
OMG SysML Specification Coversheet

This document is the OMG Proposed Available Specification (PAS) for SysML 1.0, which replaces
the Final Adopted Specification (FAS) for SysML 1.0 (ptc/06-05-04). It has been prepared by the
SysML Finalization Task Force (FTF).

See the following for further information regarding this PAS version, the OMG specification lifecy-
cle, and forthcoming specification versions:

OMG Document Access Page: http://www.omg.org/technology/documents/

OMG SysML Website: http://www.omgsysml.org/

OMG Proposed Available Specification for SysML 1.0
ptc/2007-02-03 (with change bars, a.k.a. the Convenience Document)
ptc/2007-02-04 (without change bars)
This document-released March 28, 2007.

Date: March 2007

OMG Systems Modeling Language (OMG SysMLTM)
Specification

Proposed Available Specification
ptc/2007-02-04

Copyright © 2003-2006, American Systems Corporation
Copyright © 2003-2006, ARTISAN Software Tools
Copyright © 2003-2006, BAE SYSTEMS
Copyright © 2003-2006, The Boeing Company
Copyright © 2003-2006, Ceira Technologies
Copyright © 2003-2006, Deere & Company
Copyright © 2003-2006, EADS Astrium GmbH
Copyright © 2003-2006, EmbeddedPlus Engineering
Copyright © 2003-2006, Eurostep Group AB
Copyright © 2003-2006, Gentleware AG
Copyright © 2003-2006, I-Logix, Inc.
Copyright © 2003-2006, International Business Machines
Copyright © 2003-2006, International Council on Systems Engineering
Copyright © 2003-2006, Israel Aircraft Industries
Copyright © 2003-2006, Lockheed Martin Corporation
Copyright © 2003-2006, Mentor Graphics
Copyright © 2003-2006, Motorola, Inc.
National Institute of Standards and Technology
Copyright © 2003-2006, Northrop Grumman
Copyright © 1997-2006, Object Management Group.
Copyright © 2003-2006, oose Innovative Informatik GmbH
Copyright © 2003-2006, PivotPoint Technology Corporation
Copyright © 2003-2006, Raytheon Company
Copyright © 2003-2006, Sparx Systems
Copyright © 2003-2006, Telelogic AB
Copyright © 2003-2006, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

This document describes a language specification developed by an informal partnership of vendors and users, with input from
additional reviewers and contributors. This document does not represent a commitment to implement any portion of this
specification in any company’s products. See the full text of this document for additional disclaimers and acknowledgments. The
information contained in this document is subject to change without notice.

The specification customizes the Unified Modeling Language (UML) specification of the Object Management Group (OMG) to
address the requirements of Systems Engineering as specified in the UML for Systems Engineering RFP, OMG document number
ad/2003-03-41. This document includes references to and excerpts from the UML 2 Superstructure Specification (OMG document
number Formal/05-07-04) and UML 2 Infrastructure Specification (OMG document number ptc/04-10-14) with copyright holders
and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following conditions are
met:

• Redistributions of this specification must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.

• The Copyright Holders listed in the above copyright notice may not be used to endorse or promote products derived from
this specification without specific prior written permission.

• All modified versions of this specification must include a prominent notice stating how and when the specification was
modified.

THIS SPECIFICATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SPECIFICATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TRADEMARKS

Systems Modeling Language and SysML, which are used to identify this specification, are not usable as trademarks since
SysML Partners has established their usage to identify this specification without any trademark status or restriction.
Organizations that wish to establish trademarks related to this specification should distinguish them somehow from SysML
and Systems Modeling Language, for example by adding a unique prefix (e.g., OMG SysML).

Unified Modeling Language and UML are trademarks of the OMG. All other products or company names mentioned are used
for identification purposes only, and may be trademarks of their respective owners.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ , OMG SysMLTM, and the XMI
Logo™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

0.1 OMG’s Issue Reporting Procedure 1

- Introduction 1

1 Scope 3

2 Normative References 3

3 Additional Information 4

3.1 Relationships to Other Standards 4

3.2 How to Read this Specification 4

3.3 Acknowledgements 4

4 Language Architecture 7
4.1 Design Principles 7

4.2 Architecture 8

4.3 Extension Mechanisms 10

4.4 SysML Diagrams 11

5 Compliance 13
5.1 Compliance with UML Subset (UML4SysML) 13

5.1.1 Compliance Level Contents 13

5.2 Compliance with SysML Extensions 14

5.3 Meaning of Compliance 15

6 Language Formalism 19

6.1 Levels of Formalism 19

6.2 Chapter Specification Structure 19
6.2.1 Overview 19
6.2.2 Diagram Elements 19
6.2.3 UML Extensions 20

 6.2.3.1 Usage Examples 20

6.3 Conventions and Typography 20

 Structural Constructs 21

7 Model Elements 23
OMG SysMLTM Adopted Specification i

7.1 Overview 23

7.2 Diagram Elements 23
7.2.1 Graphical Nodes and Paths 24

7.3 UML Extensions 27
7.3.1 Diagram Extensions 27

 7.3.1.1 Stereotype Keywords or Icons Inside a Comment Note Box 27
 7.3.1.2 UML Diagram Elements not Included in SysML 27

7.3.2 Stereotypes 28
 7.3.2.1 Conform 28
 7.3.2.2 Problem 28
 7.3.2.3 Rationale 29
 7.3.2.4 View 29
 7.3.2.5 Viewpoint 29

7.4 Usage Examples 30

8 Blocks 33
8.1 Overview 33

8.2 Diagram Elements 34
8.2.1 Block Definition Diagram 35

 8.2.1.1 Graphical Nodes and Paths 35
8.2.2 Internal Block Diagram 40

 8.2.2.1 Graphical Nodes and Paths 40

8.3 UML Extensions 41
8.3.1 Diagram Extensions 41

 8.3.1.1 Block Definition Diagram 41
 8.3.1.2 Internal Block Diagram 43
 8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams 45
 8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams 45

8.3.2 Stereotypes 46
 8.3.2.1 Block 47
 8.3.2.2 DistributedProperty 49
 8.3.2.3 Dimension 49
 8.3.2.4 NestedConnectorEnd 50
 8.3.2.5 PropertySpecificType 50
 8.3.2.6 Unit 50
 8.3.2.7 ValueType 51
 8.3.2.8 ParticipantProperty 51
 8.3.2.9 ConnectorProperty 52
 8.3.2.10 Binding Connector 53

8.3.3 Model Libraries 53
 8.3.3.1 Complex 53
 8.3.3.2 Real 53

8.4 Usage Examples 54
8.4.1 Wheel Hub Assembly 54
8.4.2 SI Value Types 56
8.4.3 Design Configuration for SUV EPA Fuel Economy Test 57
8.4.4 Water delivery 58
ii OMG SysMLTM Adopted Specification

9 Ports and Flows 55
9.1 Overview 55

9.1.1 Standard Ports 55
9.1.2 Flow Ports 55
9.1.3 Item Flows 55

9.2 Diagram Elements 57
9.2.1 Extensions to Block Definition Diagram. 57

 9.2.1.1 Extensions to Internal Block Diagram 59

9.3 UML Extensions 60
9.3.1 Diagram Extensions 60

 9.3.1.1 FlowPort 60
 9.3.1.2 FlowProperty 60
 9.3.1.3 FlowSpecification 61
 9.3.1.4 ItemFlow 61

9.3.2 Stereotypes 61
 9.3.2.1 Package Ports&Flows 61
 9.3.2.2 Block 62
 9.3.2.3 Standard Port 62
 9.3.2.4 FlowDirection 63
 9.3.2.5 FlowPort 63
 9.3.2.6 FlowProperty 65
 9.3.2.7 FlowSpecification 65
 9.3.2.8 ItemFlow 65

9.4 Usage Examples 66
9.4.1 Standard Ports 66

 9.4.1.1 Atomic Flow Ports and Item Flows 68
 9.4.1.2 Non-Atomic Flow Ports and Flow Specification 69

10 Constraint Blocks 71
10.1 Overview 71

10.2 Diagram Elements 72
10.2.1 Block Definition Diagram 72

 10.2.1.1 Graphical Nodes 72
10.2.2 Parametric Diagram 72

 10.2.2.1 Graphical Nodes 73

10.3 UML Extensions 73
10.3.1 Diagram Extensions 73

 10.3.1.1 Block Definition Diagram 73
 10.3.1.2 Parametric Diagram 74

10.3.2 Stereotypes 74
 10.3.2.1 ConstraintBlock 75
 10.3.2.2 ConstraintProperty 75

10.4 Usage Examples 75
10.4.1 Definition of Constraint Blocks on a Block Definition Diagram 75
10.4.2 Usage of Constraint Blocks on a Parametric Diagram 76

 Behavioral Constructs 79
OMG SysMLTM Adopted Specification iii

11 Activities 81
11.1 Overview 81

11.1.1 Control as Data 81
 11.1.1.1 Continuous Systems 81

11.2 Diagram Elements 82

11.3 UML Extensions 89
11.3.1 Diagram Extensions 89

 11.3.1.1 Activity 89
 11.3.1.2 CallBehaviorAction 90
 11.3.1.3 ControlFlow 91
 11.3.1.4 ObjectNode 91

11.3.2 Stereotypes 93
 11.3.2.1 Continuous 93
 11.3.2.2 ControlOperator 94
 11.3.2.3 Discrete 94
 11.3.2.4 NoBuffer 94
 11.3.2.5 Overwrite 95
 11.3.2.6 Optional 95
 11.3.2.7 Probability 95
 11.3.2.8 Rate 96

11.3.3 Model Libraries 96
 11.3.3.1 ControlValue 96

11.4 Usage Examples 97

12 Interactions 101

12.1 Overview 101

12.2 Diagram Elements 101
12.2.1 Sequence Diagram 101

12.3 UML Extensions 105
12.3.1 Diagram Extensions 105

 12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
 Timing Diagram 105

12.4 Usage Examples 106
12.4.1 Sequence Diagrams 106

13 State Machines 109

13.1 Overview 109

13.2 Diagram Elements 109
13.2.1 State Machine Diagram 109

13.3 UML Extensions 112

13.4 Usage Examples 112
13.4.1 State Machine Diagram 112

14 Use Cases 115
iv OMG SysMLTM Adopted Specification

14.1 Overview 115

14.2 Diagram Elements 115
14.2.1 Use Case Diagram 115

14.3 UML Extensions 117

14.4 Usage Examples 118

 Crosscutting Constructs 121

15 Allocations 123
15.1 Overview 123

15.2 Diagram Elements 123
15.2.1 Representing Allocation on Diagrams 124

15.3 UML Extensions 125
15.3.1 Diagram Extensions 125

 15.3.1.1 Tables 125
 15.3.1.2 Allocate Relationship Rendering 125
 15.3.1.3 Allocated Property Compartment Format 125
 15.3.1.4 Allocated Property Callout Format 125
 15.3.1.5 AllocatedActivityPartition Label 126

15.3.2 Stereotypes 126
 15.3.2.1 Allocate(from Allocations) 126
 15.3.2.2 Allocated(from Allocations) 127
 15.3.2.3 AllocateActivityPartition(from Allocations) 128

15.4 Usage Examples 129
15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks 129
15.4.2 Allocate Flow 130

 15.4.2.1 Allocating Structure 131
 15.4.2.2 Automotive Example 132

15.4.3 Tabular Representation 133

16 Requirements 135

16.1 Overview 135

16.2 Diagram Elements 137
16.2.1 Requirements Diagrams 137

16.3 UML Extensions 140
16.3.1 Diagram Extensions 140

 16.3.1.1 Requirement Diagram 140
 16.3.1.2 Requirement Notation 140
 16.3.1.3 Requirement Property Callout Format 140
 16.3.1.4 Requirements on Other Diagrams 140
 16.3.1.5 Requirements Table 141

16.3.2 Stereotypes 141
 16.3.2.1 Copy (from Requirements) 143
 16.3.2.2 DeriveReqt (from Requirements) 143
 16.3.2.3 Requirement (from Requirements) 144
 16.3.2.4 RequirementRelated (from Requirements) 145
OMG SysMLTM Adopted Specification v

 16.3.2.5 TestCase (from Requirements) 145
 16.3.2.6 Satisfy (from Requirements) 145
 16.3.2.7 Verify (from Requirements) 146

16.4 Usage Examples 146
16.4.1 Requirement Decomposition and Traceability 146

 16.4.1.1 Requirements and Design Elements 147
 16.4.1.2 Requirements Reuse 148
 16.4.1.3 Verification Procedure (Test Case) 149

17 Profiles & Model Libraries 151
17.1 Overview 151

17.2 Diagram Elements 152
17.2.1 Profile Definition in Class Diagram 152

 17.2.1.1 Extension 154
17.2.2 Stereotypes Used On Diagrams 155

 17.2.2.1 StereotypeInNode 156
 17.2.2.2 ΣτερεοτψπεΙνΧομμεντ 156
 17.2.2.3 StereotypeInCompartment 157

17.3 UML Extensions 157

17.4 Usage Examples 157
17.4.1 Defining a Profile 157
17.4.2 Adding Stereotypes to a Profile 158
17.4.3 Defining a Model Library that Uses a Profile 159
17.4.4 Guidance on Whether to Use a Stereotype or Class 159
17.4.5 Using a Profile 160
17.4.6 Using a Stereotype 161
17.4.7 Using a Model Library Element 161

 Annexes 163

18 Annex A: Diagrams 165
18.1 Overview 165

18.2 Guidelines 169

19 Sample Problem 171
19.1 Purpose 171

19.2 Scope 171

19.3 Problem Summary 171

19.4 Diagrams 172
19.4.1 Package Overview (Structure of the Sample Model) 172

 19.4.1.1 Package Diagram - Applying the SysML Profile 172
 19.4.1.2 Package Diagram - Showing Package Structure of the Model 173

19.4.2 Setting the Context (Boundaries and Use Cases) 174
 19.4.2.1 Internal Block Diagram - Setting Context 174
 19.4.2.2 Use Case Diagram - Top Level Use Cases 175
vi OMG SysMLTM Adopted Specification

 19.4.2.3 Use Case Diagram - Operational Use Cases 176
19.4.3 Elaborating Behavior (Sequence and State Machine Diagrams) 177

 19.4.3.1 Sequence Diagram - Drive Black Box 177
 19.4.3.2 State Machine Diagram - HSUV Operational States 178
 19.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box 179

19.4.4 Establishing Requirements (Requirements Diagrams and Tables) 181
 19.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy 181
 19.4.4.2 Requirement Diagram - Derived Requirements 181
 19.4.4.3 Requirement Diagram - Acceleration Requirement Relationships 182
 19.4.4.4 Table - Requirements Table 183

19.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams) 184

 19.4.5.1 Block Definition Diagram - Automotive Domain 184
 19.4.5.2 Block Definition Diagram - Hybrid SUV 185
 19.4.5.3 Internal Block Diagram - Hybrid SUV 186
 19.4.5.4 Block Definition Diagram - Power Subsystem 187
 19.4.5.5 Internal Block Diagram for the “Power Subsystem” 187

19.4.6 Defining Ports and Flows 189
 19.4.6.1 Block Definition Diagram - ICE Interface 189
 19.4.6.2 Internal Block Diagram - CANbus 189
 19.4.6.3 Block Definition Diagram - Fuel Flow Properties 190
 19.4.6.4 Parametric Diagram - Fuel Flow 191
 19.4.6.5 Internal Block Diagram - Fuel Distribution 191

19.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views) 192
 19.4.7.1 Block Definition Diagram - Analysis Context 192
 19.4.7.2 Package Diagram - Performance View Definition 193
 19.4.7.3 Parametric Diagram - Measures of Effectiveness 194
 19.4.7.4 Parametric Diagram - Economy 195
 19.4.7.5 Parametric Diagram - Dynamics 196
 19.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration 198

19.4.8 Defining, Decomposing, and Allocating Activities 200
 19.4.8.1 Activity Diagram - Acceleration (top level) 200
 19.4.8.2 Block Definition Diagram - Acceleration 201
 19.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail) 201
 19.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation 202
 19.4.8.5 Table - Acceleration Allocation 203
 19.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test 204

20 Annex C: Non-normative Extensions 205

20.1 Activity Diagram Extensions 205
20.1.1 Overview 205
20.1.2 Stereotypes 205
20.1.3 Stereotype Examples 206

20.2 Requirements Diagram Extensions 208
20.2.1 Overview 208
20.2.2 Stereotypes 208
20.2.3 Stereotype Examples 209

20.3 Parametric Diagram Extensions for Trade Studies 210
20.3.1 Overview 210
20.3.2 Stereotypes. 211
20.3.3 Stereotype Examples 211
OMG SysMLTM Adopted Specification vii

20.4 Model Library for Dimensions and Units 211

20.5 Distribution Extensions 214
20.5.1 Overview 214
20.5.2 Stereotypes 215
20.5.3 Usage Example 215

21 Annex D: Model Interchange 217
21.1 Overview 217

21.2 Context for Model Interchange 217

21.3 XMI Serialization of SysML 217

21.4 Overview of ISO 10303-233 STEP AP233 218
21.4.1 Scope of ISO 10303-233 STEP AP233 218
21.4.2 ISO 10303-233 STEP AP233 Development Approach & Status 218
21.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms 219

 21.4.3.1 Modular Architecture 219
 21.4.3.2 The Modeling Language for ISO 10303-233 STEP AP233 220
 21.4.3.3 Model Interchange Mechanisms 221

21.4.4 ISO 10303-233 STEP AP233 - SysML Alignment & Mapping Model 221
21.4.5 Generic Procedures for SysML and ISO 10303-233 STEP AP233 Model Interchange
222

 21.4.5.1 File-based Exchange 222
 21.4.5.2 API-Driven Model Interchange 222

22 Annex E: Requirements Traceability 223

23 Annex F: Terms and Definitions 247
viii OMG SysMLTM Adopted Specification

List of Figures

Figure 7.1- Overview of SysML/UML Interrelationship 7
Figure 4.2- SysML Extension of UML 8
Figure 4.3- SysML Package Structure 10
Figure 4.4- SysML Diagram Taxonomy 11
Figure 7.1- Notation for the Rationale stereotype of Comment 27
Figure 4.2- Stereotypes defined in package ModelElements. 28
Figure 4.3- View/Viewpoint example 30
Figure 4.4- Rationale and Problem example 31
Figure 4.5- Nested property reference 44
Figure 4.6- Abstract syntax expressions for SysML blocks 46
Figure 4.7- Abstract syntax extensions for SysML properties 46
Figure 4.8- Abstract syntax extensions for SysML value types 46
Figure 4.9- Abstract syntax extensions for SysML connector ends 47
Figure 4.10- Abstract syntax extensions for SysML property-specific types 47
Figure 4.11- Model Library for Blocks 53
Figure 4.12- Block diagram for the Wheel Package 55
Figure 4.13- Internal Block Diagram for WheelHubAssembly 56
Figure 4.14- Defining Value Types with units and dimensions 56
Figure 4.15- SUV EPA Fuel Economy Test 58
Figure 4.16Association Block water delivery 59
Figure 4.17 59
Figure 4.18 60
Figure 4.19 61
Figure 4.20 62
Figure 4.21 63
Figure 4.22 63
Figure 4.23- Port Stereotypes 61
Figure 4.24- ItemFlow Stereotype 62
Figure 4.25- Usage Example of StandardPorts 67
Figure 4.26- Interfaces of the Internal Combustion Engine ctrl Standard Port 67
Figure 4.27- Usage of Atomic Flow Ports in the HybridSUV Sample - ibd:FuelDist diagram 68
Figure 4.28 - Using Flow Ports to Connect the PowerControlUnit to the ElectricalPowerController, Trans-
mission and InternalCombustionEngine over a CAN bus 69
Figure 4.29- Flow Specification for the InternalCombustionEngine flow port to allow its connection over
the CAN bus 70
Figure 4.30- Stereotypes defined in SysML ConstraintBlocks package 74
Figure 4.31- Constraint block definitions in a Block Definition diagram 76
Figure 4.32- Block definition diagram with activities as blocks. 90
Figure 4.33- CallBehaviorAction notation.with behavior stereotype 90
Figure 4.34- CallBehaviorAction notation.with action name 91
Figure 4.35- Control flow notation 91
OMG SysMLTM Adopted Specification vii

Figure 4.36- Class or block definition diagram with activities as classes associated with types of object
nodes 92
Figure 4.37- ObjectNode notation in activity diagrams 92
Figure 4.38- ObjectNode notation in activity diagrams 92
Figure 4.39- Abstract Syntax for SysML Activity Extensions 93
Figure 4.40- Control values. 96
Figure 4.41- Continuous system example 1. 98
Figure 4.42- Continuous system example 2. 99
Figure 4.43- Continuous system example 3 99
Figure 4.44- Example block definition diagram for activity decomposition 100
Figure 4.45- Example block definition diagram for object node types 100
Figure 4.46- Hierarchical Sequence Diagram illustrating system behavior for “Operate the vehicle” use
case 106
Figure 4.47- Black box interaction during “starting the Hybrid SUV” 107
Figure 4.48- White box interaction for “starting the Hybrid SUV” 107
Figure 4.49- High level view of the states of the HybridSUV 113
Figure 4.50- Top level use case diagram for the Hybrid SUV subject 118
Figure 4.51- Operate the Vehicle use case at a lower level of abstraction 119
Figure 4.52- Abstract syntax extensions for SysML Allocation 126
Figure 4.53- Abstract syntax expression for AllocatedActivityPartition 126
Figure 4.54- Generic Allocation, including /from and /to association ends 129
Figure 4.55- Behavior allocation 129
Figure 4.56- Example of flow allocation from ObjectFlow to Connector 130
Figure 4.57- Example of flow allocation from ObjectFlow to ItemFlow 130
Figure 4.58- Example of flow allocation from ObjectNode to FlowProperty 131
Figure 4.59- Example of Structural Allocation 131
Figure 4.60- AllocateActivityPartitions (Swimlanes) for HybridSUV Cellarette Example 132
Figure 4.61- Internal Block Diagram Showing Allocation for HybridSUV Accelerate Example 133
Figure 4.62- Allocation Table (Tree) Showing Allocation for Hybrid SUV Cellarette Example 133
Figure 4.63- Allocation Matrix Showing Allocation for Hybrid SUV Cellarette Example 134
Figure 4.64- Abstract Syntax for Requirements Stereotypes 142
Figure 4.65- Abstract Syntax for Requirements Stereotypes (cont) 143
Figure 4.66- Requirements Derivation 146
Figure 4.67- Links between requirements and design 147
Figure 4.68- Requirement satisfaction in an internal block diagram. 148
Figure 4.69- Use of the copy dependency to facilitate reuse 148
Figure 4.70- Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram. 149
Figure 4.71- Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram.
150
Figure 4.72- Defining a stereotype 154
Figure 4.73- Using a stereotype 156
Figure 4.74- Using stereotypes and showing values 156
Figure 4.75- Other notational forms for showing values 157
viii OMG SysMLTM Adopted Specification

Figure 4.76- Definition of a profile 157
Figure 4.77- Profile Contents 158
Figure 4.78- Two model libraries 159
Figure 4.79- A model with applied profile and imported model library 160
Figure 4.80- Using two stereotypes on a model element 161
Figure 4.81- Using model library elements 161
Figure 4.82- SysML Diagram Taxonomy 165
Figure 4.83- Diagram Frame 167
Figure 4.84- Diagram Usages 169
Figure 4.85Establishing the User Model by Importing and Applying SysML Profile & Model Library
(Package Diagram) 172
Figure 4.86- Defining valueTypes and units to be Used in the Sample Problem 173
Figure 4.87- Establishing Structure of the User Model using Packages and Views (Package Diagram) 174
Figure 4.88- Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram.
(Internal Block Diagram) Completeness of Diagram Noted in Diagram Description 175
Figure 4.89- Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram) 176
Figure 4.90- Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram) 177
Figure 4.91- Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)
178
Figure 4.92- Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram) 179
Figure 4.93- Black Box Interaction for “StartVehicle”, referencing White Box Interaction (Sequence Dia-
gram) 180
Figure 4.94- White Box Interaction for “StartVehicle” (Sequence Diagram) 180
Figure 4.95- Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram) 181
Figure 4.96- Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hier-
archy (Requirements Diagram) 182
Figure 4.97- Acceleration Requirement Relationships (Requirements Diagram) 183
Figure 4.98- Requirements Relationships Expressed in Tabular Format (Table) 184
Figure 4.99- Defining the Automotive Domain (compare with Figure B.4) - (Block Definition Diagram)
185
Figure 4.100- Defining Structure of the Hybrid SUV System (Block Definition Diagram) 185
Figure 4.101- Internal Structure of Hybrid SUV (Internal Block Diagram) 186
Figure 4.102- Defining Structure of Power Subsystem (Block Definition Diagram) 187
Figure 4.103- Internal Structure of the Power Subsystem (Internal Block Diagram) 188
Figure 4.104- Interfaces Typing StandardPorts Internal to the Power Subsystem (Block Definition Dia-
gram) 188
Figure 4.105- Initially Defining Flow Specifications for the CAN Bus (Block Definition Diagram) 189
Figure 4.106- Consolidating Interfaces into the CAN Bus. (Internal Block Diagram) 190
Figure 4.107- Elaborating Definition of Fuel Flow. (Block Definition Diagram) 190
Figure 4.108- Defining Fuel Flow Constraints (Parametric Diagram) 191
Figure 4.109- Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram) 192
Figure 4.110- Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)
193
Figure 4.111- Establishing a Performance View of the User Model (Package Diagram) 194
Figure 4.112- Defining Measures of Effectiveness and Key Relationships (Parametric Diagram) 195
Figure 4.113- Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Dia-
gram) 196
OMG SysMLTM Adopted Specification ix

Figure 4.114- Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram) 197
Figure 4.115- Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Di-
agram) 198
Figure 4.116- Results of Maximum Acceleration Analysis (Timing Diagram) 199
Figure 4.117- Behavior Model for “Accelerate” Function (Activity Diagram) 200
Figure 4.118- Decomposition of “Accelerate” Function (Block Definition diagram) 201
Figure 4.119- Detailed Behavior Model for “Provide Power” (Activity Diagram)
Note hierarchical consistency with Figure B.33. 202
Figure 4.120- Flow Allocation to Power Subsystem (Internal Block Diagram) 203
Figure 4.121- Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Sub-
system (Table) 203
Figure 4.122- Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial
numbers) 204
Figure 4.123- Example activity with «effbd» stereotype applied 207
Figure 4.124- Example activity with «streaming» and «nonStreaming» stereotypes applied to subactiv-
ities. 207
Figure 4.125- Example extensions to Requirement 210
Figure 4.126- SI Definitions model library 212
Figure 4.127- SI Base Units 212
Figure 4.128- SI Derived Units Expressed In Base Units 213
Figure 4.129- SI Derived Units With Special Names 214
Figure 4.130- Basic distribution stereotypes 215
Figure 4.131- Distribution Example 216
Figure 4.132- AP233 Modules 219
Figure 4.133- Mapping Model 222
x OMG SysMLTM Adopted Specification

List of Tables

Table 4.1- Detail of UML Reuse 9
Table 5.2- Metamodel packages added in Level 1 13
Table 5.3- Metamodel packages added in Level 2 14
Table 5.4Metamodel packages added in Level 3 14
Table 5.5- SysML package dependence on UML4SysML compliance levels 15
Table 5.6- Example compliance statement 16
Table 5.7- Example feature support statement 16
Table 5.8- Graphical nodes defined by ModelElements package. 24
Table 5.9- Graphical paths defined by ModelElements package. 26
Table 5.10moe refers to Measure of Effectiveness (see Appendix C.3.2) 30
Table 5.11- Graphical nodes defined in Block Definition diagrams 35
Table 5.12Graphical paths defined by in Block Definition diagrams. 37
Table 5.13- Graphical nodes defined in Internal Block diagrams 40
Table 5.14- Graphical paths defined in Internal Block diagrams 41
Table 5.15- Extensions to Block Definition Diagram 57
Table 5.16- Extension to Internal Block Diagram 59
Table 4.1- Graphical nodes defined in Block Definition diagrams 72
Table 4.1- Graphical nodes defined in Parametric diagrams. 73
Table 5.2- Constraints on a parametric diagram 77
Table 5.3- Graphical nodes included in activity diagrams 82
Table 5.4- Graphical paths included in activity diagrams 87
Table 5.5- Other graphical elements included in activity diagrams 88
Table 5.6- Graphical nodes included in sequence diagrams. 101
Table 5.7- Graphical paths included in sequence diagram 105
Table 5.8- Graphical nodes included in state machine diagrams. 109
Table 5.9- Graphical paths included in state machine diagrams 112
Table 5.10- Graphical nodes included in Use Case diagrams 115
Table 5.11- Graphical paths included in Use Case diagrams 116
Table 5.12- Extension to graphical nodes included in diagrams 124
Table 5.13- Graphical nodes included in Requirement diagrams 137
Table 5.14- Graphical paths included in Requirement diagrams 138
Table 5.15- Graphical nodes used in profile definition 152
Table 5.16- Graphical paths used in profile definition 153
Table 5.17- Notations for Stereotype Use 155
Table 5.18- Addition stereotypes for EFFBDs 205
Table 5.19- Streaming options for activities 206
Table 5.20- Additional Requirement Stereotypes 208
Table 5.21- Requirement property enumeration types 209
Table 5.22- Stereotypes for Measures of Effectiveness 211
Table 5.23- Distribution Stereotypes 215
OMG SysMLTM Adopted Specification xi

xii OMG SysMLTM Adopted Specification

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).
 xiii

Platform Specific Model and Interface Specifications

• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
xiv

Part I - Introduction

This specification defines a general-purpose modeling language for systems engineering applications, called the OMG
Systems Modeling Language (OMG SysMLTM). Throughout the rest of the specification, the language will be referred to
as SysML.

SysML supports the specification, analysis, design, verification and validation of a broad range of complex systems.
These systems may include hardware, software, information, processes, personnel, and facilities.

The origins of the SysML initiative can be traced to a strategic decision by the International Council on Systems
Engineering’s (INCOSE) Model Driven Systems Design workgroup in January 2001 to customize the Unified Modeling
Language (UML) for systems engineering applications. This resulted in a collaborative effort between INCOSE and the
Object Management Group (OMG), which maintains the UML specification, to jointly charter the OMG Systems
Engineering Domain Special Interest Group (SE DSIG) in July 2001. The SE DSIG, with support from INCOSE and the
ISO AP 233 workgroup, developed the requirements for the modeling language, which were subsequently issued by the
OMG as part of the UML for Systems Engineering Request for Proposal (UML for SE RFP; OMG document ad/03-03-
41) in March 2003.

Currently it is common practice for systems engineers to use a wide range of modeling languages, tools and techniques on
large systems projects. In a manner similar to how UML unified the modeling languages used in the software industry,
SysML is intended to unify the diverse modeling languages currently used by systems engineers.

SysML reuses a subset of UML 2.1 and provides additional extensions needed to address the requirements in the UML for
SE RFP. SysML uses the UML 2.1 extension mechanisms as further elaborated in Chapter 17, “Profiles & Model
Libraries” of this specification as the primary mechanism to specify the extensions to UML 2.1.

Since SysML uses UML 2.1 as its foundation, systems engineers modeling with SysML and software engineers modeling
with UML 2.1 will be able to collaborate on models of software-intensive systems. This will improve communication
among the various stakeholders who participate in the systems development process and promote interoperability among
modeling tools. It is anticipated that SysML will be customized to model domain specific applications, such as
automotive, aerospace, communications and information systems.
OMG SysMLTM Adopted Specification 1

2 OMG SysMLTM Adopted Specification

1 Scope

The purpose of this document is to specify Systems Modeling Language (SysML), a new general-purpose modeling
language for systems engineering that satisfies the requirements of the UML for SE RFP. Its intent is to specify the
language so that systems engineering modelers may learn to apply and use SysML, modeling tool vendors may implement
and support SysML, and both can provide feedback to improve future versions.

SysML reuses a subset of UML 2 and provides additional extensions to satisfy the requirements of the language. This
specification documents the language architecture in terms of the parts of UML 2 that are reused and the extensions to
UML 2. The specification includes the concrete syntax (notation) for the complete language and specifies the extensions
to UML 2. The reusable portion of the UML 2 specification is not included directly in the specification but is included by
reference. The specification also provides examples of how the language can be used to solve common systems
engineering problems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, and allocations, and constraints on
system properties to support engineering analysis. The language is intended to support multiple processes and methods
such as structured, object-oriented, and others, but each methodology may impose additional constraints on how a
construct or diagram kind may be used. The initial version of the language supports most, but not all of the requirements
of the UML for SE RFP, as shown in the Requirements Traceability Matrix in Annex E. These gaps are intended to be
addressed in future versions of SysML as indicated in the matrix.

SysML is intended to be supported by two evolving interoperability standards: the OMG XMI 2.1 model interchange
standard for UML 2 modeling tools and the ISO 10303-233 data interchange standard for systems engineering tools.
While the details of this alignment are beyond the scope of this specification, overviews of the alignment approach and
relevant references are furnished in Annex D.1.

The following sections provide background information about this specification. Instructions to either systems engineers
and vendors who read this specification are provided in Section 3.2, “How to Read this Specification. The main body of
this document (Parts II-IV) describes the normative technical content of the specification. The appendices include
additional information to aid in understanding and implementation of this specification.

2 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications.

• UML for Systems Engineering RFP (OMG document number ad/2003-03-41)

• UML 2.1 Superstructure Specification convenience document (OMG document number ptc/06-01-02)

• UML 2.1 Infrastructure Specification v 2.1.1 (OMG document number formal/07-02-06)

• XMI 2.1 Specification (OMG document number formal/2005-09-01)
OMG SysMLTM Proposed Available Specification 3

3 Additional Information

3.1 Relationships to Other Standards

SysML is defined as an extension of the OMG UML 2.1 Superstructure Specification.

SysML is intended to be supported by two evolving interoperability standards including the OMG XMI 2.1 model
interchange standard for UML 2 modeling tools and the ISO 10303 STEP AP233 data interchange standard for systems
engineering tools. The overviews of the approach to model interchange and relevant references are included in Annex
D.1.

SysML supports the OMG’s Model Driven Architecture initiative by its reuse of the UML and related standards.

3.2 How to Read this Specification

This specification is intended to be read by systems engineers so that they may learn and apply SysML, and by modeling
tool vendors so that they may implement and support SysML. As background, all readers are encouraged to first read Part
I “- Introduction”.

After reading the introduction, readers should be prepared to explore the user-level constructs defined in the next three
parts: Part II - “Structural Constructs”, Part III - “Behavioral Constructs”, and Part IV - “Crosscutting Constructs”.
Systems engineers should read the Overview, Diagram Elements and Usage Examples sections in each chapter, and
explore the UML Extensions as they see fit. Modeling tool vendors should read all sections. In addition, systems
engineers and vendors should read Annex B - “Sample Problem” to understand how the language is applied to an
example, and “Annex E: Requirements Traceability” to understand how the requirements in the UML for SE RFP are
satisfied by this specification.

Although the chapters are organized into logical groupings that can be read sequentially, this specification can be used for
reference and may be read in a non-sequential manner.

3.3 Acknowledgements

The following companies submitted or supported parts of this specification:

Industry

• American Systems Corporation

• BAE SYSTEMS

• Boeing

• Deere & Company

• EADS Astrium

• Eurostep

• Israel Aircraft Industries

• Lockheed Martin Corporation

• Motorola

• Northrop Grumman

• oose Innovative Informatik GmbH

• PivotPoint Technology
4 OMG SysMLTM Proposed Available Specification

• Raytheon

• THALES

US Government

• NASA/Jet Propulsion Laboratory

• National Institute of Standards and Technology (NIST)

• DoD/Office of the Secretary of Defense (OSD)

Vendors

• ARTISAN Software Tools

• Ceira Technologies

• EmbeddedPlus Engineering

• Gentleware

• IBM

• I-Logix

• Mentor Graphics

• Telelogic

• Structured Software Systems Limited

• Sparx Systems

• Vitech

Academia

• Georgia Institute of Technology

Liaisons

• Consultative Committee for Space Data Systems (CCSDS)

• Embedded Architecture and Software Technologies (EAST)

• International Council on Systems Engineering (INCOSE)

• ISO STEP AP233

• Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this specification: Vincent Arnould, Laurent
Balmelli, Ian Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray Cantor,
Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery, Hal
Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert Long, Kumar Marimuthu,
Alan Moore, Veronique Normand, Salah Obeid, Eldad Palachi, David Price, Bran Selic, Chris Sibbald, Joseph Skipper,
Rick Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens, Thomas Weigert and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri, Julian Johnson, Jim
Long, Henrik Lönn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames and the Georgia Institute of
Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell Peak and Diego Tamburini. The
SysML team also wants to acknowledge Pavel Hruby and his contribution by providing the Visio stencil for UML 2.1 that
was adapted for most of the figures throughout this specification.
OMG SysMLTM Proposed Available Specification 5

6 OMG SysMLTM Proposed Available Specification

4 Language Architecture

SysML reuses a subset of UML 2 and provides additional extensions needed to address the requirements in the UML for
SE RFP. This specification documents the language architecture in terms of the parts of UML 2 that are reused and the
extensions to UML 2. This chapter explains design principles and how they are applied to define the SysML language
architecture.

In order to visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in
Figure 4.1, where the sets of language constructs that comprise the UML and SysML languages are shown as the circles
marked “UML” and “SysML”, respectively. The intersection of the two circles, shown by the cross-hatched region
marked “UML reused by SysML,” indicates the UML modeling constructs that SysML re-uses. The compliance matrix in
Table 4.1 below specifies the UML packages that a SysML tool must reuse in order to implement SysML.

The region marked “SysML extensions to UML” in Figure 4.1 indicates the new modeling constructs defined for SysML
which have no counterparts in UML, or replace UML constructs. Note that there is also a part of UML 2.1 that is not
required to implement SysML, which is shown by the region marked “UML not required by SysML.”

Figure 4.1 - Overview of SysML/UML Interrelationship

4.1 Design Principles

The fundamental design principles for SysML are:

• Requirements driven. SysML is intended to satisfy the requirements of the UML for SE RFP.

• UML reuse. SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when modifications
are required, they are done in a manner that strives to minimize changes to the underlying language. Consequently,

UML 2

UML 2
Reuse
(1, 2)

UML
reused by

SysML
(UML4SysML)

UML
not required
by SysML

(UML -
UML4SysML)

SysML
extensions to

UML
(SysML Profile)

SysML
OMG SysMLTM Proposed Available Specification 7

SysML is intended to be relatively easy to implement for vendors who support UML 2.1 or later versions.

• UML extensions. SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension
mechanism is the UML 2.1 profile mechanism as further refined in Chapter 17, “Profiles & Model Libraries” of this
specification.

• Partitioning. The package is the basic unit of partitioning in this specification. The packages partition the model
elements into logical groupings which minimize circular dependencies among them.

• Layering. SysML packages are specified as an extension layer to the UML metamodel.

• Interoperability. SysML inherits the XMI interchange capability from UML. SysML is also intended to be supported
by the ISO 10303-233 data interchange standard to support interoperability among other engineering tools.

4.2 Architecture

The SysML language reuses and extends many of the packages from UML. As shown in Figure 4.2, the set of UML
metaclasses to be reused are merged into a single metamodel package, UML4SysML. The detailed list of packages that
are merged are shown in Table 4.1. Some UML packages are not being reused, since they are not considered essential for
systems engineering applications to meet the requirements of the UML for SE RFP.

Figure 4.2 - SysML Extension of UML

The SysML profile specifies the extensions to UML. It references the UML4SysML package, thus importing all the
metaclasses into SysML that are either reused as-is from UML or extended in SysML. The semantics of UML profiles
ensures that when a user model “strictly” applies the SysML profile, only the UML metaclasses referenced by SysML are

«profile»
SysML

«reference»

«metamodel»
UML4SysML

BehaviorStateMachines

«merge»

CompleteActivities

InformationFlows SimpleTime

Profiles

StructuredClasses

«merge»

«merge» «merge»
«merge»

«merge»

«merge»

«profile»
StandardProfileL1

«import»

PowerTypes

«merge»

Fragments
«merge»

CompositeStructures::
StructuredActivities

CompleteActions

AssociationClasses

«merge»

«merge»
8 OMG SysMLTM Proposed Available Specification

available to the user of that model. If the profile is not “strictly” applied, then additional UML metaclasses which were
not explicitly referenced may also be available. The SysML profile also imports the Standard Profile L1 from UML to
make use of its stereotypes.

Table 4.1 - Detail of UML Reuse

UML Language
Unit

UML Package Metaclasses

Actions Actions::BasicActions All

Actions::StructuredActions All

Actions::IntermediateActions All

Actions::CompleteActions All

Activities Activities::FundamentalActivities All

Activities::BasicActivities All

Activities::IntermediateActivities All

Activities::StructuredActivities All

Activities::CompleteActivities All

Classes Classes::Kernel All

Classes::Dependencies All

Classes::Interfaces All

Classes::PowerTypes All

Classes::AssociationClasses All

General Behavior CommonBehaviors::BasicBehaviors All

CommonBehaviors::SimpleTime All

Information Flows AuxiliaryConstructs::InformationFlows All

Interactions Interactions::BasicInteractions All

Interactions::Fragments All

Models AuxiliaryConstructs::Models All

Profiles AuxiliaryConstructs::Profiles All

State Machines StateMachines::BehaviorStateMachines All

Structures CompositeStructures::InternalStructures All

CompositeStructures::StructuredClasses All

CompositeStructures::InvocationActions All

CompositeStructures::Ports All

CompositeStructures::StructuredActivities All

Use Cases UseCases All
OMG SysMLTM Proposed Available Specification 9

Figure 4.3 - SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the
specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure shown in
Figure 4.3 contains a set of packages that correspond to concept areas in SysML that have been extended. The reusable
portion of UML that has not been extended is included by reference to the merged package (UML4SysML), and includes
Interactions, State Machines, Use Cases, and Profiles.

The SysML packages extend UML as follows:

• SysML::Model Elements refactors and extends the UML kernel portion of UML classes

• SysML::Blocks reuses structured classes from composite structures

• SysML::ConstraintBlocks extends Blocks to support the parametric modeling

• SysML::Ports and Flows extends UML::Ports, UML::InformationFlows and SysML::Blocks

• SysML::Activities extends UML activities

• SysML::Allocations extends UML dependencies

• SysML::Requirements extends UML classes and dependencies

4.3 Extension Mechanisms

This specification uses the following mechanisms to define the SysML extensions:

• UML stereotypes

• UML diagram extensions

• Model libraries

«profile»
SysML

«profile»
ConstraintBlocks

«profile»
Blocks

«profile»
Activities

«modelLibrary»
Blocks

«modelLibrary»
ControlValues

«profile»
Ports&Flows

«profile»
Requirements

«profile»
Allocations

«profile»
ModelElements

«im port» «im port»
10 OMG SysMLTM Proposed Available Specification

SysML stereotypes define new modeling constructs by extending existing UML 2.1 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from
UML 2.1. SysML model libraries describe specialized model elements that are available for reuse. Additional non-
normative extensions are included in Annex C: Non-normative Extensions.

The SysML user model is created by instantiating the metaclasses and applying the stereotypes specified in the SysML
profile and subclassing the model elements in the SysML model library. Chapter 17, “Profiles & Model Libraries”
describes how profiles and model libraries are applied and how they can be used to further extend SysML.

4.4 SysML Diagrams

The SysML diagram taxonomy is shown in Figure 4.4. The concrete syntax (notation) for the diagrams along with the
corresponding specification of the UML extensions is described in Parts II - IV of this specification. The Diagram Annex
A describes generalized features of diagrams, such as their frames and headings.

Figure 4.4 - SysML Diagram Taxonomy

SysML
D iagram

Structure
Dia gra m

Behavior
D ia gra m

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Re quire ment
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2
OMG SysMLTM Proposed Available Specification 11

12 OMG SysMLTM Proposed Available Specification

5 Compliance

Compliance with SysML requires that the subset of UML required for SysML is implemented, and the extensions to the
UML subset required for SysML are implemented. In order to fully comply with SysML, a tool must implement both the
concrete syntax (notation) and abstract syntax (metamodel) for the required UML subset and the SysML extensions. The
following sections elaborate the definition of compliance for SysML.

5.1 Compliance with UML Subset (UML4SysML)

The subset of UML required for SysML is specified by the UML4SysML package as described in Chapter 4, “Language
Architecture.” UML has three compliance levels (L1, L2, L3) that SysML applies to the subset in the UML4SysML
package. The levels are:

• Level 1 (L1). This level provides the core UML concepts from the UML kernel and adds language units for use cases,
interactions, structures, actions, and activities.

• Level 2 (L2). This level extends the language units already provided in Level 1and adds language units for state
machine modeling, and profiles.

• Level 3 (L3). This level represents the complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows, and model packaging.

These compliance levels are constructed in the same fashion as for UML and readers are referred to the UML 2.1
Superstructure document for further information.

5.1.1 Compliance Level Contents

The following tables identify the metamodel packages whose contents contribute to the individual compliance levels. The
metaclasses in each level are included in addition to those that are defined in lower levels (Level (N) includes all the
packages supported by Level (N-1)).

Table 5.1 - Metamodel packages added in Level 1

Language Unit Metamodel Packages

Actions Actions::BasicActions

Activities Activities::FundamentalActivities

Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior CommonBehaviors::BasicBehaviors

Structures CompositeStructure::InternalStructures

Interactions Interactions::BasicInteractions

UseCases UseCases
OMG SysMLTM Proposed Available Specification 13

5.2 Compliance with SysML Extensions

In addition to UML, further units of compliance for SysML are the sub packages of the SysML profile. The list of these
packages is provided in Chapter 4, “Language Architecture”.

For an implementation of SysML to comply with a particular SysML package, it must also comply with any packages on
which the particular package depends. For SysML, this includes not only other SysML packages, but the UML4SysML
compliance level that introduces all the metaclasses extended by stereotypes in that package. The following table
identifies the level of UML4SysML on which each SysML package depends. Note that some of the SysML packages such
as Model Elements, have two compliance points. This occurs when different stereotypes within the package extend
metaclasses that are at more than one UML compliance level.

Table 5.2 - Metamodel packages added in Level 2

Language Unit Metamodel Packages

Actions Actions::StructuredActions

Actions::IntermediateActions

Activities Activities::IntermediateActivities

Activities::StructuredActivities

General Behavior CommonBehaviors::Communications

CommonBehaviors::SimpleTime

Interactions Interactions::Fragments

Profiles AuxilliaryConstructs::Profiles

Structures CompositeStructures::InvocationActions

CompositeStructures::Ports

CompositeStructures::StructuredClasses

State Machines StateMachines::BehaviorStateMachines

Table 5.3 Metamodel packages added in Level 3

Language Unit Metamodel Packages

Actions Actions::CompleteActions

Activities Activities::CompleteActivities

Classes Classes::PowerTypes

Classes::AssociationClasses

Information Flows AuxilliaryConstructs::InformationFlows

Models AuxilliaryConstructs::Models

Structures CompositeStructures::StructuredActivities
14 OMG SysMLTM Proposed Available Specification

5.3 Meaning of Compliance

An implementation of SysML must comply with both the subset of UML4SysML and the SysML extensions as described
above. The meaning of compliance in SysML is based on the UML definition of compliance, excluding diagram
interchange (note that diagram interchange is different from model interchange which is included in SysML - refer to
XMI below).

Compliance can be defined in terms of the following:

• Abstract syntax compliance. For a given compliance level, this entails:

• compliance with the metaclasses, stereotypes and model libraries, their structural relationships, and any constraints
defined as part of the abstract syntax for that compliance level and,

• the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.

• Concrete syntax compliance. For a given compliance level, this entails:

• Compliance to the notation defined in the “Diagram Elements” tables and diagrams extension sections in each
chapter of this specification for those metamodel elements that are defined as part of the merged metamodel or
profile subset for that compliance level and, by implication, the diagram types in which those elements may
appear.

Compliance for a given level can be expressed as:

• abstract syntax compliance

• concrete syntax compliance

• abstract syntax with concrete syntax compliance

The fullest compliance response is “YES,” which indicates full realization of all language units/stereotypes that are
defined for that compliance level. This also implies full realization of all language units/stereotypes in all the levels below
that level. “Full realization” for a language unit at a given level means supporting the complete set of modeling concepts
defined for that language unit at that level. A compliance response of “PARTIAL” indicates partial realization and

Table 5.4 - SysML package dependence on UML4SysML compliance levels

SysML Package UML4SysML
Compliance Level

Activities (without Probability) Level 2

Activities (with Probability) Level 3

Allocations Level 2

Blocks Level 2

Constraint Blocks Level 2

Model Elements Level 1

Ports and Flows (without ItemFlow) Level 2

Ports and Flows (with ItemFlow) Level 3

Requirements Level 1
OMG SysMLTM Proposed Available Specification 15

requires a feature support statement detailing which concepts are supported. These statements should reference either the
language unit and metaclass, or profile package and stereotype for abstract syntax, or a diagram element for concrete
syntax (the diagram elements in SysML are given unique names to allow unambiguous references). Finally, a response of
“NO” indicates that none of the language units/stereotypes in this compliance point is realized.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with Level 1. A tool that is
compliant at a given level must be able to import models from tools that are compliant to lower levels without loss of
information.

In the case of “PARTIAL” support for a compliance point, in addition to a formal statement of compliance, implementors
and profile designers must also provide feature support statements. These statements clarify which language features are
not satisfied in terms of language units and/or individual packages, as well as for less precisely defined dimensions such
as semantic variation points.

An example feature support statement is shown in Table 5.6 for an implementation whose compliance statement is given
in Table 5.5.

Note (1): States and state machines are limited to a single region
 Shallow history pseudostates not supported

Table 5.5 - Example compliance statement

Compliance Summary

Compliance level Abstract Syntax Concrete Syntax

UML4SysML Level 1 YES YES

UML4SysML Level 2 PARTIAL YES

UML4SysML Level 3 NO NO

Activities (without Probability) YES YES

Activities (with Probability) NO NO

Allocations PARTIAL PARTIAL

Blocks YES YES

Constraint Blocks YES YES

Model Elements YES YES

Ports and Flows (without Item Flow) YES YES

Ports and Flows (with Item Flow) NO NO

Requirements YES YES

Table 5.6 - Example feature support statement

Feature Support Statement

Compliance Level/ Detail Abstract
Syntax

Concrete
Syntax

Semantics

UML4SysML::Level 2: StateMachines::BehaviorStateMachines Note (1) Note(1) Note (2)

SysML::Blocks Block YES Note (3)
16 OMG SysMLTM Proposed Available Specification

Note (2): FIFO queueing in event pool

Note (3): Don’t show Blocks::StructuredCompartment notation
OMG SysMLTM Proposed Available Specification 17

18 OMG SysMLTM Proposed Available Specification

6 Language Formalism

The SysML specification is defined by using UML 2.1 specification techniques. These techniques are used to achieve the
following goals in the specification.

• Correctness

• Precision

• Conciseness

• Consistency

• Understandability

The specification technique used in this specification describes SysML as a UML extension that is defined using
stereotypes and model libraries.

6.1 Levels of Formalism

SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor and
understandability. Use of more formal constraints and semantics may be applied in future versions to further increase the
precision of the language.

6.2 Chapter Specification Structure

The chapters in Parts II - IV are organized according to the SysML packages as described in the language architecture and
selected reusable portions of UML 2.1 packages. This section provides information about how each chapter is organized.

6.2.1 Overview

This section provides an overview of the SysML modeling constructs defined in the subject package, which are usually
associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This section provides tables that summarize the concrete syntax (notation) and abstract syntax references for the graphic
nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to include all of the
diagrammatic constructs used in SysML. However, they do not represent all the different permutations in which they can
be used. The reader should refer to the usage examples in the chapters and the sample problem annex (Annex B) for
typical usages of the concrete syntax. General diagram information on the use of diagram frames and headings can be
found in the Diagram Annex A.

The diagram elements tables and the additional usage examples fill an important role in defining the scope of SysML. As
described in Chapter 4, Language Architecture, SysML imports many entire packages from the UML metamodel, which
it then reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the notations
included in SysML..
OMG SysMLTM Proposed Available Specification 19

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML chapters, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the entire
Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types defined in
this package.

6.2.3 UML Extensions

This section specifies the SysML extensions to UML in terms of the diagram extensions and stereotype and model library
extensions. The diagram extensions are included when the concrete syntax uses notation other than the standard
stereotype notation as defined in the Profiles and Model Libraries chapter. The semantic extensions include both the
stereotype and model library extensions. The stereotype extension includes the abstract syntax that identifies which
metaclasses a stereotype extends. Each stereotype includes a general description with a definition and semantics, along
with stereotype properties (attributes), and constraints. The model libraries are defined as subclasses of existing
metaclasses.

6.2.4 Usage Examples

This section shows how the SysML modeling constructs can be applied to solve systems engineering problems and is
intended to reuse and/or elaborate the sample problem in Annex B.

6.3 Conventions and Typography

In the description of SysML, the following conventions have been used:

• While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a section is not applicable, it is not included.

• Stereotype, metaclass and metassociation names: initial embedded capitals are used (e.g., ‘ModelElement’,
‘ElementReference’).

• Boolean metaattribute names: always start with ‘is’ (e.g., ‘isComposite’).

• Enumeration types: always end with “Kind” (e.g., ‘DependencyKind’).
20 OMG SysMLTM Proposed Available Specification

Part II - Structural Constructs

This Part defines the static and structural constructs used in SysML structure diagrams, including the package diagram, block
definition diagram, internal block diagram, and parametric diagram. The structural constructs are defined in the model
elements, blocks, ports and flows, and constraint blocks chapters. The model elements chapter refactors the kernel package
from UML 2.1 and includes some extensions to provide some foundation capabilities for model management. The blocks
chapter reuses and extends structured classes from UML 2.1 composite structures to provide the fundamental capability for
describing system decomposition and interconnection, and different types of system properties including value properties,
units and distributions. The ports and flows chapter provide the semantics for defining how blocks and parts interact through
ports and how items flow across connectors. The constraint blocks chapter defines how blocks are extended to be used on
parametric diagrams that model a network of constraints on system properties to support engineering analysis, such as
performance, reliability, and mass properties analysis.
OMG SysMLTM Proposed Available Specification 21

22 OMG SysMLTM Proposed Available Specification

7 Model Elements

7.1 Overview

The ModelElements package of SysML reuses several general-purpose constructs that may be used in several diagrams.
These include package, model, various types of dependencies (e.g., import, access, refined, realization), constraints, and
comments. The package diagram defined in this chapter, is used to organize the model by partitioning model elements
into packagable elements and establishing dependencies between the packages and/or model elements within the package.
The package defines a namespace for the packageable elements. Model elements from one package can be imported and/
or accessed by another package. This organizational principle is intended to help establish unique naming of the model
elements and avoid overloading a particular model element name. Packages can also be shown on other diagrams such as
the block definition diagram, requirements diagram, and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be represented on
several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a condition on a decision
branch, or a mathematical expression. The constraint has been significantly enhanced in SysML as specified in Chapter
10, “Constraint Blocks” to enable it to be reused and parameterized to support engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the
model. The comment is not included in the model repository. SysML has introduced an extension to a comment called
rationale to facilitate the system modeler in capturing decisions. The rationale may be attached to any entity, such as a
system element (block), or to any relationship, such as the satisfy relationship between a design element and a
requirement. In the latter case, it may be used to capture the basis for the design decision and may reference an analysis
report or trade study for further elaboration of the decision. In addition, SysML includes an extension of a comment to
reflect a problem or issue that can be attached to any other model element.

SysML has extended the concept of view and viewpoint from UML to be consistent with the IEEE 1471 standard. In
particular, a viewpoint is a specification of rules for constructing a view to address a set of stakeholder concerns, and the
view is intended to represent the system from this viewpoint. This enables stakeholders to specify aspects of the system
model that are important to them from their viewpoint, and then represent those aspects of the system in a specific view.
Typical examples may include an operational, manufacturing, or security view/viewpoint.

7.2 Diagram Elements

Many of the diagram elements defined in this chapter, specifically comments, constraints, problem, rationale, and
dependencies, including the dependency subtypes Conform, Realization, and Refine, may be shown on all SysML
diagram types, in addition to the diagram elements which are specific to each diagram type.
OMG SysMLTM Proposed Available Specification 23

7.2.1 Graphical Nodes and Paths

Table 7.1 - Graphical nodes defined by ModelElements package.

Element Name Concrete Syntax Example Abstract Syntax Reference

Comment UML4SysML::Comment

ConstraintNote UML4SysML::Constraint

ConstraintTextualNote UML4SysML::Constraint

Model UML4SysML::Model

PackageDiagram UML4SysML::Package

PackageWith
NameInTab

UML4SysML::Package

Comment text.

{C1: {L1} E1.x > E2.y}

Element1
(any graphical node)

{constraint text}

{constraint text}

(any graphical path)

Model

pkg Package1

Subpackage1

Subpackage2

«import»

Subpackage1

Subpackage2«import»

Package1
24 OMG SysMLTM Proposed Available Specification

PackageWith
NameInside

UML4SysML::Package

Problem SysML::ModelElements::Problem

Rationale SysML::ModelElements::Rationale

ViewWith
NameInside

SysML::ModelElements::View

ViewWith
NameInTab

SysML::ModelElements::View

Viewpoint SysML::ModelElements::Viewpoint

Table 7.1 - Graphical nodes defined by ModelElements package.

Element Name Concrete Syntax Example Abstract Syntax Reference

Package1

«problem»
The problem is that ...

«rationale»
Description of rationale

«view»
{viewpoint=ViewName}

Name

«view»
Name

stakeholders="..."
purpose="..."
concerns="..."
languages="..."
methods="..."

«viewpoint»
Name
OMG SysMLTM Proposed Available Specification 25

Table 7.2 - Graphical paths defined by ModelElements package.

Element Name Concrete Syntax Example Abstract Syntax Reference

Conform SysML::ModelElements::Conform

Dependency UML4SysML::Dependency

PublicPackageImport UML4SysML::PackageImport with
visibility = public

PrivatePackageImport UML4SysML::PackageImport with
visibility = private

PackageContainment UML4SysML::Package::
ownedElement

Realization UML4SysML::Realization

Refine UML4SysML::Refine

«conform»

«stereotype1»
dependency1

«import»

«access»

«refine»
26 OMG SysMLTM Proposed Available Specification

7.3 UML Extensions

7.3.1 Diagram Extensions

7.3.1.1 Stereotype Keywords or Icons Inside a Comment Note Box

Description

A comment note box may contain stereotype keywords or icons even though Comment is not a named element. UML
specifies placement of a stereotype keyword relative to the name of the element. SysML makes explicit that they may
appear inside a comment box as well. The stereotype keywords, if present, should appear prior to the comment text. The
stereotype properties, if present, should appear after the comment text. The typical placement of stereotype icons is in the
upper-right-hand corner of the containing graphical node.

Figure 7.1 - Notation for the Rationale stereotype of Comment

7.3.1.2 UML Diagram Elements not Included in SysML

The notation for a “merge” dependency between packages, using a «merge» keyword on a dashed-line arrow, is not
included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but
SysML does not support this capability for user-level models. Combining packages that have the same named elements,
resulting in merged definitions of the same names, could cause confusion in user models and adds no inherent modeling
capability, and so has been left out of SysML.

«rationale»
Description of rationale
OMG SysMLTM Proposed Available Specification 27

7.3.2 Stereotypes

Package ModelElements

7.3.2.1 Conform

Description

A Conform relationship is a dependency between a view and a viewpoint. The view conforms to the specified rules and
conventions detailed in the viewpoint. Conform is a specialization of the UML dependency, and as with other
dependencies the arrow direction points from the (client/source) to the (supplier/target).

Constraints

[1] The supplier/target must be an element stereotyped by «viewpoint».

[2] The client/source must be an element that is stereotyped by «view».

7.3.2.2 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or need,
or other undesired outcome. It may be used to capture problems identified during analysis, design, verification, or
manufacture and associate the problem with the relevant model elements. Problem is a stereotype of comment and may be
attached to any other model element in the same manner as a comment.

Figure 7.2 - Stereotypes defined in package ModelElements.

 «metaclass»
UML4SysML::

Comment

«stereotype»
Rationale

«metaclass»
UML4SysML::

Package

/viewpoint:Viewpoint[1]

«stereotype»
View

«metaclass»
UML4SysML::

Class

stakeholders:String[*]
purpose:String
concerns:String[*]
languages:String[*]
methods:String[*]

«stereotype»
Viewpoint

«metaclass»
UML4SysML::
Dependency

«stereotype»
Conform

«stereotype»
Problem
28 OMG SysMLTM Proposed Available Specification

7.3.2.3 Rationale

Description

A Rationale documents the justification for decisions such as and the requirements, design and other decisions. A
Rationale can be attached to any model element including relationships. It allows the user, for example, to specify a
rationale that may reference more detailed documentation such as a trade study or analysis report. Rationale is a
stereotype of comment and may be attached to any other model element in the same manner as a comment.

7.3.2.4 View

Description

A view is a representation of a whole system or subsystem from the perspective of a single viewpoint.

Views are allowed to import other elements including other packages and other views that conform to the viewpoint.

Attributes

• /viewpoint:Viewpoint[1]

The viewpoint for this View, derived from the supplier of the <<conform>> dependency whose client is this View.

Constraints

[1] A view can only own element import, package import, comment, and constraint elements.

[2] The view is constructed in accordance with the methods and languages that are specified as part of the viewpoint. SysML
does not define the specific methods. The precise semantic of this constraint is a semantic variation point.

7.3.2.5 Viewpoint

Description

A viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. The languages and methods for specifying a view may reference methods and
languages in another viewpoint. They specify the elements expected to be represented in the view, and may be formally
or informally defined. For example, the security viewpoint may require the security requirements, security functional and
physical architecture, and security test cases.

Attributes

• stakeholders:String[*] Set of stakeholders.

• concerns:String[*] The interest of the stakeholders.

• purpose:String The purpose addresses the stakeholder concerns.

• languages:String[*] The languages used to construct the viewpoint

• methods:String[*] The methods used to construct the views for this viewpoint

Constraints

[1] A viewpoint cannot be the classifier of an instance specification.
OMG SysMLTM Proposed Available Specification 29

[2] The property ownedOperations must be empty.

[3] The property ownedAttributes must be empty.

[4] The property isAbstract must be set to true.

7.4 Usage Examples

Figure 7.3 - View/Viewpoint examplea

a. moe refers to Measure of Effectiveness (see Appendix C.3.2)

pkg [package] HSUVViews [Performance View]

«view»
{viewpoint=Performance Viewpoint}

PerformanceView

Driver

Drive Car

id = "2"
Text = "The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically better
fuel economy."

«requirement»
Performance

«moe»
HSUValt1.Cos
tEffectiveness

«moe»
HSUValt1.FuelEco

nomy

«moe»
HSUValt1.Zero

60Time

«moe»
HSUValt1.Car

goCapacity

«moe»
HSUValt1.Quarter

MileTime

«constraint»
EconomyEquation

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«testCase»
EPAFuel

EconomyTest

«viewpoint»
stakeholders="customer"
concerns="Will the system perform
adequately?"
purpose="Highlight the performance of the
system."
methods="show performance requirements,
test cases, MOE, constraint models, etc.;
includes functional viewpoint"
languages="SysML"

Performance Viewpoint

«viewpoint»
Functional Viewpoint

«conform»
30 OMG SysMLTM Proposed Available Specification

Figure 7.4 - Rationale and Problem example

bdd Master Cylinder requirements

«requirement»
Loss of Fluid

«requirement»
Reservoir

«block»
Brake System

m:MasterCylinder

«satisfy»

«satisfy»

«rationale»
The best-practice solution consists in
assigning one reservoir per brakeline.
See "automotive_d32_hdb.doc"

«problem»
The master cylinder in previous
version leaked.
OMG SysMLTM Proposed Available Specification 31

32 OMG SysMLTM Proposed Available Specification

8 Blocks

8.1 Overview

Blocks are modular units of a system description, which define a collection of features to describe a system or other
elements of interest. These may include both structural and behavioral features, such as properties and operations, to
represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the ways these elements combine to define the total system can
all be selected according to the goals of a particular system model. SysML blocks can be used throughout all phases of
system specification and design, and can be applied to many different kinds of systems. These include modeling either the
logical or physical decomposition of a system, and the specification of software, hardware, or human elements. Parts in
these systems interact by many different means, such as software operations, discrete state transitions, flows of inputs and
outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of a block and relationships between blocks such as
associations, generalizations, and dependencies. It captures the definition of blocks in terms of properties and operations,
and relationships such as a system hierarchy or a system classification tree. The Internal Block Diagram in SysML
captures the internal structure of a block in terms of properties and connectors between properties. A block can include
properties to specify its values, parts, and references to other blocks. Ports are a special class of property used to specify
allowable types of interactions between blocks, and are described in Chapter 9, “Ports and Flows.” Constraint Properties
are a special class of property used to constrain other properties of blocks, and are described in Chapter 10, “Constraint
Blocks.” Various notations for properties are available to distinguish these specialized kinds of properties on an internal
block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its
definition. A part belonging to a block, for example, may be typed by another block. The part defines a local usage of its
defining block within the specific context to which the part belongs. For example, a block that represents the definition of
a wheel can be used in different ways. The front wheel and rear wheel can represent different usages of the same wheel
definition. SysML also allows each usage to define context-specific values and constraints associated with the individual
usage, such as 25 psi for the front tires and 30 psi for the rear tires.

 Blocks may also specify operations or other features that describe the behavior of a system. Except for operations, this
chapter deals strictly with the definition of properties to describe the state of a system at any given point in time,
including relations between elements that define its structure. Chapter 9, “Ports and Flows” specifies the allowable types
of interactions between blocks, and the Behavioral Constructs in Section III including activities, interactions, and state
machines can be applied to blocks to specify its behavior. Chapter 15, “Allocations” in Part IV describes ways to allocate
behavior to parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for UML
classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify the language.
SysML blocks always include an ability to define internal connectors, regardless of whether this capability is needed for
a particular block. SysML Blocks also extend the capabilities of UML classes and connectors with reusable forms of
constraints, multi-level nesting of connector ends, participant properties for composite association classes, and connector
properties. SysML blocks include several notational extensions as specified in this chapter.
OMG SysMLTM Proposed Available Specification 33

8.2 Diagram Elements

Tables in the following sections provide a high-level summary of graphical elements available in SysML diagrams. A
more complete definition of SysML diagram elements, including the different forms and combinations in which they may
appear, is provided in Annex G.
34 OMG SysMLTM Proposed Available Specification

8.2.1 Block Definition Diagram

8.2.1.1 Graphical Nodes and Paths

Table 8.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference

BlockDefinition
Diagram

SysML::Blocks::Block
UML4SysML::Package

Block SysML::Blocks::Block

Actor UML4SysML::Actor

DataType UML4SysML::DataType

bdd Namespace1

Block1 Block2
part1

1 0..*

 «block»
{encapsula ted }

B lo ck1

operations

operation1(p1: T ype1) : T ype2

property1: B lock 1
par ts

{ x > y}

property2: B lock 2 [0 ..*] {ordered}
references

property3: In teg er = 99 { readOnly}
values

property4: R eal = 10.0

cons traints

proper ty5: Block 3
proper ties

«ac to r»
A cto r Nam e

A c torName

«dataType»
dataType1

operations

operation1(p1: Type1): Type2

property1: Type3
properties
OMG SysMLTM Proposed Available Specification 35

ValueType SysML::Blocks::ValueType

Enumeration UML4SysML::Enumeration

AbstractDefinition UML4SysML::Classifier with
isAbstract equal true

StereotypeProperty
Compartment

UML4SysML::Stereotype

Namespace
Compartment

SysML::Blocks::Block

Structure
Compartment

SysML::Blocks::Block

Table 8.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference

«valueType»
unit = UnitName

«valueType»
ValueType1

operations

operation1(p1: Type1): Type2

property1: Type3
properties

literalName1
literalName2

«enumeration»
Enumeration1

Name1

{abstract}
Name1

Name1
{abstract}

«stereotype1»
Block1

«stereotype1»
property1 = value

Block1
namespace

Block2 Block3
part1

1 0..*

Block1
structure

p1: Type1
p2:

Type2
1

e1

c1:
36 OMG SysMLTM Proposed Available Specification

Unit SysML::Blocks::Unit

Dimension SysML::Blocks::Dimension

Table 8.2 Graphical paths defined by in Block Definition diagrams.

Element Name Concrete Syntax Example Abstract syntax Reference

Dependency UML4SysML::Dependency

ReferenceAssociation UML4SysML::Association and
UML4SysML::Property with
aggregationKind = none

PartAssociation UML4SysML::Association and
UML4SysML::Property with
aggregationKind = composite

SharedAssociation UML4SysML::Association and
UML4SysML::Property with
aggregationKind = shared

Table 8.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference

«stereotype1»
dependency1

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2

0..1

association1 property1

1..*{ordered}

1

association1 property1

0..*{ordered}

property2
OMG SysMLTM Proposed Available Specification 37

MultibranchPart
Association

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = composite

MultibranchShared
Association

UML4SysML::Association and
UML::Kernel::Property with
aggregationKind = shared

Generalization UML4SysML::Generalization

Multibranch
Generalization

UML4SysML:Generalization

GeneralizationSet UML4SysML::
GeneralizationSet

BlockNamespace
Containment

UML4SysML::Class::
nestedClassifier

Table 8.2 Graphical paths defined by in Block Definition diagrams.

Element Name Concrete Syntax Example Abstract syntax Reference

1

association1 property1

0..*

property3

property2

0..*

1

association1 property1

0..*

property3

property2

0..*

{disjoint}
{overlapping}
38 OMG SysMLTM Proposed Available Specification

ParticipantProperty UML4SysML:: Property,
UML4SysML:: AssociationClass

ConnectorProperty UML4SysML:: Property,
UML4SysML:: Connector

Table 8.2 Graphical paths defined by in Block Definition diagrams.

Element Name Concrete Syntax Example Abstract syntax Reference

1

association 1 property1

0..*{ordered}

property2

«participant» {end=property1} prop1InLink : Block1
«participant» {end=property2} prop2InLink : Block2

AssociationBlock 1

Block1Block2

1

association 1 property1

0..*{ordered}

property2

AssociationBlock 1

structure

Block1Block2

«participant»
{end=property1}

prop1InLink : Block1

«participant»
{end=property2}

prop2InLink : Block2

1

association 1 property1

0..*{ordered}

property2

AssociationBlock 1

Block1Block2

 «block»
Block1

structure

«connector» c1 : AssociationBlock1
«connector» c2 : AssociationBlock2

p1: Type1 p2: Type21
e1

c1: AssociationBlock1

p3: Type3 p4: Type4
1

e1

c2: AssociationBlock 2
OMG SysMLTM Proposed Available Specification 39

8.2.2 Internal Block Diagram

8.2.2.1 Graphical Nodes and Paths

Table 8.3 - Graphical nodes defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

InternalBlockDiagram SysML::Blocks::Block

Property UML4SysML::Property

ActorPart SysML::Blocks::PartProperty
typed by UML4SysML::Actor

ibd Block1

p1: Type1 p2: Type21
e1

c1:a1

x: Integer = 4

p1: Type1
0..*

r1: Type2

p1: Type1 0..*

defaultValue

x1=5.0
x2="today"

p3: Type3

«actor»
ActorNam e

ActorName
40 OMG SysMLTM Proposed Available Specification

8.3 UML Extensions

8.3.1 Diagram Extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by SysML.

Block and ValueType Definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML ValueType
defines values that may be used within a model. SysML blocks are based on UML classes, as extended by UML
composite structures. SysML value types are based on UML data types. Diagram extensions for SysML blocks and value
types are described by other subheadings of this section.

PropertySpecificType SysML::Blocks::PropertySpec-
ifcType

Table 8.4 - Graphical paths defined in Internal Block diagrams

ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE

Dependency UML4SysML::Dependency

BindingConnector UML4SysML::Connector

Bidirectional
Connector

UML4SysML::Connector

Unidirectional
Connector

UML4SysML::Connector

Table 8.3 - Graphical nodes defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference

p1: [Type1]

values

«uniform»{mean=2,stdDeviation=0.1} x: Integer

p2

values

y: Integer = 5

«stereotype1»
dependency1

 1 0 ..*

«equal»

1 1

c1: association1

0..1 0..*

p2p1

c1: association1

0..1 0..*

p1
OMG SysMLTM Proposed Available Specification 41

Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype property
compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had appeared
before the name in the top compartment of the definition.

Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name. The
compartments may partition the features shown according to various criteria. Some standard compartments are defined by
SysML itself, and others can be defined by the user using tool-specific facilities. Compartments may appear in any order.
SysML defines two additional compartments, namespace and structure compartments, which may contain graphical nodes
rather than textual constraint or feature definitions. See separate subsections of this section for a description of these
compartments.

Constraints compartment

SysML defines a special form of compartment, with the label constraints, which may contain one or more constraints
owned by the block. A constraint owned by the block may be shown in this compartment using the standard text-based
notation for a constraint, consisting of a string enclosed in brace characters. The use of a compartment to show constraints
is optional. The note-based notation, with a constraint shown in a note box outside the block and linked to it by a dashed
line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint
property is a property of the block that is typed by a ConstraintBlock, as defined in Chapter 10, “Constraint Blocks.”
Only the declaration of the constraint property may be shown within the compartment, not the details of its parameters or
binding connectors that link them to other properties.

Namespace compartment

A compartment with the label namespace may appear as part of a block definition to show blocks that are defined in the
namespace of a containing block. This compartment may contain any of the graphical elements of a block definition
diagram. All blocks or other named elements defined in this compartment belong to the namespace of the containing
block.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box which shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

Structure compartment

A compartment with the label structure may appear as part of a block definition to show connectors and other internal
structure elements for the block being defined. This compartment may contain any of the graphical elements of an internal
block diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box which shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.
42 OMG SysMLTM Proposed Available Specification

Unit and Dimension declarations

The declarations of value types have been extended to support the declaration of a unit of measure or a dimension. These
declarations must refer by name to an instance of a Unit or Dimension stereotype defined separately. A sample set of
predefined dimensions and units is given in Annex C, section C.4.

Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association has a
default multiplicity of [0..1] on the black or white diamond end. A unidirectional association has a default multiplicity of
1 on its target end. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity
other than the default should always be shown on a diagram.

Property-Speficic type

Enclosing the type name of a property in square brackets specifies that the type is a local specialization of the referenced
type, which may be overridden to specify additional values or other customizations that are unique to the property.
Redefined or added features of the newly defined type may be shown in compartments for the property on an internal
block diagram. If no type name appears between the square brackets, the property-specific type is defined provided by its
own declarations, without specializing any existing type.

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as defined
by SysML.

Property types

Three general categories of properties are recognized in SysML: parts, references and value properties (see 8.3.2.1 Block
below). A part or value property is always shown on an internal block diagram with a solid-outline box. A reference
property is shown by a dashed-outline box, consistent with UML.

Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand corner of
the diagram frame) must identify the name of a SysML block as its modelElementName. (See Annex A for the definition
of a diagram heading name including the modelElementName component. This component is optional for many SysML
diagram types, but not for an internal block diagram.) All the properties and connectors which appear inside the internal
block diagram belong to the block that is named in the diagram heading name.

Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property box.
These compartments may be given standard or user-customized labels just as on block definitions. All features shown
within these compartments must match those of the block or value type that types the property. For a property-specific
type, these compartments may be used to specify redefined or additional features of the locally defined type. An unlabeled
compartment on an internal property box is by default a structure compartment.
OMG SysMLTM Proposed Available Specification 43

Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block diagram.
These compartments must always follow an initial compartment which always shows the internal structure of a referenced
block. These compartments may have all the same contents as could be shown on a block definition diagram for the block
defined at the top level of the diagram frame.

Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form of name
references a nested property accessible through a sequence of intermediate properties from a referencing context. The
name of the referenced property is built by a string of names separated by “.”, resulting in a form of path name which
identifies the property in its local context. A colon and the type name for the property may optionally be shown following
the dotted name string. If any of the properties named in the path name string identifies a reference property, the property
box is shown with a dashed-outline box, just as for any reference property on an internal block diagram.

This notation is purely a notational shorthand for a property which could otherwise be shown within a structure of nested
property boxes, with the names in the dotted string taken from the name that would appear at each level of nesting. In
other words, the internal property shown with a path name in the left-hand side of Figure 8.1 below is equivalent to the
innermost nested box shown at the right:

Figure 8.1 - Nested property reference

Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The
connector is owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd stereotype
of a UML ConnectorEnd is automatically applied to any connector end that is nested more than one level deep within a
containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties which a
connector line may cross. The need for nested connector ends can be avoided if additional properties can be added to the
block at each containing level. Nested connector ends are available for cases where the introduction of these intermediate
properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition be
shown on the same diagram.

P1: Block1

Nam e1:

Name 2:

Nam e3:

P1: Block1

Name1.Nam e2.Nam e3:
44 OMG SysMLTM Proposed Available Specification

Property-specific type

Enclosing the type name of an internal property in square brackets specifies that the type is a local specialization of the
referenced type, which may be overridden to specify additional values or other customizations that are unique to the
property. Redefined or added features of the newly defined type may be shown in compartments for the property. If the
property name appears on its own, with no colon or type name, or if no type name appears between the square brackets,
the property-specific type is entirely provided by its own declarations, without specializing any existing type.

Default value compartment

A compartment with a label of “defaultValue” may be used to show the default value for a property as an alternative to
an “=”suffix string on its declaration within its containing block. It may be used for a property whose type has
substructure and a default value with many subvalues. A default value compartment on a property may be used instead of
a property-specific type when all that is required are property-specific values. If a default value is specified for a property
nested any level deeper than the top level of an internal block diagram frame, then its containing property must still have
a property-specific type, so that the default value specification can be included within that type.

Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown
on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

The supported variety of notations for associations and association annotations has been reduced to simplify the burden of
teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and metamodel support
for n-ary associations and qualified associations has been excluded from SysML. N-ary associations, shown in UML by a
large open diamond with multiple branches, can be modeled by an intermediate block with no loss in expressive power.
Qualified associations, shown in SysML by an open box at the end of an association path with a property name inside, are
a specialized feature of UML that specifies how a property value can represent an identifier of an associated target. This
capability, while useful for data modeling, does not seem essential to accomplish any of the SysML requirements for
support of systems engineering. The use of navigation arrowheads on an association has been simplified by excluding the
case of arrowheads on both ends, and requiring that such an association always be shown without arrowheads on either
end. An “X” on a single end of an association to indicate that an end is “not navigable” has similarly been dropped, as has
the use of a small filled dot at the end of an association to indicate an owned end of an association. SysML still supports
use of an arrowhead on one end of a unidirectional association.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType specialization of
UML DataType) is not supported. Whether or not a value type definition has internal structure can be determined from the
value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this chapter. Other
SysML chapters add some of these notations into the supported contents of an internal block diagram.
OMG SysMLTM Proposed Available Specification 45

8.3.2 Stereotypes

Package Blocks

Figure 8.2 - Abstract syntax expressions for SysML blocks

Figure 8.3 - Abstract syntax extensions for SysML properties

Figure 8.4 - Abstract syntax extensions for SysML value types

«metaclass»
UML4SysML::

Class

isEncapsulated: Boolean

«stereotype»
Block

«metaclass»
UML4SysML::

Property

«stereotype»
DistributedProperty

end : Property [1]

«stereotype»
ParticipantProperty

connector : Connector [1]

«stereotype»
ConnectorProperty

«metaclass»

UML4SysML::
DataType

«stereotype»
ValueType

«stereotype»
Unit

«stereotype»
Dimension

«metaclass»
UML4SysML::

InstanceSpecification

0..1
*

dimension

0..1

*
dimension

0..1

*
unit
46 OMG SysMLTM Proposed Available Specification

Figure 8.5 - Abstract syntax extensions for SysML connector ends

Figure 8.6 - Abstract syntax extensions for SysML property-specific types

8.3.2.1 Block

Description

A Block is a modular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, that represent the state of the system and behavior that the system
may exhibit. Some of these properties may hold parts of a system, which can also be described by blocks. A block may
include a structure of connectors between its properties to indicate how its parts or other properties relate to one another.

SysML blocks provide a general-purpose capability to describe the architecture of a system. They provide the ability to
represent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They can
describe not only the connectivity relationships between the systems at any level, but also quantitative values or other
information about a system.

«metaclass»
UML4SysML::
Connecto rEnd

propertyPath: Property [2..*] {ordered}

«stereotype»
NestedConnectorEnd

«metaclass»
UML4SysML::

Connecto r

«stereotype»
Bind ingConnector

 «metaclass»
UML4SysML::

Classifier

«stereotype»
PropertySpecificType
OMG SysMLTM Proposed Available Specification 47

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form of
description that may be applied to a system or a set of system characteristics may be described by a block. Such reusable
descriptions, for example, may be applied to purely conceptual aspects of a system design, such as relationships that hold
between parts or properties of a system.

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the same
containing block. The type of a connector or its connected ends may specify the semantic interpretation of a specific
connector. A Binding Connector is a connector that is not typed by an association. If the two ends of a binding connector
have the same type, the connector specifies that the properties at the end of the connector must have the same values,
recursively through any nested properties within the connected properties.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the association. In
SysML, navigation is equivalent to a named property owned directly by a block. The only form of an association end that
SysML allows an association to own directly is an unnamed end used to carry an inverse multiplicity of a reference
property. This unnamed end provides a metamodel element to record an inverse multiplicity, to cover the specific case of
a unidirectional reference that defines no named property for navigation in the inverse direction. SysML enforces its
equivalence of navigation and ownership by means of constraints that the block stereotype enforces on the existing UML
metamodel

SysML establishes three standard classifications of properties belonging to a SysML Block. A property typed by a
SysML Block that has composite aggregation is classifed as a part property. A property typed by a Block that does not
have composite aggregation is classified as a reference property. A property typed by a UML DataType or SysML
ValueType is classified as a value property. Part, reference, and value properties may be shown in block definition
compartments with the labels parts, references, and values respectively. Properties of any type may be shown in a
properties compartment.

On a block definition diagram, a part property is shown by a black diamond symbol on an association. As in UML, an
instance of a block may be included in at most one part property at a time. A part property typically holds instances that
belong to a larger whole. Typically, a part-whole relationship means that certain operations that apply to the whole also
apply to each of the parts. For example, if a whole represents a physical object, a change in position of the whole could
also change the position of each of the parts. A property of the whole such as its mass could also be implied by its parts.
Operations and relationships which apply to parts typically apply transitively across all parts of these parts, through any
number of levels. A particular application domain may establish its own interpretation of part-whole relationships across
the blocks defined in a particular model, including the definition of operations that apply to the parts along with the
whole. For software objects, a typical interpretation is that delete, copy, and move operations apply across all parts of a
composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an association. Like
UML, SysML defines no specific semantics or constraints for properties with shared aggregation, but particular models or
tools may interpret them in specific ways.

Attributes

• isEncapsulated: Boolean [0..1]

If true, then the block is treated as a black box; a part typed by this black box can only be connected via its ports or
directly to its outer boundary. If false, then connections can be established to elements of its internal structure via deep-
nested connector ends.
48 OMG SysMLTM Proposed Available Specification

Constraints

[1] For an association in which both ends are typed by blocks, the number of ends must be exactly two.

[2] The number of ends of a connector owned by a block must be exactly two. (In SysML, a binding connector is not typed by
an association, so this constraint is not implied entirely by the preceding constraint.)

[3] In the UML metamodel on which SysML is built, any instance of the Property metaclass that is typed by a block (a Class
with the «block» stereotype applied) and which is owned by an Association may not have a name and may not be defined
as a navigable owned end of the association. (While the Property has a “name” property as defined by its NamedElement
superclass, the value of the “name” property, which is optional, must be missing.)

[4] In the UML metamodel on which SysML is built, a Property that is typed by a block must be defined as an end of an
association. (An inverse end of this association, whether owned by another block or the association itself, must always be
present so there is always a metamodel element to record the inverse multiplicity of the reference.)

[5] The following constraint under Section 9.3.6, “Connector” in the UML 2.0 Superstructure Specification (OMG document
formal/05-07-04) is removed by SysML: “[3] The ConnectableElements attached as roles to each ConnectorEnd owned
by a Connector must be roles of the Classifier that owned the Connector, or they must be ports of such roles.”

[6] If the aggregation attribute of a property owned by a SysML block is equal to "composite" or "shared" then the type of the
property must be a block.

[7] Within an instance of a SysML Block, the values of any property with composite aggregation (aggregation = composite)
must not contain the block in any of its own properties that also have composite aggregation, or within any unbroken
chain of properties that all have composite aggregation. (Within an instance of a SysML Block, the instances of properties
with composite aggregation must form an acyclic graph.)

8.3.2.2 DistributedProperty

DistributedProperty is a stereotype of Property used to apply a probability distribution to the values of the property.
Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the
distributions represented by properties of those stereotype subclasses.

Constraints

[1] The DistributedProperty stereotype may be applied only to properties of classifiers stereotyped by Block or ValueType.

8.3.2.3 Dimension

A kind of quantity that may be stated by means of defined units. For example, the dimension of length may be measured
by units of meters, kilometers, or feet.

Dimension is defined as a stereotype of InstanceSpecification, but it uses this metaclass only to define supporting
elements for ValueType definitions. (The reuse of InstanceSpecification to define another metaclass is similar to the
EnumerationLiteral metaclass in UML .)

The only valid use of a Dimension instance is to be referenced by the "dimension" property of a ValueType or Unit
stereotype
OMG SysMLTM Proposed Available Specification 49

8.3.2.4 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the connected property
may be identified by a multi-level path of accessible properties from the block that owns the connector.

Attributes

• propertyPath: Property [1..*] (ordered)

The propertyPath list of the NestedConnectorEnd stereotype must identify a path of containing properties that identify
the connected property in the context of the block that owns the connector. The ordering of properties is from a
property of the block that owns the connector, through a property of each intermediate block that types the preceding
property, until a property is reached that contains a connector end property within its type. The connector end property
is not included in the propertyPath list, but instead is held by the role property of the UML ConnectorEnd metaclass.

Constraints

[1] The property at the first position in the propertyPath attribute of the NestedConnectorEnd must be owned by the block that
owns the connector.

[2] The property at each successive position of the propertyPath attribute, following the first position, must be contained in
the Block, DataType, or ValueType that types the property at the immediately preceding position.

[3] Within a ConnectorEnd metaclass to which the NestedConnectorEnd stereotype has been applied, the role property of the
ConnectorEnd metaclass must be contained in the type of the property at the last position of the propertyPath list.

[4] Within a ConnectorEnd metaclass to which the NestedConnectorEnd stereotype has been applied, the value of the
"partWithPort" property of the ConnectorEnd metaclass must be equal to the property at the last position of the
propertyPath list.

8.3.2.5 PropertySpecificType

The PropertySpecificType stereotype is automatically applied to a classifier created by the notation for a property-specific
type for a property belonging to a SysML Block or ValueType. It identifies these classifiers so that they may be managed
along with the property that they type.

Constraints

[1] A classifier to which the PropertySpecificType stereotype is applied must be refererenced as the type of one and only one
property.

[2] The name of a classifier to which a PropertySpecificType is applied must be missing. (The "name" attribute of the
NamedElement metaclass must be empty.)

8.3.2.6 Unit

A quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated. A unit often
relies on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may be specified
as a multiple of a particular wavelength of light. A unit may also specify less stable or precise ways to express some
value, such as a cost expressed in some currency, or a severity rating measured by a numerical scale.
50 OMG SysMLTM Proposed Available Specification

Unit is defined as a stereotype of InstanceSpecification, but it uses this metaclass only to define supporting elements for
ValueType definitions. (The reuse of InstanceSpecification to define another metaclass is similar to the
EnumerationLiteral metaclass in UML .)

The only valid use of a Unit instance is to be referenced by the "unit" property of a ValueType stereotype.

8.3.2.7 ValueType

Description

A type that defines values which may be used to express information about a system, but which cannot be identified as
the target of any reference. Since a value cannot be identified except by means of the value itself, each such value within
a model is independent of any other, unless other forms of constraints are imposed.

Values may be used to type properties, operation parameters, or potentially other elements within SysML. SysML defines
ValueType as a stereotype of UML DataType to establish a more neutral term for system values that may never be given
a concrete data representation. For example, the SysML “Real” ValueType expresses the mathematical concept of a real
number, but does not impose any restrictions on the precision or scale of a fixed or floating point representation that
expresses this concept. More specific value types can define the concrete data representations that a digital computer can
process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure or dimension associated with the value. A dimension is a
kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to state the value.
A unit is a particular value in terms of which a quantity of the same dimension may be expressed.

If these additional characteristics are not required then UML DataType may be used.

Attributes

• dimension: ValueType [0..1]

A kind of quantity that may be stated by means of defined units, as identified by an instance of the Dimension
stereotype. A value type may optionally specify a dimension without any unit. Such a value has no concrete
representation, but may be used to express a value in an abstract form independent of any specific units.

• unit: ValueType [0..1]

A quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated, as
identified by an instance of the Unit stereotype.

Constraints

[1] If a value is present for the unit attribute, the dimension attribute must be equal to the dimension property of the refer-
enced unit.

8.3.2.8 ParticipantProperty

Description

The Block stereotype extends Class, so can be applied to any specialization of Class, including Association Classes.
These are informally called "association blocks". An association block can own properties and connectors, like any other
block. Each instance of an association block can link together instances of the end classifiers of the association.
OMG SysMLTM Proposed Available Specification 51

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to specify
which (participant) properties of the association block identify the instances being linked at which end of the association.
The value of a participant property on an instance (link) of the association block is the value or object at the end of the
link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can be the type
of multiple other connectors to reuse the same internal structure for all the connectors. The keyword "participant" before
a property name indicates the property is stereotyped by ParticipantProperty. The types of participant properties can be
elided if desired. They are always the same as the corresponding association end type.

Attributes

• end : Property [1]A member end of the association block owning the property on which the stereotype is applied.

Constraints

[1] ParticipantProperty may only be applied to properties of association classes stereotyped by Block.

[2] ParticipantProperty may not be applied to properties that are member ends of an association.

[3] The aggregation of a property stereotyped by ParticipantProperty must be none.

[4] The end attribute of the applied stereotype must refer to a member end of the association block owning the property on
which the stereotype is applied.

[5] A property stereotyped by ParticipantProperty must have the same type as the property referred to by the end attribute.

[6] The property referred to by end must have an upper multiplicity of 1.

8.3.2.9 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see 8.3.2.8,
ParticipantProperty). These connectors specify instances (links) of the association block that exist due to instantiation of
the block owning or inheriting the connector. The value of a connector property on an instance of a block will be exactly
those link objects that are instances of the association block typing the connector referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the connector line to
a rectangle notating the connector property. The keyword "connector" before a property name indicates the property is
stereotyped by ConnectorProperty.

Attributes

• connector : Connector [1]A connector of the block owning the property on which the stereotype is applied.

Constraints

[1] ConnectorProperty may only be applied to properties of classes stereotyped by Block.

[2] The connector attribute of the applied stereotype must refer to a connector owned or inherited by a block owning the
property on which the stereotype is applied.

[3] The aggregation of a property stereotyped by ConnectorProperty must be composite.

[4] The type of the connector referred to by a connector attribute must be an association class stereotyped by Block.

[5] A property stereotyped by ConnectorProperty must have the same name and type as the connector referred to by the
connector attribute.
52 OMG SysMLTM Proposed Available Specification

8.3.2.10 Binding Connector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal values.
If the properties at the ends of a binding connector are typed by a DataType or ValueType, the connector specifies that the
instances of the properties must hold equal values, recursively through any nested properties within the connected
properties. If the properties at the ends of a binding connector are typed by a Block, the connector specifies that the
instances of the properties must refer to the same block instance.

Constraints

[1] The two ends of a binding connector must have either the same type or types that are compatible so that equality of their
values can be defined

8.3.3 Model Libraries

Package Blocks

Figure 8.7 - Model Library for Blocks

8.3.3.1 Complex

Description

A value type to represent the mathematical concept of a complex number. A complex number consists of a real part
defined by a real number, and an imaginary part defined by a real number multiplied by the square root of -1. Complex
numbers are used to express solutions to various forms of mathematical equations.

Attributes

• realPart: Real A real number used to express the real part of a complex number.

• imaginaryPart: Real A real number used to express the imaginary part of a complex number.

8.3.3.2 Real

A value type to represent the mathematical concept of a real number. A Real value type may be used to type values that
hold continuous quantities, without committing a specific representation such as a floating point data type with
restrictions on precision and scale.

bdd [modelLibrary] Blocks

«valueType»
Real

realPart: Real
imaginaryPart: Real

«valueType»
Complex
OMG SysMLTM Proposed Available Specification 53

8.4 Usage Examples

8.4.1 Wheel Hub Assembly

In Figure 8.8 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property
LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its values.
Examples of such distributions can be found in Section C.5.
54 OMG SysMLTM Proposed Available Specification

Figure 8.8 - Block diagram for the Wheel Package

bdd WheelPackage

WheelAssembly

values

diameter: mm
width: mm

Wheel

t

1

InflationValve

BalanceWeight

values

lugBoltSize: mm

LugBolt
MountingHole

weight

0..6

mountingHole

5

v

1

TireMountingRim

TireBead

1

1

PressureSeat

bead0..1

2

WheelHubAssembly

rim
0..1

2

values

lugBoltSize: mm
threadSize: mm

LugBolt
ThreadedHole

Hub values

«uniform»{min=75, max=85} torque: ft-lb
boltTension: lb

LugBoltJoint

0..1

1

wheel

hub

1

h0..1

5 1 0..1

threadedHole

1

0..1

mountingHole

lugBoltJoint0..5

w

0..1

1

values

inflationPressure: psi

Tire

values

tireSpecification: String

operations

mountTire()

WirelessTire
PressureMonitor

1

1

BandMount

operations

transmitPressure()
OMG SysMLTM Proposed Available Specification 55

Figure 8.9 - Internal Block Diagram for WheelHubAssembly

In Figure 8.9 an internal block diagram shows how the blocks defined in the Wheel package are used. This ibd is a partial
view that focuses on particular parts of interest and omits others from the diagram, such as the “v” InflationValve and
“weight” BalanceWeight which are also parts of a Wheel.

8.4.2 SI Value Types

In Figure 8.10, several value types using SI units and dimensions are defined to be generally available in the SI Value
Types package for typing value properties. Because a unit already identifies the type of quantity, or dimension, that the
unit measures, a value type only needs to identify the unit to identify the dimension as well. The value types in this
example refer to units which are assumed to be defined in an imported package, such as the SI Definitions model library
defined in Section C.4.

Figure 8.10 - Defining Value Types with units and dimensions

ibd WheelHubAssembly

wheel: WheelAssembly

w: Wheel

mountingHoles:
LugBoltMountingHole

5

lugBoltJoint:
LugBoltJoint

t: Tire

bead:
TireBead

1

0..1

mountingHole

hub: Hub

rim:
TireMountingRim

: PressureSeat

0..5

22

h: LugBoltThreadedHole

1

0..1

threadedHole

5

bdd [package] SI Value Types

«valueType»
unit=Second

s

«valueType»
unit=New ton

N

«valueType»
unit=Meter

m

«valueType»
unit=Kilogram

kg
56 OMG SysMLTM Proposed Available Specification

8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Figure 8-10
shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique properties such
as its weight, color, and horsepower. This concept is distinct from the UML concept of instance specifications in that it
does not imply or assume any run-time semantic, and can also be applied to specify design configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of a
context block. The context block may capture a unique identity for the configuration, and utilizes parts and part-specific
types to express property design values within the specification of a particular system configuration. Such a context block
may contain a set of parts that represent the block instances in this system configuration, each containing specific values
for each property. This technique also provides for configurations that reflect hierarchical system structures, where nested
parts or other properties are assigned design values using property-specific types. The following example illustrates the
approach.
OMG SysMLTM Proposed Available Specification 57

.

Figure 8.11 - SUV EPA Fuel Economy Test

8.4.4 Water delivery

Figure 8-11 shows an association block Water Delivery between a bank of spigots and a faucet. Figure 8-12 shows the
internal structure of Water Delivery defining connectors between the spigots in the bank and inlets on the faucet. The
participant properties identify the spigot bank and faucet being connected. The end property on the stereotype refers to

ibd [block] SUV_EPA_Fuel_Economy_Test [Test Results]

values
VIN = G12345

TestVehicle1:[HybridSUV]

values
sn:ID = p67890

p:[PowerSubsystem]

c-bk:

b-c:

b-i:

bk-l:

c-p: bk-p:

Satisfies
«requirment»Emissions

values
sn:ID = bk45678

bk:[BrakeSubsystem]

values
sn:ID = c34567

c:[ChassisSubsystem]

values
sn:ID = lt56789

l:[LightingSubsystem]

values
sn:ID = b12345

b:[BodySubsystem]

values
sn:ID = i23456

i:[Interior]

«testCase»
testRun060401:

EPAFuelEconomyTest

values
sn:ID = sn90123

em:[ElectricalMotor] values
sn:ID = sn89012

t:[Transmission]

values
sn:ID = eid78901

ice:[InternalCombusti
onEngine]

em-t: ice-t:

Verifies
«requirement»Emissions
58 OMG SysMLTM Proposed Available Specification

the corresponding association end in Figure 8-11. The type of participant properties is shown for clarity, but it is always
the same as the association end type and can be elided. They are notated as dashed rectangles because they are reference
properties. The internal structure connects hot and cold properties of the participants.

Figure 8.12 Association Block water delivery

Figure 8.13

Figure 8-13 shows two views of a block House with a connector of type Water Delivery. The connector in the top view
"decomposes" into the subconnectors in the lower view according to the internal structure of WATER Delivery. The
subconnectors relate the nested properties of :WaterSupply to the nested properties of :WaterClient.

bdd Water Supply and Client

suppliedBy deliveredTo

1..*1

Spigot

hot cold coldhot

Faucet
Inlet

Faucet

Water
Client

Water
Supply

Spigot
Bank

1 1 1 1

from to

1 1

1 1sbank faucet

Water
Delivery

ibd Water Delivery

«participant»
{end=deliveredTo}

deliveredToInLink :
Faucet

hot

cold

«participant»
{end=suppliedBy}

suppliedByInLInk :
SpigotBank

hot

cold

from

from

to

to
OMG SysMLTM Proposed Available Specification 59

Figure 8.14

The top portion of Figure 8-14 shows specializations of the block WaterClient into Bath, Sink, and Shower. These are
used as part types in the internal structure of the block House 2 shown in the lower portion of the figure. The composite
connector for Water Delivery is reused three times to establish connections between spigots on the water supply and the
inlets of faucets on the bath, sink, and shower.

: WaterSupply : WaterClient

faucetsbank

: WaterSupply

ibd House

 : WaterClientfaucet
waterDelivery

sbank

coldcold

hothot

ibd House

suppliedBy deliveredTo

from to

from to
60 OMG SysMLTM Proposed Available Specification

Figure 8.15

Figure 8-14 modifies Figure 8-11 to add an association block Plumbing for the association between Spigot and Faucet
Inlet. Figure 8-15 shows the internal structure for Plumbing, which includes a pipe and two fittings (the classes and
associations for these parts and connectors are omitted for brevity). Figure 8-16 modifies Figure 8-12 to use Plumbing as
a connector type. The lower connector shows its connector property explicity, enabling the pipe it contains to be
connected to a mounting bracket (the additional types and associations are omitted for brevity).

ibd House 2

: WaterSupply : Bathfaucet
waterDelivery

sbank

 : Sink

 : Shower

waterDelivery

waterDelivery

bdd Water Client

Bath Sink Shower

Water
Client

faucet

faucet
OMG SysMLTM Proposed Available Specification 61

Figure 8.16

bdd Water Supply and Client

suppliedBy deliveredTo

1..*1

Spigot

hot cold coldhot

Faucet
Inlet

Faucet

Water
Client

Water
Supply

Spigot
Bank

1 1 1 1

from to

1 1

1 1sbank faucet

Water
Delivery

Plumbing

ibd Plumbing

«participant»
{end=to}

toInLink :
FaucetInlet

«participant»
{end=from}

fromInLink :
Spigot

pp : Pipe ff : Fittingsf : Fitting
62 OMG SysMLTM Proposed Available Specification

Figure 8.17

Figure 8.18

ibd Water Delivery

«participant»
{end=deliveredTo}

deliveredToInLink :
Faucet

hot

cold

«participant»
{end=suppliedBy}

suppliedByInLInk :
SpigotBank

hot

cold

p2 : Plumbing

p1 : Plumbing

pp
m : Mounting

Bracket

from

from

to

to
OMG SysMLTM Proposed Available Specification 63

64 OMG SysMLTM Proposed Available Specification

9 Ports and Flows

9.1 Overview

This chapter specifies flow ports that enable flow of items between blocks and parts, while standard ports enable
invocation of services on blocks and parts. A port is an interaction point between a block or part and its environment that
is connected with other ports via connectors. The main motivation for specifying such ports on system elements is to
allow the design of modular reusable blocks, with clearly defined interfaces. (Note: the block owns its ports and therefore
the port is part of the blocks definition). This chapter also specifies item flows across connectors and associations.

9.1.1 Standard Ports

A Standard Port specifies the services the owning Block provides (offers) to its environment as well as the services that
the owning Block expects (requires) of its environment. The specification of the services is achieved by typing the
Standard Port by the provided and/or required interfaces. In general Standard Ports are used in the context of service-
oriented architectures, which is typical for software component architectures. Since standard ports contain operations
which specify bi-directional flow of data, standard ports are typically used in the context of peer-to-peer synchronous
request/reply communications. A special case of a service is signal reception, which signifies a one way communication
of signal instances, where the handling of the request is asynchronous.

For example, a Block representing an automatic transmission in a car could have a Standard Port that specifies that the
Transmission Block can accept commands to switch gears. Standard Ports are another name for UML2.1 ports, in other
words they are defined by the same meta-class.

9.1.2 Flow Ports

Comment: 10025

A FlowPort specifies the input and output items that may flow between a Block and its environment. FlowPorts are
interaction points through which data, material or energy “can” enter or leave the owning Block. The specification of
what can flow is achieved by typing the FlowPort with a specification of things that flow. This can include typing an
atomic flow port with a single type representing the items that flows in our out, or typing a non-atomic flow port with a
“flow specification” which lists multiple items that flow. A block representing an automatic transmission in a car could
have an atomic flow port that specifies “Torque” as an input and another atomic flow port that specifies “Torque” as an
output. A more complex flow port could specify a set of signals and/or properties that flow in and out of the flow port. In
general, flow ports are intended to be used for asynchronous, broadcast, or send and forget interactions. FlowPorts extend
UML2.1 ports.

9.1.3 Item Flows

Item flows represent the things that flow between blocks and/or parts and across associations or connectors. Whereas the
FlowPort specifies what “can” flow in or out of a block, the item flows specify what “does” flow between blocks and/or
parts in a particular usage context. This important distinction enables blocks to be interconnected in different ways
depending on its usage context. For example, a tank may include a FlowPort that can accept fluid as an input. In a
particular use of the tank, “gasoline” flows across a connector into its FlowPort, and in another use of the tank, “water”
OMG SysMLTM Proposed Available Specification 55

flows across a connector into the its FlowPort. The item flow would specify what “does” flow on the connector in the
particular usage (e.g., gas, water), and the FlowPort specifies what can flow (e.g., fluid). This enables type matching
between the item flows and between flow ports to assist in interface compatibility analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a
connector. FlowAllocation is described in Chapter 15, “Allocations”and can be used to help ensure consistency across the
different parts of the model.
56 OMG SysMLTM Proposed Available Specification

9.2 Diagram Elements

9.2.1 Extensions to Block Definition Diagram.

Table 9.1 - Extensions to Block Definition Diagram

Node Name Concrete Syntax Abstract Syntax Reference

StandardPort UML4SysML::Port

StandardPort
(Compartment Notation)

SysML::PortsAndFlows:Standard-
Port

FlowPort SysML::PortsAndFlows::FlowPort

«block»
Transmission

p2

ITransCmd

ITransData

 p2 : ITransCmd

«block»
Transmission
standard ports

«block»
Transmissionp:ITransmission

Flow port

«block»
Transmission

p:ITransmission

Conjugated Flow port

«block»
Transformator

ac:ACVoltage

Atomic Flow Ports

dc:DCVoltage

<>

<>

networkType:ElectricNetworkType
OMG SysMLTM Proposed Available Specification 57

FlowPort
(Compartment Notation)

SysML::PortsAndFlows::FlowPort

Interface UML4SysML::Interfaces::Inter-
face

FlowSpecification SysML::PortsAndFlows::Flow-
Specification

ItemFlow SysML::PortsAndFlows::ItemFlow

Table 9.1 - Extensions to Block Definition Diagram

Node Name Concrete Syntax Abstract Syntax Reference

p : ITransmission

«block»
Transmission

Flow port

in ac : ACVoltage
out dc : DCVoltage
inout networkType : ElectricNetworkType

«block»
Transformator

Atomic Flow Ports

flow ports

p : ITransmission {conjugated}

«block»
Transmission

Conjugated Flow port

flow ports

flow ports

+notifySpeedChange() : void

«interface»
ISpeedObserver

in gearSelect : Gear
in engineTorque : Torque
out wheelsTorque : Torque

«flowSpecification»
ITransmission

flowProperties

«block»
Engine

«block»
TransmissionTorque

itsEngine

1

58 OMG SysMLTM Proposed Available Specification

9.2.1.1 Extensions to Internal Block Diagram

Table 9.2 - Extension to Internal Block Diagram

Node Name Concrete Syntax Abstract Syntax Reference

StandardPort SysML::PortsAndFlows::Stan-
dardPort

FlowPort SysML::PortsAndFlows::FlowPort

«part»
trans:Transmission

p2
ITransCmd

ITransData

«part»
t:Transmissionp:ITransmission

Flow port

«part»
t:Transmission

p:ITransmission

Conjugated Flow port

«part»
tr:Transformator

ac:ACVoltage

Atomic Flow Ports

dc:DCVoltage

<>

<>

networkType:ElectricNetworkType
OMG SysMLTM Proposed Available Specification 59

9.3 UML Extensions

9.3.1 Diagram Extensions

9.3.1.1 FlowPort

Flow Ports are interaction points through which input and/or output of items such as data, material or energy may flow.
The notation of FlowPort is a square on the boundary of the owning Block or its usage. The label of the flow port is in
the format portName:portType. Atomic FlowPorts have an arrow inside them indicating the direction of the port with
respect to the owning Block. A non-atomic FlowPort have two open arrow heads facing away from each other (i.e., <>).
The fill color of the square is white and the line and text colors are black, unless the flow port is conjugated, in which
case the fill color of the square is black and the text is in white.

In addition, flow ports can be listed in a special compartment labeled ‘flow ports.’ The format of each line is:

in | out | inout portName:portType [{conjugated}]

9.3.1.2 FlowProperty

A FlowProperty signifies a single flow element to/from a Block. A FlowProperty has the same notation of a Property only
with a direction prefix (in | out | inout). Flow Properties are listed in a compartment labeled “flowProperties.”

ItemFlow SysML::PortsAndFlows::ItemFlow

Table 9.2 - Extension to Internal Block Diagram

Node Name Concrete Syntax Abstract Syntax Reference

«part»
trns:T ran sm issio n

«part»
en g :E n gin e

p:Torq ue

T orq ue

p:T orqu e

I te m F lo w w i th a n i te m P r o p e r ty

« p a r t »
t r n s : T r a n s m is s io n

« p a r t »
e n g :E n g in e

p :T o r q u e

t o r q e :T o r q u e

p :T o r q u e
60 OMG SysMLTM Proposed Available Specification

9.3.1.3 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment that
lists the flow properties.

9.3.1.4 ItemFlow

An Item Flow describes the flow of items across a connector or an association. The notation of ItemFlow is a black
arrow-head on the connector or association. The arrow head is towards the target element. For an Item Flow with an
itemProperty, the label shows the name and type of the itemProperty (in name:type format). Otherwise the Item Flow is
labeled with the name of the conveyed Classifier.

9.3.2 Stereotypes

9.3.2.1 Package Ports&Flows

Figure 9.1 - Port Stereotypes

«metaclass»
UML4SysML::Property

-in
-out
-inout

«enumeration»
FlowDirection

-direction : FlowDirection

«stereotype»
FlowProperty «stereotype»

FlowSpecification

«metaclass»
UML4SysML::Interface

+isAtomic[1] : Boolean
+direction[1] : FlowDirection
+isConjugated[0..1] : Boolean

FlowPort

«metaclass»
UML4SysML::Port
OMG SysMLTM Proposed Available Specification 61

9.3.2.2 Block

Description

Blocks may own StandardPorts and/or FlowPorts. See Chapter 8, “Blocks” for details of Block.

9.3.2.3 Standard Port

Description

StandardPorts are interaction points through which a Block provides and requires a set of services to and from its
environment.

The services that the Block provides to its environment via the StandardPort are specified by a set of provided interfaces.
The services that the Block requires from the environment via the StandardPort are specified by a set of required
interfaces.

An interface may specify operations or signals. If the interface is provided, then external parts may call operations or send
signals via the port to its owning block. If the interface is required, then the block may call operations or send signals via
the port to its environment.

StandardPorts are UML 2.1 ports. As a guideline, it is recommended StandardPorts are used in the context of service
based components and/or architectures, either when specifying software components or applying a service based approach
to system specification.

Figure 9.2 - ItemFlow Stereotype
62 OMG SysMLTM Proposed Available Specification

9.3.2.4 FlowDirection

Description

FlowDirection is an enumeration type that defines literals used for specifying input and output directions. FlowDirection
is used by FlowProperties to indicate if the property is an input or an output with respect to its owner.

Literal Values are

in: Indicates that the flow property is input to the owning Block.

out: Indicates that the flow property is an output of the owning Block.

nout: Indicates that the flow property is both an input and an output of the owning Block.

9.3.2.5 FlowPort

Description

Flow Ports are interaction points through which input and/or output of items such as data, material or energy may flow.
This enables the owning block to declare which items it may exchange with its environment and what are the interaction
points through which the exchange is made.

We distinguish between Atomic Flow Port and a Non-Atomic Flow Port: Atomic Flow Ports relay items that are classified
by a single Block, Value Type, Data Type, or Signal Classifier. A Non-Atomic Flow Port relays items of several types as
specified by a FlowSpecification.

The distinction between Atomic and Non-Atomic Flow Ports is made according to the FlowPort’s type: If a FlowPort is
typed by a FlowSpecification then it is Non-Atomic, if the FlowPort is typed by a Block, ValueType, DataType or Signal,
then it is Atomic.

FlowPorts and associated Flow Specifications define “what can flow” between the block and its environment. Whereas
ItemFlows specify “what does flow” in a specific usage context.

FlowPorts relay items to/from the associated connector to/from properties of the owning block or parameters of the block
behavior if the port is not connected to an internal link that may relay the items to an internal part of its owner. This
means that every FlowProperty contained within a FlowPort is bound to a property owned by the block or a parameter of
the block behavior.

In case of flow properties or Atomic FlowPort of type Signals, inbound properties/atomic FlowPort are mapped to a
Reception of the signal type (or a sub type) of the flow property's type. Outbound flow properties only declare the ability
of the FlowPort to relay the Signal over external connectors attached to it and are not mapped to a property of the flow-
port's owning Block.

The Item Flows specified as flowing on a connector between FlowPorts must match to the Flow Properties of the ports at
each end of the connector: the source of the Item Flow should be the port which has an outbound/bidirectional Flow
Property that matches the Item Flow’s type and the target of the Item Flow should be the port that has an inbound/
bidirectional Flow Property that matches the type of the Item Flow.

If a FlowPort is connected to multiple external and/or internal connectors then the items are propagated (broadcasts) over
all connectors that have matching properties at the other end.
OMG SysMLTM Proposed Available Specification 63

Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic variation
point: One approach is to perform name and type matching, another approach is to explicitly use binding relationships
between the ports properties and behavior parameters or block properties.

Attributes

• direction : FlowDirection [1]
Indicates the direction in which an Atomic FlowPort relays its items. If the direction is set to in then the items are
relayed from an external connector via the FlowPort into the FlowPort's owner (or one of its Parts). If the direction is
set to out, then the items are relayed from the FlowPort's owner, via the FlowPort, through an external connector
attached to the FlowPort, and if the direction is set to inout then items can flow both ways. By default, the value is
inout.

• isConjugated : Boolean [0..1]
Indicates if the flow of items of a non-atomic flow port maintain the directions specified in the FlowSpecification or
the direction of every flow property specified in the FlowSpecification is reversed (IN becomes OUT and vice versa).
If set to True then all the directions of the FlowProperties specified by the FlowSpecification that types a Non-Atomic
FlowPort are relayed in the opposite direction (i.e., in flow property is treated as an out flow property by the FlowPort
and vice-versa). By default, the value is False.
This attribute applies only to Non-Atomic FlowPorts since Atomic Flow Ports have a direction attribute signifying the
direction of the flow.

• /isAtomic : Boolean (derived)
This is a derived attribute (derived from the FlowPort’s type). For a FlowPort typed by a FlowSpecification the value
of this attribute is False, otherwise the value is True.

Constraints

[1] A FlowPort must be typed by a FlowSpecification, Block, Signal, DataType, or ValueType.

[2] If the FlowPort is Atomic (by it's type), then isAtomic=True, the Direction must be specified (has a value), and the isCon-
jugated is not specified (has no value).

[3] If the FlowPort is Non-Atomic, and the FlowSpecification typing the port has flow properties with direction in, the Flow-
Port direction is in (or out if isConjugated=true). If the flow properties are all out, the FlowPort direction is out (or in if
isConjugated=true). If flow properties are both in and out, the direction is inout.

[4] A Flow Port can be connected (via connectors) to one or more flow ports that have matching flow properties. The
matching of flow properties is done in the following steps:

1. Type Matching: The type being sent is the same type or a sub-type of the type being received

2. Direction Matching: If the connector connects two parts that are external to one another then the direction of the
flow properties must by opposite, or at least one of the ends should be inout. If the connector is internal to the
owner of one of the flow ports, then the direction should be the same or at least one of the ends should be inout

3. Name Matching: In case there is type and direction match to several flow properties at the other end, the property
that have the same name at the other end is selected. If there is no such property then the connection is ambiguous
(ill-formed)
64 OMG SysMLTM Proposed Available Specification

9.3.2.6 FlowProperty

Description

A FlowProperty signifies a single flow element that can flow to/from a Block. A Flow Property’s values are either
received from or transmitted to an external Block. Flow Properties are defined directly on Blocks or Flow Specifications
which are those specifications which type the Flow Ports.

FlowProperties enable item flows across connectors connecting parts of the corresponding block types, either directly (in
case of the property is defined on the block) or via flowPorts. For Block, Data Type and Value Type properties, setting an
out FlowProperty value of a Block usage on one end of a connector will result in assigning the same value of an in
FlowProperty of a Block usage at the other end of the connector, provided the FlowProperties are matched.
FlowProperties of type Signal imply sending and/or receiving of a Signal usages. An out FlowProperty of type Signal
means that the owning Block may broadcast the signal via connectors and an in FlowProperty means that the owning
Block is able to receive the Signal.

Attributes

• direction : FlowDirection
Specifies if the property value is received from an external Block (direction=in), transmitted to an external Block
(direction=out) or both (direction=inout).

Constraints

[1] FlowProperties are typed by a ValueType, DataType, Block or Signal.

[2] An in FlowProperty value cannot be modified by its owning Block.

9.3.2.7 FlowSpecification

Description

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by Flow Ports
to specify what flow items can flow via the port.

Constraints

[1] FlowSpecifications cannot own operations or receptions (they can only own FlowProperties)

[2] Owned Attribute of a FlowSpecification is a FlowProperty.

9.3.2.8 ItemFlow

Description

An Item Flow describes the flow of items across a connector or an association. It may constrain the item exchange
between Blocks, Block usages or FlowPorts as specified by their FlowProperties. For example, a Pump connected to a
Tank: the Pump has an out FlowProperty of type Liquid and the Tank has an in FlowProperty of type Liquid. To signify
that only Water flow between the Pump and the Tank, we can specify an ItemFlow of type Water on the connector.
OMG SysMLTM Proposed Available Specification 65

One can label an ItemFlow with the Classifiers that may be conveyed. For example: a label Water would imply that
usages of Water might be transmitted over this ItemFlow. In addition, if there is an itemProperty (corresponds to the
conveyed Classifier), then one can label the itemFlow with the itemProperty. For example, a label liquid:Water would
imply that the itemFlow relays Water and this relay is associated with an itemProperty liquid of the ItemFlow, i.e., the
liquid itemProperty is set once Water are relayed.

Attributes

• itemProperty :Property [0..1]
An optional property that relates the flowing item to the instances of the connector’s enclosing Block. This property is
applicable only for ItemFlows assigned to connectors, the multiplicity is zero if the ItemFlow is assigned to an
Association

Constraints

[1] A Connector or an Association, or an inherited Association must exist between the source and the target of the Informa-
tionFlow

[2] An ItemFlow itemProperty is typed by a Block or by a ValueType.

[3] ItemProperty is a property of the Block owning the source and the target.

[4] The type of itemProperty should be the same or a sub-type of the conveyedClassifier.

[5] Item property cannot have a value if there is only an association between the source and the target of the InformationFlow.

9.4 Usage Examples

9.4.1 Standard Ports

Figure 9.3 is a fragment of the ibd:PwrSys diagram used in the HybridSUV sample (Annex B). The
ecu:PowerControlUnit part has three StandardPorts, each connected to a standard port of another part. Each of the
standard ports in this example has one provided and one required interface that specify the messages that can be sent via
the ports. For example, the I_ICECmds interface specifies the operations setMixture and setThrottle (Figure 9.4). This
interface is provided by the ctrl port of InternalCombustionEngine and is required by the ice port of PowerControlUnit.
Since the ecu:PowerControlUnit part and ice:InternalCombustionEngine part are connected via these ports, the
ecu:PowerControlUnit part may send the messages setThrottle and setMixture to the ice:InternalCombustionEngine part
from its ice port, across the connector to the ctrl port of ice:InternalCombustionEngine. By sending these messages, the
PowerControlUnit can set the throttle and mixture of the InternalCombustionEngine. Inversely, the
InternalCombustionEngine can report (notify) changes in its temperature, RPM and knockSensor by having the
I_ICEData (Figure 9.4) as required interface on its ctrl port and connecting this port to the ice port of the
PowerControlUnit where this interface is provided.
66 OMG SysMLTM Proposed Available Specification

Figure 9.3 - Usage Example of StandardPorts

Figure 9.4 - Interfaces of the Internal Combustion Engine ctrl Standard Port

ibd [block] PowerSubsystem [Standard Ports Example]

trsm:Transmission

ice:InternalCombustionEngine

ecu:PowerControlUnit

epc:ElectricalPower
Controller

ice

ctrl

I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3:

c2:

c1:

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

bdd [block] PowerSubsystem [ICE Interface Definitions]

getRPM():integer
getTemperature():Real
isKnockSensor():Boolean

«interface»
I_ICEData

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

«interface»
I_ICECmds
OMG SysMLTM Proposed Available Specification 67

9.4.1.1 Atomic Flow Ports and Item Flows

Figure 9.5 is taken from the HybridSUV example in Appendix B. Here we see how Fuel may flow between the FuelTankAssy
and the InternalCombustionEngine. The FuelPump ejects Fuel via p1 port of FuelTankAssy, the Fuel flows across the
fuelSupplyLine connector to the fuelFittingPort of InternalCombustionEngine and from there it is distributed via other atomic
flow ports of type Fuel to internal parts of the engine. Some of the fuel is returned to the FuelTankAssy from the fuelFitting
port across the fuelReturnLine connector. Note that it is possible to connect a single flow port to multiple connectors: in this
example the direction of the flow via the fuelFitting port on the external connectors is implied by the direction of the flow
ports on the other side of the fuel lines as well as by the directions of the item flows on the fuel lines. The direction of the flow
on the internal connectors is implied by the direction of the atomic flow ports of the engine’s internal parts.

Figure 9.5 also shows the usage of ItemFlow, here each of the item flows has an item property (fuelSupply:Fuel and
fuelReturn:Fuel) that signify the actual flow of fuel across the fuel lines.

Figure 9.5 - Usage of Atomic Flow Ports in the HybridSUV Sample - ibd:FuelDist diagram

 ibd [block] PowerSubsystem [Fuel Distribution Detail]

ice:InternalCombustionEngine

ft:FuelTankAssy

fuelSupplyLine:

fuelSupply:Fuel

fp:FuelPump

fi1:FuelInjector

4

fuelReturn:Fuel

fre:FuelRegulatorfra:FuelRail

p1:Fuel

p2:Fuel

fuelReturnLine:

fi2:FuelInjector

fi3:FuelInjector

fi4:FuelInjector

allocatedFrom
«connector»fdist:

fuelFitting:Fuel

allocatedFrom
«connector»fuelDelivery:

<
>

Fuel
68 OMG SysMLTM Proposed Available Specification

9.4.1.2 Non-Atomic Flow Ports and Flow Specification

Figure 9.6 taken from “Sample Problem” shows a way to connect the PowerControlUnit to other parts over a CAN bus.
Since connections over buses are characterized by broadcast asynchronous communications, flow ports are used to
connect the parts to the CAN bus. To specify the flow between the flow ports, we need to specify Flow Specifications as
done in Figure 9.7. Here the flow specification has three flow properties: an out flow property of type signal (ICEData)
and two in flow properties of type float. This allows the InternalCombustionEngine to transmit an ICEData signal via its
fp flow port which will be transmitted over the CAN bus to the ice port of PowerControlUnit (a conjugated flow port
typed by the FS_ICE flow specification). This single signal carries the temperature, rpm and knockSensor information of
the engine. In addition, the PowerControlUnit can set the mixture and throttle of the InternalCombustionEngine via the
mixture and throttlePosition flow properties of the FS_ICE flow specification.

Figure 9.6 - Using Flow Ports to Connect the PowerControlUnit to the ElectricalPowerController, Transmission and
InternalCombustionEngine over a CAN bus

ibd [block] PowerSubsystem [CAN Bus description]

trsm:Transmission ice:InternalCombustionEngine

ecu:PowerControlUnit

epc:ElectricalPower
Controller

:CAN_Bus

fp:FS_EPC fp:FS_TRSM fp:FS_ICE

epc:IFS_EPC etrsm:IFS_TRSM ice:IFS_ICE

<
>

<> <>

<> <> <>
OMG SysMLTM Proposed Available Specification 69

Figure 9.7 - Flow Specification for the InternalCombustionEngine flow port to allow its connection over the CAN bus

bdd CAN Bus FlowSpecifications

flowProperties
out engineData:ICEData
in mixture:Real
in throttlePosition:Real

«flowSpecification»
FS_ICE

rpm:Integer
temperature:Real
knockSensor:Boolean

«signal»
ICEData
70 OMG SysMLTM Proposed Available Specification

10 Constraint Blocks

10.1 Overview

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability models
with other SysML models. Constraint blocks can be used to specify a network of constraints that represent mathematical
expressions such as {F=m*a} and {a=dv/dt} which constrain the physical properties of a system. Such constraints can
also be used to identify critical performance parameters and their relationships to other parameters, which can be tracked
throughout the system life cycle.

A constraint block includes the constraint, such as {F=m*a}, and the parameters of the constraint such as F, m, and a.
Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example, a definition for
Newton’s Laws may be used to specify these constraints in many different contexts. Reusable constraint definitions may
be specified on block definition diagrams and packaged into general-purpose or domain-specific model libraries. Such
constraints can be arbitrarily complex mathematical or logical expressions. The constraints can be nested to enable a
constraint to be defined in terms of more basic constraints such as primitive mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a
constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a mass, that
provide values for the parameters. The constrained properties, such as mass or response time, typically have simple value
types that may also carry units, dimensions, and probability distributions. A pathname dot notation can be used to refer to
nested properties within a block hierarchy. This allows a value property (such as an engine displacement) that may be
deeply nested within a containing hierarchy (such as vehicle, power system, engine) to be referenced at the outer
containing level (such as vehicle-level equations). The context for the usages of constraint blocks must also be specified
in a parametric diagram to maintain the proper namespace for the nested properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established by a
local or global clock which produces a continuous or discrete time value property. Other values of time can be derived
from this clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as calendar time
can be derived from this global time property. SysML includes the time model from UML, but other UML specifications
offer more specialized descriptions of time which may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state
results in a different set of constraint equations. This can be accommodated by specifying constraints which are
conditioned on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to
compare alternative solutions. The objective function can constrain measures of effectiveness or merit and may include a
weighting of utility functions associated with various criteria used to evaluate the alternatives. These criteria, for example,
could be associated with system performance, cost, or desired physical characteristics. Properties bound to parameters of
the objective function may have probability distributions associated with them that are used to compute expected or
probabilistic measures of the system. The use of an objective function and measures of effectiveness in parametric
diagrams are included in Annex C: Non-normative Extensions.

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The
interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) must be provided.
An expression may rely on other mathematical description languages both to capture the detailed specification of
OMG SysMLTM Proposed Available Specification 71

mathematical or logical relations, and to provide a computational engine for these relations. In addition, the block
constraints are non-causal and do not specify the dependent or independent variables. The specific dependent and
independent variables are often defined by the initial conditions, and left to the computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. The properties of this block
define the parameters of the constraint. The usage of a constraint block is distinguished from other parts by a box having
rounded corners rather than the square corners of an ordinary part. A parametric diagram is a restricted form of internal
block diagram that shows only the use of constraint blocks along with the properties they constrain within a context.

10.2 Diagram Elements
Tables in the following sections provide a high-level summary of graphical elements available in SysML diagrams. A more
complete definition of SysML diagram elements, including the different forms and combinations in which they may appear, is
provided in Annex G: BNF Diagram Syntax Definitions.

10.2.1 Block Definition Diagram

The diagram elements described in this section are additions to the Block Definition diagram described in Chapter 8,
Blocks.

10.2.1.1 Graphical Nodes

10.2.2 Parametric Diagram

The diagram elements described in this section are additions to the Internal Block Diagram described in Chapter 8:
Blocks. The Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the
restrictions described in “Parametric Diagram” on page 74.

Table 10.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Metamodel Reference

ConstraintBlock SysML::ConstraintBlocks::
ConstraintBlock

parameters
x: Real
y: Real

constraints
{{L1} x > y}
nested: ConstraintBlock2

«constraint»
ConstraintBlock1
72 OMG SysMLTM Proposed Available Specification

10.2.2.1 Graphical Nodes

10.3 UML Extensions

10.3.1 Diagram Extensions

10.3.1.1 Block Definition Diagram

Constraint block definition

The <<constraint>> keyword on a block definition states that the block is a constraint block. An expression that specifies
the constraint may appear in the constraints compartment of the block definition, using either formal statements in some
language, or informal statements using text. This expression can include a formal reference to a language in braces as
indicated in Table 10.1. Parameters of the constraint may be shown in a compartment with the predefined compartment
label “parameters.”

Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters,” which may contain declarations for
some or all of its constraint parameters. Properties of a constraint block should be shown either in the constraints
compartment, for nested constraint properties, or within the parameters compartment.

Table 10.2 - Graphical nodes defined in Parametric diagrams.

Element Name Concrete Syntax Example Metamodel Reference

ParametricDiagram SysML::Constraint-
Blocks::ConstraintBlock
SysML::Blocks::Block

ConstraintProperty SysML::ConstraintBlocks::
ConstraintProperty

par Block1

 C1: Constraint1

x:

y:

length: Real

width: Real

 C1: Constraint1

x: Real

y: Real

x: Real

y: Real

«constraint»
C1: Constraint1
OMG SysMLTM Proposed Available Specification 73

10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain
constraint properties and their parameters, along with other properties from within the internal block context. All
properties that appear, other than the constraints themselves, must either be bound directly to a constraint parameter, or
contain a property that is bound to one (through any number of levels of containment).

Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical
shape distinguishes a constraint property from all other properties and avoids the need to show an explicit «constraint»
keyword. Otherwise, this notation is equivalent to the standard form of an internal property with a «constraint» keyword
shown. Compartments and internal properties may be shown within the shape just as for other types of internal properties.

«constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle with the
«constraint» keyword preceding its name. Parameters are shown within a constraint property using the standard notations
for internal properties. The stereotype ConstraintProperty is applied to a constraint property, but only the shorthand
keyword «constraint» is used when shown on an internal property.

Small square box notation for an internal property

A value property may optionally be shown by a small square box, with the name and other specifications appearing in a
text string close to the square box. The text string for such a value property may include all the elements that could
ordinarily be used to declare the property in a compartment of a block, including an optional default value. The box may
optionally be shown with one edge flush with the boundary of a containing property. Placement of property boxes is
purely for notational convenience, for example to enable simpler connection from the outside, and has no semantic
significance. If a connector is drawn to a region where an internal property box is shown flush with the boundary of a
containing property, the connector is always assumed to connect to the innermost property.

10.3.2 Stereotypes

Package ConstraintBlocks

Figure 10.1 - Stereotypes defined in SysML ConstraintBlocks package

«stereotype»
SysML::Blocks::Block

«stereotype»
ConstraintBlock

«stereotype»
UML4SysML::Property

«stereotype»
ConstraintProperty
74 OMG SysMLTM Proposed Available Specification

10.3.2.1 ConstraintBlock

Description\

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to
constrain properties of other blocks. A constraint block typically defines one or more constraint parameters, which are
bound to properties of other blocks in a surrounding context where the constraint is used. Binding connectors, as defined
in Chapter 8: Blocks, are used to bind each parameter of the constraint block to a property in the surrounding context. All
properties of a constraint block are constraint parameters, with the exception of constraint properties that hold internally
nested usages of other constraint blocks.

Constraints

[1] A constraint block may not own any structural or behavioral elements beyond the properties that define its constraint
parameters, constraint properties that hold internal usages of constraint blocks, binding connectors between its internally
nested constraint parameters, constraint expressions that define an interpretation for the constraint block, and general-
purpose model management and crosscutting elements.

10.3.2.2 ConstraintProperty

Description

A constraint property is a property of any block that is typed by a constraint block. It holds a localized usage of the
constraint block. Binding connectors may be used to bind the parameters of this constraint block to other properties of the
block that contains the usage.

Constraints

[1] A property to which the ConstraintProperty stereotype is applied must be owned by a SysML Block.

[2] The ConstraintProperty stereotype must be applied to any property of a SysML Block which is typed by a Constraint-
Block.

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they must have the
«constraint» keyword shown. The strings in braces in the compartment labeled “constraints” are ordinary UML
constraints, using a special compartment to hold the constraint. This is shown in Figure 10.2. These particular constraints
are specified only in an informal language, but a more formal language such as OCL or MathML could also be used. The
compartment labeled parameters shows the parameters of this constraint which are bound on the parametric diagram.
OMG SysMLTM Proposed Available Specification 75

10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Figure 10.3 shows the use of constraint properties on a parametric diagram (note that this is a subset of the corresponding
diagram in the sample problem). This diagram shows the use of nested property references to the properties of the parts;
parametric diagrams can make use of the nested property name notation to refer to multiple levels of nested property
containment, as shown in this example. A parametric diagram is similar to an internal block diagram with the exception
that the only connectors that may be shown are binding connectors connected to constraint parameters on at least one end.
The Sample Problem in Sample Problem provides definitions of the containing EconomyContext block for which this
parametric diagram is shown.

Figure 10.2 - Constraint block definitions in a Block Definition diagram

bdd [package] HSUVAnalysis [Def inition of Dynamics]

parameters
w hlpow r:Horsepw r
Cd:Real
Cf :Real
tw :Weight
tp:Horsepw r
v:Vel
i:Real

constraints
{tp = w hlpow r - (Cd*v) -
(Cf*tw *v)}

«constraint»
Pow erEquation

parameters
tw :Weight
delta-t:Time
tp:Horsepw r
a:Accel

constraints
{a = (550/32)*tp(hp)*delta-
t*tw }

«constraint»
Accele rationEquation

parameters
delta-t:Time
v:Vel
a:Accel

constraints
{v(n+1 = v(n)+a*32*3600/5280*dt}

«constraint»
Ve locityEquation

parameters
delta-t:Time
v:Vel
x:Dist

constraints
{x(n+1) = x(n)+v*5280/3600*dt}

«constraint»
PositionEquation

parameters
w hlpow r:Horsepw r
Cd:Real
Cf :Real
tw :Weight
acc:Accel
vel:Vel
incline:Real

«constraint»
StraightLine

VehicleDynam ics

accvel
pw r

pos
76 OMG SysMLTM Proposed Available Specification

Table 10.3 - Constraints on a parametric diagram

par [block] EconomyContext

dyn:StraightLine
VehicleDynam ics

rdrag:Rolling
FrictionEquation

adrag:Aero
DragEquation

w :TotalWe ight

pl:PayloadEquation

cgoWt:psgrWt:

psgrWt:

volume:

volume:

vdw : fw :

ad.HSUV.Pow erSubsystem.
FuelTank.FuelWeight

Cd:

Cd:

tw :

tw :

tw :

Cf :

Cf :

fe:FuelEfficiency
Equationw hlpw r:

acc:acc:
vel: mpg:

incline:

rb:RegenBrake
EfficiencyEquation

vel:

incline:

ebpw r:

ebpw r:

n_em:

acc:

n_ice:

n_eg:

ad.HSUV.PayloadCapacity

pcap:

cgoWt:

w hlpw r:

ad.HSUV.VehicleDryWeight

ad.HSUV.Pow erSybsystem.
ElectricMotorGenerator.

GeneratorEff iciency

ad.HSUV.Pow erSybsystem.
ElectricMotorGenerator.

MotorEf f iciency

ad.HSUV.Pow erSybsystem.
InternalCombustionEngine.

ICEEff iciency

ad.drivingConditions.
road.incline

ad.HSUV.position

x:

ad.HSUV.mpg

dt:

delta-t
OMG SysMLTM Proposed Available Specification 77

78 OMG SysMLTM Proposed Available Specification

Part III - Behavioral Constructs

This Part specifies the dynamic, behavioral constructs used in SysML behavioral diagrams, including the activity diagram,
sequence diagram, state machine diagram, and use case diagram. The behavioral constructs are defined in Chapter 11,
“Activities,” Chapter 12, “Interactions,” Chapter 13, “State Machines,” and Chapter 14, “Use Cases.” The activities chapter
defines the extensions to UML 2 activities, which represent the basic unit of behavior that is used in activity, sequence, and
state machine diagrams. The activity diagram is used to describe the flow of control and flow of inputs and outputs among
actions. The state machines chapter describes the constructs used to specify state based behavior in terms of system states and
their transitions. The interactions chapter defines the constructs for describing message based behavior used in sequence
diagrams. The use case chapter describes behavior in terms of the high level functionality and uses of a system, that are further
specified in the other behavioral diagrams referred to above.
OMG SysMLTM Proposed Available Specification 79

80 OMG SysMLTM Proposed Available Specification

11 Activities

11.1 Overview

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It provides
a flexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to UML 2.1
Activity diagrams. For additional information see extensions for Enhanced Functional Flow Block Diagrams in Annex C:
Non-normative Extensions.

11.1.1 Control as Data

SysML extends control in activity diagrams as follows.

• In UML 2.1 Activities, control can only enable actions to start. SysML extends control to support disabling of actions
that are already executing. This is accomplished by providing a model library with a type for control values that are
treated like data (see ControlValue in Figure 11.9).

• A control value is an input or output of a control operator, which is how control acts as data. A control operator can
represent a complex logical operation that transforms its inputs to produce an output that controls other actions (see
ControlOperator in Figure 11.8).

11.1.1.1 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally applicable
to any sort of distributed flow of information and physical items through a system. These are:

• Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a behavior (see
Rate in Figure 11.8). This includes both discrete and continuous flows, either of material, energy, or information.
Discrete and continuous flows are unified under rate of flow, as is traditionally done in mathematical models of
continuous change, where the discrete increment of time approaches zero.

• Extension of object nodes, including pins, with the option for newly arriving values to replace values that are already
in the object nodes (see Overwrite in Figure 11.8). SysML also extends object nodes with the option to discard values
if they do not immediately flow downstream (see NoBuffer in Figure 11.8). These two extensions are useful for
ensuring that the most recent information is available to actions by indicating when old values should not be kept in
object nodes, and for preventing fast or continuously flowing values from collecting in an object node, as well as
modeling transient values, such as electrical signals.

Probability

SysML introduces probability into activities as follows (see Probability in Figure 11.8):

• Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node will
traverse an edge.

• Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter set.
OMG SysMLTM Proposed Available Specification 81

Activities as classes

In UML 2.1, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on
block definition and class diagrams, and participate in generalization and associations. SysML clarifies the semantics of
composition association between activities, and between activities and the type of object nodes in the activities, and
defines consistency rules between these diagrams and activity diagrams. See section 11.3.1.

Timelines

The simple time model in UML can be used to represent timing and duration constraints on actions in an activity model.
These constraints can be notated as constraint notes in an activity diagram. Although UML 2 timing diagram was not
included in this version of SysML, it can complement SysML behavior diagrams to notate this information. More
sophisticated SysML modeling techniques can incorporate constraint blocks from Chapter 10, "Constraint Blocks" to
specify resource and related constraints on the properties of the inputs, outputs, and other system properties. (Note: refer
to "ObjectNode" on page 91 for constraining properties of object nodes).

11.2 Diagram Elements

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Action, CallBehaviorAction,
AcceptEventAction, Send-
SignalAction

UML4SysML::Action,
UML4SysML::CallBehaviorAction
UML4SysML::AcceptEventAction
UML4SysML::SendSignalAction

Activity UML4SysML::Activity

ActivityFinal UML4SysML::ActivityFinalNode

Action action name :
behavior name

Event

Signal

TimeEvent

act
82 OMG SysMLTM Proposed Available Specification

ActivityNode See ControlNode and ObjectNode. UML4SysML::ActivityNode

ActivityParameterNode UML4SysML::ActivityParameter-
Node

ControlNode See DecisionNode, FinalNode, ForkNode, Initial-
Node, JoinNode, and MergeNode.

UML4SysML::ControlNode

ControlOperator SysML::Activities::ControlOpera-
tor

DecisionNode UML4SysML::DecisionNode

FinalNode See ActivityFinal and FlowFinal. UML4SysML::FinalNode

FlowFinal UML4SysML::FlowFinalNode

ForkNode UML4SysML::ForkNode

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference

act

«controlOperator»
CallBehaviorAction

act
«controlOperator»

[guard]

[else]

...
OMG SysMLTM Proposed Available Specification 83

InitialNode UML4SysML::InitialNode

JoinNode UML4SysML::JoinNode

isControl UML4SysML::Pin.isControl

isStream UML4SysML::Parameter.isStream

Local pre- and
postconditions

UML4SysML::Action.localPrecon-
dition,
UML4SysML::Action.localPost-
condition

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference

...

{joinspec=...}

{ control }
Action

{ control }

{ stream }{ stream }
Action

{ stream }

act

Action

«localPrecondition»
constraint

Action

«localPostcondition»
constraint
84 OMG SysMLTM Proposed Available Specification

MergeNode UML4SysML::MergeNode

NoBuffer SysML::Activities::NoBuffer

ObjectNode UML4SysML::OjectNode and its
children, SysML::
Activities::ObjectNode

Optional SysML::Activities::Optional

OverWrite SysML::Activities::Overwrite

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference

«noBuffer»
Action

«noBuffer»

object node name :
type name

 [state, state ...]

Actionpin name : type name
 [state, state ...]

«optional» «optional»
Action

«optional»

act

«overwrite»
Action

«overwrite»
OMG SysMLTM Proposed Available Specification 85

ParameterSet UML4SysML::ParameterSet

Probability SysML::Activities::Probability

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Action

act

Action

{ probability =
valueSpecification }

{ probability =
valueSpecification }

act
{ probability =

valueSpecification }

{ probability =
valueSpecification }
86 OMG SysMLTM Proposed Available Specification

Rate SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.2 - Graphical paths included in activity diagrams

Path Name Concrete Syntax Abstract Syntax Reference

ActivityEdge See ControlFlow and ObjectFlow UML4SysML::ActivityEdge

ControlFlow UML4SysML::ControlFlow
SysML::Activities::ControlFlow

ObjectFlow UML4SysML::ObjectFlow

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference

{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

«discrete»
Object Node

«continuous»
Object Node

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

Object Node

Object Node

«rate»
rate = constant

rate = distribution

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

Action
{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

act
OMG SysMLTM Proposed Available Specification 87

Probability SysML::Activities::Probability

Rate SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.3 - Other graphical elements included in activity diagrams

Element Name Concrete Syntax Abstract Syntax Reference

In Block Definition
Diagrams, Activity,
Association

SysML::Activities, Diagram Usage
for Block Definition Diagrams

Table 11.2 - Graphical paths included in activity diagrams

Path Name Concrete Syntax Abstract Syntax Reference

{ probability = valueSpecification }

{ probability = valueSpecification }

Action

{ probability = valueSpecification }

{ probability = valueSpecification }

Object Node

{ probability = valueSpecification }

{ probability = valueSpecification }

{ rate = constant }
{ rate = distribution }

«continuous»
«discrete»

«activity»
activity name

action
name

«activity»
activity name

«activity»
activity name

object
node
name

«block»
block name

bdd
88 OMG SysMLTM Proposed Available Specification

11.3 UML Extensions

11.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Chapter 17: Profiles & Model Libraries.

11.3.1.1 Activity

Notation

In UML 2.1, all behaviors are classes, including activities, and their instances are executions of the activity. This follows
the general practice that classes define the constraints under which the instances must operate. Creating an instance of an
activity causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates the
corresponding execution, and vice versa. Terminating an execution also terminates the execution of any other activities
that it invoked synchronously, that is, expecting a reply.

Activities as classes can have associations between each other, including composition associations. Composition means
that destroying an instance at the whole end destroys instances at the part end. When composition is used with activity
classes, the termination of execution of an activity on the whole end will terminate executions of activities on the part end
of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition
association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of an
activity on the whole end is terminated, then the executions of the activities on the part end are also terminated. The upper
multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior that can be invoked
by the containing activity. The lower multiplicity on the part end is always zero, because there will be some time during
the execution of the containing activity that the lower level activity is not executing. See Constraints sections below.

ActivityPartition UML4SysML::ActivityPartition

InterruptibleActivity
Region

UML4SysML::InterruptibleActivity-
Region

Table 11.3 - Other graphical elements included in activity diagrams

Element Name Concrete Syntax Abstract Syntax Reference

P
ar

ti
ti

on
 N

am
e

Action
(Partition Name)
OMG SysMLTM Proposed Available Specification 89

Activities in block definition diagrams appear as regular blocks, except the "activity" keyword may be used to indicate the
Block stereotype is applied to an activity, as shown in Figure 11.1. See example in “Usage Examples” on page 97. This
provides a means for representing activity decomposition in a way that is similar to classical functional decomposition
hierarchies. The names of the CallBehaviorActions that correspond to the association can be used as end names of the
association on the part end. Activities in block definition diagrams can also appear with the same notation as
CallBehaviorAction, except the rake notation can be omitted, if desired. Also see use of activities in block definition
diagrams that include ObjectNodes.

Constraints

The following constraints apply when composition associations in block definition diagrams are defined between
activities:

[1] The part end name must be the same as the name of a synchronous CallBehaviorAction in the composing activity. If the
action has no name, and the invoked activity is only used once in the calling activity, then the end name is the same as
name of the invoked activity.

[2] The part end activity must be the same as the activity invoked by the corresponding CallBehaviorAction.

[3] The lower multiplicity at the part end must be zero.

[4] The upper multiplicity at the part end must be 1 if the corresponding action invokes a nonreentrant behavior.

11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those behaviors, as
shown in Figure 11.2.

Figure 11.1 - Block definition diagram with activities as blocks.

Figure 11.2 - CallBehaviorAction notation.with behavior stereotype

action
name

action
name

action
name

«activity»
activity name

«activity»
activity name

«activity»
activity name

«activity»
activity name

action
name

«activity»
activity name

bdd

«stereotype name»

behavior name
90 OMG SysMLTM Proposed Available Specification

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked behavior
using the colon notation shown in Figure 11.3.

11.3.1.3 ControlFlow

Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Figure 11.3.

11.3.1.4 ObjectNode

Notation

See Section 11.3.1.1concerning activities appearing in block definition diagrams. Associations can be used between
activities and classifiers (blocks, or datatypes) that are the type of object nodes in the activity, as shown in Figure 11.5.
This supports linking the execution of the activity with items that are flowing through the activity and happen to be
contained by the object node at the time the link exists. The names of the object node that correspond to the association
can be used as end names of the association on the end towards the object node type. Like any association end or
property, these can be the subject of parametric constraints, design values, units and dimensions. The upper multiplicity
on the object node end restricts the number of instances of the item type that can reside in the object node at one time,
which must be lower than the maximum amount allowed by the object node itself. The lower multiplicity on the object
node end is always zero, because there will be some time during the execution of the containing activity that there is no
item in the object node. The associations may be composition if the intention is to delete instances of the classifier
flowing the activity when the activity is terminated. See example in “Usage Examples” on page 97.

Figure 11.3 - CallBehaviorAction notation.with action name

Figure 11.4 - Control flow notation

action name : behavior name

Action Action
OMG SysMLTM Proposed Available Specification 91

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as
shown in Figure 11.6.

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 11.7, when the
object node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the pins
notated by the object node. Stereotype applying to object nodes can also appear in object nodes, and applies to all the pins
notated by the object node.

Constraints

The following constraints apply when associations in block definition diagrams are defined between activities and
classifiers typing object nodes:

[1] The end name towards the object node type is the same as the name of an object node in the activity at the other end.

[2] The classifier must be the same as the type of the corresponding object node.

Figure 11.5 - Class or block definition diagram with activities as classes associated with types of object nodes

Figure 11.6 - ObjectNode notation in activity diagrams

Figure 11.7 - ObjectNode notation in activity diagrams

object
node
name

object
node
name

object
node
name

«activity»
activity name

«activity»
activity name

object
node
name

«block»
block name

«block»
block name

«block»
block name

bdd

object node name : type name

«stereotype name»

object node name
92 OMG SysMLTM Proposed Available Specification

[3] The lower multiplicity at the object node type end must be zero.

[4] The upper multiplicity at the object node type end must be equal to the upper bound of the corresponding object node.

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this chapter and which metaclasses they extend. The descriptions,
attributes, and constraints for each stereotype are specified below.

Package Activities

11.3.2.1 Continuous

Continuous rate is a special case of rate of flow, see Rate, where the increment of time between items approaches zero. It
is intended to represent continuous flows that may correspond to water flowing through a pipe, a time continuous signal,
or continuous energy flow. It is independent from UML streaming, see “Rate” on page 96. A streaming parameter may or
may not apply to continuous flow, and a continuous flow may or may not apply to streaming parameters.

Figure 11.8 - Abstract Syntax for SysML Activity Extensions
OMG SysMLTM Proposed Available Specification 93

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close
to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of values that
flow through an activity. In particular, the value may represent as small a number as needed, for example to simulate
continuous material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In
particular, token flow on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms
for numerical solvers of ordinary differential equations, such as Runge-Kutta.

11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used to
enable and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the behavior takes
control values as inputs or provides them as outputs, that is, it treats control as data (see “ControlValue” on page 96).
When the «controlOperator» stereotype is not applied, the behavior may not have a parameter typed by ControlValue. The
«controlOperator» stereotype also applies to operations, with the same semantics.

The control value inputs do not enable or disable the control operator execution based on their value, they only enable
based on their presence as data. Pins for control parameters are regular pins, not UML control pins. This is so the control
value can be passed into or out of the action and the invoked behavior, rather than control the starting of the action, or
indicating the ending of it.

Constraints

[1] When the «controlOperator» stereotype is applied, the behavior or operation must have at least one parameter typed by
ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter typed by
ControlValue.

[2] A behavior must have the «controlOperator» stereotype applied if it is a method of an operation that has the
«controlOperator» stereotype applied.

11.3.2.3 Discrete

Discrete rate is a special case of rate of flow, see Rate, where the increment of time between items is non-zero. Examples
include the production of assemblies in a factory and signals set at periodic time intervals.

Constraints

[1] The «discrete» and «continuous» stereotypes cannot be applied to the same element at the same time.

11.3.2.4 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are refused by
outgoing edges, or refused by actions for object nodes that are input pins. This is typically used with fast or continuously
flowing data values, to prevent buffer overrun, or to model transient values, such as electrical signals. For object nodes that are
the target of continuous flows, «nobuffer» and «overwrite» have the same effect. The stereotype does not override UML token
offering semantics, just indicates what happens to the token when it is accepted. When the stereotype is not applied, the
semantics is as in UML, specifically, tokens arriving at an object node that are refused by outgoing edges, or action for input
pins, are held until they can leave the object node.
94 OMG SysMLTM Proposed Available Specification

Constraints

[1] The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.

11.3.2.5 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node replaces the ones
already there (a full object node has as many tokens as allowed by its upper bound). This is typically used on an input pin
with an upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds greater than one, the
token replaced is the one that would be the last to be selected according to the ordering kind for the node. For FIFO
ordering, this is the most recently added token, for LIFO it is the least recently added token. A null token removes all the
tokens already there. The number of tokens replaced is equal to the weight of the incoming edge, which defaults to 1. For
object nodes that are the target of continuous flows, «overwrite» and «nobuffer» have the same effect. The stereotype
does not override UML token offering semantics, just indicates what happens to the token when it is accepted. When the
stereotype is not applied, the semantics is as in UML, specifically, tokens arriving at object nodes do not replace ones that
are already there.

Constraints

[1] The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.

11.3.2.6 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity must be equal to zero. This means the
parameter is not required to have a value for the activity or any behavior to begin execution. Otherwise, the lower
multiplicity must be greater than zero, which is called “required”. The absence of this stereotype indicates a constraint,
see below.

Constraints

[1] A parameter with the «optional» stereotypes applied must have multiplicity.lower equal to zero, otherwise
multiplicity.lower must be greater than zero.

11.3.2.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an
expression for the probability that the edge will be traversed. These must be between zero and one inclusive, and add up
to one for edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be
given values at runtime. These must be between zero and one inclusive, and add up to one for output parameter sets of the
same behavior at the time the probabilities are used.

Constraints

[1] The «probability» stereotype can only be applied to activity edges that have decision nodes or object nodes as sources, or
to output parameter sets.
OMG SysMLTM Proposed Available Specification 95

[2] When the «probability» stereotype is applied to an activity edge, then it must be applied to all edges coming out of the
same source.

[3] When the «probability» stereotype is applied to an output parameter set, it must also be applied to all the parameter sets of
the behavior or operation owning the original parameter set.

[4] When the «probability» stereotype is applied to an output parameter set, all the output parameters must be in some
parameter set.

11.3.2.8 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the expected value of the number of objects and
values that traverse the edge per time interval, that is, the expected value rate at which they leave the source node and
arrive at the target node. It does not refer to the rate at which a value changes over time. When the stereotype is applied
to a parameter, the parameter must be streaming, and the stereotype gives the number of objects or values that flow in or
out of the parameter per time interval while the behavior or operation is executing. Streaming is a characteristic of UML
behavior parameters that supports the input and output of items while a behavior is executing, rather than only when the
behavior starts and stops. The flow may be continuous or discrete, see the specialized rates in 11.3.2.1 (“Continuous”) ,
and “Discrete” on page 94. The «rate» stereotype has a rate property of type ValueSpecification. The values of this
property must be instances of classifiers stereotyped by «valueType» or «distributionDefinition», see Chapter 8: Blocks
on page 33. In particular, the denominator for units used in the rate property must be time units.

Constraints

[1] When the «rate» stereotype is applied to a parameter, the parameter must be streaming.

[2] The rate of a parameter must be less than or equal to rates on edges that come into or go out from pins and parameters
nodes corresponding to the parameter.

11.3.3 Model Libraries

The SysML model library for activities is shown in Figure 11.9.

11.3.3.1 ControlValue

Description

The ControlValue enumeration is a type for treating control values as data (see Section 11.3.2.2) and for UML control
pins. It can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on. The possible
runtime values are given as enumeration literals. Modelers can extend the enumeration with additional literals, such as
suspend, resume, with their own semantics.

Figure 11.9 - Control values.

ControlValue

disable
enable

<<enumeration>>
96 OMG SysMLTM Proposed Available Specification

The disable literal means a termination of an executing behavior that can only be started again from the beginning
(compare to suspend). The enable literal means to start a new execution of a behavior (compare to resume).

Constraints

[1] UML4SysML::ObjectNode::isControlType is true for object nodes with type ControlValue.

11.4 Usage Examples

The following examples illustrate modeling continuous systems (see Continuous Systems in Section 11.1). Figure 11.10
shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the key on starts
two behaviors, Driving and Braking. These behaviors execute until the key is turned off, using streaming parameters to
communicate with other behaviors. The Driving behavior outputs a brake pressure continuously to the Braking behavior
while both are executing, as indicated by the «continuous» rate and streaming properties (streaming is a characteristic of
UML behavior parameters that supports the input and output of items while a behavior is executing, rather than only
when the behavior starts and stops). Brake pressure information also flows to a control operator that outputs a control
value to enable or disable the Monitor Traction behavior. No control pins are used on Monitor Traction, so once it is
enabled, the continuously arriving enable control values from the control operator have no effect, per UML semantics.
When the brake pressure goes to zero, disable control values are emitted from the control operator. The first one disables
the monitor, and the rest have no effect. While the monitor is enabled, it outputs a modulation frequency for applying the
brakes as determined by the ABS system. The rake notations on the control operator and Monitor Traction indicate they
are further defined by activities, as shown in Figures 11.11 and 11.12. An alternative notation for this activity
decomposition is shown in Figure 11.13.
OMG SysMLTM Proposed Available Specification 97

The activity diagram for Monitor Traction is shown in Figure 11.11. When Monitor Traction is enabled, it begins listening
for signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the left, which
begin listening automatically when the activity is enabled. A traction index is calculated every 10 ms, which is the slower
of the two signal rates. The accelerometer signals come in continuously, which means the input to Calculate Traction does
not buffer values. The result of Calculate Traction is filtered by a decision node for a threshold value and Calculate
Modulation Frequency determines the output of the activity.

Figure 11.10 - Continuous system example 1.

Driving

Braking

Monitor Traction

{stream }

{stream }

Turn
Key To On

Key
off

Brake
Pressure

«continuous»
Modulation
Frequency

«controlOperator»
Enable on Brake

Pressure > 0

«continuous»

act Operate Car
98 OMG SysMLTM Proposed Available Specification

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 11.12. The decision node
and guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that
output an enabling or disabling control value from the activity. The edges coming out of the decision node indicate the
probability of each branch being taken.

Figure 11.13 shows a block definition diagram with composition associations between the activities in Figures 11.10,
11.11, and 11.12, as an alternative way to show the activity decomposition of Figures 11.10, 11.11, and 11.12. Each
instance of Operating Car is an execution of that behavior. It owns the executions of the behaviors it invokes
synchronously, such as Driving. Like all composition, if an instance of Operating Car is destroyed, terminating the
execution, the executions it owns are also terminated.

Figure 11.11 - Continuous system example 2.

Figure 11.12 - Continuous system example 3

Brake
Pressure

ControlValue

[Brake Pressure > 0]

«ValueSpecificationAction»
enable

«ValueSpecificationAction»
disable

[else]

{probability = 90%}

{probability = 10%}

«controlOperator»
act Enable on Brake Pressure > 0
OMG SysMLTM Proposed Available Specification 99

Figure 11.14 shows a block definition diagram with composition associations between the activity in Figure 11.10 and the
types the object nodes in that activity. In an instance of Operating Car, which is one execution of it, instances of Break
Pressure and Modulation Frequency are linked to the execution instance when they are in the object nodes of the activity.

Figure 11.13 - Example block definition diagram for activity decomposition

Figure 11.14 - Example block definition diagram for object node types

mt
1..1

«activity»

Driving
«activity»

Braking
«activity»

Monitor
Traction

«activity»
Turn

Key to On

«controlOperator »
Enable on Brake

Pressure > 0

«activity»

Calculate
Traction

«activity»
Calculate

Modulation
Frequency

«activity»

Operating Car

enableOnBrakePressure>0
0..1

calculateTraction
0..1

calculateModulationFrequency
0..1

oc
0..1

oc
1..1

oc
0..1

oc
1..1

oc
1..1

monitorTraction
 0..1

driving
0..1

turnKeyOn
0..1

mt
1..1

braking
0..1

bdd
100 OMG SysMLTM Proposed Available Specification

12 Interactions

12.1 Overview

Interactions are used to describe interactions between entities. UML 2.1 Interactions are supported by four diagram types
including the Sequence Diagram, Communications Diagram, Interaction Overview Diagram, and Timing Diagram. The
Sequence Diagram is the most common of the Interaction Diagrams. SysML includes the Sequence Diagram only and
excludes the Interaction Overview Diagram and Communication Diagram, which were considered to offer significantly
overlapping functionality without adding significant capability for system modeling applications. The Timing Diagram is
also excluded due to concerns about its maturity and suitability for system engineering needs.

The sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a system.
This diagram represents the sending and receiving of messages between the interacting entities called lifelines, where
time is represented along the vertical axis. The sequence diagrams can represent highly complex interactions with special
constructs to represent various types of control logic, reference interactions on other sequence diagrams, and
decomposition of lifelines into their constituent parts.

12.2 Diagram Elements

12.2.1 Sequence Diagram

Table 12.1 - Graphical nodes included in sequence diagrams1.

Node Name Concrete Syntax Abstract Syntax Reference

SequenceDiagram UML4SysML::Interaction

Lifeline UML4SysML::Lifeline

sd In terac tion1

b1:Block1
OMG SysMLTM Proposed Available Specification 101

1. Table is compliant with UML 2 Superstructure source document dated 050704.

Execution
Specification

UML4SysML::ExecutionSpecification

InteractionUse UML4SysML::InteractionUse

Node Name Concrete Syntax Abstract Syntax Reference

b1:Block1

execSpec

b1:Block1

ref
Interaction3
102 OMG SysMLTM Proposed Available Specification

CombinedFragment UML4SysML::CombinedFragment

A combined fragment is defined by an
interaction operator and corresponding
interaction operands.

Interaction Operators include:
 seq - Weak Sequencing
 alt - Alternatives
 opt - Option
 break - Break
 par - Parallel
 strict - Strict Sequencing
 loop - Loop
 critical - Critical Region
 neg - Negative
 assert - Assertion
 ignore - Ignore
 consider - Consider

StateInvariant /
Continuations

UML4SysML::Continuation

UML4SysML::StateInvariant

Coregion UML4SysML::CombinedFragment (under
parallel)

Node Name Concrete Syntax Abstract Syntax Reference

sd Interaction1

msg2

msg1[if x < 10]

[else]

alt

b1:Block1 b2:Block2 b3:Block3

msg3

:Y

p==15

s[u]:B

m3

m2
OMG SysMLTM Proposed Available Specification 103

CreationEvent
DestructionEvent

UML4SysML::CreationEvent
UML4SysML::DestructionEvent

DurationConstraint
Duration
Observation

UML4SysML::Interactions

TimeConstraint
TimeObservation

UML4SysML::Interactions

Node Name Concrete Syntax Abstract Syntax Reference

b1:Block1

b2:Block2create

:User

Code d=duration

CardOut {0..13}

OK

{d..3*d}

CardOut {0..13}

OK
t=now

{t..t+3}
104 OMG SysMLTM Proposed Available Specification

Table 12.2 - Graphical paths included in sequence diagram

12.3 UML Extensions

12.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Chapter 17, Profiles & Model Libraries.

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
 Timing Diagram

Communication diagrams and interaction overview diagrams are excluded from SysML. The other behavioral diagram
representations were considered to provide sufficient coverage without introducing these diagram kinds. Timing Diagrams
are also excluded due to concerns about their maturity and suitability for system engineering needs.

Path Name Concrete Syntax Abstract Syntax Reference

Message UML4SysML::Message

Lost Message
Found Message

UML4SysML::Message

GeneralOrdering UML4SysML::GeneralOrdering

asyncSignal

syncCall(param)

b1:Block1 b2:Block2

lost

found
OMG SysMLTM Proposed Available Specification 105

12.4 Usage Examples

12.4.1 Sequence Diagrams

The diagram in Figure 12.1 illustrates the overall system behavior for operating the vehicle in sequence diagram format.
To manage the complexity, a hierarchical sequence diagram is used which refers to other interactions that further
elaborate the system behavior. (“ref StartVehicleBlackBox”) CombinedFragments are used to illustrate that steering can
take place at the same time as controlling the speed and that controlling speed can be either idling, accelerating/cruising,
or braking.

Figure 12.1 - Hierarchical Sequence Diagram illustrating system behavior for “Operate the vehicle” use case

The diagram in Figure 12.2 shows an interaction that includes events and messages communicated between the driver and
vehicle during the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further
elaborates what happens inside the “hybridSUV” when the vehicle is started.

sd DriveBlackBox

par

alt controlSpeed

driver:Driver hybridSUV:HybridSUV

ref StartVehicleBlackBox

ref Park/ShutdownVehicle

ref Steer

ref Accelerate/Cruise

ref Brake

ref Idle

[self.oclInState(idle)]

[self.oclInState(accelerating/cruising)]

[self.oclInState(braking)]
106 OMG SysMLTM Proposed Available Specification

Figure 12.2 - Black box interaction during “starting the Hybrid SUV”

The diagram in Figure 12.3 shows the sequence of communication that occurs inside the HybridSUV when the vehicle is
started successfully.

Figure 12.3 - White box interaction for “starting the Hybrid SUV”

sd StartVehicleBlackBox

driver:Driver
hybridSUV:HybridSUV

ref StartVehicleWhiteBox

1: StartVehicle

turnIgnitionToStart

sd StartVehicleWhiteBox

ecu:PowerControlUnit epc:ElectricalPowerController

1.1: Enable

1:
StartVehicle

1.2:read
y

OMG SysMLTM Proposed Available Specification 107

108 OMG SysMLTM Proposed Available Specification

13 State Machines

13.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state
transition systems. The state machine represents behavior as the state history of an object in terms of its transitions and
states. The activities that are invoked during the transition, entry, and exit of the states are specified along with the
associated event and guard conditions. Activities that are invoked while in the state are specified as “do Activities,” and
can be either continuous or discrete. A composite state has nested states that can be sequential or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language. The
standard UML state machine concept (called behavior state machines in UML) are thought to be sufficient for expressing
protocols.

13.2 Diagram Elements

13.2.1 State Machine Diagram

No differences between SysML State Machine Diagrams and UML 2.1 State Machine Diagrams.

Table 13.1 - Graphical nodes included in state machine diagrams.

Node Name Concrete Syntax Abstract Syntax Reference

StateMachineDiagram UML4SysML::StateMachines

Choice pseudo state UML4SysML::PseudoState

stm OwnedStateMachine1

[Id>10]

[Id<=10]
OMG SysMLTM Proposed Available Specification 109

Composite state UML4SysML::State

Entry point UML4SysML::PseudoState

Exit point UML4SysML::PseudoState

Final state UML4SysML::FinalState

History, Deep
Pseudo state

UML4SysML::PseudoState

History, Shallow pseudo
state

UML4SysML::PseudoState

Initial pseudo state UML4SysML::PseudoState

Junction pseudo state UML4SysML::PseudoState

Receive signal action UML4SysML::Transition

Node Name Concrete Syntax Abstract Syntax Reference

CompositeState1

State1

State2

againagain

abortedabortedabortedaborted

H*

H

Req(Id)
110 OMG SysMLTM Proposed Available Specification

Send signal action UML4SysML::Transition

Action UML4SysML::Transition

Region UML4SysML::Region

Simple state UML4SysML::State

State list UML4SysML::State

State Machine UML4SysML::StateMachine

Node Name Concrete Syntax Abstract Syntax Reference

TurnOn

MinorReq := Id;

S

State1

State2

entry / entryActivity
do / doActivity
exit / exitActivity

State1, State2

ReadAmountSM

aborted
OMG SysMLTM Proposed Available Specification 111

Table 13.2 - Graphical paths included in state machine diagrams

13.3 UML Extensions

None.

13.4 Usage Examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in the
state machine diagram in Figure 13.1.

Terminate node UML4SysML::PseudoState

Submachine state UML4SysML::State

Path Name Concrete Syntax Abstract Syntax Reference

Transition UML4SysML::Transition

Node Name Concrete Syntax Abstract Syntax Reference

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted

trigger[guard]\activity
112 OMG SysMLTM Proposed Available Specification

Figure 13.1 - High level view of the states of the HybridSUV

stm HS UV Opera tiona lSta tes

Operate

Idle

Accellerating/
C ru ising

B raking

engageBrake

acce lera te stopped

releaseBrake

shutO ff

Off

start

keyOff

R efines
«requirem ent»
P ow erS ource
M anagem ent

Nom inal
sta tes on ly
OMG SysMLTM Proposed Available Specification 113

114 OMG SysMLTM Proposed Available Specification

14 Use Cases

14.1 Overview

The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is
realized by the subject providing a set of services to selected actors. The use case can also be viewed as functionality and/
or capabilities that are accomplished through the interaction between the subject and its actors. Use case diagrams include
the use case and actors and the associated communications between them. Actors represent classifier roles that are
external to the system that may correspond to users, systems, and or other environmental entities. They may interact
either directly or indirectly with the system. The actors are often specialized to represent a taxonomy of user types or
external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and the use
case represent the communications that occurs between the actors and the subject to accomplish the functionality
associated with the use case. The subject of the use case can be represented via a system boundary. The use cases that are
enclosed in the system boundary represent functionality that is realized by behaviors such as activity diagrams, sequence
diagrams, and state machine diagrams.

The use case relationships are “communication,” "include," "extend," and "generalization." Actors are connected to use
cases via communication paths, that are represented by an association relationship. The "include" relationship provides a
mechanism for factoring out common functionality which is shared among multiple use cases, and is always performed as
part of the base use case. The "extend" relationship provides optional functionality, which extends the base use case at
defined extension points under specified conditions. The "generalization" relationship provides a mechanism to specify
variants of the base use case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the
packages.

14.2 Diagram Elements

14.2.1 Use Case Diagram

Table 14.1 - Graphical nodes included in Use Case diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Use Case UML4SysML::UseCase

UseCaseName
OMG SysMLTM Proposed Available Specification 115

 .

Use Case with
ExtensionPoints

UML4SysML::UseCase

Actor UML4SysML::Actor

Subject Role name on
ClassifierUML4SysML::Classifier

Table 14.2 - Graphical paths included in Use Case diagrams

Path Type concrete Syntax Abstract Syntax Reference

Communication
path

UML4SysML::Association

Include UML4SysML::Include

Extend UML4SysML::Extend

Table 14.1 - Graphical nodes included in Use Case diagrams

Node Name Concrete Syntax Abstract Syntax Reference

extension points
p1, p2

UseCaseName

«actor»
ActorName

ActorName

SubjectName

 «include»

 «extend»
116 OMG SysMLTM Proposed Available Specification

14.3 UML Extensions

There are no SysML extensions to UML 2.1 use cases.

Extend with
Condition

UML4SysML::Extend

Generalization UML4SysML::Kernel

Table 14.2 - Graphical paths included in Use Case diagrams

Path Type concrete Syntax Abstract Syntax Reference

 «extend»

Condition: {boolean expression}
extension point: p1, p2
OMG SysMLTM Proposed Available Specification 117

14.4 Usage Examples

Figure 14.1 - Top level use case diagram for the Hybrid SUV subject

Figure 14.1 is a top-level set of use cases for the Hybrid SUV System. Figure 14.2 shows the decomposition of the
Operate the Vehicle use case. In this diagram, the frame represents the package that contains the lower level use cases.
The convention of naming the package with the same name as the top level use case has been employed. This practice
offers an implicit tracing mechanism that complements the explicit trace relationships in SysML.

uc HSUVTopLevelUseCases

Hybrid SUV

Driver

Operate the
vehicle

Maintain the
vehicle

Maintainer

Insure the
vehicle

Register the
vehicle

InsuranceCompany

Department
Of Motor
Vehicles

Registered
Owner
118 OMG SysMLTM Proposed Available Specification

Figure 14.2 - Operate the Vehicle use case at a lower level of abstraction

In the figure 14.2 the Extend relationship specifies that the behavior of a use case may be extended by the behavior of
another (usually supplementary) use case. The extension takes place at one or more specific extension points defined in
the extended use case. Note, however, that the extended use case is defined independently of the extending use case and
is meaningful independently of the extending use case. On the other hand, the extending use case typically defines
behavior that may not necessarily be meaningful by itself. Instead, the extending use case defines a set of modular
behavior increments that augment an execution of the extended use case under specific conditions. In Figure 14.2, the
"Start the Vehicle" use case is modeled as an extension of "Drive the Vehicle." This means that there are conditions that
may exist that require the execution of an instance of "Start the Vehicle" before an instance of "Drive the Vehicle" is
executed.

The use cases "Accelerate", "Steer" and "Brake" are modeled using the include relationship. Include is a
DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into the
behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of its

uc OperateTheVehicle

Hybrid SUV

Driver

Accelerate
Drive the vehicle

Steer

Brake

«include»

«include»

«include»

Park «include»

«extend»

Start the vehicle
OMG SysMLTM Proposed Available Specification 119

owning use case. The including use case may only depend on the result (value) of the included use case. This value is
obtained as a result of the execution of the included use case. This means that "Accelerate", "Steer" and "Brake" are all
part of the normal process of executing an instance of "Drive the Car."

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on the
approach of an individual modeler.
120 OMG SysMLTM Proposed Available Specification

Part IV - Crosscutting Constructs

This Part specifies cross-cutting constructs that apply to both structure and behavior. These constructs are defined in Chapter
15, “Allocations,” Chapter 16, “Requirements,” and Chapter 17, “Profiles & Model Libraries.” The Allocations chapter
defines a basic allocation relationship that can be used to allocate a set of model elements to another, such as allocating
behavior to structure or allocating logical to physical components. The Requirements chapter specifies constructs for system
requirements and their relationships. The Profiles and Model Libraries chapter specifies the approach to further customize and
extend SysML for specific applications.
OMG SysMLTM Proposed Available Specification 121

122 OMG SysMLTM Proposed Available Specification

15 Allocations

15.1 Overview

Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements within
the various structures or hierarchies of a user model. The concept of “allocation” requires flexibility suitable for abstract
system specification, rather than a particular constrained method of system or software design. System modelers often
associate various elements in a user model in abstract, preliminary, and sometimes tentative ways. Allocations can be
used early in the design as a precursor to more detailed rigorous specifications and implementations. The allocation
relationship can provide an effective means for navigating the model by establishing cross relationships, and ensuring the
various parts of the model are properly integrated.

This chapter does not try to limit the use of the term “allocation,” but provides a basic capability to support allocation in
the broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and flows. A
typical example is the allocation of activities to blocks (e.g., functions to components). This chapter specifies an
extension for an allocation relationship and selected subclasses of allocation, along with the notation to represent
allocations in a SysML model.

15.2 Diagram Elements

The diagram elements defined in this chapter may be shown on some or all SysML diagram types, in addition to the
diagram elements that are specific for each diagram type.
OMG SysMLTM Proposed Available Specification 123

15.2.1 Representing Allocation on Diagrams

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Allocated stereotype SysML::Allocation:Allocated

Allocation derived
properties displayed
in compartment of a
Block.

SysML::Allocation:Allocated

Allocation derived
properties displayed
in Comment.

SysML::Allocation:Allocated

Allocation derived
properties displayed
in compartment of
Part on Internal Block
Diagram.

SysML::Allocation:Allocated

Allocation derived
properties displayed
in compartment of
Action on Activity
Diagram.

SysML::Allocation:Allocated

«allocated»
Named
Element

allocatedFrom
«elementType»ElementName

allocatedTo
«elementType»ElementName

BlockName

allocatedFrom
«elementType»ElementName
allocatedTo
«elementType»ElementName

ElementName

«block»
BlockName

allocatedFrom
«elementType»ElementName

PartName

allocatedTo
«elementType»ElementName

ActionName
124 OMG SysMLTM Proposed Available Specification

15.3 UML Extensions

15.3.1 Diagram Extensions

15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency. “from” is
the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for client and
supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from” the element being allocated “to” the element that is the target of the
allocation.

15.3.1.3 Allocated Property Compartment Format

When properties of an «allocated» model element are displayed in a property compartment, a shorthand notation is used
as shown in Table 15.1. This shorthand groups and displays the AllocatedFrom properties together, then the AllocatedTo
properties. These properties are shown without the use of brackets {}.

15.3.1.4 Allocated Property Callout Format

When an «allocate» property component is not used, a property callout may be used. An «allocate» property callout uses
the same shorthand notation as the «allocate» property compartment. This notation is also shown in Table 15.1. For
brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may be elided from the diagram.

Allocation Activity
Partition

SysML::Allocation:Allocate
ActivityPartition

Allocation (general) SysML::Allocation:Allocate

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference

 «allocate»
:ElementName

ActionName

« a l lo ca te »
C l i e n t S u pplie r
OMG SysMLTM Proposed Available Specification 125

15.3.1.5 AllocatedActivityPartition Label

For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name
(«allocateActivityPartition»). For brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may
be elided from the diagram.

15.3.2 Stereotypes

Package Allocations

Figure 15.1 - Abstract syntax extensions for SysML Allocation

Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition

15.3.2.1 Allocate(from Allocations)

Description

Allocate is a dependency based on UML::abstraction. It is a mechanism for associating elements of different types, or in
different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing future design
activity. It is expected that an «allocate» relationship between model elements is a precursor to a more concrete
relationship between the elements, their properties, operations, attributes, or sub-classes.

Allocate is a stereotype of a UML4SysML::Abstraction which is permissible between any two NamedElements. It is
depicted as a dependency with the “allocate” keyword attached to it.

«stereotype»
Allocate

UML4SysML::Abstraction UML4SysML::
NamedElement

/allocatedFrom:NamedElement[*]
/allocatedTo:NamedElement[*]

«stereotype»
Allocated

UML4SysML::ActivityPartition

«stereotype»
AllocateActivityPartition
126 OMG SysMLTM Proposed Available Specification

Allocate is directional in that one NamedElement is the “from” end (no arrow), and at least one NamedElement is the “to”
end (the end with the arrow).

The following paragraphs describe types of allocation that are typical in system engineering.

Behavior allocation relates to the systems engineering concept segregating form from function. This concept requires
independent models of “function” (behavior) and “form” (structure), and a separate, deliberate mapping between elements
in each of these models. It is acknowledged that this concept does not support a standard object oriented paradigm, nor is
this always even desirable. Experience on large scale, complex systems engineering problems have proven, however, that
segregation of form and function is a valuable approach. In addition, behavior allocation may also include the allocation
of Behaviors to BehavioralFeatures of Blocks, e.g., Operations.

Flow allocation specifically maps flows in functional system representations to flows in structural system representations.

Flow between activities can either be control or object flow. The figures in the Usage Examples show concrete syntax for
how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow is not specifically addressed
in SysML, but may be represented by relating an ItemFlow to the Control Flow using the UML relationship
InformationFlow.realizingActivityEdge.

Note that allocation of ObjectFlow to Connector is an Allocation of Usage, and does NOT imply any relation between any
defining Blocks of ObjectFlows and any defining associations of connectors.

The figures in the Usage Examples illustrate an available mechanism for relating the objectNode from an activity diagram
to the itemFlow on an internal block diagram. ItemFlow is discussed in Chapter 9, Ports and Flows.

Pin to Port allocation is not addressed in this release of SysML.

Structure allocation is associated with the concept of separate “logical” and “physical” representations of a system. It is
often necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it must then be mapped to another complete
assembly hierarchy at a more concrete level. The set of models supporting complex systems development may include
many of these levels of abstraction. This specification will not define “logical” or “physical” in this context, except to
acknowledge the stated need to capture allocation relationships between separate system representations.

Constraints

A single «allocate» dependency shall have only one supplier (from), but may have one or many clients (to).

If subtypes of the «allocate» dependency are introduced to represent more specialized forms of allocation then they
should have constraints applied to supplier and client as appropriate.

15.3.2.2 Allocated(from Allocations)

Description

«allocated» is a stereotype that applies to any NamedElement that has at least one allocation relationship with another
NamedElement. «allocated» elements may be designated by either the /from or /to end of an «allocate» dependency.

The «allocated» stereotype provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any «allocate» dependency. This stereotype provides for the properties “allocatedFrom”
and “allocatedTo,” which are derived from the «allocate» dependency.
OMG SysMLTM Proposed Available Specification 127

Attributes

The following properties are derived from any «allocate» dependency:

• /allocatedTo:NamedElement[*]

The element types and names of the set of elements that are clients (“to” end of the concrete syntax) of an «allocate»
whose client is extended by this stereotype (instance). This property is the union of all clients to which this instance
is the supplier, i.e., there may be more than one /allocatedTo property per allocated model element. Each allocatedTo
property will be expressed as «elementType» ElementName.

• /allocatedFrom:NamedElement[*]

Reverse of allocatedTo: the element types and names of the set of elements that are suppliers (from) of an «allocate»
whose supplier is extended by this stereotype (instance). The same characteristics apply as to /allocatedTo. Each
allocatedFrom property will be expressed as «elementType» ElementName.

For uniformity, the «elementType» displayed for the /allocatedTo or /allocatedFrom properties should be from the
following list, as applicable. Other «elementType» designations may be used, if none of the below apply.

«activity», «objectFlow», «controlFlow», «objectNode»

«block», «itemFlow», «connector», «port», «flowPort», «atomicFlowPort», «interface», «value»

Note that the supplier or client may be an Element (e.g., Activity, Block), Property (e.g., Action, Part), Connector, or
BehavioralFeature (e.g., Operation). For this reason, it is important to use fully qualified names when displaying /
allocatedFrom and /allocatedTo properties. An example of a fully qualified name is the form
(PackageName::ElementName.PropertyName). Use of such fully qualified makes it clear that the «allocate» is referring to
the definition of the element, or to it’s specific usage as a property of another element.

15.3.2.3 AllocateActivityPartition(from Allocations)

Description

AllocateActivityPartition is used to depict an <allocate> relationship on an Activity diagram. The
AllocateActivityPartition is a standard UML2::ActivityPartition, with modified constraints as stated in the paragraph
below.

Constraints

An Action appearing in an «AllocateActivityPartition» will be the /supplier (from) end of an «allocate» dependency. The
element that represents the «AllocateActivityPartition» will be the /client (to) end of the same "allocate» dependency. In
the «AllocateActivityPartition» name field, Properties are designated by the use of a fully qualified name (including
colon, e.g. "part_name:Block_Name"), and Classifiers are designated by a simple name (no colons, e.g. "Block_Name").

The «AllocateActivityPartition» maintains the constraints, but not the semantics, of the UML2::ActivityPartition.
Classifiers or Properties represented by an «AllocateActivityPartition» do not have any direct responsibility for invoking
behavior depicted within the partition boundaries. To depict this kind of direct responsibility, the modeler is directed to
the UML 2 Superstructure specification, OMG formal/05-07-04, section 12.3.10 ActivityPartition, Semantics topic.
128 OMG SysMLTM Proposed Available Specification

15.4 Usage Examples

The following examples depict allocation relationships as property callout boxes (basic), property compartment of a
Block (basic), and property compartments of Activities and Parts (advanced). Figure 15.3 shows generic allocation for
Blocks.

Figure 15.3 - Generic Allocation, including /from and /to association ends

15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocation of Actions to Parts are depicted in Figure 15.4. Note that the AllocateActivityPartition, if
used in this manner, is unambiguously associated with behavior allocation.

Figure 15.4 - Behavior allocation

allocatedFrom
«elementType»Element2

allocatedTo
«elementType»Element3

Block1

Block1

allocatedFrom
«elementType»Element2
allocatedTo
«elementType»Element3

allocatedFrom
«elementType»Element2

allocatedTo
«elementType»Element3

Block1
«block»
Block4

allocatedFrom
«activity»Activity 6

Part5

allocatedTo
«block»Block4.Part5

Block1

allocatedFrom
«elementType»Element2
allocatedTo
«elementType»Element3

«allocate»
Part2:Block1

Action1

«block»
Block4

Part5

allocatedFrom
«activity»Activity 6

«activity»
Activity6

allocatedFrom
«block»Block4.Part5

«activity»
Activity6

Action1

allocatedTo
«part»Part2:Block1

allocatedTo
«part»Part2:Block1

Action1
OMG SysMLTM Proposed Available Specification 129

15.4.2 Allocate Flow

Figure 15.5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML.

Figure 15.5 - Example of flow allocation from ObjectFlow to Connector

Figure 15.6 - Example of flow allocation from ObjectFlow to ItemFlow

ibd [block] Block0 [Example1]

act Activity0 [Example1]
«block»
Block5

Part6

Part7

allocatedFrom
«objectFlow»ObjectFlow3

ObjectFlow3
Action1 Action2

allocatedTo
«connector»Connector8

Connector8

ibd [block] Block0 [Example2]

act Activity0 [Example2]

ObjectFlow3
Action1 Action2

«block»
Block5

Part6

Part7

allocatedTo
«itemFlow»ItemFlow9

allocatedFrom
«objectFlow»ObjectFlow3

ItemFlow9
130 OMG SysMLTM Proposed Available Specification

Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty

15.4.2.1 Allocating Structure

Systems engineers have a frequent need to allocate structural model elements (e.g., blocks, parts, or connectors) to other
structural elements. For example, if a particular user model includes an abstract logical structure, it may be important to
show how these model elements are allocated to a more concrete physical structure. The need also arises, when adding
detail to a structural model, to allocate a connector (at a more abstract level) to a part (at a more concrete level).

Figure 15.8 - Example of Structural Allocation

bdd [block] Block0 [Example3]act Activity0
[Example3]

allocatedTo
«block»Block6

Action1

allocatedTo
«block»Block10

ObjectNode4
«block»
Block5

allocatedFrom
«objectNode»ObjectNode4

«block»
Block10

allocatedFrom
«activity» Activity1

out:Block10

«block»
Block6

allocatedFrom
«activity» Activity2

in:Block10

«block»
Block7

allocatedTo
«block»Block7

Action2

ibd [package] Block1 [Abstract to Concrete Structural
Allocation]

«block»
AbstractExample

Part2

Part3

«block»
ConcreteExample

Part6

Part7

Part5

cktrA
cktrB

cktrC

«allocate»

«allocate»

«allocate»
«allocate»

«allocate»
OMG SysMLTM Proposed Available Specification 131

15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing
power are allocated to blocks within the Hybrid SUV, as shown in Figure 15.9. This example is consistent with Sample
Problem.

Figure 15.9 - AllocateActivityPartitions (Swimlanes) for HybridSUV Cellarette Example
132 OMG SysMLTM Proposed Available Specification

Figure 15.10 - Internal Block Diagram Showing Allocation for HybridSUV Accelerate Example

15.4.3 Tabular Representation

The table shown in Figure 15.11 is provided as a specific example of how the «allocate» dependency may be depicted in
tabular form, consistent with the automotive example above.

Figure 15.11 - Allocation Table (Tree) Showing Allocation for Hybrid SUV Cellarette Example

ibd [block] PowerSubsystem [Power Functional Allocation]

 allocatedFrom
«activity»Convert
ElectricToPower

emg:ElectricalMotor
Generator

trsm:Transmission

 allocatedFrom
«activity»ConvertGasToPower

ice:InternalCombustionEngine

 allocatedFrom
«activity»Proportion
PowerLoad

ecu:PowerControlUnit
epc:IFS_EPC

fp:FS_ICE

allocatedFrom
«activity»Control
ElectricPower

epc:ElectricalPower
Controller

i1:Electric
Current

i2:Electric
Current

fp:FS_EPC

fp:FS_TRSM

allocatedFrom
«objectNode»driveCurrent

allocatedFrom
«connector»c1:

 «connector»c2:
 «connector»c3:

can:CAN_Bus

ice:IFS_ICE

etrsm:IFS_TRSM

<>

<>

<>

<>

<>

<>

<>

<>

«diagramDescription»
version=”0.1"
description=”allocation of
behavior and connectors to
elements of power subsystem"
reference=”null”
completeness=”partial. Power
subsystem elements that have
no allocation yet have been
elided”

table [activity] ProvidePower [Allocation Tree for Provide Power
Activities]

type name end relation end type name
activity a1:ProportionPower from allocate to block PowerControlUnit
activity a2:ProvideGasPower from allocate to block InternalCombustionEngine
activity a3:ControlElectricPower from allocate to block ElectricalPowerController
activity a4:ProvideElectricPower from allocate to block ElectricalMotorGenerator
objectNode driveCurrent from allocate to itemFlow i1:ElectricCurrent
OMG SysMLTM Proposed Available Specification 133

The allocation table can also be shown using a sparse matrix style as in the following example shown in Figure 15.12

:

Figure 15.12 - Allocation Matrix Showing Allocation for Hybrid SUV Cellarette Example

matrix [activity] ProvidePower [Allocation Tree for Provide Power Activities]

Source Target
 PowerControlUnit InternalCombu

stionEngine
Electrical
PowerContr
oller

ElectricalMo
torGenerator

I1:ElectricC
urrent

A1:ProportionPower allocate
A2:ProvideGasPower allocate
A3:ControlElectricPo
wer

 allocate

A4:ProvideElectriPow
er

 allocate

driveCurrent allocate

134 OMG SysMLTM Proposed Available Specification

16 Requirements

16.1 Overview

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify a function
that a system must perform or a performance condition a system must achieve. SysML provides modeling constructs to
represent text based requirements and relate them to other modeling elements. The requirements diagram described in this
chapter can depict the requirements in graphical, tabular, or tree structure format. A requirement can also appear on other
diagrams to show its relationship to other modeling elements. The requirements modeling constructs are intended to
provide a bridge between traditional requirements management tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement includes
properties to specify its unique identifier and text requirement. Additional properties such as verification status, can be
specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements as
well as to other model elements. These include relationships for defining a requirements hierarchy, deriving requirements,
satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the UML
namespace containment mechanism. This relationship enables a complex requirement to be decomposed into its
containing child requirements. A composite requirement may state that the system shall do A and B and C, which can be
decomposed into the child requirements that the system shall do A, the system shall do B, and the system shall do C. An
entire specification can be decomposed into children requirements, which can be further decomposed into their children
to define the requirements hierarchy.

There is a real need for requirement re-use across product families and projects. Typical scenarios are regulatory,
statutory or contractual requirements that are applicable across products and/or projects and requirements that are re-used
across product families (versions/variants). In these cases, one would like to be able to reference a requirement, or
requirement set in multiple contexts with updates to the original requirements propagated to the re-used requirement(s).

The use of namespace containment to specify requirements hierarchies precludes re-using requirements in different
contexts since a given model element can only exist in one namespace. Since the concept of requirements reuse is very
important in many applications, SysML introduces the concept of a slave requirement. A slave requirement is a
requirement whose text property is a read-only copy of the text property of a master requirement. The text property of the
slave requirement is constrained to be the same as the text property of the related master requirement. The master/slave
relationship is indicated by the use of the copy relationship

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically involves
analysis to determine the multiple derived requirements that support a source requirement. The derived requirements
generally correspond to requirements at the next level of the system hierarchy. A simple example may be a vehicle
acceleration requirement that is analyzed to derive requirements for engine power, vehicle weight and body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A system
modeler specifies the system design elements that are intended to satisfy the requirement. In the example above, the
engine design satisfies the engine power requirement.
OMG SysMLTM Proposed Available Specification 135

The verify relationship defines how a test case verifies a requirement. In SysML, a test case is intended to be used as a
general mechanism to represent any of the standard verification methods for inspection, analysis, demonstration or test.
Additional subclasses can be defined by the user if required to represent the different verification methods. A verdict
property of a test case can be used to represent the verification result. The SysML test case is defined consistent with the
UML testing profile to facilitate integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used to further
refine a requirement. For example, a use case or activity diagram may be used to refine a text based functional
requirement. Alternatively, it may be used to show how a text based requirement refines a model element. In this case,
some elaborated text could be used to refine a less fine grained model element.

A generic trace requirement relationship provides a general purpose relationship between a requirement and any other
model element. The semantics of trace include no real constraints and therefore are quite weak. As a result, it is
recommended that the trace relationship not be used in conjunction with the other requirements relationships described
above.

The rationale construct that is defined in Chapter 7, “Model Elements” is quite useful in support of requirements. It
enables the modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a
rationale can be attached to a satisfy relationship that refers to an analysis report or trade study that provides the
supporting rationale for why the particular design satisfies the requirement. Similarly, this can be used with the other
relationships such as the derive relationship. It also provides an alternative mechanism to capture the verify relationship
by attaching a rationale to a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype. For
example, a modeler may want to define requirements categories to represent operational, functional, interface,
performance, physical, storage, activation/deactivation, design constraints, and other specialized requirements such as
reliability and maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to add
constraints that restrict the types of model elements that may be assigned to satisfy the requirement. For example, a
functional requirement may be constrained so that it can only be satisfied by a SysML behavior such as an activity, state
machine, or interaction. Some potential Requirement subclasses are defined in Annex C: Non-normative Extensions.
136 OMG SysMLTM Proposed Available Specification

16.2 Diagram Elements

16.2.1 Requirements Diagrams

Table 16.1 - Graphical nodes included in Requirement diagrams

Node Name Concrete Syntax Abstract Syntax Reference

Requirement Diagram SysML::Requirements::
Requirement, SysML::
ModelElements::Package

Requirement SysML::Requirements::
Requirement

TestCase SysML::Requirements::
TestCase

req ReqDiagram

«requirement»
Requirement name

text=”The system shall do”
Id=”62j32.”

«testCase»
TestCaseName
OMG SysMLTM Proposed Available Specification 137

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

Requirement
containment
relationship

UML4SysML::
NestedClassifier

CopyDependency SysML::Requirements::
Copy

MasterCallout SysML::Requirements::
Copy

Derive
Dependency

SysML::Requirements::
DeriveReqt

DeriveCallout SysML::Requirements::
DeriveReqt

Satisfy
Dependency

SysML::Requirements::
Satisfy

«requirement»
Parent

<<requirement>>
Child1

<<requirement>>
Child2

«requirement»
Slave

«requirement»
Master«copy»

Master
«requirement»Master <<requirement>>Slave

«requirement»
Client

«requirement»
Supplier

<<deriveReqt>>

Derived
«requirement» ReqB

«requirement»
ReqA

DerivedFrom
«requirement» ReqA

<<requirement>>
ReqB

<<satisfy>>
«requirement»

Supplier
NamedElement
138 OMG SysMLTM Proposed Available Specification

SatisfyCallout SysML::Requirements::
Satisfy

Verify
Dependency

SysML::Requirements::
Verify

VerifyCallout SysML::Requirements::
Verify

Refine
Dependency

UML4SysML::Refine

RefineCallout UML4SysML::Refine

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

Satisfies
« requirem ent» ReqANam edElem ent

SatisfiedBy
Nam edElem ent

<<requirem ent>>
ReqA

<<verify>>
«testcase»

Client
«requirement»

Supplier

Verifies
«requirement» ReqA

« testcase»
TestCaseName

VerifiedBy
« testcase» TestCaseName

«requirement»
ReqA

«refine» «requirement»
Client

NamedElement

Refines
 «requirement» ReqA

NamedElement

RefinedBy
NamedElement

<<requirement>>
ReqA
OMG SysMLTM Proposed Available Specification 139

16.3 UML Extensions

16.3.1 Diagram Extensions

16.3.1.1 Requirement Diagram

The Requirements Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satisfy, verify, refine, copy and trace can be shown on a requirement diagram.
The callout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16-1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in
Table 16.2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on Other Diagrams

Requirements can also be represented on other diagrams to show their relationship to other model elements. The
compartment and callout notation described in 16.3.1.2 and 16.3.1.3 can be used. The callouts represents the requirement
that is attached to another model element such as a design element.

Trace
Dependency

UML4SysML::Trace

TraceCallout UML4SysML::Trace

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference

«trace»«requirement»
Client

«requirement»
Supplier

TracedF ro m
« requirem ent» R eqAN am edElem ent

Traced To
N am edElem ent

«requirem ent»
R eqA
140 OMG SysMLTM Proposed Available Specification

16.3.1.5 Requirements Table

The tabular format is used to represent the requirements, their properties and relationships, and may include:

• Requirements with their properties in columns.

• A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace).

• A column that includes the model elements that satisfy the requirement.

• A column that represents the rationale for any of the above relationships, including reference to analysis reports for
trace rationale, trade studies for design rationale, or test procedures for verification rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is similar to
the table used for allocations (Section 15.4.3 (“Tabular Representation”)). The table should include the source and target
elements names (and optionally kinds) and the requirement dependency kind..

16.3.2 Stereotypes

Package Requirements

table [requirement] Performance [Tree of Performance Requirements]

table [requirement] Performance [Decomposition of Performance Requirement]

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

2.1 Braking
The Hybrid SUV shall have the braking capability of a typical
SUV.

2.2 FuelEconomy
The Hybrid SUV shall have dramatically better fuel economy
than a typical SUV.

2.3 OffRoadCapability
The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.4 Acceleration
The Hybrid SUV shall have the acceleration of a typical
SUV.

id name relation id name relation id name
2.1 Braking deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.2 Range
4.2 FuelCapacity deriveReqt d.2 Range
2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
OMG SysMLTM Proposed Available Specification 141

Figure 16.1 - Abstract Syntax for Requirements Stereotypes
142 OMG SysMLTM Proposed Available Specification

Figure 16.2 - Abstract Syntax for Requirements Stereotypes (cont)

16.3.2.1 Copy (from Requirements)

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the text
of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two elements
for the purpose of requirements re-use in different contexts. When a Copy dependency exists between two requirements,
the requirement text of the client requirement is a read-only copy of the requirement text of the requirement at the
supplier end of the dependency.

Constraints

[1] A Copy dependency may only be created between two classes that have the "requirement" stereotype, or a sub-type of the
"requirement" stereotype applied.

[2] If the supplier requirement has sub-requirements, copies of the sub-requirements are made recursively in the context of
the client requirement and Copy dependencies are created between each sub-requirement and the associated copy.

[3] The text property of the client requirement is constrained to be a read only copy of the text property of the supplier
requirement.

[4] Constraint [3] is applied recursively to all sub-requirements.

16.3.2.2 DeriveReqt (from Requirements)

Description

A dependency relationship between two requirements in which a client requirement can be derived from the supplier
requirement. For example, a system requirement may be derived from a business need, or lower level requirements may
be derived from a system requirement. As with other dependencies, the arrow direction points from the derived (client)
requirement to the (supplier) requirement from which it is derived.
OMG SysMLTM Proposed Available Specification 143

Constraints

[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes.

[2] The client must be an element stereotyped by «requirement» or one of «requirement» subtypes.

16.3.2.3 Requirement (from Requirements)

Description

A requirement specifies a capability or condition that must (or should) be satisfied.. A requirement may specify a function
that a system must perform or a performance condition that a system must satisfy. Requirements are used to establish a
contract between the customer (or other stakeholder) and those responsible for designing and implementing the system.

A requirement is a stereotype of Class. Compound requirements can be created by using the nesting capability of the class
definition mechanism. The default interpretation of a compound requirement, unless stated differently by the compound
requirement itself, is that all its subrequirements must be satisfied for the compound requirement to be satisfied.
Subrequirements can be accessed through the nestedClassifier property of a class. When a requirement has nested
requirements, all the nested requirements apply as part of the container requirement. Deleting the container requirement
deleted the nested requirements, a functionality inherited from UML.

Attributes

• text: String
The textual representation or a reference to the textual representation of the requirement.

• id: String
The unique id of the requirement.

• /satisfiedBy: NamedElement[*]
Derived from all elements that are the client of a <<satisfy>> relationship for which this requirement is a supplier.

• /verifiedBy: NamedElement[*]
Derived from all elements that are the client of a <<verify>> relationship for which this requirement is a supplier.

• /tracedTo: NamedElement[*]
Derived from all elements that are the client of a <<trace>> relationship for which this requirement is a supplier.

• /derived: Requirement[0..1]
Derived from all requirements that are the client of a <<deriveReqt>> relationship for which this requirement is a
supplier.

• /derivedFrom: Requirement[*]
Derived from all requirements that are the supplier of a <<deriveReqt>> relationship for which this requirement is a
client.

• /refinedBy: NamedElement[*]
Derived from all elements that are the client of a <<refine>> relationship for which this requirement is a supplier.

• /master: Requirement[0..1
This is a derived property that lists the master requirement for this slave requirement. The master attribute is derived
from the supplier of the Copy dependency that has this requirement as the slave.
144 OMG SysMLTM Proposed Available Specification

Constraints

[1] The property isAbstract must be set to true.

[2] The property ownedOperation must be empty.

[3] The property ownedAttribute must be empty.

[4] Classes stereotyped by «requirement» may not participate in associations.

[5] Classes stereotyped by «requirement» may not participate in generalizations.

[6] A nested classifier of a class stereotyped by «requirement» must also be stereotyped by «requirement».

16.3.2.4 RequirementRelated (from Requirements)

Description

This stereotype is used to add properties to those elements that are related to requirements via the various dependencies
described in Figure 16.1. The property values are shown using call-out notation (i.e., notes) as shown in the diagram
element table.

Attributes

• /satisfies: Requirement[*]
Derived from all requirements that are the supplier of a <<satisfy>> relationship for which this element is a client.

• /refines: Requirement[*]
Derived from all requirements that are the supplier of a <<refine>> relationship for which this element is a client.

• /tracedFrom: Requirement[*]
Derived from all requirements that are the supplier of a <<trace>> relationship for which this element is a client.

16.3.2.5 TestCase (from Requirements)

Description

 A method for verifying a requirement is satisfied.

Attributes

• \verifies: Requirement[*]
Derived from all requirements that are the supplier of a <<verify>> relationship for which this element is a client.

Constraints

[1] The type of return parameter of the stereotyped model element must be VerdictKind. (note this is consistent with the UML
Testing Profile).

16.3.2.6 Satisfy (from Requirements)

Description

A dependency relationship between a requirement and a model element that fulfills the requirement. As with other
dependencies, the arrow direction points from the satisfying (client) model element to the (supplier) requirement that is
satisfied.
OMG SysMLTM Proposed Available Specification 145

Constraints

[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes.

16.3.2.7 Verify (from Requirements)

Description

A relationship between a requirement and a test case that can determine whether a system fulfills the requirement. As
with other dependencies, the arrow direction points from the (client) test case to the (supplier) requirement.

Constraints

[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes

[2] The client must be an element stereotyped by «testCase» or one of the «testCase» subtypes.

16.4 Usage Examples

All the examples in this chapter are based on a set of publicly available (on-line) requirement specification from the
National Highway Traffic Safety Administration (NHTSA.) Excerpts of the original requirement text used to create the
models are shown in Figure 16.3. The name and ID of these requirements are referred to in the SysML usage examples
that follow. See NHTSA specification 49CFR571.135 for the complete text from which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

The diagram in Figure 16.3 shows an example of a compound requirement decomposed into multiple subrequirements.

Figure 16.3 - Requirements Derivation

req Safety test

«requirement»
ASTM R1337-90 «requirement»

Pavement friction

«requirement»
Adhesion utilization

«requirement»
Vehicle conditions

«requirement»
Test and procedure conditions<<deriveReqt>>

<<deriveReqt>>

Text = “..”
ID = “S7.4”

Text = “..”
ID = “S7.4.2”

Text = “The road test
surface produces a
peak friction coefficient
(PFC) of 0.9 when
measured using
an American Society for
Testing and Materials
(ASTM) E1136 standard
reference test tire,
in accordance with
ASTM Method E
1337–90, ”
ID = “S6.2.1”

Text = “(a) IBT: = 65 °C (149 °F),
= 100 °C (212 °F).
(b) Test surface: PFC of at least 0.9.”
ID=”S7.4.3"

Text = “This test method
covers the measurement
of peak braking coefficient
of paved surfaces using
a standard reference test
tire (SRTT) as described
in Specification E1136 that
represents current
technology passenger car
radial ties.”
ID = “A. 24241”
146 OMG SysMLTM Proposed Available Specification

16.4.1.1 Requirements and Design Elements

The diagram in Figure 16.4 shows derived requirements and refers to the design elements that satisfy them. The rational
is also shown as a basis for the design solution.

.

Figure 16.4 - Links between requirements and design

req MasterCylinderSafety

«requirement»
Master Cylinder Efficacy

«requirement»
LossOfFluid

«requirement»
Reservoir

<<block>>
BrakeSystem

<<satisfy>>

Decelerate Car

<<refine>>

«rationale»
body = “This design of the brake
assembly satisfies the federal safety
requirements.”

Text =”Prevent complete loss of fluid”
ID = “S5.4.1a”

Text = "Separate reservoir compartment”
ID = “S5.4.1b”

Text =”A master cylinder shall have a reservoir
compartment for each service brake
subsystem serviced by the master cylinder.
Loss of fluid from one compartment
shall not result in a complete loss of
brake fluid from another compartment.”
ID = “S5.4.1”

«rationale»
body = “The best-practice
solution consists in using a set of
springs and pistons to confine the
loss to a single compartment”

«rationale»
body = “The best-practice
solution consists in assigning
one reservoir per brakeline.”

<<deriveReqt>> <<deriveReqt>>

f: FrontBrake
r: Rear Brake
l1: BrakeLine
l2: BrakeLine
m: MasterCylinder

activateBrake()
releaseBrake()

SatisfiedBy
BrakeSystem::l1
BrakeSystem::l2

SatisfiedBy
BrakeSystem::m
OMG SysMLTM Proposed Available Specification 147

Figure 16.5 - Requirement satisfaction in an internal block diagram.

16.4.1.2 Requirements Reuse

Figure 16.6 illustrates the use of the Copy dependency to allow a single requirement to be reused in several requirements
hierarchies. The master tag provides a textual reference to the reused requirement.

Figure 16.6 - Use of the copy dependency to facilitate reuse

ibd BrakeSystem

m: MasterCylinder

l1: BrakeLine l2: BrakeLine

r: RearBrakef: FrontBrake

Safisfies
«requirement»
MasterCylinderSafety::LossOf Fluid

Satisfies
«requirement» MasterCylinderSafety::Reservoir

req Safety Reuse

«requirement»
NHTSASafetyRequirements

«requirement»
Hybrid Engine A type

«requirement»
Hybrid Engine B type

master=NHTSASafetyR
equirements

«requirement»
Shared Safety
Requirements

master=NHTSASafetyR
equirement

«requirement»
Shared Safety
Requirements

«requirement»
Safety Requirements

for type A

«requirement»
Safety Requirements

for type B

<<copy>> <<copy>>

Text = “…"
ID = “157.135”
148 OMG SysMLTM Proposed Available Specification

16.4.1.3 Verification Procedure (Test Case)

The example diagram in Figure 16.7 shows how a complex test case, in this example a performance test for a passenger-
car brake system, given as a set of steps in text form (see part of the procedure text at the upper right-handside corner of
the figure), can be described using another type of diagram representation. The performance test, modeled as a Test Case
is linked to a requirement using the «verify»» relationship. Note that the modeling of test case can also be addressed using
the UML Testing Profile, available from the Object Management Group.

Figure 16.7 - Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram.

req BurnishSafety

«requirement»
NHTSASafetyRequirements

<<deriveReqt>>

«requirement»
RoadTestSequence

«requirement»
Burnish

Text =”..”
ID = “157.135”

Text =”..”
ID = “S9.1”

RefinedBy
<<testCase>>BurnishTest

Text =”(a) IBT: = 100 °C (212

°F), (b) Test speed: 80 km/h

(49.7 mph), (c) Pedal force:

Adjust as necessary to

maintain specified constant

deceleration rate"

ID = “S7.1”
OMG SysMLTM Proposed Available Specification 149

Figure 16.8 - Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram.

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate

Maintain

Brake

[IBT=100 or
d >= 2 km]

sm <<testCase>> BurnishTest

Refines
<<requirement>>Burnish
150 OMG SysMLTM Proposed Available Specification

17 Profiles & Model Libraries

17.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt them
for different purposes. This includes the ability to tailor the UML metamodel for different domains. The profiles
mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some notational extensions to
represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined by
extending a metaclass, and then have them applied to the applicable model elements in the user model. A stereotype of a
requirement could be extended to create a «functionalRequirement» as described in Annex C: Non-normative Extensions.
This would allow specific properties and constraints to be created for a functional requirement. For example, a functional
requirement may be constrained such that it must be satisfied by an operation or behavior. When the stereotype is applied
to a requirement, then the requirement would include the notation «functionalRequirement» in addition to the name of the
particular functional requirement. Extending the metaclass requirement is different from creating a subclass of
requirement called functionalRequirement.

In addition to ex section provides guidance both on how to use existing profiles and how to create new profiles. In
addition, the examples provide guidance on the use of model libraries. A model library is a library of model elements
including class and other type definitions that are considered reusable for a given domain. This guidelines can be applied
to further customize SysML for domain specific applications such as automotive, military, or space systems.
OMG SysMLTM Proposed Available Specification 151

17.2 Diagram Elements

17.2.1 Profile Definition in Class Diagram

Table 17.1 - Graphical nodes used in profile definition

Node Name Concrete Syntax Abstract Syntax Reference

Stereotype UML4SysML::Stereotype

Metaclass UML4SysML::Class

Profile UML4SysML::Profile

Model Library UML::StandardProfileL1

«stereotype»
StereotypeName

«metaclass»
MetaClassName

«profile»
ProfileName

«modelLibrary»
LibraryName
152 OMG SysMLTM Proposed Available Specification

NOTE: In the above table, boolean properties can alternatively be displayed as BooleanPropertyName=[True|False].

Table 17.2 - Graphical paths used in profile definition

Path Name Concrete Syntax Abstract Syntax Reference

Extension UML4SysML::Extension

Generalization UML4SysML::Generalization

ProfileApplication UML4SysML::ProfileApplication

MetamodelReference UML4SysML::PackageImport;
UML4SysML::ElementImport

Unidirectional
Association

UML4SysML::Association

«metaclass»
MetaClassName

«stereotype»
StereotypeName

{required}

«stereotype»
StereotypeName

«stereotype»
StereotypeName

«apply»{strict}

«reference»

propertyName
OMG SysMLTM Proposed Available Specification 153

17.2.1.1 Extension

In Figure 17.1, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class and describes a clock software component for an embedded software system. It has description of the operating
system version supported, an indication of whether it is compliant to the POSIX operating system standard and a
reference to the operation that starts the clock.

Figure 17.1 - Defining a stereotype

«stereotype»
Clock

OSVersion:String
startOperation:Operation
POSIXCompliant:Boolean

«metaclass»
Class
154 OMG SysMLTM Proposed Available Specification

17.2.2 Stereotypes Used On Diagrams

Table 17.3 - Notations for Stereotype Use

Node Name Concrete Syntax Abstract Syntax Reference

StereotypeNote UML4SysML::Element

StereotypeNote UML4SysML::Element

StereotypeInNode UML4SysML::Element

StereotypeInCompartment
Element

UML4SysML::Element

StereotypeOnEdge UML4SysML::Element

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

Element
NamePathName

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

«stereotypeName»
{PropertyName=ValueString;

BooleanPropertyName}
NodeName

«stereotypeName»{PropertyName=ValueString}ElementName
«stereotypeName»{PropertyName=ValueString;
BooleanPropertyName}
ElementName

NodeName

Element
Name

Element
Name

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}PathName
OMG SysMLTM Proposed Available Specification 155

17.2.2.1 StereotypeInNode

Figure 17.2 shows how the stereotype Clock, as defined in Figure 17.1, is applied to a class called AlarmClock.

17.2.2.2 StereotypeInComment

When, two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 17.3, the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

Figure 17.3 - Using stereotypes and showing values

Stereotype
Compartment

UML4SysML::Element

Figure 17.2 - Using a stereotype

Table 17.3 - Notations for Stereotype Use

Node Name Concrete Syntax Abstract Syntax Reference

«stereotypeName»
 PropertyName=ValueString
 MultiPropertyName=ValueString,

ValueString
 BooleanPropertyName

«stereotypeName»
NodeName

 Start()

«clock»
{POSIXCompliant}

AlarmClock

«clock,creator»
StopWatch

Click()

«clock»
OSVersion=2.5
startOperation=Click
«creator»
name="Jones"
date="04-04-04"
156 OMG SysMLTM Proposed Available Specification

17.2.2.3 StereotypeInCompartment

Finally, the compartment form is shown.

Figure 17.4 - Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called Start. Note
that multiple stereotypes can be shown using multiple compartments.

17.3 UML Extensions

None

17.4 Usage Examples

17.4.1 Defining a Profile

Figure 17.5 - Definition of a profile

 Start()

AlarmClock

«clock»
OSVersion="3.4"
startOperation=Start
POSIXCompliant=True
OMG SysMLTM Proposed Available Specification 157

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it can
build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is identified by a
reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can extend those metaclasses
from UML that the SysML profile references.

17.4.2 Adding Stereotypes to a Profile

Figure 17.6 - Profile Contents

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by configurationItem, is
called an extension, shown by a line with a filled triangle; this relates a stereotype to a reference (called base) class or
classes, in this case NamedElement and DirectedRelationship from UML and adds new properties that every
NamedElement or DirectedRelationship stereotyped by configurationItem must have. NamedElement and
DirectedRelationship are abstract classes in UML so it is their subclasses that can have the stereotype applied. The second
mechanism is demonstrated by the system and context stereotypes which are sub-stereotypes of an existing SysML
stereotype, Block; sub-stereotypes inherit any properties of their super-stereotype (in this case none) and also extend the
same base class or classes. Note that TypedElements whose type is extended by «system» do not display the «system»
stereotype; this also applies to InstanceSpecifications. Any notational conventions of this have to be explicitly specified
in a diagram extension.

There is also an example of how stereotypes (in this case FunctionalRequirement) can have unidirectional associations to
metaclasses in the reference metamodel (in this case Behavior).

bdd SEToolkit

«metaclass»
NamedElement

«stereotype»
Block

«stereotype»
System

«stereotype»
Context

«stereotype»
Requirement

«stereotype»
Functional

Requirement

«metaclass»
Behavior

function

«stereotype»
ConfigurationItem

author: String
version: String
lastChanged: Date

«metaclass»
DirectedRelationship
158 OMG SysMLTM Proposed Available Specification

17.4.3 Defining a Model Library that Uses a Profile

Figure 17.7 - Two model libraries

The model library SI Value Types imports a model library called SI Definitions, so it can use model elements from them
in its own definition. It defines value types having specific units which can be used when property values are measured in
SI units. SI Definitions is a separately published model library, containing definitions of standard SI units and dimensions
such as shown in Annex C, Section C.4. A further model library, Physical, imports SI Value Types so it can define
properties that have those types. One model element, PhysicalObject, is shown, a block that can be used as a supertype
for an physical object.

17.4.4 Guidance on Whether to Use a Stereotype or Class

This section provides guidance on when to use stereotypes. Stereotypes can be applied to any model element.
Stereotyping a model element allows the model element to be identified with the «guillemet» notation. In addition, the
stereotyped model element can have stereotype properties, and the stereotype can specify constraints on the model
element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One reason
is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are different from
properties of classes. Stereotype properties represent properties of the class that are not instantiated and therefore do not
have a unique value for each instance of the class, although a class thus stereotyped can have a separate value for the
property.

SE Toolkit::functionalRequirement, which extends Class through its superstereotype, Requirement, is an example where a
stereotype is appropriate because every modeling element stereotyped by SE Toolkit::functionalRequirement has a
reference to another modeling element. In another example, SE Toolkit::configurationItem defined above, which applies
to classes amongst other concepts, is a stereotype because its properties characterize the author, version, and last changed

pkg [profile] SEToolkit

«modelLibrary»
SI Value Types

«valueType»
unit = KilogramPerCubicMeter

SIDensity

«valueType»
unit= CubicMeter

SIVolume

«valueType»
Real

«modelLibrary»
Physical

«valueType»
unit = Meter

SILength

«import»
density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
PhysicalObject

«modelLibrary»
SI Definitions

«import»
OMG SysMLTM Proposed Available Specification 159

date of the modeling element themselves. One test of this is whether the new properties are inheritable; in this case
author, version, and last-changed date are not, because it is only those classes under configuration control that need the
properties. To summarize, in the following circumstances a stereotype is appropriate:

• Where the model concept to be extended is not a class or class-based.

• Where the extensions include properties that reference other model elements.

• Where the extensions include properties that describe modeling data, not system data.

An example where a class is more appropriate is PhysicalObject from Figure 17.7 - in this case, the properties density and
volume, and the component numbers, have distinct values for each system element described by the class, and are
inherited by every subclass of PhysicalObject.

17.4.5 Using a Profile

Figure 17.8 - A model with applied profile and imported model library

The HSUVModel is a system engineering model that needs to use stereotypes from SysML. It therefore needs to have the
SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI Definitions model
library. Having done this, elements in HSUVModel can be extended by SysML stereotypes and types like SIVolume can
be used to type properties. Both the SI Definitions model library and HSUVModel have applied the profile strictly which
means that only those metaclasses directly referenced by SysML can be used in those models.

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}
160 OMG SysMLTM Proposed Available Specification

17.4.6 Using a Stereotype

Figure 17.9 - Using two stereotypes on a model element

StoppingDistance has two stereotypes applied, functionalRequirement, that identifies it as a requirement that is satisfied
by a function, and configurationItem, which allows it to have configuration management properties. The modeler has
provided values for all the newly available properties; those for criticalRequirement are shown in a compartment in the
node symbol for StoppingDistance; those for configurationItem are shown in a separate note.

17.4.7 Using a Model Library Element

Figure 17.10 - Using model library elements

Model library elements can be used just like any other model element of the same type. In this case, Shot is a
specialization of PhysicalObject from the Physical model library. It adds a new property, circumference, of type SILength
to measure the circumference of the (spherical) shot.

req HSUVRequirements

«functionalRequirement»

«configurationItem»

StoppingDistance

«functionalRequirement»
text="The car must stop within
100 feet from 20 mph"
id="102.1"
function=StopCar

«configurationItem»
author="Jones"
version="1.2"
date="04-04-04"

bdd Physics

circumference: SILength

«block»
Shot

density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
PhysicalObject
OMG SysMLTM Proposed Available Specification 161

162 OMG SysMLTM Proposed Available Specification

Part V - Annexes
This section contains the following non-normative annexes for this specification.:

• A - Diagrams

• B - Sample Problem

• C - Non-normative Extensions

• D - Model Interchange

• E - Requirements Traceability

• F - Terms and Definitions
OMG SysMLTM Proposed Available Specification 163

164 OMG SysMLTM Proposed Available Specification

Annex A: Diagrams

(informative)

A.1 Overview

SysML diagrams contains diagram elements (mostly nodes connected by paths) that represent model elements in the SysML
model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete syntax.

The SysML diagram taxonomy is shown in Figure A.1. SysML reuses many of the major diagram types of UML. In some
cases, the UML diagrams are strictly re-used such as use case, sequence, state machine, and package diagram, whereas in other
cases they are modified so that they are consistent with SysML extensions. For example, the block definition diagram and
internal block diagram are similar to the UML class diagram and composite structure diagram respectively, but include
extensions as described in Chapter 8, “Blocks”. Activity diagrams have also been modified via the activity extensions. Tabular
representations, such as the allocation table, are used in SysML but are not considered part of the diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction overview
diagram, timing diagram, and deployment diagram. This is consistent with the approach that SysML represents a subset of
UML. In the case of deployment diagrams, the deployment of software to hardware can be represented in the SysML internal
block diagram. In the case of interaction overview and communication diagrams, it was felt that the SysML behavior diagrams
provided adequate coverage for representing behavior without the need to include these diagram types. Two new diagram
types have been added to SysML including the requirement diagram and the parametric diagram.

Figure A.1 - SysML Diagram Taxonomy

SysML
Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2
OMG SysML Proposed Available Specification 165

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for text based
requirements, and the relationship between requirements and other model elements that satisfy or verify them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties associated with
blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such as
performance, reliability, and mass property models.

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude the
careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral elements
(e.g., showing a state machine nested inside a compartment of a block). However, it is critical that the types of diagram
elements that can appear on a particular diagram kind be constrained and well specified. The diagram elements tables in each
chapter describe what symbols can appear in the diagram, but do not specify the different combinations of symbols that can be
used. However, the BNF Diagram Syntax Definitions referred to in the Language Formalism section, is intended to provide the
formalism to specify this precisely. At this time, the specification has only implemented the BNF in the three chapters referred
to in Annex G.

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to represent a
broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to organize the model in
packages and views. As such, a package diagram can include a wide array of packageable elements. The callout notation
provides a mechanism for representing relationships between model elements that appear on different diagram kinds. In
particular, they are used to represent allocations and requirements, such as the allocation of an activity to a block on a block
definition diagram, or showing a part that satisfies a particular requirement on an internal block diagram. There are other
mechanisms for representing this including the compartment notation that is generally described in Chapter 17, “Profiles &
Model Libraries.” Chapter 16, “Requirements” and Chapter 15, “Allocations” provide specific guidance on how these
notations are used.

The model elements and corresponding concrete syntax that are represented in each of the ten SysML diagrams kinds are
described in the SysML chapters as indicated below.

• activity diagram - Activities chapter

• block definition diagram - Blocks chapter, Ports and Flows chapter

• internal block diagram - Blocks chapter, Ports and Flows chapter

• package diagram - Model Elements chapter

• parametric diagram - Constraint Blocks chapter

• requirements diagram - Requirements chapter

• state machine diagram - State Machines chapter

• sequence diagram - Interactions chapter

• use case diagram - Use Cases chapter

• Other (allocation tables) - Allocation Chapter
166 OMG SysML Proposed Available Specification

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description see Figure A.2

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame must designate
a model element that is the default namespace for the model elements enclosed in the frame. A qualified name for the model
element within the frame must be provided if it is not contained within default namespace associated with the frame. The
following are some of the designated model elements associated with the different diagram kinds.

• activity diagram - activity

• block definition diagram - block, package, or constraint block

• internal block diagram - block or constraint block

• package diagram - package or model

• parametric diagram - block or constraint block

• requirement diagram - package or requirement

• sequence diagram - interaction

• state machine diagram - state machine

• use case diagram - package

The frame may include border elements associated with the designated model element, like ports for blocks, entry/exit points
on statemachines, gates on interactions, parameters for activities, and constraint parameters for constraint blocks. The frame
may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage defines the type of primary graphical
symbols that are supported, e.g. a block definition diagram is a diagram where the primary symbols in the contents area are
blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

Figure A.2 - Diagram Frame

Comment: Issue 10378/10447

C ontents

<<d iag ram U sage>>
diag ram K in d [m odelE lem en tType] m ode lE lem en tN am e [d iagram N am e]

D iag ram D escrip tio n

V ers ion :
D escrip tion :
C om p le tion sta tus:
R e fe rence:
(U se r de fined fie lds)

H eader
OMG SysML Proposed Available Specification 167

<diagramKind> [modelElementType] <modelElementName> [diagramName]

A space separates each of these entries. The diagramKind is bolded. The modelElementType and diagramName are in
brackets. The heading name should always contain the diagram kind and model element name, and include the model element
type and additional information to remove ambiguity. Ambiguity can occur if there is more than one model element type for a
given diagram kind, or where there is more than one diagram for the same model element.

SysML diagrams kinds should have the following names or (abbreviations) as part of the heading:

• activity diagram (act)

• block definition diagram (bdd)

• internal block diagram (ibd)

• package diagram (pkg)

• parametric diagram (par)

• requirement diagram (req)

• sequence diagram (sd)

• state machine diagram (stm)

• use case diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Figure A-2 that includes
version, description, references to related information, a completeness field that describes the extent to which the modeler
asserts the diagram is complete, and other user defined fields. In addition, the diagram description may identify the view
associated with the diagram, and the corresponding viewpoint that identifies the stakeholders and their concerns. (refer to
Model Elements chapter). The diagram description can be made more explicit by the tool implementation.

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram type, such as a
context diagram as a usage of an block definition diagram, internal block diagram, or use case diagram. The diagram usage can
be identified in the header above the diagramKind as «diagramUsage». An example of a diagram usage extension is shown in
Figure A.3. For this example, the header in Figure A.2 would replace diagram kind with “uc” and «diagramUsage» with
«ContextDiagram». Applying a stereotype approach to specify a diagram usage can allow a tool implementation to check that
the diagram constraints defined by the stereotype are satisfied. [Note: A diagram is not a metaclass in UML or SysML and
therefore cannot be extended by a stereotype. However, the concept of extending a diagram for a particular diagram usage was
considered to be of value. The stereotype notation is used to designate this concept without the formal semantics.]
168 OMG SysML Proposed Available Specification

Figure A.3 - Diagram Usages

Some typical diagrams usages may include:

• Activity diagram usage with swim lanes - SwimLane Diagram

• Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system, item,
activity, etc.

• Use case diagram or internal block diagram to represent a Context Diagram

A.2 Guidelines

The following provides some general guidelines that apply to all diagram types.

• Decomposition of a model element can be represented by the rake symbol. This does not always mean decomposition
in a formal sense, but rather a reference to a more elaborated diagram of the model element that includes the rake
symbol. The rake on a model element may include the following:

• activity diagram - call behavior actions that can refer to another activity diagram.

• internal block diagram - parts that can refer to another internal block diagram.

• package diagram - package that can refer to another package diagrams.

• parametric diagram - constraint property that can refer to another parametric diagram

• requirement diagram - requirement that can refer to another requirement diagram.

• sequence diagram - interaction fragments that can refer to another sequence diagram.

• state machine diagram - state that can refer to another state machine diagram.

• use case diagram - use case can that may be realized by other behavior diagrams (activity, state, interactions).

• The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity of the label to
its symbol. This applies to ports, item flows, pins, etc.

• Page connectors - Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on
diagrams, but should be used sparingly since they are equivalent to go-to’s in programming languages, and can lead to

diagramKind

<<stereotype>>
diagramUsage

UseCaseDiagram

<<stereotype>>
ContextDiagram
OMG SysML Proposed Available Specification 169

“spaghetti diagrams”. Whenever practical elaborate the model element designated by the frame instead of using a page
connector. A page connector is depicted as a circle with a label inside (often a letter). The circle is shown at both ends
of a line break and means that the two line end connect at the circle.

• Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may be a
geographic map to provide a spatial context for the symbols.

• SysML provides the capability to represent a document using the UML 2.1 standard stereotype <<document>> applied
to the artifact model element. Properties of the artifact can capture information about the document. Use a <<trace>>
abstraction to relate the document to model elements. The document can represent text that is contained in the related
model elements.

• SysML diagrams including the enhancements described in this section is intended to conform to the Diagram
Interchange Standard to facilitate exchange of diagram and layout information. A more formal BNF has been
introduced in selected chapters to facilitate diagram interchange, which is referred to in the Language Formalism
chapter.

• Tabular representation is an optional alternative notation that can be used in conjunction with the graphical symbols as
long as the information is consistent with the underlying metamodel. Tabular representations are often used in systems
engineering to represent detailed information such as interface definitions, requirements traceability, and allocation
relationships between various types of model elements. They also can be convenient mechanisms to represent property
values for selected properties, and basic relationships such as function and inputs/outputs in N2 charts. The UML
superstructure contains a tabular representation of a sequence diagram in an interaction matrix (refer to Superstructure
Appendix with interaction matrix). The implementations of tabular representations are defined by the tool
implementations and are not standardized in SysML at this time. However, tabular representations may be included in
a frame with the heading designator <<table>> in bold.

• Graph and tree representations are also an optional alternative notation that can be used in conjunction with graphical
symbols as long as the information is consistent with the underlying metamodel. These representations can be used for
describing complex series of relationships. One example is the browser window in many tools that depicts a
hierarchical view of the model. The implementations of graphs and trees are defined by the tool implementations and
are not standardized in SysML at this time.
170 OMG SysML Proposed Available Specification

Annex B: Sample Problem

(informative)

B.1 Purpose

The purpose of this annex is to illustrate how SysML can support of the specification, analysis, and design of a system using
some of the basic features of the language.

B.2 Scope

The scope of this example is to provide at least one diagram for each SysML diagram type. The intent is to select simplified
fragments of the problem to illustrate how the diagrams can be applied, and also demonstrate some of the possible inter-
relationships among the model elements in the different diagrams. The sample problem does not highlight all of the features
of the language. The reader should refer to the individual chapters for more detailed features of the language. The diagrams
selected for representing a particular aspect of the model, and the ordering of the diagrams are intended to be representative of
applying a typical systems engineering process, but this will vary depending on the specific process and methodology that is
used.

B.3 Problem Summary

The sample problem describes the use of SysML as it applies to the development of an automobile, in particular a Hybrid gas/
electric powered Sport Utility Vehicle (SUV). This problem is interesting in that it has inherently conflicting requirements, viz.
desire for fuel efficiency, but also desire for large cargo carrying capacity and off-road capability. Technical accuracy and the
feasibility of the actual solution proposed were not high priorities. This sample problem focuses on design decisions
surrounding the power subsystem of the hybrid SUV; the requirements, performance analyses, structure, and behavior.

This annex is structured to show each diagram in the context of how it might be used on such a example problem. The first
section shows SysML diagrams as they might be used to establish the system context; establishing system boundaries, and top
level use cases. The next section is provided to show how SysML diagrams can be used to analyze top level system behavior,
using sequence diagrams and state machine diagrams. The following section focuses on use of SysML diagrams for capturing
and deriving requirements, using diagrams and tables. A section is provided to illustrate how SysML is used to depict system
structure, including block hierarchy and part relationships. The relationship of various system parameters, performance
constraints, analyses, and timing diagrams are illustrated in the next section. A section is then dedicated to illustrating
definition and depiction of interfaces and flows in a structural context. The final section focuses on detailed behavior
modeling, functional and flow allocation.
OMG SysMLTM Proposed Available Specification 171

B.4 Diagrams

B.4.1 Package Overview (Structure of the Sample Model)

B.4.1.1 Package Diagram - Applying the SysML Profile

As shown in Figure B.1, the HSUVModel is a package that represents the user model. The SysML Profile must be applied to
this package in order to include stereotypes from the profile. The HSUVModel may also require model libraries, such as the SI
Units Types model library. The model libraries must be imported into the user model as indicated.

Figure B.1 Establishing the User Model by Importing and Applying SysML Profile & Model Library (Package Diagram)

Figure B.2 details the specification of units and valueTypes employed in this sample problem.

pkg ModelingDomain [Establishing HSUV Model]

«modelLibrary»
SI Definitions

«import»

«profile»
SysML

HSUVModel

«apply»
{strict}

«apply» {strict}
172 OMG SysMLTM Proposed Available Specification

.

Figure B.2 - Defining valueTypes and units to be Used in the Sample Problem

B.4.1.2 Package Diagram - Showing Package Structure of the Model

The package diagram (Figure B.3) shows the structure of the model used to evaluate the sample problem. Model elements are
contained in packages, and relationships between packages (or specific model elements) are shown on this diagram. The
relationship between the views (OperationalView and PerformanceView) and the rest of the user model are explicitly
expressed using the «access» relationship. Note that the «view» models contain no model elements of their own, and that
changes to the model in other packages are automatically updated in the Operational and Performance Views.

pkg ModelingDomain [Values and Units]

«modelLibrary»
Automotive Value Types

Automotive Units

«modelLibrary»
SI Definitions

«import»

«unit»
{dimension=Power}

hp

«unit»
{dimension=Temperature}

°F

«unit»
{dimension=Acceleration}

g

«unit»
{dimension=Mass}

lb

«unit»
{dimension=Pressure}

psi

«unit»
{dimension=Time}

sec

«unit»
{dimension=Velocity}

mph

«unit»
{dimension=Distance}

ft

«unit»
{dimension=Volume}

ft^3

«valueType»
unit = g

Accel

«valueType»
unit = hp

Horsepwr

«valueType»
Real

«valueType»
unit = lb

Weight

«valueType»
unit = mph

Vel

«valueType»
unit = sec

Time

«valueType»
unit = ft

Dist

«valueType»
unit = psi

Press

«valueType»
unit = °F

Temp

«valueType»
unit = ft^3

Vol
OMG SysMLTM Proposed Available Specification 173

Figure B.3 - Establishing Structure of the User Model using Packages and Views (Package Diagram)

B.4.2 Setting the Context (Boundaries and Use Cases)

B.4.2.1 Internal Block Diagram - Setting Context

The term “context diagram,” in Figure B.4, refers to a user defined usage of an internal block diagram, which depicts some of
the top level entities in the overall enterprise and their relationships. The diagram usage enables the modeler or methodologist
to specify a unique usage of a SysML diagram type using the extension mechanism described in Annex A: Diagrams. The
entities are conceptual in nature during the initial phase of development, but will be refined as part of the development process.
The «system» and «external» stereotypes are user defined, not specified in SysML, but help the modeler to identify the system
of interest relative to its environment. Each model element depicted may include a graphical icon to help convey its intended
meaning. The spatial relationship of the entities on the diagram sometimes conveys understanding as well, although this is not
specifically captured in the semantics. Also, a background such as a map can be included to provide additional context. The
associations among the classes may represent abstract conceptual relationships among the entities, which would be refined in
subsequent diagrams. Note how the relationships in this diagram are also reflected in the Automotive Domain Model Block
Definition Diagram, Figure B.15.

pkg HSUVModel

HSUVViews

HSUV
RequirementsHSUVStructureHSUVBehavior

DeliverPower
Behavior

HSUVAnalysis

«view»
Performance

View

«viewpoint»
Performance

Viewpoint

«import»

«conform»

«block»
Automotive

Domain

«view»
OperationalView

«viewpoint»
Operational
Viewpoint

«conform»

«import»

«import»

HSUVUseCases

HSUVInterfaces
«requirement»
Performance

«import» Automotive
ValueTypes
174 OMG SysMLTM Proposed Available Specification

Figure B.4 - Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram. (Internal Block
Diagram) Completeness of Diagram Noted in Diagram Description

B.4.2.2 Use Case Diagram - Top Level Use Cases

The use case diagram for “Drive Vehicle” in Figure B.5 depicts the drive vehicle usage of the vehicle system. The subject
(HybridSUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, DMV) interact to realize the use
case.

«ContextDiagram»
ibd [block] AutomotiveDomain

«external»
drivingConditions:Environment

x1:

x4:

Maintainer:

x5:

«external»
road:Road

«diagramDescription»
version=”0.1"
description=”Initial concept to identify top level domain entities"
reference=”Ops Concept Description”
completeness=”partial. Does not include gas pump and other
external interfaces.”

«external»
object:ExternalObject

«system»
HSUV:

HybridSUV

«external»
weather:Weatherx2:

Driver:

Passenger:

1..*

1..*

«external»
vehicleCargo:

Baggage

x3:
OMG SysMLTM Proposed Available Specification 175

Figure B.5 - Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)

B.4.2.3 Use Case Diagram - Operational Use Cases

Goal-level Use Cases associated with “Operate the Vehicle” are depicted in the following diagram. These use cases help flesh
out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration, and insurance of the
vehicle would be covered under a separate set of goal-oriented use cases.

uc HSUVUseCases [TopLevelUseCases]

HybridSUV

Driver

Operate the
vehicle

Maintain the
vehicle

Maintainer

Insure the
vehicle

Register the
vehicle

InsuranceCompany

Department
Of Motor
Vehicles

Registered
Owner
176 OMG SysMLTM Proposed Available Specification

Figure B.6 - Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)

B.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)

B.4.3.1 Sequence Diagram - Drive Black Box

Figure B.7 shows the interactions between driver and vehicle that are necessary for the “Drive the Vehicle” Use Case. This
diagram represents the “DriveBlackBox” interaction, with is owned by the AutomotiveDomain block. “BlackBox” for the
purpose of this example, refers to how the subject system (HybridSUV block) interacts only with outside elements, without
revealing any interior detail.

The conditions for each alternative in the alt controlSpeed section are expressed in OCL, and relate to the states of the
HybridSUV block, as shown in Figure B.8.

uc HSUVUseCases [Operational Use Cases]

HybridSUV

Driver

Accelerate
Drive the vehicle

Steer

Brake

«include»

«include»

«include»

Park «include»

«extend»

Start the vehicle
OMG SysMLTM Proposed Available Specification 177

Figure B.7 - Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

B.4.3.2 State Machine Diagram - HSUV Operational States

Figure B.8 depicts the operational states of the HSUV block, via a State Machine named “HSUVOperationalStates”. Note that
this state machine was developed in conjunction with the DriveBlackBox interaction in Figure B.7. Also note that this state
machine refines the requirement “PowerSourceManagment,” which will be elaborated in the requirements section of this
sample problem. This diagram expresses only the nominal states. Exception states, like “acceleratorFailure,” are not expressed
on this diagram.
178 OMG SysMLTM Proposed Available Specification

Figure B.8 - Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)

B.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

The Figure B.9 shows a “black box” interaction, but references “StartVehicleWhiteBox” (Figure B.10), which will decompose
the lifelines within the context of the HybridSUV block.

stm HSUVOperationalStates

Operate

Idle

Accellerating/
Cruising

Braking

engageBrake

accelerate stopped

releaseBrake

shutOff

Off

start

keyOff

Refines
«requirement»
PowerSource
Management

Nominal
states only
OMG SysMLTM Proposed Available Specification 179

Figure B.9 - Black Box Interaction for “StartVehicle”, referencing White Box Interaction (Sequence Diagram)

The lifelines on Figure B.10 (“whitebox” sequence diagram) need to come from the Power System decomposition. This now
begins to consider parts contained in the HybridSUV block.

Figure B.10 - White Box Interaction for “StartVehicle” (Sequence Diagram)
180 OMG SysMLTM Proposed Available Specification

B.4.4 Establishing Requirements (Requirements Diagrams and Tables)

B.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in Figure B.11,
including the requirement for the vehicle to pass emissions standards, which is expanded for illustration purposes. The
containment (cross hair) relationship, for purposes of this example, refers to the practice of decomposing a complex
requirement into simpler, single requirements.

Figure B.11 - Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram)

B.4.4.2 Requirement Diagram - Derived Requirements

Figure B.12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification. Derived
requirements, for the purpose of this example, express the concepts of requirements in the HSUVSpecification in a manner
that specifically relates them to the HSUV system. Various other model elements may be necessary to help develop a derived
requirement, and these model element may be related by a «refinedBy» relationship. Note how PowerSourceManagement is
“RefinedBy” the HSUVOperationalStates model (Figure B.8). Note also that rationale can be attached to the «deriveReqt»
relationship. In this case, rationale is provided by a referenced document “Hybrid Design Guidance.”

req [package] HSUVRequirements [HSUV Specification]

«requirement»
Eco-Friendliness

«requirement»
Performance

«requirement»
Capacity«requirement»

Ergonomics

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
OffRoadCapability

«requirement»
Accelleration

Id = R1.2.1
text = The vehicle shall meet Ultra-Low
Emissions Vehicle standards.

«requirement»
Emissions

«requirement»
PassengerCapacity

«requirement»
FuelCapacity

«requirement»
CargoCapacity

HSUVSpecification

«requirement»
Qualification

«requirement»
SafetyTest
OMG SysMLTM Proposed Available Specification 181

Figure B.12 - Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy (Require-
ments Diagram)

B.4.4.3 Requirement Diagram - Acceleration Requirement Relationships

Figure B.13 focuses on the Acceleration requirement, and relates it to other requirements and model elements. The
“refineReqt” relation, introduced in Figure B.12, shows how the Acceleration requirement is refined by a similarly named use
case. The Power requirement is satisfied by the PowerSubsystem, and a Max Acceleration test case verifies the Acceleration
requirement.

req [package] HSUVRequirements [Requirement Derivation]

«requirement»
Braking

«requirement»
FuelEconomy

«requirement»
RegenerativeBraking

«requirement»
PowerSourceManagement

«requirement»
Power

«deriveReqt»«deriveReqt»

«deriveReqt»

«deriveReqt»

«requirement»
Accelleration

«requirement»
CargoCapacity

«requirement»
FuelCapacity

«requirement»
OffRoadCapability

«requirement»
Range

«deriveReqt» «deriveReqt»

«deriveReqt» «deriveReqt» «deriveReqt»

RefinedBy
HSUVStructure::HSUV.
HSUVOperationalStates

«rationale»
Power delivery must happen by coordinated
control of gas and electric motors. See
“Hybrid Design Guidance”

«problem»
Power needed for acceleration, off-road
performance & cargo capacity conflicts
with fuel economy
182 OMG SysMLTM Proposed Available Specification

Figure B.13 - Acceleration Requirement Relationships (Requirements Diagram)

B.4.4.4 Table - Requirements Table

Figure B.14 contains two diagrams that show requirement containment (decomposition), and requirements derivation in
tabular form. This is a more compact representation than the requirements diagrams shown previously.

req [package] HSUVRequirements [Acceleration Requirement Refinement and Verification]

«requirement»
Acceleration

HSUVUseCases:
:Accelerate

«block»
PowerSubsystem

«refine»

«satisfy»

«requirement»
Power

«deriveReqt»

«testCase»
Max Acceleration

«verify»
OMG SysMLTM Proposed Available Specification 183

Figure B.14 - Requirements Relationships Expressed in Tabular Format (Table)

B.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams)

B.4.5.1 Block Definition Diagram - Automotive Domain

Figure B.15 provides definition for the concepts previously shown in the context diagram. Note that the interactions
DriveBlackBox and StartVehicleBlackBox (described inSection B.4.3, “Elaborating Behavior (Sequence and State Machine
Diagrams),” on page 177) are depicted as owned by the AutomotiveDomain block.

table [requirement] Performance [Decomposition of Performance Requirement]

id name text

2 Performance

The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
fuel economy.

2.1 Braking
The Hybrid SUV shall have the braking capability of a typical
SUV.

2.2 FuelEconomy
The Hybrid SUV shall have dramatically better fuel economy
than a typical SUV.

2.3 OffRoadCapability
The Hybrid SUV shall have the off-road capability of a
typical SUV.

2.4 Acceleration
The Hybrid SUV shall have the acceleration of a typical
SUV.

table [requirement] Performance [Tree of Performance Requirements]

id name relation id name relation id name
2.1 Braking deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.1 RegenerativeBraking
2.2 FuelEconomy deriveReqt d.2 Range
4.2 FuelCapacity deriveReqt d.2 Range
2.3 OffRoadCapability deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
2.4 Acceleration deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
4.1 CargoCapacity deriveReqt d.4 Power deriveReqt d.2 PowerSourceManagement
184 OMG SysMLTM Proposed Available Specification

Figure B.15 - Defining the Automotive Domain (compare with Figure B.4) - (Block Definition Diagram)

B.4.5.2 Block Definition Diagram - Hybrid SUV

Figure B.16 defines components of the HybridSUV block Note that the BrakePedal and WheelHubAssembly are used by, but
not contained in, the PowerSubsystem block.

Figure B.16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram)

bdd [package] HSUVStructure [Automotive Domain Breakdown]

interactions
DriveBlackBox
StartVehicleBlackBox

«domain»
AutomotiveDomain

«system»
HybridSUV

«external»
Baggage

Driver Maintainer Passenger

«external»
Environment

«external»
Road

1..* road

drivingConditionsvehicleCargoHSUV

«external»
Weather

«external»
ExternalObject

1..* objectweather

bdd [block] AutomotiveDomain [HybridSUV Breakdown]

«system»
HybridSUV

PowerSubsystem

p clibbk

BrakePedal

bkp

ChassisSubsytemBrakeSubsystem InteriorSubsystem LightingSubsystemBodySubsystem

WheelHubAssembly

42

«rationale»
2 wheel drive is the only way to get
acceptable fuel economy, even though it
limits off-road capability
OMG SysMLTM Proposed Available Specification 185

B.4.5.3 Internal Block Diagram - Hybrid SUV

Figure B.17 shows how the top level model elements in the above diagram are connected together in the HybridSUV block.

Figure B.17 - Internal Structure of Hybrid SUV (Internal Block Diagram)

ibd [block] HybridSUV

p:PowerSubsystem

c:chassisSubsytem br:BrakeSubsystem

i: InteriorSubsystem

l:LightingSubsystem

b:BodySubsystem

c-bk:

b-c:

b-i:

i-l:
b-l:

bk-l:

p-c:

p-bk:
186 OMG SysMLTM Proposed Available Specification

B.4.5.4 Block Definition Diagram - Power Subsystem

Figure B.18 defines the next level of decomposition, namely the components of the PowerSubsystem block. Note how the of
white diamond (composition) on FrontWheel and BrakePedal denotes the same “use-not-composition” kind of relationship
previously shown in Figure B.16.

Figure B.18 - Defining Structure of Power Subsystem (Block Definition Diagram)

B.4.5.5 Internal Block Diagram for the “Power Subsystem”

Figure B.19 shows how the parts of the PowerSubsystem block, as defined in the diagram above, are used. It shows
«connectors» between parts, «clientServerPorts», «flowPorts», «atomicFlowPorts», and «itemFlows». The dashed borders on
FrontWheel and BrakePedal denote the “use-not-composition” relationship depicted elsewhere in Figure B.16 and Figure
B.18.The dashed borders on Fuel denote a store, which keeps track of the amount and mass of fuel in the FuelTankAssy. This
is also depicted in figure B 18

 bdd [block] HSUV [PowerSubsystem Breakdown]

PowerSubsystem

ElectricMotor
Generator

FrontWheel

accelerator FuelTankAssembly Differential

Transmission

InternalCombustionEngine

FuelInjector

lfw
1

0..1

dif

trsm

emiceftacl

fi4

BatteryPack ElectricalPowerController

bp

PowerControlUnit

FuelPump

epcpcu

BrakePedal

0..1

bkp
1

fp

WheelHubAssembly

rfw
1

0..1

0..1

Fuel
OMG SysMLTM Proposed Available Specification 187

Figure B.19 - Internal Structure of the Power Subsystem (Internal Block Diagram)

Figure B.20 - Interfaces Typing StandardPorts Internal to the Power Subsystem (Block Definition Diagram)

 ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator]

emg:ElectricMotor
Generator

trsm:Transmission

ice:InternalCombustionEngine

acl:accelerator

ecu:PowerControlUnit

ft:FuelTankAssy

dif:Differential

rfw:ChassisSubsytem
.FrontWheel

lfw:ChassisSubsytem
.FrontWheel

Port:FuelTankFitting

Port:ICEFuelFitting

fuelDelivery

torqueOut:Torque

torquein:Torque

spline

fuelSupply:Fuel

epc:ElectricalPower
Controllerbp:BatteryPack

bp-epc:

i1:Electric
Current

i2:Electric
Current

fp:FuelPump

fi:FuelInjector

4
fdist:bkp:BrakeSubsystem

.BrakePedal

<>

<
>

<><>

4

fuelReturn:Fuel

<>

<>

<
>

<
>

g1
:T

or
qu

e t2
:T

or
qu

e

t1:Torque

ice

ctrl
I_ICECmds

I_ICECmds

ctrl

ctrl

I_ICEData I_ICEData

trsmepc

c3:

c2:

c1:

I_IEPCCmdI_IEPCData

I_IEPCDataI_EPCCmd

I_TRSMData

I_TRSMCmd

I_TRSMCmd

I_TRSMData

<
>

<
>

<
>

rightHalfShaft

<
>

<
>

<
>

leftHalfShaft

ac
l-e

cu
:

bk
p-

ec
u:

Fuel <>

bdd [block] PowerSubsystem [ICE Interface Definitions]

getRPM():integer
getTemperature():Real
isKnockSensor():Boolean

«interface»
I_ICEData

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

«interface»
I_ICECmds
188 OMG SysMLTM Proposed Available Specification

Figure B.20 provides definition of the interfaces applied to Standard Ports associated with connector c1 in Figure B.19.

B.4.6 Defining Ports and Flows

B.4.6.1 Block Definition Diagram - ICE Interface

For purposes of example, the StandardPorts and related point-to-point connectors in Figure B.19 are being refined into a
common bus architecture. For this example, FlowPorts have been used to model the bus architecture. Figure B.21 is an
incomplete first step in the refinement of this bus architecture, as it begins to identify the flow specification for the
InternalCombustionEngine, the Transmission, and the ElectricalPowerController..

Figure B.21 - Initially Defining Flow Specifications for the CAN Bus (Block Definition Diagram)

B.4.6.2 Internal Block Diagram - CANbus

Figure B.22 continues the refinement of this Controller Area Network (CAN) bus architecture using FlowPorts. The explicit
structural allocation between the original connectors of Figure B.19 and this new bus architecture is shown in Figure B.36.

bdd CAN Bus FlowSpecifications

«flowProperties»
out engineData:ICEData
in mixture:Real
in throttlePosition:Real

«flowSpecification»
FS_ICE

«flowProperties»

«flowSpecification»
FS_TRSM

«flowProperties»

«flowSpecification»
FS_EPC

rpm:Integer
temperature:Real
knockSensor:Boolean

«signal»
ICEData

To be specified - what
is being exchanged
over the bus from\to
the transmission?

To be specified - what is being
exchanged over the bus from\to
the electronic power controller?
OMG SysMLTM Proposed Available Specification 189

Figure B.22 - Consolidating Interfaces into the CAN Bus. (Internal Block Diagram)

B.4.6.3 Block Definition Diagram - Fuel Flow Properties

The FlowPorts on the FuelTankAssembly and InternalCombustionEngine (as shown in Figure B.19) are defined in Figure
B.23.

Figure B.23 - Elaborating Definition of Fuel Flow. (Block Definition Diagram)

ibd [block] PowerSubsystem [CAN Bus description]

trsm:Transmission ice:InternalCombustionEngine

ecu:PowerControlUnit

epc:ElectricalPower
Controller

:CAN_Bus

fp:FS_EPC fp:FS_TRSM fp:FS_ICE

epc:IFS_EPC etrsm:IFS_TRSM ice:IFS_ICE

<
>

<
> <>

<> <> <>

bdd [block] HSUV [PowerSubsystem Fuel Flow Definition]

temperature:Temp
pressure:Press

Fuel

«flowProperties»
 out fuelSupply:Fuel
 in fuelReturn:Fuel

«flowSpecification»
FuelFlow

PowerSubsystem

«flowProperties»
 in fuelSupply:Fuel
 out fuelReturn:Fuel

FuelTankAssembly

«flowProperties»
 out fuelSupply:Fuel
 in fuelReturn:Fuel

InternalCombustionEngine

iceft

FuelTankFitting:FuelFlow

ICEFuelFitting:FuelFlow
<>

<>
190 OMG SysMLTM Proposed Available Specification

B.4.6.4 Parametric Diagram - Fuel Flow

Figure B.24 is a parametric diagram showing how fuel flowrate is related to FuelDemand and FuelPressure value properties.

Figure B.24 - Defining Fuel Flow Constraints (Parametric Diagram)

B.4.6.5 Internal Block Diagram - Fuel Distribution

Figure B.25 shows how the connectors fuelDelivery and fdist on Figure B.19 have been expanded to include design detail. The
fuelDelivery connector is actually two connectors, one carrying fuelSupply and the other carrying fuelReturn. The fdist
connector inside the InternalCombustionEngine block has been expanded into the fuel regulator and fuel rail parts. These more
detailed design elements are related to the original connectors using the allocation relationship. The Fuel store represents a
quantity of fuel in the FuelTankAssy, which is drawn by the FuelPump for use in the engine, and is refreshed, to some degree,
by fuel returning to the FuelTankAssy via the FuelReturnLine.

par [Block]PowerSubsystem

constraints

{flowrate=press/(4*injectorDemand)}

fuelflow:FuelFlow

press:Real

injectorDemand:Real

ice.fr.fuel.FuelPressure::Real

ice.fi.FuelDemand:Real

flowrate:Real

ice.ft.FuelFlowRate:Real
OMG SysMLTM Proposed Available Specification 191

Figure B.25 - Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram)

B.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)

B.4.7.1 Block Definition Diagram - Analysis Context

Figure B.26 defines the various model elements that will be used to conduct analysis in this example. It depicts each of the
constraint blocks/equations that will be used for the analysis, and key relationships between them.

 ibd [block] PowerSubsystem [Fuel Distribution Detail]

ice:InternalCombustionEngine

ft:FuelTankAssy

fuelSupplyLine:

fuelSupply:Fuel

fp:FuelPump

fi1:FuelInjector

4

fuelReturn:Fuel

fre:FuelRegulatorfra:FuelRail

p1:Fuel

p2:Fuel

fuelReturnLine:

fi2:FuelInjector

fi3:FuelInjector

fi4:FuelInjector

allocatedFrom
«connector»fdist:

fuelFitting:Fuel

allocatedFrom
«connector»fuelDelivery:

<
>

Fuel
192 OMG SysMLTM Proposed Available Specification

Figure B.26 - Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

B.4.7.2 Package Diagram - Performance View Definition

Figure B.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific
PerformanceView. The PerformanceView itself may contain of a number of diagrams depicting the elements it contains.

bdd [package] HSUVAnalysis [Analysis Context]

«constraint»
RollingFriction

Equation

«constraint»
AeroDragEquation

adrag

rdrag dyn

«constraint»
StraightLine

VehicleDynamics

«testCase,Interaction»
MaxAcceleration

1

0..1

ex

«requirement»
Acceleration

«verify»

GlobalTime
delta-t0..1

1

t

0..1

1

UnitCostContext

«domain»
HSUVStructure::

AutomotiveDomain

ad

0..1

1ad

0..1

1ad

0..1

1

parameters

V1:Vol
V2:Vol
V3:Vol

constraints

{pcap = Sum(Vi)}

«constraint»
CapacityEquation

EconomyContextCapacityContext

cap

«constraint»
PayloadEquation

«constraint»
TotalWeight

«constraint»
FuelEfficency

Equation

pl

fe

w

«constraint»
RegenBrake

EfficiencyEquation

rb
OMG SysMLTM Proposed Available Specification 193

Figure B.27 - Establishing a Performance View of the User Model (Package Diagram)

B.4.7.3 Parametric Diagram - Measures of Effectiveness
Measure of Effectiveness is a user defined stereotype. Figure B.28 shows how the overall cost effectiveness of the HSUV will
be evaluated. It shows the particular measures of effectiveness for one particular alternative for the HSUV design, and can be
reused to evaluate other alternatives.

pkg [package] HSUVViews [Performance View]

«view»
{viewpoint=Performance Viewpoint}

PerformanceView

Driver

Drive Car

id = "2"
Text = "The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically better
fuel economy."

«requirement»
Performance

«moe»
HSUValt1.Cos
tEffectiveness

«moe»
HSUValt1.FuelEco

nomy

«moe»
HSUValt1.Zero

60Time

«moe»
HSUValt1.Car

goCapacity

«moe»
HSUValt1.Quarter

MileTime

«constraint»
EconomyEquation

«constraint»
UnitCostEquation

«constraint»
CapacityEquation

«testCase»
EPAFuel

EconomyTest

«viewpoint»
stakeholders="customer"
concerns="Will the system perform
adequately?"
purpose="Highlight the performance of the
system."
methods="show performance requirements,
test cases, MOE, constraint models, etc.;
includes functional viewpoint"
languages="SysML"

Performance Viewpoint

«viewpoint»
Functional Viewpoint

«conform»
194 OMG SysMLTM Proposed Available Specification

Figure B.28 - Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)

B.4.7.4 Parametric Diagram - Economy

Since overall fuel economy is a key requirement on the HSUV design, this example applies significant detail in assessing it.
Figure B.29 shows the constraint blocks and properties necessary to evaluate fuel economy.

par [block] MeasuresOfEffectiveness [HSUV MOEs]

«objectiveFunction»

:MyObjectiveFunction
{CE = Sum(Wi*Pi)}

«moe»
HSUValt1.CostEffectiveness

«moe»
HSUValt1.FuelEconomy

«moe»
HSUValt1.Zero60Time

«moe»
HSUValt1.CargoCapacity

«moe»
HSUValt1.QuarterMileTime

«moe»
HSUValt1.UnitCost

:EconomyEquation
f:

:MaxAcceleration
Analysis

q:

z:

:CapacityEquation
vc:

:UnitCostEquation
uc:

p4:

p1:

p2:

p3:

p5:

CE:
OMG SysMLTM Proposed Available Specification 195

Figure B.29 - Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram)

B.4.7.5 Parametric Diagram - Dynamics

The StraightLineVehicleDynamics constraint block from Figure B.29 has been expanded in Figure B.30. ConstraintNotes are
used, which identify each constraint using curly brackets {}. In addition, Rationale has been used to explain the meaning of
each constraint maintained.

par [block] EconomyContext

dyn:StraightLine
VehicleDynamics

rdrag:Rolling
FrictionEquation

adrag:Aero
DragEquation

w:TotalWeight

pl:PayloadEquation

cgoWt:psgrWt:

psgrWt:

volume:

volume:

vdw: fw:

ad.HSUV.PowerSubsystem.
FuelTank.FuelWeight

Cd:

Cd:

tw:

tw:

tw:

Cf:

Cf:

fe:FuelEfficiency
Equationwhlpwr:

acc:acc:
vel: mpg:

incline:

rb:RegenBrake
EfficiencyEquation

vel:

incline:

ebpwr:

ebpwr:

n_em:

acc:

n_ice:

n_eg:

ad.HSUV.PayloadCapacity

pcap:

cgoWt:

whlpwr:

ad.HSUV.VehicleDryWeight

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.

GeneratorEfficiency

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.

MotorEfficiency

ad.HSUV.PowerSybsystem.
InternalCombustionEngine.

ICEEfficiency

ad.drivingConditions.
road.incline

ad.HSUV.position

x:

ad.HSUV.mpg

dt:

delta-t
196 OMG SysMLTM Proposed Available Specification

Figure B.30 - Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)

The constraints and parameters in Figure B.30 are detailed in Figure B.31 in Block Definition Diagram format.

par [constraintBlock] StraightLineVehicleDynamics

acc:Accelleration
Equation

vel:VelocityEquation

pos:PostionEquation

pwr:PowerEquation

whlpwr: tw:Cd: Cf:

tp:

tp:

delta-t:

delta-t:

delta-t:

tw:

tw:

a:

a:

v:

v:

acc:

vel:

Cf:

Cd:

whlpwr:

v:

x:

incline:

i:

{v(n+1) = v(n) + a(g)*32*3600/5280*delta-t}

{x(n+1) = x(n) + v(mph)*5280/3600*delta-t}

{tp = whlpwr - (Cd*v) - (Cf*tw*v)}

«rationale»
tp (hp) = wheel power - drag - friction

«rationale»
v(n+1) (mph) = v(n) + delta-v = v(n) + a*delta-t

«rationale»
x(n+1) (ft) = x(n) + delta-x = x(n) + v*delta-t

«rationale»
a(g) = F/m = P*t/m

{a = (550/32)*tp(hp)*delta-t*tw}

x:

dt
OMG SysMLTM Proposed Available Specification 197

Figure B.31 - Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Diagram)

Note the use of valueTypes originally defined in Figure B.2.

B.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

Timing diagrams, while included in UML 2.1, are not directly supported by SysML. For illustration purposes, however, the
interaction shown in Figure B.32 was generated based on the constraints and parameters of the StraightLineVehicleDynamics
constraintBlock, as described in the Figure B.30. It assumes a constant 100hp at the drive wheels, 4000lb gross vehicle weight,
and constant values for Cd and Cf.

bdd [package] HSUVAnalysis [Definition of Dynamics]

parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
tp:Horsepwr
v:Vel
i:Real

constraints
{tp = whlpowr - (Cd*v) -
(Cf*tw*v)}

«constraint»
PowerEquation

parameters
tw:Weight
delta-t:Time
tp:Horsepwr
a:Accel

constraints
{a = (550/32)*tp(hp)*dt*tw}

«constraint»
AccelerationEquation

parameters
delta-t:Time
v:Vel
a:Accel

constraints
{v(n+1 = v(n)+a*32*3600/5280*dt}

«constraint»
VelocityEquation

parameters
delta-t:Time
v:Vel
x:Dist

constraints
{x(n+1) = x(n)+v*5280/3600*dt}

«constraint»
PositionEquation

parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
acc:Accel
vel:Vel
incline:Real

«constraint»
StraightLine

VehicleDynamics

accvel
pwr

pos
198 OMG SysMLTM Proposed Available Specification

Figure B.32 - Results of Maximum Acceleration Analysis (Timing Diagram)

tim MaxAcceleration [100 Wheel Horsepower]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

Time (sec)

A
cc

el
le

ra
ti

o
n

 (
g

)

0

20

40

60

80

100

120

140

0 5 10 15 20

Time (sec)

V
el

o
ci

ty
 (

m
p

h
)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20

Time (sec)

D
is

ta
n

ce
 (

ft
)

Satisfies
«requirement»Acceleration

«diagramDescription»
version=”0.1"
description=”Constant
100 wheel horsepower,
4000 lb vehicle weight,
simple drag"
reference=”Equations of
Motion”
completeness=”assumes
perfect tire traction”
OMG SysMLTM Proposed Available Specification 199

B.4.8 Defining, Decomposing, and Allocating Activities

B.4.8.1 Activity Diagram - Acceleration (top level)

Figure B.33 shows the top level behavior of an activity representing acceleration of the HSUV. It is the intent of the systems
engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly found, however, that the
behavior as depicted cannot be allocated, and must be further decomposed.

.

Figure B.33 - Behavior Model for “Accelerate” Function (Activity Diagram)

act Accelerate

PushAccelerator

MeasureVehicle
Conditions

ProvidePower

«continuous»
accelPosition

«continuous»
vehCond

Comment:
Can't allocate
these activities to
PwrSubSystem

«continuous»
drivePower

transModeCmd
200 OMG SysMLTM Proposed Available Specification

B.4.8.2 Block Definition Diagram - Acceleration

Figure B.34 defines a decomposition of the activities and objectFlows from the activity diagram in Figure B.33.

Figure B.34 - Decomposition of “Accelerate” Function (Block Definition diagram)

B.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)

Figure B.35 shows the ProvidePower activity, using the decomposed activities and objectFlows from Figure B.34. It also uses
AllocateActivityPartitions and an allocation callout to explicitly allocate activities and an object flow to parts in the
PowerSubsystem block.

Note that the incoming and outgoing object flows for the ProvidePower activity have been decomposed. This was done to
distinguish the flow of electrically generated mechanical power and gas generated mechanical power, and to provide further
insight into the specific vehicle conditions being monitored.

bdd [activity] Accelerate [Activity and Object Flow Breakdown]

«activity»
MeasureVehicle

Conditions

«activity»
ProvidePower

«activity»
MeasureVehicle

Velocity

«activity»
MeasureBattery

Condition
«activity»

ProvideGasPower
«activity»

ControlElectricPower

«activity»
ProportionPower

«activity»
ProvideElectric

Power

mbatmvel

a4

a3a2

a1

drivePower

«block»
Power

«block»
GasPower

«block»
ElecPower

gasDrivePower elecDrivePower
OMG SysMLTM Proposed Available Specification 201

.

Figure B.35 - Detailed Behavior Model for “Provide Power” (Activity Diagram)
Note hierarchical consistency with Figure B.33.

B.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation

Figure B.36 depicts a subset of the PowerSubsystem, specifically showing the allocation relationships generated in Figure
B.35.
202 OMG SysMLTM Proposed Available Specification

.

Figure B.36 - Flow Allocation to Power Subsystem (Internal Block Diagram)

B.4.8.5 Table - Acceleration Allocation

Figure B.37 shows the same allocation relationships shown in Figure B.36, but in a more compact tabular representation.

.

Figure B.37 - Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table)

ibd [block] PowerSubsystem [Power Functional Allocation]

 allocatedFrom
«activity»Convert
ElectricToPower

emg:ElectricalMotor
Generator

trsm:Transmission

 allocatedFrom
«activity»ConvertGasToPower

ice:InternalCombustionEngine

 allocatedFrom
«activity»Proportion
PowerLoad

ecu:PowerControlUnit
epc:IFS_EPC

fp:FS_ICE

allocatedFrom
«activity»Control
ElectricPower

epc:ElectricalPower
Controller

i1:Electric
Current

i2:Electric
Current

fp:FS_EPC

fp:FS_TRSM

allocatedFrom
«objectNode»driveCurrent

allocatedFrom
«connector»c1:

 «connector»c2:
 «connector»c3:

can:CAN_Bus

ice:IFS_ICE

etrsm:IFS_TRSM

<>

<>

<>

<>

<>

<>

<>

<>

«diagramDescription»
version=”0.1"
description=”allocation of
behavior and connectors to
elements of power subsystem"
reference=”null”
completeness=”partial. Power
subsystem elements that have
no allocation yet have been
elided”

Table [activity] ProvidePower [Allocation Tree for Provide Power Activities]

type name end relation end type name
activity a1:ProportionPower from allocate to block PowerControlUnit
activity a2:ProvideGasPower from allocate to block InternalCombustionEngine
activity a3:ControlElectricPower from allocate to block ElectricalPowerController
activity a4:ProvideElectricPower from allocate to block ElectricalMotorGenerator
objectNode driveCurrent from allocate to itemFlow i1:ElectricCurrent
OMG SysMLTM Proposed Available Specification 203

B.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

Figure B.38 shows a particular Hybrid SUV (VIN number) satisfying the EPA fuel economy test. Serial numbers of specific
relevant parts are indicated.

Figure B.38 - Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers)

ib d [b lo c k] S U V _ E P A _ F u e l_ E c o n o m y _ T e s t [T e s t R e s u l ts]

v a lu e s
V IN = G 1 2 3 4 5

T e s tV e h ic le 1 :[H y b r id S U V]

v a lu e s
s n : ID = p 6 7 8 9 0

p : [P o w e r S u b s y s t e m]

c -b k :

b -c :

b - i :

b k - l:

c -p : b k - p :

S a t is f ie s
« r e q u i rm e n t» E m is s io n s

v a lu e s
s n : ID = b k 4 5 6 7 8

b k : [B r a k e S u b s y s t e m]

v a lu e s
s n : ID = c 3 4 5 6 7

c : [C h a s s is S u b s y s t e m]

v a lu e s
s n : ID = lt 5 6 7 8 9

l : [L ig h t in g S u b s y s te m]

v a lu e s
s n : ID = b 1 2 3 4 5

b :[B o d y S u b s y s t e m]

v a lu e s
s n : ID = i2 3 4 5 6

i : [In t e r io r]

« te s tC a s e »
te s tR u n 0 6 0 4 0 1 :

E P A F u e lE c o n o m y T e s t

v a lu e s
s n : ID = s n 9 0 1 2 3

e m : [E le c t r ic a lM o t o r] v a lu e s
s n : ID = s n 8 9 0 1 2

t : [T r a n s m is s io n]

v a lu e s
s n :ID = e id 7 8 9 0 1

ic e :[In t e rn a lC o m b u s ti
o n E n g in e]

e m -t : ic e - t:

V e r i f ie s
« re q u ir e m e n t» E m is s io n s
204 OMG SysMLTM Proposed Available Specification

Annex C: Non-normative Extensions

(informative)

This annex describes useful non-normative extensions to SysML that may be considered for standardization in future versions
of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type, consistent with
how the main body of this specification is organized. Stereotypes in this section are specified using a tabular format, consistent
with how non-normative stereotypes are specified in the UML 2.1 Superstructure specification. Model libraries are specified
using the guidelines provided in the Profiles & Model Libraries chapter of this specification.

C.1 Activity Diagram Extensions

C.1.1 Overview

Two non-normative extensions to activities are described for:

• Enhanced Functional Flow Block Diagrams.

• Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and UML 2.0
Support for Activity Modeling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of Systems Engineering,
2006].

C.1.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a behavior
diagram. Most of its functionality is a constrained use of UML activities, as described below. This extension does not address
replication, resources, or kill branches. Kill branches can be translated to activities using interruptible regions and join
specifications.

When the «effbd» stereotype is applied to an activity, its contents must conform to the following constraints:

[1] (On Activity) Activities do not have partitions.

[2] (On Activity) All decisions, merges, joins and forks are well-nested. In particular, each decision and merge are matched
one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and input parameters and
control acting as a join.

[3] (On Action) All actions require exactly one control edge coming into them, and exactly one control edge coming out,
except when using parameter sets.

Table C.1 - Addition stereotypes for EFFBDs

Stereotype Base class Properties Constraints Description
«effbd» UML4SysML::Activity (or subtype

of «nonStreaming» below)
N/A See below. Specifies that the activity

conforms to the constraints
necessary for EFFBD.
OMG SysMLTM Proposed Available Specification 205

[4] (Execution constraint) All control is enabling.

[5] (On ControlFlow) All control flows into an action target a pin on the action that has isControl = true.

[6] (On ObjectNode) Ordering is first-in first out, ordering = FIFO.

[7] (On ObjectNode) Object flow is never used for control, isControlType = false, except for pins of parameters in parameter
sets.

[8] (On Parameter) Parameters take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters produce exactly one value, multiplicity.lower = 1. The «optional» stereotype cannot
be applied to parameters.

[10] (On Parameter) Parameters cannot be streaming or exception.

[11] (On ParameterSet) Parameter sets only apply to output parameters.

[12] (On ParameterSet) Parameter sets only apply to control. Parameters in parameter sets must have pins with isControlType
= true.

[13] (On ParameterSet) Parameter sets have exactly one parameter, and it must not be shared with other parameter sets.\

[14] (On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the behavior or operation
must be in parameter sets.

[15] (On ActivityEdge) Edges cannot have time constraints.

[16]The following SysML stereotypes cannot be applied: «rate», «controlOperator», «noBuffer», «overwrite».

A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they start and
before they finish (streaming), or only accept inputs when they start and provide outputs when they are finished
(nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated by other activities, while
nonstreaming activities usually terminate themselves.

C.1.3 Stereotype Examples

Figure C.1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J., “Relationships
between common graphical representations in system engineering,” 2002]. The stereotype applies the constraints specified in
Section C.1.2, for example, that the data outputs on all functions are required and that queuing is FIF.

Table C.2 - Streaming options for activities

Stereotype Base Class Properties Constraints Description
«streaming» UML4SysML::Activity N/A The activity has at least

one streaming
parameter.

Used for activities that can
accept inputs or provide outputs
after they start and before they
finish.

«nonStreaming» UML4SysML::Activity N/A The activity has no
streaming parameters.

Used for activities that accept
inputs only when they start, and
provide outputs only when they
finish.
206 OMG SysMLTM Proposed Available Specification

Figure C.1 - Example activity with «effbd» stereotype applied

Figure C.2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied, adapted from
[MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t) = -2x(t) + u(t). Item types
are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which subactivities take inputs and produce
outputs while they are executing. They are simpler to use than the {stream} notation on streaming inputs and outputs

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with clocked token
flow, to ensure that actions with multiple inputs receive as many of them as possible before proceeding. See discussion around
Figure 26 of the article referenced in Section C.1.1..

Figure C.2 - Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities.

External
Input

External
Output

2.1 Serial
Function

2.2 Multi-exit
Function

2.3 Function in
Concurrency

Item 1

2.4 Function in
Multi-exit
Construct

2.5 Function in
an Iterate

[before third time]

Item 2

«optional» [after
third
time]

2.6 Output
Function

«optional»

Item 3

Item 4

«optional»

«optional»

{cc#1}

{cc#2}

«effbd»
act

Generate
u(t)

Add

-2

Display

«streaming»
Integrate

Over Timeu
x’ x

Multiply
-2x

«nonStreaming» «streaming» «streaming»

«nonStreaming»

act
OMG SysMLTM Proposed Available Specification 207

C.2 Requirements Diagram Extensions

C.2.1 Overview

This section describe an example of a non-normative extension for a requirements profile.

C.2.2 Stereotypes

This section includes stereotypes for a simplified requirements taxonomy that is intended to be further adapted as required to
support the particular needs of the application or organization. The requirements categories in this example include functional,
interface, performance, physical requirements, and design constraints as shown in Table C.3. As shown in the table, each
category is represented as a stereotype of the generic SysML «requirement». The table also includes a brief description of the
category. The table does not include any stereotype properties or constraints, although they can be added as deemed
appropriate for the application. For example, a constraint that could be applied to a functional requirement is that only SysML
activities and operations can satisfy this category of requirement. Other examples of requirements categories may include
operational, specialized requirements for reliability and maintainability, store requirements, activation, deactivation, and a
high level category for stakeholder needs.

Some general guidance for applying a requirements profile is as follows:

• The categories should be adapted for the specific application or organization and reflected in the table. This includes
agreement on the categories, and their associated descriptions, stereotype properties, and constraints. Additional
categories can be added by further subclassing the categories in the table below, or adding additional categories at the
pier level of these categories.

• The default requirement category should be the generic «requirement».

• Apply the more specialized requirement stereotype (functional, interface, performance, physical, design constraint) as
applicable and ensure consistency with the description, stereotype properties, and constraints.

• A specific text requirement can include the application of more than one requirement category, in which case, each
stereotype should be shown in guillemets.

Table C.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints Description
«extendedRequirement» «requirement» source: String

risk: RiskKind
verifyMethod:
VerifyMethodKind

N/A A mix-in stereotype that contains
generally useful attributes for
requirements

«functionalRequirement» «extendedrequirement» N/A satisfied by an
operation or
behavior

Requirement that specifies an
operation or behavior that a
system, or part of a system, must
perform.

«interfaceRequirement» «extendedrequirement» N/A satisfied by a
port, connector,
item flow, and/
or constraint
property

Requirement that specifies the
ports for connecting systems and
system parts and the optionally
may include the item flows across
the connector and/or Interface
constraints.
208 OMG SysMLTM Proposed Available Specification

Table C.4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Figure C.3.

C.2.3 Stereotype Examples

Figure C.3 shows the use of several sub-types of requirements extended to include the properties risk:RiskKind,
verifyMethod:VerficationMethodKind, and a text attribute source:String, used to capture the source of the requirement.

«performanceRequirement» «extendedrequirement» N/A satisfied by a
value property

Requirement that quantitatively
measures the extent to which a
system, or a system part, satisfies
a required capability or condition.

«physicalRequirement» «extendedrequirement» N/A satisfied by a
structural
element.

Requirement that specifies
physical characteristics and/or
physical constraints of the system,
or a system part.

«designConstraint» «extendedrequirement» N/A satisfied by a
block or part

Requirement that specifies a
constraint on the implementation of
the system or system part, such as
the system must use a commercial
off the shelf component.

Table C.4 - Requirement property enumeration types

Enumeration Enumeration
Literals

Example Description

RiskKind High High indicates an unacceptable level of risk

Medium Medium indicates an acceptable level of risk

Low Low indicates a minimal level of risk or no risk

VerificationMethodKind Analysis Analysis indicates that verification will be performed by technical evaluation using
mathematical representations, charts, graphs, circuit diagrams, data reduction, or
representative data. Analysis also includes the verification of requirements under
conditions, which are simulated or modeled; where the results are derived from the
analysis of the results produced by the model.

Demonstration Demonstration indicates that verification will be performed by operation, movement or
adjustment of the item under specific conditions to perform the design functions without
recording of quantitative data.. Demonstration is typically considered the least restrictive
of the verification types.

Inspection Inspection indicates that verification will be performed by examination of the item,
reviewing descriptive documentation, and comparing the appropriate characteristics with
a predetermined standard to determine conformance to requirements without the use of
special laboratory equipment or procedures.

Test Test indicates that verification will be performed through systematic exercising of the
applicable item under appropriate conditions with instrumentation to measure required
parameters and the collection, analysis, and evaluation of quantitative data to show that
measured parameters equal or exceed specified requirements.

Table C.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints Description
OMG SysMLTM Proposed Available Specification 209

Figure C.3 - Example extensions to Requirement

C.3 Parametric Diagram Extensions for Trade Studies

C.3.1 Overview

This section describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks chapter) to support
trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, a trade study is used to
evaluate a set of alternatives based on a defined set of criteria. The criteria may have a weighting to reflect their relative
importance. An objective function (aka optimization or cost function) can be used to represent the weighted criteria and
determine the overall value of each alternative. The objective function can be more complex than a simple linear weighting of
the criteria and can include probability distribution functions and utility functions associated with each criteria. However, for
this example, we will assume the simpler case.

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission cost
effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying an objective
function to a set of criteria, each of which is represented by a measures of effectiveness.

This section includes stereotypes for an objective function and a measure of effectiveness. The objective function is a
stereotype of a ConstraintBlock and the measure of effectiveness is a stereotype of a block property.

 Requirement Diagram: Top-Level User Requirements

«requirement»
HybridSUV

«functinalRequirement»
id =”UR1.1"
source = “Marketing”
text = “Load”
verifyMethod =”Test”
risk =”Low”

«functionalRequirement»
Load

«performanceRequirement»
id =”UR1.2"
source = “Marketing”
text = “Eco-Friendliness”
verifyMethod = ”Analysis”
risk = ”High”

«performanceRequirement»
Eco-Friendliness

«performanceRequirement»
id = ”UR1.3"
source = “Marketing”
text = “Performance”
verifyMethod =”Test”
risk =”Medium”

«performanceRequirement»
Performance

«requirement»
Ergonomics

«requirement»
Passengers

«requirement»
Cargo

«requirement»
FuelCapacity

«performanceRequirement»
id = ”UR1.2.1"
source = “Marketing”
text = “The car shall meet 2010 Kyoto
Accord emissions standards .”
verifyMethod =”Test”
risk =”Medium”

«performanceRequirement»
Emissions

«performanceRequirement»
id = “UR1.3.1”
source = “Marketing”
text = “Users shall obtain fuel
economy better than that provided
by 95% of cars built in 2004.”
verifyMethod = “Test”
risk = “High”

«performanceRequirement»
FuelEconomy

«requirement»
Range

«requirement»
Braking

«requirement»
Power

«requirement»
Acceleration
210 OMG SysMLTM Proposed Available Specification

C.3.2 Stereotypes.

C.3.3 Stereotype Examples

In this example, operational availability, mission response time, and security effectiveness each represent moe’s along with life
cycle cost. The overall cost effectiveness for each alternative may be defined by an objective function that represents a
weighted sum of their moe values. For each moe, there is a separate parametric model to estimate the value of operational
avialability, mission response time, security effectiveness and life cycle cost to determine an overall cost effectiveness for each
alternative. It is assumed that the moe’s refer to the values for system alternative j (sj).

C.4 Model Library for Dimensions and Units

The dimensions and units in this section are a subset of units defined by the International System of Units (SI) as defined in
NIST Special Publication 330 (available from the NIST Reference on Constants, Units and Uncertainty at
http://physics.nist.gov/cuu/Units/units.html).

Table C.5 - Stereotypes for Measures of Effectiveness

Stereotype Base Class Properties Constraints Description

«objectiveFunction» «ConstraintBlock» or
«ConstraintProperty»

N/A N/A An objective function (aka optimization or
cost function) is used to determine the
overall value of an alternative in terms of
weighted criteria and/or moe’s.

«moe» UML4SysML::Prop-
erty

N/A N/A A measure of effectiveness (moe)
represents a parameter whose value is
critical for achieving the desired mission
cost effectiveness.

«moe»
sj.costEffectiveness

par Effectiveness Model [System Alternative J]

:SecurityModel

«objectiveFunction»
:MyObjectiveFunction

{CE = Sum Wi*Pi}

:ResponseTimeModel

:AvailabilityModel
CE:P3:

P2:

P1:

s:

r:

a:

:CostModel
c:

P4:

«moe»
sj.responseTime

«moe»
sj.security

«moe»
sj.cost

«moe»
sj.availability
OMG SysMLTM Proposed Available Specification 211

.

Figure C.4 - SI Definitions model library

Figure C.5 - SI Base Units

pkg

«modelLibrary»
SI Definitions

pkg SI Definitions [SI Base Units]

«dimension»
Length

«dimension»
Mass

«dimension»
Time

«dimension»
ElectricCurrent

«dimension»
ThermodynamicTemperature

«dimension»
AmountOfSubstance

«dimension»
LuminousIntensity

«unit»
dimension = Length

Meter

«unit»
dimension = Mass

Kilogram

«unit»
dimension = Time

Second

«unit»
dimension = ElectricCurrent

Ampere

«unit»
dimension = ThermodynamicTemperature

Kelvin

«unit»
dimension = AmountOfSubstance

Mole

«unit»
dimension = LuminousIntensity

Candela
212 OMG SysMLTM Proposed Available Specification

Figure C.6 - SI Derived Units Expressed In Base Units

pkg SI Definitions [SI Derived Units Expressed In Base Units]

«dimension»
Area

«dimension»
WaveNumber

«dimension»
Volume

«dimension»
Acceleration

«dimension»
CurrentDensity

«dimension»
MassDensity

«dimension»
SpecificVolume

«dimension»
MagneticFieldStrength

«dimension»
AmountOfSubstanceConcentration

«dimension»
Velocity

«dimension»
Luminance

«unit»
dimension = Area

SquareMeter

«unit»
dimension = Acceleration

MeterPerSecondSquared

«unit»
dimension = Volume

CubicMeter

«unit»
dimension = WaveNumber

ReciprocalMeter

«unit»
dimension = MagneticFieldStrength

AmperePerMeter

«unit»
dimension = Velocity

MeterPerSecond

«unit»
dimension = AmountOfSubstanceConcentration

MolePerCubicMeter

«unit»
dimension = MassDensity

KilogramPerCubicMeter

«unit»
dimension = SpecificVolume

CubicMeterPerKilogram

«unit»
dimension = CurrentDensity

AmperePerSquareMeter

«unit»
dimension = Luminance

CandelaPerSquareMeter
OMG SysMLTM Proposed Available Specification 213

C.5 Distribution Extensions

C.5.1 Overview

This section describes a non-normative extension to provide a candidate set of distributions (see “DistributedProperty” on
page 49). It consists of a profile containing stereotypes that can be used to specify distributions for properties of blocks.

Figure C.7 - SI Derived Units With Special Names

pkg SI Definitions [SI Derived Units With Special Names]

«dimension»
PlaneAngle

«dimension»
SolidAngle

«dimension»
Pressure

«dimension»
Energy

«dimension»
Power

«dimension»
Force

«dimension»
Frequency

«dimension»
ElectricCharge

«dimension»
ElectricPotentialDifference

«dimension»
Capacitance

«dimension»
ElectricResistance

«dimension»
ElectricConductance

«dimension»
MagneticFlux

«dimension»
MagneticFluxDensity

«dimension»
CelsiusTemperature

«dimension»
LuminousFlux

«dimension»
Inductance

«dimension»
Illuminance

«dimension»
CatalyticActivity

«dimension»
DoseEquivalent

«dimension»
AbsorbedDose

«dimension»
ActivityOfRadionuclide

«unit»
dimension = ElectricConductance

Siemens

«unit»
dimension = PlaneAngle

Radian

«unit»
dimension = SolidAngle

Steradian

«unit»
dimension = Frequency

Hertz

«unit»
dimension = Force

Newton

«unit»
dimension = Pressure

Pascal

«unit»
dimension = Energy

Joule

«unit»
dimension = Power

Watt

«unit»
dimension = ElectricCharge

Coulomb

«unit»
dimension = ElectricPotentialDifference

Volt

«unit»
dimension = Capacitance

Farad

«unit»
dimension = ElectricResistance

Ohm

«unit»
dimension = MagneticFlux

Weber

«unit»
dimension = MagneticFluxDensity

Tesla

«unit»
dimension = Inductance

Henry

«unit»
dimension = CelsiusTemperature

Degree Celsius

«unit»
dimension = LuminousFlux

Lumen

«unit»
dimension = Illuminance

Lux

«unit»
dimension = ActivityOfRadionuclide

Bequerel

«unit»
dimension = AbsorbedDose

Gray

«unit»
dimension = DoseEquivalent

Sievert

«unit»
dimension = CatalyticActivity

Katal
214 OMG SysMLTM Proposed Available Specification

C.5.2 Stereotypes

Package Distributions

Figure C.8 - Basic distribution stereotypes

C.5.3 Usage Example

Figure C.9 shows a simple example of using distributions; the force of the Cannon is specified using a Normal distribution
with parameters mean and standard Deviation. Whereas the use of a Normal distribution can be inferred from the names of its
parameters, an Interval distribution shares parameters with a Uniform distribution, hence the stereotype keyword «interval» is
used to distinguish it.

Table C.6 - Distribution Stereotypes

Stereotype Base Class Properties Constraints Description

«BasicInterval» «DistributedProperty» min:Real

max:Real

N/A Basic Interval distribution - value
between min and max inclusive

«Interval» «BasicInterval» N/A N/A Interval distribution - unknown
probability between min and max

«Uniform» «BasicInterval» N/A N/A Uniform distribution - constant
probability between min and max

«Normal» «DistributedProperty» mean:Real

standardDeviation:Real

N/A Normal distribution - constant
probability between min and max

«stereotype»
Uniform

«stereotype»
Interval

min: Real
max: Real

«stereotype»
BasicInterval

mean: Real
standardDeviation: Real

«stereotype»
Normal

«stereotype»
SysML::Blocks::

DistributedProperty
OMG SysMLTM Proposed Available Specification 215

Figure C.9 - Distribution Example

bdd [block] FiringRange

{mean=100.0,standardDeviation=1.0}force: Newton

«block»
Cannon

«interval»{min=101.0,max=105.0}volume: CubicMeter
density:KilogramPerCubicMeter
acceleration: MeterPerSquareSecond

«block»
Shot
216 OMG SysMLTM Proposed Available Specification

 Annex D: Model Interchange

(informative)

D.1 Overview

This annex describes several methods for exchanging SysML models between tools. The first method discussed is XML
Metadata Interchange (XMI), which is the preferred method for exchanging models between UML-based tools. The second
approach describes the use of ISO 10303-233 Application Protocol: Systems engineering and design (AP233), which is one of
the series of STEP (Standard for the Exchange of Product Model Data) neutral data schemas for representing engineering data.
Other model interchange approaches are possible, but the ones described in this annex are expected to be the primary ones
supported by SysML.

D.2 Context for Model Interchange

Developing today’s complex systems typically requires engineering teams that are distributed in time and space and that are
often composed of many companies, each with their own culture, methods and tools. Effective collaboration requires
agreement on, and a thorough understanding of, the various work assignments and resulting artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral models,
verification & validation) that transcend the entire life cycle of the system of interest and are the basis for important systems
engineering considerations and decisions. So it is critical that the system information contained in these artifacts and
information models be accurately captured and ‘readable’ by all appropriate team members in a timely manner.

Today, this information resides in an array of tools where each is only concerned with a portion of systems engineering data
and can’t share its data with other tools because they only understand their own native schema. To mitigate this situation,
collaborating organizations are usually forced to either adopt a common set of tools or develop a unique, bi-directional
interface between many of the tools that each organization uses. This can be an expensive and untimely approach to data
exchange between team members. So there is a need to define standardized approaches for model interchange between the
different data schemas in use.

D.3 XMI Serialization of SysML

UML 2.0 is formally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language for specifying
modeling languages. The OMG XML Metadata Interchange (XMI) 2.1 standard specifies an XML-based interchange format
for any language modeled using MOF. This results in a standard, convenient format for serializing UML user models as XMI
files for interchange between UML tools. The XMI specification also includes rules for generating an XML Schema that can
be used for basic validation of the structure of those UML user model XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as UML
models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in much the same
way one could extend the UML language by adding to the MOF definition of UML. As UML Profiles are valid UML models,
XMI does provide a mechanism for exchanging the UML Profiles between UML tools. However, as they are extensions to
concepts defined in the UML language itself, the definition of a UML Profile refers to the UML language definitions. An XMI
2.1 representation of the SysML profile (i.e., the UML Profile for SysML) is provided as a support document to this
specification (refer to ad/2006-03-02). As with UML, XMI provides a convenient serialized format for model interchange
between SysML tools and basic validation of those files using an XML Schema as well.
OMG SysMLTM Proposed Available Specification 217

D.4 Overview of ISO 10303-233 STEP AP233
AP233 is not finalized at this time, so this section reflects the background and current status of the AP233 work.

AP233 is a neutral data schema for representing systems engineering data. AP233 is being standardized under the ISO TC-184
(Technical Committee on Industrial Automation Systems and Integration), SC4 (Subcommittee on Industrial Data Standards),
and is part of the larger STEP effort, which provides standardized models and infrastructure for the exchange of product model
data.

D.4.1 Scope of ISO 10303-233 STEP AP233

AP233 will include support for describing:

• requirement

• functional

• structure

• physical structure & allocation

• configuration & traceability

• project & data management

An IDEF activity that shows the scope of AP233 information requirements is available at http://public.ap233.org/AAM/
AAM_AP233-Issue-1.pdf. Additional details on AP233 can be found at http://public.ap233.org/.

D.4.2 ISO 10303-233 STEP AP233 Development Approach & Status

AP233 and several other STEP application protocols are being built using a modular architecture. This enables the same
information model to be reused across disciplines and life cycle stages. In the STEP Modular Architecture these reusable
information models are called application modules, or more informally simply modules. AP233 will consist of a number of
modules that together will satisfy the scope of the requirements stated above. Support for several of systems engineering
viewpoints within the scope of AP233 already exist as the result of the development of other application protocols and will
simply be reused in AP233. When existing STEP modules do not provide needed capabilities, new modules are being defined
as part of AP233 development. Since AP233 is part of STEP, it is easy to relate systems engineering data to that of other
engineering disciplines over the lifecycle of a system and to related product models.

Figure D-1 provides an overview of the modules planned to satisfy the scope of AP233 requirements and also shows the
current status of each.
218 OMG SysMLTM Proposed Available Specification

Figure D.1 - AP233 Modules

D.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms

A good understanding of the STEP architecture and its components are required to understand how SysML models will be
interchanged using AP233. This section provides an overview of the key elements of STEP that pertain to model interchange.

D.4.3.1 Modular Architecture

The scope of STEP is very large. While a number of STEP modules and application protocols have been developed (e.g.,
product data management, geometry, structural, electrical, and other engineering analysis support) and in use for several years,
other area such as AP233 are still being defined and developed.

AP233 and several other STEP application protocols are being built using a modular architecture. This enables the same
information model to be reused across disciplines and life cycle stages. In the STEP Modular Architecture these reusable
information models are called application modules, or more informally simply modules.

For more detail on the STEP architecture see the ISO TC184/SC4 Industrial Data subcommittee web page at http://
www.tc184-sc4.org/: and for a more detailed view of where specific STEP parts fit into the architecture is available at http://
www.mel.nist.gov/sc5/soap/soapgrf030407.pdf.

requirements

text-based

property-based

breakdowns
static

structure

PDM

analysis rulesbehaviour

product
structure

system
sub-system

functional
breakdown WBS

verification &
validation

state-based

function-based
model presentation

config
control

security

riskrisk measurement

person &
org

completed in-progressStatus Legend future
OMG SysMLTM Proposed Available Specification 219

D.4.3.2 The Modeling Language for ISO 10303-233 STEP AP233

AP233, like all STEP application protocols, is defined using the EXPRESS modeling language (see ISO 10303-11 Description
method: The EXPRESS language reference manual). EXPRESS is a precise text-based information modeling language with a
related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA people;
TYPE year = integer;
END_TYPE;
TYPE person_or_organization = SELECT (person, organization);
END_TYPE;
ENTITY organization;
name : STRING;
END_ENTITY;
ENTITY building;
address : STRING;
owner : person_or_organization;
END_ENTITY;
ENTITY person
ABSTRACT SUPERTYPE;
spouse : OPTIONAL person;
name : STRING;
birthyear : year;
biological_parents : SET[2:2] of person;
parents : SET[2:?] of person;
END_ENTITY;
ENTITY man
SUBTYPE OF (person);
sister : SET[0:?] of woman;
END_ENTITY;
ENTITY woman
SUBTYPE OF (person);
brother : SET[0:?] of man;
END_ENTITY;
END_SCHEMA;

An overview of an XML Document Type Definition for the EXPRESS language is available at http://stepmod.sourceforge.net/
express_model_spec/. Note however, that the powerful expression language for constraint writing is not addressed by that
DTD. EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.

Work is underway to produce and standardize a MOF-based EXPRESS metamodel and EXPRESS/UML mappings.
Documentation related to those efforts is available at the exff (Engineering eXchange For Free) web site (http://www.exff.org/
express_uml/index.html). Eventually these efforts should allow a formal SysML/AP233 relationship to be standardized within
the OMG.

An early draft of one mapping of ISO EXPRESS to UML/XMI is available as an OMG document at http://www.omg.org/cgi-
bin/doc?liaison/2003-07-01. Please note that this specification is based on EXPRESS Edition 1, UML 1.4, MOF 1.4 and XMI
1.2.
220 OMG SysMLTM Proposed Available Specification

D.4.3.3 Model Interchange Mechanisms

As part of the STEP series of EXPRESS-based information model, a series of implementation methods are also standardized:

• ISO 10303-21 (Part 21), clear text encoding of the exchange structure

• ISO 10303-22 (Part 22), standard data access interface (SDAI) specification

• ISO 10303-25 (Part 25), EXPRESS to OMG XMI binding

• ISO 10303-28 (Part 28), XML representation of EXPRESS schemas and data

A conforming STEP implementation is the combination of a STEP application protocol and one or more of the
implementation methods.

SDAI specifies a standard programming interface for access to EXPRESS-based data. SDAI allows the implementors to refer
to product data in terms of its conceptual EXPRESS definitions, regardless of the underlying data structure or storage
technology. Bindings of the SDAI to C++ (ISO 10303-23), C (ISO 10303-24), Java (ISO 10303-27) provide standardized APIs
for accessing EXPRESS-based data.

D.4.4 ISO 10303-233 STEP AP233 - SysML Alignment & Mapping Model

The requirements for AP233 and SysML have been largely aligned by the OMG and the ISO teams working together and in
close cooperation with the INCOSE Model Driven System Design working group. However there might be differences in
breath and scope of AP233 and SysML resulting from the different development life cycles of both activities and the different
nature of the modeling frameworks used to define SysML and AP233. To avoid semantical issues in exchanging data between
SysML and AP233, a neutral or mapping model of systems engineering concepts will be defined. Thus the mappings between
the mapping model and SysML metamodel and the mapping model and AP233 metamodel can be maintained independently.
The neutral mapping model will also help to clarify the semantics of the data elements. This approach is illustrated in Figure
D-2.

As AP233 and SysML are defined in different modeling frameworks, the AP233 metamodel will be converted to UML to ease
the mapping. OMG has started a standardization activity has been started to capture EXPRESS semantics in UML, but a
custom mapping will be used until the UML profile for EXPRESS has been adopted. The mapping model will be expressed as
a plain MOF model. The mapping model will be defined based on the concepts used and implemented for AP233 and SysML.
Another important input is the conceptual systems engineering model maintained by the INCOSE Model Driven System
Design Working group. Since development of the mapping model and SysML and AP233 mappings to it is an ongoing
maintenance activity, these specifications will be maintained separately and updates will be posted on the SE DSIG web site.

The mapping model can be used as the basis for the models exchange methods discussed in the next section and also for the
development of conceptual level API’s, which should ease the usage of AP233 and generation of common test cases for
SysML and AP233.
OMG SysMLTM Proposed Available Specification 221

Figure D.2 - Mapping Model

D.4.5 Generic Procedures for SysML and ISO 10303-233 STEP AP233 Model
Interchange

D.4.5.1 File-based Exchange

Industrial-strength STEP implementations are typically file exchange-based systems integration processes. As OMG has
standardized XMI as its model serialization format, one obvious approach is to use the STEP XML-based file exchange
capability (Part 28) by simply translating the model contained in an XMI file into a model based on the AP233 XML Schema.
This approach encourages systems integrators and SysML tool vendors to develop interoperable SysML-AP233 exchange
capabilities. It is also provides SysML tool vendors with a means to directly export AP233 XML files.

D.4.5.2 API-Driven Model Interchange

Model interchange can be simplified by the use of high-level application program interfaces (APIs) . At the moment,
standardized APIs for SysML- or AP233-specific models are not available, but work is underway in the industry to provide
implementations of such APIs. Ideally, application level developers can use the same APIs to access backend XML models
serialized in either SysML XMI or AP233 XML format, depending on customer needs. When combined, standardized XML
serialization formats and high-level APIs will provide a very convenient and interoperable way for SysML tool vendors and
systems integrators to exchange SysML and AP233 models. These standardized capabilities will also provide the foundation
needed for building a set of Systems Engineering Web Services.

<<MetaModel>>
UML 2

<<MetaModel>>
SysML

<<MetaModel>>
MappingModel

<<Profile>>
Express

<<MetaModel>>
UML 2

<<MetaModel>>
AP233 (UML)

<<extends>>

<<extends>>

<<mapping>>
<<mapping>>
222 OMG SysMLTM Proposed Available Specification

OMG SysMLTM Proposed Available Specification 223

224 OMG SysMLTM Proposed Available Specification

 Annex E: Requirements Traceability
The OMG SysML requirements traceability matrix traces the requirements from this psecification to the original source
requirements in the UML for system Engineering RFP (ad/03-03-41). The traceability matrix is included by reference in a sep-
erate document (ptc/2007-03-09)
OMG SysMLTM Proposed Available Specification 223

224 OMG SysMLTM Proposed Available Specification

 Annex F: Terms and Definitions

(informative)

The SysML glossary is included as a support document ad/2006-03-04 to this specification. The terms and definitions are
referred to in the SysML specification and are derived from multiple sources including the UML Superstructure (formal/05-
07-04) and the UML for Systems Engineering RFP (ad/03-03-41).
OMG SysMLTM Proposed Available Specification 247

248 OMG SysMLTM Proposed Available Specification

	OMG’s Issue Reporting Procedure
	Part I - Introduction
	1 Scope
	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this Specification
	3.3 Acknowledgements

	4 Language Architecture
	4.1 Design Principles
	4.2 Architecture
	4.3 Extension Mechanisms
	4.4 SysML Diagrams

	5 Compliance
	5.1 Compliance with UML Subset (UML4SysML)
	5.1.1 Compliance Level Contents

	5.2 Compliance with SysML Extensions
	5.3 Meaning of Compliance

	6 Language Formalism
	6.1 Levels of Formalism
	6.2 Chapter Specification Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples

	6.3 Conventions and Typography

	Part II - Structural Constructs
	7 Model Elements
	7.1 Overview
	7.2 Diagram Elements
	7.2.1 Graphical Nodes and Paths

	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 Stereotype Keywords or Icons Inside a Comment Note Box
	7.3.1.2 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	7.3.2.2 Problem
	7.3.2.3 Rationale
	7.3.2.4 View
	7.3.2.5 Viewpoint

	7.4 Usage Examples

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.1.1 Graphical Nodes and Paths

	8.2.2 Internal Block Diagram
	8.2.2.1 Graphical Nodes and Paths

	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.2 Internal Block Diagram
	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 Block
	8.3.2.2 DistributedProperty
	8.3.2.3 Dimension
	8.3.2.4 NestedConnectorEnd
	8.3.2.5 PropertySpecificType
	8.3.2.6 Unit
	8.3.2.7 ValueType
	8.3.2.8 ParticipantProperty
	8.3.2.9 ConnectorProperty
	8.3.2.10 Binding Connector

	8.3.3 Model Libraries
	8.3.3.1 Complex
	8.3.3.2 Real

	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 SI Value Types
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water delivery

	9 Ports and Flows
	9.1 Overview
	9.1.1 Standard Ports
	9.1.2 Flow Ports
	9.1.3 Item Flows

	9.2 Diagram Elements
	9.2.1 Extensions to Block Definition Diagram.
	9.2.1.1 Extensions to Internal Block Diagram

	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 FlowPort
	9.3.1.2 FlowProperty
	9.3.1.3 FlowSpecification
	9.3.1.4 ItemFlow

	9.3.2 Stereotypes
	9.3.2.1 Package Ports&Flows
	9.3.2.2 Block
	9.3.2.3 Standard Port
	9.3.2.4 FlowDirection
	9.3.2.5 FlowPort
	9.3.2.6 FlowProperty
	9.3.2.7 FlowSpecification
	9.3.2.8 ItemFlow

	9.4 Usage Examples
	9.4.1 Standard Ports
	9.4.1.1 Atomic Flow Ports and Item Flows
	9.4.1.2 Non-Atomic Flow Ports and Flow Specification

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.1.1 Graphical Nodes

	10.2.2 Parametric Diagram
	10.2.2.1 Graphical Nodes

	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.2 Parametric Diagram

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock
	10.3.2.2 ConstraintProperty

	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram

	Part III - Behavioral Constructs
	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.1.1 Continuous Systems

	11.2 Diagram Elements
	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.4 ObjectNode

	11.3.2 Stereotypes
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Overwrite
	11.3.2.6 Optional
	11.3.2.7 Probability
	11.3.2.8 Rate

	11.3.3 Model Libraries
	11.3.3.1 ControlValue

	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram

	12.4 Usage Examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.4 Usage Examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Examples

	Part IV - Crosscutting Constructs
	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocated Property Compartment Format
	15.3.1.4 Allocated Property Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	15.3.2.1 Allocate(from Allocations)
	15.3.2.2 Allocated(from Allocations)
	15.3.2.3 AllocateActivityPartition(from Allocations)

	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirements Diagrams

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	16.3.2.1 Copy (from Requirements)
	16.3.2.2 DeriveReqt (from Requirements)
	16.3.2.3 Requirement (from Requirements)
	16.3.2.4 RequirementRelated (from Requirements)
	16.3.2.5 TestCase (from Requirements)
	16.3.2.6 Satisfy (from Requirements)
	16.3.2.7 Verify (from Requirements)

	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.1.1 Requirements and Design Elements
	16.4.1.2 Requirements Reuse
	16.4.1.3 Verification Procedure (Test Case)

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1 Profile Definition in Class Diagram
	17.2.1.1 Extension

	17.2.2 Stereotypes Used On Diagrams
	17.2.2.1 StereotypeInNode
	17.2.2.2 StereotypeInComment
	17.2.2.3 StereotypeInCompartment

	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Part V - Annexes
	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: Sample Problem
	B.1 Purpose
	B.2 Scope
	B.3 Problem Summary
	B.4 Diagrams
	B.4.1 Package Overview (Structure of the Sample Model)
	B.4.1.1 Package Diagram - Applying the SysML Profile
	B.4.1.2 Package Diagram - Showing Package Structure of the Model

	B.4.2 Setting the Context (Boundaries and Use Cases)
	B.4.2.1 Internal Block Diagram - Setting Context
	B.4.2.2 Use Case Diagram - Top Level Use Cases
	B.4.2.3 Use Case Diagram - Operational Use Cases

	B.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
	B.4.3.1 Sequence Diagram - Drive Black Box
	B.4.3.2 State Machine Diagram - HSUV Operational States
	B.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	B.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	B.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy
	B.4.4.2 Requirement Diagram - Derived Requirements
	B.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	B.4.4.4 Table - Requirements Table

	B.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	B.4.5.1 Block Definition Diagram - Automotive Domain
	B.4.5.2 Block Definition Diagram - Hybrid SUV
	B.4.5.3 Internal Block Diagram - Hybrid SUV
	B.4.5.4 Block Definition Diagram - Power Subsystem
	B.4.5.5 Internal Block Diagram for the “Power Subsystem”

	B.4.6 Defining Ports and Flows
	B.4.6.1 Block Definition Diagram - ICE Interface
	B.4.6.2 Internal Block Diagram - CANbus
	B.4.6.3 Block Definition Diagram - Fuel Flow Properties
	B.4.6.4 Parametric Diagram - Fuel Flow
	B.4.6.5 Internal Block Diagram - Fuel Distribution

	B.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	B.4.7.1 Block Definition Diagram - Analysis Context
	B.4.7.2 Package Diagram - Performance View Definition
	B.4.7.3 Parametric Diagram - Measures of Effectiveness
	B.4.7.4 Parametric Diagram - Economy
	B.4.7.5 Parametric Diagram - Dynamics
	B.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

	B.4.8 Defining, Decomposing, and Allocating Activities
	B.4.8.1 Activity Diagram - Acceleration (top level)
	B.4.8.2 Block Definition Diagram - Acceleration
	B.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	B.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	B.4.8.5 Table - Acceleration Allocation
	B.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

	Annex C: Non-normative Extensions
	C.1 Activity Diagram Extensions
	C.1.1 Overview
	C.1.2 Stereotypes
	C.1.3 Stereotype Examples

	C.2 Requirements Diagram Extensions
	C.2.1 Overview
	C.2.2 Stereotypes
	C.2.3 Stereotype Examples

	C.3 Parametric Diagram Extensions for Trade Studies
	C.3.1 Overview
	C.3.2 Stereotypes.
	C.3.3 Stereotype Examples

	C.4 Model Library for Dimensions and Units
	C.5 Distribution Extensions
	C.5.1 Overview
	C.5.2 Stereotypes
	C.5.3 Usage Example

	Annex D: Model Interchange
	D.1 Overview
	D.2 Context for Model Interchange
	D.3 XMI Serialization of SysML
	D.4 Overview of ISO 10303-233 STEP AP233
	D.4.1 Scope of ISO 10303-233 STEP AP233
	D.4.2 ISO 10303-233 STEP AP233 Development Approach & Status
	D.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms
	D.4.3.1 Modular Architecture
	D.4.3.2 The Modeling Language for ISO 10303-233 STEP AP233
	D.4.3.3 Model Interchange Mechanisms

	D.4.4 ISO 10303-233 STEP AP233 - SysML Alignment & Mapping Model
	D.4.5 Generic Procedures for SysML and ISO 10303-233 STEP AP233 Model Interchange
	D.4.5.1 File-based Exchange
	D.4.5.2 API-Driven Model Interchange

	Annex E: Requirements Traceability
	Annex F: Terms and Definitions

