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1 Scope

This specification defines a UML 2  profile for SoC (System on a Chip) design. The advantage of using this profile:

• This profile adds the SoC description capability to UML. This profile provides following representation capabilities :

• Hierarchical representation of modules and channels, which are the fundamental elements of SoC.

• Roles of modules. 

• Information transferred between modules using only one type of diagram.

• Most diagrams used for SoC are internal structure diagrams extended by the profile.

• Without the profile we had to represent them by description of class constructor function using sequence diagrams. 
This representation method lacks capability enough to explicitly show a module’s role, which is fundamental 
information to analyze SoC.

• This profile does not require the use of any specific language such as SystemC.

• SystemC is used for illustration purposes only.

• Semantics: for SoC behavior specified using protocol, which is a collaboration diagram, whose semantics is defined 
informally in UML. The other construct that requires clarification is the synchronocity semantics. At the PIM level we 
can maintain an asynchronous semantics, while on refinement to the PSM level, we can support synchronous 
semantics.  Sometimes it can be globally asynchronous, while locally synchronous and vice-versa.

Our goal is to reuse existing UML as much as possible, and to define the profile as a minimal extension for modeling SoC 
designs.

2 Conformance

This specification defines five conformance points. Implementations must support at least one of these conformance 
points:

• Module description. Details are found in the specification

• Protocol

• Process

• Ports and channels including clock and reset

• connector
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3 Normative References

The following normative documents contain provisions, which through reference in this text constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 

• UML 2 Superstructure Specification ptc/04-10-02

• UML . Infrastructure Specification ptc/04-10-14

• MOF 2.0 Core Specification ptc/04-10-15

• UML Profile for Schedulability, Performance and Time formal/03-09-01

• UML Profile for System Engineering RFP ad/03-03-41

4 Terms and Definitions

None

5 Symbols

None

6 Additional Information

6.1 Changes to Adopted OMG Specifications

None.

6.2  How to Read this Specification
The rest of this document contains the technical content of this specification. Paragraphs marked as editorial comments 
are not normative; they are provided only to help explain design choices, trade-offs, and future work items.
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7 Profile for SoC

7.1 Overview
The term System-on-Chip (SoC) denotes the integration of the components of a computing or a communication system 
into a single chip. The components may be of digital, analog, or mixed-signal types. SoC system design is very similar to 
the well-known component-based design in software engineering. The main motivation for SoC is compactness and 
design reuse. Existing UML semantics have a strong focus on software requirements specification and therefore is 
inadequate for supporting modeling and specification of SoC designs. In order to support modeling and specification of 
SoC designs, we propose a UML profile for SoC. To augment the semantics for UML-based SoC design, stereotypes for 
each UML metaclass have to be defined by introducing a special notation and constraint for each SoC element. For this 
purpose we introduce SoC structure diagrams. SoC designers create both class diagrams and SoC structure diagrams for 
developing an Executable and Realizable system level model. 

In the rest of this chapter and Chapter 8, we define stereotypes for SoC structure diagram, their notations and constraints. 
Additionally, in Annex B of this document, we show an example description of executable system level model 
corresponding to UML model. This example provides an insight into developing executable and realizable models and a 
method of modeling using template modules in SoC structure diagram. We have chosen SystemC as an executable system 
modeling language for illustrating the SoC design profile. However, another suitable system modeling language such as 
SystemVerilog could be used instead.

7.2 Stereotypes of SoC profile
Each element of the SoC model corresponds to the stereotyped UML metaclasses as shown in Table 7.1 and Figure 7.1.  
Constraints defined by these stereotypes are given using OCL in Chapter 8. A detailed description of each SoC Model 
element is provided in this section.

Table 7.1 - Metaclasses for UML Profile for SoC

Section No. SoC Model element Stereotype UML metaclass

7.2.1 Module SoCModule Class

7.2.2 Process SoCProcess Operation

7.2.3 Data Data Class

7.2.4 Controller Controller Class

7.2.5 Protocol Interface SoCInterface Interface

7.2.6 Channel SoCChannel Class

7.2.7 Protocol SoCProtocol Collaboration

7.2.8 Port SoCPort Port/Class

7.2.9 Module Part SoCModuleProperty Property

7.2.10 Channel Part SoCChannelProperty Property

7.2.11 Connector SoCConnector Connector
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7.2.12 Clock Port SoCClock Port

7.2.13 Reset Port SoCReset Port

7.2.14 Clock Channel SoCClockChannel Property

7.2.15 Reset Channel SoCResetChannel Property

7.2.16 Data Type SoCDataType Dependency

Table 7.1 - Metaclasses for UML Profile for SoC
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Figure 7.1 - SoC Profile Stereotypes
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7.2.1 Module
Module is the base class for describing SoC hierarchical class structure. 

Tagged value added by this stereotype: None 

Other restrictions: 

Only ports, constructors, and destructors are visible external to the module. Modules may consist of template modules and 
channels. Template parameter also can be used as sub-module, port and channel multiplicity, or as connector connection 
specifications. At least one member function of a module should not be a process.

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.2 Process
Process is a member function of the module that describes its behavior. 

Tagged value added by this stereotype: None 

Other restrictions:

There is no restriction on the number of processes contained in a module. There is restriction on the number of processes 
that can access a channel or port depending on the protocol interface realizing the channel.

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.3 Data
Only the Data class would be the target of communication between modules using the Channel Class. 

Tagged value added by this stereotype is: 

transportMethod : transportBy

Enumeration value that specifies the instance of the data transmission method between, namely Copy and Pointer. When 
the value is Copy then module will send the copy of data instance through the channel. When the value is Pointer then 
module transmits the pointer to the data instance. This pointer method is used when the data class that contains pointer (or 
reference) as its member and when the data instance should not be copied in order to avoid invalid data access. 

Other Restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.4 Controller
Only the member function of this class could be the module’s process that is described in Section 7.2.1, “Module,” on 
page 8 and Section 7.2.2, “Process,” on page 8.

7.2.5 Protocol Interface
It defines the communication between modules, and provides an abstraction for the method of communication. All 
communication between modules must be realized through protocol interfaces. In many cases, the class that the Protocol 
Interface can transmit is restricted, and it shall be defined by the "data type" dependency described in Section 7.2.16, 
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“Data Type,” on page 12, Section 7.6, “Protocol Interface,” on page 16, and Section 7.15, “Data Type,” on page 19. If a 
protocol interface is template protocol interface, then the dependency may have one template parameter as its target as 
described in Section 7.2.16, “Data Type and Section 7.15, “Data Type.

Tagged values added by this stereotype: 

Direction: directionKind

directionKind is an enumeration type, whose elements are  INPUT and OUTPUT, that specify the incoming/outgoing 
direction of the protocol interface. 

maxProcesses: UnlimitedNatural

Specifies the maximum number of processes that is accessible "through this protocol interface" to the channel realizing 
this protocol interface. Those processes may be owned by multiple modules (the number of processes must not exceed 
maxProcesses attribute value after instantiation of whole module hierarchy).

maxChannels: UnlimitedNatural

Specify the maximum number of channels that is connectable to a port instance having this protocol interface as its 
required interface (the number of channels must not exceed maxChannel attribute value after instantiation of whole 
module hierarchy).  The default value is 1.

Other restrictions: 

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.6 Channel
All communication between modules shall be realized by the Channel through the Potocol Interfaces. Channel must be 
inherited from the Protocol Interface. Similar to the Module class, Channel may contain Process, Channel, Port and other 
modules. Its notation and specification of tagged value is also identical to that of module. Such Channels are called 
"Hierarchical Channels." Simple channels which provide primitive functionality such as hardware signals are called 
"Primitive Channels." 

Tagged value added by this stereotype: 

isPrimitive : Boolean

Specifies if the channel is primitive or not (hierarchical channel). This value is derived by the existence of other modules, 
processes, and channels contained in the channel. A design tool should be able to alter the channel notation using this 
value.

Other restrictions:

Each channel must be inherited from at least one INPUT direction protocol interface and one OUTPUT direction protocol 
interface.

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.7 Protocol
Protocol describes the relationship between protocol interfaces and a channel. As with the UML diagrams, notation is 
same as that of collaboration diagram. 
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Tagged value added by this stereotype:  None

Other restrictions:

Each protocol must have (a) at least one incoming protocol interface, (b) at least one outgoing protocol interface, and (c) 
at least one channel inherited directly or indirectly from protocol interfaces.

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.8 Port
It defines the protocol interface used for communication external to modules. 

Tagged value added by this stereotype: None  

Other restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.9 Module Part
It is a kind of property (part) typed by the module class. It is usually called as "sub-module."

Tagged value added by this stereotype: None

Other restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.10 Channel Part
It is a kind of property (part) typed by the channel class. Typically the channel must be shown as this property, and does 
not exist independently (channel must occur as property/part of a module).

Tagged value added by this stereotype: None

Other restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.11 Connector
Connector connects ports or connects ports and a channel. If a connector is connected to either of port, module part, or 
channel part with multiplicity of 1, then the specification of connection between each instances may be defined by OCL. 
The specification rule is described in the document "SoC profile constraints defined by OCL.".

Tagged value added by this stereotype: None

Other restrictions:

In a module (here we call parent module), ports contained in the module can be connected only to the other ports 
contained in the module properties (parts). In this case, we call it as a sub-module contained in the parent module. In 
addition, channel property owned by parent module can be connected only to the ports of sub-modules. Ports of sub-
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modules can be connected to the ports or channels owned by the parent module. Connection without connectors is 
prohibited. In addition, when ports are connected directly, the type of protocol interfaces of these ports must be 
compatible with each other.

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.12 Clock Port
This class is inherited from port, and it specifies clock input or clock output port. It is typically used in or after the 
"structural design" phase, which requires investigation of synchronization schemes. 

Tagged values added by this stereotype:

clockDomain : domainName

domainName specifies the name of "clock domain," which consists of clock cycle, phase, duty-ratio, and the method of 
controlling the gated-clock. There is no limitation on the name or the specification of clock domains. Connection between 
the ClockPorts, or connection between ClockPort and ClockChannel (explained later) with a different clockDomain 
attribute is prohibited. It is possible to connect different clock domains only if the connection is  through the process that 
converts the clock domain..

Other restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.13 Reset Port
This class is inherited from port, and it specifies reset input or reset output port. It is typically used in or after the 
"structural design" phase, which requires investigation of reset schemes.

Tagged value added by this stereotype:

resetSpec : resetSpecName

resetSpecName specifies the name of "reset specification", which consists of reset timing specification (synchronous / 
asynchronous reset, polarity etc.). There is no restriction on the name or the specification of reset specification. 
Connection between the resetPorts, or connection between resetPort and resetChannnel (explained later) with a different 
resetSpec attribute is prohibited. It is possible to connect different reset specifications only if it is through a process that 
converts reset specifications..

Other restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.14 Clock Channel
This is a property (part) defining the channel instance(s) that transmits the execution events to synchronous processes. It 
is typically used in or after  "structural design" phase, which requires consideration of synchronization schemes. 

Tagged value added by this stereotype :

clockDomain : domainName
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domainName specifies the name of "clock domain". Refer to the clockPort for the definition of clock domain. Connection 
to a clockPort is limited to that with same clockDomain attribute.

Other restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.15 Reset Channel
This is a property(part) defining channel instance(s) that transmits the reset events to processes. It is typically used in or 
after the "structural design" phase, which requires the consideration of resetting schemes.

Tagged value added by this stereotype:

resetSpec : resetSpecName

ResetSpecName specifies the name of "reset specification." Refer to the resetPort for the definition of reset specification. 
Connection to a resetPort is limited to that with same resetSpec attribute.

Other restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.2.16 Data Type
This is an extension of UML dependency and points at a data class which the protocol interfaces transmit. If the protocol 
interface is a template, then this dependency may point to one of the template parameter classes.

Tagged value added by this stereotype: None

Other restrictions:

(See Chapter 8, SoC Profile Constraints defined using OCL)

7.3 SoC Structure diagram
SoC structure diagram is used to describe the structure of SoC. The following elements are used:

1. Module and Module Part

2. Port (Single or Multiple)

3. Protocol Interface

4. Channel Part

5. Connector

6. Protocol

7. Process

8. Clock Port

9. Reset Port
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10.Clock Channel

11.Reset Channel

12.Data Type

This section explains the notations in SoC structure diagrams.

7.4 Module and Module Part
Module hierarchy is explained by a module and other module parts contained in it as shown in Figure 7.2. When module 
part hierarchy of module is displayed using SoC structure diagram, the expanded form is typically used (in this diagram, 
elements other than property name and class name of module in the structure diagram are omitted). The method of 
expanding every module in a hierarchy is not defined in UML specification, although it is necessary for large-scale 
system (SoC) specification notation. However, it is also difficult for designers to operate whole hierarchy expressed in 
expanded form drawn on one diagram for large scale system design. There should be alternative method of suppressing 
the expansion of module for selected parts of a hierarchy. To express the module whose hierarchy is suppressed on a 
diagram, there should be an icon as shown in Figure 7.3.  This diagram shows sub-module C2 shown in Figure 7.2, 
without expanding the sub-module hierarchy. 

Figure 7.2 - module hierarchy in structure diagram

parent_module

C1 : child1_module

C2 : child2_module

GC1 :
grandchild_module
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Figure 7.3 - The module which abbreviates sub module hierarchy

The initialization parameters of sub-modules and channels owned by a module must be passed as the module’s parameter, 
and passed to the sub-modules and channels during the module’s construction.

Module can also be parameterized (templated). The notation of these parameterized module instances follow the UML 
notation. Templated module is shown in uninstantiated form in structure diagram in the same way as templated class.  
Template parameter (which may be a constant) must be specified in some form by the designer (tools will not assume the 
parameter by the port types because it is too complex) when it is instantiated. 

Furthermore, it is possible to configure the module hierarchy using the constructor parameter. In this case, uninstantiated 
form is used on SoC structure diagram. Constructor parameter is specified in SoC structure diagram as shown in the 
following figure. 

Figure 7.4 - An example of constructor arguments usage

Sequence diagrams may be used to define complex sequences during module construction as shown in figure 6. This 
diagram shows an example of a constructor sequence that reads a file for each module instance name. To construct 
module hierarchy with these sequences, the module may have pointers to module parts or channel parts instead of having 
instances as its members. These members are assigned the address of instances when instantiated in the constructor body. 
In that case, the module part or channel part must be marked by attributes. The attribute specification depends on the SoC 
design tools and therefore is not part of this profile.

C2 : child2_module

mod(int Param)

N : submod(Param) C : channel(Param)
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Figure 7.5 - Complex constructor definition example

7.5 Port and the Property
The module class has to consist of a process member function that defines a branch or a merge when a branch or a merge 
has to be realized to/from a port.  This definition is similar to the definition of typical module.

Single port is the port with multiplicity equals one, and is shown as arectangle two opposite-facing arrows as shown in 
Figure 7.6.

Figure 7.6 - Icon of Port

With the multi port that has multiplicity of 2 or more, another icon is used. The following icon is used for multi port.
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Figure 7.7 - Icon of Multi Port

7.6 Protocol Interface
Protocol interface on the structure diagram is expressed by the circle with U shaped arrow in it, written on a rectangle 
showing a channel as shown in Figure 7.8.

Protocol interface must have a dependency (Data Type dependency) to a data class. If a protocol interface is inherited 
from another protocol interface, either general interface or specialized interface must have the dependency. In other 
words, there should be exactly one data type dependency when referred to by ports or channels.

As the design changes, modification and implementation of protocol interface become necessary. For this purpose, 
modification and implementation of protocol are expressed in the generalization of protocol and protocol interface just as 
it is done in software modeling.

7.7 Channel, channel part and its property 
In SoC structure diagram, channel parts are displayed as owned property (part) of a module, and are drawn in a rectangle. 
In the case of channel part typed by primitive channel, it is possible to omit the rectangle and express the channel only by 
a text string next to the connector consisting of the instance name and class name as shown in figure 9. In this case, a 
connector must be drawn using a solid line. For hierarchical channels, it is possible to specify the internal structure of the 
channel using same notation as modules as shown below (except that it is drawn in dotted line instead of continuous line).

Figure 7.8 - Hierarchical channel notation variations

I0 [2]

port multiplicity
16                 A UML Profile for SoC Adopted Specification



7.8 Connector
Connector is expressed as a line drawn between a channel and port, or between ports. As shown in Figure 7.9, connector 
between ports or connector omitting rectangle, which shows a channel, must be drawn in a solid line. As depicted in 
Figure 7.1, the attribute connectType associated with the <<SoCConnector>> stereotype has an <<enumeration>> 
stereotype value called connectionKind. <<connectionKind>>  has two attributes namely InterPortConnector between 
two ports and ChannelConnector between a channel and a port. These attributes and values may be automatically 
extracted from the diagram. Connection index must be shown in a tagged value notation. 

Figure 7.9 - Specification of connecting instances

7.9 Protocol
Protocol is a kind of Collaboration, expressed as in the following figure.

fifo : MyFifoImpl<data>

O:sc_fifo_out_if<data>
[2]

O[3]

sc_fifo_out
_if<data>

M : aModule

bModule

context bModule
inv: M.O[0].sc_fifo_out_if<data>-
>exists(O[0])
inv: M.O[1].sc_fifo_out_if<data>-
>exists(O[1])
inv: M.O[2].MyFifoImpl<data>->exists(fifo)

connection specification using 
OCL
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Figure 7.10 - Protocol

7.10 Process
Process is a kind of Operation described below. 

Figure 7.11 - Process

7.11 Clock Port
The clock port uses same notation as port, with a difference of having an attribute specific to clock port. Example of the 
clock port is shown in Figure 7.12.

<<SoCProtocol>>
FIFO

<<SoCInterface>>
sc_fifo_in_if

<<SoCInterface>>
sc_fifo_out_if

<<SoCChannel>>
sc_fifo

protocol name
T

TT

T

 

 <<SoCModule>>
aModule 

<<SoCProcess>>  +  aProcess()

Process 
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Figure 7.12 - Clock and reset (channel/port)

7.12 Reset Port
The reset port uses same notation as port except for having an attribute specific to reset port. Example of the reset port is 
shown in Figure 7.12.

7.13 Clock Channel
The clock channel uses same notation as channel part except for having an attribute specific to clock channel. Example of 
the clock channel is shown in Figure 7.12.

7.14 Reset Channel
The reset channel uses same notation as channel part except for having an attribute specific to reset channel. Example of 
the reset channel is shown in Figure 7.12.

7.15 Data Type
Data Type dependency has the same notation as normal dependency as shown below.

 

<<SoCClock>> aClock : clk_in 
{clockDomain = “BaseClock”} 

<<SocReset>> aReset: rst_in 
{ resetSpec = “Synch-Pos”} 

<<SoCClockChannel>>  

aClockChan : clk_chan
 

<<SoCResetChannel>>  

aResetChan : rst_chan  

{clockDomain = “BaseClock”}

 

-  

Clock Channel 

Reset Channel 

Clock Port 

Reset Port 

{resetSpec = “SynchPos”}
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Figure 7.13 - Data Type dependency example

<<SoCInterface>> 
myInterface 

<<data>> 
myDataClass 

T 

<<SoCDataType>> 

<<SoCInterface>> 
myParamInterface 

<<SoCDataType>> 

(a ) S oCDa taTy pe dep en den cy 

(b) S oCDa taTy pe dep en den cy p oin t in g a t  t em pla t e pa r am et er  
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8 SoC Profile Constraints Defined by OCL

This section describes the SoC profile constraints defined by OCL. Please note that this section defines only the 
constraints that must be defined by OCL. Other constraints are defined by class diagrams shown in Figure 7.1 and Figure 
7.2.

-- Every <<SoCModule>>(<<SoCChannel>>) shall not own itself.
context SoCModule
inv

let instances(sf : StructuralFeature) : Set(Class) =
if (sf.type->notEmpty() and sf.type.oclIsKindOf(Class)) then

        Set { sf.type }->union(sf.type.oclAsKind(Class).allParents()->
 select(p | p.oclIsKindOf(Class))->

union(instances(sf.type.feature->
 select(f | f.oclIsAKind(StructuralFeature))
else

        Set {}
endif

in
    instances(feature->

select(f | f.oclIsKindOf(StructuralFeature)))
 ->excludes(self)

-- <<SoCConnector>> is only allowed between <<SoCPort>> owned by parent module 
-- and <<SoCPort>> owned by sub-module, or between <<SoCPort>> owned by

-- sub‐module and <<SoCChannelProperty>>.

context SoCConnector
inv 
    let portOwner(p : Port) : Set(Class) =

if (p.socport->notEmpty()) then
            Set { p.featuringClassifier.oclAsKind(Class) }
        else 
            Set {}
        endif

 let owningPort(ce : ConnectorEnd) : Boolean =
ce.role->notEmpty() and ce.role.oclIsKindOf(Port) and
 portOwner(ce.role.oclAsKind(Port))->

includes(featuringClassifier)

 let subModPort(ce : ConnectorEnd) : Boolean =
ce.role->notEmpty() and ce.role.oclIsKindOf(Port) and
 not portOwner(ce.role.oclAsType(Port))->

includes(featuringClassifier))
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 let channel(ce : ConnectorEnd) : Boolean =
ce.role->notEmpty() and ce.role.oclIsKindOf(SoCChannelProperty)

    in 
-- one-end owning port -> sub-module-port 
 owningPort(end->at(1)) implies subModPort(end->at(2)) and
 owningPort(end->at(2)) implies subModPort(end->at(1)) and
-- or one-end channel->sub-module-port
 channel(end->at(1)) implies subModPort(end->at(2)) and
 channel(end->at(2)) implies subModPort(end->at(1))

-- <<SoCConnector>> shall have exactly two connector ends and role.
context SoCConnector
inv:

 end->size() = 2 and
 end->forAll(ce | ce.role->notEmpty())

-- <<SoCClock>> shall be connected to <<SoCClock>> or <<SoCClockChannel>> 
-- having the same clockDomain attribute value. 
context SoCConnector
inv:
    let portClkAttrs(p : Port) : Set(String) = p.clockDomain
    let channelClkAttrs(c : Property) : Set(String) = p.clockDomain
    let clkAttrs(ce : ConnectorEnd) : Set(String) =
        if (ce.role.oclIsKindOf(Port)) then
            portClkAttrs(ce.role)
        else if (ce.role.oclIsKindOf(Property)) then
            channelClkAttrs(ce.role)
        else
            Set { }
        endif
    in

clkAttrs(end->at(1))->
includesAll(clkAttrs(end->at(2)))

-- <<SoCReset>> shall be connected to <<SoCReset>> or <<SoCResetChannel>> 
-- having the same resetSpec attribute value. 
context SoCConnector
inv:
    let portResetAttrs(p : Port) : Set(String) = p.resetSpec
    let channelResetAttrs(c : Property) : Set(String) = p.resetSpec
    let resetAttrs(ce : ConnectorEnd) : Set(String) =
        if (ce.role.oclIsKindOf(Port)) then
            portResetAttrs(ce.role)
        else if (ce.role.oclIsKindOf(Property)) then
            channelResetAttrs(ce.role)
        else
            Set { }
        endif
    in

resetAttrs(end->at(1))->
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includesAll(resetAttrs(end->at(2)))

-- All <<SoCPort>> instances shall be distinguishable (shall be ordered).
context SoCport
inv:isOrdered = true

-- All instances of <<SoCModuleProperty>> shall be distinguishable and shall be -- ordered.
context SoCModuleProperty
inv:isOrdered = true

-- All instance of <<SoCChannelProperty>> shall be distinguishable and shall be -- ordered.
context SoCChannelProperty
inv:isOrdered = true

-- All <<SoCInterface>> shall be inherited from other <<SoCInterface>> whose
-- attribute is either of INPUT or OUTPUT (shall not be inherited from both of --- them).
context SoCInterface
inv:
   let parentInterfaces(c : Classifier) : Set(Interface) =
       c.allParents()->union(Set{ c })->
       select(c | c.oclIsKindOf(SoCInterface))

let isInput(c : Classifier) : Boolean =
       parentInterfaces(c)->exists(i|i.direction = directionKind::INPUT)

let isOutput(c : Classifier) : Boolean =
       parentInterfaces(c)->exists(i|i.direction = directionKind::OUTPUT)
   in
       not (isInput(self) and isOutput(self))

-- All <<SoCChannel>> shall be inherited from both INPUT <<SoCInterface>> 
-- and OUTPUT <<SoCInterface>>
context SoCChannel
inv:
  let parentInterfaces(c : Classifier) : Set(Interface) =
      c.allParents()->union(Set{c})->select(c | c.oclIsKindOf(SoCInterface))
  let isInput(c : Classifier) : Boolean =
      parentInterfaces(c)->one(i | i.direction = directionKind::INPUT)
  let isOutput(c : Classifier) : Boolean =

   parentInterfaces(c)->one(i | i.direction = directionKind::OUTPUT)
in
   isInput(self) and isOutput(self)

-- <<SoCProtocol>> shall have at least one INPUT <<SoCInterface>> and one 
-- OUTPUT <<SoCInterface>> and one <<SoCChannel>>.
-- <<SoCProtocol>> shall specify all of the inheritance relation between them.
context SoCProtocol
inv:
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let Channels : Set(Class) =
part.type->collect(t | t.oclIsKindOf(SoCChannel))

let Inputs : Set(Interface) =
part.type->collect(t | t.oclIsKindOf(SoCInterface) and

t.oclAsType(SoCInterface)->
exists(direction = directionKind::INPUT)

let Outputs : Set(Interface) =
part.type->collect(t | t.oclIsKindOf(SoCInterface) and

t.oclAsType(SoCInterface)->
exists(direction = directionKind::OUTPUT)

   let parentClasses(c : Class) : Set(Class) =
     c.superClass->union(c.superClass->

collect(cc | parentClasses(cc)))->asSet()
   in
     Channels->notEmpty() and Inputs->notEmpty() and Outputs->notEmpty() and
             Channels->collect(c|parentClasses(c))->
                       includesAll(Inputs->union(Outputs))

-- All <<SoCPort>> shall have exactly one <<SoCInterface>>.
context SoCPort
inv: required->size() = 1

-- All <<SoCPort>> shall not have a provided interface.
context SoCPort
inv:
    provided->isEmpty()

-- For all <<SoCInterface>> that a <<SoCChannel>> implements, classes pointed by
-- <<SoCDataType>> dependency from them shall be conforms to each other.
context SoCChannel
inv:
    let parentInterfaces(c : Classifier) : Set(Interface) =
         c.allParents->select(c | c.oclIsKindOf(Interface))
in
    parentInterfaces(self)->select(c | c.oclIsKindOf(SoCInterface).

clientDependency->select(d | d.oclIsKindOf(SoCDataType).supplier
                         ->asSet()->size() = 1

--  Following descriptions are the OCL examples for    
--  connection specification between ports, channels, 
--  sub-module ports with multiplicity.                  
--  OCL example for connection with multi-ports
context aModule
inv:
   -- portA[0] <-> submod[2].PortA[1]
   -- both portA and submod.portA has required interface of sc_fifo_out_if<int>
submod[2].PortA[1].sc_fifo_out_if<int>->includes(portA[0])
  and
   -- channelC[1] <-> submod[3].PortA[4]
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-- channelC has type channelClass, which implements sc_fifo_out_if<int> 
submod[3].portA[4].channelClass->includes(channelC[1])
 and

   -- channelC[I] <-> submod[I].PortB (where I = 0..N(parameter))
   -- submod.portB has required interface of sc_fifo_out_if<int>
  Sequence{ 0..N }->

forAll(i | submod[i].portB.channelClass->includes(channelC[i]))
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Annex A
(informative)

The SystemC Description

The SystemC description corresponding to the UML model using the profile for SoC is shown here. The SystemC description 
consists of "the module description file," which describes the declaration of module, instantiation of the sub module, the 
channel, and the port, and "the data class description file," which defines the data class. A detailed configuration of the files is 
not specified in this document

A.1 Module Description File
A header file will be created for each module. The header file includes module definition, port declaration, channel 
declaration, member function (which becomes a process) declaration and module constructor definition. It does also have 
"#include" as part of the necessary header (for sub modules and channels).

In addition, initialization parameter is the list of parameters. The number of parameters depends on module.

Module definitions

Module definitions are as shown below:

[ template < templetParameterList > ] 
SC_MODULE (className) {
[ (port declaration) ]
[ (sub module declaration) ] 
[ (channel declaration) ] 
[ (process function declaration) ]
[ (declaration of user defined member variable) ]
[ (declaration and definition of user defined member function, and so on) ]
SC_HAS_PROCESS (className); 
className (sc_module_name name [, initializationParameters ]): Sc_module (name) [, 
(port initialization) ] [, (initialization of user defined member variables) ] {

[ (Definition of sub module generation) ]
[ (definition of channel generation) ]
[ (definition of connection) ]
[ (process generation definition) ]
[ (initialization of user defined member variable, and so on) ]

}
};

[ template < templetParameterList > ] 
void className 

[ < templetParameterList > ]: : memberFunctionName () {
   // contents of process function
}
[ Definition of user defined member function, and so on]
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Port declaration

The port declaration is described as below:

sc_port< protocolInterfaceClassName 
[ < data_type_dataClassName > ] > 
instanceName [ ' [ ' portMultiplicity ' ] ' ];

Each port should have this description. When the port multiplicity is 1 (in case of the single port), the port multiplicity and the 
bracket [ ] shall be omitted. When the protocol interface is template interface, the dataClassName must be specified as a 
template parameter. If not parameterized, the data_type_dataClassName and <> shall be omitted.

Clock port

The clock port is described as below.

sc_in_clk instanceName [ ' [ ' portMultiplicity ' ] ' ];

Declaration of the reset port is similar to normal port declaration.

Sub-module declaration

The sub module declaration is described as below:

subModuleClassName * subModuleInstanceName 
[ ' [ 'multiplicity' ] ' ];

Each sub module should have this description. When the sub module  multiplicity is 1, the multiplicity and the bracket [ ] shall 
be omitted.

Channel declaration

The channel declaration is described as below.

channelName 
[ < data_type_dataClassName > ] * 
channelInstanceName [ ' [ ' multiplicity ' ] ' ];

Each channel should have this description. When the channel multiplicity is 1, the multiplicity and the bracket [] shall be 
omitted. 

Clock channel and reset channel declarations

The clock channel and the reset channel are declared as below:

clockChannelName * clockChannelInstanceName;

Process function declaration

The process function declaration is described as below.

void memberFunctionName ();

Also the sub modules, the channels and the processes are declared in the module constructor. The arguments for the 
constructor will be given from the initialization parameter for the constructor.
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Port initialization

The port initialization is described as below.

portInstanceName ("portInstanceName") 
[, portInstanceName ("portInstanceName") ]

Sub-module instantiation

The sub module is instantiated as below:

submoduleInstanceName [ ' [ ' index ' ] ' ] = 
new submoduleClassName("instanceName", 
initialization parameters);

Each sub module should have this description. When the sub module multiplicity is 1, the index and the bracket [] shall be 
omitted.

Channel instantiation

The channel is instantiated as below:

channelInstanceName [ ' [ ' index ' ] ' ] = 
new channelName [ < data_type_dataClassName > ] (initialization parameters);

Each channel should have this description. When the channel multiplicity is 1, the index and the bracket [ ] shall be omitted.

Clock channel instantiation

The clock channel is instantiated as below. Clock parameter will be given from the "clock domain" specification shown as the 
clockDomain tagged value.

clockChannelInstanceName = 
new clockChannelName("clockChannelInstanceName", 
clock parameter);

Connection between channels or ports

The connection between the channels or the ports is defined, with according to the connection specification of the module, as 
below:

submoduleInstanceName [ ' [ ' subModuleIndex ' ] ' ] -> portInstanceName [ ' [ '  
subModulePortIndex ' ] ' ] (portInstanceName [ ' [ ' portIndex ' ] ' ], or * 
channelInstanceName [ ' [ ' channelIndex ' ] ' ]);

Each connection should have this description. When the connection is to the sub module with multiplicity 1, the sub module 
index and the bracket [ ] shall be omitted. When the connection is to the sub-module port with multiplicity 1, the port index 
and the bracket [] shall be omitted. When the connection is to the module port with multiplicity 1, the port index and the 
bracket [ ] shall be omitted. When the connection is to the channel with multiplicity 1, the channel index and the bracket [ ] 
shall be omitted.

Process instantiation

The process instantiation is described as below:

SC_THREAD (memberFunctionName);
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A.2 Data Class Description File
The header file is created in every class with the <<data>> stereotype. The description is a little different depending on the 
transport Method tagged value, as shown below.

typedef dataClassName* data_type_dataClassName; (When transportMethod is Pointer)
typedef dataClassName data_type_dataClassName; (When transportMethod is Copy)
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Annex B
(informative)

The SystemC Description Example

This annex shows several examples of the actual UML diagrams for SoC designs and the generated SystemC codes from 
UML. The first example is the description of a module for sending and receiving data using a FIFO, the second example is a 
structured design model with "clock" and "reset."

B.1 Description Example 1
Figure B-1 shows the UML class diagram. Here func() member function of user_class1 and func() member function of 
user_class2 are processes. And data1, data2, data3 are input/output data between the processes.

First, for this class diagram, <<Data>> <<Controller>> stereotypes are specified. 

Figure B.1 - Class Diagram after the Stereotype Specified

<<data>>

<<controller>>

+func(in: data1): data2

<<controller>>

+func(in: data2): data3

<<data>>
data1

<<data>>
data2    data3

user_class1 user_class2
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Figure B.2 - Structure Diagram and Attribute of Each Object, Tagged Value

Figure B-2 is the structure diagram. All the necessary values and attributes are specified as notes.

The channel is described in the UML diagram as shown below. Here the FIFO channel of SystemC (sc_fifo) is used as a 
channel with buffer size = 16 (default value of sc_fifo class). The buffer size is given as an initialization parameter at the 
instantiation of the channel. (In the figure below, attributes, and/or template arguments of buffer size are not shown.)

Figure B.3 - FIFO Protocol Interface and Channel

protocol interface name: sc_fifo_out_if<data2>
interface direction: output

port name: in

port name: out

interface direction: input
protocol interface name: sc_fifo_in_if<data1>

port name: in
interface direction: in
protocol interface name: sc_fifo_in_if<data2>

port name: out
interface direction: out
protocol interface name: sc_fifo_out_if<data3>

initialization
parameter: 0

process function: 

process function: entry 

class name: parent

instance name: func1

class name: child2

process function: entry 

sc_ in te rfa ce

<<S o cIn te rfa ce>>
{d ire ctio n= IN PU T}

sc_ fifo _in _if

T

<<S o cIn te rfa ce>>
{d ire ctio n=OU TP U T }

sc_ fifo _ o u t_ if

T

<<S o cC h a n n e l>>
sc_ fifo

T
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The generated SystemC source code from the UML diagram above is shown below. Please note that the user specified portion 
and the portion automatically generated using the tool are not distinguished here using comments. And also, the include 
statements which usually exists in the header file are ommited.

(parent.h)
#include "child1.h"
#include "child2.h"
#include "data_type_data1.h"
#include "data_type_data2.h"
#include "data_type_data3.h"
SC_MODULE(parent) {

sc_port< sc_fifo_in_if< data_type_data1 > > in;
sc_port< sc_fifo_out_if< data_type_data3 > > out;

child1* func1;
child2* func2;

sc_fifo< data_type_data2 >  *fifo;

SC_HAS_PROCESS(parent);
parent(sc_module_name name)
: sc_module(name), in("in"), out("out") {

func1 = new child1("func1");
func2 = new child2("func2");

fifo = new sc_fifo< data_type_data2 >(0);

func1->in(in);
func1->out(*fifo);
func2->in(*fifo);
func2->out(out);

}
};

(child1.h)
#include "data_type_data1.h"
#include "data_type_data2.h"
SC_MODULE(child1) {

sc_port< sc_fifo_in_if< data_type_data1 > > in;
sc_port< sc_fifo_out_if< data_type_data2 > > out;

void entry();

SC_HAS_PROCESS(child1);
child1(sc_module_name name)
: sc_module(name), in("in"), out("out") {

SC_THREAD(entry);
}

};
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void child1::entry() {

}

(child2.h)
#include "data_type_data2.h"
#include "data_type_data3.h"
SC_MODULE(child2) {

sc_port< sc_fifo_in_if< data_type_data2 > > in;
sc_port< sc_fifo_out_if< data_type_data3 > > out;

void entry();

SC_HAS_PROCESS(child2);
child2(sc_module_name name)
: sc_module(name), in("in"), out("out") {

SC_THREAD(entry);
}

};

(data_type_data1.h)
typedef data1* data_type_data1;

(data_type_data2.h)
typedef data2* data_type_data2;

(data_type_data3.h)
typedef data3* data_type_data3;

B.2 Description Example 2
Here is the SystemC description example of the clock and reset. In this example, the UML structure diagram and the 
corresponding SystemC description for the module (and its process), which has a synchronous reset and a clock, are shown. 
Figure B-4 depicts the structure diagram, and the clockDomain = "Clock" specifies the clock with the positive edge trigger, 
and the reset parameter "Synch" specifies the synchronous reset. Please note that the channels of data input/output are not 
shown in this figure.
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Figure B.4 - Clock, Reset example

The SystemC description for the structure diagram follows is shown in Figure B-5. Again, please note that the data channel is 
not shown here.

 

<< SoCClock>> aClock : sc_in_clk 
?clockDomain = “Clock”? 

<<SoC Reset>> aRst : sc_ in< bool >  
{resetSpec = “ Synch”} 

?ClockDomain = “Clock”?
 

iData : sc_in<bool>

 
o Data : sc_out<bool> 

aModule 

Class name aModule 

Process function aProc 

<<SoCClockChannel>> 

clkChan : sc_clock 
{clockDomain = “Clock”}

 

<<SoCReset Channel>> 

rst Chan:  
{resetSpec Synch”

 

parentModule 

 = “
sc_signal<bool>

{
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Figure B.5 - Clock, Reset in SystemC description example

SC_MODULE(aModule) { 
  sc_in_clk aClock; 
  sc_in<bool> aRst; 
  sc_in<bool> iData; 
  SC_HAS_PROCESS(aModule); 
  inline void aProc(); 
  aModule(sc_module_name name) : 

sc_module(name), 
aClock(“aClock”), aRst(“aRst”), iData(“iData”) { 
  SC_CTHREAD(aProc, aClock.pos()); 
  watching(aRst.delayed() == true); 
} 

}; 
void aModule::aProc() { 
  while (true) { 
    wait(); 
    bool const b = iData.read(); 
    oData.write(b); 
  } 
} 
SC_MODULE(parentModule) { 
  sc_signal *clkChan; 
  sc_signal<bool> *rstChan; 
  aModule *aMod; 
  parentModule(sc_module_name name) : sc_module(name) { 
    clkChan = new sc_clock(“clkChan”, 10, SC_NS); 
    rstChan = new sc_signal<bool>(“rstChan”); 
    aMod = new aModule(“aModule”); 
    aMod->aClock(*clkChan); 
    aMod->aRst(*rstChan); 
    …// data channel instantiation and bindings here 
  } 
}; 
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Annex C
(informative)

Modeling Guidelines

This section describes the basic method of transmitting data instances via channels. As described in the data stereotype 
discussion, there are two modes in transmission of the data instances. In the first part, SystemC example of Copy mode is 
shown. Next example of Pointer mode is shown. These examples show how modules aCopyMod or aPointerMod receive the 
instance of Data type, then how these modules transfer the received instances to another module. The timing of creation and 
deletion of value is critical to pointer mode. Therefore we recommend that Copy mode is adopted. However, when pointers or 
references are mandatory because of implementation algorithms Pointer mode must be selected. When the pointer mode is 
used, application of following rules is recommended to avoid problems during model 

Figure C.1 - Example of the data transmission by copy mode

creation: 1)sender of the data instance allocates the memory area for the data instance, initialize the area with values, and send 
the pointer pointing at the area, 2) receiver deallocates the area pointed by the pointer after its use of received data.

typedef Data data_type_Data; 
SC_MODULE(aCopyMod) { 
  sc_port< sc_fifo_in_if< data_type_Data > > in; 
  sc_port< sc_fifo_out_if< data_type_Data > > out; 
  void entry(); 
aCopyMod(sc_module_name name) : 
sc_module(name), in(“in”), out(“out”) 

{ 
    SC_THREAD(entry); 
  } 
}; 
void aCopyMod::entry() { 
  while (true) { 
    Data t = in.read(); 
    Data nt = // The value nt which based on the value t is created here. 
    out.write(nt); 
  } 
} 
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Figure C.2 - Example of the data transmission by Pointer mode

C.1     Notation of Module Hierarchy and Conversion to the SystemC 
  Description

In SoC design it is essential that the configuration precisely conforms to a specification. This section explains how this 
configuration must be captured by the design entry tools.

As shown in the following diagram, implementing some functionality with sub modules, and channels connecting them is 
widely employed.

Figure C.3 - Example of the module which has systematic structure.

In SoC design, it is typical to construct a module structure using an algorithm parameterized by template parameters or 
constructor arguments. This section explains how this kind of structure is described using the structure diagram. Figure 24 
shows the same module using a template parameter for specifying the number of owning modules. Connection specification 
between each instances are described using OCL as invariants of ShiftReg. By allowing this kind of description, designers are 
able to define the highly re-usable modules.

typedef Data* data_type_Data;
SC_MODULE(aPointerMod) {
  sc_port< sc_fifo_in_if< data_type_Data > > in;
  sc_port< sc_fifo_out_if< data_type_Data > > out;
  void entry();
  aPointerMod(sc_module_name name) : sc_module(name),
 in(“in”), out(“out”) {
    SC_THREAD(entry);
  }
};
void aPointerMod::entry() {
  while (true) {
    data_type_Data t = in.read();
    data_type_Data nt = new Data(); // Here, the Data type value nt
// is instantiated using the value t.
    delete t; // The read value t is deleted here.
    out.write(nt);
  }
}

ShiftReg3

I O
M0 : 
reg

C0 : 
sc_fifo<int>

C1 : 
sc_fifo<int>

M1 : 
reg

M2 : 
reg

OI I IO O
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Figure C.4 - Example of template module

The SystemC description corresponding to the diagram is shown below, (note that include statements or any declarations, that 
is required but not relevant to the explanation of the notation, are abbreviated).

template <int N>
struct ShiftReg : public sc_module {
    sc_port< sc_fifo_in_if<int> > I;
    sc_port< sc_fifo_out_if<int> > O;

    reg *M[N];
    sc_fifo<int> *C[N-1];

    ShiftReg(sc_module_name name) : sc_module(name) {
        assert(N>0);
        for (int i = 0; i < N; i++) {
            stringstream regname;
            regname << "reg[" << i << "]";
            M[i] = new reg(regname.str().c_str());
        }
        for (int i = 0; i < N-1; i++) {
            C[i] = new sc_fifo<int>;
        }
        for (int i = 0; i < N; i++) {
            if (i == 0) {
                M[i]->I(I);
            }
            if (i > 0) {
                M[i]->I(*C[i-1]);
            }
        for (int i = 0; i < N; i++) {
            if (i == N-1) {
                M[i]->O(O);
            }

Shif t Reg

I O

M : reg[N]

C : sc_f ifo<int > [N- 1]

N : int

I O

inv: N > 1
inv: M[ 0] .I.sc_f ifo_in_if<int >- >exist s(I) - - (a)
inv: Sequence{ 1..N- 1 }- >forAll(n | M[ n] .I.sc_f ifo<int >- >exist s(C[n] )) - - (b)
inv: Sequence{ 0..N- 2 }- >forAll(n | M[ n] .O.sc_f ifo<int >- >exist s(C[n] ) - - (c )
inv: M[ N- 1] .O.sc_f ifo_out _if<int >- >exist s(O) - - (d)

(a)

(b)
(c)

(d)
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            if (i < N-1) {
                M[i]->O(*C[i]);
            }
        }
    }
};
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Annex D
(informative)

Glossary

For the purpose of this specification, the terms and definitions given in the normative references and this glossary apply.

Channel Realizes communication between modules.

Connector Connector connects ports or connects ports and a channel.

Member function Meaning identical to that of "Operation" of a UML class.

Module A fundamental element for implementation of SoC functionalities. It may own channels or 
lower hierarchy modules, that constructing the module, as its member. These relationships can 
be represented hierarchically in the same way as composite states.

Port Defines the protocol interface used for communication external to modules.
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