

 Date: November 2012

SysML-Modelica Transformation

Version 1.0

OMG Document Number: formal/2012-11-09
Normative reference: http://www.omg.org/spec/SyM/1.0/
Machine consumable files:
Normative:

http://www.omg.org/spec/SyM/20120320/SysML4Modelica-Profile.xmi
Non-normative:

http://www.omg.org/spec/SyM/20120214/Modelica2ModelicaUnparsed.qvto
http://www.omg.org/spec/SyM/20120215/ModelicaUnparsed2SysML.qvto
http://www.omg.org/spec/SyM/20120216/SysML2ModelicaUnparsed.qvto
http://www.omg.org/spec/SyM/20120217/ModelicaUnparsed2Modelica.qvto
http://www.omg.org/spec/SyM/20120313/openModelica.emof
http://www.omg.org/spec/SyM/20120312/SysML4ModelicaProfile.mdzip

http://www.omg.org/spec/SysML/1.2/
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi
http://schema.omg.org/spec/SysML/20090817/SysML-profile.xmi

Copyright © 2009-2010, Atego
Copyright © 2009-2010, Deere & Company
Copyright © 2009-2010, EADS
Copyright © 2009-2010, ESA/ESTEC
Copyright © 2009-2010, Georgia Institute of Technology
Copyright © 2009-2010, Jet Propulsion Laboratory
Copyright © 2009-2010, Linköping University
Copyright © 2009-2010, Lockheed Martin Corporation
Copyright © 2009-2010, NoMagic Inc.
Copyright © 2012, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

The specification customizes the Unified Modeling Language (UML) specification of the Object Management Group
(OMG) to address the requirements of Systems Engineering as specified in the UML for Systems Engineering RFP, OMG
document number ad/2003-03-41. This document includes references to and excerpts from the UML 2 Superstructure
Specification and UML 2 Infrastructure Specification with copyright holders and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following
conditions are met: (1) Redistributions of this specification must reproduce the above copyright notice, this list of
conditions and disclaimers in the documentation and/or other materials provided with the distribution; (2) The Copyright
Holders listed in the above copyright notice may not be used to endorse or promote products derived from this
specification without specific prior written permission; (3) All modified versions of this specification must include a
prominent notice stating how and when the specification was modified; and (4) No modifications to this OMG SysML™
specification may be published under or identified by that name, except for versions published by OMG and incorporating
official changes made through the applicable procedures of OMG. OMG SysML™ is a trademark of OMG, and no
unauthorized version or revision of the OMG SysML specification may use the trademark “OMG SysML” or claim any
connection with or endorsement by OMG.

In accordance with the above copyright provisions, the companies listed above have granted to the Object Management
Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute OMG SysML and to
modify OMG SysML and distribute copies of the modified version. Each of the copyright holders listed above has agreed
that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by
reason of having used the specification set forth herein or having conformed any computer software to the specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, nonsublicenseable, perpetual, worldwide license, to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy,
and distribute this specification as provided under the Copyright Act. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies
of this document in your possession or control.

This document was derived from the “Systems Modeling Language (SysML) Specification, version 1.0 DRAFT,” OMG
document (ad/2006-03-01) submitted to OMG in response to the “UML for Systems Engineering RFP” (ad/2003-03-41).
Review and editing in the OMG process produced the “OMG SysML Specification Final Adopted Specification” (ptc/
2006-05-04). Subsequent changes to the specification are controlled through the OMG process as documented at the
OMG Technology Document website - http://www.omg.org/technology/documents/.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The entire risk as to the
quality and performance of software developed using this specification is borne by you. This disclaimer of warranty
constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language (OMG IDL)™ , and
OMG Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other
products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may
authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special
designations to indicate compliance with OMG SysML™. Software developed under the terms of this license may claim
compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object Management
Group, Inc., software developed using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

Table of Contents

Preface ... v
Part I

1 Scope ... 3
1.1 OMG SysMLTM ..3
1.2 SysML-Modelica ...4
1.3 Conclusion ..4
1.4 Objective ...4

2 Conformance ... 4

3 Normative References ... 5

4 Terms and Definitions .. 5

5 Symbols ... 5

6 Additional Information .. 6
6.1 Acknowledgments ...6

7 Transformation Approach .. 7
7.1 General ...7
7.2 Overview ...9

Part II

8 Class Definition .. 11
8.1 Overview ...11
8.2 «modelicaClassDefinition» ..13
8.3 «modelicaClass» and «modelicaModel» ..14
8.4 «modelicaRecord» .. 15
8.5 «modelicaBlock» ...16
8.6 «modelicaConnector» ...17
8.7 «modelicaType» ..18
8.8 «modelicaPackage» ..19
8.9 «modelicaFunction» ..19
8.10 «modelicaExtends» ...21
8.11 «modelicaDer» ..23
SysML-Modelica Transformation, v1.0 i

8.12 «modelicaConstrainedBy» ..23
8.13 Short Class Definitions ..24

9 Predefined Types ... 25
9.1 Overview ...25
9.2 ModelicaReal ..26
9.3 ModelicaInteger ...27
9.4 ModelicaBoolean ...28
9.5 ModelicaString ..28
9.6 ModelicaStateSelect ...29
9.7 ModelicaExternalObject ..29

10 Component Declarations .. 31
10.1 Overview ...31
10.2 «modelicaValueProperty» ...33
10.3 «modelicaPart» ...34
10.4 «modelicaPort» ...36
10.5 «modelicaFunctionParameter» ...37

11 Equation and Algorithm Sections ... 39
11.1 Overview ...39
11.2 «modelicaEquation» ..39
11.3 «modelicaAlgorithm» ...40
11.4 «modelicaConnection» ..41

12 Other Related Constructs ... 43
12.1 «modelicaSimulation» ...43
12.2 "modelicaAnnotation" ..44

Part III

13 Modelica Meta-Modeling Approach .. 47
13.1 General ...47

14 Modelica Meta-Model Constructs ... 51
14.1 The Model Structure Definition ..51

14.1.1 Program .. 51
14.1.2 Within .. 51
14.1.3 Path .. 51

14.2 Class Definition ...51
14.2.1 Class ... 51
ii SysML-Modelica Transformation, v1.0

14.2.2 Restriction ... 52
14.2.3 ClassDef ... 52
14.2.4 TypeSpec ... 53
14.2.5 EnumDef ... 54
14.2.6 EnumLiteral .. 54
14.2.7 ClassPart .. 54
14.2.8 ExternalDecl ... 55
14.2.9 ElementItem ... 55
14.2.10 Element .. 56
14.2.11 InnerOuter .. 56
14.2.12 ComponentRef ... 56
14.2.13 Subscript ... 57
14.2.14 ConstrainClass ... 57
14.2.15 ElementSpec .. 57

14.3 Import ..58
14.4 Annotation and Comments ...58

14.4.1 Annotation .. 58
14.4.2 Comment .. 59

14.5 Component Definition ...59
14.5.1 ComponentItem .. 59
14.5.2 ComponentCondition .. 59
14.5.3 Component ... 59
14.5.4 ElementAttributes ... 59
14.5.5 Variability .. 60
14.5.6 Direction ... 60
14.5.7 ArrayDim ... 60

14.6 Modifications and Redeclarations ...60
14.6.1 Modification .. 60
14.6.2 ElementArg ... 61
14.6.3 RedeclareKeywords ... 61
14.6.4 Each ... 61

14.7 Behavior .. 62
14.7.1 EquationItem .. 62
14.7.2 AlgorithmItem ... 62
14.7.3 Equation ... 62
14.7.4 Algorithm .. 63

14.8 Expressions ..64
14.8.1 Exp ... 64
14.8.2 FunctionArgs .. 66
14.8.3 ForIterator ... 66
14.8.4 ForIterators ... 66
14.8.5 NamedArg .. 66
14.8.6 Operator ... 67

Part IV

15 Class Definitions ... 71
SysML-Modelica Transformation, v1.0 iii

15.1 «modelicaClassDefinition» ..71
15.2 «modelicaClass» ...72
15.3 «modelicaModel» ..72
15.4 «modelicaRecord» ..72
15.5 «modelicaBlock» ...73
15.6 «modelicaConnector» ...73
15.7 «modelicaType» ..73
15.8 «modelicaPackage» ..73
15.9 «modelicaFunction» ..74
15.10 «modelicaExtends» ..74
15.11 «modelicaDer» ...75
15.12 «modelicaConstrainedBy» ...75

16 Predefined Types .. 77
16.1 Overview ...77

17 Component Declarations .. 79
17.1 Overview ...79
17.2 «modelicaPart» ...79
17.3 «modelicaPort» ...80
17.4 «modelicaValueProperty» ...80
17.5 «modelicaFunctionParameter» ...81

18 Equation and Algorithm Sections .. 83
18.1 Overview ...83
18.2 «modelicaEquation» ..83
18.3 «modelicaAlgorithm» ...84
18.4 «modelicaConnection» ..84

Part V
Annex A - Examples ... 87
Annex B - Justification .. 107
Annex C - QVT Transformation .. 111
iv SysML-Modelica Transformation, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from this URL:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
SysML-Modelica Transformation, v1.0 v

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or sub clause headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.
vi SysML-Modelica Transformation, v1.0

Part I - Overview

General Information

OMG SysMLTM is a standardized general purpose graphical modeling language for capturing complex system
descriptions in terms of their structure, behavior, properties, and requirements. Modelica is a standardized general purpose
systems modeling language for analyzing the continuous and discrete time dynamics of complex systems based on
solving differential algebraic equations. Integrating the descriptive power of SysML models with the analytic and
computational power of Modelica models provides a capability that is significantly greater than SysML or Modelica
individually. The objectives of this document are to enable and specify a standardized bi-directional transformation
between the two modeling languages that will support implementations to efficiently and automatically transfer the
modeling information transfer between SysML and Modelica models without ambiguity.

The transformation approach is to specify first an extension to SysML called the SysML4Modelica profile to represent the
Modelica constructs and then to specify the SysML-Modelica Transformation between the profile constructs and the
Modelica language. Introducing the profile into the transformation approach is intended to simplify the transformation to
Modelica and facilitate model reuse by more directly leveraging existing model libraries within Modelica. In this way, the
user first creates the system model in a SysML modeling tool as he would normally do. The user then selects the part of
the model to be analyzed by Modelica (e.g., a particular subsystem) and applies the SysML4Modelica profile to create an
analytic representation of that part of the model. The SysML modeling tool is expected to include this profile. The
analytic representation expressed in the SysML4Modelica profile is then transformed to a Modelica model where it can be
executed by a Modelica modeling tool.

The SysML-Modelica transformation leverages the fundamental concepts of the Model-Driven Architecture (MDA).
Different transformation implementations can be applied to implement this specification such as the QVT and others. The
transformation can leverage an XMI formatted static file transfer or other mechanisms such as APIs that support a
dynamic interchange capability.

This specification is organized as follows:

Part I - Introduction (normative)

Part II - SysML4Modelica profile (normative)

Part III - Modelica meta-model (non-normative)

Part IV - SysML-Modelica mapping, a bidirectional mapping between the SysML4Modelica profile and the Modelica
meta-model (non-normative)

Part V - Annexes: Examples, Justification, and QVT transformation (non-normative)
SysML-Modelica Transformation, v1.0 1

2 SysML-Modelica Transformation, v1.0

1 Scope

1.1 OMG SysMLTM

OMG SysMLTM is a general-purpose systems modeling language that can be used to create and manage models of
systems using well-defined constructs with underlying semantics and a graphical notation. SysML reuses a subset of
UML 2 constructs and extends them by adding new modeling elements and two new diagram types. These SysML
diagrams are shown in Figure 1.1. The set of behavioral and structural diagrams combined with the requirements diagram
and parametric diagram provide an integrated view of a system. But SysML represents much more than just a set of
diagrams. Underlying the diagrams, there is an abstract syntax model repository that formally represents all the modeling
constructs. The graphical model provides a mechanism to organize, enter, retrieve, and view the system-descriptive data
contained in the model repository.

The diagrams provide multiple views of the same system model; these multiple views can be maintained consistently due
to the semantic underpinning of the modeling language. In the context of SysML:

• The structure view primarily refers to the hierarchy and interconnections among the parts of the system, and the
interconnections between the system and its external systems.

• The behavior view describes how the state of the system changes (or must change) over the time according to its own
dynamics and/or to external events.

The requirements diagram captures text requirements in the model and enables them to be linked to other parts of the
model to provide unambiguous traceability between the requirements and system design. Parametrics provide a means to
specify that interdependencies between values of some system properties and can provide a bridge between the system
descriptive model in SysML and other simulation and engineering analysis models. While structure and behavior are
heavily based on UML, both requirements and parametrics are unique to SysML. Through these extensions, SysML is
capable of representing the specification, analysis, design, verification, and validation of systems.

Figure 1.1 - An overview of the SysML diagrams and their relation to UML diagrams

As indicated above, the system behavior in SysML is captured through a combination of activity graphs, state machine,
and/or interactions specifications using diagrams and their associated semantics. The Semantics of a Foundational Subset
for Executable UML Models (http://www.omg.org/spec/FUML) provides more formal semantics to enable SysML activity
models to be executed in better compliance with the standard. In addition, SysML includes parametric constructs to
capture models of constraint-based behavior, such as continuous-time dynamics in terms of energy flow. The syntax and
SysML-Modelica Transformation, v1.0 3

semantics of such behavioral descriptions in parametrics have been left open to integrate with other simulation and
analysis modeling capabilities to support the execution of these models. Additional information on SysML can be found
at http://www.omgsysml.org.

1.2 SysML-Modelica

Modelica is an object-oriented language for describing differential algebraic equation (DAE) systems combined with
discrete events. Such models are ideally suited for representing the flow of energy, materials, signals, or other continuous
interactions between system components. It is similar in structure to SysML in the sense that Modelica models consist of
compositions of sub-models connected by ports that represent energy flow (undirected) or signal flow (directed). The
models are acausal, equation-based, and declarative. The Modelica Language is defined and maintained by the Modelica
Association (www.modelica.org), which publishes a formal specification [Modelica Association, 2008] but also provides
an extensive Modelica Standard Library, which includes a broad foundation of essential models covering domains ranging
from (analog and digital) electrical systems, mechanical motion and thermal systems, to block diagrams for control.
Finally, it is worth noting that there are several efforts within the Modelica community to develop open-source solvers,
such as in the OpenModelica project (www.openmodelica.org).

1.3 Conclusion

In conclusion, SysML and Modelica are two complementary languages supported by two active communities. By
integrating SysML and Modelica, we combine the very expressive, formal language for differential algebraic equations
and discrete events of Modelica with the very expressive SysML constructs for requirements, structural decomposition,
logical behavior and corresponding cross-cutting constructs. In addition, the two communities are expected to benefit
from the exchange of multi-domain model libraries and the potential for improved and expanded commercial and open-
source tool support.

1.4 Objective

The objective of this document is to provide a bi-directional mapping between SysML and Modelica to leverage the
benefits from both languages. By integrating SysML and Modelica, SysML’s strength in descriptive modeling can be
combined with Modelica’s DAE solving capability to support analyses and trade studies. The scope of this specification
supports the objectives of the bi-directional mapping, and includes the SysML4Modelica profile, and the SysML-
Modelica Transformation. Not all Modelica constructs will be represented in this profile. The focus is to include the
Modelica language features that are most common and together cover the majority of the Modelica models in the standard
library. When certain Modelica constructs are omitted, this will be pointed out explicitly in this document. In the future,
it may be desirable to introduce additional SysML constructs into the Modelica Language or additional Modelica
constructs in the SysML language; however, this is outside the scope of the current effort.

2 Conformance

This specification has a narrow scope, focusing exclusively on the transformation between SysML4Modelica and
Modelica. Partial support of this specification is therefore of limited use. Still, it is useful to distinguish between the
following two compliance levels:

• Level 0: Compliance with SysML4Modelica profile

• Level 1: Compliance with the SysML-Modelica mapping
4 SysML-Modelica Transformation, v1.0

Compliance to Level 0: This level entails the support of all the modeling concepts included in the SysML4Modelica
profile as defined in Part II of this specification.

Compliance to Level 1: In addition to the capabilities provided by Level 0, Level 1 supports the successful bi-directional
transformation between SysML4Modelica models and corresponding Modelica models. The bi-directional transformation
is considered successful if the original Modelica model and the Modelica model generated by the round-trip
transformation (Modelica->SysML4Modelica->Modelica) are semantically identical, that is, they result in the same
simulation results.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• Systems Modeling Language: Specification, v1 .3 (http://www.omg.org/spec/SysML/1.3)

• Modelica Specification, v.3.1 (http://www.modelica.org/documents/ModelicaSpec31.pdf)

• QVT, v1.1(http://www.omg.org/spec/QVT/1.1/)

• OCL, v2.3. 1 (http://www.omg.org/spec/OCL/2.3.1/)

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents. For an overview of Modelica
related terms and definitions, refer to Annex A.

5 Symbols

Acronym Me

MDA Model Driven Architecture

MOF Meta Object Facility

OMG Object Management Group

SysML System Modeling Language

UML Unified Modeling Language

XMI XML Metadata Interchange

XML eXtensible Markup Language
SysML-Modelica Transformation, v1.0 5

6 Additional Information

6.1 Acknowledgments

The following companies submitted this specification:

• Atego

• Deere & Company

• No Magic Inc.

The following companies supported this specification:

• EADS

• ESA/ESTEC

• Georgia Institute of Technology

• Jet Propulsion Laboratory

• Linköping University

• Lockheed Martin Corporation

The following people have contributed significantly to this document either directly or indirectly through discussions and
feedback:

• Yves Bernard (EADS)

• Conrad Bock (NIST)

• Roger Burkhart (Deere & Co)

• Hans-Peter De Koning (ESA)

• Sanford Friedenthal (Lockheed Martin)

• Peter Fritzson (Linköping University)

• Nerijus Jankevicius (No Magic Inc)

• Thomas Johnson (Georgia Tech)

• Alek Kerzhner (Georgia Tech)

• Alan Moore (Mathworks)

• Chris Paredis (Georgia Tech)

• Russell Peak (InterCAx, Georgia Tech)

• Axel Reichwein (Georgia Tech)

• Nicolas Rouquette (Jet Propulsion Laboratory)

• Wladimir Schamai (EADS, Linköping University)
6 SysML-Modelica Transformation, v1.0

7 Transformation Approach

7.1 General

To develop a transformation between the SysML and Modelica languages, a formal, systematic approach is used, as is
illustrated in Figure 7.1. The transformation approach is to specify first an extension to SysML called the
SysML4Modelica profile which represents the most common Modelica language constructs. This allows the Modelica
concepts to be expressed in an extension of SysML that supports round-trip transformations between SysML and
Modelica. The profile extends the UML4SysML subset of UML and the SysML extensions to provide the concept
required to capture the relevant Modelica concepts and enable the mapping between the two languages. The
“transformation” stereotype is a self-defined stereotype referring to a mapping between the Modelica metamodel and the
SysML4Modelica profile. The <<conformsTo>>, <<transformation>>, and <<instanceOf>> stereotypes are purely
informal.

Figure 7.1 - The SysML-Modelica Transformation in relation to SysML and Modelica

To develop the SysML4Modelica profile in a systematic fashion, we start from the Modelica Language Specification and
identify for each Modelica language construct an equivalent construct in SysML from a semantic point of view. Where
equivalent constructs do not exist, stereotypes are created to extend the SysML language. The following naming
convention is used to define a Modelica construct in the SysML4Modelica profile: “modelicaConstruct” where Construct
is the name of the Modelica language construct as defined in the Modelica abstract syntax definition (see Part III -
Modelica Abstract Syntax).

Even when an equivalent SysML construct exists, it is sometimes necessary to introduce a stereotype in order to
distinguish the Modelica construct from the ordinary SysML construct when supporting round-trip transformation. In
addition, the textual syntax of Modelica often provides alternative ways to express the exact same semantics. In such
cases, the intent is to avoid propagating this redundancy to SysML4Modelica without loss of expressivity. For mapping
purposes, one of the redundant textual notations is identified as the primary (most explicit) one, and SysML4Modelica
constructs are preferably shown in this primary notation when using Modelica textual syntax. It should also be noted, that
SysML-Modelica Transformation, v1.0 7

Modelica includes a graphical syntax using iconic representations of block diagrams that maps to its textual syntax. An
example of the Modelica graphical syntax is shown in Figure 7.2 for a set of components connected together via Modelica
connectors and connections.

Modelica has a very rich representation for modeling differential algebraic equations. Where Modelica has a concept that
cannot be directly transformed into SysML, an opaque expression in Modelica syntax is sometimes used to capture the
concept in the SysML4Modelica profile. For example, mathematical expressions appearing in Modelica models are
represented as opaque expressions in the corresponding SysML4Modelica models.

Figure 7.2 - A Modelica model of a motor controller consisting of component models and the connections between
them. The connections include both causal signal connections (e.g., in and out of the controller) and acausal energy
connections (e.g., the rotational mechanical energy connections of the gearbox).

This specification provides a textual description of the mapping between Modelica and SysML4Modelica (see Part IV -
Transformation). In Annex C, this mapping is also (partially) described using QVT. Such a formal definition of the
mapping has the advantage that tools can be used to generate executable transformations between SysML and Modelica
modeling tools (assuming they support some standardized interface such as JMI1). An additional implementation of the
mapping is being developed as part of the OpenModelica project.

1.Java Metadata Interface (JMI), http://java.sun.com/products/jmi/
8 SysML-Modelica Transformation, v1.0

Part II - SysML4Modelica Profile

Overview

This part describes the stereotypes that represent the Modelica modeling constructs in SysML. As illustrated below, the
stereotypes, together with the library of predefined types, are organized in sub-packages and profiles in the
SysML4Modelica profile. In Clause 8, all the stereotypes related to the Modelica restricted classes are introduced. In
Clause 9, the predefined Modelica types and the enumerations used in the SysML4Modelica profile are defined. In Clause
10, the Modelica equivalent of properties are defined - called Component Declarations in Modelica. Finally, in Clause 11,
the Equation and Algorithm sub clauses of Modelica models are covered.

Figure (Part II) - Overview
SysML-Modelica Transformation, v1.0 9

10 SysML-Modelica Transformation, v1.0

8 Class Definition

8.1 Overview

The class concept is the basic structural unit in Modelica. Classes provide the structure for objects and contain equations and
algorithms, which ultimately are the basis for the executable simulation code. The most general class is “model.” Specialized
classes such as “record,” “type,” “block,” “package,” “function,” and “connector” have most of the properties of a “model”
but with restrictions, which need to be preserved in SysML to support round-trip mapping.

The following production rules define the different specialized classes. The reference in parentheses on the right indicates the
clause of this document in which the particular language element is discussed in detail.

class_specifier

class_specifier :

IDENT string_comment composition (23)

| IDENT "=" base_prefix name [array_subscripts] (13)

[class_modification] comment (23)

| IDENT "=" enumeration "(" ([enum _list] | ":") ")" comment (13)
| IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment (14)

| extends IDENT [class_modification] string_comment composition (16)
end IDENT

The following table lists the SysML stereotypes for representing the specialized Modelica classes. Using this approach the
modeler only needs to apply the respective stereotype to indicate all the semantics and restrictions of the associated Modelica class.
This information is represented graphically in Figure 8.1. In the following sub clauses, the details of each stereotype are described.

[within [name] ";"] (9)
{ [final] class_definition ";" } (9)

class_definition :

[encapsulated] (9)
[partial] (9)
(class
| model
| record
| block
| [expandable] connector (12)
| type
| package
| function) (14)
SysML-Modelica Transformation, v1.0 11

Figure 8.1 - Package diagram with an overview of the stereotypes for Modelica Classes

Table 8.1 - Mapping for the Modelica specialized classes

Modelica Construct SysML Base Class
SysML4Modelica

New Stereotype See Clause

abstract generalization for
all Modelica classes

UML4SysML: :Classifier «modelicaClassDefinition» 9

Class and Model SysML::Blocks::Block «modelicaModel» 10

Record SysML::Blocks::Block «modelicaRecord» 11

Block SysML::Blocks::Block «modelicaBlock» 12

Connector SysML::Blocks::Block «modelicaConnector» 12

Type SysML::Blocks: :Block
SysML::Blocks::ValueType
UML4SysML: :Enumeration

«modelicaType» 13

Package SysML::Blocks::Block «modelicaPackage» 14

Function UML4SysML: :FunctionBehavior «modelicaFunction» 14

Modelica Class Stereotypes[Package] Classespkg] [

+/isFinal : Boolean [1] = false
+/isPartial : Boolean [1] = false
+isModelicaEncapsulated : Boolean [1] = false
+isReplaceable : Boolean [1] = false

«stereotype»
ModelicaClassDefinition

+scope : ModelicaScopeKind [1] = none
+externalLibrary : String [0..*]
+externalInclude : String [0..1]

«stereotype»
ModelicaFunction

+isExpandable : Boolean [1] = false

«stereotype»
ModelicaConnector

«stereotype»
ModelicaOperator

«metaclass»
FunctionBehavior

«stereotype»
ModelicaPackage

«stereotype»
ModelicaRecord

«stereotype»
ModelicaModel

«stereotype»
ModelicaClass

«stereotype»
ModelicaBlock

«stereotype»
ModelicaType

«metaclass»
Enumeration

«stereotype»
ValueType

«stereotype»
Block

«metaclass»
DataType

«metaclass»
Classifier

- isPartial is derived from isAbstract
- isFinal is derived from isLeaf
12 SysML-Modelica Transformation, v1.0

8.2 «modelicaClassDefinition»

Stereotypes

• Classifier (from UML4SysML)

Abstract Syntax

• See Figure 8.1

Description

A Modelica class is the basic structural unit in Modelica. However, because it lacks precise semantics, the class construct
should never be used in Modelica. Without precise semantics, a Modelica tool cannot easily check whether any restrictions are
violated. Therefore, the constructs that are specialized from Modelica class should be used instead.

In the context of the SysML4Modelica profile, the Modelica class construct is mapped to the stereotype
«modelicaClassDefinition», which is abstract and thus cannot be instantiated directly. This choice has been made because it is
desirable to have the additional semantics specified by the specialized classes. In addition, as clearly shown in Figure 8.1, the
stereotypes associated with the specialized classes derive from different SysML constructs and thus cannot be mapped to a
single common construct for a Modelica class. The abstract stereotype «modelicaClassDefinition» serves the purpose of
grouping the attributes that apply to all the Modelica specialized classes. It stereotypes UML::Classifier, which is a common
generalization for the stereotypes of all the specialized classes.

Just like UML Classifiers, a «modelicaClassDefinition» can contain nested class definitions. Such nested definitions can be of
any restricted class type derived from «modelicaClassDefinition». For instance, a «modelicaConnector» can contain a
«modelicaPackage».

Modelica classes are often defined using a short class definition syntax. For example, the type Force could be defined as:

type Force = Real [3] (unit={ "N.m" , "N.m" , "N.m" });

Rather than supporting such short class definitions explicitly, the SysML4Modelica profile supports only the longer (but equivalent)
form (Note: in the Modelica abstract syntax the two forms are often represented identically):

type Force
extends Real [3] (unit={ "N .m" , "N .m" , "N .m" });

end Force;

In the remainder of this sub clause, all the common attributes and associations for all the constructs specialized from
Modelica class are described. In subsequent clauses for the individual specialized constructs, only the constraints on these
attributes and associations will be described in detail.

Attributes

• /isFinal : Boolean [1]
In Modelica, the definition of a class can be qualified to be final (see Modelica, v3.1, sub clause 7.2.6). This means that
the declared class cannot be further modified through (local) type modifications. Note that this is identical to the UML
attribute isLeaf for redefinable elements (see UML Specification 7.3.46) which, if true, indicates that no further redefinitions
are possible.

The isFinal attribute is true when the final prefix is present in Modelica; false otherwise. Its default value is false.

This is derived from isLeaf.
SysML-Modelica Transformation, v1.0 13

• /isPartial : Boolean [1]
The Modelica partial construct has the same semantics as the isAbstract attribute in SysML. The isPartial attribute
is true when the partial prefix is present in Modelica; false otherwise. Its default value is false.
This is derived from isAbstract.

• isModelicaEncapsulated : Boolean [1]
As explained in Modelica Specification 5.3.2, the Modelica encapsulated construct limits the scope of name
lookup. An encapsulated package can be moved within the package hierarchy without affecting the local name
resolutions. These semantics are different from the isEncapsulated attribute of Blocks in SysML (SysML
Specification 8.3.2.2). An encapsulated block is treated as a black box; no connections can be made to its internal
parts directly. A second difference in semantics is that in Modelica the encapsulated prefix can be applied to all
classes, although it is most commonly applied to packages. It is therefore necessary to introduce
isModelicaEncapsulated as a new attribute so that it becomes available also for specialized class stereotypes that do
not derive from a SysML Block.

The isModelicaEncapsulated attribute is true when the encapsulated prefix is present in Modelica; false otherwise. Its
default value is false.

• isReplaceable : Boolean [1]
As explained in the Modelica Specification 7.3, the Modelica prefix replaceable is most commonly applied to components
(see sub clause 23) , but can also be applied to a Modelica class to indicate that a local model definition can be
redeclared when the containing model is used. The isReplaceable attribute is true when the replaceable prefix is present
in Modelica; false otherwise. Its default value is false.

Associations

No additional associations

Constraints

[1] Any generalization relationship to/from «modelicaClassDefinition» must be stereotyped by a «modelicaExtends» relationship.

[2] A «modelicaClassDefinition» can only contain nestedClassifiers stereotyped by a restricted type specializing
«modelicaClassDefinition».

Additional Notes

The Modelica within clause is explained in the Modelica Specification, v 3.1, sub clause 13.2.2.3. It defines where in the package
hierarchy the subsequent class definitions are located. This is important in Modelica to allow large package structures to be
divided over multiple model files. As long as fully qualified type identifiers are used, the within clause is not relevant in
SysML4Modelica and is therefore not supported in the SysML4Modelica profile.

8.3 «modelicaClass» and «modelicaModel»

Generalizations

• «modelicaClassDefinition» (from SysML4Modelica: :Classes)

• «block» (from SysML)

Abstract Syntax

• See Figure 8.1
14 SysML-Modelica Transformation, v1.0

Description

The Modelica specialized class model is the most general specialized class; it is equivalent to the general Modelica class
construct. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations, and algorithm
sections. A model can also include state variables. Modelica does not differentiate between a model and a class. Although
redundant, we therefore include both the equivalent stereotypes «modelicaClass» and «modelicaModel».

Attributes

No additional attributes

Associations

No additional associations

Constraints

(All constraints apply to both «modelicaClass» and «modelicaModel»)

[1] A «modelicaModel» must have a Name.

[2] A «modelicaModel» can only have Properties that are stereotyped by «modelicaPart», «modelicaPort», or
«modelicaValueProperty».

[3] A «modelicaModel» can only contain Behaviors that are stereotyped by «modelicaFunction», or
«modelicaAlgorithm».

[4] A «modelicaModel» can only be contained in a «modelicaClassDefinition».

[5] A «modelicaModel» can only specialize other classifiers derived from «modelicaBlock», or «modelicaRecord». The stereotype
«modelicaExtends» must be applied to the generalization relationship.

[6] All other attributes or associations inherited from «block» or Classifier are not relevant and should be set to their default
values. This includes the attributes: isActive, isEncapsulated.

8.4 «modelicaRecord»

Generalizations

• «modelicaClassDefinition» (from SysML4Modelica: :Classes)

• «block» (from SysML)

Abstract Syntax

• See Figure 8.1

Description

The Modelica specialized class record is restricted to contain only public declarations of components that in turn also
contain only public declarations. A complete description of record is available in the Modelica Specification, v3.1, sub
clause 4.6:
SysML-Modelica Transformation, v1.0 15

Only public sections are allowed in the definition or in any of its components (i.e.,

equation, algorithm, initial equation, initial algorithm and protected sections are not

allowed). May not be used in connections. The elements of a record may not have prefixes

input, output, inner, outer, or flow. Enhanced with implicitly available record

constructor function. Additionally, record components can be used as component

references in expressions and in the left hand side of assignments, subject to normal

type compatibility rules.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A «modelicaRecord» must have a Name.

[2] A «modelicaRecord» can only have Properties that are stereotyped by «modelicaValueProperty».

[3] Any «modelicaValueProperty» owned by an instance of «modelicaRecord» must have visibility=public,
flowFlag= nonflow, causality= null, scope= null.

[4] A «modelicaRecord» can only be contained in a «modelicaClassDefinition».

[5] A «modelicaRecord» can only specialize other classifiers derived from «modelicaRecord». The stereotype «modelicaExtends»
must be applied to the generalization relationship.

[6] All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes: isActive,
isEncapsulated; and the ownedElements: Behavior, Constraint.

8.5 «modelicaBlock»

Generalizations

• «modelicaClassDefinition» (from SysML4Modelica: :Classes)

• «block» (from SysML)

Abstract Syntax

• See Figure 8.1

Description

The Modelica specialized class block is very similar to a model except that all its connectors must be either an input or
output making it similar to a Simulink block. A complete description of block is available in sub clause 4.6 of the Modelica
Specification:

Same as model with the restriction that each connector component of a Modelica block must

have prefixes input and/or output for all connector variables.
16 SysML-Modelica Transformation, v1.0

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A «modelicaBlock» must have a Name.

[2] A «modelicaBlock» can only have Properties that are stereotyped by «modelicaPart», «modelicaPort», or «modelicaValueProperty».

[3] Any «modelicaValueProperty» owned by an instance of «modelicaBlock» must have causality= input or output.

[4] A «modelicaBlock» can only contain Behaviors that are stereotyped by «modelicaFunction», «modelicaAlgorithm», or
«modelicaInitialAlgorithm».

[5] A «modelicaBlock» can only contain Constraints that are stereotyped by «modelicaEquation» or «modelicaInitialEquation».

[6] A «modelicaBlock» can only be contained in a «modelicaClassDefinition».

[7] A «modelicaBlock» can only specialize other classifiers derived from «modelicaBlock» or «modelicaRecord». The
stereotype «modelicaExtends» must be applied to the generalization relationship.

[8] All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes:
isActive, isEncapsulated.

8.6 «modelicaConnector»

Generalizations

• «modelicaClassDefinition» (from SysML4Modelica: :Classes)

• «block» (from SysML)

Abstract Syntax

• See Figure 8.1

Description

The Modelica specialized class connector is a model that cannot contain equations or algorithms in any of its
components. A complete description of connector is available in sub clause 4.6 and Clause 9 of the Modelica
Specification:

No equations or algorithms are allowed in the definition or in any of its components.

Enhanced to allow connect(..) to components of connector classes.

Attributes

• isExpandable : Boolean [1]
As explained in the Modelica Specification, sub clause 9.1.3, the Modelica expandable prefix can be applied to a
connector. The primary purpose of expandable connectors is to allow for the convenient modeling of bus interfaces.
The isExpandable attribute is true when the expandable prefix is present in Modelica; false otherwise. The default
value is false.
SysML-Modelica Transformation, v1.0 17

Associations

No additional associations

Constraints

[1] A «modelicaConnector» must have a Name.

[2] A «modelicaConnector» can only have Properties that are stereotyped by «modelicaPart», «modelicaPort», or
«modelicaValueProperty».

[3] None of the Properties owned by a «modelicaConnector» can be typed to «modelicaClassDefinition»s that contain Behaviors or
Constraints (at any level of containment).

[4] A «modelicaConnector» can only be contained in a «modelicaClassDefinition».

[5] A «modelicaConnector» can only specialize other classifiers derived from «modelicaConnector», «modelicaType», or
«modelicaRecord». The stereotype «modelicaExtends» must be applied to the generalization relationship.

[6] All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes: isActive,
isEncapsulated; and the ownedElements: Behavior, Constraint.

8.7 «modelicaType»

Generalizations

• «modelicaClassDefinition» (from SysML4Modelica: :Classes)

• «valueType» (from SysML)

Abstract Syntax

• See Figure 8.1

Description

The Modelica specialized class type is restricted to predefined types, enumerations, arrays of type or classes extending from type.
It is enhanced to allow extension of predefined types. In the SysML4Modelica profile, the extension from predefined types is
handled by making the predefined types instances of «modelicaType» (See Clause 18).

Unlike the other Modelica restricted classes, «modelicaType» does not generalize «block». This implies that it is not possible for a
«modelicaType» to contain definitions of other modeling elements (e.g., a contained package). Although such containment would,
strictly speaking, be allowed by the Modelica language, it is rarely, if ever, used. To avoid unnecessary complications in extending
SysML «valueType»s, the SysML4Modelica profile does not support «modelicaType»s that contain definitions of other modeling
constructs.

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A «modelicaType» must have a Name.

[2] A «modelicaType» can only be contained in a «modelicaClassDefinition».
18 SysML-Modelica Transformation, v1.0

[3] A «modelicaType» can only specialize other classifiers derived from «modelicaType». The stereotype
«modelicaExtends» must be applied to the generalization relationship.

8.8 «modelicaPackage»

Generalizations

• «modelicaClassDefinition» (from SysML4Modelica: :Classes)

• «block» (from SysML)

Abstract Syntax

• See Figure 8.1

Description

A Modelica package has broader semantics than just a container for other model elements as in SysML. Although it may only
contain declarations of classes and constants, these declarations can be replaceable and can be inherited from parent packages, so that
the package itself should be thought of as a model. The corresponding SysML4Modelica construct, «modelicaPackage», therefore
generalizes «block» rather than Package. In the Modelica language, a Modelica package is enhanced, as compared to Modelica
class, to allow for the import of elements of packages. (See Modelica, v 3.1, Clause 13.)

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1] A «modelicaPackage» must have a Name.

[2] A «modelicaPackage» can only have Properties that are stereotyped by «modelicaValueProperty».

[3] Any «modelicaValueProperty» owned by an instance of «modelicaPackage» must have variability= constant. (ref.
Modelica Specification 4.6, package)

[4] A «modelicaPackage» can be contained in a «modelicaClassDefinition» or in a UML4SysML: :Package.

[5] A «modelicaPackage» can only specialize other classifiers derived from «modelicaPackage». The stereotype «modelicaExtends»
must be applied to the generalization relationship.

[6] All other attributes or associations inherited from «block» or Classifier may not be used. This includes the attributes: isActive,
isEncapsulated; and the ownedElements: Behavior, Constraint.

8.9 «modelicaFunction»

Extensions

• FunctionBehavior (from UML4SysML)

Generalizations

• «modelicaClassDefinition» (from SysML4Modelica: :Classes)
SysML-Modelica Transformation, v1.0 19

Abstract Syntax

• See Figure 8.1

Description

The Modelica specialized class function represents a callable section of procedural algorithmic code without side effects. It
is similar to a SysML FunctionBehavior. Compared to a general Modelica class, quite a few restrictions and enhancements apply;
refer to Modelica, v 3.1, sub clause 12.2 for details.

As described in Modelica, v 3.1, sub clause 12.9, a Modelica function may refer to an external function specifier (e.g., an external
C or Fortran function):

function IDENT string_comment
{ component _clause ";" }
[protected { component_clause ";" }]
external [language_specification] [external_function_call] [annotation] ";"
[annotation ";"]
end IDENT;

Whether a particular function is external or not is determined by the language attribute of the «modelicaFunction» (inherited from
OpaqueBehavior). For Modelica native functions, the language should be specified as “Modelica.” For external functions, the
language attribute is set to another language. Modelica currently only allows the languages “C,” “FORTRAN,” or “builtin.” For
such external functions, the body attribute contains the external _function _call from Modelica. The annotation that is part of the
external statement in Modelica can contain two types of information: Libraries and Include directives. In SysML4Modelica, this
information is captured in the two additional attributes: externalLibrary and externalInclude.

Several additional attributes are included in «modelicaFunction» to capture such semantics.

At this point, SysML4Modelica only allows for function definitions; functions cannot be “called” explicitly – they can only be
referred to in opaque Modelica syntax portions of the model.

Attributes

• externalLibrary: String [0..*]
A list of external libraries that need to be linked in to resolve the references to the external function (see Modelica, v 3.1,
sub clause 12.9 for details). It should only be defined when language = “C” or “FORTRAN”.

• externalInclude: String [0.. 1]
An optional string containing include directives to be considered when compiling and linking the external function. It should
only be defined when language = “C” or “FORTRAN.”

Associations

No additional associations

Constraints

[1] A «modelicaFunction» must have a Name.

[2] A «modelicaFunction» can only have Parameters that are stereotyped by «modelicaFunctionParameter».

[3] Any «modelicaFunctionParameter» (owned by an instance of «modelicaPackage») for which causality= input may not be
assigned values in the body of the function (i.e., it is read-only).

[4] A «modelicaFunction» can only have zero or one body attribute.

[5] A «modelicaFunction» must have language= “Modelica, ” “builtin, ” “C,” or “FORTRAN.”
20 SysML-Modelica Transformation, v1.0

[6] If language= “Modelica,” then the body of the function must be represented in the Modelica syntax and must constitute a
valid Modelica algorithm section.

[7] If language= “C” or “FORTRAN,” then the body of the function must be represented a valid functional call in the respective
language (as specified in Modelica, v 3.1, sub clause 12.9.4).

[8] The optional attributes, externalLibrary and externalInclude, can only be used when language= “C” or “FORTRAN.” [9] A
«modelicaFunction» definition can only be contained in a «modelicaClassDefinition».

[9] A «modelicaFunction» can only specialize other classifiers derived from «modelicaFunction». The stereotype «modelicaExtends»
must be applied to the generalization relationship.

[10] All other attributes or associations inherited from FunctionBehavior or Classifier may not be used.

8.10 «modelicaExtends»

Extensions

• Generalization (from UML4SysML)

Abstract Syntax

Figure 8.2 - Modelica Relations stereotype definitions

Description

The extends clause of Modelica is equivalent to a SysML Generalization. The only difference is that in Modelica the type
being extended can be locally modified (see Modelica, v 3.1, sub clause 7.1):

extends_clause :

extends name [class_modification] [annotation]

constraining_clause :

extends name [class_modification]

Similar local type modifications can be used when defining usages (i.e., Modelica components – see Clause 23). In both cases the
SysML4Modelica mapping currently captures the local modifications only as a text string in Modelica syntax. A separate
modification can be defined for every component of a «modelicaClassDefinition»; in Modelica these modifications are grouped,
separated by commas, and surrounded by parentheses. Each such modification is represented in SysML4Modelica as a separate
string. It corresponds thus to an argument as defined in the following extract of the Modelica EBNF (see Modelica, v 3.1, sub
clause 7.2):
SysML-Modelica Transformation, v1.0 21

class_modification :
"(" [argument _list] ")"

argument_list :
argument { "," argument }

argument :
element_modification_or_replaceable |
element_redeclaration

element_modification_or_replaceable:
[each] [final] (element_modification | element_replaceable)

element_modification :
component_reference [modification] string_comment

element_redeclaration :
redeclare [each] [final]
((class_definition | component_clause1) | element_replaceable)

element_replaceable:
replaceable (class_definition | component_clause1)
[constraining_clause]

component_clause1 :
type_prefix type_specifier component_declaration1

component_declaration1 :
declaration comment

Multiple inheritance is supported in Modelica. Therefore, more than one «modelicaExtends» relationship is allowed for a single
«modelicaClassDefinition». The extends clause can be applied to any of the restricted classes (including packages).

If the extends clause appears in a protected section of the Modelica model, then all the elements of the base class become
protected elements of the specialized class. It is therefore important to specify whether the «modelicaExtends» relation is
public or protected.

Not every restricted class can inherit from every other restricted class. Refer to Modelica, v 3.1, sub clause 7.1.3 for an overview
table.

Attributes

• visibility: VisibilityKind [1]
When an extends statement appears in a protected section of a «modelicaClassDefinition», then all components of
the parent class are protected. Default value is public.

• modification: String [0..*]
An inherited Modelica class can be locally modified. The modifications are defined by this attribute in Modelica syntax.
Each modification (as specified in the Modelica concrete syntax as a comma-separated expression) is specified as a
separate instance of this attribute.

• arraySize: String [0..*] {ordered}
One can specify an array size for an inherited Modelica class. This attribute is an ordered list of strings, each of

which must be a Modelica expression that evaluates to an integer. The ith element in the ordered list corresponds to size

of the multidimensional array in the ith dimension.
22 SysML-Modelica Transformation, v1.0

Associations

No additional associations

Constraints

[1] Both the source and target of a «modelicaExtends» relation must be typed to instances of a specialization of
«modelicaClassDefinition».

[2] The visibility attribute of «modelicaExtends» can only take on values of public or protected.

8.11 «modelicaDer»

Extensions

• Dependency (from UML4SysML)

Abstract Syntax

• See Figure 8.2

Description

The der clause in Modelica identifies a function as a partial derivative of another function (Modelica Specification 3.1, sub clause
12.7.2). It establishes a relationship between two functions and is therefore modeled as an extension of Dependency in
SysML4Modelica. It requires as attributes a list of variables with respect to which the partial derivative is taken.

Attributes

• variable: String [1..*]
A list of variables with respect to which the partial derivative is taken. At least one variable must be specified. No default
value is specified.

Associations

No additional associations

Constraints

[1] Both the source and target of a «modelicaDer» relation must be typed to instances of «modelicaFunction».

8.12 «modelicaConstrainedBy»

Extensions

• Dependency (from UML4SysML)

Abstract Syntax

• See Figure 8.2

Description

In a replaceable declaration in Modelica, one can specify a constrained by clause. The semantics of this construct are
explained in more detail in Modelica, v 3.1, sub clause 7.3.2.
SysML-Modelica Transformation, v1.0 23

Attributes

• modification: String [0..*]
A Modelica class that constrains a replaceable declaration can be locally modified. The modifications are defined by
this attribute in Modelica syntax. Each modification (as specified in the Modelica concrete syntax as a comma-
separated expression) is specified as a separate instance of this attribute. Default value is null.

Associations

No additional associations

Constraints

[1] Both the source and target of a «modelicaConstrainedBy» relation must be typed to instances of a specialization of
«modelicaClassDefinition».

8.13 Short Class Definitions

Modelica provides a short-hand notation for definition of classes. It is equivalent to an inheritance construct, and is therefore
redundant and not supported separately in the SysML4Modelica profile.
24 SysML-Modelica Transformation, v1.0

9 Predefined Types

9.1 Overview

The following predefined types are available in the Modelica language (Modelica. v 3.1, sub clause 4.8): Real Type, Integer
Type, Boolean Type, String Type, Enumeration Types, StateSelect, ExternalObject, and Graphical Annotation Type. These
primitive types are defined as predefined types in SysML4Modelica::Types::ModelicaPredefinedTypes.

Although these types have direct counterparts in SysML, they are redefined to account for the additional attributes associated
with them in Modelica. Note that in Modelica, the properties such as “start,” “quantity,” etc., are not really equivalent to
user- defined complex data-types. For instance, if one defines “Real x;” then one cannot refer to “x.min” in an equation. The
only way one can specify a value for these special properties is as part of a type definition or local modification: e.g., “Real
x(start=1, unit=“m”).

Figure 9.1 - Package diagram with an overview of the Predefined Modelica Types
SysML-Modelica Transformation, v1.0 25

9.2 ModelicaReal

Instantiation

• SysML4Modelica::Classes::ModelicaType

Generalizations

• SysML: :Blocks::Real

Abstract Syntax

• See Figure 9.1

Description

The predefined type Real in Modelica includes a variety of attributes besides its actual value (Modelica 3.1, sub clause 4.8.1).
In SysML4Modelica, these attributes are defined in ModelicaReal, a specialization of the primitive type SysML::Blocks::Real.
As a result of this specialization, ModelicaReal, inherits the attributes: quantityKind and unit, which correspond to the Modelica
attributes quantity and unit, respectively. Additional attributes are listed below.

Attributes

• displayUnit: String [0.. 1]
In addition to the actual units, a ModelicaReal can have a units used for display in a tool’s graphical user interface or in
plots. These units are defined in this attribute as a string.

• min: Real [1]
The minimum value the ModelicaReal variable can take on. Default value is -Inf.

• max: Real [1]
The maximum value the ModelicaReal variable can take on. Default value is +Inf.

• start: Real [1]
The value of the ModelicaReal variable at the beginning of a simulation. The meaning of this variable depends on
the value of the attribute fixed. If fixed= false, then it is to be interpreted as an initial guess from which may
be deviated in order to satisfy all the algebraic constraints. If fixed=true, then the variable is required to equal its
start value. Default value is 0.

• fixed: Boolean [1]
This attribute qualifies the meaning of the attribute start. If fixed=false, then start is to be interpreted as an
initial guess from which may be deviated in order to satisfy all the algebraic constraints. If fixed=true, then the
variable is required to equal its start value. Default value is true for parameters and constants, and false for all
other variables.

• nominal: Real [0.. 1]
The value of this attribute may be used by the solver for scaling purposes.

• stateSelect: StateSelect [1]
The value of this attribute determines how a Modelica solver should select state variables for the system of Differential
Algebraic Equations (Modelica. v 3.1, sub clause 4.8.7.1). Default value is StateSelect.default.

Associations

No additional associations
26 SysML-Modelica Transformation, v1.0

Constraints

No additional constraints

9.3 ModelicaInteger

Instantiation

• SysML4Modelica::Classes::ModelicaType

Generalizations

• SysML: :Blocks::Integer

Abstract Syntax

• See Figure 9.1

Description

The predefined type Integer in Modelica includes a variety of attributes besides its actual value (Modelica, v 3.1, sub clause
4.8.2). In SysML4Modelica, these attributes are defined in ModelicaInteger, a specialization of the primitive type
SysML::Blocks::Integer. As a result of this specialization, ModelicaInteger, inherits the attribute: quantityKind, which
correspond to the Modelica attribute quantity. Additional attributes are listed below.

Attributes

• min: Integer [1]
The minimum value the ModelicaInteger variable can take on. Default value is -Inf.

• max: Integer [1]
The maximum value the ModelicaInteger variable can take on. Default value is +Inf.

• start: Integer [1]
The value of the ModelicaInteger variable at the beginning of a simulation. The meaning of this variable depends on
the value of the attribute fixed. If fixed=false, then it is to be interpreted as an initial guess from which may be
deviated in order to satisfy all the algebraic constraints. If fixed=true, then the variable is required to equal its
start value. Default value is 0.

• fixed: Boolean [1]
This attribute qualifies the meaning of the attribute start. If fixed=false, then start is to be interpreted as an
initial guess from which may be deviated in order to satisfy all the algebraic constraints. If fixed=true, then the
variable is required to equal its start value. Default value is true for parameters and constants, and false for all
other variables.

Associations

No additional associations

Constraints

No additional constraints
SysML-Modelica Transformation, v1.0 27

9.4 ModelicaBoolean

Instantiation

• SysML4Modelica::Classes::ModelicaType

Generalizations

• SysML: :Blocks::Boolean

Abstract Syntax

• See Figure 9.1

Description

The predefined type Boolean in Modelica includes a variety of attributes besides its actual value (see Modelica, v 3.1, sub clause
4.8.3). In SysML4Modelica, these attributes are defined in ModelicaBoolean, a specialization of the primitive type
SysML::Blocks::Boolean. As a result of this specialization, ModelicaBoolean, inherits the attribute, quantityKind, which correspond to
the Modelica attribute quantity. Additional attributes are listed below.

Attributes

• start: Boolean [1]
The value of the ModelicaBoolean variable at the beginning of a simulation. The meaning of this variable depends on
the value of the attribute fixed. If fixed= false, then it is to be interpreted as an initial guess from which may be
deviated in order to satisfy all the algebraic constraints. If fixed=true, then the variable is required to equal its start
value. Default value is false.

• fixed: Boolean [1]
This attribute qualifies the meaning of the attribute start. If fixed=false, then start is to be interpreted as an initial guess
from which may be deviated in order to satisfy all the algebraic constraints. If fixed=true, then the variable is required
to equal its start value. Default value is true for parameters and constants, and false for all other variables.

Associations

No additional associations

Constraints

No additional constraints

9.5 ModelicaString

Instantiation

• SysML4Modelica::Classes::ModelicaType

Generalizations

• SysML: :Blocks::String

Abstract Syntax

• See Figure 9.1
28 SysML-Modelica Transformation, v1.0

Description

The predefined type String in Modelica includes a variety of attributes besides its actual value (see Modelica, v3.1, sub clause
4.8.4). In SysML4Modelica, these attributes are defined in ModelicaString, a specialization of the primitive type
SysML::Blocks::String. As a result of this specialization, ModelicaString inherits the attribute, quantityKind, which corresponds to
the Modelica attribute quantity. In addition, a start value can be specified.

Attributes

• start: String [1]
The value of the ModelicaString variable at the beginning of a simulation. Default value is String.Empty.

Associations

No additional associations

Constraints

No additional constraints

9.6 ModelicaStateSelect

Instantiation

• SysML4Modelica::Classes::ModelicaType

Generalizations

No generalizations

Abstract Syntax

• See Figure 9.1

Description

The predefined type ModelicaStateSelect is the type of the attribute stateSelect of ModelicaReal. It is an enumeration
used to provide guidance to the Modelica solver tool for selecting appropriate state variables (See Modelica, v 3.1, sub clause
4.8.7.1).

Associations

No additional associations

Constraints

No additional constraints

9.7 ModelicaExternalObject

Instantiation

• SysML4Modelica::Classes::ModelicaType

Generalizations

No generalizations
SysML-Modelica Transformation, v1.0 29

Abstract Syntax

• See Figure 9.1

Description

The predefined type ModelicaExternalObject is an abstract type used to indicate that a ModelicaType that specializes it refers
to an object defined in an external language such as C or FORTRAN (See Modelica, v 3.1, sub clause 12.9.7 for details).

Associations

No additional associations

Constraints

[1] The value of the attribute isAbstract (and hence isPartial) must be true.
30 SysML-Modelica Transformation, v1.0

10 Component Declarations

10.1 Overview

In the Modelica language, instances (or usages) of a class are referred to as “Components.” In SysML, these can be mapped to
Block Properties, such as Value Property, Part Property, or Port.1 Modelica does not distinguish explicitly between Value Properties,
Parts, or Ports. Instead, whether a component is interpreted as a Value Property, Part, or Port depends on the restricted type to
which the usage has been typed:

• if the usage is of restricted type class, model, or block, then it is mapped to a «modelicaPart»,

• if it is of restricted type connector, then it is mapped to a «modelicaPort», and

• if it is of restricted type record or type, then it is mapped to «modelicaValueProperty».

In addition, the stereotype «modelicaFunctionParameter» is introduced to represent components of restricted type record or
type that are used in a function (this is necessary because a Modelica function is mapped to a SysML FunctionBehavior that
has parameters rather than properties). The restricted types package and function are not considered here because they
cannot be instantiated.

Depending on the type of restricted type, a Modelica Component declaration allows for a variety of options (modifications or
additional specifications). These additional options are captured as attributes of the corresponding SysML4Modelica stereotypes,
as shown in Figure 10.2. To define the possible values these options can assume, several enumerations are defined, as shown in
Figure 10.3. The following production rules define Modelica Components declarations:

component_clause:
type_prefix type_specifier [array_subscripts] component_list

type_prefix :
[flow]
[discrete | parameter | constant] [input | output]

type_specifier : name

component_list :
component_declaration { "," component_declaration }

component_declaration :
declaration [conditional_attribute] comment

conditional_attribute: if expression

declaration :

IDENT [array_subscripts] [modification]

1. Note that Modelica does not have the equivalent of a reference property — properties are never shared.
SysML-Modelica Transformation, v1.0 31

Figure 10.1 - Package diagram with an overview of the stereotypes for Modelica Components

Figure 10.2 - Package diagram with enumerations used in Modelica Component definitions
32 SysML-Modelica Transformation, v1.0

10.2 «modelicaValueProperty»

Extensions

• Property (from UML4SysML)

Abstract Syntax

• See Figure 10.2

Description

If a Modelica Component is of restricted type record or type, then it is mapped to a «modelicaValueProperty» that is the
equivalent of a Value Property in SysML.

Attributes

• visibility: VisibilityKind [1]
This attribute is inherited from the meta-class Property. In the context of the SysML4Modelica profile, it is limited
to the values public or protected. A protected «modelicaValueProperty» cannot be modified or replaced in
specializations or modifications. The members of a protected «modelicaValueProperty» cannot be accessed using the
dot-notation. Default value is public.

• causality: ModelicaCausalityKind [1]
A «modelicaValueProperty» can be defined as being an input or output (see Modelica, v3.1, sub clause 4.4.2.2).
Default value is none, which means that the property is neither an input or output.

• variability: ModelicaVariabilityKind [1]
A «modelicaValueProperty» can be defined as being constant, parameter, discrete, or continuous (see Modelica, v 3.1,
sub clauses 4.4.3 and 4.4.4). Default value is continuous.

Table 10.1 - The applicable attributes for Modelica Components
Attribute Name <<modelicaValueProperty>> <<modelicaPart>> <<modelicaPort>>

visibility • •

causality • •

variability •

flowFlag •

scope • •

conditionalExpression • • •

isFinal • • •

modification • • •

isReplaceable • • •

declarationEquation •

arraySize • • •
SysML-Modelica Transformation, v1.0 33

• flowFlag: ModelicaFlowFlagKind [1]
This attribute can only be applied to variables that are a subtype of ModelicaReal. It can only be used inside
«modelicaConnector» or to define a Type. The attribute causality must be null when flowFlag=flow or stream.
Default value is none.

• scope: ModelicaScopeKind [1]
A Modelica element declared with the prefix outer references an element instance with the same name but using
the prefix inner, which is nearest in the enclosing instance hierarchy of the outer element declaration (see Modelica,
v3.1, sub clause 5.4). Default value is none.

• conditionalExpression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false. Only
if the expression evaluates to true is the the corresponding «modelicaValueProperty» instantiated (see Modelica
v 3.1, sub clause 4.4.5).

• smodification: String [0..*]
A «modelicaValueProperty» may have a type that is locally modified. Rather than capturing the detailed semantics
of such modifications in the SysML4Modelica profile, currently, the modifications are only captured as a set of
strings in the Modelica syntax; each string corresponds to a single modification of a component declaration of the
modified class (see Modelica, v 3.1, sub clause 7.2). Default value is null.

• sisReplaceable: Boolean [1]
A «modelicaValueProperty» may be defined as replaceable. One can then redeclare such a
«modelicaValueProperty» in extended classes or in modifications (see Modelica, v 3.1, sub clause 7.3). Default
value is false.

• s declarationEquation: String [0.. 1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to the same type as the
«modelicaValueProperty» itself. A declaration equation refers to the shorthand notation in Modelica in which an equation
corresponding to a component is defined in the equation section. The value of the attribute is the right-hand-expression of
the equations. The “=” sign is omitted, i.e., it is implicit.

• s/isFinal: Boolean [1]
A Modelica element declared with the prefix final cannot be modified in redeclarations or modifications (see
Modelica, v 3.1, sub clause 7.2.6). Default value is false. This is derived from isLeaf.

• sarraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, each of which must be a Modelica expressions that evaluates to an integer.
The ith element in the ordered list corresponds to size of the multi-dimensional array in the ith dimension.

Associations

No additional associations

Constraints

No additional constraints

10.3 «modelicaPart»

Extensions

• Property (from UML4SysML)
34 SysML-Modelica Transformation, v1.0

Abstract Syntax

• See Figure 10.2

Description

If a Modelica Component is of restricted type class, model, or block, it is mapped to a «modelicaPart», which is the
equivalent of a Part Property in SysML.

Attributes

• svisibility: VisibilityKind [1]
This attribute is inherited from the meta-class Property. In the context of the SysML4Modelica profile, it is limited to
the values public or protected. A protected «modelicaPart» cannot be modified or replaced in specializations or
modifications. The members of a protected «modelicaPart» cannot be accessed using the dot- notation. Default value
is public.

• s scope: ModelicaScopeKind [1]
A Modelica element declared with the prefix outer references an element instance with the same name but using the
prefix inner, which is nearest in the enclosing instance hierarchy of the outer element declaration (see Modelica, v 3.1,
 sub clause 5.4). Default value is none.

• sconditionalExpression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false. Only if
the expression evaluates to true is the the corresponding «modelicaPart» instantiated (see Modelica, v 3.1, sub clause
4.4.5). Default value is null.

• smodification: String [0..*]
A «modelicaPart» may have a type that is locally modified. Rather than capturing the detailed semantics of such
modifications in the SysML4Modelica profile, currently, the modifications are only captured as a set of strings in the
Modelica syntax; each string corresponds to a single modification of a component declaration of the modified
class (see Modelica, v 3.1, sub clause 7.2). Default value is null.

• sisReplaceable: Boolean [1]
A «modelicaPart» may be defined as replaceable. One can then redeclare such a «modelicaPart» in extended
classes or in modifications (see Modelica, v 3.1, sub clause 7.3). Default value is false.

• s/isFinal: Boolean [1]
A Modelica element declared with the prefix final cannot be modified in redeclarations or modifications (see
Modelica, v 3.1, sub clause 7.2.6). Default value is false. This is derived from isLeaf.

• sarraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, each of which must be a Modelica expression that evaluates to an
integer.

• The ith element in the ordered list corresponds to size of the the multi-dimensional array in the ith dimension. The
default value is null.

Associations

No additional associations

Constraints

No additional constraints
SysML-Modelica Transformation, v1.0 35

10.4 «modelicaPort»

Extensions

• sPort (from UML4SysML)

Abstract Syntax

• See Figure 10.2

Description

If a Modelica Component is of restricted type connector, it is mapped to a «modelicaPort», which is the equivalent of a Port
Property in SysML.

Attributes

• s causality: ModelicaCausalityKind [1]
A «modelicaPort» can be defined as being an input or output (see Modelica, v 3.1, sub clause 4.4.2.2). Default
value is null, which means that the property is neither an input or output. Default value is none.

• s scope: ModelicaScopeKind [1]
A Modelica element declared with the prefix outer references an element instance with the same name but using
the prefix inner, which is nearest in the enclosing instance hierarchy of the outer element declaration (see Modelica,
v 3.1, sub clause 5.4). Default value is none.

• sconditionalExpression: String [0..1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to true or false. Only if
the expression evaluates to true is the the corresponding «modelicaPort» instantiated (see Modelica, v 3.1, sub clause
4.4.5).

• s/isFinal: Boolean [1]
A Modelica element declared with the prefix final cannot be modified in redeclarations or modifications (Modelica,
v 3.1, sub clause 7.2.6). Default value is false. This is derived from isLeaf.

• smodification: String [0..*]
A «modelicaPort» may have a type that is locally modified. Rather than capturing the detailed semantics of such
modifications in the SysML4Modelica profile, currently, the modifications are only captured as a set of strings in the
Modelica syntax; each string corresponds to a single modification of a component declaration of the modified class
(see Modelica, v 3.1, sub clause 7.2).

• sisReplaceable: Boolean [1]
A «modelicaPort» may be defined as replaceable. One can then redeclare such a «modelicaPort» in extended
classes or in modifications (see Modelica, v 3.1, sub clause 7.3). Default value is false.

• sarraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, each of which must be a Modelica expressions that evaluates to an integer.
The ith element in the ordered list corresponds to size of the multi-dimensional array in the ith dimension.

Associations

No additional associations

Constraints

No additional constraints
36 SysML-Modelica Transformation, v1.0

10.5 «modelicaFunctionParameter»

Extensions

• sParameter (from UML4SysML)

Abstract Syntax

Figure 10.3 - Definition of the «modelicaFunctionParameter» stereotype

Description

A Modelica restricted class function, can also contain can contain Modelica component declarations. These declarations
must be of either restricted type «modelicaType» or «modelicaRecord». Because «modelicaFunction» does not derive from
«block» (as all the other restricted classes do), the stereotype «modelicaValueProperty» cannot be applied here. Instead, an
equivalent (but more restricted) stereotype for functions is created: «modelicaFunctionParameter».

Attributes

• scausality: ModelicaCausalityKind [1]
A «modelicaFunctionParameter» can be defined as being an input or output (see Modelica, v 3.1, sub clause 4.4.2.2).
Default value is input.

• s/isFinal: Boolean [1]
A Modelica element declared with the prefix final cannot be modified in redeclarations or modifications (see
Modelica, v 3.1, sub clause 7.2.6). Default value is false. This is derived from isLeaf.

• smodification: String [0..*]
A «modelicaFunctionParameter» may have a type that is locally modified. Rather than capturing the detailed semantics
of such modifications in the SysML4Modelica profile, currently, the modifications are only captured as a set of strings in
the Modelica syntax; each string corresponds to a single modification of a component declaration of the modified class
(see Modelica, v 3.1, sub clause 7.2).

• sisReplaceable: Boolean [1]
A «modelicaFunctionParameter» may be defined as replaceable. One can then redeclare such a
«modelicaPort» in extended classes or in modifications (see Modelica, v 3.1, sub clause 7.3). Default value is false.

• s declarationEquation: String [0.. 1]
When defined, this attribute contains an expression in Modelica syntax that must evaluate to the same type as the
«modelicaFunctionParameter» itself. A declaration equation refers to the shorthand notation in Modelica in which an
SysML-Modelica Transformation, v1.0 37

equation corresponding to a component is defined in the equation section. The value of the attribute is the right-hand-
expression of the equations. The “:=” sign is omitted, i.e., it is implicit.

• sarraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, each of which must be a Modelica expressions that evaluates to an integer.

• The ith element in the ordered list corresponds to size of the the multi-dimensional array in the ith dimension.

Associations

No additional associations

Constraints

No additional constraints
38 SysML-Modelica Transformation, v1.0

11 Equation and Algorithm Sections

11.1 Overview

Equations and Algorithms are the main Modelica constructs for defining behavior of Modelica classes. Modelica
distinguishes between declarative equations, which are organized in equation sections (see Modelica, v 3.1, Clause 8), and
imperative algorithms, which are organized in algorithm sections (see Modelica, v 3.1, Clause 11). The Modelica restricted
classes, class, model, and block can each have zero or more equation and algorithm sections. Modelica functions can only
have one single algorithm sections (and no equations).

The equations and expressions in equation and algorithm sections are enforced by the solver in every time step --- they must
hold at every moment in time. In addition, one can specify equations or expressions that only need do hold at the start of the
simulation; they are organized in initial equation and initial algorithm sections.

Figure 11.1 - Package diagram with Equation and Algorithm definitions

11.2 «modelicaEquation»

Extensions

• Constraint (from UML4SysML)

Abstract Syntax

• See Figure 11.1
SysML-Modelica Transformation, v1.0 39

Description

Modelica equation section contain declarative equations that must hold at every moment in time. Each model (of restricted class
types class, model, or block) may contain zero or more equation sections. Given that the equations in these equation
sections are declarative, they could be combined into a single section (note: the order in which declarative equations are defined does
not matter). However, the SysML4Modelica mapping allows for each equation section to be modeled by a separate
«modelicaEquation».

Modelica equation sections may also contain connect statements (see Modelica, v 3.1, Clause 9). Although connect
statements are treated just like other equations in Modelica, they require special attention in SysML4Modelica. Refer to sub clause
31 from details on «modelicaConnection»s.

Attributes

• isInitial: Boolean [1]
This attribute is true when the «modelicaEquation» represents an initial equation sub clause in Modelica. The
default value is false.

Associations

No additional associations

Constraints

No additional constraints

11.3 «modelicaAlgorithm»

Extensions

• Behavior (from UML4SysML)

Abstract Syntax

• See Figure 11.1

Description

Modelica algorithm sections contain imperative statements that are executed at every moment in time. Each model (of
restricted class types class, model, or block) may contain zero or more algorithm sections. In addition, a function
contains at most one algorithm section. Each algorithm section is modeled by a separate «modelicaAlgorithm». To capture the
imperative nature of algorithm sections, a «modelicaAlgorithm» extends UML4SysML: :Behavior. Only opaque behaviors are
currently supported and the algorithm statements are expressed in Modelica syntax in the Body of the «modelicaAlgorithm».

Attributes

• isInitial: Boolean [1]
This attribute is true when the «modelicaAlgorithm» represents an initial algorithm sub clause in Modelica. The
default value is false.

Associations

No additional associations
40 SysML-Modelica Transformation, v1.0

Constraints

No additional constraints

11.4 «modelicaConnection»

Extensions

• Connector (from UML4SysML)

Abstract Syntax

• See Figure 11.1

Description

In Modelica, a connection between two ports typically has Kirchhoff semantics (i.e., across variables are equal, through
variables sum to zero), or an output-to-input binding in the case of a signal connection (See Modelica Spec. 3.1, Clause 9). To
capture these same semantics succinctly, a «modelicaConnection» is used. The two arguments of the connect statement correspond
to the two ends of the «modelicaConnection». Note that the use of a «modelicaConnection» is optional. The alternative is to
represent the connection using a connect statement in Modelica syntax in a «modelicaEquation». If a «modelicaConnection» is
used, then the corresponding connect statement must be removed from the «modelicaEquation».

As for all equations, Modelica allows connect statements to be used in a parametric fashion, for instance, inside a for loop.
Since the parameter values are only resolved at the time of compilation of the Modelica model, a parametrically defined
connect statement cannot be modeled explicitly in SysML4Modelica. The alternative is to represent such connect statements in
Modelica syntax in a «modelicaEquation».

Attributes

No additional attributes

Associations

No additional associations

Constraints

[1]The start and end of a «modelicaConnection» must be a «modelicaPort».
SysML-Modelica Transformation, v1.0 41

42 SysML-Modelica Transformation, v1.0

12 Other Related Constructs

12.1 «modelicaSimulation»

Generalizations

• Block (from SysML)

Abstract Syntax

Figure 12.1 - Package diagram with definitions of Modelica-related constructs

Description

A “modelicaSimulation” is not a Modelica language construct. However, it is introduced in order to distinguish between the
model and its simulation. A simulation refers to the solution of the initial value problem: the integration of the model over a
particular time period starting from a particular initial condition. Since the initial conditions are already defined in the model
itself, the only additional information that needs to be provided is the time over which to integrate and the properties of the
solver to be used.

Attributes

• startTime: Real [1]
The time at which the simulation starts. Default value is 0.

• stopTime: Real [1]
The time at which the simulation stops. Default value is 1.

• model: "modelicaClassDefinition" [1]
The instance of a specialization of “modelicaClassDefinition” that is to be solved. Default value is null.

Associations

No additional associations

Constraints

No additional constraints
SysML-Modelica Transformation, v1.0 43

12.2 "modelicaAnnotation"

Extension

• Comment (from UML4SysML)

Abstract Syntax

• See Figure 12.1

Description

Any Modelica language construct can be annotated with information about its graphical representation. In addition,
guidelines for the compiler can be specified. In SysML4Modelica, these annotations are represented in Modelica syntax as
“modelicaAnnotation.”

Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints
44 SysML-Modelica Transformation, v1.0

Part III - Modelica Abstract Syntax
Introduction

Part III of the SysML-Modelica Transformation Specification is non-normative and contains the following Clauses:

• Clause 13 - Modelica Meta-Modeling Approach

• Clause 14 - Modelica Meta-Model Constructs
SysML-Modelica Transformation 45

46 SysML-Modelica Transformation, v1.0

13 Modelica Meta-Modeling Approach

13.1 General

The abstract syntax (AST = abstract syntax tree) of Modelica is not standardized by the Modelica Association, only the
textual syntax is. The abstract syntax described in this document is therefore only one possible definition, defined in an
extended subset of Modelica (also known as MetaModelica1) and used in the OpenModelica specification/implementation
of Modelica which originated as a Structural Operational Semantics/Natural Semantics specification (first version from
1998).

The abstract syntax used in OpenModelica has been designed with several goals in mind:

• Complete representation of all Modelica language constructs.

• Reconstruction of the source code from the AST.

• Use for semantic specification, type checking, and compilation.

Syntax type classes are defined using the uniontype construct. A union type is the union of all the record types it contains.
Recursive references to a union type are allowed. Components with optional values are declared at instances of the
Option<...> parametrized type constructor. In a few cases the tuple<type1 ,type2,...> type constructor is used. A tuple type
can be described as an anonymous record type, where the record type name and the field names are not defined.

In the following all MetaModelica classes (including a short textual description) are listed (version Oct.20092 from the
OpenModelica SVN). This definition is translated into an OMG MOF-based description (see http://www.omg.org/mof/)
using the Eclipse EMF (http://www.eclipse.org/emf/) implementation of a subset of the OMG MOF standard. Please see
the .ecore file for details.

The mapping between MetaModelica and EMOF is defined as follows:

• MetaModelica package is translated to Package.

• MetaModelica uniontype is translated to Class (isAbstract).

• MetaModelica record is translated to Class which inherits from the respective Class that represents the uniontype) -
MetaModelica record attributes of primitive type are translated to Class attributes of primitive type -MetaModelica
record attributes of composite type are translated to Class Property to the respective Class -MetaModelica types are
expanded and translated into Classes.

• MetaModelica tuples are expanded and translated into Classes with the prefix “tuple_”.

• MetaModelica Option<...> implies the multiplicity 0.. 1.

• MetaModelica list<...> implies the multiplicity 0..*.

• MetaModelica type I dent = String; is not translated. String is used directly.

• In order to avoid name clashes between Classes representing uniontype or record each Class that represents a union-
type was given the prefix “u.”

1. MetaModelica corresponds to OMG MOF
2. Note that all MetaModelica-specific classes that are not used for the definition of Modelica language are removed.
SysML-Modelica Transformation, v1.0 47

• To improve the structure and readability for each MetaModelica uniontype a Package is created with the same name as
the uniontype. This Package includes the Class representing the uniontype and Classes representing the records of the
uniontype.

Figure 13.1 - CLASS meta-class and relationships

The main openModelica meta-classes PROGRAM, CLASS, and COMPONENT and their related meta-classes are
presented in UML class diagrams in Figure 13.1, Figure 13.2, and Figure 13.3. All meta-classes are subclasses from a
higher-level abstract meta-class whose name starts with “u.”

Figure 13.1 shows the CLASS meta-class consisting of a name, the declared class restriction, and the body of the
declaration. The CLASS meta-class also includes properties indicating if it is partial and final. Figure 13.1 also shows the
different meta-classes representing Modelica class definitions who all inherit from a common abstract meta-class named
48 SysML-Modelica Transformation, v1.0

“uClassDef.” Figure 13.2 shows the PROGRAM meta-class having a list of class definitions declared at the top level in
the source file, combined with a within statement that indicates the hierarchical position of the program. Figure 13.3
shows the COMPONENTS meta-class and its related meta-classes including the COMPONENT meta-class.

Figure 13.2 - PROGRAM meta-class and relationships

Figure 13.3 - COMPONENTS meta-class and relationships
SysML-Modelica Transformation, v1.0 49

50 SysML-Modelica Transformation, v1.0

14 Modelica Meta-Model Constructs

14.1 The Model Structure Definition

14.1.1 Program

public uniontype Program

“A program is a list of class definitions declared at top level in the source file, combined with a within statement that
indicates the hierarchical position of the program.”

record PROGRAM "PROGRAM, the top level construct"
list<Class> classes "List of classes" ;
Within within_ "Within clause" ;

end PROGRAM;
end Program;

14.1.2 Within

public uniontype Within "Within Clauses"

//See Modelica specification 3.1 sub clause 13.2.2.3 The within Clause.

record WITHIN "the within clause"
Path path "the path for within";
end WITHIN;

record TOP end TOP;
end Within;

14.1.3 Path

uniontype Path

“‘Path’ is used to store references to class names, or names inside class definitions.”

record QUALIFIED
Ident name "name" ;

Path path "path" ;
end QUALIFIED;

record IDENT
Ident name "name" ;

end IDENT;
end Path;

14.2 Class Definition

14.2.1 Class

public uniontype Class
SysML-Modelica Transformation, v1.0 51

“A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared class restriction, and
the body of the declaration.”

See Modelica specification 3.1 sub clause 4.5 Class Declarations.

record CLASS
Ident name;
Boolean partialPrefix "true if partial" ;
Boolean finalPrefix"true if final" ;
Boolean encapsulatedPrefix "true if encapsulated" ;
Restriction restriction "Restriction" ;
ClassDef body;

end CLASS;
end Class;

14.2.2 Restriction

uniontype Restriction

“These constructors each correspond to a different kind of class declaration in Modelica, except the last four, which are used
for the predefined types.” See Modelica specification 3.1 sub clause 4.6 Specialized Classes.

record R_CLASS end R_CLASS;
record R_MODEL end R_MODEL;
record R_RECORD end R_RECORD;
record R _BLOCK end R_BLOCK;
record R_CONNECTOR "connector class" end R_CONNECTOR;
record R_EXP _CONNECTOR "expandable connector class" end R_EXP_CONNECTOR;
record R_TYPE end R_TYPE;
record R_PACKAGE end R_PACKAGE;
record R _FUNCTION end R_FUNCTION;
record R_ENUMERATION end R_ENUMERATION;
record R _PREDEFINED _INT end R_PREDEFINED_INT;
record R _PREDEFINED _REAL end R_PREDEFINED_REAL;
record R _PREDEFINED _STRING end R_PREDEFINED _STRING;
record R _PREDEFINED _BOOL end R_PREDEFINED_BOOL;
record R _PREDEFINED _ENUM end R_PREDEFINED_ENUM;

end Restriction;

14.2.3 ClassDef

public uniontype ClassDef

“The ClassDef type contains the definition part of a class declaration. The definition is either explicit, with a list of parts
(public, protected, equation, and algorithm), or it is a definition derived from another class or an enumeration type. For a
derived type, the type contains the name of the derived class and an optional array dimension and a list of modifications.”

See Modelica specification 3.1 sub clause 4.5 Class Declarations.

record PARTS
list<ClassPart> classParts;
Option<String> comment;

end PARTS;
52 SysML-Modelica Transformation, v1.0

record DERIVED

See Modelica specification 3.1 sub clause 4.5.1 Short Class Definitions.

TypeSpec typeSpec "typeSpec specification includes array dimensions";
ElementAttributes attributes;
list<ElementArg> arguments;
Option<Comment> comment;

end DERIVED;

record ENUMERATION

See Modelica specification 3.1 sub clause 4.8.5 Enumeration Types.

EnumDef enumLiterals;
Option<Comment> comment;

end ENUMERATION;

record OVERLOAD

See Modelica specification 3.1 Clause 14 Overloaded Operators.

list<Path> functionNames;
Option<Comment> comment;

end OVERLOAD;

record CLASS_EXTENDS

See Modelica specification 3.1 sub clause 7.1 Inheritance -Extends Clause.

Ident baseClassName "name of class to extend" ;
list<ElementArg> modifications "modifications to be applied to the base

class";
Option<String> comment "comment";
list<ClassPart> parts "class parts";

end CLASS_EXTENDS;

record PDER

See Modelica specification 3.1 sub clause 4.5 Class Declarations.

Path functionName;
list<Ident> vars "derived variables" ;

end PDER;
end ClassDef;

14.2.4 TypeSpec

public uniontype TypeSpec
record TPATH

Path path;
Option<ArrayDim> arrayDim;

end TPATH;

record TCOMPLEX
Path path;
list<TypeSpec> typeSpecs;
Option<ArrayDim> arrayDim;
SysML-Modelica Transformation, v1.0 53

end TCOMPLEX;
end TypeSpec;

14.2.5 EnumDef

public uniontype EnumDef

“The definition of an enumeration is either a list of literals or a colon, \':\', which defines a supertype of all enumerations.”
See Modelica specification 3.1 sub clause 4.8.5 Enumeration Types.

record ENUMLITERALS
list<EnumLiteral> enumLiterals;

end ENUMLITERALS;

record ENUM_COLON end ENUM_COLON;
end EnumDef;

14.2.6 EnumLiteral

public uniontype EnumLiteral

“EnumLiteral, which is a name in an enumeration and an optional Comment.” See Modelica specification 3.1 sub clause
4.8.5 Enumeration Types.

record ENUMLITERAL
Ident literal;
Option<Comment> comment;

end ENUMLITERAL;
end EnumLiteral;

14.2.7 ClassPart

public uniontype ClassPart

“A class definition contains several parts. There are public and protected component declarations, type definitions and
‘extends’ clauses, collectively called elements. There are also equation sections and algorithm sections. The EXTERNAL
part is used only by functions which can be declared as external C or FORTRAN functions.”

record PUBLIC

See Modelica specification 3.1 sub clause 4.1 Access Control - Public and Protected Elements.

list<ElementItem> contents;
end PUBLIC;

record PROTECTED

See Modelica specification 3.1 sub clause 4.1 Access Control - Public and Protected Elements.

list<ElementItem> contents;
end PROTECTED;

record EQUATIONS

See Modelica specification 3.1 Clause 8 Equations.

list<EquationItem> contents;
end EQUATIONS;
54 SysML-Modelica Transformation, v1.0

record INITIALEQUATIONS

See Modelica specification 3.1 sub clause 8.6 Initialization, initial equation, and initial algorithm.

list<EquationItem> contents;
end INITIALEQUATIONS;

record ALGORITHMS

See Modelica specification 3.1 Clause 11 Statements and Algorithms.

list<AlgorithmItem> contents;
end ALGORITHMS;

record INITIALALGORITHMS

See Modelica specification 3.1 sub clause 8.6 Initialization, initial equation, and initial algorithm.

list<AlgorithmItem> contents;
end INITIALALGORITHMS;

record EXTERNAL

See Modelica specification 3.1 sub clause 12.9 External Function Interface.

ExternalDecl externalDecl "externalDecl" ;
Option<Annotation> annotation_ "annotation" ;

end EXTERNAL;

end ClassPart;

14.2.8 ExternalDecl

public uniontype ExternalDecl

“Declaration of an external function call.”
See Modelica specification 3.1 sub clause 12.9 External Function Interface.

record EXTERNALDECL
Option<Ident> funcName "The name of the external function" ;
Option<String> lang "Language of the external function" ;
Option<ComponentRef> output_ "output parameter as return value" ;
list<Exp> args "only positional arguments, i.e. expression

list" ;
Option<Annotation> annotation_ ;

end EXTERNALDECL;
end ExternalDecl;

14.2.9 ElementItem

public uniontype ElementItem

“An element item is either an element or an annotation.”

record ELEMENTITEM
Element element;

end ELEMENTITEM;
SysML-Modelica Transformation, v1.0 55

record ANNOTATIONITEM
Annotation annotation_ ;

end ANNOTATIONITEM;
end ElementItem;

14.2.10 Element

public uniontype Element

“Elements: The basic element type in Modelica”

record ELEMENT
Boolean finalPre fix;
Option<RedeclareKeywords> redeclareKeywords "replaceable, redeclare" ;
InnerOuter innerOuter "inner/outer" ;
Ident name;
ElementSpec specification "Actual element specification" ;
Option<ConstrainClass> constrainClass "constrainClass ; only valid for

classdef and component" ;
end ELEMENT;

record DEFINEUNIT
Ident name;
list<NamedArg> args;

 end DEFINEUNIT;

record TEXT
Option<Ident> optName "optName : optional name of text, e.g. model with

syntax error. We need the name to be able to browse it. . ." ;
String string;
Info info;

end TEXT;
end Element;

14.2.11 InnerOuter

public uniontype InnerOuter

See Modelica specification 3.1 sub clause 5.4 “Instance Hierarchy Name Lookup of Inner Declarations” for explanations of
inner/outer.

record INNER end INNER; record
OUTER end OUTER; record
INNEROUTER end INNEROUTER;

record UNSPECIFIED end UNSPECIFIED;
end InnerOuter;

14.2.12 ComponentRef

uniontype ComponentRef

“A component reference is the fully or partially qualified name of a component.”

record CREF_QUAL
56 SysML-Modelica Transformation, v1.0

Ident name "name" ;
list<Subscript> subScripts "subScripts" ;
ComponentRef componentRef "componentRef" ;

end CREF_QUAL;

record CREF IDENT
Ident name "name" ;
list<Subscript> subscripts "subscripts" ;

end CREF IDENT;
end ComponentRef;

14.2.13 Subscript

uniontype Subscript

“The Subscript uniontype is used both in array declarations and component references. The NOSUB constructor means that
the dimension size is undefined when used in a declaration, and when it is used in a component reference it means a slice of
the whole dimension.”

See Modelica specification 3.1 sub clause 10.5 Array Indexing.

record NOSUB end NOSUB;

record SUBSCRIPT
Exp subScript "subScript" ;

end SUBSCRIPT;
end Subscript;

14.2.14 ConstrainClass

public uniontype ConstrainClass

See Modelica specification 3.1 sub clause 7.3.2 Constraining Type.

record CONSTRAINCLASS
ElementSpec elementSpec "elementSpec ; must be extends" ;
Option<Comment> comment "comment" ;

end CONSTRAINCLASS;
end ConstrainClass;

14.2.15 ElementSpec

public uniontype ElementSpec

“An element is something that occurs in a public or protected section in a class definition. There is one constructor in the
‘ElementSpec’ type for each possible element type. There are class definitions (‘CLASSDEF’), ‘extends’ clauses
(‘EXTENDS’) and component declarations (‘COMPONENTS’). As an example, if the element ‘extends TwoPin;’ appears in
the source, it is represented in the AST as ‘EXTENDS(IDENT(\”TwoPin\”),{})’.”

record CLASSDEF
Boolean replaceable_ "replaceable" ;
Class class_ "class" ;

end CLASSDEF;

record EXTENDS
SysML-Modelica Transformation, v1.0 57

See Modelica specification 3.1 sub clause 7.1 Inheritance - Extends Clause.

Path path "path" ;
list<ElementArg> elementArg "elementArg" ;
Option<Annotation> annotationOpt "optional annotation";

end EXTENDS;

record IMPORT

See Modelica specification 3.1 sub clause 13.2.1 Importing Definitions from a Package.

Import import_ "import" ;
Option<Comment> comment "comment" ;

end IMPORT;

record COMPONENTS
ElementAttributes attributes "attributes" ;
TypeSpec typeSpec "typeSpec" ;
list<ComponentItem> components "components" ;

end COMPONENTS;
end ElementSpec;

14.3 Import

public uniontype Import

See Modelica specification 3.1 sub clause 13.2.1 Importing Definitions from a Package.

record NAMED IMPORT
Ident name "name" ;
Path path "path" ;

end NAMED_IMPORT;

record QUAL_IMPORT
Path path "path" ;

end QUAL_IMPORT;

record UNQUAL_IMPORT
Path path "path" ;

end UNQUAL_IMPORT;
end Import;

14.4 Annotation and Comments

14.4.1 Annotation

public uniontype Annotation

See Modelica specification 3.1 Clause 17 Annotations.

record ANNOTATION
list<ElementArg> elementArgs "elementArgs" ;

end ANNOTATION;
end Annotation;
58 SysML-Modelica Transformation, v1.0

14.4.2 Comment

public uniontype Comment

See Modelica specification 3.1 sub clause 2.2 Comments.

record COMMENT
Option<Annotation> annotation_ "annotation" ;
Option<String> comment "comment" ;

end COMMENT;
end Comment;

14.5 Component Definition

14.5.1 ComponentItem

public uniontype ComponentItem

See Modelica specification 3.1 sub clause 4.4.1 Syntax and Examples of Component Declarations.

record COMPONENTITEM
Component component "component" ;

 Option<ComponentCondition> condition "condition" ;
Option<Comment> comment "comment" ;

end COMPONENTITEM;
end ComponentItem;

14.5.2 ComponentCondition

public type ComponentCondition = Exp

“A componentItem can have a condition that must be fulfilled if the component should be instantiated.”

14.5.3 Component

public uniontype Component

“Some kind of Modelica entity (object or variable)”

record COMPONENT
Ident name "name" ;
ArrayDim arrayDim "arrayDim ; Array dimensions, if any" ;
Option<Modification> modification "modification ; Optional modification" ;

end COMPONENT;
end Component;

14.5.4 ElementAttributes

public uniontype ElementAttributes

See Modelica specification 3.1 sub clause 4.4.1 Syntax and Examples of Component Declarations.

record ATTR
Boolean flowPrefix "flow" ;
Boolean streamPrefix "stream" ;
SysML-Modelica Transformation, v1.0 59

Variability variability "variability ; parameter, constant etc." ;
Direction direction "direction" ;
ArrayDim arrayDim "arrayDim" ;

end ATTR;
end ElementAttributes;

14.5.5 Variability

public uniontype Variability

See Modelica specification 3.1 sub clause 3.8 Variability of Expressions.

record VAR end VAR;
record DISCRETE end DISCRETE;
record PARAM end PARAM;
record CONST end CONST;

end Variability;

14.5.6 Direction

public uniontype Direction

See Modelica specification 3.1 sub clauses 4.4.1 Syntax and Examples of Component Declarations and 4.4.2.2 Prefix Rules.

record INPUT end INPUT;
record OUTPUT end OUTPUT;
record BIDIR end BIDIR;

end Direction;

14.5.7 ArrayDim

public type ArrayDim = list<Subscript>

“Component attributes are properties of components that are applied by type prefixes. As an example, declaring a component
as ‘input Real x;\’ will give the attributes ‘ATTR({} ,false,VAR,INPUT)\’. Components in Modelica can be scalar or arrays
with one or more dimensions. This type is used to indicate the dimensionality of a component or a type definition. Array
dimensions”

See Modelica specification 3.1 sub clause 10.5 Array Indexing.

14.6 Modifications and Redeclarations

14.6.1 Modification

public uniontype Modification

“There are two forms of modifications: redeclarations and component modifications.”
See Modelica specification 3.1 sub clause 7.2 Modifications.

record CLASSMOD
list<ElementArg> elementArgLst;
Option<Exp> expOption;

end CLASSMOD;
end Modification;
60 SysML-Modelica Transformation, v1.0

14.6.2 ElementArg

public uniontype ElementArg
record MODIFICATION

See Modelica specification 3.1 Chapter 7.2 Modifications.

Boolean finalItem "finalItem" ;
Each each_ "each" ;
ComponentRef componentRef "componentRef" ;
Option<Modification> modification "modification" ;
Option<String> comment "comment" ;

end MODIFICATION;

record REDECLARATION

See Modelica specification 3.1 Chapter 7.3 Redeclaration.

Boolean finalItem "finalItem" ;
RedeclareKeywords redeclareKeywords "redeclare or replaceable " ;
Each each_ "each" ;
ElementSpec elementSpec "elementSpec" ;

Option<ConstrainClass> constrainClass "class definition or declaration" ;
end REDECLARATION;

end ElementArg;

14.6.3 RedeclareKeywords

public uniontype RedeclareKeywords

“The keywords redeclare and replacable can be given in three different combinations, each one by themselves or the both
combined.”

See Modelica specification 3.1 sub clause 7.3 Redeclaration.

record REDECLARE end REDECLARE;
record REPLACEABLE end REPLACEABLE;
record REDECLARE _REPLACEABLE end REDECLARE _REPLACEABLE;

end RedeclareKeywords;

14.6.4 Each

public uniontype Each

“The each keyword can be present in both: MODIFICATIONs and REDECLARATIONs.”

See Modelica specification 3.1 sub clause 7.2.5 Modifiers for Array Elements.

record EACH end EACH;
record NON_EACH end NON_EACH;

end Each;
SysML-Modelica Transformation, v1.0 61

14.7 Behavior

14.7.1 EquationItem

public uniontype EquationItem

“Several component declarations can be grouped together in one ‘ElementSpec’ by writing them on the same line in the
source. This type contains the information specific to one component.”

See Modelica specification 3.1 Clause 8 “Equations.”

record EQUATIONITEM
Equation equation_ "equation" ;
Option<Comment> comment "comment" ;

end EQUATIONITEM;

record EQUATIONITEMANN
Annotation annotation_ "annotation" ;

end EQUATIONITEMANN;
end EquationItem;

14.7.2 AlgorithmItem

public uniontype AlgorithmItem

“Information for an algorithm item.”

See Modelica specification 3.1 Clause 11 “Statements and Algorithms.”

record ALGORITHMITEM
Algorithm algorithm_ "algorithm" ;
Option<Comment> comment "comment" ;

end ALGORITHMITEM;

record ALGORITHMITEMANN
Annotation annotation_ "annotation" ;

end ALGORITHMITEMANN;
end AlgorithmItem;

14.7.3 Equation

public uniontype Equation

“Information on one (kind) of equation, different constructors for different kinds of equations.”

See Modelica specification 3.1 Clause 8 “Equations.”

record EQ_IF
Exp ifExp "ifExp ; Conditional expression" ;
list<EquationItem> equationTrueItems "equationTrueItems ; true branch" ;
list<tuple<Exp, list<EquationItem>>> elseIfBranches "elseIfBranches" ;
list<EquationItem> equationElseItems "equationElseItems Standard 2-side

eqn" ;
end EQ_IF;

record EQ_EQUALS
62 SysML-Modelica Transformation, v1.0

Exp leftSide "leftSide" ;
Exp rightSide "rightSide Connect stmt" ;

end EQ _EQUALS;

record EQ_CONNECT
ComponentRef connector1 "connector1" ;
ComponentRef connector2 "connector2" ;

end EQ _CONNECT;

record EQ_FOR
ForIterators iterators;
list<EquationItem> forEquations "forEquations" ;

end EQ_FOR;

record EQ_WHEN_E
Exp whenExp "whenExp" ;
list<EquationItem> whenEquations "whenEquations" ;
list<tuple<Exp, list<EquationItem>>> elseWhenEquations "elseWhenEquations" ;

end EQ_WHEN_E;

record EQ_NORETCALL
ComponentRef functionName "functionName" ;
FunctionArgs functionArgs "functionArgs; fcalls without return value" ;

end EQ_NORETCALL;

record EQ_FAILURE
EquationItem equ;

end EQ _FAILURE;
end Equation;

14.7.4 Algorithm

public uniontype Algorithm

“The Algorithm type describes one algorithm statement in an algorithm section. It does not describe a whole algorithm. The
reason this type is named like this is that the name of the grammar rule for algorithm statements is ‘algorithm’.”

See Modelica specification 3.1 Clause 11 “Statements and Algorithms.”

record ALG_ASSIGN
Exp assignComponent "assignComponent" ;
Exp value "value" ;

end ALG ASSIGN;

record ALG_IF
Exp ifExp "ifExp" ;
list<AlgorithmItem> trueBranch "trueBranch" ;
list<tuple<Exp, list<AlgorithmItem>>> elseIfAlgorithmBranch

"elseIfAlgorithmBranch" ;
list<AlgorithmItem> elseBranch "elseBranch" ;

end ALG_IF;

record ALG_FOR
ForIterators iterators;
list<AlgorithmItem> forBody "forBody" ;
SysML-Modelica Transformation, v1.0 63

end ALG_FOR;

record ALG_WHILE
Exp boolExpr "boolExpr" ;
list<AlgorithmItem> whileBody "whileBody" ;

end ALG_WHILE;

record ALG_WHEN_A
Exp boolExpr "boolExpr" ;
list<AlgorithmItem> whenBody "whenBody" ;
list<tuple<Exp, list<AlgorithmItem>>> elseWhenAlgorithmBranch

"elseWhenAlgorithmBranch" ;
end ALG_WHEN_A;

record ALG_NORETCALL
ComponentRef functionCall "functionCall" ;
FunctionArgs functionArgs "functionArgs; general fcalls without return

value";
end ALG_NORETCALL;

record ALG_RETURN
end ALG_RETURN;

record ALG_BREAK
end ALG_BREAK;

end Algorithm;

14.8 Expressions

14.8.1 Exp

public uniontype Exp

“The Exp uniontype is the container of a Modelica expression.”

See Modelica specification 3.1 Clause 3 Operators and Expressions.

record INTEGER
Integer value;

end INTEGER;

record REAL
Real value;

end REAL;

record CREF
ComponentRef componentRef;

end CREF;

record STRING
String value;

end STRING;

record BOOL
Boolean value;
64 SysML-Modelica Transformation, v1.0

end BOOL;

record BINARY

“Binary operations, e.g., a*b”

Exp exp1;
Operator op;
Exp exp2;

end BINARY;

record UNARY

“Unary operations, e.g., -(x)”

Operator op "op" ;
Exp exp "exp Logical binary operations: and, or" ;

end UNARY;

record LBINARY
Exp exp1 "exp1" ;
Operator op "op" ;
Exp exp2 ;

end LBINARY;

record LUNARY

“Logical unary operations: not”

Operator op "op" ;
Exp exp "exp Relations, e.g. a >= 0" ;

end LUNARY;

record RELATION
Exp exp1 "exp1" ;
Operator op "op" ;
Exp exp2 ;

end RELATION;

record IFEXP
Exp ifExp "ifExp" ;
Exp trueBranch "trueBranch" ; Exp elseBranch "elseBranch" ;
list<tuple<Exp, Exp>> elseIfBranch "elseIfBranch Function calls" ;

end IFEXP;

record CALL
ComponentRef function_ "function" ;
FunctionArgs functionArgs ;

end CALL;

record PARTEVALFUNCTION "Partially evaluated function"
ComponentRef function_ "function" ;
FunctionArgs functionArgs ;

end PARTEVALFUNCTION;

record ARRAY "Array construction using {, }, or array"
list<Exp> arrayExp ;
SysML-Modelica Transformation, v1.0 65

end ARRAY;

record MATRIX "Matrix construction using {, } "
list<list<Exp>> matrix ;

end MATRIX;

record RANGE "Range expressions, e.g. 1:10 or 1:0.5:10"
Exp start "start" ;
Option<Exp> step "step" ;
Exp stop "stop";

end RANGE;

record TUPLE “Tuples used in function calls returning several values”
list<Exp> expressions "comma-separated expressions" ;

end TUPLE;

record END "array access operator for last element, e.g. a{end}:=1;"
end END;

end Exp;

14.8.2 FunctionArgs

uniontype FunctionArgs

“The FunctionArgs uniontype consists of a list of positional arguments followed by a list of named arguments.”

See Modelica specification 3.1 sub clause 12.4 Function Call.

record FUNCTIONARGS
list<Exp> args "args" ;
list<NamedArg> argNames "argNames" ;

end FUNCTIONARGS;

record FOR_ITER_FARG
Exp exp "iterator expression";
ForIterators iterators;

end FOR_I TER_FARG;

end FunctionArgs;

14.8.3 ForIterator

public type ForIterator = tuple<Ident, Option<Exp>>

See Modelica specification 3.1 sub clause 11.2.2 For-statement and sub clauses 8.3.2 For-Equations - Repetitive Equation
Structures, 10.4.1 Array Constructor with Iterators.

14.8.4 ForIterators

public type ForIterators = list<ForIterator>

14.8.5 NamedArg

uniontype NamedArg
66 SysML-Modelica Transformation, v1.0

“The NamedArg uniontype consist of an identifier for the argument and an expression giving the value of the argument.”

record NAMEDARG
Ident argName "argName" ;
Exp argValue "argValue" ;

end NAMEDARG;
end NamedArg;

14.8.6 Operator

uniontype Operator

See Modelica specification 3.1 Clause 3 Operators and Expressions.

/* arithmetic operators */
record ADD "addition "end ADD;
record SUB "subtraction "end SUB;
record MUL "multiplication "end MUL;
record DIV "division "end DIV;
record POW "power "end POW;
record UPLUS "unary plus "end UPLUS;
record UMINUS "unary minus "end UMINUS;
/* element-wise arithmetic operators */
record ADD _EW "element-wise addition "end ADD _EW;
record SUB_EW "element-wise subtraction "end SUB_EW;
record MUL_EW "element-wise multiplication "end MUL_EW;
record DIV_EW "element-wise division "end DIV_EW;
record POW_EW "element-wise power "end POW_EW;
record UPLUS_EW "element-wise unary minus "end UPLUS_EW;
record UMINUS_EW "element-wise unary plus "end UMINUS_EW;
/* logical operators */
record AND "logical and "end AND;
record OR "logical or "end OR;
record NOT "logical not "end NOT;
/* relational operators */
record LESS "less than "end LESS;

 record LESSEQ "less than or equal "end LESSEQ;
record GREATER "greater than "end GREATER;
record GREATEREQ "greater than or equal "end GREATEREQ;
record EQUAL "relational equal "end EQUAL;
record NEQUAL "relational not equal "end NEQUAL;

end Operator;
SysML-Modelica Transformation, v1.0 67

68 SysML-Modelica Transformation, v1.0

Part IV - Transformation
General Information

This part of the document defines the mapping between the SysML4Modelica profile defined in Part II and the Modelica
abstract syntax defined in Part III. The mapping is in tables relating elements in the SysML4Modelica profile to elements of
the Modelica abstract syntax as well as in QVT. The QVT code is included in Annex C; it includes explicit references to
each of the mapping rule numbers included in the tables.

Each mapping table may consist of 4 sections:

1. A general statement describing which element in the SysML profile is being mapped to which element of the
Modelica abstract syntax.

2. A Required section describing the required conditions necessary to make the transformation valid

3. A Conditional section describing possible links between attributes based on conditional expressions

4. An Attributes section describing the mapping between any additional attributes

Part IV of the SysML-Modelica Transformation specification is non-normative and contains the following Clauses:

• 15 - Class Definitions

• 16 - Predefined Types

• 17 - Component Declarations

• 18 - Equation and Algorithm Sections
SysML-Modelica Transformation, v1.0 69

70 SysML-Modelica Transformation, v1.0

15 Class Definitions

15.1 «modelicaClassDefinition»

SysML4Modelica Modelica Attributes

Abstract Syntax Concrete Syntax

15.1.1:Classes::ModelicaClassDefinition Absyn.Class.Class N/A See below

Specializations:

15.1.2:Classes::ModelicaClass Absyn.Class.Class Class See 8.3

15.1.3:Classes::ModelicaModel Absyn.Class.Class Model See 8.3

15.1.4:Classes::ModelicaRecord Absyn.Class.Class Record See 8.4

15.1.5:Classes::ModelicaBlock Absyn.Class.Class Block See 8.5

15.1.6:Classes::ModelicaConnector Absyn.Class.Class Connector See 8.6

15.1.7:Classses::ModelicaType Absyn.Class.Class Type See 8.7

15.1.8:Classes::ModelicaPackage Absyn.Class.Class Package See 8.8

15.1.9:classes::ModelicaFunction Absyn.Class.Class Function See 8.9

SysML4Modelica Modelica

15.1.10:Classes::ModelicaClassDefinition maps to Absyn.Class.Class

Attributes

15.1.11: isFinal always maps to • finalPrefix

15.1.12: IsModelicaEncapsulated always maps to • EncapsulatedPrefix

15.1.13: IsAbstract always maps to • PartialPrefix
SysML-Modelica Transformation, v1.0 71

15.2 «modelicaClass»

15.3 «modelicaModel»

15.4 «modelicaRecord»

SysML4Modelica Modelica

15.2.1:Classes::ModelicaClass maps to Absyn.Class.Class

Required

15.2.2: • restriction equal to Restriction.R_Class

15.2.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

SysML4Modelica Modelica

15.3.1:Classes::ModelicaModel maps to Absyn.Class.Class

Required

15.3.2: • restriction equal to Restriction.R_Model

15.3.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

SysML4Modelica Modelica

15.4.1:Classes::ModelicaRecord maps to Absyn.Class.Class

Required

15.4.2: • restriction equal to Restriction.R_Record

15.4.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition
72 SysML-Modelica Transformation, v1.0

15.5 «modelicaBlock»

15.6 «modelicaConnector»

15.7 «modelicaType»

15.8 «modelicaPackage»

SysML4Modelica Modelica

15.5.1:Classes::ModelicaBlock maps to Absyn.Class.Class

Required

15.5.2: • restriction equal to Restriction.R_Block

15.5.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

SysML4Modelica Modelica

15.6.1:Classes::ModelicaConnector maps to Absyn.Class.Class

Conditional:

15.6.2: IsExpandable equal to false maps to • restriction equal to Restriction.
R_CONNECTOR

15.6.3: IsExpandable equal to true maps to • restriction equal to Restriction.
R_EXP_CONNECTOR

15.6.4: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

SysML4Modelica Modelica

15.7.1:Classes::ModelicaType maps to Absyn.Class.Class

Required

15.7.2: • restriction equal to Restriction.R_Type

15.7.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition

SysML4Modelica Modelica

15.8.1:Classes::ModelicaPackage maps to Absyn.Class.Class

Required

15.8.2: • restriction equal to Restriction.R_Package

15.8.3: Attributes same as SysML4Modelica: :Classes::ModelicaClassDefinition
SysML-Modelica Transformation, v1.0 73

15.9 «modelicaFunction»

15.10 «modelicaExtends»

There are multiple representations for the extends clause within the Modelica abstract syntax. Only one of the possible mappings is
addressed here, the one that most closely resembles the SysML4Modelica definition.

SysML4Modelica Modelica

15.9.1:Classes::ModelicaFunction maps to Absyn.Class.Class

Required:

15.9.2: • restriction equal to Restriction.
R_Function

Conditional:

15.9.3: language = “C” or “FORTRAN” • Type of Class.body equal to
ClassDef.PARTS

• Type of Class.body.classParts equal to
ClassPart.EXTERNAL

• Type of
Class.body.classParts.externalDecl equal
to ExternalDecl.EXTERNALDECL

15.9.4: language • Class.body.classParts.externalDecl.lang

15.9.5: name • Class.body.classParts.externalDecl.func

15.9.6: scope always maps to • Type of innerOuter

15.9.7: externalLibrary parsed to • Class.body.classParts.externalDecl.annotation
_with Library={externalLibrary...}

15.9.8: externalInclude parsed to • Class.body.classParts.externalDecl.annotation
_with Include={externalInclude..}

SysML4Modelica Modelica

15.10.1:Classes::ModelicaExtends maps to ClassDef.CLASS_EXTENDS

Required:

15.10.2:Specific maps to • Class with property Class.body equal to
ClassDef.CLASS_EXTENDS

15.10.3:General maps to • ClassDef.Class_EXTENDS.baseClassName

Attributes:

15.10.4: modification parsed to • ClassDef.CLASS_EXTENDS.modifications

15.10.5: visibility parsed to • ClassDef.CLASS_EXTENDS.modifications

15.10.6: arraySize parsed to • ClassDef.CLASS_EXTENDS.modifications
74 SysML-Modelica Transformation, v1.0

15.11 «modelicaDer»

15.12 «modelicaConstrainedBy»

SysML4Modelica Modelica

15.11.1:Classes::ModelicaDer maps to Absyn.Class.Class

Required:

15.11.2: • Type of body equal to ClassDef.PDER

Attributes:

15.11.3: name maps to • body.PDER.functionName

15.11.4: variables maps to • body.PDER.vars

SysML4Modelica Modelica

15.12.1:Classes::ModelicaConstrainedBy maps to ConstrainClass.CONSTRAINCLASS.

Required:

15.12.2: • Referenced by
ElementArg.REDECLARATION.constrain
Class

• Type of CONSTRAINCLASS.elementSpec
equal to ElementSpec.-CLASSDEF

Attributes:

15.12.3: client always maps to • CONSTRAINCLASS.elementSpec.-class_

15.12.4: modification parsed to • ElementArg.REDECLARATION.
redeclareKey words
SysML-Modelica Transformation, v1.0 75

76 SysML-Modelica Transformation, v1.0

16 Predefined Types

16.1 Overview

The following primitive types are available in the Modelica language: Real Type, Integer Type, Boolean Type, String Type,
Enumeration Types, StateSelect, ExternalObject, Graphical Annotation Types. These primitive types are defined as predefined types in
SysML4Modelica::BasicTypes. Although these types have direct counterparts in SysML, they are defined again to account for the
additional attributes associated with them in Modelica.

SysML4Modelica Modelica

Basic Types Predefined Type

16.1.1: ModelicaReal Real

16.1.2: ModelicaInteger Integer

16.1.3: ModelicaBoolean Boolean

16.1.4: ModelicaString String

16.1.5: ModelicaEnumeration Enumeration

16.1.6: ModelicaStateSelect StateSelect

16.1.7: ModelicaExternalObject ExternalObject

16.1.8: ModelicaAnnotation Annotation
SysML-Modelica Transformation, v1.0 77

78 SysML-Modelica Transformation, v1.0

17 Component Declarations

17.1 Overview

17.2 «modelicaPart»

SysML4Modelica Modelica Attributes

17.1.1: Component::ModelicaPart Absyn.Element.Element See Sub clause 10.3

17.1.2: Component::ModelicaPort Absyn.Element.Element See Sub clause 10.4

17.1.3: Component::ModelicaValueProperty Absyn.Element.Element See Sub clause 10.2

17.1.4: Component::ModelicaFunctionParameter Absyn.Element.Element See Sub clause 10.5

SysML4Modelica Modelica

17.2.1:Component::ModelicaPart maps to Absyn.Element.Element

Required

17.2.2: • Type of specification equal to
ElementSpec.COMPONENTS

17.2.3: • Absyn.Class.Class referenced by
specification.typeSpec has Restriction
equal to R_Block or R_Class or R_Model

17.2.4: • Type of specification.components equal
to ComponentItem.COMPONENTITEM

17.2.5: • Type of
specification.components.component
equal to Component.COMPONENT

Attributes

17.2.6:name always maps to • name

• specification.components.component.name

17.2.7:scope always maps to • Type of innerOuter

17.2.8:conditionalExpression always maps to • specification.components.condition

17.2.9:modification always maps to • specification.components.component.
modification

17.2.10: isFinal always maps to • finalPrefix

17.2.11: isReplaceable always maps to • redeclareKeywords

17.2.12: arraySize always maps to • specification.components.component.
arrayDim
SysML-Modelica Transformation, v1.0 79

17.3 «modelicaPort»

17.4 «modelicaValueProperty»

SysML4Modelica Modelica

17.3.1:Component::ModelicaPort maps to Absyn.Element.Element

Required

17.3.2: • Type of specification equal to
ElementSpec.COMPONENTS

17.3.3: • Absyn.Class.Class referenced by
specification.typeSpec has restriction
equal to R_Connector

17.3.4: • Type of specification.components equal
to ComponentItem.COMPONENTITEM

17.3.5: • Type of
specification.components.component
equal to Component.COMPONENT

Attributes

17.3.6:name always maps to • name

• specification.components.component.name

17.3.7:causality always maps to • Type of specification.attributes.direction

17.3.8:conditionalExpression always maps to • specification.components.condition

17.3.9:modification always maps to • specification.components.component.
modification

17.3.10: isFinal always maps to • finalPrefix

17.3.11: isReplaceable always maps to • redeclareKeywords

17.3.12: arraySize always maps to • specification.attributes.arrayDim

SysML4Modelica Modelica

17.4.1:Component::ModelicaValueProperty maps to Absyn.Element.Element

Required

17.4.2: • Type of specification equal to
ElementSpec.COMPONENTS

17.4.3: • Absyn.Class.Class referenced by
specification.typeSpec has restriction
equal to R_Type or R_Record

17.3.4: • Type of specification.components equal
to ComponentItem.COMPONENTITEM
80 SysML-Modelica Transformation, v1.0

17.5 «modelicaFunctionParameter»

17.4.5: • Type of
specification.components.component
equal to Component.COMPONENT

17.4.6: • Type of specification.attributes equal to
ElementAttributes.ATTR

Attributes

17.4.7:name always maps to • name

• specification.components.component.name

17.4.8:visibility • Type of ClassPart of owning
Absyn.Class.Class

17.4.9:causality always maps to • Type of
specification.components.component.
attributes.direction

17.4.10:variability always maps to • Type of
specification.components.component.
attributes.variability

17.4.11: flowFlag always maps to • specification.components.component.
attributes.flowPrefix

17.4.12: scope always maps to • Type of innerOuter

17.4.13: conditionalExpression always maps to • specification.components.condition

17.4.14: modification always maps to • specification.components.component.
modification

17.4.15: isReplaceable always maps to • redeclareKeywords

17.4.16: declarationEquation always maps to • redeclareKeywords

17.4.17: isFinal always maps to • finalPrefix

17.4.19: arraySize always maps to • specification.components.component.
arrayDim

SysML4Modelica Modelica

17.5.1:Component::ModelicaFunctionParameter maps to Absyn.Element.Element

Required

17.5.2: • Type of specification equal to
ElementSpec.COMPONENTS

17.5.3: • Absyn.Class.Class referenced by
specification.type. Spec has restriction
equal to R_Type or R_Record.

17.5.4: • Component of Absyn.Class.Class with
restriction equal to R_Function.

SysML4Modelica Modelica
SysML-Modelica Transformation, v1.0 81

17.5.5: • Type of specification.components equal
to ComponentItem.COMPONENTITEM

17.5.6: • Type of
specification.components.component
equal to Component.COMPONENT

17.5.7: • Type of specification.attributes equal to
ElementAttributes.ATTR

Attributes

17.5.8:name always maps to • name

• specification.components.component.name

17.5.9:causality always maps to • Type of specification.attributes.direction

17.5.10:variability always maps to • Type of specification.attributes.variability

17.5.11:isFinal always maps to • finalPrefix

17.5.12: modification always maps to • specification.components.component.
modification

17.5.13: isReplaceable parsed to • redeclareKeywords

17.5.14: declarationEquation parsed to • redeclareKeywords

17.5.15: arraySize always maps to • specification.attributes.arrayDim

SysML4Modelica Modelica
82 SysML-Modelica Transformation, v1.0

18 Equation and Algorithm Sections

18.1 Overview

18.2 «modelicaEquation»

SysML4Modelica Modelica Abstract Syntax Attributes

18.1.1: Equations and Algorithms::Modelica Equation Absyn.EquationItem.EQUATIONITEM See Sub clause 11.2

18.1.2: Equations and Algorithms::ModelicaConnection Absyn.Equation.EQ_CONNECT See Sub clause 11.4

18.1.3: Equations and Algorithms::ModelicaAlgorithm Absyn.EquationItem.ALGORITHMITEM See Sub clause 11.3

SysML4Modelica Modelica

18.2.1: Equations and Algorithms::ModelicaEquation maps to Absyn.EquationItem.EQUATIONITEM

Required

18.2.2: specification.body parsed to • equation

Conditionals

18.2.3: If isInitial equal to false • EQUATIONITEM contained in
record typed to ClassPart.
EQUATIONS

18.2.4: If isInitial equal to true • EQUATIONITEM contained in
record typed to ClassPart.
INITIALEQUATIONS
SysML-Modelica Transformation, v1.0 83

18.3 «modelicaAlgorithm»

18.4 «modelicaConnection»

SysML4Modelica Modelica

18.3.1: Equations and Algorithms::ModelicaAlgorithm maps to Absyn.AlgorithmItem.ALGORITHMITEM

Required

18.3.2: constraint.specification parsed to • algorithm

Conditionals

18.3.3: If isInitial equal to false • ALGORITHMITEM contained in
record typed to ClassPart.
ALGORITHMS

18.3.4: If isInitial equal to true • A;GORITHMITEM contained in
record typed to ClassPart.
INITIALALGORITHMS

SysML4Modelica Modelica

18.4.1: Equations and Algorithms::ModelicaConnection maps to Absyn.Equation.EQ_CONNECTOR

Required

• ConnectorEndA.Role maps to • connector1

• ConnectorEndB.Role maps to • connector2
84 SysML-Modelica Transformation, v1.0

Part V - Annexes
Contents

This part of the document introduces the Annexes, as follows:

• Annex A - Examples

• Annex B - Justification

• Annex C - QVT Transformation
SysML-Modelica Transformation, v1.0 85

86 SysML-Modelica Transformation, v1.0

Annex A: Examples
(non-normative)

A.1 A Car Suspension Model

The following example is intended to illustrate the concepts of how the transformation approach can be used to provide a context for
the normative specification in Part II of this specification. Consider the design of a car suspension. As illustrated in Figure A.1, the
suspension can be described in the context of a car using a descriptive SysML model, expressed in a BDD and corresponding
IBD.

Figure A.1 - SysML descriptive model of a car suspension visualized as a BDD and IBD

Assume now that one needs to evaluate the dynamic response of the suspension by simulating the car body's position as
a function of time. A possible continuous dynamics model for such a simulation models the suspension as a linear spring
and the car body as a point mass. This model is illustrated in Figure A.2 in both Modelica and in the SysML4Modelica
profile which represents the corresponding Modelica constructs. By stereotyping SysML ports and connectors, the
semantics of Kirchhoff's laws have been introduced into SysML.
SysML-Modelica Transformation, v1.0 87

Figure A.2 - Mass-Spring model for a car suspension, in Modelica (left) and SysML4Modelica (right)

The SysML parts are stereotyped as «modelicaPart». (i.e., mass 1model, spring1model, fixed1model), that correspond to usages of
models from the Modelica Standard Library. For instance, as illustrated in Figure A.3, the library
Modelica.Mechanics.Translational.Components includes definitions of continuous dynamics models for a Spring and a Mass.
Note that one could apply stereotypes in SysML that include icons equivalent to the elements from the Modelica library so that the
SysML4Modelica representation in Figure A.4 could be almost identical to the Modelica representation on the left.
88 SysML-Modelica Transformation, v1.0

Figure A.3 - Continuous dynamics models for Mass and Spring defined in the Modelica Standard Library

In Figure A.2, the usages of these models, stereotyped as «modelicaPart» are connected to each other at their «modelicaPort» by
«modelicaConnection». These connections carry the semantics of Kirchhoff’s Laws (in this example—or, more generally, the same
semantics as an equivalent Modelica connection). These semantics can be made more explicit by using a Parametric Constraint
(Figure A.4).
SysML-Modelica Transformation, v1.0 89

Figure A.4 - Mass model as it could be represented in a Parametric Diagram

But, as one can see by comparing Figure A.4 and Figure A.2, this comes at a cost of a much larger and less readable
diagram. Similarly, one could have represented the internal equations of the Mass model in a Parametric Diagram, as is
illustrated in Figure A.5, but again, the more explicit semantics come at a cost of increased complexity. For this reason,
only Blocks and Internal Block Diagrams are further used in the SysML4Modelica profile, but the parametrics still
provides the underlying metamodel for capturing the detailed equations. This complexity can often be abstracted and
made not visible to the modeler.
90 SysML-Modelica Transformation, v1.0

Figure A.5 - Mass-Spring model as represented in a Parametric Diagram

Finally, it is worth illustrating how the SysML4Modelica continuous dynamics model in Figure A.2 relates to the SysML
descriptive model in Figure A.1. Since both the descriptive and the continuous dynamics models are views of the same
system, they cannot be independent of each other. Changes to the descriptive model are likely to require corresponding
changes to the continuous dynamics model and vice versa. Such dependencies can be modeled in an analysis context - the
context in which the analysis model (i.e., the continuous dynamic analysis in this case) is defined.

The analysis context is illustrated in Figure A.6. It establishes the dependencies between the descriptive model
components and their corresponding analysis models. In addition, the detailed bindings between the descriptive and
analysis properties are defined in the Parametric Diagram illustrated in Figure A.7.
SysML-Modelica Transformation, v1.0 91

Figure A.6 - The Block Definition Diagram for the Analysis Context of the continuous dynamics analysis
92 SysML-Modelica Transformation, v1.0

Figure A.7 - The Parametric Diagram for the Analysis Context of the continuous dynamics analysis; the properties
of the descriptive model are bound to the corresponding properties in the analysis model.

For very simple problems, one could consider combining the descriptive and analysis views into one model; e.g., suspension and
spring1model would be combined into one component that includes both the descriptive properties and the analysis constraints/
equations. However, for larger problems in which more than one analysis perspective needs to be considered (e.g., mechanical,
electrical, controls, manufacturing, different levels of abstraction, etc.), combining all such analyses into one model would be
difficult to manage. One would likely encounter problems with naming conflicts or duplication of properties. In addition,
combining all the models severely limits the opportunity for model reuse because models from libraries (such as the Modelica
Standard Library) would have to be combined with descriptive models rather than just included in an analysis context.

A.1.1 A Robot Model

Introduction

The example in this section is intended to illustrate how a SysML model can be transformed to a Modelica model in accordance with
the transformation approach specified in this document. In particular, the transformation is accomplished by first applying the
SysML4Modelica profile as described in Part II of this document, and then mapping the SysML4- Modelica model to the Modelica
model as described in Part IV of this document. The robot example is based on the robot model that is contained in the standard
Modelica library which can be found at www.modelica.org. Refer to Part I of this document for a brief introduction to SysML and
Modelica.
SysML-Modelica Transformation, v1.0 93

http://www.modelica.org

Integrating SysML Descriptive Models with Analytical Models

This transformation specification will typically support the system requirements analysis and design activity as part of a systems
engineering process. A SysML model will be developed to specify the system requirements, architect the system, and allocate the
system requirements to the hardware and software components of the system. The SysML model serves as a descriptive model to
capture multiple aspects of the system of interest, including its functionality, inputs/output and control flow, structural composition
and interconnection, and traceability to its text based requirements as indicated in Figure A.8. As part of the requirements analysis
and design effort, many different engineering analysis are often performed to evaluate the extent that the system can satisfy its system
performance, physical, reliability, maintainability, and cost requirements.

Figure A.8 - A SysML model in which models for multiple analysis tools are defined

The SysML descriptive model can capture relevant aspects of the system that can be used by many different types of
analytical models and tools to support the above analysis. One mechanism is to use SysML parametrics to capture the
analysis as a network of equations, and then pass this analysis to an analytical tool. The analytical tool then performs the
computation and provides the quantifiable results back to the SysML model. A simple example may be for a SysML
parametric model to capture the system overall reliability in terms of the mean time between failures of each of its
components.

The reliability of each component may in turn be estimated based on some equation. This set of equations are passed to a
reliability analysis too l to perform the computation, and return the reliability values back to the SysML model.

Sometimes, SysML parametrics is used in a more abstract way. In this case, the SysML model does not capture the
equations, but only the input and output parameters of the analysis. When this is done,the equations that relate the input
and output parameters of the analysis are included in the analytical tool or solver.

An alternative approach for providing relevant aspects of the descriptive model to an analytical model is to use the
transformation approach specified in this document. In this particular case, the SysML model is transformed to a
Modelica model in two steps. First, the SysML4Modelica profile is applied to create an analytical representation from the
structural portion of the SysML model. In the second step, this SysML4Modelica analytical model is mapped to the
94 SysML-Modelica Transformation, v1.0

Modelica model where it can be executed. The additional step to apply the SysML4Modelica profile to create the
analytical model facilitates a more straightforward mapping from SysML to Modelica, as compared to mapping the
SysML model to Modelica directly without applying the profile.

This transformation approach provides advantages over creating a parametric model and providing the parametric model
to the Modelica model directly as describe above. In particular, the approach enables the SysML4Modelica analytical
model to more effectively map to reusable components in the Modelica standard library. The Modelica model
encapsulates the equations in its components, and then defines standard equations for connecting them. The detailed
equations are generally assumed to be captured in the Modelica model using Modelica’s textual notation. It is generally
assumed that the SysML4Modelica analytical model captures the structure, interconnection, and properties, but not the
detailed equations. This transformation approach allows the modeler to provide an abstract description of the system in
SysML and the SysML4Modelica analytical model, and then establish direct correspondence to the Modelica model.

A.1.2 Robot Example

This robot example only highlights the aspects of the SysML model that are used in the SysML4Modelica transformation.
The primary aspects of the SysML model that are used in the transformation are the block definition diagrams (bdd) and
the internal block diagrams (ibd). In a more typical case, the SysML model would include other aspects of the model as
described in Figure A.8, and integrate with other analytical models and tools as well as the Modelica model.

For the robot example, the block definition diagrams and internal block diagrams are used to describe the system
composition and interconnection at increasing levels of detail. This is typical of how SysML models are developed to
support system specification and design. The corresponding Modelica analytical model may be created at different levels
of abstraction. The following paragraphs illustrate a sequence diagrams one may create in a modeling and design process.
All figures are included at the end of the section.

The SysML model organization for the Robot model is shown in the package diagram in Figure A.9. The model structure
includes the SysML4Modelica Profile, the Modelica Standard Library, and the Robot Model itself. The Robot model
includes packages for defining interfaces, types, structure, and analysis.

As described above, a typical SysML model may include integration with a diverse set of analytical models. The analysis
package captures the various types of analysis that are being performed. In particular, Figure A.10 shows a parametric
model of the top level objective function for the robot. In particular, several key performance parameters have been
identified that characterize the overall value to the end user, including the weight, power, reliability, cost and trajectory
performance in terms of the position error. Each of these performance parameters are analyzed by different analytical
models and tools. Note that the Modelica model will be used primarily to analyze the trajectory performance. This is
indicated by the refine relationship between the Modelica robot model and the trajectory performance model.

The top level SysML block definition diagram is shown in Figure A.11. The robot domain block serves as a context for
the robot, which is the system of interest. The robot domain block is composed of the robot and the other actors that are
external to the robot, and interact with it. The actors include the load the robot manipulates, the platform the robot is
attached to, the power source that provides power to the robot, and the driver that provides the desired trajectory input to
the robot. The trajectory input may be provided in real time, such as might be done by joystick control, or prior to the
robot actually executing the trajectory.

In Figure A.12, the corresponding internal block diagram is shown. In this diagram, the interconnection between the robot
and the actors is shown. The ports on the robot represent the connection points to each external actor.

The top level bdd and ibd are sometimes referred to as a black box view which specify the robot from an external
perspective without any internal details. The corresponding Modelica model may be created to provide an abstract
analytical representation of the black box robot, with limited or no internal detail. This analytical model may be used to
SysML-Modelica Transformation, v1.0 95

assess required trajectory characteristics, such as precision and response time to manipulate a load of specified mass, and
perhaps the minimum power requirements needed of the robot, based on some assumptions on a robot power efficiency
factor. Again, this analysis may be performed without any consideration for the internal details of the robot.

The standard Modelica library does not include this black box model explicitly. However, it could be added by creating
the SysML4Modelica analytical model and developing the corresponding Modelica model. Although the robot model may
be abstract, the models of the actors such as the Load, Power Source, and Driver could be specified in detail and reused
for the detailed robot analytical models.

The block definition diagram in Figure A.13 decomposes the robot into its next level of components including the Path-
Planner, Control Bus, Actuators, and Arm. Only one of the six actuators is shown in the bdd. The Actuators are all
assumed to be of the same type, but each actuator could have been modeled as a subclass of a more generic actuator to
represent a unique component type.

The internal block diagram in Figure A.14 shows the interconnection among the robot parts. Note that the black box
interfaces to the external actors are preserved. Each actuator is shown as a unique part. Once again, a robot designer may
choose to perform an analysis of the robot at this level of abstraction, where all of the components in the ibd are treated
as black boxes without internal detail. This would further refine the black box analysis, and provide a basis for allocating
specific performance requirements to the components. For example, the actuator efficiency could be estimated, and the
trajectory could be analyzed as a function of different assumptions of actuator black box characteristics. Again, the
Modelica library does not explicitly contain a model of these components at this level, but the Modelica model could be
expanded to include them. If so, the SysML4Modelica analytical model would be created, and then mapped to the
corresponding Modelica model.

The next diagrams include the block definition diagram and internal block diagram for the actuator and arm. The path
planner and control bus were not further decomposed in the SysML model, although they could have been. The actuator
block definition diagram and internal block diagram are shown in Figure A.15 and Figure A.16, respectively. The actuator
includes the Controller, Motor Assembly, Gear and Sensor. The Motor Assembly is further decomposed into a Motor and
Drive Electronics on the bdd, but no further interconnection detail is shown. The level of detail of the SysML model
typically corresponds to the level of detail that the system is being specified by the system designer. Below this level,
other domain specific hardware and software models are used to model the system design.

The Arm block definition diagram and internal block diagram are shown in Figure A.17 and Figure A.18, respectively.
Note that the black box interfaces for the actuator and arm are preserved on their internal block diagrams, providing
consistency from the robot black box level to the component l level.

The transformation to the Modelica model is performed at this level of detail of the SysML model of the robot. The first
step in the transformation is to create the SysML4Modelica analytical model. In Figure A.19 and Figure A.20, the SysML
structural model is allocated to corresponding elements of the SysML4Modelica analytical model. Based on these
allocations, the SysML4Modelica analytical model for the robot is shown in Figure A.21.

Once the SysML4Modelica analytical model has been defined, the mapping to the corresponding Modelica model can be
performed. Figure A.22 shows the corresponding graphical representation of the resulting Modelica model. The detailed
equations are embedded in the Modelica model elements that are represented by the graphical elements.

In Figure A.23, the results of the analysis are shown for a specific simulation execution.
96 SysML-Modelica Transformation, v1.0

Figure A.9 - The package organization of the robot model

Figure A.10 - A parametric model of the top level objective function for the robot
SysML-Modelica Transformation, v1.0 97

Figure A.11 - The top level block definition diagram for the robot domain

Figure A.12 - The internal block diagram of the robot domain
98 SysML-Modelica Transformation, v1.0

Figure A.13 - The block definition diagram for the decomposition of the robot into its main subsystems

Figure A.14 - The internal block diagram for the robot, illustrating its decomposition into the path planner, the control
bus, the actuators and the mechanical structure of the robot arm.
SysML-Modelica Transformation, v1.0 99

Figure A.15 - The block definition diagram for the structure of an actuator of the robot

Figure A.16 - The internal block diagram for a robot actuator
100 SysML-Modelica Transformation, v1.0

Figure A.17 - The block definition diagram for the robot arm's mechanical structure

Figure A.18 - The internal block diagram for the robot arm
SysML-Modelica Transformation, v1.0 101

Figure A.19 - The Analysis Context in which the descriptive model of the robot domain is allocated to the correspond-
ing analytical model as expressed in the SysML4Modelica profile.
102 SysML-Modelica Transformation, v1.0

Figure A.20 - A detailed diagram of the allocation of the robot actuator descriptive
model to the analytical SysML4-Modelica Model
SysML-Modelica Transformation, v1.0 103

Figure A.21 - The top-level robot problem shows as an ibd in the SysML4Modelica profile
104 SysML-Modelica Transformation, v1.0

Figure A.22 - The top-level Modelica model of the robot
SysML-Modelica Transformation, v1.0 105

Figure A.23 - The simulation results with the motor torques as function of time
106 SysML-Modelica Transformation, v1.0

Annex B: Justification
(non-normative)

B.1 Semantic Comparison between SysML and Modelica

Before focusing on the detailed modeling constructs, a high-level decision needs to be made regarding the choice of
SysML elements to represent Modelica models. Although Modelica is a textual language, it also supports a graphical
view through its annotation mechanism. This graphical view illustrates clearly the strong similarity that exists between
SysML and Modelica. Both languages support the decomposition of systems (or behavioral models of systems) into
subsystems or components and the interactions between them. For instance, the Modelica model of a motor controller
(shown in Figure 3) contains sub-components (such as motor, gearbox, and controller). The interactions between them are
illustrated by edges connecting the interface locations (called connectors in Modelica) of the components. Such
hierarchical compositions of Modelica models and the connections between them constitute the primary modeling
approach in Modelica. Before considering the details of the language, it is thus important to consider carefully how these
primary modeling constructs map to SysML.

As illustrated in Table B.1, in SysML there are three kind of construct built on abstractions that have similar semantics
compared to the hierarchical, connector-based composition of Modelica models: the hierarchical Blocks, shown in
Internal Block Diagrams), the Parametric Constraints (shown in Parametric Diagrams), and the Activity graphs. All three
constructs support some sort of “ports,” some sort of connection of “port-based” objects through “port-connections,” and
hierarchical encapsulation through “port-delegation.” We use these three constructs to discuss the main question: “What
are the SysML elements that match the Modelica semantics best?”

Table B.1 - A comparison between Modelica concepts and SysML abstractions and diagrams

Concepts Modelica
constructs

 SysML

Construct
abstractions

 Availability in diagrams

 <---------- Modelica “like” ---------->

BDD IBD Parametric Activity

Model
Definition

Model Block Yes Yes Restricted No

Model
Usage

Component Property
(Part Property)

Yes Yes Restricted No

Port
Definition

Connector Block
ValueType
FlowSpecification

Yes
Yes
Yes

Yes
Yes
No

Yes
No
No

No
No
No

Properties Component
(Variables)

Block
ValueType
FlowProperty

Yes
Yes
Yes

Yes
Yes
No

Yes
Yes
No

Ref.Only
Ref.only
Ref.only

Part Component Port Yes Yes Yes Ref.only

Causal link Connection Connector
ObjectFlow

No
No

Yes
No

No
No

No
Yes

Acausal link Connection Connector No Yes Yes No
SysML-Modelica Transformation, v1.0 107

B.2 Modelica

In Modelica, ports are called connectors and the edges between ports are called connections [Modelica Spec, Chapter 9]. The ports
(connectors) can include four types of quantities: inputs, outputs, flows and non-flows. Inputs and output are used when the
direction of the flow is known and fixed, as for instance in signals flowing in a control system. Flow and non-flow quantities are
used to describe energy or material flow (they are also sometimes referred to as through and across variables, respectively).
When connecting two Modelica connectors with a connection, the semantics for inputs and outputs are causal binding: the input
is assigned the value of the output to which it is connected. Input and output connecters must therefore be used in conjugate pairs,
and only one output can be connected to each input. For flow and non-flow variables, the connection semantics correspond to
Kirchhoff's Laws, namely, the value of the flow variables add up to zero and the values of the non-flow variables are set equal (in
an equation-based, acausal fashion). When more than one connection is made to a connector containing a flow variable, then an
ideal, loss-less energy or material exchange is assumed by imposing that the values of flow variables of all connected connectors add
up to zero. To impose the correct modeling of energy exchange, Modelica requires that the number of flow and non-flow quantities
of a connector be equal.

In addition to connectors, Modelica models can contain variables and submodels (i.e., model usage in Table B.1). Although Modelica
does not explicitly distinguish between these three categories of “components” (i.e., connectors, variables, sub- models), it may still be
useful and desirable to distinguish explicitly among them when mapping to SysML.

B.3 SysML Hierarchical Blocks, ports and connectors

The primary purpose of the SysML hierachical Block constructs, is to express system structural decomposition and interconnection of
its parts [SysML Spec, Chapters 8 and 9]. The SysML concepts used in those constructs have quite flexible semantics and may be
used to establish logical and conceptual decompositions, for instance, as in a context view [SysML Spec, Section B.4.2.1]. The
Blocks in SysML are similar to Classes in Modelica (specifically the specialized class types of Model, Block, Connector, etc.).
Blocks can be decomposed in the same way Modelica Classes can be decomposed.

The “ports” on the blocks are called Ports and the connections between ports are called Connectors. There are two kinds of ports:
Flow Ports and Standard Ports. The Standard Ports are particularly geared towards service-based interactions by representing the
interfaces (e.g., software methods) that are provided or required by a particular block. Such service- based interactions are not
appropriate for modeling the connections found in Modelica. Flow Ports on the other hand do provide semantics that reflect
Modelica connectors more closely.

A Flow Port describes an interaction point through which input and/or output of items such as data, material, or energy may
flow in and out of a block. For Modelica-type interactions, the exchanged "items" could be either signals (for input and output
quantities) or energy/material (for flow and non-flow quantities). Modelica signal exchanges are causal and so the semantics of a
SysML Flow Port typed by a Flow specification is convenient. SysML binding connectors provide acausal connections between
properties. They imply equality between connected properties and then does not carry the Kirchhoff laws semantics. The
equivalent of a Binding Connector does not actually exist in Modelica, but can be captured in a non-graphical fashion by
introducing an equality equation between the two variables that are bound. Therefore, in order to capture the semantics of a
Modelica connection, one solution would be to introduce a new SysML connector element that is equivalent to a Modelica
Connector, and that reflects the semantics of Kirchhoff's laws. Another possibility would be to make the equations for Kirchhoff’s
laws, which are implicit in Modelica connections, explicit as another SysML Constraint Property. This option is appealing because
it makes the semantics very explicit, but has the disadvantage that it makes the models more cumbersome to create and more
difficult to read.

In conclusion, although blocks seem to have very similar constructs to Modelica, there are some subtle differences in so that new
stereotypes will have to be introduced to adequately capture the Modelica semantics of Connectors and Connections.
108 SysML-Modelica Transformation, v1.0

B.4 SysML Parametric Constraints

The purpose of Parametric Constraints is to express mathematical relationships between parameters. A Parametric Constraints is
modeled through a special kind of Block named “Constraint Block”. “Ports” of those blocks are Constraint Parameters and the
“connections” to those parameters are made using Binding Connectors. Inside a Constraint Block, mathematical relationships are
defined constraining its Constraint Parameters. A Constraint Property is a usage of a Constraint Block. Its Constraint Parameters are
then bound to other Constraint Parameters or to Properties of Blocks. The semantics of a Binding Connector indicate a
mathematical equality between the (Block) Properties or Constraint Parameters being connected. This mathematical equality is an
acausal relationship.

B.5 SysML Activity Graphs

The purpose of an Activity graph in SysML is to specify the transformation of inputs to outputs through a controlled sequence of
actions. An Activity decomposes into Actions. In activity graphs, the Object Nodes (i.e., Pins and Parameter Nodes) correspond
to buffers to place input and output tokens. The connections between Object Nodes correspond to Object Flows. These flows
typically represent the transfer of one or more objects at a discrete moment in time, although it is possible to specify a streaming
flow that could be continuous, i.e., the time between arrival of tokens (or “objects”) is zero. It is this latter case that needs to be
described in terms of differential equations.

It must be underlined that as defined in the context of SysML activities “flows”, are they continuous or not, correspond to the
concept of “dataflow” which is related to an asynchronous approach. Conversely, a Modelica flow specifies the existence of
relationships between the value of respectively flow and non-flow variables on both sides of a connection, as defined by
Kirchhoff's laws. Those relationships are mathematical equations and then corresponds to a synchronous approach.

In conclusion, SysML Activity Graphs can be convenient only to model Modelica input/output variables. Thus Activity graphs
therefore seems to be the least appropriate for a mapping from Modelica Class, although they will be explored when mapping the
Modelica Function and Algorithm to SysML4Modelica.

B.6 Selected foundation concept: SysML Hierarchical Blocks with Embedded
Constraints

It is clear from the discussion in the previous sub clauses that there is not a single concept that embeds the Modelica
semantics perfectly. As a result, the use of more than one SysML concept with multiple stereotypes will need to be
defined to extend the SysML semantics.

Blocks, ConstraintBlocks, FlowPorts, classical Connectors and BindingConnectors can be used to map Modelica Models, Components,
Connectors, and Connections to SysML. This is illustrated in Annex A.
SysML-Modelica Transformation, v1.0 109

110 SysML-Modelica Transformation, v1.0

Annex C: QVT Transformation
(non-normative)

C.1 Overview

The overview of an implementation of the SysML-Modelica Transformation based on QVT is shown in Figure C.1. The
QVT transformation files can be retrieved at these URLs:

• QVT Tranformation: http://www.omg.spec/SysM/20120214/Modelica2ModelicaUnparsed.qvto

• QVT Tranformation: http://www.omg.spec/SysM/20120215/ModelicaUnparsed2SysML.qvto

• QVT Tranformation: http://www.omg.spec/SysM/20120216/SysML2ModelicaUnparsed.qvto

• QVT Tranformation: http://www.omg.spec/SysM/20120217/ModelicaUnparsed2Modelica.qvto

Figure C.1 - Overview of an implementation of the SysML-Modelica Transformation based on QVT
SysML-Modelica Transformation, v1.0 111

112 SysML-Modelica Transformation, v1.0

	Preface
	Part I - Overview
	1 Scope
	1.1 OMG SysMLTM
	1.2 SysML-Modelica
	1.3 Conclusion
	1.4 Objective

	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgments

	7 Transformation Approach
	7.1 General

	Part II - SysML4Modelica Profile
	8 Class Definition
	8.1 Overview
	8.2 «modelicaClassDefinition»
	8.3 «modelicaClass» and «modelicaModel»
	8.4 «modelicaRecord»
	8.5 «modelicaBlock»
	8.6 «modelicaConnector»
	8.7 «modelicaType»
	8.8 «modelicaPackage»
	8.9 «modelicaFunction»
	8.10 «modelicaExtends»
	8.11 «modelicaDer»
	8.12 «modelicaConstrainedBy»
	8.13 Short Class Definitions

	9 Predefined Types
	9.1 Overview
	9.2 ModelicaReal
	9.3 ModelicaInteger
	9.4 ModelicaBoolean
	9.5 ModelicaString
	9.6 ModelicaStateSelect
	9.7 ModelicaExternalObject

	10 Component Declarations
	10.1 Overview
	10.2 «modelicaValueProperty»
	10.3 «modelicaPart»
	10.4 «modelicaPort»
	10.5 «modelicaFunctionParameter»

	11 Equation and Algorithm Sections
	11.1 Overview
	11.2 «modelicaEquation»
	11.3 «modelicaAlgorithm»
	11.4 «modelicaConnection»

	12 Other Related Constructs
	12.1 «modelicaSimulation»
	12.2 "modelicaAnnotation"

	Part III - Modelica Abstract Syntax
	13 Modelica Meta-Modeling Approach
	13.1 General

	14 Modelica Meta-Model Constructs
	14.1 The Model Structure Definition
	14.1.1 Program
	14.1.2 Within
	14.1.3 Path

	14.2 Class Definition
	14.2.1 Class
	14.2.2 Restriction
	14.2.3 ClassDef
	14.2.4 TypeSpec
	14.2.5 EnumDef
	14.2.6 EnumLiteral
	14.2.7 ClassPart
	14.2.8 ExternalDecl
	14.2.9 ElementItem
	14.2.10 Element
	14.2.11 InnerOuter
	14.2.12 ComponentRef
	14.2.13 Subscript
	14.2.14 ConstrainClass
	14.2.15 ElementSpec

	14.3 Import
	14.4 Annotation and Comments
	14.4.1 Annotation
	14.4.2 Comment

	14.5 Component Definition
	14.5.1 ComponentItem
	14.5.2 ComponentCondition
	14.5.3 Component
	14.5.4 ElementAttributes
	14.5.5 Variability
	14.5.6 Direction
	14.5.7 ArrayDim

	14.6 Modifications and Redeclarations
	14.6.1 Modification
	14.6.2 ElementArg
	14.6.3 RedeclareKeywords
	14.6.4 Each

	14.7 Behavior
	14.7.1 EquationItem
	14.7.2 AlgorithmItem
	14.7.3 Equation
	14.7.4 Algorithm

	14.8 Expressions
	14.8.1 Exp
	14.8.2 FunctionArgs
	14.8.3 ForIterator
	14.8.4 ForIterators
	14.8.5 NamedArg
	14.8.6 Operator

	Part IV - Transformation
	15 Class Definitions
	15.1 «modelicaClassDefinition»
	15.2 «modelicaClass»
	15.3 «modelicaModel»
	15.4 «modelicaRecord»
	15.5 «modelicaBlock»
	15.6 «modelicaConnector»
	15.7 «modelicaType»
	15.8 «modelicaPackage»
	15.9 «modelicaFunction»
	15.10 «modelicaExtends»
	15.11 «modelicaDer»
	15.12 «modelicaConstrainedBy»

	16 Predefined Types
	16.1 Overview

	17 Component Declarations
	17.1 Overview
	17.2 «modelicaPart»
	17.3 «modelicaPort»
	17.4 «modelicaValueProperty»
	17.5 «modelicaFunctionParameter»

	18 Equation and Algorithm Sections
	18.1 Overview
	18.2 «modelicaEquation»
	18.3 «modelicaAlgorithm»
	18.4 «modelicaConnection»

	Part V - Annexes
	Annex A: Examples
	A.1 A Car Suspension Model
	A.1.1 A Robot Model
	A.1.2 Robot Example

	Annex B: Justification
	B.1 Semantic Comparison between SysML and Modelica
	B.2 Modelica
	B.3 SysML Hierarchical Blocks, ports and connectors
	B.4 SysML Parametric Constraints
	B.5 SysML Activity Graphs
	B.6 Selected foundation concept: SysML Hierarchical Blocks with Embedded Constraints

	Annex C: QVT Transformation
	C.1 Overview

