to profile PSE53 and PSE54 platform, but not vice versa. This upward

scalability anticipates that smaller platforms will desire smaller profiles and will not have the resources to run larger

applications that comply with the larger profiles.

For Requirements for Operating System Interface

See 12.3.712.106, Document STI InterfacesDocument STI Interfaces.

For POSIX® interfaces this should indicate the supported application profiles as described in standard IEEE

1003.13. For other operating systems or operating system abstraction layers, this should indicate the specific

API or abstraction layer and associated version, where applicable.

See 12.107, Document Application’s System Library Interfaces 12.3.8, Document Application’s System Library

Interfaces.

Figure 15: Profile Building Blocks

Space Telecommunication Interface (STI), v1.0 -- beta 2 81

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

For POSIX® interfaces this should indicate the required application profiles as described in standard IEEE

1003.13. For other operating systems or operating system abstraction layers, this should indicate the specific

API or abstraction layer and associated version, where applicable.

Regardless of the POSIX® profile implemented, STI applications should avoid use of any POSIX® function which

is not thread safe, to preserve portability of application code to multi-threaded STI platforms. In addition, STI

applications should not invoke any function which would cause the parent process to abort or exit (e.g. exit() or

abort()) as these functions may disrupt the operation of other STI applications.

In areas where there is overlap between an STI API and a function provided by POSIX®, such as messages queues

and file system access, applications should use the STI provided API.

Table 4 lists a set of common POSIX® functions and the alternative function to use in an STI application. Note that

this list only contains a subset of the possible non thread-safe functions and should not be considered exhaustive or

complete. Refer to the POSIX® specification for a complete set of non thread-safe functions.

Table 4: Function Alternatives

POSIX® Function(s) Suggested Alternate

asctime(), ctime() strftime()

open(), close() STI FileOpen(), FileClose()

mq_open() STI MessageQueueCreate()

read(), write() STI Read(), Write()

strtok() strtok_r()

rand() rand_r()

abort(), exit() STI AbortApp()

ioctl(), mmap() STI AddressRead(),AddressWrite()

system(), atexit() None; do not use

11. External Command and Telemetry Interfaces

An STI radio cannot perform the necessary application and platform functions without an external system providing

commands, accepting responses, and monitoring the radio’s health and status. The STI radio implements an external

interface to receive and act on the commands from the external system, translates the commands into the format

expected by the application, and provides the information for monitoring the health and status of the radio. If the

STI radio has the capability for new or modified OE, application software, or configurable hardware design, the

external command and telemetry interfaces should be able to accept and store new files. The interface in the STI

radio and in the external system, which is to provide the control, via a command sequence, to the STI radio and

receive responses from an STI radio, is referred to as the STI command and telemetry interfaces. The external STI

command and telemetry functionality illustrated in figure 16, Command and Telemetry Interfaces, typically resides

on the spacecraft’s flight computer, and/or it may reside on a ground station or another spacecraft.

Commented [HLM(L9]: JIRA issue STI_29: STI Pro-

posal: Change GetCalendarTime to strftime in Table 4

Commented [HLM(L10]: JIRA issue STI_5: Correct

SysML in figures

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-29&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=SjQWstCKKjknmCA1eng4Kuz361x9gD2LPBW0jGW62Wg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-29&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=SjQWstCKKjknmCA1eng4Kuz361x9gD2LPBW0jGW62Wg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-5&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=L%2Fl5d9sicXn2kBtHD5WECl%2F80k4tMnrnFTtm6hkRb9k%3D&reserved=0

82 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

This shared capability implies that the STI radio is capable of performing the interface functions. Within the STI

radio, if there are data stored on the radio that are to be transferred to an external system, the capability is to exist to

send data using a mission-specific protocol to the receiver (flight computer, ground station, or other spacecraft) and

capability in the receiver to process those data or write those data to a file or download service or to a storage area

that is accessible from both. The reverse capability for STI radio control is also necessary: The external system is

capable of sending commands using a mission-specific protocol and the STI radio is capable of validating,

deciphering, and processing those commands. For example, data coming over the Flight Computer Interface are

interpreted by the Command and Control Manager as shown in figure 16 and are processed by the STI

infrastructure.

Within the STI radio, components of the command and telemetry interfaces are necessary to provide the interfaces

between the STI OE and the STI command and telemetry functionality on the external system. The command and

telemetry interfaces may include a standard type of mechanical, electrical, and functional spacecraft bus interface,

such as MIL–STD–1553, Digital Time Division Command/Response Multiplex Data Bus; command and telemetry

interpretation; and translation of the command set to the STI standard necessary for application control. The

protocol, command set, and telemetry set for the STI command and telemetry interfaces are not standardized and can

be customized according to the needs of any particular deployment. However, some interface and behavioral

requirements are required.

The telemetry set should contain some or all of the following parameters:

• Electrical Conditions: Voltage, current, and power consumption.

• Environmental Conditions: Temperature, pressure.

• Module Configuration: Module type/location, hardware revision.

• Self-test Status: RAM/ROM, file system, software revision, and individual module test status.

• Operating Environment Status: Infrastructure software revision, name/ID/state of components, available

memory for data and files

• Other Application-specific parameters

The command set may contain some or all of the following actions:

• Application Instantiation and Deletion: Manually create or delete a waveform or device.

• Property Set: Query or Configure a specific component property via the STI PropertySet API.

• File Operations: Query, delete, or rename files via the STI File API.

Figure 16: Command and Telemetry Interfaces

Space Telecommunication Interface (STI), v1.0 -- beta 2 83

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

• Invoke Self-tests: Interface to the STI TestableObject API.

• Device Operations: Manually load, flush, or reset a device via the STI Device API.

If the command interface lies on a network containing other devices, the infrastructure should implement some form

of command authentication, to reduce the likelihood that commands are received in error or from an unauthorized

source. Furthermore, the infrastructure may also implement encryption on the command and telemetry interfaces to

ensure that the data is not disclosed to other entities in the system while in transit. Any such security procedures

should be implemented at the network transport level, which is outside the scope of this specification.

The specific command or telemetry set available for use is always at the discretion of the system integrator. While

the set described here is potentially useful for a development platform, flight operations may choose to use an

entirely different set. The use of additional data transmission specification standards is encouraged but
not required by this standard

For Requirements for External Command and Telemetry Interfaces

See 12.8.112.108, Respond to External Commands

See 12.8.212.109, External Commands Use STI API

See 12.8.312.110, Document External Commands

See 12.110, 12.8.4, Use STI Query for External DataDocument External Commands.

12. Normative Requirements

12.1 Hardware

Document hardware and interfaces.

12.112.1.1 Provide GPM

STI-1 An STI platform shall have a GPM that contains and executes the STI OE and the control portions of the

STI applications and services software.

12.212.1.2 Diagnostic Information Availability

STI-2 A module’s diagnostic information shall be available via the STI APIs.

12.312.1.3 Document RF

STI-3 The STI platform provider shall describe, in the HID document, the behavior and performance of the RF

modular component(s).

12.412.1.4 Document Power-Up State

STI-4 The STI platform provider shall describe, in the HID document, the state of all hardware devices in the

system after completion of power-up process.

12.512.1.5 Document Hardware Capability

STI-5 The STI platform provider shall describe, in the HID document, the behavior and capability of each major

module or component available for use by a waveform, service, or other application (e.g., FPGA, GPP, DSP, or

memory), noting any operational limitations.

Formatted: Text body

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

84 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.612.1.6 Document Hardware Limitations

STI-6 The STI platform provider shall describe, in the HID document, the various capabilities, capacities, and any

limitations of each reconfigurable component.

12.712.1.7 Document Interfaces

STI-7 The STI platform provider shall describe, in the HID document, the interfaces that are provided to and from

each modular component of the STI platform.

12.812.1.8 Document the Control and Data Mechanisms

STI-8 The STI platform provider shall describe, in the HID document, the control, telemetry, and data

mechanisms of each modular component (i.e., how to program or control each modular component of the platform,

and how to use or access each device or software component, noting any proprietary and nonstandard aspects).

12.912.1.9 Document Power Supply

STI-9 The STI platform provider shall describe, in the HID document, the behavior and performance of any

power supply or power converter modular component(s).

12.1012.1.10 Document Thermal and Power Limits

STI-10 The STI platform provider shall describe, in the HID document, the thermal and power limits of the

hardware at the smallest modular level to which power is controlled.

12.1112.1.11 Controllable From OE

STI-11 If the STI application has a component resident outside the GPM (e.g., in configurable hardware design),

then the component shall be controllable from the STI OE.

12.2 Configurable Hardware Design

12.1212.2.1 Platform Specific Wrapper

STI-12 The STI SPM developer shall provide a platform specific wrapper for each FPGA, which performs the

following functions:

1. Provides an interface for command and data from the GPM to the waveform application.

2. Provides the platform-specific pinout for the STI application developer. This may be a complete

abstraction of the actual FPGA pinouts with only waveform application signal names provided.

12.1312.2.2 Document FPGA Interfaces

STI-13 The STI SPM developer shall provide documentation on the configurable hardware design interfaces of the

platform-specific wrapper for each FPGA, which describes the following:

1. Signal names and descriptions.

2. Signal polarity, format, and data type.

3. Signal direction.

4. Signal-timing constraints.

5. Clock generation and synchronization methods.

6. Signal-registering methods.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Indent: Left: 0", Hanging: 0.81", Outline

numbered + Level: 2 + Numbering Style: 1, 2, 3, … +

Start at: 1 + Alignment: Left + Aligned at: 0" + Indent

at: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Space Telecommunication Interface (STI), v1.0 -- beta 2 85

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

7. Identification of development tool set used.

8. Any included non-interface functionality.

12.3 Software

12.1412.3.1 Document System Library Interfaces Provided

STI-14 The STI infrastructure provider shall document the supported system library interface(s) that are provided

by the infrastructure, specifying any relevant standards or revisions.

12.1512.3.2 Document System Library Interfaces Used

STI-15 The STI application provider shall document the supported system library interface(s) that are required by

the application, specifying any relevant standards or revisions.

12.1612.3.3 Document Language Interfaces Provided

STI-16 The STI infrastructure provider shall document the supported language interface(s) that are provided by the

infrastructure, specifying any relevant standards or language revisions.

12.1712.3.4 STI Infrastructure Uses APP API

STI-17 The STI infrastructure shall use the STI Application-provided Application Control Interfaces to control STI

applications.

12.1812.3.5 Use Language Specific Facilities Specified in Annex A

STI-18 Applications shall use the respective programming language’s designated facilities, such as a package,

module, or header file(s), to refer to all STI infrastructure-provided entities as prescribed in Annex A: Language

Translations.

12.1912.3.6 Use Language Specific Inheritance

STI-19 Application object definitions shall use the programming language’s inheritance mechanisms to specify the

set of STI interfaces that are implemented by the application (for object-oriented languages only).

12.3.7 Document STI Interfaces

STI-106 The STI infrastructure provider shall document the set of interfaces provided by the infrastructure.

12.3.8 Document Application’s System Library Interfaces

STI-107 The STI application developer shall document the set of operating system interfaces required by the

application.

12.4 STI Infrastructure-Provided Software

The following items in section 12.4 are expected to appear in module STI.

12.2012.4.1 STI Infrastructure Infrastructure-Provided Data Types

STI-20 The STI infrastructure shall define the basic data types as specified in Table 5.

Formatted: Indent: Left: 0", Hanging: 0.81", Outline

numbered + Level: 2 + Numbering Style: 1, 2, 3, … +

Start at: 1 + Alignment: Left + Aligned at: 0" + Indent

at: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Font: (Default) Arial, 12 pt

Commented [HLM(L11]: Just moved during renumbering

to organize requirements into sections

Formatted: Font: (Default) Arial, 14 pt, Bold

Formatted: Font: (Default) Arial, 14 pt, Bold

Formatted: Font: 10.5 pt

Formatted: Heading 3, Indent: Left: 0", First line: 0"

86 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Table 5: STI Variable Types

N Type Name Semantics Usage/Description

1
Access Enumeration

Indicates desired access to a file. The specific

possible values are described in Table 6.

2

CalendarKind Enumeration

Identifies a specific method of time representation,

such as TAI or UTC. The specific possible values are

described in Table 7, CalendarKind ConstantsValues.

Because some time representations apply to space,

date and time may be defined beyond the ISO

standard for Date and Time [8601] on Earth.

3

CalendarTime Abstract Structure or Class

An abstract object that identifies a specific time for a

particular CalendarKind. All possible

CalendarTime values are representable as a

pointer or reference to this type.

4

FileSize Integer

Represents a file size in bytes. The variable type

should be able to represent the maximum file size

among all the filesystems in the system, as well as

uniquely identifiable values to indicate error

conditions

5

HandleID Integer

A handle ID is a single value that represents an STI

application, device, file, or queue. It may be an index

into a table or a pointer to more information for the

item. The infrastructure defines the set of valid

values for this type.

6

Instance Structure or Class (base type)

The base type of all application and device context

objects. All STI components have a corresponding

object of this type stored by the infrastructure,

although the object itself is not exposed to other

applications.

7

Message Abstract Structure or Class

The base type of all data exchange (Read, Write)

buffers. All STI data exchange messages are

representable as a pointer or reference to this type.

8

Nanoseconds Integer

Indicates the number of nanoseconds (fractional part)

within a TimeWarp object. This type can represent

at least the range of [0, 999999999], and may be

implemented using an “unsigned” value type, if

available.

9

Offset Integer

Indicates an offset from the beginning of a file or

device address space. This type has a range capable

of representing the last position in the largest file or

device in the system. May be implemented using an

“unsigned” value type, if available.

10

PropertyName Integer, Enumeration or String

Identifies properties by name. May be implemented

as a numeric enumeration in languages which support

this, or as a string value in other environments.

11

PropertyValue Abstract Structure or Class

The base type of all property values used with the

property set interface (Configure, Query). All

STI property values are representable as a pointer or

reference to this type.

Formatted Table

Commented [HLM(L12]: JIRA issue STI_45: STI-20 add

index numbers in table

Commented [HLM(L13]: JIRA issue STI_31: Change

“constants” to “predefined values”

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-45&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=tBWmMs6IoKEv8kX2rukdzknKiEUgSGlUuovDm3MxZyg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-45&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=tBWmMs6IoKEv8kX2rukdzknKiEUgSGlUuovDm3MxZyg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 87

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

N Type Name Semantics Usage/Description

12
QueueMaxMessages Integer

Represents the maximum number of messages

allowed in a FIFO queue.

13

Result Integer

Represents a status value, returned by many STI API

calls. Specific predefined values represent error

conditions, which are distinct from the set of valid

results. See constantspredefined values defined in

Table 9, Result ConstantsValues.

14

Seconds Integer

Indicates the number of seconds (whole number part)

of a TimeWarp object. Negative values represent

time intervals in the past, and positive values indicate

time intervals in the future.

15
TestID Integer

Represents the built-in test or ground test to be

performed by APP_RunTest.

16

TimeRate Integer

Indicates the adjustment factor of clock deviceclock s

components during adaptive sync and drift

compensation. Positive values represent increased

clock frequency/tick rates, negative values represent

decreased frequency/tick rates, and a value of zero

represents the nominal or “free-run” clock frequency.

Units are implementation defined.

17

TimeWarp
Integer or Aggregate value

(non-abstract)

The rRrepresentsation of an arbitrary time interval.

Logically, this is a single, large value of fixed-point

precision. The value should be at least 64 bits in size.

If the largest native integer size is less than 64 bits on

a given architecture, this may be defined as a

structure or array to achieve the necessary range and

precision. Units are implementation defined but are

convertible to seconds and nanoseconds using the STI

methods GetSeconds and GetNanosecondsAPI.

12.2112.4.2 Application based on Instance Object

STI-21 The application base object shall be convertible to an Instance object as defined by the STI infrastructure.

12.2212.4.3 STI Infrastructure-Provided Access ConstantsValues

STI-22 The STI infrastructure shall provide the Access Constantsvalues as specified in Table 6.

Table 6: Access ConstantsValues

Declaration enum Access {

 READ,

 WRITE,

 APPEND,

 BOTH

};

Description EnumeratesEnumerate types of access to a file.

Formatted Table

Commented [HLM(L12]: JIRA issue STI_45: STI-20 add

index numbers in table

Commented [HLM(L14]: JIRA issue STI_31: Change

“constants” to “predefined values”

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L15]: JIRA issue STI_31: Change

“constants” to “predefined values”

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-45&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=tBWmMs6IoKEv8kX2rukdzknKiEUgSGlUuovDm3MxZyg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-45&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=tBWmMs6IoKEv8kX2rukdzknKiEUgSGlUuovDm3MxZyg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

88 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Usage ► READ: Indicates file exclusive “read only” permission.

► WRITE: Indicates file exclusive “write only” permission, i.e. writing to beginning of

file.

► APPEND: Indicates file exclusive “append” permission, i.e. writing to end of file.

► BOTH: Combination of READ and WRITE permissions.

Provided By Infrastructure

Notes Used exclusively by the FileOpen() API call. See Section 12.7.27.

12.2312.4.4 STI Infrastructure-Provided CalendarKind ConstantsValues

STI-23 The STI infrastructure shall provide the CalendarKind Constantsvalues as specified in Table 7.

Table 7: CalendarKind ConstantsValues

Declaration enum CalendarKind {

TAI ,

UTC,

GPS,

MJD,

LOCALLOCAL_TIME

};

Description EnumeratesEnumerate several well-defined time and date representations.

Usage ► TAI: Corresponds to the International Atomic Time, a monotonically increasing time

scale based on the weighted average of numerous Earth-based atomic clocks

► UTC: Corresponds to the Coordinated Universal Time, which is offset from TAI by a

number of leap seconds that is occasionally updated through international consensus

► GPS: Corresponds to the GPS time scale, a count of weeks and seconds since the

GPS epoch. Since GPS time does not adjust for leap seconds, it is ahead of UTC by

the integer number of leap seconds that have occurred since January 6, 19801980,

plus or minus a small number of nanoseconds.

► MJD: Corresponds to Modified Julian Date, which is a floating-point representation

of Earth days since the MJD epoch;epoch, i.e., the number of days since midnight on

November 17, 1858, which corresponds to 2400000.5 days after day 0 of the Julian

calendar. MJD is still in common usage in tabulations by the U. S. Naval

Observatory.

► LOCALLOCAL_TIME: Corresponds to the default local time representation. This is

implementation-defined.

Provided By Infrastructure

Notes Platforms do not need to implement every defined calendar system. For those that are

implemented, they should be implemented in a manner consistent with the name and

specification indicated. Implementations may also define custom CalendarKind

values for application-specific needs.

Use of the LOCALLOCAL_TIME time and date representation in applications is

discouraged, due to the inherent ambiguity. This is intended only for a user interface or

display purpose.

For more information on the specific time structures associated with these time and date

representations, see section 10.6.812.4.14.

Commented [HLM(L16]: JIRA issue STI_33: Remove

Unnecessary Table Fields

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L17]: JIRA issue STI_41: local is a

reserved word in IDL, change local to localTime and LO-

CAL to LOCAL_TIME

Commented [HLM(L18]: JIRA issue STI_41: local is a

reserved word in IDL, change local to localTime and LO-

CAL to LOCAL_TIME

Formatted Table

Commented [HLM(L19]: JIRA issue STI_33: Remove

Unnecessary Table Fields

Commented [HLM(L20]: JIRA issue STI_41: local is a

reserved word in IDL, change local to localTime and LO-

CAL to LOCAL_TIME

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 89

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.2412.4.5 STI Infrastructure-Provided HandleID ConstantsValues

STI-24 The STI infrastructure shall provide the HandleID Constantsvalues as specified in Table 8.

Table 8: HandleID ConstantsValues

Declaration

(values are examples)

const HandleID HANDLEID_INVALID = {…};-1;

const HandleID WARNING_QUEUE = {…};2;

const HandleID ERROR_QUEUE = {…};3;

const HandleID FATAL_QUEUE = {…};4;

const HandleID TELEMETRY_QUEUE = {…};1;

Description A set of pre-definepredefined values of the HandleID type that will be constant after

initialization.

Usage ► HANDLEID_INVALID: A reserved value that will never alias a valid handle ID

► WARNING_QUEUE: The default queue to use in conjunction with for the Log() API

for context information related to WARNING responses

► ERROR_QUEUE: The default queue to use in conjunction with for the Log() API for

context information related to ERROR responses

► FATAL_QUEUE: The default queue to use in conjunction with for the Log() API for

context information related to FATAL responses

► TELEMETRY_QUEUE: The default queue for general system telemetry data. The

purpose and usage of this queue handle is implementation-defined.

Provided By Infrastructure

Notes The HANDLEID_INVALID constant value is intended for use as an initializer, to avoid

ambiguity in locally instantiated HandleID values. For instance, this can be used

within an initializer list in a C++ class constructor, before the member is set to a real

handle ID, to avoid potential undefined behavior if the destructor is invoked before the

value is set to an actual handle ID.

The actual queues do not need to be defined as "const" as long as they are defined

during initialization of the OE before the need arises to log messages and not changed

thereafter.

Note: If checking return values, aApplications should never check for specifically for

the HANDLEID_INVALID value, but rather use the ValidateHandleID() API

call.

12.2512.4.6 STI Infrastructure-Provided Result ConstantsValues

STI-25 The STI infrastructure shall provide the Result Constantsvalues as specified in Table 9.

Table 9: Result ConstantsValues

Declaration

(values are examples)

const Result OK = {…};0;

const Result WARNING = {…};-2;

const Result ERROR = {…};-3;

const Result FATAL = {…};-4;

const Result UNIMPLEMENTED = {…};-5;

Description A set of pre-definepredefined constantsvalues of the Result type used as return

values.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L21]: JIRA issue STI_31: Change

“constants” to “predefined values”

JIRA issue STI_51: Add suggested values for ellipses in 12.4

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L22]: JIRA issue STI_51: Add sug-

gested values for ellipses in 12.4

Commented [HLM(L23]: JIRA issue STI_31: Change

“constants” to “predefined values”

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-31&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=gK2GwyrtEtOaNYzUtApAf7FCOPl1%2BgYRipWqfuvAQ8E%3D&reserved=0

90 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Usage ► OK: Indicates the operation was successful

► WARNING: Indicates the operation was not successful, but little or no corrective

action is required. The component is still operational; this may be a transient error.

► ERROR: Indicates the operation was not successful, and some corrective action may

be required. The component is still operational.

► FATAL: Indicates the operation was not successful, and significant corrective action

is required. The component is not able to function.

► UNIMPLEMENTED: Indicates that the operation it iwas not implemented by the

component or by the infrastructure.

Provided By Infrastructure

Notes Values other than OK may also indicate success. Applications should never check for

this value specifically, but rather use IsOK() to determine if an operation succeeded.

An ERROR indicates component is operational, but the request may not be applicable to

the component or may not be valid per the current component state. The caller should

take action to correct the underlying issue before attempting the call again.

The UNIMPLEMENTED value is intended to differentiate between a request that was

successfully sent to the target but failed to execute, versus a request that was not sent to

the target because it does not implement an optional interface. This may be treated

similarly to an ERROR response.

On error, a corresponding HandleID may be obtained using GetErrorQueue() to use

with the Log() API for context information.

12.2612.4.7 STI Infrastructure-Provided Handle Name ConstantsValues

STI-26 The STI infrastructure shall provide the Handle Name Constantsvalues as specified in Table 10.

Table 10: Handle Name ConstantsValues

Declaration

(values are examples)

const string OE_HANDLE_NAME = "“STI_OE_NAME"…”;

const string DEFAULT_CLOCK_NAME = "“STI_DEFAULT_CLOCK"…”;

Description A set of pre-definepredefined constant handle names.

Usage OE_HANDLE_NAME: A name identifying the operating environment

DEFAULT_CLOCK_NAME: A name identifying the default system clock deviceclock

component

Provided By Infrastructure

Notes These names may be passed to HandleRequest() to find the corresponding handle

ID, which can then be used to interact with the target component.

12.2712.4.8 STI Infrastructure-Provided Property Name ConstantsValues

STI-27 The STI infrastructure shall provide the Property Name Constantsvalues as specified in Table 11.

Table 11: Property Name ConstantsValues

Commented [HLM(L24]: JIRA issue STI_33: Remove

Unnecessary Table Fields

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L25]: JIRA issue STI_51: Add sug-

gested values for ellipses in 12.4

Formatted: Heading 3, Indent: Left: 0", First line: 0"

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 91

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Declaration

(values are examples)

const PropertyName COMPONENT_PROVIDER = {…};”

COMPONENT_PROVIDER";

const PropertyName COMPONENT_VERSION =

"COMPONENT_VERSION"{…};

const PropertyName COMPONENT_STATE = " COMPONENT_STATE "{…};

Description A set of pre-definepredefined property names.

Usage ► COMPONENT_PROVIDER: A name associated with the provider of the component.

► COMPONENT_VERSION: A name associated with the version of a component.

► COMPONENT_STATE: A name associated with the state of a component.

Provided By Infrastructure

Notes All applications, as well as the operating environment, will implement these property

names. Devices may also implement these property names, but it is not required; for

any devices provided by the platform, the values would generally match that of the OE.

The values associated with these property names should be free-form strings.

The PROVIDER value is usually a company name or university, followed by a

subsidiary, division, or department name.

The VERSION value is implementation-specific and may be of the format

MAJOR.MINOR.REVISION and may also include additional identification

information, such as a baseline version control revision ID or tag/branch if relevant.

The STATE value is implementation-specific, and the meaning should be indicated by

the application developer.

12.2812.4.9 STI Infrastructure-Provided Size Limit ConstantsValues

STI-28 The STI infrastructure shall provide the Size Limit Constantsvalues as specified in Table 12.

Table 12: Size Limit ConstantsValues

Declaration

(values are examples)

const Integer MAX_PROPERTY_NAME_SIZE = {…};63;

const Integer MAX_PROPERTY_VALUE_SIZE = {…};1023;

const Integer MAX_PATH_NAME_SIZE = {…};255;

const Integer MAX_HANDLE_NAME_SIZE = {…};63;

const Integer MAX_LOG_MESSAGE_SIZE = {…};1023;

const MaxQueueMaxMessages MAX_QUEUE_MESSAGES = {…};10;

Description Establishes a set of constantspredefined values of known maximum size limits for

various items.

Usage ► MAX_PROPERTY_NAME_SIZE: The maximum size, in bytes, of any

PropertyName object

► MAX_PROPERTY_VALUE_SIZE: The maximum size, in bytes, of any

PropertyValue object

► MAX_PATH_NAME_SIZE: The maximum length, in characters, of a file name

► MAX_HANDLE_NAME_SIZE: The maximum length, in characters, of a handle name

► MAX_LOG_MESSAGE_SIZE: The maximum length, in characters, of strings

accepted by the Log() API

► MAX_QUEUE_MESSAGES: The maximum number of messages that can be stored in

a queue.

Commented [HLM(L26]: JIRA issue STI_51: Add sug-

gested values for ellipses in 12.4

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L27]: - JIRA issue STI_51: Add sug-

gested values for ellipses in 12.4

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0

92 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Provided By Infrastructure

Notes These constant definitionsvalues are mainly intended for use in languages such as

C/C++ where application developers are responsible for buffer allocation. In other

languages, buffer allocation may occur automatically and as such these size limits may

not be relevant.

In C/C++ environments, these constantsvalues will evaluate at compile time, such that

they may be used as array dimensions. Note that for string length sizes, the value

reflects the maximum number of actual characters in the string and does not take into

account any terminating NUL character ('‘\0'’). The value should always be increased

by 1 if the constant value is used in the dimension of a char[] array.

12.2912.4.10 STI Infrastructure-Provided TimeWarp ConstantsValues

STI-29 The STI infrastructure shall provide the TimeWarp Constantsvalues as specified in Table 13.

Table 13: TimeWarp ConstantsValues

Declaration

(values are examples)

const TimeWarp TIME_INTERVAL_ZERO = {…};0;

const TimeWarp TIME_INTERVAL_UNLIMITED = {…};-1;

Description Constant vValues suitable for usage with functions accepting a TimeWarp value.

Usage ► TIME_INTERVAL_ZERO: Represents the value of zero

► TIME_INTERVAL_UNLIMITED: A value indicating no limit to the respective time

interval or step size.

Provided By Infrastructure

Notes The TIME_INTERVAL_UNLIMITED constant value is intended be used with

functions such as TimeSynch(). When this value is passed as the stepMax

argument, it indicates that the infrastructure may directly step the clock to any value.

12.29.112.4.11 STI Infrastructure-Provided CalendarValueCivil Structure

STI-97 The STI infrastructure shall provide the CalendarValueCivil Structure definition and implementation as

specified in Table 14.

Table 14: CalendarValueCivil Structure Definition

Declaration struct CalendarValueCivil {

 long nanoseconds;

 octet seconds;

 octet minutes;

 octet hours;

 octet day;

 octet month;

 short year;

};

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Commented [HLM(L28]: JIRA issue STI_51: Add sug-

gested values for ellipses in 12.4

Formatted Table

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-51&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EyeubyqQskl3NS9a3mLi%2BEuQAOVMyWdh%2FLdQl%2B0dW4Y%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 93

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Description Definition of time representation type for the common era / Gregorian calendar.

Member Detailsdetails:

► nanoseconds: The number of nanoseconds, range of [0-999999999]

► seconds: The seconds value, range of [0-60]

► minutes: The minutes value, range of [0-59]

► hours: The hours value, range of [0-23]

► day: The day number within the month, range of [0-30]

► month: The month number within the year, range of [0-11]

► year: The full year number, expressed as an integer (i.e. 2019)

Notes This format is applicable to UTC and, usually, the local time representations. For local

time representations, the specific offset from UTC and daylight savings configuration

should be configured or queried separately through the property set interface.

The nanoseconds field is intended to support applications that require higher precision

time values. This does not imply that the underlying clock has nanosecond precision.

For clocks that do not support higher precision timing, this field should always be set as

zero.

12.29.212.4.12 STI Infrastructure-Provided CalendarValueGPS Structure

STI-98 The STI infrastructure shall provide the CalendarValueGPS Structure definition and implementation as

specified in Table 15.

Table 15: CalendarValueGPS Structure Definition

Declaration struct CalendarValueGPS {

 long tow;

 short week;

};

Description Definition of time representation expressed in weeks and seconds, similar to the style

used in GPS navigation messages. Member details:

► tow: The time of week in milliseconds, range of [0-604799999]

► week: The number of weeks elapsed since the epoch

Member Details ► tow: The time of week in milliseconds, range of [0-604799999]

► week: The number of weeks elapsed since the epoch

Notes This is not an exact representation of GPS time codes, but rather a method of expressing

time in terms that facilitate easy conversion to/from actual GPS navigation code formats

while also providing higher precision.

Legacy GPS navigation signals express the week number as a 10-bit integer, which rolls

over every 1024 weeks, with time of week expressed as a 19-bit integer with 1.5 second

resolution. Other navigation signals have a different format, using 13-bit week number

along with a 2-hour interval time of week and 18-second time of interval.

This structure expresses the time of week value in units of milliseconds. Conversion

from legacy GPS time of week values is accomplished via multiplication by 1500 (1.5

seconds), and conversion from 18-second time of interval codes is accomplished via

multiplication by 18000. Likewise, a conversion to whole seconds can be achieved by

dividing the tow by 1000, and the day of week can be determined by dividing by

86400000.

Formatted: Table List, Outline numbered + Level: 1 +

Numbering Style: Bullet + Aligned at: 0" + Indent at:

0.15"

Commented [HLM(L29]: JIRA issue STI_47: Merge table

fields Member details into Description

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-47&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=jLjVyulyEK3qXkmN675jK1aYHTYEbEiEx1CNWoCtUc0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-47&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=jLjVyulyEK3qXkmN675jK1aYHTYEbEiEx1CNWoCtUc0%3D&reserved=0

94 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.29.312.4.13 STI Infrastructure-Provided CalendarValueDayNumber
Structure

STI-99 The STI infrastructure shall provide the CalendarValueDayNumber Structure definition and

implementation as specified in Table 16.

Table 16: CalendarValueDayNumber Structure Definition

Declaration struct CalendarValueDayNumber {

 double date;

};

Description Definition of time representation expressed as a fractional day number. Member details:

► date: The day number expressed as a fractional / floating point value

Member Details ► date: The day number expressed as a fractional / floating point value

Notes The whole number (integer portion) of the value expresses the number of Earth days

since the epoch, and the fractional part expresses the time of day.

12.29.412.4.14 STI Infrastructure-Provided CalendarTime Union

STI-100 The STI infrastructure shall provide the CalendarTime Union definition and implementation as specified in

Table 17.

Table 17: CalendarTime Union Definition

Declaration union CalendarTime switch(CalendarKind) {

 case MJD: CalendarValueDayNumber dayNumber;

 case GPS: CalendarValueGPS weekSeconds;

 case LOCALLOCAL_TIME: CalendarValueCivil localtimeHere;

 case TAI: CalendarValueCivil tai;

 case UTC: CalendarValueCivil civil;

};

Description Definition of CalendarTime type based on CalendarKind value.

Notes

12.30

12.3112.5 STI Application Application-Provided Methods

“Provide a definition” implies supplying a consistent interface, which may be used or inherited

by other methods. The implementation of such an interface may be supplied by others. For

functions, an abstract method or class, a virtual method, or prototype is usually supplied.

Any apparent discrepancy between application-provided and infrastructure-provided of the titles

and requirements is easily resolved by noting that the infrastructure provides the definition while

the application inherits an implementation or provides the implementation directly.

12.3212.5.1 STI Infrastructure-Provided APP_GetHandleID Method

STI-30 The STI infrastructure shall provide the APP_GetHandleID() Definition () definition and implementation

as specified in Table 14Table 18.

Formatted: Table List, Outline numbered + Level: 1 +

Numbering Style: Bullet + Aligned at: 0" + Indent at:

0.15"

Commented [HLM(L30]: JIRA issue STI_47: Merge table

fields Member details into Description

Commented [HLM(L31]: JIRA issue STI_27: STI-100:

CalendarValueWeekSeconds is undefined

Commented [HLM(L32]: JIRA issue STI_41: local is a

reserved word in IDL, change local to localTime and LO-

CAL to LOCAL_TIME

Formatted: Normal

Formatted: Normal

Commented [HLM(L33]: JIRA issue STI_35: Add extra

introductory remarks to 12.5, 12.6, and 12.7.

JIRA issue STI_37: Clarify definition vs implementation

Formatted: Heading 3, Indent: Left: 0", First line: 0"

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-47&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=jLjVyulyEK3qXkmN675jK1aYHTYEbEiEx1CNWoCtUc0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-47&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=jLjVyulyEK3qXkmN675jK1aYHTYEbEiEx1CNWoCtUc0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-27&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Y7%2FJPgS34he4C6DGukKne4TbEpLzFXG02Wcrwz7pynA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-27&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Y7%2FJPgS34he4C6DGukKne4TbEpLzFXG02Wcrwz7pynA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-27&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Y7%2FJPgS34he4C6DGukKne4TbEpLzFXG02Wcrwz7pynA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-27&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=Y7%2FJPgS34he4C6DGukKne4TbEpLzFXG02Wcrwz7pynA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-41&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=piHNupKAKPBQN7B6GkLyzBCphEz9p2QdJuUZgaJxQVY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-37&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2F4dSBlxu6yd4QlcmxffMWez0qBj6uUABjUGY1faO3w8%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 95

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Table 1418: APP_GetHandleID() Definition

Declaration interface Instance {

 HandleID APP_GetHandleID();

};

Description Obtain the handle ID for the application, stored by the STI Infrastructure.

Return The actual handle ID of the calling called application, or an invalid handle ID on

failureor predefined HANDLEID_INVALID on failure

Implemented By Infrastructure

Invoked By Application

Notes This call should never fail when invoked from a normal, fully constructed application or

device context. If invoked from an application or device context that is not fully

constructed, an invalid ID may be returned. Specifically, this condition may occur

while the constructor or destructor are currently executing (see section 10.5.2.1).

If the infrastructure cannot obtain the correct handle ID, the infrastructure will return a

value such as HANDLEID_INVALID that does not alias a valid handle ID. The caller

should always validate the returned handle ID using ValidateHandleID() to determine

success or failure.

12.3312.5.2 STI Infrastructure-Provided APP_GetHandleName Method

STI-31 The STI infrastructure shall provide the APP_GetHandleName() Definition () definition and

implementation as specified in Table 15Table 19.

Table 1514: APP_GetHandleName() Definition

Declaration interface Instance {

 string Result APP_GetHandleName(out string handleName);

};

Description Obtain the name for the application, stored by the STI Infrastructure.

Parameters handleName: A string representing the handle name of the called STI

application

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.The name of the calling application, or a NULL/undefined value on

failure

Implemented By Infrastructure

Invoked By Application

Notes The caller is responsible for preallocating the size of handleName to

[MAX_HANDLE_NAME_SIZE+1].

This call should never fail when invoked from a normal, fully constructed application or

device context. If invoked from an application or device context that is not fully

constructed, this call may fail. Specifically, this condition may occur while the

constructor or destructor are currently executing (see section 10.5.2.1).

If the infrastructure cannot obtain the correct handle name, the infrastructure will return

a value that does not alias a valid handle name, such as NULL in C/C++ or the

corresponding undefined value representation in other languages.

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Commented [HLM(L34]: JIRA issue STI_33: Remove

Unnecessary Table Fields

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Font: (Default) Courier New

Formatted: Default, Indent: Left: 0.02", Right: 0.5",

Bulleted + Level: 1 + Aligned at: 0.25" + Indent at:

Commented [HLM(L35]: JIRA issue STI_15: STI-16:

There are items in the calling sequence but the parameters

are not described

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-33&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=b8Y6Hx1zICTxVO5dNOPm%2BiHUzlSMz3u4qsCXM7guFzs%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-15&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=0Y0fyO94ppjXoklptixPm%2FC1a0rPXMEdzQm8gxD97Yg%3D&reserved=0

96 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.3412.5.3 STI Application-Provided APP_Instance Method

STI-32 The STI infrastructure shall provide the APP_Instance() Definition definition as specified in Table 16Table

20.

Table 1620: APP_Instance() Definition

Declaration interface ApplicationControl : LifeCycle, PropertySet, ControllableComponent,

TestableObject, Instance {

 Instance APP_Instance(

 in HandleID id,

 in string name

);

};

Description Construct an instance of the application, identified by the id and name indicated in the

parameters.

Parameters id: The handle ID of this STRS STI application.

 name: The handle name of this STRS STI application.

Return On success, return a reference to the constructed instance. On failure, return an invalid

reference (i.e. NULL in C/C++, or the respective undefined value in other languages)

Implemented By Application

Invoked By Infrastructure

Notes The id and name values passed to this constructor become valid only after the

constructor has completed successfully and returned a valid object reference/pointer. As

such, other infrastructure calls should not be invoked from the constructor using these

values. Use of the values during the construction of the object itself is not defined, as

the infrastructure may still consider it an invalid ID or name.

For statically allocated objects, a pointer to the pre-allocated structure may be returned,

without performing any additional allocation.

In all cases, the object returned will be of the Instance type, either directly or as a

derivative type. In object-oriented languages, the instance object will inherit from the

correct base object or class. In C, this can be done by ensuring the first member of the

returned structure object is an Instance object as defined by the infrastructure.

12.3512.5.4 STI Application-Provided APP_Destroy Method

STI-33 The STI infrastructure shall provide the APP_Destroy() Definition definition as specified in Table 17Table

21.

Table 1721: APP_Destroy() Definition

Declaration interface ApplicationControl : LifeCycle, PropertySet, ControllableComponent,

TestableObject, Instance {

 void APP_Destroy(

 in Instance inst

);

};

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Commented [HLM(L36]: JIRA issue STI_49: Add inher-

itance to APP and DEV Declarations

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Commented [HLM(L37]: JIRA issue STI_49: Add inher-

itance to APP and DEV Declarations

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 97

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Description Delete an instance of the application, identified by the inst parameter.

Parameters inst: pointer to application instance.

Return None

Implemented By Application

Invoked By Infrastructure

Notes This function will be defined but may be empty or a “no-op” for statically allocated

entities. After this call completes, the object referred to by the inst parameter is

considered invalid, and the infrastructure ensures that any internally stored references to

the instance have been deleted.

12.3612.5.5 STI Application-Provided APP_Initialize Method

STI-34 The STI infrastructure shall provide the APP_Initialize() Definition definition as specified in Table

18Table 22 to be implemented by an STI application or device.

Table 1822: APP_Initialize() Definition

Declaration interface ApplicationControl LifeCycle {

 Result APP_Initialize();

};

Description Initialize the application. Obtain any underlying system resources as required for

further operation and set all internal variables to a known initial state.

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.Status code which the caller should validate using IsOK()

On failure, returns one of the defined Result error constants. On success, return the

status code OK.

Implemented By Application

Invoked By Infrastructure

Notes If initialization is unsuccessful for any reason, the implementation will ensure that any

external system resources obtained before the failure are returned to their original state.

There is no provision to permit “partial” initialization sequences to occur.

If not successful, the implementation should log details of the failure to the log facility.

12.3712.5.6 STI Application-Provided APP_ReleaseObject Method

STI-35 The STI infrastructure shall provide the APP_ReleaseObject() Definition definition as specified in Table

19Table 23 to be implemented by an STI application or device.

Table 1923: APP_ReleaseObject() Definition

Declaration interface ApplicationControl LifeCycle {

 Result APP_ReleaseObject();

};

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

98 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Description Release any system resources that were obtained during the initialization or normal

operation.

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.Status code which the caller should validate using IsOK()

On failure, returns one of the defined Result error constants. On success, return the

status code OK.

Implemented By Application

Invoked By Infrastructure

Notes This operation should be the inverse of the APP_Initialize() operation, returning

the application or device to the same state as it was prior to initialization. After this

operation, the infrastructure will either destroy the instance or initialize it again.

12.3812.5.7 STI Application-Provided APP_Query Method

STI-36 The STI infrastructure shall provide the APP_Query() Definition definition as specified in Table 20Table

24 to be implemented by an STI application or device.

Table 2024: APP_Query() Definition

Declaration interface ApplicationControl PropertySet {

 Result APP_Query(

 in PropertyName propName,

 out PropertyValue propValue

);

};

Description Obtain or “get” the value for one property in the component.

Parameters ► propName: The name or identifier of the property to get

► propValue: A buffer to store the property value

Return On success, return the predefined Result value OK, which indicates that the property

value has been retrieved in its entirety; otherwise, return one of the predefined Result

values indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.Status

code which the caller should validate using IsOK()

On failure, returns one of the defined Result error constants. The status code OK

indicates that the property value has been retrieved in its entirety.

Implemented By Application

Invoked By Infrastructure

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Font: 10.5 pt

Space Telecommunication Interface (STI), v1.0 -- beta 2 99

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes If an error is returned by an implementation, a corresponding message indicating details

of the failure should be written to the log facility for diagnostic purposes.

Return status codesResult values other than the predefined status Result constantsvalues

are permissible for backward compatibility but are to be validated using the IsOK()

function. Use of additional codes return values are is not recommended for new

software; for maximum portability, custom status codesreturn values or “partial

success” return codes should be avoided.

For C/C++ implementations, the abstract propValue parameter is translated to two

parameters, a base object pointer and size.

12.3912.5.8 STI Application-Provided APP_Configure Method

STI-37 The STI infrastructure shall provide the APP_Configure() Definition definition as specified in Table

21Table 25 to be implemented by an STI application or device.

Table 2125: APP_Configure() Definition

Declaration interface ApplicationControl PropertySet {

 Result APP_Configure(

 in PropertyName propName,

 in PropertyValue propValue

);

};

Description Configure or "set" the value for one property in the component.

Parameters ► propName: The name of the property to set

► propValue: The value to set the property to

Return On success, return the predefined Result value OK, which indicates that the property

value has been configured; otherwise, return one of the predefined Result values

indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.Status code

which the caller should validate using IsOK()

On failure, returns one of the defined Result error constants. The status code OK

indicates that the property value has been configured.

Implemented By Application

Invoked By Infrastructure

Notes If an error is returned by an implementation, a corresponding message indicating details

of the failure should be written to the log facility for diagnostic purposes.

Status codesReturn Result values (other than the predefined status Result

constantsvalues) are permissible for backward compatibility but are to be validated

using the IsOK() function. ThisUse of additional return Result values This is not

recommended for new software; for maximum portability, custom status codesResult

values or “partial success” return codes should be avoided.

For C/C++ implementations, the abstract propValue parameter is translated to two

parameters, a base object pointer and size.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Font: 10.5 pt

Formatted Table

100 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.4012.5.9 STI Application-Provided APP_RunTest Method

STI-38 The STI infrastructure shall provide the APP_RunTest() Definition definition as specified in Table 22Table

26 to be implemented by an STI application or device.

Table 2226: APP_RunTest() Definition

Declaration interface ApplicationControl TestableObject {

 Result APP_RunTest(

 in TestID testID

);

};

Description Invokes the test of the target application as indicated by the test ID.

Parameters testID: the ID of the test to be performed. Values of testID are mission

dependent.

Return On success or if the test is running in the background, return the predefined Result

value OK; otherwise, return one of the predefined Result values indicating failure. See

12.4.6 STI Infrastructure-Provided Result Values.Status code which the caller should

validate using IsOK()

On error, returns one of the defined Result error constants. A successful result

(status code OK) indicates that the test is successful or that the test is running in the

background.

Implemented By Application

Invoked By Infrastructure

Notes Tests which are not appropriate for a given system state, such as invoking a ground-

specific test while in a flight operation mode, should generate an error status return and

record the issue in the system log.

12.4112.5.10 STI Application-Provided APP_Start Method

STI-39 The STI infrastructure shall provide the APP_Start() Definition definition as specified in Table 23Table 27

to be implemented by an STI application or device.

Table 2327: APP_Start() Definition

Declaration interface ApplicationControl ControllableComponent {

 Result APP_Start();

};

Description Begin normal target component (application or device) processing.

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.Status code which the caller should validate using IsOK()

On error, returns one of the defined Result error constants. On success, return the

status code OK.

Implemented By Application

Invoked By Infrastructure

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

Space Telecommunication Interface (STI), v1.0 -- beta 2 101

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes If the application is not in the appropriate internal state, then nothing is done and an

error is returned.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

12.4212.5.11 STI Application-Provided APP_Stop Method

STI-40 The STI infrastructure shall provide the APP_Stop() Definition definition as specified in Table 24Table 28

to be implemented by an STI application or device.

Table 2428: APP_Stop() Definition

Declaration interface ApplicationControl ControllableComponent {

 Result APP_Stop();

};

Description End normal target component (application or device) processing.

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.Status code which the caller should validate using IsOK()

On error, returns one of the defined Result error constants. On success, return status

code OK.

Implemented By Application

Invoked By Infrastructure

Notes If the application is not in the appropriate internal state, then nothing is done and an

error is returned.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

12.5.12 STI Application-Provided APP_Read Method

STI-47 The STI infrastructure shall provide the APP_Read() definition as specified in Table 29 to be implemented,

as needed, by an STI application or device.

Table 29: APP_Read() Definition

Declaration interface Source {

 Result APP_Read(out Message buffer);

};

Description The buffer is filled with data from the component.

Parameters ► buffer: a storage area for data transferred from the target

Return On success, the return value indicates the number of units of data (records or bytes)

actually obtained from the application or device, which may be less than the complete

buffer size. Otherwise, return one of the predefined Result values indicating failure.

See 12.4.6 STI Infrastructure-Provided Result Values.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

102 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The actual storage for the buffer is allocated by the caller or infrastructure prior to

invoking this function. The application should fill the buffer to the maximum extent

possible and return the amount of buffer actually filled.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character ('\0') as

required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buffer parameter is translated to two

parameters, a base object pointer and size.

12.5.13 STI Application-Provided APP_Write Method

STI-48 The STI infrastructure shall provide the APP_Write() definition as specified in Table 30 to be implemented,

as needed, by an STI application or device.

Table 30: APP_Write() Definition

Declaration interface Sink {

 Result APP_Write(in Message buffer);

};

Description The buffer data is sent to the target component.

Parameters ► buffer: an abstract data set that should be transferred to the target

Return On success, the return value indicates the number of units of data (records or bytes)

actually sent to the application or device, which may be less than the buffer size.

Otherwise, return one of the predefined Result values indicating failure. See 12.4.6 STI

Infrastructure-Provided Result Values.

Notes The actual storage for the buffer is allocated and filled by the caller or infrastructure

prior to invoking this function. The application should transfer the data to the maximum

extent possible and return the amount of buffer actually transferred to the device.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character ('\0') as

required for C-style strings. If a terminating character is required, the caller will ensure

that it has been added to the buffer prior to invoking this operation.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buffer parameter is translated to two

parameters, a base object pointer and size.

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 103

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.5.14 STI Application-Provided APP_AddressRead Method

STI-49 The STI infrastructure shall provide the APP_AddressRead() definition as specified in Table 31 to be

implemented, as needed, by an STI application or device.

Table 31: APP_AddressRead() Definition

Declaration interface RandomAccess {

 Result APP_AddressRead(

 in Offset offset,

 out Message buffer

);

};

Description The buffer is filled with data from the component at the specified location.

Parameters ► offset: the location to read data from

► buffer: a storage area for data transferred from the target

Return On success, the return value indicates the number of units of data (defined by the

platform developer) actually obtained from the application or device, which may be less

than the complete buffer size. Otherwise, return one of the predefined Result values

indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.

Notes The actual storage for the buffer is allocated by the caller or infrastructure prior to

invoking this function. The application should fill the buffer to the maximum extent

possible and return the amount of buffer actually filled.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character ('\0') as

required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buffer parameter is translated to two

parameters, a base object pointer and size.

12.5.15 STI Application-Provided APP_AddressWrite Method

STI-50 The STI infrastructure shall provide the APP_AddressWrite() definition as specified in Table 32 to be

implemented, as needed, by an STI application or device.

Table 32: APP_AddressWrite() Definition

Declaration interface RandomAccess {

 Result APP_AddressWrite(

 in Offset offset,

 in Message buffer

);

};

Description The buffer data is written to the target component at the specified location.

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

104 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Parameters ► offset: the location to write the data

► buffer: an abstract data set that should be transferred to the target

Return On success, the return value indicates the number of units of data (records or bytes)

actually sent to the application or device, which may be less than the buffer size.

Otherwise, return one of the predefined Result values indicating failure. See 12.4.6 STI

Infrastructure-Provided Result Values.

Notes The actual storage for the buffer is allocated and filled by the caller or infrastructure

prior to invoking this function. The application should transfer the data to the maximum

extent possible and return the amount of buffer actually transferred to the device.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character ('\0') as

required for C-style strings. If a terminating character is required, the caller will ensure

that it has been added to the buffer prior to invoking this operation.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buffer parameter is translated to two

parameters, a base object pointer and size.

12.6 STI Device-Provided Methods

“Provide a definition” implies supplying a consistent interface, which may be used or inherited

by other methods. The implementation of such an interface may be supplied by others. For

functions, an abstract method or class, a virtual method, or prototype is usually supplied.

Any apparent discrepancy between device-provided and infrastructure-provided of the titles and

requirements is easily resolved by noting that the infrastructure provides the definition while the

device inherits an implementation or provides the implementation directly.

12.4312.6.1 STI Device-Provided DEV_Open Method

STI-41 The STI infrastructure shall provide the DEV_Open() Definition definition as specified in Table 25Table

33 to be implemented by an STI device.

Table 2533: DEV_Open() Definition

Declaration interface DeviceControl : ApplicationControl {

 Result DEV_Open();

};

Description Open the device for command and control.

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined Result error constants. On

success, return status code OK.

Implemented By Device or Platform Provider

Formatted Table

Formatted: Normal, Indent: Left: 0", First line: 0"

Formatted: Font: 14 pt

Formatted: Font: 14 pt

Formatted: Normal

Commented [HLM(L38]: JIRA issue STI_35: Add extra

introductory remarks to 12.5, 12.6, and 12.7.

JIRA issue STI_37: Clarify definition vs implementation

Formatted: Font: 12 pt

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Commented [HLM(L39]: JIRA issue STI_49: Add inher-

itance to APP and DEV Declarations

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-37&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2F4dSBlxu6yd4QlcmxffMWez0qBj6uUABjUGY1faO3w8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-49&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321457083093%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2BV36ldtbnNMvEdBakXUr4SpHvTbkeXggdz83Gylwqrw%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 105

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Invoked By Infrastructure

Notes The implementation should obtain whatever operating system or HAL resources are

necessary to initiate communication or data transfer with the hardware device.

Depending on the underlying device and operating system driver infrastructure, use of a

hardware device may be limited to one process at a time, so a successful call to this

function may prevent other processes in the system from using the device. Likewise, if

another process is using the device, or the device is otherwise not able to accept control

requests, this operation may fail or block until the device becomes available.

If no specific operating system resources are required for communication with the

device, this implementation may be a no-op. In this case, this operation should return

the predefined Result value OK to maintain compatibility.

12.4412.6.2 STI Device-Provided DEV_Load Method

STI-42 The STI infrastructure shall provide the DEV_Load() Definition definition as specified in Table 26Table

34 to be implemented by an STI device.

Table 2634: DEV_Load() Definition

Declaration interface DeviceControl : ApplicationControl {

 Result DEV_Load(in string fileName);

};

Description Load a binary application image or configuration file to the device.

Parameters ► fileName: name of the image or configuration file to load to the device

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined Result error constants. On

success, return status code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes If the device is an FPGA, this operation would load a specific hardware design image to

the device. If the device represents a microcontroller or DSP, this should load a

firmware or application image to the device.

12.4512.6.3 STI Device-Provided DEV_Reset Method

STI-43 The STI infrastructure shall provide the DEV_Reset() Definition definition as specified in Table 27Table

35 to be implemented by an STI device.

Table 2735: DEV_Reset() Definition

Declaration interface DeviceControl : ApplicationControl {

 Result DEV_Reset();

};

Description Initialize a device to a known state.

Formatted Table

Formatted: Font: 14 pt

Formatted: Heading 2, Indent: Left: 0.81"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

106 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined Result error constants. On

success, return status code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes This operation should bring a device into a known clean state, if possible. This

operation may utilize a hardware reset function if available, or it may reconfigure all

internal registers to a known initial value.

This function should not “unload” programming information from an FPGA device. If a

hardware reset function is used and this clears the programming information, the

implementation should ensure that previously loaded image is restored before returning.

12.4612.6.4 STI Device-Provided DEV_Flush Method

STI-44 The STI infrastructure shall provide the DEV_Flush() Definition definition as specified in Table 28Table

36 to be implemented by an STI device.

Table 2836: DEV_Flush() Definition

Declaration interface DeviceControl : ApplicationControl {

 Result DEV_Flush();

};

Description Clear any pending input/output buffers associated with the device.

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined Result error constants. On

success, return status code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes This operation should ensure that any existing data that may be buffered within the

hardware device or control software is cleared, such that subsequent read operations (for

source devices) or write operations (for sink devices) only transfer new data.

It is implementation-defined how existing data that has not yet been fully transferred is

handled. On a sink device, the operation may wait until the data is transferred, or the

data may be discarded, depending on what is more appropriate for the device and the

system context. On a source device, any received but unread data should typically be

discarded. The device developer or platform provider should document the behavior of

this operation.

12.4712.6.5 STI Device-Provided DEV_Unload Method

STI-45 The STI infrastructure shall provide the DEV_Unload() Definition definition as specified in Table 29Table

37 to be implemented by an STI device.

Table 2937: DEV_Unload() Definition

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Space Telecommunication Interface (STI), v1.0 -- beta 2 107

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Declaration interface DeviceControl : ApplicationControl {

 Result DEV_Unload();

};

Description Unload a binary image or configuration file to from the device.

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined Result error constants. On

success, return status code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes This operation clears any programming information from the device. Ideally this should

be the inverse of the DEV_Load() operation. If the device does not support this

operation, this may be implemented as a “no-op”.

12.4812.6.6 STI Device-Provided DEV_Close Method

STI-46 The STI infrastructure shall provide the DEV_Close() Definition definition as specified in Table 30Table

38 to be implemented by an STI device.

Table 3038: DEV_Close() Definition

Declaration interface DeviceControl : ApplicationControl {

 Result DEV_Close();

};

Description Closes the device.

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined Result error constants. On

success, return status code OK.

Implemented By Device or Platform Provider

Invoked By Infrastructure

Notes This operation should be the inverse of the DEV_Open() operation. If the open

operation was a no-op, this operation should also be empty and it should return the

predefined Result value OK for compatibility.

12.49 STI Application-Provided APP_Read Method

STI-47 The STI infrastructure shall provide the APP_Read() Definition as specified in Table 31 to be implemented,

as needed, by an STI application or device.

Table 31: APP_Read() Definition

Declaration interface Source {

 Result APP_Read(out Message buffer);

};

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

108 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Description The buffer is filled with data from the component.

Parameters ► buffer: a storage area for data transferred from the target

Return Status code which the caller should validate using IsOK()

On error, returns one of the defined Result error constants. On success, the return

value indicates the number of units of data (records or bytes) actually obtained from the

application or device, which may be less than the complete buffer size.

Implemented By Application

Invoked By Infrastructure

Notes The actual storage for the buffer is allocated by the caller or infrastructure prior to

invoking this function. The application should fill the buffer to the maximum extent

possible and return the amount of buffer actually filled.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character (‘\0’) as

required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buffer parameter is translated to two

parameters, a base object pointer and size.

12.50 STI Application-Provided APP_Write Method

STI-48 The STI infrastructure shall provide the APP_Write() Definition as specified in Table 32 to be

implemented, as needed, by an STI application or device.

Table 32: APP_Write() Definition

Declaration interface Sink {

 Result APP_Write(in Message buffer);

};

Description The buffer data is sent to the target component.

Parameters ► buffer: an abstract data set that should be transferred to the target

Return Status code which the caller should validate using IsOK()

On error, returns one of the defined Result error constants. On success, the return

value indicates the number of units of data (records or bytes) actually sent to the

application or device, which may be less than the buffer size.

Implemented By Application

Invoked By Infrastructure

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Space Telecommunication Interface (STI), v1.0 -- beta 2 109

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The actual storage for the buffer is allocated and filled by the caller or infrastructure

prior to invoking this function. The application should transfer the data to the maximum

extent possible and return the amount of buffer actually transferred to the device.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character (‘\0’) as

required for C-style strings. If a terminating character is required, the caller will ensure

that it has been added to the buffer prior to invoking this operation.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buffer parameter is translated to two

parameters, a base object pointer and size.

12.51 STI Application-Provided APP_AddressRead Method

STI-49 The STI infrastructure shall provide the APP_AddressRead() Definition as specified in Table 33 to be

implemented, as needed, by an STI application or device.

Table 33: APP_AddressRead() Definition

Declaration interface RandomAccess {

 Result APP_AddressRead(

 in Offset offset,

 out Message buffer

);

};

Description The buffer is filled with data from the component at the specified location

Parameters ► offset: the location to read data from

► buffer: a storage area for data transferred from the target

Return Status code which the caller should validate using IsOK()

On error, returns one of the defined Result error constants. On success, the return

value indicates the number of units of data (defined by the platform developer) actually

obtained from the application or device, which may be less than the complete buffer

size.

Implemented By Application

Invoked By Infrastructure

Formatted: Heading 3, Indent: Left: 0", First line: 0"

110 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The actual storage for the buffer is allocated by the caller or infrastructure prior to

invoking this function. The application should fill the buffer to the maximum extent

possible and return the amount of buffer actually filled.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character (‘\0’) as

required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buffer parameter is translated to two

parameters, a base object pointer and size.

12.52 STI Application-Provided APP_AddressWrite Method

STI-50 The STI infrastructure shall provide the APP_AddressWrite() Definition as specified in Table 34 to be

implemented, as needed, by an STI application or device.

Table 34: APP_AddressWrite() Definition

Declaration interface RandomAccess {

 Result APP_AddressWrite(

 in Offset offset,

 in Message buffer

);

};

Description The buffer data is written to the target component at the specified location

Parameters ► offset: the location to write the data

► buffer: an abstract data set that should be transferred to the target

Return Status code which the caller should validate using IsOK()

On error, returns onereturn one of the defined Result error constantsvalues. On

success, the return value indicates the number of units of data (records or bytes) actually

sent to the application or device, which may be less than the buffer size.

Implemented By Application

Invoked By Infrastructure

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Space Telecommunication Interface (STI), v1.0 -- beta 2 111

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The actual storage for the buffer is allocated and filled by the caller or infrastructure

prior to invoking this function. The application should transfer the data to the maximum

extent possible and return the amount of buffer actually transferred to the device.

The application developer defines the specific format and units for the buffer. In

languages with direct memory access (e.g. C), it may be an arbitrary memory buffer

with the units specified in bytes. In other languages, the units should reflect logical

records, such as a number of characters, samples or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character (‘\0’) as

required for C-style strings. If a terminating character is required, the caller will ensure

that it has been added to the buffer prior to invoking this operation.

If an error is returned by an implementation, a corresponding message to indicate details

of the failure should be written to the log facility for diagnostic purposes.

For C/C++ implementations, the abstract buffer parameter is translated to two

parameters, a base object pointer and size.

12.7 STI Infrastructure-Provided Methods

“Provide a definition” implies supplying a consistent interface, which may be used or inherited

by other methods. The implementation of such an interface may be supplied by others. For

functions, an abstract method or class, a virtual method, or prototype is usually supplied.

The following items in section 12.7 are expected to appear in module STI.

12.5312.7.1 STI Infrastructure-Provided IsOK Method

STI-51 The STI infrastructure shall provide the IsOK() Definition () definition and implementation as specified in

Table 35Table 39.

Table 3539: IsOK() Definition

Declaration boolean IsOK(

 in Result status

);

Description Determine if a Result value represents a successful response.

Parameters ► status: A return value from a previous call

Return If the Result status codestatus value represents a successful result, evaluates as TRUE.

If the Result status codestatus value represents a failure, evaluates as FALSE.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Converts a Result status code value from any previous API call into a boolean value that

can be used in conjunction with the programming language conditional statements.

For efficiency reasons, this may be implemented as a macro or inline function in

languages which support this concept.

Formatted: Normal, Indent: Left: 0", First line: 0"

Formatted: Font: 14 pt

Commented [HLM(L40]: JIRA issue STI_35: Add extra

introductory remarks to 12.5, 12.6, and 12.7.

JIRA issue STI_37: Clarify definition vs implementation

Formatted: Font: 10.5 pt

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-35&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=6svvqrY72t0N%2BxOrLgNj2hyZuU54DHQHH4JCDG7Tvk0%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-37&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456770653%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=%2F4dSBlxu6yd4QlcmxffMWez0qBj6uUABjUGY1faO3w8%3D&reserved=0

112 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.5412.7.2 STI Infrastructure-Provided ValidateHandleID Method

STI-52 The STI infrastructure shall provide the ValidateHandleID() Definition () definition and implementation as

specified in Table 36Table 40.

Table 3640: ValidateHandleID() Definition

Declaration Result ValidateHandleID(

 in HandleID id

);

Description Determine if a HandleID value is valid.

Parameters ► id: A return value from a previous call

Return If the handle ID value is valid, returns thereturn the status predefined Result value OK.

If the handle ID is not valid, returns one of the defined error constants.Otherwise, return

one of the predefined Result values indicating failure. See 12.4.6 STI Infrastructure-

Provided Result Values.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This is used to check the result of any function returning a HandleID value.

The result of this function should be passed to IsOK() for use in any conditional test.

12.5512.7.3 STI Infrastructure-Provided ValidateSize Method

STI-53 The STI infrastructure shall provide the ValidateSize() Definition () definition and implementation as

specified in Table 37Table 41.

Table 3741: ValidateSize() Definition

Declaration Result ValidateSize(

 in FileSize size

);

Description Determine if a FileSize value is valid.

Parameters ► size: A return value from a previous call

Return If the size value is valid, returns thereturn the predefined Resultstatus value OK.

Otherwise, return one of the predefined Result values indicating failure. See 12.4.6 STI

Infrastructure-Provided Result Values.If the size is not valid, returns one of the defined

error constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This is used to check the result of any function returning a FileSize value.

The result of this function should be passed to IsOK() for use in any conditional test.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted Table

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 113

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.5612.7.4 STI Infrastructure-Provided InstantiateApp Method

STI-54 The STI infrastructure shall provide the InstantiateApp() Definition () definition and implementation as

specified in Table 38Table 42.

Table 3842: InstantiateApp() Definition

Declaration HandleID InstantiateApp(

 in HandleID fromID,

 in string handleName,

 in string configuration

);

Description Instantiate an application or service.

Parameters ► fromID: The handle ID of the current component making the request.

► handleName: The name of the new component to be instantiated.

► configuration: Configuration data to be associated with the new instance. If

NULL or undefined, the STI Infrastructure should use defaults if

appropriate/possible.

Return On success, returns return a Handle ID value identifying the newly created instance. On

errorotherwise, an invalid handle ID value is returnedreturn the predefined

HANDLEID_INVALID.

The returned handle value should always be validated by the caller using the

ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The caller should validate the return HandleID value using the ValidateHandleID()

API call to determine success or failure.

The handle name specified for the application, service, or device is to be unique within

the scope of the current STI environment.

The STI Infrastructure may also impose additional operations to be performed during

instantiation, such as the loading of dynamic link libraries or shared objects, as

documented by the platform provider. It is up to the STI Infrastructure to determine

whether any additional resources are to be loaded to accomplish the instantiation.

The configuration parameter will be a free-form string, defined by the platform

provider, and intended as a generic means to pass additional instructions to the

infrastructure as part of the instantiation process. This string may directly contain a set

of encoded configuration data (e.g. XML), or it may refer to a filename on the system

storage device containing additional information about the instance.

12.5712.7.5 STI Infrastructure-Provided GetErrorQueue Method

STI-55 The STI infrastructure shall provide the GetErrorQueue() Definition () definition and implementation as

specified in Table 39Table 43.

Table 431539: GetErrorQueue() Definition

Declaration HandleID GetErrorQueue(

 in Result status

);

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

114 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Description Obtain the error queue associated with the given status value.

Parameters ► status: A Resultn error status code value from a previous call

Return Returns Return a handle ID value identifying the queue to which any associated log

message should be written.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This call is intended for use in conjunction with the Log() function for preserving

error-related context information. The platform may direct different types of errors to

different log queues to aid with diagnostics. For any given error response, this locates

the proper queue for logging of any related information.

In general, this should only be used for error status codesResult values (i.e. those for

which IsOK() returns FALSE). However, in all cases, the return value from this

function will be passable directly to the Log() routine, without further validation, for

any status codeResult value.

12.5812.7.6 STI Infrastructure-Provided GetHandleName Method

STI-56 The STI infrastructure shall provide the GetHandleName() Definition () definition and implementation as

specified in Table 40Table 44.

Table 4044: GetHandleName() Definition

Declaration string Result GetHandleName(

 in HandleID fromID,

 in HandleID toID,

 out string handleName

);

Description Obtain the handle name associated with the given handle ID (toID).

Parameters ► fromID: The handle ID of the current component making the request.

► toID: The handle ID of the component for which the name is to be obtained

► handleName: A string representing the handle name of the referenced (toID)

application

Return On success, returns a string representing the handle name. On error, returns an

undefined or invalid value. On success, return the predefined Result value; otherwise,

return one of the predefined Result values indicating failure. See 12.4.6 STI

Infrastructure-Provided Result Values.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The caller is responsible for preallocating the size of handleName to

[MAX_HANDLE_NAME_SIZE+1].If the infrastructure cannot obtain the correct

handle name, the infrastructure will return a value that does not alias a valid handle

name, such as NULL in C/C++ or the corresponding undefined value representation in

other languages.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Don't keep with next

Space Telecommunication Interface (STI), v1.0 -- beta 2 115

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.5912.7.7 STI Infrastructure-Provided HandleRequest Method

STI-57 The STI infrastructure shall provide the HandleRequest() Definition () definition and implementation as

specified in Table 41Table 45.

Table 4145: HandleRequest() Definition

Declaration HandleID HandleRequest(

 in HandleID fromID,

 in string toName

);

Description Obtain the handle ID associated with the given handle name.

Parameters ► fromID: The handle ID of the current component making the request.

► toName: The handle name of the component for which the ID should be obtained

Return On success, returns return a Handle ID value identifying the component. On error, an

invalid handle ID value is returnedreturn the predefined HANDLEID_INVALID.

The returned value should always be validated by the caller using the

ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The caller should always validate the returned value using the

ValidateHandleID() API call to determine success or failure.

12.6012.7.8 STI Infrastructure-Provided AbortApp Method

STI-58 The STI infrastructure shall provide the AbortApp() Definition () definition and implementation as

specified in Table 42Table 46.

Table 4246: AbortApp() Definition

Declaration Result AbortApp(

 in HandleID fromID,

 in HandleID toID

);

Description Abort an application or service.

Parameters ► fromID: The handle ID of the current component making the request.

► toID: The handle ID of the target component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.Status code which the caller should validate using IsOK()

On error, returns one of the defined Result error constants. On success, returns OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The target component will be removed from the environment, and any system resources

associated with it should be released.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

116 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.6112.7.9 STI Infrastructure-Provided Initialize Method

STI-59 The STI infrastructure shall provide the Initialize() Definition () definition and implementation as specified

in Table 43Table 47.

Table 4347: Initialize() Definition

Declaration Result Initialize(

 in HandleID fromID,

 in HandleID toID

);

Description Initialize the target component.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This sets the component to a known initial state. The specific definition of this state is

application-defined. This triggers the APP_Initialize() operation on the target

interface.

12.6212.7.10 STI Infrastructure-Provided ReleaseObject Method

STI-60 The STI infrastructure shall provide the ReleaseObject() Definition () definition and implementation as

specified in Table 44Table 48.

Table 4448: ReleaseObject() Definition

Declaration Result ReleaseObject(

 in HandleID fromID,

 in HandleID toID

);

Description Releases any system resources held by the application or component.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 117

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes This triggers the APP_ReleaseObject() operation on the target interface.

12.6312.7.11 STI Infrastructure-Provided Configure Method

STI-61 The STI infrastructure shall provide the Configure() Definition () definition and implementation as

specified in Table 45Table 49.

Table 4549: Configure() Definition

Declaration Result Configure(

 in HandleID fromID,

 in HandleID toID,

 in PropertyName propName,

 in PropertyValue propValue

);

Description Configures or sets a single property in the target component.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► propName: The name or identifier of the property to set

► propValue: A buffer containing the value to set the property to

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The caller manages the memory associated with the value buffer.

This triggers the APP_Configure() operation in the target interface.

12.6412.7.12 STI Infrastructure-Provided Query Method

STI-62 The STI infrastructure shall provide the Query() Definition () definition and implementation as specified in

Table 46Table 50.

Table 4650: Query() Definition

Declaration Result Query(

 in HandleID fromID,

 in HandleID toID,

 in PropertyName propName,

 out PropertyValue propValue

);

Description Obtains or gets a single property from the target component.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

118 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► propName: The name or identifier of the property to get

► propValue: A buffer into which the current value should be stored

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The caller manages the memory associated with the value buffer.

This triggers the APP_Query() operation in the target interface.

12.6512.7.13 STI Infrastructure-Provided RunTest Method

STI-63 The STI infrastructure shall provide the RunTest() Definition () definition and implementation as specified

in Table 47Table 51.

Table 4751: RunTest() Definition

Declaration Result RunTest(

 in HandleID fromID,

 in HandleID toID,

 in TestID testID

);

Description Obtain the handle ID associated with the given handle name.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► testID: The ID of the test to be performed

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The specific values and meaning of the testID parameter are application specific.

This triggers the APP_RunTest() operation in the target interface.

12.6612.7.14 STI Infrastructure-Provided Start Method

STI-64 The STI infrastructure shall provide the Start() Definition () definition and implementation as specified in

Table 48Table 52.

Table 4852: Start() Definition

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Space Telecommunication Interface (STI), v1.0 -- beta 2 119

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Declaration Result Start(

 in HandleID fromID,

 in HandleID toID

);

Description Begin normal application or device processing.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the APP_Start() operation in the target interface.

12.6712.7.15 STI Infrastructure-Provided Stop Method

STI-65 The STI infrastructure shall provide the Stop() Definition () definition and implementation as specified in

Table 49Table 53.

Table 4953: Stop() Definition

Declaration Result Stop(

 in HandleID fromID,

 in HandleID toID

);

Description End normal application or device processing.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the APP_Stop() operation in the target interface.

12.6812.7.16 STI Infrastructure-Provided DeviceOpen Method

STI-66 The STI infrastructure shall provide the DeviceOpen() Definition () definition and implementation as

specified in Table 50Table 54.

Table 5054: DeviceOpen() Definition

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted Table

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

120 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Declaration Result DeviceOpen(

 in HandleID fromID,

 in HandleID toID

);

Description Open the device.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Open() operation in the target interface. This will be the first

call issued before invoking any other device control operations.

12.6912.7.17 STI Infrastructure-Provided DeviceLoad Method

STI-67 The STI infrastructure shall provide the DeviceLoad() Definition () definition and implementation as

specified in Table 51Table 55.

Table 5155: DeviceLoad() Definition

Declaration Result DeviceLoad(

 in HandleID fromID,

 in HandleID toID,

 in string fileName

);

Description Load an application, hardware design, or configuration file into the device.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► fileName: The name of the file to load

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Load() operation in the target interface.

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

Space Telecommunication Interface (STI), v1.0 -- beta 2 121

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.7012.7.18 STI Infrastructure-Provided DeviceReset Method

STI-68 The STI infrastructure shall provide the DeviceReset() Definition () definition and implementation as

specified in Table 52Table 56.

Table 5256: DeviceReset() Definition

Declaration Result DeviceReset(

 in HandleID fromID,

 in HandleID toID

);

Description Resets the device into a known state.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The specific state after reset is device-defined. This triggers the DEV_Reset()

operation in the target interface.

12.7112.7.19 STI Infrastructure-Provided DeviceFlush Method

STI-69 The STI infrastructure shall provide the DeviceFlush() Definition () definition and implementation as

specified in Table 53Table 57.

Table 5357: DeviceFlush() Definition

Declaration Result DeviceFlush(

 in HandleID fromID,

 in HandleID toID

);

Description Clears any pending input/output data buffers in the device.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Flush() operation in the target interface.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

122 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.7212.7.20 STI Infrastructure-Provided DeviceUnload Method

STI-70 The STI infrastructure shall provide the DeviceUnload() Definition () definition and implementation as

specified in Table 54Table 58.

Table 5458: DeviceUnload() Definition

Declaration Result DeviceUnload(

 in HandleID fromID,

 in HandleID toID

);

Description Unload any previously loaded application, hardware design image, or configuration file.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Unload() operation in the target interface.

12.7312.7.21 STI Infrastructure-Provided DeviceClose Method

STI-71 The STI infrastructure shall provide the DeviceClose() Definition () definition and implementation as

specified in Table 55Table 59.

Table 5559: DeviceClose() Definition

Declaration Result DeviceClose(

 in HandleID fromID,

 in HandleID toID

);

Description Closes the device.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This triggers the DEV_Close() operation in the target interface. The device will not

be used by the application after this call unless opened again.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 123

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.7412.7.22 STI Infrastructure-Provided Read Method

STI-72 The STI infrastructure shall provide the Read() Definition () definition and implementation as specified in

Table 56Table 60.

Table 5660: Read() Definition

Declaration Result Read(

 in HandleID fromID,

 in HandleID toID,

 out Message buffer

);

Description Read or “pull” arbitrary data from another application or device.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► buffer: A buffer to hold the transferred data

Return On error, returns one of the defined error constants. On success, returns return a Result

status value indicating the actual number of records or bytes of data that was transferred

into the supplied buffer. Otherwise, return one of the predefined Result values

indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.

The caller will check the return status using IsOK()

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The storage for the buffer will be managed by the caller. The target application defines

the specific binary format for the data.

In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory

location with the units specified in bytes. In other languages, the units should reflect

logical records, such as a number of characters, samples or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character (‘\0’) as

required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

12.7512.7.23 STI Infrastructure-Provided Write Method

STI-73 The STI infrastructure shall provide the Write() Definition () definition and implementation as specified in

Table 57Table 61.

Table 5761: Write() Definition

Declaration Result Write(

 in HandleID fromID,

 in HandleID toID,

 in Message buffer

);

Description Write or “push” arbitrary data to another application or device.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

124 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► buffer: A buffer containing the data to be transferred

Return On error, returns one of the defined error constants. On success, returns return a status

value indicating the actual number of records or bytes of data that was transferred from

the supplied buffer. Otherwise, return one of the predefined Result values indicating

failure. See 12.4.6 STI Infrastructure-Provided Result Values.

The caller will check the return status using IsOK()

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The storage for the buffer will be managed by the caller. The target application defines

the specific binary format for the data.

In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory

location with the units specified in bytes. In other languages, the units should reflect

logical records, such as a number of characters, samplessamples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character (‘\0’) as

required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

12.7612.7.24 STI Infrastructure-Provided AddressRead Method

STI-74 The STI infrastructure shall provide the AddressRead() Definition () definition and implementation as

specified in Table 58Table 62.

Table 6258: AddressRead() Definition

Declaration Result AddressRead(

 in HandleID fromID,

 in HandleID toID,

 in Offset offset,

 out Message buffer

);

Description Read data from a specific offset or address within a device or file.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► offset: The location to read data from

► buffer: A buffer to hold the transferred data

Return On error, returns one of the defined error constants. On success, returns return a Result

status value indicating the actual number of records or bytes of data that was transferred

into the supplied buffer. Otherwise, return one of the predefined Result values

indicating failure. See 12.4.6 STI Infrastructure-Provided Result Values.

The caller will check the return status using IsOK()

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 125

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The storage for the buffer will be managed by the caller. The target application defines

the specific binary format for the data.

In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory

location with the units specified in bytes. In other languages, the units should reflect

logical records, such as a number of characters, samplessamples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character (‘\0’) as

required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

12.7712.7.25 STI Infrastructure-Provided AddressWrite Method

STI-75 The STI infrastructure shall provide the AddressWrite() Definition () definition and implementation as

specified in Table 59Table 63.

Table 5963: AddressWrite() Definition

Declaration Result AddressWrite(

 in HandleID fromID,

 in HandleID toID,

 in Offset offset,

 in Message buffer

);

Description Write data to a specific offset or address within a device or file.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► offset: The location to write data to

► buffer: A buffer containing the data to be transferred

Return On error, returns one of the defined error constants. On success, returns return a status

value indicating the actual number of records or bytes of data that was transferred from

the supplied buffer. Otherwise, return one of the predefined Result values indicating

failure. See 12.4.6 STI Infrastructure-Provided Result Values.

The caller will check the return status using IsOK()

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The storage for the buffer will be managed by the caller. The target application defines

the specific binary format for the data.

In languages with direct memory access (e.g. C/C++), the buffer is an arbitrary memory

location with the units specified in bytes. In other languages, the units should reflect

logical records, such as a number of characters, samples, or objects.

The infrastructure makes no assumptions about the format of the message data, nor the

presence or expectation of a terminating entity, such as a NUL character (‘\0’) as

required for C-style strings. If a terminating character is required, the caller will ensure

that sufficient space is available in the buffer to store the termination character.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Commented [HLM(L41]: JIRA issue STI_7: Calling se-

quence is inconsistent

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-7&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=2cYVKDLiGg5hpA8jBvC7iRI%2FReQSXLbK873gsrGonT8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-7&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=2cYVKDLiGg5hpA8jBvC7iRI%2FReQSXLbK873gsrGonT8%3D&reserved=0

126 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.7812.7.26 STI Infrastructure-Provided Log Method

STI-76 The STI infrastructure shall provide the Log() Definition () definition and implementation as specified in

Table 60Table 64.

Table 6064: Log() Definition

Declaration Result Log(

 in HandleID fromID,

 in HandleID toID,

 in string Message logMsgbuffer

);

Description Sends an information message to the specified log facility.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the log queue to which the message should be sent

► logMsgbuffer: A message to send to the log facility

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On error, returns one of the defined error constants. On success, returns

OK.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes When logging context information related to errors, the GetErrorQueue() function

may be used to determine the proper value to use for the toID parameter. In other

cases, the predefined error queue constantsvalues may be used, as listed in Table 8,

HandleID ConstantsValues.

Behavior is not specified if the toID parameter does not refer to a component capable

of accepting log messages (i.e. one of the defined log facilities).

12.7912.7.27 STI Infrastructure-Provided FileOpen Method

STI-77 The STI infrastructure shall provide the FileOpen() Definition () definition and implementation as

specified in Table 61Table 65.

Table 6165: FileOpen() Definition

Declaration HandleID FileOpen(

 in HandleID fromID,

 in string fileName,

 in Access fileAccess,

 in boolean fileTypeText

);

Description Opens a file within the infrastructure file system.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Commented [HLM(L42]: JIRA issue STI_39: Incon-

sistency in signature between Log and Write/APP_Write

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Commented [HLM(L43]: JIRA issue STI_21: Add file

type parameter to the FileOpen method. (Done in FTF1.)

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-39&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=sOQ%2BWkbvzpavXgDdoBRT3nHfo1lcYiJuWpeGQ30hM%2BY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-39&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=sOQ%2BWkbvzpavXgDdoBRT3nHfo1lcYiJuWpeGQ30hM%2BY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-39&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=sOQ%2BWkbvzpavXgDdoBRT3nHfo1lcYiJuWpeGQ30hM%2BY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-21&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=TGVluok3CB2I1aiTYlfuA95nn12bP57VXBshDH0fFiw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-21&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=TGVluok3CB2I1aiTYlfuA95nn12bP57VXBshDH0fFiw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-21&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=TGVluok3CB2I1aiTYlfuA95nn12bP57VXBshDH0fFiw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-21&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456614415%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=TGVluok3CB2I1aiTYlfuA95nn12bP57VXBshDH0fFiw%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 127

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Parameters ► fromID: The handle ID of the current component making the request

► fileName: The name of the file to be opened

► fileAccess: Whether the file is to be opened for reading, writing, appending, or

both (reading and writing).

► fileTypeText: indicator whether the file is text or binary; use true for text and false for

binary.

Return On success, returns return a Handle ID value identifying the open file. On

errorOtherwise, return the predefined an invalid handle ID value is

returnedHANDLEID_INVALID.

The returned handle value should always be validated by the caller using the

ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The caller should always validate the returned HandleID value using

ValidateHandleID()to determine success or failure. After successfully opening a

file, data transfer can be performed using the read Read and write Write functions

described in sections 10.6.412.7.22 and 12.7.23.

For the file access types, which provide the appropriate constraints, see Table 6, Access

ConstantsValues.

12.8012.7.28 STI Infrastructure-Provided FileClose Method

STI-78 The STI infrastructure shall provide the FileClose() Definition () definition and implementation as

specified in Table 62Table 66.

Table 6266: FileClose() Definition

Declaration Result FileClose(

 in HandleID fromID,

 in HandleID toID

);

Description Closes a file handle.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the file that should be closed

Return On success, returns OKreturn the predefined Result value OK. On errorOtherwise,

returns onereturn one of the predefined error Result constantsvalues indicating failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The toID parameter should reflect a file handle that was previously obtained using

FileOpen(). Behavior is undefined if this function is called with other types of

handle IDs.

Formatted: Font color: Auto

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

128 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.8112.7.29 STI Infrastructure-Provided FileGetSize Method

STI-79 The STI infrastructure shall provide the FileGetSize() Definition () definition and implementation as

specified in Table 63Table 67.

Table 6367: FileGetSize() Definition

Declaration FileSize FileGetSize(

 in HandleID fromID,

 in string fileName

);

Description Get the size of the specified file.

Parameters ► fromID: The handle ID of the current component making the request

► fileName: The name of the file to obtain the size of

Return On success, returns thereturn the size of the file. On error, returns return an invalid size.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The return value should be validated by the caller using the ValidateSize()

operation as described in section 10.6.1.1 12.7.3.

12.8212.7.30 STI Infrastructure-Provided FileRemove Method

STI-80 The STI infrastructure shall provide the FileRemove() Definition () definition and implementation as

specified in Table 64Table 68.

Table 6468: FileRemove() Definition

Declaration Result FileRemove(

 in HandleID fromID,

 in string fileName

);

Description Removes a specified file from the system.

Parameters ► fromID: The handle ID of the current component making the request

► fileName: The name of the file to remove

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Behavior of this function is implementation-defined if the specified file is currently

open within the infrastructure. Some systems may support this by “unlinking” the file

name but deferring the actual removal (and recovery of space) until the file is closed.

On other systems, the function may return an error if the file is currently open.

Portable applications should ensure that a file has been closed prior to removal.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

Space Telecommunication Interface (STI), v1.0 -- beta 2 129

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.8312.7.31 STI Infrastructure-Provided FileRename Method

STI-81 The STI infrastructure shall provide the FileRename() Definition () definition and implementation as

specified in Table 65Table 69.

Table 6569: FileRename() Definition

Declaration Result FileRename(

 in HandleID fromID,

 in string oldName,

 in string newName

);

Description Renames a specified file in the file system.

Parameters ► fromID: The handle ID of the current component making the request

► oldName: The existing/current name of the file

► newName: The desired name of the file

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Behavior of this function is implementation-defined if the specified file is currently

open within the infrastructure. Some systems may support renaming an open file, but

on other systems the function may return an error.

Portable applications should ensure that a file has been closed prior to rename.

12.8412.7.32 STI Infrastructure-Provided FileGetFreeSpace Method

STI-82 The STI infrastructure shall provide the FileGetFreeSpace() Definition () definition and implementation as

specified in Table 66Table 70.

Table 6670: FileGetFreeSpace() Definition

Declaration FileSize FileGetFreeSpace(

 in HandleID fromID,

 in string fileSystem

);

Description Get the total free space available for file storage on the indicated file system.

Parameters ► fromID: The handle ID of the current component making the request

► fileSystem: Identifies the file system to check

Return On success, returns thereturn the amount of free space. On error, returns return an

invalid size.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

130 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The specific format and options for the fileSystem parameter will be defined by the

platform provider. An invalid (undefined/NULL) or empty string value should always

be interpreted to refer to the “default” or root storage device, if available. A non-empty

string may refer to a physical device name, drive identifier, or a mount point, depending

on the system.

12.8512.7.33 STI Infrastructure-Provided MessageQueueCreate Method

STI-83 The STI infrastructure shall provide the MessageQueueCreate() Definition () definition and

implementation as specified in Table 67Table 71.

Table 6771: MessageQueueCreate() Definition

Declaration HandleID MessageQueueCreate(

 in HandleID fromID,

 in string queueName,

 in QueueMaxMessages nmax,

 in BufferSize Integer nb

);

Description Create a FIFO message queue.

Parameters ► fromID: The handle ID of the current component making the request

► queueName: The name of the queue to create

► nmax: The maximum number of messages (depth) of the FIFO queue

► nb: The maximum size of each entry in the queue

Return On success, returns return a Handle ID value identifying the FIFO queue. On

errorOtherwise, return an invalid handle ID value is returnedthe predefined

HANDLEID_INVALID.

The returned handle value should always be validated by the caller using the

ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The returned handle value should always be validated by the caller using

ValidateHandleID()to determine success or failure.

The queue name will be unique in within the current environment.

Once a queue depth reaches its maximum (nmax), applications will be unable to write

new data into the queue. Data does not “expire” from a FIFO queue; any data

successfully written to the input side of a queue is removed only by reading the data

from the output side of the queue, or by deleting the entire queue.

If the nb parameter is omitted or specified as 0, the interpretation is implementation-

defined. Specifically, this may be used for languages that employ automatic memory

management and do not expose the size of objects in memory to applications.

12.8612.7.34 STI Infrastructure-Provided MessageQueueDelete Method

STI-84 The STI infrastructure shall provide the MessageQueueDelete() Definition () definition and

implementation as specified in Table 68Table 72.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Space Telecommunication Interface (STI), v1.0 -- beta 2 131

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Table 6872: MessageQueueDelete() Definition

Declaration Result MessageQueueDelete(

 in HandleID fromID,

 in HandleID toID

);

Description Delete a FIFO queue.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the queue that should be deleted

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Any written but unread data messages in the queue are discarded.

12.8712.7.35 STI Infrastructure-Provided PubSubCreate Method

STI-85 The STI infrastructure shall provide the PubSubCreate() Definition () definition and implementation as

specified in Table 69Table 73.

Table 6973: PubSubCreate() Definition

Declaration HandleID PubSubCreate(

 in HandleID fromID,

 in string pubSubName

);

Description Create a PubSub entity.

Parameters ► fromID: The handle ID of the current component making the request

► pubSubName: The name of the PubSub entity to be created

Return On success, returns return a Handle ID value identifying the PubSub entity. On

errorOtherwise, return the predefined an invalid handle ID value is

returnedHANDLEID_INVALID.

The returned handle value should always be validated by the caller using the

ValidateHandleID() API call to determine success or failure.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The returned handle value should always be validated by the caller using

ValidateHandleID()to determine success or failure.

The name will be unique in within the current environment.

Unlike FIFO queues, PubSub entities do not store messages; any messages pushed to a

PubSub entity are immediately distributed to all currently registered subscribers at the

time the message is pushed.

Formatted Table

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

132 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.8812.7.36 STI Infrastructure-Provided PubSubDelete Method

STI-86 The STI infrastructure shall provide the PubSubDelete() Definition () definition and implementation as

specified in Table 70Table 74.

Table 7074: PubSubDelete() Definition

Declaration Result PubSubDelete(

 in HandleID fromID,

 in HandleID toID

);

Description Delete a PubSub entity.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the PubSub entity to be deleted

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes Any registered subscribers will be automatically unregistered upon deletion.

12.8912.7.37 STI Infrastructure-Provided Register Method

STI-87 The STI infrastructure shall provide the Register() Definition () definition and implementation as specified

in Table 71Table 75.

Table 7175: Register() Definition

Declaration Result Register(

 in HandleID fromID,

 in HandleID toID,

 in HandleID recipientID

);

Description Add a handle to the recipient list of the PubSub entity.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the PubSub entity

► recipientID: The handle ID of another application, device, file, or queue that

should receive all messages written to the PubSub entity

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 133

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes A single recipient cannot be registered multiple times. If a recipient is already

registered within the PubSub entity, this function returns a success code without making

any change.

12.9012.7.38 STI Infrastructure-Provided Unregister Method

STI-88 The STI infrastructure shall provide the Unregister() Definition () definition and implementation as

specified in Table 72Table 76.

Table 7276: Unregister() Definition

Declaration Result Unregister(

 in HandleID fromID,

 in HandleID toID,

 in HandleID recipientID

);

Description Remove a handle from the recipient list of the PubSub entity.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the PubSub entity

► recipientID: The handle ID of the other application, device, file, or queue that

should no longer receive messages written to the PubSub entity

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes

12.9112.7.39 STI Infrastructure-Provided GetNanoseconds Method

STI-89 The STI infrastructure shall provide the GetNanoseconds() Definition () definition and implementation as

specified in Table 73Table 77.

Table 7377: GetNanoseconds() Definition

Declaration Nanoseconds GetNanoseconds(

 in TimeWarp twObj

);

Description Get the number of nanoseconds (fractional quantity) from the TimeWarp object.

Parameters ► twObj: The value from which the nanoseconds portion of the time is extracted

Return Returns theReturn the number of nanoseconds

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

134 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The nanoseconds value is always non-negative, and reflects the difference between the

actual interval time and the number of whole seconds in the interval as reported by
GetSeconds()

12.9212.7.40 STI Infrastructure-Provided GetSeconds Method

STI-90 The STI infrastructure shall provide the GetSeconds() Definition () definition and implementation as

specified in Table 74Table 78.

Table 7478: GetSeconds() Definition

Declaration Seconds GetSeconds(

 in TimeWarp twObj

);

Description Get the number of seconds (whole number quantity) from the TimeWarp object.

Parameters ► twObj: The value from which the seconds portion of the time is extracted

Return Returns theReturn the number of seconds

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The seconds value may be negative, which indicates an interval back in time.

For fractional intervals, the seconds value reflects the largest integral value not greater

than the interval length in seconds, similar to the POSIX floor() operation applied to

a floating-point value.

For example, given a TimeWarp interval corresponding to -1.1s, the GetSeconds()

function will return -2, and the GetNanoseconds() function will return

900,000,000.

12.9312.7.41 STI Infrastructure-Provided GetTimeWarp Method

STI-91 The STI infrastructure shall provide the GetTimeWarp() Definition () definition and implementation as

specified in Table 75Table 79.

Table 7579: GetTimeWarp() Definition

Declaration TimeWarp GetTimeWarp(

 in Seconds isec,

 in Nanoseconds nsec

);

Description Get the TimeWarp object value corresponding to the seconds and nanoseconds.

Parameters ► isec: The number of seconds in the time interval (whole number portion)

► nsec: The number of nanoseconds in the time interval (fractional portion)

Return Returns theReturn the corresponding time value as a TimeWarp value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 135

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The nsec parameter value should be between 0 and 999,999,999, inclusive. If the

nsec value is not within this range, the infrastructure should adjust the isec and

nsec values by decrementing/incrementing nsec by 1,000,000,000 and

incrementing/decrementing isec by 1, respectively, until the nsec value is within this

range.

12.9412.7.42 STI Infrastructure-Provided TimeAdd Method

STI-92 The STI infrastructure shall provide the TimeAdd() Definition () definition and implementation as

specified in Table 76Table 80.

Table 7680: TimeAdd() Definition

Declaration TimeWarp TimeAdd(

 in TimeWarp t1,

 in TimeWarp t2

);

Description Compute the sum of two TimeWarp values.

Parameters ► t1, t2: Any previously obtained time values

Return The sum (t1 + t2) expressed as a TimeWarp value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes

12.9512.7.43 STI Infrastructure-Provided TimeSubtract Method

STI-93 The STI infrastructure shall provide the TimeSubtract() Definition () definition and implementation as

specified in Table 77Table 81.

Table 7781: TimeSubtract() Definition

Declaration TimeWarp TimeSubtract(

 in TimeWarp t1,

 in TimeWarp t2

);

Description Compute the difference between two TimeWarp values.

Parameters ► t1, t2: Any previously obtained time values

Return The difference (t1 - t2) expressed as a TimeWarp value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

136 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes This operation may be implemented as a macro or inline function for efficiency, on

languages that offer this feature.

This operation may be used by software to compute the elapsed time between two

successive calls to GetTime(). The result can be converted back to engineering units

via the GetSeconds() and GetNanoseconds() operations

12.9612.7.44 STI Infrastructure-Provided GetTime Method

STI-94 The STI infrastructure shall provide the GetTime() Definition () definition and implementation as specified

in Table 78Table 82.

Table 7882: GetTime() Definition

Declaration Result GetTime(

 in HandleID fromID,

 in HandleID toID,

 out TimeWarp currentTime

);

Description Obtains the current value of the clock.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the clock deviceclock component that should respond to the

request

► currentTime: A buffer to store the current time, as an interval since the epoch

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The output value returned represents a direct measurement of elapsed time since its

respective epoch according to the clock’s time scale and is not adjusted for nor

dependent upon any locale-specific time representations (i.e. time zone, daylight

savings time, etc.) or effects of relativity.

12.9712.7.45 STI Infrastructure-Provided SetTime Method

STI-95 The STI infrastructure shall provide the SetTime() Definition () definition and implementation as specified

in Table 79Table 83.

Table 7983: SetTime() Definition

Declaration Result SetTime(

 in HandleID fromID,

 in HandleID toID,

 in TimeWarp deltaTime

);

Description Sets the current value of the clock.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 137

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the clock deviceclock component that should respond to the

request

► deltaTime: The step size, relative to the current clock value

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This function will “step” the base clock. Since the offset is applied against the base

clock measurement, it affects all calendar representations of the clock accordingly. It

may be used to synchronize a clock based on information obtained after start up.

Not all clock deviceclock s components are required to support this operation. If a

clock deviceclock component is read-only and not settable from an application, this

function should return UNIMPLEMENTED.

Note that this is not intended for implementing the concept of a “time zone” or “local

time” (i.e. the time as commonly expressed in a given geopolitical region). If the

platform implements the concept of local time, then the specific local time offset or

conversion rules should be configured using the PropertySet APIConfigure and Query

methods as described in sections 10.6.2.312.7.11 and 12.7.12.

The specific property name and value format for time zone configuration is platform-

defined. On some systems, it may be directly configured as a number (i.e. minutes

ahead of GMT) or it may be configured as a string reflecting a predefined rule (i.e.

“US/Eastern”) if the system is capable of automatic daylight savings time adjustments.

12.9812.7.46 STI Infrastructure-Provided GetCalendarTime Method

STI-96 The STI infrastructure shall provide the GetCalendarTime() Definition () definition and implementation as

specified in Table 80Table 84.

Table 8084: GetCalendarTime() Definition

Declaration Result GetCalendarTime(

 in HandleID fromID,

 in HandleID toID,

 in TimeWarp referenceTime,

 in CalendarKind calendarKind,

 out CalendarTime calendarTime

);

Description Convert the base clock time value to a defined calendar representation.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the clock device that should respond to the request

► referenceTime: The time to convert, expressed as an interval since the clock

epoch

► calendarKind: The calendar system to convert the reference time to

► calendarTime: A buffer to store the calendar representation of the reference time

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

138 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes This call is used by applications to convert an abstract TimeWarp value (of which the

definition is platform-specific) into a value in one of the defined calendar systems, such

that portable applications can interpret it in a consistent manner.

If the system or clock does not support the requested calendarKind, the

implementation should return UNIMPLEMENTED.

If the referenceTime is zero, such as the result of a call to GetTimeWarp(0,0)

then this will return the respective calendar representation of the clock epoch.

12.99 STI Infrastructure-Provided CalendarValueCivil Structure

STI-97 The STI infrastructure shall provide the CalendarValueCivil Structure Definition as specified in Table 81.

Table 81: CalendarValueCivil Structure Definition

Declaration struct CalendarValueCivil {

 long nanoseconds;

 octet seconds;

 octet minutes;

 octet hours;

 octet day;

 octet month;

 short year;

};

Description Definition of time representation type for the common era / Gregorian calendar

Member Details ► nanoseconds: The number of nanoseconds, range of [0-999999999]

► seconds: The seconds value, range of [0-60]

► minutes: The minutes value, range of [0-59]

► hours: The hours value, range of [0-23]

► day: The day number within the month, range of [0-30]

► month: The month number within the year, range of [0-11]

► year: The full year number, expressed as an integer (i.e. 2019)

Implemented By Infrastructure

Notes This format is applicable to UTC and, usually, the local time representations. For local

time representations, the specific offset from UTC and daylight savings configuration

should be configured or queried separately through the property set interface.

The nanoseconds field is intended to support applications that require higher precision

time values. This does not imply that the underlying clock has nanosecond precision.

For clocks that do not support higher precision timing, this field should always be set as

zero.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Space Telecommunication Interface (STI), v1.0 -- beta 2 139

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.100 STI Infrastructure-Provided CalendarValueGPS Structure

STI-98 The STI infrastructure shall provide the CalendarValueGPS Structure Definition as specified in Table 82.

Table 82: CalendarValueGPS Structure Definition

Declaration struct CalendarValueGPS {

 long tow;

 short week;

};

Description Definition of time representation expressed in weeks and seconds, similar to the style

used in GPS navigation messages

Member Details ► tow: The time of week in milliseconds, range of [0-604799999]

► week: The number of weeks elapsed since the epoch

Implemented By Infrastructure

Notes This is not an exact representation of GPS time codes, but rather a method of expressing

time in terms that facilitate easy conversion to/from actual GPS navigation code formats

while also providing higher precision.

Legacy GPS navigation signals express the week number as a 10-bit integer, which rolls

over every 1024 weeks, with time of week expressed as a 19-bit integer with 1.5 second

resolution. Other navigation signals have a different format, using 13-bit week number

along with a 2-hour interval time of week and 18-second time of interval.

This structure expresses the time of week value in units of milliseconds. Conversion

from legacy GPS time of week values is accomplished via multiplication by 1500 (1.5

seconds), and conversion from 18-second time of interval codes is accomplished via

multiplication by 18000. Likewise, a conversion to whole seconds can be achieved by

dividing the tow by 1000, and the day of week can be determined by dividing by

86400000.

12.101 STI Infrastructure-Provided CalendarValueDayNumber Structure

STI-99 The STI infrastructure shall provide the CalendarValueDayNumber Structure Definition as specified in

Table 83.

Table 83: CalendarValueDayNumber Structure Definition

Declaration struct CalendarValueDayNumber {

 double date;

};

Description Definition of time representation expressed as a fractional day number

Member Details ► date: The day number expressed as a fractional / floating point value

Implemented By Infrastructure

Notes The whole number (integer portion) of the value expresses the number of Earth days

since the epoch, and the fractional part expresses the time of day.

12.102 STI Infrastructure-Provided CalendarTime Union

STI-100 The STI infrastructure shall provide the CalendarTime Union Definition as specified in Table 84.

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Text body, Space Before: 0 pt

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Text body, Space Before: 0 pt

Formatted: Heading 3, Indent: Left: 0", First line: 0"

140 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Table 84: CalendarTime Union Definition

Declaration union CalendarTime switch(CalendarKind) {

 case MJD: CalendarValueDayNumber dayNumber;

 case GPS: CalendarValueGPS weekSeconds;

 case LOCAL: CalendarValueCivil local;

 case TAI: CalendarValueCivil tai;

 case UTC: CalendarValueCivil civil;

};

Description Definition of CalendarTime type based on CalendarKind value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes

12.10312.7.47 STI Infrastructure-Provided SetTimeAdjust Method

STI-101 The STI infrastructure shall provide the SetTimeAdjust() Definition () definition and implementation as

specified in Table 85.

Table 1685: SetTimeAdjust() Definition

Declaration Result SetTimeAdjust(

 in HandleID fromID,

 in HandleID toID,

 in TimeRate rateAdjustment

);

Description Adjusts the tick rate of the clock deviceclock component.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the clock deviceclock component that should respond to the

request

► rateAdjustment: The amount of adjustment to apply

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Text body, Space Before: 0 pt

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Space Telecommunication Interface (STI), v1.0 -- beta 2 141

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The rateAdjustment parameter is a signed integer, where the value of 0 represents

the nominal or free-run rate of the clock without any adjustment applied. If any

adjustment had been previously applied, calling this function with a value of 0 will

restore a clock to its default rate.

A positive value will cause the clock frequency to increase from the nominal rate, and a

negative value will cause the clock frequency to decrease from the nominal rate. The

specific unit of rate increase/decrease is platform defined, although typically might

reflect a number of parts per million or parts per billion depending on clock design.

If the underlying device does not support rate adjustment, then this function will return

the predefined Result value UNIMPLEMENTED status code.

A typical use-case of this function would periodically compute the difference between

the reference clock and the local clock deviceclock component, which is then multiplied

by a feedback ratio (proportional coefficient) to compute the adjustment value to pass

into this function.

12.10412.7.48 STI Infrastructure-Provided GetTimeAdjust Method

STI-102 The STI infrastructure shall provide the GetTimeAdjust() Definition () definition and implementation as

specified in Table 86.

Table 1786: GetTimeAdjust() Definition

Declaration TimeRate GetTimeAdjust(

 in HandleID fromID,

 in HandleID toID

);

Description Obtain the current tick rate adjustment value of the clock deviceclock component.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the clock deviceclock component that should respond to the

request

Return Returns theReturn the current tick rate adjustment value

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes A return value of 0 indicates the clock is operating at its nominal or free-run frequency.

If the underlying device does not support rate adjustment, then this function always

returns 0.

A positive value indicates the clock frequency is above nominal, and a negative value

indicates the clock frequency is below nominal.

The specific units of the TimeRate value are platform defined, although typically

might reflect a number of parts per million or parts per billion depending on clock

design.

12.10512.7.49 STI Infrastructure-Provided TimeSynch Method

STI-103 The STI infrastructure shall provide the TimeSynch() Definition () definition and implementation as

specified in Table 87.

Table 1887: TimeSynch() Definition

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted Table

Formatted: Heading 3, Indent: Left: 0", First line: 0"

142 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Declaration Result TimeSynch(

 in HandleID fromID,

 in HandleID toID,

 in HandleID referenceID,

 in TimeWarp stepMax

);

Description Synchronizes a one clock deviceclock component with another waveform or

deviceclock component in the system.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the clock deviceclock component that should respond to the

request

► referenceID: The handle ID of another device or waveformclock component in

the system that provides a synchronization source for the target clock deviceclock

component.

► stepMax: The maximum amount that the target clock should be modified. A value

of either TIME_INTERVAL_ZERO or TIME_INTERVAL_UNLIMITED

indicates no limit to the maximum step size.

Return If the synchronization is successful with a single call to TimeSynch(), such that no

further action is required, return the predefined Result value OK.

If the synchronization is partially successful such that additional calls to TimeSynch()

are required, due to constraints such as those imposed by stepMax, return a positive

integer value indicating the anticipated number of calls required.

If synchronization is not possible under the given constraints, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.A status code that should be checked using IsOK().

If the synchronization is successful with a single call to TimeSynch(), such that no

further action is required, the implementation will return OK.

If the synchronization is successful but requires multiple calls (e.g. due to constraints

imposed by stepMax) the implementation will return a positive integer value

indicating the anticipated number of calls required.

If synchronization is not possible under the given constraints the implementation will

return a suitable error response.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Commented [HLM(L44]: JIRA issue STI_19: Typo

“TIME_INTERVAL_MAX” should be “TIME_INTER-

VAL_UNLIMITED”

Formatted Table

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-19&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=S9ZbwBr%2Bq%2BcKJfpa74Ph7brjJlfrNsKu6TnRPtetG4k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-19&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=S9ZbwBr%2Bq%2BcKJfpa74Ph7brjJlfrNsKu6TnRPtetG4k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-19&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456458257%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=S9ZbwBr%2Bq%2BcKJfpa74Ph7brjJlfrNsKu6TnRPtetG4k%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 143

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes This function is intended for use in systems where a local general-purpose clock/timer

serviceone clock component may be selectively synchronized with other devicesanother

clock component on the system. Support for this function is implementation-defined,

and this function may return the predefined value UNIMPLEMENTED if the clock

deviceclock component does not support synchronization with any other devicesclock

component.

The infrastructure provider will document the set of applications, devices, or services

suitable for use with the referenceID parameter. This reference deviceas

synchronizable clock components with a handle ID parameter. This reference clock

component may be another infrastructure-provided clock/timer service, or it may be

another form of timing reference, such as a software service implementing a protocol

such as NTP or IEEE-1588, or a device capable of recovering timing signals from

received bit streams.

The stepMax parameter specifies the maximum amount that the target clock

deviceclock component may be modified in a single step change. The constant

predefined TIME_INTERVAL_UNLIMITED value may be specified to indicate no

limit to the step size, permitting the target device clock component to be directly set to

any value.

12.10612.7.50 STI Infrastructure-Provided Sleep Method

STI-104 The STI infrastructure shall provide the Sleep() Definition () definition and implementation as specified in

Table 88.

Table 1988: Sleep() Definition

Declaration Result Sleep(

 in HandleID fromID,

 in HandleID toID,

 in TimeWarp interval

);

Description Delays the caller until the specified interval has elapsed, as measured by the clock

deviceclock component.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the clock deviceclock component that should respond to the

request

► interval: The amount of time that the caller should be delayed, relative to the

current clock value

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Formatted: Font: (Default) Times New Roman, 10 pt,

Font color: Auto, Pattern: Clear

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

144 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Notes The call may be interrupted under some circumstances, causing the infrastructure to

return to the caller before the interval has elapsed. In these cases, the infrastructure

should return the WARNING response.

Note that the actual sleep time may be longer than requested due to the resolution of the

clock deviceclock component and operating system scheduling variances.

Setting a clock using SetTime() while this operation is in progress has undefined

effects on the delay operation.

12.10712.7.51 STI Infrastructure-Provided DelayUntil Method

STI-105 The STI infrastructure shall provide the DelayUntil() Definition () definition and implementation as

specified in Table 89.

Table 2089: DelayUntil() Definition

Declaration Result DelayUntil(

 in HandleID fromID,

 in HandleID toID,

 in TimeWarp endTime

);

Description Delays the caller until the clock reaches the indicated value.

Parameters ► fromID: The handle ID of the current component making the request

► toID: The handle ID of the component that should respond to the request

► endTime: The time value at which the function should return, relative to the clock

epoch

Return On success, return the predefined Result value OK; otherwise, return one of the

predefined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided

Result Values.On success, returns OK. On error, returns one of the defined error

constants.

Implemented By Infrastructure

Invoked By Application, Service, or Device

Notes The call may be interrupted under some circumstances, causing the infrastructure to

return to the caller before the end time has been reached. In these cases, the

infrastructure should return the WARNING response.

Note that the actual sleep time may be longer than requested due to the resolution of the

clock deviceclock component and operating system scheduling variances.

Setting a clock using SetTime() while this operation is in progress has undefined

effects on the delay operation.

12.7.52 STI Infrastructure-Provided ConvertToTimeWarp Method

STI-112 The STI infrastructure shall provide the ConvertToTimeWarp() definition and implementation as specified

in Table 90.

Table 90: ConvertToTimeWarp() Definition

Declaration

 Result ConvertToTimeWarp(

 in HandleID fromID,

 in CalendarKind calendarKind,

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Border: Top: (No border), Bottom: (No

border), Left: (No border), Right: (No border)

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Commented [HLM(L45]: JIRA issue STI_78: Missing

Clock Methods

Formatted: Font: (Default) Times New Roman, 10 pt,

Not Bold, Font color: Auto

Formatted: Table, Space Before: 9 pt

Formatted: Font: 10 pt

Formatted: Interface Heading, Left

Formatted Table

Formatted: Font: 10 pt, Not Bold

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 145

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

 in CalendarTime calendarTime,

 out TimeWarp twTime

);

Description Convert the defined calendar representation to a TimeWarp clock time value.

Parameters

► fromID: The handle ID of the current component making the

request

► calendarKind: The calendar system of the calendar time to

be converted

► calendarTime: A buffer to store the calendar

representation of the calendar time to be converted

► twTime: The converted time, expressed as an interval since the clock epoch

Return

On success, return the predefined Result value OK. On error, return one of the prede-

fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

Values.

Notes

This call is used by applications to convert a value in one of the defined calendar sys-

tems into a TimeWarp value (of which the definition is platform-specific), such that

portable applications can interpret it in a consistent manner. If the system or clock does

not support the requested calendarKind, the implementation should return UNIMPLE-

MENTED. If the calendarTime is prior to the epoch for TimeWarp, an error is returned.

12.108 Document STI Interfaces

STI-106 The STI infrastructure provider shall document the set of interfaces provided by the infrastructure.

12.109 Document Application’s System Library Interfaces

STI-107 The STI application developer shall document the set of operating system interfaces required by the

application.

12.8 External Command and Telemetry

12.11012.8.1 Respond to External Commands

STI-108 An STI platform shall accept, validate, and respond to external commands.

12.11112.8.2 External Commands Use STI API

STI-109 An STI platform shall execute external application control commands using the standardized STI APIs.

12.11212.8.3 Document External Commands

STI-110 An STI platform provider shall document any external commands describing their format, function, and

any STI methods invoked.

12.11312.8.4 Use STI Query for External Data

STI-111 The STI infrastructure shall use the STI Query method to service external system requests for information

and to provide telemetry data about an STI application.

Formatted: HTML Preformatted

Formatted: Font: Not Bold

Formatted: Font: 10 pt

Formatted: Interface Heading, Left

Formatted: Font: 10 pt, Not Bold

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Interface Heading, Left

Formatted: Font: 10 pt, Not Bold

Formatted: Source Text, Font: 10 pt

Formatted: Table List, Space Before: 0 pt, After: 0 pt,

Outline numbered + Level: 1 + Numbering Style: Bullet

+ Aligned at: 0" + Indent at: 0.15"

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Interface Heading, Left

Formatted: Font: 10 pt, Not Bold

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Interface Heading, Left

Formatted: Font: 10 pt, Not Bold

Formatted: Font: 10 pt

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Indent: Left: 0", Hanging: 0.81", Outline

numbered + Level: 2 + Numbering Style: 1, 2, 3, … +

Start at: 1 + Alignment: Left + Aligned at: 0" + Indent

at: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

Formatted: Heading 3, Indent: Left: 0", First line: 0"

146 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

12.9 Clock Control Interface

Clock components must also be STI applications or devices to be able to be accessed by a handle ID.

"Provide a definition" implies supplying a consistent interface, which may be used or inherited by other

methods. The implementation of such an interface may be supplied by others. For functions, an abstract

method or class, a virtual method, or prototype is usually supplied.

Any apparent discrepancy between clock-provided and infrastructure-provided of the titles and requirements is

easily resolved by noting that the infrastructure provides the definition while the clock inherits an

implementation or provides the implementation directly.

Clock components must be STI applications or devices or services to be able to be accessed by a

handle ID.

12.9.1 STI Infrastructure-Provided CLK_GetTime Method
STI-113 The STI infrastructure shall provide the CLK_GetTime() definition as specified in Table 91 to be imple-

mented by an STI clock.

Table 91: CLK_GetTime() Definition

Declaration

 interface ClockControl

 {

 Result CLK_GetTime(

 out TimeWarp currentTime

);

 };

Description Obtain the current value of the clock.

Parameters • currentTime: A buffer to store the current time, as an interval since the epoch

Return

On success, return the predefined Result value OK; otherwise, return one of the prede-

fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

Values.

Notes

The output value returned represents a direct measurement of elapsed time since its re-

spective epoch according to the clock's time scale and is not adjusted for nor dependent

upon any locale-specific time representations (i.e. time zone, daylight savings time, etc.)

or effects of relativity.

12.9.2 STI Infrastructure-Provided CLK_SetTime Method
STI-114 The STI infrastructure shall provide the CLK_SetTime() definition as specified in Table 92 to be imple-

mented by an STI clock.

Table 92: CLK_SetTime() Definition

Declaration

 interface ClockControl

 {

 Result CLK_SetTime(

 in TimeWarp deltaTime

);

 };

Description Set the current value of the clock.

Parameters • deltaTime: The step size, relative to the current clock value

Commented [HLM(L46]: JIRA issue STI_78: Missing

Clock Methods

Formatted: Heading 3

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 9 pt

Formatted: Font: 10 pt

Formatted Table

Formatted: HTML Preformatted

Formatted: Font: Not Bold

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Space Before: 0 pt, After: 0 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Heading 3

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 9 pt

Formatted: Font: 10 pt

Formatted Table

Formatted: HTML Preformatted

Formatted: Font: Not Bold

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Space Before: 0 pt, After: 0 pt

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-78&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C4de00ec7af7a45ffd51608dab5fe31d2%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638022400640293473%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=drrJCbK14%2FHmn41T78Y5NAbU6gfLYhItaFhVD3ILfVE%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 147

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Return

On success, return the predefined Result value OK; otherwise, return one of the prede-

fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

Values.

Notes

This function will "step" the base clock. Since the offset is applied against the base clock

measurement, it affects all calendar representations of the clock accordingly. It may be

used to synchronize a clock based on information obtained after start up. Not all clock

components are required to support this operation. If a clock component is read-only and

not settable from an application, this function should return UNIMPLEMENTED. Note

that this is not intended for implementing the concept of a "time zone" or "local time"

(i.e. the time as commonly expressed in a given geopolitical region). If the platform im-

plements the concept of local time, then the specific local time offset or conversion rules

should be configured using the Configure and Query methods as described in sec-

tions 12.7.11 and 12.7.12. The specific property name and value format for time zone

configuration is platform-defined. On some systems, it may be directly configured as a

number (i.e. minutes ahead of GMT) or it may be configured as a string reflecting a pre-

defined rule (i.e. "US/Eastern") if the system is capable of automatic daylight savings

time adjustments.

12.9.3 STI Infrastructure-Provided CLK_SetTimeAdjust Method
STI-115 The STI infrastructure shall provide the CLK_SetTimeAdjust() definition as specified in Table 93 to be

implemented by an STI clock.

Table 93: CLK_SetTimeAdjust() Definition

Declaration

 interface ClockControl

 {

 Result CLK_SetTimeAdjust(

 in TimeRate rateAdjustment

);

 };

Description Adjust the tick rate of the clock component.

Parameters • rateAdjustment: The amount of adjustment to apply

Return

On success, return the predefined Result value OK; otherwise, return one of the prede-

fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

Values.

Notes

The rateAdjustment parameter is a signed integer, where the value of 0 represents the

nominal or free-run rate of the clock without any adjustment applied. If any adjustment

had been previously applied, calling this function with a value of 0 will restore a clock to

its default rate. A positive value will cause the clock frequency to increase from the nom-

inal rate, and a negative value will cause the clock frequency to decrease from the nomi-

nal rate. The specific unit of rate increase/decrease is platform defined, although typically

might reflect a number of parts per million or parts per billion depending on clock de-

sign. If the underlying device does not support rate adjustment, then this function will re-

turn the Predefined UNIMPLEMENTED Result value. A typical use-case of this func-

tion would periodically compute the difference between the reference clock and the local

clock component, which is then multiplied by a feedback ratio (proportional coefficient)

to compute the adjustment value to pass into this function.

12.9.4 STI Infrastructure-Provided CLK_GetTimeAdjust Method
STI-116 The STI infrastructure shall provide the CLK_GetTimeAdjust() definition as specified in Table 94 to be

implemented by an STI clock.

Table 94: CLK_GetTimeAdjust() Definition

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Hyperlink, Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Heading 3

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 9 pt

Formatted: Font: 10 pt

Formatted Table

Formatted: HTML Preformatted

Formatted: Font: Not Bold

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Space Before: 0 pt, After: 0 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Heading 3

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 9 pt

148 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted ...

Declaration

 interface ClockControl

 {

 TimeRate CLK_GetTimeAdjust();

 };

Description Obtain the current tick rate adjustment value of the clock component.

Parameters

Return Return the current tick rate adjustment value

Notes

A return value of 0 indicates the clock is operating at its nominal or free-run frequency.

If the underlying device does not support rate adjustment, then this function always re-

turns 0. A positive value indicates the clock frequency is above nominal, and a negative

value indicates the clock frequency is below nominal. The specific units of the TimeRate

value are platform defined, although typically might reflect a number of parts per million

or parts per billion depending on clock design.

12.9.5 STI Infrastructure-Provided CLK_Sleep Method
STI-117 The STI infrastructure shall provide the CLK_Sleep() definition as specified in Table 95 to be implemented

by an STI clock.

Table 95: CLK_Sleep() Definition

Declaration

 interface ClockControl

 {

 Result CLK_Sleep(

 in TimeWarp interval

);

 };

Description
Delay the caller until the specified interval has elapsed, as measured by the clock compo-

nent.

Parameters
• interval: The amount of time that the caller should be delayed, relative to the

current clock value

Return

On success, return the predefined Result value OK; otherwise, return one of the prede-

fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

Values.

Notes

The call may be interrupted under some circumstances, causing the infrastructure to re-

turn to the caller before the interval has elapsed. In these cases, the infrastructure should

return the WARNING response. Note that the actual Sleep time may be longer than re-

quested due to the resolution of the clock component and operating system scheduling

variances. Setting a clock using CLK_SetTime() while this operation is in progress has

undefined effects on the delay operation.

12.9.6 STI Infrastructure-Provided CLK_DelayUntil Method
STI-118 The STI infrastructure shall provide the CLK_DelayUntil() definition as specified in Table 96 to be imple-

mented by an STI clock.

Table 96: CLK_DelayUntil() Definition

Declaration

 interface ClockControl

 {

 Result CLK_DelayUntil(

 in TimeWarp endTime

);

 };

Formatted ...

Formatted Table ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted Table ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted Table ...

Formatted ...

Formatted ...

Space Telecommunication Interface (STI), v1.0 -- beta 2 149

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Description Delay the caller until the clock reaches the indicated value.

Parameters
• endTime: The time value at which the function should return, relative to the

clock epoch

Return

On success, return the predefined Result value OK; otherwise, return one of the prede-

fined Result values indicating failure. See 12.4.6 STI Infrastructure-Provided Result

Values.

Notes

The call may be interrupted under some circumstances, causing the infrastructure to re-

turn to the caller before the end time has been reached. In these cases, the infrastructure

should return the WARNING response. Note that the actual Sleep time may be longer

than requested due to the resolution of the clock component and operating system sched-

uling variances. Setting a clock using CLK_SetTime() while this operation is in progress

has undefined effects on the delay operation.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Space Before: 0 pt, After: 0 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

150 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Annex A: Language Translations
This appendix describes some specific mappings to programming languages for STI interfaces. This section is

intended to clarify certain aspects of the IDL mappings to ensure that different implementations will remain

consistent with regard to these interface definitions.

Many of the interface definitions in this specification are provided as OMG Interface Definition Language (IDL)

fragments. OMG also specifies a specific method for mapping these interfaces to source code in various common

programming languages, and the STI implementation of these interfaces will adhere to these mappings where

relevant.

Earlier versions of the OMG IDL specification were specifically designed for defining the interfaces within a

CORBA environment. IDL has since been revised as a general-purpose interface definition language and has been

released independently from CORBA since version 3.5. While a compliant implementation of STI may utilize a

CORBA-like layer to exchange data between modules, there is no requirement for nor assumption of a CORBA

environment within STI. As such, the function prototypes or interface definitions based on the IDL fragments in this

specification will not directly include any CORBA references.

All IDL fragments in this document shall be interpreted as belonging to an IDL module called “STI”, with interface

and identifier names mapped accordingly. To ensure naming consistency across differing OE implementations, a

specific header file/module/namespace needs to be implemented such that the same function names are present and

available on all STI implementations. Each programming language environment has differences in the paradigms

used for this purpose.

The general STI architecture can also be implemented in programming languages using the translations prescribed

by the IDL specification. Additional directives on how the IDL translations apply to the STI applications and

infrastructure is available in this section. This section is intended to clarify certain aspects of the interface

translation for commonly used programming languages, but other language translations beyond what is specified

here are also possible. The appendix may be extended in a future revision of this specification to contain additional

language mappings.

Nearly all modern high-level programming languages support some notion of “packages” or “modules” to separate

functionality into logical entities. Whenever possible, all STI functionality should be encapsulated in a single

package or module called “STI”. Note that some languages, such as Java, dictate additional package naming

recommendations. Any such language-specific package name recommendations should also be adhered to. In C

and C++, the interfaces are available through multiple header files.

All object-oriented languages such as C++, Java, and Python generally support the same fundamental concepts of

inheritance and interfaces. For these languages, the interface translation is fairly straightforward, and the application

will use the language’s native inheritance mechanisms. For other languages such as C, which are not natively

object-oriented, the approach differs slightly, but many of the same concepts can still be employed even if not

directly supported by the language. Therefore, a different set of requirements will apply to applications

implemented in C versus other object-oriented languages.

All STI applications and devices should encapsulate their state in an object or structure of some type, referred to as

the “base object”. Even for “singleton” objects of which there can only be one, STI requires that there is still a base

object associated with the instance, even if this object does not contain any extra information.

Figure 9Figure 9 also shows several different optional interfaces that an application or device may implement,

depending on its specific design needs. In object-oriented languages, the set of interfaces is indicated in the object

definition, using the language’s inheritance mechanisms. In these languages, a “connection” between the

implementation and interface is automatically made through the language’s type system. In non-object-oriented

languages, such as C, a separate mechanism is necessary to explicitly create the connection between a given

implementation to the interface it implements. For STI, a naming convention is employed to facilitate this

connection.

In object-oriented languages, the conversion to an Instance object is achieved by simply inheriting from the proper

base class. In non-object-oriented languages, the application developer will implement this conversion, and it is not

specified how the conversion takes place. For a singleton object, this can be a simple global. In C, this could be

performed using a pointer conversion of some sort. Alternatively, this could be implemented using a lookup table or

dictionary.

Space Telecommunication Interface (STI), v1.0 -- beta 2 151

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

A.1 C Language Mapping

The C programming language is standardized as ISO/IEC 9899, with a specific revision to the standard identified by

a year number suffix (e.g. ISO/IEC 9899:1999). The STI architecture should be implementable in any current or

future version of the C programming language.

A.1.1 Naming Conventions

Unlike other languages, the C language does not include the concept of a “namespace” or “module” to avoid

identifier name collisions between global-scope symbols in separate libraries or code units. As such, it is common

practice to add a prefix to all global identifier names supplied by a library or module as a means of differentiation.

All infrastructure-provided functions, constants, and types defined in this specification shall be denoted with an

“STI_” prefix when mapped to identifiers in the C programming language. For example, the “Instance” type is

named “STI_Instance”, the “OK” result value constant is named “STI_OK”, the “Write” method is named

“STI_Write”, and so forth.

All application-provided implementation written in the C language shall be denoted with a prefix defined by the

application. For instance, if an application were named “Example”, the application-provided application control

methods may be called “Example_APP_Instantiate”, “Example_APP_Start”, and so forth.

A.1.2 Header Files

The following header files shall be provided by the infrastructure, such that applications can use the #include

preprocessor directive to incorporate the respective resources:

Table 2190: C Language Header Files

Include File Provides

STI.h
C language STI data types and abstract object definitions. This

file provides declarations of all data types described in section

10.412.4.

STI_APIs.h
C language function prototype declarations for all infrastructure-

provided API calls. This file provides declarations of all calls

described in section 10.612.7.

STI_ApplicationControl.h
C language function prototype declarations associated with

ApplicationControl interface, as described in sections 10.5.212.5.1

– 12.5.11.

STI_DeviceControl.h
C language function prototype declarations associated with

DeviceControl interface, as described in section 10.5.312.6.

STI_Source.h
C language function prototype declarations associated with the

Source interface, as described in section 10.5.4.112.5.12.

STI_Sink.h
C language function prototype declarations associated with the

Sink interface, as described in section 10.5.4.212.5.13.

STI_RandomAccess.h
C language function prototype declarations associated with the

RandomAccess interface, as described in sections 10.5.4.312.5.14

– 12.5.15.

After utilizing the language-specific import statement, all components of the STI API can be referenced using the

paradigm of the respective language’s package/module facility.

A.1.3 Interface Type Mappings

Table 5, Infrastructure-provided Data Types, in section 10.4.112.4 indicates the general semantics of each STI-

defined type. These general semantics, in turn, determine the proper method to pass a value or object of that type

through an IDL-defined interface or function definition.

152 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The table below indicates the basic type mappings for the C language. This table also indicates whether an operand

should be passed as value or as a pointer/reference, and how the pointer type should be qualified, if applicable. For

operations which utilize an abstract base type containing application-defined data of arbitrary size (e.g. Message and

PropertyValue types), the size of this data will also be specified. In these cases, a single object in the IDL fragment

will translate to two arguments in the C function prototype. This also applies to strings, as the C language

implements strings as a pointer to the char type, rather than as a distinct value type in itself.

Table 2291: C Language Data Type Mapping

Semantics Usage Pass As C Data Type(s) Applicable to

Integer,

Enumeration, or

aggregate value

in, return Value STI_<type>

Access, CalendarKind,

FileSize, HandleID,

Nanoseconds, Offset,

QueueMaxMessages,

Result, Seconds,

TestID, TimeRate,

TimeWarpResult,

HandleID, TimeWarp,

Access, etc.

out, inout Pointer to Value STI_<type> *

string
in, return Pointer const char *

Object Names
out, inout Pointer and Size char *, size_t

Abstract Object
in Pointer and Size const STI_<type> *, size_t Message,

PropertyValue out Pointer and Size STI_<type> *, size_t

Base Type any Pointer STI_Instance * Context Objects

A.1.4 Inheritance and Base Types

Although C is not an object-oriented language by nature, the same basic concepts can still be manually implemented

by the programmer through use of specific patterns and by utilizing type casting where necessary. The main

requirement is that structure definitions be defined appropriately such that a pointer to a base structure can be

reliably converted to a derived structure and vice versa.

The first element of a C structure is guaranteed to be at the same memory address as the structure itself, as specified

in ISO/IEC 9899 section 6.7.2.1, as follows:

A pointer to a structure object, suitably converted, points to its initial member, and vice versa. There

may be unnamed padding within a structure object, but not at its beginning.

Given this requirement, the concept of single inheritance may be implemented simply by ensuring that the “base

type” of a given structure is declared as its first element. For STI, the base type of all context objects is the

Instance type. The specific content of the Instance type is implementation-defined, but the infrastructure will

provide this type such that it is suitable for use as a base type, as in this example:

typedef struct

{

 STI_Instance Base;

 int LocalValue;

} Example_Object;

Using this definition, a pointer to the base object (STI_Instance*) may be safely typecast by the application to

the derived object (Example_Object*) and vice-versa. Note that while this approach generally works for simple

cases, more complex applications may necessitate a different approach. The STI infrastructure only stipulates that

interaction with the infrastructure takes place using an Instance object; more complex applications may in turn use

this object to index into a larger state table or database.

Formatted Table

Commented [HLM(L47]: JIRA issue STI_43: Remove

"etc." from Tables

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0

Space Telecommunication Interface (STI), v1.0 -- beta 2 153

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

A.1.5 Interface Operations

All methods defined in the STI application or device control interfaces in section 10.512.5 – 12.6, Application and

Device Control InterfaceApplication and Device Control Interface shall have a context object as the first parameter

in the calling sequence.

All operations defined in the STI application or device control interfaces in section 10.512.5 – 12.6, Application and

Device Control InterfaceApplication and Device Control Interface, require a context object, which is the in-memory

data structure comprising the device or application state. This is an application defined structure that may contain

any arbitrary state information needed by the application. In object-oriented languages this object is often referred

to as the “self” or “this” object and is usually implicitly supplied through the respective language internal

mechanisms.

Since the C programming language does not provide these object-oriented features, the context object shall be

explicitly included as the first argument in the function prototype, followed by the remainder of the operands

specified in the interface definition.

STI requires that all such context objects in the system are derivatives of the infrastructure-defined Instance type.

Therefore, in the C programming language, all interaction between the infrastructure and the application will use a

pointer to the “STI_Instance” type to identify the target of the operation. For example, the C prototype for the

APP_Instance() and APP_Start() operations in the “Example” application would be:

STI_Instance* Example_APP_Instance(STI_HandleID id, const char *name);

STI_Result Example_APP_Start(STI_Instance *inst);

A.2 C++ Language Mapping

The C++ programming language is standardized as ISO/IEC 14882, with a specific revision to the standard

identified by a year number suffix (e.g. ISO/IEC 14882:2003). The STI architecture should be implementable in any

current or future version of the C++ programming language.

Mapping of the STI interfaces to C++ should follow the guidelines set forth in the OMG IDL C++ language

mapping. However, in STI there is no assumption or dependence on CORBA types or interfaces. This section is

intended to clarify how the C++ language mapping applies to STI.

A.2.1 Naming Conventions

All STI infrastructure-provided functions, constants, and types shall be defined within a C++ namespace called

“STI”. For example, the “Instance” type is named “STI::Instance”, the “OK” result value constant is

named “STI::OK”, the “Write” method is named “STI::Write”, and so forth.

A.2.2 Header Files

The following header files shall be provided by the infrastructure, such that applications can use the #include

preprocessor directive to incorporate the respective resources:

Table 2392: C++ Language Header Files

Include File Provides

STI.hh
Fundamental STI data types and abstract object definitions. This

file provides declarations of all data types described in section

10.412.4.

STI_APIs.hh
Function prototype declarations for all infrastructure-provided

API calls. This file provides declarations of all calls described in

section 10.612.7.

STI_ApplicationControl.hh
ApplicationControl interface class definition, as described in

section 10.5.212.5.1 – 12.5.11.

STI_DeviceControl.hh
DeviceControl interface class definition, as described in section

10.5.312.6.

Formatted: Font: 10 pt

Formatted: Font: 10 pt

154 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Include File Provides

STI_Source.hh
Source interface class definition, as described in section

10.5.4.112.5.12.

STI_Sink.hh
Sink interface class definition, as described in section

10.5.4.2.12.5.13.

STI_RandomAccess.hh
RandomAccess interface class definition, as described in section

10.5.4.312.5.14 – 12.5.15.

After utilizing the language-specific import statement, all components of the STI API can be referenced using the

paradigm of the respective language’s package/module facility.

A.2.3 Constructor and Destructor

STI defines the APP_Instance() and APP_Destroy() methods as a means to construct and destruct

instances, rather than relying on language-specific paradigms to invoke a class constructor or destructor. These

should be implemented as static methods in the C++ application class. This aligns with a “factory” design pattern

that allows additional application control over the construction process. When the infrastructure invokes the factory

function, the application should invoke the class constructor appropriately, and return the newly constructed object.

A.2.4 Interface Classes

All other application and device control interfaces defined in section 10.512.5 – 12.6, Application and Device

Control InterfaceApplication and Device Control Interface, shall each be mapped to a C++ abstract interface base

class provided by the infrastructure.

The class shall declare each of the operations as a pure virtual function, which in turn requires that any derivative

class provide an implementation as a prerequisite to being instantiated.

For example, the following class definition would represent the ControllableComponent interface:

namespace STI
{

 class ControllableComponent
 {
 public:
 virtual Result APP_Start() = 0;
 virtual Result APP_Stop() = 0;
 };

}

All application-provided methods shall be class member functions of an application-defined class inheriting from

some or all of these abstract interface classes.

Table 5, Infrastructure-provided Data Types, in section 10.4.112.4 indicates the general semantics of each STI-

defined type. These general semantics, in turn, determine the proper method to pass a value or object of that type

through an IDL-defined interface or function definition.

Table 2493: C++ Language Data Type Mapping

Semantics Usage Pass As C++ Data Type(s) Applicable to

Integer,

Enumeration, or

aggregate value

in, return Value STI::<type>

Access,

CalendarKind,

FileSize, HandleID,

Nanoseconds, Offset,

Formatted: Font: 10 pt

Formatted Table

Space Telecommunication Interface (STI), v1.0 -- beta 2 155

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

The “string” types in C++ shall utilize C-style string representations (pointer to char) rather than the

std::string type. This is because the C++ string type typically relies on dynamic memory allocation, and usage

of this type may also introduce additional compile-time and run-time dependencies on the C++ standard library.

Using C-style strings also facilitates an infrastructure implementation supporting both C and C++.

A.3 Python Mapping

Python is an object-oriented programming language developed by the Python Software Foundation. The language

has seen significant adoption by the scientific and research communities and is often used for prototyping software

algorithms.

Python is an interpreted language and utilizes a dynamic type system with automatic memory management. As

such, it may not be suitable for flight software environments where strict deterministic behavior is required.

However, during the SDR development stages, the ability to integrate existing Python applications into an SDR may

be highly useful and beneficial. This can be accomplished by mapping the STI interfaces to a Python language

environment.

A.3.1 Naming Conventions

All STI infrastructure-provided functions, constants, and types shall be provided through a Python module called

“STI”.

All infrastructure-provided types and methods shall be available through this module. For example, the

“Instance” type is identified as “STI.Instance”, the “OK” result value constant is named “STI.OK”, the

“Write” method is named “STI.Write”, and so forth.

A.3.2 Application Classes

Applications utilizing the STI infrastructure shall use the standard Python module import mechanisms to access the

STI infrastructure.

All application base classes utilized with STI shall inherit from the “Instance” class provided through this module.

For example, an application would typically have an “import” statement at the beginning of the source file, followed

by an application class definition.

import STI

class ExampleWaveform(STI.Instance):
 …

After utilizing the language-specific import statement, all components of the STI API can be referenced using the

paradigm of the respective language’s package/module facility. For instance, in languages such as Python, Ruby and

out, inout Pointer to Value STI::<type> *

QueueMaxMessages,

Result, Seconds,

TestID, TimeRate,

TimeWarpResult,

HandleID,

TimeWarp, Access,

etc.

string

(see note)

in, return Pointer const char *
Object Names

out, inout Pointer and Size char *, size_t

Abstract Object
in Pointer and Size const STI::<type> *, size_t Message,

PropertyValue out Pointer and Size STI::<type> *, size_t

Base Type any Pointer STI::Instance * Context Objects

Commented [HLM(L48]: JIRA issue STI_43: Remove

"etc." from Tables

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0

156 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Lua, the module contents are designated by the module name and a period (.) separator, for example the term

“STI.Initialize” would refer to the Initialize function within the STI module.

A.3.3 Constructor and Destructor

The Python application module shall also provide an implementation of the APP_Instance and APP_Destroy

methods, implementing a “factory” design pattern that can be invoked by the infrastructure. These are be

implemented as static methods in the application class.

A.3.4 Interface Operations

Unlike C++, the methods in a Python class are dynamic and do not need to be explicitly declared at compile time.

Therefore, applications do not need to inherit from an interface class as in C++. Instead, implementation of any

application-provided interface method defined in section 10.512.5 or 12.6, Application and Device Control

InterfaceApplication and Device Control Interface, is simply a matter of defining a matching method within the

application class.

For example, the following class definition would implement the ControllableComponent interface:

class ExampleWaveform(STI.Instance):

 def APP_Start(self):
 # Implementation-defined action…
 return STI.OK

 def APP_Stop(self):
 # Implementation-defined action…
 return STI.OK

All application-provided methods shall be class member functions of an application-defined class inheriting from

some or all of these abstract interface classes.

Being a fully object-oriented language with automatic memory management, Python represents all values in

software code as a logical object of some type. Unlike C and C++, the actual memory storage and representation of

these objects is hidden from the developer, and there is no direct equivalent of a “pointer” type. However, Python

does provide some data types that can directly deal with memory reservation and access, and these can be used to

exchange data directly with C/C++ software. Since all Python objects are fundamentally self-describing, with a type

and size known to the interpreter, the STI interfaces do not need to explicitly indicate size information when passing

abstract buffer objects through the interface.

Python classifies certain object types as “immutable”, which include strings, integers, and other fundamental value

types. Once instantiated, these values can never be modified; instead, a new, distinct value object will be created,

and the previous object can be destroyed. On the other hand, aggregate types such as classes, dictionaries, and lists

are “mutable”, meaning that the content can be modified after instantiation. Some fundamental objects have both

mutable and immutable variants (e.g. byte/bytearray, frozenset/set, etc.). When translating from IDL, immutable

types can only be used to implement “in” or “return” parameter values from an operation definition. Parameters

designated as “out” or “inout” will only use mutable types.

Table 5, Infrastructure-provided Data Types, in section 10.4.112.4 indicates the general semantics of each STI-

defined type. These general semantics, in turn, define the expected mutability of a value of the given type, and

therefore its applicability to IDL-defined operations.

Table 2594: Python Language Data Type Mapping

Formatted: Font: 10 pt

Space Telecommunication Interface (STI), v1.0 -- beta 2 157

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

Semantics Mutability Python Data Type Applicable to

Integer immutable STI.<type>

FileSize, HandleID,

Nanoseconds, Offset,

QueueMaxMessages,

Result, Seconds,

TestID, TimeRate,

TimeWarpResult,

HandleID, etc.

Enumeration immutable Integer, see below Access, CalendarKind

string immutable str Object Names

Aggregate Value mutable STI.TimeWarp TimeWarp

Abstract Object mutable
Any object type implementing the Python “buffer

protocol”, such as bytearray.
Message,

PropertyValue

Base Type mutable STI.Instance Context Objects

Note that Python does not implement enumerated data types as C/C++ do

Access enumerated values shall be implemented as integer constant named values of type Access, with each value

being one more than the preceding one.

CalendarKind enumerated values shall be implemented as integer constant named values of type CalendarKind with

each value being one more than the preceding one.

A.4 Perl Mapping

Only certain features have been determined to be required when software is implemented in Perl.

The STI module/package namespace for Perl shall be OMG::STI.

An example of its use is:

use OMG::STI

After utilizing the language-specific import statement, all components of the STI API can be referenced using the

paradigm of the respective language’s package/module facility. For instance, in Perl, the module contents are

designated by the module name and a double-colon (:) separator, for example the term “OMG::STI::Initialize()”

would refer to the Initialize function within the OMG::STI package.

Perl has built-in strings but not enumerations. Enumerations are implemented as a set of constant Integer values. It

is possible to implement an enumeration pragma function for this purpose. Perl does not have built-in Integer types.

On those platforms without floating point hardware, using a Perl pragma to tell the compiler to use integer

operations instead of floating point within the block can make a big difference in performance.

A.5 Ruby Mapping

Only certain features have been determined to be required when software is implemented in Ruby.

The STI module namespace for Ruby shall be STI.

An example of its use is:

require 'STI'

After utilizing the language-specific import statement, all components of the STI API can be referenced using the

paradigm of the respective language’s package/module facility. For instance, in Ruby, the module contents are

Commented [HLM(L49]: JIRA issue STI_43: Remove

"etc." from Tables

Commented [HLM(L50]: JIRA issue STI_11: Update

Perl, Ruby, Java, and Lua Sections (Completed in FTF1)

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-43&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456926871%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=EvachVoBzxYAeZ2OkBOpqyIxiDTNhA0375%2BGKJ45F9c%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-11&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=h%2Fp72PVH5SyPYjeDvpnvjZgvrGlT465Gt68H%2FGHvDeg%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fissues.omg.org%2Fbrowse%2FSTI_-11&data=05%7C01%7Clouis.m.handler%40nasa.gov%7C83d55861e2034c40988a08da7d882868%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637960321456301973%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000%7C%7C%7C&sdata=h%2Fp72PVH5SyPYjeDvpnvjZgvrGlT465Gt68H%2FGHvDeg%3D&reserved=0

158 Space Telecommunication Interface (STI), v1.0 -- beta 2

Formatted: Default Paragraph Font, Font: 10.5 pt, Font

color: Auto, Pattern: Clear

designated by the module name and a period (.) separator, for example the term “STI.Initialize()” would refer to the

Initialize function within the STI module.

Ruby has built-in strings but not enumerations. Enumerations are implemented as a set of constant Integer values.

These values are not considered to be Enumerable.

A.6 Java Mapping

Only certain features have been determined to be required when software is implemented in Java.

The STI module namespace for Java shall be org.omg.STI package.

An example of its use is:

import org.omg.STI.*

After utilizing the language-specific import statement, all components of the STI API can be referenced using the

paradigm of the respective language’s package/module facility. For instance, in Java, the module contents are

designated by the package name and a period (.) separator, for example the term “org.omg.STI.Initialize()” would

refer to the Initialize function within the STI module.

Java has built-in strings and enumerations.

A.7 Lua Mapping

Only certain features have been determined to be required when software is implemented in Lua.

The STI module namespace for Lua shall be STI.

An example of its use is:

STI = require("STI")

After utilizing the language-specific import statement, all components of the STI API can be referenced using the

paradigm of the respective language’s package/module facility. For instance, in Lua, the module contents are

designated by the module name and a period (.) separator, for example the term “STI.Initialize()” would refer to the

Initialize function within the STI module.

Lua has built-in strings but not enumerations. Enumerations are implemented as a set of constant Integer values.

	STDTable9y
	STDTable90
	HB12.9.2
	STDTable91
	HB12.9.3
	STDTable92
	HB12.9.4
	STDTable93
	HB12.9.5
	STDTable94
	HB12.9.6
	STDTable95
	HB12.9.7
	STDTable96
	HB12.9.8
	STDTable97

