
Date: August 2011

SysML-Modelica Transformation

FTF - Beta 2

__

OMG Document Number: ptc/2011-08-14

Standard document URL: http://www.omg.org/spec/SyM/1.0

Associated Files: http://www.omg.org/spec/SyM/20110801

__

Original file: ptc/2011-08-16.zip

This OMG document replaces the submission document (ad/2010-06-08, Alpha). It is an OMG Adopted
Beta Specification and is currently in the finalization phase. Comments on the content of this document
are welcome, and should be directed to issues@omg.org by December 13, 2010.

You may view the pending issues for this specification from the OMG revision issues web page:
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on April 1, 2011. If you are
reading this after that date, please download the available specification from the OMG Specifications
Catalog.

Copyright © 2009-2010, Atego
Copyright © 2009-2010, Deere & Company
Copyright © 2009-2010, EADS
Copyright © 2009-2010, ESA/ESTEC
Copyright © 2009-2010, Georgia Institute of Technology
Copyright © 2009-2010, Jet Propulsion Laboratory
Copyright © 2009-2010, Linköping University
Copyright © 2009-2010, Lockheed Martin Corporation
Copyright © 2009-2010, NoMagic Inc.
Copyright © 2009-2010, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, con-
ditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, roy-
alty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distrib-
ute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such copyright holder by reason of having
used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this spe-
cification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1)
both the copyright notice identified above and this permission notice appear on any copies of this specification; (2)
the use of the specifications is for informational purposes and will not be copied or posted on any network computer
or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modi-
fications are made to this specification. This limited permission automatically terminates without notice if you
breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifica-
tions in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Pro-
spective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regula-
tions and statutes. This document contains information which is protected by copyright. All Rights Reserved. No
part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CON-
TAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUB-
LICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REV-
ENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indic-
ated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA
02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are re-
gistered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names men-
tioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its de-
signees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these ma-
terials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software satisfactor-
ily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

Table of Contents

Preface..v
0. Abstract...1

1. Scope..2

2. Conformance..3

3. References...3
3.1. Normative References..3
3.2. Non-normative References..3

4. Terms and Definitions...4

5. Symbols..4

6. Additional Information...4
6.1. Changes to Adopted OMG Specifications..4
6.2. Acknowledgments..4

7. Transformation Approach...5

8. Class Definition...7
8.1. Overview...7
8.2. «modelicaClassDefinition»...9
8.3. «modelicaClass» and «modelicaModel»..10
8.4. «modelicaRecord»..11
8.5. «modelicaBlock»..12
8.6. «modelicaConnector»...12
8.7. «modelicaType»...13
8.8. «modelicaPackage»...14
8.9. «modelicaFunction»...14

 SysML-Modelica Transformation, Beta 2 i

8.10. «modelicaExtends»..16
8.11. «modelicaDer»...17
8.12. «modelicaConstrainedBy»...18
8.13. Short Class Definitions...18

9. Predefined Types..18
9.1. Overview...18
9.2. ModelicaReal..19
9.3. ModelicaInteger..20
9.4. ModelicaBoolean..21
9.5. ModelicaString..22
9.6. ModelicaStateSelect...22
9.7. ModelicaExternalObject...23

10. Component Declarations..23
10.1. Overview...23
10.2. «modelicaValueProperty»...25
10.3. «modelicaPart»...26
10.4. «modelicaPort»...27
10.5. «modelicaFunctionParameter»..28

11. Equation and Algorithm Sections...29
11.1. Overview...29
11.2. «modelicaEquation»...30
11.3. «modelicaAlgorithm»..30
11.4. «modelicaConnection»...31

12. Other Related Constructs...31
12.1. «modelicaSimulation»..31
12.2. «modelicaAnnotation»..32

13. Modelica Meta-Modeling Approach..34

14. Modelica Meta-Model Constructs...35
14.1. Model Structure Definition..35
14.2. Class Definition...36

 ii SysML-Modelica Transformation, Beta 2

14.3. Import..43
14.4. Annotation and Comments...43
14.5. Component Definition...44
14.6. Modifications and Redeclarations...45
14.7. Behavior..47
14.8. Expressions..49

15. Class Definition...53
15.1. «modelicaClassDefinition»...53
15.2. «modelicaClass»..54
15.3. «modelicaModel»...54
15.4. «modelicaRecord»..54
15.5. «modelicaBlock»..54
15.6. «modelicaConnector»...54
15.7. «modelicaType»...55
15.8. «modelicaPackage»...55
15.9. «modelicaFunction»...55
15.10. «modelicaExtends»..56
15.11. «modelicaDer»...56
15.12. «modelicaConstrainedBy»...57

16. Predefined Types ...57
16.1. Overview...57

17. Component Declarations..58
17.1. Overview...58
17.2. «modelicaPart»...58
17.3. «modelicaPort»...59
17.4. «modelicaValueProperty»...59
17.5. «modelicaFunctionParameter»..60

18. Equation and Algorithm Sections...61
18.1. Overview...61
18.2. «modelicaEquation»...61
18.3. «modelicaAlgorithm»..62
18.4. «modelicaConnection»...62

 SysML-Modelica Transformation, Beta 2 iii

 iv SysML-Modelica Transformation, Beta 2

Preface
OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and re-
usable enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology
vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s spe-
cifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking infra-
structures, and software development environments. OMG’s specifications include: UML® (Unified Modeling Lan-
guage™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and
industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:
http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML
• MOF
• XMI
• CWM
• Profile specifications

OMG Middleware Specifications

• CORBA/IIOP
• IDL/Language Mappings
• Specialized CORBA specifications
• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

• CORBAservices
• CORBAfacilities
• OMG Domain specifications
• OMG Embedded Intelligence specifications
• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,

 SysML-Modelica Transformation, Beta 2 v

may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, spe-
cification, or other publication.

 vi SysML-Modelica Transformation, Beta 2

http://www.iso.org/

Part I - Introduction1

0 Abstract
OMG SysMLTM is a standardized general purpose graphical modeling language for capturing complex system descrip-
tions in terms of their structure, behavior, properties, and requirements. Modelica is a standardized general purpose sys-
tems modeling language for analyzing the continuous and discrete time dynamics of complex systems based on solving
differential algebraic equations. Integrating the descriptive power of SysML models with the analytic and computational
power of Modelica models provides a capability that is significantly greater than SysML or Modelica individually. The
objectives of this document are to enable and specify a standardized bi-directional transformation between the two mod-
eling languages that will support implementations to efficiently and automatically transfer the modeling information
transfer between SysML and Modelica models without ambiguity.

The transformation approach is to specify first an extension to SysML called the SysML4Modelica profile to represent
the Modelica constructs and then to specify the SysML-Modelica Transformation between the profile constructs and the
Modelica language. Introducing the profile into the transformation approach is intended to simplify the transformation to
Modelica and facilitate model reuse by more directly leveraging existing model libraries within Modelica. In this way,
the user first creates the system model in a SysML modeling tool as he would normally do. The user then selects the part
of the model to be analyzed by Modelica (e.g., a particular subsystem) and applies the SysML4Modelica profile to cre-
ates an analytic representation of that part of the model. The SysML modeling tool is expected to include this profile. The
analytic representation expressed in the SysML4Modelica profile is then transformed to a Modelica model where it can
be executed by a Modelica modeling tool.

The SysML-Modelica transformation leverages the fundamental concepts of the Model-Driven Architecture (MDA). Dif-
ferent transformation implementations can be applied to implement this specification such as the QVT and others. The
transformation can leverage an XMI formatted static file transfer or other mechanisms such as API’s that support a dy-
namic interchange capability.

This specification is organized as follows:
Part I — Introduction (non-normative)
Part II — SysML4Modelica profile (normative)
Part III — Modelica meta-model (non-normative)
Part IV — SysML-Modelica mapping, a bidirectional mapping between the SysML4Modelica profile and the Modelica
meta-model (non-normative)
Part V — Annexes: Examples, Justification, and QVT transformation (non-normative)

1 Part I of the SysML-Modelica Transformation Specification is non-normative.

 SysML-Modelica Transformation, Beta 2 1

1 Scope
OMG SysMLTM is a general-purpose systems modeling language that can be used to create and manage models of sys-
tems using well-defined constructs with underlying semantics and a graphical notation. SysML reuses a subset of UML 2
constructs and extends them by adding new modeling elements and two new diagram types. These SysML diagrams are
shown in Figure 1. The set of behavioral and structural diagrams combined with the requirements diagram and paramet-
ric diagram provide an integrated view of a system. But SysML represents much more than just a set of diagrams. Under-
lying the diagrams, there is an abstract syntax model repository that formally represents all the modeling constructs. The
graphical model provides a mechanism to organize, enter, retrieve, and view the system-descriptive data contained in the
model repository. The diagrams provide multiple views of the same system model; these multiple views can be main-
tained consistently due to the semantic underpinning of the modeling language. In the context of SysML, the structure
view primarily refers to the hierarchy and interconnections among the parts of the system, and the interconnections
between the system and its external systems. The behavior view describes how the state of the system changes (or must
change) over the time according to its own dynamics and/or to external events. The requirements diagram captures text
requirements in the model, and enables them to be linked to other parts of the model, to provide unambiguous traceability
between the requirements and system design. Parametrics provide a means to specify that interdependencies between
values of some system properties and can provide a bridge between the system descriptive model in SysML and other
simulation and engineering analysis models. While structure and behavior are heavily based on UML, both requirements
and parametrics are unique to SysML. Through these extensions, SysML is capable of representing the specification, ana-
lysis, design, verification and validation of systems.

Figure 1: An overview of the SysML diagrams and their relation to UML diagrams.

As indicated above, the system behavior in SysML is captured through a combination of activity graphs, state machine,
and/or interactions specifications using diagrams and their associated semantics. The Semantics of a Foundational Sub-
set for Executable UML Models (http://www.omg.org/spec/FUML) provides more formal semantics to enable SysML
activity models to be executed in better compliance with the standard. In addition, SysML includes parametric constructs
to capture models of constraint-based behavior, such as continuous-time dynamics in terms of energy flow. The syntax
and semantics of such behavioral descriptions in parametrics have been left open to integrate with other simulation and
analysis modeling capabilities to support the execution of these models. Additional information on SysML can be found
at http://www.omgsysml.org.

Modelica is an object-oriented language for describing differential algebraic equation (DAE) systems combined with dis-
crete events. Such models are ideally suited for representing the flow of energy, materials, signals, or other continuous in-
teractions between system components. It is similar in structure to SysML in the sense that Modelica models consist of
compositions of sub-models connected by ports that represent energy flow (undirected) or signal flow (directed). The
models are acausal, equation-based, and declarative. The Modelica Language is defined and maintained by the Modelica
Association (www.modelica.org), which publishes a formal specification [Modelica Association, 2008] but also provides
an extensive Modelica Standard Library, which includes a broad foundation of essential models covering domains ran-

 2 SysML-Modelica Transformation, Beta 2

ging from (analog and digital) electrical systems, mechanical motion and thermal systems, to block diagrams for control.
Finally, it is worth noting that there are several efforts within the Modelica community to develop open-source solvers,
such as in the OpenModelica project (www.openmodelica.org).

In conclusion, SysML and Modelica are two complementary languages supported by two active communities. By integ-
rating SysML and Modelica, we combine the very expressive, formal language for differential algebraic equations and
discrete events of Modelica with the very expressive SysML constructs for requirements, structural decomposition, lo-
gical behavior and corresponding cross-cutting constructs. In addition, the two communities are expected to benefit from
the exchange of multi-domain model libraries and the potential for improved and expanded commercial and open-source
tool support.

The objective of this document is to provide a bi-directional mapping between SysML and Modelica to leverage the be-
nefits from both languages. By integrating SysML and Modelica, SysML's strength in descriptive modeling can be com-
bined with Modelica's DAE solving capability to support analyses and trade studies. The scope of this specification sup-
ports the objectives of the bi-directional mapping, and includes the SysML4Modelica profile, and the SysML-Modelica
Transformation. Not all Modelica constructs will be represented in this profile. The focus is to include the Modelica lan-
guage features that are most common and together cover the majority of the Modelica models in the standard library.
When certain Modelica constructs are omitted, this will be pointed out explicitly in this document. In the future, it may
be desirable to introduce additional SysML constructs into the Modelica Language or additional Modelica constructs in
the SysML language; however, this is outside the scope of the current effort.

2 Conformance
This specification has a narrow scope, focusing exclusively on the transformation between SysML4Modelica and Model-
ica. Partial support of this specification is therefore of limited use. Still, it is useful to distinguish between the following
two compliance levels:

•Level 0: Compliance with SysML4Modelica profile

•Level 1: Compliance with the SysML-Modelica mapping

Compliance to Level 0: This level entails the support of all the modeling concepts included in the SysML4Modelica pro-
file as defined in Part II of this specification. The SysML4Modelica profile must be compliant with OMG SysML
v1.3.Compliance to Level 0 entails full realization of all the modeling concepts included in the SysML4Modelica
profile as defined in Part II of this specification. Since no concrete syntax has been specified, only abstract
syntax compliance is required.

Compliance to Level 1: In addition to the capabilities provided by Level 0, Level 1 supports the successful bi-directional
transformation between SysML4Modelica models and corresponding Modelica models. The bi-directional transformation
is considered successful if the original Modelica model and the Modelica model generated by the round-trip transforma-
tion (Modelica->SysML4Modelica->Modelica) are semantically identical, that is, they result in the same simulation res-
ults. Compliance to Level 1 entails full realization of the bi-directional transformation between SysML4Modelica
models and corresponding Modelica models.

3 References
3.1 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• Systems Modeling Language: Specification, v1.2 (http://www.omg.org/spec/SysML/1.2)
• Modelica Specification, v.3.1 (http://www.modelica.org/documents/ModelicaSpec31.pdf)
• QVT, v1.10 (http://www.omg.org/spec/QVT/1. 1 0 /)
• OCL, v2.2 (http://www.omg.org/spec/OCL/2.2/)

 SysML-Modelica Transformation, Beta 2 3

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.0/
http://www.modelica.org/documents/ModelicaSpec31.pdf
http://www.omg.org/spec/SysML/1.2

3.2 Non-normative References
None.The following document contains provisions which, through reference in this text, constitute provisions of this spe-
cification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• ormsc/09-02-01: MDA Foundation Model - Santa Clara AB initial comments draft
(http://www.omg.org/members/cgi-bin/doc?ormsc/09-02-01.pdf)

4 Terms and Definitions
There are no formal definitions in this specification that are taken from other documents. For an overview of Model-
ica-related terms and definitions, refer to Appendix A of the Modelica Specification.

5 Symbols

Acronym Meaning

MDA Model Driven Architecture

MOF Meta Object Facilities

OMG Object Management Group

SysML System Modeling Language

UML Unified Modeling Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

6 Additional InformationAcknowledgements
Changes to Adopted OMG Specifications

An issue was raised against the SysML Specification designated as required or desired in order to support this specifica-
tion:

Reference to nested properties (SysML issue #14055) - Desired

SysML provides a mechanism to create unambiguous connections between parts whatever are their respectied level of
nesting. This is done thanks to the NestedConnectorEnd extension and its propertyPath property. Unfortunately this facil-
ity is not provided for other kinds of reference. Therefore, relationships such as allocation can be ambiguous when they
are used across several levels of nesting, as in figure 19. A more generic mechanism is required to solve this problem for
all kinds of references. The issue #14055 has been raised on SysML.

No change is proposed to the Modelica Specification.

Acknowledgments
The following companies submitted this specification:

• Atego
• Deere & Company
• No Magic Inc.

The following companies supported this specification:

 4 SysML-Modelica Transformation, Beta 2

http://www.omg.org/members/cgi-bin/doc?ormsc/09-02-01.pdf
http://www.omg.org/members/cgi-bin/doc?ormsc/09-02-01.pdf

• EADS
• ESA/ESTEC
• Georgia Institute of Technology
• Jet Propulsion Laboratory
• Linköping University
• Lockheed Martin Corporation

The following people have contributed significantly to this document either directly or indirectly through discussions and
feedback:

• Yves Bernard (EADS)
• Conrad Bock (NIST)
• Roger Burkhart (Deere & Co)
• Hans-Peter De Koning (ESA)
• Sanford Friedenthal (Lockheed Martin)
• Peter Fritzson (Linköping University)
• Nerijus Jankevicius (No Magic Inc)
• Thomas Johnson (Georgia Tech)
• Alek Kerzhner (Georgia Tech)
• Alan Moore (Mathworks)
• Chris Paredis (Georgia Tech)
• Russell Peak (InterCAx, Georgia Tech)
• Axel Reichwein (Georgia Tech)
• Nicolas Rouquette (Jet Propulsion Laboratory)
• Wladimir Schamai (EADS, Linköping University)

7 Transformation Approach
To develop a transformation between the SysML and Modelica languages, a formal, systematic approach is used. As is il-
lustrated in Figure 2. The transformation approach is to specify first an extension to SysML called the SysML4Modelica
profile which represents the most common Modelica language constructs. This allows the Modelica concepts to be ex-
pressed in an extension of SysML that supports round-trip transformations between SysML and Modelica. The profile ex-
tends the UML4SysML subset of UML and the SysML extensions to provide the concept required to capture the relevant
Modelica concepts and enable the mapping between the two languages. The «transformation» stereotype is a self-defined
stereotype referring to a mapping between the Modelica metamodel and the SysML4Modelica profile.

Figure 2: The SysML-Modelica Transformation in relation to SysML and Modelica.

 SysML-Modelica Transformation, Beta 2 5

To develop the SysML4Modelica profile in a systematic fashion, we start from the Modelica Language Specification and
identify for each Modelica language construct an equivalent construct in SysML from a semantic point of view. Where
equivalent constructs do not exist, stereotypes are created to extend the SysML language. The following naming conven-
tion is used to define a Modelica construct in the SysML4Modelica profile: «modelicaConstruct» where Construct is the
name of the Modelica language construct as defined in the Modelica abstract syntax definition (see Part III - Modelica
Abstract Syntax4).

Even when an equivalent SysML construct exists, it is sometimes necessary to introduce a stereotype in order to distin-
guish the Modelica construct from the ordinary SysML construct when supporting round-trip transformation. In addition,
the textual syntax of Modelica often provides alternative ways to express the exact same semantics. In such cases, the in-
tent is to avoid propagating this redundancy to SysML4Modelica without loss of expressivity. For mapping purposes, one
of the redundant textual notations is identified as the primary (most explicit) one, and SysML4Modelica constructs are
preferably shown in this primary notation when using Modelica textual syntax. It should also be noted, that Modelica in-
cludes a graphical syntax using iconic representations of block diagrams that maps to its textual syntax. An example of
the Modelica graphical syntax is shown in Figure 3 for a set of components connected together via Modelica connectors
and connections.

Modelica has a very rich representation for modeling differential algebraic equations. Where Modelica has a concept that
cannot be directly transformed into SysML, an opaque expressions in Modelica syntax is sometimes used to capture the
concept in the SysML4Modelica profile. For example, mathematical expressions appearing in Modelica models are rep-
resented as opaque expressions in the corresponding SysML4Modelica models.

Figure 3: A Modelica model of a motor controller consisting of component models and the connections between
them. The connections include both causal signal connections (e.g., in and out of the controller) and acausal en-
ergy connections (e.g., the rotational mechanical energy connections of the gearbox).

Initially, the SysML-Modelica Transformation Specification provides a textual description of the mapping between Mod-
elica and SysML4Modelica (see Part IV - Transformation7). In Appendix C (Chapter 79), this mapping is also (partially)
described using QVT. Such a formal definition of the mapping has the advantage that meta-CASE tools can be used to
generate executable transformations between SysML and Modelica modeling tools (assuming they support some stand-
ardized interface such as JMI or the). An additional implementation of the mapping is being developed as part of the
OpenModelica project.

 6 SysML-Modelica Transformation, Beta 2

Part II - SysML4Modelica Profile2

This part of the SysML-Modelica Transformation Specification describes the stereotypes that represent the Modelica
modeling constructs in SysML. As illustrated in Figure 4, the stereotypes, together with the library of predefined types,
are organized in sub-packages and profiles in the the SysML4Modelica profile. In Chapter 7, all the stereotypes related
to the Modelica restricted classes are introduced. In Chapter 18, the predefined Modelica types and the enumerations
used in the SysML4Modelica profile are defined. In Chapter 23, the Modelica equivalent of properties are defined —
called Component Declarations in Modelica. Finally, in Chapter 29, the Equation and Algorithm sections of Modelica
models are covered.

Figure 4: Package diagram with an overview of the SysML4Modelica profile.

8 Class Definition
8.1 Overview
The class concept is the basic structural unit in Modelica. Classes provide the structure for objects and contain equations
and algorithms, which ultimately are the basis for the executable simulation code. The most general class is “model”.
Specialized classes such as “record”, “type”, “block”, “package”, “function” and “connector” have most of the properties
of a “model” but with restrictions, which need to be preserved in SysML to support round-trip mapping.

The following production rules define the different specialized classes. The reference in parentheses on the right indic-
ates the section of this document in which the particular language element is discussed in detail:

stored_definition:
 [within [name] ";"] (9)
 { [final] class_definition ";" } (9)

class_definition :
 [encapsulated] (9)
 [partial] (9)
 (class (9)
 | model (10)
 | record (11)
 | block (12)
 | [expandable] connector (12)
 | type (13)
 | package (14)
 | function) (14)
 class_specifier
class_specifier :
2 Part II of the SysML-Modelica Transformation Specification is normative.

 SysML-Modelica Transformation, Beta 2 7

 IDENT string_comment composition (23)
 | IDENT "=" base_prefix name [array_subscripts] (13)
 [class_modification] comment (23)
 | IDENT "=" enumeration "(" ([enum_list] | ":") ")" comment (13)
 | IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment (14)
 | extends IDENT [class_modification] string_comment composition (15)
 end IDENT
The following table lists the SysML stereotypes for representing the specialized Modelica classes. Using this approach
the modeler only needs to apply the respective stereotype to indicate all the semantics and restrictions of the associated
Modelica class. This information is represented graphically in Figure 5. In the following subsections, the details of each
stereotype are described.

Table 1: Mapping for the Modelica specialized classes.

Modelica Construct SysML Base Class
SysML4Modelica

New Stereotype Comments

abstract generalization for
all Modelica classes UML4SysML::Classifier «modelicaClassDefinition» See Section 9

Class and Model SysML::Blocks::Block «modelicaModel» See Section 10

Record SysML::Blocks::Block «modelicaRecord» See Section 11

Block SysML::Blocks::Block «modelicaBlock» See Section 12

Connector SysML::Blocks::Block «modelicaConnector» See Section 12

Type
SysML::Blocks::Block

SysML::Blocks::ValueType
UML4SysML::Enumeration

«modelicaType» See Sections 13

Package SysML::Blocks::Block «modelicaPackage» See Section 14

Function UML4SysML::FunctionBehavior «modelicaFunction» See Section 14

Figure 5: Package diagram with an overview of the stereotypes for Modelica Classes

 8 SysML-Modelica Transformation, Beta 2

8.2 «modelicaClassDefinition»
Stereotypes

•Classifier (from UML4SysML)

Abstract Syntax
•See Figure 5.

Description

A Modelica class is the basic structural unit in Modelica. However, because it lacks precise semantics, the class
construct should never be used in Modelica. Without precise semantics, a Modelica tool cannot easily check whether any
restrictions are violated. Therefore, the constructs that are specialized from Modelica class should be used instead.

In the context of the SysML4Modelica profile, the Modelica class construct is mapped to the stereotype «modelic-
aClassDefinition» which is abstract and thus cannot be instantiated directly. This choice has been made because it is de-
sirable to have the additional semantics specified by the specialized classes. In addition, as clearly shown in Figure 5,
the stereotypes associated with the specialized classes derive from different SysML constructs and thus cannot be
mapped to a single common construct for a Modelica class. The abstract stereotype «modelicaClassDefinition» serves
the purpose of grouping the attributes that apply to all the Modelica specialized classes. It stereotypes UML::Classifier,
which is a common generalization for the stereotypes of all the specialized classes.

Just like UML Classifiers, a «modelicaClassDefinition» can contain nested class definitions. Such nested definitions can
be of any restricted class type derived from «modelicaClassDefinition». For instance, a «modelicaConnector» can con-
tain a «modelicaPackage».

Modelica classes are often defined using a short class definition syntax. For example, the type Force could be defined
as:

type Force = Real[3](unit={"N.m","N.m","N.m"});
Rather than supporting such short class definitions explicitly, the SysML4Modelica profile supports only the longer (but
equivalent) form (Note: in the Modelica abstract syntax the two forms are often represented identically):

type Force
 extends Real[3](unit={"N.m","N.m","N.m"});
end Force;
In the remainder of this section, all the common attributes and associations for all the constructs specialized from Model-
ica class are described. In subsequent sections for the individual specialized constructs, only the constraints on these
attributes and associations will be described in detail.

Attributes
•/isFinal : Boolean [1]
In Modelica, the definition of a class can be qualified to be final (Modelica Specification 7.2.6). This
means that the declared class cannot be further modified through (local) type modifications. Note that this is
identical to the UML attribute isLeaf for redefinable elements (UML Specification 7.3.46) which, if true, in-
dicates that no further redefinitions are possible.
The isFinal attribute is true when the final prefix is present in Modelica; false otherwise. Its default value is
false. This is derived from isLeaf.

•/isPartial : Boolean [1]
The Modelica partial construct has the same semantics as the isAbstract attribute in SysML. The isPar-
tial attribute is true when the partial prefix is present in Modelica; false otherwise. Its default value is
false. This is derived from isAbstract.

•isModelicaEncapsulated : Boolean [1]
As explained in Modelica Specification 5.3.2, the Modelica encapsulated construct limits the scope of
name lookup. An encapsulated package can be moved within the package hierarchy without affecting the
local name resolutions. These semantics are different from the isEncapsulated attribute of Blocks in SysML

 SysML-Modelica Transformation, Beta 2 9

(SysML Specification 8.3.2.2). An encapsulated block is treated as a black box; no connections can be made
to its internal parts directly. A second difference in semantics is that in Modelica the encapsulated prefix
can be applied to all classes, although it is most commonly applied to packages. It is therefore necessary to in-
troduce isModelicaEncapsulated as a new attribute so that it becomes available also for specialized class ste-
reotypes that do not derive from a SysML Block.
The isModelicaEncapsulated attribute is true when the encapsulated prefix is present in Modelica; false
otherwise. Its default value is false.

•isReplaceable : Boolean [1]
As explained in Modelica Specification 7.3, the Modelica prefix replaceable is most commonly applied to
components (see Section 23) , but can also be applied to a Modelica class to indicate that a local model
definition can be redeclared when the containing model is used. The isReplaceable attribute is true when the
replaceable prefix is present in Modelica; false otherwise. Its default value is false.

•fromLibrary : String [0..1]
A model in SysML4Modelica often corresponds to a model that has already been defined in a Modelica lib-
rary. Rather than duplicating the entire definition of such a model, the attribute fromLibrary is used to specify
the fully qualified path to the model in the Modelica library. When converting such a SysML4Modelica model
to Modelica, the definition of the models is omitted and instead the fully qualified library path is used as type.
In addition, for such models, only the ports are defined in SysML4Modelica so that they can still be connected
to other models. All other details (value properties and parts) are omitted because they are already defined in
the corresponding Modelica library. The fromLibrary attribute should only be defined when a corresponding
Modelica model exists.

Associations

No additional associations.

Constraints
[1]Any generalization relationship to/from «modelicaClassDefinition» must be stereotyped by a «modelicaExtends» rela-
tionship.
[2]A «modelicaClassDefinition» can only contain nestedClassifiers stereotyped by a restricted type specializing «model-
icaClassDefinition».

Additional Notes

The Modelica within clause is explained in Modelica Spec. 3.1, Section 13.2.2.3. It defines where in the package hier-
archy the subsequent class definitions are located. This is important in Modelica to allow large package structures to be
divided over multiple model files. As long as fully qualified type identifiers are used, the within clause is not relevant
in SysML4Modelica and is therefore not supported in the SysML4Modelica profile.

8.3 «modelicaClass» and «modelicaModel»
Generalizations

•«modelicaClassDefinition» (from SysML4Modelica::Classes)
•«block» (from SysML)

Abstract Syntax
•See Figure 5.

Description

The Modelica specialized class model is the most general specialized class; it is equivalent to the general Modelica
class construct. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations
and algorithm sections. A model can also include state variables. Modelica does not differentiate between a model and
a class. Although redundant, we therefore include both the equivalent stereotypes «modelicaClass» and «model-
icaModel».

 10 SysML-Modelica Transformation, Beta 2

Attributes

No additional attributes.

Associations

No additional associations.

Constraints
(All constraints apply to both «modelicaClass» and «modelicaModel»)
[1]A «modelicaModel» must have a Name.
[2]A «modelicaModel» can only have Properties that are stereotyped by «modelicaPart», «modelicaPort», or «modelica-
ValueProperty».
[3]A «modelicaModel» can only contain Behaviors that are stereotyped by «modelicaFunction», or
«modelicaAlgorithm».
[4]A «modelicaModel» can only be contained in a «modelicaClassDefinition».
[5]A «modelicaModel» can only specialize other classifiers derived from «modelicaBlock», or «modelicaRecord». The
stereotype «modelicaExtends» must be applied to the generalization relationship.
[6]All other attributes or associations inherited from «block» or Classifier are not relevant and should be set to their de-
fault values. This includes the attributes: isActive, isEncapsulated.

8.4 «modelicaRecord»
Generalizations

•«modelicaClassDefinition» (from SysML4Modelica::Classes)
•«block» (from SysML)

Abstract Syntax

•See Figure 5.

Description

The Modelica specialized class record is restricted to contain only public declarations of components that in turn also
contain only public declarations. A complete description of record is available in Modelica Specification, Section 4.6:

Only public sections are allowed in the definition or in any of its com-
ponents (i.e., equation, algorithm, initial equation, initial algorithm
and protected sections are not allowed). May not be used in connections.
The elements of a record may not have prefixes input, output, inner,
outer, or flow. Enhanced with implicitly available record constructor
function. Additionally, record components can be used as component refer-
ences in expressions and in the left hand side of assignments, subject to
normal type compatibility rules.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints
[1]A «modelicaRecord» must have a Name.
[2]A «modelicaRecord» can only have Properties that are stereotyped by «modelicaValueProperty».
[3]Any «modelicaValueProperty» owned by an instance of «modelicaRecord» must have visibility=public,
flowFlag=nonflow, causality=null, scope=null.
[4]A «modelicaRecord» can only be contained in a «modelicaClassDefinition».

 SysML-Modelica Transformation, Beta 2 11

[5]A «modelicaRecord» can only specialize other classifiers derived from «modelicaRecord». The stereotype «model -
icaExtends» must be applied to the generalization relationship.
[6]All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes:
isActive, isEncapsulated; and the ownedElements: Behavior, Constraint.

8.5 «modelicaBlock»
Generalizations

•«modelicaClassDefinition» (from SysML4Modelica::Classes)
•«block» (from SysML)

Abstract Syntax
•See Figure 5.

Description

The Modelica specialized class block is very similar to a model except that all its connectors must be either an input
or output making it similar to a Simulink block. A complete description of block is available in Section 4.6 of the Mod-
elica Specification:
Same as model with the restriction that each connector component of a Mod-
elica block must have prefixes input and/or output for all connector vari-
ables.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints
[1]A «modelicaBlock» must have a Name.
[2]A «modelicaBlock» can only have Properties that are stereotyped by «modelicaPart», «modelicaPort», or «modelica-
ValueProperty».
[3]Any «modelicaValueProperty» owned by an instance of «modelicaBlock» must have causality=input or output.
[4]A «modelicaBlock» can only contain Behaviors that are stereotyped by «modelicaFunction», «modelicaAlgorithm»,
or «modelicaInitialAlgorithm».
[5]A «modelicaBlock» can only contain Constraints that are stereotyped by «modelicaEquation» or «modelicaInitialE-
quation».
[6]A «modelicaBlock» can only be contained in a «modelicaClassDefinition».
[7]A «modelicaBlock» can only specialize other classifiers derived from «modelicaBlock» or «modelicaRecord». The
stereotype «modelicaExtends» must be applied to the generalization relationship.
[8]All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes:
isActive, isEncapsulated.

8.6 «modelicaConnector»
Generalizations

•«modelicaClassDefinition» (from SysML4Modelica::Classes)
•«block» (from SysML)

Abstract Syntax

•See Figure 5.

Description

The Modelica specialized class connector is a model that cannot contain equations or algorithms in any of its com-

 12 SysML-Modelica Transformation, Beta 2

ponents. A complete description of connector is available in Section 4.6 and Chapter 9 of the Modelica Specification:

No equations or algorithms are allowed in the definition or in any of its
components. Enhanced to allow connect(..) to components of connector
classes.

Attributes
•isExpandable : Boolean [1]
As explained in Modelica Specification 9.1.3, the Modelica expandable prefix can be applied to a con-
nector. The primary purpose of expandable connectors is to allow for the convenient modeling of bus inter-
faces. The isExpandable attribute is true when the expandable prefix is present in Modelica; false other-
wise. The default value is false.

Associations

No additional associations.

Constraints
[1]A «modelicaConnector» must have a Name.
[2]A «modelicaConnector» can only have Properties that are stereotyped by «modelicaPart», «modelicaPort», or «model-
icaValueProperty».
[3]None of the Properties owned by a «modelicaConnector» can be typed to «modelicaClassDefinition»s that contain Be-
haviors or Constraints (at any level of containment).
[4]A «modelicaConnector» can only be contained in a «modelicaClassDefinition».
[5]A «modelicaConnector» can only specialize other classifiers derived from «modelicaConnector», «modelicaType», or
«modelicaRecord». The stereotype «modelicaExtends» must be applied to the generalization relationship.
[6]All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes:
isActive, isEncapsulated; and the ownedElements: Behavior, Constraint.

8.7 «modelicaType»
Generalizations

•«modelicaClassDefinition» (from SysML4Modelica::Classes)
•«valueType» (from SysML)

Abstract Syntax
•See Figure 5.

Description

The Modelica specialized class type is restricted to predefined types, enumerations, arrays of type or classes extending
from type. It is enhanced to allow extension of predefined types. In the SysML4Modelica profile, the extension from
predefined types is handled by making the predefined types instances of «modelicaType» (See Chapter 18).

Unlike the other Modelica restricted classes, «modelicaType» does not generalize «block». This implies that it is not
possible for a «modelicaType» to contain definitions of other modeling elements (e.g., a contained package). Although
such containment would strictly speaking be allowed by the Modelica language, it is rarely, if ever, used. To avoid unne-
cessary complications in extending SysML «valueType»s, the SysML4Modelica profile does not support «mod-
elicaType»s that contain definitions of other modeling constructs.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints
[1]A «modelicaType» must have a Name.

 SysML-Modelica Transformation, Beta 2 13

[2]A «modelicaType» can only be contained in a «modelicaClassDefinition».
[3]A «modelicaType» can only specialize other classifiers derived from «modelicaType». The stereotype «modelicaEx-
tends» must be applied to the generalization relationship.

8.8 «modelicaPackage»
Generalizations

•«modelicaClassDefinition» (from SysML4Modelica::Classes)
•«block» (from SysML)

Abstract Syntax
•See Figure 5.

Description

A Modelica package has broader semantics than just a container for other model elements as in SysML. Although it
may only contain declarations of classes and constants, these declarations can be replaceable and can be inherited from
parent packages, so that the package itself should be thought of as a model. The corresponding SysML4Modelica con-
struct, «modelicaPackage», therefore generalizes «block» rather than Package. In the Modelica language, a Modelica
package is enhanced, as compared to Modelica class, to allow for the import of elements of packages. (See also
Modelica Spec. 3.1, Chapter 13.)

Attributes

No additional attributes.

Associations

No additional associations.

Constraints
[1]A «modelicaPackage» must have a Name.
[2]A «modelicaPackage» can only have Properties that are stereotyped by «modelicaValueProperty».
[3]Any «modelicaValueProperty» owned by an instance of «modelicaPackage» must have variability=constant. (ref.
Modelica Specification 4.6, package)
[4]A «modelicaPackage» can be contained in a «modelicaClassDefinition» or in a UML4SysML::Package.
[5]A «modelicaPackage» can only specialize other classifiers derived from «modelicaPackage». The stereotype «model -
icaExtends» must be applied to the generalization relationship.
[6]All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes:
isActive, isEncapsulated; and the ownedElements: Behavior, Constraint.

8.9 «modelicaFunction»
Extensions

•FunctionBehavior (from UML4SysML)

Generalizations
•«modelicaClassDefinition» (from SysML4Modelica::Classes)

Abstract Syntax
•See Figure 5.

Description

The Modelica specialized class function represents a callable section of procedural algorithmic code without side ef-
fects. It is similar to a SysML FunctionBehavior. Compared to a general Modelica class, quite a few restrictions and
enhancements apply; refer to the Modelica Spec. 3.1, Section 12.2 for details.

As described in the Modelica Spec. 3.1, Section 12.9, a Modelica function may refer to an external function specifier
(e.g., an external C or Fortran function):

 14 SysML-Modelica Transformation, Beta 2

function IDENT string_comment
{ component_clause ";" }
[protected { component_clause ";" }]
external [language_specification] [external_function_call]
[annotation] ";"
[annotation ";"]
end IDENT;
Whether a particular function is external or not is determined by the language attribute of the «modelicaFunction»
(inherited from OpaqueBehavior). For Modelica native functions, the language should be specified as “Modelica”. For
external functions, the language attribute is set to another language. Modelica currently only allows the languages
“C”, “FORTRAN”, or “builtin”. For such external functions, the body attribute contains the
external_function_call from Modelica. The annotation that is part of the external statement in Modelica
can contain two types of information: Libraries and Include directives. In SysML4Modelica, this information is captured
in the two additional attributes: externalLibrary and externalInclude.

Several additional attributes are included in «modelicaFunction» to capture such semantics.

At this point, SysML4Modelica only allows for function definitions; functions cannot be “called” explicitly – they can
only be referred to in opaque Modelica syntax portions of the model.

Attributes
•externalLibrary: String [0..*]
A list of external libraries that need to be linked in to resolve the references to the external function (see Mod-
elica Spec. 3.1, Section 12.9 for details). It should only be defined when language = “C” or “FORTRAN”.

•externalInclude: String [0..1]
An optional string containing include directives to be considered when compiling and linking the external
function. It should only be defined when language = “C” or “FORTRAN”.

Associations

No additional associations.

Constraints
[1]A «modelicaFunction» must have a Name.
[2]A «modelicaFunction» can only have Parameters that are stereotyped by «modelicaFunctionParameter».
[3]Any «modelicaFunctionParameter» (owned by an instance of «modelicaPackage») for which causality=input may not
be assigned values in the body of the function (i.e., it is read-only).
[4]A «modelicaFunction» can only have zero or one body attribute.
[5]A «modelicaFunction» must have language=“Modelica”,”builtin”,”C”, or “FORTRAN”.
[6]If language=“Modelica”, then the body of the function must be represented in the Modelica syntax and must consti-
tute a valid Modelica algorithm section.
[7]If language=“C” or “FORTRAN”, then the body of the function must be represented a valid functional call in the re-
spective language (as specified in the Modelica Spec. 3.1, Sections 12.9.4).
[8]The optional attributes, externalLibrary and externalInclude, can only be used when language=“C” or “FORTRAN”.
[9]A «modelicaFunction» definition can only be contained in a «modelicaClassDefinition».
[10]A «modelicaFunction» can only specialize other classifiers derived from «modelicaFunction». The stereotype «mod-
elicaExtends» must be applied to the generalization relationship.
[11]All other attributes or associations inherited from FunctionBehavior or Classifier may not be used.

8.10 «modelicaExtends»
Extensions

•Generalization (from UML4SysML)

 SysML-Modelica Transformation, Beta 2 15

Abstract Syntax

Figure 6: Modelica Relations stereotype definitions

Description

The extends clause of Modelica is equivalent to a SysML Generalization. The only difference is that in Modelica the
type being extended can be locally modified (Modelica Spec. 3.1, Section 7.1):

extends_clause :
 extends name [class_modification] [annotation]
constraining_clause :
 extends name [class_modification]
Similar local type modifications can be used when defining usages (i.e., Modelica components – see Chapter 23). In both
cases the SysML4Modelica mapping currently captures the local modifications only as a text string in Modelica syntax.
A separate modification can be defined for every component of a «modelicaClassDefinition»; in Modelica these modific-
ations are grouped, separated by commas, and surrounded by parentheses. Each such modification is represented in
SysML4Modelica as a separate string. It corresponds thus to an argument as defined in the following extract of the Mod-
elica EBNF (Modelica Spec. 3.1, section 7.2):

class_modification :
 "(" [argument_list] ")"
argument_list :
 argument { "," argument }
argument :
 element_modification_or_replaceable
 | element_redeclaration
element_modification_or_replaceable:
 [each] [final] (element_modification | element_replaceable)

element_modification :
 component_reference [modification] string_comment
element_redeclaration :
 redeclare [each] [final]
 ((class_definition | component_clause1) | element_replaceable)
element_replaceable:
 replaceable (class_definition | component_clause1)
 [constraining_clause]
component_clause1 :
 type_prefix type_specifier component_declaration1

 16 SysML-Modelica Transformation, Beta 2

component_declaration1 :
 declaration comment
Multiple inheritance is supported in Modelica. Therefore, more than one «modelicaExtends» relationship is allowed for
a single «modelicaClassDefinition». The extends clause can be applied to any of the restricted classes (including
packages).

If the extends clause appears in a protected section of the Modelica model, then all the elements of the base class become
protected elements of the specialized class. It is therefore important to specify whether the «modelicaExtends» relation is
public or protected.

Not every restricted class can inherit from every other restricted class. Refer to Modelica Spec. 3.1, Section 7.1.3 for an
overview table.

Attributes
•visibility: VisibilityKind [1]
When an extends statement appears in a protected section of a «modelicaClassDefinition», then all compon-
ents of the parent class are protected. Default value is public.

•modification: String [0..*]
An inherited Modelica class can be locally modified. The modifications are defined by this attribute in Model-
ica syntax. Each modification (as specified in the Modelica concrete syntax as a comma-separated expression)
is specified as a separate instance of this attribute.

•arraySize: String [0..*] {ordered}
One can specify an array size for an inherited Modelica class. This attribute is an ordered list of strings, each
of which must be a Modelica expressions that evaluates to an integer. The ith element in the ordered list cor-
responds to size of the the multidimensional array in the ith dimension.

Associations

No additional associations.

Constraints
[1]Both the source and target of a «modelicaExtends» relation must be typed to instances of a specialization of «mod-
elicaClassDefinition».
[2]The visibility attribute of «modelicaExtends» can only take on values of public or protected.

8.11 «modelicaDer»
Extensions

•Dependency (from UML4SysML)

Abstract Syntax
•See Figure 6.

Description

The der clause in Modelica identifies a function as a partial derivative of another function (Modelica Spec. 3.1, Section
12.7.2). It establishes a relationship between two functions and is therefore modeled as an extension of Dependency in
SysML4Modelica. It requires as attributes a list of variables with respect to which the partial derivative is taken.

Attributes
•variable: String [1..*]
A list of variables with respect to which the partial derivative is taken. At least one variable must be specified.
No default value is specified.

Associations

No additional associations.

 SysML-Modelica Transformation, Beta 2 17

Constraints
[1]Both the source and target of a «modelicaDer» relation must be typed to instances of «modelicaFunction».

8.12 «modelicaConstrainedBy»
Extensions

•Dependency (from UML4SysML)

Abstract Syntax
•See Figure 6.

Description

In a replaceable declaration in Modelica, one can specify a constrainedBy clause. The semantics of this construct
are explained in more detail in the Modelica Spec. 3.1, Section 7.3.2.

Attributes
•modification: String [0..*]
A Modelica class that constrains a replaceable declaration can be locally modified. The modifications are
defined by this attribute in Modelica syntax. Each modification (as specified in the Modelica concrete syntax
as a comma-separated expression) is specified as a separate instance of this attribute. Default value is null.

Associations

No additional associations.

Constraints
[1]Both the source and target of a «modelicaConstrainedBy» relation must be typed to instances of a specialization of
«modelicaClassDefinition».

8.13 Short Class Definitions
Modelica provides a short-hand notation for definition of classes. It is equivalent to an inheritance construct, and is there-
fore redundant and not supported separately in the SysML4Modelica profile.

9 Predefined Types
9.1 Overview
The following predefined types are available in the Modelica language (Modelica Spec. 3.1, Section 4.8): Real Type, In-
teger Type, Boolean Type, String Type, Enumeration Types, StateSelect, ExternalObject, and Graphical Annotation Type
(See Chapter 31). These primitive types are defined as predefined types in SysML4Modelica::Types::ModelicaPre-
definedTypes. Although these types have direct counterparts in SysML, they are redefined to account for the additional
attributes associated with them in Modelica. Note that in Modelica, the properties such as “start”, “quantity”, etc., are not
really equivalent to user-defined complex data-types. For instance, if one defines “Real x;” then one cannot refer to
“x.min” in an equation. The only way one can specify a value for these special properties is as part of a type definition or
local modification: e.g., “Real x(start=1, unit=“m”);

 18 SysML-Modelica Transformation, Beta 2

Figure 7: Package diagram with an overview of the Predefined Modelica Types

9.2 ModelicaReal
Instantiation

•SysML4Modelica::Classes::ModelicaType

Generalizations
•SysML::Blocks::Real

Abstract Syntax
•See Figure 7.

Description

The predefined type Real in Modelica includes a variety of attributes besides its actual value (Modelica 3.1, section
4.8.1). In SysML4Modelica, these attributes are defined in ModelicaReal, a specialization of the primitive type
SysML::Blocks::Real. As a result of this specialization, ModelicaReal, inherits the attributes: quantityKind and unit,
which correspond to the Modelica attributes quantity and unit, respectively. Additional attributes are listed below.

Attributes
•displayUnit: String [0..1]
In addition to the actual units, a ModelicaReal can have a units used for display in a tool's graphical user inter-
face or in plots. These units are defined in this attribute as a string.

•min: Real [1]
The minimum value the ModelicaReal variable can take on. Default value is -Inf.

 SysML-Modelica Transformation, Beta 2 19

•max: Real [1]
The maximum value the ModelicaReal variable can take on. Default value is +Inf.

•start: Real [1]
The value of the ModelicaReal variable at the beginning of a simulation. The meaning of this variable de-
pends on the value of the attribute fixed. If fixed=false, then it is to be interpreted as an initial guess
from which may be deviated in order to satisfy all the algebraic constraints. If fixed=true, then the vari-
able is required to equal its start value. Default value is 0.

•fixed: Boolean [1]
This attribute qualifies the meaning of the attribute start. If fixed=false, then start is to be inter-
preted as an initial guess from which may be deviated in order to satisfy all the algebraic constraints. If
fixed=true, then the variable is required to equal its start value. Default value is true for parameters
and constants, and false for all other variables.

•nominal: Real [0..1]
The value of this attribute may be used by the solver for scaling purposes.

•stateSelect: StateSelect [1]
The value of this attribute determines how a Modelica solver should select state variables for the system of
Differential Algebraic Equations (Modelica Spec. 3.1, Section 4.8.7.1). Default value is StateSelect.default.

Associations

No additional associations.

Constraints

No additional constraints.

9.3 ModelicaInteger
Instantiation

•SysML4Modelica::Classes::ModelicaType

Generalizations
•SysML::Blocks::Integer

Abstract Syntax
•See Figure 7.

Description

The predefined type Integer in Modelica includes a variety of attributes besides its actual value (Modelica Spec. 3.1,
Section 4.8.2). In SysML4Modelica, these attributes are defined in ModelicaInteger, a specialization of the primitive
type SysML::Blocks::Integer. As a result of this specialization, ModelicaInteger, inherits the attribute: quantityKind,
which correspond to the Modelica attribute quantity. Additional attributes are listed below.

Attributes
•min: Integer [1]
The minimum value the ModelicaInteger variable can take on. Default value is -Inf.

•max: Integer [1]
The maximum value the ModelicaInteger variable can take on. Default value is +Inf.

•start: Integer [1]
The value of the ModelicaInteger variable at the beginning of a simulation. The meaning of this variable de-
pends on the value of the attribute fixed. If fixed=false, then it is to be interpreted as an initial guess
from which may be deviated in order to satisfy all the algebraic constraints. If fixed=true, then the vari-
able is required to equal its start value. Default value is 0.

 20 SysML-Modelica Transformation, Beta 2

•fixed: Boolean [1]
This attribute qualifies the meaning of the attribute start. If fixed=false, then start is to be inter-
preted as an initial guess from which may be deviated in order to satisfy all the algebraic constraints. If
fixed=true, then the variable is required to equal its start value. Default value is true for parameters
and constants, and false for all other variables.

Associations

No additional associations.

Constraints

No additional constraints.

9.4 ModelicaBoolean
Instantiation

•SysML4Modelica::Classes::ModelicaType

Generalizations
•SysML::Blocks::Boolean

Abstract Syntax
•See Figure 7.

Description

The predefined type Boolean in Modelica includes a variety of attributes besides its actual value (Modelica 3.1, section
4.8.3). In SysML4Modelica, these attributes are defined in ModelicaBoolean, a specialization of the primitive type
SysML::Blocks::Boolean. As a result of this specialization, ModelicaBoolean, inherits the attribute, quantityKind, which
correspond to the Modelica attribute quantity. Additional attributes are listed below.

Attributes
•start: Boolean [1]
The value of the ModelicaBoolean variable at the beginning of a simulation. The meaning of this variable de-
pends on the value of the attribute fixed. If fixed=false, then it is to be interpreted as an initial guess
from which may be deviated in order to satisfy all the algebraic constraints. If fixed=true, then the vari-
able is required to equal its start value. Default value is false.

•fixed: Boolean [1]
This attribute qualifies the meaning of the attribute start. If fixed=false, then start is to be inter-
preted as an initial guess from which may be deviated in order to satisfy all the algebraic constraints. If
fixed=true, then the variable is required to equal its start value. Default value is true for parameters
and constants, and false for all other variables.

Associations

No additional associations.

Constraints

No additional constraints.

9.5 ModelicaString
Instantiation

•SysML4Modelica::Classes::ModelicaType

Generalizations
•SysML::Blocks::String

 SysML-Modelica Transformation, Beta 2 21

Abstract Syntax
•See Figure 7.

Description

The predefined type String in Modelica includes a variety of attributes besides its actual value (Modelica 3.1, section
4.8.4). In SysML4Modelica, these attributes are defined in ModelicaString, a specialization of the primitive type
SysML::Blocks::String. As a result of this specialization, ModelicaString inherits the attribute, quantityKind, which cor-
respond to the Modelica attributes quantity. In addition, a start value can be specified.

Attributes
•start: String [1]
The value of the ModelicaString variable at the beginning of a simulation. Default value is String.Empty.

Associations

No additional associations.

Constraints

No additional constraints.

9.6 ModelicaStateSelect
Instantiation

•SysML4Modelica::Classes::ModelicaType

Generalizations

No generalizations.

Abstract Syntax
•See Figure 7.

Description

The predefined type ModelicaStateSelect is the type of the attribute stateSelect of ModelicaReal. It is an enumer-
ation used to provide guidance to the Modelica solver tool for selecting appropriate state variables (See Modelica Spec.
3.1, section 4.8.7.1).

Associations

No additional associations.

Constraints

No additional constraints.

9.7 ModelicaExternalObject
Instantiation

•SysML4Modelica::Classes::ModelicaType

Generalizations

No generalizations.

Abstract Syntax
•See Figure 7.

Description

The predefined type ModelicaExternalObject is an abstract type used to indicate that a ModelicaType that spe-
cializes it refers to an object defined in an external language such as C or FORTRAN (See Modelica Spec. 3.1, section
12.9.7 for details).

 22 SysML-Modelica Transformation, Beta 2

Associations

No additional associations.

Constraints
[1]The value of the attribute isAbstract (and hence isPartial) must be true.

10 Component Declarations
10.1 Overview
In the Modelica language, instances (or usages) of a class are referred to as “Components”. In SysML, these can be
mapped to Block Properties, such as Value Property, Part Property, or Port.3 Modelica does not distinguish explicitly
between Value Properties, Parts, or Ports. Instead, whether a component is interpreted as a Value Property, Part or Port
depends on the restricted type to which the usage has been typed. If the usage is of restricted type class, model, or
block then it is mapped to a «modelicaPart»; if it is of restricted type connector then it is mapped to a «modeli-
caPort»; and if it is of restricted type record or type then it is mapped to «modelicaValueProperty». In addition, the
stereotype «modelicaFunctionParameter» is introduced to represent components of restricted type record or type that
are used in a function (this is necessary because a Modelica function is mapped to a SysML FunctionBehavior which
has parameters rather than properties). The restricted types package and function are not considered here because
they cannot be instantiated.

Depending on the type of restricted type, a Modelica Component declaration allows for a variety of options (modifica-
tions or additional specifications). These additional options are captured as attributes of the corresponding SysML4Mod-
elica stereotypes, as show in Figure 8. To define the possible values these options can assume, several enumerations are
defined, as shown in Figure 9. The following production rules define Modelica Components declarations:

component_clause:
 type_prefix type_specifier [array_subscripts] component_list
type_prefix :
 [flow]
 [discrete | parameter | constant] [input | output]
type_specifier :
 name
component_list :
 component_declaration { "," component_declaration }
component_declaration :
 declaration [conditional_attribute] comment
conditional_attribute:
 if expression
declaration :
 IDENT [array_subscripts] [modification]

3 Note that Modelica does not have the equivalent of a reference property — properties are never shared.

 SysML-Modelica Transformation, Beta 2 23

Figure 8: Package diagram with an overview of the stereotypes for Modelica Components

Figure 9: Package diagram with enumerations used in Modelica Component definitions

Table 2:The applicable attributes for Modelica Components.
Attribute Name «modelicaValueProperty» «modelicaPart» «modelicaPort»

visibility • •
causality • •

variability •
flowFlag •

scope • •
conditionalExpression • • •

isFinal • • •
modification • • •
isReplaceable • • •

declarationEquation •
arraySize • • •

10.2 «modelicaValueProperty»
Extensions

•Property (from UML4SysML)

 24 SysML-Modelica Transformation, Beta 2

Abstract Syntax

•See Figure 8.

Description

If a Modelica Component is of restricted type record or type then it is mapped to a «modelicaValueProperty», which
is the equivalent of a Value Property in SysML.

Attributes
•visibility: VisibilityKind [1]
This attribute is inherited from the meta-class Property. In the context of the SysML4Modelica profile, it is
limited to the values public or protected. A protected «modelicaValueProperty» cannot be modified or re-
placed in specializations or modifications. The members of a protected «modelicaValueProperty» cannot be
accessed using the dot-notation. Default value is public.

•causality: ModelicaCausalityKind [1]
A «modelicaValueProperty» can be defined as being an input or output (Modelica Spec. 3.1, Section 4.4.2.2).
Default value is none, which means that the property is neither an input or output.

•variability: ModelicaVariabilityKind [1]
A «modelicaValueProperty» can be defined as being constant, parameter, discrete or continuous (Modelica
Spec. 3.1, section 4.4.3 and 4.4.4). Default value is continuous.

•flowFlag: ModelicaFlowFlagKind [1]
This attribute can only be applied to variables that are a subtype of ModelicaReal. It can only be used inside
«modelicaConnector» or to define a Type. The attribute causality must be null when flowFlag=flow or
stream. Default value is none.

•scope: ModelicaScopeKind [1]
A Modelica element declared with the prefix outer references an element instance with the same name but using the
prefix inner, which is nearest in the enclosing instance hierarchy of the outer element declaration (Modelica Spec. 3.1,
Section 5.4). Default value is none.

•conditionalExpression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false.
Only if the expression evaluates to true is the the corresponding «modelicaValueProperty» instantiated (Mod-
elica Spec. 3.1, Section 4.4.5).

•modification: String [0..*]
A «modelicaValueProperty» may have a type that is locally modified. Rather than capturing the detailed semantics of
such modifications in the SysML4Modelica profile, currently, the modifications are only captured as a set of strings in
the Modelica syntax; each string corresponds to a single modification of a component declaration of the modified class
(Modelica Spec. 3.1, Section 7.2). Default value is null.

•isReplaceable: Boolean [1]
A «modelicaValueProperty» may be defined as replaceable. One can then redeclare such a «modelicaValue-
Property» in extended classes or in modifications (Modelica Spec. 3.1, Section 7.3). Default value is false.

•declarationEquation: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to the same type as
the «modelicaValueProperty» itself. A declaration equation refers to the shorthand notation in Modelica in
which an equation corresponding to a component is defined in the equation section. The value of the attribute
is the right-hand-expression of the equations. The “=” sign is omitted, i.e., it is implicit.

•/isFinal: Boolean [1]

 SysML-Modelica Transformation, Beta 2 25

A Modelica element declared with the prefix final cannot be modified in redeclarations or modifications (Modelica
Spec. 3.1, Section 7.2.6). Default value is false. This is derived from isLeaf.

•arraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, each of which must be a Modelica expressions that evaluates to an
integer. The ith element in the ordered list corresponds to size of the the multi-dimensional array in the ith di-
mension.

Associations

No additional associations.

Constraints

No additional constraints.

10.3 «modelicaPart»
Extensions

•Property (from UML4SysML)

Abstract Syntax

•See Figure 8.

Description

If a Modelica Component is of restricted type class, model, or block, it is mapped to a «modelicaPart», which is the
equivalent of a Part Property in SysML.

Attributes
•visibility: VisibilityKind [1]
This attribute is inherited from the meta-class Property. In the context of the SysML4Modelica profile, it is
limited to the values public or protected. A protected «modelicaPart» cannot be modified or replaced in spe-
cializations or modifications. The members of a protected «modelicaPart» cannot be accessed using the dot-
notation. Default value is public.

•scope: ModelicaScopeKind [1]
A Modelica element declared with the prefix outer references an element instance with the same name but using the
prefix inner, which is nearest in the enclosing instance hierarchy of the outer element declaration (Modelica Spec. 3.1,
Section 5.4). Default value is none.

•conditionalExpression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false.
Only if the expression evaluates to true is the the corresponding «modelicaPart» instantiated (Modelica Spec.
3.1, Section 4.4.5). Default value is null.

•modification: String [0..*]
A «modelicaPart» may have a type that is locally modified. Rather than capturing the detailed semantics of such modi-
fications in the SysML4Modelica profile, currently, the modifications are only captured as a set of strings in the Modelica
syntax; each string corresponds to a single modification of a component declaration of the modified class (Modelica
Spec. 3.1, Section 7.2). Default value is null.

•isReplaceable: Boolean [1]
A «modelicaPart» may be defined as replaceable. One can then redeclare such a «modelicaPart» in extended
classes or in modifications (Modelica Spec. 3.1, Section 7.3). Default value is false.

•/isFinal: Boolean [1]

 26 SysML-Modelica Transformation, Beta 2

A Modelica element declared with the prefix final cannot be modified in redeclarations or modifications (Modelica
Spec. 3.1, Section 7.2.6). Default value is false. This is derived from isLeaf.

•arraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, each of which must be a Modelica expressions that evaluates to an
integer. The ith element in the ordered list corresponds to size of the the multi-dimensional array in the ith di-
mension. The default value is null.

Associations

No additional associations.

Constraints

No additional constraints.

10.4 «modelicaPort»
Extensions

•Port (from UML4SysML)

Abstract Syntax
•See Figure 8.

Description

If a Modelica Component is of restricted type connector, it is mapped to a «modelicaPort», which is the equivalent of
a Port Property in SysML.

Attributes
•causality: ModelicaCausalityKind [1]
A «modelicaPort» can be defined as being an input or output (Modelica Spec. 3.1, Section 4.4.2.2). Default
value is null, which means that the property is neither an input or output. Default value is none.

•scope: ModelicaScopeKind [1]
A Modelica element declared with the prefix outer references an element instance with the same name but using the
prefix inner, which is nearest in the enclosing instance hierarchy of the outer element declaration (Modelica Spec. 3.1,
Section 5.4). Default value is none.

•conditionalExpression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false.
Only if the expression evaluates to true is the the corresponding «modelicaPort» instantiated (Modelica Spec.
3.1, Section 4.4.5).

•/isFinal: Boolean [1]
A Modelica element declared with the prefix final cannot be modified in redeclarations or modifications (Modelica
Spec. 3.1, Section 7.2.6). Default value is false. This is derived from isLeaf.

•modification: String [0..*]
A «modelicaPort» may have a type that is locally modified. Rather than capturing the detailed semantics of such modi-
fications in the SysML4Modelica profile, currently, the modifications are only captured as a set of strings in the Modelica
syntax; each string corresponds to a single modification of a component declaration of the modified class (Modelica
Spec. 3.1, Section 7.2).

•isReplaceable: Boolean [1]
A «modelicaPort» may be defined as replaceable. One can then redeclare such a «modelicaPort» in
extended classes or in modifications (Modelica Spec. 3.1, Section 7.3). Default value is false.

 SysML-Modelica Transformation, Beta 2 27

•arraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, each of which must be a Modelica expressions that evaluates to an
integer. The ith element in the ordered list corresponds to size of the the multi-dimensional array in the ith di-
mension.

Associations

No additional associations.

Constraints

No additional constraints.

10.5 «modelicaFunctionParameter»
Extensions

•Parameter (from UML4SysML)

Abstract Syntax

Figure 10: Definition of the «modelicaFunctionParameter» stereotype

Description

A Modelica restricted class function, can also contain can contain Modelica component declarations. These delcarations
must be of either restricted type «modelicaType» or «modelicaRecord». Because «modelicaFunction» does not derive
from «block» (as all the other restricted classes do), the stereotype «modelicaValueProperty» cannot be applied here. In-
stead, an equivalent (but more restricted) stereotype for functions is created: «modelicaFunctionParameter».

Attributes
•causality: ModelicaCausalityKind [1]
A «modelicaFunctionParameter» can be defined as being an input or output (Modelica Spec. 3.1, Section
4.4.2.2). Default value is input.

•/isFinal: Boolean [1]
A Modelica element declared with the prefix final cannot be modified in redeclarations or modifications (Modelica
Spec. 3.1, Section 7.2.6). Default value is false. This is derived from isLeaf.

•modification: String [0..*]
A «modelicaFunctionParameter» may have a type that is locally modified. Rather than capturing the detailed semantics
of such modifications in the SysML4Modelica profile, currently, the modifications are only captured as a set of strings in
the Modelica syntax; each string corresponds to a single modification of a component declaration of the modified class
(Modelica Spec. 3.1, Section 7.2).

•isReplaceable: Boolean [1]
A «modelicaFunctionParameter» may be defined as replaceable. One can then redeclare such a

 28 SysML-Modelica Transformation, Beta 2

«modelicaPort» in extended classes or in modifications (Modelica Spec. 3.1, Section 7.3). Default value is
false.

•declarationEquation: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to the same type as
the «modelicaFunctionParameter» itself. A declaration equation refers to the shorthand notation in Modelica
in which an equation corresponding to a component is defined in the equation section. The value of the attrib-
ute is the right-hand-expression of the equations. The “:=” sign is omitted, i.e., it is implicit.

•arraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, each of which must be a Modelica expressions that evaluates to an
integer. The ith element in the ordered list corresponds to size of the the multi-dimensional array in the ith di-
mension.

Associations

No additional associations.

Constraints

No additional constraints.

11 Equation and Algorithm Sections
11.1 Overview
Equations and Algorithms are the main Modelica constructs for defining behavior of Modelica classes. Modelica distin-
guishes between declarative equations, which are organized in equation sections (Modelica Spec. 3.1, Chapter 8), and
imperative algorithms, which are organized in algorithm sections (Modelica Spec. 3.1, Chapter 11). The Modelica re-
stricted classes, class, model, and block, can each have zero or more equation and algorithm sections. Modelica
functions can only have one single algorithm sections (and no equations).

The equations and expressions in equation and algorithm sections are enforced by the solver in every time step --- they
must hold at every moment in time. In addition, one can specify equations or expressions that only need do hold at the
start of the simulation; they are organized in initial equation and initial algorithm sections.

Figure 11: Package diagram with Equation and Algorithm definitions

11.2 «modelicaEquation»
Extensions

•Constraint (from UML4SysML)

 SysML-Modelica Transformation, Beta 2 29

Abstract Syntax
•See Figure 11.

Description

Modelica equation sections contain declarative equations that must hold at every moment in time. Each model (of re-
stricted class types class, model or block) may contain zero or more equation sections. Given that the equations in
these equation sections are declarative, they could be combined into a single section (note: the order in which declarative
equations are defined does not matter). However, the SysML4Modelica mapping allows for each equation section to be
modeled by a separate «modelicaEquation».

Modelica equation sections may also contain connect statements (Modelica Spec., Chapter 9). Although connect
statements are treated just like other equations in Modelica, they require special attention in SysML4Modelica. Refer to
Section 30 from details on «modelicaConnection»s.

Attributes
•isInitial: Boolean [1]
This attribute is true when the «modelicaEquation» represents an initial equation section in Modelica.
The default value is false.

Associations

No additional associations.

Constraints

No additional constraints

11.3 «modelicaAlgorithm»
Extensions

•Behavior (from UML4SysML)

Abstract Syntax
•See Figure 11.

Description

Modelica algorithm sections contain imperative statements that are executed at every moment in time. Each model
(of restricted class types class, model or block) may contain zero or more algorithm sections. In addition, a func-
tion contains at most one algorithm section. Each algorithm section is modeled by a separate «modelicaAlgorithm».
To capture the imperative nature of algorithm sections, a «modelicaAlgorithm» extends UML4SysML::Behavior. Only
opaque behaviors are currently supported and the algorithm statements are expressed in Modelica syntax in the Body of
the «modelicaAlgorithm».

Attributes
•isInitial: Boolean [1]
This attribute is true when the «modelicaAlgorithm» represents an initial algorithm section in Model-
ica. The default value is false.

Associations

No additional associations.

Constraints

No additional constraints

11.4 «modelicaConnection»
Extensions

•Connector (from UML4SysML)

 30 SysML-Modelica Transformation, Beta 2

Abstract Syntax
•See Figure 11.

Description

In Modelica, a connection between two ports typically has Kirchhoff semantics (i.e., across variables are equal,
through variables sum to zero), or an output-to-input binding in the case of a signal connection (See Modelica Spec. 3.1,
Chapter 9). To capture these same semantics succinctly, a «modelicaConnection» is used. The two arguments of the con-
nect statement correspond to the two ends of the «modelicaConnection». Note that the use of a «modelicaConnection» is
optional. The alternative is to represent the connection using a connect statement in Modelica syntax in a «model-
icaEquation». If a «modelicaConnection» is used, then the corresponding connect statement must be removed from the
«modelicaEquation».

As for all equations, Modelica allows connect statements to be used in a parametric fashion, for instance, inside a for
loop. Since the parameter values are only resolved at the time of compilation of the Modelica model, a parametrically
defined connect statement cannot be modeled explicitly in SysML4Modelica. The alternative is to represent such con-
nect statements in Modelica syntax in a «modelicaEquation».

Attributes

No additional attributes

Associations

No additional associations.

Constraints
[1]The start and end of a «modelicaConnection» must be a «modelicaPort».

12 Other Related Constructs
12.1 «modelicaSimulation»
Generalizations

•Block (from SysML)

Abstract Syntax

Figure 12: Package diagram with definitions of Modelica-related constructs

 SysML-Modelica Transformation, Beta 2 31

Description

A «modelicaSimulation» is not a Modelica language construct. However, it is introduced in order to distinguish between
the model and its simulation. A simulation refers to the solution of the initial value problem: the integration of the model
over a particular time period starting from a particular initial condition. Since the initial conditions are already defined in
the model itself, the only additional information that needs to be provided is the time over which to integrate and the
properties of the solver to be used.

Attributes
•startTime: Real [1]
The time at which the simulation starts. Default value is 0.

•stopTime: Real [1]
The time at which the simulation stops. Default value is 1.

•model: «modelicaClassDefinition» [1]
The instance of a specialization of «modelicaClassDefinition» that is to be solved. Default value is null.

Associations

No additional associations.

Constraints
No additional constraints.

12.2 «modelicaAnnotation»
Extension

•Comment (from UML4SysML)

Abstract Syntax
•See Figure 12.

Description

Any Modelica language construct can be annotated with information about its graphical representation. In addition,
guidelines for the compiler can be specified. In SysML4Modelica, these annotations are represented in Modelica syntax
as «modelicaAnnotation»s.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints
No additional constraints.

 32 SysML-Modelica Transformation, Beta 2

Part III - Modelica Abstract Syntax4

13 Modelica Meta-Modeling Approach
The abstract syntax (AST = abstract syntax tree) of Modelica is not standardized by the Modelica Association, only the
textual syntax is. The abstract syntax described in this document is therefore only one possible definition, defined in an
extended subset of Modelica (also known as MetaModelica5) and used in the OpenModelica specification/implementa-
tion of Modelica which originated as a Structural Operational Semantics/Natural Semantics specification (first version
from 1998). For the purpose of this transformation specification, the Modelica abstract syntax meta-model defined in
this Part of the specification is normative. This allows for an unambiguous mapping between the SysML4Modelica pro-
file and the Modelica language.

Given the structure of the Modelica language as described in this document, the differences in abstract syntax between
the different Modelica tools are likely to be small. Any difference in terminology or minor differences in structure can be
handled with tool-specific transformations that will be performed on the ASTs.

The abstract syntax used in OpenModelica has been designed with several goals in mind:

•Complete representation of all Modelica language constructs.
•Reconstruction of the source code from the AST.
•Use for semantic specification, type checking, and compilation.

Syntax type classes are defined using the uniontype construct. A union type is the union of all the record types it contains.
Recursive references to a union type are allowed. Components with optional values are declared at instances of the Op-
tion<...> parametrized type constructor. In a few cases the tuple<type1,type2,...> type constructor is used. A tuple type can
be described as an anonymous record type, where the record type name and the field names are not defined.

In the following all MetaModelica classes (including a short textual description) are listed (version Oct.20096 from the
OpenModelica SVN). This definition is translated into an OMG MOF-based description (see http://www.omg.org/mof/)
using the Eclipse EMF (http://www.eclipse.org/emf/) implementation of a subset of the OMG MOF standard. Please see
the .ecore and .ecorediag files for details and diagrams.

The mapping between the MetaModelica and the Eclipse EMF (ecore) is defined as follows:

–MetaModelica package is translated to EPackage

–MetaModelica uniontype is translated to EClass (isAbstract)

–MetaModelica record is translated to EClass which inherits from the respective EClass that represents the uniontype)

–MetaModelica record attributes of primitive type are translated to EClass attributes of primitive type

–MetaModelica record attributes of composite type are translated to EClass EReference to the respective EClass

–MetaModelica types are expanded and translated into EClasses

–MetaModelica tuples are expanded and translated into EClasses with the prefix “tuple_”

–MetaModelica Option<...> implies the multiplicity 0..1

4 Part III of the SysML-Modelica Transformation Specification is non-normative.
5 MetaModelica corresponds to OMG MOF
6 Note that all MetaModelica-specific classes that are not used for the definition of Modelica language are removed.

 SysML-Modelica Transformation, Beta 2 33

http://www.eclipse.org/emf/
http://www.omg.org/mof/

–MetaModelica list<...> implies the multiplicity 0..*

–MetaModelica type Ident = String; is not translated. EString is used directly.

–In order to avoid name clashes between EClasses representing uniontype or record each EClass that represents a uni-
ontype was given the prefix “u”.

–In order to improve the structure and readability for each MetaModelica uniontype an EPackage is created with the
same name as the uniontype. This EPackage includes the EClass representing the uniontype and EClasses representing
the records of the uniontype.

Figure 13 shows an example of the translation for the MetaModelica uniontype “program”. The MetaModelica code, in-
cluding comments and references to the Modelica Specification, is provided in the following sections.

Figure 13: The translation of a MetaModelica construct in Eclipse.

14 Modelica Meta-Model Constructs
14.1 Model Structure Definition

14.1.1 Program
public uniontype Program
“Programs, the top level construct. A program is simply a list of class definitions declared at top level in the source file,
combined with a within statement that indicates the hierarchical position of the program."

 record PROGRAM "PROGRAM, the top level construct"
 list<Class> classes "List of classes" ;
 Within within_ "Within clause" ;
 end PROGRAM;

 34 SysML-Modelica Transformation, Beta 2

end Program;

14.1.2 Within
public uniontype Within "Within Clauses"
//See Modelica specification 3.1 Chapter 13.2.2.3 The within Clause.

 record WITHIN "the within clause"
 Path path "the path for within";
 end WITHIN;
 record TOP end TOP;
end Within;

14.1.3 Path
uniontype Path
"The type `'Path\'', on the other hand, is is used to store references to class names, or names inside class definitions."

 record QUALIFIED
 Ident name "name" ;
 Path path "path" ;
 end QUALIFIED;
 record IDENT
 Ident name "name" ;
 end IDENT;
 record FULLYQUALIFIED
"Used during instantiation for names that are fully qualified, i.e. the names are looked up from top scope directly like for
instance Modelica.SIunits.Voltage Note: Not created during parsing, only during instantation to speedup/simplify
lookup."

 Path path;
 end FULLYQUALIFIED;
end Path;

14.2 Class Definition

14.2.1 Class

public uniontype Class
"A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared class restriction,
and the body of the declaration."
See Modelica specification 3.1 Chapter 4.5 Class Declarations.

 record CLASS
 Ident name;
 Boolean partialPrefix "true if partial" ;
 Boolean finalPrefix "true if final" ;
 Boolean encapsulatedPrefix "true if encapsulated" ;
 Restriction restriction "Restriction" ;
 ClassDef body;
 end CLASS;
end Class;

 SysML-Modelica Transformation, Beta 2 35

14.2.2 Restriction

uniontype Restriction
"These constructors each correspond to a different kind of class declaration in Modelica, except the last four, which are
used for the predefined types. The parser assigns each class declaration one of the restrictions, and the actual class defini-
tion is checked for conformance during translation. The predefined types are created in the Builtin module and are as-
signed special restrictions."
See Modelica specification 3.1 Chapter 4.6 Specialized Classes.

 record R_CLASS end R_CLASS;
 record R_MODEL end R_MODEL;
 record R_RECORD end R_RECORD;
 record R_BLOCK end R_BLOCK;
 record R_CONNECTOR "connector class" end R_CONNECTOR;
 record R_EXP_CONNECTOR "expandable connector class" end R_EXP_CONNECTOR;
 record R_TYPE end R_TYPE;
 record R_PACKAGE end R_PACKAGE;
 record R_FUNCTION end R_FUNCTION;
 record R_ENUMERATION end R_ENUMERATION;
 record R_PREDEFINED_INT end R_PREDEFINED_INT;
 record R_PREDEFINED_REAL end R_PREDEFINED_REAL;
 record R_PREDEFINED_STRING end R_PREDEFINED_STRING;
 record R_PREDEFINED_BOOL end R_PREDEFINED_BOOL;
 record R_PREDEFINED_ENUM end R_PREDEFINED_ENUM;

end Restriction;

14.2.3 ClassDef

public uniontype ClassDef
"The ClassDef type contains the definition part of a class declaration. The definition is either explicit, with a list of parts
(public, protected, equation, and algorithm), or it is a definition derived from another class or an enumeration type. For a
derived type, the type contains the name of the derived class and an optional array dimension and a list of modifica-
tions."
See Modelica specification 3.1 Chapter 4.5 Class Declarations.

 record PARTS
 list<ClassPart> classParts;
 Option<String> comment;
 end PARTS;
 record DERIVED
See Modelica specification 3.1 Chapter 4.5.1 Short Class Definitions.
 TypeSpec typeSpec "typeSpec specification includes array dimensions"
;
 ElementAttributes attributes;
 list<ElementArg> arguments;
 Option<Comment> comment;
 end DERIVED;
 record ENUMERATION
See Modelica specification 3.1 Chapter 4.8.5 Enumeration Types.
 EnumDef enumLiterals;
 Option<Comment> comment;
 end ENUMERATION;
 record OVERLOAD

 36 SysML-Modelica Transformation, Beta 2

See Modelica specification 3.1 Chapter 14 Overloaded Operators.

 list<Path> functionNames;
 Option<Comment> comment;
 end OVERLOAD;
 record CLASS_EXTENDS
See Modelica specification 3.1 Chapter 7.1 Inheritance —-Extends Clause.

 Ident baseClassName "name of class to extend" ;
 list<ElementArg> modifications "modifications to be applied to the base
class";
 Option<String> comment "comment";
 list<ClassPart> parts "class parts";
 end CLASS_EXTENDS;
 record PDER
See Modelica specification 3.1 Chapter 4.5 Class Declarations.

 Path functionName;
 list<Ident> vars "derived variables" ;
 end PDER;
end ClassDef;

14.2.4 TypeSpec

public uniontype TypeSpec
 record TPATH
 Path path;
 Option<ArrayDim> arrayDim;
 end TPATH;
 record TCOMPLEX
 Path path;
 list<TypeSpec> typeSpecs;
 Option<ArrayDim> arrayDim;
 end TCOMPLEX;
end TypeSpec;

14.2.5 EnumDef

public uniontype EnumDef
"The definition of an enumeration is either a list of literals or a colon, \':\', which defines a supertype of all enumerations"
See Modelica specification 3.1 Chapter 4.8.5 Enumeration Types.

 record ENUMLITERALS
 list<EnumLiteral> enumLiterals;
 end ENUMLITERALS;
 record ENUM_COLON end ENUM_COLON;
end EnumDef;

 SysML-Modelica Transformation, Beta 2 37

14.2.6 EnumLiteral

public uniontype EnumLiteral
"EnumLiteral, which is a name in an enumeration and an optional Comment."
See Modelica specification 3.1 Chapter 4.8.5 Enumeration Types.

 record ENUMLITERAL
 Ident literal;
 Option<Comment> comment;
 end ENUMLITERAL;
end EnumLiteral;

14.2.7 ClassPart

public uniontype ClassPart
"A class definition contains several parts. There are public and protected component declarations, type definitions and
`'extends\'' clauses, collectively called elements. There are also equation sections and algorithm sections. The EX-
TERNAL part is used only by functions which can be declared as external C or FORTRAN functions."

 record PUBLIC
See Modelica specification 3.1 Chapter 4.1 Access Control – Public and Protected Elements.

 list<ElementItem> contents;
 end PUBLIC;
 record PROTECTED
See Modelica specification 3.1 Chapter 4.1 Access Control – Public and Protected Elements.

 list<ElementItem> contents;
 end PROTECTED;

 record EQUATIONS
See Modelica specification 3.1 Chapter 8 Equations.
 list<EquationItem> contents;
 end EQUATIONS;
 record INITIALEQUATIONS
See Modelica specification 3.1 Chapter 8.6 Initialization, initial equation, and initial algorithm.

 list<EquationItem> contents;
 end INITIALEQUATIONS;
 record ALGORITHMS
See Modelica specification 3.1 Chapter 11 Statements and Algorithm Sections.

 list<AlgorithmItem> contents;
 end ALGORITHMS;
 record INITIALALGORITHMS
See Modelica specification 3.1 Chapter 8.6 Initialization, initial equation, and initial algorithm.

 list<AlgorithmItem> contents;
 end INITIALALGORITHMS;

 38 SysML-Modelica Transformation, Beta 2

 record EXTERNAL
See Modelica specification 3.1 Chapter 12.9 External Function Interface.

 ExternalDecl externalDecl "externalDecl" ;
 Option<Annotation> annotation_ "annotation" ;
 end EXTERNAL;
end ClassPart;

14.2.8 ExternalDecl

public uniontype ExternalDecl
"Declaration of an external function call. – ExternalDecl"
See Modelica specification 3.1 Chapter 12.9 External Function Interface.

 record EXTERNALDECL
 Option<Ident> funcName "The name of the external function" ;
 Option<String> lang "Language of the external function" ;
 Option<ComponentRef> output_ "output parameter as return value" ;
 list<Exp> args "only positional arguments, i.e. expression
list" ;
 Option<Annotation> annotation_ ;
 end EXTERNALDECL;
end ExternalDecl;

14.2.9 ElementItem

public uniontype ElementItem
"An element item is either an element or an annotation"

 record ELEMENTITEM
 Element element;
 end ELEMENTITEM;
 record ANNOTATIONITEM
 Annotation annotation_ ;
 end ANNOTATIONITEM;
end ElementItem;

14.2.10 Element

public uniontype Element
"Elements: The basic element type in Modelica"

 record ELEMENT
 Boolean finalPrefix;
 Option<RedeclareKeywords> redeclareKeywords "replaceable, redeclare" ;
 InnerOuter innerOuter "inner/outer" ;
 Ident name;
 ElementSpec specification "Actual element specification" ;
 Option<ConstrainClass> constrainClass "constrainClass ; only valid for
classdef and component" ;
 end ELEMENT;

 SysML-Modelica Transformation, Beta 2 39

 record DEFINEUNIT
 Ident name;
 list<NamedArg> args;
 end DEFINEUNIT;
 record TEXT
 Option<Ident> optName "optName : optional name of text, e.g. model with syn-
tax error. We need the name to be able to browse it..." ;
 String string;
 Info info;
 end TEXT;
end Element;

14.2.11 InnerOuter

public uniontype InnerOuter
"One of the keyword inner and outer CAN be given to reference an inner or outer component. Thus there are three dis-
joint possibilities."
See Modelica specification 3.1 Chapter 5.4 “Instance Hierarchy Name Lookup of Inner Declarations” for explana-
tions of inner/outer.

 record INNER end INNER;
 record OUTER end OUTER;
 record INNEROUTER end INNEROUTER;
 record UNSPECIFIED end UNSPECIFIED;
end InnerOuter;

14.2.12 ComponentRef

uniontype ComponentRef
"A component reference is the fully or partially qualified name of a component. subscript pairs. - Component references
and paths- -It is represented as a list of identifier"

 record CREF_QUAL
 Ident name "name" ;
 list<Subscript> subScripts "subScripts" ;
 ComponentRef componentRef "componentRef" ;
 end CREF_QUAL;
 record CREF_IDENT
 Ident name "name" ;
 list<Subscript> subscripts "subscripts" ;
 end CREF_IDENT;
 record WILD end WILD;
end ComponentRef;

14.2.13 Subscript

 40 SysML-Modelica Transformation, Beta 2

uniontype Subscript
"The Subscript uniontype is used both in array declarations and component references. This might seem strange, but it is
inherited from the grammar. The NOSUB constructor means that the dimension size is undefined when used in a declar-
ation, and when it is used in a component reference it means a slice of the whole dimension. - Subscripts"
See Modelica specification 3.1 Chapter 10.5 Array Indexing.

 record NOSUB end NOSUB;
 record SUBSCRIPT
 Exp subScript "subScript" ;
 end SUBSCRIPT;
end Subscript;

14.2.14 ConstrainClass

public uniontype ConstrainClass
"Constraining type, must be extends".
See Modelica specification 3.1 Chapter 7.3.2 Constraining Type.

 record CONSTRAINCLASS
 ElementSpec elementSpec "elementSpec ; must be extends" ;
 Option<Comment> comment "comment" ;
 end CONSTRAINCLASS;
end ConstrainClass;

14.2.15 ElementSpec

public uniontype ElementSpec
"An element is something that occurs in a public or protected section in a class definition. There is one constructor in the
`'ElementSpec\'' type for each possible element type. There are class definitions (`'CLASSDEF\''), `'extends\'' clauses
(`'EXTENDS\'') and component declarations (`'COMPONENTS\''). As an example, if the element `'extends TwoPin;\''
appears in the source, it is represented in the AST as `'EXTENDS(IDENT(\"TwoPin\"),{})\''."

 record CLASSDEF
 Boolean replaceable_ "replaceable" ;
 Class class_ "class" ;
 end CLASSDEF;
 record EXTENDS
See Modelica specification 3.1 Chapter 7.1 Inheritance — - Extends Clause.

 Path path "path" ;
 list<ElementArg> elementArg "elementArg" ;
 Option<Annotation> annotationOpt "optional annotation";
 end EXTENDS;
 record IMPORT
See Modelica specification 3.1 Chapter 13.2.1 Importing Definitions from a Package.

 Import import_ "import" ;
 Option<Comment> comment "comment" ;
 end IMPORT;
 record COMPONENTS

 SysML-Modelica Transformation, Beta 2 41

 ElementAttributes attributes "attributes" ;
 TypeSpec typeSpec "typeSpec" ;
 list<ComponentItem> components "components" ;
 end COMPONENTS;
end ElementSpec;

14.3 Import
public uniontype Import
"Import statements, different kinds"
 // A named import is a import statement to a variable ex;
 // NAMED_IMPORT("SI",Absyn.QUALIFIED("Modelica",Absyn.IDENT("SIunits")));
See Modelica specification 3.1 Chapter 13.2.1 Importing Definitions from a Package.

 record NAMED_IMPORT
 Ident name "name" ;
 Path path "path" ;
 end NAMED_IMPORT;
 record QUAL_IMPORT
 Path path "path" ;
 end QUAL_IMPORT;
 record UNQUAL_IMPORT
 Path path "path" ;
 end UNQUAL_IMPORT;
end Import;

14.4 Annotation and Comments

14.4.1 Annotation

public uniontype Annotation
"An Annotation is a class_modification.- Annotation"
See Modelica specification 3.1 Chapter 17 Annotations.

 record ANNOTATION
 list<ElementArg> elementArgs "elementArgs" ;
 end ANNOTATION;
end Annotation;

14.4.2 Comment

public uniontype Comment
See Modelica specification 3.1 Chapter 2.2 Comments.

 record COMMENT
 Option<Annotation> annotation_ "annotation" ;
 Option<String> comment "comment" ;
 end COMMENT;
end Comment;

 42 SysML-Modelica Transformation, Beta 2

14.5 Component Definition

14.5.1 ComponentItem

public uniontype ComponentItem
"Collection of component and an optional comment"
See Modelica specification 3.1 Chapter 4.4.1 Syntax and Examples of Component Declarations.

 record COMPONENTITEM
 Component component "component" ;
 Option<ComponentCondition> condition "condition" ;
 Option<Comment> comment "comment" ;
 end COMPONENTITEM;
end ComponentItem;

14.5.2 ComponentCondition

public type ComponentCondition = Exp
"A componentItem can have a condition that must be fulfilled if the component should be instantiated." ;

14.5.3 Component

public uniontype Component
"Some kind of Modelica entity (object or variable)"

 record COMPONENT
 Ident name "name" ;
 ArrayDim arrayDim "arrayDim ; Array dimensions, if any" ;
 Option<Modification> modification "modification ; Optional modification" ;
 end COMPONENT;
end Component;

14.5.4 ElementAttributes

public uniontype ElementAttributes
"Component attributes"
See Modelica specification 3.1 Chapter 4.4.1 Syntax and Examples of Component Declarations.

 record ATTR
 Boolean flowPrefix "flow" ;
 Boolean streamPrefix "stream" ;
 Variability variability "variability ; parameter, constant etc." ;
 Direction direction "direction" ;
 ArrayDim arrayDim "arrayDim" ;
 end ATTR;
end ElementAttributes;

14.5.5 Variability

public uniontype Variability
See Modelica specification 3.1 Chapter 3.8 Variability of Expressions.

 SysML-Modelica Transformation, Beta 2 43

 record VAR end VAR;
 record DISCRETE end DISCRETE;
 record PARAM end PARAM;
 record CONST end CONST;
end Variability;

14.5.6 Direction

public uniontype Direction
See Modelica specification 3.1 Chapter 4.4.1 Syntax and Examples of Component Declarations and 4.4.2.2 Prefix
Rules.

 record INPUT end INPUT;
 record OUTPUT end OUTPUT;
 record BIDIR end BIDIR;
end Direction;

14.5.7 ArrayDim

public type ArrayDim = list<Subscript>
"Component attributes are properties of components which are applied by type prefixes. As an example, declaring a
component as `input Real x;\' will give the attributes `ATTR({},false,VAR,INPUT)\'. Components in Modelica can be
scalar or arrays with one or more dimensions. This type is used to indicate the dimensionality of a component or a type
definition. Array dimensions" ;

See Modelica specification 3.1 Chapter 10.5 Array Indexing.

14.6 Modifications and Redeclarations

14.6.1 Modification

public uniontype Modification
"Modifications are described by the `Modification\' type. There are two forms of modifications: redeclarations and com-
ponent modifications. - Modifications"
See Modelica specification 3.1 Chapter 7.2 Modifications.

 record CLASSMOD
 list<ElementArg> elementArgLst;
 Option<Exp> expOption;
 end CLASSMOD;
end Modification;

14.6.2 ElementArg

public uniontype ElementArg
"Wrapper for things that modify elements, modifications and redeclarations"

 record MODIFICATION
See Modelica specification 3.1 Chapter 7.2 Modifications.

 Boolean finalItem "finalItem" ;
 Each each_ "each" ;
 ComponentRef componentRef "componentRef" ;

 44 SysML-Modelica Transformation, Beta 2

 Option<Modification> modification "modification" ;
 Option<String> comment "comment" ;
 end MODIFICATION;
 record REDECLARATION
See Modelica specification 3.1 Chapter 7.3 Redeclaration.

 Boolean finalItem "finalItem" ;
 RedeclareKeywords redeclareKeywords "redeclare or replaceable " ;
 Each each_ "each" ;
 ElementSpec elementSpec "elementSpec" ;
 Option<ConstrainClass> constrainClass "class definition or declaration" ;
 end REDECLARATION;
end ElementArg;

14.6.3 RedeclareKeywords

public uniontype RedeclareKeywords
"The keywords redeclare and replacable can be given in three different ckombinations, each one by themselvesthemself
or the both combined."
See Modelica specification 3.1 Chapter 7.3 Redeclaration.

 record REDECLARE end REDECLARE;
 record REPLACEABLE end REPLACEABLE;
 record REDECLARE_REPLACEABLE end REDECLARE_REPLACEABLE;
end RedeclareKeywords;

14.6.4 Each

public uniontype Each
"The each keyword can be present in both: MODIFICATION\'s and REDECLARATION\'s. - Each attribute"
See Modelica specification 3.1 Chapter 7.2.5 Modifiers for Array Elements.

 record EACH end EACH;
 record NON_EACH end NON_EACH;
end Each;

14.7 Behavior

14.7.1 EquationItem

public uniontype EquationItem
"Several component declarations can be grouped together in one `'ElementSpec\'' by writing them on the same line in the
source. This type contains the information specific to one component."
See Modelica specification 3.1 Chapter 8 “Equations”.

 record EQUATIONITEM
 Equation equation_ "equation" ;

 SysML-Modelica Transformation, Beta 2 45

 Option<Comment> comment "comment" ;
 end EQUATIONITEM;
 record EQUATIONITEMANN
 Annotation annotation_ "annotation" ;
 end EQUATIONITEMANN;
end EquationItem;

14.7.2 AlgorithmItem

public uniontype AlgorithmItem
"Information specific for an algorithm item."
See Modelica specification 3.1 Chapter 11 “Statements and Algorithm Sections”.

 record ALGORITHMITEM
 Algorithm algorithm_ "algorithm" ;
 Option<Comment> comment "comment" ;
 end ALGORITHMITEM;
 record ALGORITHMITEMANN
 Annotation annotation_ "annotation" ;
 end ALGORITHMITEMANN;
end AlgorithmItem;

14.7.3 Equation

public uniontype Equation
"Information on one (kind) of equation, different constructors for different kinds of equations"
See Modelica specification 3.1 Chapter 8 “Equations”.

 record EQ_IF
 Exp ifExp "ifExp ; Conditional expression" ;
 list<EquationItem> equationTrueItems "equationTrueItems ; true branch" ;
 list<tuple<Exp, list<EquationItem>>> elseIfBranches "elseIfBranches" ;
 list<EquationItem> equationElseItems "equationElseItems Standard 2-side
eqn" ;
 end EQ_IF;
 record EQ_EQUALS
 Exp leftSide "leftSide" ;
 Exp rightSide "rightSide Connect stmt" ;
 end EQ_EQUALS;
 record EQ_CONNECT
 ComponentRef connector1 "connector1" ;
 ComponentRef connector2 "connector2" ;
 end EQ_CONNECT;
 record EQ_FOR
 ForIterators iterators;
 list<EquationItem> forEquations "forEquations" ;
 end EQ_FOR;
 record EQ_WHEN_E
 Exp whenExp "whenExp" ;

 46 SysML-Modelica Transformation, Beta 2

 list<EquationItem> whenEquations "whenEquations" ;
 list<tuple<Exp, list<EquationItem>>> elseWhenEquations "elseWhenEquations" ;
 end EQ_WHEN_E;
 record EQ_NORETCALL
 ComponentRef functionName "functionName" ;
 FunctionArgs functionArgs "functionArgs; fcalls without return value" ;
 end EQ_NORETCALL;

 record EQ_FAILURE
 EquationItem equ;
 end EQ_FAILURE;
end Equation;

14.7.4 Algorithm

public uniontype Algorithm
"The Algorithm type describes one algorithm statement in an algorithm section. It does not describe a whole algorithm.
The reason this type is named like this is that the name of the grammar rule for algorithm statements is `'algorithm\''."
See Modelica specification 3.1 Chapter 11 “Statements and Algorithm Sections”.

 record ALG_ASSIGN
 Exp assignComponent "assignComponent" ;
 Exp value "value" ;
 end ALG_ASSIGN;
 record ALG_IF
 Exp ifExp "ifExp" ;
 list<AlgorithmItem> trueBranch "trueBranch" ;
 list<tuple<Exp, list<AlgorithmItem>>> elseIfAlgorithmBranch "elseIfAl-
gorithmBranch" ;
 list<AlgorithmItem> elseBranch "elseBranch" ;
 end ALG_IF;
 record ALG_FOR
 ForIterators iterators;
 list<AlgorithmItem> forBody "forBody" ;
 end ALG_FOR;
 record ALG_WHILE
 Exp boolExpr "boolExpr" ;
 list<AlgorithmItem> whileBody "whileBody" ;
 end ALG_WHILE;
 record ALG_WHEN_A
 Exp boolExpr "boolExpr" ;
 list<AlgorithmItem> whenBody "whenBody" ;
 list<tuple<Exp, list<AlgorithmItem>>> elseWhenAlgorithmBranch "elseWhenAl-
gorithmBranch" ;
 end ALG_WHEN_A;
 record ALG_NORETCALL
 ComponentRef functionCall "functionCall" ;
 FunctionArgs functionArgs "functionArgs; general fcalls without return value"
;
 end ALG_NORETCALL;

 SysML-Modelica Transformation, Beta 2 47

 record ALG_RETURN
 end ALG_RETURN;
 record ALG_BREAK
 end ALG_BREAK;
end Algorithm;

14.8 Expressions

14.8.1 Exp

public uniontype Exp
"The Exp uniontype is the container of a Modelica expression. - Expressions"
See Modelica specification 3.1 Chapter 3 Operators and Expressions.

 record INTEGER
 Integer value;
 end INTEGER;
 record REAL
 Real value;
 end REAL;
 record CREF
 ComponentRef componentRef;
 end CREF;
 record STRING
 String value;
 end STRING;
 record BOOL
 Boolean value;
 end BOOL;
 record BINARY
"Binary operations, e.g. a*b"
 Exp exp1;
 Operator op;
 Exp exp2;
 end BINARY;
 record UNARY
"Unary operations, e.g. -(x)"
 Operator op "op" ;
 Exp exp "exp Logical binary operations: and, or" ;
 end UNARY;
 record LBINARY
 Exp exp1 "exp1" ;
 Operator op "op" ;
 Exp exp2 ;
 end LBINARY;
 record LUNARY

 48 SysML-Modelica Transformation, Beta 2

"Logical unary operations: not"
 Operator op "op" ;
 Exp exp "exp Relations, e.g. a >= 0" ;
 end LUNARY;
 record RELATION
 Exp exp1 "exp1" ;
 Operator op "op" ;
 Exp exp2 ;
 end RELATION;
 record IFEXP
 Exp ifExp "ifExp" ;
 Exp trueBranch "trueBranch" ;
 Exp elseBranch "elseBranch" ;
 list<tuple<Exp, Exp>> elseIfBranch "elseIfBranch Function calls" ;
 end IFEXP;
 record CALL
 ComponentRef function_ "function" ;
 FunctionArgs functionArgs ;
 end CALL;

 record PARTEVALFUNCTION "Partially evaluated function"
 ComponentRef function_ "function" ;
 FunctionArgs functionArgs ;
 end PARTEVALFUNCTION;
 record ARRAY "Array construction using {, }, or array"
 list<Exp> arrayExp ;
 end ARRAY;
 record MATRIX "Matrix construction using {, } "
 list<list<Exp>> matrix ;
 end MATRIX;
 record RANGE "Range expressions, e.g. 1:10 or 1:0.5:10"
 Exp start "start" ;
 Option<Exp> step "step" ;
 Exp stop "stop";
 end RANGE;
 record TUPLE " Tuples used in function calls returning several values"
 list<Exp> expressions "comma-separated expressions" ;
 end TUPLE;
 record END "array access operator for last element, e.g. a{end}:=1;"
 end END;

end Exp;

14.8.2 FunctionArgs

uniontype FunctionArgs
"The FunctionArgs uniontype consists of a list of positional arguments followed by a list of named arguments (Modelica
v2.0)"
See Modelica specification 3.1 Chapter 12.4 Function Call.

 SysML-Modelica Transformation, Beta 2 49

 record FUNCTIONARGS
 list<Exp> args "args" ;
 list<NamedArg> argNames "argNames" ;
 end FUNCTIONARGS;
 record FOR_ITER_FARG
 Exp exp "iterator expression";
 ForIterators iterators;
 end FOR_ITER_FARG;
end FunctionArgs;

14.8.3 ForIterator

public type ForIterator = tuple<Ident, Option<Exp>>
See Modelica specification 3.1 Chapter 11.2.2 For-statement and Chapter 8.3.2 For-Equations – Repetitive Equa-
tion Structures, 10.4.1 Array Constructor with Iterators.

"For Iterator -
 these are used in:
 * for loops where the expression part can be NONE and then the range
 is taken from an array variable that the iterator is used to index,
 see 3.3.3.2 Several Iterators from Modelica Specification.
 * in array iterators where the expression should always be SOME(Exp),
 see 3.4.4.2 Array constructor with iterators from Specification";

14.8.4 ForIterators

public type ForIterators = list<ForIterator>
"For Iterators -
 these are used in:
 * for loops where the expression part can be NONE and then the range
 is taken from an array variable that the iterator is used to index,
 see 3.3.3.2 Several Iterators from Modelica Specification.
 * in array iterators where the expression should always be SOME(Exp),
 see 3.4.4.2 Array constructor with iterators from Specification";

14.8.5 NamedArg

uniontype NamedArg
"The NamedArg uniontype consist of an iIdentifier for the argument and an expression giving the value of the argument"

 record NAMEDARG
 Ident argName "argName" ;
 Exp argValue "argValue" ;
 end NAMEDARG;
end NamedArg;

14.8.6 Operator

uniontype Operator
"Expression operators"
See Modelica specification 3.1 Chapter 3 Operators and Expressions.

 50 SysML-Modelica Transformation, Beta 2

 /* arithmetic operators */
 record ADD "addition" end ADD;
 record SUB "subtraction" end SUB;
 record MUL "multiplication" end MUL;
 record DIV "division" end DIV;
 record POW "power" end POW;
 record UPLUS "unary plus" end UPLUS;
 record UMINUS "unary minus" end UMINUS;
 /* element-wise arithmetic operators */
 record ADD_EW "element-wise addition" end ADD_EW;
 record SUB_EW "element-wise subtraction" end SUB_EW;
 record MUL_EW "element-wise multiplication" end MUL_EW;
 record DIV_EW "element-wise division" end DIV_EW;
 record POW_EW "element-wise power" end POW_EW;
 record UPLUS_EW "element-wise unary minus" end UPLUS_EW;
 record UMINUS_EW "element-wise unary plus" end UMINUS_EW;
 /* logical operators */
 record AND "logical and" end AND;
 record OR "logical or" end OR;
 record NOT "logical not" end NOT;
 /* relational operators */
 record LESS "less than" end LESS;
 record LESSEQ "less than or equal" end LESSEQ;
 record GREATER "greater than" end GREATER;
 record GREATEREQ "greater than or equal" end GREATEREQ;
 record EQUAL "relational equal" end EQUAL;
 record NEQUAL "relational not equal" end NEQUAL;
end Operator;

 SysML-Modelica Transformation, Beta 2 51

Part IV - Transformation7

This part of the document defines the mapping between the SysML4Modelica profile defined in Part II and the Modelica
abstract syntax defined in Part III. The mapping is in tables relating elements in the SysML4Modelica profile to ele-
ments of the Modelica abstract syntax as well as in QVT. The QVT code is included in Annexe C; it includes explicit
references to each of the mapping rule numbers included in the tables.

Each mapping table may consist of 4 sections:

1.A general statement describing which element in the SysML profile is being mapped to which element of the Modelica
abstract syntax.

2.A Required section describing the required conditions necessary to make the transformation valid

3.A Conditional section describing possible links between attributes based on conditional expressions

4.An Attributes section describing the mapping between any additional attributes

15 Class Definition
15.1 «modelicaClassDefinition»

SysML4Modelica
Modelica

AttributesAbstract Syntax Concrete Syntax

16.1.1: Classes::ModelicaClassDefinition Absyn.Class.Class N/A See Below

Specializations:

16.1.2: Classes::ModelicaClass Absyn.Class.Class Class See Section 9

16.1.3: Classes::ModelicaModel Absyn.Class.Class Model See Section 10

16.1.4: Classes::ModelicaRecord Absyn.Class.Class Record See Section 11

16.1.5: Classes::ModelicaBlock Absyn.Class.Class Block See Section 12

16.1.6: Classes::ModelicaConnector Absyn.Class.Class Connector See Section 12

16.1.7: Classes::ModelicaType Absyn.Class.Class Type See Section 13

16.1.8: Classes::ModelicaPackage Absyn.Class.Class Package See Section 14

16.1.9: Classes::ModelicaFunction Absyn.Class.Class Function See Section 14

SysML4Modelica Modelica

16.1.10: Classes::ModelicaClassDefinition maps to Absyn.Class.Class

Attributes:

16.1.:11 IsFinal always
maps to

•finalPrefix

16.1.12: IsModelicaEncapsulated always
maps to

•encapsulatedPrefix

16.1.13: IsAbstract always
maps to

•PartialPrefix

7 Part IV of the SysML-Modelica Transformation Specification is non-normative.

 52 SysML-Modelica Transformation, Beta 2

15.2 «modelicaClass»
SysML4Modelica Modelica

16.2.1: Classes::ModelicaClass maps to Absyn.Class.Class

Required:

16.2.2: •restriction equal to Restriction.R_Class

16.2.3: Attributes same as SysML4Modelica::Classes::ModelicaClassDefinition

15.3 «modelicaModel»
SysML4Modelica Modelica

16.3.1: Classes::ModelicaModel maps to Absyn.Class.Class

Required:

16.3.2: •restriction equal to Restriction.R_Model

16.3.3: Attributes same as SysML4Modelica::Classes::ModelicaClassDefinition

15.4 «modelicaRecord»
SysML4Modelica Modelica

16.4.1: Classes::ModelicaRecord maps to Absyn.Class.Class

Required:

16.4.2: •restriction equal to Restriction.R_Record

16.4.3: Attributes same as SysML4Modelica::Classes::ModelicaClassDefinition

15.5 «modelicaBlock»
SysML4Modelica Modelica

16.5.1: Classes::ModelicaBlock maps to Absyn.Class.Class

Required:

16.5.2: •restriction equal to Restriction.R_Block

16.5.3: Attributes same as SysML4Modelica::Classes::ModelicaClassDefinition

15.6 «modelicaConnector»
SysML4Modelica Modelica

16.6.1: Classes::ModelicaConnector maps to Absyn.Class.Class

 Conditional:

16.6.2: IsExpandable equal to false maps to •restriction equal to
Restriction.R_CONNECTOR

 SysML-Modelica Transformation, Beta 2 53

16.6.3: IsExpandable equal to true maps to •restriction equal to Restriction.
R_EXP_CONNECTOR

16.6.4: Attributes same as SysML4Modelica::Classes::ModelicaClassDefinition

15.7 «modelicaType»
SysML4Modelica Modelica

16.7.1: Classes::ModelicaType maps to Absyn.Class.Class

Required:

16.7.2: •restriction equal to Restriction.R_Type

16.7.3: Attributes same as SysML4Modelica::Classes::ModelicaClassDefinition

15.8 «modelicaPackage»
SysML4Modelica Modelica

16.8.1: Classes::ModelicaPackage maps to Absyn.Class.Class

Required:

16.8.2: •restriction equal to Restriction.R_Package

16.8.3: Attributes same as SysML4Modelica::Classes::ModelicaClassDefinition

15.9 «modelicaFunction»
SysML4Modelica Modelica

16.9.1: Classes::ModelicaFunction maps to Absyn.Class.Class

Required:

16.9.2: •restriction equal to Restriction.R_Function

Conditional:

16.9.3: language = “C” or “FORTRAN” •Type of Class.body equal to
ClassDef.PARTS
•Type of Class.blody.classParts equal to
ClassPart.EXTERNAL
•Type of Class.body.classParts.externalDecl
equal to ExternalDecl.EXTERNALDECL

16.9.4: language •Class.body.classParts.externalDecl.lang

16.9.5: name •Class.body.classParts.externalDecl.func

Attributes:

16.9.6: scope always
 maps to

•Type of innerOuter

16.9.7: externalLibrary parsed to •Class.body.classParts.externalDecl
.annotation_ with
Library={externalLibrary...}

 54 SysML-Modelica Transformation, Beta 2

16.9.8: externalInclude parsed to •Class.body.classParts.externalDecl
.annotation_ with Include = {externalInclude
...}

15.10 «modelicaExtends»
There are multiple representations for the extends clause within the Modelica abstract syntax. Only one of the possible
mappings is addressed here, the one that most closely resembles the SysML4Modelica definition.

SysML4Modelica Modelica

16.10.1: Classes::ModelicaExtends maps to ClassDef.CLASS_EXTENDS

Required:

16.10.2: Specific maps to •Class with property Class.body equal to
ClassDef.CLASS_EXTENDS

16.10.3: General maps to •ClassDef.Class_EXTENDS.baseClassName

Attributes:

16.10.4: modification parsed to •ClassDef.CLASS_EXTENDS.modifications

16.10.5: visibility parsed to •ClassDef.CLASS_EXTENDS.modifications

16.10.6: arraySize parsed to •ClassDef.CLASS_EXTENDS.modifications

15.11 «modelicaDer»

SysML4Modelica Modelica

16.8.1: Classes::ModelicaDer maps to Absyn.Class.Class

Required:

16.8.2: •Type of body equal to ClassDef.PDER

Attributes:

16.8.3: name maps to •body.PDER.functionName

16.8.4: variables maps to •body.PDER.vars

15.12 «modelicaConstrainedBy»
SysML4Modelica Modelica

16.12.1: Classes::ModelicaConstrainedBy maps to ConstrainClass.CONSTRAINCLASS.

Required:

16.12.2:

16.12.2:

•Referenced by ElementArg.RE-
DECLARATION.constrainClass
•Type of CONSTRAINCLASS.element-
Spec equal to ElementSpec.-
CLASSDEF

 SysML-Modelica Transformation, Beta 2 55

Attributes:

16.12.3: client always maps to •CONSTRAINCLASS.elementSpec.-
class_

16.12.4: modification parsed to •ElementArg.REDECLARATION.re-
declareKeywords

16 Predefined Types
16.1 Overview
The following primitive types are available in the Modelica language: Real Type, Integer Type, Boolean Type, String
Type, Enumeration Types, StateSelect, ExternalObject, Graphical Annotation Types. These primitive types are defined as
predefined types in SysML4Modelica::BasicTypes. Although these types have direct counterparts in SysML, they are
defined again to account for the additional attributes associated with them in Modelica.

SysML4Modelica Modelica

BasicTypes Predefined Type

17.1.1: ModelicaReal Real

17.1.2: ModelicaInteger Integer

17.1.3: ModelicaBoolean Boolean

17.1.4: ModelicaString String

17.1.5: ModelicaEnumeration Enumeration

17.1.6: ModelicaStateSelect StateSelect

17.1.7: ModelicaExternalObject ExternalObject

17.1.8: ModelicaAnnotation Annotation

 56 SysML-Modelica Transformation, Beta 2

17 Component Declarations
17.1 Overview

SysML4Modelica Modelica Attributes

18.1.1: Component::ModelicaPart Absyn.Element.Element See Section 57

18.1.2: Component::ModelicaPort Absyn.Element.Element See Section 58

18.1.3: Component::ModelicaValueProperty Absyn.Element.Element See Section 58

18.1.4: Component::ModelicaFunctionParameter Absyn.Element.Element See Section 17.5

17.2 «modelicaPart»
SysML4Modelica Modelica

18.2.1: Component::ModelicaPart maps to Absyn.Element.Element

Required:

18.2.2:

18.2.3:

18.2.4:

18.2.5:

•Type of specification equal to ElementSpec.-
COMPONENTS
•Absyn.Class.Class referenced by specification.-
typeSpec has Restriction equal to R_Block or
R_Class or R_Model
•Type of specification.components equal to Com-
ponentItem.COMPONENTITEM
•Type of specification.components.component
equal to Component.COMPONENT

Attributes:

18.2.6: name always
maps to

•name
•specification.components.component.name

18.2.7: scope always
maps to

•Type of innerOuter

18.2.8: conditionalExpression always
maps to

•specification.components.condition

18.2.9: modification always
maps to

•specification.components.component.modification

18.2.10: isFinal always
maps to

•finalPrefix

18.2.11: isReplaceable always
maps to

•redeclareKeywords

18.2.12: arraySize always
maps to

•specification.components.component.arrayDim

 SysML-Modelica Transformation, Beta 2 57

17.3 «modelicaPort»
SysML4Modelica Modelica

18.3.1: Component::ModelicaPort maps to Absyn.Element.Element

Required:

18.3.2:

18.3.3:

18.3.4:

18.3.5:

•Type of specification equal to ElementSpec.COM-
PONENTS
•Absyn.Class.Class referenced by specification.-
typeSpec has restriction equal to R_Connector
•Type of specification.components equal to Compon-
entItem.COMPONENTITEM
•Type of specification.components.component equal
to Component.COMPONENT

Attributes:

18.3.6: name always
maps to

•name
•specification.components.component.name

18.3.7: causality always
maps to

•Type of specification.attributes.direction

18.3.8: conditionalExpression always
maps to

•specification.components.condition

18.3.9: modification always
maps to

•specification.components.component.modification

18.3.10: isFinal always
maps to

•finalPrefix

18.3.11: isReplaceable always
maps to

•redeclareKeywords

18.3.12: arraySize always
maps to

•specification.attributes.arrayDim

17.4 «modelicaValueProperty»
SysML4Modelica Modelica

18.4.1: Component::ModelicaValue-
Property

maps to Absyn.Element.Element

Required:

18.4.2:

18.4.3:

18.4.4:

18.4.5:

18.4.6:

•Type of specification equal to ElementSpec.COM-
PONENTS
•Absyn.Class.Class referenced by specification.-
typeSpec has restriction equal to R_Type or R_Re-
cord
•Type of specification.components equal to Compon-
entItem.COMPONENTITEM
•Type of specification.components.component equal
to Component.COMPONENT
•Type of specification.attributes equal to
ElementAttributes.ATTR

Attributes:

 58 SysML-Modelica Transformation, Beta 2

18.4.7: name always
maps to

•name
•specification.components.component.name

18.4.8: visibility •Type of ClassPart of owning Absyn.Class.Class

18.4.9: causality always
maps to

•Type of specification.components.component.attributes.direc-
tion

18.4.10: variability always
maps to

•Type of specification.components.component.attributes.variab-
ility

18.4.11: flowFlag always
maps to

•specification.components.component.attributes.flowPrefix

18.4.12: scope always
maps to

•Type of innerOuter

18.4.13: conditionalExpression always
maps to

•specification.components.condition

18.4.14: modification always
maps to

•specification.components.component.modification

18.4.15: isReplaceable always
maps to

•redeclareKeywords

18.4.16: declarationEquation always
maps to

•redeclareKeywords

18.4.17: isFinal always
maps to

•finalPrefix

18.4.18: arraySize always
maps to

•specification.components.component.arrayDim

17.5 «modelicaFunctionParameter»

SysML4Modelica Modelica

18.5.1: Component::ModelicaFunction-
Parameter

maps to Absyn.Element.Element

Required:

18.5.2:

18.5.3:

18.5.4:

18.5.5:

18.5.6:

18.5.7:

•Type of specification equal to ElementSpec.COM-
PONENTS
•Absyn.Class.Class referenced by specification.-
typeSpec has restriction equal to R_Type or R_Re-
cord
•Component of Absyn.Class.Class with restriction
equal to R_Function
•Type of specification.components equal to Compon-
entItem.COMPONENTITEM
•Type of specification.components.component equal
to Component.COMPONENT
•Type of specification.attributes equal to
ElementAttributes.ATTR

Attributes:

18.5.8: name always •name

 SysML-Modelica Transformation, Beta 2 59

maps to •specification.components.component.name

18.5.9: causality always
maps to

•Type of specification.attributes.direction

18.4.10: variability always
maps to

•Type of specification.attributes.variability

18.5.11: isFinal always
maps to

•finalPrefix

18.5.12: modification always
maps to

•specification.components.component.modification

18.5.13: isReplaceable parsed to •redeclareKeywords

18.5.14: declarationEquation parsed to •redeclareKeywords

18.5.15: arraySize always
maps to

•specification.attributes.arrayDim

18 Equation and Algorithm Sections
18.1 Overview

SysML4Modelica Modelica
Abstract Syntax Attributes

19.1.1: Equations and Algorithms::ModelicaEquation Absyn.EquationItem.EQUATIONITEM See Section 60

19.1.2: Equations and Algorithms::ModelicaConnec-
tion

Absyn.Equation.EQ_CONNECT See Section 61

19.1.3: Equations and Algorithms::ModelicaAl-
gorithm

Absyn.EquationItem.ALGORITHMITEM See Section 61

18.2 «modelicaEquation»
SysML4Modelica Modelica

19.2.1: Equations and Algorithms::ModelicaEquation maps to Absyn.EquationItem.EQUATIONITEM

Required:

19.2.2: specification.body parsed to •equation

Conditionals:

19.2.3: If isInitial equal to false •EQUATIONITEM contained in record
typed to ClassPart.EQUATIONS

19.2.4: If isInitial equal to true •EQUATIONITEM contained in record
typed to ClassPart.INITIALEQUA-
TIONS

 60 SysML-Modelica Transformation, Beta 2

18.3 «modelicaAlgorithm»
SysML4Modelica Modelica

19.3.1: Equations and Algorithms::ModelicaAl-
gorithm

maps to Absyn.AlgorithmItem.ALGORITHMITEM

Required:

19.3.2: constraint.specification parsed to •algorithm_

Conditionals:

19.3.3: If IsInitial equal to false •ALGORITHMITEM contained in re-
cord typed to ClassPart.ALGORITHMS

19.3.4: If IsInitial equal to true •ALGORITHMITEM contained in re-
cord typed to ClassPart.INITIALAL-
GORITHMS

18.4 «modelicaConnection»
SysML4Modelica Modelica

Equations and Algorithms::ModelicaConnection maps to Absyn.Equation.EQ_CONNECTOR

Required:

•ConnectorEndA.Role maps to •connector1

•ConnectorEndB.Role maps to •connector2

 SysML-Modelica Transformation, Beta 2 61

Part V – Annexes8

Annex A ̶̵̶ ExaJKJ ̶̵̶ Exa Examples

A Car Suspension Model
The following example is intended to illustrate the concepts of how the transformation approach can be used to provide a
context for the normative specification in Part II of this specification. Consider the design of a car suspension. As illus-
trated in Figure 14, the suspension can be described in the context of a car using a descriptive SysML model, expressed
in a BDD and corresponding IBD.

Figure 14: SysML descriptive model of a car suspension visualized as a BDD and IBD.

Assume now that one needs to evaluate the dynamic response of the suspension by simulating the car body’s position as a
function of time. A possible continuous dynamics model for such a simulation models the suspension as a linear spring
and the car body as a point mass. This model is illustrated in Figure 15 in both Modelica and in the SysML4Modelica
profile which represents the corresponding Modelica constructs. By stereotyping SysML ports and connectors, the se-
mantics of Kirchhoff’s laws have been introduced into SysML.

8 Part V of the SysML-Modelica Transformation Specification is non-normative.

 62 SysML-Modelica Transformation, Beta 2

Figure 15: Mass-Spring model for a car suspension, in Modelica (left) and SysML4Modelica (right).

The SysML parts are stereotyped as «modelicaPart». (i.e., mass1model, spring1model, fixed1model), that correspond to
usages of models from the Modelica Standard Library. For instance, as illustrated in Figure 16, the library Model-
ica.Mechanics.Translational.Components includes definitions of continuous dynamics models for a Spring and a Mass.
Note that one could apply stereotypes in SysML that include icons equivalent to the elements from the Modelica library
so that the SysML4Modelica representation in Figure 4 could be almost identical to the Modelica representation on the
left.

 SysML-Modelica Transformation, Beta 2 63

Figure 16: Continuous dynamics models for Mass and Spring defined in the Modelica Standard Library.

In Figure 15, the usages of these models, stereotyped as «modelicaPart» are connected to each other at their «modeli-
caPort» by «modelicaConnection». These connections carry the semantics of Kirchhoff’s Laws (in this example—or,
more generally, the same semantics as an equivalent Modelica connection). These semantics can be made more explicit
by using a Parametric Constraint (Figure 17).

 64 SysML-Modelica Transformation, Beta 2

Figure 17: Mass model as it could be represented in a Parametric Diagram.

But, as one can see by comparing Figure 17 and Figure 15, this comes at a cost of a much larger and less readable dia-
gram. Similarly, one could have represented the internal equations of the Mass model in a Parametric Diagram, as is il-
lustrated in Figure 18, but again, the more explicit semantics come at a cost of increased complexity. For this reason, only
Blocks and Internal Block Diagrams are further used in the SysML4Modelica profile, but the parametrics still provides
the underlying metamodel for capturing the detailed equations. This complexity can often be abstracted and made not
visible to the modeler.

Figure 18: Mass-Spring model as represented in a Parametric Diagram.

Finally, it is worth illustrating how the SysML4Modelica continuous dynamics model in Figure 15 relates to the SysML
descriptive model in Figure 14. Since both the descriptive and the continuous dynamics models are views of the same
system, they cannot be independent of each other. Changes to the descriptive model are likely to require corresponding
changes to the continuous dynamics model and vice versa. Such dependencies can be modeled in an analysis context —
the context in which the analysis model (i.e., the continuous dynamic analysis in this case) is defined.

 SysML-Modelica Transformation, Beta 2 65

The analysis context is illustrated in Figure 19. It establishes the dependencies between the descriptive model compon-
ents and their corresponding analysis models. In addition, the detailed bindings between the descriptive and analysis
properties are defined in the Parametric Diagram illustrated in Figure 20.

Figure 19: The Block Definition Diagram for the Analysis Context of the continuous dynamics analysis.

Figure 20: The Parametric Diagram for the Analysis Context of the continuous dynamics analysis; the properties
of the descriptive model are bound to the corresponding properties in the analysis model.

For very simple problems, one could consider combining the descriptive and analysis views into one model; e.g., suspen-
sion and spring1model would be combined into one component that includes both the descriptive properties and the ana-
lysis constraints/equations. However, for larger problems in which more than one analysis perspective needs to be con-
sidered (e.g., mechanical, electrical, controls, manufacturing, different levels of abstraction, etc.), combining all such
analyses into one model would be difficult to manage. One would likely encounter problems with naming conflicts or du-
plication of properties. In addition, combining all the models severely limits the opportunity for model reuse because
models from libraries (such as the Modelica Standard Library) would have to be combined with descriptive models rather
than just included in an analysis context.

 66 SysML-Modelica Transformation, Beta 2

A Robot Model

Introduction

The example in this section is intended to illustrate how a SysML model can be transformed to a Modelica model in ac-
cordance with the transformation approach specified in this document. In particular, the transformation is accomplished
by first applying the SysML4Modelica profile as described in Part II of this document, and then mapping the SysML4-
Modelica model to the Modelica model as described in Part IV of this document. The robot example is based on the robot
model that is contained in the standard Modelica library which can be found at www.modelica.org. Refer to Part I of this
document for a brief introduction to SysML and Modelica.

Integrating SysML Descriptive Models with Analytical Models

This transformation specification will typically support the system requirements analysis and design activity as part of a
systems engineering process. A SysML model will be developed to specify the system requirements, architect the sys-
tem, and allocate the system requirements to the hardware and software components of the system. The SysML model
serves as a descriptive model to capture multiple aspects of the system of interest, including its functionality, inputs/out-
put and control flow, structural composition and interconnection, and traceability to its text based requirements as indic-
ated in Figure 21. As part of the requirements analysis and design effort, many different engineering analysis are often
performed to evaluate the extent that the system can satisfy its system performance, physical, reliability, maintainability,
and cost requirements.

Figure 21: A SysML model in which models for multiple analysis tools are defined.

The SysML descriptive model can capture relevant aspects of the system that can be used by many different types of ana-
lytical models and tools to support the above analysis. One mechanism is to use SysML parametrics to capture the ana-
lysis as a network of equations, and then pass this analysis to an analytical tool. The analytical tool then performs the
computation and provides the quantifiable results back to the SysML model. A simple example may be for a SysML para-
metric model to capture the system overall reliability in terms of the mean time between failures of each of its compon-
ents. The reliability of each component may in turn be estimated based on some equation. This set of equations are

 SysML-Modelica Transformation, Beta 2 67

passed to a reliability analysis too l to perform the computation, and return the reliability values back to the SysML
model.

Sometimes, SysML parametrics is used in a more abstract way. In this case, the SysML model does not capture the equa-
tions, but only the input and output parameters of the analysis. When this is done,the equations that relate the input and
output parameters of the analysis are included in the analytical tool or solver.

An alternative approach for providing relevant aspects of the descriptive model to an analytical model is to use the trans-
formation approach specified in this document. In this particular case, the SysML model is transformed to a Modelica
model in two steps. First, the SysML4Modelica profile is applied to create an analytical representation from the structural
portion of the SysML model. In the second step, this SysML4Modelica analytical model is mapped to the Modelica
model where it can be executed. The additional step to apply the SysML4Modelica profile to create the analytical model
facilitates a more straightforward mapping from SysML to Modelica, as compared to mapping the SysML model to Mod-
elica directly without applying the profile.

This transformation approach provides advantages over creating a parametric model and providing the parametric model
to the Modelica model directly as describe above. In particular, the approach enables the SysML4Modelica analytical
model to more effectively map to reusable components in the Modelica standard library. The Modelica model encapsu-
lates the equations in its components, and then defines standard equations for connecting them. The detailed equations
are generally assumed to be captured in the Modelica model using Modelica’s textual notation. It is generally assumed
that the SysML4Modelica analytical model captures the structure, interconnection, and properties, but not the detailed
equations. This transformation approach allows the modeler to provide an abstract description of the system in SysML
and the SysML4Modelica analytical model, and then establish direct correspondence to the Modelica model.

Robot Example

This robot example only highlights the aspects of the SysML model that are used in the SysML4Modelica transforma-
tion. The primary aspects of the SysML model that are used in the transformation are the block definition diagrams
(bdd’s) and the internal block diagrams (ibd’s). In a more typical case, the SysML model would include other aspects of
the model as described in Figure 21 above, and integrate with other analytical models and tools as well as the Modelica
model.

For the robot example, the block definition diagrams and internal block diagrams are used to describe the system com-
position and interconnection at increasing levels of detail. This is typical of how SysML models are developed to support
system specification and design. The corresponding Modelica analytical model may be created at different levels of ab-
straction. The following paragraphs illustrate a sequence diagrams one may create in a modeling and design process. All
figures are included at the end of the section.

The SysML model organization for the Robot model is shown in the package diagram in Figure 22. The model structure
includes the SysML4Modelica Profile, the Modelica Standard Library, and the Robot Model itself. The Robot model in-
cludes packages for defining interfaces, types, structure, and analysis.

As described above, a typical SysML model may include integration with a diverse set of analytical models. The analysis
package captures the various types of analysis that are being performed. In particular, Figure 23 shows a parametric
model of the top level objective function for the robot. In particular, several key performance parameters have been iden-
tified that characterize the overall value to the end user, including the weight, power, reliability, cost and trajectory per-
formance in terms of the position error. Each of these performance parameters are analyzed by different analytical mod-
els and tools. Note that the Modelica model will be used primarily to analyze the trajectory performance. This is indic-
ated by the refine relationship between the Modelica robot model and the trajectory performance model.

The top level SysML block definition diagram is shown in Figure 24. The robot domain block serves as a context for the
robot, which is the system of interest. The robot domain block is composed of the robot and the other actors that are ex-
ternal to the robot, and interact with it. The actors include the load the robot manipulates, the platform the robot is at-
tached to, the power source that provides power to the robot, and the driver that provides the desired trajectory input to

 68 SysML-Modelica Transformation, Beta 2

the robot. The trajectory input may be provided in real time, such as might be done by joystick control, or prior to the ro-
bot actually executing the trajectory.

In Figure 25, the corresponding internal block diagram is shown. In this diagram, the interconnection between the robot
and the actors is shown. The ports on the robot represent the connection points to each external actor.

The top level bdd and ibd are sometimes referred to as a black box view which specify the robot from an external per-
spective without any internal details. The corresponding Modelica model may be created to provide an abstract analytical
representation of the black box robot, with limited or no internal detail. This analytical model may be used to assess re-
quired trajectory characteristics, such as precision and response time to manipulate a load of specified mass, and perhaps
the minimum power requirements needed of the robot, based on some assumptions on a robot power efficiency factor.
Again, this analysis may be performed without any consideration for the internal details of the robot.

The standard Modelica library does not include this black box model explicitly. However, it could be added by creating
the SysML4Modelica analytical model and developing the corresponding Modelica model. Although the robot model
may be abstract, the models of the actors such as the Load, Power Source, and Driver could be specified in detail and re-
used for the detailed robot analytical models.

The block definition diagram in Figure 26 decomposes the robot into its next level of components including the Path-
Planner, Control Bus, Actuators, and Arm. Only one of the six actuators is shown in the bdd. The Actuators are all as-
sumed to be of the same type, but each actuator could have been modeled as a subclass of a more generic actuator to rep-
resent a unique component type.

The internal block diagram in Figure 27 shows the interconnection among the robot parts. Note that the black box inter-
faces to the external actors are preserved. Each actuator is shown as a unique part. Once again, a robot designer may
choose to perform an analysis of the robot at this level of abstraction, where all of the components in the ibd are treated
as black boxes without internal detail. This would further refine the black box analysis, and provide a basis for allocating
specific performance requirements to the components. For example, the actuator efficiency could be estimated, and the
trajectory could be analyzed as a function of different assumptions of actuator black box characteristics. Again, the Mod-
elica library does not explicitly contain a model of these components at this level, but the Modelica model could be ex-
panded to include them. If so, the SysML4Modelica analytical model would be created, and then mapped to the corres-
ponding Modelica model.

The next diagrams include the block definition diagram and internal block diagram for the actuator and arm. The path
planner and control bus were not further decomposed in the SysML model, although they could have been. The actuator
block definition diagram and internal block diagram are shown in Figures 28 and 29, respectively. The actuator includes
the Controller, Motor Assembly, Gear and Sensor. The Motor Assembly is further decomposed into a Motor and Drive
Electronics on the bdd, but no further interconnection detail is shown. The level of detail of the SysML model typically
corresponds to the level of detail that the system is being specified by the system designer. Below this level, other domain
specific hardware and software models are used to model the system design.

The Arm block definition diagram and internal block diagram are shown in Figures 30 and 31, respectively. Note that the
black box interfaces for the actuator and arm are preserved on their internal block diagrams, providing consistency from
the robot black box level to the component l level.

The transformation to the Modelica model is performed at this level of detail of the SysML model of the robot. The first
step in the transformation is to create the SysML4Modelica analytical model. In Figures 32 and 33, the SysML structural
model is allocated to corresponding elements of the SysML4Modelica analytical model. (Note: There is currently an is-
sue raised against SysML allocations to support the unambiguous allocation of nested components. This issue is included
in section ?? of this specification.) Based on these allocations, the SysML4Modelica analytical model for the robot is
shown in Figure 34.

 SysML-Modelica Transformation, Beta 2 69

Once the SysML4Modelica analytical model has been defined, the mapping to the corresponding Modelica model can be
performed. Figure 35 shows the corresponding graphical representation of the resulting Modelica model. The detailed
equations are embedded in the Modelica model elements that are represented by the graphical elements.

In Figure 36, the results of the analysis are shown for a specific simulation execution.

Figure 22: The package organization of the robot model.

Figure 23: A parametric model of the top level objective function for the robot.

Figure 24: The top-level block definition diagram for the robot domain.

 70 SysML-Modelica Transformation, Beta 2

Figure 25: The internal block diagram of the robot domain.

Figure 26: The block definition diagram for the decomposition of the robot into its main subsystems.

Figure 27: The internal block diagram for the robot, illustrating its decomposition into the path planner, the con-
trol bus, the actuators and the mechanical structure of the robot arm.

 SysML-Modelica Transformation, Beta 2 71

Figure 28: The block definition diagram for the structure of an actuator of the robot.

Figure 29: The internal block diagram for a robot actuator.

Figure 30: The block definition diagram for the robot arm's mechanical structure.

 72 SysML-Modelica Transformation, Beta 2

Figure 31: The internal block diagram for the robot arm.

Figure 32: The Analysis Context in which the descriptive model of the robot domain is allocated to the corres-
ponding analytical model as expressed in the SysML4Modelica profile.

 SysML-Modelica Transformation, Beta 2 73

Figure 33: A detailed diagram of the allocation of the robot actuator descriptive model to the analytical SysML4-
Modelica Model.

Figure 34: The top-level robot problem shown as an ibd in the SysML4Modelica profile.

 74 SysML-Modelica Transformation, Beta 2

Figure 35: The top-level Modelica model of the robot.

Figure 36: The simulation results with the motor torques as function of time.

 SysML-Modelica Transformation, Beta 2 75

Annex B: Justification

Semantic Comparison between SysML and Modelica
Before focusing on the detailed modeling constructs, a high-level decision needs to be made regarding the choice of
SysML elements to represent Modelica models. Although Modelica is a textual language, it also supports a graphical
view through its annotation mechanism. This graphical view illustrates clearly the strong similarity that exists between
SysML and Modelica. Both languages support the decomposition of systems (or behavioral models of systems) into sub-
systems or components and the interactions between them. For instance, the Modelica model of a motor controller
(shown in Figure 3) contains sub-components (such as motor, gearbox, and controller). The interactions between them
are illustrated by edges connecting the interface locations (called connectors in Modelica) of the components. Such hier-
archical compositions of Modelica models and the connections between them constitute the primary modeling approach
in Modelica. Before considering the details of the language, it is thus important to consider carefully how these primary
modeling constructs map to SysML.

As illustrated in Table 3, in SysML there are three kind of construct built on abstractions that have similar semantics
compared to the hierarchical, connector-based composition of Modelica models: the hierarchical Blocks ,shown in In-
ternal Block Diagrams), the Parametric Constraints (shown in Parametric Diagrams), and the Activity graphs. All three
constructs support some sort of "ports", some sort of connection of "port-based" objects through "port-connections", and
hierarchical encapsulation through "port-delegation". In Sections 76 through 78, we use these three constructs to discuss
the main question: what are the SysML elements that match the Modelica semantics best?

Concepts Modelica
constructs

SysML

Construct
abstractions

Availability in diagrams
< -------- Modelica “like” -------- >

BDD IBD Parametric Activity

Model
Definition Model Block Yes Yes Restricted No

Model Us-
age Component Property

(Part Property) Yes Yes Restricted No

Port Defini-
tion Connector

Block
ValueType

FlowSpecification

Yes
Yes
Yes

Yes
Yes
No

Yes
No
No

No
No
No

Properties Component
(Variables)

Block
ValueType

FlowProperty

Yes
Yes
Yes

Yes
Yes
No

Yes
Yes
No

Ref. Only
Ref. only
Ref. only

Port Component Port Yes Yes Yes Ref. only

Causal link Connection
Connector

ObjectFlow
No
No

Yes
No

No
No

No
Yes

Acausal link Connection Connector No Yes Yes No

Table 3: A comparison between Modelica concepts and SysML abstractions and diagrams

Modelica
In Modelica, ports are called connectors and the edges between ports are called connections [Modelica Spec, Chapter 9].
The ports (connectors) can include four types of quantities: inputs, outputs, flows and non-flows. Inputs and output are

 76 SysML-Modelica Transformation, Beta 2

used when the direction of the flow is known and fixed, as for instance in signals flowing in a control system. Flow and
non-flow quantities are used to describe energy or material flow (they are also sometimes referred to as through and
across variables, respectively). When connecting two Modelica connectors with a connection, the semantics for inputs
and outputs are causal binding: the input is assigned the value of the output to which it is connected. Input and output
connecters must therefore be used in conjugate pairs, and only one output can be connected to each input. For flow and
non-flow variables, the connection semantics correspond to Kirchhoff's Laws, namely, the value of the flow variables add
up to zero and the values of the non-flow variables are set equal (in an equation-based, acausal fashion). When more than
one connection is made to a connector containing a flow variable, then an ideal, loss-less energy or material exchange is
assumed by imposing that the values of flow variables of all connected connectors add up to zero. To impose the correct
modeling of energy exchange, Modelica requires that the number of flow and non-flow quantities of a connector be
equal.

In addition to connectors, Modelica models can contain variables and submodels (i.e., model usage in Table 3). Although
Modelica does not explicitly distinguish between these three categories of “components” (i.e., connectors, variables, sub-
models), it may still be useful and desirable to distinguish explicitly among them when mapping to SysML.

SysML Hierarchical Blocks, ports and connectors
The primary purpose of the SysML hierachical Block constructs, is to express system structural decomposition and inter-
connection of its parts [SysML Spec, Chapters 8 and 9]. The SysML concepts used in those constructs have quite flexible
semantics and may be used to establish logical and conceptual decompositions, for instance, as in a context view [SysML
Spec, Section B.4.2.1]. The Blocks in SysML are similar to Classes in Modelica (specifically the specialized class types
of Model, Block, Connector, etc.). Blocks can be decomposed in the same way Modelica Classes can be decomposed.

The “ports” on the blocks are called Ports and the connections between ports are called Connectors. There are two kinds
of ports: Flow Ports and Standard Ports. The Standard Ports are particularly geared towards service-based interactions by
representing the interfaces (e.g., software methods) that are provided or required by a particular block. Such ser-
vice-based interactions are not appropriate for modeling the connections found in Modelica. Flow Ports on the other hand
do provide semantics that reflect Modelica connectors more closely.

A Flow Port describes an interaction point through which input and/or output of items such as data, material, or energy
may flow in and out of a block. For Modelica-type interactions, the exchanged "items" could be either signals (for input
and output quantities) or energy/material (for flow and non-flow quantities). Modelica signal exchanges are causal and so
the semantics of a SysML Flow Port typed by a Flow specification is convenient. SysML binding connectors provide
acausal connections between properties. They imply equality between connected properties and then does not carry the
Kirchhoff laws semantics. The equivalent of a Binding Connector does not actually exist in Modelica, but can be cap-
tured in a non-graphical fashion by introducing an equality equation between the two variables that are bound. Therefore,
in order to capture the semantics of a Modelica connection, one solution would be to introduce a new SysML connector
element that is equivalent to a Modelica Connector, and that reflects the semantics of Kirchhoff's laws. Another possibil-
ity would be to make the equations for Kirchhoff’s laws, which are implicit in Modelica connections, explicit as another
SysML Constraint Property. This option is appealing because it makes the semantics very explicit, but has the disadvant-
age that it makes the models more cumbersome to create and more difficult to read.

In conclusion, although blocks seem to have very similar constructs to Modelica, there are some subtle differences in so
that new stereotypes will have to be introduced to adequately capture the Modelica semantics of Connectors and Connec-
tions.

SysML Parametric Constraints
The purpose of Parametric Constraints is to express mathematical relationships between parameters. A Parametric Con-
straints is modeled through a special kind of Block named “Constraint Block”. “Ports” of those blocks are Constraint
Parameters and the “connections” to those parameters are made using Binding Connectors. Inside a Constraint Block,
mathematical relationships are defined constraining its Constraint Parameters. A Constraint Property is a usage of a Con-
straint Block. Its Constraint Parameters are then bound to other Constraint Parameters or to Properties of Blocks. The se-
mantics of a Binding Connector indicate a mathematical equality between the (Block) Properties or Constraint Paramet-
ers being connected. This mathematical equality is an acausal relationship.

 SysML-Modelica Transformation, Beta 2 77

SysML Activity Graphs
The purpose of an Activity graph in SysML is to specify the transformation of inputs to outputs through a controlled se-
quence of actions. An Activity decomposes into Actions. In activity graphs, the Object Nodes (i.e., Pins and Parameter
Nodes) correspond to buffers to place input and output tokens. The connections between Object Nodes correspond to Ob-
ject Flows. These flows typically represent the transfer of one or more objects at a discrete moment in time, although it is
possible to specify a streaming flow that could be continuous, i.e., the time between arrival of tokens (or “objects”) is
zero. It is this latter case that needs to be described in terms of differential equations.

It must be underlined that as defined in the context of SysML activities “flows”, are they continuous or not, correspond to
the concept of “dataflow” which is related to an asynchronous approach. Conversely, a Modelica flow specifies the exist-
ence of relationships between the value of respectively flow and non-flow variables on both sides of a connection, as
defined by Kirchhoff's laws. Those relationships are mathematical equations and then corresponds to a synchronous ap-
proach.

In conclusion, SysML Activity Graphs can be convenient only to model Modelica input/output variables. Thus Activity
graphs therefore seems to be the least appropriate for a mapping from Modelica Class, although they will be explored
when mapping the Modelica Function and Algorithm to SysML4Modelica.

Selected foundation concept: SysML Hierarchical Blocks with Embedded
Constraints
It is clear from the discussion in the previous sections that there is not a single concept that embeds the Modelica se-
mantics perfectly. As a result, the use of more than one SysML concept with multiple stereotypes will need to be defined
to extend the SysML semantics.

Blocks, ConstraintBlocks, FlowPorts, classical Connectors and BindingConnectors can be used to map Modelica Models,
Components, Connectors, and Connections to SysML. This is illustrated in Annexe A.

 78 SysML-Modelica Transformation, Beta 2

Annex C: QVT Transformation
The overview of an implementation of the SysML-Modelica Transformation based on QVT is shown in Figure 37. All
the Java and QVT transformation files used for the implementation of the transformation have been zipped into a com-
mon file that can be retrieved at this URL: http://www.omg.org/cgi-bin/doc? ptc/2011-08-16

This part of the document includes the QVT-operational mapping rules. Each section of the mapping below
refers to the rule labels introduced in Part IV.

import modelicaQVTUtils.ModelicaUtils;
import org.omg.eclipse.sysml.UMLUtils;
modeltype UML uses 'http://www.eclipse.org/uml2/3.0.0/UML';
modeltype AlgorithmItem uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/AlgorithmItem';
modeltype AlgorithmStatement uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/AlgorithmStatement';
modeltype Annotation uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Annotation';
modeltype ArrayDim uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ArrayDim';
modeltype Class uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Class';
modeltype ClassDef uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ClassDef';
modeltype ClassPart uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ClassPart';
modeltype Comment uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Comment';
modeltype Component uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Component';
modeltype ComponentCondition uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ComponentCondition';
modeltype ComponentItem uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ComponentItem';
modeltype ComponentRef uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ComponentRef';
modeltype ConstrainClass uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ConstrainClass';
modeltype Direction uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Direction';
modeltype Each uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Each';
modeltype Element uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Element';

 SysML-Modelica Transformation, Beta 2 79

Figure 37: Overview of an implementation of the SysML-Modelica Transformation based on QVT

modeltype ElementArg uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ElementArg';
modeltype ElementAttributes uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ElementAttributes';
modeltype ElementItem uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ElementItem';
modeltype ElementSpec uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ElementSpec';
modeltype EnumDef uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/EnumDef';
modeltype EnumLiteral uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/EnumLiteral';
modeltype Equation uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Equation';
modeltype EquationItem uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/EquationItem';
modeltype Exp uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Exp';
modeltype ExternalDecl uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/ExternalDecl';
modeltype FunctionArgs uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/FunctionArgs';
modeltype Import uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Import';
modeltype InnerOuter uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/InnerOuter';
modeltype Iterators uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Iterators';
modeltype Modifications uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Modifications';
modeltype NamedArg uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/NamedArg';
modeltype Operator uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Operator';
modeltype Path uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Path';
modeltype Program uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Program';
modeltype RedeclareKeywords uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/RedeclareKeywords';
modeltype Restriction uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Restriction';
modeltype Subscript uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Subscript';
modeltype TypeSpec uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/TypeSpec';
modeltype Variability uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Variability';
modeltype Within uses
'http://www.openmodelica.org/openmodelica.abstact.syntax/Within';
transformation Modelica2SysML(in modelicaModel:Program,
in sysmlProfileActivities:UML,
in sysmlProfileAllocations:UML,
in sysmlProfileBlocks:UML,
in sysmlProfileConstraintBlocks:UML,
in sysmlProfileModelElements:UML,
in sysmlProfileNonNormativeExtensions:UML,
in sysmlProfilePortsFlows:UML,
in sysmlProfile:UML,
in sysmlProfileRequirements:UML,
in sysml4ModelicaProfile:UML,
out sysmlModel:UML);
property sysml_profile_Blocks :UML::Profile =
sysmlProfileBlocks.rootObjects()![UML::Profile];
property sysml4Modelica_profile:UML::Profile =
sysml4ModelicaProfile.rootObjects()![UML::Profile];
property ModelicaClassDefinition_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaClassDefinition"];
property ModelicaClass_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaClass"];

 80 SysML-Modelica Transformation, Beta 2

property ModelicaModel_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaModel"];
property ModelicaRecord_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaRecord"];
property ModelicaBlock_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaBlock"];
property ModelicaConnector_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaConnector"];
property ModelicaType_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaType"];
property ModelicaPackage_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaPackage"];
property ModelicaFunction_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaFunction"];
property ModelicaExtends_stereotype : UML::Stereotype =
sysml4Modelica_profile.ownedStereotype![name = "ModelicaExtends"];
property ModelicaFunctionParameter_stereotype : UML::Stereotype =
sysml4Modelica_profile.subobjects()[UML::Stereotype]
->select(name = "ModelicaFunctionParameter")->any(true);
property ModelicaPart_stereotype : UML::Stereotype =
sysml4Modelica_profile.subobjects()[UML::Stereotype]
->select(name = "ModelicaPart")->any(true);
property ModelicaPort_stereotype : UML::Stereotype =
sysml4Modelica_profile.subobjects()[UML::Stereotype]
->select(name = "ModelicaPort")->any(true);
property ModelicaValueProperty_stereotype : UML::Stereotype =
sysml4Modelica_profile.subobjects()[UML::Stereotype]
->select(name = "ModelicaValueProperty")->any(true);
property ModelicaAlgorithm_stereotype : UML::Stereotype =
sysml4Modelica_profile.subobjects()[UML::Stereotype]
->select(name = "ModelicaAlgorithm")->any(true);
property ModelicaConnection_stereotype : UML::Stereotype =
sysml4Modelica_profile.subobjects()[UML::Stereotype]
->select(name = "ModelicaConnection")->any(true);
property ModelicaEquation_stereotype : UML::Stereotype =
sysml4Modelica_profile.subobjects()[UML::Stereotype]
->select(name = "ModelicaEquation")->any(true);
property modelicaTypesClass : UML::Type =
sysml4Modelica_profile.nestedPackage![name = "Types"]
.ownedType![name = "ModelicaPredefinedTypes"];
property modelicaRealType : UML::Type =
modelicaTypesClass.subobjects()[UML::DataType]
->select(name = "ModelicaReal")->any(true);
property modelicaIntegerType : UML::Type =
modelicaTypesClass.subobjects()[UML::DataType]
->select(name = "ModelicaInteger")->any(true);
property modelicaBooleanType : UML::Type =
modelicaTypesClass.subobjects()[UML::DataType]
->select(name = "ModelicaBoolean")->any(true);
property modelicaStringType : UML::Type =
modelicaTypesClass.subobjects()[UML::DataType]
->select(name = "ModelicaString")->any(true);
property modelicaScopeKind : UML::Enumeration =
sysml4Modelica_profile.nestedPackage![name = "Types"].subobjects()![UML::Enumeration]
->select(name = "ModelicaScopeKind")->any(true);
property modelicaInnerKind : UML::EnumerationLiteral =
modelicaScopeKind.subobjects()[UML::EnumerationLiteral]
->select(name = "inner")->any(true);
property modelicaOuterKind : UML::EnumerationLiteral =
modelicaScopeKind.subobjects()[UML::EnumerationLiteral]
->select(name = "outer")->any(true);
property modelicaCausalityKind : UML::Enumeration =
sysml4Modelica_profile.nestedPackage![name = "Types"].subobjects()![UML::Enumeration]
->select(name = "ModelicaCausalityKind")->any(true);
property modelicaInputKind : UML::EnumerationLiteral =
modelicaCausalityKind.subobjects()[UML::EnumerationLiteral]
->select(name = "input")->any(true);
property modelicaOutputKind : UML::EnumerationLiteral =
modelicaCausalityKind.subobjects()[UML::EnumerationLiteral]
->select(name = "output")->any(true);
property modelicaVariabilityKind : UML::Enumeration =
sysml4Modelica_profile.nestedPackage![name = "Types"].subobjects()![UML::Enumeration]

 SysML-Modelica Transformation, Beta 2 81

->select(name = "ModelicaVariabilityKind")->any(true);
property modelicaConstantKind : UML::EnumerationLiteral =
modelicaVariabilityKind.subobjects()[UML::EnumerationLiteral]
->select(name = "constant")->any(true);
property modelicaContinuousKind : UML::EnumerationLiteral =
modelicaVariabilityKind.subobjects()[UML::EnumerationLiteral]
->select(name = "continuous")->any(true);
property modelicaDiscreteKind : UML::EnumerationLiteral =
modelicaVariabilityKind.subobjects()[UML::EnumerationLiteral]
->select(name = "discrete")->any(true);
property modelicaParameterKind : UML::EnumerationLiteral =
modelicaVariabilityKind.subobjects()[UML::EnumerationLiteral]
->select(name = "parameter")->any(true);
property modelicaFlowFlagKind : UML::Enumeration =
sysml4Modelica_profile.nestedPackage![name = "Types"].subobjects()![UML::Enumeration]
->select(name = "ModelicaFlowFlagKind")->any(true);
property modelicaFlowKind : UML::EnumerationLiteral =
modelicaFlowFlagKind.subobjects()[UML::EnumerationLiteral]
->select(name = "flow")->any(true);
property modelicaStreamKind : UML::EnumerationLiteral =
modelicaFlowFlagKind.subobjects()[UML::EnumerationLiteral]
->select(name = "stream")->any(true);
main()
{
 var program : Program::PROGRAM = modelicaModel.rootObjects()![Program::PROGRAM];
 program.map toSysML();
 log("Transformation finished");
}
mapping Program::PROGRAM::toSysML() : UML::Package
{
 result.applyProfile(sysml_profile_Blocks);
 result.applyProfile(sysml4Modelica_profile);
 var class_ : Class::CLASS = self.classes![Class::CLASS];
 class_.body![ClassDef::PARTS].classParts[ClassPart::PUBLIC]
 .contents[ElementItem::ELEMENTITEM]
 .element[Element::ELEMENT].specification[ElementSpec::CLASSDEF]
 .class_[Class::CLASS]->map toSysML$ModelicaSpecializedClass(result);
 result.name := class_.name;
}
// *********************************** CLASS DEFINITION ***********************************
// ****** Mapping Rule 16.1 ******
mapping Class::uClass::toSysML$ModelicaSpecializedClass
(inout pkg : UML::Package) : UML::Classifier
disjuncts Class::CLASS::toSysML$ModelicaClass, // Mapping Rule 16.1.2
 Class::CLASS::toSysML$ModelicaModel, // Mapping Rule 16.1.3
 Class::CLASS::toSysML$ModelicaRecord, // Mapping Rule 16.1.4
 Class::CLASS::toSysML$ModelicaBlock, // Mapping Rule 16.1.5
 Class::CLASS::toSysML$ModelicaConnector, // Mapping Rule 16.1.6
 Class::CLASS::toSysML$ModelicaType, // Mapping Rule 16.1.7
 Class::CLASS::toSysML$ModelicaPackage, // Mapping Rule 16.1.8
 Class::CLASS::toSysML$ModelicaFunction{} // Mapping Rule 16.1.9
// ****** Mapping Rule 16.1.10 ******
mapping Class::CLASS::toSysML$ModelicaClassDefinition
(inout pkg : UML::Package) : UML::Classifier
{
 init{
 // set stereotype properties
 safeStereotypeSetValue(result, // Mapping Rule 16.1.11
 ModelicaClassDefinition_stereotype,
 "isFinal", self.finalPrefix);
 safeStereotypeSetValue(result, // Mapping Rule 16.1.12
 ModelicaClassDefinition_stereotype,"isModelicaEncapsulated",
 self.encapsulatedPrefix);

 safeStereotypeSetValue(result, // Mapping Rule 16.1.13
 ModelicaClassDefinition_stereotype,
 "isPartial", self.partialPrefix);

 82 SysML-Modelica Transformation, Beta 2

 // mapping to properties and generalizations
 var element = self.body[ClassDef::PARTS].classParts[ClassPart::PUBLIC]
 .contents[ElementItem::ELEMENTITEM].element[Element::ELEMENT];
 element->map toSysML$ModelicaComponent(result);
 element.specification[ElementSpec::EXTENDS]->map toGeneralization(result);
 element.redeclareKeywords;
 }
}
// ****** Mapping Rule 16.2 ******
mapping Class::CLASS::toSysML$ModelicaClass
(inout pkg : UML::Package) : UML::Class // Mapping Rule 16.2.1
inherits Class::CLASS::setSysML$ClassifierOwner
merges Class::CLASS::toSysML$ModelicaClassDefinition, // Mapping Rule 16.2.3
Class::CLASS::setSysML$ModelicaEquations,
Class::CLASS::setSysML$ModelicaAlgorithms,
Class::CLASS::setSysML$ModelicaConnections
when{self.restriction.oclIsKindOf(Restriction::R_CLASS);}
{
 safeApplyStereotype(result, ModelicaClass_stereotype); // Mapping Rule 16.2.2
}
// ****** Mapping Rule 16.3 ******
mapping Class::CLASS::toSysML$ModelicaModel
(inout pkg : UML::Package) : UML::Class // Mapping Rule 16.3.1
inherits Class::CLASS::setSysML$ClassifierOwner
merges Class::CLASS::toSysML$ModelicaClassDefinition, // Mapping Rule 16.3.3
Class::CLASS::setSysML$ModelicaEquations,
Class::CLASS::setSysML$ModelicaAlgorithms,
Class::CLASS::setSysML$ModelicaConnections
when{self.restriction.oclIsKindOf(Restriction::R_MODEL);}
{
 safeApplyStereotype(result, ModelicaModel_stereotype); // Mapping rule 16.3.2
}
// ****** Mapping Rule 16.4 ******
mapping Class::CLASS::toSysML$ModelicaRecord
(inout pkg : UML::Package) : UML::Class // Mapping Rule 16.4.1
inherits Class::CLASS::setSysML$ClassifierOwner
merges Class::CLASS::toSysML$ModelicaClassDefinition // Mapping Rule 16.4.3
when{self.restriction.oclIsKindOf(Restriction::R_RECORD);}
{
 safeApplyStereotype(result, ModelicaRecord_stereotype); // Mapping Rule 16.4.2
}
// ****** Mapping Rule 16.5 ******
mapping Class::CLASS::toSysML$ModelicaBlock
(inout pkg : UML::Package) : UML::Class // Mapping Rule 16.5.1
inherits Class::CLASS::setSysML$ClassifierOwner
merges Class::CLASS::toSysML$ModelicaClassDefinition, // Mapping Rule 16.5.3
Class::CLASS::setSysML$ModelicaEquations,
Class::CLASS::setSysML$ModelicaAlgorithms,
Class::CLASS::setSysML$ModelicaConnections
when{self.restriction.oclIsKindOf(Restriction::R_BLOCK);}
{
 safeApplyStereotype(result, ModelicaBlock_stereotype); // Mapping Rule 16.5.2
}
// ****** Mapping Rule 16.6 ******
mapping Class::CLASS::toSysML$ModelicaConnector
(inout pkg : UML::Package) : UML::Class // Mapping Rule 16.6.1
inherits Class::CLASS::setSysML$ClassifierOwner
merges Class::CLASS::toSysML$ModelicaClassDefinition // Mapping Rule 16.6.4
when{self.restriction.oclIsKindOf(Restriction::R_CONNECTOR)
or self.restriction.oclIsKindOf(Restriction::R_EXP_CONNECTOR);}
{
 safeApplyStereotype(result, ModelicaConnector_stereotype);
 if(self.restriction.oclIsKindOf(Restriction::R_CONNECTOR))
 then{
 safeStereotypeSetValue(result,
 ModelicaConnector_stereotype, "isExpandable", false); // Mapping Rule 16.6.2

 SysML-Modelica Transformation, Beta 2 83

 }
 endif;
 if(self.restriction.oclIsKindOf(Restriction::R_EXP_CONNECTOR))
 then{
 safeStereotypeSetValue(result,
 ModelicaConnector_stereotype, "isExpandable", true); // Mapping Rule 16.6.3
 }
 endif;
}
// ****** Mapping Rule 16.7 ******
mapping Class::CLASS::toSysML$ModelicaType
(inout pkg : UML::Package) : UML::Class // Mapping Rule 16.7.1
inherits Class::CLASS::setSysML$ClassifierOwner
merges Class::CLASS::toSysML$ModelicaClassDefinition // Mapping Rule 16.7.3
when{self.restriction.oclIsKindOf(Restriction::R_TYPE);}
{
 safeApplyStereotype(result, ModelicaType_stereotype); // Mapping Rule 16.7.2
}
// ****** Mapping Rule 16.8 ******
mapping Class::CLASS::toSysML$ModelicaPackage
(inout pkg : UML::Package) : UML::Class // Mapping Rule 16.8.1
inherits Class::CLASS::setSysML$ClassifierOwner
merges Class::CLASS::toSysML$ModelicaClassDefinition // Mapping Rule 16.8.3
when{self.restriction.oclIsKindOf(Restriction::R_PACKAGE);}
{
 safeApplyStereotype(result, ModelicaPackage_stereotype); // Mapping Rule 16.8.2
}
// ****** Mapping Rule 16.9 ******
mapping Class::CLASS::toSysML$ModelicaFunction
(inout pkg : UML::Package) : UML::FunctionBehavior // Mapping Rule 16.9.1
inherits Class::CLASS::setSysML$ClassifierOwner
merges Class::CLASS::toSysML$ModelicaClassDefinition, // Mapping Rule 16.9.9
Class::CLASS::setSysML$ModelicaAlgorithms
when{self.restriction.oclIsKindOf(Restriction::R_FUNCTION);}
{
 pkg.packagedElement += result;
 result.name := self.name; // Mapping Rule 16.9.5
 safeApplyStereotype(result, ModelicaFunction_stereotype); // Mapping Rule 16.9.2

 // externalLanguage
 var language : String = self.body![ClassDef::PARTS] // Mapping Rule 16.9.3
 .classParts![ClassPart::EXTERNAL] // Mapping Rule 16.9.4
 .externalDecl![ExternalDecl::EXTERNALDECL].lang;

 var innerOuter : InnerOuter::INNEROUTER = self.body![ClassDef::PARTS]
 .classParts![ClassPart::PUBLIC].contents![ElementItem::ELEMENTITEM]
 .element![Element::ELEMENT].innerOuter![InnerOuter::INNEROUTER];
 if(innerOuter.oclIsKindOf(InnerOuter::INNER)) // Mapping Rule 16.9.6
 then{
 safeStereotypeSetValue(result,
 ModelicaFunction_stereotype, "scope", modelicaInnerKind);
 }
 endif;
 if(innerOuter.oclIsKindOf(InnerOuter::OUTER))
 then{
 safeStereotypeSetValue(result,
 ModelicaFunction_stereotype, "scope", modelicaOuterKind);
 }
 endif;

 if((language = "C") or (language = "FORTRAN")) // Mapping Rule 16.9.3
 then{
 // externalLibrary
 var annotationsStr : OrderedSet(String) = null;
 self.body![ClassDef::PARTS].classParts![ClassPart::EXTERNAL]
 .externalDecl![ExternalDecl::EXTERNALDECL].annotation_[Annotation::ANNOTATION]
 .elementArgs-> forEach (elementArg | uElementArg){
 if(loadElementArg(elementArg).match("Library"))
 then{

 84 SysML-Modelica Transformation, Beta 2

 annotationsStr += loadElementArg(elementArg);
 }
 endif;
 } ;
 // appendValues
 safeStereotypeSetListValue
 (result, ModelicaFunction_stereotype, "externalLibrary", annotationsStr);

 // externalInclude
 //
Mapping Rule 16.9.8
 self.body![ClassDef::PARTS].classParts![ClassPart::EXTERNAL]
 .externalDecl![ExternalDecl::EXTERNALDECL]
 .annotation_[Annotation::ANNOTATION]
 .elementArgs->forEach (elementArg | uElementArg) {
 if(loadElementArg(elementArg).match("Include"))
 then{
 safeStereotypeSetValue(result, ModelicaFunction_stereotype,
 "externalInclude", loadElementArg(elementArg))
 }
 endif;
 }
 }
 endif;

 // Mapping Rule 16.9.7: externalLibrary attribute - to be implemented
}
// ****** Mapping Rule 16.10 ******
mapping ElementSpec::EXTENDS::toGeneralization
(inout class_ : UML::Classifier) : UML::Generalization // Mapping Rule 16.10.1
{
 class_.generalization += result;
 var upperClassName : String = self.path![Path::IDENT].name;
 var upperClass : UML::Class = sysmlModel
 .objectsOfType(UML::Class)![name = upperClassName];
 result.specific := class_; // Mapping Rule 16.10.2
 result.general := upperClass; // Mapping Rule 16.10.3

 // Mapping Rule 16.10.4: modification attribute - to be implemented
 // Mapping Rule 16.10.5: visibility attribute - to be implemented
 // Mapping Rule 16.10.6: arraysize attribute - to be implemented
}
// ****** Mapping Rule 16.11 ****** : ModelicaDer - to be implemented
// ****** Mapping Rule 16.12 ****** : ConstrainedBy - to be implemented
mapping Class::CLASS::setSysML$ClassifierOwner(inout pkg : UML::Package) : UML::Classifier
{
 init{
 pkg.packagedElement += result;
 result.name := self.name;
 }
}
// ******************************** COMPONENT DECLARATIONS ********************************
// ****** Mapping Rule 18.1 ******
mapping Element::ELEMENT::toSysML$ModelicaComponent
(inout class_ : UML::Classifier) : UML::TypedElement
disjuncts Element::ELEMENT::toSysML$ModelicaPart, // Mapping Rule 18.1.1
 Element::ELEMENT::toSysML$ModelicaPort, // Mapping Rule 18.1.2
 Element::ELEMENT::toSysML$ModelicaValueProperty, // Mapping Rule 18.1.3
 Element::ELEMENT::toSysML$ModelicaFunctionParameter{} // Mapping Rule 18.1.4
// ****** Mapping Rule 18.2 ******
mapping Element::ELEMENT::toSysML$ModelicaPart // Mapping Rule 18.2.1
(inout class_ : UML::Class) : UML::Property
inherits Element::ELEMENT::setSysML$TypedElementTypeAndName // Mapping Rule 18.2.6
merges Element::ELEMENT::setSysML$ModelicaComponentCommonValues, // Mapping Rule 18.2.9
 // Mapping Rule 18.2.10

 SysML-Modelica Transformation, Beta 2 85

 // Mapping Rule 18.2.11
 // Mapping Rule 18.2.12
 Element::ELEMENT ::setSysML$ModelicaComponentScopeValue, // Mapping Rule 18.2.7
 Element::ELEMENT ::
 setSysML$ModelicaComponentConditionalExpressionValue // Mapping Rule 18.2.8
when{getSysML$PropertyType(getModelicaComponentTypeName(self)) // Mapping Rule 18.2.3
 .isStereotypeApplied(ModelicaClass_stereotype)
 or getSysML$PropertyType(getModelicaComponentTypeName(self))
 .isStereotypeApplied(ModelicaModel_stereotype)
 or getSysML$PropertyType(getModelicaComponentTypeName(self))
 .isStereotypeApplied(ModelicaBlock_stereotype)
 and (class_.isStereotypeApplied(ModelicaFunction_stereotype) = false)
 and (self.specification.oclIsKindOf(ElementSpec::COMPONENTS)) // Mapping Rule 18.2.2
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.2.4
 .components->forAll(e : ComponentItem::uComponentItem |
 e.oclIsKindOf(ComponentItem::COMPONENTITEM)))
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.2.5
 .components[ComponentItem::COMPONENTITEM].component
 ->forAll(e : Component::uComponent |
 e.oclIsKindOf(Component::COMPONENT)))}
{
 class_.ownedAttribute += result;
 safeApplyStereotype(result, ModelicaPart_stereotype);
 self.specification[ElementSpec::COMPONENTS].components
}
// ****** Mapping Rule 18.3 ******
mapping Element::ELEMENT ::toSysML$ModelicaPort // Mapping Rule 18.3.1
(inout class_ : UML::Class) : UML::Port
inherits Element::ELEMENT::setSysML$TypedElementTypeAndName // Mapping Rule 18.3.6
merges Element::ELEMENT ::setSysML$ModelicaComponentCommonValues, // Mapping Rule 18.3.9
 // Mapping Rule 18.3.10
 // Mapping Rule 18.3.11
 // Mapping Rule 18.3.12
 Element::ELEMENT
 ::setSysML$ModelicaComponentConditionalExpressionValue, // Mapping Rule 18.3.8
 Element::ELEMENT ::setSysML$ModelicaComponentCausalityValue // Mapping Rule 18.3.7
when{getSysML$PropertyType(getModelicaComponentTypeName(self)) // Mapping Rule 18.3.3
 .isStereotypeApplied(ModelicaConnector_stereotype)
 and (class_.isStereotypeApplied(ModelicaFunction_stereotype) = false)
 and (self.specification.oclIsKindOf(ElementSpec::COMPONENTS)) // Mapping Rule 18.3.2
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.3.4
 .components->forAll(e : ComponentItem::uComponentItem |
 e.oclIsKindOf(ComponentItem::COMPONENTITEM)))
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.3.5
 .components[ComponentItem::COMPONENTITEM].component
 ->forAll(e : Component::uComponent |
 e.oclIsKindOf(Component::COMPONENT)))}
{
 class_.ownedPort += result;
 safeApplyStereotype(result, ModelicaPort_stereotype);
}
// ****** Mapping Rule 18.4 ******
mapping Element::ELEMENT::toSysML$ModelicaValueProperty // Mapping Rule 18.4.1
(inout class_ : UML::Class) : UML::Property
inherits Element::ELEMENT::setSysML$TypedElementTypeAndName // Mapping Rule 18.4.7
merges Element::ELEMENT ::setSysML$ModelicaComponentCommonValues, // Mapping Rule 18.4.14
 // Mapping Rule 18.4.15
 // Mapping Rule 18.4.17
 // Mapping Rule 18.4.18
 Element::ELEMENT::
 setSysML$ModelicaComponentDeclarationEquationValue, // Mapping Rule 18.4.16
 Element::ELEMENT ::setSysML$ModelicaComponentCausalityValue, // Mapping Rule 18.4.9
 Element::ELEMENT ::setSysML$ModelicaComponentVariabilityValue, // Mapping Rule 18.4.10
 Element::ELEMENT
// Mapping Rule 18.4.13
 ::setSysML$ModelicaComponentConditionalExpressionValue,
 Element::ELEMENT ::setSysML$ModelicaComponentScopeValue, // Mapping Rule 18.4.12
 Element::ELEMENT ::setSysML$ModelicaComponentFlowFlagValue // Mapping Rule 18.4.11
when{(getSysML$PropertyType(getModelicaComponentTypeName(self)) // Mapping Rule 18.4.3
 .isStereotypeApplied(ModelicaRecord_stereotype)

 86 SysML-Modelica Transformation, Beta 2

 or getSysML$PropertyType(getModelicaComponentTypeName(self))
 .isStereotypeApplied(ModelicaType_stereotype)
 or getSysML$PropertyType(getModelicaComponentTypeName(self)) = modelicaRealType
 or getSysML$PropertyType(getModelicaComponentTypeName(self)) = modelicaIntegerType
 or getSysML$PropertyType(getModelicaComponentTypeName(self)) = modelicaBooleanType
 or getSysML$PropertyType(getModelicaComponentTypeName(self)) = modelicaStringType)
 and (class_.isStereotypeApplied(ModelicaFunction_stereotype) = false)
 and (self.specification.oclIsKindOf(ElementSpec::COMPONENTS)) // Mapping Rule 18.4.2
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.4.4
 .components->forAll(e : ComponentItem::uComponentItem |
 e.oclIsKindOf(ComponentItem::COMPONENTITEM)))
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.4.5
 .components[ComponentItem::COMPONENTITEM].component
 ->forAll(e : Component::uComponent |
 e.oclIsKindOf(Component::COMPONENT)))
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.4.6
 .attributes ->forAll(e : ElementAttributes::uElementAttributes |
 e.oclIsKindOf(ElementAttributes::ATTR)))}
{
 class_.ownedAttribute += result;
 safeApplyStereotype(result, ModelicaValueProperty_stereotype);
 safeStereotypeSetValue(result,
// Mapping Rule 18.4.8
 ModelicaValueProperty_stereotype,"visibility", result.visibility);
}
// ****** Mapping Rule 18.5 ******
mapping Element::ELEMENT::toSysML$ModelicaFunctionParameter // Mapping Rule 18.5.1
(inout class_ : UML::FunctionBehavior) : UML::Parameter
inherits Element::ELEMENT::setSysML$TypedElementTypeAndName // Mapping Rule 18.5.8
merges Element::ELEMENT ::setSysML$ModelicaComponentCommonValues, // Mapping Rule 18.4.11
 // Mapping Rule 18.5.12
 // Mapping Rule 18.5.13
 // Mapping Rule 18.4.15
 Element::ELEMENT::
 setSysML$ModelicaComponentDeclarationEquationValue, // Mapping Rule 18.5.14
 Element::ELEMENT ::setSysML$ModelicaComponentCausalityValue, // Mapping Rule 18.5.9
 Element::ELEMENT ::setSysML$ModelicaComponentVariabilityValue // Mapping Rule 18.5.10
when{(getSysML$PropertyType(getModelicaComponentTypeName(self)) // Mapping Rule 18.5.3
 .isStereotypeApplied(ModelicaRecord_stereotype)
 or getSysML$PropertyType(getModelicaComponentTypeName(self))
 .isStereotypeApplied(ModelicaType_stereotype)
 or getSysML$PropertyType(getModelicaComponentTypeName(self)) = modelicaRealType
 or getSysML$PropertyType(getModelicaComponentTypeName(self)) = modelicaIntegerType
 or getSysML$PropertyType(getModelicaComponentTypeName(self)) = modelicaBooleanType
 or getSysML$PropertyType(getModelicaComponentTypeName(self)) = modelicaStringType)
 and class_.isStereotypeApplied(ModelicaFunction_stereotype) // Mapping Rule 18.5.4
 and (self.specification.oclIsKindOf(ElementSpec::COMPONENTS)) // Mapping Rule 18.5.2
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.5.5
 .components->forAll(e : ComponentItem::uComponentItem |
 e.oclIsKindOf(ComponentItem::COMPONENTITEM)))
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.5.6
 .components[ComponentItem::COMPONENTITEM].component
 ->forAll(e : Component::uComponent |
 e.oclIsKindOf(Component::COMPONENT)))
 and (self.specification[ElementSpec::COMPONENTS] // Mapping Rule 18.5.7
 .attributes ->forAll(e : ElementAttributes::uElementAttributes |
 e.oclIsKindOf(ElementAttributes::ATTR)))}
{
 class_.ownedParameter += result;
 safeApplyStereotype(result, ModelicaFunctionParameter_stereotype);
}
mapping Element::ELEMENT ::setSysML$ModelicaComponentCommonValues
(inout class_ : UML::Class) : UML::TypedElement
{
 init{
 // modification
 var modificationsStr : OrderedSet(String) = null;
 self.specification![ElementSpec::COMPONENTS]
 .components![ComponentItem::COMPONENTITEM]
 .component![Component::COMPONENT]

 SysML-Modelica Transformation, Beta 2 87

 .modification![Modifications::CLASSMOD].elementArgLst
 -> forEach (uElementArg | ElementArg::uElementArg){
 if(uElementArg.oclIsKindOf(ElementArg::MODIFICATION))
 then{
 var componentRef : String = loadComponentRef(
 uElementArg.oclAsType(ElementArg::MODIFICATION).componentReg);
 var value : String = loadExpression(
 uElementArg.oclAsType(ElementArg::MODIFICATION)
 .modification![Modifications::CLASSMOD].expOption);
 modificationsStr += componentRef + " = " + value;
 }endif;
 // if uElementArg.oclIsKindOf(ElementArg::REDECLARATION) is missing
 };
 safeStereotypeSetListValue
 (result, ModelicaExtends_stereotype, "modification", modificationsStr);

 // isReplaceable
 var replaceable : RedeclareKeywords::REPLACEABLE =
 self.redeclareKeywords![RedeclareKeywords::REPLACEABLE];
 if(replaceable.oclIsInvalid())
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "isReplaceable", false);
 }
 else{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "isReplaceable", true);
 }endif;

 // arraySize
 var arraySizeStr : Set(String) = null;
 self.specification![ElementSpec::COMPONENTS]
 .components![ComponentItem::COMPONENTITEM]
 .component![Component::COMPONENT].arrayDim.subscripts[Subscript::SUBSCRIPT]
 .subScript-> forEach (expression | uExp){
 arraySizeStr += loadExpression(expression);
 };
 safeStereotypeSetListValue
 (result, result.getAppliedStereotypes()
 ->any(true), "arraySize", arraySizeStr);

 // isFinal
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "isFinal", result.oclAsType(UML::RedefinableElement).isLeaf);
 }
}
mapping Element::ELEMENT ::setSysML$ModelicaComponentDeclarationEquationValue
(inout class_ : UML::Class) : UML::TypedElement
{
 init{
 var expression : Exp::uExp = self.specification![ElementSpec::COMPONENTS]
 .components![ComponentItem::COMPONENTITEM].component![Component::COMPONENT]
 .modification![Modifications::CLASSMOD].expOption;
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 [name = "ModelicaValueProperty" or name = "ModelicaFunctionParameter"]
 ->any(true), "declarationEquation", loadExpression(expression));
 }
}
mapping Element::ELEMENT ::setSysML$ModelicaComponentScopeValue
(inout class_ : UML::Class) : UML::TypedElement
{
 init{
 if(self.innerOuter.oclIsKindOf(InnerOuter::INNER))
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "scope", modelicaInnerKind);
 }
 endif;
 if(self.innerOuter.oclIsKindOf(InnerOuter::OUTER))

 88 SysML-Modelica Transformation, Beta 2

 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "scope", modelicaOuterKind);
 }
 endif;
 }
}
mapping Element::ELEMENT ::setSysML$ModelicaComponentConditionalExpressionValue
(inout class_ : UML::Class) : UML::TypedElement
{
 init{
 var condition : Exp::uExp = self.specification![ElementSpec::COMPONENTS]
 .components![ComponentItem::COMPONENTITEM].condition.condition;
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "conditionalExpression", loadExpression(condition));
 }
}
mapping Element::ELEMENT ::setSysML$ModelicaComponentCausalityValue
(inout class_ : UML::Class) : UML::TypedElement
{
 init{
 var direction : Direction::uDirection =
 self.specification![ElementSpec::COMPONENTS]
 .attributes![ElementAttributes::ATTR].direction;
 if(direction.oclIsKindOf(Direction::INPUT))
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "causality", modelicaInputKind);
 }
 endif;
 if(direction.oclIsKindOf(Direction::OUTPUT))
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "causality", modelicaOutputKind);
 }
 endif;
 }
}
mapping Element::ELEMENT ::setSysML$ModelicaComponentVariabilityValue
(inout class_ : UML::Class) : UML::TypedElement
{
 init{
 var variability : Variability::uVariability =
 self.specification![ElementSpec::COMPONENTS]
 .attributes![ElementAttributes::ATTR].variability;
 if(variability.oclIsKindOf(Variability::CONST))
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "variability", modelicaConstantKind);
 }
 endif;
 if(variability.oclIsKindOf(Variability::VAR))
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "variability", modelicaContinuousKind);
 }
 endif;
 if(variability.oclIsKindOf(Variability::DISCRETE))
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "variability", modelicaDiscreteKind);
 }
 endif;
 if(variability.oclIsKindOf(Variability::PARAM))
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "variability", modelicaParameterKind);
 }
 endif;

 SysML-Modelica Transformation, Beta 2 89

 }
}
mapping Element::ELEMENT ::setSysML$ModelicaComponentFlowFlagValue
(inout class_ : UML::Class) : UML::TypedElement
{
 init{
 var flowPrefix : Boolean = self.specification![ElementSpec::COMPONENTS]
 .attributes![ElementAttributes::ATTR].flowPrefix;
 if(flowPrefix)
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "flowFlag", modelicaFlowKind);
 }
 endif;
 var streamPrefix : Boolean = self.specification![ElementSpec::COMPONENTS]
 .attributes![ElementAttributes::ATTR].streamPrefix;
 if(streamPrefix)
 then{
 safeStereotypeSetValue(result, result.getAppliedStereotypes()
 ->any(true), "flowFlag", modelicaStreamKind);
 }
 endif;
 }
}
mapping Element::ELEMENT::setSysML$TypedElementTypeAndName
(inout class_ : UML::Class) : UML::TypedElement
{
 init{
 result.type := getSysML$PropertyType(getModelicaComponentTypeName(self));
 result.name := getModelicaComponentName(self);
 }
}
// **************************** EQUATION AND ALGORITHM SECTION ****************************
// ****** Mapping Rule 19.2 ******
mapping Class::CLASS::setSysML$ModelicaEquations // Mapping Rule 19.2.1
(inout pkg : UML::Package) : UML::Class
{
 // mapping to constraints
 self.body[ClassDef::PARTS].classParts[ClassPart::EQUATIONS] // Mapping Rule 19.2.3
 .contents[EquationItem::EQUATIONITEM].equation_
 ->select(e : Equation::uEquation | e.oclIsKindOf(Equation::EQ_CONNECT) = false)
 -> map toSysML$ModelicaEquation(result, false);
 self.body[ClassDef::PARTS].classParts[ClassPart::INITIALEQUATIONS]
 .contents[EquationItem::EQUATIONITEM].equation_ // Mapping Rule 19.2.4
 ->select(e : Equation::uEquation | e.oclIsKindOf(Equation::EQ_CONNECT) = false)
 -> map toSysML$ModelicaEquation(result, true);
}
mapping Equation::uEquation::toSysML$ModelicaEquation
(inout class_ : UML::Class, in isInitial : Boolean) : UML::Constraint
{
 class_.ownedRule += result;
 safeApplyStereotype(result, ModelicaEquation_stereotype);
 safeStereotypeSetValue(result, ModelicaEquation_stereotype,
 "isInitial", isInitial.repr());
 result.specification :=
 object UML::OpaqueExpression{body := loadEquation(self); language := "Modelica"};
}
// ****** Mapping Rule 19.3 ******
mapping Class::CLASS::setSysML$ModelicaAlgorithms // Mapping Rule 19.3.1
(inout pkg : UML::Package) : UML::Class
{
 // mapping to behaviors
 self.body[ClassDef::PARTS].classParts[ClassPart::ALGORITHMS] // Mapping Rule 19.3.3
 .contents-> map toSysML$ModelicaAlgorithm(result, false);

 self.body[ClassDef::PARTS] // Mapping Rule 19.3.4

 90 SysML-Modelica Transformation, Beta 2

 .classParts[ClassPart::INITIALALGORITHMS]
 .contents-> map toSysML$ModelicaAlgorithm(result, true);
}
mapping AlgorithmItem::uAlgorithmItem::toSysML$ModelicaAlgorithm
(inout class_ : UML::Class, in isInitial : Boolean) : UML::OpaqueBehavior
{
 class_.ownedBehavior += result;
 safeApplyStereotype(result, ModelicaAlgorithm_stereotype);
 safeStereotypeSetValue(result, ModelicaAlgorithm_stereotype, "isInitial", isInitial);
 result.body += loadAlgorithmItem(self);
}
// ****** Mapping Rule 19.4 ******
mapping Class::CLASS::setSysML$ModelicaConnections
(inout pkg : UML::Package) : UML::Class // Mapping Rule 19.4.1
{
 // mapping to connectors
 self.body[ClassDef::PARTS].classParts[ClassPart::EQUATIONS]
 .contents[EquationItem::EQUATIONITEM].equation_[Equation::EQ_CONNECT]
 -> map toSysML$ModelicaConnection(result);
}
mapping Equation::EQ_CONNECT::toSysML$ModelicaConnection
(inout class_ : UML::Class) : UML::Connector
{
 class_.ownedConnector += result;
 // get componentRefs
 var componentRef1 : String = loadComponentRef(self.connector1);
 var componentRef2 : String = loadComponentRef(self.connector2);

 // get part1, part2, port1, port2
 var part1Name : String = componentRef1.substringBefore(".");
 var part1 : UML::Property = class_.ownedAttribute![name = part1Name]
 .oclAsType(UML::Property);
 var part1Type : UML::Type = class_.ownedAttribute![name = part1Name].type;
 var port1 : UML::Property =
 getPort(componentRef1, part1Type.oclAsType(UML::Class));

 var part2Name : String = componentRef2.substringBefore(".");
 var part2 : UML::Property = class_.ownedAttribute![name = part2Name]
 .oclAsType(UML::Property);
 var part2Type : UML::Type = class_.ownedAttribute![name = part2Name].type;
 var port2 : UML::Property =
 getPort(componentRef2, part2Type.oclAsType(UML::Class));

 result._end +=
 object UML::ConnectorEnd{partWithPort := part1; role := port1}; // Mapping Rule 19.4.2
 result._end +=
 object UML::ConnectorEnd{partWithPort := part2; role := port2}; // Mapping Rule 19.4.3
 result.name := "connect (" + componentRef1 + " , " + componentRef2 + ")";

 safeApplyStereotype(result, ModelicaConnection_stereotype);
}
// *********************************** HELPER FUNCTIONS ***********************************
-- black-box helper defined in modelicaQVTUtils.ModelicaUtils.
-- helper loadComponentRef(in componentReference : ComponentRef::uComponentRef) : String
-- black-box helper defined in modelicaQVTUtils.ModelicaUtils.
-- helper loadExpression(in expression : Exp::uExp) : String;
-- black-box helper defined in modelicaQVTUtils.ModelicaUtils.
-- helper loadFunctionArgs(in functionArgs : FunctionArgs::uFunctionArguments) : String
-- black-box helper defined in modelicaQVTUtils.ModelicaUtils.
-- helper loadEquation(in equation : Equation::uEquation) : String
-- black-box helper defined in modelicaQVTUtils.ModelicaUtils.
-- helper loadAlgorithmItem(in algorithmItem : AlgorithmItem::uAlgorithmItem) : String

 SysML-Modelica Transformation, Beta 2 91

helper loadElementArg(in elementArg : ElementArg::uElementArg) : String
{
 // invoke Java black-box method
 return "TBD";
}
helper getModelicaComponentTypeName (in element : Element::ELEMENT) : String
{
 return element.specification![ElementSpec::COMPONENTS].typeSpec![TypeSpec::TPATH]
 .path![Path::IDENT].name;
}
helper getModelicaComponentName (in element : Element::ELEMENT) : String
{
 return element.specification![ElementSpec::COMPONENTS]
 .components![ComponentItem::COMPONENTITEM].component![Component::COMPONENT].name;
}
helper getSysML$PropertyType (in propertyName : String) : UML::Type
{
 if(propertyName = "Real")
 then {
 return modelicaRealType
 } endif;
 if(propertyName = "Integer")
 then {
 return modelicaIntegerType
 } endif;
 if(propertyName = "Boolean")
 then {
 return modelicaBooleanType
 } endif;
 if(propertyName = "String")
 then {
 return modelicaStringType
 } endif;
 return sysmlModel.objectsOfType(UML::Type)![name = propertyName];
}
helper getPart(in componentReference : String, inout class_ : UML::Class) : UML::Property
{
 var partName : String = componentReference.substringBefore("\\.");
 return class_.ownedAttribute![name = partName];
}
helper getPort(in componentReference : String, in propertyType : UML::Class) : UML::Property
{
 var portName : String = componentReference.substringAfter(".");
 var attributes : Set(UML::Property) = null;
 attributes += propertyType.ownedAttribute;
 propertyType.inheritedMember->forEach(s) {
 if(s.oclIsKindOf(UML::Property))
 then {attributes += s.oclAsType(UML::Property);}
 endif;
 };
 return attributes->select(name = portName)->any(true);
}
helper safeApplyStereotype(element : UML::Element, stereotype : UML::Stereotype) {
 assert fatal (not element.oclIsUndefined())
 with log('safeApplyStereotype(element=<null>)');
 assert fatal (not stereotype.oclIsUndefined())
 with log('safeApplyStereotype(stereotype=<null>)');
 var nearestPackage := element.getNearestPackage();
 assert fatal (not nearestPackage.oclIsUndefined())
 with log('safeApplyStereotype(element is not contained in a package!)');
 var profile := stereotype.getProfile();
 assert fatal (not profile.oclIsUndefined())
 with log('safeApplyStereotype(stereotype ' +
 stereotype.name + ' is not defined in a profile!)');

 if (not nearestPackage.getAllAppliedProfiles()->includes(profile)) then {

 92 SysML-Modelica Transformation, Beta 2

 nearestPackage.applyProfile(profile);
 log('safeApplyStereotype(element=' + element.repr() +
 ', stereotype=' + stereotype.qualifiedName + ') -- applied profile: '
 + profile.qualifiedName + ' to: ' + nearestPackage.qualifiedName);
 } endif;
 var sub : Set(UML::Stereotype) = element.getAppliedSubstereotypes(stereotype);
 if (sub->notEmpty()) then {
 // a specialization of the stereotype is applied.
 return;
 } endif;
 if (not element.isStereotypeApplicable(stereotype)) then {
 log('safeApplyStereotype(namedElement=' + element.repr() +
 ', stereotype=' + stereotype.qualifiedName +
 ') -- stereotype is not applicable to this element!');
 } endif;
 assert fatal (element.isStereotypeApplicable(stereotype))
 with log('safeApplyStereotype(namedElement=' + element.repr() + ', stereotype=' +
 stereotype.qualifiedName + ') -- stereotype is not applicable to this element!');
 if (not element.isStereotypeApplied(stereotype)) then {
 element.applyStereotype(stereotype);
 if (not element.isStereotypeApplied(stereotype)) then {
 log('safeApplyStereotype(namedElement=' + element.repr() +
 ', stereotype=' + stereotype.qualifiedName +
 ') -- stereotype application failed!');
 assert fatal (element.isStereotypeApplied(stereotype))
 with log('safeApplyStereotype(namedElement=' + element.repr() +
 ', stereotype=' + stereotype.qualifiedName +
 ') -- stereotype application failed!');
 } endif;
 } endif;
 return;
}
helper safeStereotypeSetValue
(element : UML::Element, stereotype : UML::Stereotype, tagName : String, value : OclAny) {
 safeApplyStereotype(element, stereotype);
 var sub : Set(UML::Stereotype) = element.getAppliedSubstereotypes(stereotype);
 var s : UML::Stereotype = null;
 if (sub->notEmpty()) then {
 sub := sub[getAllAttributes().name->includes(tagName)];
 } else {
 sub := stereotype->asSet();
 } endif;
 assert fatal (sub->size() = 1) with log('safeStereotypeSetValue(element=' +
 element.repr() + ', stereotype=' + stereotype.qualifiedName + ', tag=' +
 tagName + ') : the stereotype does not have any tag attribute of this name.)');
 s := sub![UML::Stereotype];
 element.setValue(s, tagName, value);
}
helper safeStereotypeSetListValue
(element : UML::Element, s : UML::Stereotype, propertyName : String, cv : Collection(OclAny)) {
 element.clearStereotypeListValue(s, propertyName);
 cv->forEach(v) {
 element.addStereotypeListValue(s, propertyName, v);
 }
}

 SysML-Modelica Transformation, Beta 2 93

	0 Abstract
	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional InformationAcknowledgements
	Changes to Adopted OMG Specifications
	Acknowledgments

	7 Transformation Approach
	8 Class Definition
	8.1 Overview
	8.2 «modelicaClassDefinition»
	Stereotypes
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints
	Additional Notes

	8.3 «modelicaClass» and «modelicaModel»
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	8.4 «modelicaRecord»
	Generalizations
	Attributes
	Associations
	Constraints

	8.5 «modelicaBlock»
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	8.6 «modelicaConnector»
	Generalizations
	Attributes
	Associations
	Constraints

	8.7 «modelicaType»
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations

	8.8 «modelicaPackage»
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Constraints

	8.9 «modelicaFunction»
	Extensions
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	8.10 «modelicaExtends»
	Extensions
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	8.11 «modelicaDer»
	Extensions
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	8.12 «modelicaConstrainedBy»
	Extensions
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	8.13 Short Class Definitions

	9 Predefined Types
	9.1 Overview
	9.2 ModelicaReal
	Instantiation
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	9.3 ModelicaInteger
	Instantiation
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	9.4 ModelicaBoolean
	Instantiation
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	9.5 ModelicaString
	Instantiation
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	9.6 ModelicaStateSelect
	Instantiation
	Generalizations
	Abstract Syntax
	Description
	Associations
	Constraints

	9.7 ModelicaExternalObject
	Instantiation
	Generalizations
	Abstract Syntax
	Description
	Associations
	Constraints

	10 Component Declarations
	10.1 Overview
	10.2 «modelicaValueProperty»
	Extensions
	Description
	Attributes
	Associations
	Constraints

	10.3 «modelicaPart»
	Extensions
	Description
	Attributes
	Associations
	Constraints

	10.4 «modelicaPort»
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	10.5 «modelicaFunctionParameter»
	Extensions
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	11 Equation and Algorithm Sections
	11.1 Overview
	11.2 «modelicaEquation»
	Extensions
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	11.3 «modelicaAlgorithm»
	Extensions
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	11.4 «modelicaConnection»
	Extensions
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	12 Other Related Constructs
	12.1 «modelicaSimulation»
	Generalizations
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	12.2 «modelicaAnnotation»
	Extension
	Abstract Syntax
	Description
	Attributes
	Associations
	Constraints

	13 Modelica Meta-Modeling Approach
	14 Modelica Meta-Model Constructs
	14.1 Model Structure Definition
	14.1.1 Program
	14.1.2 Within
	14.1.3 Path

	14.2 Class Definition
	14.2.1 Class
	14.2.2 Restriction
	14.2.3 ClassDef
	14.2.4 TypeSpec
	14.2.5 EnumDef
	14.2.6 EnumLiteral
	14.2.7 ClassPart
	14.2.8 ExternalDecl
	14.2.9 ElementItem
	14.2.10 Element
	14.2.11 InnerOuter
	14.2.12 ComponentRef
	14.2.13 Subscript
	14.2.14 ConstrainClass
	14.2.15 ElementSpec

	14.3 Import
	14.4 Annotation and Comments
	14.4.1 Annotation
	14.4.2 Comment

	14.5 Component Definition
	14.5.1 ComponentItem
	14.5.2 ComponentCondition
	14.5.3 Component
	14.5.4 ElementAttributes
	14.5.5 Variability
	14.5.6 Direction
	14.5.7 ArrayDim

	14.6 Modifications and Redeclarations
	14.6.1 Modification
	14.6.2 ElementArg
	14.6.3 RedeclareKeywords
	14.6.4 Each

	14.7 Behavior
	14.7.1 EquationItem
	14.7.2 AlgorithmItem
	14.7.3 Equation
	14.7.4 Algorithm

	14.8 Expressions
	14.8.1 Exp
	14.8.2 FunctionArgs
	14.8.3 ForIterator
	14.8.4 ForIterators
	14.8.5 NamedArg
	14.8.6 Operator

	15 Class Definition
	15.1 «modelicaClassDefinition»
	15.2 «modelicaClass»
	15.3 «modelicaModel»
	15.4 «modelicaRecord»
	15.5 «modelicaBlock»
	15.6 «modelicaConnector»
	15.7 «modelicaType»
	15.8 «modelicaPackage»
	15.9 «modelicaFunction»
	15.10 «modelicaExtends»
	15.11 «modelicaDer»
	15.12 «modelicaConstrainedBy»

	16 Predefined Types
	16.1 Overview

	17 Component Declarations
	17.1 Overview
	17.2 «modelicaPart»
	17.3 «modelicaPort»
	17.4 «modelicaValueProperty»
	17.5 «modelicaFunctionParameter»

	18 Equation and Algorithm Sections
	18.1 Overview
	18.2 «modelicaEquation»
	18.3 «modelicaAlgorithm»
	18.4 «modelicaConnection»

