Date: November 2012

OBJECT MANAGEMENT GROUP

SysML-Modelica Transformation

Version 1.0

OMG Document Number: formal/2012-11-09

Normative reference: http://www.omg.org/spec/SyM/1.0/

Machine consumable files:

Normative:
http://www.omg.org/spec/SyM/20120320/SysML4Modelica-Profile.xmi

Non-normative:
http://www.omg.org/spec/SyM/20120214/Modelica2ModelicaUnparsed.qvto
http://www.omg.org/spec/SyM/20120215/ModelicaUnparsed2SysML.qvto
http://www.omg.org/spec/SyM/20120216/SysML2ModelicaUnparsed.qvto
http://www.omg.org/spec/SyM/20120217/ModelicaUnparsed2Modelica.qvto
http://www.omg.org/spec/SyM/20120313/openModelica.emof
http://www.omg.org/spec/SyM/20120312/SysML4ModelicaProfile.mdzip

http://www.omg.org/spec/SysML/1.2/
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi

Copyright © 2009-2010, Atego

Copyright © 2009-2010, Deere & Company

Copyright © 2009-2010, EADS

Copyright © 2009-2010, ESA/ESTEC

Copyright © 2009-2010, Georgia Ingtitute of Technology
Copyright © 2009-2010, Jet Propulsion Laboratory
Copyright © 2009-2010, Linkdping University
Copyright © 2009-2010, L ockheed Martin Corporation
Copyright © 2009-2010, NoMagic Inc.

Copyright © 2012, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

The specification customizes the Unified Modeling Language (UML) specification of the Object Management Group
(OMG) to address the requirements of Systems Engineering as specified inthe UML for Systems Engineering RFP, OMG
document number ad/2003-03-41. This document includes references to and excerpts from the UML 2 Superstructure
Specification and UML 2 Infrastructure Specification with copyright holders and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following
conditions are met: (1) Redistributions of this specification must reproduce the above copyright notice, thislist of
conditions and disclaimers in the documentation and/or other materials provided with the distribution; (2) The Copyright
Holders listed in the above copyright notice may not be used to endorse or promote products derived from this
specification without specific prior written permission; (3) All modified versions of this specification must include a
prominent notice stating how and when the specification was modified; and (4) No modifications to thisOMG SysML ™
specification may be published under or identified by that name, except for versions published by OMG and incorporating
official changes made through the applicable procedures of OMG. OMG SysML ™ is atrademark of OMG, and ho
unauthorized version or revision of the OMG SysML specification may use the trademark “OMG SysML” or claim any
connection with or endorsement by OMG

In accordance with the above copyright provisions, the companies listed above have granted to the Object Management
Group, Inc. (OMG) anonexclusive, royalty-free, paid up, worldwide license to copy and distribute OMG SysML and to
modify OMG SysML and distribute copies of the modified version. Each of the copyright holders listed above has agreed
that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by
reason of having used the specification set forth herein or having conformed any computer software to the specification.
Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferabl e, nonsublicenseable, perpetual, worldwide license, to use this specification to
create and distribute software and specia purpose specifications that are based upon this specification, and to use, copy,
and distribute this specification as provided under the Copyright Act. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies
of this document in your possession or control.

This document was derived from the “ Systems Modeling Language (SysML) Specification, version 1.0 DRAFT,” OMG
document (ad/2006-03-01) submitted to OMG in response to the “UML for Systems Engineering RFP’ (ad/2003-03-41).
Review and editing in the OMG process produced the “OMG SysML Specification Final Adopted Specification” (ptc/
2006-05-04). Subsequent changes to the specification are controlled through the OMG process as documented at the
OMG Technology Document website - http://www.omg.org/technol ogy/documents/.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communi cations regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED “ASIS” AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The entirerisk asto the
quality and performance of software developed using this specification is borne by you. This disclaimer of warranty
constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™ CWM Logo™, IIOP™ [IMM™ MOF™ , OMG Interface Definition Language (OMG IDL)™ , and
OMG Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other
products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may
authorize devel opers, suppliers and sellers of computer software to use certification marks, trademarks or other special
designations to indicate compliance with OMG SysML ™. Software developed under the terms of this license may claim
compliance or conformance with this specification if and only if the software complianceis of anature fully matching the
applicable compliance points as stated in the specification. Software devel oped only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object Management
Group, Inc., software devel oped using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this processwe
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the I ssue Reporting Form listed on the main web page http: //www.omg.org, under
Documents, Report a Bug/lssue (http://www.omg.org/report_issue.htm).

Table of Contents

P O A ..o \Y;
Part |
S Yo 0] o 1P PTPPRRPN 3
1.1 OMG SYSMLTIM oo e e e e e e e e e e 3
V£V I Y/ o T = o RS 4
T.3 CONCIUSION oo e et e e 4
O @ o][=Tod 1Y TSRS 4
2 CONTOIMANCE ..o e 4
3 NOMMALIVE REIEIENCES ... e et 5
4 Terms and DefiNITIONSe ettt e 5
5 SYMDOIS e 5
6 AdAitioNal INfOrMALION ... e 6
6.1 ACKNOWIEAGMENTS ..ottt e e e e e e e e e e eeaeeenennes 6
7 Transformation APPrOACHueii i 7
A R CT=Y 0 1= - TR 7
T2 OVBIVIBW e e e e e e e aeaeen 9
Part Il
8 Class DEeFINITIONeonieiee e e 11
T O)V /=Y /=TT AP 11
8.2 «mModelicaClasSDefiNItION»o..veeee et 13
8.3 «modelicaClass» and «modeliCaMOAEI»coouvieiieiee et e e 14
8.4 «MOUEICARECOIT . onieeeiee e e 15
8.5 cMOUEICABIOCKY ..o e e 16
8.6 <MOUEICACONNECIOIN ..o e 17
8.7 «MOUEIICATYPE uvuiiiiii i e e e et e e e e e e e e e e e e e e e e e eaaaaeeeeeeennees 18
8.8 «MOAEliCAPACKAYEcoeiiieee e 19
8.9 «MOAEIICAFUNCHIONS ..o 19
8.10 «MOAEIHCAEXIENASS ...neenee et 21
8.11 «MOAEICADEIM ... e e et 23

SysML-Modelica Transformation, v1.0 i

8.12 «modelicaCoNnStraiN@UBYccccviieeeiiiiiiii e e e e e e e e e 23

8.13 Short Class DEefiNItiONSccoevuiiiiiiii e 24
O PredefiNed TYPES ...ovu e 25
.1 OVEIVIEW eeniiiii ettt e e et e e et eeeet e e e eaa e e e eata e e e esa e e saaaneeeeanaaeesnas 25
9.2 MOAEIICAREAIceeiieeee e aea 26
S IRC IV oo (=] [or=1 [] (=Y o[- USRS 27
9.4 MOAElICABOOICANoeviiiiieiee et aa 28
S BT Y oo (=] [To= 153 1 1 o [28
9.6 MOAEliCASIAtESEIECTiiieiieeee e 29
9.7 ModeliCaEXIErNalODJECTuuueiiiiiiie e 29
10 Component Declarationscoooviiiii oo 31
FO.1 OVEIVIEW ..oueniiiieeeee et ettt e e e e e e et e e e e et eeeeta e e e eaaa e e eetn e eesaneeesannnns 31
10.2 «mMOdelicaValUEPrOPEItY»uuuiuuiiiiiiiieeeeeeeeee e et ss s e e e e e e e e e aeeeeeeeennnes 33
10.3 «MOAEIICAPAIT ...ccceeiiiiiii e e e e e e e e e ae b e e e e e eraaas 34
3O I A g ToTo (=] o= T o] o o OO RSTR 36
10.5 «modelicaFunctionNParametercooooeuiiiiiiiiii e 37
11 Equation and Algorithm SecCtioNSccouiiiiiiii i 39
L1.1 OVEIVIEW .eeeiiit ettt e et e e e e e et e e e e e e e eea e e e e st e eeetn e eesaneeeaannnns 39
11.2 «mMOdeliCaAEQUALIONScccccoiiiiiiii e 39
11.3 «modelicaAlgoritRmcoovreie e 40
11.4 «mOdeliCACONNECHONcceiiiiiie e e e e e e e e e e e e eenaaaas 41
12 Other Related CONSIIUCTESciivniiiiiiciie e 43
12.1 «mOdelicaSimUIAtioN>cuuuiiiiiiiiiiiiiiee e e e e e e e e e e e e eereeaaees 43
12.2 "MOodeliCaANNOIALION" ... oo e e e 44
Part Il
13 Modelica Meta-Modeling APProachcooooeeeiiiiii i 47
131 GENEIAL .ot e e 47
14 Modelica Meta-Model CONSIIUCEScuiiveiiiiiiieeeeeeee e 51
14.1 The Model Structure Definitioncoeeiiiiiiiii e 51
I I e (0T | = T ¢ E TP SPPPPPPPP 51
14.1.2 WIERIN 1ottt e ettt ettt e s ettt es 51
14.1.3 PAN oottt n et 51
14.2 Class DEfiNITIONciiiiieiiiie e e et e e e e e e et e e e abaeeees 51
S R 1 - TSR 51

i SysML-Modelica Transformation, v1.0

e = LY [ox (o 52

I T O = T I SRR 52

I I = 1= oSS 53

L14.2.5 ENUMDET ..ottt e e e e e e s e s e e e e e e e e e e s s e e e aeeaeaeeannnnnn 54
I T o 10 1 I (= | PRSP 54

N A O = = - o RS 54

14.2.8 EXIEINAIDECHociei et e e e e e e e e e e e e e e s e aaae e e e aannan 55

e T [T g 1) (=] o o RS 55
I O T 1T 1 4T o | R 56
I It I 1] = 11 = 56
14.2.12 COMPONENTRET ..o e e e e e e s e s e e e aee e e e e e nnene 56
L14.2.03 SUBDSCEIPE ..eeeeeieiiee ettt ettt e e e e e e e e e bbbt e et e e e e e e e e e e e s anbanbbaeeeeeaaeeaeaaanns 57
I R o T 111 =V @ =TT 57
14.2.15 EIEMENESPEC oiiiiiiiiiiiit ettt ettt e e e e e e e e bbbt e e e e e e e e e e e e e aab bbb e e e eeeaaaaaeaaanns 57

G B 01 o o AT TPPPPTPINt 58
14.4 Annotation and COMMENTScccciiiiiiiiieir e e e e e e aaes 58
I AN g To] = L o] o 58

I o 011 1 41T o | A TSR PSPPPIN 59

14.5 Component DefiNItIONooooiiiiiiiiiiiii e e 59
14.5.1 COMPONENTIEIM ... e e e e e e e e e e e e e et et et eeeeeeseebbbennanan s 59

14.5.2 CompONENtCONITIONuueeiiiiiiiiieie ittt e e e e e e e e e e e e e e e e e e aaneaes 59
L14.5.3 COMPONENT ettt s s s e a2 e e e e e e e e e e e e eeeeeeeeeeeeesesbnbnnnannn e aas 59

14.5.4 EIeMENTALIIDULEScccoiiiiiiiiiice re e ee e aaaaan s 59
1455 VANADIILY ...oeeeeiiiiieie ettt e e e e e e e e e e e e e 60

I I 1] (=i 1T o P 60
T A AN ¢ = 1Y/ B 4 PP PPTPURPR 60

14.6 Modifications and Redeclarationsc.ccoovviiiiiieiiiiiiie e 60
I 0 Y o o 11 To%= 11 o o 60
14.6.2 EIEMENTAIT ..ottt ettt e e e e e e s ettt ettt e e e e e e e e s bt ebbeeeeaaaaaeaeeaannnnn 61
14.6.3 RedecClareKeYWOIUSueiiiiiiiiiiiiiieiee ettt e e e e e e e e e e e e e e e e e e annenes 61
I S - Vo] o S RPRRP 61

A = 1= o = 1Y/ T PSPPSRIt 62
I R Yo [0 = o 1 (= o SRR 62
2 AN [T T 11 .01 (=T o SO PPERSERR 62

I T Yo 1 - o) R 62
I R AN [T 11] SRR 63

I T o =151 (0] S 64
I T A (o T PSS PPTTPP 64

I B ¥ Tox 1o YA o [PSSR 66
S R T o 1 (= > o S 66
I 0T (= = o 66

S TS P T 3T To 1Y o R 66
S G @ 01T - o) 67

Part IV

15 Class DefiNITIONScouniiii e e et e eaans 71

SysML-Modelica Transformation, v1.0 il

15.1 «modelicaClassSDefiNItiON»ovee oo 71

15.2 «MOAEIICACIASScceieiiiiiiieeeeee et e e e e e e e e e e e 72
15.3 «MOdEliCAMOEIiiiiiiiiiceee e 72
15.4 «mMOdEeliCARECOIA»cccoiiiiiiiiece e e e e 72
15.5 «mMOdElICABIOCKuviiiiiiiiiiiieieiie e e e e e e e e e e e e e e e 73
15.6 «MOdeliCACONNECIOIcciviiiiiiiiiiiiees e e e e e e e e e e e e et a e e s e e e e e aeeeeeeeessennnnes 73
15.7 «MOUEIICATYPE ..uiiiiiiee e et e e e e e e e e e e e e et e e e e e e eeeaeenaaeeeesennnnes 73
15.8 «MOAEliCAPACKAGE®ccoeeeiiiiiiieeee e 73
15.9 «mMOdeliCaFUNCLIONcccoiiiiiiiiee e e e 74
15.10 «mMOdEliCAEXIENASccooiiiiiiiiieicicee e e e e e e e e e e e 74
T I R 1 g o o [=] o= 1 I 1Y oo P RPPSURR 75
15.12 «modelicaConstraiNn@dBY»ccccceiiiiiiiiiiiiiiirree e e e e 75
16 PredefiN@d TYPES ..ot e e e e e e e e e e eaaaa 77
G B @ 1Y V1= 77
17 Component DECIaratiONScoooeiiiiiiiiiie et e e aaaa 79
L17.0 OVEIVIEW ...ttt et e et e e e e et et e e e et e e e e e e e ast e e e e eessaeeeeeennes 79
17.2 «MOCEHCAPAIT ..coeveiiii et e e e e s e e e e ebaa e aees 79
17.3 «MOAEIICAPOIS ..o e 80
17.4 «modelicCaValUEPrOPErtY»uuuuuiiiiiisiieeeeeee et et e e e e e e e e e aaeeeeaeennnes 80
17.5 «modelicaFunctionParameterycccccoiiiiieeiiiiiiiieeieir e e e e e e e e aeeeeeeaaenn 81
18 Equation and Algorithm SectionsSccooovviiiiii i 83
S I 1Y V1= 83
18.2 «mMOdeliCAEQUALIONcccceeiiiiiiee e 83
18.3 «modelicaAlgorithmoooiiiii e 84
18.4 «mOdeliCACONNECHIONYccciiiiiiie e e e e e e 84
Part V
ANNEX A - EXAMPIES .o 87
ANNEX B - JUSHIFICALIONcccuviiiiiiiiiii e 107
AnNnex C - QVT Transformationcccouuiiiiiiiiiiiieiie e 111

iv SysML-Modelica Transformation, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from this URL:

http://mwww.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
. CORBA/IIOP
« Data Distribution Services
. Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
. UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

SysML-Modelica Transformation, v1.0 Vv

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
. CORBAServices
. CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or sub clause headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.

Vi SysML-Modelica Transformation, v1.0

Part | - Overview

General Information

OMG SysML™ is a standardized general purpose graphical modeling language for capturing complex system
descriptionsin terms of their structure, behavior, properties, and requirements. Modelicais a standardized general purpose
systems modeling language for analyzing the continuous and discrete time dynamics of complex systems based on
solving differential algebraic equations. Integrating the descriptive power of SysML models with the analytic and
computational power of Modelica models provides a capability that is significantly greater than SysML or Modelica
individually. The objectives of this document are to enable and specify a standardized bi-directional transformation
between the two modeling languages that will support implementations to efficiently and automatically transfer the
modeling information transfer between SysML and Modelica models without ambiguity.

The transformation approach is to specify first an extension to SysML called the SysML4Modelica profile to represent the
Modelica constructs and then to specify the SysML-Modelica Transformation between the profile constructs and the
Modelica language. Introducing the profile into the transformation approach is intended to simplify the transformation to
Modelica and facilitate model reuse by more directly leveraging existing model libraries within Modelica. In this way, the
user first creates the system model in a SysML modeling tool as he would normally do. The user then selects the part of
the model to be analyzed by Modelica (e.g., a particular subsystem) and applies the SysML4Modelica profile to create an
analytic representation of that part of the model. The SysML modeling tool is expected to include this profile. The
analytic representation expressed in the SysML4Modelica profile is then transformed to a Modelica model where it can be
executed by a Modelica modeling tool.

The SysML-Modelica transformation leverages the fundamental concepts of the Model-Driven Architecture (MDA).
Different transformation implementations can be applied to implement this specification such as the QVT and others. The
transformation can leverage an XMI formatted static file transfer or other mechanisms such as APIs that support a
dynamic interchange capability.

This specification is organized as follows:

Part | - Introduction (normative)

Part Il - SysML4Modelica profile (normative)
Part 111 - Modelica meta-model (non-normative)

Part IV - SysML-Modelica mapping, a bidirectional mapping between the SysML4Modelica profile and the Modelica
meta-model (non-normative)

Part V - Annexes. Examples, Justification, and QV T transformation (non-normative)

SysML-Modelica Transformation, v1.0 1

SysML-Modelica Transformation, v1.0

1 Scope

1.1 OMG SysML™

OMG SysML™ is a general-purpose systems modeling language that can be used to create and manage models of
systems using well-defined constructs with underlying semantics and a graphical notation. SysML reuses a subset of
UML 2 constructs and extends them by adding new modeling elements and two new diagram types. These SysML
diagrams are shown in Figure 1.1. The set of behavioral and structural diagrams combined with the requirements diagram
and parametric diagram provide an integrated view of a system. But SysML represents much more than just a set of
diagrams. Underlying the diagrams, there is an abstract syntax model repository that formally represents all the modeling
constructs. The graphical model provides a mechanism to organize, enter, retrieve, and view the system-descriptive data
contained in the model repository.

The diagrams provide multiple views of the same system model; these multiple views can be maintained consistently due
to the semantic underpinning of the modeling language. In the context of SysML:

e The structure view primarily refers to the hierarchy and interconnections among the parts of the system, and the
interconnections between the system and its external systems.

e The behavior view describes how the state of the system changes (or must change) over the time according to its own
dynamics and/or to external events.

The requirements diagram captures text reguirements in the model and enables them to be linked to other parts of the
model to provide unambiguous traceability between the requirements and system design. Parametrics provide a means to
specify that interdependencies between values of some system properties and can provide a bridge between the system
descriptive model in SysML and other simulation and engineering analysis models. While structure and behavior are
heavily based on UML, both requirements and parametrics are unique to SysML. Through these extensions, SysML is
capable of representing the specification, analysis, design, verification, and validation of systems.

SysML
Diagram
lﬂ
' l
Behavior -R;;uﬁm;ls T Struclure |
Diagram Diagram Diagram
\\ A
f '-,
Al | A
Activity State Machine | | Sequence | Use Case Block Definition | [Internal Block | | Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram
Same as Modified from Feﬁia@am_ “Parametric
UML 2 UML 2 Type Diagram

Figure 1.1 - An overview of the SysML diagrams and their relation to UML diagrams

As indicated above, the system behavior in SysML is captured through a combination of activity graphs, state machine,
and/or interactions specifications using diagrams and their associated semantics. The Semantics of a Foundational Subset
for Executable UML Models (http://www.omg.org/spec/FUML) provides more formal semantics to enable SysML activity
models to be executed in better compliance with the standard. In addition, SysML includes parametric constructs to
capture models of constraint-based behavior, such as continuous-time dynamics in terms of energy flow. The syntax and

SysML-Modelica Transformation, v1.0 3

semantics of such behavioral descriptions in parametrics have been left open to integrate with other simulation and
analysis modeling capabilities to support the execution of these models. Additional information on SysML can be found
at http://www.omgsysml.org.

1.2 SysML-Modelica

Modelica is an object-oriented language for describing differential algebraic equation (DAE) systems combined with
discrete events. Such models are ideally suited for representing the flow of energy, materials, signals, or other continuous
interactions between system components. It is similar in structure to SysML in the sense that Modelica models consist of
compositions of sub-models connected by ports that represent energy flow (undirected) or signal flow (directed). The
models are acausal, equation-based, and declarative. The Modelica Language is defined and maintained by the Modelica
Association (www.modelica.org), which publishes a formal specification [Modelica Association, 2008] but also provides
an extensive Modelica Standard Library, which includes a broad foundation of essential models covering domains ranging
from (analog and digital) electrical systems, mechanical motion and thermal systems, to block diagrams for control.
Finally, it is worth noting that there are several efforts within the Modelica community to develop open-source solvers,
such as in the OpenModelica project (www.openmodelica.org).

1.3 Conclusion

In conclusion, SysML and Modelica are two complementary languages supported by two active communities. By
integrating SysML and Modelica, we combine the very expressive, formal language for differential algebraic equations
and discrete events of Modelica with the very expressive SysML constructs for requirements, structural decomposition,
logical behavior and corresponding cross-cutting constructs. In addition, the two communities are expected to benefit
from the exchange of multi-domain model libraries and the potential for improved and expanded commercial and open-
source tool support.

1.4 Objective

The objective of this document is to provide a bi-directional mapping between SysML and Modelica to leverage the
benefits from both languages. By integrating SysML and Modelica, SysML'’s strength in descriptive modeling can be
combined with Modelica’'s DAE solving capability to support analyses and trade studies. The scope of this specification
supports the objectives of the bi-directional mapping, and includes the SysML4Modelica profile, and the SysML-
Modelica Transformation. Not all Modelica constructs will be represented in this profile. The focus is to include the

M odelica language features that are most common and together cover the majority of the Modelica models in the standard
library. When certain Modelica constructs are omitted, this will be pointed out explicitly in this document. In the future,
it may be desirable to introduce additional SysML constructs into the Modelica Language or additional Modelica
constructs in the SysML language; however, this is outside the scope of the current effort.

2 Conformance

This specification has a narrow scope, focusing exclusively on the transformation between SysML4Modelica and
Modelica. Partial support of this specification is therefore of limited use. Still, it is useful to distinguish between the
following two compliance levels:

e Level 0: Compliance with SysML4Modelica profile

e Level 1: Compliance with the SysML-M odelica mapping

4 SysML-Modelica Transformation, v1.0

Compliance to Level 0: This level entails the support of all the modeling concepts included in the SysML4Modelica
profile as defined in Part Il of this specification.

Compliance to Level 1: In addition to the capabilities provided by Level 0, Level 1 supports the successful bi-directional
transformation between SysML4Modelica models and corresponding Modelica models. The bi-directional transformation
is considered successful if the original Modelica model and the Modelica model generated by the round-trip
transformation (Modelica->SysML4Modelica->Modelica) are semantically identical, that is, they result in the same
simulation results.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

* Systems Modeling Language: Specification, v1 .3 (http://www.omg.org/spec/SysML/1.3)

« Modelica Specification, v.3.1 (http://www.modeli ca.org/documents/M odelicaSpec31. pdf)

e QVT, v1.1(http://www.omg.org/spec/QVT/1.1/)

e OCL, v2.3. 1 (http://www.omg.org/spec/OCL/2.3.1/)

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents. For an overview of Modelica
related terms and definitions, refer to Annex A.

5 Symbols
Acronym Me

MDA Maodel Driven Architecture
MOF Meta Object Facility

OMG Object Management Group
SysML System Modeling Language
UML Unified Modeling Language
XMl XML Metadata I nterchange
XML eXtensible Markup Language

SysML-Modelica Transformation, v1.0 5

6

6.1

Additional Information

Acknowledgments

The following companies submitted this specification:

Atego
Deere & Company
No Magic Inc.

The following companies supported this specification:

EADS

ESA/ESTEC

Georgia Ingtitute of Technology
Jet Propulsion Laboratory
Linkdping University
Lockheed Martin Corporation

The following people have contributed significantly to this document either directly or indirectly through discussions and
feedback:

Yves Bernard (EADS)

Conrad Bock (NIST)

Roger Burkhart (Deere & Co)

Hans-Peter De Koning (ESA)

Sanford Friedenthal (L ockheed Martin)

Peter Fritzson (Link&ping University)

Nerijus Jankevicius (No Magic Inc)

Thomas Johnson (Georgia Tech)

Alek Kerzhner (Georgia Tech)

Alan Moore (Mathworks)

Chris Paredis (Georgia Tech)

Russell Peak (InterCAXx, Georgia Tech)

Axel Reichwein (Georgia Tech)

Nicolas Rouquette (Jet Propulsion Laboratory)
Wladimir Schamai (EADS, Linkdping University)

SysML-Modelica Transformation, v1.0

7 Transformation Approach

7.1 General

To develop atransformation between the SysML and Modelica languages, a formal, systematic approach is used, asis
illustrated in Figure 7.1. The transformation approach is to specify first an extension to SysML called the
SysML4Modelica profile which represents the most common Modelica language constructs. This allows the Modelica
concepts to be expressed in an extension of SysML that supports round-trip transformations between SysML and
Modelica. The profile extends the UML4SysML subset of UML and the SysML extensions to provide the concept
required to capture the relevant Modelica concepts and enable the mapping between the two languages. The
“transformation” stereotype is a self-defined stereotype referring to a mapping between the Modelica metamodel and the
SysML4Moaodelica profile. The <<conformsTo>>, <<transformation>>, and <<instanceOf>> stereotypes are purely
informal.

pkg SysML-Modslica Transformation Approsch] Deuendencies]) pkg [Model] SysML-Modelica Transformation Approachl Application 1)
«metamodaly arefercnoes aprofiles aprofilen
umL I° - ~ T 7| SysML Profile SysML4Modelica «metam?delw
- —] Modelica
- T T
- transformations T [
atefarances w|mp0|tlse}_ = | SysML4Modelica 4
- | wapplys Transformation «conformsTan
Ph | T
— — |
aprafiles afatamadaln smodels I e
amodels
SysML4Modelica Modelica SysML4Modelica locinslanc O ol
T 7 Analytical Model | Simulation Model
-
< P " |)
s / | | |
é_| -]
! |
atransformations | amodels
SysML4Modelica | || = — — — — SysML-Modelica |- — — — — 4
Transformation Transformation Record

Figure 7.1 - The SysML-Modelica Transformation in relation to SysML and Modelica

To develop the SysML4Modelica profile in a systematic fashion, we start from the Modelica Language Specification and
identify for each Modelica language construct an equivalent construct in SysML from a semantic point of view. Where
equivalent constructs do not exist, stereotypes are created to extend the SysML language. The following naming
convention is used to define a Modelica construct in the SysML4Modelica profile: “modelicaConstruct” where Construct
is the name of the Modelica language construct as defined in the Modelica abstract syntax definition (see Part 111 -
Modelica Abstract Syntax).

Even when an equivalent SysML construct exists, it is sometimes necessary to introduce a stereotype in order to
distinguish the Modelica construct from the ordinary SysML construct when supporting round-trip transformation. In
addition, the textual syntax of Modelica often provides alternative ways to express the exact same semantics. In such
cases, the intent is to avoid propagating this redundancy to SysML4Modelica without loss of expressivity. For mapping
purposes, one of the redundant textual notations is identified as the primary (most explicit) one, and SysML4Modelica
constructs are preferably shown in this primary notation when using Modelica textual syntax. It should also be noted, that

SysML-Modelica Transformation, v1.0 7

Modelica includes a graphical syntax using iconic representations of block diagrams that maps to its textual syntax. An
example of the Modelica graphical syntax is shown in Figure 7.2 for a set of components connected together via Modelica
connectors and connections.

Modelica has a very rich representation for modeling differential algebraic equations. Where Modelica has a concept that
cannot be directly transformed into SysML, an opaque expression in Modelica syntax is sometimes used to capture the
concept in the SysML4Modelica profile. For example, mathematical expressions appearing in Modelica models are
represented as opaque expressions in the corresponding SysML4M odelica models.

Stepl controller gearbox
e load
_ _ LI
e — ——=
tio 17.1 —
- J=0.5"nr*

startTime=0

peoaud

Figure 7.2 - A Modelica model of a motor controller consisting of component models and the connections between
them. The connections include both causal signal connections (e.g., in and out of the controller) and acausal energy
connections (e.g., the rotational mechanical energy connections of the gearbox).

This specification provides a textual description of the mapping between Modelica and SysML4Modelica (see Part 1V -
Transformation). In Annex C, this mapping is also (partially) described using QVT. Such a formal definition of the
mapping has the advantage that tools can be used to generate executable transformations between SysML and Modelica
modeling tools (assuming they support some standardized interface such as JMI1). An additional implementation of the
mapping is being developed as part of the OpenModelica project.

1.Java Metadata Interface (JM1), http://java.sun.com/products/jmi/

8 SysML-Modelica Transformation, v1.0

Part Il - SysML4Modelica Profile

Overview

This part describes the stereotypes that represent the Modelica modeling constructs in SysML. Asillustrated below, the
stereotypes, together with the library of predefined types, are organized in sub-packages and profiles in the
SysML4Modelica profile. In Clause 8, al the stereotypes related to the Modelica restricted classes are introduced. In
Clause 9, the predefined Modelica types and the enumerations used in the SysML4Modelica profile are defined. In Clause
10, the Modelica equivalent of properties are defined - called Component Declarations in Modelica. Finaly, in Clause 11,
the Equation and Algorithm sub clauses of Modelica models are covered.

pkyg [Profile] SyshL4Modelica| SysML4Modelica Overview LJ

[1 [1 1 1 []

Classes Types Components Equations and Algorithms Other

| |
Chaptm% Chapta% Chapter 7 Chapter & Chapter 9

Figure (Part Il) - Overview

SysML-Modelica Transformation, v1.0 9

10

SysML-Modelica Transformation, v1.0

8 Class Definition

8.1 Overview

The class concept is the basic structural unit in Modelica. Classes provide the structure for objects and contain equations and
algorithms, which ultimately are the basis for the executable simulation code. The most general classis“model.” Specialized

classes such as “record,” “type,” “block,” “package,
but with restrictions, which need to be preserved in SysML to support round-trip mapping.

function,” and “connector” have most of the properties of a“model”

The following production rules define the different specialized classes. The referencein parentheses on the right indicates the

clause of this document in which the particular language element is discussed in detail.

[within [name] ";"]
{ [final] class definition ";" }

class definition :

[encapsulated]
[partial]
(class
| model
| record
| block
| [expandable] connector
| type
| package
| function)

class specifier
class specifier :

IDENT string comment composition

| IDENT "=" base prefix name [array subscripts]

[class modification] comment

| IDENT "=" enumeration " (" ([enum 1list] | ":") ")" comment

| IDENT "=" der " (" name "," IDENT { "," IDENT } ") " comment

| extends IDENT [class modification] string comment composition
end IDENT

The following table lists the SysML stereotypes for representing the specialized Modelica classes. Using this approach the

(9
©)

9
©)

(12

(14)

(23)
(13)
(23)
(13)
(14)
(16)

modeler only needs to apply the respective stereotype to indicate al the semantics and redtrictions of the associated Modelica class.
Thisinformation is represented graphicaly in Figure 8.1. In the following sub clauses, the details of each stereotype are described.

SysML-Modelica Transformation, v1.0

11

Table 8.1 - Mapping for the Modelica specialized classes

) SysML4Modelica
Modelica Construct SysML Base Class
New Stereotype See Clause

abstract generalization for | UML4SysML: :Classifier «modelicaClassDefinition» 9
al Modelica classes
Class and Model SysML.::Blocks::Block «modelicaModel» 10
Record SysML::Blocks::Block «modelicaRecord» 11
Block SysML.::Blocks::Block «modelicaBlock» 12
Connector SysML.::Blocks::Block «modelicaConnector» 12
Type SysML.::Blocks: :Block «modelicaType» 13

SysML.::Blocks::ValueType

UMLA4SysML: :Enumeration
Package SysML::Blocks::Block «modelicaPackage» 14
Function UML4SysML: :FunctionBehavior | «modelicaFunction» 14

«metaclass»
FunctionBehavior

- isPartial is derived fromisAbstr:
- isFinal is derived fromisLeaf

pkg [Package] Classes [Modelica Class Stereotypesﬂ
«metaclass»
Classifier

«stereotype»
M odelicaClassDefinition

+/isFinal : Boolean [1] = false

+/isPartial : Boolean [1] = false
+isModelicaEncapsulated : Boolean [1] = false
+isReplaceable : Boolean [1] = false

i
| | | w |

«stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
ModelicaModel ModelicaRecord ModelicaConnector ModelicaType ModelicaFunction

+isExpandable : Boolean [1] = false

«stereotype»
ModelicaPackage

«metaclass» «metaclass» «stereotype»
Enumeration DataType ValueType

-

+scope : ModelicaScopeKind [1] = none
+externalLibrary : String [0..*]
+externalinclude : String [0..1]

«stereotype» «stereotype»
ModelicaClass ModelicaBlock

l I

«stereotype»
ModelicaOperator

«stereotype»
Block

Figure 8.1 - Package diagram with an overview of the stereotypes for Modelica Classes

12 SysML-Modelica Transformation, v1.0

8.2 «modelicaClassDefinition»

Stereotypes

¢ Classifier (from UML4SysML)
Abstract Syntax

e SeeFigure8.1

Description

A Modelicaclass isthe basic structura unit in Modelica. However, because it lacks precise semantics, the c1ass congtruct
should never be used in Moddica. Without precise semantics, aModelica tool cannot easily check whether any restrictions are
violated. Therefore, the constructs that are specialized from Modelica class should be used instead.

In the context of the SysML4Moddica profile, the Moddicaclass construct is mapped to the stereotype
«modédicaClassDefinition», which is abstract and thus cannot be instantiated directly. This choice has been made because it is
desirable to have the additional semantics specified by the specialized classes. In addition, as clearly shown in Figure 8.1, the
stereotypes associated with the speciaized classes derive from different SysML constructs and thus cannot be mapped to a
single common construct for a Modéica class. The abstract stereotype «modelicaClassDefinition» serves the purpose of
grouping the attributes that apply to all the Modelica specialized classes. It stereotypes UML.::Classifier, which is a common
generalization for the stereotypes of al the specialized classes.

Just like UML Classifiers, a «modelicaClassDefinition» can contain nested class definitions. Such nested definitions can be of
any restricted class type derived from «modelicaClassDefinition». For instance, a «modelicaConnector» can contain a
«modelicaPackage».

Modelica classes are often defined using a short class definition syntax. For example, the type Force could be defined as:
type Force = Real [3] (unit={ "N.m" , "N.m" , "N.m" });

Rather than supporting such short class definitions explicitly, the SysML4Modédlica profile supports only the longer (but equival ent)
form (Note: in the Modelica abstract syntax the two forms are often represented identically):

type Force
extends Real [3] (unit={ "N .m" , "N .m" , "N .m" });
end Force;

In the remainder of this sub clause, al the common attributes and associations for all the constructs specialized from
Modelica class are described. In subsequent clauses for the individual specialized constructs, only the constraints on these
attributes and associations will be described in detail.

Attributes

e [isFina : Boolean [1]
In Modelica, the definition of a class can be qualified to befinal (see Modelica, v3.1, sub clause 7.2.6). This meansthat
the declared class cannot be further modified through (local) type modifications. Note that thisisidentical to the UML
atributeisl eef for redefinable € ements (see UML Specification 7.3.46) which, if true, indicates that no further redefinitions
arepossible.

TheisFina attribute istrue when the final prefix is present in Modelica; false otherwise. Its default valueisfalse.

Thisis derived from isLeaf.

SysML-Modelica Transformation, v1.0 13

e [isPartia : Boolean [1]
The Modelicapartia construct has the same semantics asthe isAbstract attribute in SysML. TheisPartial attribute
istrue when the partial prefix is present in Modelica; false otherwise. Its default valueisfalse.
Thisis derived from isAbstract.

e isModelicaEncapsulated : Boolean [1]
As explained in Modelica Specification 5.3.2, the Modelica encapsul ated construct limits the scope of name
lookup. An encapsulated package can be moved within the package hierarchy without affecting the local name
resolutions. These semantics are different from the isEncapsulated attribute of Blocksin SysML (SysML
Specification 8.3.2.2). An encapsulated block is treated as a black box; no connections can be made to itsinterna
parts directly. A second difference in semanticsisthat in Modelica the encapsulated prefix can be applied to all
classes, dthough it ismost commonly applied to packages. It is therefore necessary to introduce
isModdicaEncapsul ated as anew attribute so that it becomes available also for speciaized class stereotypes that do
not derive from a SysML Block.

The isModdicaEncapsulated attribute is true when the encapsul ated prefix is present in Moddica; fse otherwise. Its
default valueisfalse.

* isReplaceable : Boolean [1]
Asexplained in the M oddica Specification 7.3, the Moddica prefix replaceableis most commonly applied to components
(see sub dause 23) , but can dso be applied to aModeica classto indicate that alocal modd definition can be
redeclared when the containing modd is used. The isReplaceable attribute is true when the replaceabl e prefix is present
in Modelica; false otherwise. Its default value isfalse.

Associations
No additional associations

Constraints
[1] Any generdization relationship to/from «modelicaClassDefinition» must be stereotyped by a «modelicaExtends» relaionship.

[2] A «moddicaClassDefinition» can only contain nestedClassifiers sterectyped by aredtricted type specidizing
«modelicaClassDefinition».

Additional Notes

The Moddicawithin clause is explained in the Modelica Specification, v 3.1, sub clause 13.2.2.3. It defines where in the package
hierarchy the subsequent class definitions are located. This is important in Modelica to alow large package structures to be
divided over multiple modd files. Aslong as fully qualified type identifiers are used, the within clause is not relevant in
SysML4Modeica and is therefore not supported in the SysML4Modelica profile.

8.3 «modelicaClass» and «modelicaModel»
Generalizations

« «modelicaClassDefinition» (from SysML4Modelica: :Classes)

o «block» (from SysML)

Abstract Syntax
e SeeFigure8.1

14 SysML-Modelica Transformation, v1.0

Description

The Modelica specialized class mode is the most general specialized class; it is equivalent to the general Modelica class
construct. All the Moddlica class elements are alowed in models: variables, connectors, sub-models, equations, and agorithm
sections. A model can also include state variables. Modelica does not differentiate between a model and a class. Although
redundant, we therefore include both the equivalent stereotypes «modelicaClass» and «modelicaM odel ».

Attributes

No additional attributes
Associations

No additional associations

Constraints
(All congtraints apply to both «modelicaClass» and «modelicaM odel »)
[1] A «modelicaModel» must have a Name.

[2] A «modelicaModel» can only have Properties that are stereotyped by «modelicaPart», «modelicaPort», or
«modelicaval ueProperty».

[3] A «modelicaModel» can only contain Behaviors that are stereotyped by «modelicaFunction», or
«modelicaAlgorithm.

[4 A «modelicaModel» can only be contained in a «<modelicaClassDefinition.

[5] A «modelicaModel» can only specialize other classifiers derived from «moddicaBlock», or «modelicaRecord». The stereotype
«modelicaExtends» must be applied to the generalization relationship.

[6] All other attributes or associations inherited from «block» or Classifier are not relevant and should be set to their default
values. Thisincludes the attributes: isActive, isEncapsul ated.

8.4 «modelicaRecord»

Generalizations
« «modelicaClassDefinition» (from SysML4Modelica: :Classes)
e «block» (from SysML)

Abstract Syntax
e SeeFigure8.1

Description

The Modelica specialized class record is restricted to contain only public declarations of components that in turn also
contain only public declarations. A complete description of record is available in the Modelica Specification, v3.1, sub
clause 4.6:

SysML-Modelica Transformation, v1.0 15

Only public sections are allowed in the definition or in any of its components (i.e.,
equation, algorithm, initial equation, initial algorithm and protected sections are not
allowed) . May not be used in connections. The elements of a record may not have prefixes
input, output, inner, outer, or flow. Enhanced with implicitly available record
constructor function. Additionally, record components can be used as component
references in expressions and in the left hand side of assignments, subject to normal

type compatibility rules.

Attributes

No additional attributes
Associations

No additional associations

Constraints
[1] A «modelicaRecord» must have a Name.
[2] A «modelicaRecord» can only have Properties that are stereotyped by «modelicaval ueProperty».

[3] Any «modelicaValueProperty» owned by an instance of «modelicaRecord» must have visibility=public,
flonFlag= nonflow, causality= null, scope= null.

[4] A «modelicaRecord» can only be contained in a «modelicaClassDefinition».

[5] A «modelicaRecordy» can only specidize other classifiers derived from «modelicaRecord». The stereotype «moddicaExtends»
must be applied to the generalization rel ationship.

[6] All other attributes or associationsinherited from «blocks or Classifier may not be used. Thisincludes the attributes: isActive,
isEncapsulated; and the ownedElements: Behavior, Constraint.

8.5 «modelicaBlock»

Generalizations
» «modelicaClassDefinition» (from SysML4Modelica: :Classes)
* «block» (from SysML)

Abstract Syntax
e SeeFigure8.1

Description

The Modelica specidlized class block is very smilar to amodel except that all its connectors must be either an input or
output making it smilar to a Simulink block. A complete description of block isavailable in sub clause 4.6 of the Modelica
Specification:

Same as model with the restriction that each connector component of a Modelica block must

have prefixes input and/or output for all connector variables.

16 SysML-Modelica Transformation, v1.0

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A «modelicaBlock» must have a Name.

[2] A «moddicaBlock» can only have Propertiesthat are stereotyped by «moddicaPart», «modelicaPort», or «modelicava ueProperty».
[3] Any «modelicaValueProperty» owned by an instance of «modelicaBlock» must have causality= input or output.

[4] A «modelicaBlock» can only contain Behaviorsthat are stereotyped by «modelicaFunctions», «modelicaAlgorithms, or
«modelical nitia Algorithm.

[5] A «modéelicaBlock» can only contain Constraints that are stereotyped by «modelicaEquation» or «modelical nitial Equation».
[6] A «modelicaBlock» can only be contained in a «modelicaClassDefinitions.

[71 A «modelicaBlock» can only specialize other classifiers derived from «modelicaBlock» or «modelicaRecord». The
stereotype «modeli caExtends» must be applied to the generalization relationship.

[8] All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes:
isActive, isEncapsul ated.

8.6 «modelicaConnector»

Generalizations
» «modelicaClassDefinition» (from SysML4Modelica: :Classes)
e «block» (from SysML)

Abstract Syntax
e SeeFigure8.1

Description

The Modelica specialized class connector isamodel that cannot contain equations or algorithms in any of its
components. A complete description of connector is available in sub clause 4.6 and Clause 9 of the Modelica
Specification:

No equations or algorithms are allowed in the definition or in any of its components.
Enhanced to allow connect(..) to components of connector classes.

Attributes

e isExpandable: Boolean [1]
Asexplained in the Modelica Specification, sub clause 9.1.3, the Moddlica expandable prefix can be applied to a
connector. The primary purpose of expandable connectorsisto alow for the convenient modeling of businterfaces.
TheisExpandable attribute is true when the expandable prefix is present in Modelica; false otherwise. The default
valueisfase.

SysML-Modelica Transformation, v1.0 17

Associations
No additional associations

Constraints
[1] A «modelicaConnector» must have a Name.

[2] A «moddicaConnector» can only have Propertiesthat are sereotyped by «modelicaPart», «modelicaPort», or
«modedlicaVaueProperty».

[3] None of the Properties owned by a «modelicaConnector» can be typed to «modelicaClassDefinition»s that contain Behaviors or
Congtraints (at any level of containment).

[4] A «modelicaConnector» can only be contained in a «modelicaClassDefinition».

[5] A «modelicaConnector» can only specidize other classfiers derived from «modelicaConnector», «modelicaType», or
«modelicaRecord». The stereotype «modelicabExtends» must be applied to the generdization relationship.

[6] All other attributes or associationsinherited from «block» or Classifier may not be used. Thisincludes the attributes: isActive,
isEncapsulated; and the ownedElements: Behavior, Constraint.

8.7 «modelicaType»

Generalizations
» «modelicaClassDefinition» (from SysML4Modelica: :Classes)
e «vaueType» (from SysML)

Abstract Syntax
e SeeFigure8.1

Description

The Modelica speciaized class type isrestricted to predefined types, enumerations, arrays of type or classes extending from type.
It is enhanced to adlow extension of predefined types. In the SysML4Modelica profile, the extenson from predefined typesis
handled by making the predefined types instances of «modelicaType» (See Clause 18).

Unlike the other Moddlica restricted classes, «modelicaType» does not generalize «block». Thisimpliesthat it is not possible for a
«modelicaType» to contain definitions of other modeling elements (e.g., a contained package). Although such containment would,
grictly speaking, be alowed by the Modelicalanguage, it is rarely, if ever, used. To avoid unnecessary complications in extending
SysML «vaueType»s, the SysML4Modelica profile does not support «modelicaType»s that contain definitions of other modeling
constructs.

Attributes

No additional attributes
Associations

No additional associations

Constraints
[1] A «modelicaType» must have a Name.

[2] A «modelicaType» can only be contained in a «modelicaClassDefinitiony.

18 SysML-Modelica Transformation, v1.0

[3] A «modelicaType» can only specialize other classifiers derived from «modelicaType». The stereotype
«modelicaExtends» must be applied to the generalization relationship.

8.8 «modelicaPackage»

Generalizations
« «modelicaClassDefinition» (from SysML4Modelica: :Classes)
e «block» (from SysML)

Abstract Syntax
e SeeFigure8.1

Description

A Modédlica package has broader semantics than just a container for other modd elements asin SysML. Although it may only
contain declarations of classes and congtants, these declarations can be replacesble and can be inherited from parent packages, so that
the package itself should be thought of as a model. The corresponding SysML4Modelica construct, «modelicaPackage», therefore
generdizes «block» rather than Package. In the Modelica language, a Modelica package is enhanced, as compared to Modelica
class, to alow for the import of elements of packages. (See Moddlica, v 3.1, Clause 13.)

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A «modelicaPackage» must have a Name.

[2] A «modelicaPackage» can only have Properties that are stereotyped by «modelicaval ueProperty».

[3] Any «modelicavValueProperty» owned by an instance of «modelicaPackage» must have variability= constant. (ref.
Modélica Specification 4.6, package)

[4] A «modelicaPackage» can be contained in a «<modelicaClassDefinition» or ina UML4SysML: :Package.

[5] A «modeicaPackage» can only specidize other classfiers derived from «modelicaPackage». The stereotype «modelicaExtends»
must be applied to the generalization rel ationship.

[6] All other attributes or associationsinherited from «block» or Classifier may not be used. Thisincludes the attributes: isActive,
isEncapsulated; and the ownedElements: Behavior, Constraint.

8.9 «modelicaFunction»

Extensions
¢ FunctionBehavior (from UML4SysML)
Generalizations

» «moddicaClassDefinition» (from SysMLAModdica: :Classes)

SysML-Modelica Transformation, v1.0 19

Abstract Syntax
e SeeFigure8.1
Description

The Modelica specialized class function represents a callable section of procedural agorithmic code without side effects. It
isdmilar to a SysML FunctionBehavior. Compared to a general Modelica class, quite afew regtrictions and enhancements apply;
refer to Modelica, v 3.1, sub clause 12.2 for details.

As described in Modelica, v 3.1, sub clause 12.9, a Moddica function may refer to an external function specifier (e.g., an external
C or Fortran function):

function IDENT string comment

{ component clause ";" }

[protected { component clause ";" }]

external [language specification] [extermal function call] [annotation] ";"
[annotation ";"]

end IDENT;

Whether a particular function is external or not is determined by the language attribute of the «modelicaFunction» (inherited from
OpaqueBehavior). For Modelica native functions, the language should be specified as“Moddica.” For external functions, the
language attribute is set to another language. Modelica currently only allows the languages “C,” “FORTRAN,” or “builtin.” For
such externa functions, the body attribute contains the external _function _call from Modelica. The annotation that is part of the
externad statement in Modelica can contain two types of information: Libraries and Include directives. In SysML4Modelica, this
information is captured in the two additiona attributes: externalLibrary and externallnclude.

Several additional attributes are included in «modelicaFunction» to capture such semantics.

At this point, SysML4Modelica only alows for function definitions; functions cannot be “called” explicitly — they can only be
referred to in opague Modelica syntax portions of the model.

Attributes

e externalLibrary: String [0..*]
A list of external librariesthat need to be linked in to resolve the references to the external function (see Modelica, v 3.1,
sub clause 12.9 for details). It should only be defined when language = “C” or “FORTRAN".

e externallnclude: String [O.. 1]
An optiond string containing include directives to be considered when compiling and linking the externa function. It should
only be defined when language = “C” or “FORTRAN.”

Associations
No additional associations

Constraints
[1] A «modelicaFunction» must have a Name.
[2] A «modelicaFunction» can only have Parameters that are stereotyped by «modelicaFunctionParameter».

[3] Any «modélicaFunctionParameters (owned by an instance of «modelicaPackage») for which causality= input may not be
assigned values in the body of the function (i.e,, it isread-only).

[4] A «modelicaFunction» can only have zero or one body attribute.
[5] A «modelicaFunction» must have language= “Modelica, ” “builtin,” “C,” or “FORTRAN.”

20 SysML-Modelica Transformation, v1.0

[6] If language= “Modelica,” then the body of the function must be represented in the Modelica syntax and must constitute a
valid Modelica algorithm section.

[7] If language= “C” or “FORTRAN,” then the body of the function must be represented avaid functiona call in the respective
language (as specified in Modelica, v 3.1, sub clause 12.9.4).

[8] Theoptiond attributes, externalLibrary and externallnclude, can only be used when language= “C” or “FORTRAN.” [9] A
«modelicaFunction» definition can only be contained in a «modelicaClassDefinition.

[9] A «modelicaFunction» can only specidize other classifiers derived from «moddicalFunctions. The stereotype «moddli caExtends»
must be applied to the generalization rel ationship.

[10] All other attributes or associations inherited from FunctionBehavior or Classifier may not be used.

8.10 «modelicaExtends»

Extensions
e Generalization (from UML4SysML)

Abstract Syntax

pkg [Package] Classes [Modelica Relstions Sterectypes U

«metaclazss «metaclasss
Generalization Dependency

T I |

gaterectypes waterectypes saterectypes

ModelicaExtends ModelicaConstrainedBy ModelicaDer
+thodification : String [0..#] +modification : String [0..%] +variable ; String [1..%]
+vigibility : Wisibilitykind [1] = public
+arraysize | String [0, *){ordered}

Figure 8.2 - Modelica Relations stereotype definitions
Description

The extends clause of Moddlicais equivaent to a SysML Generalization. The only difference is that in Moddica the type
being extended can be locally modified (see Modelica, v 3.1, sub clause 7.1):

extends clause :
extends name [class modification] [annotation]

constraining clause :
extends name [class modification]

Similar local type modifications can be used when defining usages (i.e., Modelica components — see Clause 23). In both cases the
SysML4Modelica mapping currently captures the local modifications only as a text string in Modelica syntax. A separate
modification can be defined for every component of a «moddlicaClassDefinition»; in Modelica these modifications are grouped,
separated by commas, and surrounded by parentheses. Each such modification is represented in SysML4Modelica as a separate
string. It corresponds thus to an argument as defined in the following extract of the Modelica EBNF (see Modédlica, v 3.1, sub
clause 7.2):

SysML-Modelica Transformation, v1.0 21

class modification
"(" [argument 1list] ")*"

argument list
argument { "," argument }

argument
element modification or replaceable |
element redeclaration

element modification or replaceable:
[each 1 [final] (element modification | element replaceable)

element modification
component reference [modification] string comment

element redeclaration
redeclare [each] [final]
((class definition | component clausel) | element replaceable)

element replaceable:
replaceable (class definition | component clausel)
[constraining clausel

component clausel
type prefix type specifier component declarationl

component declarationl
declaration comment

Multiple inheritance is supported in Modelica. Therefore, more than one «modelicaExtends» relationship is allowed for asingle
«modelicaClassDefinition». The extends clause can be applied to any of the restricted classes (including packages).

If the extends clause appearsin a protected section of the Modedlica mode, then dl the elements of the base class become
protected elements of the speciaized class. It is therefore important to specify whether the «moddicaExtends» relation is
public or protected.

Not every restricted class can inherit from every other restricted class. Refer to Modelica, v 3.1, sub clause 7.1.3 for an overview
table.

Attributes

o vishility: VisibilityKind [1]
When an extends statement appears in a protected section of a «modelicaClassDefinition», then al components of
the parent class are protected. Default value is public.

e modification: String [0..*]
Aninherited Modédlicaclass can belocally modified. The modifications are defined by this attribute in Moddlica syntax.
Each maodification (as specified in the Modelica concrete syntax as a comma-separated expression) is specified asa
separate instance of this attribute.

e arraySize: String [0..*] { ordered}
One can specify an array size for an inherited Modelicaclass. This attribute is an ordered list of strings, each of
which must be aM odelicaexpression that evaluatesto an integer. The i™" element in the ordered list correspondsto size
of the multidimensiona array in the it dimension.

22 SysML-Modelica Transformation, v1.0

Associations
No additional associations

Constraints

[1] Boththesource and target of a«modelicaExtends» rdation must be typed to instances of aspecidization of
«modelicaClassDefinition».

[2] Thevishility attribute of «modelicaExtends» can only take on values of public or protected.

8.11 «modelicaDer»

Extensions

* Dependency (from UMLASysML)
Abstract Syntax

e SeeFigure8.2
Description

The der clausein Moddicaidentifies afunction as a partial derivative of another function (Moddica Specification 3.1, sub clause
12.7.2). It establishes a relationship between two functions and is therefore modeled as an extenson of Dependency in
SysML4Moddlica. It requires as attributes a list of variables with respect to which the partial derivative is taken.

Attributes

e variable: String [1..*]
A list of variables with respect to which the partial derivative istaken. At least one variable must be specified. No default
vaueis specified.

Associations
No additional associations

Constraints

[1] Both the source and target of a «modelicaDer» relation must be typed to instances of «modelicaFunctions.

8.12 «modelicaConstrainedBy»

Extensions

» Dependency (from UMLA4SyaVIL)
Abstract Syntax

e SeeFigure8.2
Description

In areplaceable declaration in Modelica, one can specify a constrained by clause. The semantics of this construct are
explained in more detail in Moddlica, v 3.1, sub clause 7.3.2.

SysML-Modelica Transformation, v1.0 23

Attributes

e modification: String [0..*]
A Modedlicaclassthat constrains a replaceabl e declaration can be locally modified. The modifications are defined by
this attribute in Modelica syntax. Each modification (as specified in the Modelica concrete syntax as a comma-
separated expression) is specified as a separate instance of this attribute. Default valueis null.

Associations
No additional associations

Constraints

[1] Both the source and target of a«moddicaCongtrainedBy» relation must be typed to instances of a specidization of
«modelicaClassDefinition».

8.13 Short Class Definitions

Modelica provides a short-hand notation for definition of classes. It is equivalent to an inheritance construct, and is therefore
redundant and not supported separately in the SysML4Modelica profile.

24 SysML-Modelica Transformation, v1.0

9 Predefined Types

9.1

Overview

The following predefined types are available in the Modelica language (Modelica. v 3.1, sub clause 4.8): Real Type, Integer
Type, Boolean Type, String Type, Enumeration Types, StateSelect, External Object, and Graphical Annotation Type. These
primitive types are defined as predefined types in SysML4Modelica:: Types::ModelicaPredefinedTypes.

Although these types have direct counterpartsin SysML, they are redefined to account for the additional attributes associated

with them in Modelica. Note that in Modelica, the properties such as “start,” “quantity,” etc., are not really equivalent to

user- defined complex data-types. For instance, if one defines “Real x;” then one cannot refer to “x.min” in an equation. The
only way one can specify a value for these special propertiesis as part of atype definition or local modification: e.g., “Real

X(start=1, unit="m").

pkqg [Model] Types[Modelica Predefined Types]J

wthodelicaTypes
ModelicaReal

shalueTypes
Real

v alueTypes
Integer

dizplayUnit © String = String Empty

min : Real = Real -Inf
max : Real = Real +Inf
fixed | Boolean
natminal @ Real

start : Real = Real Zero

stateSelect ;| ModelicaZtateSelect = default

amodelicaTypes
Maodelicalnteger

win : Integer = Integer -Inf
max Integer = Integer . +Inf
fixed : Boolean

start © Integer = Integer . Zero

shalueTypes
Boolean

amodelicaTvpe:
ModelicaBoolean

fixed : Boolean
=start . Boolean = falze

shalueTypes
String

gmodelicaType:
ModelicaString

=start : String = String Empty

smodelicaTypes
ModelicaStateSelect

default
always
nEver
prefer
avoicl

" |[Modelica 31, sec. 4.8%

" IModelica 3.1, sec. 4.8%
" |[Modelica 31, sec. 4.8%

avalueTypes
Real.+Inf : Real

WalueTypes
Real.-Inf : Real

WalueTypes
Beal.7ero : Real

avalueTypes
Integer.Zero : Inteqer

avalueTypes
Inteqger.+inf : Inteqer

avalueTypes
Inteqger.-Inf : Inteqer

[Modelica 3.1, sec. 4.8%

aWalueTypes
String.Empty : String

" iModelica 3.1, sec. 4.8.?!1\—;]

wmodelicaTypes
Wb deficabxtarpalObjact

[Modelica 5.1, =ec. 4.8.?%

Figure 9.1 - Package diagram with an overview of the Predefined Modelica Types

SysML-Modelica Transformation, v1.0

25

9.2 ModelicaReal

Instantiation
e SysML4AModdica:Classes:Moddicalype
Generalizations
e SysML: :Blocks::Real
Abstract Syntax
e SeeFigure9.1
Description

The predefined type Real in Modelicaincludes a variety of attributes besides its actual vaue (Moddica 3.1, sub clause 4.8.1).

In SysML4Modelica, these attributes are defined in ModelicaReal, a specialization of the primitive type SysML::Blocks::Redl.
As aresult of this specialization, ModelicaReal, inherits the attributes. quantityKind and unit, which correspond to the Modelica
dtributes quant ity and unit, regpectively. Additional attributes are listed below.

Attributes

e displayUnit: String [0.. 1]
In addition to the actual units, aModelicaReal can have aunits used for display in atool’s graphical user interface or in
plots. These units are defined in this attribute as a string.

e« min: Red [1]
The minimum vaue the ModelicaRed variable can take on. Default valueis -Inf.

e max: Real [1]
The maximum value the ModelicaReal variable can take on. Default valueis +Inf.

« dart: Rea [1]
The value of the ModelicaReal variable at the beginning of a simulation. The meaning of this variable depends on
thevalue of the attribute £ ixed. If fixed= false, thenitistobeinterpreted asaninitia guessfrom which may
bedeviated in order to satisfy all thealgebraic congtraints. If £ ixed=true, thenthevariableisrequired to equal its
start value. Default valueis o.

e fixed: Boolean [1]
This attribute quaifies the meaning of the attribute st art. If fixed=false, thenstart istobeinterpreted asan
initial guessfrom which may be deviated in order to satisfy dl the dgebraic congtraints. If £ixed=true, thenthe
variableisrequired to equal its start value. Default vaueistruefor parameters and constants, and falsefor all
other variables.

e nomind: Real [0.. 1]
The value of this attribute may be used by the solver for scaling purposes.

e dtateSelect: StateSelect [1]
The vdue of this attribute determines how a Moddlica solver should sdect state variables for the system of Differential
Algebraic Equations (Modelica. v 3.1, sub clause 4.8.7.1). Default value is SateSd ect.default.

Associations

No additional associations

26 SysML-Modelica Transformation, v1.0

Constraints

No additional constraints

9.3 Modelicalnteger

Instantiation

e SysML4AModdica:Classes:ModdicaType

Generalizations

e SysML: :Blocks:Integer

Abstract Syntax

e SeeFigure9.1

Description

The predefined type Integer in Moddicaincludes a variety of attributes besides its actua value (Modelica, v 3.1, sub clause
4.8.2). In SysML4Modelica, these attributes are defined in Modelical nteger, a specialization of the primitive type
SysML::Blocks:Integer. As aresult of this specialization, Modelical nteger, inherits the attribute: quantityKind, which
correspond to the Modelica attribute quantity. Additiona attributes are listed below.

Attributes

min: Integer [1]
The minimum value the Modelical nteger variable can take on. Default valueis-Inf.

max: Integer [1]
The maximum va ue the Modelical nteger variable can take on. Default valueis +Inf.

start: Integer [1]
The value of the Modelical nteger variable at the beginning of asimulation. The meaning of this variable depends on
thevdueof theattribute f ixed. If fixed=false, thenitisto beinterpreted asaninitia guessfrom which may be
deviated in order to satisfy all the agebraic congtraints. If £ ixed=true, thenthe variableisrequired to equal its
start value. Default valueisO.

fixed: Boolean[1]
Thisattribute quaifies the meaning of the attribute st art. If fixed=false, then start istobeinterpreted asan
initia guess from which may be deviated in order to satisfy al the algebraic congtraints. If £ixed=true, thenthe
variableisrequired to equal its start value. Default value istrue for parameters and constants, and falsefor al
other variables.

Associations

No additional associations

Constraints

No additional constraints

SysML-Modelica Transformation, v1.0 27

9.4 ModelicaBoolean

Instantiation
e SysML4Modelica::Classes::ModelicaType
Generalizations
e SysML: :Blocks::Boolean
Abstract Syntax
e SeeFigure9.1
Description

The predefined type Boolean in Modelicaincludes a variety of attributes besides its actua value (see Moddlica, v 3.1, sub clause
4.8.3). In SysML4Modelica, these attributes are defined in ModelicaBoolean, a pecialization of the primitive type
SysML::Blocks::Boolean. Asaresult of this specialization, ModelicaBoolean, inherits the attribute, quantityKind, which correspond to
the Modelica attribute quant i ty. Additiona attributes are listed below.

Attributes

e dtart: Boolean [1]
Thevalue of the ModelicaBool ean variable at the beginning of asimulation. The meaning of this variable dependson
the value of the attribute fixed. If fixed= fase, then it isto be interpreted as an initial guess from which may be
deviated in order to satisfy al the algebraic constraints. If fixed=true, then the variable isrequired to equal its start
value. Default valueisfalse.

e fixed: Boolean [1]
This attribute qualifies the meaning of the attribute start. If fixed=fa se, then start isto be interpreted asaninitia guess
from which may be deviated in order to satisfy all the algebraic constraints. If fixed=true, then the variable is required
to equal its start value. Default valueistrue for parameters and constants, and false for al other variables.

Associations
No additional associations
Constraints

No additional constraints

9.5 ModelicaString
Instantiation
e SysML4Modelica::Classes::ModelicaType
Generalizations
e SysML: :Blocks::String
Abstract Syntax

e SeeFigure9.1

28 SysML-Modelica Transformation, v1.0

Description

The predefined type String in Moddicaincludes a variety of attributes besides its actual value (see Modelica, v3.1, sub clause

4.8.4). In SysML4Modelica, these attributes are defined in ModelicaString, a specialization of the primitive type

SysML::Blocks:String. As aresult of this specidization, ModdicaString inherits the attribute, quantityKind, which corresponds to

the Modelica attribute quant i ty. In addition, a start value can be specified.

Attributes
e start: String [1]

The value of the ModelicaString variable at the beginning of asimulation. Default value is Sring.Empty.

Associations
No additional associations
Constraints

No additional constraints

9.6 ModelicaStateSelect
Instantiation

e SysML4Modelica::Classes::ModelicaType
Generalizations
No generalizations
Abstract Syntax

e SeeFigure9.1

Description

The predefined type ModelicaStateSelect isthetype of the attribute stateSelect of ModelicaRedl. It is an enumeration

used to provide guidance to the Modelica solver tool for selecting appropriate state variables (See Modelica, v 3.1, sub clause

48.7.1).

Associations

No additional associations
Constraints

No additional constraints

9.7 ModelicaExternalObject

Instantiation
e SysMLAModdica:Classes:Moddicalype
Generalizations

No generalizations

SysML-Modelica Transformation, v1.0

29

Abstract Syntax
e SeeFigure9.1
Description

The predefined typeMode1licaExternalObject isan abstract type used toindicate that aModdicaTypethat specidizesit refers
to an object defined in an externa language such as C or FORTRAN (See Modélica, v 3.1, sub clause 12.9.7 for details).

Associations
No additional associations

Constraints

[1] Thevalue of the attribute isAbstract (and henceisPartial) must be true.

30 SysML-Modelica Transformation, v1.0

10 Component Declarations

10.1 Overview

In the Modelicalanguage, instances (or usages) of a class are referred to as “ Components.” In SysML, these can be mapped to
Block Properties, such as Value Property, Part Property, or Port.! Modelica does not disti nguish explicitly between Vaue Properties,
Parts, or Ports. Instead, whether a component is interpreted as a Value Property, Part, or Port depends on the restricted type to
which the usage has been typed:

e if theusageis of restricted type class, model, or block, then it is mapped to a «xmodelicaPart>,
e ifitisof restricted type connector, thenit is mapped to a «modelicaPort», and
o ifitisof redricted type record or type, thenit is mapped to «modelicava ueProperty».

In addition, the stereotype «modelicaFunctionParameter» is introduced to represent components of restricted type record or
type that areused in a function (thisis necessary because a Moddica function is mapped to a SysML FunctionBehavior that
has parameters rather than properties). The restricted types package and function are not considered here because they
cannot be ingtantiated.

Depending on the type of restricted type, a Modelica Component declaration alows for a variety of options (modifications or
additional specifications). These additional options are captured as attributes of the corresponding SysML4M odelica stereotypes,
as shown in Figure 10.2. To define the possible val ues these options can assume, several enumerations are defined, as shown in
Figure 10.3. The following production rules define Modeica Components declarations:

component clause:
type prefix type specifier [array subscripts] component list

type prefix :
[flow]
[discrete | parameter | constant] [input | output]

type specifier : name

component list :
component declaration { wnm component declaration }

component declaration :
declaration [conditional attribute] comment

conditional attribute: if expression
declaration :

IDENT [array subscripts] [modification]

1. Notethat Modeicadoes not have the equivaent of areference property — properties are never shared.

SysML-Modelica Transformation, v1.0 31

pkg [Package] Components [Modelica Component Sterectypes],J

smetaclasss
Property

smetaclasss

isFinal iz derived from isLe%

T

zsterectypes
ModelicaValueProperty

ssterectypes
ModelicaPart

Port
X

+causalty | ModelicaCausaltyRind [1] = none
+variability . Modelicayariabilitykind [1] = continuous
+ilowwFlag : ModelicaFlowFlaghind [1] = none
+scope ; ModelicaScopekind [1] = none

+fisFinal : Boolean [1] = falze
+condtionalExpreszion ;. String [0..1]

+modification ; String [0..4]

+izReplaceable | Boolean [1] = falze
+declarationEquation ; String [0..1]

+arraySize : String [0, *{ordered}

+miodification : String [0..%]

+scope | ModelicaScopekind [1] = none
+conditionalExpression String [0..1]

+fizFinal ; Boolean [1] = falze
+izReplaceable | Boolean [1] = false
+atraysize String [0, Hordered}

zstereotypes
ModelicaPort

+causalty | ModelicaCausaltyKind [1] = none
+condtionalExpression ; String [0..1]
+miodification : String [0..#]

+izFinal : Boolean [1] = false

+izReplaceable | Boolean [1] = false
+atraySize : String [0, Hordered}

Figure 10.1 - Package diagram with an overview of the stereotypes for Modelica Components

pkg [Model] Types[Enumetstions U

[Modelica Spec 31,
Chapter 135]

[Modelica Spec 3.1,
zection 5.4]

[Modelica Spec 3.1,
section 4.4 .2.2]

«enumerations senumerations «enumeration:s senumerations
ModelicaFlowFlagKind | |ModelicaScopeKind | |ModelicaCausalityHind | [ModelicaVariabilityKind
flowy inner input constant
stream outer output parameter
none inner-outer none dizcrete

T none continuous

[Modelica Spec 3.1,
zection 4.4 4]

Figure 10.2 - Package diagram with enumerations used in Modelica Component definitions

32

SysML-Modelica Transformation, v1.0

Table 10.1 - The applicable attributes for Modelica Components

Attribute Name <<modelicaValueProperty>> <<modelicaPart>> <<modelicaPort>>
visibility . .

causality . .
variability .

flowFlag .

scope . .

conditional Expression . . .
isFinal . . .
modification . . .
isReplaceable . . .
declarationEquation .

arraySize . . .

10.2 «modelicaValueProperty»

Extensions

e Property (from UML4SysML)
Abstract Syntax

e SeeFigure10.2
Description

If aModelica Component is of restricted type record or type, then it is mapped to a «modelicavalueProperty» that is the
equivalent of a Vaue Property in SysMIL.

Attributes

e visibility: VisibilityKind [1]
This attribute is inherited from the meta-class Property. In the context of the SysML4Modelica profile, it islimited
to the values public or protected. A protected «modelicaVal ueProperty» cannot be modified or replacedin

specidizations or modifications. The members of a protected «modelicaVa ueProperty» cannot be accessed using the
dot-notation. Default valueis public.

e causdlity: ModelicaCausalityKind [1]
A «modédlicaVaueProperty» can be defined as being an input or output (see Moddica, v3.1, sub clause 4.4.2.2).
Default value is none, which means that the property is neither an input or output.

e variability: ModelicaVariabilityKind [1]
A «modédlicaVaueProperty» can be defined as being constant, parameter, discrete, or continuous (see Modelica, v 3.1,
sub clauses 4.4.3 and 4.4.4). Default value is continuous.

SysML-Modelica Transformation, v1.0 33

flowFlag: ModelicaFlowFlagKind [1]
Thisattribute can only be applied to variablesthat are a subtype of ModdicaRedl. It can only be used inside
«modelicaConnector» or to define a Type. The attribute causality must be null when flowFlag=flow or stream.
Default value is none.

scope: ModelicaScopeKind [1]
A Modelicaelement declared with the prefix outer references an e ement instance with the same name but using
the prefix inner, which isnearest in the enclosing instance hierarchy of the outer element declaration (see Modelica,
v3.1, sub clause 5.4). Default valueis none.

conditional Expression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false. Only
if the expression evaluatesto true is the the corresponding «modelicaValueProperty» instantiated (see Modelica
v 3.1, sub clause 4.4.5).

smodification: String [0..*]
A «modelicaVa ueProperty» may have atype that islocally modified. Rather than capturing the detailed semantics
of such modificationsin the SysML4Moddicaprofile, currently, the modifications are only captured as a set of
strings in the Modelica syntax; each string corresponds to a single modification of a component declaration of the
modified class (see Modelica, v 3.1, sub clause 7.2). Default valueis null.

sisReplaceable: Boolean [1]
A «moddicaVaueProperty» may bedefined assreplaceable. Onecanthenredeclare sucha
«modeicaVaueProperty» in extended classes or in modifications (see Modelica, v 3.1, sub clause 7.3). Default
valueisfalse.

sdeclarationEquation: String [O.. 1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to the same type asthe
«modelicaVaueProperty» itself. A declaration equation refers to the shorthand notation in Modelicain which an equation
corresponding to a component is defined in the equation section. The value of the attribute is the right-hand-expression of
the equations. The“=" signisomitted, i.e., itisimplicit.

slisFinal: Boolean [1]
A Modedlica dement declared with the prefix £inal cannot be modified in redeclarations or modifications (see
Moddica, v 3.1, sub clause 7.2.6). Default value isfalse. Thisis derived from isLeaf.

sarraySize: String [0..*] { ordered}
Thisattribute is an ordered list of strings, each of which must be aModelica expressionsthat eval uates to an integer.
Theit" dement in the ordered list correspondsto sze of the multi-dimensiond array in the i dimension.

Associations

No additional associations

Constraints

No additional constraints

10.3 «modelicaPart»

Extensions

e Property (from UML4SysML)

SysML-Modelica Transformation, v1.0

Abstract Syntax
¢ SeeFigure10.2
Description

If aModelica Component is of restricted type class, model, or block, it is mapped to a «moddicaPart», which isthe
equivalent of a Part Property in SysML.

Attributes

* svisility: VisibilityKind [1]
This attribute is inherited from the meta-class Property. In the context of the SysML4Modeica profile, it islimited to
the values public or protected. A protected «modelicaPart» cannot be modified or replaced in specidizations or

modifications. The members of a protected «modelicaPart» cannot be accessed using the dot- notation. Default value
ispublic.

e sscope: ModelicaScopeKind [1]
A Modelicaelement declared with the prefix outer references an element instance with the same name but using the
prefix inner, which is nearest in the enclosing instance hierarchy of the outer element declaration (see Modedlica, v 3.1,
subclause5.4). Default valueis none.

e sconditiona Expression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false. Only if
the expression evaluates to true is the the corresponding «modelicaPart» instantiated (see Moddlica, v 3.1, sub clause
4.4.5). Default valueisnull.

* smodification: String [0..*]
A «modelicaPart» may have atypethat islocally modified. Rather than capturing the detailed semantics of such
modificationsin the SysML4Modelica profile, currently, the modifications are only captured as a set of stringsin the
Modédicasyntax; each string corresponds to a single modification of a component declaration of the modified
class (see Modelica, v 3.1, sub clause 7.2). Default valueis null.

e sisReplaceable: Boolean [1]
A «modédlicaPart» may be defined asreplaceable. Onecanthen redeclare such a«modeicaPart» in extended
classes or in modifications (see Modelica, v 3.1, sub clause 7.3). Default value is false.

e dlisFinal: Boolean [1]
A Moddicaelement declared with the prefix £inal cannot be modified in redeclarations or modifications (see
Moddlica, v 3.1, sub clause 7.2.6). Default value isfalse. Thisis derived from isLeaf.

e sarraySize: String [0..*] { ordered}
This attribute is an ordered list of strings, each of which must be a M odédlica expression that evaluates to an
integer.

« The i dement in the ordered list corresponds to size of thethe multi-dimensiond array in the i dimension. The
default valueisnull.

Associations
No additional associations
Constraints

No additional constraints

SysML-Modelica Transformation, v1.0 35

10.4 «modelicaPort»

Extensions

e gPort (from UML4SysML)
Abstract Syntax

¢ SeeFigure10.2
Description

If a Modelica Component is of restricted type connector, it is mapped to a «<modelicaPort», which is the equivalent of a Port
Property in SysML.

Attributes

e scausality: ModelicaCausalityKind [1]
A «modelicaPort» can be defined as being an input or output (see Modelica, v 3.1, sub clause 4.4.2.2). Default
valueis null, which meansthat the property is neither an input or output. Default valueis none.

e sscope: ModelicaScopeKind [1]
A Modelicaelement declared with the prefix outer references an e ement instance with the same name but using
the prefix inner, which is nearest in the enclosing instance hierarchy of the outer element declaration (see Moddlica,
v 3.1, sub clause 5.4). Default value is none.

e sconditionalExpression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false. Only if
the expression evaluates to true is the the corresponding «modelicaPort» instantiated (see Modelica, v 3.1, sub clause
4.45).

e dlisFinal: Boolean [1]
A Modedicaelement declared with the prefix £ inal cannot be modified in redeclarations or modifications (Moddlica,
v 3.1, sub clause 7.2.6). Default valueisfalse. Thisis derived from isLeaf.

e smodification; String [0..*]
A «moddlicaPort» may have atypethat islocaly modified. Rather than capturing the detailed semantics of such
modificationsin the SysML4Moddlica profile, currently, the modifications are only captured as aset of stringsin the
Modélicasyntax; each string corresponds to a single modification of a component declaration of the modified class
(see Modelica, v 3.1, sub clause 7.2).

e sisReplaceable: Boolean [1]
A «modelicaPort» may bedefined asreplaceable. Onecanthen redeclare such a«moddicaPort» in extended
classes or in modifications (see Modelica, v 3.1, sub clause 7.3). Default value is false.

e sarraySize: String [0..*] { ordered}
Thisattribute is an ordered list of strings, each of which must be a Modelica expressionsthat evaluates to an integer.
Thei element in the ordered list correspondsto size of the multi-dimensiond array in the it dimension.

Associations
No additional associations
Constraints

No additional constraints

36 SysML-Modelica Transformation, v1.0

10.5 «modelicaFunctionParameter»

Extensions

e gParameter (from UML4SysML)

Abstract Syntax

pkg [Fackage] Componernts [Modelica Function Parameter U

isFiral iz detived smetaclasss
from izLeaf Parameter
N T

zsterectypes
ModelicaFunctionParameter

+causality : ModelicaCausalitykind [1] = input
+variahility © Modelicayariahilitykind [1] = cortinuous
+modification ; String [0..%]

+izReplaceable | Boolean [1] = falze
+declarationEquation : String [0..1]

+iizFinal : Boolean [1] = false

+arraySize | String [0){ordered}

Figure 10.3 - Definition of the «modelicaFunctionParameter» stereotype

Description

A Modelica restricted class function, can also contain can contain Modelica component declarations. These declarations
must be of either restricted type «modelicaType» or «modelicaRecord». Because «modelicaFunction» does not derive from
«block» (as dl the other restricted classes do), the stereotype «modelicaValuePropertys cannot be applied here. Instead, an
equivalent (but more restricted) stereotype for functions is created: «modelicaFunctionParameter».

Attributes

scausality: ModelicaCausalityKind [1]
A «modeicaFunctionParameter» can be defined as being an input or output (see Moddlica, v 3.1, sub clause 4.4.2.2).
Default valueisinput.

sliskFina: Boolean [1]
A Modelicaelement declared with the prefix £ inal cannot be modified in redeclarations or modifications (see
Moddlica, v 3.1, sub clause 7.2.6). Default value is false. Thisis derived from isLeaf.

smodification: String [0..*]
A «modelicaFunctionParameter» may have atype that islocally modified. Rather than capturing the detailed semantics
of such modificationsin the SysML4Modelica profile, currently, the modifications are only captured as a set of stringsin
the Moddica syntax; each string corresponds to a single modification of acomponent declaration of the modified class
(seeModedlica, v 3.1, sub clause 7.2).

sisReplaceable: Boolean [1]
A «moddicaFunctionParameter» may be defined asreplaceable. Onecanthen redeclare sucha
«modelicaPort» in extended classes or in modifications (see Moddlica, v 3.1, sub clause 7.3). Default valueisfalse.

sdeclarationEquation: String [O.. 1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to the same type asthe
«modelicaFunctionParameter» itself. A declaration equation refers to the shorthand notation in Modelicain which an

SysML-Modelica Transformation, v1.0 37

equation corresponding to a component is defined in the equation section. The value of the attribute is the right-hand-
expression of the equations. The“:=" signisomitted, i.e,, itisimplicit.

e sarraySize: String [0..*] { ordered}
Thisattribute is an ordered list of strings, each of which must be a Modelica expressionsthat eval uatesto an integer.
« Thei dlement in the ordered list correspondsto size of the the multi-dimensiona array inthe i dimension.

Associations
No additional associations
Constraints

No additional constraints

38 SysML-Modelica Transformation, v1.0

11 Equation and Algorithm Sections

11.1 Overview

Equations and Algorithms are the main Modelica constructs for defining behavior of Modelica classes. Modelica
distinguishes between declarative eguations, which are organized in equation sections (see Modelica, v 3.1, Clause 8), and
imperative algorithms, which are organized in algorithm sections (see Modélica, v 3.1, Clause 11). The Modelica restricted
classes, class, model, and block can each have zero or more equation and algorithm sections. Modelica functions can only
have one single algorithm sections (and no equations).

The equations and expressions in equation and algorithm sections are enforced by the solver in every time step --- they must
hold at every moment in time. In addition, one can specify equations or expressions that only need do hold at the start of the
simulation; they are organized in initial equation and initial algorithm sections.

pkg [Package] Equations and Algorithms [Equations Sterectypes U
e sstereotypes
zmetaclazss . -
Con=traint | | Modelicabquation T T |Modelca Spec 31, Chap%
+izlnitial ; Boolean [1] = falze
et sstereotypes
zmetaclazss . .
Banavior [Modelicaflgorithm | — —0 00 Spec 3.1, Chap. %
+izlnitial ; Boolean [1] = falze
zmetaclazzs zatereatypes -
Connector | ModelicaConnection Modelcs Spec 3.1, Chap. 9

Figure 11.1 - Package diagram with Equation and Algorithm definitions

11.2 «modelicaEquation»

Extensions

e Congraint (from UML4SysML)

Abstract Syntax
e SeeFigure11.1

SysML-Modelica Transformation, v1.0 39

Description

Moddicaequat ion section contain declarative equations that must hold at every moment in time. Each model (of restricted class
types class, model, or block) may contain zero or more equation sections. Given that the equations in these equation
sections are declarative, they could be combined into a single section (note: the order in which declarative equations are defined does
not matter). However, the SysML4M odelica mapping alows for each equation section to be modeled by a separate
«modelicaEquation».

Moddicaequation sections may aso contain connect statements (see Moddica, v 3.1, Clause 9). Although connect
statements are treated just like other equations in Moddlica, they require special attention in SysML4Moddlica. Refer to sub clause
31 from details on «modelicaConnection»s.

Attributes

e islnitial: Boolean [1]
Thisattribute is truewhen the «<modelicaEquation» representsan initial equation sub clausein Modelica. The
default valueisfalse.

Associations

No additional associations

Constraints

No additional constraints

11.3 «modelicaAlgorithm»

Extensions

e Behavior (from UML4SysML)

Abstract Syntax
e SeeFigure11.1

Description

Modelicaalgorithm sections contain imperative statements that are executed at every moment in time. Each model (of
restricted classtypes class, model, or block) may contain zero or more algorithm sections. In addition, a function
contains at most one algorithm section. Each algorithm section is modeled by a separate «modelicaAlgorithms». To capture the
imperative nature of algorithm sections, a «modelicaAlgorithm» extends UML4SysML: :Behavior. Only opaque behaviors are
currently supported and the agorithm statements are expressed in Modelica syntax in the Body of the «modelicaAlgorithm.

Attributes

e islnitial: Boolean [1]
This attribute is true when the «modelicaAlgorithm» representsan initial algorithm sub clausein Modelica. The
default valueisfalse.

Associations

No additional associations

40 SysML-Modelica Transformation, v1.0

Constraints

No additional constraints

11.4 «modelicaConnection»
Extensions
e Connector (from UML4SysML)

Abstract Syntax
e SeeFigure11.1

Description

In Modelica, a connection between two ports typically has Kirchhoff semantics (i.e., across variables are egual, through

variables sum to zero), or an output-to-input binding in the case of asignal connection (See Modelica Spec. 3.1, Clause 9). To

capture these same semantics succinctly, a «modelicaConnection» is used. The two arguments of the connect statement correspond

to the two ends of the «moddicaConnection». Note that the use of a «modelicaConnection» is optional. The aternative isto

represent the connection using a connect statement in Modelica syntax in a «modelicaEquations. If a «modelicaConnection» is

used, then the corresponding connect statement must be removed from the «modelicaEquations.

Asfor al equations, Modelica alows connect statements to be used in a parametric fashion, for instance, inside a for loop.

Since the parameter values are only resolved at the time of compilation of the Modelica model, a parametrically defined

connect Statement cannot be modeled explicitly in SysML4Modelica. The aternative is to represent such connect statementsin

Modelica syntax in a «modelicaEquation.

Attributes
No additiond attributes

Associations

No additional associations

Constraints

[1]The start and end of a «modelicaConnection» must be a «modelicaPort».

SysML-Modelica Transformation, v1.0

41

42

SysML-Modelica Transformation, v1.0

12 Other Related Constructs

12.1 «modelicaSimulation»

Generalizations
e Block (from SysML)

Abstract Syntax

pkg [Package] Cther [Other Related Constructs])

ametaclasss

esterectypes anement
ModelicaSimulation T
+startTime : Real [1] = Real.Zero
+stopTime ; Real [1] = Real .One «stereotypes
+model : dModelicahodel [1] ModelicaAnnotation

\

N
Although this is not a Modelica language
construct, it is included here to distinguish
clearly betweesn a Modelica model and its
use in a (simulation) experiment

Figure 12.1 - Package diagram with definitions of Modelica-related constructs
Description

A “modelicaSimulation” is not a Modelica language construct. However, it is introduced in order to distinguish between the
model and its simulation. A simulation refers to the solution of the initial value problem: the integration of the model over a
particular time period starting from a particular initial condition. Since the initial conditions are already defined in the model
itself, the only additional information that needs to be provided is the time over which to integrate and the properties of the
solver to be used.

Attributes

e startTime: Real [1]
The time at which the simulation starts. Default valueis 0.

e stopTime Rea [1]
The time at which the simulation stops. Default valueis 1.

« model: "modelicaClassDefinition" [1]
The instance of a specialization of “modelicaClassDefinition” that isto be solved. Default valueis null.

Associations
No additional associations

Constraints

No additional constraints

SysML-Modelica Transformation, v1.0 43

12.2 "modelicaAnnotation"

Extension

e Comment (from UML4SysML)
Abstract Syntax

e SeeFigure12.1
Description

Any Modelica language construct can be annotated with information about its graphical representation. In addition,
guidelines for the compiler can be specified. In SysML4Modelica, these annotations are represented in Modelica syntax as
“modelicaAnnotation.”

Attributes

No additiona attributes
Associations

No additional associations
Constraints

No additional constraints

44 SysML-Modelica Transformation, v1.0

Part Ill - Modelica Abstract Syntax

Introduction

Part I11 of the SysML-Modelica Transformation Specification is hon-normative and contains the following Clauses:
e Clause 13 - Modelica Meta-Modeling Approach
¢ Clause 14 - Modelica Meta-Model Constructs

SysML-Modelica Transformation

45

46

SysML-Modelica Transformation, v1.0

13 Modelica Meta-Modeling Approach

13.1 General

The abstract syntax (AST = abstract syntax tree) of Modelica is not standardized by the Modelica Association, only the
textual syntax is. The abstract syntax described in this document is therefore only one possible definition, defined in an
extended subset of Modelica (also known as MetaM odelical) and used in the OpenModelica specification/implementation
of Modelica which originated as a Structural Operational Semantics/Natural Semantics specification (first version from

1998).

The abstract syntax used in OpenModelica has been designed with several goals in mind:
« Complete representation of all Modelicalanguage constructs.
« Reconstruction of the source code from the AST.
» Use for semantic specification, type checking, and compilation.

Syntax type classes are defined using the uniontype construct. A union type is the union of all the record types it contains.
Recursive references to a union type are allowed. Components with optional values are declared at instances of the
Option<...> parametrized type constructor. In afew cases the tuple<typel ,type2,...> type constructor is used. A tuple type
can be described as an anonymous record type, where the record type name and the field names are not defined.

In the following all MetaModelica classes (including a short textual description) are listed (version Oct.20092 from the
OpenModelica SVN). This definition is translated into an OMG MOF-based description (see http://www.omg.org/mof/)
using the Eclipse EMF (http://www.eclipse.org/emf/) implementation of a subset of the OMG MOF standard. Please see
the .ecore file for details.

The mapping between MetaModelica and EMOF is defined as follows:
» MetaModelica package istranglated to Package.
» MetaModelica uniontypeistrandated to Class (isAbstract).

» MetaModelicarecord is translated to Class which inherits from the respective Class that represents the uniontype) -
MetaM odelica record attributes of primitive type are trandated to Class attributes of primitive type -MetaModelica
record attributes of composite type are translated to Class Property to the respective Class -MetaM odelica types are
expanded and tranglated into Classes.

» MetaModelicatuples are expanded and tranglated into Classes with the prefix “tuple ”.
» MetaModelica Option<...> implies the multiplicity O.. 1.

+ MetaModelicalist<...> implies the multiplicity 0..*.

» MetaModelicatype | dent = String; is not trandated. String is used directly.

« Inorder to avoid name clashes between Classes representing uniontype or record each Class that represents a union-
type was given the prefix “u.”

1. MetaModelica correspondsto OMG MOF
2. Notethat all MetaM odelica-specific classes that are not used for the definition of Modelica language are removed.

SysML-Modelica Transformation, v1.0 47

» Toimprove the structure and readability for each MetaM odelica uniontype a Package is created with the same name as
the uniontype. This Package includes the Class representing the uniontype and Classes representing the records of the

uniontype.

uCTnsssw

uCiaes

——

CLAES

marne: Strig [0-1]

+ partaPrefic Boolean [1]
+ finalPrefic: Boclean 1]

+ encaeal asecFrefic Bocdean [1]

¥

s

l.-"
ok ",- 1

b

AN
. .a*m.nu o

eAReTricion |

ERURAEAATICON l DERIVED | | PARTS CVERLOAD CLASES EXTERNDS | FDER |
classParis
uiinesfart
T
[I I I I |
INITLALECRIATICIN ECRLIATIOM L FROTECTED PUSLC ALGORITHMS PAITIALALGORITHS R EXTERFAL
conbants =

e T

cl"_x

AMNHOTATIOMITEM ELE W EMTITER
AR
pay
[I 1
CEFMELSIT TEKT ELERAEMIT
1 E"' specification
| lementipec
COMPOMERNTS

Figure 13.1 - CLASS meta-class and relationships

The main openM odelica meta-classes PROGRAM, CLASS, and COMPONENT and their related meta-classes are
presented in UML class diagrams in Figure 13.1, Figure 13.2, and Figure 13.3. All meta-classes are subclasses from a
higher-level abstract meta-class whose name starts with “u.”

Figure 13.1 shows the CLASS meta-class consisting of a name, the declared class restriction, and the body of the
declaration. The CLASS meta-class also includes properties indicating if it is partial and final. Figure 13.1 aso shows the
different meta-classes representing Modelica class definitions who all inherit from a common abstract meta-class named

48

SysML-Modelica Transformation, v1.0

“uClassDef.” Figure 13.2 shows the PROGRAM meta-class having a list of class definitions declared at the top level in
the source file, combined with a within statement that indicates the hierarchical position of the program. Figure 13.3
shows the COMPONENTS meta-class and its related meta-classes including the COMPONENT meta-class.

PROGRAM

classes * 1 within_

uClass uWithin

Figure 13.2 - PROGRAM meta-class and relationships

COMPOMNENTS

components -7 typesSpec i
attributes 1
uCampanentitem uElernentAltributes uTypespec
component

COMPOMENTITEM [l uComponent

COMPOMEMT

commeant 0.1 0.1 condition arraylim maodification

wiCoimmernt uExp ArrayDim uModification

Figure 13.3 - COMPONENTS meta-class and relationships

SysML-Modelica Transformation, v1.0 49

50

SysML-Modelica Transformation, v1.0

14 Modelica Meta-Model Constructs

14.1 The Model Structure Definition

14.1.1 Program
public uniontype Program

“A program is alist of class definitions declared at top level in the source file, combined with a within statement that
indicates the hierarchical position of the program.”

record PROGRAM "PROGRAM, the top level construct"
list<Class> classes "List of classes" ;
Within within "Within clause" ;
end PROGRAM;
end Program;

14.1.2 Within
public uniontype Within "Within Clauses™"
//See Modelica specification 3.1 sub clause 13.2.2.3 The within Clause.

record WITHIN "the within clause"
Path path "the path for within";
end WITHIN;
record TOP end TOP;
end Within;

14.1.3 Path
uniontype Path
“‘Path’ is used to store references to class names, or names inside class definitions.”

record QUALIFIED

Ident name "name"
Path path "path"
end QUALIFIED;

record IDENT
Ident name "name"
end IDENT;
end Path;

14.2 Class Definition

14.2.1 Class

public uniontype Class

SysML-Modelica Transformation, v1.0

51

“A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared class restriction, and
the body of the declaration.”

See Modedlica specification 3.1 sub clause 4.5 Class Declarations.

record CLASS
Ident name;

Boolean partialPrefix "true if partial" ;
Boolean finalPrefix"true if £final" ;
Boolean encapsulatedPrefix "true if encapsulated" ;

Restriction restriction "Restriction" ;
ClassDef body;
end CLASS;
end Class;

14.2.2 Restriction

uniontype Restriction

“These constructors each correspond to a different kind of class declaration in Modelica, except the last four, which are used
for the predefined types.” See Modelica specification 3.1 sub clause 4.6 Specialized Classes.

record R CLASS end R CLASS;

record R MODEL end R MODEL;

record R RECORD end R RECORD;

record R BLOCK end R BLOCK;

record R CONNECTOR "connector class" end R _CONNECTOR;

record R EXP CONNECTOR "expandable connector class" end R EXP CONNECTOR;
record R TYPE end R TYPE;

record R PACKAGE end R _PACKAGE;

record R FUNCTION end R FUNCTION;

record R ENUMERATION end R ENUMERATION;

record R PREDEFINED INT end R PREDEFINED INT;

record R PREDEFINED REAL end R PREDEFINED REAL;
record R PREDEFINED STRING end R PREDEFINED STRING;
record R PREDEFINED BOOL end R PREDEFINED BOOL;

record R _PREDEFINED ENUM end R PREDEFINED ENUM;
end Restriction;

14.2.3 ClassDef

public uniontype ClassDef

“The ClassDef type contains the definition part of a class declaration. The definition is either explicit, with a list of parts
(public, protected, equation, and algorithm), or it is a definition derived from another class or an enumeration type. For a
derived type, the type contains the name of the derived class and an optional array dimension and a list of modifications.”

See Modelica specification 3.1 sub clause 4.5 Class Declarations.

record PARTS
list<ClassPart> classParts;
Option<String> comment;

end PARTS;

52 SysML-Modelica Transformation, v1.0

record DERIVED

See Modelica specification 3.1 sub clause 4.5.1 Short Class Definitions.

TypeSpec typeSpec "typeSpec specification includes
ElementAttributes attributes;
list<ElementArg> arguments;
Option<Comment> comment;
end DERIVED;

record ENUMERATION

See Modelica specification 3.1 sub clause 4.8.5 Enumeration Types.

EnumDef enumLiterals;
Option<Comment> comment;
end ENUMERATION;

record OVERLOAD

See Modelica specification 3.1 Clause 14 Overloaded Operators.

list<Path> functionNames;
Option<Comment> comment;
end OVERLOAD;

record CLASS EXTENDS

See Modelica specification 3.1 sub clause 7.1 Inheritance -Extends Clause.

Ident baseClassName "name of class to extend" ;

list<ElementArg> modifications "modifications to be applied to the base
class";

Option<String> comment "comment";

list<ClassPart> parts "class parts";

end CLASS EXTENDS;
record PDER

See Modelica specification 3.1 sub clause 4.5 Class Declarations.

Path functionName;
list<Ident> vars "derived variables" ;
end PDER;

end ClassDef;

14.2.4 TypeSpec

public uniontype TypeSpec
record TPATH
Path path;
Option<ArrayDim> arrayDim;
end TPATH;

record TCOMPLEX
Path path;
list<TypeSpec> typeSpecs;
Option<ArrayDim> arrayDim;

SysML-Modelica Transformation, v1.0

array

dimensions";

53

end TCOMPLEX;
end TypeSpec;

14.2.5 EnumDef

public uniontype EnumDef
“The definition of an enumeration is either alist of literals or a colon, \":\', which defines a supertype of all enumerations.”
See Modelica specification 3.1 sub clause 4.8.5 Enumeration Types.

record ENUMLITERALS
list<EnumLiteral> enumLiterals;
end ENUMLITERALS;

record ENUM COLON end ENUM COLON;
end EnumDef;

14.2.6 EnumLiteral

public uniontype EnumLiteral

“EnumL.iteral, which is a name in an enumeration and an optional Comment.” See Modelica specification 3.1 sub clause
4.8.5 Enumeration Types.

record ENUMLITERAL
Ident literal;
Option<Comment> comment ;
end ENUMLITERAL;
end EnumLiteral;

14.2.7 ClassPart

public uniontype ClassPart

“A class definition contains severa parts. There are public and protected component declarations, type definitions and
‘extends’ clauses, collectively called elements. There are also equation sections and algorithm sections. The EXTERNAL
part is used only by functions which can be declared as external C or FORTRAN functions.”

record PUBLIC

See Modelica specification 3.1 sub clause 4.1 Access Control - Public and Protected Elements.

list<ElementItem> contents;
end PUBLIC;

record PROTECTED

See Modelica specification 3.1 sub clause 4.1 Access Control - Public and Protected Elements.

list<ElementItem> contents;
end PROTECTED;

record EQUATIONS

See Modelica specification 3.1 Clause 8 Equations.

list<EquationItem> contents;
end EQUATIONS;

54 SysML-Modelica Transformation, v1.0

record INITIALEQUATIONS

See Modelica specification 3.1 sub clause 8.6 Initiaization, initial equation, and initial algorithm.

list<EquationItem> contents;
end INITIALEQUATIONS;

record ALGORITHMS

See Modelica specification 3.1 Clause 11 Statements and Algorithms.

list<AlgorithmItem> contents;
end ALGORITHMS;

record INITIALALGORITHMS

See Modelica specification 3.1 sub clause 8.6 Initiaization, initial equation, and initial algorithm.

list<AlgorithmItem> contents;
end INITIALALGORITHMS;

record EXTERNAL

See Modelica specification 3.1 sub clause 12.9 Externa Function Interface.

ExternalDecl externalDecl "externalDecl" ;
Option<Annotation> annotation "annotation" ;
end EXTERNAL;

end ClassPart;

14.2.8 ExternalDecl

public uniontype ExternalDecl

“Declaration of an external function call.”
See Modelica specification 3.1 sub clause 12.9 Externa Function Interface.

record EXTERNALDECL

Option<Ident> funcName "The name of the external function" ;

Option<String> lang "Language of the external function" ;

Option<ComponentRef> output "output parameter as return value" ;

list<Exp> args "only positional arguments, i.e. expression
list" ;

Option<Annotation> annotation ;
end EXTERNALDECL;
end ExternalDecl;

14.2.9 Elementltem

public uniontype ElementItem

“An element item is either an element or an annotation.

record ELEMENTITEM
Element element;
end ELEMENTITEM;

SysML-Modelica Transformation, v1.0

55

record ANNOTATIONITEM
Annotation annotation_ ;
end ANNOTATIONITEM;
end ElementItem;

14.2.10 Element
public uniontype Element
“Elements; The basic element type in Modelica’

record ELEMENT

Boolean finalPre f£fix;

Option<RedeclareKeywords> redeclareKeywords "replaceable, redeclare" ;
InnerOuter innerOuter "inner/outer" ;

Ident name;

ElementSpec specification "Actual element specification" ;

Option<ConstrainClass> constrainClass "constrainClass ; only valid for
classdef and component" ;
end ELEMENT;

record DEFINEUNIT
Ident name;
list<NamedArg> args;
end DEFINEUNIT;

record TEXT
Option<Ident> optName "optName : optional name of text, e.g. model with
syntax error. We need the name to be able to browse it. . ." ;
String string;
Info info;
end TEXT;
end Element;

14.2.11 InnerOuter

public uniontype InnerOuter

See Modelica specification 3.1 sub clause 5.4 “Instance Hierarchy Name Lookup of Inner Declarations” for explanations of
inner/outer.

record INNER end INNER; record
OUTER end OUTER; record
INNEROUTER end INNEROUTER;

record UNSPECIFIED end UNSPECIFIED;
end InnerOuter;

14.2.12 ComponentRef

uniontype ComponentRef

“A component reference is the fully or partially qualified name of a component.”
record CREF QUAL

56 SysML-Modelica Transformation, v1.0

Ident name "name" ;

list<Subscript> subScripts "subScripts" ;

ComponentRef componentRef "componentRef"
end CREF QUAL;

~

record CREF IDENT
Ident name "name" ;
list<Subscript> subscripts "subscripts" ;
end CREF IDENT;
end ComponentRef;

14.2.13 Subscript

uniontype Subscript

“The Subscript uniontype is used both in array declarations and component references. The NOSUB constructor means that
the dimension size is undefined when used in a declaration, and when it is used in a component reference it means a slice of
the whole dimension.”

See Modelica specification 3.1 sub clause 10.5 Array Indexing.
record NOSUB end NOSUB;
record SUBSCRIPT
Exp subScript "subScript" ;

end SUBSCRIPT;
end Subscript;

14.2.14 ConstrainClass
public uniontype ConstrainClass

See Modelica specification 3.1 sub clause 7.3.2 Constraining Type.

record CONSTRAINCLASS
ElementSpec elementSpec "elementSpec ; must be extends" ;
Option<Comment> comment "comment" ;
end CONSTRAINCLASS;
end ConstrainClass;

14.2.15 ElementSpec
public uniontype ElementSpec

“An element is something that occurs in a public or protected section in a class definition. There is one constructor in the
‘ElementSpec’ type for each possible element type. There are class definitions (f CLASSDEF'), ‘extends’ clauses
("EXTENDS’) and component declarations (COMPONENTS'). As an example, if the element ‘ extends TwoPin;’ appearsin
the source, it is represented in the AST as ‘EXTENDS(IDENT(\” TwoPin\"),{})’.”

record CLASSDEF
Boolean replaceable "replaceable" ;
Class class_ "class" ;

end CLASSDEF;

record EXTENDS

SysML-Modelica Transformation, v1.0 57

See Modelica specification 3.1 sub clause 7.1 Inheritance - Extends Clause.

Path path "path" ;
list<ElementArg> elementArg "elementArg" ;
Option<Annotation> annotationOpt "optional annotation";
end EXTENDS;

record IMPORT

See Modedlica specification 3.1 sub clause 13.2.1 Importing Definitions from a Package.

Import import_ "import" ;
Option<Comment> comment "comment" ;
end IMPORT;

record COMPONENTS
ElementAttributes attributes "attributes" ;
TypeSpec typeSpec "typeSpec" ;
list<ComponentItem> components "components" ;
end COMPONENTS;
end ElementSpec;

14.3 Import

public uniontype Import

See Modedlica specification 3.1 sub clause 13.2.1 Importing Definitions from a Package.

record NAMED IMPORT
Ident name "name" ;
Path path "path" ;
end NAMED IMPORT;

record QUAL IMPORT
Path path "path"
end QUAL IMPORT;

~e

record UNQUAL IMPORT
Path path "path" ;
end UNQUAL IMPORT;
end Import;

14.4 Annotation and Comments

14.4.1 Annotation
public uniontype Annotation

See Modelica specification 3.1 Clause 17 Annotations.

record ANNOTATION
list<ElementArg> elementArgs "elementArgs" ;
end ANNOTATION;
end Annotation;

58 SysML-Modelica Transformation, v1.0

14.4.2 Comment

public uniontype Comment

See Modelica specification 3.1 sub clause 2.2 Comments.

record COMMENT
Option<Annotation> annotation_"annotation" ;
Option<String> comment "comment" ;
end COMMENT ;
end Comment;

14.5 Component Definition

14.5.1 Componentltem
public uniontype ComponentItem

See Modelica specification 3.1 sub clause 4.4.1 Syntax and Examples of Component Declarations.

record COMPONENTITEM
Component component "component" ;
Option<ComponentCondition> condition "condition" ;
Option<Comment> comment "comment" ;
end COMPONENTITEM;
end ComponentItem;

14.5.2 ComponentCondition
public type ComponentCondition = Exp

“A componentltem can have a condition that must be fulfilled if the component should be instantiated.”

14.5.3 Component
public uniontype Component

“Some kind of Modelica entity (object or variable)”

record COMPONENT
Ident name "name" ;
ArrayDim arrayDim "arrayDim ; Array dimensions, if any" ;
Option<Modification> modification "modification ; Optional modification" ;
end COMPONENT;
end Component;

14.5.4 ElementAttributes

public uniontype ElementAttributes

See Modelica specification 3.1 sub clause 4.4.1 Syntax and Examples of Component Declarations.

record ATTR
Boolean flowPrefix "flow" ;
Boolean streamPrefix "stream" ;

SysML-Modelica Transformation, v1.0

Variability wvariability "variability ; parameter, constant etc."
Direction direction "direction"
ArrayDim arrayDim "arrayDim"
end ATTR;
end ElementAttributes;

14.5.5 Variability

public uniontype Variability

See Modelica specification 3.1 sub clause 3.8 Variability of Expressions.

record VAR end VAR;
record DISCRETE end DISCRETE;
record PARAM end PARAM;
record CONST end CONST;

end Variability;

14.5.6 Direction

public uniontype Direction

See Modelica specification 3.1 sub clauses 4.4.1 Syntax and Examples of Component Declarations and 4.4.2.2 Prefix Rules.

record INPUT end INPUT;

record OUTPUT end OUTPUT;

record BIDIR end BIDIR;
end Direction;

14.5.7 ArrayDim

public type ArrayDim = list<Subscript>

“Component attributes are properties of components that are applied by type prefixes. As an example, declaring a component
as ‘input Real x;\" will give the attributes ‘ATTR({} ,false,VAR,INPUT)\'. Components in Modelica can be scalar or arrays
with one or more dimensions. This type is used to indicate the dimensionality of a component or a type definition. Array
dimensions’

See Modelica specification 3.1 sub clause 10.5 Array Indexing.
14.6 Modifications and Redeclarations

14.6.1 Modification

public uniontype Modification

“There are two forms of modifications. redeclarations and component modifications.
See Modelica specification 3.1 sub clause 7.2 Modifications.

record CLASSMOD
list<ElementArg> elementArgLst;
Option<Exp> expOption;
end CLASSMOD;
end Modification;

60 SysML-Modelica Transformation, v1.0

14.6.2 ElementArg

public uniontype ElementArg
record MODIFICATION

See Modelica specification 3.1 Chapter 7.2 Modifications.

Boolean finalItem "finalItem" ;
Each each "each" ;
ComponentRef componentRef "componentRef" ;
Option<Modification> modification "modification" ;
Option<String> comment "comment" ;

end MODIFICATION;

record REDECLARATION

See Modelica specification 3.1 Chapter 7.3 Redeclaration.

Boolean finalItem "finalItem" ;

RedeclareKeywords redeclareKeywords "redeclare or replaceable " ;
Each each "each" ;

ElementSpec elementSpec "elementSpec" ;

Option<ConstrainClass> constrainClass "class definition or declaration" ;

end REDECLARATION;
end ElementArg;

14.6.3 RedeclareKeywords

public uniontype RedeclareKeywords

“The keywords redeclare and replacable can be given in three different combinations, each one by themselves or the both

combined.”

See Modelica specification 3.1 sub clause 7.3 Redeclaration.

record REDECLARE end REDECLARE;

record REPLACEABLE end REPLACEABLE;

record REDECLARE REPLACEABLE end REDECLARE REPLACEABLE;
end RedeclareKeywords;

14.6.4 Each
public uniontype Each
“The each keyword can be present in both: MODIFICATIONs and REDECLARATIONS.”

See Modelica specification 3.1 sub clause 7.2.5 Modifiers for Array Elements.

record EACH end EACH;
record NON EACH end NON EACH;
end Each;

SysML-Modelica Transformation, v1.0

61

14.7 Behavior

14.7.1 Equationltem
public uniontype EquationItem

“Several component declarations can be grouped together in one ‘ ElementSpec’ by writing them on the same line in the
source. This type contains the information specific to one component.”

See Modedlica specification 3.1 Clause 8 “Equations.”

record EQUATIONITEM
Equation equation_"equation" ;
Option<Comment> comment "comment" ;
end EQUATIONITEM;

record EQUATIONITEMANN
Annotation annotation_ "annotation" ;
end EQUATIONITEMANN;
end EquationItem;

14.7.2 Algorithmlitem

public uniontype AlgorithmItem
“Information for an agorithm item.”

See Modelica specification 3.1 Clause 11 “ Statements and Algorithms.”

record ALGORITHMITEM
Algorithm algorithm "algorithm" ;
Option<Comment> comment "comment" ;
end ALGORITHMITEM;

record ALGORITHMITEMANN
Annotation annotation_"annotation" ;
end ALGORITHMITEMANN;
end AlgorithmItem;

14.7.3 Equation

public uniontype Equation
“Information on one (kind) of equation, different constructors for different kinds of equations.”

See Modelica specification 3.1 Clause 8 “Equations.”

record EQ IF
Exp ifExp "ifExp ; Conditional expression" ;
list<EquationItem> equationTrueltems "equationTruelItems ; true branch" ;
list<tuple<Exp, list<EquationItem>>> elseIfBranches "elseIfBranches" ;
list<EquationItem> equationElseItems "equationElseItems Standard 2-side
egn" ;
end EQ IF;

record EQ EQUALS

62 SysML-Modelica Transformation, v1.0

Exp leftSide "leftSide" ;
Exp rightSide "rightSide Connect stmt" ;
end EQ EQUALS;

record EQ CONNECT
ComponentRef connectorl "connectorl"
ComponentRef connector2 "connector2"
end EQ CONNECT;

record EQ FOR

ForIterators iterators;

list<EquationItem> forEquations "forEquations" ;
end EQ FOR;

record EQ WHEN E

Exp whenExp "whenExp" ;

list<EquationItem> whenEquations "whenEquations" ;

list<tuple<Exp, list<EquationItem>>> elseWhenEquations "elseWhenEquations" ;
end EQ WHEN E;

record EQ NORETCALL

ComponentRef functionName "functionName" ;

FunctionArgs functionArgs "functionArgs; fcalls without return value" ;
end EQ NORETCALL;

record EQ FAILURE
EquationItem equ;
end EQ FAILURE;
end Equation;

14.7.4 Algorithm
public uniontype Algorithm

“The Algorithm type describes one algorithm statement in an algorithm section. It does not describe a whole algorithm. The

reason this type is named like this is that the name of the grammar rule for algorithm statements is ‘algorithm’.

See Modelica specification 3.1 Clause 11 “ Statements and Algorithms.”

record ALG ASSIGN
Exp assignComponent "assignComponent" ;
Exp value "value" ;

end ALG ASSIGN;

record ALG IF
Exp ifExp "ifExp" ;
list<AlgorithmItem> trueBranch "trueBranch" ;
list<tuple<Exp, list<AlgorithmItem>>> elseIfAlgorithmBranch
"elseIfAlgorithmBranch" ;
list<AlgorithmItem> elseBranch "elseBranch" ;
end ALG IF;

record ALG FOR
ForIterators iterators;
list<AlgorithmItem> forBody "forBody" ;

SysML-Modelica Transformation, v1.0 63

end ALG FOR;

record ALG WHILE

Exp boolExpr "boolExpr" ;

.
I

list<AlgorithmItem> whileBody "whileBody"
end ALG WHILE;
record ALG WHEN A
Exp boolExpr "boolExpr" ;
list<AlgorithmItem> whenBody "whenBody"

list<tuple<Exp,
"elseWhenAlgorithmBranch" ;
end ALG WHEN A;

record ALG NORETCALL
ComponentRef functionCall
FunctionArgs functionArgs
value";
end ALG NORETCALL;

"functionCall™
"functionArgs;

record ALG RETURN
end ALG RETURN;

record ALG BREAK
end ALG BREAK;
end Algorithm;

14.8 Expressions

14.8.1 Exp
public uniontype Exp
“The Exp uniontype is the container of a Modelica expression.”

See Modedlica specification 3.1 Clause 3 Operators and Expressions.

record INTEGER
Integer value;
end INTEGER;

record REAL
Real value;
end REAL;

record CREF
ComponentRef componentRef;
end CREF;

record STRING
String value;
end STRING;

record BOOL
Boolean value;

64

.
I

list<AlgorithmItem>>> elseWhenAlgorithmBranch

general fcalls without return

SysML-Modelica Transformation, v1.0

end BOOL;
record BINARY

“Binary operations, e.g., a*b”

Exp expl;

Operator op;

Exp exp2;
end BINARY;

record UNARY

“Unary operations, e.g., -(x)”

Operator op "op" ;
Exp exp "exp Logical binary operations: and, or" ;
end UNARY;

record LBINARY
Exp expl "expl" ;
Operator op "op" ;
Exp exp2 ;

end LBINARY;

record LUNARY

“Logical unary operations. not”

Operator op "op" ;
Exp exp "exp Relations, e.g. a >= 0" ;
end LUNARY;

record RELATION
Exp expl "expl" ;
Operator op "op" ;
Exp exp2 ;

end RELATION;

record IFEXP
Exp ifExp "ifExp" ;
Exp trueBranch "trueBranch" ; Exp elseBranch "elseBranch" ;
list<tuple<Exp, Exp>> elseIlfBranch "elseIfBranch Function calls" ;
end IFEXP;

record CALL

ComponentRef function "function" ;
FunctionArgs functionArgs ;
end CALL;

record PARTEVALFUNCTION "Partially evaluated function"
ComponentRef function_ "function" ;
FunctionArgs functionArgs ;

end PARTEVALFUNCTION;

record ARRAY "Array construction using {, }, or array"
list<Exp> arrayExp ;

SysML-Modelica Transformation, v1.0

end ARRAY;

record MATRIX "Matrix construction using {, } "
list<list<Exp>> matrix ;
end MATRIX;

record RANGE "Range expressions, e.g. 1:10 or 1:0.5:10"
Exp start "start" ;
Option<Exp> step "step" ;
Exp stop "stop";

end RANGE;

record TUPLE “Tuples used in function calls returning several values”
list<Exp> expressions "comma-separated expressions" ;
end TUPLE;

record END "array access operator for last element, e.g. a{end}:=1;"
end END;
end Exp;

14.8.2 FunctionArgs

uniontype FunctionArgs

“The FunctionArgs uniontype consists of alist of positional arguments followed by a list of named arguments.”
See Modelica specification 3.1 sub clause 12.4 Function Call.

record FUNCTIONARGS
list<Exp> args "args" ;
list<NamedArg> argNames "argNames" ;
end FUNCTIONARGS;

record FOR ITER FARG
Exp exp "iterator expression";
ForIterators iterators;

end FOR I TER FARG;

end FunctionArgs;

14.8.3 Forlterator
public type ForIterator = tuple<Ident, Option<Exp>>

See Modelica specification 3.1 sub clause 11.2.2 For-statement and sub clauses 8.3.2 For-Equations - Repetitive Equation
Structures, 10.4.1 Array Constructor with Iterators.

14.8.4 Forlterators

public type ForIterators = list<ForIterator>

14.8.5 NamedArg

uniontype NamedArg

66 SysML-Modelica Transformation, v1.0

“The NamedArg uniontype consist of an identifier for the argument and an expression giving the value of the argument.”

record NAMEDARG
Ident argName "argName"
Exp argValue "argValue"
end NAMEDARG;
end NamedArg;

Ne N

14.8.6 Operator

uniontype Operator

See Modelica specification 3.1 Clause 3 Operators and Expressions.

/* arithmetic operators */

record ADD "addition "end ADD;

record SUB "subtraction "end SUB;

record MUL "multiplication "end MUL;

record DIV "division "end DIV;

record POW "power "end POW;

record UPLUS "unary plus "end UPLUS;

record UMINUS "unary minus "end UMINUS;

/* element-wise arithmetic operators */

record ADD EW "element-wise addition "end ADD _EW;
record SUB EW "element-wise subtraction "end SUB_EW;
record MUL EW "element-wise multiplication "end MUL EW;
record DIV _EW "element-wise division "end DIV _EW;
record POW _EW "element-wise power "end POW_EW;
record UPLUS EW "element-wise unary minus "end UPLUS EW;
record UMINUS EW "element-wise unary plus "end UMINUS EW;
/* logical operators */

record AND "logical and "end AND;

record OR "logical or "end OR;

record NOT "logical not "end NOT;

/* relational operators */

record LESS "less than "end LESS;

record LESSEQ "less than or equal "end LESSEQ;

record GREATER "greater than "end GREATER;
record GREATEREQ "greater than or equal "end GREATEREQ;
record EQUAL "relational equal "end EQUAL;

record NEQUAL "relational not equal "end NEQUAL;

end Operator;

SysML-Modelica Transformation, v1.0

68

SysML-Modelica Transformation, v1.0

Part IV - Transformation

General Information

This part of the document defines the mapping between the SysML4Modelica profile defined in Part 11 and the Modelica
abstract syntax defined in Part 111. The mapping is in tables relating el ements in the SysML4Modelica profile to el ements of
the Modelica abstract syntax as well asin QVT. The QVT code isincluded in Annex C; it includes explicit references to
each of the mapping rule numbers included in the tables.

Each mapping table may consist of 4 sections:

1. A genera statement describing which element in the SysML profile is being mapped to which element of the
Modelica abstract syntax.

2. A Required section describing the required conditions necessary to make the transformation valid
3. A Conditional section describing possible links between attributes based on conditional expressions

4. An Attributes section describing the mapping between any additional attributes

Part 1V of the SysML-Modelica Transformation specification is non-normative and contains the following Clauses:
» 15- Class Definitions
e 16 - Predefined Types
e 17 - Component Declarations

e 18- Equation and Algorithm Sections

SysML-Modelica Transformation, v1.0 69

70

SysML-Modelica Transformation, v1.0

15 Class Definitions

15.1 «modelicaClassDefinition»

SysML4Modelica Modelica Attributes
Abstract Syntax Concrete Syntax

15.1.1:Classes::ModelicaClassDefinition | Absyn.Class.Class N/A See below
Specializations:
15.1.2:Classes::ModelicaClass Absyn.Class.Class Class See 8.3
15.1.3:Classes::ModelicaModel Absyn.Class.Class Model See 8.3
15.1.4:Classes::ModelicaRecord Absyn.Class.Class Record See 8.4
15.1.5:Classes::ModelicaBlock Absyn.Class.Class Block See 8.5
15.1.6:Classes::ModelicaConnector Absyn.Class.Class Connector See 8.6
15.1.7:Classses::ModelicaType Absyn.Class.Class Type See 8.7
15.1.8:Classes::ModelicaPackage Absyn.Class.Class Package See 8.8
15.1.9:classes::ModelicaFunction Absyn.Class.Class Function See 8.9

SysML4Modelica Modelica

15.1.10:Classes::ModelicaClassDefinition

maps to

Absyn.Class.Class

Attributes

15.1.11: isFinal

always maps to

+ finalPrefix

15.1.12: IsModelicaEncapsulated

always maps to

¢ EncapsulatedPrefix

15.1.13: IsAbstract

always maps to

* PartialPrefix

SysML-Modelica Transformation, v1.0

71

15.2 «modelicaClass»

SysML4Modelica Modelica
15.2.1:Classes::ModelicaClass maps to Absyn.Class.Class
Required
15.2.2: » restriction equal to Restriction.R_Class

15.2.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

15.3 «modelicaModel»

SysML4Modelica Modelica
15.3.1:Classes::ModelicaModel maps to Absyn.Class.Class
Required
15.3.2: » restriction equal to Restriction.R_Model

15.3.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

15.4 «modelicaRecord»

SysML4Modelica Modelica
15.4.1:Classes::ModelicaRecord maps to Absyn.Class.Class
Required
15.4.2: * restriction equal to Restriction.R_Record

15.4.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

72 SysML-Modelica Transformation, v1.0

15.5 «modelicaBlock»

SysML4Modelica Modelica
15.5.1:Classes::ModelicaBlock maps to Absyn.Class.Class
Required
15.5.2: e restriction equal to Restriction.R_Block
15.5.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

15.6 «modelicaConnector»

SysML4Modelica Modelica

15.6.1:Classes::ModelicaConnector maps to Absyn.Class.Class

Conditional:

15.6.2: IsExpandable equal to false maps to e restriction equal to Restriction.
R_CONNECTOR

15.6.3: IsExpandable equal to true maps to e restriction equal to Restriction.
R_EXP_CONNECTOR

15.6.4: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

15.7 «modelicaType»

SysML4Modelica Modelica
15.7.1:Classes::ModelicaType maps to Absyn.Class.Class
Required
15.7.2: * restriction equal to Restriction.R_Type
15.7.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

15.8 «modelicaPackage»

SysML4Modelica Modelica
15.8.1:Classes::ModelicaPackage maps to Absyn.Class.Class
Required
15.8.2: » restriction equal to Restriction.R_Package
15.8.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

SysML-Modelica Transformation, v1.0 73

15.9 «modelicaFunction»

SysML4Modelica

Modelica

15.9.1:Classes::ModelicaFunction maps to Absyn.Class.Class

Required:

15.9.2: e restriction equal to Restriction.
R_Function

Conditional:

15.9.3: language = “C” or “FORTRAN"

Type of Class.body equal to
ClassDef.PARTS

Type of Class.body.classParts equal to
ClassPart. EXTERNAL

Type of
Class.body.classParts.externalDecl equal
to ExternalDecl. EXTERNALDECL

15.9.4: language

Class.body.classParts.externalDecl.lang

15.9.5: name * Class.body.classParts.externalDecl.func

15.9.6: scope always maps to * Type of innerOuter

15.9.7: externalLibrary parsed to » Class.body.classParts.externalDecl.annotation
_with Library={externalLibrary...}

15.9.8: externalinclude parsed to » Class.body.classParts.externalDecl.annotation

_with Include={externallnclude..}

15.10 «modelicaExtends»

There are multiple representations for the extends clause within the Modelica abstract syntax. Only one of the possible mappings is
addressed here, the one that most closely resembles the SysML4Modelica definition.

SysML4Modelica

Modelica

15.10.1:Classes::ModelicaExtends maps to ClassDef.CLASS_EXTENDS

Required:

15.10.2:Specific maps to » Class with property Class.body equal to
ClassDef.CLASS_EXTENDS

15.10.3:General maps to ¢ ClassDef.Class_EXTENDS.baseClassName

Attributes:

15.10.4: modification parsed to * ClassDef.CLASS_EXTENDS.modifications

15.10.5: visibility parsed to e ClassDef.CLASS_EXTENDS.modifications

15.10.6: arraySize parsed to * ClassDef.CLASS_EXTENDS.modifications

74

SysML-Modelica Transformation, v1.0

15.11 «modelicaDer»

SysML4Modelica

Modelica

15.11.1:Classes::ModelicaDer maps to Absyn.Class.Class

Required:

15.11.2: » Type of body equal to ClassDef.PDER
Attributes:

15.11.3: name maps to ¢ body.PDER.functionName

15.11.4: variables maps to e body.PDER.vars

15.12 «modelicaConstrainedBy»

SysML4Modelica

Modelica

15.12.1:Classes::ModelicaConstrainedBy maps to ConstrainClass.CONSTRAINCLASS.
Required:
15.12.2: » Referenced by
ElementArg.REDECLARATION.constrain
Class
* Type of CONSTRAINCLASS.elementSpec
equal to ElementSpec.-CLASSDEF
Attributes:
15.12.3: client always maps to ¢ CONSTRAINCLASS.elementSpec.-class_

15.12.4: modification

parsed to

¢« ElementArg.REDECLARATION.
redeclareKey words

SysML-Modelica Transformation, v1.0

75

76

SysML-Modelica Transformation, v1.0

16 Predefined Types

16.1 Overview

The following primitive types are available in the Modelica language: Real Type, Integer Type, Boolean Type, String Type,

Enumeration Types, StateSdlect, Externd Object, Graphical Annotation Types. These primitive types are defined as predefined types in
SysML4Moddlica::BasicTypes. Although these types have direct counterpartsin SysML, they are defined again to account for the
additional attributes associated with them in Moddlica

SysML4Modelica

Modelica

Basic Types Predefined Type
16.1.1: ModelicaReal Real

16.1.2: Modelicalnteger Integer

16.1.3: ModelicaBoolean Boolean

16.1.4: ModelicaString String

16.1.5: ModelicaEnumeration Enumeration

16.1.6: ModelicaStateSelect

StateSelect

16.1.7: ModelicaExternalObject

ExternalObject

16.1.8: ModelicaAnnotation

Annotation

SysML-Modelica Transformation, v1.0

77

78

SysML-Modelica Transformation, v1.0

17 Component Declarations

17.1 Overview

SysML4Modelica Modelica Attributes
17.1.1: Component::ModelicaPart Absyn.Element.Element See Sub clause 10.3
17.1.2: Component::ModelicaPort Absyn.Element.Element See Sub clause 10.4
17.1.3: Component::ModelicaValueProperty Absyn.Element.Element See Sub clause 10.2
17.1.4: Component::ModelicaFunctionParameter Absyn.Element.Element See Sub clause 10.5
17.2 «modelicaPart»
SysML4Modelica Modelica

17.2.1:Component::ModelicaPart maps to Absyn.Element.Element

Required

17.2.2: » Type of specification equal to
ElementSpec. COMPONENTS

17.2.3: * Absyn.Class.Class referenced by
specification.typeSpec has Restriction
equal to R_Block or R_Class or R_Model

17.2.4: » Type of specification.components equal
to Componentlitem.COMPONENTITEM

17.2.5: Type of
specification.components.component
equal to Component. COMPONENT

Attributes

17.2.6:name always maps to * name

» specification.components.component.name
17.2.7:scope always maps to * Type of innerOuter

17.2.8:conditionalExpression

always maps to

» specification.components.condition

17.2.9:modification

always maps to

» specification.components.component.
modification

17.2.10: isFinal

always maps to

+ finalPrefix

17.2.11: isReplaceable

always maps to

¢ redeclareKeywords

17.2.12: arraySize

always maps to

« specification.components.component.
arrayDim

SysML-Modelica Transformation, v1.0

79

17.3 «modelicaPort»

SysML4Modelica

Modelica

17.3.1:Component::ModelicaPort maps to Absyn.Element.Element

Required

17.3.2: Type of specification equal to
ElementSpec. COMPONENTS

17.3.3: Absyn.Class.Class referenced by
specification.typeSpec has restriction
equal to R_Connector

17.3.4: Type of specification.components equal
to Componentltem.COMPONENTITEM

17.3.5: Type of
specification.components.component
equal to Component. COMPONENT

Attributes

17.3.6:name always maps to name

specification.components.component.name

17.3.7:causality

always maps to

Type of specification.attributes.direction

17.3.8:conditionalExpression

always maps to

specification.components.condition

17.3.9:modification

always maps to

specification.components.component.
modification

17.3.10: isFinal

always maps to

finalPrefix

17.3.11: isReplaceable

always maps to

redeclareKeywords

17.3.12: arraySize

always maps to

specification.attributes.arrayDim

17.4 «modelicaValueProperty»

SysML4Modelica

Modelica

17.4.1:Component::ModelicaValueProperty maps to Absyn.Element.Element

Required

17.4.2: Type of specification equal to
ElementSpec. COMPONENTS

17.4.3: Absyn.Class.Class referenced by
specification.typeSpec has restriction
equal to R_Type or R_Record

17.3.4: Type of specification.components equal
to Componentltem.COMPONENTITEM

80 SysML-Modelica Transformation, v1.0

Absyn.Class.Class

SysML4Modelica Modelica

17.4.5: Type of
specification.components.component
equal to Component. COMPONENT

17.4.6: Type of specification.attributes equal to
ElementAttributes.ATTR

Attributes

17.4.7:name always maps to name
specification.components.component.name

17.4.8:visibility Type of ClassPart of owning

17.4.9:causality

always maps to

Type of
specification.components.component.
attributes.direction

17.4.10:variability

always maps to

Type of
specification.components.component.
attributes.variability

17.4.11: flowFlag

always maps to

specification.components.component.
attributes.flowPrefix

17.4.12: scope

always maps to

Type of innerOuter

17.4.13: conditionalExpression

always maps to

specification.components.condition

17.4.14: modification

always maps to

specification.components.component.
modification

17.4.15: isReplaceable

always maps to

redeclareKeywords

17.4.16: declarationEquation

always maps to

redeclareKeywords

17.4.17: isFinal

always maps to

finalPrefix

17.4.19: arraySize

always maps to

specification.components.component.
arrayDim

17.5 «modelicaFunctionParameter»

SysML4Modelica Modelica

17.5.1:Component::ModelicaFunctionParameter | maps to Absyn.Element.Element

Required

17.5.2: Type of specification equal to
ElementSpec. COMPONENTS

17.5.3: Absyn.Class.Class referenced by
specification.type. Spec has restriction
equal to R_Type or R_Record.

17.5.4: Component of Absyn.Class.Class with
restriction equal to R_Function.

SysML-Modelica Transformation, v1.0

81

SysML4Modelica

Modelica

17.5.5: Type of specification.components equal
to Componentltem.COMPONENTITEM

17.5.6: Type of
specification.components.component
equal to Component. COMPONENT

17.5.7: Type of specification.attributes equal to
ElementAttributes. ATTR

Attributes

17.5.8:name always maps to name

specification.components.component.name

17.5.9:causality

always maps to

Type of specification.attributes.direction

17.5.10:variability

always maps to

Type of specification.attributes.variability

17.5.11:isFinal

always maps to

finalPrefix

17.5.12: modification

always maps to

specification.components.component.
modification

17.5.13: isReplaceable

parsed to

redeclareKeywords

17.5.14: declarationEquation

parsed to

redeclareKeywords

17.5.15: arraySize

always maps to

specification.attributes.arrayDim

82

SysML-Modelica Transformation, v1.0

18 Equation and Algorithm Sections

18.1 Overview

SysML4Modelica

Modelica Abstract Syntax Attributes

18.1.1: Equations and Algorithms::Modelica Equation

Absyn.Equationltem.EQUATIONITEM See Sub clause 11.2

18.1.2: Equations and Algorithms::ModelicaConnection

Absyn.Equation.EQ_CONNECT See Sub clause 11.4

18.1.3: Equations and Algorithms::ModelicaAlgorithm

Absyn.Equationltem.ALGORITHMITEM | See Sub clause 11.3

18.2 «modelicaEquation»

SysML4Modelica Modelica
18.2.1: Equations and Algorithms::ModelicaEquation maps to Absyn.Equationltem.EQUATIONITEM
Required
18.2.2: specification.body parsed to e equation

Conditionals

18.2.3: If islnitial equal to false

e EQUATIONITEM contained in
record typed to ClassPart.
EQUATIONS

18.2.4: If isInitial equal to true

¢ EQUATIONITEM contained in
record typed to ClassPart.
INITIALEQUATIONS

SysML-Modelica Transformation, v1.0

83

18.3 «modelicaAlgorithm»

SysML4Modelica

Modelica

18.3.1: Equations and Algorithms::ModelicaAlgorithm maps to Absyn.Algorithmltem. ALGORITHMITEM

Required

18.3.2: constraint.specification parsed to e algorithm

Conditionals

18.3.3: If islnitial equal to false e ALGORITHMITEM contained in
record typed to ClassPart.
ALGORITHMS

18.3.4: If isInitial equal to true ¢ A;:GORITHMITEM contained in
record typed to ClassPart.
INITIALALGORITHMS

18.4 «modelicaConnection»
SysML4Modelica Modelica

18.4.1: Equations and Algorithms::ModelicaConnection maps to Absyn.Equation.EQ_CONNECTOR

Required

e ConnectorEndA.Role maps to e connectorl

e ConnectorEndB.Role maps to e connector2

84

SysML-Modelica Transformation, v1.0

Part V - Annexes

Contents

This part of the document introduces the Annexes, as follows:

e Annex A - Examples
* Annex B - Justification

* Annex C- QVT Transformation

SysML-Modelica Transformation, v1.0

85

86

SysML-Modelica Transformation, v1.0

Annex A: Examples

(non-normative)

A.1 A Car Suspension Model

The following example is intended to illustrate the concepts of how the transformation approach can be used to provide a context for
the normative specification in Part 11 of this specification. Consider the design of a car suspension. Asillugtrated in Figure A.1, the
suspension can be described in the context of a car using a descriptive SysML model, expressed in a BDD and corresponding

IBD.

bdd [Package] Structure [CarStructure])

+mass . Mass

ibd [Block] Car [Car]
oty / -Suspensinn\ suspension : Suspension

zhlocks

Body

ahlocks susp2body : BodyConnection
Suspension

vales
+mass : kgjunit = Kilogram}

-hody2zusp

hlocks
SuspensionFlange

vales
+stiffness : Stiffness
+mass . Mass

-susp2hody body : Body

<hlocks
BodyConnection

body2zusp : SuspensionFlange

Figure A.1 - SysML descriptive model of a car suspension visualized as a BDD and IBD

Assume now that one needs to evaluate the dynamic response of the suspension by simulating the car body's position as
afunction of time. A possible continuous dynamics model for such a simulation models the suspension as a linear spring
and the car body as a point mass. This model is illustrated in Figure A.2 in both Modelica and in the SysML4Modelica
profile which represents the corresponding Modelica constructs. By stereotyping SysML ports and connectors, the
semantics of Kirchhoff's laws have been introduced into SysML.

SysML-Modelica Transformation, v1.0 87

ibd [Modelicaiodel] Cscillstorodel [Oscillstorhodel U

«modelicaParts
fixedimodel : Fixed

[

fixed1 flange : Flange
wmoadelicaPort»

«modelicaConnection:s

wmoadelicaPort»
flange_b : Flange

| .
smodelicaPart:
springimodel : Spring
g

flange_a : Flange
smodelicaPort:
smhodelicaCannection:

smodelicaPort:
flange_kb : Flange

||
«modelicaPart

massimodel : Mass

g
=

flange_a : Flange
wmadelicaPort»

Figure A.2 - Mass-Spring model for a car suspension, in Modelica (left) and SysML4Modelica (right)

The SysML parts are stereotyped as «modelicaPart». (i.e., mass 1model, springlmode, fixedlmodel), that correspond to usages of
models from the Moddlica Standard Library. For indance, asillustrated in Figure A.3, the library

ModdicaMechanics. Trand ational.Components includes definitions of continuous dynamics models for a Spring and a Mass.
Note that one could apply stereotypesin SysML that include icons equivaent to the eements from the Modelica library so that the
SysML4Modélica representation in Figure A.4 could be amost identical to the Modelica representation on the left.

88 SysML-Modelica Transformation, v1.0

bdd [ModelicaPackage] Components [ModelCrverview])

amodelicaPort: smodelicaPorts:
flange_a: Flange, —flange_b @ Flange
=L g
emodelicahiadel:
PartiaiCompliant

[ModelicastandardLibrary Modelica Mechanics . Translational Interfaces)
{=_rel = flange_b s - flange_a.s;

flange_kb.f =1

flange_a.f = -1}

valke s
zmodelica’alueProperty=s_rel : Distance
smodelica'alueProperty=f: Force

smodelicaPort: smodelicaEstendss amodelicaPort:
flange_s © Flange— — flange_b : Flangs
L] LT

amodelicahlodel:
Spring
[ModelicasStandardLibrary Modelica Mechanics. Translational .Components)
it =c*=_rel-s_reld); }

vales
zmodelicataluePropertysc . TranslationalSpring Constant{modification = "final min=0", "start = 1", variahilty = parameter}
emodelica'alueProperty=s_rell : Distance{variakilty = parameter}

amodelicaPart: amodelicaPart:
flange_a: Flange — —flange_b : Flange
LI L1

amodelicatodel:
PartiaiRigid
[ModelicaStandar dlibeary Modelica Mechanics Translational Interfaces)
iflange_a.s = s - L12;
flange_b.s =5+ L2}

vales
zmodelica'alueProperty=s . Position
emodelicaValueProperty=L : Length{variakility = parameter}

amodelicaEstands:
{modification = "L=0", "sistart=0, $tateSelect=stateSelect)"}

sthodelicaPorts athodelicaPort:
flange_a : Flange — flange_b : Flange
Foall]
smodelicatdodel:
Mass
[ModelicaStandar dlibesry Modelica Mechanics Translationsl Components)
{w = ders);
a = derv];

mwita = flange_af + flange_b f}

valies
emodelica‘/alueProperty=m : Mass{variabilty = parameter}
emodelica‘/alueProperty=a : Acceleration
emodelicaValueProperty=v : Velocity
emodelicalalusProperty=stateSelect | ModelicaStateSelect{variakilty = parameter}

Figure A.3 - Continuous dynamics models for Mass and Spring defined in the Modelica Standard Library

In Figure A.2, the usages of these moddls, stereotyped as «moddlicaPart» are connected to each other at their «modelicaPort» by
«modéelicaConnection». These connections carry the semantics of Kirchhoff’s Laws (in this example—or, more generaly, the same
semantics as an equivalent Modelica connection). These semantics can be made more explicit by usng a Parametric Constraint
(Figure A.4).

SysML-Modelica Transformation, v1.0 89

par [Elock] Mass [Mass]J

der_x

s_u : Derivative
{der_x = der(x)}

eal

=_u1 : Derivative
{der_x = der(x)}

)

- Real

Tlang:

hlocks
e_a: Flange

=um : Real

x1: Real w2 Real

sum1 : 5um
Tsum=x1+x2}

)

f: Force

- —

newton :

o

HewtonsLaw
{m*a =1}

M

a: Acceleration

m: Mass

w1 Real w2 Real

H N

sum2 : Sum
{sum=x1+x2}

)

sum : Real

zhlocks
flange_b : Flange

Figure A.4 - Mass model as it could be represented in a Parametric Diagram

But, as one can see by comparing Figure A.4 and Figure A.2, this comes at a cost of a much larger and less readable
diagram. Similarly, one could have represented the internal equations of the Mass model in a Parametric Diagram, as is
illustrated in Figure A.5, but again, the more explicit semantics come at a cost of increased complexity. For this reason,
only Blocks and Internal Block Diagrams are further used in the SysML4Modelica profile, but the parametrics still
provides the underlying metamodel for capturing the detailed equations. This complexity can often be abstracted and
made not visible to the modeler.

90

SysML-Modelica Transformation, v1.0

par [Block] Oscillatarhodel [Oscillatorkodel]J

fixedimodel : Fixed massimodel : Mass
flange : Flange flange_b : Flange
s:m f:H
| S:m | | f:H |
i1: Real
vl Real il Real +1:Real ! =
node1 : KirchhoffsLaws node? : KirchhoffsLaws
{i1+i2=0, {i1+i2=0,
wil=v2} wl=vw2}
w2 Real iZ: Real vw2:Real i2: Real

=pringimodel : Spring

flange_b : Flange flange_a : Flange

|s:m||f:N| |s:m||f:N|

Figure A.5 - Mass-Spring model as represented in a Parametric Diagram

Finally, it is worth illustrating how the SysML4M odelica continuous dynamics model in Figure A.2 relates to the SysML
descriptive model in Figure A.1. Since both the descriptive and the continuous dynamics models are views of the same
system, they cannot be independent of each other. Changes to the descriptive model are likely to require corresponding
changes to the continuous dynamics model and vice versa. Such dependencies can be modeled in an analysis context - the
context in which the analysis model (i.e., the continuous dynamic analysis in this case) is defined.

The analysis context is illustrated in Figure A.6. It establishes the dependencies between the descriptive model
components and their corresponding analysis models. In addition, the detailed bindings between the descriptive and
analysis properties are defined in the Parametric Diagram illustrated in Figure A.7.

SysML-Modelica Transformation, v1.0 91

bdd [Block] CarDynamicsContext [AnalysisContext]J
#hlocks smacelicatdodels
CarlymamicsContext JE— OscillatorModel
vakes -
testRigPosition : Real smodelicaParts
fixedimodel : Fixed
{modification = "s0=1"}
-car
ghlocks
i - smodelicaParts
<all0CaE: A . 5
suspension : Suspension - |— — — — — — — = springimodel : Spring
{modification = "e=10000", "s_rel0=2"}
: allocates [
susp2body : BodyConnection | —|| — — — — — — _— A flange_a : Flange
smodelicaPort:
P—— == — amaodelicaPaort:
flange_b : Flange
body : Body allocate: ‘+’—‘ i
F L
1 | sthodelicaParts
body2susp : SuspensionFlange aallocates massimodel : Mass
_______ |{modification = "m=1", "sistart=-0 57, "L=1"}

Figure A.6 - The Block Definition Diagram for the Analysis Context of the continuous dynamics analysis

92 SysML-Modelica Transformation, v1.0

par [Block] CarDynamicsContext [CarDynamicsContext])

oscimodel : OscillatorModel

athodelicaParts
fixedimodel : Fixed

ol smodelica’alueProperty:
testRigPosition : Real =0 : Length

stmodelicaParts
springimodel : Spring

[e 1
car : Car smodelica‘’aluePraoperty s

s_rell : Distance

suspension : Suspension

clhb amodelica‘y'aluePraperty s
¢ : TranslationalSpringConstant

sliffness : Stiffness |
|

|

|

|

|

|

I athadelicaPart:
| massimodel : Mass
|

|

|

|

|

|

smodelicayvaluePropettys
L : Length

smodelicaaluePropertys:
m: Mass

Figure A.7 - The Parametric Diagram for the Analysis Context of the continuous dynamics analysis; the properties
of the descriptive model are bound to the corresponding properties in the analysis model.

For very simple problems, one could consider combining the descriptive and analysis views into one model; e.g., suspension and
springlmodel would be combined into one component that includes both the descriptive properties and the analyss constraints/
equations. However, for larger problems in which more than one analysis perspective needs to be considered (e.g., mechanical,
dectrical, controls, manufacturing, different levels of abstraction, etc.), combining al such analyses into one model would be
difficult to manage. One would likely encounter problems with naming conflicts or duplicaion of properties. In addition,
combining dl the modes severely limits the opportunity for model reuse because models from libraries (such as the Moddlica
Standard Library) would have to be combined with descriptive models rather than just included in an analysis context.

A.1.1 A Robot Model

Introduction

The examplein this section isintended to illustrate how a SysML model can be transformed to aModelica model in accordance with
the transformation approach specified in this document. In particular, the transformation is accomplished by first applying the
SysML4Modelica profile as described in Part |1 of this document, and then mapping the SysML4- Modedlicamodel to the Moddlica
model as described in Part 1V of this document. The robot example is based on the robot model that is contained in the standard
Modelica library which can be found at www.modelica.org. Refer to Part | of this document for a brief introduction to SysML and
Modelica

SysML-Modelica Transformation, v1.0 93

http://www.modelica.org

Integrating SysML Descriptive Models with Analytical Models

This transformation specification will typicaly support the system requirements analysis and design activity as part of a systems
engineering process. A SysML mode will be developed to specify the system requirements, architect the system, and alocate the
system requirements to the hardware and software components of the system. The SysML model serves as a descriptive model to
capture multiple aspects of the system of interest, including its functionality, inputs/output and control flow, structural composition
and interconnection, and traceability to its text based requirements as indicated in Figure A.8. As part of the requirements anadyss
and design effort, many different engineering andysis are often performed to eva uate the extent that the system can satisfy its system
performance, physical, reliability, maintainability, and cost requirements.

traceability Strusturs Banmrior analysis fi | >
rationale [Fo —p—= | [EX— | needs -
External ! T L = e | i, closed farm
Requirements 1 "1] | T i i

- | | | S o B+
q.—| | " [-|,.I = = I - 'hl
L | M |

: _ =) performance -
| = 1 I] discreta event
| | 1 T T g
System viewpolnt : : . Wil] os mates 2!
Documentation & f st
1] | et .
and Specifications] — | N } i‘jf IS
F — :) [C g \(.g/’\. .,
’ ' ' - - ’ natwaork
Reguiremanrts FParametrics
System Model (SysML) Analysis Models
syelam framework for design
Machanieal Electrical Software Testing
Design Models Design Decsign Methodes and
2 Models Models Models

Figure A.8 - A SysML model in which models for multiple analysis tools are defined

The SysML descriptive model can capture relevant aspects of the system that can be used by many different types of
analytical models and tools to support the above analysis. One mechanism is to use SysML parametrics to capture the
analysis as a network of equations, and then pass this analysis to an analytical tool. The analytical tool then performs the
computation and provides the quantifiable results back to the SysML model. A simple example may be for a SysML
parametric model to capture the system overall reliability in terms of the mean time between failures of each of its
components.

The reliability of each component may in turn be estimated based on some equation. This set of equations are passed to a
reliability analysis too | to perform the computation, and return the reliability values back to the SysML model.

Sometimes, SysML parametrics is used in a more abstract way. In this case, the SysML model does not capture the
equations, but only the input and output parameters of the analysis. When this is done,the equations that relate the input
and output parameters of the analysis are included in the analytical tool or solver.

An alternative approach for providing relevant aspects of the descriptive model to an analytical model is to use the
transformation approach specified in this document. In this particular case, the SysML model is transformed to a
Modelica model in two steps. First, the SysML4Modelica profile is applied to create an analytical representation from the
structural portion of the SysML model. In the second step, this SysML4Modelica analytical model is mapped to the

94 SysML-Modelica Transformation, v1.0

Modelica model where it can be executed. The additional step to apply the SysML4Modelica profile to create the
analytical model facilitates a more straightforward mapping from SysML to Modelica, as compared to mapping the
SysML model to Modelica directly without applying the profile.

This transformation approach provides advantages over creating a parametric model and providing the parametric model
to the Modelica model directly as describe above. In particular, the approach enables the SysML4Modelica analytical
model to more effectively map to reusable components in the Modelica standard library. The Modelica model
encapsulates the equations in its components, and then defines standard equations for connecting them. The detailed
equations are generally assumed to be captured in the Modelica model using Modelica's textual notation. It is generally
assumed that the SysML4Modelica analytical model captures the structure, interconnection, and properties, but not the
detailed equations. This transformation approach allows the modeler to provide an abstract description of the system in
SysML and the SysML4Modelica analytical model, and then establish direct correspondence to the Modelica model.

A.1.2 Robot Example

This robot example only highlights the aspects of the SysML model that are used in the SysML4M odelica transformation.
The primary aspects of the SysML model that are used in the transformation are the block definition diagrams (bdd) and
the internal block diagrams (ibd). In a more typica case, the SysML model would include other aspects of the model as
described in Figure A.8, and integrate with other analytical models and tools as well as the Modelica model.

For the robot example, the block definition diagrams and internal block diagrams are used to describe the system
composition and interconnection at increasing levels of detail. Thisis typical of how SysML models are developed to
support system specification and design. The corresponding Modelica analytical model may be created at different levels
of abstraction. The following paragraphs illustrate a sequence diagrams one may create in a modeling and design process.
All figures are included at the end of the section.

The SysML model organization for the Robot model is shown in the package diagram in Figure A.9. The model structure
includes the SysML4Modelica Profile, the Modelica Standard Library, and the Robot Model itself. The Robot model
includes packages for defining interfaces, types, structure, and analysis.

As described above, atypical SysML model may include integration with a diverse set of analytical models. The analysis
package captures the various types of analysis that are being performed. In particular, Figure A.10 shows a parametric
model of the top level objective function for the robot. In particular, several key performance parameters have been
identified that characterize the overall value to the end user, including the weight, power, reliability, cost and trajectory
performance in terms of the position error. Each of these performance parameters are analyzed by different analytical
models and tools. Note that the Modelica model will be used primarily to analyze the trajectory performance. Thisis
indicated by the refine relationship between the Modelica robot model and the trajectory performance model.

The top level SysML block definition diagram is shown in Figure A.11. The robot domain block serves as a context for
the rabot, which is the system of interest. The robot domain block is composed of the robot and the other actors that are
external to the robot, and interact with it. The actors include the load the robot manipulates, the platform the robot is
attached to, the power source that provides power to the robot, and the driver that provides the desired trajectory input to
the robot. The trajectory input may be provided in real time, such as might be done by joystick control, or prior to the
robot actually executing the trajectory.

In Figure A.12, the corresponding internal block diagram is shown. In this diagram, the interconnection between the robot
and the actors is shown. The ports on the robot represent the connection points to each external actor.

The top level bdd and ibd are sometimes referred to as a black box view which specify the robot from an external
perspective without any internal details. The corresponding Modelica model may be created to provide an abstract
analytical representation of the black box robot, with limited or no internal detail. This analytical model may be used to

SysML-Modelica Transformation, v1.0 95

assess required trajectory characteristics, such as precision and response time to manipulate a load of specified mass, and
perhaps the minimum power requirements needed of the robot, based on some assumptions on a robot power efficiency
factor. Again, this analysis may be performed without any consideration for the internal details of the robot.

The standard Modelica library does not include this black box model explicitly. However, it could be added by creating
the SysML4M odelica analytical model and devel oping the corresponding Modelica model. Although the robot model may
be abstract, the models of the actors such as the Load, Power Source, and Driver could be specified in detail and reused
for the detailed robot analytical models.

The block definition diagram in Figure A.13 decomposes the robot into its next level of components including the Path-
Planner, Control Bus, Actuators, and Arm. Only one of the six actuators is shown in the bdd. The Actuators are all
assumed to be of the same type, but each actuator could have been modeled as a subclass of a more generic actuator to
represent a unique component type.

The internal block diagram in Figure A.14 shows the interconnection among the robot parts. Note that the black box
interfaces to the external actors are preserved. Each actuator is shown as a unique part. Once again, a robot designer may
choose to perform an analysis of the robot at this level of abstraction, where all of the components in the ibd are treated
as black boxes without internal detail. This would further refine the black box analysis, and provide a basis for allocating
specific performance requirements to the components. For example, the actuator efficiency could be estimated, and the
trajectory could be analyzed as a function of different assumptions of actuator black box characteristics. Again, the
Modelica library does not explicitly contain a model of these components at this level, but the Modelica model could be
expanded to include them. If so, the SysML4Modelica analytical model would be created, and then mapped to the
corresponding Modelica model.

The next diagrams include the block definition diagram and internal block diagram for the actuator and arm. The path
planner and control bus were not further decomposed in the SysML model, although they could have been. The actuator
block definition diagram and internal block diagram are shown in Figure A.15 and Figure A.16, respectively. The actuator
includes the Controller, Motor Assembly, Gear and Sensor. The Motor Assembly is further decomposed into a Motor and
Drive Electronics on the bdd, but no further interconnection detail is shown. The level of detail of the SysML model
typically corresponds to the level of detail that the system is being specified by the system designer. Below this level,
other domain specific hardware and software models are used to model the system design.

The Arm block definition diagram and internal block diagram are shown in Figure A.17 and Figure A.18, respectively.
Note that the black box interfaces for the actuator and arm are preserved on their internal block diagrams, providing
consistency from the robot black box level to the component | level.

The transformation to the Modelica model is performed at this level of detail of the SysML model of the robot. The first
step in the transformation is to create the SysML4Modelica analytical model. In Figure A.19 and Figure A.20, the SysML
structural model is allocated to corresponding elements of the SysML4Modelica analytical model. Based on these
allocations, the SysML4Modelica analytical model for the robot is shown in Figure A.21.

Once the SysML4Modelica analytical model has been defined, the mapping to the corresponding Modelica model can be
performed. Figure A.22 shows the corresponding graphical representation of the resulting Modelica model. The detailed
equations are embedded in the Modelica model elements that are represented by the graphical elements.

In Figure A.23, the results of the analysis are shown for a specific simulation execution.

96 SysML-Modelica Transformation, v1.0

pkg [Package] Robathodel [Robot Model Organization])

Refined by
modelicaRaobot

1 1 1
wprofiles ModelicaStandardLibrary RobotModel
SysML4Modelica
i
1 1 1 1
Interfaces Analysis Types Structure
Figure A.9 - The package organization of the robot model
par [Block] RobotAnalysisContext[Overall Effectivensss U
" «objectiveFunctions
s Model [totaIMass Tk mazs kg obj : ObjectiveFunction
pm : PowerModel
E averagePower | W powver ;W :|
ReliabilityModel utility : Real
rm : Reliabi odel B
Ereliahility: Real relishilty : Real :| E‘{ effectiveness : Real 4
cm : CostModel
[cost: us§ cost: ush :|
tm : TrajectoryErrorModel
[taxPostionErrar : m trajectoryError 1 m]

Figure A.10 - A parametric model of the top level objective function for the robot

SysML-Modelica Transformation, v1.0

97

bdd [Fackage] Structure [RobotDomain BDD]J

«hlocks
RobotDonnain

- -roks ~load l
=hlocks shlocks |
Oriver Robot Load
-p= -paf
| =hlocks: | =hlock:s
Powersource Platform

Figure A.11 - The top level block definition diagram for the robot domain

ibd [Block] RobotDomain [RobotDomain IBED]J

dr : Driver

ps : PowerSource
it

T
-

load : Load

| .

rob : Robot
> loadIF
Ll Fre
ControlCmd contralln L
| -
Lol] poswverlF
ElecEnergyFlawy 'T' mountiF
MechEnergyFlows
if
pf : Platform

if

L
mechEnergyFlow

Figure A.12 - The internal block diagram of the robot domain

98

SysML-Modelica Transformation, v1.0

bdd [Package] Robot [Rokat EDD])

shlocks omment
Robot ki *
axiz 2-6 nat showen
g
P
. /’
-np -ch -aist _arm
shlocks whlocks shlocks shlocks
PathPlanner ControlBus Actuator Arm

Figure A.13 - The block definition diagram for the decomposition of the robot into its main subsystems

ibd [Block] Robat [Robot IBD]J
ch : ControlBus E arm : Arm
outt Path(Crhct
DUTF PathCml E|
- 3
out3 PathCmd
pp : PathPlanner
—] loadF _ loadF
contraln PathCmd | in E"] P ‘ﬂ
outF PathCimcl E| MechEnergyFlow
- a
Chs PathCmd
outh PathCmd
]
¥
pavnverlF P
ElecEnergyFlow MechEnergyFlow
powvetlF maourtlF
|| L

Figure A.14 - The internal block diagram for the robot, illustrating its decomposition into the path planner, the control
bus, the actuators and the mechanical structure of the robot arm.

SysML-Modelica Transformation, v1.0

99

bdd [Package] Actuator [Actuator BDD])
zhlocks
Actuator
-C -ma -gh -as
zhlocks zhlocks hlocks zhlocks
Controller MotorAssembly Gear Sensor
zhlocks <hlock:
DriveElectronics Motor

Figure A.15 - The block definition diagram for the structure of an actuator of the robot

ibd [Block] Actustor [Actustar IBD])

az2c . AngleSensorReading

out

as: Sensor

ghlas

s rad

t
L Tr

angle

o2 MaotorCrmd
i

ma : MotorAssembly

P

<

. gear
¥

powver]F

powver|F

ElecEnergyFlow

A

P
fha2oh ; RotationalEneregyFlow

oh2) : RotationalEnergyFldy
4 f

L |

1¥ [

Figure A.16 - The internal block diagram for a robot actuator

100

SysML-Modelica Transformation, v1.0

bdd [Package] Lrn|[Lrm BDD LJ

shlocks
Arm
ghlocks shlocks zhlocks ghlocks shlocks shlocks zhlocks shlocks
Base Upperarm EndEffector Lowerarm ‘Wrist Joint3DOF Elbow Joint Shoulder Joint BaseJoint

kv
«bl;i:k» <blocks
Link Joint1Azis
kvl
zhlocks
Jaint

Figure A.17 - The block definition diagram for the robot arm's mechanical structure

ibd [Elock] Arm[Arm IED])

: EndEffector loglF =

> S Wristloint3D0F

: Lowerarm

: Elbow Joint
: Upperrm
: Shoulder.Joint

bazelF

]

Figure A.18 - The internal block diagram for the robot arm

SysML-Modelica Transformation, v1.0 101

ibd [Elock] Robot&nalysisContext [Structural Model to Analytical Model Correspondence LJ
| rd:RobotDomain | | smocelcabodels |
| | modelicaRobotDonvain : RobotAnalyticalDomain
rob : Robot | 1
I | sallocates | amodelicaParts |
| I - - - - - = |_ - axis1 : AxisTypel
| axis1 : Actuator | | — — — — — |
| ' delicaPart |
" zallocates sMobEicararts
I axis : Actuator | — — — — — — — — — — — — — — — — = ayig?: AxisTypel |
| = wallocates L
I avis3 : Actuator | - — — — — — T2 . = = = arrlern |
T | I axis3 : AxisType1 |
| I |
I axiss: Actuator | L | _ _ _ _ _«alin_cat? L _ 5 smodeicaParts I
| | I axisd : AxisType2
axish : Actuator L | | |
| | | dallocates | amodelicaParts: |
D[amiAamo o T T T T T T T T T T T axis AxisType2
T | ' | |
|
pp : PathPlanner 4 — — [lallocate» I amodelicaParts |
I | = — — — — = — — - anish: AxisType? |
I ch : ControlBus H [|
|
| | || eallocstes i emodelicaPart:
| l | - - - - - - - = ~| mechanics : MechanicalStructure |
| | | |
|
I | pf : Platform | | | sallocates | gmodelicaParts |
| | | [~| pathPlanning : PathPlanning6
I | dr : Driver | |
l l aallocate: contralBus . CortrolBus I - |
I load : Load | L = = = = = aD amodelicayalusPropertys |
| | smodelicaPorts mlLoad : Mass
| mass: kg =15 A - - _ _ _“*a"E':at_e» s smiodelica‘ualue Propertys |
| | maodification = "min=0" |
I relPos:PosVect | L | - — — — _ _ | variahility = parameter |
| | | | I
e —————————— |eallocate:s
| amodelicayvalusPropertys |
I | rLoad I
| | wmnodelica‘value Propertya
— — — — — — = arraySize ="' |
|| declarationEquation="{0.1,0.25.0.1}" |
| | variahility = parameter |
R e]

Figure A.19 - The Analysis Context in which the descriptive model of the robot domain is allocated to the correspond-
ing analytical model as expressed in the SysML4Modelica profile.

102 SysML-Modelica Transformation, v1.0

ibd [Block] RobotAnslysisCortext [Steutural Model to Anakvtical Model Corresponcdence - Controller Properties]J

rd : RobotDomain emodelicabodels

|
' | ' modelicaRobotDomain : RobotAnabyticalDomain

| rob : Robot | ! |

| | |

[axis1 - Actuator | [|

| l llocat | |
sallocates i

[‘ c.pogitionGain : Real |— - - - L — — %«mniil;:\iu??::f:rtw l

I | | l

! l allocate | |
&] i

| ‘ c.speedGain : Real |— 1 — — — — S a«mndaili':;v:ﬁi?l;fz:f e |

| | | l

| |

- : wallocate: smodelica'aluePropertys |

I ‘ c.integTimeConst : 5 |— - - - - axis1.Ks : Real

I | | l

L T _. e |

Figure A.20 - A detailed diagram of the allocation of the robot actuator descriptive
model to the analytical SysML4-Modelica Model

SysML-Modelica Transformation, v1.0

103

ibd [Modelicabodel] RobotAnalyticallomain [ModelicaRobot])

amocelicaPorts

confralBus : ControlBus

«modelicaParts

«modelicaPorts
flange : Flange_k

«modelicaPorts
axish Flange_a

«modelicaParts

smodelicaConnection:

AxizCantrolBus «odelicaParts
axish ; AxisTypel

«mocelicaPorts
flange : Flange_h

H]mechanics : MechanicalStructure

«modelicaPorts
axizd : Flange_a

[]

AxisControlBus «modelicaParts
axish : AxisType?

smodelicaConnections

amocelicaPorts
flange : Flange_h

smodelicaPorts
axisd : Flange_a F]

AxizControlBus amodelicaParts
axisd : AxisType2

«modelicaConnection:

amodelicaPorts

«hodelicaParts flange : Flange_b

axis] : AxisTypel

L

«modelicaPorts
axisd Flange_a ’_]

smodelicaPorts

emodelicaParts flange : Flange_k

pathPlanning : PathPlanning®
modelicaConnection:
smodelicaPorts
smodelicaConnections arizContralBus :
«modelicaPorts
smodelicaCannections axizControlBus :
smidelicaPorts
— | emodelicaConnections axizControlBus .
smodelicaPorts
Fdee"CaCD””ECT'D“» aisCantrolBus ; AxisCortrolBus
«%acaPort»
cortrolBus)) amodelicalorts
smodelicaConnections ayisCantralBius : AxisCortrolBus
«modelicaPorts
smodelicaConnection: arizControlBus ; AxisControlBus

«modelicaConnection:

«modelicaPorts
axis? Flange_a -

axis2 : AxisTypel amadelicaConnections

amocelicaPorts

smodelicaParts flange : Flange_b

LT

L

smodelicaPorts

axigd : AxisTypel amodeicaConnections

axiz! : Flange_a [;

Figure A.21 - The top-level robot problem shows as an ibd in the SysML4Modelica profile

104

SysML-Modelica Transformation, v1.0

“mechanics

Figure A.22 - The top-level Modelica model of the robot

SysML-Modelica Transformation, v1.0

105

motor torque

oo [LE] 0B 12 18 20

Figure A.23 - The simulation results with the motor torques as function of time

106 SysML-Modelica Transformation, v1.0

Annex B: Justification

(non-normative)

B.1 Semantic Comparison between SysML and Modelica

Before focusing on the detailed modeling constructs, a high-level decision needs to be made regarding the choice of
SysML elements to represent Modelica models. Although Modelica is a textual language, it also supports a graphical

view through its annotation mechanism. This graphical view illustrates clearly the strong similarity that exists between

SysML and Modelica. Both languages support the decomposition of systems (or behavioral models of systems) into

subsystems or components and the interactions between them. For instance, the Modelica model of a motor controller
(shown in Figure 3) contains sub-components (such as motor, gearbox, and controller). The interactions between them are
illustrated by edges connecting the interface locations (called connectors in Modelica) of the components. Such

hierarchical compositions of Modelica models and the connections between them constitute the primary modeling

approach in Modelica. Before considering the details of the language, it is thus important to consider carefully how these
primary modeling constructs map to SysML.

Asiillustrated in Table B.1, in SysML there are three kind of construct built on abstractions that have similar semantics

compared to the hierarchical, connector-based composition of Modelica models: the hierarchical Blocks, shown in

Internal Block Diagrams), the Parametric Constraints (shown in Parametric Diagrams), and the Activity graphs. All three
constructs support some sort of “ports,” some sort of connection of “port-based” objects through “port-connections,” and
hierarchical encapsulation through “port-delegation.” We use these three constructs to discuss the main question: “What

are the SysML elements that match the Modelica semantics best?’

Table B.1 - A comparison between Modelica concepts and SysML abstractions and diagrams

SysML
Concepts Modelica Construct Availability in diagrams
constructs abstractions | __ Modelica “ like” -—--- =
BDD IBD Parametric Activity
Model Model Block Yes Yes Restricted No
Definition
Model Component Property Yes Yes Restricted No
Usage (Part Property)
Port Connector Block Yes Yes Yes No
Definition ValueType Yes Yes No No
FlowSpecification Yes No No No
Properties Component Block Yes Yes Yes Ref.Only
(Variables) ValueType Yes Yes Yes Ref.only
FlowProperty Yes No No Ref.only
Part Component Port Yes Yes Yes Ref.only
Causal link Connection Connector No Yes No No
ObjectFlow No No No Yes
Acausal link Connection Connector No Yes Yes No

SysML-Modelica Transformation, v1.0

107

B.2 Modelica

In Modelica, ports are called connectors and the edges between ports are called connections [Modelica Spec, Chapter 9]. The ports
(connectors) can include four types of quantities: inputs, outputs, flows and non-flows. Inputs and output are used when the
direction of the flow is known and fixed, as for instance in signals flowing in a control system. Flow and non-flow quantities are
used to describe energy or material flow (they are al'so sometimes referred to as through and across variables, respectively).
When connecting two Modelica connectors with a connection, the semantics for inputs and outputs are causal binding: the input
is assigned the value of the output to which it is connected. Input and output connecters must therefore be used in conjugate pairs,
and only one output can be connected to each input. For flow and non-flow variables, the connection semantics correspond to
Kirchhoff's Laws, namely, the value of the flow variables add up to zero and the values of the non-flow variables are set equal (in
an eguation-based, acausal fashion). When more than one connection is made to a connector containing a flow variable, then an
ideal, loss-less energy or materid exchange is assumed by imposing that the values of flow variables of all connected connectors add
up to zero. To impose the correct modeling of energy exchange, Modelica requires that the number of flow and non-flow quantities
of a connector be equal.

In addition to connectors, Modelica models can contain variables and submodels (i.e., model usage in Table B.1). Although Moddlica
does not explicitly digtinguish between these three categories of “components’ (i.e., connectors, variables, sub- models), it may till be
useful and desirable to distinguish explicitly among them when mapping to SysML.

B.3 SysML Hierarchical Blocks, ports and connectors

The primary purpose of the SysML hierachical Block congtructs, is to express system structural decomposition and interconnection of
its parts [SysML Spec, Chapters 8 and 9]. The SysML concepts used in those constructs have quite flexible semantics and may be
used to establish logical and conceptual decompositions, for instance, as in a context view [SysML Spec, Section B.4.2.1]. The
Blocksin SysML are similar to Classes in Modelica (specifically the specialized class types of Modd, Block, Connector, tc.).
Blocks can be decomposed in the same way Modelica Classes can be decomposed.

The “ports’ on the blocks are called Ports and the connections between ports are called Connectors. There are two kinds of ports:
Flow Ports and Standard Ports. The Standard Ports are particularly geared towards service-based interactions by representing the
interfaces (e.g., software methods) that are provided or required by a particular block. Such service- based interactions are not
appropriate for modeling the connections found in Modelica. Flow Ports on the other hand do provide semantics that reflect
Modelica connectors more closaly.

A Flow Port describes an interaction point through which input and/or output of items such as data, material, or energy may
flow in and out of ablock. For Modelica-type interactions, the exchanged "items" could be either signals (for input and output
quantities) or energy/material (for flow and non-flow quantities). Modelica signal exchanges are causal and so the semantics of a
SysML Fow Port typed by a Flow specification is convenient. SysML binding connectors provide acausal connections between
properties. They imply equality between connected properties and then does not carry the Kirchhoff laws semantics. The
equivaent of a Binding Connector does not actually exist in Modelica, but can be captured in a non-graphical fashion by
introducing an equality equation between the two variables that are bound. Therefore, in order to capture the semantics of a
Modelica connection, one solution would be to introduce a new SysML connector element that is equivalent to a Modelica
Connector, and that reflects the semantics of Kirchhoff's laws. Another possibility would be to make the equations for Kirchhoff’s
laws, which are implicit in Modelica connections, explicit as another SysML Constraint Property. This option is appealing because
it makes the semantics very explicit, but has the disadvantage that it makes the models more cumbersome to create and more
difficult to read.

In conclusion, although blocks seem to have very similar constructs to Modelica, there are some subtle differences in so that new
sereotypes will have to be introduced to adequately capture the Modelica semantics of Connectors and Connections.

108 SysML-Modelica Transformation, v1.0

B.4 SysML Parametric Constraints

The purpose of Parametric Congtraints is to express mathematical relationships between parameters. A Parametric Congraintsis
modeled through a specia kind of Block named “Congtraint Block”. “Ports’ of those blocks are Congtraint Parameters and the
“connections’ to those parameters are made using Binding Connectors. Indde a Congraint Block, mathematical relationships are
defined congtraining its Congtraint Parameters. A Congtraint Property is ausage of a Congraint Block. Its Constraint Parameters are
then bound to other Constraint Parameters or to Properties of Blocks. The semantics of a Binding Connector indicate a
mathematical equality between the (Block) Properties or Congtraint Parameters being connected. This mathematical equality is an
acausal relationship.

B.5 SysML Activity Graphs

The purpose of an Activity graph in SysML isto specify the transformation of inputs to outputs through a controlled sequence of
actions. An Activity decomposes into Actions. In activity graphs, the Object Nodes (i.e., Pins and Parameter Nodes) correspond
to buffers to place input and output tokens. The connections between Object Nodes correspond to Object Flows. These flows
typicdly represent the transfer of one or more objects at a discrete moment in time, dthough it is possible to specify a streaming
flow that could be continuous, i.e., the time between arrival of tokens (or “objects’) is zero. It is thislatter case that needsto be
described in terms of differential equations.

It must be underlined that as defined in the context of SysML activities “flows’, are they continuous or not, correspond to the
concept of “dataflow” which is related to an asynchronous approach. Conversely, a Modelica flow specifies the exigtence of
relationships between the value of respectively flow and non-flow variables on both sides of a connection, as defined by
Kirchhoff's laws. Those relationships are mathematical equations and then corresponds to a synchronous approach.

In conclusion, SysML Activity Graphs can be convenient only to model Modelica input/output varigbles. Thus Activity graphs
therefore seems to be the least appropriate for a mapping from Modelica Class, although they will be explored when mapping the
Modelica Function and Algorithm to SysML4Modelica.

B.6 Selected foundation concept: SysML Hierarchical Blocks with Embedded
Constraints

It is clear from the discussion in the previous sub clauses that there is not a single concept that embeds the Modelica
semantics perfectly. As a result, the use of more than one SysML concept with multiple stereotypes will need to be
defined to extend the SysML semantics.

Blocks, CongraintBlocks, FlowPorts, dasscad Connectors and BindingConnectors can be used to map Modeica Modds, Components,
Connectors, and Connectionsto SysML. Thisisillustrated in Annex A.

SysML-Modelica Transformation, v1.0 109

110 SysML-Modelica Transformation, v1.0

Annex C: QVT Transformation

(non-normative)

C.1 Overview

The overview of an implementation of the SysML-Modelica Transformation based on QVT is shown in Figure C.1. The
QVT transformation files can be retrieved at these URLS:

e QVT Tranformation:; http://www.omg.spec/SysM/20120214/M odelica2M odelicaUnparsed.qvto
¢ QVT Tranformation: http://www.omg.spec/SysM/20120215/M odelicaUnparsed2SysML .gvto
e QVT Tranformation: http://www.omg.spec/SysM/20120216/SysM L 2ModelicaUnparsed.gvto
e QVT Tranformation; http://www.omg.spec/SysM/20120217/M odelicaUnparsed2M odelica.qvto

S

Modelica Modelica
AST model AST model Modelica
Modelica (.moast) {.xmi) AS_:,.::[Ede' SysML
model model
unparsed)
(.mo) : (-xmi)
expressions
(.xmi)
—

Java Transformation

- QVT Transformation

Figure C.1 - Overview of an implementation of the SysML-Modelica Transformation based on QVT

SysML-Modelica Transformation, v1.0 111

112 SysML-Modelica Transformation, v1.0

	Preface
	Part I - Overview
	1 Scope
	1.1 OMG SysMLTM
	1.2 SysML-Modelica
	1.3 Conclusion
	1.4 Objective

	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgments

	7 Transformation Approach
	7.1 General

	Part II - SysML4Modelica Profile
	8 Class Definition
	8.1 Overview
	8.2 «modelicaClassDefinition»
	8.3 «modelicaClass» and «modelicaModel»
	8.4 «modelicaRecord»
	8.5 «modelicaBlock»
	8.6 «modelicaConnector»
	8.7 «modelicaType»
	8.8 «modelicaPackage»
	8.9 «modelicaFunction»
	8.10 «modelicaExtends»
	8.11 «modelicaDer»
	8.12 «modelicaConstrainedBy»
	8.13 Short Class Definitions

	9 Predefined Types
	9.1 Overview
	9.2 ModelicaReal
	9.3 ModelicaInteger
	9.4 ModelicaBoolean
	9.5 ModelicaString
	9.6 ModelicaStateSelect
	9.7 ModelicaExternalObject

	10 Component Declarations
	10.1 Overview
	10.2 «modelicaValueProperty»
	10.3 «modelicaPart»
	10.4 «modelicaPort»
	10.5 «modelicaFunctionParameter»

	11 Equation and Algorithm Sections
	11.1 Overview
	11.2 «modelicaEquation»
	11.3 «modelicaAlgorithm»
	11.4 «modelicaConnection»

	12 Other Related Constructs
	12.1 «modelicaSimulation»
	12.2 "modelicaAnnotation"

	Part III - Modelica Abstract Syntax
	13 Modelica Meta-Modeling Approach
	13.1 General

	14 Modelica Meta-Model Constructs
	14.1 The Model Structure Definition
	14.1.1 Program
	14.1.2 Within
	14.1.3 Path

	14.2 Class Definition
	14.2.1 Class
	14.2.2 Restriction
	14.2.3 ClassDef
	14.2.4 TypeSpec
	14.2.5 EnumDef
	14.2.6 EnumLiteral
	14.2.7 ClassPart
	14.2.8 ExternalDecl
	14.2.9 ElementItem
	14.2.10 Element
	14.2.11 InnerOuter
	14.2.12 ComponentRef
	14.2.13 Subscript
	14.2.14 ConstrainClass
	14.2.15 ElementSpec

	14.3 Import
	14.4 Annotation and Comments
	14.4.1 Annotation
	14.4.2 Comment

	14.5 Component Definition
	14.5.1 ComponentItem
	14.5.2 ComponentCondition
	14.5.3 Component
	14.5.4 ElementAttributes
	14.5.5 Variability
	14.5.6 Direction
	14.5.7 ArrayDim

	14.6 Modifications and Redeclarations
	14.6.1 Modification
	14.6.2 ElementArg
	14.6.3 RedeclareKeywords
	14.6.4 Each

	14.7 Behavior
	14.7.1 EquationItem
	14.7.2 AlgorithmItem
	14.7.3 Equation
	14.7.4 Algorithm

	14.8 Expressions
	14.8.1 Exp
	14.8.2 FunctionArgs
	14.8.3 ForIterator
	14.8.4 ForIterators
	14.8.5 NamedArg
	14.8.6 Operator

	Part IV - Transformation
	15 Class Definitions
	15.1 «modelicaClassDefinition»
	15.2 «modelicaClass»
	15.3 «modelicaModel»
	15.4 «modelicaRecord»
	15.5 «modelicaBlock»
	15.6 «modelicaConnector»
	15.7 «modelicaType»
	15.8 «modelicaPackage»
	15.9 «modelicaFunction»
	15.10 «modelicaExtends»
	15.11 «modelicaDer»
	15.12 «modelicaConstrainedBy»

	16 Predefined Types
	16.1 Overview

	17 Component Declarations
	17.1 Overview
	17.2 «modelicaPart»
	17.3 «modelicaPort»
	17.4 «modelicaValueProperty»
	17.5 «modelicaFunctionParameter»

	18 Equation and Algorithm Sections
	18.1 Overview
	18.2 «modelicaEquation»
	18.3 «modelicaAlgorithm»
	18.4 «modelicaConnection»

	Part V - Annexes
	Annex A: Examples
	A.1 A Car Suspension Model
	A.1.1 A Robot Model
	A.1.2 Robot Example

	Annex B: Justification
	B.1 Semantic Comparison between SysML and Modelica
	B.2 Modelica
	B.3 SysML Hierarchical Blocks, ports and connectors
	B.4 SysML Parametric Constraints
	B.5 SysML Activity Graphs
	B.6 Selected foundation concept: SysML Hierarchical Blocks with Embedded Constraints

	Annex C: QVT Transformation
	C.1 Overview

