OMG SysM L Specification

This document is the OM G Proposed Available Specification (PAS) for SysML 1.0, which replaces
the Final Adopted Specification (FAS) for SysML 1.0 (ptc/06-05-04). It has been prepared by the
SysML Finalization Task Force (FTF).

See the following for further information regarding this PAS version, the OMG specification lifecy-
cle, and forthcoming specification versions:

"OMG Document Access Page http://www.omg.org/technol ogy/documents/

"OMG SysML Website: http://www.omgsysml.org/

OMG Proposed Available Specification
ptc/2007-02-03

OMG Proposed Available Specification for SysML 1.0

ptc/2007-02-03 (with change bars, ak.a. the Convenience Document)
This document—released March 23, 2007

ptc/2007-02-04 (without change bars)

Date: March 23, 2007

OMG Systems Modeling Language (OMG SysML™)
Specification

Proposed Available Specification
ptc/2007-02-03 (with change bars a.k.a Convenience Document)

Copyright © 2003-2006, American Systems Corporation
Copyright © 2003-2006, ARTISAN Software Tools
Copyright © 2003-2006, BAE SYSTEMS

Copyright © 2003-2006, The Boeing Company

Copyright © 2003-2006, Ceira Technologies

Copyright © 2003-2006, Deere & Company

Copyright © 2003-2006, EADS Astrium GmbH
Copyright © 2003-2006, EmbeddedPlus Engineering
Copyright © 2003-2006, Eurostep Group AB

Copyright © 2003-2006, Gentleware AG

Copyright © 2003-2006, I-Logix, Inc.

Copyright © 2003-2006, International Business Machines
Copyright © 2003-2006, International Council on Systems Engineering
Copyright © 2003-2006, Israel Aircraft Industries
Copyright © 2003-2006, L ockheed Martin Corporation
Copyright © 2003-2006, Mentor Graphics

Copyright © 2003-2006, Motorola, Inc.

Comment: I ssue 10050/10623

Copyright-©-2003-2006; National Institute of Standards and Technology
Copyright © 2003-2006, Northrop Grumman

Copyright © 1997-2006, Object Management Group.
Copyright © 2003-2006, oose Innovative Informatik GmbH
Copyright © 2003-2006, PivotPoint Technology Corporation
Copyright © 2003-2006, Raytheon Company

Copyright © 2003-2006, Sparx Systems

Copyright © 2003-2006, Telelogic AB

Copyright © 2003-2006, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

This document describes a language specification developed by an informal partnership of vendors and users, with input from
additional reviewers and contributors. This document does not represent a commitment to implement any portion of this
specification in any company’s products. See the full text of this document for additional disclaimers and acknowledgments. The
information contained in this document is subject to change without notice.

Comment: I ssue 10046

The specification customizes the Unified Modeling Language (UML) specification of the Object Management Group (OMG) to
address the requirements of Systems Engineering as specified in the UML for Systems Engineering RFP, OMG document number
ad/2003-03-41. This document includes references to and excerpts from the UML 2-:0 Superstructure Specification (OM G
document number Formal/05-07-04) and UML 2:0 Infrastructure Specification (OMG document humber ptc/04-10-14) with
copyright holders and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following conditions
are met:

» Redistributions of this specification must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

« The Copyright Holders listed in the above copyright notice may not be used to endorse or promote products derived from
this specification without specific prior written permission.

« All modified versions of this specification must include a prominent notice stating how and when the specification was
modified.

THIS SPECIFICATION ISPROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS"ASIS' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SPECIFICATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

TRADEMARKS

Systems Modeling Language and SysML, which are used to identify this specification, are not usable as trademarks since
SysML Partners has established their usage to identify this specification without any trademark status or restriction.
Organizations that wish to establish trademarks related to this specification should distinguish them somehow from SysML
and Systems Modeling Language, for example by adding a unique prefix (e.g., OMG SysML).

Unified Modeling Language and UML are trademarks of the OMG. All other products or company hames mentioned are used
for identification purposes only, and may be trademarks of their respective owners.

PATENTS

The attention of adoptersisdirected to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be
required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are
brought to its attention. OM G specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.FR. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are asindicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
I1OP® areregistered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfecilities™, CORBAmed™, CORBANnet™, Integrate 2002™, Middleware That's Everywhere™, UML ™, Unified

Modeling Language™, The UML Cube logo™, MOF™, CWM ™ The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™ OMG Model Driven Architecture™, OMG MDA™ , OMG SysML™, and the XMI
Logo™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/I ssue (http://www.omg.org/technol ogy/agreement.htm).

Table of Contents

0.1 OMG’s Issue Reporting Procedure 1
1 Preface xiii

- Introduction 1
2 Scope 3
3 Normative References 3

4 Additional Information 4

4.1 Relationships to Other Standards 4
4.2 How to Read this Specification 4

4.3 Acknowledgements 4

5 Language Architecture 7
5.1 Design Principles 7
5.2 Architecture 8
5.3 Extension Mechanisms 10
5.4 SysML Diagrams 11

6 Compliance 13

6.1 Compliance with UML Subset (UML4SysML) 13
6.1.1 Compliance Level Contents 13

6.2 Compliance with SysML Extensions 14
6.3 Meaning of Compliance 15

7 Language Formalism 19

7.1 Levels of Formalism 19

7.2 Chapter Specification Structure 19

7.2.1 Overview 19

7.2.2 Diagram Elements 19

7.2.3 UML Extensions 20
7.2.3.1 Usage Examples 20

7.3 Conventions and Typography 20
Structural Constructs 21

OMG SysML™ Adopted Specification

8 Model Elements 23

8.1 Overview 23

8.2 Diagram Elements 23
8.2.1 Graphical Nodes and Paths 24

8.3 UML Extensions 27
8.3.1 Diagram Extensions 27

8.3.1.1 Stereotype Keywords or Icons Inside a Comment Note Box 27

8.3.1.2 UML Diagram Elements not Included in SysML 27

8.3.2 Stereotypes 27
8.3.2.1 Conform 28
8.3.2.2 Problem 28
8.3.2.3 Rationale 28
8.3.2.4 View 29
8.3.2.5 Viewpoint 29

8.4 Usage Examples 30

9 Blocks 33

9.1 Overview 33

9.2 Diagram Elements 34

9.2.1 Block Definition Diagram 35
9.2.1.1 Graphical Nodes and Paths 35
9.2.2 Internal Block Diagram 41
9.2.2.1 Graphical Nodes and Paths 41

9.3 UML Extensions 42

9.3.1 Diagram Extensions 42
9.3.1.1 Block Definition Diagram 42
9.3.1.2 Internal Block Diagram 44

9.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams 46
9.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams 47

9.3.2 Stereotypes 47
9.3.2.1 Block 49
9.3.2.2 BleekProperty-51
9.3.2.3 DistributedProperty 52
9.3.2.4 Dimension 52
9.3.2.5 NestedConnectorEnd 53
9.3.2.6 PropertySpecificType 54
9.3.2.7 Unit 54
9.3.2.8 ValueType 55
9.3.2.9 ParticipantProperty 56
9.3.2.10 ConnectorProperty 56
9.3.2.11 Binding Connector 57
9.3.3 Model Libraries 57
9.3.3.1 Complex 57
9.3.3.2 Real 58

9.4 Usage Examples 58

9.4.1 Wheel Hub Assembly 58
9.4.2 S| Value Types 60

9.4.3 Design Configuration for SUV EPA Fuel Economy Test 61

OMG SysML™ Adopted Specification

9.4.4 Water delivery 63

10 Ports and Flows 55

10.1 Overview 55

10.1.1 Standard Ports 55
10.1.2 Flow Ports 55
10.1.3 Item Flows 55

10.2 Diagram Elements 57

10.2.1 Extensions to Block Definition Diagram. 57
10.2.1.1 Extensions to Internal Block Diagram 59

10.3 UML Extensions 60

10.3.1 Diagram Extensions 60
10.3.1.1 FlowPort 60
10.3.1.2 FlowProperty 60
10.3.1.3 FlowSpecification 61
10.3.1.4 ItemFlow 61

10.3.2 Stereotypes 61
10.3.2.1 Package Ports&Flows 61
10.3.2.2 Block 62
10.3.2.3 Standard Port 62
10.3.2.4 FlowDirection 63
10.3.2.5 FlowPort 63
10.3.2.6 FlowProperty 66
10.3.2.7 FlowSpecification 66
10.3.2.8 ItemFlow 67

10.4 Usage Examples 67

10.4.1 Standard Ports 67
10.4.1.1 Atomic Flow Ports and Item Flows 69
10.4.1.2 Non-Atomic Flow Ports and Flow Specification 70

11 Constraint Blocks 71

11.1 Overview 71

11.2 Diagram Elements 72
11.2.1 Block Definition Diagram 72
11.2.1.1 Graphical Nodes 72
11.2.2 Parametric Diagram 72
11.2.2.1 Graphical Nodes 73

11.3 UML Extensions 73

11.3.1 Diagram Extensions 73
11.3.1.1 Block Definition Diagram 73
11.3.1.2 Parametric Diagram 74
11.3.2 Stereotypes 74
11.3.2.1 ConstraintBlock 75
11.3.2.2 ConstraintProperty 75

11.4 Usage Examples 76

11.4.1 Definition of Constraint Blocks on a Block Definition Diagram 76
11.4.2 Usage of Constraint Blocks on a Parametric Diagram 77

OMG SysML™ Adopted Specification

Behavioral Constructs 79

12 Activities 81

12.1 Overview 81
12.1.1 Control as Data 81
12.1.1.1 Continuous Systems 81
12.2 Diagram Elements&

12.3 UML Extensions 90

12.3.1 Diagram Extensions 90
12.3.1.1 Activity 91
12.3.1.2 CallBehaviorAction 92
12.3.1.3 ControlFlow 93
12.3.1.4 ObjectNode 93

12.3.2 Stereotypes 94
12.3.2.1 Continuous 95
12.3.2.2 ControlOperator 96
12.3.2.3 Discrete 96
12.3.2.4 NoBuffer 96
12.3.2.5 Overwrite 97
12.3.2.6 Optional 97
12.3.2.7 Probability 97
12.3.2.8 Rate 98

12.3.2.9 Medel-tbrary-99
12.3.3 Model Libraries 99
12.3.3.1 ControlValue 99

12.4 Usage Examples 99

13 Interactions 101

13.1 Overview 101

13.2 Diagram Elements 101
13.2.1 Sequence Diagram 101

13.3 UML Extensions 105

13.3.1 Diagram Extensions 105
13.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
Timing Diagram 105

13.4 Usage Examples 106
13.4.1 Sequence Diagrams 106

14 State Machines 109

14.1 Overview 109

14.2 Diagram Elements 109
14.2.1 State Machine Diagram 109

14.3 UML Extensions 112
14.4 Usage Examples 112

iv OMG SysML™ Adopted Specification

14.4.1 State Machine Diagram 112

15 Use Cases 115

15.1 Overview 115

15.2 Diagram Elements 115
15.2.1 Use Case Diagram 116

15.3 UML Extensions 117
15.4 Usage Examples 118

Crosscutting Constructs 121

16 Allocations 123

16.1 Overview 123

16.2 Diagram Elements 123
16.2.1 Representing Allocation on Diagrams 124

16.3 UML Extensions 125

16.3.1 Diagram Extensions 125
16.3.1.1 Tables 125
16.3.1.2 Allocate Relationship Rendering 125
16.3.1.3 Allocated Property Compartment Format 125
16.3.1.4 Allocated Property Callout Format 125
16.3.1.5 AllocatedActivityPartition Label 126

16.3.2 Stereotypes 126
16.3.2.1 Allocate(from Allocations) 126
16.3.2.2 Allocated(from Allocations) 127
16.3.2.3 AllocateActivityPartition(from Allocations) 128

16.4 Usage Examples 129

16.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks 129
16.4.2 Allocate Flow 130

16.4.2.1 Allocating Structure 131

16.4.2.2 Automotive Example 132
16.4.3 Tabular Representation 134

17 Requirements 135

17.1 Overview 135

17.2 Diagram Elements 137
17.2.1 Requirements Diagrams 137

17.3 UML Extensions 140

17.3.1 Diagram Extensions 140
17.3.1.1 Requirement Diagram 140
17.3.1.2 Requirement Notation 140
17.3.1.3 Requirement Property Callout Format 141
17.3.1.4 Requirements on Other Diagrams 141
17.3.1.5 Requirements Table 141

17.3.2 Stereotypes 142

OMG SysML™ Adopted Specification

17.3.2.1 Copy (from Requirements) 144

17.3.2.2 DeriveReqt (from Requirements) 144

17.3.2.3 Requirement (from Requirements) 145
17.3.2.4 RequirementRelated (from Requirements) 146
17.3.2.5 TestCase (from Requirements) 146

17.3.2.6 Satisfy (from Requirements) 147

17.3.2.7 Verify (from Requirements) 147

17.4 Usage Examples 147

17.4.1 Requirement Decomposition and Traceability 147
17.4.1.1 Requirements and Design Elements 148
17.4.1.2 Requirements Reuse 150
17.4.1.3 Verification Procedure (Test Case) 151

18 Profiles & Model Libraries 151

18.1 Overview 151

18.2 Diagram Elements 152

18.2.1 Profile Definition in Class Diagram 152
18.2.1.1 Extension 154

18.2.2 Stereotypes Used On Diagrams 155
18.2.2.1 StereotypelnNode 156
18.2.2.2 ZrepeotynelvXoupevt 156
18.2.2.3 StereotypelnCompartment 157

18.3 UML Extensions 157

18.4 Usage Examples 157

18.4.1 Defining a Profile 157

18.4.2 Adding Stereotypes to a Profile 158

18.4.3 Defining a Model Library that Uses a Profile 159

18.4.4 Quidance on Whether to Use a Stereotype or Class 159
18.4.5 Using a Profile 160

18.4.6 Using a Stereotype 161

18.4.7 Using a Model Library Element 161

Annexes 163

19 Annex A: Diagrams 165

19.1 Overview 165
19.2 Guidelines 169

20 Sample Problem 171

20.1 Purpose 171
20.2 Scope 171
20.3 Problem Summary 171

20.4 Diagrams 172

20.4.1 Package Overview (Structure of the Sample Model) 172
20.4.1.1 Package Diagram - Applying the SysML Profile 172
20.4.1.2 Package Diagram - Showing Package Structure of the Model 173

Vi OMG SysML™ Adopted Specification

20.4.2 Setting the Context (Boundaries and Use Cases) 174
20.4.2.1 Internal Block Diagram - Setting Context 174
20.4.2.2 Use Case Diagram - Top Level Use Cases 175
20.4.2.3 Use Case Diagram - Operational Use Cases 176
20.4.3 Elaborating Behavior (Sequence and State Machine Diagrams) 177
20.4.3.1 Sequence Diagram - Drive Black Box 177
20.4.3.2 State Machine Diagram - HSUV Operational States 178
20.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box 179
20.4.4 Establishing Requirements (Requirements Diagrams and Tables) 181
20.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy 181
20.4.4.2 Requirement Diagram - Derived Requirements 181
20.4.4.3 Requirement Diagram - Acceleration Requirement Relationships 182
20.4.4.4 Table - Requirements Table 183
20.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams) 184
20.4.5.1 Block Definition Diagram - Automotive Domain 184
20.4.5.2 Block Definition Diagram - Hybrid SUV 185
20.4.5.3 Internal Block Diagram - Hybrid SUV 186
20.4.5.4 Block Definition Diagram - Power Subsystem 186
20.4.5.5 Internal Block Diagram for the “Power Subsystem” 187
20.4.6 Defining Ports and Flows 189
20.4.6.1 Block Definition Diagram - ICE Interface 189
20.4.6.2 Internal Block Diagram - CANbus 189
20.4.6.3 Block Definition Diagram - Fuel Flow Properties 190
20.4.6.4 Parametric Diagram - Fuel Flow 191
20.4.6.5 Internal Block Diagram - Fuel Distribution 191
20.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views) 192
20.4.7.1 Block Definition Diagram - Analysis Context 192
20.4.7.2 Package Diagram - Performance View Definition 193
20.4.7.3 Parametric Diagram - Measures of Effectiveness 194
20.4.7.4 Parametric Diagram - Economy 195
20.4.7.5 Parametric Diagram - Dynamics 196
20.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration 198
20.4.8 Defining, Decomposing, and Allocating Activities 200
20.4.8.1 Activity Diagram - Acceleration (top level) 200
20.4.8.2 Block Definition Diagram - Acceleration 201
20.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail) 201
20.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation 202
20.4.8.5 Table - Acceleration Allocation 203
20.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test 204

21 Annex C: Non-normative Extensions 205

21.1 Activity Diagram Extensions 205

21.1.1 Overview 205
21.1.2 Stereotypes 205
21.1.3 Stereotype Examples 206

21.2 Requirements Diagram Extensions 208

21.2.1 Overview 208
21.2.2 Stereotypes 208
21.2.3 Stereotype Examples 209

21.3 Parametric Diagram Extensions for Trade Studies 210

OMG SysML™ Adopted Specification

21.3.1 Overview 210
21.3.2 Stereotypes. 211
21.3.3 Stereotype Examples 211

21.4 Model Library for Dimensions and Units 211

21.5 Distribution Extensions 214

21.5.1 Overview 214
21.5.2 Stereotypes 215
21.5.3 Usage Example 215

22 Annex D: Model Interchange 217

22.1 Overview 217
22.2 Context for Model Interchange 217
22.3 XMI Serialization of SysML 217

22.4 Overview of 1SO 10303-233 STEP AP233 AP233 218

22.4.1 Scope of 1SO 10303-233 STEP AP233 AR233-218
22.4.2 1SO 10303-233 STEP AP233 AP233 Development Approach & Status 218
22.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms 219
22.4.3.1 Modular Architecture 219
22.4.3.2 The Modeling Language for SO 10303-233 STEP AP233 AP233-220
22.4.3.3 Model Interchange Mechanisms 221
22.4.4 1SO 10303-233 STEP AP233 AP233 - SysML Alignment & Mapping Model 221
22.4.5 Generic Procedures for SysML and 1SO 10303-233 STEP AP233 AP233 Model
Interchange 222
22.4.5.1 File-based Exchange 222
22.4.5.2 API-Driven Model Interchange 222

23 Annex E: Requirements Traceability 223
24 Annex F: Terms and Definitions 247

25 -Arnex-G—BNFDiagram Syntax-Definitions 249
25.1 Sverden245
25.2 Summenis iRl e DR e s ne e s D

viii OMG SysML™ Adopted Specification

25.6.3 BegmamElemenis Detinedn Pereme e Dl ramns 260

OMG SysML™ Adopted Specification

OMG SysML™ Adopted Specification

List of Figures

Figure 7.1- Overview of SysML/UML Interrelationship 7

Figure 4.2- SysML Extension of UML 8

Figure 4.3- SysML Package Structure 10

Figure 4.4- SysML Diagram Taxonomy 11

Figure 7.1- Notation for the Rational e stereotype of Comment 27

Figure 4.2- Stereotypes defined in package Model Elements. 28

Figure 4.3- View/Viewpoint example 30

Figure 4.4- Rationale and Problem example 31

Figure 4.5- Nested property reference 45

Figure 4.6- Abstract syntax expressions for SysML blocksSterestypes-defined-in-SyshMi—Blocks package-47
Figure 4.7- Abstract syntax extensions for SysML properties 48

Figure 4.8- Abstract syntax extensions for SysML value types 48

Figure 4.9- Abstract syntax extensions for SysML connector ends 49

Figure 4.10- Abstract syntax extensions for SysML property-specific types 49

Figure 4.11- Model Library for Blocks 57

Figure 4.12- Block diagram for the Wheel Package 59

Figure 4.13- Internal Block Diagram for WheelHubA ssembly 60

Figure 4.14- Defining Vaue Types with units and dimensions 60

Figure 4.15- SUV EPA Fuel Economy Test 62

Figure 4.16Association Block water delivery 63

Figure 4.17 63

Figure 4.18 64

Figure 4.19 65

Figure 4.20 66

Figure 4.21 67

Figure 4.22 67

Figure 4.23- Port Stereotypes 61

Figure 4.24- ItemFlow Stereotype 62

Figure 4.25- Usage Example of StandardPorts 68

Figure 4.26- Interfaces of the Internal Combustion Engine ctrl Standard Port 69
Figure 4.27- Usage of Atomic Flow Portsin the HybridSUV Sample - ibd:FuelDist diagram 70
Figure 4.28 - Using Flow Portsto Connect the PowerControlUnit to the Electrical PowerController, Trans-
mission and Internal CombustionEngine over a CAN bus 71

Figure 4.29- Flow Specification for the Internal CombustionEngine flow port to allow its connection over
the CAN bus 71

Figure 4.30- Stereotypes defined in SysML ConstraintBlocks package 74
Figure 4.31- Constraint block definitionsin a Block Definition diagram 76
Figure 4.32- Block definition diagram with activities as blocks. 91

Figure 4.33- CadllBehaviorAction notation.with behavior stereotype 92

Figure 4.34- CallBehaviorA ction notation.with action name 92

Figure 4.35- Control flow notation 93

OMG SysML™ Adopted Specification vii

Figure 4.36- Class or block definition diagram with activities as classes associated with types of object
nodes 93

Figure 4.37- ObjectNode notation in activity diagrams 94

Figure 4.38- ObjectNode notation in activity diagrams 94

Figure 4.39- Abstract Syntax for SysML Activity Extensions 95

Figure 4.40- Control values. 99

Figure 4.41- Continuous system example 1. 100

Figure 4.42- Continuous system example 2. 101

Figure 4.43- Continuous system example 3 101

Figure 4.44- Example block definition diagram for activity decomposition 102

Figure 4.45- Example block definition diagram for object node types 102

Figure 4.46- Hierarchical Sequence Diagram illustrating system behavior for “ Operate the vehicle” use
case 106

Figure 4.47- Black box interaction during “starting the Hybrid SUV” 107

Figure 4.48- White box interaction for “starting the Hybrid SUV” 107

Figure 4.49- High level view of the states of the HybridSUV 113

Figure 4.50- Top level use case diagram for the Hybrid SUV subject 118

Figure 4.51- Operate the Vehicle use case a alower level of abstraction 119

Figure 4.52- Abstract syntax extensions for SysML Allocation 126

Figure 4.53- Abstract syntax expression for AllocatedActivityPartition 126

Figure 4.54- Generic Allocation, including /from and /to association ends 129

Figure 4.55- Behavior alocation 130

Figure 4.56- Example of flow allocation from ObjectF ow to Connector 130

Figure 4.57- Example of flow allocation from ObjectF ow to ItemFlow 131

Figure 4.58- Example of flow allocation from ObjectNode to FlowProperty 131

Figure 4.59- Example of Structural Allocation 132

Figure 4.60- AllocateA ctivityPartitions (Swimlanes) for HybridSUV Cellarette Example 133
Figure 4.61- Internal Block Diagram Showing Allocation for HybridSUV Accelerate Example 134
Figure 4.62- Allocation Table (Tree) Showing Allocation for Hybrid SUV Cellarette Example 134
Figure 4.63 .llocation Matrix Showing Allocation for Hybrid SUV Cellarette Example 135

Figure 4.64- Abstract Syntax for Requirements Stereotypes 143

Figure 4.65- Abstract Syntax for Requirements Stereotypes (cont) 144

Figure 4.66- Requirements Derivation 148

Figure 4.67- Links between requirements and design 149

Figure 4.68- Requirement satisfaction in an internal block diagram. 150

Figure 4.69- Use of the copy dependency to facilitate reuse 150

Figure 4.70- Linkage of a Test Case to arequirement: This figure shows the Requirement Diagram. 151
Figure 4.71- Linkage of a Test Caseto arequirement: Thisfigure shows the Test Case as a State Diagram.
152

Figure 4.72- Defining a stereotype 154

Figure 4.73- Using a stereotype 156

Figure 4.74- Using stereotypes and showing values 156

Figure 4.75- Other notational forms for showing values 157

viii OMG SysML™ Adopted Specification

Figure 4.76- Definition of a profile 157

Figure 4.77- Profile Contents 158

Figure 4.78- Two model libraries 159

Figure 4.79- A model with applied profile and imported mode! library 160

Figure 4.80- Using two stereotypes on amodel element 161

Figure 4.81- Using model library elements 161

Figure 4.82- SysML Diagram Taxonomy 165

Figure 4.83- Diagram Frame 167

Figure 4.84- Diagram Usages 169

Figure 4.85Establishing the User Model by Importing and Applying SysML Profile & Model Library
(Package Diagram) 172

Figure 4.86- Defining valueTypes and units to be Used in the Sample Problem 173

Figure 4.87- Establishing Structure of the User Model using Packages and Views (Package Diagram) 174
Figure 4.88- Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram.
(Internal Block Diagram) Completeness of Diagram Noted in Diagram Description 175

Figure 4.89- Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram) 176

Figure 4.90- Establishing Operational Use Cases for “Drive the Vehicle’ (Use Case Diagram) 177
Figure 4.91- Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)
178

Figure 4.92- Finite State Machine Associated with “ Drive the Vehicle” (State Machine Diagram) 179
Figure 4.93- Black Box Interaction for “ StartVehicle”, referencing White Box I nteraction (Sequence Dia-
gram) 180

Figure 4.94- White Box Interaction for “ StartVehicle” (Sequence Diagram) 180

Figure 4.95- Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram) 181
Figure 4.96- Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hier-
archy (Requirements Diagram) 182

Figure 4.97- Acceleration Requirement Relationships (Requirements Diagram) 183

Figure 4.98- Requirements Relationships Expressed in Tabular Format (Table) 184

Figure 4.99- Defining the Automotive Domain (compare with Figure B.4) - (Block Definition Diagram)
185

Figure 4.100- Defining Structure of the Hybrid SUV System (Block Definition Diagram) 185

Figure 4.101- Internal Structure of Hybrid SUV (Internal Block Diagram) 186

Figure 4.102- Defining Structure of Power Subsystem (Block Definition Diagram) 187

Figure 4.103- Internal Structure of the Power Syubsystem (Internal Block Diagram) 188

Figure 4.104- Interfaces Typing StandardPorts Interna to the Power Subsystem (Block Definition Dia-
gram) 188

Figure 4.105- Initially Defining Flow Specifications for the CAN Bus (Block Definition Diagram) 189
Figure 4.106- Consolidating Interfaces into the CAN Bus. (Internal Block Diagram) 190

Figure 4.107- Elaborating Definition of Fuel Flow. (Block Definition Diagram) 190

Figure 4.108- Defining Fuel Flow Constraints (Parametric Diagram) 191

Figure 4.109- Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram) 192
Figure 4.110- Defining Anaysesfor Hybrid SUV Engineering Development (Block Definition Diagram)
193

Figure 4.111- Establishing a Performance View of the User Model (Package Diagram) 194

Figure 4.112- Defining Measures of Effectiveness and Key Relationships (Parametric Diagram) 195
Figure 4.113- Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Dia-
gram) 196

OMG SysML™ Adopted Specification ix

Figure 4.114- Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram) 197

Figure 4.115- Defining Straight-Line V ehicle Dynamics Mathematical Constraints (Block Definition Di-
agram) 198

Figure 4.116- Results of Maximum Acceleration Analysis (Timing Diagram) 199

Figure 4.117- Behavior Modé for “Accelerate” Function (Activity Diagram) 200

Figure 4.118- Decomposition of “ Accelerate” Function (Block Definition diagram) 201

Figure 4.119- Detailed Behavior Model for “Provide Power” (Activity Diagram)

Note hierarchical consistency with Figure B.33. 202

Figure 4.120- Flow Allocation to Power Subsystem (Internal Block Diagram) 203

Figure 4.121- Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Sub-
system (Table) 203

Figure 4.122- Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial
numbers) 204

Figure 4.123- Example activity with «effbd» stereotype applied 207

Figure 4.124- Example activity with «streaming» and «nonStreaming» stereotypes applied to subactiv-
ities. 207

Figure 4.125- Example extensions to Requirement 210

Figure 4.126- SI Definitions model library 212

Figure 4.127- Sl Base Units 212

Figure 4.128- SI Derived Units Expressed In Base Units 213

Figure 4.129- SI Derived Units With Special Names 214

Figure 4.130- Basic distribution stereotypes 215

Figure 4.131- Distribution Example 216

Figure 4.132- AP233 Modules 219

Figure 4.133- Mapping Model 222

X OMG SysML™ Adopted Specification

List of Tables

Table 4.1- Detail of UML Reuse 9

Table 5.2- Metamodel packages added in Level 113

Table 5.3- Metamodel packages added in Level 2 14

Table 5.4Metamodel packages added in Level 3 14

Table 5.5- SysML package dependence on UML4SysML compliance levels 15
Table 5.6- Example compliance statement 16

Table 5.7- Example feature support statement 16

Table 5.8- Graphical nodes defined by Model Elements package. 24
Table 5.9- Graphical paths defined by Model Elements package. 26
Table 5.10- Graphical nodes defined in Block Definition diagrams 35
Table 5.11Graphical paths defined by in Block Definition diagrams. 37
Table 5.12- Graphical nodes defined in Internal Block diagrams 41
Table 5.13- Graphical paths defined in Internal Block diagrams 42
Table 5.14- Extensions to Block Definition Diagram 57

Table 5.15- Extension to Internal Block Diagram 59

Table 4.1- Graphical nodes defined in Block Definition diagrams 72
Table 4.1- Graphical nodes defined in Parametric diagrams. 73
Table 5.2- Constraints on a parametric diagram 77

Table 5.3- Graphical nodes included in activity diagrams 83

Table 5.4- Graphical paths included in activity diagrams 88

Table 5.5- Other graphical elementsincluded in activity diagrams 90
Table 5.6- Graphical nodes included in sequence diagrams. 101
Table 5.7- Graphical paths included in sequence diagram 105

Table 5.8- Graphical nodes included in state machine diagrams. 109
Table 5.9- Graphical pathsincluded in state machine diagrams 112
Table 5.10- Graphical nodes included in Use Case diagrams 116
Table 5.11- Graphical pathsincluded in Use Case diagrams 117
Table 5.12- Extension to graphical nodes included in diagrams 124
Table 5.13- Graphical nodes included in Requirement diagrams 137
Table 5.14- Graphical pathsincluded in Requirement diagrams 138
Table 5.15- Graphical nodes used in profile definition 152

Table 5.16- Graphical paths used in profile definition 153

Table 5.17- Notations for Stereotype Use 155

Table 5.18- Addition stereotypes for EFFBDs 205

Table 5.19- Streaming options for activities 206

Table 5.20- Additional Requirement Stereotypes 208

Table 5.21- Requirement property enumeration types 209

Table 5.22- Stereotypes for Measures of Effectiveness 211

Table 5.23- Distribution Stereotypes 215

Table 5.24-Requirement Traceability-matrix-223

OMG SysML™ Adopted Specification

Xi

Xii

OMG SysML™ Adopted Specification

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through afull-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http: //mwww.omg.org/technol ogy/documents/spec_catal og.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBAservices

Xiii

. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of adocument, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

Xiv

Part | - Introduction

This specification defines a general-purpose modeling language for systems engineering applications, called the OMG
Systems Modeling Language (OMG SysML™). Throughout the rest of the specification, the language will be referred to
as SysML.

SysML supports the specification, analysis, design, verification and validation of a broad range of complex systems.
These systems may include hardware, software, information, processes, personnel, and facilities.

The origins of the SysML initiative can be traced to a strategic decision by the International Council on Systems
Engineering’s (INCOSE) Model Driven Systems Design workgroup in January 2001 to customize the Unified Modeling
Language (UML) for systems engineering applications. This resulted in a collaborative effort between INCOSE and the
Object Management Group (OMG), which maintains the UML specification, to jointly charter the OMG Systems
Engineering Domain Special Interest Group (SE DSIG) in July 2001. The SE DSIG, with support from INCOSE and the
ISO AP 233 workgroup, developed the requirements for the modeling language, which were subsequently issued by the
OMG as part of the UML for Systems Engineering Request for Proposal (UML for SE RFP; OMG document ad/03-03-
41) in March 2003.

Currently it is common practice for systems engineers to use a wide range of modeling languages, tools and techniques on
large systems projects. In a manner similar to how UML unified the modeling languages used in the software industry,
SysML isintended to unify the diverse modeling languages currently used by systems engineers.

SysML reuses a subset of UML 2.1 and provides additional extensions needed to address the requirements in the UML for
SE RFP. SysML uses the UML 2.1 extension mechanisms as further elaborated in Chapter 17, “Profiles & Model
Libraries” of this specification as the primary mechanism to specify the extensions to UML 2.1.

Since SysML uses UML 2.1 asits foundation, systems engineers modeling with SysML and software engineers modeling
with UML 2.1 will be able to collaborate on models of software-intensive systems. This will improve communication
among the various stakeholders who participate in the systems development process and promote interoperability among
modeling tools. It is anticipated that SysML will be customized to model domain specific applications, such as
automotive, aerospace, communications and information systems.

OMG SysML™ Adopted Specification 1

OMG SysML™ Adopted Specification

1 Scope

The purpose of this document is to specify Systems Modeling Language (SysML), a new general-purpose modeling
language for systems engineering that satisfies the requirements of the UML for SE RFP. Its intent is to specify the
language so that systems engineering modelers may learn to apply and use SysML, modeling tool vendors may implement
and support SysML, and both can provide feedback to improve future versions.

SysML reuses a subset of UML 2 and provides additional extensions to satisfy the requirements of the language. This
specification documents the language architecture in terms of the parts of UML 2 that are reused and the extensions to
UML 2. The specification includes the concrete syntax (notation) for the complete language and specifies the extensions
to UML 2. The reusable portion of the UML 2 specification is not included directly in the specification but is included by
reference. The specification also provides examples of how the language can be used to solve common systems
engineering problems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, and allocations, and constraints on
system properties to support engineering analysis. The language is intended to support multiple processes and methods
such as structured, object-oriented, and others, but each methodology may impose additional constraints on how a
construct or diagram kind may be used. The initia version of the language supports most, but not all of the requirements
of the UML for SE RFP, as shown in the Requirements Traceability Matrix in Annex E. These gaps are intended to be
addressed in future versions of SysML as indicated in the matrix.

SysML isintended to be supported by two evolving interoperability standards: the OMG XMI 2.1 model interchange
standard for UML 2 modeling tools and the I SO 10303-233 data interchange standard for systems engineering tools.
While the details of this alignment are beyond the scope of this specification, overviews of the alignment approach and
relevant references are furnished in Annex D.1.

The following sections provide background information about this specification. Instructions to either systems engineers
and vendors who read this specification are provided in Section 3.2, “How to Read this Specification. The main body of
this document (Parts I1-1V) describes the normative technical content of the specification. The appendices include
additional information to aid in understanding and implementation of this specification.

2 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications.

Comment: |ssue 9775

e UML for Systems Engineering RFP (OM G document number ad/2003-03-41)

e UML 2.1 Superstructure Specification convenience document (OMG document number ptc/06-01-02)
e UML 2.01 Infrastructure Specification v 2.1.1 (OMG document number pte/84-10-+4formal/07-02-06)

OMG SysML™ Adopted Specification 3

e XMI 2.1 Specification (OMG document number formal/2005-09-01)
3 Additional Information

3.1 Relationships to Other Standards

SysML is defined as an extension of the OMG UML 2.1 Superstructure Specification.
Comment: Issue 9774

SysML isintended to be supported by two evolving interoperability standards including the OMG XMI 2.1 model
interchange standard for UML 2 modeling tools and the I SO 10303 STEP AP233tS0-10303-233 data interchange
standard for systems engineering tools. The overviews of the approach to model interchange and relevant references are
included in Annex D.1.

SysML supports the OMG's Model Driven Architecture initiative by its reuse of the UML and related standards.

3.2 How to Read this Specification

This specification is intended to be read by systems engineers so that they may learn and apply SysML, and by modeling
tool vendors so that they may implement and support SysML. As background, all readers are encouraged to first read Part
| “- Introduction”.

After reading the introduction, readers should be prepared to explore the user-level constructs defined in the next three
parts: Part Il - “Structural Constructs’, Part |11 - “Behavioral Constructs”, and Part IV - “Crosscutting Constructs”.
Systems engineers should read the Overview, Diagram Elements and Usage Examples sections in each chapter, and
explore the UML Extensions as they see fit. Modeling tool vendors should read all sections. In addition, systems
engineers and vendors should read Annex B - “Sample Problem” to understand how the language is applied to an
example, and “Annex E: Requirements Traceability” to understand how the requirementsin the UML for SE RFP are
satisfied by this specification.

Although the chapters are organized into logical groupings that can be read sequentially, this specification can be used for
reference and may be read in a non-sequential manner.

3.3 Acknowledgements

The following companies submitted or supported parts of this specification:
Industry

* American Systems Corporation
« BAESYSTEMS

» Boeing

¢ Deere & Company

* EADSAstrium

» Eurostep

4 OMG SysML™ Adopted Specification

e lsrael Aircraft Industries

» Lockheed Martin Corporation

e Motorola

* Northrop Grumman

e oose Innovative Informatik GmbH
» PivotPoint Technology

* Raytheon

+ THALES

US Government

* NASA/Jet Propulsion Laboratory
« National Institute of Standards and Technology (NIST)
» DoD/Office of the Secretary of Defense (OSD)

Vendors

* ARTISAN Software Tools
e CeiraTechnologies

» EmbeddedPlus Engineering
* Gentleware

* IBM

e I-Logix

* Mentor Graphics

» Telelogic

e Structured Software Systems Limited
e Sparx Systems

* Vitech

Academia
» Georgia Institute of Technology
Liaisons

» Consultative Committee for Space Data Systems (CCSDS)
« Embedded Architecture and Software Technologies (EAST)
* International Council on Systems Engineering (INCOSE)

* |SO STEP AP233

» SystemsLevel Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this specification: Vincent Arnould, Laurent
Balmelli, lan Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray Cantor,
Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery, Hal
Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert Long, Kumar Marimuthu,
Alan Moore, Veronique Normand, Salah Obeid, Eldad Paachi, David Price, Bran Selic, Chris Sibbald, Joseph Skipper,
Rick Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens, Thomas Weigert and Brian Willard.

OMG SysML™ Adopted Specification

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri, Julian Johnson, Jim
Long, Henrik L&nn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames and the Georgia Institute of
Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell Peak and Diego Tamburini. The
SysML team also wantsto acknowledge Pavel Hruby and his contribution by providing the Visio stencil for UML 2.1 that
was adapted for most of the figures throughout this specification.

6 OMG SysML™ Adopted Specification

4 Language Architecture

SysML reuses a subset of UML 2.1 and provides additional extensions needed to address the requirements in the UML for
SE RFP. This specification documents the language architecture in terms of the parts of UML 2.1 that are reused and the
extensions to UML 2.1. This chapter explains design principles and how they are applied to define the SysML language
architecture.

In order to visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in
Figure 4.1, where the sets of language constructs that comprise the UML and SysML languages are shown as the circles
marked “UML" and “SysML", respectively. The intersection of the two circles, shown by the cross-hatched region
marked “UML reused by SysML,” indicates the UML modeling constructs that SysML re-uses. The compliance matrix in
Table 4.1 below specifies the UML packages that a SysML tool must reuse in order to implement SysML.

The region marked “SysML extensions to UML" in Figure 4.1 indicates the new modeling constructs defined for SysML
which have no counterparts in UML, or replace UML constructs. Note that there is also a part of UML 2.1 that is not
required to implement SysML, which is shown by the region marked “UML not required by SysML.”

extensions to
UML

not required
by SysML
(UML -
UML4SysML)

~

Figure 4.1 - Overview of SysML/UML Interrelationship

N

4.1 Design Principles

The fundamental design principles for SysML are:
* Requirements driven. SysML isintended to satisfy the requirements of the UML for SE RFP.

e UML reuse. SysML reuses UML wherever practica to satisfy the requirements of the RFP, and when modifications
arerequired, they are done in a manner that strives to minimize changes to the underlying language. Consequently,

OMG SysML™ Adopted Specification 7

SysML isintended to be relatively easy to implement for vendors who support UML 2.1 or later versions.

e UML extensions. SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension
mechanism is the UML 2.1 profile mechanism as further refined in Chapter 17, “Profiles & Model Libraries’ of this

specification.

» Partitioning. The package isthe basic unit of partitioning in this specification. The packages partition the model
elementsinto logical groupingswhich minimize circular dependencies among them.

» Layering. SysML packages are specified as an extension layer to the UML metamodel.

* Interoperability. SysML inheritsthe XMI interchange capability from UML. SysML isalso intended to be supported
by the 1SO 10303-233 data interchange standard to support interoperability among other engineering tools.

4.2 Architecture

The SysML language reuses and extends many of the packages from UML. As shown in Figure 4.2, the set of UML
metaclasses to be reused are merged into a single metamodel package, UML4SysML. The detailed list of packages that
are merged are shown in Table 4.1. Some UML packages are not being reused, since they are not considered essential for
systems engineering applications to meet the requirements of the UML for SE RFP.

Figure 4.2 - SysML Extension of UML

CompleteActions SN InformationFlows StructuredClasses SimpleTime
\\ _
*‘ .\\ S /7 o g
«merge» / -
. . g \\\ «merge» «me r?,e»
Profiles . . “«merge» . -
T T A - Fragments
~~~~~~~ «[T\]erg e» \\ \\\ / /,,/ «merge» ,4-“"""7 9
‘‘‘‘‘‘‘‘‘‘‘ \ N\ £ e
\\\\\\\ ) «metamodel» T
CompositeStructures:: «Merge» =~ UML4SysML [~ g
StructuredActivities . L «merge»
«merge» .- T =)
"""""" " rd = s = . .
""""""""""""" e Ny e BehaviorStateMachines
. = «merge»” . '«m\?jge»
CompleteActivities Py «reference» -, .
e ., S
- ~
e . )
p PowerTypes
AssociationClasses «profile» «import» «profile»
StandardProfileL1 SysML

The SysML profile specifies the extensions to UML. It references the UML4SysML package, thus importing all the
metaclasses into SysML that are either reused as-is from UML or extended in SysML. The semantics of UML profiles
ensures that when a user model “strictly” applies the SysML profile, only the UML metaclasses referenced by SysML are

OMG SysML™ Adopted Specification



available to the user of that model. If the profile is not “strictly” applied, then additional UML metaclasses which were
not explicitly referenced may also be available. The SysML profile also imports the Standard Profile L1 from UML to
make use of its stereotypes.

Table 4.1 - Detail of UML Reuse

Comment: I ssue 10053
UML Language UML Package M etaclasses
Unit
Actions Actions::BasicActions All
Actions::StructuredActions All
Actions::IntermediateActions All
Actions::CompleteActions All
Activities Activities::FundamentalActivities All
Activities::BasicActivities All
Activities::IntermediateActivities All
Activities::StructuredActivities All
Activities::CompleteActivities All
Classes Classes::Kernel All
Classes::Dependencies All
Classes::Interfaces All
Classes::PowerTypes All
Classes::AssociationClasses All
General Behavior CommonBehaviors::BasicBehaviors All
CommonBehaviors::SimpleTime All
Information Flows AuxiliaryConstructs::InformationFlows All
Interactions Interactions::Basiclnteractions All
Interactions::Fragments All
Models AuxiliaryConstructs::Models All
Profiles AuxiliaryConstructs::Profiles All
State Machines StateMachines::BehaviotirStateMachines All
Structures CompositeStructures::InternalStructures All
CompositeStructures::StructuredClasses All
CompositeStructures::InvocationActions All
CompositeStructures::Ports All
CompositeStructures::StructuredActivities All
Use Cases UseCases All

OMG SysML™ Adopted Specification



«profile»
SysML
- -
«profile» «profile» ]
Blocks Activities «profile»
ModelElements
1 1
«modelLibrary» «modelLibrary»
Blocks ControlValues
N\ SN
«import» «ln}\port»
1 ! ] 1 1
«profile» «profile» «profile» «profile»
ConstraintBlocks Ports&Flows Allocations Requirements

Figure 4.3 - SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the
specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure shown in
Figure 4.3 contains a set of packages that correspond to concept areas in SysML that have been extended. The reusable
portion of UML that has not been extended is included by reference to the merged package (UML4SysML), and includes
Interactions, State Machines, Use Cases, and Profiles.

The SysML packages extend UML as follows:

e SysML::Model Elementsrefactors and extends the UML kernel portion of UML classes

» SysML::Blocks reuses structured classes from composite structures

* SysML::ConstraintBlocks extends Blocks to support the parametric modeling

e SysML::Ports and Flows extends UML ::Ports, UML ::InformationFlows and SysML ::Blocks
e SysML::Activities extends UML activities

e SysML::Allocations extends UML dependencies

e SysML::Requirements extends UML classes and dependencies

4.3 Extension Mechanisms

This specification uses the following mechanisms to define the SysML extensions:

e UML stereotypes
e UML diagram extensions
* Model libraries

10 OMG SysML™ Adopted Specification



SysML stereotypes define new modeling constructs by extending existing UML 2.1 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from
UML 2.1. SysML model libraries describe specialized model elements that are available for reuse. Additiona non-

normative extensions are included in Annex C: Non-normative Extensions.

The SysML user model is created by instantiating the metaclasses and applying the stereotypes specified in the SysML
profile and subclassing the model elements in the SysML model library. Chapter 17, “Profiles & Model Libraries’
describes how profiles and model libraries are applied and how they can be used to further extend SysML.

4.4 SysML Diagrams

The SysML diagram taxonomy is shown in Figure 4.4. The concrete syntax (notation) for the diagrams along with the
corresponding specification of the UML extensionsis described in Parts Il - 1V of this specification. The Diagram Annex

A describes generalized features of diagrams, such as their frames and headings.

] Modified from umL 2
P _I New diagram type

Figure 4.4 - SysML Diagram Taxonomy

OMG SysML™ Adopted Specification

SysML
Diagram
|m==—==—=q
Behavior I Requirement Structure
Diagram | Diagram Diagram
|
Activity Sequence State Machine Use Case Block Definition Internal Block pack Di
Diagram Diagram Diagram Diagram Diagram ackage Diagram
|:| Same as UML 2 ! .
I Parametric
| Diagram
)

11



12

OMG SysML™ Adopted Specification



5 Compliance

Compliance with SysML requires that the subset of UML required for SysML is implemented, and the extensions to the
UML subset required for SysML are implemented. In order to fully comply with SysML, atool must implement both the
concrete syntax (notation) and abstract syntax (metamodel) for the required UML subset and the SysML extensions. The
following sections elaborate the definition of compliance for SysML.

5.1 Compliance with UML Subset (UML4SysML)

The subset of UML required for SysML is specified by the UMLA4SysML package as described in Chapter 4, “Language
Architecture.” UML has three compliance levels (L1, L2, L3) that SysML applies to the subset in the UML4SysML
package. The levels are:

e Level 1(L1). Thislevel provides the core UML concepts from the UML kernel and adds language units for use cases,
interactions, structures, actions, and activities.

* Level 2 (L2). Thislevel extends the language units already provided in Level 1and adds language units for state
machine modeling, and profiles.

* Level 3(L3). Thislevel representsthe complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows, and model packaging.

These compliance levels are constructed in the same fashion as for UML and readers are referred to the UML 2.1
Superstructure document for further information.

5.1.1 Compliance Level Contents

The following tables identify the metamodel packages whose contents contribute to the individual compliance levels. The
metaclasses in each level are included in addition to those that are defined in lower levels (Level (N) includes all the
packages supported by Level (N-1)).

Table 5.1 - Metamodel packages added in Level 1

L anguage Unit M etamodel Packages
Actions Actions::BasicActions
Activities Activities::FundamentalActivities

Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior CommonBehaviors::BasicBehaviors
Structures CompositeStructure::InternalStructures
Interactions Interactions::Basiclnteractions
UseCases UseCases

OMG SysML™ Adopted Specification 13



Table 5.2 - Metamodel packages added in Level 2

L anguage Unit

M etamodel Packages

Actions Actions::StructuredActions
Actions::IntermediateActions
Activities Activities::IntermediateActivities

Activities::StructuredActivities

General Behavior

CommonBehaviors::Communications

CommonBehaviors::SimpleTime

Interactions Interactions::Fragments
Profiles AuxilliaryConstructs::Profiles
Structures CompositeStructures::InvocationActions

CompositeStructures::Ports

CompositeStructures::StructuredClasses

State Machines

StateMachines::BehaviorStateMachines

Table 5.3 Metamodel packages added in Level 3

L anguage Unit

M etamodel Packages

Actions Actions::CompleteActions
Activities Activities::CompleteActivities
Classes Classes::PowerTypes

Classes::AssociationClasses

Information Flows

AuxilliaryConstructs::InformationFlows

Models

AuxilliaryConstructs::Models

Structures

CompositeStructures::StructuredActivities

5.2 Compliance with SysML Extensions

In addition to UML, further units of compliance for SysML are the sub packages of the SysML profile. The list of these
packages is provided in Chapter 4, “Language Architecture”.

For an implementation of SysML to comply with a particular SysML package, it must also comply with any packages on
which the particular package depends. For SysML, this includes not only other SysML packages, but the UML4SysML
compliance level that introduces all the metaclasses extended by stereotypes in that package. The following table
identifies the level of UML4SysML on which each SysML package depends. Note that some of the SysML packages such
as Model Elements, have two compliance points. This occurs when different stereotypes within the package extend
metaclasses that are at more than one UML compliance level.

Comment: | ssue 9804/10051

14 OMG SysML™ Adopted Specification



Table 5.4 - SysML package dependence on UML4SysML compliance levels

SysML Package UML4SysML
Compliance L evel

Activities (without Probability) Level 2
Activities (with Probability) Level 3
Allocations Level 2

Blocks Level 2
Constraint Blocks Level 2

Model Elements-{without-iew) Level 1
Mode-Elements-(with-View) Level3

Ports and Flows (without ItemFlow) Level 2

Ports and Flows (with ItemFlow) Level 3
Requirements Level 1

5.3 Meaning of Compliance

An implementation of SysML must comply with both the subset of UML4SysML and the SysML extensions as described
above. The meaning of compliance in SysML is based on the UML definition of compliance, excluding diagram
interchange (note that diagram interchange is different from model interchange which is included in SysML - refer to
XMI below).

Compliance can be defined in terms of the following:
» Abstract syntax compliance. For a given compliance leve, this entails:

» compliance with the metaclasses, stereotypes and model libraries, their structural relationships, and any constraints
defined as part of the abstract syntax for that compliance level and,

« the ability to output models and to read in models based on the XMI schema corresponding to that compliance
level.

» Concrete syntax compliance. For a given compliance level, this entails:

« Compliance to the notation defined in the “ Diagram Elements’ tables and diagrams extension sectionsin each
chapter of this specification for those metamodel elements that are defined as part of the merged metamodel or
profile subset for that compliance level and, by implication, the diagram types in which those elements may

Compliance for a given level can be expressed as:
» abstract syntax compliance
« concrete syntax compliance
 abstract syntax with concrete syntax compliance

The fullest compliance response is “YES,” which indicates full realization of all language units/stereotypes that are
defined for that compliance level. This also implies full realization of all language units/stereotypesin all the levels below
that level. “Full realization” for a language unit at a given level means supporting the complete set of modeling concepts

OMG SysML™ Adopted Specification 15



defined for that language unit at that level. A compliance response of “PARTIAL” indicates partial realization and
requires a feature support statement detailing which concepts are supported. These statements should reference either the
language unit and metaclass, or profile package and stereotype for abstract syntax, or a diagram element for concrete
syntax (the diagram elementsin SysML are given unique names to alow unambiguous references). Finally, a response of
“NO” indicates that none of the language units/stereotypes in this compliance point is realized.

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with Level 1. A tool that is
compliant at a given level must be able to import models from tools that are compliant to lower levels without loss of

information.

Comment: |ssue 9804

Table 5.5 - Example compliance statement

Compliance Summary

Compliance level Abstract Syntax | Concrete Syntax
UML4SysML Level 1 YES YES
UML4SysML Level 2 PARTIAL YES
UML4SysML Level 3 NO NO
Activities (without Probability) YES YES
Activities (with Probability) NO NO
Allocations PARTIAL PARTIAL
Blocks YES YES
Constraint Blocks YES YES
Model Elements {withedt-Views) YES YES
Mode-Eternents (with Views) NO NO
Ports and Flows (without Item Flow) YES YES
Ports and Flows (with Item Flow) NO NO
Requirements YES YES

In the case of “PARTIAL” support for a compliance point, in addition to a formal statement of compliance, implementors
and profile designers must also provide feature support statements. These statements clarify which language features are
not satisfied in terms of language units and/or individual packages, as well as for less precisely defined dimensions such
as semantic variation points.

An example feature support statement is shown in Table 5.6 for an implementation whose compliance statement is given
in Table 5.5.

Table 5.6 - Example feature support statement

Feature Support Statement
Compliance Level/ Detail Abstract | Concrete | Semantics
Syntax Syntax
UML4SysML::Level 2: StateMachines::BehaviorStateMachines | Note (1) | Note(1) Note (2)

16 OMG SysML™ Adopted Specification



Table 5.6 - Example feature support statement

Feature Support Statement
Compliance Level/ Detail Abstract | Concrete | Semantics
Syntax Syntax
SysML::Blocks Block YES Note (3)

Note (1): States and state machines are limited to a single region
Shallow history pseudostates not supported

Note (2): FIFO queueing in event pool

Note (3): Don't show Blocks:: StructuredCompartment notation

OMG SysML™ Adopted Specification

17



18

OMG SysML™ Adopted Specification



6 Language Formalism

The SysML specification is defined by using UML 2.1 specification techniques. These techniques are used to achieve the
following goals in the specification.

» Correctness

* Precision

» Conciseness

» Consistency

e Understandability

The specification technique used in this specification describes SysML as a UML extension that is defined using
stereotypes and model libraries.

6.1 Levels of Formalism

SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor and
understandability. Use of more formal constraints and semantics may be applied in future versions to further increase the
precision of the language.

6.2 Chapter Specification Structure

The chaptersin Parts |1 - IV are organized according to the SysML packages as described in the language architecture and
selected reusable portions of UML 2.1 packages. This section provides information about how each chapter is organized.
6.2.1 Overview

This section provides an overview of the SysML modeling constructs defined in the subject package, which are usually
associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This section provides tables that summarize the concrete syntax (notation) and abstract syntax references for the graphic
nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to include all of the
diagrammatic constructs used in SysML. However, they do not represent all the different permutations in which they can
be used. The reader should refer to the usage examples in the chapters and the sample problem annex (Annex B) for
typical usages of the concrete syntax. General diagram information on the use of diagram frames and headings can be
found in the Diagram Annex A.

Comment: | ssue 10066

OMG SysML™ Adopted Specification 19



The diagram elements tables and the additional usage examples fill an important role in defining the scope of SysML. As
described in Chapter 4, Language Architecture, SysML imports many entire packages from the UML metamodel, which
it then reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the notations
included in SysML..

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML chapters, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the entire
Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types defined in
this package.

6.2.3 UML Extensions

This section specifies the SysML extensionsto UML in terms of the diagram extensions and stereotype and model library
extensions. The diagram extensions are included when the concrete syntax uses notation other than the standard
stereotype notation as defined in the Profiles and Model Libraries chapter. The semantic extensions include both the
stereotype and model library extensions. The stereotype extension includes the abstract syntax that identifies which
metaclasses a stereotype extends. Each stereotype includes a general description with a definition and semantics, along
with stereotype properties (attributes), and constraints. The model libraries are defined as subclasses of existing

metacl asses.

6.2.4 Usage Examples

This section shows how the SysML modeling constructs can be applied to solve systems engineering problems and is
intended to reuse and/or elaborate the sample problem in Annex B.

6.3 Conventions and Typography

In the description of SysML, the following conventions have been used:

«  Whilereferring to stereotypes, metacl asses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

» No visibilities are presented in the diagrams, since al elements are public.
» If asectionisnot applicable, it is not included.

» Stereotype, metaclass and metassociation names: initial embedded capitals are used (e.g., ‘ ModelElement’,
‘ElementReference’).

» Boolean metaattribute names: always start with ‘is' (e.g., ‘isComposite’).

« Enumeration types. always end with “Kind” (e.g., ‘ DependencyKind’).

20 OMG SysML™ Adopted Specification



Part Il - Structural Constructs

This Part defines the static and structural constructs used in SysML structure diagrams, including the package diagram, block
definition diagram, internal block diagram, and parametric diagram. The structural constructs are defined in the model
elements, blocks, ports and flows, and constraint blocks chapters. The model elements chapter refactors the kernel package
from UML 2.1 and includes some extensions to provide some foundation capabilities for model management. The blocks
chapter reuses and extends structured classes from UML 2.1 composite structures to provide the fundamental capability for
describing system decomposition and interconnection, and different types of system properties including value properties,
units and distributions. The ports and flows chapter provide the semantics for defining how blocks and partsinteract through
ports and how items flow across connectors. The constraint blocks chapter defines how blocks are extended to be used on
parametric diagrams that model a network of constraints on system properties to support engineering analysis, such as
performance, reliability, and mass properties analysis.

OMG SysML™ Adopted Specification 21



22

OMG SysML™ Adopted Specification



7 Model Elements

7.1 Overview

Comment: | ssue 10068

The Model Elements package of SysML reuses several general-purpose constructs that may be used in several diagrams.
These include package, model, various types of dependencies (e-e.g., import, access, refined, realization), constraints,
and comments. The package diagram defined in this chapter, is used to organize the model by partitioning model elements
into packagable elements and establishing dependencies between the packages and/or model elements within the package.
The package defines a namespace for the packageable elements. Model elements from one package can be imported and/
or accessed by another package. This organizational principle is intended to help establish unique naming of the model
elements and avoid overloading a particular model element name. Packages can also be shown on other diagrams such as
the block definition diagram, requirements diagram, and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be represented on
several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a condition on a decision
branch, or a mathematical expression. The constraint has been significantly enhanced in SysML as specified in Chapter
10, “Constraint Blocks” to enable it to be reused and parameterized to support engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the
model. The comment is not included in the model repository. SysML has introduced an extension to a comment called
rationale to facilitate the system modeler in capturing decisions. The rationale may be attached to any entity, such as a
system element (block), or to any relationship, such as the satisfy relationship between a design element and a
requirement. In the latter case, it may be used to capture the basis for the design decision and may reference an analysis
report or trade study for further elaboration of the decision. In addition, SysML includes an extension of a comment to
reflect a problem or issue that can be attached to any other model element.

SysML has extended the concept of view and viewpoint from UML to be consistent with the IEEE 1471 standard. In
particular, a viewpoint is a specification of rules for constructing a view to address a set of stakeholder concerns, and the
view isintended to represent the system from this viewpoint. This enables stakeholders to specify aspects of the system
model that are important to them from their viewpoint, and then represent those aspects of the system in a specific view.
Typical examples may include an operational, manufacturing, or security view/viewpoint.

7.2 Diagram Elements

Comment: Issue 9781

Many of the diagram elements defined in this chapter, specifically comments, constraints, problem, rationale, and
dependencies, including the dependency subtypes Conform, Realization, and Refine, may be shown on all SysML
diagram types, in addition to the diagram elements which are specific to each diagram type.

OMG SysML™ Adopted Specification 23



7.2.1 Graphical Nodes and Paths

Table 7.1 - Graphical nodes defined by ModelElements package.

Element Name

Concrete Syntax Example

Abstract Syntax Reference

Comment

N\
\ -
\ -

\ ~

Comment text. 5

UML4SysML ::Comment

ConstraintNote

\

\ -

{C1: {L1} E1l.x > E2.y} %

UML4SysML ::Constraint

ConstraintTextualNote

Elementl {constraint text}
(any graphical node)

{constraint text}

(any graphical path)

UML4SysML ::Constraint

M od€l

Model

UML4SysML::Mode

PackageDiagram

UML4SysML ::Package

pkg Packagel )
1
—1 _=7] Subpackage2
Subpackagel "«/in:pon»
Packagewith UML4SysML ::Package
NamelnTab Packagel
1
&-\mpfg"l7 Subpackage2
Subpackagel -
24 OMG SysML™ Adopted Specification




Table 7.1 - Graphical nodes defined by ModelElements package.

Element Name

Concrete Syntax Example

Abstract Syntax Reference

PackageWith

UML4SysML ::Package

langual
meﬁm 5="..."

Namelnside
Packagel
Problem SysML::ModelElements::Problem
«problem» g
The problem is tht ...
Rationale SysML::ModelElements::Rationale
«rationale»
Description ofrafionale
ViewWith SysML::ModelElements::View
Namelnside —
«view»
{viewpoint=ViewName}
Name
ViewWith SysML::ModelElements::View
NamelnTab .
«view»
Name
Viewpoint SysML::ModelElements::Viewpoint
«i int»
"Name

OMG SysML™ Adopted Specification

25



Table 7.2 - Graphical paths defined by ModelElements package.

Comment: 9844

Comment: 9845

Element Name

Concrete Syntax Example

Abstract Syntax Reference

Conform SysML::ModelElements::Conform
— - conform>__
Dependency UMLA4SysML ::Dependency
-
PublicPackagel mport UML4SysM L ::ElementPackagel mport
«import» with
- = visibility = public
PrivatePackagel mport UML4SysM L ::ElementPackagel mport
«access» Wlth
—— — = visibility = private
PackageContainment UML4SysML ::Package::
ownedElement
A
A\
Realization UML4SysML ::Realization
- _I>
Refine UMLA4SysML::Refine
«refine»
——————————— >
26 OMG SysML™ Adopted Specification



7.3 UML Extensions

7.3.1 Diagram Extensions

7.3.1.1 Stereotype Keywords or Icons Inside a Comment Note Box

Description

A comment note box may contain stereotype keywords or icons even though Comment is not a named element. UML
specifies placement of a stereotype keyword relative to the name of the element. SysML makes explicit that they may
appear inside a comment box as well. The stereotype keywords, if present, should appear prior to the comment text. The
stereotype properties, if present, should appear after the comment text. The typical placement of stereotype iconsisin the
upper-right-hand corner of the containing graphical node.

«rationale»
Description ofrafionale

Figure 7.1 - Notation for the Rationale stereotype of Comment
7.3.1.2 UML Diagram Elements not Included in SysML

The notation for a“merge” dependency between packages, using a «merge» keyword on a dashed-line arrow, is not
included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but
SysML does not support this capability for user-level models. Combining packages that have the same named elements,
resulting in merged definitions of the same names, could cause confusion in user models and adds no inherent modeling
capability, and so has been left out of SysML.

Comment: | ssue 9757

7.3.2 Stereotypes

Comment: I ssue 9758 (note Diagram updated)

OMG SysML™ Adopted Specification 27



Package Model Elements

«metaclass» «metaclass» «metaclass» «metaclass»
UML4SysML:: UMLA4SysML:: UML4SysML:: UML4SysML::
Dependency Package Class Comment
«stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
Conform View Viewpoint Rationale Problem
Iviewpoint:Viewpoint[1] | | Stakeholders:String[]
purpose:String
concerns:Strir]g[*l
Ian%]ages:S;rln ]
metho s:Strlng[g

Figure 7.2 - Stereotypes defined in package ModelElements.
7.3.2.1 Conform

Description

A Conform relationship is a dependency between a view and a viewpoint. The view conforms to the specified rules and
conventions detailed in the viewpoint. Conform is a specialization of the UML dependency, and as with other
dependencies the arrow direction points from the (client/source) to the (supplier/target).

Constraints

[1] The supplier/target must be an element stereotyped by «viewpoint».

[2] The client/source must be an element that is stereotyped by «views.
7.3.2.2 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or need,
or other undesired outcome. It may be used to capture problems identified during analysis, design, verification, or
manufacture and associate the problem with the relevant model elements. Problem is a stereotype of comment and may be
attached to any other model element in the same manner as a comment.

7.3.2.3 Rationale

Description

A Rational documents the justification for decisions such as and the requirements, design and other decisions. A
Rationale can be attached to any model element including relationships. It alows the user, for example, to specify a
rationale that may reference more detailed documentation such as a trade study or analysis report. Rationale is a
stereotype of comment and may be attached to any other model element in the same manner as a comment.

28 OMG SysML™ Adopted Specification



7.3.2.4 View

Description

Comment: | ssue 9785

A view is arepresentation of a whole system or subsystem from the perspective of a single viewpoint.
Comment: I ssue 10069

Views are allowed to import other elements including other packages and other views that conform to the viewpoint.

Attributes

e /viewpoint:Viewpoint[1]
The viewpoint for this View, derived from the supplier of the <<conform>> dependency whose client isthis View.

Constraints
[1] A view can only own element import, package import, comment, and constraint elements.

[2] Theview isconstructed in accordance with the methods and | anguages that are specified as part of the viewpoint. SysML
does not define the specific methods. The precise semantic of this constraint is a semantic variation point.

7.3.2.5 Viewpoint

Description

A viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. The languages and methods for specifying a view may reference methods and
languages in another viewpoint. They specify the elements expected to be represented in the view, and may be formally
or informally defined. For example, the security viewpoint may require the security requirements, security functional and
physical architecture, and security test cases.

Attributes

o stakeholders:String[*] Set of stakeholders.

e concerns.String[*] Theinterest of the stakeholders.

e purpose:String The purpose addresses the stakehol der concerns.

» languages: String[*] The languages used to construct the viewpoint

* methods: String[*] The methods used to construct the views for this viewpoint

Constraints
[1] A viewpoint cannot be the classifier of an instance specification.

[2] The property ownedOperations must be empty.

OMG SysML™ Adopted Specification 29



[3] The property ownedAttributes must be empty.
[4] The property isAbstract must be set to true.

7.4 Usage Examples

Comment:

I ssue 9759/10078 - Figure Updated

pkg [package] HSUVViews [Performance View] )

«view»
{viewpoint=Performance Viewpoint}
PerformanceView
Performance Viewpoint
«iewpoint»
stakeholders="customer"
Driver «requirement» concerns:"vyill the system perform
Performance adequately?”
purpose="Highlight the performance of the
id="2" system."
Text = "The Hybrid SUV methods="show performance requirements,
«MOe» shall have the braking, test cases, MOE, constraint models, etc.;
HSUValtl.FuelEco acceleration, and off-road includes functional viewpoint"
nomy capability of a typical SUV, languages="SysML"
but have dramatically better P H
fuel economy.” -7 "
«moe» //// !
HSUValtl.Quarter _-7 «conform» !
MileTime «constraint» r ]
UnitCostEquation ,'
%
«moe»
HSUValtl.Zero . . .
) «constraint» «viewpoint»
60Time CapacityEquation Functional Viewpoint
«moe»
HSUValtl.Car .
c it «constraint»
goLapacity EconomyEquation
«moe»
HSUValtl.Cos «testCase»
tEffectiveness EPAFuel
EconomyTest
Comment: Issue 9776
example?

Figure 7.3 - View/Viewpoint

30

OMG SysML™ Adopted Specification



a.moe refersto Measure of Effectiveness (see Appendix C.3.2)

bdd Master Cylinder requirementy

«requirement»
Loss of Fluid

-

«requirement»
Reservoir

7’
’

«rationale»

The best-practice solution consists in
assigning one reservoir per brakeline.
See "automotive_d32_hdb.doc"

«block»
Brake System

=~ ~ L «satisfy»

S~

«satisfy»

m:MasterCylinder

«problem» . . .
e master cylinder in previous
version leaked.

Figure 7.4 - Rationale and Problem example

OMG SysML™ Adopted Specification

31



32

OMG SysML™ Adopted Specification



8 Blocks

8.1 Overview

Blocks are modular units of a system description, which define a collection of features to describe a system or other
elements of interest. These may include both structural and behavioral features, such as properties and operations, to
represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the ways these elements combine to define the total system can
all be selected according to the goals of a particular system model. SysML blocks can be used throughout all phases of
system specification and design, and can be applied to many different kinds of systems. These include modeling either the
logical or physical decomposition of a system, and the specification of software, hardware, or human elements. Parts in
these systems interact by many different means, such as software operations, discrete state transitions, flows of inputs and
outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of a block and relationships between blocks such as
associations, generalizations, and dependencies. It captures the definition of blocks in terms of properties and operations,
and relationships such as a system hierarchy or a system classification tree. The Internal Block Diagram in SysML
captures the internal structure of a block in terms of properties and connectors between properties. A block can include
properties to specify its values, parts, and references to other blocks. Ports are a specia class of property used to specify
allowable types of interactions between blocks, and are described in Chapter 9, “Ports and Flows.” Constraint Properties
are a special class of property used to constrain other properties of blocks, and are described in Chapter 10, “ Constraint
Blocks.” Various notations for properties are available to distinguish these specialized kinds of properties on an internal
block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its
definition. A part belonging to a block, for example, may be typed by another block. The part defines alocal usage of its
defining block within the specific context to which the part belongs. For example, a block that represents the definition of
awheel can be used in different ways. The front wheel and rear wheel can represent different usages of the same wheel
definition. SysML aso allows each usage to define context-specific values and constraints associated with the individual
usage, such as 25 psi for the front tires and 30 psi for the rear tires.

Blocks may also specify operations or other features that describe the behavior of a system. Except for operations, this
chapter deals strictly with the definition of properties to describe the state of a system at any given point in time,
including relations between elements that define its structure. Chapter 9, “Ports and Flows’ specifies the allowable types
of interactions between blocks, and the Behavioral Constructs in Section 111 including activities, interactions, and state
machines can be applied to blocks to specify its behavior. Chapter 15, “Allocations” in Part IV describes ways to allocate
behavior to parts and blocks.

Comment: | ssue 10009

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for UML
classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify the language.
SysML blocks aways include an ability to define internal connectors, regardliess of whether this capability is needed for
a particular block. SysML Blocks also extend the capabilities of UML classes and connectors with reusable forms of
constraints, and multi-level nesting of connector ends, participant properties for composite association classes, and
connector properties. SysML blocks include several notationa extensions as specified in this chapter.

OMG SysML™ Adopted Specification 33



8.2 Diagram Elements

Tables in the following sections provide a high-level summary of graphical elements available in SysML diagrams. A
more complete definition of SysML diagram elements, including the different forms and combinations in which they may
appear, is provided in Annex G

34 OMG SysML™ Adopted Specification



8.2.1 Block Definition Diagram

8.2.1.1 Graphical Nodes and Paths

Table 8.1 - Graphical nodes defined in Block Definition diagrams

Comment: I ssue 10381 Table Changed
Element Name Concrete Syntax Example Abstract syntax Reference
Block Definition SysML::Blocks::Block
Diagram bdd Namespacel UML4SysML::Package
Blockl @—"o | Block2

Block SysML::Blocks::Block

«block»

{encapsulated}
Blockl
{ X > y} constraints
operations

operationl(pl: Typel): Type2

parts
propertyl: Block1
references
property2: Block2 [0..*] {ordered}
values
property3: Integer = 99 {readOnly}
property4d: Real = 10.0

properties

property5: Block3

Actor UML4SysML::Actor
«actor»
ActorNam e
ActorName
DataType UML4SysML::DataType
«dataType»
dataTypel
operations
operation1(pl: Typel): Type2
properties
propertyl: Type3

OMG SysML™ Adopted Specification



Table 8.1 - Graphical nodes defined in Block Definition diagrams

Comment: Issue 10381 Table Changed

Element Name

Concrete Syntax Example

Abstract syntax Reference

ValueType

«valueType»
ValueTypel

operations

operationl(pl: Typel): Type2

properties

propertyl: Type3

«valueType»
unit = UnitName

SysML::Blocks::ValueType

Enumeration

«enumeration»
Enumerationl

literalNamel
literalName2

UMLA4SysML::Enumeration

AbstractDefinition

Namel

{abstract}
Namel

Namel
{abstract}

UMLA4SysML::Classifier with
isAbstract equal true

StereotypeProperty
Compartment

«stereotypel»
Block1l

«stereotypel»
propertyl = value

UMLA4SysML::Sereotype

Namespace
Compartment

Block1l

namespace

partl

Block2 ﬁ Block3

SysML::Blocks::Block

36

OMG SysML™ Adopted Specification



Table 8.1 - Graphical nodes defined in Block Definition diagrams

Comment: I ssue 10381 Table Changed
Element Name Concrete Syntax Example Abstract syntax Reference
Sructure SysML::Blocks::Block
Compar tment BlockL
structure
cl: 1 p2:
1: Typel ————
b e el Type
Unit SysML ::Blocks::Unit
wunits
{dimension = Dimension1}
Unit1
Unit1
wunits»
{dimension = Dimension1}
Dimension SysML ::Blocks::Dimension
«dimension»
Dimension1
Comment: I ssue 10015 (Above Table 8.1 2 new elements added)

Table 8.2 Graphical paths defined by in Block Definition diagrams.

Comment: I ssue 10009 Table added last 2 rows
Element Name Concrete Syntax Example Abstract syntax Reference
Dependency UMLA4SysM L ::Dependency
«stereotypel»
,,,,,,, dependencyl
ReferenceAssociation UML4SysML ::Association and
P associationl propertyl UML4SysML::Property with
0.1 {ordered} 1.* aggregationKind = none
property2 association1 € propertyl
1 {ordered} 0..*

OMG SysML™ Adopted Specification

37



Comment:

Table 8.2 Graphical paths defined by in Block Definition diagrams.

Comment:

Issue 10015 (Above Table 8.1 2 new elements added)

I ssue 10009 Table added last 2 rows

Element Name

Concrete Syntax Example

Abstract syntax Reference

PartAssociation

UML4SysML ::Association and

P associationl propertyl UM L4$/SM L::Pr oper ty with
01 fordered) 1.7 aggregationKind = composite
property2 associationl propertyl
1 {ordered} 0.*
SharedAssociation B UML4SysML::Association and
associationl propertyl UM L4$/SM L::Pr Opef ty Wlth
0.1 fordered) 1. aggregationKind = shared
property2 associationl propertyl
1 {ordered} 0.*
M ultibranchPart UML4SysML ::Association and
Association property3 _ associationl propertyl UML::Kernel::Property with
1 0. aggregationKind = composite
property2
o
M ultibranchShared UML4SysML ::Association and
Association propertys  associationl property? UML ::Kernel::Property with
1 0. aggregationKind = shared
property2
o
Generalization UML4SysML::Generalization
>

Multibranch
Generalization

UML4SysML :Generalization

GeneralizationSet

{disjoint}

{overlapping}

UML4SysML::
Gener alization Set

38

OMG SysML™ Adopted Specification



Comment:

I ssue 10015 (Above Table 8.1 2 new elements added)

Table 8.2 Graphical paths defined by in Block Definition diagrams.

Comment:

I ssue 10009 Table added last 2 rows

Element Name

Concrete Syntax Example

Abstract syntax Reference

BlockNamespace
Containment

i

UMLA4SysML::Class:
nestedClassifier

Parti cipantProperty

property 2 association 1 4 1
Block2 ' |I PPV Blockl
1 | {ordered} 0.*
|

AssociationBlock 1

«participant> {end=property 1} prop1inLink : Blockl
«participant> {end=property 2} prop2InLink : Block2

property 2 association 1 4 1
Block2 ' |I PPV Blockl
1 | {ordered} 0.*
1

AssociationBlock 1

structure
r————-- -
I «participant> ]

«participant> |
fend=propery2} | |

{end=propery1} |

] proplinLink : Blockl

| prop2inLink : Block2 :

property2 association 1 4 1
Block2 : |I PP | Blockl
1 {ordered} 0.*

AssociationBlock 1

UML4SysML:: Property,
UMLA4SysML :: AssociationClass

OMG SysML™ Adopted Specification




Comment: Issue 10015 (Above Table 8.1 2 new elements added)

Table 8.2 Graphical paths defined by in Block Definition diagrams.

Comment: Issue 10009 Table added last 2 rows
Element Name Concrete Syntax Example Abstract syntax Reference
ConnectorProperty UML4SysML:: Property,
«block» UML4SysML:: Connector
Blockl

«connector» c1 : AssociationBlock 1
«connector» c2 : AssociationBlock 2

structure

pl: Typel

c1: AssociationBlock 1 i p2: Type2
e

p3: Type3

1
o1 p4 Typed

T
]
c2: AssociationBlock 2

40

OMG SysML™ Adopted Specification



8.2.2 Internal Block Diagram

8.2.2.1 Graphical Nodes and Paths

Table 8.3 - Graphical nodes defined in Internal Block diagrams

Comment: 10017 / 10385 Table M odified
Element Name Concrete Syntax Example Abstract Syntax Reference
I nter nalBlockDiagram SysM L ::Blocks::Block
ibd Blocklj
cl:al
pl: Typel p2: Type2
el
BleekProperty UMLASysML SysMH—Blecks::B
,,,,,,,,,, teekProperty
0.* | |
pl: Typel } rl: Type2 }
| |
x Integer=4 |
pl: Typel 0.x
p3: Type3
defaultvValue
x1=5.0
x2="today"
ActorPart SysM L ::Blocks::PartProperty
typed by UMLA4SysM L ::Actor
«actor»
ActorName
ActorName

OMG SysML™ Adopted Specification

41



Table 8.3 - Graphical nodes defined in Internal Block diagrams

Comment: 10017 / 10385 Table M odified
Element Name Concrete Syntax Example Abstract Syntax Reference
PropertySpecificType SysM L::Blocks:: Property Spec-
. i e losldrenarty
p1: [Typel] ifcTyp

values
«uniform»{mean=2,stdDeviation=0.1} x: Integer

p2
values

y: Integer =5

Table 8.4 - Graphical paths defined in Internal Block diagrams

Comment: Issue 10010 Table Building Connectors modified
ELEMENT NAME CONCRETE SYNTAX EXAMPLE ABSTRACT SYNTAX REFERENCE
Dependency UML4SysML ::Dependency
«stereotypel»
,,,,,,, dependencyl _ ___ =
BindingConnector UML4SysML::Connector
1 0.*
«equal»
1 1
Bidirectional UML4SysML::Connector
Connector pL c1: associationl p2
0.1 o
Unidirectional UML4SysML::Connector
Connector c1: associationl pl
0.1 0.*

8.3 UML Extensions

8.3.1 Diagram Extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by SysML.

42 OMG SysML™ Adopted Specification



Block and ValueType Definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML VaueType
defines values that may be used within a model. SysML blocks are based on UML classes, as extended by UML
composite structures. SysML value types are based on UML data types. Diagram extensions for SysML blocks and value
types are described by other subheadings of this section.

Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype property
compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had appeared
before the name in the top compartment of the definition.

Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name. The
compartments may partition the features shown according to various criteria. Some standard compartments are defined by
SysML itself, and others can be defined by the user using tool-specific facilities. Compartments may appear in any order.
SysML defines two additional compartments, namespace and structure compartments, which may contain graphical nodes
rather than textual constraint or feature definitions. See separate subsections of this section for a description of these
compartments.

Constraints compartment

SysML defines a special form of compartment, with the label constraints, which may contain one or more constraints
owned by the block. A constraint owned by the block may be shown in this compartment using the standard text-based
notation for a constraint, consisting of a string enclosed in brace characters. The use of a compartment to show constraints
is optional. The note-based notation, with a constraint shown in a note box outside the block and linked to it by a dashed
line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint
property is a property of the block that is typed by a ConstraintBlock, as defined in Chapter 10, “Constraint Blocks.”
Only the declaration of the constraint property may be shown within the compartment, not the details of its parameters or
binding connectors that link them to other properties.

Namespace compartment

A compartment with the label namespace may appear as part of a block definition to show blocks that are defined in the
namespace of a containing block. This compartment may contain any of the graphical elements of a block definition
diagram. All blocks or other named elements defined in this compartment belong to the namespace of the containing
block.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box which shows only feature compartments. Both hamespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

Structure compartment

A compartment with the label structure may appear as part of a block definition to show connectors and other internal
structure elements for the block being defined. This compartment may contain any of the graphical elements of an internal
block diagram.

OMG SysML™ Adopted Specification 43



Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than abox which shows only feature compartments. Both nhamespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

Unit and Dimension declarations

The declarations of value types have been extended to support the declaration of a unit of measure or a dimension. These
declarations must refer by name to an instance of a Unit or Dimension stereotype defined separately. A sample set of
predefined dimensions and unitsis given in Annex C, section C.4.

Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association has a
default multiplicity of [0..1] on the black or white diamond end. A unidirectiona association has a default multiplicity of
1 on its target end. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity
other than the default should always be shown on a diagram.

Comment: I ssue 10385

Property-Speficic type

Enclosing the type name of a property in square brackets specifies that the type isalocal specialization of the referenced
type, which may be overridden to specify additional values or other customizations that are unique to the property.
Redefined or added features of the newly defined type may be shown in compartments for the property on an internal block
diagram. If no type name appears between the square brackets, the property-specific type is defined provided by its own
declarations, without specializing any existing type.

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as defined
by SysML.

Property types
Comment: Issue 10017

Three general categories of properties are recognized in SysML : parts, references and value properties (see 8322 8.3.2.1
Block Preperty-below). A part or value property is always shown on an internal block diagram with a solid-outline box.
A reference property is shown by a dashed-outline box, consistent with UML.

Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand corner of
the diagram frame) must identify the name of a SysML block as its model ElementName. (See Annex A for the definition
of a diagram heading name including the model ElementName component. This component is optional for many SysML
diagram types, but not for an internal block diagram.) All the properties and connectors which appear inside the internal
block diagram belong to the block that is named in the diagram heading name.

44 OMG SysML™ Adopted Specification



Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property box.
These compartments may be given standard or user-customized labels just as on block definitions. All features shown
within these compartments must match those of the block or value type that types the property. For a property-specific
type, these compartments may be used to specify redefined or additional features of the locally defined type. An unlabeled
compartment on an internal property box is by default a structure compartment.

Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block diagram.
These compartments must always follow an initial compartment which aways shows the interna structure of areferenced
block. These compartments may have all the same contents as could be shown on a block definition diagram for the block
defined at the top level of the diagram frame.

Property path name
Comment: I ssue 10017

A property name shown inside or outside the property box may take the form of a multi-level name. This form of name
references a nested property accessible through a sequence of intermediate properties from a referencing context. The
name of the referenced property is built by a string of names separated by “.”, resulting in a form of path name which
identifies the property initslocal context. A colon and the type name for the property may optionally be shown following
the dotted name string. If any of the properties named in the path name string identifies a reference property, the property
box is shown with a dashed-outline box, just as for any reference property on an internal block diagram.

This notation is purely a notational shorthand for a property which could otherwise be shown within a structure of nested
property boxes, with the names in the dotted string taken from the name that would appear at each level of nesting. In
other words, the internal property shown with a path name in the left-hand side of Figure 8.1 below is equivalent to the
innermost nested box shown at the right:

P1: Block1l P1: Block1l

Namel:

Name 2:

Namel.Name2.Name3:
Name3:

Figure 8.1 - Nested property reference

Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The
connector is owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd stereotype
of a UML ConnectorEnd is automatically applied to any connector end that is nested more than one level deep within a
containing context.

OMG SysML™ Adopted Specification 45



Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties which a
connector line may cross. The need for nested connector ends can be avoided if additional properties can be added to the
block at each containing level. Nested connector ends are available for cases where the introduction of these intermediate
properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition be
shown on the same diagram.

Property-specific type

Comment: I ssue 10385

Enclosing the type name of an internal property in square brackets specifies that the type is a local specialization of the
referenced type, which may be overridden to specify additional values or other customizations that are unique to the
property. Redefined or added features of the newly defined type may be shown in compartments for the property. If the
property name appears on its own, with no colon or type name, or if no type name appears between the square brackets,
the property-specific type is entirely provided by its own declarations, without specializing any existing type.

Default value compartment

A compartment with a label of “defaultValue” may be used to show the default value for a property as an alternative to
an “="suffix string on its declaration within its containing block. It may be used for a property whose type has
substructure and a default value with many subvalues. A default value compartment on a property may be used instead of
a property-specific type when all that is required are property-specific values. If a default value is specified for a property
nested any level deeper than the top level of an internal block diagram frame, then its containing property must still have
a property-specific type, so that the default value specification can be included within that type.

Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown
on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

Comment: I ssue 10009

The supported variety of notations for associations and association annotations has been reduced to simplify the burden of
teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and metamodel support
for n-ary associations and qualified associations has been excluded from SysML. N-ary associations, shown in UML by a
large open diamond with multiple branches, can be modeled by an intermediate block with no loss in expressive power.

Qualified associations, shown in SysML by an open box at the end of an association path with a property name inside, are
a specialized feature of UML that specifies how a property value can represent an identifier of an associated target. This
capability, while useful for data modeling, does not seem essential to accomplish any of the SysML requirements for

46 OMG SysML™ Adopted Specification



support of systems engineering. The use of navigation arrowheads on an association has been simplified by excluding the
case of arrowheads on both ends, and requiring that such an association always be shown without arrowheads on either
end. An “X” on the-end a single end of an association to indicate that an end is “not navigable” has similarly been
dropped, as has the use of a small filled dot at the end of an association to indicate an owned end of an association.

SysM L stlll supports use of an arrowhead on one end of a unidi rectlonal association. Genemh—zaﬂe&mka&enslm—ps—betmme&

Comment: | ssue 10049

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType specialization of
UML DataType) is not supported. Whether or not a value type definition has internal structure can be determined from the
value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this chapter. Other
SysML chapters add some of these notations into the supported contents of an internal block diagram.

8.3.2 Stereotypes

Comment: | ssue 10385

Package Blocks

«metaclass»
UML4SysML::
Class

?

«stereotype»
Block

isEncapsulated: Boolean

Figure 8.2 - Abstract syntax expressions for SysML blocksSterestypes-defined--SysMi—Blockspackage

OMG SysML™ Adopted Specification 47



Comment: I ssue 10009/10017 Figure Updated

«metaclass»
UML4SysML::
Property

A

«stereotype» «stereotype»

_ «stereotype» ParticipantProperty ConnectorProperty
DistributedProperty

end : Property[1] connector : Connector [1]

Figure 8.3 - Abstract syntax extensions for SysML properties

Comment: I ssue 10015 Figure below updated
«metaclass» «metaclass»
UML4SysML:: UML4SysML::
DataType InstanceSpecification

«stereotype» «stereotype» «stereotype»

ValueType Unit Dimension
unit dimension dimension |0..1
0.1 0.1

Figure 8.4 - Abstract syntax extensions for SysML value types

Comment: I ssue 10010 Figure Below Updated

48 OMG SysML™ Adopted Specification



«metaclass» «metaclass»

UMLA4SysML:: UMLA4SysML::
Connector ConnectorEnd
«stereotype»
«stereotype» NestedConnectorEnd

BindingC t
'ndingt-onnector propertyPath: Property [2..*] {ordered}

Figure 8.5 - Abstract syntax extensions for SysML connector ends

Comment: | ssue 10385

«metaclass»
UML4SysML::
Classifier

T

«stereotype»
PropertySpecificType

Figure 8.6 - Abstract syntax extensions for SysML property-specific types
8.3.2.1 Block

Description

A Block is amodular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, that represent the state of the system and behavior that the system
may exhibit. Some of these properties may hold parts of a system, which can also be described by blocks. A block may
include a structure of connectors between its properties to indicate how its parts or other properties relate to one another.

SysML blocks provide a genera -purpose capability to describe the architecture of a system. They provide the ability to
represent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They can
describe not only the connectivity relationships between the systems at any level, but also quantitative values or other
information about a system.

OMG SysML™ Adopted Specification 49



SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form of
description that may be applied to a system or a set of system characteristics may be described by a block. Such reusable
descriptions, for example, may be applied to purely conceptual aspects of a system design, such as relationships that hold
between parts or properties of a system.

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the same
containing block. The type of a connector or its connected ends may specify the semantic interpretation of a specific
connector. A Binding Connector is a connector that is not typed by an association. If the two ends of a binding connector
have the same type, the connector specifies that the properties at the end of the connector must have the same values,
recursively through any nested properties within the connected properties.

SysML excludes variations of associations in UML in which navigable ends can be owned directly by the association. In
SysML, navigation is equivalent to a named property owned directly by a block. The only form of an association end that
SysML allows an association to own directly is an unnamed end used to carry an inverse multiplicity of a reference
property. This unnamed end provides a metamodel element to record an inverse multiplicity, to cover the specific case of
a unidirectional reference that defines no named property for navigation in the inverse direction. SysML enforces its
equivalence of navigation and ownership by means of constraints that the block stereotype enforces on the existing UML
metamodel

Comment: I ssue 10017

SysML establishes three standard classifications of properties belonging to a SysML Block. A property typed by a
SysML Block that has composite aggregation is classifed as a part property. A property typed by a Block that does not
have composite aggregation is classified as a reference property. A property typed by a UML DataType or SysML
ValueType is classified as a value property. Part, reference, and value properties may be shown in block definition
compartments with the labels parts, references, and values respectively. Properties of any type may be shown in a
properties compartment.

On a block definition diagram, a part property is shown by a black diamond symbol on an association. Asin UML, an
instance of a block may be included in at most one part property at a time. A part property typically holds instances that
belong to a larger whole. Typically, a part-whole relationship means that certain operations that apply to the whole also
apply to each of the parts. For example, if a whole represents a physical object, a change in position of the whole could
also change the position of each of the parts. A property of the whole such as its mass could also be implied by its parts.
Operations and relationships which apply to parts typically apply transitively across all parts of these parts, through any
number of levels. A particular application domain may establish its own interpretation of part-whole relationships across
the blocks defined in a particular model, including the definition of operations that apply to the parts along with the
whole. For software objects, a typical interpretation is that delete, copy, and move operations apply across all parts of a
composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an association. Like
UML, SysML defines no specific semantics or constraints for properties with shared aggregation, but particular models or
tools may interpret them in specific ways.

Attributes

» isEncapsulated: Boolean [0..1]

If true, then the block is treated as a black box; a part typed by this black box can only be connected viaits ports or
directly to itsouter boundary. If false, then connections can be established to elements of itsinternal structure via deep-

50 OMG SysML™ Adopted Specification



nested connector ends.

Constraints

(1]

For an association in which both ends are typed by blocks, the number of ends must be exactly two.

Comment: | ssue 10016

(2]

(3]

(4]

(5]

The number of ends of a connector owned by a block must be exactly two. (In SysML, a binding connector is not typed
by an association, so this constraint is not implied entirely by the preceding constraint.)

In the UML metamodel on which SysML isbuilt, any instance of the Property metaclass that is typed by a block (aClass
with the «block» stereotype applied) and which is owned by an Association may not have a name and may not be defined
as a navigable owned end of the association. (While the Property has a“name” property as defined by its NamedElement
superclass, the value of the “name” property, which is optional, must be missing.)

In the UML metamodel on which SysML is built, a Property that is typed by a block must be defined as an end of an
association. (An inverse end of this association, whether owned by another block or the association itself, must aways be
present so there is always a metamodel element to record the inverse multiplicity of the reference.)

The following constraint under Section 9.3.6, “ Connector” in the UML 2.0 Superstructure Specification (OMG document
formal/05-07-04) isremoved by SysML: “[3] The ConnectableElements attached as roles to each ConnectorEnd owned
by a Connector must be roles of the Classifier that owned the Connector, or they must be ports of such roles.”

Comment: | ssue 10017

(6]

If the aggregation attribute of a property owned by a SysML block is equal to "composite" or "shared" then the type of
the property must be a block.

Comment: | ssue 10021

(7]

Within an instance of a SysML Block, the values of any property with composite aggregation (aggregation =
composite) must not contain the block in any of its own properties that also have composite aggregation, or within any
unbroken chain of propertiesthat all have composite aggregation. (Within an instance of a SysML Block, the instances
of properties with composite aggregation must form an acyclic graph.)

Comment: | ssue 10017

OMG SysML™ Adopted Specification 51



8.3.2.3 DistributedProperty

Comment: | ssue 10022

DistributedProperty is a stereotype of BleekProperty used to apply a probability distribution to the values of the property.
Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the
distributions represented by properties of those stereotype subclasses.

Constraints

[1] The DistributedProperty stereotype may be applied only to properties of classifiers stereotyped by Block or ValueType.
8.3.2.4 Dimension

A kind of guantity that may be stated by means of defined units. For example, the dimension of length may be measured
by units of meters, kilometers, or feet.

52 OMG SysML™ Adopted Specification



Comment: | ssue 10013/10014/10015

Dimension is defined as a stereotype of InstanceSpecification, but it uses this metaclass only to define supporting
elements for ValueType definitions. (The reuse of InstanceSpecification to define another metaclass is similar to the
EnumerationLiteral metaclassin UML .)

The only valid use of a Dimension instance is to be referenced by the "dimension" property of a ValueType or Unit
stereotype

8.3.2.5 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UM L ConnectorEnd so that the connected property
may be identified by a multi-level path of accessible properties from the block that owns the connector.

Attributes

Comment: | ssue 10023

o propertyPath: Property [1..*] (ordered)

The propertyPath list of the NestedConnectorEnd stereotype must identify a path of containing properties that
identify the connected property in the context of the block that owns the connector. The ordering of propertiesis
from a property of the block that owns the connector, through a property of each intermediate block that types the
preceding property, until a property is reached that contains a connector end property within its type. The connector
end property is not included in the propertyPath list, but instead is held by the role property of the UML
ConnectorEnd metaclass.

Constraints

[1] The property at thefirst position in the propertyPath attribute of the NestedConnectorEnd must be owned by the block that
owns the connector.

OMG SysML™ Adopted Specification 53



[2] The property at each successive position of the propertyPath attribute, following the first position, must be contained in
the Block, DataType, or ValueType that types the property at the immediately preceding position.

[3] Within a ConnectorEnd metaclass to which the NestedConnectorEnd stereotype has been applied, the role property of
the ConnectorEnd metaclass must be contained in the type of the property at the last position of the propertyPath list.

[4] Within a ConnectorEnd metaclass to which the NestedConnectorEnd stereotype has been applied, the value of the
"partWithPort" property of the ConnectorEnd metaclass must be equal to the property at the last position of the
propertyPath list.

Comment: | ssue 10385

8.3.2.6  PropertySpecificType

The Property SpecificType stereotype is automatically applied to a classifier created by the notation for a property-specific
type for a property belonging to a SysML Block or ValueType. It identifies these classifiers so that they may be managed
along with the property that they type.

Constraints

[1] A classifier to which the Property SpecificType stereotype is applied must be refererenced as the type of one and only
one property.

[2] Thename of aclassifier to which a PropertySpecificType is applied must be missing. (The "name" attribute of the
NamedElement metaclass must be empty.)

8.3.2.7 Unit

A quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated. A unit often
relies on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may be specified
as a multiple of a particular wavelength of light. A unit may also specify less stable or precise ways to express some
value, such as a cost expressed in some currency, or a severity rating measured by a numerical scale.

Comment: | ssue 10013/10014/10015

Unit is defined as a stereotype of InstanceSpecification, but it uses this metaclass only to define supporting elements for
ValueType definitions. (The reuse of InstanceSpecification to define another metaclass is similar to the
EnumerationLiteral metaclass in UML .)

The only valid use of a Unit instance is to be referenced by the "unit" property of a ValueType stereotype.

54 OMG SysML™ Adopted Specification



8.3.2.8 ValueType

Description

A type that defines values which may be used to express information about a system, but which cannot be identified as
the target of any reference. Since a value cannot be identified except by means of the value itself, each such value within
amodel is independent of any other, unless other forms of constraints are imposed.

Values may be used to type properties, operation parameters, or potentialy other elements within SysML. SysML defines
ValueType as a stereotype of UML DataType to establish a more neutral term for system values that may never be given
a concrete data representation. For example, the SysML “Real” ValueType expresses the mathematical concept of a real
number, but does not impose any restrictions on the precision or scale of a fixed or floating point representation that
expresses this concept. More specific value types can define the concrete data representations that a digital computer can
process, such as conventional Float, Integer, or String types.

SysML VaueType adds an ability to carry a unit of measure or dimension associated with the value. A dimension isa
kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to state the value.
A unit is a particular value in terms of which a quantity of the same dimension may be expressed.

If these additional characteristics are not required then UML DataType may be used.
Attributes

« dimension: VaueType [0..1]

A kind of quantity that may be stated by means of defined units, asidentified by an instance of the Dimension
stereotype. A value type may optionally specify a dimension without any unit. Such avalue has no concrete
representation, but may be used to express avalue in an abstract form independent of any specific units.

e unit: ValueType [0..1]

A quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated, as
identified by an instance of the Unit stereotype.

Constraints

Comment: | ssue 10013/10014/10015

[1] If avaueis present for the unit attribute, the dimension attribute must be equal to the dimension property of the refer-
enced unit.

Comment: | ssue 10009

OMG SysML™ Adopted Specification 55



8.3.2.9 ParticipantProperty

Description

The Block stereotype extends Class, so can be applied to any specialization of Class, including Association Classes.
These are informally called "association blocks". An association block can own properties and connectors, like any other
block. Each instance of an association block can link together instances of the end classifiers of the association.

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to specify
which (participant) properties of the association block identify the instances being linked at which end of the association.
The value of a participant property on an instance (link) of the association block is the value or object at the end of the
link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can be the type
of multiple other connectors to reuse the same internal structure for all the connectors. The keyword "participant” before
a property name indicates the property is stereotyped by ParticipantProperty. The types of participant properties can be
elided if desired. They are always the same as the corresponding association end type.

Attributes

e end: Property [1]A member end of the association block owning the property on which the stereotype is applied.

Constraints

[1] ParticipantProperty may only be applied to properties of association classes stereotyped by Block.
[2] ParticipantProperty may not be applied to properties that are member ends of an association.

[3] The aggregation of a property stereotyped by ParticipantProperty must be none.

[4] The end attribute of the applied stereotype must refer to a member end of the association block owning the property on
which the stereotype is applied.

[5] A property stereotyped by ParticipantProperty must have the same type as the property referred to by the end attribute.
[6] The property referred to by end must have an upper multiplicity of 1.

8.3.2.10 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see 8.3.2.8,
ParticipantProperty). These connectors specify instances (links) of the association block that exist due to instantiation of
the block owning or inheriting the connector. The value of a connector property on an instance of a block will be exactly
those link objects that are instances of the association block typing the connector referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the connector line to
a rectangle notating the connector property. The keyword "connector" before a property name indicates the property is
stereotyped by ConnectorProperty.

Attributes

e connector : Connector [1]A connector of the block owning the property on which the stereotype is applied.

Constraints

[1] ConnectorProperty may only be applied to properties of classes stereotyped by Block.

56 OMG SysML™ Adopted Specification



[2] The connector attribute of the applied stereotype must refer to a connector owned or inherited by a block owning the
property on which the stereotype is applied.

[3] The aggregation of a property stereotyped by ConnectorProperty must be composite.
[4] The type of the connector referred to by a connector attribute must be an association class stereotyped by Block.

[5] A property stereotyped by ConnectorProperty must have the same name and type as the connector referred to by the
connector attribute.

Comment: | ssue 10010/10011

8.3.2.11 Binding Connector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal vaues.
If the properties at the ends of a binding connector are typed by a DataType or ValueType, the connector specifies that the
instances of the properties must hold equal values, recursively through any nested properties within the connected
properties. If the properties at the ends of a binding connector are typed by a Block, the connector specifies that the
instances of the properties must refer to the same block instance.

Constraints

[1] Thetwo ends of a binding connector must have either the same type or types that are compatible so that equality of
their values can be defined

8.3.3 Model Libraries

Package Blocks

bdd [modelLibrary] Blocks )

«valueType» «valueType»
Real Complex

realPart: Real
imaginaryPart: Real

Figure 8.7 - Model Library for Blocks
8.3.3.1 Complex

Description

A value type to represent the mathematical concept of a complex number. A complex number consists of areal part
defined by areal number, and an imaginary part defined by a real number multiplied by the square root of -1. Complex
numbers are used to express solutions to various forms of mathematical equations.

OMG SysML™ Adopted Specification 57



Attributes

» realPart: Real A real number used to express the real part of a complex number.
e imaginaryPart: Real A real number used to express the imaginary part of a complex number.
8.3.3.2 Real

A value type to represent the mathematical concept of areal number. A Real value type may be used to type values that
hold continuous quantities, without committing a specific representation such as a floating point data type with
restrictions on precision and scale.

8.4 Usage Examples

8.4.1 Wheel Hub Assembly

In Figure 8.8 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property
LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its values.
Examples of such distributions can be found in Section C.5.

58 OMG SysML™ Adopted Specification



bdd WheeIPackage)
WheelHubAssembly
Tire
’O 1 t operations 0.1 bead . d
1 mountTire() 2 TireBea
lues
WheelAssembly va
wheel ; ot L Gt
.0 . tireSpecification: String 1
1 values " PressureSeat
inflationPressure: psi 1
Wheel .
w 0.1 rm TireM . Ri
- ireMountingRim
values *— 2 9
1 | diameter: mm
width: mm
1
v .
BandMount InflationValve
1
WirelessTire iaht
PressureMonitor Welg BalanceWeight
0..6
operations
transmitPressure()
mountingHole LugBolt
5 MountingHole
values
lugBoltSize: mm
1 | mountingHole
0..5 | lugBoltJoint 0.1
LugBolt LugBoltJoint
hub 0.1 h ThreadedHole |y eadedHole
Hub 5 values 0..1 values
1 lugBoltSize: mm 1 - <<un|form_»{m|n:75, max=85} torque: ft-lb
o boltTension: Ib
threadSize: mm

Figure 8.8 - Block diagram for the Wheel Package

OMG SysML™ Adopted Specification

59



ibd WheeIHubAssembly

wheel: WheelAssembly

hub: Hub W' Wheel t Tire
2
5 2 .
5 mountingHoles: rim: Titr)ggcejéd
h: LugBoltThreadedHole LugBoltMountingHole TireMountingRim
1| threadedHole 1 | mountingHole

: PressureSeat

0.5
0.1 lugBoltJoint: 0.1

LugBoltJoint

Figure 8.9 - Internal Block Diagram for WheelHubAssembly

In Figure 8.9 an internal block diagram shows how the blocks defined in the Wheel package are used. Thisibd is a partial
view that focuses on particular parts of interest and omits others from the diagram, such as the “v” InflationValve and
“weight” BalanceWeight which are also parts of a Wheel.

Comment: I ssue 10009/10071 Figure Updated

8.4.2 Sl Value Types

In Figure 8.10, several value types using Sl units and dimensions are defined to be generally available in the Sl Value
Types package for typing value properties. Because a unit already identifies the type of quantity, or dimension, that the
unit measures, a value type only needs to identify the unit to identify the dimension as well. The value types in this
example refer to units which are assumed to be defined in an imported package, such as the SI Definitions model library
defined in Section C.4.

bdd [package] Sl Value Types)

s kg m N
«valueType» «valueType» «valueType» «valueType»
unit=Second unit=Kilogram unit=Meter unit=New ton

Figure 8.10 - Defining Value Types with units and dimensions

60 OMG SysML™ Adopted Specification



Comment: | ssue 10009

8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Figure 8-10
shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique properties such
as its weight, color, and horsepower. This concept is distinct from the UML concept of instance specifications in that it
does not imply or assume any run-time semantic, and can also be applied to specify design configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of a
context block. The context block may capture a unique identity for the configuration, and utilizes parts and part-specific
types to express property design values within the specification of a particular system configuration. Such a context block
may contain a set of parts that represent the block instances in this system configuration, each containing specific values
for each property. This technique also provides for configurations that reflect hierarchical system structures, where nested
parts or other properties are assigned design values using property-specific types. The following example illustrates the
approach.

OMG SysML™ Adopted Specification 61



ibd [block] SUV_EPA_Fuel_Economy_Test [Test Resultsy

sn:ID =sn90123

sn:ID = eid78901

Satisfies Verifies o

«requirment»Emissions «requirement>Emissions | ———__ | «testCase»

N testRun060401:
AN EPAFuelEconomyTest
\\
N
N
AN
TestVehiclel:[HybridSUV]
b:[BodySubsystem] b-i: i:[Interior]

values values

sn:ID = b12345 sn:ID =i23456

b-c:
c:[ChassisSubsystem] cpk | Dki[BrakeSubsystem] bicl: l:[LightingSubsystem]

values values values

sn:ID = c34567 sn:ID = bk45678 sn:ID = It56789

c-p: bk-p:
p:[PowerSubsystem]
t:[Transmission] )
em-t: ice-t:
. ice:[InternalCombusti
em:[ElectricalMotor values ice:[ ;
[ ] J sn:ID = sn89012 onEngine]
values values

sn:ID = p67890

values

VIN = G12345

values

Figure 8.11 - SUV EPA Fuel Economy Test

Comment: I ssue 10009

62

OMG SysML™ Adopted Specification




8.4.4 Water delivery

Figure 8-11 shows an association block Water Delivery between a bank of spigots and a faucet. Figure 8-12 shows the
internal structure of Water Delivery defining connectors between the spigots in the bank and inlets on the faucet. The
participant properties identify the spigot bank and faucet being connected. The end property on the stereotype refers to
the corresponding association end in Figure 8-11. The type of participant properties is shown for clarity, but it is always
the same as the association end type and can be elided. They are notated as dashed rectangles because they are reference
properties. The internal structure connects hot and cold properties of the participants.

bdd Water Supply and CIieryJ
Water Water
Supply Client
Water
Delivery
sbank | 1 i faucet| 1
; suppliedBy I deliveredTo
Spigot 1
Bank 1 - Faucet
hot | 1 1| cold hot | 1 1| cold
from to
Spigot Flaulcet
1 1 nlet
Figure 8.12 Association Block water delivery
ibd Water Delivery )
[ «participant» |

: «participant»
{ {end=suppliedBy}
| suppliedByInLInk:
[ SpigotBank

f
|:h ot i rom

to
: hot | {end=deliveredTo} |

cold

e e e e o e - - -

| from

H cold | deliveredTolnLink: I
tO| Faucet |

[ e e

Figure 8.13

OMG SysML™ Adopted Specification

63



Figure 8-13 shows two views of a block House with a connector of type Water Delivery. The connector in the top view
"decomposes” into the subconnectors in the lower view according to the internal structure of WATER Delivery. The
subconnectors relate the nested properties of :WaterSupply to the nested properties of :WaterClient.

ibd House /
waterDelivery

: WaterSupply [sbank pp———" —o——jfaucet] : waterClient

ibd House /

sbank faucet
from to
: WaterSupply hot hot : WaterClient
cold om o cold

Figure 8.14

The top portion of Figure 8-14 shows specializations of the block WaterClient into Bath, Sink, and Shower. These are
used as part types in the internal structure of the block House 2 shown in the lower portion of the figure. The composite
connector for Water Delivery is reused three times to establish connections between spigots on the water supply and the
inlets of faucets on the bath, sink, and shower.

64 OMG SysML™ Adopted Specification



bdd Water Client /

: WaterSupply |sbank

Water
Client
Bath Sink Shower
ibd House?2 /

waterDelivery

waterDelivery

faucet| : Bath

faucet : Sink

waterDelivery

[faucet] : Shower

Figure 8.15

Figure 8-14 modifies Figure 8-11 to add an association block Plumbing for the association between Spigot and Faucet
Inlet. Figure 8-15 shows the internal structure for Plumbing, which includes a pipe and two fittings (the classes and

associations for these parts and connectors are omitted for brevity). Figure 8-16 modifies Figure 8-12 to use Plumbing as

a connector type. The lower connector shows its connector property explicity, enabling the pipe it contains to be
connected to a mounting bracket (the additional types and associations are omitted for brevity).

OMG SysML™ Adopted Specification

65



bdd Water Supply and CIiey
Water Water
Supply Client
Water
Delivery
shank | 1 i faucet | 1
Spigot | SuppliedBy : deveredTo |
Bank 1 1 *
Plumbing
hot | 1 1| cold hot |1 1| cold
|
<o from " 0|  Faucet
pigot
1 1 Inlet

Figure 8.16

ibd Plumbing )

_______ - ————————
| «participant» : :- «participant» :
| {end=front} e . R | {end=to}

| frominLink: | sf: Fitting pp: Pipe ff- Fitting | tolnLink: :
| Spigot I | Faucetlinlet |
e e e - I e e o —— -

66 OMG SysML™ Adopted Specification



Figure 8.17

ibd Water Delivery /

«participant» |

pl : Plumbing :

{end=suppliedBy} | hot H—

suppliedByInLInk: [ cold I
SpigotBank E'fmm

p2: Plumbing

«participant»

to'@ {end=deliveredTo}
—H cold | deliveredTolnLink:

Faucet

m : Mounting

L pp |

Bracket

Figure 8.18

OMG SysML™ Adopted Specification

67



68

OMG SysML™ Adopted Specification



9 Ports and Flows

9.1 Overview

This chapter specifies flow ports that enable flow of items between blocks and parts, while standard ports enable
invocation of services on blocks and parts. A port is an interaction point between a block or part and its environment that
is connected with other ports via connectors. The main motivation for specifying such ports on system elements is to
allow the design of modular reusable blocks, with clearly defined interfaces. (Note: the block owns its ports and therefore
the port is part of the blocks definition). This chapter also specifies item flows across connectors and associations.

9.1.1 Standard Ports

A Standard Port specifies the services the owning Block provides (offers) to its environment as well as the services that
the owning Block expects (requires) of its environment. The specification of the services is achieved by typing the
Standard Port by the provided and/or required interfaces. In genera Standard Ports are used in the context of service-
oriented architectures, which is typica for software component architectures. Since standard ports contain operations
which specify bi-directional flow of data, standard ports are typically used in the context of peer-to-peer synchronous
request/reply communications. A special case of a service is signal reception, which signifies a one way communication
of signal instances, where the handling of the request is asynchronous.

For example, a Block representing an automatic transmission in a car could have a Standard Port that specifies that the
Transmission Block can accept commands to switch gears. Standard Ports are another name for UML2.1 ports, in other
words they are defined by the same meta-class.

9.1.2 Flow Ports
Comment: 10025

A FlowPort specifies the input and output items that may flow between a Block and its environment. FlowPorts are
interaction points through which data, material or energy “can” enter or leave the owning Block. The specification of
what can flow is achieved by typing the FlowPort with a specification of things that flow. This can include typing an
atomic flow port with a single type representing the items that flows in our out, or typing a non-atomic flow port with a
“flow specification” which lists multiple items that flow. A block representing an automatic transmission in a car could
have an atomic flow port that specifies “Torque” as an input and another atomic flow port that specifies “Torque” as an
output. A more complex flow port could specify a set of signals and/or properties that flow in and out of the flow port. In
generadl, flow ports are intended to be used for asynchronous, broadcast, or send and forget interactions. FlowPorts extend
UML2.1 ports.

9.1.3 Item Flows

Item flows represent the things that flow between blocks and/or parts and across associations or connectors. Whereas the
FlowPort specifies what “can” flow in or out of a block, the item flows specify what “does” flow between blocks and/or
parts in a particular usage context. This important distinction enables blocks to be interconnected in different ways
depending on its usage context. For example, a tank may include a FlowPort that can accept fluid as an input. In a
particular use of the tank, “gasoline” flows across a connector into its FlowPort, and in another use of the tank, “water”

OMG SysML™ Adopted Specification 55



flows across a connector into the its FlowPort. The item flow would specify what “does” flow on the connector in the
particular usage (e.g., gas, water), and the FlowPort specifies what can flow (e.g., fluid). This enables type matching
between the item flows and between flow ports to assist in interface compatibility analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a

connector. FlowAllocation is described in Chapter 15, “Allocations’ and can be used to help ensure consistency across the
different parts of the model.

56 OMG SysML™ Adopted Specification



9.2

Diagram Elements

9.2.1 Extensions to Block Definition Diagram.

Table 9.1 - Extensions to Block Definition Diagram

Node Name Concrete Syntax Abstract Syntax Reference
SandardPort UML4SysML::Port
ITransCmd
p2 «block»
Transmission
ITransData
SandardPort SysM L::PortsAndFlows: Standar d-
(Compartment Notation) Port
«dlocke>
Transmission
standard ports
p2: ITransCmd

FlowPort

«block»
Transmission

p:ITransmission|

Flow port

«block»

p:ITransmission|
Transmission

Conjugated Flow port

networkType:ElectricNetworkType

) [o}
ac:ACVoltage = «block»

dc:DCVoltage
Transformator *

Atomic Flow Ports

SysML::PortsAndFlows:: FlowPort

OMG SysML™ Adopted Specification

57



Table 9.1 - Extensions to Block Definition Diagram

Node Name Concrete Syntax Abstract Syntax Reference
FlowPort SysM L::PortsAndFlows:: FlowPort
(Compartment Notation)
«block»
Transmission
flow ports
p : ITransmission

Flow port

«block»
Transmission
flow ports
p : ITransmission {conjugated}

Conjugated Flow port

«block»
Transformator

flow ports
in ac : ACVoltage

out dc : DCVoltage
inout networkType : ElectricNetworkType

Atomic Flow Ports

Interface

«interface»
ISpeedObserver

+notifySpeedChange() : void

UMLA4SysML ::Interfaces::Inter-
face

FlowSpecification

«flowSpecification»
ITransmission

flowProperties
in gearSelect : Gear

in engineTorque : Torque
out wheelsTorque : Torque

SysML::PortsAndFlows:: Flow-
Specification

ItemFlow SysML::PortsAndFlows::1temFlow
itsEngine
«block» | «block»
Engine Torque Transmission
1
58 OMG SysML™ Adopted Specification



9.2.1.1 Extensions to Internal Block Diagram

Table 9.2 - Extension to Internal Block Diagram

Conjugated Flow port

networkType:ElectricNetworkType

ac:ACVoltage «part» dc:DCVoltage
tr:Transformator

Atomic Flow Ports

Node Name Concrete Syntax Abstract Syntax Reference
SandardPort SysML ::PortsAndFlows:: Stan-
dardPort
ITransCmd
p2 «part»
trans:Transmission
ITransData
FlowPort SysML::PortsAndFlows::FlowPort
«part»
p:ITransmission t:Transmission
Flow port
p:ITransmission «part»
t:Transmission

OMG SysML™ Adopted Specification

59



Table 9.2 - Extension to Internal Block Diagram

Node Name Concrete Syntax Abstract Syntax Reference
ItemFlow SysML::PortsAndFlows::1temFlow
«part»
eng:Engine
p:Torque
Torque
p:Torque
v
«part»

trns:Transmission

«part»
eng:Engine
p:Torque

torge:Torque

p:Torque
N
«part»

trns:Transmission

ItemFlow with an itemProperty

9.3 UML Extensions

9.3.1 Diagram Extensions

9.3.1.1 FlowPort

Flow Ports are interaction points through which input and/or output of items such as data, material or energy may flow.
The notation of FlowPort is a square on the boundary of the owning Block or its usage. The label of the flow port isin
the format portName: portType. Atomic FlowPorts have an arrow inside them indicating the direction of the port with
respect to the owning Block. A non-atomic FlowPort have two open arrow heads facing away from each other (i.e., <>).
The fill color of the square is white and the line and text colors are black, unless the flow port is conjugated, in which
case the fill color of the square is black and the text is in white.

In addition, flow ports can be listed in a special compartment labeled ‘flow ports.” The format of each line is:
in | out | inout portName:portType [{ conjugated} ]

9.3.1.2 FlowProperty

A FlowProperty signifies a single flow element to/from a Block. A FlowProperty has the same notation of a Property only
with a direction prefix (in | out | inout). Flow Properties are listed in a compartment labeled “flowProperties.”

60 OMG SysML™ Adopted Specification



9.3.1.3 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties’ compartment that
lists the flow properties.

9.3.1.4 ItemFlow
An Item Flow describes the flow of items across a connector or an association. The notation of ItemFlow is a black
arrow-head on the connector or association. The arrow head is towards the target element. For an Item Flow with an

itemProperty, the label shows the name and type of the itemProperty (in name:type format). Otherwise the Item Flow is
labeled with the name of the conveyed Classifier.

9.3.2 Stereotypes

9.3.2.1 Package Ports&Flows

Comment: 9836/10036 - Figure M odified

«metaclass» «metaclass»
UML4SysML::Property| UML4SysML::Interface

_Z’X t A

«stereotype»
«metaclass» FlowProperty A «séereo_t]}{p >
UMLA4SysML::Port -direction : FlowDirection owSpecification
A
[ «enumeration»
Flowport FlowDirection
+isAtomic[1] : Boolean in
+direction[1] : FlowDirection out
+isConjugated]0..1] : Boolean -inout

Figure 9.1 - Port Stereotypes

Comment: I ssue 10017 Figure Modified

OMG SysML™ Adopted Specification 61



The UML meta-classes are shown for completeness

+oonveyed
«metaclass»
UML4SysML::Classifier . .
AN 1.7 1.7 +s0Urce
¥ +represented | ‘
«metaclass» umetaclass»
UML4SysML:InformationFlow UMLA4SysML::NamedElement

1 |

+targest 1.7

+

representation

#metaclassy
UML4SysML:Informationltem «stereotyper

ltemFlow
itemProperty[0..1] :Property

Figure 9.2 - ItemFlow Stereotype

9.3.2.2 Block

Description

Blocks may own StandardPorts and/or FlowPorts. See Chapter 8, “Blocks’ for details of Block.
9.3.2.3 Standard Port

Description

StandardPorts are interaction points through which a Block provides and requires a set of services to and from its
environment.

The services that the Block provides to its environment via the StandardPort are specified by a set of provided interfaces.
The services that the Block requires from the environment via the StandardPort are specified by a set of required
interfaces.

An interface may specify operations or signals. If the interface is provided, then external parts may call operations or send
signals via the port to its owning block. If the interface is required, then the block may call operations or send signals via
the port to its environment.

StandardPorts are UML 2.1 ports. As a guideline, it is recommended StandardPorts are used in the context of service
based components and/or architectures, either when specifying software components or applying a service based approach
to system specification.

62 OMG SysML™ Adopted Specification



9.3.2.4 FlowDirection

Description

FlowDirection is an enumeration type that defines literals used for specifying input and output directions. FlowDirection
is used by FlowProperties to indicate if the property is an input or an output with respect to its owner.

Literal Values are
in: Indicates that the flow property is input to the owning Block.
out: Indicates that the flow property is an output of the owning Block.

nout:  Indicates that the flow property is both an input and an output of the owning Block.
9.3.2.5 FlowPort

Description

Flow Ports are interaction points through which input and/or output of items such as data, material or energy may flow.
This enables the owning block to declare which items it may exchange with its environment and what are the interaction
points through which the exchange is made.

Comment: Issue 10032

We distinguish between Atomic Flow Port and a Non-Atomic Flow Port: Atomic Flow Ports relay items that are
classified by a single Block, Value Type, Data Type, or Signal Classifier AtemieHow-Ports+elay-a-sihgleusage-efa-
Bleek—alue-FypeBata—TFype-or-Signal. A Non-Atomic Flow Port relays items of several types as specified by a

FlowSpecification.

The distinction between Atomic and Non-Atomic Flow Ports is made according to the FlowPort’s type: If a FlowPort is
typed by a FlowSpecification then it is Non-Atomic, if the FlowPort is typed by a Block, ValueType, DataType or Signal,
then it is Atomic.

Comment: | ssue 10034/35

FlowPorts and associated Flow Specifications define “what can flow” between the block and its environment. Whereas
ItemFlows specify “what does flow” in a specific usage context.

%heieleeleepa—parameerf—t-heHeelebehawe{ FIowPorts reI ay |tems to/from the assomated connector to/from propertles

of the owning block or parameters of the block behavior if the port is not connected to an internal link that may relay the

1. Other owned behaviors of the owner’s classifier (a Classifier may have additional owned behaviors) are invoked internally
and therefore the port cannot relay itemsto them.

OMG SysML™ Adopted Specification 63



items to an internal part of its owner. This means that every FlowProperty contained within a FlowPort is bound to a

property owned by the block or a parameter of the bl ock behaV|0r Jihe—br-nelmgef—mea‘-lew—prepem%eﬂ—%hepeﬁ&t&

In case of flow properties or Atomic FlowPort of type Signals, inbound properties/atomic FlowPort are mapped to a
Reception of the signal type (or a sub type) of the flow property's type.Outbound flow properties only declare the ability
of the FlowPort to relay the S|gnal over external connectors aItached to it and are not mapped toa property of the flow-
port's owning Block. y v

The Item Flows specified as flowing on a connector between FlowPorts must match to the Flow Properties of the ports at
each end of the connector: the source of the Item Flow should be the port which has an outbound/bidirectional Flow
Property that matches the Item Flow’s type and the target of the Item Flow should be the port that has an inbound/
bidirectional Flow Property that matches the type of the Item Flow.

If a FlowPort is connected to multiple externa and/or internal connectors then the items are propagated (broadcasts) over
all connectors that have matching properties at the other end.

Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic variation
point: One approach is to perform name and type matching, another approach is to explicitly use binding relationships
between the ports properties and behavior parameters or block properties.

Attributes

Comment: | ssue 10036

 direction : FlowDirection [1]
Indicates the direction in which an Atomic FlowPort relaysits items. If the direction is set to in then the items are
relayed from an external connector viathe FlowPort into the FlowPort's owner (or one of its Parts). If the direction
is set to out, then the items are relayed from the FlowPort's owner, via the FlowPort, through an external connector
attached to the FlowPort, and if the direction is set to inout then items can flow both ways. By default, the value is
inout.

» isConjugated : Boolean [0..1]
Indicatesif the flow of items of a non-atomic flow port maintain the directions specified in the FlowSpecification or
the direction of every flow property specified in the FlowSpecification is reversed (IN becomes OUT and vice
versa).
If set to True then all the directions of the FlowProperties specified by the FlowSpecification that types a Non-
Atomic FlowPort arerelayed in the opposite direction (i.e., in flow property istreated as an out flow property by the
FlowPort and vice-versa). By default, the valueis False.
This attribute applies only to Non-Atomic FlowPorts since Atomic Flow Ports have a direction attribute signifying

64 OMG SysML™ Adopted Specification



the direction of the flow.

Comment: | ssue 10037

» /isAtomic : Boolean (derived)
Thisisaderived attribute (derived from the FlowPort’s type). For a FlowPort typed by a FlowSpecification the value
of this attribute is False, otherwise the value is True. Fer-Atemie-FHowPert-thevalue of thisattribute s Fruefor

Constraints

Comment: | ssue 10027

[1] A FlowPort must be typed by a FlowSpecification, Block, Signal, DataType, or ValueType.

[2] If the FlowPort is Atomic (by it's type), then isAtomic=True, the Direction must be specified (has a value), and the
isConjugated is not specified (has no value).

Comment: I ssue 10036, Note this overwrote the change proscribed in | ssue 10027

[3] If the FlowPort is Non-Atomic, and the FlowSpecification typing the port has flow properties with direction in, the
FlowPort direction isin (or out if isConjugated=true). If the flow properties are all out, the FlowPort direction is out
(or inif isConjugated=true). If flow properties are both in and out, the direction isinout.

[4] A Flow Port can be connected (via connectors) to one or more flow ports that have matching flow properties. The
matching of flow properties is done in the following steps:

1. Type Matching: The type being sent is the same type or a sub-type of the type being received

2. Direction Matching: If the connector connects two parts that are external to one another then the direction of the
flow properties must by opposite, or at least one of the ends should be inout. If the connector is internal to the
owner of one of the flow ports, then the direction should be the same or at least one of the ends should be inout

3. Name Matching: In case there is type and direction match to several flow properties at the other end, the property
that have the same name at the other end is selected. If there is no such property then the connection is ambiguous
(ill-formed)

OMG SysML™ Adopted Specification 65



9.3.2.6 FlowProperty

Description

A FlowProperty signifies a single flow element that can flow to/from a Block. A Flow Property’s values are either
received from or transmitted to an external Block. Flow Properties are defined directly on Blocks or Flow Specifications
which are those specifications which type the Flow Ports.

FlowProperties enable item flows across connectors connecting parts of the corresponding block types, either directly (in
case of the property is defined on the block) or via flowPorts. For Block, Data Type and Value Type properties, setting an
out FlowProperty value of a Block usage on one end of a connector will result in assigning the same value of an in
FlowProperty of a Block usage at the other end of the connector, provided the FlowProperties are matched.
FlowProperties of type Signal imply sending and/or receiving of a Signal usages. An out FlowProperty of type Signal
means that the owning Block may broadcast the signal via connectors and an in FlowProperty means that the owning
Block is able to receive the Signal.

Attributes

o direction : FlowDirection
Specifiesif the property value isreceived from an externa Block (direction=in), transmitted to an external Block
(direction=out) or both (direction=inout).

Constraints
[1] FlowProperties are typed by a ValueType, DataType, Block or Signal.
[2] Anin FlowProperty value cannot be modified by its owning Block.

Comment: I ssue 10039

A-

9.3.2.7 FlowSpecification

Description

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by Flow Ports
to specify what flow items can flow via the port.

Constraints
Comment: 9836

[1] FlowSpecifications cannot own operations or receptions (they can only own FlowProperties)

[2] Owned Attribute of a FlowSpecification is a FlowProperty.

66 OMG SysML™ Adopted Specification



9.3.2.8 ItemFlow

Description

An Item Flow describes the flow of items across a connector or an association. It may constrain the item exchange
between Blocks, Block usages or FlowPorts as specified by their FlowProperties. For example, a Pump connected to a
Tank: the Pump has an out FlowProperty of type Liquid and the Tank has an in FlowProperty of type Liquid. To signify
that only Water flow between the Pump and the Tank, we can specify an ItemFlow of type Water on the connector.

One can label an ItemFlow with the Classifiers that may be conveyed. For example: a label Water would imply that
usages of Water might be transmitted over this ItemFlow. In addition, if there is an itemProperty (corresponds to the
conveyed Classifier), then one can label the itemFlow with the itemProperty. For example, a label liquid:Water would
imply that the itemFlow relays Water and this relay is associated with an itemProperty liquid of the IltemFlow, i.e., the
liquid itemProperty is set once Water are relayed.

Attributes

Comment: Issue 10017

e itemProperty :-BloekProperty [0..1]
An optiona property that relates the flowing item to the instances of the connector’s enclosing Block. This property is
applicable only for ItemFlows assigned to connectors, the multiplicity is zero if the ltemFlow is assigned to an
Association

Constraints

Comment: 10031/10514

A tron.A Connector or an Association, or an inherited Associ-
ation must exist between the source and the target of the InformationFlow

[2] AnItemFlow itemProperty istyped by aBlock or by a ValueType.

[3] ItemProperty isaproperty of the Block owning the source and the target HemProperty-is-specified-inthe-context-of-the-
oel e ation.

[4] Thetype of itemProperty should be the same or a sub-type of the conveyedClassifier.

[5] Item property cannot have aval ue if there isonly an assomaﬂon between the source and the target of the I nformat|on-
Fl ow. :

9.4 Usage Examples

9.4.1 Standard Ports

Figure 9.3 is a fragment of the ibd:PwrSys diagram used in the HybridSUV sample (Annex B). The
ecu:PowerControlUnit part has three StandardPorts, each connected to a standard port of another part. Each of the
standard ports in this example has one provided and one required interface that specify the messages that can be sent via
the ports. For example, the |_ICECmds interface specifies the operations setMixture and setThrottle (Figure 9.4). This
interface is provided by the ctrl port of Internal CombustionEngine and is required by the ice port of PowerControlUnit.
Since the ecu:PowerControlUnit part and ice:Internal CombustionEngine part are connected via these ports, the

OMG SysML™ Adopted Specification 67



ecu:PowerControlUnit part may send the messages setThrottle and setMixture to the ice:Internal CombustionEngine part
from its ice port, across the connector to the ctrl port of ice:Internal CombustionEngine. By sending these messages, the
PowerControlUnit can set the throttle and mixture of the InternalCombustionEngine. Inversely, the

Internal CombustionEngine can report (notify) changes in its temperature, RPM and knockSensor by having the
|_ICEData (Figure 9.4) as required interface on its ctrl port and connecting this port to the ice port of the
PowerControlUnit where this interface is provided.

ibd [block] PowerSubsystem [Standard Ports Exampley

epc:ElectricalPower
Controller
ctrl

1

|_IEPCData |I_IEPCCmd

|_TRSMCmd
c3:
|_TRSMData
| EPCCmd |_IEPCData
- c2:
LI |_TRSMData
€pC  trsm
ecu:PowerControlUnit
ice
{1 |_ TRSMCmd
I_ICECmds |_ICEData | ICEData

cl: \)V
"

ctrl
trsm:Transmission

ctrl

] ice:InternalCombustionEngine

|_ICECmds

Figure 9.3 - Usage Example of StandardPorts

68

OMG SysML™ Adopted Specification



bdd [block] PowerSubsystem [ICE Interface Definitionsy

«interface»
I_ICEData

getRPM():integer
getTemperature():Real
isknockSensor():Boolean

«interface»
I_ICECmds

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

Figure 9.4 - Interfaces of the Internal Combustion Engine ctrl Standard Port
9.4.1.1 Atomic Flow Ports and Item Flows

Figure 9.5 istaken from the HybridSUV examplein Appendix B. Here we see how Fuel may flow between the Fuel TankAssy
and the Internal CombustionEngine. The Fuel Pump g ects Fuel viapl port of Fuel TankAssy, the Fuel flows acrossthe

fuel SupplyLine connector to the fuel FittingPort of Internal CombustionEngine and from there it is distributed via other atomic
flow ports of type Fuel to internal parts of the engine. Some of the fuel isreturned to the Fuel TankAssy from the fuelFitting
port across the fuel ReturnL ine connector. Note that it is possible to connect a single flow port to multiple connectors: in this
exampl e the direction of the flow via the fuelFitting port on the external connectorsis implied by the direction of the flow
ports on the other side of the fuel lines as well as by the directions of the item flows on the fuel lines. The direction of the flow
on theinternal connectorsisimplied by the direction of the atomic flow ports of the engine’s internal parts.

Figure 9.5 also shows the usage of ItemFlow, here each of the item flows has an item property (fuel Supply:Fuel and
fuel Return:Fuel) that signify the actual flow of fuel across the fud lines.

Comment: I ssue 9780 Figure Updated

OMG SysML™ Adopted Specification 69



ibd [block] PowerSubsystem [Fuel Distribution Detail] /
ice:InternalCombustionEngine
TJ] fil:Fuellnjector
7/
' !
/ / fi2:Fuellnjector
7 [
/L
/- L
yad - T fi3:Fuellnjector
allocatedFrom |
«connector»fdist:
-
\ >~ i
\ ~ I —~ - fi4:Fuellnjector
~ ™~
™~
\ a1 =~
~~ ~
\ fraFuelRail fre:FuelRegulator
allocatedFrom N
«connector»fueIDellvery Lwh F
\\ i
N N\ fuelFitting:Fuel
ft:FuelTankAssy AN
- Jj 1F\I > ~N
plirue JuelSupplyLine:
Fuel fp:FuelPump \> PpYy
T I fueISuppIy Fus{ fuelReturnLine: <
sz Fuel fuelReturn:Fuel

Figure 9.5 - Usage of Atomic Flow Ports in the HybridSUV Sample - ibd:FuelDist diagram
9.4.1.2 Non-Atomic Flow Ports and Flow Specification

Figure 9.6 taken from “ Sample Problem” shows a way to connect the PowerControlUnit to other parts over a CAN bus.
Since connections over buses are characterized by broadcast asynchronous communications, flow ports are used to
connect the parts to the CAN bus. To specify the flow between the flow ports, we need to specify Flow Specifications as
done in Figure 9.7. Here the flow specification has three flow properties: an out flow property of type signal (ICEData)
and two in flow properties of type float. This allows the Internal CombustionEngine to transmit an ICEData signal via its
fp flow port which will be transmitted over the CAN bus to the ice port of PowerControlUnit (a conjugated flow port
typed by the FS_ICE flow specification). This single signal carries the temperature, rpm and knockSensor information of
the engine. In addition, the PowerControlUnit can set the mixture and throttle of the Internal CombustionEngine via the
mixture and throttlePosition flow properties of the FS_ICE flow specification.

70 OMG SysML™ Adopted Specification



ibd [block] PowerSubsystem [CAN Bus description])

epc:ElectricalPower

trsm:Transmission

ice:InternalCombustionEngine

ecu:PowerControlUnit

Controller
Al A !
fp:FS_EPC fp:FS_TRSM fp:FS_ICE
:CAN_Bus
epc:lFS_EPC etrsm:IFS_TRSM ice:IFS ICE
A -

Figure 9.6 - Using Flow Ports to Connect the PowerControlUnit to the ElectricalPowerController, Transmission and

InternalCombustionEngine over a CAN bus

bdd CAN Bus FlowSpecifications

J

«flowSpecification»
FS_ICE

flowProperties
out engineData:ICEData
in mixture:Real
in throttlePosition:Real

«signal»
ICEData

rpm:integer
temperature:Real
knockSensor:Boolean

Figure 9.7 - Flow Specification for the InternalCombustionEngine flow port to allow its connection over the CAN bus

OMG SysML™ Adopted Specification

71



72

OMG SysML™ Adopted Specification



10 Constraint Blocks

10.1 Overview

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability models
with other SysML models. Constraint blocks can be used to specify a network of constraints that represent mathematical
expressions such as { F=m*a} and {a=dv/dt} which constrain the physical properties of a system. Such constraints can
also be used to identify critical performance parameters and their relationships to other parameters, which can be tracked
throughout the system life cycle.

A constraint block includes the constraint, such as { F=m*a}, and the parameters of the constraint such as F, m, and a.
Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example, a definition for
Newton's Laws may be used to specify these constraints in many different contexts. Reusable constraint definitions may
be specified on block definition diagrams and packaged into general-purpose or domain-specific model libraries. Such
constraints can be arbitrarily complex mathematical or logical expressions. The constraints can be nested to enable a
constraint to be defined in terms of more basic constraints such as primitive mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a
constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of a block, such as a mass, that
provide values for the parameters. The constrained properties, such as mass or response time, typically have smple value
types that may also carry units, dimensions, and probability distributions. A pathname dot notation can be used to refer to
nested properties within a block hierarchy. This allows a value property (such as an engine displacement) that may be
deeply nested within a containing hierarchy (such as vehicle, power system, engine) to be referenced at the outer
containing level (such as vehicle-level equations). The context for the usages of constraint blocks must also be specified
in a parametric diagram to maintain the proper namespace for the nested properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established by a
local or global clock which produces a continuous or discrete time value property. Other values of time can be derived
from this clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as calendar time
can be derived from this global time property. SysML includes the time model from UML, but other UML specifications
offer more specialized descriptions of time which may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state
results in a different set of constraint equations. This can be accommodated by specifying constraints which are
conditioned on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to
compare alternative solutions. The objective function can constrain measures of effectiveness or merit and may include a
weighting of utility functions associated with various criteria used to evaluate the alternatives. These criteria, for example,
could be associated with system performance, cost, or desired physical characteristics. Properties bound to parameters of
the objective function may have probability distributions associated with them that are used to compute expected or
probabilistic measures of the system. The use of an objective function and measures of effectiveness in parametric
diagrams are included in Annex C: Non-normative Extensions.

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The
interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) must be provided.
An expression may rely on other mathematical description languages both to capture the detailed specification of

OMG SysML™ Adopted Specification 71



mathematical or logical relations, and to provide a computational engine for these relations. In addition, the block
constraints are non-causal and do not specify the dependent or independent variables. The specific dependent and
independent variables are often defined by the initial conditions, and left to the computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. The properties of this block
define the parameters of the constraint. The usage of a constraint block is distinguished from other parts by a box having
rounded corners rather than the square corners of an ordinary part. A parametric diagram is a restricted form of internal
block diagram that shows only the use of constraint blocks along with the properties they constrain within a context.

10.2 Diagram Elements

Tablesin the following sections provide a high-level summary of graphical elements available in SysML diagrams. A more
complete definition of SysML diagram elements, including the different forms and combinations in which they may appear, is
provided in Annex G: BNF Diagram Syntax Definitions.

10.2.1 Block Definition Diagram

The diagram elements described in this section are additions to the Block Definition diagram described in Chapter 8,
Blocks.

10.2.1.1 Graphical Nodes

Table 10.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Metamodel Reference
ConstraintBlock SysML::ConstraintBlocks::
«constraint» ConstraintBlock

ConstraintBlock1l

constraints

{{L1} x>y}
nested: ConstraintBlock2

parameters
x: Real
y: Real

10.2.2 Parametric Diagram

The diagram elements described in this section are additions to the Internal Block Diagram described in Chapter 8:
Blocks. The Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the
restrictions described in “Parametric Diagram” on page 74.

72 OMG SysML™ Adopted Specification



10.2.2.1 Graphical Nodes

Table 10.2 - Graphical nodes defined in Parametric diagrams.

Element Name Concrete Syntax Example Metamodel Reference
ParametricDiagram SysML::Constraint-
par Blockl Blocks:: ConstraintBlock
SysML::Blocks::Block
length: Real

[

C1: Constraintl
width: Real

D—

y:

ConstraintProperty SysML::ConstraintBlocks::

Fx: Real ConstraintProperty

C1: Constraintl

y: Real

«constraint»
C1: Constraintl

| ]x: Real

| ]y: Real

10.3 UML Extensions

10.3.1 Diagram Extensions

10.3.1.1 Block Definition Diagram

Constraint block definition

The <<constraint>> keyword on a block definition states that the block is a constraint block. An expression that specifies
the constraint may appear in the constraints compartment of the block definition, using either formal statementsin some
language, or informal statements using text. This expression can include a formal reference to a language in braces as
indicated in Table 10.1. Parameters of the constraint may be shown in a compartment with the predefined compartment
label “parameters.”

Parameters com partment

Constraint blocks support a special form of compartment, with the label “ parameters,” which may contain declarations for
some or all of its constraint parameters. Properties of a constraint block should be shown either in the constraints
compartment, for nested constraint properties, or within the parameters compartment.

OMG SysML™ Adopted Specification 73



10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain
constraint properties and their parameters, along with other properties from within the internal block context. All
properties that appear, other than the constraints themselves, must either be bound directly to a constraint parameter, or
contain a property that is bound to one (through any number of levels of containment).

Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical
shape distinguishes a constraint property from all other properties and avoids the need to show an explicit «constraints»
keyword. Otherwise, this notation is equivalent to the standard form of an internal property with a «constraint» keyword
shown. Compartments and internal properties may be shown within the shape just as for other types of internal properties.

«constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle with the
«constraint» keyword preceding its name. Parameters are shown within a constraint property using the standard notations
for internal properties. The stereotype ConstraintProperty is applied to a constraint property, but only the shorthand
keyword «constraint» is used when shown on an internal property.

Small square box notation for an internal property

A value property may optionally be shown by a small square box, with the name and other specifications appearing in a
text string close to the square box. The text string for such a value property may include all the elements that could
ordinarily be used to declare the property in a compartment of a block, including an optional default value. The box may
optionally be shown with one edge flush with the boundary of a containing property. Placement of property boxesis
purely for notational convenience, for example to enable simpler connection from the outside, and has no semantic
significance. If a connector is drawn to a region where an internal property box is shown flush with the boundary of a
containing property, the connector is always assumed to connect to the innermost property.

10.3.2 Stereotypes

Comment: Issue 10017 Figure Modified

Package ConstraintBlocks

«stereotype» «stereotype»
SysML::Blocks::Block UMLA4SysML::Property
«stereotype» «stereotype»

ConstraintBlock ConstraintProperty

Figure 10.1 - Stereotypes defined in SysML ConstraintBlocks package

74 OMG SysML™ Adopted Specification



10.3.2.1 ConstraintBlock

Description\

Comment: | ssue 10040

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to
constrain properties of other blocks. A constraint block typically defines one or more constraint parameters, which are
bound to properties of other blocks in a surrounding context where the constraint is used. Binding connectors, as defined
in Chapter 8: Blocks, are used to bind each parameter of the constraint block to a property in the surrounding context. All
properties of a constraint block are constraint parameters, with the exception of constraint properties that hold internally
nested usages of other constraint blocks.

Constraints

Comment: | ssue 10053

[1] A constraint block may not own any structural or behaviodral elements beyond the properties that define its constraint
parameters, constraint properties that hold internal usages of constraint blocks, binding connectors between its internally
nested constraint parameters, constraint expressions that define an interpretation for the constraint block, and general-
purpose model management and crosscutting elements.

10.3.2.2 ConstraintProperty

Description

Comment: | ssue 10041

A constraint property is a property of any block that istyped by a constraint block. It holds a localized usage of the
constraint block. Binding connectors may be used to bind the parameters of this constraint block to other properties of the
block that contains the usage.

Constraints

Comment: | ssue 10017

OMG SysML™ Adopted Specification 75



[1] A property to which the ConstraintProperty stereotype is applied must be owned by a SysML Block.

[2] The ConstraintProperty stereotype must be applied to any property of a SysML Block which istyped by a Constraint-
Block.

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they must have the
«constraint» keyword shown. The strings in braces in the compartment labeled “constraints” are ordinary UML
constraints, using a special compartment to hold the constraint. This is shown in Figure 10.2. These particular constraints
are specified only in an informal language, but a more formal language such as OCL or MathML could also be used. The
compartment labeled parameters shows the parameters of this constraint which are bound on the parametric diagram.

bdd [package] HSUVAnalysis [Definiton of Dynamicsy

«constraint»
StraightLine
VehicleDynamics

parameters
w hlpow r:Horsepw r
Cd:Real
Cf:Real
tw :Weight
acc:Accel
vel:Vel
incline:Real

pwr acc
pos vel

«constraint»
PowerEquation

«constraint»
PositionEquation

«constraint»
VelocityEquation

«constraint»
AccelerationEquation

constraints

{tp = whipowr - (Cd*v) -

constraints

{x(n+1) = x(n)+v*5280/3600*dt}

constraints
{v(n+1 = v(n)+a*32*3600/5280*dt}

constraints
{a = (550/32)*tp(hp)*delta-

(Cf*tw *v)} tw }
parameters parameters parameters w lWEigEtarameters
w hlpow r:Horsepw r delta-t: Time delta-t: Time dellta-t"ﬁme
Cd:Real v:Vel v:Vel L
Cf:Real x:Dist a:Accel tp.Hors:epw r
tw :Weight aAccel
tp:Horsepw r
v:Vel
i:Real

Figure 10.2 - Constraint block definitions in a Block Definition diagram

76

OMG SysML™ Adopted Specification




10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Figure 10.3 shows the use of constraint properties on a parametric diagram (note that thisis a subset of the corresponding
diagram in the sample problem). This diagram shows the use of nested property references to the properties of the parts;

parametric diagrams can make use of the nested property name notation to refer to multiple levels of nested property

containment, as shown in this example. A parametric diagram is similar to an internal block diagram with the exception
that the only connectors that may be shown are binding connectors connected to constraint parameters on at least one end.

The Sample Problem in Sample Problem provides definitions of the containing EconomyContext block for which this

parametric diagram is shown.

par [block] EconomyContext )

delta-t

ad.HSUV .PayloadCapacity

volume: adrag:Aero

DragEquation
Cd

pcap: volume:
[ ) [ )

ad.drivingConditions.

pl:PayloadEquation road.incline

incline:

| |
psgrwt: cgowt:

cgowt: f \

incline:

Cd: | dt:

rb:RegenBrake
EfficiencyEquation

ad.HSUV .Pow erSybsystem.
InternalCombustionEngine.
ICEEfficiency

psgrwt: w:TotalWeight [

0 o/

vdw : fw:

ad.HSUV.VehicleDryWeight

ad.HSUV.Pow erSubsystem.
FuelTank.Fuelweight

ebpwr: n_ice:
[H | E acc: acc: 5 U U
dyn:StraightLine o vel: vel: fe:FuelEfficiency mpg:
VehicleDynamics w hlpw r: w hlpw r: Equation
1 M g 1 1
w: | o X n_eg: n_em:
ad.HSUV .position
tw: | Cf:
ad.HSUV .Pow erSybsystem.
| | BlectricMotorGenerator.
rdrag:Rolling GeneratorEfficiency
FrictionEquation
ad.HSUV .Pow erSybsystem.
ElectricMotorGenerator.
MotorEfficiency
ad.HSUV.mpg

Table 10.3 - Constraints on a parametric diagram

OMG SysML™ Adopted Specification

77



78

OMG SysML™ Adopted Specification



Part Ill - Behavioral Constructs

Comment: | ssue 10046

This Part specifies the dynamic, behavioral constructs used in SysML behavioral diagrams, including the activity diagram,
sequence diagram, state machine diagram, and use case diagram. The behavioral constructs are defined in Chapter 11,
“Activities,” Chapter 12, “Interactions,” Chapter 13, “State Machines,” and Chapter 14, “Use Cases.” The activities chapter
defines the extensionsto UML 2-0 activities, which represent the basic unit of behavior that is used in activity, sequence, and
state machine diagrams. The activity diagram is used to describe the flow of control and flow of inputs and outputs among
actions. The state machines chapter describes the constructs used to specify state based behavior in terms of system states and
their transitions. The interactions chapter defines the constructs for describing message based behavior used in sequence
diagrams. The use case chapter describes behavior in terms of the high level functionality and uses of a system, that are further
specified in the other behavioral diagrams referred to above.

OMG SysML™ Adopted Specification 79



80

OMG SysML™ Adopted Specification



11  Activities

11.1 Overview

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It provides
aflexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to UML 2.1
Activity diagrams. For additional information see extensions for Enhanced Functional Flow Block Diagramsin Annex C:
Non-normative Extensions.

11.1.1 Control as Data

SysML extends control in activity diagrams as follows.

e InUML 2.1 Activities, control can only enable actions to start. SysML extends control to support disabling of actions
that are already executing. Thisis accomplished by providing a model library with atype for control values that are
treated like data (see ControlValue in Figure 11.9).

« A control valueis an input or output of acontrol operator, which is how control acts as data. A control operator can
represent a complex logical operation that transforms its inputs to produce an output that controls other actions (see
ControlOperator in Figure 11.8).

11.1.1.1 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally applicable
to any sort of distributed flow of information and physical items through a system. These are:

» Restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a behavior (see
Rate in Figure 11.8). Thisincludes both discrete and continuous flows, either of material, energy, or information.
Discrete and continuous flows are unified under rate of flow, asistraditionally done in mathematical models of
continuous change, where the discrete increment of time approaches zero.

« Extension of object nodes, including pins, with the option for newly arriving values to replace values that are aready
in the object nodes (see Overwrite in Figure 11.8). SysML also extends object nodes with the option to discard values
if they do not immediately flow downstream (see NoBuffer in Figure 11.8). These two extensions are useful for
ensuring that the most recent information is avail able to actions by indicating when old values should not be kept in
object nodes, and for preventing fast or continuously flowing values from collecting in an object node, as well as
modeling transient values, such as electrical signals.

Probability
SysML introduces probability into activities as follows (see Probability in Figure 11.8):

» Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node will
traverse an edge.

« Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter set.

OMG SysML™ Adopted Specification 81



Activities as classes

In UML 2.1, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on
block definition and class diagrams, and participate in generalization and associations. SysML clarifies the semantics of
composition association between activities, and between activities and the type of object nodes in the activities, and
defines consistency rules between these diagrams and activity diagrams. See section 11.3.1.

Timelines

Comment: Issue 10012

The simple time model in UML can be used to represent timing and duration constraints on actions in an activity model.
These constraints can be notated as constraint notes in an activity diagram. Although UML 2 timing diagram was not
included in this version of SysML, it can complement SysML behavior diagrams to notate this information. More
sophisticated SysML modeling techniques can incorporate constraint blocks from Chapter 10, "Constraint Blocks' to
specify resource and related constraints on the properties of the inputs, outputs, and other system properties. (Note: refer
to "ObjectNode" on page 91 for constraining properties of object nodes).

82 OMG SysML™ Adopted Specification



11.2 Diagram Elements

Table 11.1 - Graphical nodes included in activity diagrams

Comment: I ssue 10595 Table updated

Node Name

Concrete Syntax

Abstract Syntax Reference

Action, CallBehavior Action,
AcceptEventAction, Send-
SignalAction

) action name :
Action behavior name
Event X

Signal

TimeEvent

1

UMLA4SysML::Action,
UML4SysML::CallBehaviorAction
UML4SysML::AcceptEventAction
UML4SysML::SendSignalAction

Activity UMLA4SysML::Activity

act
ActivityFinal @ UML4SysML::ActivityFinalNode
ActivityNode See ControlNode and ObjectNode. UML4SysML::ActivityNode

ActivityParameterNode

UML4SysML::ActivityParameter -
Node

ControlNode

See DecisionNode, FinalNode, ForkNode, I nitial-

Node, JoinNode, and MergeNode.

UML4SysML::ControlNode

OMG SysML™ Adopted Specification

83




Table 11.1 - Graphical nodes included in activity diagrams

Comment: I ssue 10595 Table updated

Node Name

Concrete Syntax

Abstract Syntax Reference

ControlOperator

«controlOperators»

CallBehaviorAction

«controlOperator»
act

SysML::Activities::ControlOper a-
tor

DecisionNode

UML4SysML ::DecisionNode

[quard]
[else]
FinalNode See ActivityFinal and FlowFinal. UML4SysML::FinalNode
FlowFinal ® UML4SysML::FlowFinalNode
ForkNode UML4SysML::ForkNode
—
—
ﬁ
InitialNode °® UMLA4SysML::InitialNode
JoinNode = UML4SysML::JoinNode
—
{joinspec=...}
84 OMG SysML™ Adopted Specification



Table 11.1 - Graphical nodes included in activity diagrams

Comment: I ssue 10595 Table updated
Node Name Concrete Syntax Abstract Syntax Reference
isControl UML4SysML::Pin.isControl
{ control } { control }
isStream UML4SysML ::Parameter.isstream

{ stream }

{ stream }

constraint

«local Postcondition» |ﬁ

%
act ‘
{ stream }
Local pre- and _ UML4SysML::Action.local Precon-
postconditions «'Ofﬁpf_eoond't'onﬂﬁ dition,
constraint .
_ UML4SysML::Action.local Post-

condition

M er geNode

UML4SysML::MergeNode

OMG SysML™ Adopted Specification

85




Table 11.1 - Graphical nodes included in activity diagrams

Comment: I ssue 10595 Table updated
Node Name Concrete Syntax Abstract Syntax Reference
NoBuffer SysML::Activities::NoBuffer

«noBuffer»

«noBuffer»

ObjectNode UMLA4SysML::OjectNode and its
children, SysML::
Activities::ObjectNode

object node name :
type name
[state, state ...]

pin name : type name .
[state, state ...] [|  Action ]

Optional SysML::Activities::Optional

«optional»

act

«optional»

«optional»

OverWrite SysML::Activities::Overwrite

«overwrite» «overwrite»

86 OMG SysML™ Adopted Specification




Table 11.1 - Graphical nodes included in activity diagrams

Comment: I ssue 10595 Table updated
Node Name Concrete Syntax Abstract Syntax Reference
Parameter Set UMLA4SysM L ::Parameter Set
i Action I
] 1
act J
Praobability SysM L::Activities::Probability

{ probability =
valueSpecification }

{ probability =
valueSpecification }

{ probability =

act

valueSpecification }

{ probability =

valueSpecification }

OMG SysML™ Adopted Specification

87




Table 11.1 - Graphical nodes included in activity diagrams

Comment: I ssue 10595 Table updated
Node Name Concrete Syntax Abstract Syntax Reference
Rate

«continuous»
Object Node

«discrete»
Object Node

Object Node

{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

«rate»
rate = constant
rate = distribution

Object Node

act

Action
{ rate = constant }
{ rate = distribution }
«continuous»

«discrete»

{ rate = constant }

{ rate = distribution }
«continuous»

«discrete»

{rate = constant }

«continuous»
«discrete»

{ rate = distribution }

SysML::Activities::Rate,
SysML::Activities::Continuous,
SysML::Activities::Discrete

Table 11.2 - Graphical paths included in activity diagrams

Path Name

Concrete Syntax

Abstract Syntax Reference

ActivityEdge

See ControlFlow and ObjectFlow

UMLA4SysML::ActivityEdge

ControlFlow

O
S

UML4SysML::ControlFlow
SysML::Activities::Control Flow

88

OMG SysML™ Adopted Specification




Table 11.2 - Graphical paths included in activity diagrams

Path Name

Concrete Syntax

Abstract Syntax Reference

ObjectFlow

(OO
(—C)

UM L 4SysML ::ObjectFlow

Praobability

{ probability = valueSpecification }

—0_

{ probability = valueSpecification }
{ probability = valueSpecification }

Action  []

{ probability = valueSpecification }

{ probability = valueSpecification }

Object Node

\

{ probability = valueSpecification }

SysML ::Activities::Probability

Rate

——

{ rate = constant }
{ rate = distribution }
«continuous»
«discrete»

SysML::Activities::Rate,
SysML ::Activities::Continuous,
SysML::Activities::Discrete

OMG SysML™ Adopted Specification

89



Table 11.3 - Other graphical elements included in activity diagrams

Abstract Syntax Reference

Element Name Concrete Syntax
In Block Definition SysML::Activities, Diagram Usage
Diagrams, Activity, for Block Definition Diagrams
Association bdd
«activity» «activity»
activity name activity name
object
action node
name name
«activity» «block»
activity name block name

ActivityPartition

Partition Name

[ (Partition Name) ]

UM L4SysML::ActivityPartition

InterruptibleActivity
Region

UM L4SysML::InterruptibleActivity-
Region

11.3 UML Extensions

11.3.1 Diagram Extensions
The following specify diagram extensions to the notations defined in Chapter 17: Profiles & Model Libraries.

90

OMG SysML™ Adopted Specification



11.3.1.1 Activity

Notation

In UML 2.1, all behaviors are classes, including activities, and their instances are executions of the activity. This follows
the general practice that classes define the constraints under which the instances must operate. Creating an instance of an
activity causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates the
corresponding execution, and vice versa. Terminating an execution also terminates the execution of any other activities
that it invoked synchronoudly, that is, expecting a reply.

Activities as classes can have associations between each other, including composition associations. Composition means
that destroying an instance at the whole end destroys instances at the part end. When composition is used with activity
classes, the termination of execution of an activity on the whole end will terminate executions of activities on the part end
of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition
association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of an
activity on the whole end is terminated, then the executions of the activities on the part end are also terminated. The upper
multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior that can be invoked
by the containing activity. The lower multiplicity on the part end is always zero, because there will be some time during
the execution of the containing activity that the lower level activity is not executing. See Constraints sections below.

Comment: Issue 10447

a' aalala Y na-the o ord
v v v

for-clarity—asshowntaFgure 21 -Activities in block definition diagrams appear as regular blocks, except the "activity"
keyword may be used to indicate the Block stereotype is applied to an activity, as shown in Figure 11.1. See example in
“Usage Examples’ on page 99. This provides a means for representing activity decomposition in away that is similar to
classical functional decomposition hierarchies. The names of the CallBehaviorActions that correspond to the association
can be used as end names of the association on the part end. Activities in block definition diagrams er¢lass-diagrams can
also appear with the same notation as CallBehaviorAction, except the rake notation can be omitted, if desired. Also see
use of activities in block definition diagrams that include ObjectNodes.

bdd
«activity» «activity»
activity name activity name
action action action action
name name name name
«activity» «activity» «activity»
activity name activity name activity name

Figure 11.1 - Block definition diagram with activities as blocks.

OMG SysML™ Adopted Specification 91



Constraints
Comment: I ssue 10447

The following constraints apply when composition associations in block definition diagrams-er—<lass-diagrams are defined
between activities:

[1] The part end name must be the same as the name of a synchronous CallBehaviorAction in the composing activity. If the
action has no name, and the invoked activity is only used once in the calling activity, then the end name is the same as
name of the invoked activity.

[2] The part end activity must be the same as the activity invoked by the corresponding CallBehaviorAction.
[3] Thelower multiplicity at the part end must be zero.

[4] The upper multiplicity at the part end must be 1 if the corresponding action invokes a nonreentrant behavior.
11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those behaviors, as
shown in Figure 11.2.

«stereotype name»

behavior name

H_‘

Figure 11.2 - CallBehaviorAction notation.with behavior stereotype

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked behavior
using the colon notation shown in Figure 11.3.

action name : behavior name

’_H

Figure 11.3 - CallBehaviorAction notation.with action name

92 OMG SysML™ Adopted Specification



11.3.1.3 ControlFlow

Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Figure 11.3.

mm _______

Figure 11.4 - Control flow notation
11.3.1.4 ObjectNode

Notation
Comment: | ssue 10447

See Section 11.3.1.1concerning activities appearing in block definition diagrams eretass-diagrams. Associations can be
used between activities and classifiers (elasses-blocks, or datatypes) that are the type of object nodes in the activity, as
shown in Figure 11.5. This supports linking the execution of the activity with items that are flowing through the activity
and happen to be contained by the object node at the time the link exists. The names of the object node that correspond
to the association can be used as end names of the association on the end towards the object node type. Like any
association end or property, these can be the subject of parametric constraints, design values, units and dimensions. The
upper multiplicity on the object node end restricts the number of instances of the item type that can reside in the object
node at one time, which must be lower than the maximum amount allowed by the object node itself. The lower
multiplicity on the object node end is always zero, because there will be some time during the execution of the containing
activity that there is no item in the object node. The associations may be composition if the intention is to delete instances
of the classifier flowing the activity when the activity is terminated. See example in “Usage Examples’ on page 99.

bdd

«activity» «activity»
activity name activity name

object ) object
node object ggfgt node
name node name name
name
«block» «block» «block»
block name block name block name

Figure 11.5 - Class or block definition diagram with activities as classes associated with types of object nodes

OMG SysML™ Adopted Specification 93



Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as
shown in Figure 11.6.

object node name : type name

Figure 11.6 - ObjectNode notation in activity diagrams

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 11.7, when the
object node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the pins
notated by the object node. Stereotype applying to object nodes can also appear in object nodes, and applies to all the pins
notated by the object node.

«stereotype name»

object node name

Figure 11.7 - ObjectNode notation in activity diagrams

Constraints
Comment: I ssue 10447

The following constraints apply when associations in block definition diagrams aned-etass-diagrams are defined between
activities and classifiers typing object nodes:

[1] The end name towards the object node type is the same as the name of an object node in the activity at the other end.
[2] The classifier must be the same as the type of the corresponding object node.

[3] Thelower multiplicity at the object node type end must be zero.

[4] The upper multiplicity at the object node type end must be equal to the upper bound of the corresponding object node.

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this chapter and which metaclasses they extend. The descriptions,
attributes, and constraints for each stereotype are specified below.

Comment: Issue 10584 Figure Change

94 OMG SysML™ Adopted Specification



Package Activities

<<metaclass>> <<metaclass>> <<metaclass>>
UML4SysML:: UML4SysML:: UML4SysML::

Parameter ActivityEdge ParameterSet

<<stereotype>> <<stereotype>> <=stereotype>>
Optional Rate Probability
rate ; ValueSpecification probability : ValueSpecification
| |
<<stereotype>> <<stereotype>>
Continuous Discrete

<<metaclass>> <<metaclass>> <<metaclass>>
UML4SysML:: UML4SysML .. UML4SysML::
Behavior Operation ObjectNode
f | |
<<stereotype>=> <<stereotype>> =<stereotype==
ControlOperator NoBuffer Overwrite

Figure 11.8 - Abstract Syntax for SysML Activity Extensions
11.3.2.1 Continuous

Continuous rate is a special case of rate of flow, see Rate, where the increment of time between items approaches zero. It
is intended to represent continuous flows that may correspond to water flowing through a pipe, a time continuous signal,
or continuous energy flow. It isindependent from UML streaming, see “Rate” on page 98. A streaming parameter may or
may not apply to continuous flow, and a continuous flow may or may not apply to streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close
to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of values that
flow through an activity. In particular, the value may represent as small a number as needed, for example to simulate
continuous material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In
particular, token flow on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms
for numerical solvers of ordinary differential equations, such as Runge-Kutta.

OMG SysML™ Adopted Specification 95



11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used to
enable and disable other actions. When the «controlOperator» stereotype is applied to behaviors, the behavior takes
control values as inputs or provides them as outputs, that is, it treats control as data (see “ControlValue” on page 99).
When the «control Operator» stereotype is not applied, the behavior may not have a parameter typed by ControlVValue. The
«control Operator» stereotype also applies to operations, with the same semantics.

The control value inputs do not enable or disable the control operator execution based on their value, they only enable
based on their presence as data. Pins for control parameters are regular pins, not UML control pins. Thisis so the control
value can be passed into or out of the action and the invoked behavior, rather than control the starting of the action, or
indicating the ending of it.

Constraints

[1] When the «control Operator» stereotype is applied, the behavior or operation must have at |east one parameter typed by
ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter typed by
Control Value.

[2] A behavior must have the «control Operator» stereotype applied if it is amethod of an operation that has the
«control Operator» stereotype applied.

11.3.2.3 Discrete

Discrete rate is a special case of rate of flow, see Rate, where the increment of time between items is non-zero. Examples
include the production of assemblies in a factory and signals set at periodic time intervals.
Constraints

[1] The «discrete» and «continuous» stereotypes cannot be applied to the same element at the same time.
11.3.2.4 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are refused by
outgoing edges, or refused by actions for object nodes that are input pins. Thisistypically used with fast or continuously
flowing data values, to prevent buffer overrun, or to model transient values, such as electrical signals. For object nodes that are
the target of continuous flows, «nobuffer» and «overwrite» have the same effect. The stereotype does not override UML token
offering semantics, just indicates what happens to the token when it is accepted. When the stereotype is not applied, the
semanticsisasin UML, specifically, tokens arriving at an object node that are refused by outgoing edges, or action for input
pins, are held until they can leave the object node.

Constraints

[1] The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.

96 OMG SysML™ Adopted Specification



11.3.2.5 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node replaces the ones
already there (afull object node has as many tokens as allowed by its upper bound). Thisistypically used on an input pin
with an upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds greater than one, the
token replaced is the one that would be the last to be selected according to the ordering kind for the node. For FIFO
ordering, this is the most recently added token, for LIFO it is the least recently added token. A null token removes all the
tokens already there. The number of tokens replaced is equal to the weight of the incoming edge, which defaultsto 1. For
object nodes that are the target of continuous flows, «overwrite» and «nobuffer» have the same effect. The stereotype
does not override UML token offering semantics, just indicates what happens to the token when it is accepted. When the
stereotype is not applied, the semanticsis asin UML, specifically, tokens arriving at object nodes do not replace ones that
are already there.

Constraints

[1] The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.
11.3.2.6 Optional

Description
Comment: I ssue 9620

When the «optional» stereotype is applied to parameters, the lower multiplicity must be equal to zero. This means the
parameter is not required to have a value for the activity or any behavior to begin execution. Otherwise, the lower
multiplicity must be greater than zero, which is called “required”. The absence of this stereotype indicates a constraint,
see below.

Constraints

[1] A parameter with the «optional» stereotypes applied must have multiplicity.lower equal to zero, otherwise
multiplicity.lower must be greater than zero.

11.3.2.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an
expression for the probability that the edge will be traversed. These must be between zero and one inclusive, and add up
to one for edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be
given values at runtime. These must be between zero and one inclusive, and add up to one for output parameter sets of the
same behavior at the time the probabilities are used.

Constraints

[1] The «probability» stereotype can only be applied to activity edges that have decision nodes or object nodes as sources, or
to output parameter sets.

OMG SysML™ Adopted Specification 97



[2] When the «probability» stereotype is applied to an activity edge, then it must be applied to all edges coming out of the
same source.

[3] When the «probability» stereotypeis applied to an output parameter set, it must also be applied to all the parameter sets of
the behavior or operation owning the origina parameter set.

[4] When the «probability» stereotype is applied to an output parameter set, all the output parameters must be in some
parameter set.

11.3.2.8 Rate

Description
Comment: | ssue 10584

When the «rate» stereotype is applied to an activity edge, it specifies the expected value of the number of objects and
values that traverse the edge per time interval, that is, the+ate-they the expected value rate at which they leave the source
node and arrive at the target node. It does not refer to the rate at which a value changes over time. When the stereotype is
applied to a parameter, the parameter must be streaming, and the stereotype gives the number of objects or values that
flow in or out of the parameter per time interval while the behavior or operation is executing. Streaming is a characteristic
of UML behavior parameters that supports the input and output of items while a behavior is executing, rather than only
when the behavior starts and stops. The flow may be continuous or discrete, see the specialized ratesin 11.3.2.1
(“Continuous’) Seetion+132.9Medel-ibrary,—enpage-99, and “Discrete” on page 96. The «rate» stereotype has a
rate property of type ValueSpecification HastanreeSpeettieation. The values of this property must be instances of classifiers
stereotyped by «valueType» or «distributionDefinition», see Chapter 8: Blocks on page 33-and-they-must-use-units-and-
dimenstens-appropriate-to-rates-ef-flew. In particular, the denominator for units used in the rate property must be time

units.

Constraints

[1] When the «rate» stereotype is applied to a parameter, the parameter must be streaming.

[2] Therate of aparameter must be less than or equal to rates on edges that come into or go out from pins and parameters
nodes corresponding to the parameter.

Comment: 10008

98 OMG SysML™ Adopted Specification



11.3.3 Model Libraries
The SysML model library for activities is shown in Figure 11.9.

<<enumeration>>
ControlValue
disable
enable

Figure 11.9 - Control values.
11.3.3.1 ControlValue

Description

The ControlValue enumeration is a type for treating control values as data (see Section 11.3.2.2) and for UML control
pins. It can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on. The possible
runtime values are given as enumeration literals. Modelers can extend the enumeration with additional literas, such as
suspend, resume, with their own semantics.

The disable literal means a termination of an executing behavior that can only be started again from the beginning
(compare to suspend). The enable literal means to start a new execution of a behavior (compare to resume).

Constraints
[1] UMLA4SysML::ObjectNode::isControl Typeis true for object nodes with type ControlVa ue.

11.4 Usage Examples

The following examples illustrate modeling continuous systems (see Continuous Systems in Section 11.1). Figure 11.10
shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the key on starts
two behaviors, Driving and Braking. These behaviors execute until the key is turned off, using streaming parameters to
communicate with other behaviors. The Driving behavior outputs a brake pressure continuously to the Braking behavior
while both are executing, as indicated by the «continuous» rate and streaming properties (streaming is a characteristic of
UML behavior parameters that supports the input and output of items while a behavior is executing, rather than only
when the behavior starts and stops). Brake pressure information also flows to a control operator that outputs a control
value to enable or disable the Monitor Traction behavior. No control pins are used on Monitor Traction, so once it is
enabled, the continuously arriving enable control values from the control operator have no effect, per UML semantics.
When the brake pressure goes to zero, disable control values are emitted from the control operator. The first one disables
the monitor, and the rest have no effect. While the monitor is enabled, it outputs a modulation frequency for applying the
brakes as determined by the ABS system. The rake notations on the control operator and Monitor Traction indicate they
are further defined by activities, as shown in Figures 11.11 and 11.12. An alternative notation for this activity
decomposition is shown in Figure 11.13.

OMG SysML™ Adopted Specification 99



act Operate Car )

( \I
i @ 1 1He)
Turn Driving off |
Key To On
{stream } «continuous»
Brake
Pressure
{stream }

Braking
«controlOperator»
Enable on Brake

I
I
I
I
I
I
I
I
I
Pressure >0 + |
I
I
I
I
I
I
I
I
I

«continuous»
Modulation
Frequency

Monitor Traction

’_I_‘

Figure 11.10 - Continuous system example 1.

The activity diagram for Monitor Traction is shown in Figure 11.11. When Monitor Traction is enabled, it begins listening
for signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the left, which
begin listening automatically when the activity is enabled. A traction index is calculated every 10 ms, which is the slower
of the two signal rates. The accelerometer signals come in continuously, which means the input to Calculate Traction does
not buffer values. The result of Calculate Traction is filtered by a decision node for a threshold value and Calculate
Modulation Frequency determines the output of the activity.

Comment: I ssue 10054 Figure Modified

100 OMG SysML™ Adopted Specification



act Manitar Traction )

[loss {strearn}
. Traction erraction] Caleulate M adulation
Calculate Traction Ind Modulation =
noex \/ Frequency reqUENCY
[else] .|
{rate = per 10ms} ®
Input from “continuous

optical
SENSOr
an wiheel

Input fram )
P Acceleration
accelerometer

Figure 11.11 - Continuous system example 2.

—== Angular Velocity

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 11.12. The decision node
and guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that
output an enabling or disabling control value from the activity. The edges coming out of the decision node indicate the
probability of each branch being taken.

«controlOperator»
act Enable on Brake Pressure > 0

[Brake Pressure > 0]

i — 200
{probability = 10%} («ValueSpemflcatlonActlon»
K enable

Brake < —————= ControlValue
Pressure

(«ValueSpemflcatlonActlon»
disable
[else]

{probability = 90%}

Figure 11.12 - Continuous system example 3

Figure 11.13 shows a block definition diagram with composition associations between the activities in Figures 11.10,
11.11, and 11.12, as an alternative way to show the activity decomposition of Figures 11.10, 11.11, and 11.12. Each
instance of Operating Car is an execution of that behavior. It owns the executions of the behaviors it invokes
synchronously, such as Driving. Like all composition, if an instance of Operating Car is destroyed, terminating the
execution, the executions it owns are also terminated.

OMG SysML™ Adopted Specification 101



bdd

«activity»
oc Operating Car 201
0.1 B
oc oc ocC
1.1/ 0.1 1.1
enableOnBrakePressure>0
turnKeyOn ivi .
0.1 yo driving /' braking monitorTraction
- 0.1 0.1
0.1
«activity» «activity» «activity» «activity» «controlOperator »
Turn i ; : Enable on Brake
Drivin Brakin Monitor
Key toOn 9 g Traction Pressure >0
mt
mt
1.1 1.1

calculateTraction

0.1
/

«activity»

Calculate
Traction

calculateModulationFrequency
0.1

«activity»
Calculate
Modulation
Frequency

Figure 11.13 - Example block definition diagram for activity decomposition

Figure 11.14 shows a block definition diagram with composition associations between the activity in Figure 11.10 and the
types the object nodes in that activity. In an instance of Operating Car, which is one execution of it, instances of Break
Pressure and Modulation Frequency are linked to the execution instance when they are in the object nodes of the activity.

Comment:

Issue 10585 Figure Modified

bdd

wactvityn

Operating Car

mf
0.1

wvaluetypen

Brake Pressure

wvaluetypen

ModulationFrequency

Figure 11.14 - Example block definition diagram for object node types

102

OMG SysML™ Adopted Specification



12 Interactions

12.1 Overview

Interactions are used to describe interactions between entities. UML 2.1 Interactions are supported by four diagram types
including the Sequence Diagram, Communications Diagram, Interaction Overview Diagram, and Timing Diagram. The
Sequence Diagram is the most common of the Interaction Diagrams. SysML includes the Sequence Diagram only and
excludes the Interaction Overview Diagram and Communication Diagram, which were considered to offer significantly
overlapping functionality without adding significant capability for system modeling applications. The Timing Diagram is
also excluded due to concerns about its maturity and suitability for system engineering needs.

The sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a system.
This diagram represents the sending and receiving of messages between the interacting entities called lifelines, where
time is represented along the vertical axis. The sequence diagrams can represent highly complex interactions with special
constructs to represent various types of control logic, reference interactions on other sequence diagrams, and
decomposition of lifelines into their constituent parts.

12.2 Diagram Elements

12.2.1 Sequence Diagram

Table 12.1 - Graphical nodes included in sequence diagramsl.

Node Name Concrete Syntax Abstract Syntax Reference
SequenceDiagram UMLA4SysML::Interaction

sd Interactionl /

Lifeline UMLA4SysML::Lifeline

b1l:Blockl

OMG SysML™ Adopted Specification 101




Node Name Concrete Syntax Abstract Syntax Reference
Execution UML4SysML ::ExecutionSpecification
Specification
b1:Blockl
T
|
|
|
|
|
|
b1:Blockl
|
execSpec
|
i
InteractionUse UMLA4SysML::InteractionUse
ref
Interaction3

1. Tableiscompliant with UML 2-8 Superstructure source document dated 050704.

102

OMG SysML™ Adopted Specification




Node Name

Concrete Syntax

Abstract Syntax Reference

CombinedFragment

sd Interactionl )

‘bl:BIockl‘ ‘ b2:Block2 ‘ ‘ b3:Block3 ‘
T T

|
|
alt |
|

UMLA4SysML::CombinedFragment

A combined fragment is defined by an
interaction operator and corresponding
interaction operands.

Interaction Operators include:
seq - Weak Sequencing
alt - Alternatives
opt - Option
break - Break
par - Pardlel
strict - Strict Sequencing
loop - Loop
critical - Critical Region
neg - Negative
assert - Assertion
ignore - Ignore
consider - Consider

Satelnvariant /
Continuations

UML4SysML::Continuation

UML4SysML::Satel nvariant

Coregion

s[u]:B

m3

m2

AAAAAEA o 44}44444

UMLA4SysML::CombinedFragment (under
parallel)

OMG SysML™ Adopted Specification

103




Node Name Concrete Syntax Abstract Syntax Reference

CreationEvent UML4SysML::CreationEvent
DestructionEvent UML4SysML ::DestructionEvent
create

b2:Block2

DurationConstraint UMLA4SysML::Interactions
Duration
Observation :User

Code d=duration

CardOut {0..13}

/ OK

TimeConstraint UML4SysML::Interactions
TimeObservation

/ OK
{t..t+3}

| |
| |
| |
| |
| |
| |
| |
| |
| |
| CardOut {0..13} ‘
} } t=now
| |
| |
|
|
|
|
I

104 OMG SysML™ Adopted Specification




Table 12.2 - Graphical paths included in sequence diagram

Path Name Concrete Syntax Abstract Syntax Reference
M essage UML4SysML::Message
‘ b1:Blockl ‘ ‘ b2:Block2 ‘
i i
: asyncSignal :
l I
| |
i syncCall(param) i
]
I I
T 1
! !
I
Lost Message UML4SysML::Message
Found Message
lost
found
GeneralOrdering UMLA4SysML::GeneralOrdering
........ ’_ e e e oo eae

12.3 UML Extensions

12.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Chapter 17, Profiles & Model Libraries.

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
Timing Diagram

Communication diagrams and interaction overview diagrams are excluded from SysML. The other behavioral diagram
representations were considered to provide sufficient coverage without introducing these diagram kinds. Timing Diagrams
are also excluded due to concerns about their maturity and suitability for system engineering needs.

OMG SysML™ Adopted Specification

105




12.4 Usage Examples

12.4.1 Sequence Diagrams

The diagram in Figure 12.1 illustrates the overall system behavior for operating the vehicle in sequence diagram format.
To manage the complexity, a hierarchical sequence diagram is used which refers to other interactions that further

elaborate the system behavior. (“ref StartVehicleBlackBox”) CombinedFragments are used to illustrate that steering can
take place at the same time as controlling the speed and that controlling speed can be either idling, accelerating/cruising,

or braking.

sd DriveBlackBox )

driver:Driver hybridSUV:HybridSUV

g

re StartVehicleBlackBox

par
alt controlS eed) [self.oclinState(idle)]
ref Idle
[self.oclinState(acgelerating/cruising)]
ref Accelerate/Cruise

[self.oclinState(braking)]

&

ref Brake

ref Steer

ref Park/ShutdownVehicle

Figure 12.1 - Hierarchical Sequence Diagram illustrating system behavior for “Operate the vehicle” use case

The diagram in Figure 12.2 shows an interaction that includes events and messages communicated between the driver and
vehicle during the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further
elaborates what happens inside the “hybridSUV” when the vehicle is started.

106 OMG SysML™ Adopted Specification



sd StartVehicIeBIackBox)

] ] hybridSUV:HybridSUV
driver:Driver ref StartVehicleWhiteBox

turnignitionToStart
1: StartVehicle

Figure 12.2 - Black box interaction during “starting the Hybrid SUV”

The diagram in Figure 12.3 shows the sequence of communication that occurs inside the HybridSUV when the vehicle is
started successfully.

sd StartVehicIeWhiteBox)
ecu:PowerControlUnit epc:ElectricalPowerController
1: |
StartVehicle - |
1.1:Enable
1.2:read
< — — - — 7

Figure 12.3 - White box interaction for “starting the Hybrid SUV”

OMG SysML™ Adopted Specification 107



108 OMG SysML™ Adopted Specification



13 State Machines

13.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state
transition systems. The state machine represents behavior as the state history of an object in terms of its transitions and

states. The activities that are invoked during the transition, entry, and exit of the states are specified along with the

associated event and guard conditions. Activities that are invoked while in the state are specified as “do Activities,” and
can be either continuous or discrete. A composite state has nested states that can be sequentia or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language. The
standard UML state machine concept (called behavior state machines in UML) are thought to be sufficient for expressing

protocols.

13.2 Diagram Elements

13.2.1 State Machine Diagram

No differences between SysML State Machine Diagrams and UML 2.1 State Machine Diagrams.

Table 13.1 - Graphical nodes included in state machine diagrams.

Node Name

Concrete Syntax

Abstract Syntax Reference

StateMachineDiagram

stm OwnedStateMachinelJ

UMLA4SysML::SateMachines

Choice pseudo state

[Id>10]

[ld<=10] \1/ \l/

UMLA4SysML::PseudoSate

OMG SysML™ Adopted Specification

109



Node Name Concrete Syntax Abstract Syntax Reference
Composite state UMLA4SysML::Sate
CompositeStatel
Statel
State2
Entry point UMLA4SysML::PseudoState
again O
Exit point UMLA4SysML::PseudoSate
®aborted
Final state UML4SysML::FinalState
History, Deep UMLA4SysML::PseudoSate
Pseudo state

History, Shallow pseudo
state

UMLA4SysML::PseudoSate

Initial pseudo state

UMLA4SysML ::PseudoState

Junction pseudo state

® & - (® @

UMLA4SysML::PseudoState

Recelve signal action

Req(ld)

UMLA4SysML::Transition

110

OMG SysML™ Adopted Specification



Node Name

Concrete Syntax

Abstract Syntax Reference

Send signal action

TurnOn >

UMLA4SysML::Transition

Statel, State2

Action UMLA4SysML::Transition
MinorReq := Id;
Region UMLA4SysML::Region
S
|
|
|
I
|
I
|
|
]
]
]
]
[}
]
]
Simple state UMLA4SysML::Sate
Statel
State2
entry / entryActivity
do / doActivity
exit / exitActivity
~.
Satelist UMLA4SysML::Sate

Sate Machine

ReadAmountSM

aborted

UMLA4SysML::SateMachine

OMG SysML™ Adopted Specification

111



Node Name Concrete Syntax Abstract Syntax Reference
Terminate node UMLA4SysML::PseudoSate
Submachine state UMLA4SysML::Sate
ReadAmount : borted
ReadAmountSM aborte

Table 13.2 - Graphical paths included in state machine diagrams

Path Name Concrete Syntax Abstract Syntax Reference
Transition UMLA4SysML::Transition

trigger[guard]\activity

13.3 UML Extensions

None.
13.4 Usage Examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in the
state machine diagram in Figure 13.1.

112 OMG SysML™ Adopted Specification



stm HSUVOperationaIStates/

keyOff>©

Refines

«requirement»
PowerSource
Management

Nominal
states only

Ve

Cruising

engageBrake

H Off
I
start shutOff
Operate
accelerate stopped
releaseBrake
Accellerating/ Braking

Figure 13.1 - High level view of the states of the HybridSUV

OMG SysML™ Adopted Specification

113



114 OMG SysML™ Adopted Specification



14 Use Cases

14.1 Overview

The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is
realized by the subject providing a set of services to selected actors. The use case can also be viewed as functionality and/
or capabilities that are accomplished through the interaction between the subject and its actors. Use case diagrams include
the use case and actors and the associated communications between them. Actors represent classifier roles that are
external to the system that may correspond to users, systems, and or other environmental entities. They may interact
either directly or indirectly with the system. The actors are often specialized to represent a taxonomy of user types or
external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and the use
case represent the communications that occurs between the actors and the subject to accomplish the functionality
associated with the use case. The subject of the use case can be represented via a system boundary. The use cases that are
enclosed in the system boundary represent functionality that is realized by behaviors such as activity diagrams, sequence
diagrams, and state machine diagrams.

The use case relationships are “communication,” "include," "extend," and "generalization." Actors are connected to use
cases via communication paths, that are represented by an association relationship. The "include" relationship provides a
mechanism for factoring out common functionality which is shared among multiple use cases, and is always performed as
part of the base use case. The "extend" relationship provides optional functionality, which extends the base use case at
defined extension points under specified conditions. The "generalization” relationship provides a mechanism to specify
variants of the base use case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the
packages.

14.2 Diagram Elements

Comment: Issue 9777 - Modified Actor graph

Comment: | ssue 9852

OMG SysML™ Adopted Specification 115



14.2.1 Use Case Diagram

Table 14.1 - Graphical nodes included in Use Case diagrams

Node Name

Concrete Syntax

Abstract Syntax Reference

Use Case

UseCaseName

UML4SysML::UseCase

Use Case with
ExtensionPoints

extension points

pL, p2

UML4SysML::UseCase

Actor UML4SysML::Actor
«actor»
ActorName
ActorName
Subject Role name on
ClassifierUML4SysM L::Classifier
SubjectName

Comment: | ssue 9849
Comment: | ssue 9850
Comment: |ssue 9851
116

OMG SysML™ Adopted Specification



Table 14.2 - Graphical paths included in Use Case diagrams

Condition: {bodlean expression}
extension point: p1, p2

]

—_—— —_— — —

Path Type concr ete Syntax Abstract Syntax Reference
Communication UML4SysML ::Association
path
Include Subelassef-UML4SysM L :: IncludeBireeted-

| P

«include»
——————————— >
Extend Subelassef-UM L4SysM L :: ExtendBireeted-
P
~_«extend»

Extend with Subelassef-UM L4SysM L :: ExtendBireeted-
Condition Peletensaa

Generalization

UML4SysML::Kerne

14.3 UML Extensions

There are no SysML extensions to UML 2.1 use cases.

OMG SysML™ Adopted Specification

117



14.4 Usage Examples

uc HSUVTopLeveIUseCases)

Hybrid SUV

Maintain the

_— | Operate the
vehicle
Driver
Insure the
- — vehicle
Registered
Owner
Register the
vehicle
Maintainer

vehicle

InsuranceCompany

Department
Of Motor
Vehicles

Figure 14.1 - Top level use case diagram for the Hybrid SUV subject

Figure 14.1 is a top-level set of use cases for the Hybrid SUV System. Figure 14.2 shows the decomposition of the
Operate the Vehicle use case. In this diagram, the frame represents the package that contains the lower level use cases.
The convention of naming the package with the same name as the top level use case has been employed. This practice
offers an implicit tracing mechanism that complements the explicit trace relationshipsin SysML.

118

OMG SysML™ Adopted Specification



uc OperateTheVehicIQ

Hybrid SUV

Start the vehicle

Driver \\ «include»

Figure 14.2 - Operate the Vehicle use case at a lower level of abstraction
Comment: I ssue 10056

In the figure 14.2 the Extend relationship specifies that the behavior of a use case may be extended by the behavior of
another (usually supplementary) use case. The extension takes place at one or more specific extension points defined in
the extended use case. Note, however, that the extended use case is defined independently of the extending use case and
is meaningful independently of the extending use case. On the other hand, the extending use case typically defines
behavior that may not necessarily be meaningful by itself. Instead, the extending use case defines a set of modular
behavior increments that augment an execution of the extended use case under specific conditions. In Figure 14.2, the
"Start the Vehicle" use case is modeled as an extension of "Drive the Vehicle." This means that there are conditions that
may exist that require the execution of an instance of "Start the Vehicle" before an instance of "Drive the Vehicle" is
executed.

OMG SysML™ Adopted Specification 119



The use cases "Accelerate”, "Steer" and "Brake" are modeled using the include relationship. Includeis a
DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into the
behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of its
owning use case. The including use case may only depend on the result (value) of the included use case. This value is
obtained as a result of the execution of the included use case. This means that "Accelerate”, "Steer" and "Brake" are all
part of the normal process of executing an instance of "Drive the Car."

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on the
approach of an individua modeler.

120 OMG SysML™ Adopted Specification



Part IV - Crosscutting Constructs

This Part specifies cross-cutting constructs that apply to both structure and behavior. These constructs are defined in Chapter
15, “Allocations,” Chapter 16, “Requirements,” and Chapter 17, “ Profiles & Model Libraries.” The Allocations chapter
defines a basic allocation relationship that can be used to alocate a set of model elementsto another, such as allocating
behavior to structure or allocating logical to physical components. The Requirements chapter specifies constructs for system
reguirements and their relationships. The Profiles and Model Libraries chapter specifies the approach to further customize and
extend SysML for specific applications.

OMG SysML™ Adopted Specification 121



122 OMG SysML™ Adopted Specification



15 Allocations

15.1 Overview

Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements within
the various structures or hierarchies of a user model. The concept of “alocation” requires flexibility suitable for abstract
system specification, rather than a particular constrained method of system or software design. System modelers often
associate various elements in a user model in abstract, preliminary, and sometimes tentative ways. Allocations can be
used early in the design as a precursor to more detailed rigorous specifications and implementations. The allocation
relationship can provide an effective means for navigating the model by establishing cross relationships, and ensuring the
various parts of the model are properly integrated.

This chapter does not try to limit the use of the term “allocation,” but provides a basic capability to support allocation in
the broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and flows. A
typical example is the allocation of activities to blocks (e.g., functions to components). This chapter specifies an
extension for an alocation relationship and selected subclasses of allocation, along with the notation to represent
allocations in a SysML model.

15.2 Diagram Elements

Comment: Issue 9781

The diagram elements defined in this chapter may be shown on some or al SysML diagram types, in addition to the
diagram elements that are specific for each diagram type.

OMG SysML™ Adopted Specification 123



15.2.1 Representing Allocation on Diagrams

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name

Concrete Syntax

Abstract Syntax Reference

Allocated stereotype

«allocated»

SysML::Allocation:Allocated

in compartment of a
Block.

allocatedFrom
«elementType»ElementName
allocatedTo
«elementType»ElementName

Named
Element
Allocation derived SysML::Allocation:Allocated
properties displayed
BlockName

Allocation derived
properties displayed
in Comment.

allocatedFrom
«elementType»ElementName
allocatedTo
«elementType»ElementName

-
4
-

SysML::Allocation:Allocated

allocatedFrom
«elementType»ElementName

ElementName
Allocation derived SysML::Allocation:Allocated
properties displayed «block»
in compartment of BlockName
Part on I nter nal Block
Diagram. PartName

Allocation derived
properties displayed
in compartment of
Action on Activity
Diagram.

ActionName ‘

L allocatedTo ‘

«elementType»ElementName

SysML::Allocation:Allocated

124

OMG SysML™ Adopted Specification




Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference
Allocation Activity SysML::Allocation:Allocate
Partition ActivityPartition

«allocate»

:ElementName
Allocation (general) SysML::Allocation:Allocate
Client — — — Supplier
«allocate»

15.3 UML Extensions

15.3.1 Diagram Extensions

15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency. “from” is
the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for client and
supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from” the element being allocated “to” the element that is the target of the
allocation.

15.3.1.3 Allocated Property Compartment Format

When properties of an «allocated» model element are displayed in a property compartment, a shorthand notation is used
as shown in Table 15.1. This shorthand groups and displays the AllocatedFrom properties together, then the AllocatedTo
properties. These properties are shown without the use of brackets {}.

15.3.1.4 Allocated Property Callout Format

When an «allocate» property component is not used, a property callout may be used. An «allocate» property callout uses

the same shorthand notation as the «allocate» property compartment. This notation is also shown in Table 15.1. For
brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may be elided from the diagram.

OMG SysML™ Adopted Specification 125



15.3.1.5 AllocatedActivityPartition Label
For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name

(«allocateActivityPartition»). For brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may
be elided from the diagram.

15.3.2 Stereotypes

Package Allocations

UML4SysML::Abstraction UMLASYSML:
NamedElement
«stereotype»

«stereotype» Allocated

Allocate

/allocatedFrom:NamedElement[*]
/allocatedTo:NamedElement[*]

Figure 15.1 - Abstract syntax extensions for SysML Allocation

UML4SysML::ActivityPartition

!

«stereotype»
AllocateActivityPartition

Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition
15.3.2.1 Allocate(from Allocations)

Description

Allocate is a dependency based on UML::abstraction. It is a mechanism for associating elements of different types, or in
different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing future design
activity. It is expected that an «allocate» relationship between model elements is a precursor to a more concrete
relationship between the elements, their properties, operations, attributes, or sub-classes.

Allocate is a stereotype of a UML4SysML::Abstraction which is permissible between any two NamedElements. It is
depicted as a dependency with the “allocate” keyword attached to it.

126 OMG SysML™ Adopted Specification



Allocate is directional in that one NamedElement is the “from” end (no arrow), and at least one NamedElement is the “to”
end (the end with the arrow).

The following paragraphs describe types of allocation that are typical in system engineering.

Behavior allocation relates to the systems engineering concept segregating form from function. This concept requires
independent models of “function” (behavior) and “form” (structure), and a separate, deliberate mapping between elements
in each of these models. It is acknowledged that this concept does not support a standard object oriented paradigm, nor is
this always even desirable. Experience on large scale, complex systems engineering problems have proven, however, that
segregation of form and function is a valuable approach. In addition, behavior allocation may also include the allocation
of Behaviors to BehavioralFeatures of Blocks, e.g., Operations.

Flow allocation specifically maps flows in functional system representations to flows in structural system representations.

Flow between activities can either be control or object flow. The figures in the Usage Examples show concrete syntax for
how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow is not specifically addressed
in SysML, but may be represented by relating an ItemFlow to the Control Flow using the UML relationship
InformationFlow.realizingActivityEdge.

Note that allocation of ObjectFlow to Connector isan Allocation of Usage, and does NOT imply any relation between any
defining Blocks of ObjectFlows and any defining associations of connectors.

The figures in the Usage Examples illustrate an avail able mechanism for relating the objectNode from an activity diagram
to the itemFlow on an internal block diagram. ItemFlow is discussed in Chapter 9, Ports and Flows.

Pin to Port allocation is not addressed in this release of SysML.

Structure allocation is associated with the concept of separate “logical” and “physical” representations of a system. It is
often necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it must then be mapped to another complete
assembly hierarchy at a more concrete level. The set of models supporting complex systems development may include
many of these levels of abstraction. This specification will not define “logical” or “physical” in this context, except to
acknowledge the stated need to capture allocation relationships between separate system representations.

Constraints
A single «allocate» dependency shall have only one supplier (from), but may have one or many clients (to).

If subtypes of the «allocate» dependency are introduced to represent more specialized forms of allocation then they
should have constraints applied to supplier and client as appropriate.

15.3.2.2 Allocated(from Allocations)

Description

«allocated» is a stereotype that applies to any NamedElement that has at |east one allocation relationship with another
NamedElement. «allocated» elements may be designated by either the /from or /to end of an «allocate» dependency.

The «allocated» stereotype provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any «allocate» dependency. This stereotype provides for the properties “allocatedFrom”
and “allocatedTo,” which are derived from the «allocate» dependency.

OMG SysML™ Adopted Specification 127



Attributes
The following properties are derived from any «allocate» dependency:
 /allocatedTo:NamedElement[*]

The element types and names of the set of elements that are clients (“to” end of the concrete syntax) of an «allocate»
whose client is extended by this stereotype (instance). This property is the union of all clients to which this instance
isthe supplier, i.e., there may be more than one /allocatedTo property per alocated model element. Each allocatedTo
property will be expressed as «elementType» ElementName.

 /allocatedFrom:NamedElement[*]

Reverse of alocatedTo: the element types and names of the set of elements that are suppliers (from) of an «allocate»
whose supplier is extended by this stereotype (instance). The same characteristics apply as to /allocatedTo. Each
allocatedFrom property will be expressed as «elementType» ElementName.

For uniformity, the «elementType» displayed for the /allocatedTo or /allocatedFrom properties should be from the
following list, as applicable. Other «elementType» designations may be used, if none of the below apply.

«activity», «objectFlow», «control Flow», «objectNode»
«block», «itemFlow», «connector», «port», «flowPort», «atomicFlowPort», «interface», «value»

Note that the supplier or client may be an Element (e.g., Activity, Block), Property (e.g., Action, Part), Connector, or
BehavioralFeature (e.g., Operation). For this reason, it is important to use fully qualified names when displaying /
allocatedFrom and /allocatedTo properties. An example of a fully qualified name is the form
(PackageName::ElementName.PropertyName). Use of such fully qualified makes it clear that the «allocate» is referring to
the definition of the element, or to it's specific usage as a property of another element.

15.3.2.3 AllocateActivityPartition(from Allocations)

Description

Comment: Issue 9793 - Table 15.1 / Figure 15.4 modified

AllocateActivityPartition is used to depict an <allocate> relationship on an Activity diagram. The
AIIocaIeActlwtyPartltlon is astandard UML2 Act|V|tyPart|t|on with modified constraints as stated in the paragraph

Constraints

An Action appearing in an «AllocateActivityPartition» will be the /supplier (from) end of an «allocate» dependency. The
element that represents the «AllocateA ctivityPartition» will be the /client (to) end of the same "allocate» dependency. In
the «AllocateActivityPartition» name field, Properties are designated by the use of a fully qualified name (including
colon, e.g. "part_name:Block_Name"), and Classifiers are designated by a ssmple name (no colons, e.g. "Block_Name").

128 OMG SysML™ Adopted Specification



The «AllocateActivityPartition» maintains the constraints, but not the semantics, of the UML2::ActivityPartition.
Classifiers or Properties represented by an «AllocateActivityPartition» do not have any direct responsibility for
invoking behavior depicted within the partition boundaries. To depict this kind of direct responsibility, the modeler
is directed to the UML 2 Superstructure specification, OMG formal/05-07-04, section 12.3.10 ActivityPartition,
Semantics topic.

15.4 Usage Examples

The following examples depict alocation relationships as property callout boxes (basic), property compartment of a
Block (basic), and property compartments of Activities and Parts (advanced). Figure 15.3 shows generic allocation for
Blocks.

allocatedFrom
«elementType»Element2 Blockl
allocatedTo
«elementType»Element3 allocatedFrom
7 «elementType»Element2
v allocatedTo

«elementType»Element3

Figure 15.3 - Generic Allocation, including /from and /to association ends

15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocation of Actions to Parts are depicted in Figure 15.4. Note that the AllocateActivityPartition, if
used in this manner, is unambiguously associated with behavior allocation.

OMG SysML™ Adopted Specification 129



allocatedFrom

allocatedFrom
«activity»Activity 6

«elementType»Element2 i
allocatedTo I/
«elementType»Element3 «block» r
7 Block4 [
4 i
4 I
]
'I
Blockl Part5
«block»
Blockl Block4
allocatedFrom
«elementType»Element2 Part5
allocatedTo
«elementType»Element3 allocatedFrom
«activity»Activity 6

Figure 15.4 - Behavior allocation

15.4.2 Allocate Flow

Comment: |ssue 9792

Figure 15.5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of

ependert of - cetlowaHoeation i

ot shown as

an

allocatedTo
«block»Block4.Part5

allocatedTo
«part»Part2:Block1

4

’
’

Activity

Actionl

«activity»
Activityé

allocatedTo

«part»Part2:Block1

allocatedFrom
«block»Block4.Part5

example, but it is not

act ActivityO [Examplely

allocatedTo
«connector»Connector8

|

prohibited

,
Y A /
«activity»

«allocate»
Part2:Block1

ibd [block] BlockO [Examplely

«block»
Block5

allocatedFrom
«objectFlow»ObjectFlow3

\
\
\
\

Connector8

Part6

Part7

Figure 15.5 - Example of flow allocation from ObjectFlow to Connector

130

OMG SysML™ Adopted Specification



act ActivityO [Examplezy

ObjectFlow3
Action1 | | ———--7-3 ] Action2
|
|
[

allocatedTo
«itemFlow»ItemFlow9

ibd [block] BlockO [ExampIeZy

«block»
Block5

allocatedFrom
«objectFlow» ObjectFlow3

|

\
\
\
\

ItemFlow9

Part6

Part7

Figure 15.6 - Example of flow allocation from ObjectFlow to ltemFlow

allocatedTo
«block»Block10

7

allocatedTo allocatedTo
block»Block6 block»Block7

act Activity0 ) )
[Example3] bdd [block] BlockO [Example3] Blockn
. «block» Block10
ObjectNode4 Block5

allocatedFrom
«objectNode»ObjectNode4

«block» «block»
Block6 Block?7
out:Block10 in:Block10

allocatedFrom
«activity» Activityl

allocatedFrom
«activity» Activity2

Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty

15.4.2.1 Allocating Structure

Systems engineers have a frequent need to allocate structural model elements (e.g., blocks, parts, or connectors) to other
structural elements. For example, if a particular user model includes an abstract logical structure, it may be important to
show how these model elements are allocated to a more concrete physical structure. The need also arises, when adding

detail to a structural model, to allocate a connector (at a more abstract level) to a part (at a more concrete level).

OMG SysML™ Adopted Specification

131



ibd [package] Blockl [Abstract to Concrete Structural )
Allocation]

«block»
AbstractExample

Part2 ckirA

—

Part3

«block»
ConcreteExample

—«allocate» —|

—
__«allocate»

— «allocate»
«allocate»

——«allocate» __|

Figure 15.8 - Example of Structural Allocation

15.4.2.2 Automotive Example

Comment:

132

I ssue 10065 Figure Updated

OMG SysML™ Adopted Specification



Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing
power are allocated to blocks within the Hybrid SUV, as shown in Figure 15.9. This example is consistent with Sample

s

Problem.
wilzerDefined ) Swimlane Diagrams
act ProvideP ower [with Swimlane Allocation]
o ./
9“| i wallocates wallocates wallocates |
PoverC ontrolll it IntgrnalC ombustionEngi | ElecicalPowerContr | Elechricall otorGener
| ne oller ator |
wcontinuouss | |
eed
g a2 ProvideGas |
| Power |
wconfnuouse |
vehCond | ; a4 Provide
scontinuougs al Cfomml ElectricPover
| gThrottie ElectricPower
wcontinuousy |
battCond |
wcontinuouss acontinuouss |
| eThrottle driveCurrent
at:Proportion |
| Power T ——— ] /
: T —— | ]
scontinuousy ///,/rﬂ /
accelPosttion |
| / |
allocatedTo
|\ uitemﬂumh:ﬂedﬁcﬁunenﬁ 5 e

wcontinuouss
gazDrivePover

wcontinuouss
driveF ower

\ wcontinuouss

elecD rivePower

transh odeC md

Figure 15.9 - AllocateActivityPartitions (Swimlanes) for HybridSUV Cellarette Example

OMG SysML™ Adopted Specification

133



7

7
s
'
'

<<diagramDescription>§ N
version="0.1"
description="allocation of
behavior and connectors to
elements of power subsystem"
reference="null”
completeness="partial. Power
subsystem elements that have
no allocation yet have been
elided”

ibd [block] PowerSubsystem [Power Functional AIIocation])

epc:ElectricalPower
Controller

allocatedFrom

«activity»Control
ElectricPower
A1

ecu:PowerControlUnit %

allocatedFrom
«activity»Proportion
PowerLoad

epc:IFS_EPC
ice:IFS_ICE

fp:FS_EPC

allocatedFrom
«objectNodex»driveCurrent

etrsm:IFS_TRSM

\
\ emg:ElectricalMotor
Generator
i2:Electric i1:Electric
Current Current allocatedFrom
«activity»Convert
ElectricToPower
can:CAN_Bus fp:FS_TRSM o
trsm:Transmission
allocatedFrom
«connector»cl:
«connector»c2:
«connector»c3:
fp:FS_ICE . . .
Po_ Hg ice:InternalCombustionEngine

allocatedFrom
«activity»ConvertGasToPower

Figure 15.10 - Internal Block Diagram Showing Allocation for HybridSUV Accelerate Example

15.4.3 Tabular Representation

The table shown in Figure 15.11 is provided as a specific example of how the «allocate» dependency may be depicted in
tabular form, consistent with the automotive example above.

table [activity] ProvidePower [Allocation Tree for Provide Power )

Activities]
type name end [relation end [type name
activity al:ProportionPower from |allocate to [block PowerControlUnit
activity a2:ProvideGas Power from |allocate to  |block Internal CombustionE ngine
activity a3:ControlElectricPower |from |allocate to |block ElectricalP owerController
activity a4:ProvideElectricPower |from |allocate to  |block ElectricalMotorGenerator
objectNode |driveCurrent from |allocate to |itemFlow|il:ElectricCurrent

Figure 15.11 - Allocation Table (Tree) Showing Allocation for Hybrid SUV Cellarette Example

134

OMG SysML™ Adopted Specification



The allocation table can also be shown using a sparse matrix style as in the following example shown in Figure 15.12

matrix [activity] ProvidePower [Allocation Tree for Provide Power Activities/])

Source Target
PowerControlUnit InternalCombu | Electrical ElectricalMo | I1:ElectricC
stionEngine PowerContr | torGenerator | urrent
oller

Al:ProportionPower dlocate

A2:ProvideGasPower allocate

A3:ControlElectricPo allocate

wer

A4:ProvideElectri Pow allocate

er

driveCurrent allocate
Figure 15.12 - Allocation Matrix Showing Allocation for Hybrid SUV Cellarette Example
OMG SysML™ Adopted Specification 135




136 OMG SysML™ Adopted Specification



16 Requirements

16.1 Overview

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify afunction
that a system must perform or a performance condition a system must achieve. SysML provides modeling constructs to
represent text based requirements and relate them to other modeling elements. The requirements diagram described in this
chapter can depict the requirements in graphical, tabular, or tree structure format. A requirement can also appear on other
diagrams to show its relationship to other modeling e ements. The requirements modeling constructs are intended to
provide a bridge between traditional requirements management tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard regquirement includes
properties to specify its unique identifier and text requirement. Additional properties such as verification status, can be
specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements as
well asto other model elements. These include relationships for defining a requirements hierarchy, deriving requirements,
satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the UML
namespace containment mechanism. This relationship enables a complex requirement to be decomposed into its
containing child requirements. A composite requirement may state that the system shall do A and B and C, which can be
decomposed into the child requirements that the system shall do A, the system shall do B, and the system shall do C. An
entire specification can be decomposed into children requirements, which can be further decomposed into their children
to define the requirements hierarchy.

There is areal need for requirement re-use across product families and projects. Typical scenarios are regulatory,
statutory or contractual requirements that are applicable across products and/or projects and requirements that are re-used
across product families (versions/variants). In these cases, one would like to be able to reference a requirement, or
requirement set in multiple contexts with updates to the original requirements propagated to the re-used requirement(s).

The use of namespace containment to specify requirements hierarchies precludes re-using requirements in different
contexts since a given model element can only exist in one namespace. Since the concept of requirements reuse is very
important in many applications, SysML introduces the concept of a dave requirement. A slave requirement is a
requirement whose text property is aread-only copy of the text property of a master requirement. The text property of the
slave requirement is constrained to be the same as the text property of the related master requirement. The master/slave
relationship is indicated by the use of the copy relationship

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically involves
analysis to determine the multiple derived requirements that support a source requirement. The derived requirements
generaly correspond to requirements at the next level of the system hierarchy. A simple example may be a vehicle
acceleration requirement that is analyzed to derive requirements for engine power, vehicle weight and body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A system
modeler specifies the system design elements that are intended to satisfy the requirement. In the example above, the
engine design satisfies the engine power requirement.

OMG SysML™ Adopted Specification 135



The verify relationship defines how a test case verifies a requirement. In SysML, a test case is intended to be used as a
general mechanism to represent any of the standard verification methods for inspection, analysis, demonstration or test.
Additional subclasses can be defined by the user if required to represent the different verification methods. A verdict
property of atest case can be used to represent the verification result. The SysML test case is defined consistent with the
UML testing profile to facilitate integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used to further
refine a requirement. For example, a use case or activity diagram may be used to refine a text based functional
requirement. Alternatively, it may be used to show how atext based requirement refines a model element. In this case,
some elaborated text could be used to refine a less fine grained model element.

A generic trace requirement relationship provides a general purpose relationship between a requirement and any other
model element. The semantics of trace include no real constraints and therefore are quite weak. As aresult, it is
recommended that the trace relationship not be used in conjunction with the other requirements relationships described
above.

The rationale construct that is defined in Chapter 7, “Model Elements’ is quite useful in support of requirements. It
enables the modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a
rationale can be attached to a satisfy relationship that refers to an analysis report or trade study that provides the
supporting rationale for why the particular design satisfies the requirement. Similarly, this can be used with the other
relationships such as the derive relationship. It also provides an alternative mechanism to capture the verify relationship
by attaching arationale to a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype. For
example, amodeler may want to define requirements categories to represent operational, functional, interface,
performance, physical, storage, activation/deactivation, design constraints, and other specialized requirements such as
reliability and maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to add
constraints that restrict the types of model elements that may be assigned to satisfy the requirement. For example, a
functional requirement may be constrained so that it can only be satisfied by a SysML behavior such as an activity, state
machine, or interaction. Some potential Requirement subclasses are defined in Annex C: Non-normative Extensions.

136 OMG SysML™ Adopted Specification



16.2 Diagram Elements

16.2.1 Requirements Diagrams

Table 16.1 - Graphical nodes included in Requirement diagrams

Comment: Issue 9791 - Modified Table Elements

Node Name

Concrete Syntax

Abstract Syntax Reference

Requirement Diagram

req ReqgDiagram J

SysML::Requirements::
Requirement, SysML::
M odel Elements:: Package

Requirement SysML::Requirements::
Requirement
«requirement»
Requirement name
text="The system shall do”
1d="62j32."
TestCase SysML::Requirements::
TestCase
«testCase»
TestCaseName

OMG SysML™ Adopted Specification

137



Table 16.2 - Graphical paths included in Requirement diagrams

Comment: I ssue 10052 Table modified
Path Type Concrete Syntax Abstract Syntax
Reference
Requirement UMLA4SysML::
containment _ NestedClassifier
relationship «requirement?
<<requirement>> <<requirement>>
Child1 Child2
CopyDependency SysML::Requirements::
Copy
«requirement» [ _ «requirement»
Slave «copy» =] Master
M aster Callout SysML::Requirements::
Copy
Master :
«requirement»Master | <<requirement>>Slave
Derive SysML::Requirements::
Dependency DeriveReqt
«requirement» | . - «requirement>»
Client <<deriveReqt>>-=~ Supplier
DeriveCallout SysML::Requirements::
N DeriveReqt
«requirement» | Derived
RegA «requirement» ReqB
Derivedfrom | ] <<requirement>>
«requirement» RegA ReqB
138 OMG SysML™ Adopted Specification



Table 16.2 - Graphical paths included in Requirement diagrams

Comment: I ssue 10052 Table modified
Path Type Concrete Syntax Abstract Syntax
Reference
Satisfy SysML::Requirements::
Dependency Satisfy
L : - «requirement»
NamedElement <<satisfy>> — > Ssupplier
SatisfyCallout SysML::Requirements::
— N Satisfy
NamedElement f— — —— — Sa“Sf.l es
«requirement» RegA
SatisfiedBy <<requirement>>
NamedElement - RegA
Verify SysML::Requirements::
Dependency Verify
«testcase» L . - «requirement»
Client <<verify>> = Supplier
VerifyCallout SysML::Requirements::
Verif
— N y
«testcase» | __[|Verifies
TestCaseName «requirement» ReqA
VerifiedBy __ ___ ]| «requirement»
«testcase» TestCaseName RegA
Refine UML4SysML ::Refine
Dependency
L e «requirement»
NamedElement «refine» > Client

OMG SysML™ Adopted Specification 139



Table 16.2 - Graphical paths included in Requirement diagrams

Comment: I'ssue 10052 Table modified
Path Type Concrete Syntax Abstract Syntax
Reference
RefineCallout UMLA4SysML::Refine
N dEl ____ ___ |Refines B
amedglement «requirement» RegA
RefinedBy __ ___ ] <<requirement>>
NamedElement RegA
Trace UML4SysML::Trace
Dependency
«requirement» | ___ - «requirement»
Client «trace» = Supplier
TraceCallout UML4SysML::Trace
dEl | _ | TracedFrom &
NamedElement «requirement» ReqA
TracedTo _| «requirement»
NamedElement RegA

16.3 UML Extensions

16.3.1 Diagram Extensions

16.3.1.1 Requirement Diagram

The Requirements Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satisfy, verify, refine, copy and trace can be shown on a requirement diagram.
The callout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16-1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

140 OMG SysML™ Adopted Specification



16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in
Table 16.2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on Other Diagrams

Requirements can also be represented on other diagrams to show their relationship to other model elements. The
compartment and callout notation described in 16.3.1.2 and 16.3.1.3 can be used. The callouts represents the requirement
that is attached to another model element such as a design element.

16.3.1.5 Requirements Table

The tabular format is used to represent the requirements, their properties and relationships, and may include:
* Requirements with their propertiesin columns.
¢ A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace).
e A column that includes the model elementsthat satisfy the requirement.

* A column that represents the rationale for any of the above relationships, including reference to analysis reports for
trace rationale, trade studies for design rationale, or test procedures for verification rationale.

OMG SysML™ Adopted Specification 141



The relationships between requirements and other objects can also be shown using a sparse matrix style that is similar to
the table used for allocations (Section 15.4.3 (“ Tabular Representation™)). The table should include the source and target
elements names (and optionally kinds) and the requirement dependency kind..

table [requirement] Performance [Decomposition of Performance Requirementu

id |name text
The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better

2|Performance fuel economy.
The Hybrid SUV shall have the braking capability of a typical
2.1[Braking SUV.
The Hybrid SUV shall have dramatically better fuel economy
2.2[FuelEconomy than a typical SUV.

The Hybrid SUV shall have the off-road capability of a
2.3| OffRoadCapability  |typical SUV.
The Hybrid SUV shall have the acceleration of a typical

2.4|Acceleration SUV.
table [requirement] Performance [Tree of Performance Requirements] )
id [name relation id [name relation |id [name
2.1 [Braking deriveReqt |d.1 |RegenerativeBraking
2.2 [FuelEconomy deriveReqt |d.1 |RegenerativeBraking
deriveReqt |d.2 |Range
4.2 |FuelCapacity deriveReqt |d.2 |Range
2.3 |OffRoadCapability  |deriveReqt |d.4 |Power deriveReqt |d.2 | PowerSourceManagement
2.4 [Acceleration deriveReqt |d.4 |Power deriveReqt |d.2 | PowerSourceManagement
4.1 |CargoCapacity deriveReqt [d.4 |Power deriveReqt |d.2 |PowerSourceManagement

16.3.2 Stereotypes

Package Requirements

Comment: Issue 9794 Figure 16.1 and 16.2 modified

142 OMG SysML™ Adopted Specification



“stereotype »
UML4 SysML::Trace

I

«stereotype »
DeriveReqt

«siereotype »
Verify

wstereotype »
Copy

«metaclassyw
UML4 SysML::Realization

«“stereotype »
Satisfy

wmetaclass»
UML4SysML:Class

«metaclass»
UML4 Sys ML::Operation

«metaclassw
UML4 Sys ML::Behavior

«stereotype s
Requirem ent

Text String
Id: String
MDerived: Requirement[*]

MerifiedBy: TestCase["]
Master Requirement

DerivedFrom: Requirement[*]
fSatisfiedBy NamedElerment”]
RefinedByMNamedElement[*]
MracedTo:NamedElement[*]

!

f

astereotypes
TestCase

Merifies:Requirement[*]

Figure 16.1 - Abstract Syntax for Requirements Stereotypes

OMG SysML™ Adopted Specification

genumerations
VerdictKind

nass
fail
inconclusive
errar

143



«metaclass»
UML4SysML::NamedElement

«stereotype »
RequirementRelated

[MracedFrom: Requirement[*]
ISatsfies: Requirement[*]
/Refines: Requirement[*]

Figure 16.2 - Abstract Syntax for Requirements Stereotypes (cont)
16.3.2.1 Copy (from Requirements)

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the text
of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two elements
for the purpose of requirements re-use in different contexts. When a Copy dependency exists between two reguirements,
the requirement text of the client requirement is a read-only copy of the requirement text of the requirement at the
supplier end of the dependency.

Constraints

[1] A Copy dependency may only be created between two classes that have the "requirement” stereotype, or a sub-type of the
"requirement” stereotype applied.

[2] If the supplier requirement has sub-requirements, copies of the sub-requirements are made recursively in the context of
the client requirement and Copy dependencies are created between each sub-requirement and the associated copy.

[3] Thetext property of the client requirement is constrained to be aread only copy of the text property of the supplier
reguirement.

[4] Congtraint [3] is applied recursively to al sub-requirements.
16.3.2.2 DeriveReqt (from Requirements)

Description

A dependency relationship between two requirements in which a client requirement can be derived from the supplier
requirement. For example, a system requirement may be derived from a business need, or lower level requirements may
be derived from a system requirement. As with other dependencies, the arrow direction points from the derived (client)
requirement to the (supplier) requirement from which it is derived.

144 OMG SysML™ Adopted Specification



Constraints

[1] The supplier must be an element stereotyped by «requirements or one of «requirement» subtypes.

[2] The client must be an element sterectyped by «requirement» or one of «requirement» subtypes.

16.3.2.3 Requirement (from Requirements)

Description

A requirement specifies a capability or condition that must (or should) be satisfied.. A requirement may specify a function
that a system must perform or a performance condition that a system must satisfy. Requirements are used to establish a
contract between the customer (or other stakeholder) and those responsible for designing and implementing the system.

A requirement is a stereotype of Class. Compound requirements can be created by using the nesting capability of the class
definition mechanism. The default interpretation of a compound requirement, unless stated differently by the compound
requirement itself, is that all its subrequirements must be satisfied for the compound requirement to be satisfied.
Subrequirements can be accessed through the nestedClassifier property of a class. When a requirement has nested
requirements, all the nested requirements apply as part of the container requirement. Deleting the container requirement
deleted the nested requirements, a functionality inherited from UML.

Attributes

text: String

The textual representation or areference to the textual representation of the requirement.
id: String

The unique id of the requirement.

/sdtisfiedBy: NamedElement[*]
Derived from all dementsthat are the client of a <<satisfy>> relationship for which this requirement is a supplier.

IverifiedBy: NamedElement[*]
Derived from all lementsthat are the client of a <<verify>> relationship for which thisrequirement is a supplier.

[tracedTo: NamedElement[*]
Derived from all lementsthat are the client of a <<trace>> relationship for which this requirement is a supplier.

/derived: Requirement[0..1]
Derived from all requirements that are the client of a <<deriveReqt>> relationship for which this requirement is a
supplier.

/derivedFrom: Requirement[*]
Derived from all requirements that are the supplier of a <<deriveReqt>> relationship for which this requirement isa
client.

[refinedBy: NamedElement[*]
Derived from al dlementsthat are the client of a <<refine>> relationship for which this requirement is a supplier.

/master: Requirement[0..1
Thisis aderived property that lists the master requirement for this slave requirement. The master attribute is derived
from the supplier of the Copy dependency that has this requirement as the slave.

OMG SysML™ Adopted Specification 145



Constraints

[1] The property isAbstract must be set to true.

[2] The property ownedOperation must be empty.

[3] The property ownedAttribute must be empty.

[4] Classes stereotyped by «requirement» may not participate in associations.

[5] Classes stereotyped by «requirement» may not participate in generalizations.

[6] A nested classifier of aclass stereotyped by «requirement» must also be stereotyped by «requirement.

16.3.2.4 RequirementRelated (from Requirements)

Description

This stereotype is used to add properties to those elements that are related to requirements via the various dependencies
described in Figure 16.1. The property vaues are shown using call-out notation (i.e., notes) as shown in the diagram
element table.

Comment: |ssue 9794

Attributes

Comment: 10043
» Ysatisfies: Requirement[*]
Derived from al requirements that are the supplier of a <<satisfy>> relationship for which this element isaclient.

* Yrefines: Regquirement[*]
Derived from al requirements that are the supplier of a <<refine>> relationship for which this element isaclient.

» YtracedFrom: Requirement[*]
Derived from al requirements that are the supplier of a <<trace>> relationship for which this element isaclient.

16.3.2.5 TestCase (from Requirements)

Description
A method for verifying a requirement is satisfied.
Attributes

* \verifies: Requirement[*]
Derived from all requirements that are the supplier of a<<verify>> relationship for which this element isaclient.

Constraints

[1] Thetypeof return parameter of the stereotyped model element must be VerdictKind. (note thisis consistent with the UML
Testing Profile).

146 OMG SysML™ Adopted Specification



16.3.2.6 Satisfy (from Requirements)

Description

A dependency relationship between a requirement and a model element that fulfills the requirement. As with other
dependencies, the arrow direction points from the satisfying (client) model element to the (supplier) requirement that is
satisfied.

Constraints
[1] The supplier must be an element stereotyped by «requirements or one of «requirement» subtypes.

16.3.2.7 Verify (from Requirements)

Description

A relationship between a requirement and a test case that can determine whether a system fulfills the requirement. As
with other dependencies, the arrow direction points from the (client) test case to the (supplier) requirement.

Constraints
[1] The supplier must be an element stereotyped by «requirements or one of «requirement» subtypes
[2] The client must be an element sterectyped by «testCase» or one of the «testCase» subtypes.

16.4 Usage Examples

All the examples in this chapter are based on a set of publicly available (on-line) requirement specification from the
National Highway Traffic Safety Administration (NHTSA.) Excerpts of the original requirement text used to create the
models are shown in Figure 16.3. The name and ID of these requirements are referred to in the SysML usage examples
that follow. See NHTSA specification 49CFR571.135 for the complete text from which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

The diagram in Figure 16.3 shows an example of a compound requirement decomposed into multiple subrequirements.

OMG SysML™ Adopted Specification 147



req Safety test )

«requirement»
Adhesion utilization

«requirement» Text : .
ASTM R1337-90 . ID="S7.4
«requirement>»
Text = “This test method Pavement friction «requirement>
covers the measurement Text = “The road test Vehicle conditions
of peak braking coefficient surface produces a Text = * 7

of paved surfaces using peak friction coefficient

<——_ (PFC) of 0.9 when ID="S7.4.2"
a standard reference_ test < ~~=-—_ | measured using
tire (SRTT) as described <<deriveReqt>> | an American Society for [\ ‘

in Specification E1136 that Testing and Materials << der\iveRe o> «requirement>
represents current (ASTM) E1136 standard N Test and procedure conditions
technology passenger car reference test tire, AN
dial ties.” in accordance with i . .
radia’ ies. ASTM Method E Text = “(a) IBT: = 65 °C (149 °F),
ID ="A. 24241 1337-90, ” =100 °C (212 °F).
ID="S6.2.1" (b) Test surface: PFC of at least 0.9.”
ID="S7.4.3"

Figure 16.3 - Requirements Derivation
16.4.1.1 Requirements and Design Elements

The diagram in Figure 16.4 shows derived requirements and refers to the design elements that satisfy them. The rational
is also shown as a basis for the design solution.

148 OMG SysML™ Adopted Specification



req MasterCyIinderSafety)

iz

I -
e <<refine>>

Decelerate Car

«rationale»
body = “This design of the brake

requirements.”

«requirement>»
Master Cylinder Efficacy

assembly satisfies the federal safety

<<block>>
BrakeSystem

f: FrontBrake

compartment for each service brake

Loss of fluid from one compartment
shall not result in a complete loss of
brake fluid from another compartment.”
ID=“S5.4.1"

Text ="A master cylinder shall have a reservoir

subsystem serviced by the master cylinder.

4/ ~
<<deriveReqt>>
/

<<deriveReqt>>

«requirement»
LossOfFluid

Text ="Prevent complete loss of fluid”
ID =“S5.4.1a"

«requirement»
Reservoir

Text = "Separate reservoir compartment”
ID = “S5.4.1b”

«rationale»

SatisfiedBy
BrakeSystem::m

1 body = “The best-practice

solution consists in using a set of
springs and pistons to confine the
loss to a single compartment”

r: Rear Brake
11: BrakeLine
——~ I2: BrakeLine
m: MasterCylinder

activateBrake()
releaseBrake()

«rationale»
body = “The best-practice
solution consists in assigning
one reservoir per brakeline.”

~
~
~

~
~

SatisfiedBy
BrakeSystem::|1
BrakeSystem::I2

Figure 16.4 - Links between requirements and design

OMG SysML™ Adopted Specification

149



ibd BrakeSystem J

Satisfies

«requirement» MasterCylinderSafety::Reservoir

f: FrontBrake r: RearBrake
[ E
; [
I1: BrakeLine -+=""|2: BrakeLine
,'/l
[ ] —

5

m: MasterCylinder I

Safisfies
«requirement>»

MasterCylinderSafety::LossOf Fluid

Figure 16.5 - Requirement satisfaction in an internal block diagram.

16.4.1.2 Requirements Reuse

Figure 16.6 illustrates the use of the Copy dependency to alow a single requirement to be reused in several requirements
hierarchies. The master tag provides a textua reference to the reused requirement.

req Safety ReuseJ

«requirement>

Hybrid Engine A type

i
|

«requirement>
Safety Requirements
for type A

«requirement>
Shared Safety
Requirements

master=NHTSASafetyR

equirements

S
~

<<copy>>

«requirement>
Hybrid Engine B type

i

«requirement>
Shared Safety
Requirements

master=NHTSASafetyR

equirement
7
-
P

<<copy>>
-

-
-

Ttag

«requirement>
NHTSASafetyRequirements

Text = “..."
ID =“157.135"

«requirement>
Safety Requirements
for type B

Figure 16.6 - Use of the copy dependency to facilitate reuse

150

OMG SysML™ Adopted Specification



16.4.1.3 Verification Procedure (Test Case)

The example diagram in Figure 16.7 shows how a complex test case, in this example a performance test for a passenger-
car brake system, given as a set of stepsin text form (see part of the procedure text at the upper right-handside corner of
the figure), can be described using another type of diagram representation. The performance test, modeled as a Test Case
islinked to a requirement using the «verify»» relationship. Note that the modeling of test case can also be addressed using
the UML Testing Profile, available from the Object Management Group.

req BurnishSafety)
«requirement»
NHTSASafetyRequirements
Text =" RefinedBy
ext=".. .
D = “157.135" <<testCase>>BurnishTest
N,
N ? \
\ AN
\ ‘ A
\
\ «requirement»
<<deriveReqt>> Burnish
\
\\ Text ="(a) IBT: =100 °C (212
\ °F), (b) Test speed: 80 km/h
\ (49.7 mph), (c) Pedal force:
«equirement> Adjust as necessary to
RoadTestSequence maintain specified constant
Text =".." deceleration rate"
ID="S9.1" ID="S7.1"

Figure 16.7 - Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram.

OMG SysML™ Adopted Specification 151



sm <<testCase>> BurnishTest)

Refines
<<requirement>>Burnish

[Speed=80]

Accelerate
[IBT=100 or

d >= 2 km]

[count < 200]

Initial
condition

Figure 16.8 - Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram.

152 OMG SysML™ Adopted Specification



17 Profiles & Model Libraries

17.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt them
for different purposes. This includes the ability to tailor the UML metamodel for different domains. The profiles
mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some notational extensions to
represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined by
extending a metaclass, and then have them applied to the applicable model elements in the user model. A stereotype of a
requirement could be extended to create a «functionalRequirement» as described in Annex C: Non-normative Extensions.
Thiswould allow specific properties and constraints to be created for a functional requirement. For example, a functional
requirement may be constrained such that it must be satisfied by an operation or behavior. When the stereotype is applied
to arequirement, then the requirement would include the notation «functional Requirement» in addition to the name of the
particular functional requirement. Extending the metaclass requirement is different from creating a subclass of
requirement called functional Requirement.

In addition to ex section provides guidance both on how to use existing profiles and how to create new profiles. In
addition, the examples provide guidance on the use of model libraries. A model library is a library of model elements
including class and other type definitions that are considered reusable for a given domain. This guidelines can be applied
to further customize SysML for domain specific applications such as automotive, military, or space systems.

OMG SysML™ Adopted Specification 151



17.2 Diagram Elements

17.2.1 Profile Definition in Class Diagram

Table 17.1 - Graphical nodes used in profile definition

Node Name Concrete Syntax Abstract Syntax Reference
Sereotype UML4SysML::Sereotype
«stereotype»
StereotypeName
M etaclass UML4SysML::Class
«metaclass»
MetaClassName
Profile UMLA4SysML::Profile
«profile»
ProfileName
Model Library UML ::SandardProfileL 1
«modelLibrary»
LibraryName
152 OMG SysML™ Adopted Specification



Table 17.2 - Graphical paths used in profile definition

Path Name Concrete Syntax Abstract Syntax Reference
Extension UMLA4SysML::Extension
«metaclass»
MetaClassName
?required}
«stereotype»
StereotypeName
Generalization UML4SysML::Generalization
«stereotype»
StereotypeName
«stereotype»
StereotypeName
ProfileApplication UMLA4SysML::ProfileApplication
« ly»{strict
«apply»{strict} _
M etamodel Reference UMLA4SysML ::Packagel mport;
UMLA4SysML::Elementlmport
«reference»
Unidirectional UML4SysML::Association
Association
propertyName

NOTE: In the above table, boolean properties can alternatively be displayed as BooleanPropertyName=[ True|False].

OMG SysML™ Adopted Specification 153



17.2.1.1 Extension

In Figure 17.1, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class and describes a clock software component for an embedded software system. It has description of the operating
system version supported, an indication of whether it is compliant to the POSIX operating system standard and a

reference to the operation that starts the clock.

«metaclass»
Class

«stereotype»
Clock

Figure 17.1 - Defining a stereotype

154

OSVersion:String
startOperation:Operation
POSIXCompliant:Boolean

OMG SysML™ Adopted Specification



17.2.2 Stereotypes Used On Diagrams

Table 17.3 - Notations for Stereotype Use

Node Name Concrete Syntax

Abstract Syntax Reference

SereotypeNote

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

UMLA4SysML::Element

PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

e

,“/l‘

Element
Name

Element / Element
Name PathName Name
SereotypeNote UMLA4SysML::Element
«stereotypeName»

SereotypelnNode

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}
NodeName

UMLA4SysML::Element

Sereotypel nCompartment
Element

NodeName

«stereotypeNamex»{PropertyName=ValueString}EHementName
«stereatypeNamex»{PropertyName=ValueString;
BooleanPropertyName}

ElementName

UMLA4SysML::Element

SereotypeOnEdge

Element
Name

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}PathName

Element
Name

UMLA4SysML::Element

OMG SysML™ Adopted Specification

155




Table 17.3 - Notations for Stereotype Use

Node Name Concrete Syntax Abstract Syntax Reference
Stereotype UML4SysML::Element
Compartment «stereotypeName»
NodeName
«stereotypeName»

PropertyName=ValueString

MultiPropertyName=ValueString,
ValueString

BooleanPropertyName

17.2.2.1 StereotypelnNode

Figure 17.2 shows how the stereotype Clock, as defined in Figure 17.1, is applied to a class called AlarmClock.

«clock»
{POSIXCompliant}
AlarmClock

Start()

Figure 17.2 - Using a stereotype
17.2.2.2 StereotypelnComment

When, two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 17.3, the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

«clock»
«clock,creator» OSVersion=25
StopWatch — startOperation=Click
«creator»
B name="Jones"
C“Ck() date="04-04-04"

Figure 17.3 - Using stereotypes and showing values

156 OMG SysML™ Adopted Specification



17.2.2.3 StereotypelnCompartment

Finally, the compartment form is shown.

AlarmClock

Start()

«clock»
OSVersion="3.4"
startOperation=Start
POSIXCompliant=True

Figure 17.4 - Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called Start. Note
that multiple stereotypes can be shown using multiple compartments.

17.3 UML Extensions

None

17.4 Usage Examples
17.4.1 Defining a Profile

Comment: I ssue 9762 - Figure Updated

pkg User Profile Definition |
«metamodel» B . «profile»
UML4SysML references SysML
r'?‘\
wimports
«profile»
SE Toolkit

Figure 17.5 - Definition of a profile

OMG SysML™ Adopted Specification 157



In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it can
build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is identified by a
reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can extend those metaclasses
from UML that the SysML profile references.

17.4.2 Adding Stereotypes to a Profile

bdd SEToolkit J

«metaclass» «metaclass» «stereotype» «stereotype»
NamedElement DirectedRelationship Block Requirement
«stereotype» «stereotype» «stereotype» «stereqtypel»

Configurationltem System Context Functiona
Requirement

author: String
version: String
lastChanged: Date

function

«metaclass»
Behavior

Figure 17.6 - Profile Contents

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by configurationitem, is
called an extension, shown by a line with afilled triangle; this relates a stereotype to a reference (caled base) class or
classes, in this case NamedElement and DirectedRelationship from UML and adds new properties that every
NamedElement or DirectedRelationship stereotyped by configurationltem must have. NamedElement and
DirectedRelationship are abstract classesin UML so it istheir subclasses that can have the stereotype applied. The second
mechanism is demonstrated by the system and context stereotypes which are sub-stereotypes of an existing SysML
stereotype, Block; sub-stereotypes inherit any properties of their super-stereotype (in this case none) and also extend the
same base class or classes. Note that TypedElements whose type is extended by «system» do not display the «system»
stereotype; this also applies to InstanceSpecifications. Any notational conventions of this have to be explicitly specified
in a diagram extension.

There is also an example of how stereotypes (in this case Functional Requirement) can have unidirectional associations to
metaclasses in the reference metamodel (in this case Behavior).

158 OMG SysML™ Adopted Specification



17.4.3 Defining a Model Library that Uses a Profile

pkg [profile] SETooIkit)

«modelLibrary»
S| Definitions

A

«modelLibrary» «import» |
Sl Value Types |

«modelLibrary»
«valueType» .
Real Physical

A «block»

PhysicalObject

density: SIDensity

«import» volume: SIVolume
. supplier: String
SIVolume SiDensity SiLength modelNumber: String
serialNumber: String
«valueType» «valueType» «valueType» lotNumber: String
unit= CubicMeter unit = KilogramPerCubicMeter unit = Meter

Figure 17.7 - Two model libraries

The model library Sl Value Types imports a model library called SI Definitions, so it can use model elements from them
in its own definition. It defines value types having specific units which can be used when property values are measured in
Sl units. Sl Definitions is a separately published model library, containing definitions of standard Sl units and dimensions
such as shown in Annex C, Section C.4. A further model library, Physical, imports Sl Value Types so it can define
properties that have those types. One model element, Physical Object, is shown, a block that can be used as a supertype
for an physical object.

17.4.4 Guidance on Whether to Use a Stereotype or Class

This section provides guidance on when to use stereotypes. Stereotypes can be applied to any model element.
Stereotyping a model element allows the model element to be identified with the «guillemet» notation. In addition, the
stereotyped model element can have stereotype properties, and the stereotype can specify constraints on the model
element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One reason
is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are different from
properties of classes. Stereotype properties represent properties of the class that are not instantiated and therefore do not
have a unique value for each instance of the class, although a class thus stereotyped can have a separate value for the

property.

SE Toolkit::functional Requirement, which extends Class through its superstereotype, Requirement, is an example where a
stereotype is appropriate because every modeling element stereotyped by SE Toolkit::functional Requirement has a

reference to another modeling element. In another example, SE Toolkit::configurationltem defined above, which applies
to classes amongst other concepts, is a stereotype because its properties characterize the author, version, and last changed

OMG SysML™ Adopted Specification 159



date of the modeling element themselves. One test of this is whether the new properties are inheritable; in this case
author, version, and last-changed date are not, because it is only those classes under configuration control that need the
properties. To summarize, in the following circumstances a stereotype is appropriate:

*  Where the model concept to be extended isnot a class or class-based.

Where the extensions include properties that reference other model elements.

Where the extensions include properties that describe modeling data, not system data.

An example where a class is more appropriate is Physical Object from Figure 17.7 - in this case, the properties density and

volume, and the component numbers, have distinct values for each system element described by the class, and are
inherited by every subclass of Physical Object.

17.4.5 Using a Profile

pkg ModelingDomain [Establishing HSUV Model]/

«profile»
SysML N

\

\ \\\\\«apply» {strict}

\

\ «apply» R
| {strict}
\\

«modelLibrary» «import»
S| Definitions HSUVModel

Figure 17.8 - A model with applied profile and imported model library

The HSUVModel is a system engineering model that needs to use stereotypes from SysML. It therefore needs to have the
SysML profile applied to it. In order to use the predefined Sl units, it aso needs to import the Sl Definitions model

library. Having done this, elements in HSUVModel can be extended by SysML stereotypes and types like SlIVolume can

be used to type properties. Both the SI Definitions model library and HSUVModel have applied the profile strictly which
means that only those metaclasses directly referenced by SysML can be used in those models.

160

OMG SysML™ Adopted Specification



17.4.6 Using a Stereotype

req HSUVRequirementy

«functionalRequirement»
«configurationltem»
StoppingDistance e e -

«functionalRequirement»
text="The car must stop within
100 feet from 20 mph"
id="102.1"
function=StopCar

«configurationltem»
author="Jones"
version="1.2"
date="04-04-04"

Figure 17.9 - Using two stereotypes on a model element

StoppingDistance has two stereotypes applied, functional Requirement, that identifies it as a requirement that is satisfied

by a function, and configurationltem, which allows it to have configuration management properties. The modeler has

provided vaues for all the newly available properties; those for critical Requirement are shown in a compartment in the

node symbol for StoppingDistance; those for configurationltem are shown in a separate note.

17.4.7 Using a Model Library Element

bdd Physich

«block»
PhysicalObject

density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
Shot

circumference: SiLength

Figure 17.10 - Using model library elements

Model library elements can be used just like any other model element of the same type. In this case, Shot isa

specialization of Physical Object from the Physical model library. It adds a new property, circumference, of type SlLength

to measure the circumference of the (spherical) shot.

OMG SysML™ Adopted Specification

161



162 OMG SysML™ Adopted Specification



Part V - Annexes

This section contains the following non-normative annexes for this specification.:
e A - Diagrams
e B - Sample Problem
e C- Non-normeative Extensions
e D - Model Interchange
* E - Requirements Traceability

¢ F - Termsand Definitions

OMG SysML™ Adopted Specification 163



164 OMG SysML™ Adopted Specification



Annex A: Diagrams

(informative)

A.1 Overview

SysML diagrams contains diagram elements (mostly nodes connected by paths) that represent model e ementsin the SysML
model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete syntax.

The SysML diagram taxonomy is shown in Figure A.1. SysML reuses many of the major diagram types of UML. In some
cases, the UML diagramsare strictly re-used such as use case, sequence, state machine, and package diagram, whereasin other
cases they are modified so that they are consistent with SysML extensions. For example, the block definition diagram and
internal block diagram are similar to the UML class diagram and composite structure diagram respectively, but include
extensions as described in Chapter 8, “Blocks’. Activity diagrams have also been modified viathe activity extensions. Tabular
representations, such as the allocation table, are used in SysML but are not considered part of the diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction overview
diagram, timing diagram, and deployment diagram. This is consistent with the approach that SysML represents a subset of
UML. In the case of deployment diagrams, the deployment of software to hardware can be represented in the SysML internal
block diagram. In the case of interaction overview and communication diagrams, it was felt that the SysML behavior diagrams
provided adequate coverage for representing behavior without the need to include these diagram types. Two new diagram
types have been added to SysML including the requirement diagram and the parametric diagram.

SysML
Diagram
=== ———-
Behavior | Requirement Structure
Diagram : Diagram Diagram
Activity Sequence State Machine Use Case Block Definition Internal  Block .
A . ! . ! ) Package Diagram
Diagram Diagram Diagram Diagram Diagram Diagram
[ ] sameasum2 ! _
| Parametric
[ Diagram
] wodified from umL 2 .

l---l New diagram type

Figure A.1 - SysML Diagram Taxonomy

OMG SysMLTM Adopted Specification 165



The requirement diagram isanew SysML diagram type. A requirement diagram provides a modeling construct for text based
requirements, and the rel ationship between requirements and other model elements that satisfy or verify them.

The parametric diagram isanew SysML diagram type that describes the constraints among the properties associated with
blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such as
performance, reliability, and mass property models.

Comment: I ssue 10063

Although the taxonomy provides alogical organization for the various major kinds of diagrams, it does not preclude the
careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral elements
(e.0., showing a state machine nested inside a compartment of a block). However, it is critical that the types of diagram
elementsthat can appear on a particular diagram kind be constrained and well specified. The diagram elementstables in each
chapter describe what symbols can appear in the diagram, but do not specify the different combinations of symbolsthat can be
used. However, the BNF Diagram Syntax Definitionsreferred to in the Language Formalism section, isintended to providethe
formalism to specify this precisaly. At this time, the SStspecification has only implemented the BNF in the three chapters
referred to in Annex G

The package diagram and the call out notation are two mechanisms that SysML provides for adding flexibility to represent a
broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to organize the model in
packages and views. As such, a package diagram can include awide array of packageable elements. The callout notation
provides a mechanism for representing rel ationships between model elementsthat appear on different diagram kinds. In
particular, they are used to represent allocations and requirements, such as the all ocation of an activity to a block on a block
definition diagram, or showing a part that satisfies a particular requirement on an internal block diagram. There are other
mechanisms for representing this including the compartment notation that is generaly described in Chapter 17, “Profiles &
Model Libraries.” Chapter 16, “ Requirements’ and Chapter 15, “Allocations’ provide specific guidance on how these
notations are used.

The model elements and corresponding concrete syntax that are represented in each of the ten SysML diagrams kinds are
described in the SysML chapters asindicated below.

» activity diagram - Activities chapter

* block definition diagram - Blocks chapter, Ports and Flows chapter
« interna block diagram - Blocks chapter, Ports and Flows chapter

» package diagram - Model Elements chapter

e parametric diagram - Constraint Blocks chapter

* reguirements diagram - Requirements chapter

» state machine diagram - State Machines chapter

* sequence diagram - Interactions chapter

* usecase diagram - Use Cases chapter

e Other (alocation tables) - Allocation Chapter

166 OMG SysMLTM Adopted Specification



Each SysML diagram has aframe, with a contents area, a heading, and a Diagram Description see Figure A.2

Diagram Description
Version:

Description:
Completion status:

Header Reference:

/ _—"|(User defined fields)

<<diagramUsage>>
diagramKind [modelElementType] modelElementName [diagramName]

Contents

Figure A.2 - Diagram Frame

Comment: I ssue 10378/10447

Thefranelsarectanglethat |sreqU|red for &/SML diagrams (Note: theframels optlonal in UM L) JFhe#ameeaﬂﬂesrgﬁate

a a . The frame must deﬂ gnate a model
element that |sthe default nam%pacefor the model elements enclosed intheframe. A qualified name for the model element
within the frame must be provided if it is not contained within default namespace associated with the frame. The following
are some of the designated model elements associated with the different diagram kinds.

» activity diagram - activity

* block definition diagram - block, package, or constraint block
« internal block diagram - block or constraint block

» package diagram - package or model

e parametric diagram - block or constraint block

* reguirement diagram - package or requirement

¢ sequencediagram - interaction

» state machine diagram - state machine

* usecasediagram - package

The frame may include border elements associated with the designated model e ement, like ports for blocks, entry/exit points
on statemachines, gates on interactions, parameters for activities, and constraint parameters for constraint blocks. The frame
may sometimes be defined by the border of the diagram area provided by atool.

OMG SysMLTM Adopted Specification 167



The diagram contents area contains the graphical symbols. The diagram type and usage defines the type of primary graphical
symbols that are supported, e.g. ablock definition diagram is a diagram where the primary symbols in the contents area are
blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

<diagramKind> [model ElementType] <model ElementName> [diagramName]

Comment: 10378

A space separates each of these entries. The dlagramed isbol ded The model El ementType and di agramName are |n
brackets. W

remeveambrgumf The head| ng name should always conta| n the dlagram k| nd and model element name, and mcl ude the
model element type and additional information to remove ambiguity. Ambiguity can occur if thereis more than one model
element type for a given diagram kind, or where there is more than one diagram for the same model element.

SysML diagrams kinds should have the following names or (abbreviations) as part of the heading:
« activity diagram (act)
* block definition diagram (bdd)
« interna block diagram (ibd)
» package diagram (pkg)
e parametric diagram (par)
* requirement diagram (req)
» sequence diagram (sd)
» state machine diagram (stm)
* usecase diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Figure A-2 that includes
version, description, references to related information, a completenessfield that describes the extent to which the modeler
assertsthe diagram is complete, and other user defined fields. In addition, the diagram description may identify the view
associated with the diagram, and the corresponding viewpoint that identifies the stakeholders and their concerns. (refer to
Model Elements chapter). The diagram description can be made more explicit by the tool implementation.

Comment: | ssue 9854

SysML also introduces the concept of adiagram usage. This represents a unique usage of a particular diagram type, such asa
context diagram as a usage of an block definition diagram, internal block diagram, or use case diagram. The diagram usage can
beidentified in the header above the diagramKind as «diagramU sage»<<diagramJsage>> . An example of adiagram usage
extension is shown in Figure A.3. For this example, the header in Figure A.2 would replace diagram kind with “uc” and

«diagramUsage» <<diagramsage>>with «ContextDiagram»<<CentextBragram>>. Applying a stereotype approach to
speC|fy adlagram usage can dlow atool |mpl ementation to check that the diagram constra nts def| ned by the stereotype are

168 OMG SysMLTM Adopted Specification



diagram is not a metaclassin UML or SysML and therefore cannot be extended by a stereotype. However, the concept of
extending a diagram for a particular diagram usage was considered to be of value. The stereotype notation is used to
designate this concept without the formal semantics.]

diagramKind UseCaseDiagram

T !

<<stereotype>>
diagramUsage

<<stereotype>>
ContextDiagram

Figure A.3 - Diagram Usages

Some typical diagrams usages may include:

» Activity diagram usage with swim lanes - SwimLane Diagram

» Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system, item,
activity, etc.

» Usecasediagram or internal block diagram to represent a Context Diagram

A.2 Guidelines

The following provides some general guidelinesthat apply to al diagram types.

» Decomposition of amodel element can be represented by the rake symbol. This does not always mean decomposition
in aformal sense, but rather areference to a more elaborated diagram of the model element that includes the rake
symbol. The rake on amode element may include the following:

activity diagram - call behavior actions that can refer to another activity diagram.

internal block diagram - parts that can refer to another internal block diagram.

package diagram - package that can refer to another package diagrams.

parametric diagram - constraint property that can refer to another parametric diagram

requirement diagram - requirement that can refer to another requirement diagram.

sequence diagram - interaction fragments that can refer to another sequence diagram.

state machine diagram - state that can refer to another state machine diagram.

use case diagram - use case can that may be realized by other behavior diagrams (activity, state, interactions).

» The primary mechanism for linking atext label outside of a symbol to the symbol is through proximity of the label to

OMG SysMLTM Adopted Specification 169



170

its symbol. Thisapplies to ports, item flows, pins, etc.

Page connectors - Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on
diagrams, but should be used sparingly since they are equivalent to go-to’s in programming languages, and can lead to
“spaghetti diagrams”. Whenever practical elaborate the model element designated by the frame instead of using a page
connector. A page connector is depicted asa circle with alabel inside (often aletter). The circleis shown at both ends
of aline break and means that the two line end connect at the circle.

Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may be a
geographic map to provide a spatial context for the symbols.

SysML providesthe capability to represent adocument using the UML 2.1 standard stereotype <<document>> applied
to the artifact model element. Properties of the artifact can capture information about the document. Use a <<trace>>

abstraction to relate the document to model elements. The document can represent text that is contained in the related
model elements.

SysML diagrams including the enhancements described in this section isintended to conform to the Diagram
Interchange Standard to facilitate exchange of diagram and layout information. A more formal BNF has been
introduced in selected chapters to facilitate diagram interchange, which isreferred to in the L anguage Formalism

chapter.

Tabular representation is an optional alternative notation that can be used in conjunction with the graphical symbolsas
long as the information is consi stent with the underlying metamodel . Tabular representations are often used in systems
engineering to represent detailed information such as interface definitions, requirements traceability, and alocation
rel ationships between various types of model e ements. They also can be convenient mechanismsto represent property
values for selected properties, and basic rel ationships such as function and inputs/outputsin N2 charts. The UML
superstructure contains a tabular representation of a sequence diagram in an interaction matrix (refer to Superstructure
Appendix with interaction matrix). The implementations of tabular representations are defined by the tool
implementations and are not standardized in SysML at thistime. However, tabular representations may be included in
aframe with the heading designator <<table>> in bold.

Graph and tree representations are also an optional alternative notation that can be used in conjunction with graphical
symbols aslong astheinformation is consistent with the underlying metamode!. These representations can be used for
describing complex series of relationships. One example is the browser window in many tools that depicts a
hierarchical view of the moddl. The implementations of graphs and trees are defined by the tool implementations and
are not standardized in SysML at thistime.

OMG SysMLTM Adopted Specification



Annex B: Sample Problem

(informative)

B.1 Purpose

The purpose of this annex isto illustrate how SysML can support of the specification, analysis, and design of a system using
some of the basic features of the language.

B.2 Scope

The scope of this exampleis to provide at least one diagram for each SysML diagram type. The intent isto select simplified
fragments of the problem to illustrate how the diagrams can be applied, and a so demonstrate some of the possible inter-
relationships among the model elementsin the different diagrams. The sample problem does not highlight all of the features
of the language. The reader should refer to the individual chaptersfor more detailed features of the language. The diagrams
selected for representing a particular aspect of the model, and the ordering of the diagrams are intended to be representative of
applying atypical systems engineering process, but thiswill vary depending on the specific process and methodology that is
used.

B.3 Problem Summary

The sample problem describes the use of SysML asit appliesto the development of an automobile, in particular a Hybrid gas/
electric powered Sport Utility Vehicle (SUV). Thisproblemisinteresting in that it hasinherently conflicting requirements, viz.
desirefor fuel efficiency, but also desire for large cargo carrying capacity and off-road capability. Technical accuracy and the
feasibility of the actual solution proposed were not high priorities. This sample problem focuses on design decisions
surrounding the power subsystem of the hybrid SUV; the requirements, performance analyses, structure, and behavior.

Thisannex is structured to show each diagram in the context of how it might be used on such a example problem. The first
section shows SysML diagrams as they might be used to establish the system context; establishing system boundaries, and top
level use cases. The next section is provided to show how SysML diagrams can be used to analyze top level system behavior,
using sequence diagrams and state machine diagrams. The following section focuses on use of SysML diagrams for capturing
and deriving regquirements, using diagrams and tables. A sectionis provided to illustrate how SysML isused to depict system
structure, including block hierarchy and part relationships. The relationship of various system parameters, performance
congtraints, analyses, and timing diagrams areillustrated in the next section. A section is then dedicated to illustrating
definition and depiction of interfaces and flows in a structural context. The final section focuses on detailed behavior
modeling, functional and flow alocation.

OMG SysML™ Adopted Specification 171



B.4 Diagrams
B.4.1 Package Overview (Structure of the Sample Model)

B.4.1.1 Package Diagram - Applying the SysML Profile

Asshown in Figure B.1, the HSUVMode is a package that represents the user model. The SysML Profile must be applied to
this package in order to include stereotypes from the profile. The HSUVMode may also require model libraries, such asthe Sl
Units Types modd library. The model libraries must be imported into the user model as indicated.

pkg ModelingDomain [Establishing HSUV Modely
1
«profile»
SysML N
A N
\ S~ «apply» {strict}
\ «apply» NS
\ {strict} S
— —
modelLibrar «import»
oderirany» e HSUVModel
S| Definitions

Figure B.1 Establishing the User Model by Importing and Applying SysML Profile & Model Library (Package Diagram)

Figure B.2 detail s the specification of units and valueTypes employed in this sample problem.

172 OMG SysML™ Adopted Specification



pkg ModelingDomain [Values and Unitsy
|
«modelLibrary»
S| Definitions
«modelLibrary» «import»
Automotive Value Types
«valueType»
Real
‘ ‘ Automotive Units
Horsepwr Accel Weight
«unit» «unit» «unit»
aiueType» f<\/_alueType>> «alueType» {dimension=Acceleration} {dimension=Velocity} {dimension=Power}
unit = hp unit=g unit=Ib g mph hp
«unit» «unit» «unit»
Time Vel Dist {dimension=Temperature} {dimension=Distance} {dimension=Time}
°F ft sec
«valueType» «valueType» «valueType»
unit = sec unit = mph unit = ft - - -
«unit» «unit» «unit»
{dimension=Pressure} {dimension=Volume} {dimension=Mass}
psi ftr3 Ib
Temp Press Vol
«valueType» «valueType» «valueType»
unit = °F unit = psi unit = ft"3

Figure B.2 - Defining valueTypes and units to be Used in the Sample Problem

B.4.1.2 Package Diagram - Showing Package Structure of the Model

The package diagram (Figure B.3) shows the structure of the model used to evaluate the sample problem. Model e ements are
contained in packages, and rel ationships between packages (or specific model elements) are shown on this diagram. The
relationship between the views (Operational View and PerformanceView) and the rest of the user model are explicitly
expressed using the «access» relationship. Note that the «view» models contain no model elements of their own, and that
changes to the model in other packages are automatically updated in the Operational and Performance Views.

OMG SysML™ Adopted Specification 173



pkg HSUVModel J
HSUVUseCases HSUVBehavior HSLV HSUVAnalysis
HSUVStructure Requirements y
N p P 52 i
| /
| /
l
| /
. /
\ . «requirement» /
DeliverPower /
‘.I Behavior HSUVinterfaces Performance /
/
i
«import» / /
.| «block» ] «import»
| Automotive / /
| Domain / ,
| / .
‘\ 7 «import» / Automotive
I e | / ValueTypes
| / /
. / /
HSUWViews «import» / /
HJ s ! /
1 Z / /
/7
’ / ///
) «viewpoint» «iews «viewpoint»
Oper;}/ilgr\:veﬁView - —-«conform»-==  Operational Performance -—-«conform»-=> Performance
Viewpoint View Viewpoint

Figure B.3 - Establishing Structure of the User Model using Packages and Views (Package Diagram)
B.4.2 Setting the Context (Boundaries and Use Cases)

B.4.2.1 Internal Block Diagram - Setting Context

The term “ context diagram,” in Figure B.4, refersto auser defined usage of an interna block diagram, which depicts some of
the top level entitiesin the overall enterprise and their relationships. The diagram usage enabl es the modeler or methodol ogist
to specify aunique usage of a SysML diagram type using the extension mechanism described in Annex A: Diagrams. The
entities are conceptual in nature during theinitial phase of devel opment, but will berefined as part of the devel opment process.
The «system» and «external» stereotypes are user defined, not specified in SysML, but help the model er to identify the system
of interest relative to its environment. Each model element depicted may include a graphical icon to help convey itsintended
meaning. The spatial relationship of the entities on the diagram sometimes conveys understanding as well, although thisis not
specifically captured in the semantics. Also, a background such as a map can be included to provide additional context. The
associations among the classes may represent abstract conceptual relationships among the entities, which would berefined in

subsequent diagrams. Note how the relationships in this diagram are also reflected in the Automotive Domain Model Block
Definition Diagram, Figure B.15.

174 OMG SysML™ Adopted Specification



x4:

Maintainer:

«external»

drivingConditions:Environment

«external»
weather:Weather

«ContextDiagram»
ibd [block] AutomotiveDomain
«system>»
HSUV:
HybridSUV
x1:
\ A
Driver:
X2: X3:
/ «external»
vehicleCargo:
Baggage
'~
Passenger: /;/é
«diagramDescription»
version="0.1"
description="Initial concept to identify top level domain entities"
reference="Ops Concept Description”
completeness="partial. Does not include gas pump and other
external interfaces.”

«external» 1.*
road:Road

p

«external»
object:ExternalObject

1.*

Figure B.4 - Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram. (Internal Block
Diagram) Completeness of Diagram Noted in Diagram Description

B.4.2.2 Use Case Diagram - Top Level Use Cases
The use case diagram for “Drive Vehicle” in Figure B.5 depicts the drive vehicle usage of the vehicle system. The subject

(HybridSUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, DMV) interact to redize the use

case.

OMG SysML™ Adopted Specification

175



uc HSUVUseCases [TopLeveIUseCasesy
HybridSUV
_ | Operate the
vehicle
Driver
Insure the
- — vehicle
InsuranceCompany
Registered
Owner
Register the F—
vehicle
Department
Of Motor
Vehicles
Maintain the
vehicle
Maintainer

Figure B.5 - Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)

B.4.2.3 Use Case Diagram - Operational Use Cases

Goal-level Use Cases associated with “ Operate the Vehicle” are depicted in the following diagram. These use cases help flesh
out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration, and insurance of the
vehicle would be covered under a separate set of goal-oriented use cases.

176 OMG SysML™ Adopted Specification



uc HSUVUseCases [Operational Use Casesy

HybridSUV

Start the vehicle

Driver AN «include»
N ~

Figure B.6 - Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)
B.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)

B.4.3.1 Sequence Diagram - Drive Black Box

Figure B.7 shows the interactions between driver and vehicle that are necessary for the “ Drive the Vehicle” Use Case. This
diagram represents the “ DriveBlackBox” interaction, with is owned by the AutomotiveDomain block. “BlackBox” for the
purpose of this example, refers to how the subject system (HybridSUV block) interacts only with outside elements, without
reveding any interior detail.

The conditions for each aternative in the alt control Speed section are expressed in OCL, and relate to the states of the
HybridSUV block, as shownin Figure B.8.

OMG SysML™ Adopted Specification 177



sd DriveBlackBox )
driver:Driver vehiclelnContext:HybridSUW

ref StartVehicleBlackBox

par

alt controlS eecy [self.oclinSthte(idle)]
ref Idle

[self.oclinState(accdlerating/cruising)]
ref Accelerate/Cruise
[self oclinStafe(braking)]
ref Brake
ref Steer
ref Park/ShutdownVehicle
! !

Figure B.7 - Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

B.4.3.2 State Machine Diagram - HSUV Operational States

Figure B.8 depictsthe operational states of the HSUV block, via a State Machine named “HSUV Operationa States”. Note that
this state machine was devel oped in conjunction with the DriveBlackBox interaction in Figure B.7. Also note that this state
machine refines the requirement “ PowerSourceM anagment,” which will be elaborated in the requirements section of this
sample problem. This diagram expresses only the nominal states. Exception states, like “acceleratorFailure,” are not expressed

on this diagram.

178

OMG SysML™ Adopted Specification




stm HSUVOperationaIStates) ™

Refines
«requirement»
PowerSource

Management

Nominal
states only

S

//
/ Operate \

Off keyOff%@

start shutOff

accelerate stopped

releaseBrake

Accellerating/ Brakin
Cruising 9

\ engageBrake /

Figure B.8 - Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)

B.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

The Figure B.9 showsa“black box” interaction, but references “ StartVVehiclewhiteBox” (Figure B.10), which will decompose
the lifelines within the context of the HybridSUV block.

OMG SysML™ Adopted Specification 179



sd StartVehicIeBIackBox)

driver:Driver

turnignitionToStart

1: StartVehicle

vehiclelnContext:HybridSUW
ref StartVehicleWhiteBox

Figure B.9 - Black Box Interaction for “ StartVehicle”, referencing White Box Interaction (Sequence Diagram)

The lifelines on Figure B.10 (“whitebox” sequence diagram) need to come from the Power System decomposition. This now
begins to consider parts contained in the HybridSUV block.

sd StartVehicleWh |teBox)

ecu:PowerContralUnit

1: StartVehicle

epc.ElectricalPowerController

1.1: Enable

H_

T
|
|
!
1
|
|
!
1

1.2:ready

Figure B.10 - White Box Interaction for “ StartVehicle” (Sequence Diagram)

180

OMG SysML™ Adopted Specification



B.4.4 Establishing Requirements (Requirements Diagrams and Tables)

B.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in Figure B.11,
including the requirement for the vehicle to pass emissions standards, which is expanded for illustration purposes. The
containment (cross hair) relationship, for purposes of this example, refers to the practice of decomposing a complex
reguirement into simpler, single requirements.

req [package] HSUVRequirements [HSUV Specificationy

HSUVSpecification
I

O D P g

[

«requirement»

«requirement» «requirement» «requirement» «requirement» :
Eco-Friendliness Performance Ergonomics Qualification Capacity
2] D &F D [SSRS]
«requirement» «requirement» «requirement» «requirement» «requirement» «requirement» «requirement»
Braking FuelEconomy OffRoadCapability Accelleration SafetyTest CargoCapacity PassengerCapacity
«requirement» «requirement»
Emissions FuelCapacity

Id=R1.2.1
text = The vehicle shall meet Ultra-Low
Emissions Vehicle standards.

Figure B.11 - Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram)

B.4.4.2 Requirement Diagram - Derived Requirements

Figure B.12 shows a set of requirements derived from the lowest tier requirementsin the HSUV specification. Derived
reguirements, for the purpose of this example, express the concepts of requirements in the HSUV Specification in a manner
that specifically relates them to the HSUV system. Various other model elements may be necessary to help develop a derived
reguirement, and these model element may be related by a «refinedBy» relationship. Note how PowerSourceM anagement is
“RefinedBy” the HSUV Operationa States model (Figure B.8). Note also that rationale can be attached to the «deriveReqt»
relationship. In this case, rationaleis provided by a referenced document “Hybrid Design Guidance.”

OMG SysML™ Adopted Specification 181



182

RefinedBy

HSUVStructure::HSUV.
HSUVOperationalStates

«problem»
\

ments Diagram)

with fuel economy
\

Power needed for acceleration, off-road
performance & cargo capacity conflicts

«requirement»
PowerSourceManagement

_-

| «requirement»
- Power

«rationale»

req [package] HSUVRequirements [Requirement Derivationy
«requirement» «requirement» «requirement» «requirement» «requirement» «requirement»
Braking FuelEconomy FuelCapacity OffRoadCapability Accelleration CargoCapacity
R N NN S N DN Iy 7
| SN o deriveR ™ \ ;
. ! \ i «deriveReqt» N
«deriveReqt» «deriveReqt» \\ N «derlveFffqt» N q \\\ \‘ //
) ] \ \ \ - - .
4 / \ AN N \ «deriveReqt»  «deriveReqt»  «deriveReqt»
\ ! \ \ AN \ .
\ 1 \\ \\ i AN 7
\ \ «requirement» ~
«requirement» \ AN Range
RegenerativeBraking ‘\ AN
' \
«deriveReqt» N
)
\

control of gas and electric motors. See
“Hybrid Design Guidance”

Power delivery must happen by coordinated

reguirement.

B.4.4.3 Requirement Diagram - Acceleration Requirement Relationships

Figure B.13 focuses on the Accel eration requirement, and relates it to other requirements and model elements. The

OMG SysML™ Adopted Specification

Figure B.12 - Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy (Require-

“refineReqt” relation, introduced in Figure B.12, shows how the Acceleration requirement is refined by a similarly named use
case. The Power requirement is satisfied by the PowerSubsystem, and a Max Acceleration test case verifies the Acceleration




req [package] HSUVRequirements [Acceleration Requirement Refinement and Verificationy

«requirement»
Acceleration

Py BN
«refine» -7 / ~
e / N
- / N
- o «verify»
PP «deriveReqt» N
e / AN
/ AN
HSUVUseCases: / AN

/

:Accelerate ,

«testCase»
Max Acceleration

«requirement»
Power

7
/

7/
«satisfy»
7

/
/

«block»
PowerSubsystem

Figure B.13 - Acceleration Requirement Relationships (Requirements Diagram)

B.4.4.4 Table - Requirements Table

Figure B.14 contains two diagrams that show requirement containment (decomposition), and requirements derivation in
tabular form. Thisisamore compact representation than the requirements diagrams shown previoudly.

OMG SysML™ Adopted Specification 183



table [requirement] Performance [Decomposition of Performance Requirementy
id [name text
The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better
2|Performance fuel economy.

The Hybrid SUV shall have the braking capability of a typical
2.1|Braking SUV.

The Hybrid SUV shall have dramatically better fuel economy
2.2|FuelEconomy than a typical SUV.

The Hybrid SUV shall have the off-road capability of a
2.3|OffRoadCapability |typical SUV.

The Hybrid SUV shall have the acceleration of a typical
2.4|Acceleration SUV.

table [requirement] Performance [Tree of Performance Requirements])
id |name relation id [name relation id name
2.1 |Braking deriveReqt |d.1 [RegenerativeBraking
2.2 |FuelEconomy deriveReqt [d.1 [RegenerativeBraking
deriveReqt [d.2 [Range
4.2 |FuelCapacity deriveReqt [d.2 [Range
2.3 | OffRoadCapability deriveReqt [d.4 [Power deriveReqt |d.2 |PowerSourceManagement
2.4 |Acceleration deriveReqt [d.4 [Power deriveReqt |d.2 |PowerSourceManagement
4.1 |CargoCapacity deriveReqt [d.4 |Power deriveReqt |d.2 |PowerSourceManagement

Figure B.14 - Requirements Relationships Expressed in Tabular Format (Table)

B.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block

Diagrams)

B.4.5.1 Block Definition Diagram - Automotive Domain

Figure B.15 provides definition for the concepts previously shown in the context diagram. Note that the interactions
DriveBlackBox and StartVehicleBlackBox (described inSection B.4.3, “Elaborating Behavior (Sequence and State Machine
Diagrams),” on page 177) are depicted as owned by the AutomotiveDomain block.

184

OMG SysML™ Adopted Specification



bdd [package] HSUVStructure [Automotive Domain Breakdowny

«dor_nain» .
AutomotiveDomain

interactions
DriveBlackBox
StartVehicleBlackBox

¢

Driver

Maintainer

Passenger

drivingConditions

HSUV vehicleCargo
«system» «external» «external»
HybridSUV Baggage Environment
weather 1.* | object 1.% road
«external» «external» «external»
Weather External Object Road

Figure B.15 - Defining the Automotive Domain (compare with Figure B.4 ) - (Block Definition Diagram)

B.4.5.2 Block Definition Diagram - Hybrid SUV

Figure B.16 defines components of the HybridSUV block Note that the BrakePedal and WheelHubA ssembly are used by, but
not contained in, the PowerSubsystem block.

bdd [block] AutomotiveDomain [HybridSUV Breakdowny

«system»
HybridSUV
p bk b i I c
PowerSubsystem BrakeSubsystem BodySubsystem InteriorSubsystem LightingSubsystem ChassisSubsytem

I

BrakePedal

«rationale»

2 wheel drive is the only way to get
acceptable fuel economy, even though it
limits off-road capability

WheelHubAssembly

Figure B.16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram)

OMG SysML™ Adopted Specification

185



B.4.5.3 Internal Block Diagram - Hybrid SUV

Figure B.17 shows how the top level model el ements in the above diagram are connected together in the HybridSUV block.

ibd [block] HybridSUV

b:BodySubsystem

c:chassisSubsytem

c-bk:

b-I:

i: InteriorSubsystem

p:PowerSubsystem

br:BrakeSubsystem

bk-I:

p-bk:

I:LightingSubsystem

Figure B.17 - Internal Structure of Hybrid SUV (Internal Block Diagram)

B.4.5.4 Block Definition Diagram - Power Subsystem

Figure B.18 defines the next level of decomposition, namely the components of the PowerSubsystem block. Note how the of
white diamond (composition) on FrontWheel and BrakePedal denotes the same * use-not-composition” kind of relationship
previously shown in Figure B.16.

186

OMG SysML™ Adopted Specification



Comment:

I ssue 9780 - Updated Diagram

bdd [block] HSUV [PowerSubsystem Breakdowny

WheelHubAssembly
PowerSubsystem | 0.1
0.1 <> <>0..1
bko tfw riw
1 1 1
bp pau epc
BrakePedal BatteryPack PowerControlUnit HectricalPowerController FrontWheel
ad \1/7 ft \l/ \l/ ice ﬁ/ em ﬁ/ dif
; : ElectricMotor : ;
accelerator FuelTankAssembly InternalCombustionEngine Cenerator Differential
0.1 ? —\l/ trsm
v P 4 f
. Transmission
Fuel Fuellnjector

Figure B.18 - Defining Structure of Power Subsystem (Block Definition Diagram)

B.4.5.5 Internal Block Diagram for the “Power Subsystem”

Figure B.19 shows how the parts of the PowerSubsystem block, as defined in the diagram above, are used. It shows
«connectors» between parts, «clientServerPorts», «flowPorts», «atomicFlowPorts», and «itemFlows». The dashed borders on

FrontWheel and BrakePedal denote the “use-not-composition” relationship depicted elsewherein Figure B.16 and Figure

B.18.The dashed borders on Fuel denote a store, which keeps track of the amount and mass of fuel in the Fuel TankAssy.
Thisis also depicted in figure B 18

Comment:

Comment:

10064 Figure Updated

| ssue 10002

OMG SysML™ Adopted Specification

187



ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generator])

bp:BatteryPack

bp-epc: | epc:ElectricalPower

acl:accelerator

Controller
ctrl

I_IEPCData |_IEPCCmd

]

I_IEPCData

5
©| |_EPCCmd
8

epc
ecu

:PowerControlUnit

I_TRSMData

trsm

emg:ElectricMotor
Generator

i2:Electric il:Electric
Current Current
|_TRSMCmd
|_TRSMData
2 torquein:Torque

ice

.BrakePedal

I_ICECmds

I_TRSMCmd

|_ICEData
cl:

|_ICEData

gl:Torque

torqueOutTorque

rfw:ChassisSubsytem
spline .FrontWheel
o —Th
g
A S
=
< rightHalfShaft
=
=
Y g
Qo
[
dif:Differential

ice:InternalCombustionEngine

ctrl . . 4
fi:Fuellnjector

bkp:Brake Subsystem

Fuel

ft:FuelTankAssy

fp:FuelPump

fuelSupply:Fuel

AL
>

I_ICECmds

Port:FuelTankFitting

4
fdist:

Al

leftHalfShaft

hivi}

Ifw:ChassisSubsytem

Lyf

PortICEFuelFitting

fuelDelivery

fuelReturn:Fuel

.FrontWheel

| Figure B.19 - Internal Structure of the Power Syubsystem (Internal Block Diagram)

bdd [block] PowerSubsystem [ICE Interface Definitionsy

«interface»
|_ICEData

getRPM():integer
getTemperature():Real
isknockSensor():Boolean

«interface»
I_ICECmds

setMixture(mixture:Real):void

setThrottle(throttlePosition:Real):void

Figure B.20 - Interfaces Typing StandardPorts Internal to the Power Subsystem (Block Definition Diagram)

188

OMG SysML™ Adopted Specification




Figure B.20 provides definition of the interfaces applied to Standard Ports associated with connector ¢l in Figure B.19.

B.4.6 Defining Ports and Flows

B.4.6.1 Block Definition Diagram - ICE Interface

For purposes of example, the StandardPorts and related point-to-point connectorsin Figure B.19 are being refined into a
common bus architecture. For this example, FlowPorts have been used to model the bus architecture. Figure B.21 isan
incompletefirst step in the refinement of this bus architecture, asit beginsto identify the flow specification for the
Internal CombustionEngine, the Transmission, and the Electrical PowerController..

bdd CAN Bus FlowSpecifications )
«flowSpecification» «signal»
S_ICE ICEData
«flowProperties» rpm:Integer
out engineData:ICEData temperature:Real
in mixture:Real knockSensor:Boolean
in throttlePosition:Real

«flowSpecification»

FS_TRSM To be specified - what

«flowProperties» | ] is being exchanged
"""" over the bus from\to
the transmission?

«flowSpecification»
S_EPC

«flowProperties» To be specified - what is being

—————— exchanged over the bus from\to
the electronic power controller?

Figure B.21 - Initially Defining Flow Specifications for the CAN Bus (Block Definition Diagram)

B.4.6.2 Internal Block Diagram - CANbus

Figure B.22 continues the refinement of this Controller Area Network (CAN) bus architecture using FlowPorts. The explicit
structural allocation between the original connectors of Figure B.19 and this new bus architecture is shown in Figure B.36.

OMG SysML™ Adopted Specification

189



ibd [block] PowerSubsystem [CAN Bus description])

epc:ElectricalPower
Controller

fp:FS_EPC

trsm:Transmission

A}

fp:FS_TRSM

ice:InternalCombustionEngine

Al

fp:FS_ICE

:CAN_Bus

epc:IFS_EPC

etrsm:IFS_TRSM

ice:IFS_ICE

ecu:PowerControlUnit

Figure B.22 - Consolidating Interfaces into the CAN Bus. (Internal Block Diagram)

B.4.6.3 Block Definition Diagram - Fuel Flow Properties

The FlowPorts on the Fuel TankAssembly and I nternal CombustionEngine (as shown in Figure B.19) are defined in Figure

B.23.

bdd [block] HSUV [PowerSubsystem Fuel Flow Definition])

PowerSubsystem

!

Fuel

temperature:Temp
pressure:Press

ft

FuelTankAssembly

«flowProperties»
in fuelSupply:Fuel
out fuelReturn:Fuel

ICEFuelFitting:FuelFlow

FuelTankFitting:FuelFlow

ice

InternalCombustionEngine

= «flowProperties»

out fuelSupply:Fuel
in fuelReturn:Fuel

«flowSpecification»

FuelFlow

out fuelSupply:Fuel
in fuelReturn:Fuel

«flowProperties»

Figure B.23 - Elaborating Definition of Fuel Flow. (Block Definition Diagram)

190

OMG SysML™ Adopted Specification



B.4.6.4 Parametric Diagram - Fuel Flow
Figure B.24 is a parametric diagram showing how fuel flowrate is related to Fuel Demand and Fuel Pressure value properties.

par [Block]PowerSubsystem )

ice.fi.FuelDemand:Real

ice.ft.FuelFlowRate:Real

injectorDemand:Real

L]
fuelflow:FuelFlow
ice.fr.fuel.FuelPressure::Real

flowrate:Real constraints
{flowrate=press/(4*injectorDemand)}

press:Real

Figure B.24 - Defining Fuel Flow Constraints (Parametric Diagram)

B.4.6.5 Internal Block Diagram - Fuel Distribution

Comment: I ssue 9780 - Diagram Updated

Figure B.25 shows how the connectors fuel Delivery and fdist on Figure B.19 have been expanded to include design detail. The
fuel Delivery connector is actually two connectors, one carrying fuel Supply and the other carrying fuel Return. The fdist
connector inside the I nternal CombustionEngine block has been expanded into the fuel regulator and fuel rail parts. These more
detailed design elements are related to the original connectors using the alocation relationship. The Fuel store represents a
quantity of fuel in the Fuel TankAssy, which is drawn by the FuelPump for use in the engine, and is refreshed, to some
degree, by fuel returning to the Fuel TankAssy via the Fuel ReturnLine.

OMG SysML™ Adopted Specification 191



ibd [block] PowerSubsystem [Fuel Distribution Detail] /

ice:InternalCombustionEngine

fil:Fuellnjector

fi2:Fuellnjector

fi3:Fuellnjector

\\
— W — W

allocatedFrom
«connector»fdist:

\ ~ = —
~. —
\ =~ T~ fi4:Fuellnjector
N h
N—1
\ fraFuelRail fre:FuelRegulator
allocatedFrom N
«connector»fueIDellvery LWE F
\\ -
N fuelFitting:Fuel
ft:FuelTankAssy N \

N
plFueI\ \ fueISuppIyLineZ

=]

I fueISuppIy Fus fuelReturnLine: <
| TpZ.Fuel fuelReturn:Fuel

Fuel fp:FuelPump

4[]7

Figure B.25 - Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram)

B.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)

B.4.7.1 Block Definition Diagram - Analysis Context

Figure B.26 defines the various model elementsthat will be used to conduct analysisin this example. It depicts each of the
constraint blocks/equations that will be used for the analysis, and key rel ationships between them.

192 OMG SysML™ Adopted Specification



bdd [package] HSUVAnalysis [Analysis Context])
0.1 delta-t .
CapacityContext UnitCostContext EconomyContext ’%1 GlobalTime
ex
0.1 1
0.1
¢ 0.1 \ vl
ad 1 0.1 0..1
1 ad 1
. ad .
«domain» «testCase,Interaction»
HSUVStructure:: MaxAcceleration
AutomotiveDomain
\
\
«verify»
cap rdrag fe dyn f Y
i
«constraint» «constraint» «constraint» «constraint» «requirement»
: ; : i FuelEfficency StraightLine ;
CapacityEquation RoﬂElgS;rig:rt]lon Equation VehicleDynamics Acceleration
constraints
{pcap = Sum(Vi)}
pl w adrag rb
parameters
V1:Vol . i : «constraint»
V2:Vol «constraint» «constraint» «constraint» RegenBrake
V3:Vol PayloadEquation TotalWeight AeroDragEquation EfficiencyEquation

Figure B.26 - Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

B.4.7.2 Package Diagram - Performance View Definition

Figure B.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific
PerformanceView. The PerformanceView itself may contain of anumber of diagrams depicting the elementsit contains.

OMG SysML™ Adopted Specification 193



pkg [package] HSUVViews [Performance View] )

«view»
{viewpoint=Performance Viewpoint}
PerformanceView
Driver «requirement»
Performance
id="2"
Text = "The Hybrid SUV
«Moe» shall havg the braking,
HSUValt1.FuelEco acceleration, and off-road
nomy capability of a typical SUV,
but have dramatically better
fuel economy."
«moe»
HSUValtl.Quarter
MileTime «constraint»
UnitCostEquation
«moe»
HSUValtl.Zero .
) «constraint»
60Time CapacityEquation
«moe»
HSUValtl.Car .
c it «constraint»
gotapacity EconomyEquation
«moe»
HSUValtl.Cos «testCase»
tEffectiveness EPAFuel
EconomyTest

-

Performance Viewpoint

«viewpoint»
stakeholders="customer"
concerns="Will the system perform

adequately?"
purpose="Highlight the performance of the

system."”
methods="show performance requirements,

test cases, MOE, constraint models, etc.;
includes functional viewpoint"

-
-

-
-

languages="SysML"
7

T
1
. I
i I
< 1
1

]

1

1

1

1

«conform»
v

«iewpoint»
Functional Viewpoint

Figure B.27 - Establishing a Performance View of the User Model (Package Diagram)

B.4.7.3 Parametric Diagram - Measures of Effectiveness

Measure of Effectivenessisauser defined stereotype. Figure B.28 shows how the overall cost effectiveness of the HSUV will
be evaluated. It shows the particular measures of effectiveness for one particular alternative for the HSUV design, and can be

reused to evaluate other aternatives.

194

OMG SysML™ Adopted Specification



par [block] MeasuresOfEffectiveness [HSUV MOEs])

[ :EconomyEquation

>

«moe»
HSUValtl.FuelEconomy

«moe»
HSUValtl.CostEffectiveness

«moe»
HSUValtl.QuarterMileTime

Analysis

:MaxAcceleration

It

«moe»
HSUValtl.Zero60Time

vC
:CapacityEquation

«moe»
HSUValtl.CargoCapacity

CE:
L]

«objectiveFunction»
:MyObjectiveFunction
{CE = Sum(Wi*Pi)}

[] []
Py Ps:

I

uc
:UnitCostEquation

«moe»
HSUValtl.UnitCost

Figure B.28 - Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)

B.4.7.4 Parametric Diagram - Economy

Since overall fue economy isakey requirement on the HSUV design, this example applies significant detail in assessing it.
Figure B.29 shows the constraint blocks and properties necessary to evaluate fuel economy.

OMG SysML™ Adopted Specification

195



par [block] EconomyContext)

delta-t

ad.HSUV.PowerSybsystem.
InternalCombustionEngine.

ad.HSUV.PayloadCapacity incline: rb:RegenBrake

EfficiencyEquation ICEEfficiency
| adrag:Aero
volume: DragEquation
u g=d : ebpwr:
. . Cd:| dt: )
pcap: volume: ebpwr: n_ice:
H E acc: acc: U U ]
pl:PayloadEquation ad.drivingConditions. Z dyn:StraightLine i vel: vel: fe:FuelEfficiency mpg:
: road.incline incline: | VehicleDynamics = whipwr: whlpwr: Q Equation
M M [1 1 [1 [1 [1
psgrwit: cgowt: w: | cf X n_eg: n_em:

ad.HSUV .position

tw: | Cf: ’7

w:TotalWeight

1

. . ad.HSUV.PowerSybsystem.
vw: fw: o ElectricMotorGenerator.
rdrag:Rolling GeneratorEfficiency
FrictionEquation

ad.HSUV.VehicleDryWeight

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.
MotorEfficiency

ad.HSUV.PowerSubsystem.
FuelTank.FuelWeight

ad.HSUV.mpg

Figure B.29 - Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram)

B.4.7.5 Parametric Diagram - Dynamics

The StraightL ineVehicleDynamics constraint block from Figure B.29 has been expanded in Figure B.30. ConstraintNotes are
used, which identify each constraint using curly brackets{} . In addition, Rational e has been used to explain the meaning of
each constraint maintained.

196 OMG SysML™ Adopted Specification



par [constraintBlock] StraightLineVehicIeDynamics)

«rationale»
x(n+1) (ft) = x(n) + delta-x = x(n) + v*delta-t

{X(n+1) = x(n) + v(mph)*5280/3600*deIta-t}ﬁ

pos:PostionEquation

[1

tw: «rationale»
BN a(g) = F/m = P*t/m
Cf:
Il {a = (550/32)*tp(hp)*delta-ttw}
-, Cd: ;
[ ! //
o whipwr: / /,
whlpwr: | Cd: | Cf: | tw: tw: !
1,
L O L]
incline: tp: . : delta-t:
— pwr:PowerEquation acc.AcceII'eratlon
i tp: Equation
7T o H acc:
7 . .
s v a
«rationale»
tp (hp) = wheel power - drag - friction a:
7 'u
/ delta-t: dt
{tp = whipwr - (Cd*v) - (Cf*tw*v)}% J vel:VelocityEquation N
: e [ f
«rationale» 7 v vel:
v(n+1) (mph) = v(n) + delta-v = v(n) + a*delta-t |-~ '
{v(n+1) = v(n) + a(g)*32*3600/5280*delta-tH Vi
|
delta-t:

1

Figure B.30 - Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)

The constraints and parametersin Figure B.30 are detailed in Figure B.31 in Block Definition Diagram format.

OMG SysML™ Adopted Specification

197



bdd [package] HSUVAnalysis [Definition of Dynamics])
«constraint»
StraightLine
VehicleDynamics
parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
acc:Accel
vel:Vel
incline:Real
pwr pos vel acc
«constraint» «constraint» «constraint» «constraint»
PowerEquation PositionEquation VelocityEquation AccelerationEquation
constraints constraints constraints constraints
{tp = whipowr - (Cd*v) - {x(n+1) = x(n)+v*5280/3600*dt} {v(n+1 = v(n)+a*32*3600/5280*dt} {a = (550/32)*tp(hp)*dt*tw}
(Cf*tw*v)}
parameters parameters parameters tW.WEigﬁtarameters
whlpowr:Horsepwr delta-t:Time delta-t:Time de.lta—t'Time
Cd:Real v:Vel v:Vel tp'Hor‘.e,epwr
Cf:Real x:Dist a:Accel a-AcceI
tw:Weight -
tp:Horsepwr
v:Vel
i:Real

Figure B.31 - Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Diagram)

Note the use of valueTypes originally defined in Figure B.2.

B.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

Timing diagrams, whileincluded in UML 2.1, are not directly supported by SysML. For illustration purposes, however, the
interaction shown in Figure B.32 was generated based on the constraints and parameters of the Strai ghtLineVehicleDynamics
constraintBlock, as described in the Figure B.30. It assumes a constant 100hp at the drive wheels, 4000Ib gross vehicle weight,
and constant values for Cd and Cf.

198 OMG SysML™ Adopted Specification



tim MaxAcceleration [100 Wheel Horsepower] /& ________

Satisfies
«requirement»Acceleration

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Accelleration (g)

«diagramDescription)}
version="0.1"
description="Constant
100 wheel horsepower,
4000 Ib vehicle weight,
simple drag"
reference="Equations of
Motion”
completeness="assumes
perfect tire traction”

140

120

100

3

Velocity (mph)

20

1800
1600
1400
1200
1000

Distance (ft)

0 5 10
Time (sec)

15 20

N
\
AN

\

Figure B.32 - Results of Maximum Acceleration Analysis (Timing Diagram)

OMG SysML™ Adopted Specification

199



B.4.8 Defining, Decomposing, and Allocating Activities

B.4.8.1 Activity Diagram - Acceleration (top level)

Figure B.33 shows the top level behavior of an activity representing acceleration of the HSUV. It isthe intent of the systems
engineer in this example to all ocate this behavior to parts of the PowerSubsystem. It is quickly found, however, that the
behavior as depicted cannot be alocated, and must be further decomposed.

act Accelerate J

~ Comment: N

PushAccelerator

O

«continuous»
accelPosition

«continuous»
vehCond

Can't allocate
these activities to
PwrSubSystem

«continuous»
drivePower

transModeCmd

Figure B.33 - Behavior Model for “Accelerate” Function (Activity Diagram)

200

OMG SysML™ Adopted Specification



B.4.8.2 Block Definition Diagram - Acceleration

Figure B.34 defines a decomposition of the activities and objectFlows from the activity diagram in Figure B.33.

bdd [activity] Accelerate [Activity and Object Flow Breakdown])

«activity»
MeasureVehicle

Velocity

Conditions
mvel mbat
«activity» «activity»
MeasureVehicle MeasureBattery

Condition

«activity»
ProvidePower

al a4
«activity» «activity»
ProportionPower ProvideElectric
Power
az drivePower a3
«activity» «block» «activity»
ProvideGasPower Power ControlElectricPower
gasDrive% ﬁ elecDrivePower
«block» «block»
GasPower ElecPower

Figure B.34 - Decomposition of “Accelerate” Function (Block Definition diagram)

B.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)

Figure B.35 shows the ProvidePower activity, using the decomposed activities and objectFlows from Figure B.34. It also uses
AllocateActivityPartitions and an allocation callout to explicitly allocate activities and an object flow to parts in the
PowerSubsystem block.

Note that the incoming and outgoing object flows for the ProvidePower activity have been decomposed. This was done to
distinguish the flow of electrically generated mechanical power and gas generated mechanical power, and to provide further
insight into the specific vehicle conditions being monitored.

Comment:

OMG SysML™ Adopted Specification

I ssue 10065 Figure Updated

201



wilU=erDefined Swimlane Diagrams
act ProvideP ower [with Swimlane Allocation]

-
0.
‘-"*| dciks agllocates uallocaten wallocates |
PoverControll nit InternalC ombustionEngi | ElecricalPowerContr | Electricali otorGener |
| ne oller ator
wcontinuouss | | scontinuouss
ged asDriveP ower
i a2 ProvideGas | g
| Power |
sconfinuouss | wcontinuouss
vehCond . ad Provide drivePower
| acontinuouss Ef;ﬁaogtml ElectricPovwer |
| gThrottle Lo
wcontinuouss | wcontinuouss
battCond | elecDrivePower
wcontinuouss wcontinuouss |
| eThrottle driveCurrent
at: Proportion b |
| Power |
_'_'_'_“‘—7‘—-—-—“—-_._.___________‘_ |
wcontinuouss | v '—‘—'—-—-—._._________)
accelPosttion | 7 | tranzh odeCmd
allocatedTo |
|\ «itethmﬂ:Eledﬁeﬂunenﬁ oo
M WS G Se g e dwas swae dwes cge cee e dmes me e We cue B cge g o -

Figure B.35 - Detailed Behavior Model for “Provide Power” (Activity Diagram)
Note hierarchical consistency with Figure B.33.

B.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation

Figure B.36 depicts a subset of the PowerSubsystem, specifically showing the allocation relationships generated in Figure
B.35.

202 OMG SysML™ Adopted Specification



ibd [block] PowerSubsystem [Power Functional AIIocationu

'
e
s
'
'

elements of

reference="null”

«diagramDescriptiom; N
version="0.1"
description="allocation of
behavior and connectors to

power subsystem"

epc:ElectricalPower
Controller

allocatedFrom

«objectNodex»driveCurrent ﬁ

\
é \ emg:ElectricalMotor

Generator

completeness="partial. Power i2:Electric i1:Electric
subsystem elements that have allocatedFrom Current Current allocatedFrom
no allocation yet have been «activity»Control «activity»Convert
elided” ElectricPower ElectricToPower
A1
fp:FS_EPC
can:CAN_Bus fp:FS_TRSM .
trsm:Transmission
allocatedFrom
«connector»cl:
«connector»c2:
ecu:PowerControlUnit % «connector»c3:
epc:IFS_EPC
allocatedFrom e
«activity»Proportion ice:IFS_ICE fp:FS_ICE
PowerLoad etrsm:IFS_TRSM = é ice:InternalCombustionEngine

allocatedFrom

«activity»ConvertGasToPower

Figure B.36 - Flow Allocation to Power Subsystem (Internal Block Diagram)

B.4.8.5 Table - Acceleration Allocation

Figure B.37 shows the same all ocation rel ationships shown in Figure B.36, but in a more compact tabular representation.

Table [activity] ProvidePower [Allocation Tree for Provide Power Activitiesy
type name end |relation [end [type name
activity al:ProportionPower from |allocate [to  |block PowerControlUnit
activity a2:ProvideGasPower from |allocate |to block InternalCombustionEngine
activity a3:ControlElectricPower |[from |allocate |to block ElectricalPowerController
activity a4:ProvideElectricPower [from |allocate |to  |block ElectricalMotorGenerator
objectNode |driveCurrent from |allocate |to itemFlow |il:ElectricCurrent

Figure B.37 - Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table)

OMG SysML™ Adopted Specification

203



B.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

Figure B.38 shows a particular Hybrid SUV (VIN number) satisfying the EPA fuel economy test. Serial numbers of specific
relevant parts are indicated.

ibd [block] SUV_EPA_Fuel_Economy_Test [Test Resultsy

Satisfies Verifigs o
«requirment»Emissions «requirement»Emissions |——__ _ _| ctestCasex
N testRun060401:
AN EPAFuelEconomyTest
N
N

TestVehiclel:[HybridSUV]

b:[BodySubsystem] b-i: i:[Interior]
values values
sn:ID = b12345 sn:ID =i23456
b-c
c:[ChassisSubsystem] cbk: bk:[BrakeSubsystem] bkl I:[LightingSubsystem]
values values values
sn:ID = ¢c34567 sn:ID = bk45678 sn:ID = 1t56789

c-p: ‘ bk-p:

p:[PowerSubsystem]

t:[Transmission]

em -t: ice-t:
. ice:[InternalCombusti
em:[ElectricalMotor values ice: )
[ ] sn:ID = sn89012 onEngine]
values values
sn:ID = sn90123 sn:ID = eid78901
values

sn:ID = p67890

values
VIN = G12345

Figure B.38 - Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers)

204 OMG SysML™ Adopted Specification



Annex C: Non-normative Extensions

(informative)

This annex describes useful non-normative extensionsto SysML that may be considered for standardization in future versions
of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type, consistent with
how the main body of this specification is organized. Stereotypesin this section are specified using atabular format, consistent
with how non-normative stereotypes are specified in the UML 2.1 Superstructure specification. Model libraries are specified
using the guidelines provided in the Profiles & Model Libraries chapter of this specification.

C.1 Activity Diagram Extensions

C.1.1 Overview

Two non-normative extensions to activities are described for:
» Enhanced Functiona Flow Block Diagrams.
« Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensionsis available at [Bock. C., “SysML and UML 2.0
Support for Activity Moddling,” vol. 9, no. 2, pp. 160-186, Journal of the International Council of Systems Engineering,
2006].

C.1.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, aso called a behavior
diagram. Most of its functionality isa constrained use of UML activities, as described below. This extension does not address
replication, resources, or kill branches. Kill branches can be trand ated to activities using interruptible regions and join
specifications.

Table C.1 - Addition stereotypes for EFFBDs

Stereotype Base class Properties Constraints | Description
«effbd» UML4SysML::Activity (or subtype N/A See below. Specifies that the activity
of «nonStreaming» below) conforms to the constraints
necessary for EFFBD.

When the «effbd» stereotype is applied to an activity, its contents must conform to the following constraints:
[1] (On Activity) Activities do not have partitions.

[2] (On Activity) All decisions, merges, joins and forks are well-nested. In particular, each decision and merge are matched
one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and input parameters and
control acting asajoin.

[3] (On Action) All actions require exactly one control edge coming into them, and exactly one control edge coming o,
except when using parameter sets.

OMG SysML™ Adopted Specification 205



[4] (Execution constraint) All control isenabling.
[5] (On ControlFlow) All control flows into an action target a pin on the action that hasisControl = true.
[6] (On ObjectNode) Ordering isfirst-in first out, ordering = FIFO.

[7] (On ObjectNode) Object flow isnever used for control, isControl Type = false, except for pins of parameters in parameter
sets.

[8] (On Parameter) Parameters take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters produce exactly one value, multiplicity.lower = 1. The «optional» stereotype cannot
be applied to parameters.

[10] (On Parameter) Parameters cannot be streaming or exception.
[11] (On ParameterSet) Parameter sets only apply to output parameters.

[12] (On ParameterSet) Parameter setsonly apply to control. Parametersin parameter sets must have pins with isControl Type
=true.

[13] (On ParameterSet) Parameter sets have exactly one parameter, and it must not be shared with other parameter sets.\

Comment: | ssue 10053

[14] (On ParameterSet) If one output parameter isin aparameter set, then all output parameters of the behaviodr or operation
must be in parameter sets.

[15] (On ActivityEdge) Edges cannot have time constraints.

[16] The following SysML stereotypes cannot be applied: «rate», «controlOperators, «noBuffers, «overwrite».
A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they start and
before they finish (streaming), or only accept inputs when they start and provide outputs when they are finished

(nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated by other activities, while
nonstreaming activities usualy terminate themselves.

Table C.2 - Streaming options for activities

Stereotype Base Class Properties Constraints Description
«streaming» UML4SysML::Activity N/A The activity has at least Used for activities that can
one streaming accept inputs or provide outputs
parameter. after they start and before they
finish.
«nonStreaming» UML4SysML::Activity N/A The activity has no Used for activities that accept
streaming parameters. inputs only when they start, and
provide outputs only when they
finish.

C.1.3 Stereotype Examples

Figure C.1 shows an example activity diagram with the «effbd» stereotype applied, trandated from [Long. J., “Relationships
between common graphical representationsin system engineering,” 2002]. The stereotype applies the constraints specified in
Section C.1.2, for example, that the data outputs on all functions are required and that queuing is FIF.

206 OMG SysML™ Adopted Specification



«effbd»
act

2.4 Function in
Multi-exit
Construct

2.2 Multi-exit

ftem 1 Function

[ before third time ]

[ after External
third Output
time ]

«optional»

2.1 Serial
Function

External
Input

2.5 Function in
an lterate

Item 3
~ «optional»

T~

2.6 Output
Function

2.3 Function in
Concurrency

«optional»

Item 4

Figure C.1 - Example activity with «effbd» stereotype applied

Figure C.2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied, adapted from
[MathWorks, “Using Simulink,” 2004]. It isanumerical solution for the differential equation x'(t) = -2x(t) + u(t). Item types
are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which subactivities take inputs and produce
outputs while they are executing. They are simpler to use than the { stream} notation on streaming inputs and outputs

Comment: 10075

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with clocked
token flow, to ensure that actions with multiple inputs receive as many of them as possible before proceeding. See
discussion around Figure 26 of the article referenced in Section C.1.1..

act

«streaming» «streaming» [| «streaming»
Generate Integrate ;
- Displa)
u(t) Over Time [y play

Figure C.2 - Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities.

OMG SysML™ Adopted Specification 207



C.2 Requirements Diagram Extensions

C.2.1 Overview

This section describe an example of a non-normative extension for arequirements profile.

C.2.2 Stereotypes

This section includes stereotypes for asimplified requirements taxonomy that is intended to be further adapted as required to
support the particular needs of the application or organization. The requirements categoriesin this exampleinclude functional,
interface, performance, physical requirements, and design constraints as shown in Table C.3. As shown in the table, each
category is represented as a stereotype of the generic SysML «requirement». The table also includes a brief description of the
category. The table does not include any stereotype properties or constraints, although they can be added as deemed
appropriate for the application. For example, a constraint that could be applied to afunctional requirement isthat only SysML
activities and oper ations can satisfy this category of requirement. Other examples of requirements categories may include
operational, speciaized requirementsfor reliability and maintainability, store requirements, activation, deactivation, and a
high level category for stakeholder needs.

Some genera guidance for applying arequirements profileis asfollows:

» The categories should be adapted for the specific application or organization and reflected in the table. This includes
agreement on the categories, and their associated descriptions, stereotype properties, and constraints. Additional
categories can be added by further subclassing the categories in the table below, or adding additional categories at the
pier level of these categories.

» The default requirement category should be the generic «requirement.

* Apply the more specialized requirement stereotype (functional, interface, performance, physical, design constraint) as
applicable and ensure consistency with the description, stereotype properties, and constraints.

* A gspecific text requirement can include the application of more than one requirement category, in which case, each
stereotype should be shown in guillemets.

Table C.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Congtraints | Description
«extendedRequirement» «requirement» source: String N/A A mix-in stereotype that contains
risk: RiskKind generally useful attributes for
verifyMethod: requirements
VerifyMethodKind

«functionalRequirement» «extendedrequirement» N/A satisfied by an Requirement that specifies an
operation or operation or behavior that a
behavior system, or part of a system, must

perform.

«interfaceRequirement» «extendedrequirement» N/A satisfied by a Requirement that specifies the
port, connector, ports for connecting systems and
item flow, and/ system parts and the optionally
or constraint may include the item flows across
property the connector and/or Interface

constraints.

208 OMG SysML™ Adopted Specification



Table C.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints | Description
«performanceRequirement» | «extendedrequirements» N/A satisfied by a Requirement that quantitatively
value property measures the extent to which a
system, or a system part, satisfies
a required capability or condition.
«physicalRequirement» «extendedrequirement» N/A satisfied by a Requirement that specifies
structural physical characteristics and/or
element. physical constraints of the system,
or a system part.
«designConstraint» «extendedrequirement» N/A satisfied by a Requirement that specifies a
block or part constraint on the implementation of
the system or system part, such as
the system must use a commercial
off the shelf component.

Table C.4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Figure C.3.

Table C.4 - Requirement property enumeration types

Enumeration
Literals

Enumeration Example Description

RiskKind High High indicates an unacceptable level of risk

Medium Medium indicates an acceptable level of risk

Low Low indicates a minimal level of risk or no risk

VerificationMethodKind Analysis indicates that verification will be performed by technical evaluation using
mathematical representations, charts, graphs, circuit diagrams, data reduction, or
representative data. Analysis also includes the verification of requirements under
conditions, which are simulated or modeled; where the results are derived from the

analysis of the results produced by the model.

Analysis

Demonstration indicates that verification will be performed by operation, movement or
adjustment of the item under specific conditions to perform the design functions without
recording of quantitative data.. Demonstration is typically considered the least restrictive
of the verification types.

Demonstration

Inspection Inspection indicates that verification will be performed by examination of the item,
reviewing descriptive documentation, and comparing the appropriate characteristics with
a predetermined standard to determine conformance to requirements without the use of

special laboratory equipment or procedures.

Test Test indicates that verification will be performed through systematic exercising of the
applicable item under appropriate conditions with instrumentation to measure required
parameters and the collection, analysis, and evaluation of quantitative data to show that
measured parameters equal or exceed specified requirements.

C.2.3 Stereotype Examples

Figure C.3 shows the use of several sub-types of requirements extended to include the properties risk:RiskKind,
verifyMethod: VerficationM ethodKind, and a text attribute source: String, used to capture the source of the requirement.

OMG SysML™ Adopted Specification 209



Requirement Diagram Top-Level User Requiremen ty
«requirement»
HybridSUV
5]
functionaRequirement f
« Loag ” «performanceRequirement» «performanceRequirement» «requirement>
Eco-Friendliness Performance Ergonomics

 «functinalRequirement»
id =*URLT" o «performanceRequirement> «performanceRequirement»
source = M?rketlng id =" URL2" d="URL3"
text fMLOr?(gj Tes source = “Marketing” source = “Marketing
v_erklf)_/“Let od ="Test text = “Eco-Friendiiness’ text = “Performance
risk =Low verifyMethod = "Analysis” verifyMethod ="Test

risk = "High” risk ="Medium”

2]
«requirement» «requirement» «requirement»
Acceleration Braking Power
«requirement> «requirement»
Passengers Cargo
«performanceRequirement» X
Emissions «performanceRequirement «requirement»
FuelEconomy Range
«performanceRequirement» «performanceRequirement>
id="URL2.1" id =“UR1.3.1"
- source = “Marketing” source = “Marketing”
«equirements text = “The car shall meet 2010 Kyoto text = “Users shall obtain fuel
Fuel Capacity Accord emissions standards .” economy better than that provided
verifyMethod ="Test" by 95% of cars built in 2004.”
risk ="Medium” verifyMethod = “Test”
risk = “High”

Figure C.3 - Example extensions to Requirement
C.3 Parametric Diagram Extensions for Trade Studies

C.3.1 Overview

This section describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks chapter) to support
trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, atrade study is used to
evaluate a set of aternatives based on a defined set of criteria The criteriamay have aweighting to reflect their relative
importance. An objective function (aka optimization or cost function) can be used to represent the weighted criteria and
determine the overall value of each aternative. The objective function can be more complex than a simple linear weighting of
the criteriaand can include probability distribution functions and utility functions associated with each criteria. However, for
this example, we will assume the simpler case.

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission cost
effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying an objective
function to a set of criteria, each of which is represented by a measures of effectiveness.

This section includes stereotypes for an objective function and a measure of effectiveness. The objective functionisa
stereotype of a ConstraintBlock and the measure of effectivenessis a stereotype of ablock property.

210 OMG SysML™ Adopted Specification



C.3.2 Stereotypes

Table C.5 - Stereotypes for Measures of Effectiveness

Comment: I ssue 10017
Stereotype Base Class Properties Congtraints | Description
«objectiveFunction» «ConstraintBlock» or | N/A N/A An objective function (aka optimization or
«ConstraintProperty» cost function) is used to determine the
overall value of an alternative in terms of
weighted criteria and/or moe’s.
«moe» whlegldtrepaes N/A N/A A measure of effectiveness (moe)

UML4SysML::Pro
perty

represents a parameter whose value is
critical for achieving the desired mission
cost effectiveness.

C.3.3 Stereotype Examples

In thisexample, operationa availability, mission response time, and security effectiveness each represent moe' salong with life
cycle cost. The overall cost effectiveness for each alternative may be defined by an objective function that represents a

weighted sum of their moe values. For each moe, there is a separate parametric model to estimate the value of operational
avialability, mission response time, security effectivenessand life cycle cost to determine an overall cost effectivenessfor each

aternative. It is assumed that the moe's refer to the values for system aternativej (5).

par Effectiveness Model [System AIternati\E])

[:ResponseTimeMode@]-

«moe»

- sj.responseTime

P

P2:

«objectiveFunction»
:MyObjectiveFunction
{CE = Sum Wi*Pi}

: ilabilityModel [ - «moe»
{ :AvailabilityModel %a sj.availabllity
: ityModel [ —- «moe»
{ :SecurityModel @S s security
{ :CostModel D} ___________ «moe»
¢ sj.cost

P4:

777777 «moe»
ce: | Sj-costEffectiveness

C.4 Model Library for Dimensions and Units

The dimensions and unitsin this section are a subset of units defined by the International System of Units (Sl) asdefined in
NIST Special Publication 330 (available from the NIST Reference on Constants, Units and Uncertainty at
http://physics.nist.gov/cuu/Units/units.html).

OMG SysML™ Adopted Specification

211




pkg

«modelLibrary»
S| Definitions

Figure C.4 - Sl Definitions model library

pkg SI Definitions [SI Base Units]/

«dimension»
AmountOfSubstance

«dimension»
ThermodynamicTemperature

«dimension»
ElectricCurrent

«dimension» «dimension»
Mass Time

«dimension»
Length

«dimension»
Luminouslintensity

Meter

Kilogram

Second

Ampere

«unit»
dimension = Length

«unit»
dimension = Mass

«unit»
dimension = Time

«unit»

dimension = ElectricCurrent

Kelvin

Mole

Candela

«unit»

dimension = ThermodynamicTemperature

«unit»

dimension = AmountOfSubstance

«unit»

dimension = Luminouslintensity

Figure C.5 - Sl Base Units

212

OMG SysML™ Adopted Specification




pkg Sl Definitions [SI Derived Units Expressed In Base Units] /

«dimension» «dimension»

«dimension»

«dimension»

«dimension»

«dimension»

«dimension»

Area Volume Velocity Acceleration WaveNumber MassDensity SpecificVolume

«dimension»
Luminance

«dimension»
AmountOfSubstanceConcentration

«dimension»
MagneticFieldStrength

«dimension»
CurrentDensity

SquareMeter CubicMeter MeterPerSecond MeterPerSecondSquared ReciprocalMeter

«unit» «unit» «unit» «unit» «unit»
dimension = Area dimension = Volume dimension = Velocity dimension = Acceleration dimension = WaveNumber

KilogramPerCubicMeter CubicMeterPerKilogram AmperePerSquareMeter AmperePerMeter
«unit» «unit» «unit» «unit»
dimension = MassDensity dimension = SpecificVolume dimension = CurrentDensity dimension = MagneticFieldStrength

MolePerCubicMeter CandelaPerSquareMeter

«unit» «unit»
dimension = AmountOfSubstanceConcentration dimension = Luminance

Figure C.6 - Sl Derived Units Expressed In Base Units

OMG SysML™ Adopted Specification 213



pkg Sl Definitions [SI Derived Units With Special Names] /

«dimension» «dimension» | | «dimension» | | «dimension» | | «dimension» | | «dimension» | | «dimension» «dimension»
PlaneAngle SolidAngle Frequency Force Pre:

ssure Energy Power ElectricCharge

«dimension»

«dimension» «dimension»

ElectricPotentialDifference Capacitance | | ElectricResistance

«dimension» «dimension»
ElectricConductance MagneticFlux

«dimension»
MagneticFluxDensity

«dimension» «dimension» «dimension» «dimension»

Inductance CelsiusTemperature Lu

minousFlux Illuminance

«dimension»
ActivityOfRadionuclide

«dimension» «dimension»

AbsorbedDose DoseEquivalent | | CatalyticActivity

«dimension»

Radian

Steradian Hertz

Newton

«unit»
dimension = PlaneAngle

«unit» «unit»

dimension = SolidAngle dimension = Frequency dimension = Force

«unit»

Pascal

Joule Watt

Coulomb

«unit»
dimension = Pressure

«unit» «unit»
dimension = Energy dimension = Power

«unit»
dimension = ElectricCharge

Volt Farad Ohm
«unit» «unit» «unit»
dimension = ElectricPotentialDifference dimension = Capacitance dimension = ElectricResistance
Siemens Weber Tesla
«unit» «unit» «unit»
dimension = ElectricConductance dimension = MagneticFlux dimension = MagneticFluxDensity
Henry Degree Celsius Lumen Lux
«unit» «unit» «unit» «unit»
dimension = Inductance dimension = CelsiusTemperature dimension = LuminousFlux dimension = llluminance
Bequerel Gray Sievert Katal
«unit» «unit» «unit» «unit»
dimension = ActivityOfRadionuclide dimension = AbsorbedDose dimension = DoseEquivalent dimension = CatalyticActivity

Figure C.7 - Sl Derived Units With Special Names

C.5 Distribution Extensions
C.5.1 Overview

This section describes a non-normative extension to provide a candidate set of distributions (see “DistributedProperty” on
page 52). It consists of a profile containing stereotypes that can be used to specify distributions for properties of blocks.

214 OMG SysML™ Adopted Specification



C.5.2 Stereotypes
Package Distributions

«stereotype»
SysML::Blocks::
DistributedProperty

A

«stereotype» «stereotype»
Basiclnterval Normal
min: Real mean: Real
max: Real standardDeviation: Real
«stereotype» «stereotype»
Interval Uniform

Figure C.8 - Basic distribution stereotypes

Table C.6 - Distribution Stereotypes

Stereotype Base Class Properties Constraints | Description
«Basiclnterval» «DistributedProperty» | min:Real N/A Basic Interval distribution - value
max:Real between min and max inclusive

«Interval» «Basiclnterval» N/A N/A Interval distribution - unknown
probability between min and max

«Uniform» «Basiclnterval» N/A N/A Uniform distribution - constant
probability between min and max

«Normal» «DistributedProperty» | mean:Real N/A Normal distribution - constant
probability between min and max

standardDeviation:Real

C.5.3 Usage Example

Figure C.9 shows a simple example of using distributions; the force of the Cannon is specified using a Normal distribution
with parameters mean and standard Deviation. Whereas the use of aNormal distribution can be inferred from the names of its
parameters, an Interval distribution shares parameters with a Uniform distribution, hence the stereotype keyword «interval» is
used to distinguish it.

OMG SysML™ Adopted Specification 215



bdd [block] HringRangy

«block»
Cannon

{mean=100.0,standardDeviation=1.0}force: Newton

«block»
Shot

«interval»{min=101.0,max=105.0}volume: CubicMeter
density.KilogramPerCubicMeter
acceleration: MeterPerSquareSecond

Figure C.9 - Distribution Example

216 OMG SysML™ Adopted Specification



Annex D: Model Interchange

(informative)

D.1 Overview

This annex describes several methods for exchanging SysML models between tools. The first method discussed is XML
Metadata Interchange (XMI), which is the preferred method for exchanging models between UML -based tools. The second
approach describes the use of 1SO 10303-233 Application Protocol: Systems engineering and design (AP233), which is one of
the series of STEP (Standard for the Exchange of Product Model Data) neutral data schemasfor representing engineering data.
Other model interchange approaches are possible, but the ones described in this annex are expected to be the primary ones
supported by SysML.

D.2 Context for Model Interchange

Developing today’s complex systems typically requires engineering teams that are distributed in time and space and that are
often composed of many companies, each with their own culture, methods and tools. Effective collaboration requires
agreement on, and a thorough understanding of, the various work assignments and resulting artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral models,
verification & vaidation) that transcend the entire life cycle of the system of interest and are the basis for important systems
engineering considerations and decisions. So it is critical that the system information contained in these artifacts and
information models be accurately captured and ‘readable’ by al appropriate team membersin atimely manner.

Today, thisinformation residesin an array of tools where each is only concerned with a portion of systems engineering data
and can’t share its data with other tools because they only understand their own native schema. To mitigate this situation,
collaborating organizations are usually forced to either adopt a common set of tools or develop a unique, bi-directional
interface between many of the tools that each organization uses. This can be an expensive and untimely approach to data
exchange between team members. So there is a need to define standardized approaches for model interchange between the
different data schemasin use.

D.3 XMI Serialization of SysML

UML 2.0isformally defined using the OMG Meta Object Facility (MOF). MOF can be considered alanguage for specifying
modeling languages. The OMG XML Metadata Interchange (XMI) 2.1 standard specifies an XML -based interchange format
for any language modeled using MOF. This resultsin a standard, convenient format for serializing UML user models as XM|
files for interchange between UML tools. The XMI specification also includes rules for generating an XML Schemathat can
be used for basic validation of the structure of those UML user model XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as UML
models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in much the same
way one could extend the UML language by adding to the MOF definition of UML. AsUML Profilesare valid UML models,
XMI does provide a mechanism for exchanging the UML Profiles between UML tools. However, asthey are extensions to
concepts defined in the UML language itself, the definition of aUML Profile refersto the UML language definitions. An XMI
2.1 representation of the SysML profile (i.e., the UML Profile for SysML) is provided as a support document to this
specification (refer to ad/2006-03-02). Aswith UML, XMI provides a convenient serialized format for model interchange
between SysML tools and basic validation of those files using an XML Schema as well.

OMG SysML™ Adopted Specification 217



Comment: |ssue 9774

D.4 Overview of ISO 10303-233 STEP AP233 AP233

AP233isnot finaized at thistime, so this section reflects the background and current status of the AP233 work.

AP233isaneutral data schemafor representing systems engineering data. AP233 is being standardized under the ISO TC-184
(Technical Committee on Industrial Automation Systems and Integration), SC4 (Subcommittee on Industrial Data Standards),
and is part of the larger STEP effort, which provides standardized models and infrastructure for the exchange of product model
data

Comment: |ssue 9774

D.4.1 Scope of ISO 10303-233 STEP AP233 AR233

AP233 will include support for describing:
e reguirement
 functiona
* structure
e physica structure & alocation
« configuration & traceability
e project & data management

An IDEF activity that shows the scope of AP233 information requirementsis available at http://public.ap233.org/AAM/
AAM_AP233-Issue-1.pdf. Additional detailson AP233 can be found at http://public.ap233.org/.

Comment: |ssue 9774

D.4.2 1SO 10303-233 STEP AP233 AR233 Development Approach & Status

AP233 and several other STEP application protocols are being built using a modular architecture. This enables the same
information model to be reused across disciplines and life cycle stages. In the STEP Modular Architecture these reusable
information models are called application modules, or more informally simply modules. AP233 will consist of a number of
modules that together will satisfy the scope of the requirements stated above. Support for several of systems engineering
viewpoints within the scope of AP233 aready exist as the result of the devel opment of other application protocols and will
simply bereused in AP233. When existing STEP modules do not provide needed capabilities, new modules are being defined
as part of AP233 development. Since AP233 is part of STER, it iseasy to relate systems engineering data to that of other
engineering disciplines over the lifecycle of a system and to related product models.

Figure D-1 provides an overview of the modules planned to satisfy the scope of AP233 requirements and also showsthe
current status of each.

218 OMG SysML™ Adopted Specification



requirements breakdowns

PDM
. static system product config

functional
property-based

behaviour

analysis rules

state-based
verification &
validation

| status tegena  [Compieted [ e |

model presentation

function-based

Figure D.1 - AP233 Modules

D.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms

A good understanding of the STEP architecture and its components are required to understand how SysML models will be
interchanged using AP233. This section provides an overview of the key elements of STEP that pertain to model interchange.

D.4.3.1 Modular Architecture

The scope of STEP isvery large. While a number of STEP modules and application protocols have been developed (e.g.,
product data management, geometry, structural, electrical, and other engineering analysis support) and in use for several years,
other area such as AP233 are till being defined and devel oped.

AP233 and several other STEP application protocols are being built using a modular architecture. This enables the same
information model to be reused across disciplines and life cycle stages. In the STEP Modular Architecture these reusable
information models are called application modules, or more informally simply modules.

For more detail on the STEP architecture see the |SO TC184/SC4 Industrial Data subcommittee web page at http://
www.tc184-sc4.org/: and for amore detailed view of where specific STEP parts fit into the architecture is available at http://
www.mel. nist.gov/sc5/soap/soapgrf030407. pdf.

Comment: | ssue 9774

OMG SysML™ Adopted Specification 219



D.4.3.2 The Modeling Language for ISO 10303-233 STEP AP233 AR233

AP233, like dl STEP application protocals, is defined using the EXPRESS modeling language (see | SO 10303-11 Description
method: The EXPRESS language reference manual). EXPRESS is a preci se text-based information modeling language with a
related graphical representation called EXPRESS-G.

An example of the text-based format follows:

SCHEMA people;

TYPE year = integer;
END_TYPE;

TYPE person_or_organization = SELECT ( person, organization );
END_TYPE;

ENTITY organization;

name : STRING;

END_ENTITY,

ENTITY building;

address: STRING;

Oowner : person_or_organization;
END_ENTITY,

ENTITY person

ABSTRACT SUPERTYPE;
spouse : OPTIONAL person;
name : STRING;

birthyear : year;

biological _parents: SET[2:2] of person;
parents : SET[2:?] of person;
END_ENTITY,

ENTITY man

SUBTYPE OF ( person);

sister : SET[0:?] of woman;
END_ENTITY,

ENTITY woman

SUBTYPE OF ( person);

brother : SET[0:?] of man;
END_ENTITY,

END_SCHEMA;

Anoverview of an XML Document Type Definition for the EXPRESS language is available at http://stepmod.sourceforge.net/
express_mode_spec/. Note however, that the powerful expression language for constraint writing is not addressed by that
DTD. EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.

Work is underway to produce and standardize a MOF-based EXPRESS metamodel and EXPRESS/UML mappings.
Documentation related to those efforts is avail able at the exff (Engineering eXchange For Free) web site (http://www.exff.org/
express_uml/index.html). Eventually these efforts should allow aforma SysML/AP233 relationship to be standardized within
the OMG

An early draft of one mapping of 1SO EXPRESS to UML/XMI isavailable asan OMG document at http://www.omg.org/cgi-
bin/doc?iaison/2003-07-01. Please note that this specification is based on EXPRESS Edition 1, UML 1.4, MOF 1.4 and XMI
1.2

220 OMG SysML™ Adopted Specification



D.4.3.3 Model Interchange Mechanisms

As part of the STEP series of EXPRESS-based information model, a series of implementation methods are also standardized:
e 1S0 10303-21 (Part 21), clear text encoding of the exchange structure
* 1S0 10303-22 (Part 22), standard data access interface (SDAI) specification
¢ 1S0 10303-25 (Part 25), EXPRESS to OMG XMI binding
e 1S0 10303-28 (Part 28), XML representation of EXPRESS schemas and data

A conforming STEP implementation is the combination of a STEP application protocol and one or more of the
implementation methods.

SDAI specifies a standard programming interface for access to EXPRESS-based data. SDAI allows the implementors to refer
to product data in terms of its conceptual EXPRESS definitions, regardless of the underlying data structure or storage
technology. Bindings of the SDAI to C++ (1SO 10303-23), C (1SO 10303-24), Java (1SO 10303-27) provide standardized APIs
for accessing EXPRESS-based data

Comment: | ssue 9774

D.4.4 1SO 10303-233 STEP AP233 AR233 - SysML Alignment & Mapping Model

The requirements for AP233 and SysML have been largely aligned by the OMG and the I SO teams working together and in
close cooperation with the INCOSE Model Driven System Design working group. However there might be differencesin
breath and scope of AP233 and SysML resulting from the different development life cycles of both activities and the different
nature of the modeling frameworks used to define SysML and AP233. To avoid semantical issuesin exchanging data between
SysML and AP233, aneutra or mapping model of systems engineering concepts will be defined. Thus the mappings between
the mapping model and SysML metamodel and the mapping model and AP233 metamodel can be maintained independently.
The neutral mapping model will also help to clarify the semantics of the data e ements. Thisapproach isillustrated in Figure
D-2.

AsAP233 and SysML are defined in different modeling frameworks, the AP233 metamodel will be converted to UML to ease
the mapping. OMG has started a standardization activity has been started to capture EXPRESS semanticsin UML, but a
custom mapping will be used until the UML profile for EXPRESS has been adopted. The mapping model will be expressed as
aplain MOF model. The mapping model will be defined based on the concepts used and implemented for AP233 and SysML.
Another important input is the conceptual systems engineering model maintained by the INCOSE Model Driven System
Design Working group. Since devel opment of the mapping model and SysML and AP233 mappingsto it isan ongoing
maintenance activity, these specificationswill be maintained separately and updates will be posted on the SE DSIG web site.

The mapping model can be used as the basis for the model s exchange methods discussed in the next section and also for the
development of conceptua level API’s, which should ease the usage of AP233 and generation of common test cases for
SysML and AP233.

OMG SysML™ Adopted Specification 221



<<MetaModel>>

UML 2
N
|
| <<extends>>
|
]
<<MetaModel>> <<Profile>>
UML 2 Express
o N
|
|
| <<extends>> |
I |
I |
I 1
<<MetaModel>> <<MetaModel>>
SysML AP233 (UML)
i
|\\\ -
N e
N s
\\ i
AN 7/ <<mapping>>
<<mapping>> | s pping

<<MetaModel>>
MappingModel

Figure D.2 - Mapping Model

Comment: | ssue 9774

D.4.5 Generic Procedures for SysML and ISO 10303-233 STEP AP233 AR233
Model Interchange

D.4.5.1 File-based Exchange

Industrial-strength STEP implementations are typically file exchange-based systems integration processes. As OMG has
standardized XM asits model seriaization format, one obvious approach isto use the STEP XML -based file exchange
capability (Part 28) by simply trandating the model contained in an XM fileinto amodel based on the AP233 XML Schema.
This approach encourages systems integrators and SysML tool vendorsto devel op interoperable SysML-AP233 exchange
capabilities. It isalso provides SysML tool vendors with a meansto directly export AP233 XML files.

D.4.5.2 API-Driven Model Interchange

Model interchange can be simplified by the use of high-level application program interfaces (APIs) . At the moment,

standardized APIsfor SysML- or AP233-specific models are not available, but work isunderway in the industry to provide
implementations of such APIs. Idedly, application level devel opers can use the same APIsto access backend XML models
serialized in either SysML XMI or AP233 XML format, depending on customer needs. When combined, standardized XML
serialization formats and high-level APIswill provide avery convenient and interoperable way for SysML tool vendors and

222 OMG SysML™ Adopted Specification



systemsintegrators to exchange SysML and AP233 models. These standardized capabilities will also provide the foundation
needed for building a set of Systems Engineering Web Services

OMG SysML™ Adopted Specification 223



224 OMG SysML™ Adopted Specification



Annex E: Requirements Traceability

Comment: Issue 9769 - Note Table is also deleted from document

The OMG SysML requirements traceability matrix traces the requirements from this psecification to the original source
requirementsin the UML for system Engineering RFP (ad/03-03-41). The traceability matrix isincluded by referencein a
seperate document (ptc/2007-03-09)

{rfermativey

UML for | Requirement | Compl Requirement Satisfaction Metaclass SysML Ver #
SEReg't | name (Y/IN, Extension Diagram
# Partial) Chapter
6.5 Mandatory
Requirements
6.5.1 Structure N/A Structure diagrams include block Structural
definition, internal block, and Constructs
package diagrams

OMG SysML™ Adopted Specification 223




6.5.1.1 System Y Block composition (black or SysML::Block, Blocks 1.0
hierarchy white diamond) in a block UML.::Association,
definition diagram and parts in SysML::Block
internal block diagrams are the Property

primary mechanisms for
representing system hierarchy.

224 OMG SysML™ Adopted Specification



a. Subsystem Typically represented by a set of SysML::Block, Blocks 1.0
(logical or logical or physical partsin an SysML::Block
physical) internal block diagram that Property
realize one or more system
operations. The corresponding
sequence diagram and activity
diagram with swim lanes can
represent a hybrid of structure
and behavior.
b. Hardware Represented by a block or part. SysML::Block, Blocks 1.0
(i.e., eectrical, SysML::Block
mechanical, Property
optical)
c. Software Represented by a block or part or | SysML::Block, Blocks 1.0
a UML component. SysML::Block
Property,
UML::Component
d. Data Represented by a block or part. SysML::Block, Blocks 1.0
Refer to input/output SysML::Block
requirements in 6.5.2.1.1 and Property,
6.5.2.5 for data flows. SysML::ValueType,
UML::DataType
e. Manual Represented by a block or part. SysML::Block, Blocks 1.0
procedure Can also be represented by the SysML::Block
standard UML stereotype Property,
<<document>>. UML::Document
f. User/person Represented by a block or part. SysML::Block, Blocks 1.0
External users are also SysML::Block
represented as actors in a use Property
case diagram.
g. Facility Represented by a block or part. SysML::Block, Blocks 1.0
SysML::Block
Property
h. Natural Represented by a block or part. SysML::Block, Blocks 1.0
object SysML::Block
Property
i. Node Represented by a block or part. SysML::Block, Blocks 1.0
SysML::Block
Property
6.5.1.2 Environment Environment is one or more SysML::Block, Blocks, 1.0
entities that are external to the SysML::Block
system of interest and can be Property Use Case
represented as a block or part of
a broader context. Also,
represented as actors in use
cases.
OMG SysML™ Adopted Specification 225




6.5.1.3 System Internal block diagram shows SysML::Block, Blocks 1.0
inter- connections using parts, ports, SysML::Block
connection and connectors. Property, UML
Association,
UML.::Connector:
SysML::Nested
ConnectorEnd
6.5.1.3.1 Port A port defines an interaction SysML::Standard Ports and 1.0
point on a block or part that Port, Flows
enables the user to specify what
can flow in/out of the block/part UML::Interface,
(flow port) or what services the SysML::FlowPort,
block/part requires or provides SysML::Flow
(Sandard Port). Ports are Specification,
connected using connectors. SysML::Flow
Property
6.5.1.3.2 System The enclosing block for an SysML::Block Blocks, Ports 1.0
boundary internal block diagram and its and Flows
ports. SysML::Sandard
Port,
SysML::FlowPort
6.5.1.3.3 Connection A connector binds two ports to UML.::Association, Blocks 1.0
support interconnection. A UML.::Connector,
connector can be typed by an SysML::Nested
association. A logical connector ConnectorEnd
can be allocated to a more
complex physical path depicting
a set of parts, ports, and
connectors (refer to allocation).
Note: A connector has limited
decomposition capability at this
time.
6.5.1.4 Deployment of A structural allocation SysML.::Allocation, Allocations 1.0
components to relationship enables the SysML::Allocated,
nodes allocation (deployment) of one UML::Named
structural element to another. Element
a Software part, block or SysML::Allocation, Allocations 1.0
component deployed to a SysML::Allocated,
hardware part or block SysML::Block,
(processor or storage device). SysML::Block
Property,
UML::Component
b. Generalized deployment SysML::Allocation, Allocations 1.0
relationship between a deployed SysML::Allocated,
element and its host. SysML::Block,
SysML::Block
Property
226 OMG SysML™ Adopted Specification




Deployed element and host can
be decomposed using blocks and
parts.

SysML::Block,
SysML::Block
Property

Allocations

1.0

6.5.2

Behavior

N/A

Behavior diagrams include
activity, sequence, and state
machine diagrams.
Communication diagrams,
interaction overview diagrams,
and timing diagrams are
interaction diagrams that are not
included in SysML. Use case
diagrams are also viewed as a
behavior diagram in that they
represent the functionality in
terms of the usages of the system,
but do not depict temporal
relationships and associated
control flow or input/output flow.

Behavioral
Constructs

6521

Functional
Transformation
of Inputs to
Outputs

A behavior is the generalized
form of a function with inputs
and output parameters. Activity is
a subclass of behavior.

UML.::Behavior

Activities

65211

Input/Output

Inputs and outputs can be
represented as parameters of
activities, object nodes flowing
between action nodes, and as
item flows between partsin an
internal block diagram. Note:
Object nodes are more precisely
represented by pins on action
nodes.

UML:: Parameter,
UML:: ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows

1.0

Parameters, object nodes, and
item properties are typed by
classifiers (blocks or value types)
that can have properties.

SysML::Block,
UML.:: Parameter,
UML:: ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows

1.0

The classifiers that represent the
things that flow (type of
parameter, object node, and item
property) can be decomposed and
specialized.

SysML::Block,
UML:: Parameter,
UML:: ObjectNode,
SysML:: ItemFlow

Activities,
Ports and
Flows, Blocks

1.0

"ItemFlows" associate the things
that flow with the connector s that
bind the ports. The parameters
and object nodes are bound to the
corresponding activities and
actions.

SysML::Block,
UML:: Parameter,
UML:: ObjectNode,
SysML:: ItemFlow

Activities,
Ports and
Flows

1.0

OMG SysML™ Adopted Specification

227




6.5.2.1.2 System store Partial Stored items can be represented SysML::Block, Blocks, 1.0
as parts of a block, and also SysML::Block Activities
represented in an activity Property,
diagram as object nodes or .
central buffer nodes. UML::ObjectNode
UML::Central
BufferNode

a Partial Object nodes in an activity UML.::ObjectNode, Activities 1.0
diagram can represent depletable | UML::DataStore
stores, and a data store node can | Node
represent non-depletable stores.

b Y A stored item can be the same SysML::Block, Blocks, 1.0
type of classifier as an input or SysML::Block Activities
output in both an internal block Property,
diagram and an activity diagram. | UML::ObjectNode,
The classifier supports different UML::DataStore
roles (store vs. flow). Node

6.5.2.1.3 Function Y Activity specifies a generic UML.::Activity Activities, 1.0

subclass of behavior that is used Interactions,
to represent a function definition State
in activity diagrams, sequence Machines
diagrams, and state-machine
diagrams. Activities contain
CallBehaviorActions that call
(invoke) other activities to
support execution of the generic
behaviors.

a Y Behaviors and the associated UML::Behavior Activities, 1.0
parameters are named (i.e., name Interactions
of activity and activity parameter )
node). Sate Machines

b Y The action semantics define UML::CreateObject Activities, 1.0
different types of actions that Action, Interactions
include CreateObject, UML.::DeleteObject )
DestroyObject, Action, the various Sate Machines
ReadStructural Feature (monitor), | object modification
and WriteSructureal Feature actions in UML,
(update). A CallBehavior action monitoring with
isa generalized action that can UML::AcceptEvent
call any behavior (activity, Action
interaction, state).

c Y The object nodes (pins) bind UML.::ObjectNode, Activities 1.0
input and output parameters to UML::Pin
actions.

228 OMG SysML™ Adopted Specification




d Y The queuing semantics for object | UML::Behavior, Activities 1.0
nodes are specified. The default SysML::InputPin,
queuing is FIFO, but other forms | SysML::ObjectNode
of queuing including LIFO,
ordered, and unordered as
defined by the enumeration for
ObjectNodeKind.
e Partial Resource constraints to support UML.:: Constraint, Activities, 1.0
an execution can be specified by ) Constraint
Preconditions and SysML::Constraint Blocks
PostConditions. The constraints Block
can apply to resources that are
generated, consumed, produced,
and released, such asinputs and
outputs, or the availability of
memory or CPU. The congtraints
imposed on the resources can be
further modeled using parametric
diagrams.
f Y Refer to ¢ UML.:: ObjectFlow, Activities 1.0
UML::Pin
g Y An activity can be decomposed UML.:: Activity, Activities 1.0
into lower level actions that UML.:: CallBehavior
invoke other activities. Action, UML:: Activity
Parameter Node,
UML:: ObjectFlow,
UML:: Pin
h Y An action has control inputs that UML::Action, Activities, 1.0
can enable the execution of a UML::Interruptible Sate Machines
function, and a control value ActivityRegion,
input from a control operator that | SysML::ControlValue
can both enable or disable an UML:: Sate
execution of a function. An
execution of a function can also
be terminated when it is enclosed
in an interruptible region.
Alternatively, state machine
diagrams can be used to enable
or disable execution upon
transition events.
OMG SysML™ Adopted Specification 229




A computational expression can
be used to specify the behavior
(i.e. activity) that is invoked by
an action or an action that
represents a primitive function
such as an arithmetic expression.
Specific math expressions may be
included in a math model library.
The expressions should be
represented in a formal
mathematical language and
specify the language if they areto
be interpreted by a computational
engine.

UML::Activity,
UML.::Action

Activities,
Interactions

Sate Machines

1.0

A continuous or discrete rate
stereotype can be applied to
inputs and outputs. Inputs and
outputs are discrete by default. A
time continuous input or output is
an input or output whose value
can change in infinitely small
increments of time. An activity
can accept the continuous inputs
and provide continuous outputs
while executing if the inputs and
outputs are also streaming. An
alternative approach isto
continuously invoke an activity
that does not have streaming
inputs or outputs, in which case
each execution of an activity
accepts the inputs at the start of
execution and produces the
output at the completion of
execution.

SysML::Rate

SysML:: Continous,
SysML::Discrete

UML::Parameter
(isSream=Value)

Activities,
Sate Machines

1.0

Partial

Different actions can invoke
concurrent executions of the
same generalized behavior.
Actions can have multiplicity.

UML::Behavior,
UML.::Action

Activities

1.0

6.5.2.2

Function
activation/
deactivation

N/A

Actions can be activated and
deactivated using multiple
mechanisms within SysML as
described below including
control flows, control operators,
and interruptible regions.

Activities,
Interactions

Sate Machines

1.0

65221

Control input

Control flows in activity
diagrams provide the control
input. Control flow is represented
in state machine diagrams by a
transitions which activate states
and in sequence diagrams by the
passing of messages.

UML::ActivityEdge,

UML::ControlFlow,
UML:: Transition,
UML::Message,
SysML:: ControlValue

Activities,
Interactions

Sate Machines

1.0

230

OMG SysML™ Adopted Specification




Multiple control flows in an
activity diagram that are input to
a single activity node (i.e.,
action) are assumed to be
"anded" together.

SysML::Control Value,
SysML::InputPin.is
Control=true for
control queuing

Activities

1.0

Control inputs are discrete valued
inputs that can enable or disable
an activity node.

SysML::Control Value

Activities

1.0

In activity diagrams, the activity
is invoked (enabled) when a
token is received by the calling
action. This includes tokens from
all mandatory inputs and control
inputs.

UML::Action,

UML:: Control Flow,
UML.:: ActivityEdge

Activities

1.0

In activity diagrams, a control
operator can produce an output
control value to disable the
execution of an activity. An action
enclosed within an interruptible
region also can disable the
execution of an activity. In state
machine diagrams, transition
events can disable the actionsin
a state.

UML::Action,
UML::Interruptible
ActivityRegion,
SysML::Control Value,
UML::Sate

Activities,
Sate Machines

1.0

An executing activity with non-
streaming inputs and outputs
terminates when it completes its
transformation and produces an
output value. An executing
activity with continuous
streaming inputs will terminate
when it receives a disable from a
control value and/or a signal that
terminates the actions within an
interruptible region. A
TimeExpression can be specified
in a control operator or can
signal a termination in an
interruptible region. An activity
can also be terminated based on
events, including timeout events,
on atransition in a state machine
diagram. In state machine
diagrams, completion events
occur upon completion of an
activity.

UML.:: Activity,
UML::Interruptible
ActivityRegion,
SysML Control Val ue,
UML::Time
Expression,
UML::Sate

Activities,
Sate Machines

1.0

The enabling of actions without
explicit control flows as inputs
are enabled based on the control
associated with its inputs.

UML.::Action,
UML:: ObjectNode

Activities

1.0

OMG SysML™ Adopted Specification

231




g A control flow connects the SysML::ControlValue, | Activities 1.0
control inputs from one activity UML::Parameter,
node to another. The control UML.::Control Flow
input can also be the output
control value of a control
operator.

6.5.2.2.2 Control A control operator provides the SysML::Control Activities 1.0

operator mechanism apply control logicto | Operator,
enable and disable activity nodes. | SysML::ControlValue

a Control Nodes such as joins, UML::ControlNode, Activities 1.0
forks, etc. provide capability to SysML::Control
activate activity nodes based on Operator,
"and" and "or" logic. A SysML SysML::ControlValue,
Control Operator provides the UML::Parameter
additional capability to disable
an activity node.

b A join specification can be used UML::JoinNode with | Activities 1.0
to specify arbitrarily complex join specification,
logic for enabling an activity UML:: Parameter,
node. A control operator canalso | SysML::Control
be used to specify complex logic | Operator,
for enabling and disabling an SysML:: ControlValue
activity node.

[ The control nodes identified UML::ControlNode, Activities, 1.0
below provide the basic control UML::Interaction Interactions
logic for enabling activity nodes. | Operator
Note: multi exit functions are
supported by parameter sets.
Also, Interaction Operators
provide similar logic in Sequence
Diagrams.

cl Decision nodes in activity UML::DecisionNode, Activities, 1.0
diagrams support selection. The UML::Interaction Interactions
"alt" Interaction Operator Operator.Alt
supports selection in sequence
diagrams.

c2 Forks in activity diagrams sup- | UML::Fork, Activities, 1.0
port a single input flow gener- UML::Interaction Interactions
ating multiple concurrent Operator.par
output flows. The “par” Interac-
tion Operator supports concur-
rent message flow in
Sequence Diagrams.

c3 A join “and's” multiple input UML::Join Activities 1.0
flows together resulting in a
single output flow.

A A merge results a single output | UML::Merge Activities 1.0
flow upon arrival of the first of
multiple input flows.

232 OMG SysML™ Adopted Specification




c5 Y Decision and loop nodes support | UML::Decision- Activities, 1.0
iteration and looping. The Node, UML::Loop Interactions
“loop” Interaction Operator Node, Interaction-
supports loops in sequence Operator.loop
diagrams.
c6 N
6.5.2.2.3 Events and Partial Triggers and constraints as Activities, 1.0
conditions guards provide the mechanism Interactions,
for modeling events and State
conditions. Machines
a Partial A trigger can be used to specify UML:: Trigger, Activity, 1.0
an event. Events can be UML:: AcceptEvent Interactions
associated with control flowsin Action including )
activity diagrams, transitionsin UML:: TimeTrigger, Sate Machines
state machine diagrams, and UML::Event
sending and receiving of Occurence in
messages in sequence diagrams. Interactions.
Note: Failure event
can beresult in
various types of
actions that terminate
an Interruptible
Region in Activities,
€tc.
b Y Refer to a) above UML.:: ActivityEdge, Activity, 1.0
UML:: Trigger Interactions
Sate Machines
c Y Conditions can be specified as UML:: Constraint Activity, 1.0
congtraints that define guards to (guard) Interactions
control execution of behaviors. )
Sate Machines
6.5.2.3 Function-based Y Activity diagrams provide the UML:: Activity Activities 1.0
behavior capability to model function
based behavior.
6.5.24 Sate-based Sate machine diagrams provide UML:: SateMachine Sate Machines | 1.0
behavior the capability to model state
based behavior with the specific
modeling constructs indicated.
Note 2 response: Activities are
common to each type of behavior
including both function based
and state based. Note 3 response:
A state is defined based on some
invariant being true. The
invariant can include reference to
certain property values.
OMG SysML™ Adopted Specification 233




Y Sate UML::Sate State 1.0
Machines

Y Simple state UML:: Sate, State 1.0

isSmple=True Machines

Y Composite states can containone | UML::Sate State 1.0
region or two or more orthogonal ) o Machines
(concurrent) regions, each with | 1SCOmposite=True
one or more mutually exclusive
diioint states

Y Transitions between states which | UML::Transition, State 1.0
are triggered by events with UML:: Trigger Machines
guard conditions.

Y Transition within a composite UML:: Transition State 1.0
state (TransitionKind= Machines

Internal)

Y Pseudo statesinclude joins, forks | UML::PseudoSate State 1.0
and choice Machines

Y Transitions between states which | UML::Activity State 1.0
are triggered by events with Machines
guard conditions.

Y Entry, exit, doActivities are UML::Activity State 1.0
performed upon entry or exit Machines
from a state or while in a state.

Y Sate machine semantics define UML::Sate (Note: State 1.0
the ordering of actions that are refer to semantics) Machines
completed when exiting a
composite state (refer to UML
transition semantics). When a
composite state is exited, the exit
actions are executed beginning
with the most nested state.

Y Entry and exit actions must be UML:: Sate (Note: State 1.0
completed prior to exiting a state. | refer to semantics) Machines
A doActivity does not need to be
completed to execute.

Y Send and receive signals can be UML::SendSignal State 1.0
sent via actions to interact with Action Machines
other objects.

Partial The failure and/or exception UML:: Sate State 1.0
states are user defined and Machines

have no uniquely defined rep-
resentation. The use of exit
points on states can be used to
exit the state when a failure
event occurs.

234

OMG SysML™ Adopted Specification




6.5.24.1 Activation time Y The interval of time that an UML::SmpleTime Activities, 1.0
activity or stateis active can be Interactions,
modeled by a UML Time Trigger State
or Time Interval and Machines
corresponding Time Expression
(refer to UML trigger and
interval notation). Note: A UML
timing diagramis not included in
SysML at this time, but could be
used to mode! the time associated
with the occurrence of events,
such as state changes, or changes
in property values.
6.5.25 Allocation of Y An allocation relationship pro- SysML.::Allocation, Allocations 1.0
behavior to vides a generalized capability SysML::Allocated,
systems to allocate one model element | UML::NamedElement
to another.
a Y In general, behaviors such as UML::BehavioredCla | Allocations, 1.0
activities, interactions, and ssifier and Activities
state machines are owned by UML:: Behavior
a Behaviored Classifier which (owned behavior) -
can correspond to an block. Refer to UML
The SysML Allocation relation- | Common Behaviors,
ship can be used to explicitly SysML::Allocate,
allocate behaviors to blocks. SysML::Allocate
Alternatively, activity partitions | AcitivtyPartition
(swim lanes) can be used to
allocate the action and/or
activity to a part and/or block.
b Partial An object node in an activity SysML::Block (typeof | Allocations, 1.0
diagram can be allocated to an ObjectNode to type of | Activities,
item that flows in an internal ItemProperty), Ports and
block diagram using an UML:: ObjectNode, Flows
allocation relationship. Note: the | UML::Property
object node is typed by the same
classifier as the item that flows.
Seereq't 6.5.2.1.1.
6.5.3 Property N/A Properties and their relation- Blocks,
ships are represented in Constraint
SysML using properties of Blocks
blocks in conjunction with con-
straint blocks to capture the
relationships between them.
6.53.1 Property type Y Primitive types, data types, UML:: PrimitiveType, | Blocks 1.0
and value types provide the UML:: DataType,
capability to model the differ-
ent types of quantitative prop- SysML::Value Type
erties.
a Y Primitive type. UML::Integer
OMG SysML™ Adopted Specification 235




b Y Primitive type. UML::Boolean
c Y Primitive type. UML::Enumeration
d Y Primitive type. UML::String
e Y Primitive type. SysML::Real
f Y Data type. SysML::Complex
g Y Composite data type made up | Refer to a-f
of primitive types.
h Y Composite data type made up | Refer to a-f
of primitive types.
6.5.3.2 Property value Y Auxiliary 1.0
a Y Value properties are typed by SysML::Block Blocks 1.0
a value type or data type and Property,
have an associated value. SysML::ValueType,
UML::DataType,
b Y A value type can include a SysML::ValueType Blocks 1.0
dimension and units such as (unit and dimension
length and feet or meters. are defined as
blocks in a model
library)
c Y A value property is a block SysML::ValueType, Blocks 1.0
property that is typed by a SysML::Distribution
value type that can have an Definition
associated probability distribu-
tion on its values.
d Y Source data can be included in | UML::Comment Model 1.0
a comment attached to the Elements
property or a user defined ste-
reotype could be applied.
e Y Reference data can be UML::Comment Model 1.0
included in a comment Elements
attached to the property or a
user defined stereotype could
be applied.
6.5.3.3 Property A value property can be a feature | SysML::Block, Blocks 1.0
association of any classifier (.i.e., block) SysML::Block
Property
a Y Blocks, parts, oritems that flow | SysML::Block, Blocks 1.0
can have (or reference) SysML::Block
properties. Property
b Y A function (activity) can have UML::Activity Activities 1.0
properties since it is a class
236 OMG SysML™ Adopted Specification




c Partial An event is specified by a trig- | UML::Signal 1.0
ger which is an element. The
element does not have proper-
ties.A signal which is sent
upon the occurrence of the
event can have properties.
d Y A property can be related to SysML::Constraint- Constraint 1.0
other properties through a con- | Block, Blocks
straint property SysML::Constraint-
Property
6.5.34 Time property Y Time can be treated as a prop- | SysML::Block, Blocks, 1.0
erty, typed by a Real that can )
represent either continuous or SysML::Block Constraint
discrete time. Time ultimately | ProPerty, Blocks,
derives from clocks which can | gqviL:ValueType, Interactions
be continuous or discrete.
Clocks can be modeled as SysML::Constraint
blocks which have a time prop- | Property,
erty that can be bound to a SysML::Constraint
parameter of a constraint prop- | Parameter,
erty (e.g., equation). Time UML::SmpleTime
durations, start and stop times, | Package
etc. can be modeled using the
UML time model for time
triggers, time expressions,
intervals, and durations. Note:
More elaborate models of time
and clocks can be found in the
UML schedulability,
performance, and time profile.
6.5.35 Parametric Y The parametric diagramsupports | SysML::Constraint Constraint 1.0
model modeling of constraints which Block, Blocks
bind parameters of the )
congtraints to value properties. SysML::Constraint
Property
SysML::Constraint
Parameter,
SysML::Block
Property,
UML.:: Connector,
SysML::Nested
Connector End
a Y Constraints blocks and their SysML::Constraint- Constraint 1.0
usages (constraint properties) Block, Blocks
specify the mathematical SysML::Constraint-
relationships/constraints Parameter
between constraint parame-
ters.
OMG SysML™ Adopted Specification 237




Partial

Mathematical and logical
expressions can be defined in
SysML in a reference lan-
guage, but there is no inter-
preter built into SysML. The
range of values can be speci-
fied via value properties and
probability distributions per
6.5.3.2a-c.

SysML::Block
Property,
SysML::Distribution-
Definition

Blocks

1.0

The reference language for
interpreting the constraint can
be included as part of the Con-
straintBlock along with the
compartment for the expres-
sion.

SysML::Constraint-
Block

Constraint
Blocks

1.0

6.5.3.6

Probe

No specific mechanization has
been provided. In the testing
profile, there is a mechanism to
capture data and create actions
in response to the data. This will
be investigated in a future version
of SysML.

6.54

Requirement

N/A

The requirements diagram
provides the basic capability
for relating text based require-
ments to other SysML models.

Require-
ments

1.0

6.54.1

Requirement
specification

A requirement is a stereotype
of a class in SysML. The vari-
ous subtypes of requirement
are specified as subclasses of
the the requirement stereotype
and can include specific prop-
erties and constraints on what
model elements can satisfy the
subclass of requirement. A
sample set of subclasses of
requirements are included in
the NonNormative Extensions
Annex C.

SysML:: Requirement

Requirements,

Non-
Normative
Extensions,
Profiles &
Model
Libraries

1.0

Note 1

Values and tolerances can be
specified as part of the text
property or via property values
and distributions per 6.5.3.2a-
C.

Requirement.text,
SysML::Value
Property

Require-
ments,
Blocks

1.0

Note 2

There is no explicit subclass of
requirement as a stakeholder
need, but a requirement can
be named or subclassed as
“stakeholderNeed.”

SysML::Require-
ment

Requirements,

Non-
Normative
Extensions

1.0

238

OMG SysML™ Adopted Specification




Note 3 User defined requirements can | SysML:: Reguirements, 1.0
be added via subclasses to Requirement
specify any type of life cycle Non- i
requirement of interest to the Normative
modeler. Extensions,
Profiles &
Model
Libraries
a Operational requirement SysML:: Requirements, 1.0
Requirement
Non-
Normative
Extensions
b Functional requirement SysML.::functional- Reguirements, 1.0
Requirement
Non-
Normative
Extensions
c Interface requirement SysML:interface Requirements, 1.0
Requirement
Non-
Normative
Extensions
d Performance requirement SysML::perfor- Requirements, 1.0
manceRequirement
Non-
Normative
Extensions
e Activation/Deactivation (Con- SysML:: Reguirements, 1.0
trol) requirement Requirement
Non-
Normative
Extensions
f Storage requirement SysML:: Requirements, 1.0
Requirement
Non-
Normative
Extensions
g Physical requirement SysML::physical Requirements, 1.0
Requirement
Non-
Normative
Extensions
h Design constraint SysML:: Reguirements, 1.0
Requirement
Non-
Normative
Extensions
OMG SysML™ Adopted Specification 239




Specialized requirement SysML:: Requirements, 1.0
Requirement
Non-
Normative
Extensions
] Measure of effectiveness SysML::moe Requirements, 1.0
NonNormative
Extensions
6.5.4.2 Requirement A requirement includes default | SysML::Requirement Requirements, 1.0
properties properties for id and text.
Other properties can be added Non-
via stereotype properties. Normeative
Extensions,
Profiles &
Model
Libraries
6.5.4.3 Requirement The requirement relationships Require- 1.0
relationships include the relationships ments
containment, trace, deriv-
eReqt, satisfy, verify and refine
relationships.

a A derive relationship relates a | SysML::deriveReqt Requirements 1.0
derived (target) requirement to
a source requirement.

b A satisfy relationship relates SysML::satisfy Requirements 1.0
the model elements (i.e. the
design) to the requirements
that are
satisfied.

c Goals, capabilities, or usages UML:UseCassg, Require- 1.0
of systems are often UML::Include, ments, Use
expressed using use cases. ) Case
Subgoals can be represented S/SML::Reqw rement,
using the include and extend UML:refine
relationships between use
cases.

Requirements can be related
to use cases using the refine
relationship. Requirements
use the containment relation-
ship to breakdown an existing
requirement into its containing
requirements.
6.5.4.4 Problem A problem is an extension ofa | SysML::Problem Model 2.0

comment that can be attached Elements
to any model element. Note:
This could also be used to rep-
resent issues.

240 OMG SysML™ Adopted Specification




6.5.4.5

Problem
association

Referto 6.5.4.4

SysML::Problem

Model
Elements

2.0

6.5.4.6

Problem cause

2.0

6.55

Verification

N/A

The following responses to the
Verification requirements will
include references to the Testing
Profile [OMG Adopted
Specification

ptc/03-08-03] which is not
currently part of SysML but is
intended to be evaluated for
integration with version 1.1 of
SysML [refer to white paper on
integrating SysML with Testing
Profile]

Require-
ments

6551

Verification
Process

a

The SysML verify relationship
between one or more system
requirements and one or more
test cases represents the method
for verifying that a system design
satisfies its requirements. A
verified system design implies
that the system will satisfy its
requirements if the component
parts satisfy their allocated
requirements. An alternative
approach to capture the verify
relationship is to associate a test
case with a satisfy relationship
using the rationale.

SysML:: Verify,
SysML::Rationale

Requirements,
Model
Elements

1.0

The SysML verify relationship
between one or more
requirement(s) and one or more
test case(s) is used to verify that
the implemented system design
instances satisfy their
requirements. Alternatively, a
reference to a TestCase using
SysML:Rationale may be
attached to a satisfy relationship.

SysML:: Verify
SysML::Rationale

Require-
ments,
Model
Elements

1.0

A derive relationship between the
requirement being validated and
the higher level requirement or
need may have a Rationale
attached that references the
validation method(s).

SysML:deriveReqt
SysML::Rationale

Require-
ments,
Model
Elements

1.0

OMG SysML™ Adopted Specification

241




Note 1

Verification methods of analysis
and similarity may be modeled as
a Rationale with reference to the
specific analysis report or other
reference data. Verification
methods including Test,
Inspection, and Demonstration
may be modeled as a TestCase.

SysML::Rationale,
SysML::TestCase

Require-
ments

1.0

Note 2

Partial

Validation methods are user
defined. A rationale can reference
the user defined methods.

SysML::Rationale

Model
Elements

1.0

6.55.2

Test case

Partial

A test case refers to the
method for verifying a require-
ment. Note: The testing profile
associates a test case with a
behavior that can include the
specific method and associ-
ated input stimulus and
response.

SysML::TestCase

Requirements

1.0

Note 1

Partial

Refer to above note on the
testing profile.

1.x

Note 2

Partial

The test criteria can be
established via the require-
ment

1.x

Note 3

Partial

Test cases can contain other
test cases, like any other
named element.

SysML::TestCase

Require-
ments

1.0

6.55.3

\erification
result

Partial

The result of a SysML: TestCase
may be expressed through its
verdict attribute (Testing Profile)

SysML:: TestCase,
SysML::Verdict

Requirements

1.0

6.55.4

Requirement
verification

Partial

A constraint may be used to
relate the required value to the
verification result.

SysML::Constraint
Property;

SysML:: TestCase,
SysML::Rationale

Requirements,
Constraint
Blocks

1.0

6.55.5

\erification
procedure

Partial

A rationale can be associated
with the test case or the satisfy
relationship between a require-
ment and a design, and
reference a verification
procedure. Note: The testing
profile will associate a behav-
ior with a test case which can
be implemented by a specific
procedure.

SysML:: TestCase,
SysML::Rationale

Requirements,
Model
Elements

1.x

Note

242

OMG SysML™ Adopted Specification




6.5.5.6 Verification Partial A verification system can be SysML::Block Blocks 2.0
system modeled as any other system
(block) or it can be modeled as
the system environment.
However, the future integration
with the testing profile is
intended to provide explicit
modeling of the verification
system.
6.5.6 Other N/A
6.5.6.1 General Y SysML includes several standard
relationships UML relationships as described
below.
a Y An association relationship. UML::Association Blocks 1.0
b Y A package contains package- UML::Package, Class 1.0
able elements and can repre- UML::Packageable
sent collections of elements. Element;
UML::owned
Member
c Partial Blocks can be decomposed SysML::Block, Blocks 1.0
into parts that are typed by SysML::Block
other blocks using composition | Property,
(refer to Reqt 6.5.1.1). The UML::Association
completeness of the (composition)
decomposition is not explicitly
represented.
d Y A dependency relationship. UML::Dependency Model 1.0
Elements
e Y Generalization/specialization UML::Generalization, | Blocks 1.0
relationship. Generalization UML:: Generalization
sets provide the means to par- | Set
tition specializations to support
further categorization.
f Y Instantiation is modeled using UML::Instance Blocks 1.0
Instance Specifications to Specification,
uniquely identify a classifier. UML::InstanceValue
Instances are represented as a
property specific value with a
unique set of values.
OMG SysML™ Adopted Specification 243




6.5.6.2 Model views Partial A view represents the model SysML::View, Model 1.0
from a particular viewpoint. SysML::Viewpoint Elements
Both the view and the view- SysML::Conform
point are represented in
SysML. The view is a stereo-
type of package that identifies
the set of model elements that
conform to the viewpoint, and
the viewpoint specifies the
stakeholders, their purpose,
concerns and the construction
rules (language and methods)
to specify the view. Note: The
model elements that depict the
view are visually represented
in diagrams, tables, and other
notation. Integrity between
model views is accomplished
by creating a well formed
model. This in part results from
the constraints imposed by the
language, and in part is
defined by the specific meth-
odology and tools that are
employed. Navigation among
views results from a tool ven-
dor implementation.

6.5.6.3 Diagram types Diagram 1.0
Appendix

a The standard UML diagram N/A Diagram 1.0
types that are needed to sup- Appendix

port the requirements have
been included in SysML. Some
additional diagram types pro-
vide some redundant capabili-
ties, but have been preserved
to allow flexibility in represen-
tations and methodologies. For
example, the sequence dia-
grams along with activity and
state diagrams provide over-
lapping capability for repre-
senting behavior. A few
diagram types have not been
included explicitly in SysML,
although they are not pre-
cluded from use along with
SysML.

244 OMG SysML™ Adopted Specification




The requirements diagram and
parametric diagram have been
added to address the require-
ments of this RFP. In addition,
an informal mechanism has
been added to represent dia-
gram usages. This enables
renaming and constraining the
usage of a particular diagram
type for a particular usage.

SysML::Diagram
Usage

Diagram
Appendix

1.0

6.5.6.4

System role

Partial

A part in a block represents the
role for a classifier in the con-
text of the enclosing block. It
defines the relationship
between an instance of the
classifier that types the part
and an instance of the block
that encloses the part. Thisis a
primary mechanism for provid-
ing a unique context for a part
of a whole (enclosing block).
The part may use only a sub-
set of the behavior and proper-
ties of the class that types the
part. However, the specific
mechanism for containing the
subset has not been explicitly
defined.

SysM::Block,
SysML:Block
Property

Blocks

1.0

6.6

Optional
Requirements

N/A

6.6.1

Topology

a

2.0

b

2.0

6.6.2

Documentation

A document (stereotype of
artifact).

UML::Document

Diagram
Appendix

1.0

The document stereotype can
include stereotype properties
to represent information about
the document.

UML::Document

Profiles &
Model
Libraries

1.0

The trace relationship relates a
document to other model
elements.

UML::Trace

Diagram
Appendix

1.0

The ability to represent the text
of the document in terms of the
descriptions provided by the
related (traced) model ele-
ments is accomplished by a
tool implementation.

OMG SysML™ Adopted Specification

245




6.6.3 Trade-off Partial Parametric diagrams can depict SysML::moe, Constraint 1.0
studies and the relationship between SysML::objective Blocks, Non-
analysis measures of effectiveness and Function, Normative

various system properties SysML::Constraint Extensions
(including probability Property

distributions on their values) to

eval uate the effectiveness of a

particular system model. Specific

constructs for criteria, weighting,

and alternatives are planned for

a future version of SysML to

support modeling of trade

studies.

a Y Alternative models can be UML::Model, Model 1.0
specified via organization of UML::Package Elements,
models/packages. Model Profiles &
libraries can be used to estab- Model
lish reusable portions of the Libraries
model.

b Partial Criteria can be modeled as SysML::Block Blocks, 1.0,
properties typed by value Property, Require- 2.0
types or as Requirements SysML::ValueType, ments

SysML::Require-
ment

c Y Measures of effectiveness are SysML::moe, Non- 1.0
modeled as a subclass of SysML::Constraint- Normative
block property that represents Property Extensions,

a value property. A constraint Constraint
can represent the objective Blocks
function.
6.6.4 Fatial N
representation
6.6.4.1 Fatial N
reference
6.6.4.2 Geometric N
relationships
6.6.5 Dynamic Partial

structure

a Y The action semantics provide UML::CreateObject Action (UML 1.0
the capability for creating and Action, Spec)
destroying objects. UML.:: DestroyObject

Action

b Partial The capability is partially 2.0
provided by 6.6.5a.

c N 2.0

d N 2.0

246 OMG SysML™ Adopted Specification




6.6.6

Executable
semantics

Partial

The action semantics are
intended to provide execution
semantics. There is no formal
graphical syntax for this.

UML.::Action

Action in
UML Spec

1.0

6.6.7

Other behavior
modeling
paradigms

A UML behavior is a general-
ized behavior that can accom-
modate a wide range of
behavior modeling paradigms.
This include

function based, state based,
and message based behavior
(sequence diagrams).

UML.::Behavior

Activities,
Interactions,
State
Machines

1.0

6.6.8

Integrationwith
domain-specific
models

Partial

SysML is a general purpose
language that will integrate
with other types of domain
specific models. This is
accomplished in part by map-
ping SysML via XMl to the
AP233 data interchange stan-
dard. In addition, the paramet-
ric diagram is intended to
provide a capability to inte-
grate with domain specific
engineering analysis models.

Model
Interchange

1.x,
2.0

6.6.9

Testing Model

Partial

SysML is intended to be inte-
grated with the UML Testing
Profile. Refer to Response to
Reqt 6.5.5 above.

SysML::TestCase

Requirement

2.0

6.6.10

Management
Model

OMG SysML™ Adopted Specification

247




248 OMG SysML™ Adopted Specification



Annex F: Terms and Definitions
(informative)

The SysML glossary isincluded as a support document ad/2006-03-04 to this specification. The terms and definitions are
referred to in the SysML specification and are derived from multiple sources including the UML Superstructure (formal/05-
07-04) and the UML for Systems Engineering RFP (ad/03-03-41).

OMG SysML™ Adopted Specification 247



248 OMG SysML™ Adopted Specification



I ssue 10066 Complete Removal of Annex G

Comment:

249

OMG SysML™ Adopted Specification



OMG SysML™ Adopted Specification

250



package [<name-string>] )

<DiagramElement>*

PackageWithNametrtab>+= - [<package-name>] | —

<DiagramElement>*

[<package-name>]

<—PHbHePaekageI-mpeFP>—= (‘«import»' | ‘«element import»') -
[<name-string>]
&<Package>-————————— = &<Package>
<—PF|—vatePaekageI—mpeFP>—= (‘«access»' | '«element access»') N
[<name-string>]
&<Package>-————————— = &<Package>

OMG SysML™ Adopted Specification 251



I EKEIEE@E;E“EEH““E“E = &<Package>

(one or more
branches)

&<Package> &<Package>

<stereotype-icon>*

[<keywords>]
<body-text>

<stereotype-icon>*

<constraint-string>

=Copchointiebochedlines e <constraint-string>

&<DiagramElement> — " Sstereotypediconsr &<DiagramElement>

(located anywhere near path)

=Copchointiebochedlines e <constraint-string>

&<DiagramElement> ~ ~ _orconneiconss — &<DiagramElement>

(located anywhere near path)

<constraint-string>

! <stereotype-icon>*
; (located anywhere near path)
]

&<DiagramElement >+

(line crosses one or more II
graphical paths)

éDepeHd-eHey—>——: = . [<name>] X _—
&<Diagram-Element> -~~~ ~—~~ —=———> g&<DiagramElement>
<stereotype-icon>

(located anywhere near path)

252 OMG SysML™ Adopted Specification



<Dependeney>—+= &<Diagram Element> - _ _ _— &<Diagram Element> —
_— - -
(one or more ™ — \[\name/>]/ ~ "(one or more
branches) _ _ —— % ~~— _ _branches)

&<Diagram Element> ——~ <stereotype-icon>* T .
g (located anywhere near path) &<D|agram Element>

<Bependeney>+= &<Diagram Element> - _ > &<Diagram Element> -

~_ __ [<name>] -
(one or more ~ ~ ~ \% o ~ (one or more
branches) _ ——— =~ _ _branches)

&<Diagram Element> -~ ~ - <stereotype-icon>* N .
g (located anywhere near path) &<D|agram Element>

block definition <name-string%

<BlockDefinitionElement>*

<definition-name-elements>

<Compartment>*

OMG SysML™ Adopted Specification 253



'«'<name-string'»'

<property-value>*

Yo IESBEEE; ompartment>— 'namespace’ -

<DiagramElement>*

l o ‘structure’

<CrossCuttingElement>*
<InternalProperty>*
<Connector>*

<CompartmentLabel>

<compartment-element-list>*

254 OMG SysML™ Adopted Specification



Stotte-operation>-i= <operation>

[<association-label>] —
(near middle of path)

&<end> &<end>
[<end-label>] [<end-label>]
(anywhere near end) (anywhere near end)
[<association-label>] —
&<end> (near middle of path) g<end>
[<multiplicity>] [<end-label>]
(anywhere near end) (anywhere near end)

OMG SysML™ Adopted Specification 255



= drestiona ot eseeiatisps= [<association-label>] —

iddle of path
&<end> €@ (near middle of path) &<end>

[<end-label>] [<end-label>]
(anywhere near end) (anywhere near end)

=S ieirestiepa ot eseeaie - [<association-label>]

g<end> @ (near middle of path) g<end>
[<end-label>] [<end-label>]
(anywhere near end) (anywhere near end)

—————————————— &<end>
(two or more branches)

idi . HPartAssociations>—:= [<association-label>]

g<end> @ (near middle of path) g<end>
[<multiplicity>] [<end-label>]
(anywhere near end) (anywhere near end)

=nidiestiepal o ecssiatiens—= [<association-label>]

a<end> @ (near middle of path) g<end>
[<multiplicity>] [<end-label>]
(anywhere near end) (anywhere near end)

&<end>

(two or more branches)

&<BlockOrValueType> 4‘> &<BlockOrValueType>

&<BlockOrValueType>

< generalization-set-constraint>

‘ (two or more branches) ‘
I I
&<BlockOrValueType> &<BlockOrValueType>

<GeneralizationSet>—+= / —
]
&<Generalization >+
]
(line crosses one or more /
generalization branches) II
|

<generalization-set-constraint>

256

OMG SysML™ Adopted Specification



EI 9 SIE ]E“ i IESEEKE ‘D'; eRtarment>- &<BlockOrValueType>

(one or more branches)

&<BlockOrValueType> &<BlockOrValueType>

S5 o 5i £l Defined .
<hternalBleekBiagram>—= _

internal block <name-string> )

<CrossCuttingElement>*
<InternalProperty>*
<Connector>*

[<multiplicity>]
<property-path-name >

<InternalProperty>*
<Connector>*
<Compartment>*

HternalProperty>—= ] <internal-property-label>

[<connector-label>]
(near middle of path)

&<InternalProperty>
[<end-label>]

&<InternalProperty>

(anywhere near end) (anywhere near end)

[<connector-label>]
(near middle of path)

&<InternalProperty>
[<multiplicity>]

&<InternalProperty>

(anywhere near end) (anywhere near end)

OMG SysML™ Adopted Specification



. . | e .

instance <name—string>/

<Package>*
<CrossCuttingElement>*
<InstanceSpecification>*
<InstanceLink>*

<instance-label>

<instance-label>

<value-specification>

<instance-label>

<property-value>*

<instance-label>

<Propertylnstance>*
<Connectorinstance>*

<property-instance-label>

<value-specification>

<property-instance-label>

<property-value>*

<property-instance-label>

<Propertylnstance>*
<Connectorinstance>*

258 OMG SysML™ Adopted Specification



[<name-string>]
(near middle of path)

&<InstanceSpecification> &<InstanceSpecification>
[<name-string>] [<name-string>]
(anywhere near end) (anywhere near end)

;UI i d“ ecttor Ial I %ei eref |eeI: H IIE; . [<name-string>]
o (near middle of path) o
&<InstanceSpecification> &<InstanceSpecification>
[<name-string>]
(anywhere near end)

;Bld“ ecttot Ia“ ot EI:“ IIE; . [<name-string>]
o (near middle of path) o
&<InstanceSpecification> L 2 &<InstanceSpecification>
[<name-string>] [<name-string>]
(anywhere near end) (anywhere near end)
BieirectionatPartink>—: [<name-string>] —
o (near middle of path) o
&<InstanceSpecification> <@ &<InstanceSpecification>
[<name-string>] [<name-string>]
(anywhere near end) (anywhere near end)
———————————— &<InstanceSpecification>
(two or more branches) peciticat
;UI i d“ ecttor Ia“ ot EI:“ IIE; . [<name-string>]
o (near middle of path) o
&<InstanceSpecification> L 2 &<InstanceSpecification>
[<name-string>]
(anywhere near end)

[<name-string>]
o (near middle of path) o
&<InstanceSpecification> <@ &<InstanceSpecification>

[<name-string>]
(anywhere near end)

&<InstanceSpecification>
(two or more branches)

[[<name-string>] ;' [<name-string>]]
(near middle of path)

&<Propertylnstance> &<Propertylnstance>
[<name-string>] [<name-string>]
(anywhere near end) (anywhere near end)

[[<name-string>] ;' [<name-string>]]
(near middle of path)
&<Propertylnstance> &<Propertylnstance>

[<name-string>]
(anywhere near end)

OMG SysML™ Adopted Specification 259



[<multiplicity>]
<property-path-name >
<InternalProperty>*

<Connector>*
<Compartment>*

. . | e N
<internalBlockbiagram>—+= -

parametric <name-string> )

<CrossCuttingElement>*
<InternalProperty>*
<Connector>*

260 OMG SysML™ Adopted Specification



	OMG’s Issue Reporting Procedure
	Preface
	Part I - Introduction
	1 Scope
	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this Specification
	3.3 Acknowledgements

	4 Language Architecture
	4.1 Design Principles
	4.2 Architecture
	4.3 Extension Mechanisms
	4.4 SysML Diagrams

	5 Compliance
	5.1 Compliance with UML Subset (UML4SysML)
	5.1.1 Compliance Level Contents

	5.2 Compliance with SysML Extensions
	5.3 Meaning of Compliance

	6 Language Formalism
	6.1 Levels of Formalism
	6.2 Chapter Specification Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples


	6.3 Conventions and Typography

	Part II - Structural Constructs
	7 Model Elements
	7.1 Overview
	7.2 Diagram Elements
	7.2.1 Graphical Nodes and Paths

	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 Stereotype Keywords or Icons Inside a Comment Note Box
	7.3.1.2 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	7.3.2.2 Problem
	7.3.2.3 Rationale
	7.3.2.4 View
	7.3.2.5 Viewpoint


	7.4 Usage Examples

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.1.1 Graphical Nodes and Paths

	8.2.2 Internal Block Diagram
	8.2.2.1 Graphical Nodes and Paths


	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.2 Internal Block Diagram
	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 Block
	8.3.2.2 BlockProperty
	8.3.2.3 DistributedProperty
	8.3.2.4 Dimension
	8.3.2.5 NestedConnectorEnd
	8.3.2.6 PropertySpecificType
	8.3.2.7 Unit
	8.3.2.8 ValueType
	8.3.2.9 ParticipantProperty
	8.3.2.10 ConnectorProperty
	8.3.2.11 Binding Connector

	8.3.3 Model Libraries
	8.3.3.1 Complex
	8.3.3.2 Real


	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 SI Value Types
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water delivery


	9 Ports and Flows
	9.1 Overview
	9.1.1 Standard Ports
	9.1.2 Flow Ports
	9.1.3 Item Flows

	9.2 Diagram Elements
	9.2.1 Extensions to Block Definition Diagram.
	9.2.1.1 Extensions to Internal Block Diagram


	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 FlowPort
	9.3.1.2 FlowProperty
	9.3.1.3 FlowSpecification
	9.3.1.4 ItemFlow

	9.3.2 Stereotypes
	9.3.2.1 Package Ports&Flows
	9.3.2.2 Block
	9.3.2.3 Standard Port
	9.3.2.4 FlowDirection
	9.3.2.5 FlowPort
	9.3.2.6 FlowProperty
	9.3.2.7 FlowSpecification
	9.3.2.8 ItemFlow


	9.4 Usage Examples
	9.4.1 Standard Ports
	9.4.1.1 Atomic Flow Ports and Item Flows
	9.4.1.2 Non-Atomic Flow Ports and Flow Specification



	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.1.1 Graphical Nodes

	10.2.2 Parametric Diagram
	10.2.2.1 Graphical Nodes


	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.2 Parametric Diagram

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock
	10.3.2.2 ConstraintProperty


	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram


	Part III - Behavioral Constructs
	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.1.1 Continuous Systems


	11.2 Diagram Elements
	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.4 ObjectNode

	11.3.2 Stereotypes
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Overwrite
	11.3.2.6 Optional
	11.3.2.7 Probability
	11.3.2.8 Rate
	11.3.2.9 Model Library

	11.3.3 Model Libraries
	11.3.3.1 ControlValue


	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram


	12.4 Usage Examples
	12.4.1 Sequence Diagrams


	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.4 Usage Examples
	13.4.1 State Machine Diagram


	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Examples

	Part IV - Crosscutting Constructs
	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocated Property Compartment Format
	15.3.1.4 Allocated Property Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	15.3.2.1 Allocate(from Allocations)
	15.3.2.2 Allocated(from Allocations)
	15.3.2.3 AllocateActivityPartition(from Allocations)


	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation


	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirements Diagrams

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	16.3.2.1 Copy (from Requirements)
	16.3.2.2 DeriveReqt (from Requirements)
	16.3.2.3 Requirement (from Requirements)
	16.3.2.4 RequirementRelated (from Requirements)
	16.3.2.5 TestCase (from Requirements)
	16.3.2.6 Satisfy (from Requirements)
	16.3.2.7 Verify (from Requirements)


	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.1.1 Requirements and Design Elements
	16.4.1.2 Requirements Reuse
	16.4.1.3 Verification Procedure (Test Case)



	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1 Profile Definition in Class Diagram
	17.2.1.1 Extension

	17.2.2 Stereotypes Used On Diagrams
	17.2.2.1 StereotypeInNode
	17.2.2.2 StereotypeInComment
	17.2.2.3 StereotypeInCompartment


	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element


	Part V - Annexes
	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: Sample Problem
	B.1 Purpose
	B.2 Scope
	B.3 Problem Summary
	B.4 Diagrams
	B.4.1 Package Overview (Structure of the Sample Model)
	B.4.1.1 Package Diagram - Applying the SysML Profile
	B.4.1.2 Package Diagram - Showing Package Structure of the Model

	B.4.2 Setting the Context (Boundaries and Use Cases)
	B.4.2.1 Internal Block Diagram - Setting Context
	B.4.2.2 Use Case Diagram - Top Level Use Cases
	B.4.2.3 Use Case Diagram - Operational Use Cases

	B.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
	B.4.3.1 Sequence Diagram - Drive Black Box
	B.4.3.2 State Machine Diagram - HSUV Operational States
	B.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	B.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	B.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy
	B.4.4.2 Requirement Diagram - Derived Requirements
	B.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	B.4.4.4 Table - Requirements Table

	B.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	B.4.5.1 Block Definition Diagram - Automotive Domain
	B.4.5.2 Block Definition Diagram - Hybrid SUV
	B.4.5.3 Internal Block Diagram - Hybrid SUV
	B.4.5.4 Block Definition Diagram - Power Subsystem
	B.4.5.5 Internal Block Diagram for the “Power Subsystem”

	B.4.6 Defining Ports and Flows
	B.4.6.1 Block Definition Diagram - ICE Interface
	B.4.6.2 Internal Block Diagram - CANbus
	B.4.6.3 Block Definition Diagram - Fuel Flow Properties
	B.4.6.4 Parametric Diagram - Fuel Flow
	B.4.6.5 Internal Block Diagram - Fuel Distribution

	B.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	B.4.7.1 Block Definition Diagram - Analysis Context
	B.4.7.2 Package Diagram - Performance View Definition
	B.4.7.3 Parametric Diagram - Measures of Effectiveness
	B.4.7.4 Parametric Diagram - Economy
	B.4.7.5 Parametric Diagram - Dynamics
	B.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

	B.4.8 Defining, Decomposing, and Allocating Activities
	B.4.8.1 Activity Diagram - Acceleration (top level)
	B.4.8.2 Block Definition Diagram - Acceleration
	B.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	B.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	B.4.8.5 Table - Acceleration Allocation
	B.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test



	Annex C: Non-normative Extensions
	C.1 Activity Diagram Extensions
	C.1.1 Overview
	C.1.2 Stereotypes
	C.1.3 Stereotype Examples

	C.2 Requirements Diagram Extensions
	C.2.1 Overview
	C.2.2 Stereotypes
	C.2.3 Stereotype Examples

	C.3 Parametric Diagram Extensions for Trade Studies
	C.3.1 Overview
	C.3.2 Stereotypes.
	C.3.3 Stereotype Examples

	C.4 Model Library for Dimensions and Units
	C.5 Distribution Extensions
	C.5.1 Overview
	C.5.2 Stereotypes
	C.5.3 Usage Example


	Annex D: Model Interchange
	D.1 Overview
	D.2 Context for Model Interchange
	D.3 XMI Serialization of SysML
	D.4 Overview of ISO 10303-233 STEP AP233 AP233
	D.4.1 Scope of ISO 10303-233 STEP AP233 AP233
	D.4.2 ISO 10303-233 STEP AP233 AP233 Development Approach & Status
	D.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms
	D.4.3.1 Modular Architecture
	D.4.3.2 The Modeling Language for ISO 10303-233 STEP AP233 AP233
	D.4.3.3 Model Interchange Mechanisms

	D.4.4 ISO 10303-233 STEP AP233 AP233 - SysML Alignment & Mapping Model
	D.4.5 Generic Procedures for SysML and ISO 10303-233 STEP AP233 AP233 Model Interchange
	D.4.5.1 File-based Exchange
	D.4.5.2 API-Driven Model Interchange



	Annex E: Requirements Traceability
	Annex F: Terms and Definitions
	Annex G: BNF Diagram Syntax Definitions
	G.1 Overview
	G.2 Summary of BNF Syntax Definition Conventions
	G.3 BNF Definition of SysML Diagrams
	G.3.1 Top-level Productions
	G.3.2 General-purpose Symbols

	G.4 Diagram Elements Defined in Model Elements Chapter
	G.5 Diagram Elements Defined in Blocks Chapter
	G.5.1 Diagram Elements Defined in Block Definition Diagrams
	G.5.2 Diagram Elements Defined in Internal Block Diagrams
	G.5.3 Diagram Elements Defined in Instance Diagrams

	G.6 Diagram elements Defined in Constraint Blocks Chapter
	G.6.1 Diagram Elements Defined in Block Definition Diagrams
	G.6.2 Diagram Elements Defined in Internal Block Diagrams
	G.6.3 Diagram Elements Defined in Parametric Diagrams



