Date: November 2008

OMG 1.3&5
SYSTEMS

nonELINS I,
OMG Systems Modeling Language (OMG SysML™)

Version 1.1 - with change bars

OMG Document Number: formal/2008-11-01

Standard document URL: http://www.omg.org/spec/SysML/1.1

Associated Schema File(s)*: http://www.omg.org/spec/SysML/20080501
http://www.omg.org/spec/SysML/20080501/SysML-profile.xmi
http://www.omg.org/spec/SysML/20080501/Activities-model.xmi
http://www.omg.org/spec/SysML/20080501/Blocks-model.xmi
http://www.omg.org/spec/SysML/20080501/UML4SysML-metamodel.xmi

Original source document: ptc/2008-05-16
* Source XMl file: ptc/2008-05-18

Version 1.1 is a minor revision of the OMG SysML 1.0 specification. It supersedes
formal/2007-09-01.

Refer to the Roadmap located in the Preface for a list of documents that were generated as part of
the adoption, finalization, and revision process.

Copyright © 2003-2006, American Systems Corporation
Copyright © 2003-2006, ARTiSAN Software Tools
Copyright © 2003-2006, BAE SYSTEMS

Copyright © 2003-2006, The Boeing Company

Copyright © 2003-2006, Ceira Technologies

Copyright © 2003-2006, Deere & Company

Copyright © 2003-2006, EADS Astrium GmbH

Copyright © 2003-2006, EmbeddedPlus Engineering
Copyright © 2003-2006, Eurostep Group AB

Copyright © 2003-2006, Gentleware AG

Copyright © 2003-2006, I-Logix, Inc.

Copyright © 2003-2006, International Business Machines
Copyright © 2003-2006, International Council on Systems Engineering
Copyright © 2003-2006, Israel Aircraft Industries
Copyright © 2003-2006, L ockheed Martin Corporation
Copyright © 2003-2006, Mentor Graphics

Copyright © 2003-2006, Motorola, Inc.

Copyright © 2003-2006, Northrop Grumman

Copyright © 1997-2008, Object Management Group
Copyright © 2003-2006, cose Innovative Informatik GmbH
Copyright © 2003-2006, PivotPoint Technology Corporation
Copyright © 2003-2006, Raytheon Company

Copyright © 2003-2006, Sparx Systems

Copyright © 2003-2006, Telelogic AB

Copyright © 2003-2006, THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

The specification customizes the Unified Modeling Language (UML) specification of the Object Management Group
(OMG) to address the requirements of Systems Engineering as specified inthe UML for Systems Engineering RFP, OMG
document number ad/2003-03-41. This document includes references to and excerpts from the UML 2 Superstructure
Specification and UML 2 Infrastructure Specification with copyright holders and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following
conditions are met: (1) Redistributions of this specification must reproduce the above copyright notice, thislist of
conditions and disclaimers in the documentation and/or other materials provided with the distribution; (2) The Copyright
Holders listed in the above copyright notice may not be used to endorse or promote products derived from this
specification without specific prior written permission; (3) All modified versions of this specification must include a
prominent notice stating how and when the specification was modified; and (4) No modifications to thisOMG SysML ™

specification may be published under or identified by that name, except for versions published by OM G and incorporating
official changes made through the applicable procedures of OMG. OMG SysML ™ is a trademark of OMG, and no
unauthorized version or revision of the OMG SysML specification may use the trademark “OMG SysML” or claim any
connection with or endorsement by OMG.

In accordance with the above copyright provisions, the companies listed above have granted to the Object Management
Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute OMG SysML and to
modify OMG SysML and distribute copies of the modified version. Each of the copyright holderslisted above has agreed
that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by
reason of having used the specification set forth herein or having conformed any computer software to the specification.
Subject to al of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, nonsublicenseable, perpetual, worldwide license, to use this specification to
create and distribute software and specia purpose specifications that are based upon this specification, and to use, copy,
and distribute this specification as provided under the Copyright Act. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies
of this document in your possession or control.

This document was derived from the " Systems Modeling Language (SysML) Specification, version 1.0 DRAFT", OMG
document (ad/2006-03-01) submitted to OMG in response to the "UML for Systems Engineering RFP' (ad/2003-03-41).
Review and editing in the OMG process produced the "OMG SysML Specification Final Adopted Specification" (ptc/
2006-05-04). Subsequent changes to the specification are controlled through the OMG process as documented at the
OMG Technology Document website - http://www.omg.org/technol ogy/documents/.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communi cations regul ations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED “ASIS” AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED

BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The entirerisk asto the
quality and performance of software developed using this specification is borne by you. This disclaimer of warranty
constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (2) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ MOF™ ; OMG Interface Definition Language (OMG IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may
authorize devel opers, suppliers and sellers of computer software to use certification marks, trademarks or other special
designations to indicate compliance with OMG SysML ™. Software developed under the terms of this license may claim
compliance or conformance with this specification if and only if the software complianceis of anature fully matching the
applicable compliance points as stated in the specification. Software devel oped only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object Management
Group, Inc., software devel oped using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http: //mww.omg.org, under
Documents, Report a Bug/lssue (http://www.omg.org/technol ogy/agreement.htm).

Table of Contents

o U B 1 0 o 11 o 1[0 o U 1
S Yo 0] 1P PTPPRRPN 3
2 NOrmMative REFEIENCESc.oviiiii e e 3
3 Additional INfOrmationccooiiiiiii e 4
3.1 Relationships to Other Standardscccccoviiiiiiie . 4

3.2 How to Read this SPECIfiCatiONcccviiiiiiiiiiiiiiieiieeeeeee e 4

3.3 ACKNOWIEAGMENTS ...iiiiiiiiiiiiiiiieieie ettt ee et e et e e et e e et e aaaeaaaaaaaaaaaaeas 4

4 Language ArChItECIUIuui i 7
4.1 DESIGN PrINCIPIESvviieiiiiiiiiiiiiiiiiiiit ettt e e e e e e e e e e e ee e e e e e e e aaaaaaeaaaaaaaaaaaaaaaaaaaaens 7

O N ol 011 (=T o (0 = SO PRPP R PTPPTPPPRRPN 8

4.3 EXtension MECNANISIMSouiiiiiiiiiiiiii e e e e eeeeeeas 10

4.4 SYSML DIGQIAMSuuuuuiuuiiiuiiiiniuritaturererreerrrrsers et arttretttttttttatttetataraaaaaeaeaeees 11

5 COMPIANCE ...covieiieieeee e aeaaaa 13
5.1 Compliance with UML Subset (UMLASYSML)ooooiiiiiiiii e 13

5.1.1 Compliance Level CONLENLSccocuiiiiiiiie et e e e er e e e e e s et reeeeaee s 13

5.2 Compliance with SYSML EXIENSIONScceviiiiiiiiiiiiee e 14

5.3 Meaning Of COMPIIANCEuuiiiiiiiiiiieee e 15

6 Language FOrmaliSImM ... e 17
6.1 Levels Of FOrMAliSIMooiiiiiiiiiii e 17

6.2 Chapter SpPecifiCation SITUCTUIEcoooiiiiiiiiiiiie e e e 17

L R O V=T AV 1= 17

6.2.2 Diagram EIEBMENLSooi it e s 17

6.2.3 UML EXIENSIONScciiiiiiiiiiiiieeeeee e s e s e s e e e e e e e e e e e e e e e et et e aeeeeeeseeeeeaararar e s e as 18

LIS i R U L Vo T = g] o L= RPN 18

6.3 Conventions and TYPOGIAPNYueeiiiiiiiiiiiiiee et 18

Part 1l - Structural CONSIIUCESc.vvuiiiiiieiie e e 19
7 MOAEl EIEMENLS ... e e e e e e e e eaaaa 21
A8 R @ YT o= 21

7.2 Diagram EIBMENTSccoiiiiiiiiii e e e e e e e e ee e e e e e e e e e e et e e aaaaaae 21

OMG SysML™ | Version 1.1 i

7.3 UML EXEENSIONS ..viiiitniiiit et et et e ettt et et et e e et e e et te e et e e eat e eea s eean s eesresanereaareesnareees 25

7.3.1 Diagram EXIENSIONScouiiiiiiiiiiii ittt ettt ettt e e e e e e bbb e e e e e e e e e e e anbanbeeeees 25

7.3.1.1 Stereotype Keywords or Icons Inside a Comment NOte BOXcccceveeiviiiiiieeeiiiiiiieeeeesiins 25

7.3.1.2 UML Diagram Elements not Included in SYSMLccccooviiiiiiiei i 25

FRC A (=] (=10 11 o 1T TP OO UUPUTPPPPPPPPRPPRPTON 26

AR 5 R ©o] 41 (o] 1 1 [T 26

S B A e o] o1 (= 1 PO SPURT 26

R B B ¥ 110 = L= ORI 26

T.3. 2.4 WIBW ...ttt ettt bttt bkt a bt h e R b et n b e e tr e e e nte e e naees 27

7.3.2.5 VIBWPOINT ..eeeeitiie ittt ettt ettt ettt ettt e e sh et e e eb bt e bttt e e ab e e e et b e e nb e e e st e e e be e e e bn e e e nnnes 27

7.4 USAQE EXAMPIES ...euiieiiiiiiiiiiiiiiiiiietiitieeteeseteseetseeseeessssssesssesseseaessessseasseeeeeeeeeeeeeeaaetaaeeaeees 28
B BlOCKS e 31
S0 A @Y1 o T PP 31
8.2 Diagram EIBMENTScoooiiiiiii i e aeaae 32
8.2.1 Block Definition DIAQramMcccoiiiiiiiiiiiiieiee e e e e e s sssieee e e e e e e e e e s s s ereer e e e e e e s sannnrreneees 32

8.2.2 Internal BIOCK DIGQIAMuuuiiiiiieeeiie ittt e e e e e e e s e s s ee e e e e e e e s s s nreeeaeeaeeeseeannnene 37

SR I 11V | 4 (= 13 o o PP 38
8.3.1 Diagram EXIENSIONSuuuiiiiiiiiaeaaaaiaiaiie ittt e e e e e e e st e e e e e ae e e aasanbeabeeeaaaaaeeseeaannne 38

RS 0 0 R = (ool [B LY T a1 i {oT g D= Vo = 1 4 ISR 38

8.3.1.2 Internal BIOCK DIAGIAMcoeiiiiiiiiei ettt e ettt e e ettt e e e e e e st e e e e e anre e e e e s annaeeas 40

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams 42

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagramscccccceueeee. 42

o TG T] (=] (=T] Y o =SS 43

RS 300 M =11 o 119 To J @013 T 1= Tox (o | (RO SPST PP 44

B.3.2.2 BIOCK .ttt e e nra e nanes 44

8.3.2.3 CONNECIOIPIOPEITY ...eieieiiiiiiieeeee ettt ettt e et et e e e e e e e e e e e s nbr b e b e be e e e eeaeaeaeeeeesaeaeaannn 47

TR I N D 11 g oJU 1 (=Te | = o] o T=] o YRR SSRT 47

R B Sl] 141 0 £ o [PPSR 47

8.3.2.6 NeStedCONNECIOTENTviiiiiiiiiiiie ettt e e sane e 48

8.3.2.7 PartiCiPantPIOPEITY ...cciicieeiieiiiiiiee ettt e e et e e e e et e e e e e sat e e e e e st e e e e e e s nrraaeeeeannees 48

8.3.2.8 PropertySPECITICTYPE ..uuviiiiiiiiiiiii ettt e e e e e e e s s e e e e e e be e e e e s e s 49

RS e LU o 1 PO SPPURT 49

R B L IV | (DT Y oL TSP URT 49

8.3.3 MOAEI LIDIAri®Sveiiiiiiiiiiie ittt e e st b e e e e abe e e e 50

SR S T R @] 1] o] 1= GRS URT 51

B.3.3.2 RBAI ...ttt ettt b bbb e et e e bn e nares 51

o B LS T= o L= e 1 a1 o] L= PP 51
8.4.1 Wheel HUD ASSEMDIYeeeeiiieeiiee e e e e e s e e enneaes 51

8.4.2 SIVAIUE TYPES ciiiieiii ittt et et e s et e e e e e e s e e st e e e eeeeeeeesannnabetaeeeaeeeeeaeeaannnnnns 53

8.4.3 Design Configuration for SUV EPA Fuel ECONOMY TStovvvviveiiiiiiiiiiieeeee e e e ee e 54

8.4.4 WALl DEIIVEIY .ceieeiii ittt e e e s e e e e e e ae e s ae s tar e e e e eaeeeseeannnnn 56

9 POrtS @and FIOWSooni e 61
0.1 OVEIVIBW ittt ettt e e e e ekttt et e e e e e s bbbttt e e e s e e s a b b e bt e e e e e e s e bbb e e e aeeeeeas 61
9.1.1 Standard POITSc.ooiiiiii 61

O.1.2 FIOW POITS ettt ettt et e e e e e e e e s anb bbb bt e e e e e e e e ee e e e nanbeeeeees 61

. 1.3 EBIM FLOWS ...ttt ettt et e e e e e e e e s b e be e e e e e e e e e e e annbabbeeeeees 61

ii OMG SysML™, Version 1.1

9.2 DiIagram EIEMENTSovviiiiiiiiiieeeeeee e 62

9.2.1 Extensions to Block Definition DIiagramcc.uuuieiiiiiieiiiiiiiiieee e 62

9.2.1.1 Extensions to Internal BIOCK Diagram..........c..uviiiiiiiiierieiiiiii et e et 64

9.3 UML EXIBNSIONS ..ooiiiiiiiiitiiii ettt ettt bttt e e e e e e e eb bbbt e e e e e s e bbb neeeeeeeaannnes 65
9.3.1 Diagram EXIENSIONSccccieeiiiiiiiiiiieie et e e e s e s et e e e e e e e e s s st e e e e ae e e e e e st brarreeeaeeaes 65

LS JRC T0 I 10 11 =) 5 PP PRPPPRP 65

Lo IR I 2 i (0111 = (o] o 1= 4 PR 65

Lo TR I O [1V A o =T {[ox= L1 (o o S UPR R PR 66

1S TR 0 0 1 =T 1 4| 0PRSS 66

1S IR IS 7T o F= o | o o TR 66

S IR T (= (=0 117/ 01 66

LS TR 7200 I = 1o o P UUUURR NS 67

LSS T (011 B (=Tox 110 [TSP PR UPPR 67

9.3 2.3 FIOWPOIT .ttt b e b bttt ettt e e s 67

Lo IR B B (0111 o (o] o 1= 1 PRSPPSO 69

1S IR B [0 1V A o =T o | o= L1 o o PR 70

1S IR S 1 =T 1 4 o RS URRI 70

9.4 USAQE EXAMPIES ..ottt 71
S I N RS = U To F= U o [=T o =SSR 71

9.4.2 Atomic Flow Ports and ItemM FIOWScccoeiiiiiiiiiiiee s 72

9.4.3 Non-Atomic Flow Ports and Flow Specificationcccooiiiiiiiiiiiiiiiieeeeeeeen 73

10 Constraint BIOCKScooviiiiii e e e 75
L0.1 OVEIVIEW ..eeiiiieie ettt ettt e e e ettt e e e e e s skttt e et e e e e e e nbb b bttt e e e e e annnbbnseeeeeeesannne 75
10.2 Diagram EIBMENTScoooiiiiiii i 76
10.2.1 Block Definition DIAQramceeeeeeiiiiiiiniiieeeieeee s e s ssssieeeeeeeeeaeessessnsessneeeeeeeeessesnnnnenes 76

10.2.2 ParametriC DIAgramuveiiieiieieeeiis s sttt ee e e e e e e e e s ss st e e e e e aeeesssssnsnnrreeeeeeeeesessnnnnnns 77

O U Y b =7] T PSP 77
10.3.1 Diagram EXIENSIONSueeiiiiiiiiiieaie ittt e e e e e e e sttt e e e aa e e s e s s nbanbreeeaeaaaaeeeaannnes 77

10.3.1.1 Block Definition DIAgIramc..ooooioiiiiiiiiieiiie et eeeeaa e 77

10.3.1.2 ParametriC DIBgIaM.........uueieieeiieeaee ettt e e e e e e ettt et e e e e e e e e e anbenbeeeeaeaaaaaeas 78

O I (=T =0 1Y/ 11 78

10.3.2.1 CONSLrAINTBIOCKcoiiiiiiiiiie it nbe e et eees 79

10.3.2.2 CONSITAINTPIOPEITY ..viiiiieiiiiie e ettt e et ee e e e et e e e e e st e e e e e st s e e e e e s streeeeesatbeeaeeesssaeaaeeansns 79

10.4 Usage EXAMPIES ...coooiiiiieieie e 79
10.4.1 Definition of Constraint Blocks on a Block Definition Diagramcccccccvvvreeeeeniinnne 79

10.4.2 Usage of Constraint Blocks on a Parametric Diagramccccccccevvvviiiiieineeneeeeeeisinnns 80

Part [l - Behavioral CONSIIUCEScoiiiiiiiiiiie e e 83
0 I o1 11111 PP 85
L1.0 OVEIVIEW ..ttt e e ettt e e e oo s skttt et e e e e e abb bttt e e e e e nnnnbb e e e e eeeeesnnne 85
0 I O g1 (] = - B | = L PSP 85

11.1.2 CONLINUOUS SYSTEMISiiiiieiiiiiteeie e e ettt et e e e e e e s e s b e ae et e e e aeeeaasaanbbnbeeeeaaaaaaseeaannne 85

121.2.3 ProbDabilityeeeeeiiiiii e e e e e e e e e e e e aaaae 85

11.1.4 ACHIVItIES @S BIOCKScciiiiiiiieeeeeeee e e e e e e e e e e e et e e e e s 86

0 T T 0= 1T = 86

OMG SysML™ | Version 1.1 iii

11.2 Diagram EIEMENTSoovviiiiiiiiieceee e ——— 86

11.2.0 ACHVILY DIGGIAIM ..oiiiiiiiii ittt e ettt e e e e e e et bbb e e e e e e e e e e e e sanbbbeeaeaaaeaaeaeannns 86
O T U1 4 (=T 1= T 1 RPN 93
11.3.1 Diagram EXIENSIONSccccoiiiiiciiiiiiie et e e e ee e sei ittt e et e e e e e e e s s st e e e e e aeeeesssnnnbenreneeeeaeeaeeas 93
5O T I Yo 11/ PSRRI 94
11.3.1.2 CallBENAVIOTACLION ...eeiiiiiiiiiie ettt ettt sb et e ettt e e e st e s e e b s 95
12.3.1.3 CONLIOIFIOW ettt et e et bt e e sat e e b b e e e s nbb e s nbee s snbeeean 95
IO T I @ o =Yoo o =PSRRI 96
11.3.2 SHBIEOLYPES ...iiiiiiieieiei ettt e oo e e e e e e e e e eeeeee et et ee e e et e e e babe b et e a e e e e e e e aas 97
IO 7 A o 11110 To 10 PRI 98
e T o] g1 (0] (@] o<1 - (o] USRI 99
IO T B B Lo = = PSRRI 99
10.3.2.4 NOBUFTEI ..ttt ettt e st et anb e s e e e neas 99
10.3.2.5 OVEIWIITE ..eiiieiiiie ettt ettt ettt e e ekt e eb et e e shb et e bbbt e et bt e e st e e e enbbe e sne e e e e 100
IO T S @ o1 1o -1 PSSP SRR 100
11.3.2.7 Probabilityoooo ittt e et e e et e e e e nneeas 100
R 2 B 3 | RPN 101
G TR 1Y o T = I I o =Y T PR PPRP 101
11.3.3.1 CONLIOIVAIUE ..ottt e e et e e e e et e e e e e nnsbe e e e e e enneneeas 101
N U Lo Vo oI = 1]] T U 102
D2 1 (=] = Vod 1o i 107
0 R O V7= Y= 107
12.2 Diagram EIBMENTScooiiiiiiii e e e e e e e e 107
12.2.1 SEQUENCE DIAGIAIM ...ciiiiiiiiii ittt e e e e e e e e e e bbbt e e eea e e e e e e e e anbeebeaneeas 107
12.3 UML EXIENSIONS ...viviiiiiiiiiiiiiieeiieetiet ettt ettt et e ettt e e e e e e e e e et e e e et e aa e e e e e e e e e aeaaaaaaaaaaaaaaaaaaaaaes 111
12.3.1 Diagram EXIENSIONSccceeiiiiiiciiiiieie et e e e e e s sss st e e e e e e e e s s s st e e e e e e e e e e e annnnnnrnnnenneees 111

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
TIMING DIAQIAM ..oeiiiei ettt e et e e e e et e e e e esntbreaeeeassbaeeeeesatanaeessannes 111
12.4 USAQE EXAMPIES ..ooviiiiiiiiiiiie ettt ettt ettt ettt e 112
12.4.1 SEqUENCE DIAQIAMS ...oiiiieeiiii ittt e e e e e e s st e e e e e e e s s e s st eeeereaaeeeseansnnnnnrrenees 112
13 State MaChINEScooieii i 115
R Tt R O V7= Y= 115
13.2 Diagram EIBMENTScooiiiiiiie e e e 115
13.2.1 State Maching DIAgrameeuieiiiiiiaaia e e e e e e e eeeaa e as 115
13.3 UML EXIENSIONS ..ovivviiiiiiiiiiiiieiiieeeiet e ettt ettt ettt e e e e e et e et e e e e e e e e e e e e e e e e e e aeaaaaaaaaaaaaaaaaaaaaaens 118
13.4 USAQE EXAMPIES ..ooiiiiiiiiiiiiii ettt ettt ettt et e 118
13.4.1 State Maching DIAgrameeeiieiiiiiaaia et e e e e e e e reeeaaaaeeas 118
i U L - 1] S PP 121
Nt O V7= Y= 121
14.2 Diagram EIBMENTScooiiiiii e e e e e e et 121
B R O LY O 1T TN BT Vo |- o 121

iv OMG SysML™, Version 1.1

T14.3 UML EXEENSIONS ..ouiiitiieiee e ittt ettt e et et e e e et e e e e e e et e e e et e e et e e ea s e eearesasreenresnns 123

14.4 Usage EXAMPIES ...coooviiiiiiieeee e ——— 124
Part IV - Crosscutting CONSIIUCESoiiiviiiiiiececeei e 127
ST AN | (o To > 11 [0 o PP 129

SR R O V7= T 129

15.2 Diagram EIEMENTScooiiiiiiii e e e e e e e e e e 129

15.2.1 Representing Allocation 0N DIagramsSueeereereeeinsiiiieniierreeee e s e e s sssneeereereeeaeesenns 130

R T U Y 4 (=T 1= T o 131

15.3.1 Diagram EXIENSIONSoiiuiiiiiiiiiiiiee e ettt e e e e et e et e e e e e e e s e anbereeaeeaaaaaeaas 131

ST 0 0 I o] =R 131

15.3.1.2 Allocate Relationship RENAEINNGceveuiiiiitiiiiiiiiaea et 131

15.3.1.3 Allocated Property Compartment FOIMALoooiiiiiiiiieiiieieeeeeseiee e e 131

15.3.1.4 Allocated Property Callout FOrMALceieiiiiiiiiiiie et e s eaaae e 131

15.3.1.5 AllocatedActivityPartition Labelc.ooeiiiiiiiiiiiiiicieiee et 132

R I Y (=] £=T0 11 o [T T PP UPUPPTTTPT PR 132

15.3.2.1 Allocate(from AlIOCALIONS)coveieiiiieiiiiie ettt e et e e 132

15.3.2.2 Allocated(from AIOCALIONS)eeeiiieiiiiiiiiee ettt e e s e e e e e e e e e e s eneeeeaaeas 133

15.3.2.3 AllocateActivityPartition(from AllOCAtIONS)cooiiiiiiiiiiieei e 134

15.4 Usage EXAMPIES ...ooooiiiiiiiieeeeeee e 134
15.4.1 Behavior Allocation of Actions to Parts and Activities to BIOCKScccccccvvvvnnnnne. 135

ST AN | (o Tor= | L= 01 136

15.4.2.1 AllOCALING STIUCTUIEieiiiiiiee ettt ettt e ettt e e e ekttt e e e e e sateeea e e e e nteeeeeeeeabaeeeaeeaannnneeens 137

15.4.2.2 AULOMOLIVE EXAMPIE ...iivviiiiiiiiieciieie ettt ste e st e tee st et e st e e ste e ssaeebeessaeestaesneeessaesrnennreeans 138

15.4.3 Tabular REPreSENLALIONciiiieeiiiiiiiiiiiiie e e e e e e e ss st e e e e e e e e s s s s rrereeeeeeeesennnne 139

16 REQUIFTEMENTS ..eiiiiiiiie ettt e ettt e e e e e e e et e e e e e eaab e e e e eeennnnaeeas 141
L16.1 OVEIVIEW .ottt ettt e et e e et e e e e e e e e e et et e e e e e e e e e eese bt e eeeeeeseeeesraaansnns 141
16.2 Diagram EIEBMENTScoooiiiiiiii e ——— 143
16.2.1 ReqUIremMent DIAQIAMuueieiiiiiiaae ettt e e e e e e et eeee e e e e e e e s bnbbeeeeeeaaaaeeaans 143

16.3 UML EXIENSIONS ..cooiiiieiiiiiiee et 146
16.3.1 Diagram EXIENSIONSccccviiiiiiiiiieees e e s sttt re e e e e e e s s s s st e e e e e e e e e e s e snrnanaeeeeaaeeeanas 146

16.3.1.1 RequiremMent DIAQIaAMeuiiiiiiiiiiee e ettt e e e eittae e e e e stbaaee e e e s ssebaeeeeasttaesaesssbaeeeassanssaeeeens 146

16.3.1.2 RequiremMent NOTALIONuuiiiiiiiiies et e et ee e e st e e e s et e e e e e e s snraaeaeas 146

16.3.1.3 Requirement Property Callout FOrMaLcccviiieiiiiiiiiee e 146

16.3.1.4 Requirements on Other DIagramsSoeeoiiiiiieeei i e e e e e e e eneaee e e 146

16.3.1.5 RequiremMeNts TabIE ... it e e et e e e e e raee e e e e e eneaeeens 147

GRS I (=T =0 1Y/ 1= 148

16.3.2.1 COPY oottt ettt ettt 149

16.3.2.2 DEINVEREL .. .vviiieiiiet ettt et e e e e et e e e e e bt b e e e e e et e e e e e e e e e e e s naraaraaes 149

TR T B = L=To [T =1 00 1T | PSPPSR 150

16.3.2.4 ReqUIremMENtREIALEAoviiiieieiiee et et e e e et e e st e e e e e rrraeas 151

16.3.2.5 TSI CASE ..oiiiiieiiiiie ittt ettt et et e e e e e e e e e e e e e h bbb e e b e et et e e e e e e e e e e e ee e e e e aa e nanenbrnrrneeeeeeas 151

16.3.2.8 SALISTY .eeiiiiiiiiii ettt e e bt e e e e et e e e e e et ee e e e e e neneaaans 151

G T Y= 11 VPRSPPI 152

16.4 Usage EXAMPIES ..o 152

OMG SysML™ | Version 1.1 v

16.4.1 Requirement Decomposition and Traceabilityccccccoeeiiiiiiiiireiiee e, 152

16.4.2 Requirements and Design EIEMENTSoooviiiiiiiiiieece e 152

16.4.3 REQUIFEMENTS REUSE ...eeeeiiiiiiiiiiiiiie et e e e e e e s se sttt et e e e e e e e s s s st eeeaeaeeeesesnnrenreneeees 154

16.4.4 Verification Procedure (TESt CASE) ...uuvieiieeiiiiiiiieiiiireeeeeese s sssinieeerere e e e e e e s nnnnvnnneeeees 155

17 Profiles & Model LIDrariesooiiiiiiiiiiieeieici e 157
L17.0 OVEIVIEW .eeetiiieie ittt ettt e e e ettt e e e e e bbbttt e e e e e e e bbbt e et e e e e e e et bnbeeeeeeenanns 157

17.2 Diagram EIEMENTScoovvviiieiiiiieee e 158

17.2.1 Profile Definition in Package Diagramcoocuueiiiiiiiieiei it 158

17.2. 1.1 EXEENSION ..ottt ettt ettt sh e e bbbt enr e 160

17.2.2 Stereotypes Used ON DIAgramsScoooiiiiiiuiiiiiiiieee et e e e abebeeeeeeea s 161

17.2.2.1 StEreOtyPEINNOUEuvviiieii ittt e e e e e e e s e e e e e st a e e e s anbbeeeaeensnnees 162

17.2.2.2 StereotypPelNCOMMENT ...ttt et e e e e e e e e e e e et e e e e eaeeeeesaaesaaannnnennnes 162

17.2.2.3 StereotypelNCOMPAITMENTeeiiiiiiiiiiiiiie e e e e et e ee e e e e e e e e e e asassannnnrnenenes 163

A B U Y =] T RS 163

A U LT Vo oI = 1 4]] (=T SR 163

17.4.1 Defining @ Profil@ ... 163

17.4.2 Adding Stereotypes t0 @ Profile ... 164

17.4.3 Defining a Model Library that Uses a Profileccccciiiiiieee 165

17.4.4 Guidance on Whether to Use a Stereotype or Classcccoviiiiiiiiiiieiiiiniiiiiieee, 165

17.4.5USING @ Profil@ ...eeeeeeiiiieieeee et 166

17.4.6 USING @ SEEIEOLYPE ..oeiiiiiiiiiiieiittt ettt ettt e e e e e e ettt e e e e e e e e e e s e saanbeabeeeeeas 167

17.4.7 Using a Model Library EI@MENt ...t 167

PArt V - ANNEXES ...ttt e e et e e e e e e e e e e e e e eena e 169
ANNEX A DIAGIAIMS oeiiiiiiieiiiieeieiia e e e ettt e e e e e e eata e e e e e e e e eae s a e e e e e e s eesssban e eeaees 171
Annex B: Sample Problem ... 177
Annex C: Non-normative EXIENSIONSccoovviiiiiiieee e 211
Annex D: Model INTEIChANQEoiiii i 223
Annex E: Requirements Traceabilitycccoooiiiiiiiiiiiii e 229
Annex F: Terms and DefiNitioNSccoooviiiiiiiiiii 231
Vi OMG SysML™, Version 1.1

List of Figures

Figure 1.1 - Overview of SysML/UML interrationship e 7
Figure4.1 - SysML Extension of UM e e e e e e 8
Figure 4.2 - SysML Package StrUCIUNEot e e e et et et et et et et e 10
Figure 4.3 - SysML Diagram TaXOnomyttt ettt et ettt et et et ettt 11
Figure 7.1 - Notation for the Rationale Stereotype of Comment, 25
Figure 7.2 - Stereotypes defined in package ModelElements i 26
Figure 7.3 - View/Viewpoint example e 28
Figure 7.4 - Rationaleand Problem examples i 29
Figure 8.1 - Nested property referenCeo e e e e 41
Figure 8.2 - Abstract syntax expressionsfor SysML blocks i i 43
Figure 8.3 - Abstract syntax extensionsfor SysML properties.ttt e 43
Figure 8.4 - Abstract syntax extensionsfor SysML valuetypes ..., 43
Figure 8.5 - Abstract syntax extensionsfor SysML connectorends, 44
Figure 8.6 - Abstract syntax extensions for SysML property-specifictypes 44
Figure 8.7 - Model Library for BIOCKS o e e e et e e 50
Figure 8.8 - Block diagram for theWheel Package i e 52
Figure 8.9 - Internal Block Diagram for WhedHubAssembly i i, 53
Figure 8.10 - Defining Value Typeswith unitsand dimensions i, 53
Figure8.11 - SUV EPA Fuel ECONOMY TeSt it i e e et et et et et et et e 55
Figure 8.12 - Water Delivery association bloCK i e e e e e 56
Figure 8.13 - Interna structure of Water Delivery associationblock 56
Figure 8.14 - Two views of Water Delivery connector within Houseblock 57
Figure 8.15 - Specializations of Water Clientinhouseexample i, 58
Figure 8.16 - Plumbing association blocK o e 58
Figure 8.17 - Interna structure of Plumbing associationblock 59
Figure 8.18 - Water Delivery association block with internal Plumbing connector 59
Figure 9.1 - POrt SterE0Ot DS . ..ottt et e e 66
Figure 9.2 - [temFlOW SEer@OtY e . . . oottt e e e 67
Figure 9.3 - Usage example of standard ports oot e e e 71
Figure 9.4 - Interfaces “ctrl” standard port of InternalCombustionEngine.ciiiiiian... 72
Figure 9.5 - Usage of atomic flow portsin the HybridSUV Sample - ibd:FuelDistdiagram................. 73
Figure 9.6 - Using flow ports to connect the PowerControlUnit to the Electrical PowerController,

Transmission, and InternalCombustionEngineoveraCANbus 74
Figure 9.7 - Flow specification for the Internal CombustionEngine flow port to allow its

connection over the CAN DUS oo e 74
Figure 10.1 - Stereotypes defined in SysML ConstraintBlockspackage, 78
Figure 10.2 - Definition of constraint blocks on ablock definitiondiagram. 80
Figure 11.1 - Usage of constraint blockson aparametricdiagram............ 81
Figure 11.2 - Block definition diagram with activitiesasblocks i L. 94
Figure 11.3 - CallBehaviorAction notation.with behavior stereotype. oo oo i 95

OMG SysML™ | Version 1.1

Vii

Figure 11.4 - CallBehaviorAction notation.with actionname i, 95

Figure 11.5- Control flow NOtationt e e e e e e e 95
Figure 11.6 - Block definition diagram with activities as blocks associated with types of object nodes 96
Figure 11.7 - ObjectNode notation inactivity diagrams. i e 96
Figure 11.8 - ObjectNode notation inactivity diagrams. o i e e 97
Figure 11.9 - Abstract Syntax for SysML Activity EXtensions. i e 98
Figure 11.10 - Control VaIUESottt ittt e e e et e e e et e e e e 101
Figure 11.11 - Continuous system example L o e 103
Figure 11.12 - Continuous System example 2ottt e e e 104
Figure 11.13 - Continuous system example 3 o 104
Figure 11.14 - Example block definition diagram for activity decomposition 105
Figure 11.15 - Example block definition diagram for object nodetypes oL 105
Figure 12.1 - Hierarchical Sequence Diagram illustrating system behavior for “Operate the vehicle” use case. 112
Figure 12.2 - Black box interaction during “starting the Hybrid SUV” 113
Figure 12.3 - White box interaction for “starting the Hybrid SUV” 113
Figure 13.1 - High level view of the statesof the HybridSUV i it 119
Figure 14.1 - Top level use case diagram for the Hybrid SUV subject 124
Figure 14.2 - Operate the Vehicle use case at alower level of abstraction 125
Figure 15.1 - Abstract syntax extensionsfor SysML Allocation 132
Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition. 132
Figure 15.3 - Generic Allocation, including /from and /to associationends, 135
Figure 15.4 - Behavior alloCationttt i i i e e e e e e e e 135
Figure 15.5 - Example of flow allocation from ObjectFlowto Connector, 136
Figure 15.6 - Example of flow allocation from ObjectFlow toltemFlow 136
Figure 15.7 - Example of flow allocation from ObjectNodeto FlowProperty 137
Figure 15.8 - Example of Structural Allocation it e e e e e 137
Figure 15.9 - AllocateActivityPartitions (Swimlanes) for HybridSUV AccelerateExample 138
Figure 15.10 - Internal Block Diagram Showing Allocation for HybridSUV Accelerate Example 139
Figure 15.11 - Allocation Table (Tree) Showing Allocation for Hybrid SUV Accelerate Example 139
Figure 15.12 - Allocation Matrix Showing Allocation for Hybrid SUV Accelerate Example............... 140
Figure 16.1 - Abstract Syntax for Requirements Stereotypes oottt e 148
Figure 16.2 - Abstract Syntax for Requirements Stereotypes (cont)t ... 149
Figure 16.3 - Requirements Derivationt e 152
Figure 16.4 - Links between requirementsand designt i e 153
Figure 16.5 - Requirement satisfactioninaninternal block diagram 154
Figure 16.6 - Use of the copy dependency to facilitatereuse i e 154
Figure 16.7 - Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram 155
Figure 16.8 - Linkage of a Test Case to arequirement: This figure shows the Test Case as a State Diagram . . 156
Figure 17.1 - DefinNing @ Sl ere0ty P .. oottt e e 160
Figure 17.2 - USINg @ Ster@Oty P . . . oottt ettt e e e e 162
Figure 17.3 - Using stereotypesand showing values it 162

viii OMG SysML™ | Version 1.1

Figure 17.4 - Other notational formsfor showingvalues i i i i i, 163

Figure 17.5 - Definition of aprofile i e e 163
Figure 17.6 - Profile ContentSot e e 164
Figure 17.7 - Twomodel libraries.o e e 165
Figure 17.8 - A model with applied profile and imported model library 166
Figure 17.9 - Using two stereotypesonamodel element 167
Figure17.10 - Using model library elements i e e e 167
Figure A.1 - SysML Diagram TaxXOmnOmyottt ettt ettt e e ettt et et 171
Figure A 2 - Diagram Framie oo e e 173
Figure A 3 - Diagram USages . ..ot ottt it it et ettt e e 175
Figure B.1 - Establishing the User Model by Importing and Applying SysML Profile & Model

Library (Package Diagram)ottt e e e e 178
Figure B.2 - Defining valueTypes and unitsto be Used inthe SampleProblem 179
Figure B.3 - Establishing Structure of the User Model using Packages and Views (Package Diagram) 180
Figure B.4 - Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram.

(Internal Block Diagram) Completeness of Diagram Noted in Diagram Description 181
Figure B.5 - Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram) 182
Figure B.6 - Establishing Operational Use Casesfor “Drivethe Vehicle” (Use Case Diagram) 183
Figure B.7 - Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram) 184
Figure B.8 - Finite State Machine Associated with “ Drive the Vehicle” (State Machine Diagram) 185
Figure B.9 - Black Box Interaction for “ StartVehicle,” referencing White Box Interaction

(SEgUENCE DIiagram) . .. ottt e 186
Figure B.10 - White Box Interaction for “ StartVehicle’ (SequenceDiagram), 186
Figure B.11 - Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram) 187
Figure B.12 - Establishing Derived Requirements and Rationale from Lowest Tier of Requirements

Hierarchy (RequirementsDiagram)iiiii i ittt 188
Figure B.13 - Acceleration Requirement Relationships (RequirementsDiagram) 189
Figure B.14 - Requirements Relationships Expressed in Tabular Format (Table) 190
Figure B.15 - Defining the Automotive Domain (compare with Figure B.4) - (Block Definition Diagram) ... 191
Figure B.16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram) 191
Figure B.17 - Internal Structure of Hybrid SUV (Internal Block Diagram) 192
Figure B.18 - Defining Structure of Power Subsystem (Block Definition Diagram) 193
Figure B.19 - Internal Structure of the Power Subsystem (Internal Block Diagram) 194
Figure B.20 - Interfaces Typing StandardPorts Internal to the Power Subsystem (Block Definition Diagram) . 194
Figure B.21 - Initialy Defining Flow Specifications for the CAN Bus (Block Definition Diagram).......... 195
Figure B.22 - Consolidating Interfaces into the CAN Bus. (Internal Block Diagram) 196
Figure B.23 - Elaborating Definition of Fuel Flow. (Block Definition Diagram). 196
Figure B.24 - Defining Fuel Flow Constraints (Parametric Diagram)ciiiiinnnan... 197
Figure B.25 - Detailed Internal Structure of Fuel Delivery Subsystem (Internal Block Diagram) 198
Figure B.26 - Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram) 199
Figure B.27 - Establishing a Performance View of the User Model (Package Diagram) 200
Figure B.28 - Defining Measures of Effectiveness and Key Relationships (Parametric Diagram) 201
Figure B.29 - Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram) 202
Figure B.30 - Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram) 203
Figure B.31 - Defining Straight-Line V ehicle Dynamics Mathematical Constraints
(Block Definition Diagram)oit it e e e e e e 204

Figure B.32 - Results of Maximum Acceleration Analysis (Timing Diagram) 205
Figure B.33 - Behavior Model for “Accelerate” Function (Activity Diagram)t 206
Figure B.34 - Decomposition of “Accelerate” Function (Block Definitiondiagram) 207

OMG SysML™ | Version 1.1

Figure B.35 - Detailed Behavior Modd for “Provide Power” (Activity Diagram)

Note hierarchical consistency with FigureB.33. it 208
Figure B.36 - Flow Allocation to Power Subsystem (Internal Block Diagram) 209
Figure B.37 - Tabular Representation of Allocation from “Accelerate” Behavior Model to Power
SUbSysStem (TablE) ... o 209
Figure B.38 - Special Case of Internal Block Diagram Showing Reference to Specific Properties
(SErial NUMDENS) . it e e e e e e 210
Figure C.1 - Example activity with «effbd» stereotypeapplied i 213
Figure C.2 - Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities 213
Figure C.3 - Example extensionsto ReqQUIrEMENt it e e et 216
Figure C.4 - Sl Definitionsmodel library e e e e e e 218
Figure C.5 - Sl Base UNitS ... i i i i et e e e et et e e e e e 218
Figure C.6 - Sl Derived UnitsExpressed INBase UnNitSottt e e e 219
Figure C.7 - Sl Derived UnitsWith Special Names i e e 220
Figure C.8 - BasiC distribution Stere0typESot e e e 221
Figure C.9 - Distribution EXampleo e 222
Figure D.1- AP233 MOdUIES e e e e e 225
FigureD.2 - Mapping Model i e e e 228

X OMG SysML™ | Version 1.1

List of Tables

Tabled.1- Detaill of UML REUSEo e e e e e e e e 9
Table5.1 - Metamoddl packagesadded inLevel 1. i e 13
Table5.2 - Metamoddl packagesadded inLevel 2. i e 14
Table5.3- Metamodel packagesadded inLevel 3 14
Table 5.4 - SysML package dependence on UML4SysML compliancelevels 15
Table 5.5 - Example Compliance Statementt 16
Table 5.6 - Example feature support Statementttt e 16
Table 7.1- Graphical nodes defined by ModelElementspackage i, 22
Table 7.2- Graphical paths defined by ModelElementspackage e 24
Table 8.1 - Graphical nodes defined in Block Definitiondiagrams 32
Table 8.2 - Graphical paths defined by in Block Definitiondiagrams. i, 34
Table 8.3 - Graphical nodesdefined in Internal Block diagrams i, 37
Table 8.4 - Graphical paths defined in Internal Block diagrams i i 38
Table 9.1 - Extensionsto Block Definition Diagramot e e e e e e 62
Table 9.2 - Extensionto Internal Block Diagramt i e e e e ettt e 64
Table 10.1 - Graphical nodes defined in Block Definitiondiagrams 76
Table 10.2 - Graphical nodes defined in Parametricdiagrams. i 77
Table 11.1 - Graphical nodesincluded inactivity diagrams i et 86
Table 11.2 - Graphical pathsincluded inactivity diagrams i e e e 91
Table 11.3 - Other graphical dementsincluded in activity diagrams. 93
Table 12.1 - Graphical nodesincludedinsequencediagramsttt 107
Table 12.2 - Graphical pathsincluded insequencediagramc. ittt 111
Table 13.1 - Graphical nodesincluded in state machinediagrams. i, 115
Table 13.2 - Graphical pathsincluded in state machinediagrams 118
Table 14.1 - Graphical nodesincludedinUse Casediagramsttt 121
Table 14.2 - Graphical pathsincludedinUseCasediagramsc.iiiii ittt 122
Table 15.1 - Extension to graphical nodesincludedindiagrams i nana. 130
Table 16.1 - Graphical nodesincluded in Requirementdiagrams, 143
Table 16.2 - Graphical pathsincluded in Requirementdiagrams i, 144
Table 17.1 - Graphical nodesused in profiledefinition. i i i, 158
Table 17.2 - Graphical pathsused in profiledefinition i i i i 159
Table 17.3 - Notations for StereotypelUseot e e e e 161

OMG SysML™ | Version 1.1 Xi

Table C.1 - Addition stereotypesfor EFFBDS it e e 211

Table C.2 - Streaming optionsfor activities 212
Table C.3 - Additional Requirement StereotYPES oot e e e 214
Table C.4 - Requirement property enumeration tYPESot ittt e ettt 215
Table C.5 - Stereotypes for Measures of Effectiveness o i e, 217
Table C.6 - Distribution StereOtyPES oottt 221

Xii OMG SysML™ | Version 1.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec_catal og.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
« XMl

. CWM

. Profile specifications.

OMG Middleware Specifications
« CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
* CORBAservices

OMG SysML™, Version 1.1 Xiii

e CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

OMG SysML™ Roadmap

Requirements for SysML were originally specified by:
ad/2003-03-41 (UML for Systems Engineering RFP)
The source documents for this specification include:

Alpha: ad/2006-03-01 (submission)
ad/2006-04-07 (errata)
ad/2006-03-04 (glossary)

Associated Schema files: ad/2006-03-02 (XMI)
The Finalization Task Force (FTF) process generated the following documents:;
Beta 1: ptc/2006-05-04 (a.k.a. Final Adopted Specification)

Beta 2: ptc/2007-03-19 (FTF Report - full record of FTF votes and issue resolutions
ptc/2007-02-03, ptc/2007-03-04 (a.k.a. convenience document, with and without change bars)
ptc/2007-02-05 (XMI)
ptc/2007-03-09 (Annex E - Requirements Traceability)

Version 1.0 Specification: formal/2007-09-01

Xiv OMG SysML™ Version 1.1

The SysML 1.1 Revision Task Force (FTF) process generated the following documents:

ptc/2008-05-15 (RTF Report - full record of RTF votes and issue resolutions)
ptc/2008-05-16, ptc/2008-05-17 (a.k.a. convenience document, with and without change bars)
ptc/2008-05-18 (XMI)

Version 1.1 Specification: formal/2008-11-01

Assaciated schema files for this specification, at http://www.omg.org/spec/SysML/20080501/, include the following files:

SysML-profile.xmi XMI 2.1 serialization of the SysML Profile
Activities-model .xmi XMI 2.1 serialization of the Activities model library
Blocks-model .xmi XMI 2.1 serialization of the Blocks model library

UML4SysML-metamodel .xmi XMI 2.1 seriaization of the merged UML4SysML subset of UML 2
(used to define the SysML Profile)

OMG SysML™, Version 1.1 XV

Xvi OMG SysML™ Version 1.1

Part | - Introduction

This specification defines a general-purpose modeling language for systems engineering applications, called the OMG
Systems Modeling Language (OMG SysML ™). Throughout the rest of the specification, the language will be referred to
as SysML.

SysML supports the specification, analysis, design, and verification and validation of a broad range of complex systems.
These systems may include hardware, software, information, processes, personnel, and facilities.

The origins of the SysML initiative can be traced to a strategic decision by the International Council on Systems
Engineering’s (INCOSE) Model Driven Systems Design workgroup in January 2001 to customize the Unified Modeling
Language (UML) for systems engineering applications. This resulted in a collaborative effort between INCOSE and the
Object Management Group (OMG), which maintains the UML specification, to jointly charter the OMG Systems
Engineering Domain Special Interest Group (SE DSIG) in July 2001. The SE DSIG, with support from INCOSE and the
1SO AP 233 workgroup, developed the requirements for the modeling language, which were subsequently issued by the
OMG as part of the UML for Systems Engineering Request for Proposal (UML for SE RFP, OMG document ad/2003-03-
41) in March 2003.

Currently it is common practice for systems engineers to use a wide range of modeling languages, tools and techniques on
large systems projects. In a manner similar to how UML unified the modeling languages used in the software industry,
SysML is intended to unify the diverse modeling languages currently used by systems engineers.

SysML reuses a subset of UML 2 and provides additional extensions needed to address the requirements in the UML for
SE RFP. SysML usesthe UML 2 extension mechanisms as further elaborated in Chapter 17, “Profiles & Model Libraries’
of this specification as the primary mechanism to specify the extensions to UML 2.

Since SysML uses UML 2 as its foundation, systems engineers modeling with SysML and software engineers modeling
with UML 2 will be able to collaborate on models of software-intensive systems. This will improve communication
among the various stakeholders who participate in the systems development process and promote interoperability among
modeling tools. It is anticipated that SysML will be customized to model domain-specific applications, such as
automotive, aerospace, communications, and information systems.

OMG SysML™ | Version 1.1 1

OMG SysML™ | Version 1.1

1 Scope

The purpose of this document is to specify the Systems Modeling Language (SysML), a new general-purpose modeling
language for systems engineering that satisfies the requirements of the UML for Systems Engineering RFP. Its intent is to
specify the language so that systems engineering modelers may learn to apply and use SysML, modeling tool vendors
may implement and support SysML, and both can provide feedback to improve future versions.

SysML reuses a subset of UML 2 and provides additional extensions to satisfy the requirements of the language. This
specification documents the language architecture in terms of the parts of UML 2 that are reused and the extensions to
UML 2. The specification includes the concrete syntax (notation) for the complete language and specifies the extensions
to UML 2. The reusable portion of the UML 2 specification is not included directly in the specification but is included by
reference. The specification also provides examples of how the language can be used to solve common systems
engineering problems.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying requirements, structure, behavior, and allocations and constraints on
system properties to support engineering analysis. The language is intended to support multiple processes and methods
such as structured, object-oriented, and others, but each methodology may impose additional constraints on how a
construct or diagram kind may be used. The initial version of the language supports most, but not all of the requirements
of the UML for SE RFP, as shown in the Requirements Traceability Matrix referenced by Annex E. These gaps are
intended to be addressed in future versions of SysML as indicated in the matrix.

SysML is intended to be supported by two evolving interoperability standards: the OMG XMI 2.1 model interchange
standard for UML 2 modeling tools and the 1SO 10303-233 data interchange standard for systems engineering tools.
While the details of this alignment are beyond the scope of this specification, overviews of the alignment approach and
relevant references are furnished in Annex D.

The following sections provide background information about this specification. Instructions to either systems engineers
and vendors who read this specification are provided in Section 3.2, “How to Read this Specification.” The main body of
this document (Parts 11-1V) describes the normative technical content of the specification. The annexes include additional
information to aid in understanding and implementation of this specification.

NOTE: Refer to Chapter 5 for detailed Compliance information.

2 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications.

< Unified Modeling Language: Superstructure, version 2.1.1 (http://doc.omg.org/formal/2007-02-05)
< Unified Modeling Language: Infrastructure, version 2.1.1 (http://doc.omg.org/formal/2007-02-06)
¢ MOF 2.0/XMI Mapping Specification, v2.1 (http://doc.omg.org/formal/2005-09-01)

OMG SysML™ | Version 1.1 3

3 Additional Information

3.1 Relationships to Other Standards

SysML is defined as an extension of the OMG UML 2 Superstructure specification. See Chapter 2, “Normative
References,” for the current version of the UML 2 Superstructure specification.

SysML isintended to be supported by two evolving interoperability standards including the OMG XMI 2.1 model
interchange standard for UML 2 modeling tools and the 1SO 10303 STEP AP233 data interchange standard for systems
engineering tools. Overviews of the approach to model interchange and relevant references are included in Annex D.

SysML supports the OMG's Model Driven Architecture (MDA) initiative by its reuse of the UML and related standards.

3.2 How to Read this Specification

This specification is intended to be read by systems engineers so that they may learn and apply SysML, and by modeling
tool vendors so that they may implement and support SysML. As background, all readers are encouraged to first read Part
I, “Introduction.”

After reading the introduction, readers should be prepared to explore the user-level constructs defined in the next three
parts: Part 11, “ Structural Constructs,” Part I11, “Behavioral Constructs,” and Part 1V, “Crosscutting Constructs.” Systems
engineers should read the Overview, Diagram Elements, and Usage Examples sections in each chapter, and explore the
UML Extensions as they see fit. Modeling tool vendors should read all sections. In addition, systems engineers and
vendors should read Annex B, “ Sample Problem” to understand how the language is applied to an example, and Annex E,
“Requirements Traceability” to understand how the requirements in the UML for SE RFP are satisfied by this
specification.

Although the chapters are organized into logical groupings that can be read sequentially, this specification can be used for
reference and may be read in a non-sequential manner.

3.3 Acknowledgments

The following companies and organizations submitted or supported parts of the original version of this specification:
Industry

e American Systems Corporation
« BAESYSTEMS

e Boeing

¢ Deere & Company

e EADSAstrium

e Eurostep

o Israel Aircraft Industries

» Lockheed Martin Corporation

e Motorola

e Northrop Grumman

¢ oose Innovative Informatik GmbH
* PivotPoint Technology

4 OMG SysML™ | Version 1.1

* Raytheon
* THALES

US Government

e NASA/Jet Propulsion Laboratory
< National Institute of Standards and Technology (NIST)
« DoD/Office of the Secretary of Defense (OSD)

Vendors

* ARTISAN Software Tools
e CeiraTechnologies

« EmbeddedPlus Engineering
* Gentleware

e IBM

e |-Logix

e Mentor Graphics

» Telelogic

e Structured Software Systems Limited
e Sparx Systems

e Vitech

Academia
» GeorgiaInstitute of Technology

Liaisons
e Consultative Committee for Space Data Systems (CCSDS)
« Embedded Architecture and Software Technologies (EAST)
« International Council on Systems Engineering (INCOSE)

* |SO STEP AP233
* SystemsLevel Design Language (SLDL) and Rosetta

The following persons were members of the team that designed and wrote this specification: Vincent Arnould, Laurent
Balmelli, lan Bailey, James Baker, Cory Bialowas, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray Cantor,
Bruce Douglass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery, Hal
Hamilton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, John Low, Robert Long, Kumar Marimuthu, Alan
Moore, Veronique Normand, Salah Obeid, Eldad Palachi, David Price, Bran Selic, Chris Sibbald, Joseph Skipper, Rick
Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens, Thomas Weigert, and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Perry Alexander, Michael Chonoles, Mike Dickerson, Orazio Gurrieri, Julian Johnson, Jim
Long, Henrik Lonn, Stephen Mellor, Dave Oliver, Jim Schier, Matthias Weber, Peter Shames, and the Georgia Institute of
Technology research team including Manas Bajaj, Injoong Kim, Chris Paredis, Russell Peak, and Diego Tamburini. The
SysML team also wants to acknowledge Pavel Hruby and his contribution by providing the Visio stencil for UML 2 that
was adapted for most of the figures throughout this specification.

Additional organizations and individuals have contributed to further revisions of this specification as part of the
Finalization and Revision Task Forces, as identified by the OMG SysML Roadmap under the Preface above.

OMG SysML™ | Version 1.1 5

OMG SysML™ | Version 1.1

4 Language Architecture

SysML reuses a subset of UML 2 and provides additional extensions needed to address requirements in the UML for
Systems Engineering RFP. This specification documents the language architecture in terms of the parts of UML 2 that are
reused and the extensions to UML 2. This chapter explains design principles and how they are applied to define the
SysML language architecture.

In order to visualize the relationship between the UML and SysML languages, consider the Venn diagram shown in
Figure 4.1, where the sets of language constructs that comprise the UML and SysML languages are shown as the circles
marked “UML"” and “SysML,” respectively. The intersection of the two circles, shown by the region marked “UML
reused by SysML,” indicates the UML modeling constructs that SysML reuses. The compliance matrix in Table 4.1 below
specifies the UML packages that a SysML tool must reuse in order to implement SysML.

The region marked “SysML extensions to UML” in Figure 4.1 indicates the new modeling constructs defined for SysML
which have no counterparts in UML, or which replace UML constructs. Note that there is also a part of UML 2 that is not
required to implement SysML, which is shown by the region marked “UML not required by SysML.”

SysML

SysML
extensions

UML

reused by
UML SysML
not required (UML4SysML)
by SysML

(UML — UML4SysML)

Figure 4.1 - Overview of SysML/UML interrelationship

4.1 Design Principles

The fundamental design principles for SysML are:

* Requirements-driven. SysML isintended to satisfy the requirements of the UML for SE RFP.

OMG SysML™ | Version 1.1 7

e UML reuse. SysML reuses UML wherever practical to satisfy the requirements of the RFP, and when modifications
are required, they are donein amanner that strives to minimize changes to the underlying language. Consequently,
SysML isintended to be relatively easy to implement for vendors who support UML 2.

¢ UML extensions. SysML extends UML as needed to satisfy the requirements of the RFP. The primary extension
mechanism isthe UML 2 profile mechanism as further refined in Chapter 17, “Profiles & Model Libraries’ of this
specification.

« Partitioning. The package is the basic unit of partitioning in this specification. The packages partition the model
elements into logical groupings that minimize circular dependencies among them.
e Layering. SysML packages are specified as an extension layer to the UML metamodel.

* Interoperability. SysML inherits the XMI interchange capability from UML. SysML is also intended to be supported
by the 1SO 10303-233 data interchange standard to support interoperability among other engineering tools.

4.2 Architecture

The SysML language reuses and extends many of the packages from UML. As shown in Figure 4.2, the set of UML
metaclasses to be reused are merged into a single metamodel package, UML4SysML. The detailed list of packages that
are merged is shown in Table 4.1. Some UML packages are not being reused, since they are not considered essential for
systems engineering applications to meet the requirements of the UML for SE RFP.

CompleteActions InformationFlows StructuredClasses SimpleTime
N
S L
S 7 -~
~<_ «merge» N «merge» /7 «merge>i//’]
Profiles <. Sl S\ «merge» e
-~ re
Te~o_«merge» > N / e Fragments
] RN ~.] N J - «me,rg’e’»///?
T~~d «metamodel» --"""
; . «merge»
Cg{”pots'tejgut‘?t%’t’_es-- e UML4SysML
ructuredActivities
- F~~__ «merge»]
«merge» _--" ™ o T~ N
-7 . N ~ ~=> BehaviorStateMachines
JSttas // \\ \\Smerge»
L S g AN N
CompleteActivities £~ «merge» creference o
I /// N \\\
i i \ N PowerTypes
e «profile»] N yp
AssociationClasses = StandardProfileL2
T «profilex»
«import» SysML

Figure 4.2 - SysML Extension of UML

The SysML profile specifies the extensions to UML. It references the UML4SysML package, thus importing all the
metaclasses into SysML that are either reused as-is from UML or extended in SysML. The semantics of UML profiles
ensure that when a user model “strictly” applies the SysML profile, only the UML metaclasses referenced by SysML are
available to the user of that model. If the profile is not “strictly” applied, then additional UML metaclasses which were
not explicitly referenced may also be available. The SysML profile also imports the Standard Profile L2 from UML to
make use of its stereotypes.

8 OMG SysML™ | Version 1.1

Table 4.1 - Detail of UML Reuse

UML Language Unit UML Package M etaclasses
Actions Actions::BasicActions All
Actions::StructuredActions All
Actions::IntermediateActions All
Actions::CompleteActions All
Activities Activities::FundamentalActivities All
Activities::BasicActivities All
Activities::IntermediateActivities All
Activities::StructuredActivities All
Activities::CompleteActivities All
Classes Classes::Kernel All
Classes::Dependencies All
Classes::Interfaces All
Classes::PowerTypes All
Classes::AssociationClasses All
General Behavior CommonBehaviors::BasicBehaviors All
CommonBehaviors::SimpleTime All
Information Flows AuxiliaryConstructs::InformationFlows All
Interactions Interactions::BasicInteractions All
Interactions::Fragments All
Models AuxiliaryConstructs::Models All
Profiles AuxiliaryConstructs::Profiles All
State Machines StateMachines::BehaviorStateMachines All
Structures CompositeStructures::InternalStructures All
CompositeStructures::StructuredClasses All
CompositeStructures::InvocationActions All
CompositeStructures::Ports All
CompositeStructures::StructuredActivities All
Use Cases UseCases All

OMG SysML™ | Version 1.1

«profile»
SysML
. -
«profile» «profile»]
Blocks Activities «profile»
ModelElements
1 1
«modelLibrary» «modelLibrary»
Blocks ControlValues
7 W,
1 ~ .
// «import» \\<:|inport»
/
1 / I 1 1
«profile» «profile» «profile» «profile»
ConstraintBlocks Ports&Flows Allocations Requirements

Figure 4.3 - SysML Package Structure

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the
specific concepts needed to satisfy the requirements in the UML for SE RFP. The SysML package structure shown in
Figure 4.3 contains a set of packages that correspond to concept areas in SysML that have been extended. The reusable
portion of UML that has not been extended is included by reference to the merged package (UML4SysML), and includes
Interactions, State Machines, Use Cases, and Profiles.

The SysML packages extend UML as follows:

e SysML::Model Elements refactors and extends the UML kernel portion of UML classes
e SysML.::Blocks reuses structured classes from composite structures

¢ SysML::ConstraintBlocks extends Blocks to support parametric modeling

e SysML::Ports and Flows extends UML ::Ports, UML ::InformationFlows and SysML ::Blocks
e SysML::Activities extends UML activities

e SysML::Allocations extends UML dependencies
¢ SysML::Requirements extends UML classes and dependencies

4.3 Extension Mechanisms

This specification uses the following mechanisms to define the SysML extensions:

e UML stereotypes

e UML diagram extensions

* Mode€ libraries

10

OMG SysML™ | Version 1.1

SysML stereotypes define new modeling constructs by extending existing UML 2 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from
UML 2. SysML model libraries describe specialized model elements that are available for reuse. Additional non-
normative extensions are included in Annex C: Non-normative Extensions.

The SysML user model is created by instantiating the metaclasses and applying the stereotypes specified in the SysML
profile and subclassing the model elements in the SysML model library. Chapter 17, “Profiles & Model Libraries”
describes how profiles and model libraries are applied and how they can be used to further extend SysML.

4.4 SysML Diagrams

The SysML diagram taxonomy is shown in Figure 4.4. The concrete syntax (notation) for the diagrams along with the
corresponding specification of the UML extensionsis described in Parts 11 - IV of this specification. The Diagrams Annex
(Annex A) describes generalized features of diagrams, such as their frames and headings.

SysML Diagram

| R P |
Behavior : Requirement Structure
Diagram : Diagram Diagram
Activity Sequence State Machine Use Case Block Definition Internal Block pack Di
Diagram Diagram Diagram Diagram Diagram Diagram ackage Diagram
o
|:| Same as UML 2 : Parametric
M Diagram
[Modified from UML 2 accccaaadd

. New diagram type

Figure 4.4 - SysML Diagram Taxonomy

OMG SysML™ | Version 1.1 11

12

OMG SysML™ | Version 1.1

5 Compliance

Compliance with SysML requires that the subset of UML required for SysML is implemented, and the extensions to the
UML subset required for SysML are implemented. In order to fully comply with SysML, atool must implement both the
concrete syntax (notation) and abstract syntax (metamodel) for the required UML subset and the SysML extensions. The
following sections elaborate the definition of compliance for SysML.

5.1 Compliance with UML Subset (UML4SysML)

The subset of UML required for SysML is specified by the UML4SysML package as described in Chapter 4, “Language
Architecture.” UML has three compliance levels (L1, L2, L3) that SysML applies to the subset in the UML4SysML
package. The levels are:

e Level 1(L1). Thislevel providesthe core UML concepts from the UML kernel and adds language units for use cases,
interactions, structures, actions, and activities.

* Level 2 (L2). Thislevel extends the language units already provided in Level 1and adds language units for state
machine modeling and profiles.

e Level 3(L3). Thislevel representsthe complete UML. It extends the language units provided by Level 2 and adds new
language units for modeling information flows and for model packaging.

These compliance levels are constructed in the same fashion as for UML and readers are referred to the UML
Superstructure specification for further information.

5.1.1 Compliance Level Contents

The following tables identify the metamodel packages whose contents contribute to the individual compliance levels. The
metaclasses in each level are included in addition to those that are defined in lower levels (Level (N) includes al the
packages supported by Level (N-1)).

Table 5.1 - Metamodel packages added in Level 1

L anguage Unit Metamodel Packages
Actions Actions::BasicActions
Activities Activities::FundamentalActivities

Activities::BasicActivities

Classes Classes::Kernel

Classes::Dependencies

Classes::Interfaces

General Behavior CommonBehaviors::BasicBehaviors
Structures CompositeStructure::InternalStructures
Interactions Interactions::Basiclnteractions
UseCases UseCases

OMG SysML™ | Version 1.1 13

Table 5.2 - Metamodel packages added in Level 2

Language Unit

Metamodel Packages

Actions

Actions::StructuredActions

Actions::IntermediateActions

Activities

Activities::IntermediateActivities

Activities::StructuredActivities

General Behavior

CommonBehaviors::Communications

CommonBehaviors::SimpleTime

Interactions

Interactions::Fragments

Profiles

AuxilliaryConstructs::Profiles

Structures

CompositeStructures::InvocationActions

CompositeStructures::Ports

CompositeStructures::StructuredClasses

State Machines

StateMachines::BehaviorStateMachines

Table 5.3 Metamodel packages added in Level 3

L anguage Unit

Metamodel Packages

Actions Actions::CompleteActions
Activities Activities::CompleteActivities
Classes Classes::PowerTypes

Classes::AssociationClasses

Information Flows

AuxilliaryConstructs::InformationFlows

Models

AuxilliaryConstructs::Models

Structures

CompositeStructures::StructuredActivities

5.2 Compliance with SysML Extensions

In addition to UML, further units of compliance for SysML are the subpackages of the SysML profile. The list of these
packages is provided in Chapter 4, Language Architecture.

For an implementation of SysML to comply with a particular SysML package, it must also comply with any packages on
which the particular package depends. For SysML, this includes not only other SysML packages, but the UML4SysML
compliance level that introduces all the metaclasses extended by stereotypes in that package. The following table
identifies the level of UML4SysML on which each SysML package depends. Note that some of the SysML packages,
such as Model Elements, have two compliance points. This occurs when different stereotypes within the package extend

metaclasses that are at more than one UML compliance level.

14

OMG SysML™ | Version 1.1

Table 5.4 - SysML package dependence on UML4SysML compliance levels

SysML Package UML4SysML
Compliance Level
Activities (without Probability) Level 2
Activities (with Probability) Level 3
Allocations Level 2
Blocks Level 2
ConstraintBlocks Level 2
ModelElements Level 1
Ports&Flows (without ItemFlow) Level 2
Ports&Flows (with ItemFlow) Level 3
Requirements Level 1

5.3 Meaning of Compliance

An implementation of SysML must comply with both the subset of UML4SysML and the SysML extensions as described
above. The meaning of compliance in SysML is based on the UML definition of compliance, excluding diagram
interchange. (Note that diagram interchange is different from model interchange which is included in SysML—refer to
XMl in Annex D, “Model Interchange.”)

Compliance can be defined in terms of the following:
« Abstract syntax compliance. For a given compliance level, this entails:

« compliance with the metacl asses, stereotypes, and model libraries; their structural relationships; and any
constraints defined as part of the abstract syntax for that compliance level; and the ability to output models and to
read in models based on the XMI schema corresponding to that compliance level.

« Concrete syntax compliance. For a given compliance level, this entails:

« Compliance to the notation defined in the “ Diagram Elements” tables and diagrams extension sectionsin each
chapter of this specification for those metamodel elements that are defined as part of the merged metamodel or
profile subset for that compliance level and, by implication, the diagram types in which those elements may

Compliance for a given level can be expressed as:
« abstract syntax compliance
e concrete syntax compliance
» abstract syntax with concrete syntax compliance

The fullest compliance response is “YES,” which indicates full realization of all language units/stereotypes that are
defined for that compliance level. This also implies full realization of all language units/stereotypesin all the levels below
that level. “Full realization” for a language unit at a given level means supporting the complete set of modeling concepts
defined for that language unit at that level. A compliance response of “PARTIAL” indicates partial realization and
requires a feature support statement detailing which concepts are supported. These statements should reference either the
language unit and metaclass, or profile package and stereotype for abstract syntax, or a diagram element for concrete
syntax (the diagram elements in SysML are given unique names to allow unambiguous references). Finally, a response of
“NO” indicates that none of the language units/stereotypes in this compliance point is realized.

OMG SysML™ | Version 1.1 15

Thus, it is not meaningful to claim compliance to, say, Level 2 without also being compliant with Level 1. A tool that is
compliant at a given level must be able to import models from tools that are compliant to lower levels without loss of

information.

Table 5.5 - Example Compliance Statement

Compliance Summary

Compliance level

Abstract Syntax

Concrete Syntax

UML4SysML Level 1 YES YES
UMLA4SysML Level 2 PARTIAL YES
UML4SysML Level 3 NO NO
Activities (without Probability) YES YES
Activities (with Probability) NO NO
Allocations PARTIAL PARTIAL
Blocks YES YES
ConstraintBlocks YES YES
ModelElements YES YES
Ports&Flows (without ItemFlow) YES YES
Ports&Flows (with ItemFlow) NO NO
Requirements YES YES

In the case of “PARTIAL” support for a compliance point, in addition to aformal statement of compliance, implementors,
and profile designers must also provide feature support statements. These statements clarify which language features are
not satisfied in terms of language units and/or individual packages, as well as for less precisely defined dimensions such

as semantic variation points.

An example feature support statement is shown in Table 5.6 for an implementation whose compliance statement is given

in Table 5.5.

Table 5.6 - Example feature support statement

Feature Support Statement

Compliance Level/ Detail Abstract Concrete Semantics
Syntax Syntax
UML4SysML::Level 2 StateMachines::BehaviorStateMachines Note (1) Note(1) Note (2)
SysML::Blocks Block YES Note (3)

NOTE(s):

1. Statesand state machines are limited to a single region.
Shallow history pseudostates not supported.

2. FIFO queueing in event pool.

3. Don't show Blocks:: StructuredCompartment notation.

16

OMG SysML™ | Version 1.1

6 Language Formalism

The SysML specification is defined by using UML 2 specification techniques. These techniques are used to achieve the
following goals in the specification.

» Correctness

* Precision

« Conciseness

e Consistency

e Understandability

The specification technique used in this specification describes SysML as a UML extension that is defined using
stereotypes and model libraries.

6.1 Levels of Formalism

SysML is specified using a combination of UML modeling techniques and precise natural language to balance rigor and
understandability. Use of more formal constraints and semantics may be applied in future versions to further increase the
precision of the language.

6.2 Chapter Specification Structure

The chaptersin Parts 11 - IV are organized according to the SysML packages as described in the language architecture and
selected reusable portions of UML 2 packages. This section provides information about how each chapter is organized.

6.2.1 Overview

This section provides an overview of the SysML modeling constructs defined in the subject package, which are usually
associated with one or more SysML diagram types.

6.2.2 Diagram Elements

This section provides tables that summarize the concrete syntax (notation) and abstract syntax references for the graphic
nodes and paths associated with the relevant diagram types. The diagram elements tables are intended to include all of the
diagrammatic constructs used in SysML. However, they do not represent all the different combinations in which they can
be used. The reader should refer to the usage examples in the chapters and the sample problem annex (Annex B) for
typical usages of the concrete syntax. General diagram information on the use of diagram frames and headings can be
found in the Diagram Annex A.

The diagram elements tables and the additional usage examples fill an important role in defining the scope of SysML. As
described in Chapter 4, Language Architecture, SysML imports many entire packages from the UML metamodel, which
it then reuses and extends. Only a subset of the entire UML metamodel, however, is required to support the notations
included in SysML.

OMG SysML™ | Version 1.1 17

Unless a type of diagram element is shown in some form in one of the SysML diagram elements tables, or in a usage
example in one of the normative SysML chapters, it is not considered to be part of the subset of UML included within
SysML, even if the UML metamodel packages support additional constructs. For example, SysML imports the entire
Dependencies package from UML, but it includes diagram elements for only a subset of the dependency types defined in
this package.

6.2.3 UML Extensions

This section specifies the SysML extensions to UML in terms of diagram extensions and semantic extensions. Diagram
extensions are included when the concrete syntax uses notation other than the standard stereotype notation as defined in
the Profiles and Model Libraries chapter. Semantic extensions consist of stereotype and model library extensions.
Stereotype extensions always include the abstract syntax that identifies which metaclasses a stereotype extends. Each
stereotype includes a general description with a definition and semantics, along with stereotype properties (attributes), and
constraints. The model libraries are defined as subclasses of existing metacl asses.

6.2.4 Usage Examples

This section shows how the SysML modeling constructs can be applied to solve systems engineering problems and is
intended to reuse and/or elaborate the sample problem in Annex B.

6.3 Conventions and Typography

In the description of SysML, the following conventions have been used:

« Whilereferring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are used.

« Novisibilities are presented in the diagrams, since all elements are public.

« If asectionisnot applicable, it is not included, except for the top-level sections outlined in Section 6.2, “ Chapter
Specification Structure” above

« Stereotype, metaclass, and metassociation names: initial embedded capitals are used (e.g., “ModelElement,”
“ElementReference’).

» Boolean metaattribute names: always start with “is’ (e.g., “isComposite”).

« Enumeration types: aways end with “Kind” (e.g., “DependencyKind”).

18 OMG SysML™ | Version 1.1

Part Il - Structural Constructs

This Part defines the static and structural constructs used in SysML structure diagrams, including the package diagram, block
definition diagram, internal block diagram, and parametric diagram. The structural constructs are defined in the Model
Elements, Blocks, Ports and Flows, and Constraint Blocks chapters.

Chapter 7: The Model Elements chapter refactors the kernel package from UML 2 and includes some extensions to provide
some foundation capabilities for model management.

Chapter 8: The Blocks chapter reuses and extends structured classes from UML 2 composite structures to provide the
fundamental capability for describing system decomposition and interconnection, and to define different types of system
properties including value properties with optional units of measure.

Chapter 9: The Ports and Flows chapter provides the semantics for defining how blocks and parts interact through ports and
how items flow across connectors.

Chapter 10: The Constraint Blocks chapter defines how blocks are extended to be used on parametric diagrams. Parametric
diagrams model a network of constraints on system properties to support engineering analysis, such as performance,
reliability, and mass properties analysis.

OMG SysML™, Version 1.1 19

20

OMG SysML™ | Version 1.1

7 Model Elements

7.1 Overview

The Model Elements package of SysML defines general-purpose constructs that may be shown on multiple SysML
diagram types. These include package, model, various types of dependencies (e.g., import, access, refine, realization),
constraints, and comments. The package diagram defined in this chapter is used to organize the model by partitioning
model elements into packageable elements and establishing dependencies between the packages and/or model elements
within the package. The package defines a namespace for the packageable elements. Model elements from one package
can be imported and/or accessed by another package. This organizational principle is intended to help establish unique
naming of the model elements and avoid overloading a particular model element name. Packages can aso be shown on
other diagrams such as the block definition diagram, requirement diagram, and behavior diagrams.

Constraints are used to capture simple constraints associated with one or more model elements and can be represented on
several SysML diagrams. The constraint can represent a logical constraint such as an XOR, a condition on a decision
branch, or a mathematical expression. The constraint has been significantly enhanced in SysML as specified in Chapter
10, “Constraint Blocks’ to enable it to be reused and parameterized to support engineering analysis.

Comments can be associated with any model element and are quite useful as an informal means of documenting the
model. SysML has introduced an extension to a comment called rationale to facilitate the system modeler in capturing
decisions. The rationale may be attached to any entity, such as a system element (block), or to any relationship, such as
the satisfy relationship between a design element and a requirement. In the latter case, it may be used to capture the basis
for the design decision and may reference an analysis report or trade study for further elaboration of the decision. In
addition, SysML includes an extension of a comment to reflect a problem or issue that can be attached to any other model
element.

SysML has extended the concept of view and viewpoint from UML to be consistent with the IEEE 1471 standard. In
particular, a viewpoint is a specification of rules for constructing a view to address a set of stakeholder concerns, and the
view is intended to represent the system from this viewpoint. This enables stakeholders to specify aspects of the system
model that are important to them from their viewpoint, and then represent those aspects of the system in a specific view.
Typical examples may include an operational, manufacturing, or security view/viewpoint.

7.2 Diagram Elements

Many of the diagram elements defined in this chapter, specifically comments, constraints, problem, rationale, and
dependencies, including the dependency subtypes Conform, Realization, and Refine, may be shown on all SysML
diagram types, in addition to the diagram elements that are specific to each diagram type.

OMG SysML™ | Version 1.1 21

Table 7.1 - Graphical nodes defined by ModelElements package

Element Name

Concrete Syntax Example

Abstract Syntax Reference

Model

Comment UMLA4SysML::Comment
\
'\ e -
\ -
Comment text. 5
ConstraintNote UML4SysML::Constraint
\ -
N s -
\ -
{C1: {L1} E1.x > E2.y} ‘%
ConstraintTextualNote UML4SysML::Constraint
Element1 {constraint text}
(any graphical node)
{constraint text}
(any graphical path)
Model UML4SysML::Model

PackageDiagram

UMLA4SysML::Package

pkg Name J —
_- /7 Subpackage2
Subpackagel [’«Tmport»
PackageWith UML4SysML ::Package
NamelnTab Packagel
I
- -7 Subpackage2
Subpackagel |~ «/import»
22 OMG SysML™ | Version 1.1

Table 7.1 - Graphical nodes defined by ModelElements package

Element Name

Concrete Syntax Example

Abstract Syntax Reference

PackageWith

UML4SysML ::Package

«view point»
Name

stakeholders="..."
purpose="..."
concerns="..."

Ian%ueg;esz
methods="..."

Namelnside
Packagel
Problem SysML::ModelElements::Problem
«problem»
The problem is that ...
Rationale SysML::ModelElements::Rationale
«rationale»
Description of rationale
ViewWith SysML::ModelElements:: View
Namelnside]
«view »
{view point=View Name}
Name
ViewWith SysML::ModelElements:: View
NamelnTab .
«View »
Name
Viewpoint SysML ::ModelElements:: Viewpoint

OMG SysML™ | Version 1.1

23

Table 7.2 - Graphical paths defined by ModelElements package

Element Name

Concrete Syntax Example

Abstract Syntax Reference

Conform SysML::ModelElements::Conform
oo

Dependency UML4SysML::Dependency

e
PublicPackagel mport UML4SysML ::Packagel mport with
N visibility = public

______ P >

PrivatePackagel mport UML4SysML ::Packagel mport with

caccoso visibility = private

e3>

PackageContainment UML4SysML::Package::

ownedElement

oo

Realization UMLA4SysML::Realization
_________ >

Refine UMLA4SysML::Refine
o srgﬁﬂe—»_ _ _>

24 OMG SysML™ | Version 1.1

7.3 UML Extensions

7.3.1 Diagram Extensions

7.3.1.1 Stereotype Keywords or Icons Inside a Comment Note Box

Description

A comment note box may contain stereotype keywords or icons even though Comment is not a named element. UML
specifies placement of a stereotype keyword relative to the name of the element. SysML makes explicit that they may
appear inside a comment box as well. The stereotype keywords, if present, should appear prior to the comment text. The
stereotype properties, if present, should appear after the comment text. The typical placement of stereotypeiconsisin the
upper-right-hand corner of the containing graphical node.

«rationale»
Description of rationale

Figure 7.1 - Notation for the Rationale Stereotype of Comment
7.3.1.2 UML Diagram Elements not Included in SysML

The notation for a “merge”’ dependency between packages, using a «merge» keyword on a dashed-line arrow, is not
included in SysML. UML uses package merge in the definition of its own metamodel, which SysML builds on, but
SysML does not support this capability for user-level models. Combining packages that have the same named elements,
resulting in merged definitions of the same names, could cause confusion in user models and adds no inherent modeling
capability, and so has been left out of SysML.

OMG SysML™ | Version 1.1 25

7.3.2 Stereotypes

Package ModelElements

«metaclass» «metaclass» «metaclass» «metaclass»
UML4SysML:: UML4SysML:: UML4SysML:: UML4SysML::
Dependency Package Class Comment
A
«stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
Conform View Viewpoint Rationale Problem

stakeholders: String [*]
purpose: String
concerns: String [¥]
languages: String [*]
methods: String [¥]

/view point: View point

Figure 7.2 - Stereotypes defined in package ModelElements
7.3.2.1 Conform

Description

A Conform relationship is a dependency between a view and a viewpoint. The view conforms to the specified rules and
conventions detailed in the viewpoint. Conform is a specialization of the UML dependency, and as with other
dependencies the arrow direction points from the (client/source) to the (supplier/target).

Constraints

[1] The supplier/target must be an element sterectyped by «viewpoint».

[2] The client/source must be an element that is stereotyped by «views.
7.3.2.2 Problem

Description

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or need,
or other undesired outcome. It may be used to capture problems identified during analysis, design, verification, or
manufacture and associate the problem with the relevant model elements. Problem is a stereotype of comment and may be
attached to any other model element in the same manner as a comment.

7.3.2.3 Rationale

Description

A Rationale documents the justification for decisions and the requirements, design, and other decisions. A Rationale can
be attached to any model element including relationships. It allows the user, for example, to specify a rationale that may
reference more detailed documentation such as a trade study or analysis report. Rationale is a stereotype of comment and
may be attached to any other model element in the same manner as a comment.

26 OMG SysML™ | Version 1.1

7.3.2.4 View

Description

A View is arepresentation of awhole system or subsystem from the perspective of a single viewpoint. Views are allowed
to import other elements including other packages and other views that conform to the viewpoint.

Attributes

e /viewpoint: Viewpoint
The viewpoaint for this View, derived from the supplier of the «conform» dependency whose client isthis View.

Constraints
[1] A view can only own element import, package import, comment, and constraint elements.

[2] Theview isconstructed in accordance with the methods and languages that are specified as part of the viewpoint. SysML
does not define the specific methods. The precise semantics of this constraint is a semantic variation point.

7.3.2.5 Viewpoint

Description

A Viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of
addressing a set of stakeholder concerns. The languages and methods for specifying a view may reference languages and
methods in another viewpoint. They specify the elements expected to be represented in the view, and may be formally or
informally defined. For example, the security viewpoint may require the security requirements, security functional and
physical architecture, and security test cases.

Attributes
« stakeholders: String [*] Set of stakeholders.

e purpose: String The purpose addresses the stakehol der concerns.

e concerns. String [*] Theinterest of the stakeholders.

e languages: String [*] The languages used to construct the viewpoint.

e methods: String [*] The methods used to construct the views for this viewpoint.

Constraints

[1] A viewpoint cannot be the classifier of an instance specification.
[2] The property ownedOperation must be empty.

[3] The property ownedAttribute must be empty.

OMG SysML™ | Version 1.1 27

7.4 Usage Examples

pkg [package] HSUVViews [Performance View])
«view»
{viewpoint=Performance Viewpoint}
PerformanceView
Performance Viewpoint
«viewpoint»
stakeholders="customer"
concerns="Will the system perform
- adequately?"
Driver «requirement» purpose="Highlight the performance of the
Performance system.”
id = 2" methods="show performance requirements,
text = "The Hybrid SUV test cases, MOE, constraint models, etc.;
«Moes shall have the braking, includes functional viewpoint"
HSUValt1. acceleration, and off-road languages="SysML"
FuelEconomy capability of a typical SUV, 4 !
but have dramatically better // |
fuel economy.” L :
«moe» /// :
HSUValt1. -7 «conform» |
QuarterMileTime «constraint» :
UnitCostEquation :
v
«moe»
HSUValt1. : «viewpoint»
Zero60Time Ca;act(:)i?)sltéglﬂgt)ion Functional Viewpoint
«moe»
HSUValtl. «constraint»
CargoCapacity EconomyEquation
«moe»
HSUValtl. «testCase»
CostEffectiveness EPAFuel
EconomyTest

Figure 7.3 - View/Viewpoint example

NOTE: moe refersto Measure of Effectiveness (see Annex C.3.2)

28 OMG SysML™ | Version 1.1

bdd Master Cylinder requirement%

«requirement»

«requirement» =
Reservoir

«rationale»

The best-practice solution
consists in assigning one
reservoir per brakeline.

See "automotive_d32_hdb.doc"

Loss of Fluid N~

S~ _«satisfy»

«block»
Brake System

m: MasterCylinder

«problem»
The master cylinder in the
previous version leaked.

Figure 7.4 - Rationale and Problem examples

OMG SysML™ | Version 1.1

29

30

OMG SysML™ | Version 1.1

8 Blocks

8.1 Overview

Blocks are modular units of system description. Each block defines a collection of features to describe a system or other
element of interest. These may include both structural and behavioral features, such as properties and operations, to
represent the state of the system and behavior that the system may exhibit.

Blocks provide a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the way these elements combine to define the total system can
all be selected according to the goals of a particular system model. SysML blocks can be used throughout all phases of
system specification and design, and can be applied to many different kinds of systems. These include modeling either the
logical or physical decomposition of a system, and the specification of software, hardware, or human elements. Parts in
these systems may interact by many different means, such as software operations, discrete state transitions, flows of
inputs and outputs, or continuous interactions.

The Block Definition Diagram in SysML defines features of blocks and relationships between blocks such as associations,
generalizations, and dependencies. It captures the definition of blocks in terms of properties and operations, and
relationships such as a system hierarchy or a system classification tree. The Internal Block Diagram in SysML captures
the internal structure of a block in terms of properties and connectors between properties. A block can include properties
to specify its values, parts, and references to other blocks. Ports are a special class of property used to specify allowable
types of interactions between blocks, and are described in Chapter 9, “Ports and Flows.” Constraint Properties are a
special class of property used to constrain other properties of blocks, and are described in Chapter 10, “ Constraint
Blocks.” Various notations for properties are available to distinguish these specialized kinds of properties on an internal
block diagram.

A property can represent a role or usage in the context of its enclosing block. A property has a type that supplies its
definition. A part belonging to a block, for example, may be typed by another block. The part defines a local usage of its
defining block within the specific context to which the part belongs. For example, ablock that represents the definition of
awheel can be used in different ways. The front wheel and rear wheel can represent different usages of the same wheel
definition. SysML also allows each usage to define context-specific values and constraints associated with the individual
usage, such as 25 psi for the front tires and 30 psi for the rear tires.

Blocks may also specify operations or other features that describe the behavior of a system. Except for operations, this
chapter deals strictly with the definition of properties to describe the state of a system at any given point in time,
including relations between elements that define its structure. Chapter 9, “Ports and Flows" specifies specific forms of
interactions between blocks, and the Behavioral Constructs in Section I11 including activities, interactions, and state
machines can be applied to blocks to specify their behavior. Chapter 15, “Allocations” in Part 1V describes ways to
allocate behavior to parts and blocks.

SysML blocks are based on UML classes as extended by UML composite structures. Some capabilities available for UML
classes, such as more specialized forms of associations, have been excluded from SysML blocks to simplify the language.
SysML blocks always include an ability to define internal connectors, regardless of whether this capability is needed for
a particular block. SysML Blocks also extend the capabilities of UML classes and connectors with reusable forms of
constraints, multi-level nesting of connector ends, participant properties for composite association classes, and connector
properties. SysML blocks include several notational extensions as specified in this chapter.

OMG SysML™ | Version 1.1 31

8.2 Diagram Elements

8.2.1 Block Definition Diagram

Table 8.1 - Graphical nodes defined in Block Definition diagrams

Element Name Concrete Syntax Example Abstract syntax Reference
Block Definition SysML::Blocks::Block
Diagram bdd Namespacel UML4SysML::Package
Block1 Ql—pzrtl Block2

Block SysML::Blocks::Block

«block»

{encapsulated}
Block1
constraints
{x>
operations

operation1(pl:Typel):Type2

parts

propertyl:Block2

references
property2: Block3[0..*]{ordered}
values
property3: Integer =99 {readOnly}
property4d: Real=10.0

properties

property5: Typel

Actor UML4SysML::Actor

«actor»
ActorName

ActorName

DataType UML4SysML::DataType

«dataType»
DataTypel

operations

operation1(pl: Typel): Type2

properties

propertyl: Type3

32 OMG SysML™ | Version 1.1

Element Name

Concrete Syntax Example

Abstract syntax Reference

ValueType

«valueType»
ValueTypel

operations

operation1(pl: Typel): Type2

properties

propertyl: Type3

«valueType»
unit = UnitName

SysML ::Blocks::ValueType

Enumeration

«enumeration»
Enumerationl

UML4SysML::Enumeration

literalName1
literalName?2
AbstractDefinition UML4SysML ::Classifier with
isAbstract equal true
Name
{abstract}
Name
Name
{abstract}
StereotypeProperty UMLA4SysML ::Sereotype
Compartment «stereotypel»
Block1
«stereotypel»
propertyl = value
Namespace SysML ::Blocks::Block
Compartment Block1
namespace
Block? |@—-— Block3
Sructure SysML ::Blocks::Block
Compartment Block1
structure
Block?2 ol 1 Block3
el

OMG SysML™ | Version 1.1

33

Element Name

Concrete Syntax Example

Abstract syntax Reference

Unit

«unit»

Unitl

{dimension = Dimension1}

Unitl

«unit»

{dimension = Dimension1}

SysML::Blocks::Unit

Dimension

«dimension»
Dimensionl

SysML::Blocks::Dimension

Table 8.2 Graphical path

s defined by in Block Definition diagrams

Element Name

Concrete Syntax Example

Abstract syntax Reference

Dependency UML4SysML ::Dependency
«stereotypel»
,,,,,,, dependencyl
ReferenceAssociation UML4SysML ::Association and
P associationl propertyl UM L4%/SM L::Pr oper ty with
0.1 {ordered} 1.* aggregationKind = none
property2 association1 4 propertyl
1 {ordered} 0..*
PartAssociation UML4SysML::Association and
P associationl propertyl UM L4$/SM L::Pr oper ty Wlth
0.1 {ordered} 1. aggregationKind = composite
property2 associationl propertyl
1 {ordered} 0.*
SharedAssociation UML4SysML::Association and
associationl propertyl UM L4$/SM L::Pr oper ty Wlth
0.1 {ordered} 1. aggregationKind = shared
property2 associationl propertyl
1 {ordered} 0..*
MultibranchPart UML4SysML::Association and
Association property3 associationt propertyl UML::Kernel::Property with
L 0. aggregationKind = composite
property2
o
34 OMG SysML™ | Version 1.1

Table 8.2 Graphical paths defined by in Block Definition diagrams

Element Name

Concrete Syntax Example

Abstract syntax Reference

MultibranchShared

UML4SysML ::Association and

Association property _ associationl property1 UML::Kernel::Property with
! 0.” aggregationKind = shared
property2
o
Generalization UML4SysML::Generalization
>

Multibranch
Generalization

UML4SysML :Generalization

Gener alizationSet

%{disjoim} ???(overlapping}

UML4SysML::
Gener alizationSet

BlockNamespace
Containment

UML4SysML::Class::
nestedClassifier

OMG SysML™ | Version 1.1

35

Table 8.2 Graphical paths defined by in Block Definition diagrams

Element Name

Concrete Syntax Example

Abstract syntax Reference

ParticipantProperty

property 2 A jation1 4 roperty 1
Block?2 Ssprvon PROPETY -] Block1
1 | {ordered} 0.*

Associationl

«participant»{end=property 1}p1:Block1
«participant»{end=property 2}p2:Block2

roperty 1
propely 1! Block1
{ordered}0..*

Associationl 4

roperty 2
Block2 R i
1 |

Associationl

structure

«participant»
{end=property 1}

N
«participant» :
{end=property 2} |
I

|

|

p2:Block2

Block?2 property 2 ql property 1 Blockl
1 | {ordered} 0.*
|
|
1

| Associationl |

pl:Blockl

UMLA4SysML:: Property,
UMLA4SysML:: AssociationClass

Connector Property

Block1

«connector» cl: Associationl
«connector» c2: Association2

structure

pl: cl: Associatonl 1 p2:
Typel el Type
p3: 1 p4:
Type3 | el Type

c2: Association2

UML4SysML:: Property,
UML4SysML:: Connector

36

OMG SysML™ | Version 1.1

8.2.2

Internal Block Diagram

Table 8.3 - Graphical nodes defined in Internal Block diagrams

Element Name

Concrete Syntax Example

Abstract Syntax Reference

I nter nalBlock Diagram

ibd Blockl J

SysM L ::Blocks::Block

pl: cl:al 1 p2:
Typel p3 Type
Property UMLA4SysML::Property
0..* I_________'i
pl: Typel , rl: Type2 !
| |
x: Integer = 4 T
pl: Typel 0.*
p3: Type3
initialValues
x1=5.0
xX2="today"
ActorPart SysML::Blocks::PartProperty typed by
UMLA4SysML::Actor
«actor»
ActorName
ActorName
PropertySpecificType SysM L ::Blocks::PropertySpecifcType
pl: [Typel]
vaues

«normal» {mean=2,stdDeviation=0.1} x Real

p2

vaues

y: Integer =5

OMG SysML™ | version 1.1

37

Table 8.4 - Graphical paths defined in Internal Block diagrams

Element Name Concrete Syntax Example Abstract Syntax Reference
Dependency UML4SysML ::Dependency
«stereotypel»
,,,,,,, dependencyl o
BindingConnector UML4SysML ::Connector
1 0.*
«equal»
1 1
BidirectionalConnector UML4SysML::Connector
pl cl: associationl p2
s 0.*
UnidirectionalConnector UML4SysML ::Connector
c1: associationl pl
0.1 0.%

8.3 UML Extensions

8.3.1 Diagram Extensions

8.3.1.1 Block Definition Diagram

A block definition diagram is based on the UML class diagram, with restrictions and extensions as defined by SysML.

Block and ValueType Definitions

A SysML Block defines a collection of features to describe a system or other element of interest. A SysML ValueType
defines values that may be used within a model. SysML blocks are based on UML classes, as extended by UML
composite structures. SysML value types are based on UML data types. Diagram extensions for SysML blocks and value
types are described by other subheadings of this section.

Default «block» stereotype on unlabeled box

If no stereotype keyword appears within a definition box on a block definition diagram (including any stereotype property
compartments), then the definition is assumed to be a SysML block, exactly as if the «block» keyword had appeared
before the name in the top compartment of the definition.

Labeled compartments

SysML allows blocks to have multiple compartments, each optionally identified with its own compartment name. The
compartments may partition the features shown according to various criteria. Some standard compartments are defined by
SysML itself, and others can be defined by the user using tool-specific facilities. Compartments may appear in any order.

38 OMG SysML™ | Version 1.1

SysML defines two additional compartments, namespace and structure compartments, which may contain graphical nodes
rather than textual constraint or feature definitions. See separate subsections of this section for a description of these
compartments.

Constraints compartment

SysML defines a special form of compartment, with the label “constraints,” which may contain one or more constraints
owned by the block. A constraint owned by the block may be shown in this compartment using the standard text-based
notation for a constraint, consisting of a string enclosed in brace characters. The use of a compartment to show constraints
is optional. The note-based notation, with a constraint shown in a note box outside the block and linked to it by a dashed
line, may also be used to show a constraint owned by a block.

A constraints compartment may also contain declarations of constraint properties owned by the block. A constraint
property is a property of the block that is typed by a ConstraintBlock, as defined in Chapter 10, “Constraint Blocks.”
Only the declaration of the constraint property may be shown within the compartment, not the details of its parameters or
binding connectors that link them to other properties.

Namespace compartment

A compartment with the label “namespace” may appear as part of a block definition to show blocks that are defined in the
namespace of a containing block. This compartment may contain any of the graphical elements of a block definition
diagram. All blocks or other named elements defined in this compartment belong to the namespace of the containing
block.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box that shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

Structure compartment

A compartment with the label “structure” may appear as part of a block definition to show connectors and other internal
structure elements for the block being defined. This compartment may contain any of the graphical elements of an internal
block diagram.

Because this compartment contains graphical elements, a wider compartment than typically used for feature definitions
may be useful. Since the same block can appear more than once in the same diagram, it may be useful to show this
compartment as part of a separate definition box than a box that shows only feature compartments. Both namespace and
structure compartments, which may both need a wide compartment to hold graphical elements, could also be shown
within a common definition box.

Unit and Dimension definitions

Unit and Dimension elements are defined using a rectangular box notation similar to a class, in which only the “unit” or
“dimension” stereotype keyword, the name of the Unit or Dimension, and optionally the “dimension” property value of a
Unit may appear. Even though the base metaclass of Unit and Dimension is InstanceSpecification, the name of a
Dimension or Unit is not underlined, and no other graphical elements of a UML InstanceSpecification may be shown. The
optional “dimension” property of a Unit and the “dimension” and/or “unit” properties of a ValueType are specified using
standard stereotype property notations, which must refer by name to a Dimension or Unit which has already been defined
separately and which is available for reference in the local namespace. A sample set of predefined dimensions and units
isgiven in Annex C, Section C.4.

OMG SysML™ | version 1.1 39

Default multiplicities

SysML defines defaults for multiplicities on the ends of specific types of associations. A part or shared association has a
default multiplicity of [0..1] on the black or white diamond end. A unidirectional association has a default multiplicity of
1 on itstarget end. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity
other than the default should always be shown on a diagram.

Property-specific type

Enclosing the type name of a property in square brackets specifies that the type is alocal specialization of the referenced
type, which may be overridden to specify additional values or other customizations that are unique to the property.
Redefined or added features of the newly defined type may be shown in compartments for the property on an internal
block diagram. If no type name appears between the square brackets, the property-specific type is defined provided by its
own declarations, without specializing any existing type.

8.3.1.2 Internal Block Diagram

An internal block diagram is based on the UML composite structure diagram, with restrictions and extensions as defined
by SysML.

Property types

Four general categories of properties of blocks are recognized in SysML: parts, references, value properties, and
constraint properties. (See Section 8.3.2.2, Block, for definitions of these property types.) A part or value property is
always shown on an internal block diagram with a solid-outline box. A reference property is shown by a dashed-outline
box, consistent with UML. Ports are special cases of properties, and have a variety of notations as defined in Chapter 10,
Ports and Flows. Constraint properties and their parameters also have their own notations as defined in Chapter 11,
Constraint Blocks.

Block reference in diagram frame

The diagram heading name for an internal block diagram (the string contained in the tab in the upper-left-hand corner of
the diagram frame) must identify the name of a SysML block as its model ElementName. (See Annex A for the definition
of a diagram heading name including the model ElementName component. This component is optional for many SysML
diagram types, but not for an internal block diagram.) All the properties and connectors that appear inside the internal
block diagram belong to the block that is named in the diagram heading name.

Compartments on internal properties

SysML permits any property shown on an internal block diagram to also show compartments within the property box.
These compartments may be given standard or user-customized labels just as on block definitions. All features shown
within these compartments must match those of the block or value type that types the property. For a property-specific
type, these compartments may be used to specify redefined or additional features of the locally defined type. An
unlabeled compartment on an internal property box is by default a structure compartment.

The label of any compartment shown on the property box which displays contents belonging to the type of the property is
shown with a colon character (“:”) preceding the compartment label. The compartment name is otherwise the same as
would be appear on the type on a block definition diagram.

40 OMG SysML™ | Version 1.1

Compartments on a diagram frame

SysML permits compartments to be shown across the entire width of the diagram frame on an internal block diagram.
These compartments must always follow an initial compartment which always shows the internal structure of a referenced
block. These compartments may have all the same contents as could be shown on a block definition diagram for the block
defined at the top level of the diagram frame.

Property path name

A property name shown inside or outside the property box may take the form of a multi-level name. This form of name
references a nested property accessible through a sequence of intermediate properties from a referencing context. The
name of the referenced property is built by a string of names separated by “.”, resulting in a form of path name that
identifies the property initslocal context. A colon and the type name for the property may optionally be shown following
the dotted name string. If any of the properties named in the path name string identifies a reference property, the property
box is shown with a dashed-outline box, just as for any reference property on an internal block diagram.

This notation is purely a notational shorthand for a property that could otherwise be shown within a structure of nested
property boxes, with the names in the dotted string taken from the name that would appear at each level of nesting. In
other words, the internal property shown with a path name in the left-hand side of Figure 8.1 is equivalent to the
innermost nested box shown at the right:

P1: Blockl P1: Blockl

Namel:

Name 2:

Namel.Name2.Name3:
Name3:

Figure 8.1 - Nested property reference

Nested connector end

Connectors may be drawn that cross the boundaries of nested properties to connect to properties within them. The
connector is owned by the most immediate block that owns both ends of the connector. A NestedConnectorEnd stereotype
of aUML ConnectorEnd is automatically applied to any connector end that is nested more than one level deep within a
containing context.

Use of nested connector ends does not follow strict principles of encapsulation of the parts or other properties that a
connector line may cross. The need for nested connector ends can be avoided if additional properties can be added to the
block at each containing level. Nested connector ends are available for cases where the introduction of these intermediate
properties is not feasible or appropriate.

The ability to connect to nested properties within a containing block requires that multiple levels of decomposition be
shown on the same diagram.

OMG SysML™ | version 1.1 41

Property-specific type

Enclosing the type name of an internal property in square brackets specifies that the type is alocal specialization of the
referenced type, which may be overridden to specify additional values or other customizations that are unique to the
property. Redefined or added features of the newly defined type may be shown in compartments for the property. If the
property name appears on its own, with no colon or type name, or if no type name appears between the square brackets,
the property-specific type is entirely provided by its own declarations, without specializing any existing type.

Initial values compartment

A compartment with alabel of “initialValues’ may be used to show values of properties belonging to a containing block.
These values override any default values which may have been previously specified on these properties on their originally
defining block. Initial value compartments may be specified within nested properties, which then apply only in the
particular usage context defined by the outermost containing block.

Values are specified in an initial Values compartment by lines in the form <property-name> = <value-specification> or
<property-name> : <type> = <value-specification>, each line of which specifies the initial value for one property owned
either by the block that types the property or by any of its supertypes. This portion of concrete syntax is the same as may
be shown for values within the UML instance specification notation, but thisis the only element of UML
InstanceSpecification notation that may be shown. See Section 8.3.2.2 Block for details of how values within initial Values
compartments are represented in the SysML metamodel.

Default multiplicities

SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown
on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams

The supported variety of notations for associations and association annotations has been reduced to simplify the burden of
teaching, learning, and interpreting SysML diagrams for the systems engineering user. Notational and metamodel support
for n-ary associations and qualified associations has been excluded from SysML. N-ary associations, shown in UML by a
large open diamond with multiple branches, can be modeled by an intermediate block with no loss in expressive power.
Qualified associations, shown in SysML by an open box at the end of an association path with a property name inside, are
a specialized feature of UML that specifies how a property value can represent an identifier of an associated target. This
capability, while useful for data modeling, does not seem essential to accomplish any of the SysML requirements for
support of systems engineering. The use of navigation arrowheads on an association has been simplified by excluding the
case of arrowheads on both ends, and requiring that such an association always be shown without arrowheads on either
end. An “X” on asingle end of an association to indicate that an end is not navigable has similarly been dropped, as has
the use of a small filled dot at the end of an association to indicate that the end is owned by the associated classifier.

The use of a «primitive» keyword on a value type definition (which in UML specifies the PrimitiveType specialization of
UML DataType) is not supported. Whether or not a value type definition has internal structure can be determined from the
value type itself.

8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

The UML Composite Structure diagram has many notations not included in the subset defined in this chapter. Other
SysML chapters add some of these notations into the supported contents of an internal block diagram.

42 OMG SysML™ | Version 1.1

8.3.2 Stereotypes

Package Blocks

«metaclass»
UML4SysML::
Class

?

«stereotype»
Block

isEncapsulated: Boolean

Figure 8.2 - Abstract syntax expressions for SysML blocks

«metaclass»

DistributedProperty

UML4SysML::
Property
A
«stereotype» «stereotype»
«stereotype» ParticipantProperty ConnectorProperty

end: Property [1]

connector: Connector [1]

Figure 8.3 - Abstract syntax extensions for SysML properties

«metaclass» «metaclass»
UML4SysML:: UML4SysML::
DataType InstanceSpecification
«stereotype» «stereotype» «stereotype»
ValueType Unit Dimension
0.1 | unit 0..1 | dimension 0..1 | dimension

Figure 8.4 - Abstract syntax extensions for SysML value types

OMG SysML™ | version 1.1

«metadass» «metaclass»
UML4SysML:: UML4SysML::
Connector ConnectorEnd
«stereotype»
«stereotype» NestedConnectorEnd
BindingConnector
g propertyPath: Property [1.*] {ordered}

Figure 8.5 - Abstract syntax extensions for SysML connector ends

«metaclass»
UML4SysML::
Classifier

T

«stereotype»
PropertySpecificType

Figure 8.6 - Abstract syntax extensions for SysML property-specific types
8.3.2.1 Binding Connector

Description

A Binding Connector is a connector which specifies that the properties at both ends of the connector have equal values.
If the properties at the ends of a binding connector are typed by a DataType or ValueType, the connector specifies that the
instances of the properties must hold equal values, recursively through any nested properties within the connected
properties. If the properties at the ends of a binding connector are typed by a Block, the connector specifies that the
instances of the properties must refer to the same block instance. As with any connector owned by a SysML Block, the
ends of a binding connector may be nested within a multi-level path of properties accessible from the owning block. The
NestedConnectorEnd stereotype is used to represent such nested ends just as for nested ends of other SysML connectors.

Constraints

[1] Thetwo ends of abinding connector must have either the same type or types that are compatible so that equality of their
values can be defined.

8.3.2.2 Block

Description

A Block is a modular unit that describes the structure of a system or element. It may include both structural and
behavioral features, such as properties and operations, that represent the state of the system and behavior that the system
may exhibit. Some of these properties may hold parts of a system, which can also be described by blocks. A block may
include a structure of connectors between its properties to indicate how its parts or other properties relate to one another.

44 OMG SysML™ | Version 1.1

SysML blocks provide a general -purpose capability to describe the architecture of a system. They provide the ability to
represent a system hierarchy, in which a system at one level is composed of systems at a more basic level. They can
describe not only the connectivity relationships between the systems at any level, but also quantitative values or other
information about a system.

SysML does not restrict the kind of system or system element that may be described by a block. Any reusable form of
description that may be applied to a system or a set of system characteristics may be described by a block. Such reusable
descriptions, for example, may be applied to purely conceptual aspects of a system design, such as relationships that hold
between parts or properties of a system.

Connectors owned by SysML blocks may be used to define relationships between parts or other properties of the same
containing block. The type of a connector or its connected ends may specify the semantic interpretation of a specific
connector.

SysML excludes variations of associationsin UML in which navigable ends can be owned directly by the association. In
SysML, navigation is equivalent to a named property owned directly by a block. The only form of an association end that
SysML alows an association to own directly is an unnamed end used to carry an inverse multiplicity of areference
property. This unnamed end provides a metamodel element to record an inverse multiplicity, to cover the specific case of
a unidirectional reference that defines no named property for navigation in the inverse direction. SysML enforces its
equivalence of navigation and ownership by means of constraints that the block stereotype enforces on the existing UML
metamodel

SysML establishes four basic classifications of properties belonging to a SysML Block or ValueType. A property typed by
a SysML Block that has composite aggregation is classified as a part property, except for the special case of a constraint
property. Constraint properties are further defined in Chapter 10, Constraint Blocks. A port that is typed by a Block is a
special case of a part property, as further defined in Chapter 9, Ports and Flows. A property typed by a Block that does
not have composite aggregation is classified as a reference property. A property typed by a UML DataType or SysML
ValueType is classified as a value property, and always has composite aggregation. Part, reference, value, and constraint
properties may be shown in block definition compartments with the labels “parts,” “references,” “values,” and
“constraints’ respectively. Properties of any type may be shown in a “properties’ compartment or in additional
compartments with user-defined labels.

On ablock definition diagram, a part property is shown by a black diamond symbol on an association. Asin UML, an
instance of a block may be included in at most one part property at atime. A part property holds instances that belong to
alarger whole. Typically, a part-whole relationship means that certain operations that apply to the whole also apply to
each of the parts. For example, if a whole represents a physical object, a change in position of the whole could aso
change the position of each of the parts. A property of the whole such as its mass could also be implied by its parts.
Operations and relationships that apply to parts typically apply transitively across all parts of these parts, through any
number of levels. A particular application domain may establish its own interpretation of part-whole relationships across
the blocks defined in a particular model, including the definition of operations that apply to the parts along with the
whole. For software objects, a typical interpretation is that delete, copy, and move operations apply across al parts of a
composite object.

SysML also supports properties with shared aggregation, as shown by a white diamond symbol on an association. Like
UML, SysML defines no specific semantics or constraints for properties with shared aggregation, but particular models or
tools may interpret them in specific ways.

In addition to the form of default value specifications that SysML supports on properties of a block (with an optional "="
<value-specification> string following the rest of a property definition), SysML supports an additional form of value
specification for properties using initial Value compartments on an internal block diagram. (See Section 8.3.1.2 Internal
Block Diagram, subsection “Initial value compartments.”) An entire tree of context-specific values can be specified on a
containing block to carry values of nested properties as shown on an internal block diagram.

OMG SysML™ | version 1.1 45

Context-specific values are represented in the SysML metamodel by means of the InstanceValue subtype of UML
ValueSpecification. Selected slots of UML instance specifications referenced by these instance values carry the individual
values shown in initial Value compartments.

If a property belonging to a block has a specification of initial values for any of the properties belonging to its type, then
the default value of that property must be a UML InstanceValue element. This element must reference a UML
InstanceSpecification element created to hold the initial values of the individual properties within its usage context. The
instance specification must be unnamed and owned by the same package that owns the outermost containing block for
which the initial values are being specified.

Selected slots of the referenced instance specification must contain value specifications for the individual property values
specified in a corresponding initial Values compartment. If a value of a property is shown by a nested property box with
its own initial Values compartment, then the slot of the instance specification for the containing property must hold a new
InstanceValue element. Selected slots of the instance specification referenced by this value must contain value
specifications for any nested initial values, recursively through any number of levels of nesting. A tree of instance values
referencing instance specifications, each of which may in turn hold slots carrying instance values, must exist until self-
contained value specifications are reached at the leaf level.

Attributes

e isEncapsulated: Boolean [0..1]

If true, then the block istreated as a black box; a part typed by this black box can only be connected viaits ports or
directly to its outer boundary. If false, or if avalueis not present, then connections can be established to elements of its
internal structure via deep-nested connector ends.

Constraints
[1] For an association in which both ends are typed by blocks, the number of ends must be exactly two.

[2] Thenumber of ends of a connector owned by ablock must be exactly two. (In SysML, abinding connector is not typed by
an association, so this constraint is not implied entirely by the preceding constraint.)

[3] Inthe UML metamodel on which SysML isbuilt, any instance of the Property metaclass that is typed by ablock (a Class
with the «block» stereotype applied) and which is owned by an Association may not have a name and may not be defined
as anavigable owned end of the association. (While the Property has a“name” property as defined by its NamedElement
superclass, the value of the “name” property, which is optional, must be missing.)

[4] Inthe UML metamodel on which SysML isbuilt, a Property that istyped by a block must be defined as an end of an asso-
ciation. (Aninverse end of this association, whether owned by another block or the association itself, must always be
present so there is always a metamodel element to record the inverse multiplicity of the reference.)

[5] Thefollowing constraint under Section 9.3.6, “Connector” in the UML 2 Superstructure Specification is removed by
SysML.: “[3] The ConnectableElements attached as roles to each ConnectorEnd owned by a Connector must be roles of
the Classifier that owned the Connector, or they must be ports of such roles.”

[6] If aproperty owned by a SysML Block or SysML ValueTypeistyped by aUML DataType or SysML ValueType, then the
aggregation attribute of the property must be “composite.”

[7] Within an instance of a SysML Block, the values of any property with composite aggregation (aggregation = composite)
must not contain the block in any of its own properties that al so have composite aggregation, or within any unbroken
chain of propertiesthat al have composite aggregation. (Within an instance of a SysML Block, the instances of properties
with composite aggregation must form an acyclic graph.)

[8] Any classifier which specializes a Block must also have the Block stereotype applied.

46 OMG SysML™ | Version 1.1

8.3.2.3 ConnectorProperty

Description

Connectors can be typed by association classes that are stereotyped by Block (association blocks, see Section 8.3.2.7,
“ParticipantProperty). These connectors specify instances (links) of the association block that exist due to instantiation of
the block owning or inheriting the connector. The value of a connector property on an instance of a block will be exactly
those link objects that are instances of the association block typing the connector referred to by the connector property.

A connector property can optionally be shown in an internal block diagram with a dotted line from the connector line to
a rectangle notating the connector property. The keyword «connector» before a property name indicates the property is
stereotyped by ConnectorProperty.

Attributes

e connector : Connector A connector of the block owning the property on which the stereotype is applied.

Constraints
[1] ConnectorProperty may only be applied to properties of classes stereotyped by Block.

[2] The connector attribute of the applied stereotype must refer to a connector owned or inherited by a block owning the prop-
erty on which the stereotypeis applied.

[3] Theaggregation of a property stereotyped by ConnectorProperty must be composite.
[4] Thetype of the connector referred to by a connector attribute must be an association class stereotyped by Block.

[5] A property stereotyped by ConnectorProperty must have the same name and type as the connector referred to by the con-
nector attribute.

8.3.2.4 DistributedProperty

DistributedProperty is a stereotype of Property used to apply a probability distribution to the values of the property.
Specific distributions should be defined as subclasses of the DistributedProperty stereotype with the operands of the
distributions represented by properties of those stereotype subclasses. A sample set of probability distributions that could
be applied to value propertiesis given in Annex C, Section C.5, Distribution Extensions.

Constraints

[1] The DistributedProperty sterectype may be applied only to properties of classifiers stereotyped by Block or ValueType.
8.3.2.5 Dimension

A Dimension is a kind of quantity that may be stated by means of defined units. For example, the dimension of length
may be measured by units of meters, kilometers, or feet.

Dimension is defined as a stereotype of InstanceSpecification, but it uses this metaclass only to define supporting
elements for ValueType definitions. (The reuse of InstanceSpecification to define another metaclass is similar to the
EnumerationLiteral metaclass in UML.)

The only valid use of a Dimension instance is to be referenced by the “dimension” property of a ValueType or Unit
stereotype.

OMG SysML™ | version 1.1 47

8.3.2.6 NestedConnectorEnd

Description

The NestedConnectorEnd stereotype of UML ConnectorEnd extends a UML ConnectorEnd so that the connected property
may be identified by a multi-level path of accessible properties from the block that owns the connector.

Attributes

e propertyPath: Property [1..*] (ordered)

The propertyPath list of the NestedConnectorEnd stereotype must identify apath of containing properties that identify
the connected property in the context of the block that owns the connector. The ordering of propertiesisfrom a
property of the block that owns the connector, through a property of each intermediate block that types the preceding
property, until a property is reached that contains a connector end property within its type. The connector end property
is not included in the propertyPath list, but instead is held by the role property of the UML ConnectorEnd metaclass.

Constraints

[1] The property at thefirst position in the propertyPath attribute of the NestedConnectorEnd must be owned by the block that
owns the connector.

[2] The property at each successive position of the propertyPath attribute, following the first position, must be contained in
the Block, DataType, or ValueType that types the property at the immediately preceding position.

[3] Within a ConnectorEnd metaclass to which the NestedConnectorEnd stereotype has been applied, the role property of the
ConnectorEnd metaclass must be contained in the type of the property at the last position of the propertyPath list.

[4] Within a ConnectorEnd metaclass to which the NestedConnectorEnd stereotype has been applied, the value of the “ part-
WithPort” property of the ConnectorEnd metaclass must be equal to the property at the last position of the propertyPath
list.

8.3.2.7 ParticipantProperty

Description

The Block stereotype extends Class, so it can be applied to any specialization of Class, including Association Classes.
These are informally called “association blocks.” An association block can own properties and connectors, like any other
block. Each instance of an association block can link together instances of the end classifiers of the association.

To refer to linked objects and values of an instance of an association block, it is necessary for the modeler to specify
which (participant) properties of the association block identify the instances being linked at which end of the association.
The value of a participant property on an instance (link) of the association block is the value or object at the end of the
link corresponding to this end of the association.

Participant properties can be the ends of connectors owned by an association block. The association block can be the type
of multiple other connectors to reuse the same internal structure for all the connectors. The keyword «participant» before
a property name indicates the property is stereotyped by ParticipantProperty. The types of participant properties can be
elided if desired. They are always the same as the corresponding association end type.

Attributes

e end: Property A member end of the association block owning the property on which the stereotype is applied.

48 OMG SysML™ | Version 1.1

Constraints

[1] ParticipantProperty may only be applied to properties of association classes stereotyped by Block.
[2] ParticipantProperty may not be applied to properties that are member ends of an association.

[3] Theaggregation of a property stereotyped by ParticipantProperty must be none.

[4] Theend attribute of the applied stereotype must refer to a member end of the association block owning the property on
which the stereotype is applied.

[5] A property stereotyped by ParticipantProperty must have the same type as the property referred to by the end attribute.
[6] The property referred to by end must have an upper multiplicity of 1.

8.3.2.8 PropertySpecificType

The PropertySpecificType stereotype is automatically applied to the classifier which types a property with a property-
specific type. This classifier can contain definitions of new or redefined features which extend the original classifier
referenced by the property-specific type.

Classifiers with the PropertySpecificType stereotype are owned by the block which owns the property which has the
property-specific type. A classifier with this stereotype must specialize at most a single classifier which was referenced as
the starting classifier of the property-specific type. If there is no starting classifier (which occurs if no existing name is
specified as the starting type of a property-specific type), then a classifier with the stereotype applied has no
specialization relationship from any other classifier.

Constraints

[1] A classifier to which the PropertySpecificType stereotype is applied must be referenced as the type of one and only one
property.

[2] Thename of aclassifier to which a PropertySpecificTypeis applied must be missing. (The “name” attribute of the
NamedElement metaclass must be empty.)

8.3.2.9 Unit

A Unit is a quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated. A
unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may
be specified as a multiple of a particular wavelength of light. A unit may also specify less stable or precise ways to
express some value, such as a cost expressed in some currency, or a severity rating measured by a numerical scale.

Unit is defined as a stereotype of InstanceSpecification, but it uses this metaclass only to define supporting elements for
ValueType definitions. (The reuse of InstanceSpecification to define another metaclass is similar to the
EnumerationLiteral metaclass in UML.)

The only valid use of a Unit instance is to be referenced by the “unit” property of a ValueType stereotype.
8.3.2.10 ValueType

Description

A ValueType defines types of values that may be used to express information about a system, but cannot be identified as
the target of any reference. Since a value cannot be identified except by means of the value itself, each such value within
amodel is independent of any other, unless other forms of constraints are imposed.

OMG SysML™ | version 1.1 49

Value types may be used to type properties, operation parameters, or potentially other elements within SysML. SysML

defines ValueType as a stereotype of UML DataType to establish a more neutral term for system values that may never be
given a concrete data representation. For example, the SysML “Real” ValueType expresses the mathematical concept of a
real number, but does not impose any restrictions on the precision or scale of afixed or floating-point representation that
expresses this concept. More specific value types can define the concrete data representations that a digital computer can

process, such as conventional Float, Integer, or String types.

SysML ValueType adds an ability to carry a unit of measure or dimension associated with the value. A dimension is a
kind of quantity that may be stated in terms of defined units, but does not restrict the selection of a unit to state the value.
A unit is a particular value in terms of which a quantity of the same dimension may be expressed.

A SysML ValueType may define its own properties and/or operations, just as for a UML DataType. See Section 8.3.2.2

Block for property classifications that SysML defines for either a Block or ValueType.

If none of the additional characteristics of a SysML ValueType are required, then UML DataType may be used.

Attributes

¢ dimension: Dimension [0..1]
A kind of quantity that may be stated by means of defined units, asidentified by an instance of the Dimension
stereotype. A value type may optionally specify a dimension without any unit. Such a value has no concrete
representation, but may be used to express avalue in an abstract form independent of any specific units.

e unit: Unit [0..1]

A quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated, as

identified by an instance of the Unit stereotype.

Constraints

[1] If avalueis present for the unit attribute, the dimension attribute must be equal to the dimension property of the refer-

enced unit.

[2] Any classifier which specializes a ValueType must also have the ValueType stereotype applied..

8.3.3 Model Libraries

Package Blocks

bdd [modelLibrary] Blocks /

«valueType»
Real

«valueType»
Complex

realPart: Real
imaginaryPart: Real

Figure 8.7 - Model Library for Blocks

50

OMG SysML™ | Version 1.1

8.3.3.1 Complex

Description

A Complex value type represents the mathematical concept of a complex number. A complex number consists of a real
part defined by areal number, and an imaginary part defined by a real number multiplied by the square root of -1.
Complex numbers are used to express solutions to various forms of mathematical equations.

Attributes

* realPart: Real A real number used to expressthereal part of acomplex number.

e imaginaryPart: Real A real number used to express the imaginary part of a complex number.
8.3.3.2 Real

A Real value type represents the mathematical concept of areal number. A Real value type may be used to type values
that hold continuous quantities, without committing a specific representation such as a floating point data type with
restrictions on precision and scale.

8.4 Usage Examples

8.4.1 Wheel Hub Assembly

In Figure 8.8 a block definition diagram shows the blocks that comprise elements of a Wheel. The block property
LugBoltJoint.torque has a specialization of DistributedProperty applied to describe the uniform distribution of its values.
Examples of such distributions can be found in Section C.5.

OMG SysML™ | version 1.1 51

bdd WbeeIPackagy

WheelHubAssembly
Tire
t i 0.1 bead
’ 01) operations .- TireBead
1 mountTire() ® 2E
lues
WheelAssembly v
Wheel . g . . .
‘o - tireSpecification:String 1
1 values - PressureSeat
inflationPressure:psi 1
Wheel .
values > > TireMountingRim
1 |diametermm
width:mm
1
V -
BandMount InflationValve
1
WirelessTire iaht
PressureMonitor weig BalanceWeight
0.6
operations
transmitPressure()
mountingHole LugBolt
5 MountingHole
values
lugBoltSize:mm
1 '| mountingHole
5 |, lugBoltJoint 0.1
LugBolt .
LugBoltJoint
hub ThreadedHole threadedHole
Hub @ — values values
1 lugBoltSize:mm 1 0.1 «uniform»{min=75,max=85}torque:ft-lb

threadSize:mm

boltTension:lb

Figure 8.8 - Block diagram for the Wheel Package

52

OMG SysML™ | Version 1.1

ibd WheelHubAssembly)

hub: Hub

h:
LugBoltThreade

dHole

wheel: WheelAssembly
w: Wheel t: Tire
2 .
mountingHoles: rim: T.begd.d
LugBoltMountingHole TireMountingRim irebea

1 | threadedHole

1 | mountingHole

: PressureSeat

0.1

lugBoltJoints:
LugBoltJoint

0.5

0.1

Figure 8.9 - Internal Block Diagram for WheelHubAssembly

In Figure 8.9 an internal block diagram (ibd) shows how the blocks defined in the Wheel package are used. Thisibd is a
partial view that focuses on particular parts of interest and omits others from the diagram, such as the “v” InflationValve
and “weight” BalanceWeight, which are also parts of a Whedl.

8.4.2 Sl Value Types

In Figure 8.10, several value types using Sl units and dimensions are defined to be generally available in the SI Value

Types package for typing value properties. Because a unit already identifies the type of quantity, or dimension, that the

unit measures, a value type only needs to identify the unit to identify the dimension as well. The value types in this
example refer to units that are assumed to be defined in an imported package, such as the SI Definitions model library

defined in Section C.4.

bdd [package] Sl Value Types)

S kg m N
«valueType» «valueType» «valueType» «valueType»
unit=Second unit=Kilogram unit=Meter unit=New ton

Figure 8.10 - Defining Value Types with units and dimensions

OMG SysML™ | version 1.1

53

8.4.3 Design Configuration for SUV EPA Fuel Economy Test

SysML internal block diagrams may be used to specify blocks with unique identification and property values. Figure 8.11
shows an example used to specify a unique vehicle with a vehicle identification number (VIN) and unique properties such
as its weight, color, and horsepower. This concept is distinct from the UML concept of instance specifications in that it
does not imply or assume any run-time semantic, and can also be applied to specify design configurations.

In SysML, one approach is to capture system configurations by creating a context for a configuration in the form of a
context block. The context block may capture a unique identity for the configuration, and utilizes parts and initial value
compartments to express property design values within the specification of a particular system configuration. Such a
context block may contain a set of parts that represent the block instances in this system configuration, each containing
specific values for each property. This technique also provides for configurations that reflect hierarchical system
structures, where nested parts or other properties are assigned design values using initial value compartments. The
following example illustrates the approach.

54 OMG SysML™ | Version 1.1

ibd [block] SUV_EPA_Fuel_Economy_Test [Test Results])

Satisfies
«requirment» Emissions

Verifies
«requirement» Emissions

«testCase»
testRun060401:
EPAFuelEconomyTest

TestVehiclel: HybridSUV

initialValues
sn: ID =sn89012

initialValues

sn: ID =sn90123

b: BodySubsystem b-i: i: Interior

initialValues initialValues
sn: ID = b12345 sn: ID =i23456
b-c:
c: ChassisSubsystem c-bk: bk: BrakeSubsystem bkl I: LightingSubsystem
initialValues initialValues initialValues
sn: ID = ¢34567 sn: ID = bk45678 sn: ID = 1t56789
c-p: bk-p:
p: PowerSubsystem
t: Transmission)
em-t: ice-t:
em: ElectricalMotor ice: Internal

CombustionEngine

initialValues

sh: ID = eid78901

sn: ID = p67890

initialValues

VIN = G12345

initialValues

Figure 8.11 - SUV EPA Fuel Economy Test

OMG SysML™ | version 1.1

55

8.4.4 Water Delivery

Figure 8.12 shows an association block Water Delivery between a bank of spigots and a faucet. Figure 8.13 shows the
internal structure of Water Delivery defining connectors between the spigots in the bank and inlets on the faucet. The
participant properties identify the spigot bank and faucet being connected. The end property on the stereotype refers to the
corresponding association end in Figure 8.12. The type of participant properties is shown for clarity, but is always the
same as the association end type and can be elided. They are shown with dashed rectangles because they are reference

properties. The internal structure connects hot and cold properties of the participants.

bdd Water Supply and Clieny

Water Water
Supply Client
Water
Delivery
sbhank| 1 ‘ faucet| 1
Spigot suppliedBy f deliveredTo
: Faucet
Bank 1 1
hot{1 1| cold hot|{ 1 1|cold
Spigot from 10 | Faucet
Pig 1 1 Inlet
Figure 8.12 Water Delivery association block
ibd Water Delivery)
«participant» from to ‘ «participant»

{end=suppliedBy} hot
! suppliedByInLInk: [cold

i SpigotBank

from

Faucet

hot {end=deliveredTo}
cold | deliveredTolnLink:

Figure 8.13 - Internal structure of Water Delivery association block

Figure 8.14 shows two views of a block House with a connector of type Water Delivery. The connector in the top view
“decomposes’ into the subconnectors in the lower view according to the internal structure of Water Delivery. The
subconnectors relate the nested properties of :WaterSupply to the nested properties of :WaterClient.

56

OMG SysML™ | Version 1.1

ibd House)

waterDelivery
: WaterSupply [sbank p— FET—— faucet| : \waterClient
ibd House)
sbank faucet

from to

- WaterSupply hot hot - WaterClient
cold cold
from to

Figure 8.14 - Two views of Water Delivery connector within House block

The top portion of Figure 8.15 shows specializations of the block WaterClient into Bath, Sink, and Shower. These are

used as part types in the internal structure of the block House 2 shown in the lower portion of the figure. The composite
connector for Water Delivery is reused three times to establish connections between spigots on the water supply and the

inlets of faucets on the bath, sink, and shower.

OMG SysML™ | version 1.1

57

bdd Water Client

/

Water
Client

Bath

‘ Sink ‘ ‘ Shower

ibd House 2)

waterDelivery

: WaterSupply [sbank |

waterDelivery

waterDelivery

faucet| : Bath
faucet] : Sink
faucet] : Shower

Figure 8.15 - Specializations of Water Client in house example

Figure 8.16 modifies Figure 8.12 to add a Plumbing association block for the association between Spigot and Faucet Inlet.
Figure 8.17 shows the internal structure for the Plumbing association block, which includes a pipe and two fittings (the

additional part and connector definitions are omitted for brevity).

bdd Water Supply and Clieny

Water Water
Supply Client
Water
Delivery
sbank| 1 faucet| 1

. suppliedB | i
Spigot pp y | deliveredTo Faucet
Bank 1 1.

Plumbing
hot |1 1|cold hot| 1 1| cold

) from 10| Faucet

Spigot
1 1 Inlet

Figure 8.16 - Plumbing association block

58

OMG SysML™ | Version 1.1

ibd Plumbing /

§ «participant» «participant»
i {end=from} e o e {end=to}
| frominLink: ——— sf: Fitting pp: Pipe ff: Fitting —— tolnLink:
| Spigot Faucetinlet

Figure 8.17 - Internal structure of Plumbing association block

Figure 8.18 modifies Figure 8.13 to use Plumbing as a connector type within the Water Delivery association block. The

lower connector shows its connector property explicitly, enabling the pipe it contains to be connected to a mounting
bracket (the additional part and connector definitions are omitted for brevity).

ibd Water Delivery)

«participant» pl: Plumbing «participant»
{end=suppliedBy} hot o1 _hot {end=deliveredTo}
suppliedByInLInk: cold - cold | deliveredTolnLink: |
SpigotBank rom © Faucet 3
p2: Plumbing
m: Mounting
IE Bracket

Figure 8.18 - Water Delivery association block with internal Plumbing connector

OMG SysML™ | Version 1.1

59

60

OMG SysML™ | Version 1.1

9 Ports and Flows

9.1 Overview

This chapter specifies flow ports that enable flow of items between blocks and parts, as well as standard ports that enable
invocation of services on blocks and parts. A port is an interaction point between a block or part and its environment that
is connected with other ports via connectors. The main mativation for specifying such ports on system elementsis to
allow the design of modular reusable blocks, with clearly defined interfaces. (Note: the block owns its ports and therefore
the port is part of the blocks definition.) This chapter also specifies item flows across connectors and associations.

9.1.1 Standard Ports

A standard port specifies the services the owning block provides (offers) to its environment as well as the services that the
owning block expects (requires) of its environment. The specification of the services is achieved by typing the standard
port by the provided and/or required interfaces. In general standard ports are used in the context of service-oriented
components and/or architectures, either when specifying software components or applying a service-based approach to
system specification. Standard ports typically contain operations which specify bidirectional flow of data, so they are
typically used in the context of peer-to-peer synchronous request/reply communications. A special case of a serviceis
signal reception, which signifies a one-way communication of signal instances, where the handling of the request is
asynchronous.

A block can call operations and\or send signals through its behavioral ports that have required interfaces. A block must
implement all the operations specified in its behavioral ports provided interfaces. Also, a block must react to all the
signals specified in its behavioral ports provided interfaces. Non-behavioral ports delegate operations and signals to/from
their internal parts over internal connectors between the non-behavioral ports and the internal parts.

For example, a block representing an automatic transmission in a car could have a standard port that specifies that the
Transmission block can accept commands to switch gears. Standard ports are another name for UML 2 ports; they are
defined by the same metaclass and use the same notations.

9.1.2 Flow Ports

A flow port specifies the input and output items that may flow between a block and its environment. Flow ports are
interaction points through which data, material, or energy can enter or leave the owning block. The specification of what
can flow is achieved by typing the flow port with a specification of things that flow. This can include typing an atomic
flow port with a single type representing the items that flow in or out, or typing a nonatomic flow port with a flow
specification which lists multiple items that flow. A block representing an automatic transmission in a car could have an
atomic flow port that specifies “ Torque” as an input and another atomic flow port that specifies “Torque” as an output. A
more complex flow port could specify a set of signals and/or properties that flow in and out of the flow port. In general,
flow ports are intended to be used for asynchronous, broadcast, or send-and-forget interactions. Flow ports extend UML
2 ports.

9.1.3 Item Flows

Item flows represent the things that flow between blocks and/or parts and across associations or connectors. Whereas

flow ports specify what “can” flow in or out of a block, item flows specify what “does’ flow between blocks and/or parts
in a particular usage context. This important distinction enables blocks to be interconnected in different ways depending
on its usage context. For example, a tank may include a flow port that can accept fluid as an input. In a particular use of

OMG SysML™ | Version 1.1 61

the tank, “gasoline” flows across a connector into its flow port, and in another use of the tank, “water” flows across a

connector into its flow port. The item flow would specify what “does” flow on the connector in the particular usage (e.g.,
gas, water) and the flow port specifies what can flow (e.g., fluid). This enables type matching between the item flows and
between flow ports to assist in interface compatibility analysis.

Item flows may be allocated from object nodes in activity diagrams or signals sent from state machines across a
connector. Flow allocation is described in Chapter 15, “Allocations,” and can be used to help ensure consistency across
the different parts of the model.

9.2 Diagram Elements

9.2.1 Extensions to Block Definition Diagram

Table 9.1 - Extensions to Block Definition Diagram

(Compartment Notation)

Transmission

standard ports

pl: MransCmd

Node Name Concrete Syntax Abstract Syntax Reference
SandardPort UML4SysML::Port
TransCmd
Transmission
[TransData
SandardPort UML4SysML::Port

FlowPort

p: [Transmission
$ Transmission

Flow Port

Transmission

p: [Trans mission+

Conjugated Flow Port

netw orkType: ElectricNetw orkType

ac: ACVoltage dc: DCVoltage
Transformer

Atomic Flow Ports

SysML ::Ports& Flows::FlowPort

62

OMG SysML™ | Version 1.1

Node Name

Concrete Syntax

Abstract Syntax Reference

FlowPort
(Compartment Notation)

Transmission

flow ports

p: [Transmission

Flow Port

Transmission

p:

flow ports

[Transmission {conjugated}

Conjugated Flow Port

Transmission

out dc:

flow ports

in ac: ACVoltage

DCVoltage

inout netw orkType: ElectricNetw orkType

Atomic Flow Ports

SysML::Ports& Flows::FlowPort

Interface

«interface»

ISpeedObserver

notify SpeedChange(): void

UML4SysML::Interfaces::
Interface

FlowSpecification

«flow Specification»
Name

flowProperties
in gearSelect: Gear
in engineTorque: Torque
out w heelsTorque: Torque

SysML::Ports& Flows::
FlowSpecification

ItemFlow

<blockos itsEnginek
; >
Engine 1 Torque

«block»
Transmission

SysML::Ports& Flows::ItemFlow

OMG SysML™ | Version 1.1

63

9.2.1.1 Extensions to Internal Block Diagram

Table 9.2 - Extension to Internal Block Diagram

Node Name Concrete Syntax Abstract Syntax Reference
SandardPort UMLA4SysML ::Port
TransCmd
pl
t: Transmission
[TransData
FlowPort SysML ::Ports& Flows:: FlowPort
p: [Mransmission
$ t: Transmission
Flow Port
p: [Transmission
t: Transmission
Conjugated Flow Port
netw orkType: ElectricNetw orkType
ac: ACVoltage 3 dc: DCVoltage
$ tr: Transformer $
Atomic Flow Ports
64 OMG SysML™ | Version 1.1

Table 9.2 - Extension to Internal Block Diagram

Node Name Concrete Syntax Abstract Syntax Reference
[temFlow SysML::Ports& Flows::ItemFlow

eng: Engine

p:Torque

Torque
p:Torque

=

trns: Transmission

ltemFlow

eng: Engine
1

p:Torque

torque:Torque
p:Torque

trns: Transmission

Item Flow with an ltem Property

9.3 UML Extensions

9.3.1 Diagram Extensions

9.3.1.1 FlowPort

A FlowPorts is an interaction point through which input and/or output of items such as data, material, or energy may flow.
The notation of flow port is a square on the boundary of the owning block or its usage. The label of the flow port isin the
format portName: portType. Atomic flow ports have an arrow inside them indicating the direction of the port with respect
to the owning Block. A nonatomic flow port has two open arrow heads facing away from each other (i.e., < >). The fill
color of the square is white and the line and text colors are black, unless the flow port is conjugated, in which case the fill
color of the sguare is black and the text is in white.

In addition, flow ports can be listed in a specia compartment labeled “flow ports.” The format of each lineis:

in | out | inout portName:portType [{ conjugated}]
9.3.1.2 FlowProperty

A FlowProperty signifies asingle flow element to/from a block. A flow property has the same notation as a Property only
with a direction prefix (in | out | inout). Flow properties are listed in a compartment labeled “flowProperties.”

OMG SysML™ | Version 1.1 65

9.3.1.3 FlowSpecification

A FlowSpecification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compartment that
lists the flow properties.

9.3.1.4 ItemFlow

An ItemFlow describes the flow of items across a connector or an association. The notation of an item flow is a black
arrowhead on the connector or association. The arrowhead is towards the target element. For an item flow with an item
property, the label shows the name and type of the item property (in name: type format). Otherwise the item flow is
labeled with the name of the conveyed classifier.

9.3.1.5 StandardPort

Standard ports semantics are the same as UML 2 ports semantics. A hame change has been introduced to emphasize the
distinction between this kind of port (that supports service-based interactions) and the flow ports (that support flow-
oriented interactions).

Standard ports use a similar notation to UML 2 ports: a square symbol identifies the port on the block. The name of the
port is placed near the square symbol. A “lollipop” identifies a provided interface. A “socket” identifies a required
interface.

An alternate compartment notation can be used to show the ports owned by a block, without using the square symbol
notation. The compartment is labeled “standard ports.” The ports are shown as features owned by the block.

9.3.2 Stereotypes

Package Ports&Flows

«metaclass» «metaclass»
UMLA4SysML::Property UML4SysML ::Interface
«metaclass» «stereotype»
. FlowPropert «stereotype»
UMLASysML::Port perty FlowSpecification

direction: FlowDirection

«stereotype» «enumeration»
FlowPort FlowDirection
/isAtomic: Boolean in
direction: FlowDirection out
isConjugated: Boolean [0..1] inout

Figure 9.1 - Port Stereotypes

66 OMG SysML™ | Version 1.1

The UML metaclasses are shown for completeness.

«metaclass» conveyed
UML4SysML:Classifier 1% source | 1.*
* *
* | represented «metaclass» «metaclass»
UML4SysML:InformationFlow UM L4SysML::NamedElement
representation | * * 1.7 | target
«metaclass»
UML4SysML:Informationltem
«stereotype»
Item Flow

itemProperty: Property [0..1]

Figure 9.2 - temFlow Stereotype
9.3.2.1 Block

Description

Blocks may own standard ports and/or flow ports. See Chapter 8, “Blocks” for further details of blocks.
9.3.2.2 FlowDirection

Description

FlowDirection is an enumeration type that defines literals used for specifying input and output directions. FlowDirection
is used by flow properties to indicate if a property is an input or an output with respect to its owner.

Literal Values are

e in: Indicates that the flow property isinput to the owning block.
e out: Indicates that the flow property is an output of the owning block.
e inout: Indicates that the flow property is both an input and an output of the owning block.

9.3.2.3 FlowPort

Description

A FlowPort is an interaction point through which input and/or output of items such as data, material, or energy may flow.
This enables the owning block to declare which items it may exchange with its environment and the interaction points
through which the exchange is made.

OMG SysML™ | Version 1.1 67

We distinguish between atomic flow port and a nonatomic flow port. Atomic flow ports relay items that are classified by
asingle Block, ValueType, DataType, or Signal classifier. A nonatomic flow port relays items of several types as specified
by a FlowSpecification.

The distinction between atomic and nonatomic flow ports is made according to the flow port’s type: If aflow port is typed
by aflow specification, then it is nonatomic; if a flow port is typed by a Block, ValueType, DataType or Signal classifier,
then it is atomic.

Flow ports and associated flow specifications define “what can flow” between the block and its environment, whereas
item flows specify “what does flow” in a specific usage context.

Flow ports relay items to their owning block or to a connector that connects them with their owner’s internal parts
(internal connector).

The isBehavior attribute inherited from UML port isinterpreted in the following way: if isBehavior is set to true, then the
items are relayed to/from the owning block. More specifically, every flow property within the flow port is bound to a
property owned by the port's owning block or to a parameter of its behavior. If isBehavior is set to false, then the flow
port must be connected to an internal connector which in turn related the items via the port. The need for isBehavior is
mainly to allow specification of internal parts relaying items to their containing part via flow ports.

In case of flow properties or atomic flow ports of type Signal, inbound properties or atomic flow port are mapped to a
Reception of the signal type (or a subtype) of the flow property's type. Outbound flow properties only declare the ability
of the flow port to relay the signal over external connectors attached to it and are not mapped to a property of the flow
port’s owning block.

The item flows specified as flowing on a connector between flow ports must match the flow properties of the ports at
each end of the connector: the source of the item flow should be the port that has an outbound/bidirectional flow property
that matches the item flow’s type and the target of the item flow should be the port that has an inbound/bidirectiona flow
property that matches the type of the item flow.

If aflow port is connected to multiple external and/or internal connectors, then the items are propagated (broadcast) over
all connectors that have matching properties at the other end.

Semantic Variation Points

The binding of the flow properties on the ports to behavior parameters and/or block properties is a semantic variation
point. One approach is to perform name and type matching. Another approach is to explicitly use binding relationships
between the ports properties and behavior parameters or block properties.

Attributes

« /isAtomic : Boolean (derived)

Thisisaderived attribute (derived from the flow port’stype). For aflow port typed by aflow specification the value of
this attribute is False, otherwise the value is True.

« direction : FlowDirection

Indicates the direction in which an atomic flow port relaysitsitems. If the direction is set to “in,” then the items are
relayed from an external connector viathe flow port into the flow port’s owner (or one of its parts). If the direction is
set to “out,” then the items are relayed from the flow port’s owner, via the flow port, through an external connector
attached to the flow port. If the direction is set to “inout,” then items can flow both ways. By default, the valueis
inout.

68 OMG SysML™ | Version 1.1

¢ isConjugated : Boolean [0..1]

Indicatesif the flow of items of a nonatomic flow port maintain the directions specified in the flow specification or if
the direction of every flow property specified in the flow specification isreversed (IN becomes OUT and vice versa).
If set to True, then all the directions of the flow properties specified by the flow specification that types a nonatomic
flow port are relayed in the opposite direction (i.e., an “in” flow property istreated as an “out” flow property by the
flow port and vice-versa). By default, the value is False. This attribute applies only to nonatomic flow ports since
atomic flow ports have a direction attribute signifying the direction of the flow.

Constraints

[1] A FHowPort must be typed by a FlowSpecification, Block, Signal, DataType, or ValueType.

[2] If the FlowPort isatomic (by its type), then isAtomic=True, the direction must be specified (has avalue), and
isConjugated is not specified (has no value).

[3] If the FlowPort is nonatomic, and the FlowSpecification typing the port has flow properties with direction “in,” the
FlowPort directionis“in” (or “out” if isConjugated=true). If the flow properties are all out, the FlowPort direction is out
(or inif isConjugated=true). If flow properties are both in and out, the direction isinout.

[4] A FlowPort can be connected (viaconnectors) to one or more flow ports that have matching flow properties. The matching
of flow propertiesis done in the following steps:

1. Type Matching: The type being sent is the same type or a subtype of the type being received.

2. Direction Matching: If the connector connects two parts that are external to one another, then the direction of the
flow properties must be opposite, or at least one of the ends should be inout. If the connector is internal to the
owner of one of the flow ports, then the direction should be the same or at |least one of the ends should be inout.

3. Name Matching: In case there is type and direction match to several flow properties at the other end, the property
that has the same name at the other end is selected. If there is no such property, then the connection is ambiguous
(ill-formed)

[5] If aflow portisnot connected to an internal part, then isBehavior should be set to true.
9.3.2.4 FlowProperty

Description

A FlowProperty signifies asingle flow element that can flow to/from ablock. A flow property’s values are either received
from or transmitted to an external block. Flow properties are defined directly on blocks or flow specifications that are
those specifications which type the flow ports.

Flow properties enable item flows across connectors connecting parts of the corresponding block types, either directly (in
case of the property is defined on the block) or via flowPorts. For Block, Data Type, and Value Type properties, setting
an “out” FlowProperty value of a block usage on one end of a connector will result in assigning the same value of an “in”
FlowProperty of a block usage at the other end of the connector, provided the flow properties are matched. Flow
properties of type Signal imply sending and/or receiving of a signal usage. An “out” FlowProperty of type Sighal means
that the owning Block may broadcast the signal via connectors and an “in” FlowProperty means that the owning block is
able to receive the Signal.

Attributes

* direction : FlowDirection

OMG SysML™ | Version 1.1 69

Specifiesif the property value is received from an external block (direction="in"), transmitted to an external Block
(direction="out™) or both (direction="inout™).

Constraints

[1] A FHowProperty istyped by a ValueType, DataType, Block, or Signal.

[2] An“in" FlowProperty value cannot be modified by its owning block.

9.3.2.5 FlowSpecification

Description

A FlowSpecification specifies inputs and outputs as a set of flow properties. A flow specification is used by flow ports to
specify what items can flow via the port.

Constraints

[1] Flow specifications cannot own operations or receptions (they can only own FlowProperties)

[2] Every “ownedAttribute” of a FlowSpecification must be a FlowProperty
9.3.2.6 ItemFlow

Description

An ItemFlow describes the flow of items across a connector or an association. It may constrain the item exchange
between blocks, block usages, or flow ports as specified by their flow properties. For example, a pump connected to a
tank: the pump has an “out” flow property of type Liquid and the tank has an “in” FlowProperty of type Liquid. To
signify that only water flows between the pump and the tank, we can specify an ItemFlow of type Water on the connector.

One can label an ItemFlow with the classifiers that may be conveyed. For example: alabel Water would imply that usages
of Water might be transmitted over this ItemFlow. In addition, if there is an item property (corresponds to the conveyed
classifier), then one can label the item flow with the item property. For example, a label of “liquid: Water” would imply
that the item flow relays Water and this relay is associated with an item property “liquid” of the item flow, i.e., the
“liquid” item property is set once Water is relayed.
Attributes
e itemProperty: Property [0..1]
An optional property that relates the flowing item to the instances of the connector’s enclosing block. This property is
applicable only for item flows assigned to connectors. The multiplicity is zero if the item flow is assigned to an
Association.
Constraints

[1] A Connector or an Association, or an inherited Association must exist between the source and the target of the
I nformationFlow.

[2] AnltemFlow itemProperty istyped by aBlock or by a ValueType.

[3] ItemProperty isa property of the block owning the source and the target.

[4] Thetype of itemProperty should be the same or a subtype of the conveyedClassifier.

[5] Item property cannot have avalue if there is only an association between the source and the target of the | nformati onFlow.

70 OMG SysML™ | Version 1.1

9.4 Usage Examples

9.4.1 Standard Ports

Figure 9.3 is a fragment of the ibd:PwrSys diagram used in the HybridSUV sample (Annex B). The
ecu:PowerControlUnit part has three standard ports, each connected to a standard port of another part. Each of the
standard ports in this example has one provided and one required interface that specify the messages that can be sent via
the ports. For example, the |_ICECmds interface specifies the operations setMixture and setThrottle (Figure 9.4). This
interface is provided by the ctrl port of Internal CombustionEngine and is required by the ice port of PowerControlUnit.
Since the ecu:PowerControlUnit part and ice:lnternal CombustionEngine part are connected via these ports, the
ecu:PowerControlUnit part may send the messages setThrottle and setMixture to the ice:Internal CombustionEngine part
from its ice port, across the connector to the ctrl port of ice:Internal CombustionEngine. By sending these messages, the
PowerControlUnit can set the throttle and mixture of the Internal CombustionEngine. Inversely, the

Internal CombustionEngine can report (notify) changes in its temperature, RPM and knockSensor by having the
|_ICEData (Figure 9.4) as required interface on its ctrl port and connecting this port to the ice port of the
PowerControlUnit where this interface is provided.

ibd [block] PowerSubsystem [Standard Ports Exampley

epc:ElectricalPower
Controller
ctrl

|_IEPCData |I_IEPCCmd

I|_TRSMCmd
c3: ctrl
trsm:Transmission
|_TRSMData
|_EPCCmd |_IEPCData
c2:
L] |_TRSMData
epc trsm
ecu:PowerControlUnit
ice
(] |_TRSMCmd
|_ICECmds| |_ICEData | ICEData

cl: v& ctrl
O/L] ice:InternalCombustionEngine

|_ICECmds

Figure 9.3 - Usage example of standard ports

OMG SysML™ | Version 1.1 71

bdd [block] Pow erSubsystem [ICE Interface Definitions])

«interface»
|_ICEData

getRPM():Integer
getTemperature():Real
isKnockSensor():Boolean

«interface»
I_ICECmds

setThrottle(throttlePosition:Real):void
setMixture(mixture:Real):void

Figure 9.4 - Interfaces “ctrl” standard port of InternalCombustionEngine

9.4.2 Atomic Flow Ports and Item Flows

Figure 9.5 istaken from the HybridSUV example in Annex B. Here we see how Fuel may flow between the Fuel TankAssy
and the Internal CombustionEngine. The Fuel Pump gjects Fuel via pl port of Fuel TankAssy, the Fuel flows across the

fuel SupplyLine connector to the fuel FittingPort of Internal CombustionEngine and from there it is distributed via other atomic
flow ports of type Fuel to internal parts of the engine. Some of the fuel isreturned to the Fuel TankAssy from the fuel Fitting
port across the fuel ReturnLine connector. Note that it is possible to connect a single flow port to multiple connectors: in this
example the direction of the flow viathe fuelFitting port on the external connectorsisimplied by the direction of the flow
ports on the other side of the fuel lines as well as by the directions of the item flows on the fuel lines. The direction of the flow
on theinternal connectorsisimplied by the direction of the atomic flow ports of the engine’ sinternal parts.

Figure 9.5 also shows the usage of ItemFlow, here each of the item flows has an item property (fuel Supply:Fuel and
fuel Return:Fuel) that signify the actual flow of fuel across the fuel lines.

72 OMG SysML™ | Version 1.1

ibd [block] PowerSubsystem [Fuel Distribution Detail])

ice:InternalCombustionEngine

Jj fil:Fuellnjector

fi2:Fuellnjector

fi3:Fuellnjector

\
\
\
— i — 8 —&

allocatedFrom -7
«connector»fdist:

fid:Fuellnjector

fre:FuelRegulator

allocatedFrom
«connector»fuelDelivery:
NN
N \\ ~ ~

N O G 9
ANEA N fuelFitting: Fuel

ft:FuelTankAssy AN

plL: Fuel\ > ~~._fuelSupplyLine:

Fuel fp:FuelPump Jj =
TI fuelSupply: FueL fueIReturnLlne4

‘ TPZ-FW fuelReturn:Fuel

Figure 9.5 - Usage of atomic flow ports in the HybridSUV Sample - ibd:FuelDist diagram

9.4.3 Non-Atomic Flow Ports and Flow Specification

Figure 9.6 taken from “ Sample Problem” shows a way to connect the PowerControlUnit to other parts over a CAN bus.
Since connections over buses are characterized by broadcast asynchronous communications, flow ports are used to
connect the parts to the CAN bus. To specify the flow between the flow ports, we need to specify flow specifications as
donein Figure 9.7. Here the flow specification has three flow properties: an “out” flow property of type signal (ICEData)
and two “in” flow properties of type float. This allows the Internal CombustionEngine to transmit an ICEData signal via
its fp flow port which will be transmitted over the CAN bus to the ice port of PowerControlUnit (a conjugated flow port
typed by the FS_ICE flow specification). This single signal carries the temperature, rpm, and knockSensor information of
the engine. In addition, the PowerControlUnit can set the mixture and throttle of the Internal CombustionEngine via the
mixture and throttlePosition flow properties of the FS_|ICE flow specification.

OMG SysML™ | Version 1.1 73

ibd [block] PowerSubsystem [CAN Bus description]/

epc:ElectricalPower

trsm:Transmission ice:InternalCombustionEngine
Controller
Al A 7l
fp:FS_EPC fp:FS_TRSM fp:FS_ICE
:CAN_Bus
epc:IFS_EPC etrsm:IFS_TRSM ice!IES ICE
& =

ecu:PowerControlUnit

Figure 9.6 - Using flow ports to connect the PowerControlUnit to the ElectricalPowerController, Transmission, and
InternalCombustionEngine over a CAN bus

bdd CAN Bus Flow Specifications)

«flow Specification» «signal»
FS_ICE ICEData
flowProperties rpm: Integer
out engineData: ICEData temperature: Real
in mixture: Real knockSensor: Boolean
in throttlePosition: Real

Figure 9.7 - Flow specification for the InternalCombustionEngine flow port to allow its
connection over the CAN bus

74 OMG SysML™ | Version 1.1

10 Constraint Blocks

10.1 Overview

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability models
with other SysML models. Constraint blocks can be used to specify a network of constraints that represent mathematical
expressions such as { F=m*a} and {a=dv/dt}, which constrain the physical properties of a system. Such constraints can
also be used to identify critical performance parameters and their relationships to other parameters, which can be tracked
throughout the system life cycle.

A constraint block includes the constraint, such as { F=m*a}, and the parameters of the constraint such as F, m, and a.
Constraint blocks define generic forms of constraints that can be used in multiple contexts. For example, a definition for
Newton's Laws may be used to specify these constraints in many different contexts. Reusable constraint definitions may
be specified on block definition diagrams and packaged into general-purpose or domain-specific model libraries. Such
constraints can be arbitrarily complex mathematical or logical expressions. The constraints can be nested to enable a
constraint to be defined in terms of more basic constraints such as primitive mathematical operators.

Parametric diagrams include usages of constraint blocks to constrain the properties of another block. The usage of a
constraint binds the parameters of the constraint, such as F, m, and a, to specific properties of ablock, such as a mass, that
provide values for the parameters. The constrained properties, such as mass or response time, typicaly have simple value
types that may also carry units, dimensions, and probability distributions. A pathname dot notation can be used to refer to
nested properties within a block hierarchy. This allows a value property (such as an engine displacement) that may be
deeply nested within a containing hierarchy (such as vehicle, power system, engine) to be referenced at the outer
containing level (such as vehicle-level equations). The context for the usages of constraint blocks must also be specified
in a parametric diagram to maintain the proper namespace for the nested properties.

Time can be modeled as a property that other properties may be dependent on. A time reference can be established by a
local or global clock that produces a continuous or discrete time value property. Other values of time can be derived from
this clock, by introducing delays and/or skew into the value of time. Discrete values of time as well as calendar time can
be derived from this global time property. SysML includes the time model from UML, but other UML specifications offer
more specialized descriptions of time that may also apply to specific needs.

A state of the system can be specified in terms of the values of some of its properties. For example, when water
temperature is below 0 degrees Celsius, it may change from liquid to solid state. In this example, the change in state
results in a different set of constraint equations. This can be accommodated by specifying constraints that are conditioned
on the value of the state property.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective function to
compare alternative solutions. The objective function can constrain measures of effectiveness or merit and may include a
weighting of utility functions associated with various criteria used to evaluate the alternatives. These criteria, for example,
could be associated with system performance, cost, or desired physical characteristics. Properties bound to parameters of
the objective function may have probability distributions associated with them that are used to compute expected or
probabilistic measures of the system. The use of an objective function and measures of effectiveness in parametric
diagrams are included in Annex C: Non-normative Extensions.

SysML identifies and names constraint blocks, but does not specify a computer interpretable language for them. The
interpretation of a given constraint block (e.g., a mathematical relation between its parameter values) must be provided.
An expression may rely on other mathematical description languages both to capture the detailed specification of

OMG SysML™ | Version 1.1 75

mathematical or logical relations, and to provide a computational engine for these relations. In addition, the block
constraints are non-causal and do not specify the dependent or independent variables. The specific dependent and
independent variables are often defined by the initial conditions, and left to the computational engine.

A constraint block is defined by a keyword of «constraint» applied to a block definition. The properties of this block
define the parameters of the constraint. The usage of a constraint block is distinguished from other parts by a box having
rounded corners rather than the square corners of an ordinary part. A parametric diagram is a restricted form of internal
block diagram that shows only the use of constraint blocks along with the properties they constrain within a context.

10.2 Diagram Elements

10.2.1 Block Definition Diagram

The diagram elements described in this section are additions to the Block Definition Diagram described in Chapter 8,

“Blocks.”

Table 10.1 - Graphical nodes defined in Block Definition diagrams

Element Name

Concrete Syntax Example

M etamodel Reference

ConstraintBlock

«constraint»

ConstraintBlock1

{{L1} x

nested:

constraints

>y}
ConstraintBlock2

x: Real
y: Real

parameters

SysML::ConstraintBlocks::
ConstraintBlock

76

OMG SysML™ | Version 1.1

10.2.2 Parametric Diagram

The diagram elements described in this section are additions to the Internal Block Diagram described in Chapter 8,
“Blocks.” The Parametric Diagram includes all of the notations of an Internal Block Diagram, subject only to the
restrictions described in Section 10.3.1.2.

Table 10.2 - Graphical nodes defined in Parametric diagrams.

Element Name Concrete Syntax Example Metamodel Reference
ParametricDiagram SysML::Constraint-
par Blockl Blocks::ConstraintBlock
SysML ::Blocks::Block
length: Real

[—-

width: Real

X

C1: Constraintl

O—3”
ConstraintProperty SysML::ConstraintBlocks::
- N\ ConstraintPropert
|]x:Real pery
C1: Constraintl
y: Real
S)

«constraint»
Cl: Constraintl

|]x: Real
| 1y: Real

10.3 UML Extensions

10.3.1 Diagram Extensions

10.3.1.1 Block Definition Diagram

Constraint block definition

The «constraint» keyword on a block definition states that the block is a constraint block. An expression that specifies the
constraint may appear in the constraints compartment of the block definition, using either formal statements in some
language, or informal statements using text. This expression can include a formal reference to a language in braces as
indicated in Table 10.1. Parameters of the constraint may be shown in a compartment with the predefined compartment
|abel “parameters.”

OMG SysML™ | Version 1.1 77

Parameters compartment

Constraint blocks support a special form of compartment, with the label “parameters,” which may contain declarations for
some or all of its constraint parameters. Properties of a constraint block should be shown either in the constraints
compartment, for nested constraint properties, or within the parameters compartment.

10.3.1.2 Parametric Diagram

A parametric diagram is defined as a restricted form of internal block diagram. A parametric diagram may contain
constraint properties and their parameters, along with other properties from within the internal block context. All
properties that appear, other than the constraints themselves, must either be bound directly to a constraint parameter, or
contain a property that is bound to one (through any number of levels of containment).

Round-cornered rectangle notation for constraint property

A constraint property may be shown on a parametric diagram using a rectangle with rounded corners. This graphical
shape distinguishes a constraint property from all other properties and avoids the need to show an explicit «constraint»
keyword. Otherwise, this notation is equivalent to the standard form of an internal property with a «constraint» keyword
shown. Compartments and internal properties may be shown within the shape just as for other types of internal properties.

«constraint» keyword notation for constraint property

A constraint property may be shown on a parametric diagram using a standard form of internal property rectangle with the
«constraint» keyword preceding its name. Parameters are shown within a constraint property using the standard notations
for internal properties. The stereotype ConstraintProperty is applied to a constraint property, but only the shorthand
keyword «constraint» is used when shown on an internal property.

Small square box notation for an internal property

A value property may optionally be shown by a small square box, with the name and other specifications appearing in a
text string close to the square box. The text string for such a value property may include all the elements that could
ordinarily be used to declare the property in a compartment of a block, including an optional default value. The box may
optionally be shown with one edge flush with the boundary of a containing property. Placement of property boxes is
purely for notational convenience, for example to enable simpler connection from the outside, and has no semantic
significance. If a connector is drawn to aregion where an internal property box is shown flush with the boundary of a
containing property, the connector is always assumed to connect to the innermost property.

10.3.2 Stereotypes

Package ConstraintBlocks

«stereotype» «stereotype»
SysML::Blocks::Block UMLA4SysML::Property
«stereotype» «stereotype»

ConstraintBlock ConstraintProperty

Figure 10.1 Stereotypes defined in SysML ConstraintBlocks package

78 OMG SysML™ | Version 1.1

10.3.2.1 ConstraintBlock

Description

A constraint block is a block that packages the statement of a constraint so it may be applied in a reusable way to
constrain properties of other blocks. A constraint block typically defines one or more constraint parameters, which are
bound to properties of other blocks in a surrounding context where the constraint is used. Binding connectors, as defined
in Chapter 8: Blocks, are used to bind each parameter of the constraint block to a property in the surrounding context. All
properties of a constraint block are constraint parameters, with the exception of constraint properties that hold internally
nested usages of other constraint blocks.

Constraints

[1] A constraint block may not own any structural or behavioral elements beyond the properties that define its constraint
parameters, constraint properties that hold internal usages of constraint blocks, binding connectors between its internally
nested constraint parameters, constraint expressions that define an interpretation for the constraint block, and general-
purpose model management and crosscutting el ements.

[2] Any classifier which specializes a ConstraintBlock must also have the ConstraintBlock stereotype applied.
10.3.2.2 ConstraintProperty

Description

A constraint property is a property of any block that is typed by a constraint block. It holds a localized usage of the
constraint block. Binding connectors may be used to bind the parameters of this constraint block to other properties of the
block that contains the usage.

Constraints

[1] A property to which the ConstraintProperty stereotype is applied must be owned by a SysML Block.

[2] The ConstraintProperty stereotype must be applied to any property of a SysML Block that istyped by a ConstraintBlock.

10.4 Usage Examples

10.4.1 Definition of Constraint Blocks on a Block Definition Diagram

Constraint blocks can only be defined on a block definition diagram or a package diagram, where they must have the
«constraint» keyword shown. The strings in braces in the compartment labeled “ constraints’ are ordinary UML
constraints, using a special compartment to hold the constraint. This is shown in Figure 10.2. These particular constraints
are specified only in an informal language, but a more formal language such as OCL or MathML could also be used. The
compartment labeled “ parameters” shows the parameters of this constraint, which are bound on the parametric diagram.

OMG SysML™ | Version 1.1 79

bdd [package] HSUVAnalysis [Definition of Dynamics])

«constraint»
StraightLine
VehicleDynamics

parameters
whipowr: Horsepwr
Cd: Real
Cf: Real
tw: Weight
acc: Accel
vel: Vel
incline: Real

pwr

pos

vel

acc

«constraint»
PowerEquation

«constraint»
PositionEquation

«constraint»
VelocityEquation

«constraint»
AccelerationEquation

constraints

{tp = whipowr - (Cd*v) -

constraints

X(n+1) = x(n)+v*5280/3600*dt}

constraints

{v(n+1 = v(n)+a*32*3600/5280*dt}

constraints

{a = (550/32)"tp(hp) delta-ttw}

(Cf*tw*v)}
parameters parameters parameters parameters
whipowr: Horsepwr delta-t: Time delta-t: Time tw: Weight
Cd: Real v: Vel v: Vel delta-t: Time
Cf. Real x: Dist a: Accel tp: Horsepwr
tw. Weight a: Accel
tp: Horsepwr
v: Vel
i: Real

Figure 10.2 Definition of constraint blocks on a block definition diagram

10.4.2 Usage of Constraint Blocks on a Parametric Diagram

Figure 10.3 shows the use of constraint properties on a parametric diagram (note that thisis a subset of the corresponding
diagram in the sample problem). This diagram shows the use of nested property references to the properties of the parts;
parametric diagrams can make use of the nested property name notation to refer to multiple levels of nested property
containment, as shown in this example. A parametric diagram is similar to an internal block diagram with the exception
that the only connectors that may be shown are binding connectors connected to constraint parameters on at least one end.
The Sample Problem in Annex B provides definitions of the containing EconomyContext block for which this parametric
diagram is shown.

80 OMG SysML™ | Version 1.1

par [block] EconomyContext)

ad.HSUV.PayloadCapacity

pcap: volume:

delta-t

adrag:Aero
DragEquation
Cd

incline: rb:RegenBrake
EfficiencyEquation

pl:Payload Equation

ad.drivingConditions.
road.incline

1 I
psgrwt: cgowt:

cgoWt:

psgrwt:

Il

w:TotalWeight

Il

[E
dyn:StraightLine[
incline: VEhicleDynamiCSE

vdw:

ad.HSUV.VehicleDryWeight

fw:

ad.HSUV.PowerSubsystem.
FuelTank.FuelWeight

Cd: | dt:

acc:

ad.HSUV.Power Sybsystem.

[1 11 [

InternalCombustionEngine.
|CEEfficiency
ebpwr:
ebpwr: n_ice:
acc: acc: 5] 7 .
vel: vel: jfe:FueIEfficiency mpg:
whlpwr: whlpwr: Equation
<0

[1
n_eg:| n_em:

tw: | cf X:
ad.HSUV.position

tw. | Cf.

L
rdrag:Rolling
FrictionEquation

—

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.
GeneratorEfficiency

ad.HSUV.PowerSybsystem.
ElectricMotorGenerator. |——
MotorEfficiency

ad.HSUV.mpg

Figure 10.3 -Usage of constraint blocks on a parametric diagram

OMG SysML™ | Version 1.1

81

82

OMG SysML™ | Version 1.1

Part Il - Behavioral Constructs

This Part specifies the dynamic, behavioral constructs used in SysML behavioral diagrams, including the activity diagram,
seguence diagram, state machine diagram, and use case diagram. This part includes the following chapters:

Chapter 11 - Activities - defines the extensions to UML 2 activities, which represent the basic unit of behavior that isused in
activity, sequence, and state machine diagrams. The activity diagram is used to describe the flow of control and flow of inputs
and outputs among actions.

Chapter 12 - Interactions - defines the constructs for describing message based behavior used in sequence diagrams.

Chapter 13 - State Machines - describes the constructs used to specify state based behavior in terms of system states and their
transitions.

Chapter 14 - Use Cases - describes behavior in terms of the high level functionality and uses of a system, that are further
specified in the other behavioral diagrams referred to above.

OMG SysML™ | Version 1.1 83

84

OMG SysML™ | Version 1.1

11 Activities

11.1 Overview

Activity modeling emphasizes the inputs, outputs, sequences, and conditions for coordinating other behaviors. It provides
aflexible link to blocks owning those behaviors. The following is a summary of the SysML extensions to UML 2.1
Activity diagrams. For additional information, see extensions for Enhanced Functional Flow Block Diagramsin Annex C,
“Non-normative Extensions,” Section C.1, “Activity Diagram Extensions.”

11.1.1 Control as Data

SysML extends control in activity diagrams as follows.

* InUML 2.1 Activities, control can only enable actions to start. SysML extends control to support disabling of actions
that are already executing. Thisis accomplished by providing a model library with atype for control values that are
treated like data (see ControlValue in Figure 11.9).

e A control valueis an input or output of a control operator, which is how control acts as data. A control operator can
represent a complex logical operation that transforms its inputs to produce an output that controls other actions (see
ControlOperator in Figure 11.8).

11.1.2 Continuous Systems

SysML provides extensions that might be very loosely grouped under the term “continuous,” but are generally applicable
to any sort of distributed flow of information and physical items through a system. These are;

« Restrictions on the rate at which entities flow along edgesin an activity, or in and out of parameters of a behavior (see
Rate in Figure 11.8). This includes both discrete and continuous flows, either of material, energy, or information.
Discrete and continuous flows are unified under rate of flow, asis traditionally done in mathematical models of
continuous change, where the discrete increment of time approaches zero.

« Extension of object nodes, including pins, with the option for newly arriving values to replace values that are already
in the object nodes (see Overwrite in Figure 11.8). SysML also extends object nodes with the option to discard values
if they do not immediately flow downstream (see NoBuffer in Figure 11.8). These two extensions are useful for
ensuring that the most recent information is available to actions by indicating when old values should not be kept in
object nodes, and for preventing fast or continuously flowing values from collecting in an object node, aswell as
modeling transient values, such as electrical signals.

11.1.3 Probability

SysML introduces probability into activities as follows (see Probability in Figure 11.8):

« Extension of edges with probabilities for the likelihood that a value leaving the decision node or object node will
traverse an edge.

e Extension of output parameter sets with probabilities for the likelihood that values will be output on a parameter set.

OMG SysML™ | Version 1.1 85

11.1.4 Activities as Blocks

In UML 2.1, all behaviors including activities are classes, and their instances are executions. Behaviors can appear on
block definition diagrams, and participate in generalization and associations. SysML clarifies the semantics of
composition association between activities, and between activities and the type of object nodes in the activities, and
defines consistency rules between these diagrams and activity diagrams. See Section 11.3.1.1, “Activity.”

11.1.5 Timelines

The simple time model in UML can be used to represent timing and duration constraints on actions in an activity model.
These constraints can be notated as constraint notes in an activity diagram. Although the UML 2 timing diagram was not
included in this version of SysML, it can complement SysML behavior diagrams to notate this information. More
sophisticated SysML modeling techniques can incorporate constraint blocks from Chapter 10, “Constraint Blocks” to
specify resource and related constraints on the properties of the inputs, outputs, and other system properties. (Note: refer
to Section 11.3.1.4, “ObjectNode” for constraining properties of object nodes).

11.2 Diagram Elements

11.2.1 Activity Diagram

Table 11.1 - Graphical nodes included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
Action, CallBehavior Action, UMLA4SysML::Action,
AcceptEventAction, Send- UML4SysML ::CallBehavior Action
SignalAction action name - UML4SysML ::AcceptEventAction
Action behavior name J UML4SysML::SendSignalAction

Event : Z

TimeEvent

Signal

Activity UMLA4SysML ::Activity

e

86 OMG SysML™ | Version 1.1

Table 11.1 - Graphical nodes included in activity diagrams

Node Name

Concrete Syntax

Abstract Syntax Reference

ActivityFinal

®

UML4SysML ::ActivityFinalNode

ActivityNode

See ControlNode and ObjectNode.

UML4SysML::ActivityNode

ActivityParameter Node

act

UML4SysML ::ActivityParameter -
Node

ControlNode

See DecisionNode, FinalNode, ForkNode, I nitial-
Node, JoinNode, and M ergeNode.

UML4SysML::ControlNode

ControlOperator

«controlOperator»

CallBehaviorAction

act [controlOperator])

SysML ::Activities::ControlOper a-
tor

DecisionNode

UML4SysML ::DecisionNode

®

[guard]

[else]
FinalNode See ActivityFinal and FlowFinal. UML4SysML ::FinalNode
FlowFinal UML4SysML::FlowFinalNode

OMG SysML™ | Version 1.1

87

Table 11.1 - Graphical nodes

included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
ForkNode UMLA4SysML::ForkNode
—
—
InitialNode ® UMLA4SysML::InitialNode
JoinNode - UML4SysML ::JoinNode
—
{joinspec=...}
isControl UMLA4SysML::Pin.isControl
{ control } { control }
isStream UML4SysML ::Parameter.isstream
{ stream } { stream }
Action ||
%
act / |
{ stream }
88 OMG SysML™ | Version 1.1

Table 11.1 - Graphical nodes included in activity diagrams

m

«local Postcondition» |ﬁ

constraint

Node Name Concrete Syntax Abstract Syntax Reference
Local pre- and _ UML4SysML::Action.local
postconditions «local Precondition> |ﬁ Precondition,
constraint .. H
UML4SysML::Action.local

Postcondition

«optional»

act

«optional»

«optional»

M ergeNode UML4SysML ::MergeNode
NoBuffer SysML ::Activities::NoBuffer
«noBuffers» «noBuffer»

ObjectNode UML4SysML::OjectNode and its
children, SysML::
object node name : Activities::ObjectNode
type name
[state, state ...]
pin name : type name :
[state, state ...]
Optional SysML::Activities::Optional

OMG SysML™ | Version 1.1

89

Table 11.1 - Graphical nodes

included in activity diagrams

Node Name Concrete Syntax Abstract Syntax Reference
OverWrite SysML::Activities::Overwrite
«overwrite» «overwrite»
Action
Par ameter Set UMLA4SysML ::Parameter Set
act J
Probability SysML::Activities::Probability
{ probability =
valueSpecification }
Action
{ probability =
valueSpecification }
{ probability =
act valueSpecification }
{ probability =
valueSpecification }
90 OMG SysML™ | Version 1.1

Table 11.1 - Graphical nodes included in activity diagrams

Node Name

Concrete Syntax

Abstract Syntax Reference

Rate

«continuous»

«discrete»

{ rate = distribution }
«continuous»
«discrete»
Object Node

Object Node Object Node
Object Node
{ rate = constant }
«rate»

rate = constant
rate = distribution

act

{ rate = constant }

{ rate = distribution }
«continuous»
«discrete»

{ rate = constant }
{ rate = distribution }
«continuous»

«discrete»

{ rate = constant }

«continuous»
«discrete»

{ rate = distribution }

SysML::Activities::Rate,
SysML ::Activities::Continuous,
SysML ::Activities::Discrete

Table 11.2 - Graphical paths included in activity diagrams

Path Name

Concrete Syntax

Abstract Syntax Reference

ActivityEdge

See ControlFlow and ObjectFlow

UML4SysML::ActivityEdge

ControlFlow

.
S

UML4SysML::ControlFlow
SysML::Activities::Control Flow

OMG SysML™ | Version 1.1

91

Table 11.2 - Graphical paths included in activity diagrams

Path Name Concrete Syntax Abstract Syntax Reference
ObjectFlow UML4SysML ::ObjectFlow
Probability SysML::Activities::Probability
{ probability = valueSpecification }
{ probability = valueSpecification }
{ probability = valueSpecification }
Action []
{ probability = valueSpecification }
{ probability = valueSpecification }
Object Node
{ probability = valueSpecification }
Rate SysML::Activities::Rate,
- = SysML::Activities::Continuous,
{ rate = constant } SysML::Activities::Discrete
{ rate = distribution }
«continuous»
«discrete»
92 OMG SysML™ | Version 1.1

Table 11.3 - Other graphical elements included in activity diagrams

Abstract Syntax Reference

Element Name Concrete Syntax
In Block Definition SysML::Activities, Diagram Usage
Diagrams, Activity, for Block Definition Diagrams
Association bdd)
«activity» «activity»
activity name activity name
object
action node
name name
«activity» «block»
activity name block name

ActivityPartition

Partition Name

[(Partition Name)]

UML4SysML::ActivityPartition

InterruptibleActivity
Region

Region

UML4SysML::InterruptibleActivity-

11.3 UML Exten

11.3.1 Diagram Ext

sions

ensions

The following specify diagram extensions to the notations defined in Chapter 17: Profiles & Model Libraries.

OMG SysML™ | Version 1.1

93

11.3.1.1 Activity

Notation

In UML 2.1, all behaviors are classes, including activities, and their instances are executions of the activity. This follows
the general practice that classes define the constraints under which the instances must operate. Creating an instance of an
activity causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates the
corresponding execution, and vice versa. Terminating an execution also terminates the execution of any other activities
that it invoked synchronously, that is, expecting a reply.

Activities as blocks can have associations between each other, including composition associations. Composition means
that destroying an instance at the whole end destroys instances at the part end. When composition is used with activity
blocks, the termination of execution of an activity on the whole end will terminate executions of activities on the part end
of the links.

Combining the two aspects above, when an activity invokes other activities, they can be associated by a composition
association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of an
activity on the whole end is terminated, then the executions of the activities on the part end are also terminated. The upper
multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior that can be invoked
by the containing activity. The lower multiplicity on the part end is always zero, because there will be some time during
the execution of the containing activity that the lower level activity is not executing. See Constraints sections below.

Activities in block definition diagrams appear as regular blocks, except the «activity» keyword may be used to indicate
the Block stereotype is applied to an activity, as shown in Figure 11.1. See example in “Usage Examples’ on page 102.
This provides a means for representing activity decomposition in a way that is similar to classical functional
decomposition hierarchies. The names of the CallBehaviorActions that correspond to the association can be used as end
names of the association on the part end. Activities in block definition diagrams can also appear with the same notation
as CallBehaviorAction, except the rake notation can be omitted, if desired. Also see use of activities in block definition
diagrams that include ObjectNodes.

bdd
«activity» «activity»
activity name activity name
action action action action
name name name name
«activity» «activity» «activity»
activity name activity name activity name

Figure 11.1 - Block definition diagram with activities as blocks

Constraints

The following constraints apply when composition associations in block definition diagrams are defined between
activities;

94 OMG SysML™ | Version 1.1

[1] The part end name must be the same as the name of a synchronous CallBehaviorAction in the composing activity. If the
action has no name, and the invoked activity is only used once in the calling activity, then the end name is the same as
name of the invoked activity.

[2] The part end activity must be the same as the activity invoked by the corresponding CallBehaviorAction.
[3] Thelower multiplicity at the part end must be zero.

[4] Theupper multiplicity at the part end must be 1 if the corresponding action invokes a nonreentrant behavior.
11.3.1.2 CallBehaviorAction

Stereotypes applied to behaviors may appear on the notation for CallBehaviorAction when invoking those behaviors, as
shown in Figure 11.2.

«stereotype name»

behavior name

’_H

Figure 11.2 - CallBehaviorAction notation.with behavior stereotype

CallBehaviorActions in activity diagrams may optionally show the action name with the name of the invoked behavior
using the colon notation shown in Figure 11.3.

action name : behavior name

’_H

Figure 11.3 - CallBehaviorAction notation.with action name
11.3.1.3 ControlFlow

Presentation Option

Control flow may be notated with a dashed line and stick arrowhead, as shown in Figure 11.4.

mn _______

Figure 11.4 - Control flow notation

OMG SysML™ | Version 1.1 95

11.3.1.4 ObjectNode

Notation

See Section 11.3.1.1, “Activity” concerning activities appearing in block definition diagrams. Associations can be used
between activities and classifiers (blocks or datatypes) that are the type of object nodes in the activity, as shown in Figure
11.5. This supports linking the execution of the activity with items that are flowing through the activity and happen to be
contained by the object node at the time the link exists. The names of the object node that correspond to the association
can be used as end names of the association on the end towards the object node type. Like any association end or property
these can be the subject of parametric constraints, design values, units, and dimensions. The upper multiplicity on the
object node end restricts the number of instances of the item type that can reside in the object node at one time, which
must be lower than the maximum amount allowed by the object node itself. The lower multiplicity on the object node end
is always zero, because there will be some time during the execution of the containing activity that there is no item in the
object node. The associations may be composition if the intention is to delete instances of the classifier flowing the

activity when the activity is terminated. See example in “Usage Examples’ on page 102.

bdd)

«activity»
activity name

object
node
name

«block»
block name

object
node
name

«activity»
activity name

«block»
block name

object
node
name

object
node
name

«block»
block name

Figure 11.5 - Block definition diagram with activities as blocks associated with types of object nodes

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as

shown in Figure 11.6.

object node name : type name

Figure 11.6 - ObjectNode notation in activity diagrams

96

OMG SysML™ | Version 1.1

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 11.7, when the
object node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the pins
notated by the object node. Stereotype applying to object nodes can also appear in object nodes, and applies to all the pins
notated by the object node.

«stereotype name»

object node name

Figure 11.7 - ObjectNode notation in activity diagrams

Constraints

The following constraints apply when associations in block definition diagrams are defined between activities and
classifiers typing object nodes:

[1] The end name towards the object node type is the same as the name of an object node in the activity at the other end.
[2] Theclassifier must be the same as the type of the corresponding object node.

[3] Thelower multiplicity at the object node type end must be zero.

[4] The upper multiplicity at the object node type end must be equal to the upper bound of the corresponding object node.

11.3.2 Stereotypes

The following abstract syntax defines the stereotypes in this chapter and which metaclasses they extend. The descriptions,
attributes, and constraints for each stereotype are specified below.

OMG SysML™ | Version 1.1 97

Package Activities

«metaclass»
UML4SysML::
Parameter

«metaclass»
UML4SysML::
ActivityEdge

*

!

«metaclass»
UML4SysML::
ParameterSet

T

«stereotype»
Optional

«stereotype»
Rate

«stereotype»
Probability

rate :InstanceSpecification

B

probability:ValueSpecification

«stereotype»
Continuous

«stereotype»
Discrete

«metaclass»

UML4SvsML
Behavior

«metaclass»

o UML4SysML
Operation

1 1

Con

«stereotype»

trolOperator

Figure 11.8 - Abstract Syntax for SysML Activity Extensions

11.3.2.1 Continuous

«metaclass»
UML4SysML::
ObjectNode

i

«stereotype»
NoBuffer

«stereotype»
Overwrite

Continuous rate is a special case of rate of flow (see Rate) where the increment of time between items approaches zero.
It is intended to represent continuous flows that may correspond to water flowing through a pipe, a time continuous
signal, or continuous energy flow. It is independent from UML streaming, see “ Rate” on page 101. A streaming parameter
may or may not apply to continuous flow, and a continuous flow may or may not apply to streaming parameters.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close
to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kind of values that
flow through an activity. In particular, the value may represent as small a number as needed, for example to simulate
continuous material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In
particular, token flow on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms
for numerical solvers of ordinary differential equations, such as Runge-Kutta.

98

OMG SysML™ | Version 1.1

11.3.2.2 ControlOperator

Description

A control operator is a behavior that is intended to represent an arbitrarily complex logical operator that can be used to
enable and disable other actions. When the «control Operators» stereotype is applied to behaviors, the behavior takes
control values as inputs or provides them as outputs, that is, it treats control as data (see “ControlValue” on page 101).
When the «control Operator» stereotype is not applied, the behavior may not have a parameter typed by ControlValue. The
«control Operator» stereotype also applies to operations with the same semantics.

The control value inputs do not enable or disable the control operator execution based on their value, they only enable
based on their presence as data. Pins for control parameters are regular pins, not UML control pins. Thisis so the control
value can be passed into or out of the action and the invoked behavior, rather than control the starting of the action, or
indicating the ending of it.

Constraints

[1] When the «controlOperator» stereotype is applied, the behavior or operation must have at |east one parameter typed by
ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter typed by
ControlValue.

[2] A behavior must have the «control Operator» stereotype applied if it is a method of an operation that has the
«control Operator» stereotype applied.

11.3.2.3 Discrete

Description

Discrete rate is a special case of rate of flow (see Rate) where the increment of time between items is non-zero. Examples
include the production of assemblies in a factory and signals set at periodic time intervals.
Constraints

[1] The «discrete» and «continuous» stereotypes cannot be applied to the same element at the same time.
11.3.2.4 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node are discarded if they are refused by
outgoing edges, or refused by actions for object nodes that are input pins. Thisistypically used with fast or continuously
flowing data values, to prevent buffer overrun, or to model transient values, such as electrical signals. For object nodes that are
the target of continuous flows, «nobuffer» and «overwrite» have the same effect. The stereotype does not override UML token
offering semantics; it just indicates what happens to the token when it is accepted. When the stereotypeis not applied, the
semantics are asin UML, specifically, tokens arriving at an object node that are refused by outgoing edges, or action for input
pins, are held until they can leave the object node.

Constraints

[1] The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.

OMG SysML™ | Version 1.1 99

11.3.2.5 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node replaces the ones
already there (afull object node has as many tokens as allowed by its upper bound). Thisis typically used on an input pin
with an upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds greater than one, the
token replaced is the one that would be the last to be selected according to the ordering kind for the node. For FIFO
ordering, this is the most recently added token, for LIFO it is the least recently added token. A null token removes all the
tokens already there. The number of tokens replaced is equal to the weight of the incoming edge, which defaults to 1. For
object nodes that are the target of continuous flows, «overwrite» and «nobuffer» have the same effect. The stereotype
does not override UML token offering semantics, just indicates what happens to the token when it is accepted. When the
stereotype is not applied, the semanticsis asin UML, specifically, tokens arriving at object nodes do not replace ones that
are already there.

Constraints

[1] The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.
11.3.2.6 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity must be equal to zero. This means the
parameter is not required to have a value for the activity or any behavior to begin or end execution. Otherwise, the lower
multiplicity must be greater than zero, which is called “required.” The absence of this stereotype indicates a constraint,
see below.

Constraints

[1] A parameter with the «optional» stereotypes applied must have multiplicity.lower equal to zero, otherwise
multiplicity.lower must be greater than zero.

11.3.2.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an
expression for the probability that the edge will be traversed. These must be between zero and one inclusive, and add up
to one for edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be
given values at runtime. These must be between zero and one inclusive, and add up to one for output parameter sets of the
same behavior at the time the probabilities are used.

Constraints

[1] The «probability» stereotype can only be applied to activity edges that have decision nodes or object nodes as sources, or
to output parameter sets.

[2] When the «probability» stereotype is applied to an activity edge, then it must be applied to al edges coming out of the
same source.

100 OMG SysML™ | Version 1.1

[3] When the «probability» stereotypeis applied to an output parameter set, it must also be applied to all the parameter sets of
the behavior or operation owning the original parameter set.

[4] When the «probability» stereotypeis applied to an output parameter set, all the output parameters must be in some
parameter set.

11.3.2.8 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the expected value of the number of objects and
values that traverse the edge per time interval, that is, the expected value rate at which they leave the source node and
arrive at the target node. It does not refer to the rate at which a value changes over time. When the stereotype is applied
to a parameter, the parameter must be streaming, and the stereotype gives the number of objects or values that flow in or
out of the parameter per time interval while the behavior or operation is executing. Streaming is a characteristic of UML
behavior parameters that supports the input and output of items while a behavior is executing, rather than only when the
behavior starts and stops. The flow may be continuous or discrete, see the specialized ratesin 11.3.2.1 (“ Continuous’) and
“Discrete” on page 99. The «rate» stereotype has arate property of type InstanceSpecification. The values of this property
must be instances of classifiers stereotyped by «valueType» or «distributionDefinition», see Chapter 8, “Blocks.” In
particular, the denominator for units used in the rate property must be time units.

Constraints
[1] When the «rate» stereotype is applied to a parameter, the parameter must be streaming.

[2] Therate of a parameter must be less than or equal to rates on edges that come into or go out from pins and parameters
nodes corresponding to the parameter.

11.3.3 Model Libraries

The SysML model library for activities is shown in Figure 11.9.

«enumeration»
ControlValue

disable
enable

Figure 11.9 - Control values.
11.3.3.1 ControlValue

Description

The ControlValue enumeration is a type for treating control values as data (see Section 11.3.2.2) and for UML control
pins. It can be used as the type of behavior and operation parameters, object nodes, and attributes, and so on. The possible
runtime values are given as enumeration literals. Modelers can extend the enumeration with additional literals, such as
suspend, resume, with their own semantics.

The disable literal means a termination of an executing behavior that can only be started again from the beginning
(compare to suspend). The enable literal means to start a new execution of a behavior (compare to resume).

OMG SysML™ | Version 1.1 101

Constraints
[1] UML4SysML::ObjectNode::isControl Typeistrue for object nodes with type Control Value.

11.4 Usage Examples

The following examples illustrate modeling continuous systems (see Continuous Systemsin Section 11.1.1). Figure 11.10
shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the key on has a
duration constraint specifying that this action lasts no more than 0.1 seconds. Turning the key on starts two behaviors,
Driving and Braking. These behaviors execute until the key is turned off, using streaming parameters to communicate
with other behaviors. The Driving behavior outputs a brake pressure continuously to the Braking behavior while both are
executing, as indicated by the «continuous» rate and streaming properties (streaming is a characteristic of UML behavior
parameters that supports the input and output of items while a behavior is executing, rather than only when the behavior
starts and stops). Brake pressure information also flows to a control operator that outputs a control value to enable or
disable the Monitor Traction behavior. No pins are used on Monitor Traction, so once it is enabled, the continuously
arriving enable control values from the control operator have no effect, per UML semantics. When the brake pressure
goes to zero, disable control values are emitted from the control operator. The first one disables the monitor, and the rest
have no effect. While the monitor is enabled, it outputs a modulation frequency for applying the brakes as determined by
the ABS system. The rake notations on the control operator and Monitor Traction indicate they are further defined by
activities, as shown in Figures 11.11 and 11.12. An alternative notation for this activity decomposition is shown in Figure
11.13.

The duration constraint notation associated with the Turn Key To On action is supported by the UML Simple Time model.
The Operate Car activity owns a duration constraint specifying that the "Turn Key To On" action lasts no more than 0.1
seconds. The concrete UML element used in this example is a DurationConstraint owned by Operate Car that constrains
the Turn Key To On action. The DurationConstraint owns a Durationlnterval, which specifies that the action is
constrained to last between 0 seconds and 0.1 seconds (both being Duration expressions).

102 OMG SysML™ | Version 1.1

act Operate Car)

(«interruptibleRegior»

{0..0.1sec}

Driving

{stream} «continuous»

Brake
Pressure

{stream}

Braking

«continuous »
Modulation
Frequency

Monitor Traction

’_h

«controlOperaton»

Enable on Brake

Pressure >0

{ control }

’_‘_‘

Figure 11.10 - Continuous system example 1

The activity diagram for Monitor Traction is shown in Figure 11.11. When Monitor Traction is enabled, it begins listening

for signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the left, which

begin listening automatically when the activity is enabled. A traction index is calculated every 10 ms, which is the slower
of the two signal rates. The accelerometer signals come in continuously, which means the input to Calculate Traction does

not buffer values. The result of Calculate Traction is filtered by a decision node for a threshold value and Calculate

Modulation Freguency determines the output of the activity.

OMG SysML™ | Version 1.1

103

act Monitor Traction)
) [Inss - - {stream}
'l of tractan]
s) Calculate :
Calculate Tractlon |- Tlra:'m T : Modulation - r"__"r"""'"'“'””
ndex S Fregquency FROUENCY
. - [else] I
A ‘ﬁ~\ &) —_— .
{rate = per 10ms} X N W
! l"‘-.__
Y Input frism Y, EConbnuous s
nptical . . . 1\
sBnEAr Anfular Velociny N
on wihesl ",
\
: Input from - Acceleration
S acoElerorm ber =

Figure 11.11 - Continuous system example 2

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 11.12. The decision node
and guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that
output an enabling or disabling control value from the activity. The edges coming out of the decision node indicate the
probability of each branch being taken.

act [controlOperator] Enable on Brake Pressure >0)

[Brake Pressure > 0]

{pprobabiity = 10%} | «alueSpeciicationAction»

enable

Brake ————= ControlValue

Pressure : N
‘ «ValueSpecificationAction»
‘ disable
[else]

{probability = 90%}

Figure 11.12 Continuous system example 3

Figure 11.13 shows a block definition diagram with composition associations between the activities in Figures 11.10,
11.11, and 11.12, as an alternative way to show the activity decomposition of Figures 11.10, 11.11, and 11.12. Each
instance of Operating Car is an execution of that behavior. It owns the executions of the behaviors it invokes
synchronously, such as Driving. Like all composition, if an instance of Operating Car is destroyed, terminating the
execution, the executions it owns are also terminated.

104 OMG SysML™ | Version 1.1

bdd

calculateTraction

0.1
L

«activity»

Calculate
Traction

«activity»
oc Operating Car flJCl
0.1 :
oc oc oc
11 0.1 1.1
enableOnBrakePressure>0
turnKeyOn ivi ; 0.1
0.1 4 driving /[braking monitorTraction
. 0.1 0.1
0.1
«activity» «activity» «activity» «activity» «controlOperator »
Turn i ; : Enable on Brake
Drivin Brakin Monitor
Key to On 9 9 Traction Pressure >0
mt
mt
1.1 1.1

calculateModulationFrequency
0.1

«activity»
Calculate
Modulation
Frequency

Figure 11.13 - Example block definition diagram for activity decomposition

Figure 11.14 shows a block definition diagram with composition associations between the activity in Figure 11.10 and the
types the object nodes in that activity. In an instance of Operating Car, which is one execution of it, instances of Brake
Pressure and Modulation Frequency are linked to the execution instance when they are in the object nodes of the activity.

bdd Name J

«activity»
OperatingCar

oc oc
1.1 1.1
bp mf
0.1 0.1
«valueType» «valueType»
BrakePressure ModulationFrequency

Figure 11.14 - Example block definition diagram for object node types

OMG SysML™ | Version 1.1

105

106 OMG SysML™ | Version 1.1

12 Interactions

12.1 Overview

Interactions are used to describe interactions between entities. UML 2.1 Interactions are supported by four diagram types
including the Sequence Diagram, Communications Diagram, Interaction Overview Diagram, and Timing Diagram. The
Sequence Diagram is the most common of the Interaction Diagrams. SysML includes the Sequence Diagram only and
excludes the Interaction Overview Diagram and Communication Diagram, which were considered to offer significantly
overlapping functionality without adding significant capability for system modeling applications. The Timing Diagram is
also excluded due to concerns about its maturity and suitability for systems engineering needs.

The sequence diagram describes the flow of control between actors and systems (blocks) or between parts of a system.
This diagram represents the sending and receiving of messages between the interacting entities called lifelines, where
time is represented along the vertical axis. The sequence diagrams can represent highly complex interactions with special
constructs to represent various types of control logic, reference interactions on other sequence diagrams, and
decomposition of lifelines into their constituent parts.

12.2 Diagram Elements

12.2.1 Sequence Diagram

Table 12.1 - Graphical nodes included in sequence diagramsl.

Node Name Concrete Syntax Abstract Syntax Reference
SequenceDiagram UML4SysML ::Interaction

sd Interactionl /

Lifeline UMLA4SysML::Lifeline

b1:Blockl

OMG SysML™, Version 1.1 107

Node Name Concrete Syntax Abstract Syntax Reference
Execution UM L4SysML ::ExecutionSpecification
Specification
bl:Blockl
T
|
|
|
|
|
!
bl:Blockl
|
execSpec
|
i
InteractionUse UMLA4SysML ::InteractionUse
ref
Interaction3

1. Tableiscompliant with UML 2.1 Superstructure document.

108

OMG SysML™, Version 1.1

Node Name Concrete Syntax

Abstract Syntax Reference

CombinedFragment

sd Interactionl)

‘bl:BIockl‘ ‘ b2:Block2 ‘ ‘ b3:Block3 ‘

|
alt :
|

N]

UML4SysML ::CombinedFragment

A combined fragment is defined by an
interaction operator and corresponding
interaction operands.

Interaction Operators include:
seq - Weak Sequencing
alt - Alternatives
opt - Option
break - Break
par - Parallel
strict - Strict Sequencing
loop - Loop
critical - Critical Region
neg - Negative
assert - Assertion
ignore - Ignore
consider - Consider

Satelnvariant /
Continuations

UML4SysML::Continuation

UML4SysML::Satelnvariant

Coregion

s[u]:B

m3

m2

AAAAAEA o 44}44444

UML4SysML ::CombinedFragment (under
parallel)

OMG SysML™, Version 1.1

109

Node Name Concrete Syntax Abstract Syntax Reference

CreationEvent UML4SysML::CreationEvent
DestructionEvent UML4SysML ::DestructionEvent
create

b2:Block2

DurationConstraint UML4SysML::Interactions
Duration
Observation :User

Code d=duration

CardOut {0..13}

TimeConstraint UML4SysML::Interactions
TimeObservation

t=now

/ OK
{t..t+3}

| |
| |
| |
| |
| |
| |
| |
1 |
| CardOut {0..13} |
| |
) T
| |
| |

|

|

|

|

I

110 OMG SysML™, Version 1.1

Table 12.2 - Graphical paths included in sequence diagram

Path Name Concrete Syntax Abstract Syntax Reference
M essage UMLA4SysML ::Message
‘ b1:Blockl ‘ ‘ b2:Block2 ‘

T T

| |

: asyncSignal :

| |

| |

i syncCall(param) i

| |

I — |

| |

! !

I
L ost Message UML4SysML::Message
Found Message

lost
found
GeneralOrdering UML4SysML::GeneralOrdering
........ ’_ e e e .-

12.3 UML Extensions

12.3.1 Diagram Extensions

The following specify diagram extensions to the notations defined in Chapter 17, “Profiles & Model Libraries.”

12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and
Timing Diagram

Communication diagrams and interaction overview diagrams are excluded from SysML. The other behavioral diagram
representations were considered to provide sufficient coverage without introducing these diagram kinds. Timing Diagrams
are also excluded due to concerns about their maturity and suitability for systems engineering needs.

OMG SysML™, Version 1.1

111

12.4 Usage Examples

12.4.1 Sequence Diagrams

The diagram in Figure 12.1 illustrates the overall system behavior for operating the vehicle in sequence diagram format.
To manage the complexity, a hierarchical sequence diagram is used which refers to other interactions that further

elaborate the system behavior. (“ref StartVehicleBlackBox”) CombinedFragments are used to illustrate that steering can
take place at the same time as controlling the speed and that controlling speed can be either idling, accelerating/cruising,

or braking.

sd DriveBlackBox)

driver:Driver hybridSUV:HybridSUV

g

re StartVehicleBlackBox

par
alt controlS eed) [self.oclinState(idle)]
ref Idle
[self.oclinState(acgelerating/cruising)]
ref Accelerate/Cruise

[self.oclinState(braking)]

g

ref Brake

ref Steer

ref Park/ShutdownVehicle

Figure 12.1 - Hierarchical Sequence Diagram illustrating system behavior for “Operate the vehicle” use case

The diagram in Figure 12.2 shows an interaction that includes events and messages communicated between the driver and
vehicle during the starting of the vehicle. The “hybridSUV” lifeline represents another interaction which further
elaborates what happens inside the “hybridSUV” when the vehicle is started.

112 OMG SysML™, Version 1.1

sd StartVehicleBIackBox)

]] hybridSUV:HybridSUV
driver:Driver ref StartVehicleWhiteBox

turnignitionToStart |
1: StartVehicle |

Figure 12.2 - Black box interaction during “starting the Hybrid SUV”

The diagram in Figure 12.3 shows the sequence of communication that occurs inside the HybridSUV when the vehicleis
started successfully.

sd StartVehicIeWhiteBox)

ecu:PowerControlUnit epc:ElectricalPowerController

1:
StartVehicle

\/

1.1:Enable

1.2:read

< — — Y _— — L
|
|
|

Figure 12.3 - White box interaction for “starting the Hybrid SUV”

OMG SysML™, Version 1.1 113

114 OMG SysML™, Version 1.1

13 State Machines

13.1 Overview

The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state
transition systems. The state machine represents behavior as the state history of an object in terms of its transitions and

states. The activities that are invoked during the transition, entry, and exit of the states are specified along with the

associated event and guard conditions. Activities that are invoked while in the state are specified as “do Activities,” and
can be either continuous or discrete. A composite state has nested states that can be sequential or concurrent.

The UML concept of protocol state machines is excluded from SysML to reduce the complexity of the language. The
standard UML state machine concept (called behavior state machinesin UML) are thought to be sufficient for expressing

protocols.
13.2 Diagram Elements

13.2.1 State Machine Diagram

Table 13.1 - Graphical nodes included in state machine diagrams.

Node Name Concrete Syntax

Abstract Syntax Reference

StateM achineDiagram

stm OwnedStateMachinelJ

UMLA4SysML::SateM achines

Choice pseudo state

[1d>10]

[ld<=10] \1, \l/

UMLA4SysML::PseudoSate

OMG SysML™ | Version 1.1

115

Node Name

Concrete Syntax

Abstract Syntax Reference

Composite state UML4SysML::Sate
‘ CompositeStatel ‘
State2

Entry point UML4SysML ::PseudoSate

again O
Exit point UML4SysML ::PseudoSate

®aborted
Final state UML4SysML::FinalSate
History, Deep UML4SysML ::PseudoSate
Pseudo state

History, Shallow pseudo
state

UML4SysML ::PseudoSate

Initial pseudo state

UML4SysML ::PseudoSate

Junction pseudo state

® & - & @

UML4SysML ::PseudoSate

Receive signal action

Req(ld) f

UML4SysML::Transition

116

OMG SysML™ | Version 1.1

Node Name

Concrete Syntax

Abstract Syntax Reference

Send signal action

TurnOn >

UMLA4SysML::Transition

Statel, State2

Action UMLA4SysML::Transition
MinorReq := Id;
Region UMLA4SysML::Region
S
|
|
|
|
i
[}
|
[}
[}
|
[}
]
Simple state UMLA4SysML::Sate
State2
entry / entryActivity|
do / doActivity
exit / exitActivity
~_ 222~
Satelist UMLA4SysML::Sate

Sate M achine

ReadAmountSM

®

aborted

UMLA4SysML::SateMachine

OMG SysML™ | Version 1.1

117

Node Name

Concrete Syntax

Abstract Syntax Reference

Terminate node

<

UML4SysML::PseudoSate

Submachine state

ReadAmount :
ReadAmountSM

aborted

UML4SysML::Sate

Table 13.2 - Graphical paths included in state machine diagrams

Path Name

Concrete Syntax

Abstract Syntax Reference

Transition

trigger[guard]\activity

UMLA4SysML::Transition

13.3 UML Extensions

None.

13.4 Usage Examples

13.4.1 State Machine Diagram

The high level states or modes of the HybridSUV including the events that trigger changes of state are illustrated in the
state machine diagram in Figure 13.1.

118

OMG SysML™ | Version 1.1

stm HSUVO perationalStates/

Refines
«requirement»
PowerSource
Management

Off keyOff>©

start shutOff
Nominal
states only

7

/-

/ Operate \

accelerate stopped

releaseBrake

Accellerating/
Cruising

Braking

engageBrake

N /

Figure 13.1 - High level view of the states of the HybridSUV

OMG SysML™ | Version 1.1 119

120 OMG SysML™ | Version 1.1

14 Use Cases

14.1 Overview

The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is
realized by the subject providing a set of services to selected actors. The use case can also be viewed as functionality and/
or capabilities that are accomplished through the interaction between the subject and its actors. Use case diagrams include
the use case and actors and the associated communications between them. Actors represent classifier roles that are
external to the system that may correspond to users, systems, and or other environmental entities. They may interact
either directly or indirectly with the system. The actors are often specialized to represent a taxonomy of user types or
external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and the use
case represent the communications that occurs between the actors and the subject to accomplish the functionality
associated with the use case. The subject of the use case can be represented via a system boundary. The use cases that are
enclosed in the system boundary represent functionality that is realized by behaviors such as activity diagrams, sequence
diagrams, and state machine diagrams.

The use case relationships are “communication,” “include,” “extend,” and “generalization.” Actors are connected to use
cases via communication paths, that are represented by an association relationship. The “include” relationship provides a
mechanism for factoring out common functionality that is shared among multiple use cases, and is always performed as
part of the base use case. The “extend” relationship provides optional functionality, which extends the base use case at
defined extension points under specified conditions. The “generalization” relationship provides a mechanism to specify
variants of the base use case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the
packages.

14.2 Diagram Elements

14.2.1 Use Case Diagram

Table 14.1 - Graphical nodes included in Use Case diagrams

Node Name Concrete Syntax Abstract Syntax Reference
Use Case UML4SysML ::UseCase

UseCaseName

OMG SysML™ | Version 1.1 121

Table 14.1 - Graphical nodes included in Use Case diagrams

extension points
pl, p2

Node Name Concrete Syntax Abstract Syntax Reference
Use Case with UML4SysML ::UseCase
ExtensionPoints

UseCaseName

Actor

«actor»
ActorName

ActorName

UML4SysML::Actor

Subject

SubjectName

Association end name on
UML4SysML::Classifier

Table 14.2 - Graphical paths included in Use Case diagrams

Path Type concrete Syntax Abstract Syntax Reference
Communication UML4SysML::Association
path
Include UML4SysML::Include
__«include» >
Extend UML4SysML::Extend
<J<§>§€”Q>L I
122 OMG SysML™ | Version 1.1

Table 14.2 - Graphical paths included in Use Case diagrams

Condition: {boolean expression}
extension point: p1, p2

]

«extend»

Path Type concrete Syntax Abstract Syntax Reference
Extend with UML4SysML ::Extend
Condition

Generalization

UML4SysML::Kernel

14.3 UML Extensions

None.

OMG SysML™ | Version 1.1

123

14.4 Usage Examples

uc HSUVTopLeveIUseCases/
Hybrid SUV
_ | Operate the
vehicle
Driver
Insure the
- — vehicle
InsuranceCompany
Registered
Owner
Register the ———
vehicle
Department
Of Motor
Vehicles
Maintain the
vehicle
Maintainer

Figure 14.1 - Top level use case diagram for the Hybrid SUV subject

Figure 14.1 is atop-level set of use cases for the Hybrid SUV System. Figure 14.2 shows the decomposition of the
Operate the Vehicle use case. In this diagram, the frame represents the package that contains the lower level use cases.
The convention of naming the package with the same name as the top level use case has been employed. This practice
offers an implicit tracing mechanism that complements the explicit trace relationships in SysML.

124 OMG SysML™ | Version 1.1

uc OperateTheVehicley

Hybrid SUV

Start the vehicle

Driver \\ «include»

Figure 14.2 - Operate the Vehicle use case at a lower level of abstraction

In the figure 14.2 the Extend relationship specifies that the behavior of a use case may be extended by the behavior of
another (usually supplementary) use case. The extension takes place at one or more specific extension points defined in
the extended use case. Note, however, that the extended use case is defined independently of the extending use case and
is meaningful independently of the extending use case. On the other hand, the extending use case typically defines
behavior that may not necessarily be meaningful by itself. Instead, the extending use case defines a set of modular
behavior increments that augment an execution of the extended use case under specific conditions. In Figure 14.2, the
“Start the Vehicle” use case is modeled as an extension of “Drive the Vehicle.” This means that there are conditions that
may exist that require the execution of an instance of “Start the Vehicle” before an instance of “Drive the Vehicle’ is
executed.

The use cases “Accelerate,” “Steer,” and “Brake” are modeled using the include relationship. Include is a
DirectedRelationship between two use cases, implying that the behavior of the included use case is inserted into the
behavior of the including use case. It is also a kind of NamedElement so that it can have a name in the context of its

OMG SysML™ | Version 1.1 125

owning use case. The including use case may only depend on the result (value) of the included use case. This value is
obtained as a result of the execution of the included use case. This means that “ Accelerate,” “ Steer,” and “Brake” are all
part of the normal process of executing an instance of “Drive the Car.”

In many situations, the use of the Include and Extend relationships is subjective and may be reversed, based on the
approach of an individual modeler.

126 OMG SysML™ | Version 1.1

Part IV - Crosscutting Constructs

This Part specifies crosscutting constructs that apply to both structure and behavior. These constructs are defined in the
following chapters:

Chapter 15 - Allocations - defines a basic allocation relationship that can be used to allocate a set of model elementsto
another, such as alocating behavior to structure or allocating logical to physical components.

Chapter 16 - Requirements - specifies constructs for system requirements and their relationships.

Chapter 17 - Profilesand Model Libraries - specifies the approach to further customize and extend SysML for specific
applications.

OMG SysML™ | Version 1.1 127

128 OMG SysML™ | Version 1.1

15 Allocations

15.1 Overview

Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements within
the various structures or hierarchies of a user model. The concept of “allocation” requires flexibility suitable for abstract
system specification, rather than a particular constrained method of system or software design. System modelers often
associate various elements in a user model in abstract, preliminary, and sometimes tentative ways. Allocations can be used
early in the design as a precursor to more detailed rigorous specifications and implementations. The allocation
relationship can provide an effective means for navigating the model by establishing cross relationships, and ensuring the
various parts of the model are properly integrated.

This chapter does not try to limit the use of the term “allocation,” but provides a basic capability to support allocation in
the broadest sense. It does include some specific subclasses of allocation for allocating behavior, structure, and flows. A
typical example is the allocation of activities to blocks (e.g., functions to components). This chapter specifies an
extension for an allocation relationship and selected subclasses of allocation, along with the notation to represent
alocations in a SysML model.

15.2 Diagram Elements

The diagram elements defined in this chapter may be shown on some or all SysML diagram types, in addition to the
diagram elements that are specific for each diagram type.

OMG SysML™ | Version 1.1 129

15.2.1 Representing Allocation on Diagrams

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference
Allocated stereotype SysML::Allocation:Allocated
«allocated»
Named
Element
Allocation derived SysML::Allocation:Allocated
properties displayed Block Nam e

in compartment of a

BIOCk . allocatedFrom
«elementType» ElementName

allocatedTo

«elementType»ElementName

Allocation derived SysML::Allocation:Allocated
properties displayed ; -
H allocate om
in Comment. «elementType»ElementName

allocatedTo

«elementType»ElementName

ElementName
Allocation derived SysML::Allocation:Allocated
properties displayed <blocks
in compartment of BlockNam e
Part on Internal Block
Diagram. PartName
allocatedFrom
«elementType» ElementName

Allocation derived SysML::Allocation:Allocated

properties displayed
in compartment of

Action on Activity L allocatedTo J

Diagr am. «elementType» ElementName

ActivityName

130 OMG SysML™ | Version 1.1

Table 15.1 - Extension to graphical nodes included in diagrams

Node Name Concrete Syntax Abstract Syntax Reference
Allocation Activity SysML ::Allocation: Allocate
Partition ActivityPartition

«allocate»

:ElementName
Allocation (general) SysML ::Allocation: Allocate
Client _——— = Supplier
«allocate»

15.3 UML Extensions

15.3.1 Diagram Extensions

15.3.1.1 Tables

Allocation relationships may be depicted in tables. A separate row is provided for each «allocate» dependency. “from” is
the client of the «allocate» dependency, and “to” is the supplier. Both ElementType and ElementName for client and
supplier appear in this table.

15.3.1.2 Allocate Relationship Rendering

The “dlocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from” the element being allocated “to” the element that is the target of the
allocation.

15.3.1.3 Allocated Property Compartment Format

When properties of an «allocated» model element are displayed in a property compartment, a shorthand notation is used
as shown in Table 15.1. This shorthand groups and displays the AllocatedFrom properties together, then the AllocatedTo
properties. These properties are shown without the use of brackets {}.

15.3.1.4 Allocated Property Callout Format

When an «allocate» property compartment is not used, a property callout may be used. An «allocate» property callout

uses the same shorthand notation as the «allocate» property compartment. This notation is also shown in Table 15.1. For
brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may be elided from the diagram.

OMG SysML™ | Version 1.1 131

15.3.1.5 AllocatedActivityPartition Label
For brevity, the keyword used on an AllocatedActivityPartition is «allocate», rather than the stereotype name

(«allocateActivityPartition»). For brevity, the «elementType» portion of the AllocatedFrom or AllocatedTo property may
be elided from the diagram.

15.3.2 Stereotypes

Package Allocations

UML4SysML::Abstraction UMLASysML:
NamedElement
«stereotype»

«stereotype» Allocated

Allocate

/allocatedFrom:NamedElement[*]
/allocatedTo:NamedElement[*]

Figure 15.1 - Abstract syntax extensions for SysML Allocation

UML4SysML::ActivityPartition

i

«stereotype»
AllocateActivityPartition

Figure 15.2 - Abstract syntax expression for AllocatedActivityPartition
15.3.2.1 Allocate(from Allocations)

Description

Allocate is a dependency based on UML ::abstraction. It is a mechanism for associating elements of different types, or in
different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing future design
activity. It is expected that an «allocate» relationship between model elements is a precursor to a more concrete
relationship between the elements, their properties, operations, attributes, or sub-classes.

Allocate is a stereotype of a UML4SysML::Abstraction which is permissible between any two NamedElements. It is
depicted as a dependency with the “allocate” keyword attached to it.

Allocate is directional in that one NamedElement is the “from” end (no arrow), and at least one NamedElement is the “to”
end (the end with the arrow).

132 OMG SysML™ | Version 1.1

The following paragraphs describe types of allocation that are typical in systems engineering.

Behavior allocation relates to the systems engineering concept segregating form from function. This concept requires
independent models of “function” (behavior) and “form” (structure), and a separate, deliberate mapping between elements
in each of these models. It is acknowledged that this concept does not support a standard object-oriented paradigm, nor is
this always even desirable. Experience on large scale, complex systems engineering problems have proven, however, that
segregation of form and function is a valuable approach. In addition, behavior allocation may also include the allocation
of Behaviors to BehavioralFeatures of Blocks, e.g., Operations.

Flow allocation specifically maps flows in functional system representations to flows in structural system representations.

Flow between activities can either be control or object flow. The figures in the Usage Examples show concrete syntax for
how object flow is mapped to connectors on Activity Diagrams. Allocation of control flow is not specifically addressed
in SysML, but may be represented by relating an ItemFlow to the Control Flow using the UML relationship
InformationFlow.realizingActivityEdge.

Note that allocation of ObjectFlow to Connector isan Allocation of Usage, and does NOT imply any relation between any
defining Blocks of ObjectFlows and any defining associations of connectors.

The figures in the Usage Examples illustrate an available mechanism for relating the objectNode from an activity diagram
to the itemFlow on an internal block diagram. ItemFlow is discussed in Chapter 9, Ports and Flows.

Pin to Port allocation is not addressed in this release of SysML.

Structure allocation is associated with the concept of separate “logical” and “physical” representations of a system. It is
often necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it must then be mapped to another complete
assembly hierarchy at a more concrete level. The set of models supporting complex systems development may include
many of these levels of abstraction. This specification will not define “logical” or “physical” in this context, except to
acknowledge the stated need to capture allocation relationships between separate system representations.

Constraints
A single «allocate» dependency shall have only one client (from), but may have one or many suppliers (to).

If subtypes of the «allocate» dependency are introduced to represent more specialized forms of allocation, then they
should have constraints applied to supplier and client as appropriate.

15.3.2.2 Allocated(from Allocations)

Description

«allocated» is a stereotype that applies to any NamedElement that has at least one allocation relationship with another
NamedElement. «allocated» elements may be designated by either the /from or /to end of an «allocate» dependency.

The «allocated» stereotype provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any «allocate» dependency. This stereotype provides for the properties “allocatedFrom”
and “allocatedTo,” which are derived from the «allocate» dependency.

Attributes
The following properties are derived from any «allocate» dependency:

+ /allocatedTo:NamedElement[*]

OMG SysML™ | Version 1.1 133

The element types and names of the set of elements that are suppliers (“to” end of the concrete syntax) of an
«allocate» whose client is extended by this stereotype (instance). This property is the union of all suppliers to which
this instance is the client, i.e., there may be more than one /allocatedTo property per allocated model element. Each
allocatedTo property will be expressed as «elementType» ElementName.

« /allocatedFrom:NamedElement[*]

Reverse of allocatedTo: the element types and names of the set of elements that are clients (from) of an «allocate»
whose supplier is extended by this stereotype (instance). The same characteristics apply as to /allocatedTo. Each
allocatedFrom property will be expressed as «elementType» ElementName.

For uniformity, the «elementType» displayed for the /allocatedTo or /allocatedFrom properties should be from the
following list, as applicable. Other «elementType» designations may be used, if none of the below apply.

«activity», «objectFlow», «controlFlow», «objectNode»
«block», «itemFlow», «connector», «port», «flowPort», «atomicFlowPort», «interface», «value»

Note that the supplier or client may be an Element (e.g., Activity, Block), Property (e.g., Action, Part), Connector, or
Behavioral Feature (e.g., Operation). For this reason, it is important to use fully qualified names when displaying /
allocatedFrom and /allocatedTo properties. An example of a fully qualified name is the form
(PackageName::ElementName.PropertyName). Use of such fully qualified names makes it clear that the «allocate» is
referring to the definition of the element, or to its specific usage as a property of another element.

15.3.2.3 AllocateActivityPartition(from Allocations)

Description

AllocateActivityPartition is used to depict an «allocate» relationship on an Activity diagram. The
AllocateActivityPartition is a standard UML 2::ActivityPartition, with modified constraints as stated in the paragraph
below.

Constraints

An Action appearing in an «AllocateActivityPartition» will be the /supplier (from) end of an «allocate» dependency. The
element that represents the «AllocateActivityPartition» will be the /client (to) end of the same «allocate» dependency. In
the «AllocateActivityPartition» name field, Properties are designated by the use of a fully qualified name (including

colon, e.g., “part_name:Block_Name”), and Classifiers are designated by a simple name (no colons, e.g., “Block_Name”).

The «AllocateA ctivityPartition» maintains the constraints, but not the semantics, of the UML2::ActivityPartition.
Classifiers or Properties represented by an «AllocateActivityPartition» do not have any direct responsibility for invoking
behavior depicted within the partition boundaries. To depict this kind of direct responsibility, the modeler is directed to
the UML 2 Superstructure specification, Section 12.3.10, ActivityPartition, Semantics topic.

15.4 Usage Examples

The following examples depict allocation relationships as property callout boxes (basic), property compartment of a
Block (basic), and property compartments of Activities and Parts (advanced). Figure 15.3 shows generic allocation for
Blocks.

134 OMG SysML™ | Version 1.1

allocatedFrom

«elementType»Element2 Block1

allocatedTo

«elementType»Element3
4

allocatedFrom

, «elementType» Element2
7/
d

allocatedTo

«elementType»Element3

Block1

Figure 15.3 - Generic Allocation, including /from and /to association ends

15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks

Specific behavior allocation of Actions to Parts are depicted in Figure 15.4. Note that the AllocateActivityPartition, if
used in this manner, is unambiguously associated with behavior allocation.

allocatedFrom
«activity» Activity6

allocatedFrom

«elementType»Element2 /
allocatedTo / allocatedTo allocatedTo
«elementType»Element3 «block>» «block»Block4.Part5 «partsPart2:Blockl
7 Block4
// A 7 7
1 / ’
1
7
Block1 Part5 «activity» Action1
Activity6
<Blocks «allocate»
Part2:Blockl
Block1 Block4 _
«activity» Actionl
allocatedFrom Activity6
«elementType»Element2 parts allocatedFrom allocatedTo
allocatedTo allocatedFrom «block»Block4.Part5 «part»Part2:Blockl

«elementType»Element3 «activity»Activity 6

Figure 15.4 - Behavior allocation

OMG SysML™ | Version 1.1 135

15.4.2 Allocate Flow

Figure 15.5 shows flow allocation of ObjectFlow to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML.

ibd [block] BlockO [Example]y

act ActivityO [Examplelﬂ

ObjectFlow3
Actionl [|------7=+ | Action2
\\
|

allocatedTo

«connector»Connector8

|

«block»
Block5

allocatedFrom
«objectFlow»ObjectFlow3

Figure 15.5 - Example of flow allocation from ObjectFlow to Connector

act ActivityO [Examplezy

allocatedTo
«itemFlow»ltemFlow!

3

ObjectFlow3
Actionl [f---—-r—= | Action2
|
I
|

\
\
\
\
\\ Part6
Connector8
Part7
ibd [block] BlockO [Examplezy
«block»

Block5
allocatedFrom
«objectFlow»ObjectFlow3

\
\
\
\
\
\ Part6
\
\
\
ItemFlow9
Part7

Figure 15.6 - Example of flow allocation from ObjectFlow to ItemFlow

136

OMG SysML™ | Version 1.1

act ActivityO [Examplesj)

ObjectNode4

allocatedTo

«block»Block10

Actionl

Action2

allocatedTo
«block» Block6

bl
i)

allocatedTo

«block» Block7

bdd [block] BlockO [Examplesj)

«block»
Block5

«block»
Block 10

—t

allocatedFrom

«objectNode» ObjectNode4

«block» «block»
Block6 Block?7
out:Block10 in:Block10
allocatedFrom allocatedFrom
«activity» Activity 1 «activity» Activity2

Figure 15.7 - Example of flow allocation from ObjectNode to FlowProperty

15.4.2.1 Allocating Structure

Systems engineers have a frequent need to allocate structural model elements (e.g., blocks, parts, or connectors) to other
structural elements. For example, if a particular user model includes an abstract logical structure, it may be important to
show how these model elements are allocated to a more concrete physical structure. The need also arises, when adding

detail to a structural model, to allocate a connector (at a more abstract level) to a part (at a more concrete level).

Allocation]

ibd [package] Blockl [Abstract to Concrete Structural)

«block»
AbstractExample

Part2

Part3

«block»
ConcreteExample

__| —«allocate»

cktrA

[\

—«allocate» __|

__«allocate» -
— «allocate» +
«allocate»

Figure 15.8 - Example of

Structural Allocation

OMG SysML™ | Version 1.1

137

15.4.2.2 Automotive Example

Example: consider the functions required to portion and deliver power for a hybrid SUV. The activities for providing
power are allocated to blocks within the Hybrid SUV, as shown in Figure 15.9. This example is consistent with Sample
Problem.

w(UzerDefined) Swimlane Diagrams
act ProvidePower [with Swimlane Allecation]
2 i
o ‘3-’*| ety aallocates uallocates wallocaten |
PoverControll nit InternalC ombustionEngi | ElectricalPowerContr | Electricald otorGener
| ne oller ator |
wcontinuousy | | wcontinuousy
zed asDiriveP over
i a2 ProvideGas | g
| Power |
wconfinuouse | wcontinuousy
vehCond ; ad Provide drivePower
| acontinuouss Ela;ﬁo;trol ElectricPower |
| gThrottle CRCwer
wcontinuouse | wcontinuousy
battC ond | elecl riveP ower
acontinuouss wcontinuouss |
| eThrottle driveCurrent
at:Proportion |
| Pover ——]| /
'‘—‘—-—-—-—‘,L.________________‘_‘_‘_‘_‘_ |
wcontinuousy //’flfﬂ / ‘—‘—'—-—-—._._________}
B | 7 | transil odeC md
gllocatedTo |
|\ tenF ot :EIedric:CurrentB‘ ; ke
U G SN S SN G S SN SR Sl i v oww g soew Sha o b sy oo o P

Figure 15.9 - AllocateActivityPartitions (Swimlanes) for HybridSUV Accelerate Example

138 OMG SysML™ | Version 1.1

ibd [block] PowerSubsystem [Power Functional AIIocation])

version="0.1"
description="allocation of
behavior and connectors to

/

«diagramDescriptions |\

7

allocatedFrom
«objectNodex»driveCurrent

ecu:PowerControlUnit

allocatedFrom

«activity»Proportion
PowerLoad

ice:IFS_ICE
etrsm:IFS_TRSM

«connector»cl:
«connector»c2:
«connector»c3:

\

elements of power subsystem" . ; . ;
reference="null" epc.ECIectnc:;}IPower P—L—éemg.glectncalMotor
completeness="partial. Power ontroller o Eloctri A Elect enerator
subsystem elements that have allocatedFrom ! ('Zu;ergrqtc I C'usrgrrwltc alocetedrrom
no allocation yet have been -
elided” g «activity»Control «activity»Convert
ElectricPower ElectricT oPower
A1
fp:FS_EPC
can:CAN_Bus fp:FS_TRSM o
trsm:Transmission
allocatedFrom

fp:FS_ICEé ice:InternalCombustionEngine

«activity»ConvertGasToPower

allocatedFrom

Figure 15.10 - Internal Block Diagram Showing Allocation for HybridSUV Accelerate Example

15.4.3 Tabular Representation

The table shown in Figure 15.11 is provided as a specific example of how the «allocate» dependency may be depicted in
tabular form, consistent with the automotive example above.

table [activity] ProvidePower [Allocation Tree for Provide Power)
Activities]

type name end |relation end |type name
actiuty al:ProportionP ower from |allocate to block PowerControlUnit
activty a2:ProvideGas Power from |allocate to |block Internal CombustionE ngine
activty a3:ControlElectricPower |from [allocate to |block ElectricalP owerController
activty a4:ProvideElectricPower |from [allocate to |block ElectricalMotorGenerator
objectNode |drive Current from |allocate to itemFlow|il1:ElectricCurrent

Figure 15.11 - Allocation Table (Tree) Showing Allocation for Hybrid SUV Accelerate Example

OMG SysML™ | Version 1.1

139

The allocation table can also be shown using a sparse matrix style as in the following example shown in Figure 15.12

matrix [activity] ProvidePower [Allocation Tree for Provide Power Activitiesy
Source Target
PowerControlUnit InternalCombu | Electrical ElectricalMo | 11:ElectricC
stionEngine PowerContr | torGenerator | urrent
oller
Al:ProportionPower dlocate
A2:ProvideGasPower allocate
A3:ControlElectricPo allocate
wer
A4:ProvideElectri Pow allocate
er
driveCurrent alocate

Figure 15.12 - Allocation Matrix Showing Allocation for Hybrid SUV Accelerate Example

140 OMG SysML™ | Version 1.1

16 Requirements

16.1 Overview

A requirement specifies a capability or condition that must (or should) be satisfied. A requirement may specify afunction
that a system must perform or a performance condition a system must achieve. SysML provides modeling constructs to
represent text-based requirements and relate them to other modeling elements. The requirements diagram described in this
chapter can depict the requirements in graphical, tabular, or tree structure format. A requirement can also appear on other
diagrams to show its relationship to other modeling elements. The requirements modeling constructs are intended to
provide a bridge between traditional requirements management tools and the other SysML models.

A requirement is defined as a stereotype of UML Class subject to a set of constraints. A standard requirement includes
properties to specify its unique identifier and text requirement. Additional properties such as verification status, can be
specified by the user.

Several requirements relationships are specified that enable the modeler to relate requirements to other requirements as
well as to other model elements. These include relationships for defining a requirements hierarchy, deriving requirements,
satisfying requirements, verifying requirements, and refining requirements.

A composite requirement can contain subrequirements in terms of a requirements hierarchy, specified using the UML
namespace containment mechanism. This relationship enables a complex requirement to be decomposed into its
containing child requirements. A composite requirement may state that the system shall do A and B and C, which can be
decomposed into the child requirements that the system shall do A, the system shall do B, and the system shall do C. An
entire specification can be decomposed into children requirements, which can be further decomposed into their children
to define the requirements hierarchy.

Thereis areal need for requirement reuse across product families and projects. Typical scenarios are regulatory, statutory,
or contractual requirements that are applicable across products and/or projects and requirements that are reused across
product families (versions/variants). In these cases, one would like to be able to reference a requirement, or requirement
set in multiple contexts with updates to the original requirements propagated to the reused requirement(s).

The use of namespace containment to specify requirements hierarchies precludes reusing requirements in different
contexts since a given model element can only exist in one namespace. Since the concept of requirements reuse is very
important in many applications, SysML introduces the concept of a slave requirement. A slave requirement is a
requirement whose text property is aread-only copy of the text property of a master requirement. The text property of the
slave requirement is constrained to be the same as the text property of the related master requirement. The master/slave
relationship is indicated by the use of the copy relationship.

The “derive requirement” relationship relates a derived requirement to its source requirement. This typically involves
analysis to determine the multiple derived requirements that support a source requirement. The derived requirements
generally correspond to requirements at the next level of the system hierarchy. A simple example may be a vehicle
acceleration requirement that is analyzed to derive requirements for engine power, vehicle weight, and body drag.

The satisfy relationship describes how a design or implementation model satisfies one or more requirements. A system
modeler specifies the system design elements that are intended to satisfy the requirement. In the example above, the
engine design satisfies the engine power requirement.

OMG SysML™ | Version 1.1 141

The verify relationship defines how a test case or other model element verifies a requirement. In SysML, atest case or
other named element can be used as a general mechanism to represent any of the standard verification methods for
inspection, analysis, demonstration, or test. Additional subclasses can be defined by the user if required to represent the
different verification methods. A verdict property of atest case can be used to represent the verification result. The
SysML test case is defined consistent with the UML testing profile to facilitate integration between the two profiles.

The refine requirement relationship can be used to describe how a model element or set of elements can be used to further
refine a requirement. For example, a use case or activity diagram may be used to refine a text-based functional
requirement. Alternatively, it may be used to show how a text-based requirement refines a model element. In this case,
some elaborated text could be used to refine a less fine-grained model element.

A generic trace requirement relationship provides a general-purpose relationship between a requirement and any other
model element. The semantics of trace include no real constraints and therefore are quite weak. As aresult, it is
recommended that the trace relationship not be used in conjunction with the other requirements relationships described
above.

The rationale construct that is defined in Chapter 7, “Model Elements’ is quite useful in support of requirements. It
enables the modeler to attach a rationale to any requirements relationship or to the requirement itself. For example, a
rationale can be attached to a satisfy relationship that refers to an analysis report or trade study that provides the
supporting rationale for why the particular design satisfies the requirement. Similarly, this can be used with the other
relationships such as the derive relationship. It also provides an alternative mechanism to capture the verify relationship
by attaching arationale to a satisfy relationship that references a test case.

Modelers can customize requirements taxonomies by defining additional subclasses of the Requirement stereotype. For
example, a modeler may want to define requirements categories to represent operational, functional, interface,
performance, physical, storage, activation/deactivation, design constraints, and other specialized requirements such as
reliability and maintainability, or to represent a high level stakeholder need. The stereotype enables the modeler to add
constraints that restrict the types of model elements that may be assigned to satisfy the requirement. For example, a
functional requirement may be constrained so that it can only be satisfied by a SysML behavior such as an activity, state
machine, or interaction. Some potential Requirement subclasses are defined in Annex C: Non-normative Extensions.

142 OMG SysML™ | Version 1.1

16.2 Diagram Elements

16.2.1 Requirement Diagram

Table 16.1 - Graphical nodes included in Requirement diagrams

Node Name Concrete Syntax

Requirement Diagram

Abstract Syntax Reference
SysML::Requirements::

_ Requirement, SysML::
req ReqDiagram , M odelElements: : Package

Requirement SysML::Requirements::
Requirement
«requirement»
Requirement name
text="The system shall do”
1d="62j32."
TestCase SysML::Requirements::
TestCase
«testCase»
TestCaseName

OMG SysML™ | Version 1.1 143

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference
Requirement UML4SysML::
containment NestedClassifier
relationship «requirement»
Parent
<<requirement>> <<requirement>>
Child1 Child2
CopyDependency SysML::Requirements:
Copy
«requirement> | . «requirement»
Slave copy =] Master
M aster Callout SysML::Requirements::
Copy
Master :
«requirement»Master [<<requirement>>Slave
Derive SysML::Requirements:
Dependency DeriveReqt
«requirement» | : | «requirement»
Client <<deriveReqt>> Supplier
DeriveCallout SysML::Requirements:
N DeriveReqt
«requirement» | Derived
RegA «requirement» ReqB
Derivedfrom | | <<requirement>>
«requirement» RegA RegB
Satisfy SysML::Requirements::
Dependency Satisfy
L . . «requirement»
NamedElement <<satisfy>> — > Supplier
144 OMG SysML™ | Version 1.1

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference
SatisfyCallout SysML::Requirements::
Satisf
Satisfies = ’
NamedElement |- ——-—-——-—-~ «requirement» RegA
SatisfieaBy | <<requirement>>
NamedElement RegA
Verify SysML::Requirements::
Dependency _ Verify
NamedElement —--—— «verify»———— = «requirement>
Supplier
VerifyCallout SysML::Requirements::
Verif
Verifies . ’
NamedElement -———————---—+ «requirement» RegA
verifieaBy | «requirement»
NamedElement RegA
Refine UML4SysML ::Refine
Dependency
L wrafinas— =~ <requirement»
NamedElement «refine» = Client
RefineCallout UML4SysML ::Refine
Refines =
NamedElement |- ———--— «requirement» RegA
RefineaBy |] <<requirement>>
NamedElement RegA

OMG SysML™ | Version 1.1

Table 16.2 - Graphical paths included in Requirement diagrams

Path Type Concrete Syntax Abstract Syntax
Reference
Trace UML4SysML::Trace
Dependenc
® 4 «requirement» t «requirement»

Client T race»— —=> Supplier

TraceCallout UMLA4SysML::Trace
AN
TracedFrom

NamedElement - ———--— «requirement» RegA

TracedTo | | «requirement»
NamedElement RegA

16.3 UML Extensions

16.3.1 Diagram Extensions

16.3.1.1 Requirement Diagram

The Requirement Diagram can only display requirements, packages, other classifiers, test cases, and rationale. The
relationships for containment, deriveReqt, satisfy, verify, refine, copy, and trace can be shown on a requirement diagram.
The calout notation can also be used to reflect the relationship of other model elements to a requirement.

16.3.1.2 Requirement Notation

The requirement is represented as shown in Table 16-1. The «requirement» compartment label for the stereotype
properties compartment (e.g., id and text) can be elided.

16.3.1.3 Requirement Property Callout Format

A callout notation can be used to represent derive, satisfy, verify, refine, copy, and trace relationships as indicated in
Table 16.2. For brevity, the «elementType» may be elided.

16.3.1.4 Requirements on Other Diagrams
Requirements can also be represented on other diagrams to show their relationship to other model elements. The

compartment and callout notation described in 16.3.1.2 and 16.3.1.3 can be used. The callouts represent the requirement
that is attached to another model element such as a design element.

146 OMG SysML™ | Version 1.1

16.3.1.5 Requirements Table

The tabular format is used to represent the requirements, their properties and relationships, and may include:
* Requirements with their propertiesin columns.
¢ A column that includes the supplier for any of the dependency relationships (Derive, Verify, Refine, Trace).
e A column that includes the model elements that satisfy the requirement.

« A column that represents the rationale for any of the above relationships, including reference to analysis reports for
trace rationale, trade studies for design rationale, or test procedures for verification rationale.

The relationships between requirements and other objects can also be shown using a sparse matrix style that is similar to
the table used for allocations (Section 15.4.3, “Tabular Representation™). The table should include the source and target
elements names (and optionally kinds) and the requirement dependency kind.

table [requirement] Performance [Decomposition of Performance Requirementy

id |name text
The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better

2|Performance fuel economy.
The Hybrid SUV shall have the braking capability of a typical
2.1|Braking SUV.
The Hybrid SUV shall have dramatically better fuel economy
2.2|FuelEconomy than a typical SUV.

The Hybrid SUV shall have the off-road capability of a
2.3|OffRoadCapability |typical SUV.
The Hybrid SUV shall have the acceleration of a typical

2.4|Acceleration Suv.
table [requirement] Performance [Tree of Performance Requirements] /
id [name relation id [name relation |id name
2.1 |Braking deriveReqt |d.1 |RegenerativeBraking
2.2 |FuelEconomy deriveReqt |d.1 |RegenerativeBraking
deriveReqt |d.2 |Range
4.2 |FuelCapacity deriveReqt |d.2 |Range
2.3 |OffRoadCapability |deriveReqt [d.4 |Power deriveReqt |d.2 |PowerSourceManagement
2.4 |Acceleration deriveReqt |d.4 |Power deriveReqt |d.2 |PowerSourceManagement
4.1 |CargoCapacity deriveReqt |d.4 |Power deriveReqt |d.2 |PowerSourceManagement

OMG SysML™ | Version 1.1 147

16.3.2 Stereotypes

Package Requirements

«stereotype»
UML4SysML::Trace

«stereotype» «stereotype» «stereotype» «stereotype»
DeriveReqt Verify Copy Satisfy
«metaclass» «metaclass» «metadass» «enumeration»
UML4SysML::Class UML4SysML: :Operation UML4SysML ::Behavior VerdictKind
pass
fail
inconclusive
error
«stereotype»
Requirement
text: String
id: String «stereotype»
/derived: Requirement [*] TestCase
/derivedFrom Requirement [*]

/satisfiedBy : NamedElement [*]
/refinedBy: NamedElement [*]
/tracedTa NamedElement [*]
IverifiedBy: NamedElement [*]
/master: Requirement[0..1]

Figure 16.1 - Abstract Syntax for Requirements Stereotypes

148 OMG SysML™ | Version 1.1

«metadass»
UML4SysML: :Named Element

«stereotype»
RequirementRelated

ltracedFrom: Requirement [*]

/satisfies: Requirement [*]
Irefines: Requirement [*]

Iverifies: Requirement [*]

Figure 16.2 - Abstract Syntax for Requirements Stereotypes (cont)
16.3.2.1 Copy

Description

A Copy relationship is a dependency between a supplier requirement and a client requirement that specifies that the text
of the client requirement is a read-only copy of the text of the supplier requirement.

A Copy dependency created between two requirements maintains a master/slave relationship between the two elements
for the purpose of requirements re-use in different contexts. When a Copy dependency exists between two reguirements,
the requirement text of the client requirement is a read-only copy of the requirement text of the requirement at the
supplier end of the dependency.

Constraints

[1] A Copy dependency may only be created between two classes that have the “requirement” stereotype, or a subtype of the
“requirement” stereotype applied.

[2] If the supplier requirement has subrequirements, copies of the subrequirements are made recursively in the context of the
client requirement and Copy dependencies are created between each subrequirement and the associated copy.

[3] Thetext property of the client requirement is constrained to be aread-only copy of the text property of the supplier
reguirement.

[4] Constraint [3] isapplied recursively to al subrequirements.
16.3.2.2 DeriveReqt

Description

A DeriveReqt relationship is a dependency between two requirements in which a client requirement can be derived from
the supplier requirement. For example, a system requirement may be derived from a business need, or lower-level
requirements may be derived from a system requirement. As with other dependencies, the arrow direction points from the
derived (client) requirement to the (supplier) requirement from which it is derived.

Constraints

[1] The supplier must be an el ement stereotyped by «requirement> or one of «requirement» subtypes.

OMG SysML™ | Version 1.1 149

[2] The client must be an element stereotyped by «requirement» or one of «requirement» subtypes.
16.3.2.3 Requirement

Description

A requirement specifies a capability or condition that must (or should) be satisfied.. A requirement may specify a function
that a system must perform or a performance condition that a system must satisfy. Requirements are used to establish a
contract between the customer (or other stakeholder) and those responsible for designing and implementing the system.

A requirement is a stereotype of Class. Compound reguirements can be created by using the nesting capability of the class
definition mechanism. The default interpretation of a compound requirement, unless stated differently by the compound
requirement itself, is that all its subrequirements must be satisfied for the compound requirement to be satisfied.
Subreguirements can be accessed through the “nestedClassifier” property of a class. When a requirement has nested
requirements, all the nested requirements apply as part of the container requirement. Deleting the container requirement
deleted the nested regquirements, a functionality inherited from UML.

Attributes

e text: String

The textual representation or areference to the textual representation of the requirement.
e id: String

The unique id of the requirement.

o /satisfiedBy: NamedElement [*]
Derived from all elements that are the client of a «satisfy» relationship for which this requirement is a supplier.

¢ JverifiedBy: NamedElement [*]
Derived from all elements that are the client of a «verify» relationship for which this requirement is a supplier.

 [tracedTo: NamedElement [*]
Derived from all elements that are the client of a «trace» relationship for which this requirement is a supplier.

¢ /derived: Regquirement [0..1]
Derived from all requirements that are the client of a «deriveReqt» relationship for which this requirement is a
supplier.

¢ /derivedFrom: Requirement [*]
Derived from al requirements that are the supplier of a «deriveReqt» relationship for which this requirement isa
client.

e /refinedBy: NamedElement [*]
Derived from all elements that are the client of a «refine» relationship for which this requirement is a supplier.

¢ /master: Requirement [0..1
Thisisaderived property that lists the master requirement for this slave requirement. The master attribute is derived
from the supplier of the Copy dependency that has this requirement as the slave.
Constraints
[1] The property “ownedOperation” must be empty.
[2] The property “ownedAttribute” must be empty.
[3] Classes stereotyped by «requirement» may not participate in associations.

150 OMG SysML™ | Version 1.1

[4] Classes stereotyped by «requirement» may not participate in generalizations.
[5] A nested classifier of aclass stereotyped by «requirement» must also be stereotyped by «requirement.

16.3.2.4 RequirementRelated

Description

This stereotype is used to add properties to those elements that are related to requirements via the various dependencies
described in Figure 16.1. The property values are shown using callout notation (i.e., notes) as shown in the diagram
element table.

Attributes

 [tracedFrom: Requirement [*]
Derived from all requirements that are the supplier of a «trace» relationship for which this element isa client.

» /satisfies: Requirement [*]
Derived from al requirements that are the supplier of a «satisfy» relationship for which this element is a client.

» /refines: Requirement [*]
Derived from al requirements that are the supplier of a «refine» relationship for which this element is a client.

e Jverifies: Requirement [*]
Derived from al requirements that are the supplier of a «verify» relationship for which this element isaclient.

16.3.2.5 TestCase
Description

A test case is a method for verifying a requirement is satisfied.

Constraints

[1] Thetype of return parameter of the stereotyped model element must be VerdictKind. (note thisis consistent with the UML
Testing Profile).

16.3.2.6 Satisfy

Description

A Satisfy relationship is a dependency between a requirement and a model element that fulfills the requirement. As with
other dependencies, the arrow direction points from the satisfying (client) model element to the (supplier) requirement
that is satisfied.

Constraints

[1] The supplier must be an element stereotyped by «regquirement» or one of «requirement» subtypes.

OMG SysML™ , Version 1.1 151

16.3.2.7 Verify

Description

A Verify relationship is a dependency between a requirement and a test case or other model element that can determine
whether a system fulfills the requirement. As with other dependencies, the arrow direction points from the (client)
element to the (supplier) requirement.

Constraints

[1] The supplier must be an element stereotyped by «requirement» or one of «requirement» subtypes.

16.4 Usage Examples

All the examples in this chapter are based on a set of publicly available (on-line) requirement specifications from the
National Highway Traffic Safety Administration (NHTSA.) Excerpts of the original requirement text used to create the
models are shown in Figure 16.3. The name and ID of these requirements are referred to in the SysML usage examples
that follow. See NHTSA specification 49CFR571.135 for the complete text from which these examples are taken.

16.4.1 Requirement Decomposition and Traceability

The diagram in Figure 16.3 shows an example of a compound requirement decomposed into multiple subrequirements.

req Safety test J
areguirements

Adhesion utilization

crequirements id = "57.4"
ASTM R1337-00 wrequirements tewt =",
— - Pavement friction
id ="A. 24241 wreguirements
text = “This test method covers id="8621" Vehicle conditions
the measuremeant of peak text = “The road test -
braking coefficient of paved surface produces 3Ff33k id = "57.4.2°
friction coefficient (PFC) of text =" "

surfaces using a standard -

: 7 i
reference test tire (SRTT) as Ef meﬁcr::agsé"&ﬁ I

described in Specification «dériveFleqia Testing and Materials e
E 1136 that represents current et (ASTM) E1136 standard «deriveReqts

wrequirements
Test and procedure conditions

w

technology passenger car *- | reference test lire, In .
radial tes.” accordance with ASTM] =57 4.3
Method E 1337-90, ° o N
text = “(a) IBT: 565 “C {149 °F), =100
“C (212 °F).

(b) Test surface: PFC of at kkast 0.9.7

Figure 16.3 - Requirements Derivation

16.4.2 Requirements and Design Elements

The diagram in Figure 16.4 shows derived requirements and refers to the design elements that satisfy them. The rationae
is also shown as a basis for the design solution.

152 OMG SysML™ | Version 1.1

req MasterCylinderSafety)

Decelerate Car

sz .
pid «refine»

2

«rationale»
body = “This design of the brake

requirements.”

«requirement»
Master Cylinder Efficacy

assembly satisfies the federal safety

«block»
BrakeSystem

f: FrontBrake

id =S5.4.1"

text ="A master cylinder shall have a reservoir
compartment for each service brake
subsystem serviced by the master cylinder.
Loss of fluid from one compartment

shall not result in a complete loss of

brake fluid from another compartment.”

/ . —
/ _«satisfy»~
L

«deriveReqt>»
/

«\deriveReqt»

-~

«requirement»
LossOfFluid

«requirement»
Reservoir

id="S5.4.1a"
text ="Prevent complete loss of fluid”

id =“S5.4.1b”
text = "Separate reservoir compartment”

SatisfiedBy
BrakeSystem::m

«rationale»

body = “The best-practice
solution consists in using a set of
springs and pistons to confine the
loss to a single compartment”

r: Rear Brake
11: BrakeLine
- 12: BrakeLine
m: MasterCylinder

activateBrake()
releaseBrake()

«rationale»
body = “The best-practice
solution consists in assigning
one reservoir per brakeline.”

-
~
~
~
~
~

SatisfiedBy
BrakeSystem::11
BrakeSystem::I2

OMG SysML™ , Version 1.1

Figure 16.4 - Links between requirements and design

153

ibd BrakeSystem J

f: FrontBrake r: RearBrake
1 r Satisfies
i i «requirement» MasterCylinderSafety::Reservoir
L] [e T
——————————————————— /'/—/
I1: BrakeLine |- 12: BrakeLine //""/
[] 1
E E
) Safisfies
m: MasterCylinder ~ «requirement»
MasterCylinderSafety::LossOf Fluid

Figure 16.5 - Requirement satisfaction in an internal block diagram.

16.4.3 Requirements Reuse

Figure 16.6 illustrates the use of the Copy dependency to allow a single requirement to be reused in several requirements

hierarchies. The master tag provides a textual reference to the reused requirement.

req Safety Reuse J

«requirement»
Hybrid Engine A type

«requirement»
Hybrid Engine B type

ﬁ

éﬁ

«requirement»
Safety Requirements
for type A

«requirement»
Shared Safety
Requirements

master=NHTSASafety
Requirements

~
~

~
~< _ «copy»

~
~ -
~ ~
~ -

<
A

«requirement»
Shared Safety
Requirements

master=NHTSASafety
Requirements

-
-
-

«copy» -~
-

-
-

«requirement»

NHTSASafetyRequirements

id="157.135"
text="..."

«requirement»
Safety Requirements
for type B

Figure 16.6 - Use of the copy dependency to facilitate reuse

154

OMG SysML™ | Version 1.1

16.4.4 Verification Procedure (Test Case)

The example diagram in Figure 16.7 shows how a complex test case, in this example a performance test for a passenger-
car brake system, given as a set of stepsin text form (see part of the procedure text at the upper right-handside corner of
the figure), can be described using another type of diagram representation. The performance test, modeled as a Test Case
is linked to a requirement using the «verify»» relationship. Note that the modeling of test case can also be addressed using
the UML Testing Profile, available from the Object Management Group.

req BumishSafety J

wrequirements
NHTSASafetyRequirements

RefinedB
id = 157.135" ot j

now «tesiCasesBurnishTest
texl ="..

K9

\l\ | "\\

. araguiremeantys
1t1-x deriveReqts Burnish
| id="57.1"
\ text ="(a) IBT: =100 °C (212
4 °F), (b} Test spead: 80 km/h

wraguirements {49.7 mph), (c) Padal force:
RoadTestSequence Adjust as necessary to
id="5a1" maintain specified constant
laxt="" decealeration rate”

Figure 16.7 - Linkage of a Test Case to a requirement: This figure shows the Requirement Diagram

OMG SysML™ , Version 1.1 155

sm <<testCase>> BurnishTest)

Refines
<<requirement>>Burnish

[Speed=80]

Accelerate

[count < 200]

Initial
condition

[count=200]

Adjust

[IBT=100 or
d >=2 km]

brake

O

Figure 16.8 - Linkage of a Test Case to a requirement: This figure shows the Test Case as a State Diagram

156

OMG SysML™ | Version 1.1

17 Profiles & Model Libraries

17.1 Overview

The Profiles package contains mechanisms that allow metaclasses from existing metamodels to be extended to adapt them
for different purposes. This includes the ability to tailor the UML metamodel for different domains. The profiles
mechanism is consistent with the OMG Meta Object Facility (MOF). SysML has added some notational extensions to
represent stereotype properties in compartments as well as notes.

The stereotype is the primary mechanism used to create profiles to extend the metamodel. Stereotypes are defined by
extending a metaclass, and then have them applied to the applicable model elements in the user model. A stereotype of a
requirement could be extended to create a «functional Requirement» as described in Annex C: Non-normative Extensions.
This would allow specific properties and constraints to be created for a functional requirement. For example, a functional
requirement may be constrained such that it must be satisfied by an operation or behavior. When the stereotype is applied
to a requirement, then the requirement would include the notation «functional Requirement» in addition to the name of the
particular functional requirement. Extending the metaclass requirement is different from creating a subclass of
requirement called functional Requirement.

The Usage Examples section provides guidance both on how to use existing profiles and how to create new profiles. In
addition, the examples provide guidance on the use of model libraries. A model library is a library of model elements
including class and other type definitions that are considered reusable for a given domain. This guidelines can be applied
to further customize SysML for domain specific applications such as automotive, military, or space systems.

OMG SysML™ , Version 1.1 157

17.2 Diagram Elements

17.2.1 Profile Definition in Package Diagram

Table 17.1 - Graphical nodes used in profile definition

Node Name Concrete Syntax Abstract Syntax Reference
Sereotype UMLA4SysML ::Sereotype
«stereotype»
StereotypeName
Metaclass UML4SysML::Class

«metaclass»
MetaClassName

Profile UML4SysML::Profile
]
«profile»
ProfileName
Model Library UML::SandardProfilel. 2
]

«modelLibrary»
LibraryName

158 OMG SysML™ | Version 1.1

Table 17.2 - Graphical paths used in profile definition

Path Name Concrete Syntax Abstract Syntax Reference
Extension UML4SysML::Extension
«metaclass»
MetaClassName
required
}
«stereotype»
StereotypeName
Generalization UML4SysML ::Generalization
«stereotype»
StereotypeName
«stereotype»
StereotypeName
ProfileApplication UML4SysML::ProfileApplication
«apply»{strict}
M etamodel Refer ence UML4SysML ::Packagel mport;
UML4SysML::Elementlmport
 «eference»
Unidirectional UML4SysML ::Association
Association
propertyName

NOTE: In the above table, boolean properties can alternatively be displayed as BooleanPropertyName=[True|Fal se].

OMG SysML™ , Version 1.1 159

17.2.1.1 Extension

In Figure 17.1, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class and describes a clock software component for an embedded software system. It has description of the operating
system version supported, an indication of whether it is compliant to the POSIX operating system standard and a
reference to the operation that starts the clock.

«metaclass»
Class

«stereotype»
Clock

Figure 17.1 - Defining a stereotype

160

OSVersion:String
startOperation:Operation
POSIXCompliant:Boolean

OMG SysML™ | Version 1.1

17.2.2 Stereotypes Used On Diagrams

Table 17.3 - Notations for Stereotype Use

Node Name

Concrete Syntax

Abstract Syntax Reference

StereotypeNote

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

Element Element
Name PathName Name

UMLA4SysML::Element

StereotypeNote

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

Element
Name

UML4SysML::Element

SereotypelnNode

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}
NodeName

UML4SysML::Element

Stereotypel nCompartment
Element

NodeName

«stereotypeName»{PropertyName=ValueString}ElementName
«stereotypeName»{PropertyName=ValueString;
BooleanPropertyName}

ElementName

UML4SysML::Element

StereotypeOnEdge

Element
Name

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}PathName

Element
Name

UMLA4SysML::Element

OMG SysML™ , Version 1.1

161

Table 17.3 - Notations for Stereotype Use

Node Name Concrete Syntax Abstract Syntax Reference
Sereotype UML4SysML ::Element
Compartment «stereotypeName»
NodeName
«stereotypeName»

PropertyName=ValueString

MultiPropertyName=ValueString,
ValueString

BooleanPropertyName

17.2.2.1 StereotypelnNode

Figure 17.2 shows how the stereotype Clock, as defined in Figure 17.1, is applied to a class called AlarmClock.

«clock»
{POSIXCompliant}
AlarmClock

Start()

Figure 17.2 - Using a stereotype

17.2.2.2 StereotypelnComment

When, two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 17.3, the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

«clock»
«clock,creator» OSVersion=2.5
StopWatch || startOperation=Click
«creator»
i name="Jones"
cl ICk() date="04-04-04"

Figure 17.3 - Using stereotypes and showing values

162 OMG SysML™ | Version 1.1

17.2.2.3 StereotypelnCompartment

Finally, the compartment form is shown.

AlarmClock

Start()

«clock»
OSVersion="3.4"
startOperation=Start
POSIXCompliant=True

Figure 17.4 - Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called Start. Note
that multiple stereotypes can be shown using multiple compartments.

17.3 UML Extensions

None.

17.4 Usage Examples

17.4.1 Defining a Profile

pkg User Profile Definition

«metamodels I _ aprofiles
UML4SysML o T—— SysML
dimports
wprofiles
SE Toolkit

Figure 17.5 - Definition of a profile

OMG SysML™ , Version 1.1 163

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it can
build upon the stereotypes it contains. The set of metaclasses available to users of the SysML profile is identified by a
reference to a metamodel, in this case a subset of UML specific to SysML. The SE Toolkit can extend those metaclasses
from UML that the SysML profile references.

17.4.2 Adding Stereotypes to a Profile

pkg SEToolkit J

«metadass» «metaclass» «stereotype» «stereotype»
Named Element DirectedRelationship Block Requirement
? ﬁ isEncapsulated: Boolean
figuration Bunctional
Configurationltem «stereotype» «stereotype» :
System Context Requirement
author : String Y
version: String
lastChanged : Date
function
«metaclass»
Behavior

Figure 17.6 - Profile Contents

In SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by configurationltem, is
called an extension, shown by aline with a filled triangle; this relates a stereotype to a reference (called base) class or
classes, in this case NamedElement and DirectedRelationship from UML and adds new properties that every
NamedElement or DirectedRelationship stereotyped by configurationltem must have. NamedElement and
DirectedRelationship are abstract classesin UML so it is their subclasses that can have the stereotype applied. The second
mechanism is demonstrated by the system and context stereotypes which are sub-stereotypes of an existing SysML
stereotype, Block; sub-stereotypes inherit any properties of their super-stereotype and also extend the same base class or
classes. Note that TypedElements whose type is extended by «system» do not display the «system» stereotype; this also
applies to InstanceSpecifications. Any notational conventions of this have to be explicitly specified in a diagram
extension.

There is also an example of how stereotypes (in this case Functional Requirement) can have unidirectional associations to
metaclasses in the reference metamodel (in this case Behavior).

164 OMG SysML™ | Version 1.1

17.4.3 Defining a Model Library that Uses a Profile

pkg [profile] SETooIkit)

«modelLibrary»
Sl Definitions

A
«modelLibrary» «import» |
Sl Value Types i

«modelLibrary»
«valueType» .
Real Physical

A «block»

PhysicalObject

density: SIDensity

«import» volume: SIVolume
. supplier: String
SIVolume SIDensity SiLength modelNumber: String
serialNumber: String
«valueType» «valueType» «valueType» lotNumber: String
unit= CubicMeter unit = KilogramPerCubicMeter unit = Meter

Figure 17.7 - Two model libraries

The model library Sl Value Types imports a model library called Sl Definitions, so it can use model elements from them
in its own definition. It defines value types having specific units which can be used when property values are measured in
Sl units. Sl Definitions is a separately published model library, containing definitions of standard Sl units and dimensions
such as shown in Annex C, Section C.4. A further model library, Physical, imports SI Value Types so it can define
properties that have those types. One model element, Physical Object, is shown, a block that can be used as a supertype
for an physical object.

17.4.4 Guidance on Whether to Use a Stereotype or Class

This section provides guidance on when to use stereotypes. Stereotypes can be applied to any model element.
Stereotyping a model element allows the model element to be identified with the «guillemet» notation. In addition, the
stereotyped model element can have stereotype properties, and the stereotype can specify constraints on the model
element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One reason
is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are different from
properties of classes. Stereotype properties represent properties of the class that are not instantiated and therefore do not
have a unique value for each instance of the class, although a class thus stereotyped can have a separate value for the

property.

SE Toolkit::functional Reguirement, which extends Class through its superstereotype, Requirement, is an example where a
stereotype is appropriate because every modeling element stereotyped by SE Toolkit::functional Requirement has a

reference to another modeling element. In another example, SE Toolkit::configurationltem defined above, which applies
to classes amongst other concepts, is a stereotype because its properties characterize the author, version, and last changed

OMG SysML™ , Version 1.1 165

date of the modeling element themselves. One test of this is whether the new properties are inheritable; in this case
author, version, and last-changed date are not, because it is only those classes under configuration control that need the
properties. To summarize, in the following circumstances a stereotype is appropriate:

¢ Where the model concept to be extended is not a class or class-based.
« Where the extensions include properties that reference other model elements.

Where the extensions include properties that describe modeling data, not system data.

An example where a class is more appropriate is Physical Object from Figure 17.7. In this case, the properties density and

volume, and the component numbers, have distinct values for each system element described by the class, and are
inherited by every subclass of PhysicalObject.

17.4.5 Using a Profile

pkg ModelingDomain [Establishing HSUV Model]/

«profile»
SysML N

N

!

\
\
\

\\\«apply» {strict}

\\\ «apply»
\ {strict}

«modelLibrary» «import»
Sl Definitions HSUVModel

Figure 17.8 - A model with applied profile and imported model library

The HSUVMode is a systems engineering model that needs to use stereotypes from SysML. It therefore needs to have
the SysML profile applied to it. In order to use the predefined Sl units, it aso needs to import the Sl Definitions model
library. Having done this, elements in HSUVModel can be extended by SysML stereotypes and types like SIVolume can

be used to type properties. Both the Sl Definitions model library and HSUVModel have applied the profile strictly which
means that only those metaclasses directly referenced by SysML can be used in those models.

166

OMG SysML™ | Version 1.1

17.4.6 Using a Stereotype

req HSUVRequirementy

«functionalRequirement»
«configurationltem»

«functionalRequirement»
text="The car must stop within
100 feet from 20 mph"
id="102.1"
function=StopCar

StoppingDistance . -

«configurationltem»
author="Jones"
version="1.2"
date="04-04-04"

Figure 17.9 - Using two stereotypes on a model element

StoppingDistance has two stereotypes applied: functional Requirement, which identifies it as a requirement that is satisfied

by a function, and configurationltem, which allows it to have configuration management properties. The modeler has

provided values for all the newly available properties; those for criticalRequirement are shown in a compartment in the

node symbol for StoppingDistance; those for configurationltem are shown in a separate note.

17.4.7 Using a Model Library Element

bdd Physics J

«block»
PhysicalObject

density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«block»
Shot

circumference: SlLength

Figure 17.10 - Using model library elements

Model library elements can be used just like any other model element of the same type. In this case, Shot is a

specialization of Physical Object from the Physical model library. It adds a new property, circumference, of type SILength

to measure the circumference of the (spherical) shot.

OMG SysML™ , Version 1.1

167

168 OMG SysML™ | Version 1.1

Part V - Annexes

This section contains the following non-normative annexes for this specification.:
e A - Diagrams
e B - Sample Problem
¢ C- Non-normative Extensions
e D - Mode Interchange
¢ E - Requirements Traceability

¢ F- Termsand Definitions

OMG SysML™ , Version 1.1 169

170 OMG SysML™ | Version 1.1

Annex A: Diagrams

(informative)

A.1 Overview

SysML diagrams contain diagram elements (mostly nodes connected by paths) that represent model elements in the
SysML model, such as activities, blocks, and associations. The diagram elements are referred to as the concrete syntax.

The SysML diagram taxonomy is shown in Figure A.1. SysML reuses many of the major diagram types of UML. In some
cases, the UML diagrams are strictly reused, such as use case, sequence, state machine, and package diagrams, whereas
in other cases they are modified so that they are consistent with SysML extensions. For example, the block definition
diagram and internal block diagram are similar to the UML class diagram and composite structure diagram respectively,
but include extensions as described in Chapter 8, “Blocks.” Activity diagrams have also been modified via the activity
extensions. Tabular representations, such as the allocation table, are used in SysML but are not considered part of the
diagram taxonomy.

SysML does not use all of the UML diagram types such as the object diagram, communication diagram, interaction
overview diagram, timing diagram, and deployment diagram. This is consistent with the approach that SysML represents
a subset of UML. In the case of deployment diagrams, the deployment of software to hardware can be represented in the
SysML internal block diagram. In the case of interaction overview and communication diagrams, it was felt that the
SysML behavior diagrams provided adequate coverage for representing behavior without the need to include these
diagram types. Two new diagram types have been added to SysML including the requirement diagram and the parametric
diagram.

SysML
Diagram
|m——————-
Behavior | Requirement Structure
Diagram : Diagram Diagram
Activity Sequence State Machine Use Case Block Definition Internal Block package Diagram
Diagram Diagram Diagram Diagram Diagram Diagram 9 9
[] sameasuwm2 ! ‘
I Parametric
| Diagram
[

[] wodied from um. 2

P -I New diagram type

Figure A.1 - SysML Diagram Taxonomy

OMG SysML™ , Version 1.1 171

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for text-
based requirements, and the relationship between requirements and other model elements that satisfy or verify them.

The parametric diagram is a new SysML diagram type that describes the constraints among the properties associated with
blocks. This diagram is used to integrate behavior and structure models with engineering analysis models such as
performance, reliability, and mass property models.

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude the
careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside a compartment of a block). However, it is critical that the types of
diagram elements that can appear on a particular diagram kind be constrained and well-specified. The diagram elements
tables in each chapter describe what symbols can appear in the diagram, but do not specify the different combinations of
symbols that can be used.

The package diagram and the callout notation are two mechanisms that SysML provides for adding flexibility to represent
a broad range of diagram elements on diagrams. The package diagram can be used quite flexibly to organize the model in
packages and views. As such, a package diagram can include a wide array of packageable elements. The callout notation
provides a mechanism for representing relationships between model elements that appear on different diagram kinds. In
particular, they are used to represent allocations and requirements, such as the allocation of an activity to a block on a
block definition diagram, or showing a part that satisfies a particular requirement on an internal block diagram. There are
other mechanisms for representing this including the compartment notation that is generally described in Chapter 17,
“Profiles & Model Libraries,” Chapter 16, “Requirements,” and Chapter 15, “Allocations’ provide specific guidance on
how these notations are used.

The model elements and corresponding concrete syntax that are represented in each of the nine SysML diagram kinds are
described in the SysML chapters as indicated below.

» activity diagram - Activities chapter

« block definition diagram - Blocks chapter, Ports and Flows chapter
« internal block diagram - Blocks chapter, Ports and Flows chapter

» package diagram - Model Elements chapter

e parametric diagram - Constraint Blocks chapter

e reguirement diagram - Requirements chapter

» gtate machine diagram - State Machines chapter

e sequence diagram - Interactions chapter

¢ use case diagram - Use Cases chapter

172 OMG SysML™ | Version 1.1

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description see Figure A.2

Diagram Description
Version:

Description:
Completion status:

Header Reference:

/ _~"[(User defined fields)

<<diagramUsage>>
diagramKind [modelElementType] modelElementName [diagramName]

Contents

Figure A.2 - Diagram Frame

The frame is a rectangle that is required for SysML diagrams (Note: the frame is optional in UML). The frame must
designate a model element that is the default namespace for the model elements enclosed in the frame. A qualified name
for the model element within the frame must be provided if it is not contained within default namespace associated with
the frame. The following are some of the designated model elements associated with the different diagram kinds.

e activity diagram - activity

« block definition diagram - block, package, or constraint block
« internal block diagram - block or constraint block

» package diagram - package or model

e parametric diagram - block or constraint block

* requirement diagram - package or requirement

e sequencediagram - interaction

e state machine diagram - state machine

e use case diagram - package

The frame may include border elements associated with the designated model element, like ports for blocks, entry/exit
points on statemachines, gates on interactions, parameters for activities, and constraint parameters for constraint blocks.
The frame may sometimes be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage defines the type of primary
graphical symbols that are supported, e.g., a block definition diagram is a diagram where the primary symbols in the
contents area are blocks and association symbols along with their adornments.

The heading name is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

<diagramKind> [model ElementType] <model ElementName> [diagramName]

OMG SysML™ , Version 1.1 173

A space separates each of these entries. The diagramKind is bolded. The model ElementType and diagramName are in
brackets. The heading name should always contain the diagram kind and model element name, and include the model
element type and additional information to remove ambiguity. Ambiguity can occur if there is more than one model
element type for a given diagram kind, or where there is more than one diagram for the same model element. If a model
element type has a stereotype applied to the base model element, such as “modelLibrary” applied to a package or
“controlOperator” applied to an activity, then either the stereotype name or the base model element may be used as the
name for the model element type. In either case, the initial character of the name is shown in lower case. For a stereotype
name, guillemet characters (« and ») are not shown. If more than one stereotype has been applied to the base model
element, either the name of one of the applied stereotypes or a comma-separated list of any or all of the applied stereotype
names may be shown. If a base model element name is used, this element is either a UML metaclass which SysML uses
directly, such as package or activity, or a stereotype which SysML defines on a UML metaclass, such as block or view.

SysML diagrams kinds should have the following names or (abbreviations) as part of the heading:
e activity diagram (act)

block definition diagram (bdd)
¢ internal block diagram (ibd)

e package diagram (pkg)

e parametric diagram (par)

e reguirement diagram (req)

e sequence diagram (sd)

e gtate machine diagram (stm)

e use case diagram (uc)

The diagram description can be defined by a comment attached to a diagram frame as indicated in Figure A-2 that
includes version, description, references to related information, a completeness field that describes the extent to which the
modeler asserts the diagram is complete, and other-user defined fields. In addition, the diagram description may identify
the view associated with the diagram, and the corresponding viewpoint that identifies the stakeholders and their concerns
(refer to Model Elements chapter). The diagram description can be made more explicit by the tool implementation.

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particular diagram type, such
as a context diagram as a usage of an block definition diagram, internal block diagram, or use case diagram. The diagram
usage can be identified in the header above the diagramKind as «diagramUsage». An example of a diagram usage
extension is shown in Figure A.3. For this example, the header in Figure A.2 would replace diagram kind with “uc” and
«diagramUsage» with «ContextDiagram». Applying a stereotype approach to specify a diagram usage can alow a tool
implementation to check that the diagram constraints defined by the stereotype are satisfied.

NOTE: A diagram is not a metaclass in UML or SysML and therefore cannot be extended by a stereotype. However, the
concept of extending a diagram for a particular diagram usage was considered to be of value. The stereotype notation is
used to designate this concept without the formal semantics.

174 OMG SysML™ | Version 1.1

diagramKind

UseCaseDiagram

T T

<<stereotype>>
diagramUsage

<<stereotype>>
ContextDiagram

Figure A.3 - Diagram Usages

Some typical diagram usages may include:

« Activity diagram usage with swim lanes - SwimLane Diagram

< Block definition diagram usage for a block hierarchy - Block Hierarchy where block can be replaced by system, item,
activity, etc.

e Use case diagram or internal block diagram to represent a Context Diagram

A.2 Guidelines

The following provides some general guidelines that apply to all diagram types.

« Decomposition of amodel element can be represented by the rake symbol. This does not always mean decomposition
in aformal sense, but rather areference to a more elaborated diagram of the model element that includes the rake
symbol. The rake on amodel element may include the following:

activity diagram - call behavior actions that can refer to another activity diagram.
internal block diagram - parts that can refer to another internal block diagram.
package diagram - package that can refer to another package diagrams.

parametric diagram - constraint property that can refer to another parametric diagram
requirement diagram - requirement that can refer to another requirement diagram.
seguence diagram - interaction fragments that can refer to another sequence diagram.
state machine diagram - state that can refer to another state machine diagram.

use case diagram - use case can that may be realized by other behavior diagrams (activity, state, interactions).

¢ The primary mechanism for linking atext label outside of a symbol to the symboal is through proximity of the label to
its symbol. This appliesto ports, item flows, pins, etc.

OMG SysML™ , Version 1.1 175

176

Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on diagrams, but
should be used sparingly since they are equivalent to go-to’sin programming languages, and can lead to “ spaghetti
diagrams.” Whenever practical, elaborate the model element designated by the frame instead of using a page
connector. A page connector is depicted as a circle with alabel inside (often aletter). The circleis shown at both ends
of aline break and means that the two line end connect at the circle.

Diagram overlays are diagram elements that may be used on any diagram kind. An example of an overlay may be a
geographic map to provide a spatia context for the symbols.

SysML provides the capability to represent a document using the UML 2 standard stereotype «document» applied to
the artifact model element. Properties of the artifact can capture information about the document. Use a «trace»
abstraction to relate the document to model elements. The document can represent text that is contained in the related
model elements.

SysML diagrams including the enhancements described in this section is intended to conform to the Diagram
Interchange Standard to facilitate exchange of diagram and layout information. A more formal BNF has been
introduced in selected chapters to facilitate diagram interchange, which is referred to in the Language Formalism
chapter.

Tabular and matrix representation is an optional aternative notation that can be used in conjunction with the graphical
symbols as long as the information is consistent with the underlying metamodel. Tabular and matrix representations
are often used in systems engineering to represent detailed information and other views of the model such asinterface
definitions, requirements traceability, and all ocation rel ationships between various types of model elements. They also
can be convenient mechanisms to represent property values for selected properties, and basic rel ationships such as
function and inputs/outputs in N2 charts. The UML superstructure contains a tabular representation of a sequence
diagram in an interaction matrix (refer to Superstructure Annex with interaction matrix). The implementations of
tabular and matrix representations are defined by the tool implementations and are not standardized in SysML at this
time. However, tabular or matrix representations may be included in a frame with the heading designator «table» or
«matrix» in bold.

Graph and tree representations are also optional, alternative notations that can be used in conjunction with graphical
symbols aslong as the information is consistent with the underlying metamodel. These representations can be used for
describing complex series of relationships that represent other views of the model. One example is the browser
window in many tools that depicts a hierarchical view of the model. The implementations of graphs and trees are
defined by the tool implementations and are not standardized in SysML at this time. However, graph and tree
representations may be included in a frame with the heading designator «graph» or «tree» in bold.

OMG SysML™ | Version 1.1

Annex B: Sample Problem

(informative)

B.1 Purpose

The purpose of thisannex isto illustrate how SysML can support the specification, analysis, and design of a system using
some of the basic features of the language.

B.2 Scope

The scope of this exampleisto provide at |east one diagram for each SysML diagram type. The intent isto select simplified
fragments of the problem to illustrate how the diagrams can be applied, and also demonstrate some of the possible inter-
relationships among the model elements in the different diagrams. The sample problem does not highlight all of the features
of the language. The reader should refer to the individual chapters for more detailed features of the language. The diagrams
selected for representing a particular aspect of the model, and the ordering of the diagrams are intended to be representative of
applying atypical systems engineering process, but thiswill vary depending on the specific process and methodology that is
used.

B.3 Problem Summary

The sample problem describes the use of SysML asit applies to the development of an automobile, in particular a Hybrid gas/
electric powered Sport Utility Vehicle (SUV). Thisproblemisinteresting in that it hasinherently conflicting requirements, viz.
desire for fud efficiency, but also desire for large cargo carrying capacity and off-road capability. Technical accuracy and the
feasibility of the actual solution proposed were not high priorities. This sample problem focuses on design decisions
surrounding the power subsystem of the hybrid SUV; the requirements, performance analyses, structure, and behavior.

Thisannex is structured to show each diagram in the context of how it might be used on such a example problem. Thefirst
section shows SysML diagrams as they might be used to establish the system context; establishing system boundaries, and top
level use cases. The next section is provided to show how SysML diagrams can be used to analyze top level system behavior,
using sequence diagrams and state machine diagrams. The following section focuses on use of SysML diagramsfor capturing
and deriving requirements, using diagrams and tables. A section is provided to illustrate how SysML is used to depict system
structure, including block hierarchy and part relationships. The relationship of various system parameters, performance
constraints, analyses, and timing diagrams are illustrated in the next section. A section is then dedicated to illustrating
definition and depiction of interfaces and flows in a structural context. The final section focuses on detailed behavior
modeling, functional and flow allocation.

OMG SysML™, Version 1.1 177

B.4 Diagrams
B.4.1 Package Overview (Structure of the Sample Model)

B.4.1.1 Package Diagram - Applying the SysML Profile

Asshownin Figure B.1, the HSUVModel is a package that represents the user model. The SysML Profile must be applied to
this package in order to include stereotypes from the profile. The HSUVModel may also require model libraries, such asthe Sl
Units Types model library. The model libraries must be imported into the user model as indicated.

pkg ModelingDomain [Establishing HSUV Modelu
«profile»
SysML S
S
/\\ ~
\ \\\«apply» {strict}
\ «apply» \\\
\ {strict} N
\
«modelLibrary» «import»
-torary e HSUVModel
S| Definitions

Figure B.1 Establishing the User Model by Importing and Applying SysML Profile & Model Library (Package Diagram)

Figure B.2 details the specification of units and valueTypes employed in this sample problem.

178 OMG SysML™, Version 1.1

pkg ModelingDomain [Values and Unitsy
\
«modelLibrary»
Sl Definitions
«modelLibrary» «import»
Automotive Value Types
«valueType»
Real
‘ ‘ Automotive Units
Horsepwr Accel Weight
«valueType» «valueType» «valueType» «unit> «unit> «unit>
. P . P «aluelyp {dimension=Acceleration} {dimension=Velocity} {dimension=Power}
unit = hp unit=g unit = b
9 mph hp
«unit» «unit» «unit»
Time Vel Dist {dimension=Temperature} {dimension=Distance} {dimension=Time}
°F ft sec
«valueType» «valueType» «valueType»
unit = sec unit = mph unit = ft - I K
«unit» «unit» «unit»
{dimension=Pressure} {dimension=Volume} {dimension=Mass}
psi ftr3 Ib
Temp Press Vol
«valueType» «valueType» «valueType»
unit = °F unit = psi unit = ft"3

Figure B.2 - Defining valueTypes and units to be Used in the Sample Problem

B.4.1.2 Package Diagram - Showing Package Structure of the Model

The package diagram (Figure B.3) shows the structure of the model used to evaluate the sample problem. Model elements are
contained in packages, and relationships between packages (or specific model elements) are shown on this diagram. The
relationship between the views (Operational View and PerformanceView) and the rest of the user model are explicitly
expressed using the «access» relationship. Note that the «view» models contain no model elements of their own, and that
changes to the model in other packages are automatically updated in the Operational and Performance Views.

OMG SysML™, Version 1.1 179

pkg HSUVModel J
HSUVUseCases HSUVBehavior HSUV HSUVAnalysis
HSUVStructure Requirements y
A S) il
\ /
|)/
|
| /
. /
\ . «requirement» /
DeliverPower ;
'|| Behavior HSUVinterfaces Performance /
/
|
. A /
L / /
«import» ! /
! «block»] «import»
1 Automotive / /
| Domain ! ;
I /)
| v «import» / Automotive
! 7 / / ValueTypes
| 7/ 1
T L / /
HSUWViews ‘ «import» / /
’ ! /
| // / /
4'—‘ ,] / //
. «viewpoint» «view» «viewpoint»
Oper(’c(l\t/ilc?xve;iView L —-«conform»-== Operational Performance —--«conform»-== Performance
Viewpoint View Viewpoint

Figure B.3 - Establishing Structure of the User Model using Packages and Views (Package Diagram)
B.4.2 Setting the Context (Boundaries and Use Cases)

B.4.2.1 Internal Block Diagram - Setting Context

The term “ context diagram,” in Figure B.4, refers to a user defined usage of an internal block diagram, which depicts some of
the top level entitiesin the overall enterprise and their relationships. The diagram usage enables the modeler or methodol ogist
to specify a unique usage of a SysML diagram type using the extension mechanism described in Annex A: Diagrams. The
entities are conceptual in nature during theinitial phase of development, but will be refined as part of the devel opment process.
The «system» and «external» stereotypes are user defined, not specified in SysML, but help the modeler to identify the system
of interest relative to its environment. Each model element depicted may include a graphical icon to help convey its intended
meaning. The spatial relationship of the entities on the diagram sometimes conveys understanding as well, although thisis not
specifically captured in the semantics. Also, a background such as a map can be included to provide additional context. The
associations among the classes may represent abstract conceptual relationships among the entities, which would be refined in

subsequent diagrams. Note how the relationships in this diagram are also reflected in the Automotive Domain Model Block
Definition Diagram, Figure B.15.

180 OMG SysML™, Version 1.1

x4:

Maintainer:

«external»

drivingConditions:Environment

«external»
weather:Weather

«ContextDiagram»
ibd [block] AutomotiveDomain
«system»
HSUV:
HybridSUV
Driver:
X2: x3:
/ «external»
vehicleCargo:
Baggage
A
Passenger: é
«diagramDescription»
version="0.1"
description="Initial concept to identify top level domain entities"
reference="Ops Concept Description”
completeness="partial. Does not include gas pump and other
external interfaces.”

«external» 1.*
road:Road

p

«external»
object:ExternalObject

1.*

Figure B.4 - Establishing the Context of the Hybrid SUV System using a User-Defined Context Diagram. (Internal Block
Diagram) Completeness of Diagram Noted in Diagram Description

B.4.2.2 Use Case Diagram - Top Level Use Cases
The use case diagram for “Drive Vehicle” in Figure B.5 depicts the drive vehicle usage of the vehicle system. The subject

(HybridSUV) and the actors (Driver, Registered Owner, Maintainer, Insurance Company, DMV) interact to realize the use

case.

OMG SysML™, Version 1.1

181

uc HSUVUseCases [TopLeveIUseCasesy
HybridSUV
_ | Operate the
vehicle
Driver
Insure the
- — vehicle
InsuranceCompany
Registered
Owner
Register the ——
vehicle
Department
Of Motor
Vehicles
Maintain the
vehicle
Maintainer

Figure B.5 - Establishing Top Level Use Cases for the Hybrid SUV (Use Case Diagram)

B.4.2.3 Use Case Diagram - Operational Use Cases

Goal-level Use Cases associated with “ Operate the Vehicle” are depicted in the following diagram. These use cases help flesh
out the specific kind of goals associated with driving and parking the vehicle. Maintenance, registration, and insurance of the

vehicle would be covered under a separate set of goal-oriented use cases.

182

OMG SysML™, Version 1.1

uc HSUVUseCases [Operational Use Casesy

HybridSUV

Start the vehicle

N
H N
Driver AN «include»
N ~
\\ \\
N N
N N
«include»
N
N
N
N
N
N
N
N
N
N

Figure B.6 - Establishing Operational Use Cases for “Drive the Vehicle” (Use Case Diagram)
B.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)

B.4.3.1 Sequence Diagram - Drive Black Box

Figure B.7 shows the interactions between driver and vehicle that are necessary for the “ Drive the Vehicle” Use Case. This
diagram represents the “ DriveBlackBox” interaction, with is owned by the AutomotiveDomain block. “BlackBox” for the
purpose of this example, refers to how the subject system (HybridSUV block) interacts only with outside elements, without
revealing any interior detail.

The conditions for each alternative in the alt control Speed section are expressed in OCL, and relate to the states of the
HybridSUV block, as shown in Figure B.8.

OMG SysML™, Version 1.1 183

sd DriveBlackBox)

driver:Driver vehiclelnCeontext:Hybrid SUV
ref StartVehicleBlackBox
par
alt controlS eecy [self.oclinSthte(idle)]
ref Idie
[self.oclinState(accdlerating/cruising))
ref Accelerate/Cruise
[self.oclinStafe(braking)]
ref Brake
ref/ Steer

ref Park/ShutdownVehicle

Figure B.7 - Elaborating Black Box Behavior for the “Drive the Vehicle” Use Case (Sequence Diagram)

B.4.3.2 State Machine Diagram - HSUV Operational States

Figure B.8 depicts the operational states of the HSUV block, viaa State Machine named “HSUV Operationa States’. Note that
this state machine was devel oped in conjunction with the DriveBlackBox interaction in Figure B.7. Also note that this state
machine refines the requirement “ PowerSourceM anagment,” which will be elaborated in the requirements section of this
sample problem. This diagram expresses only the nominal states. Exception states, like “ acceleratorFailure,” are not expressed
on this diagram.

184 OMG SysML™, Version 1.1

stm HSUVOperationalStates /

Refines

\

«requirement»
PowerSource
of keyOff >@ Management
start shutOff
Nominal
states only
A
//
Operate \
accelerate stopped
releaseBrake
Accellerating/ Braking

Cruising

engageBrake

Figure B.8 - Finite State Machine Associated with “Drive the Vehicle” (State Machine Diagram)

B.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

The Figure B.9 shows a“black box” interaction, but references “ StartVehiclewhiteBox” (Figure B.10), which will decompose
the lifelines within the context of the HybridSUV block.

OMG SysML™, Version 1.1

185

sd Start\.-'ehicleBlackBox)

driver:Driver

turnignitionToStart

1: StartVehicle

vehiclelnContext:Hybrid SUW
ref StartVehicleWhiteBox

Figure B.9 - Black Box Interaction for “StartVehicle,” referencing White Box Interaction (Sequence Diagram)

Thelifelines on Figure B.10 (“whitebox” segquence diagram) need to come from the Power System decomposition. This now
beginsto consider parts contained in the HybridSUV block.

sd StartVehicleWh |teBox)

ecu:PowerContralUnit

1: StartVehicle

.|

epc.ElectricalPowerController

1.1: Enable

H_

T
|
|
!
1
|
|
!
1

1.2:ready

Figure B.10 - White Box Interaction for “ StartVehicle” (Sequence Diagram)

186

OMG SysML™, Version 1.1

B.4.4 Establishing Requirements (Requirements Diagrams and Tables)

B.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy

The vehicle system specification contains many text based requirements. A few requirements are highlighted in Figure B.11,
including the requirement for the vehicle to pass emissions standards, which is expanded for illustration purposes. The
containment (cross hair) relationship, for purposes of this example, refers to the practice of decomposing a complex
requirement into simpler, single requirements.

req [package] HSUVRequirements [HSUV Specificaliony
HSUVSpecification
B
e P P D
- ’ ’ ; i t>
«requirement» «requirement» «requirement» «requirement» «requiremen
Eco-Friendliness Pe?formance Ergonomics Qualification Capacity
© &) ef © T & &
«requirement» «requirement» «requirement» «requirement» «requirement» «requirement» «requirement»
Braking FuelEconomy OffRoadCapability Acceleration SafetyTest CargoCapacity PassengerCapacity
«requirement» «requirement»
Emissions FuelCapacity
id="R1.2.1"
text = “The vehicle shall meet Ultra-Low
Emissions Vehicle standards.”

Figure B.11 - Establishing HSUV Requirements Hierarchy (containment) - (Requirements Diagram)

B.4.4.2 Requirement Diagram - Derived Requirements

Figure B.12 shows a set of requirements derived from the lowest tier requirements in the HSUV specification. Derived
requirements, for the purpose of this example, express the concepts of requirements in the HSUV Specification in a manner
that specifically relates them to the HSUV system. Various other model elements may be necessary to help develop a derived
requirement, and these model element may be related by a «refinedBy» relationship. Note how PowerSourceManagement is
“RefinedBy” the HSUV Operational States model (Figure B.8). Note also that rationale can be attached to the «deriveReqt»
relationship. In this case, rationaleis provided by a referenced document “Hybrid Design Guidance.”

OMG SysML™, Version 1.1 187

188

req [package] HSUVRequirements [Requirement Derivationy
«requirement» «requirements «requirement» «requirement» «requirement» «requirement»
Braking FuelEconomy FuelCapacity OffRoadCapability Acceleration CargoCapacity
j N AN N A 7
\ ! \\ AN \\\ \ AN ‘\ s
\ 1 B i N 7
«derive‘Reqt» «deriveReqt» \\ \\\ «denvelgeqt» «denvet?eqt» \\\ \‘ 7
’ N 7
\ / \ \\ N \\\ «deriveReqt» «deriveReqt» «deriveReqt»
N 7
\\ / \\ N \\\ ‘\ //
\ AN «requirement» ~ \ o
«requirement» \ AN Range N \ L
RegenerativeBraking \ AN AN | 2
N N
«deer?Reqt» \ «requirement»
\ «problem» N -7 Power
\ | Power needed for acceleration, off-road |~
RefinedBy \ performance & cargo capacity conflicts =
HSUVStructure::HSUV. \ | with fuel economy PPt
HSUVOperationalStates \ =
\ ~<~
S ! «deriveReqt» "= =~__
. \ /,/” ~ T<rationale»
\\ requirement - Power delivery must happen by coordinated
PowergogrucleManagement control of gas and electric motors. See
“Hybrid Design Guidance”
Figure B.12 - Establishing Derived Requirements and Rationale from Lowest Tier of Requirements Hierarchy (Require-
ments Diagram)

B.4.4.3 Requirement Diagram - Acceleration Requirement Relationships

“refineReqt” relation, introduced in Figure B.12, shows how the Acceleration regquirement is refined by asimilarly named use
reguirement.

Figure B.13 focuses on the Acceleration requirement, and relates it to other requirements and model elements. The
case. The Power requirement is satisfied by the PowerSubsystem, and a Max Acceleration test case verifies the Acceleration

OMG SysML™, Version 1.1

req [package] HSUVRequirements [Acceleration Requirement Refinement and Verificationy

«requirement»
Acceleration

«refine» -7 / AN
e / \
e / N
" ! «verify»
7 «deriveReqt» ~
-7 / AN
/ AN
HSUVUseCases: / AN

/

:Accelerate ,

«testCase»
Max Acceleration

«requirement»
Power

7/
7/
7

«satisfy»

/
/

«block»
PowerSubsystem

Figure B.13 - Acceleration Requirement Relationships (Requirements Diagram)

B.4.4.4 Table - Requirements Table

Figure B.14 contains two diagrams that show requirement containment (decomposition), and requirements derivation in

tabular form. Thisis amore compact representation than the requirements diagrams shown previously.

OMG SysML™, Version 1.1

189

table [requirement] Performance [Decomposition of Performance Requirement]/

id |[name text
The Hybrid SUV shall have the braking, acceleration, and off-
road capability of a typical SUV, but have dramatically better

2|Performance fuel economy.
The Hybrid SUV shall have the braking capability of a typical
2.1|Braking SUV.
The Hybrid SUV shall have dramatically better fuel economy
2.2|FuelEconomy than a typical SUV.

The Hybrid SUV shall have the off-road capability of a
2.3|OffRoadCapability |typical SUV.

The Hybrid SUV shall have the acceleration of a typical
2.4|Acceleration SUV.

table [requirement] Performance [Tree of Performance Requirements])
id |name relation id [name relation id name
2.1 |Braking deriveReqt |d.1 |RegenerativeBraking
2.2 |FuelEconomy deriveReqt |d.1 |RegenerativeBraking
deriveReqt |d.2 [Range
4.2 |FuelCapacity deriveReqt |d.2 [Range
2.3 |OffRoadCapability [deriveReqt |d.4 [Power deriveReqt |d.2 |PowerSourceManagement
2.4 [Acceleration deriveReqt [d.4 [Power deriveReqt |d.2 |PowerSourceManagement
4.1 |CargoCapacity deriveReqt [d.4 [Power deriveReqt |d.2 |PowerSourceManagement

Figure B.14 - Requirements Relationships Expressed in Tabular Format (Table)

B.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block
Diagrams)

B.4.5.1 Block Definition Diagram - Automotive Domain

Figure B.15 provides definition for the concepts previously shown in the context diagram. Note that the interactions
DriveBlackBox and StartVehicleBlackBox (described in Section B.4.3, “Elaborating Behavior (Sequence and State Machine
Diagrams),” on page 183) are depicted as owned by the AutomotiveDomain block.

190 OMG SysML™, Version 1.1

bdd [package] HSUVStructure [Automotive Domain Breakdownu

«domain» .
AutomotiveDomain

interactions
DriveBlackBox
StartVehicleBlackBox

¢

drivingConditions

HSUV vehicleCargo
«system>» «external» «external»
HybridSUV Baggage Environment
Driver Maintainer Passenger ’
weather 1..* | object 1.% road
«external» «external» «external»
Weather ExternalObject Road

Figure B.15 - Defining the Automotive Domain (compare with Figure B.4) - (Block Definition Diagram)

B.4.5.2 Block Definition Diagram - Hybrid SUV

Figure B.16 defines components of the HybridSUV block Note that the BrakePedal and Wheel HubA ssembly are used by, but

not contained in, the PowerSubsystem block.

bdd [block] AutomotiveDomain [HybridSUV Breakdowny

«system»
HybridSUV
P bk b ¢
PowerSubsystem BrakeSubsystem BodySubsystem InteriorSubsystem LightingSubsystem ChassisSubsytem

1™

«rationale»

BrakePedal 2 wheel drive is the only way to get
acceptable fuel economy, even though it
limits off-road capability

WheelHubAssembly

Figure B.16 - Defining Structure of the Hybrid SUV System (Block Definition Diagram)

OMG SysML™, Version 1.1

191

B.4.5.3 Internal Block Diagram - Hybrid SUV

Figure B.17 shows how the top level model elements in the above diagram are connected together in the HybridSUV block.

ibd [block] Hybridsuy

b:BodySubsystem

c:chassisSubsytem

b-I:

i: InteriorSubsystem

c-bk:

p:PowerSubsystem

br:BrakeSubsystem

bk-I:

p-bk:

I:LightingSubsystem

Figure B.17 - Internal Structure of Hybrid SUV (Internal Block Diagram)

192

OMG SysML™, Version 1.1

B.4.5.4 Block Definition Diagram - Power Subsystem

Figure B.18 defines the next level of decomposition, namely the components of the PowerSubsystem block. Note how the of
white diamond (composition) on FrontWheel and BrakePedal denotes the same “use-not-composition” kind of relationship
previously shown in Figure B.16.

bdd [block] HSUV [PowerSubsystem Breakdowny

WheelHubAssembly

PowerSubsystem | 0..1

0.1 ? Qo.1 OT

lfw riw

bkp
1
1 bp \L pcu\[/ ech/ 1
BrakePedal BatteryPack PowerControlUnit ElectricalPowerController FrontWheel
ad |, ty | e T em ——
i ; ElectricMotor ; ;
accelerator FuelTankAssembly InternalCombustionEngine Generator Differential
0..1? —\l/trsm
Il o 4 f
. Transmission
Fuel FuelPump Fuellnjector

Figure B.18 - Defining Structure of Power Subsystem (Block Definition Diagram)

B.4.5.5 Internal Block Diagram for the “Power Subsystem”

Figure B.19 shows how the parts of the PowerSubsystem block, as defined in the diagram above, are used. It shows
«connectors» between parts, «clientServerPorts», «flowPorts», «atomicFlowPorts», and «itemFlows». The dashed borderson
FrontWheel and BrakePedal denote the " use-not-composition” relationship depicted elsewhere in Figure B.16 and Figure
B.18. The dashed borders on Fuel denote a store, which keepstrack of the amount and mass of fuel in the Fuel TankAssy. This
isalso depicted in Figure B 18.

OMG SysML™, Version 1.1 193

ibd [block] PowerSubsystem [Alternative 1 - Combined Motor Generatoﬂ/

bp-epc:

epc:ElectricalPower

bp:BatteryPack

Controller
ctrl

emg:ElectricMotor
Generator

I_IEPCData |_IEPCCmd

acl:accelerator

]

i2:Electric il:Electric
Current Current
|_TRSMCmd

ctrl
trsm:Tran

I_TRSMData

smission

spline

t2Torque

anblo]:T)

rfw:ChassisSubsytem]
.FrontWheel

] 7 o

rightHalfShaft

dif:Differential

.BrakePedal

ft:FuelTankAssy

Fuel fp:FuelPump

5
[
| |LEPCCmd | | IEPCData > torquein:Torque
S c2: o
g
|_TRSMData 5
epc trsm :
ecu:PowerControIint torqueOutTorque e
ice
I_TRSMCmd -) -
5 ice:InternalCombustionEngine
i I_ICECmds | I_ICEData I_ICEData 7
= . ctrl
= cl: ?] fi: Fuellnjector
bkp:BrakeSubsystem IICECmds 4 fdist:

=
1

PortICEFuelFitting

Port:FuelTankFitting

Al
i

fuelDelivery

fuelSupply:Fuel fuelReturn:Fuel

leftHalfShaft

iV}

Ifw:ChassisSubsytem
.FrontWheel

Figure B.19 - Internal Structure of the Power Subsystem (Internal Block Diagram)

bdd [block] Pow erSubsystem [ICE Interface Definitions])

«interface»
|_ICEData

getRPM():Integer
getTemperature():Real
isKknockSensor():Boolean

«interface»
I_ICECmds

setMixture(mixture:Real):void

setThrottle(throttlePosition:Real):void

Figure B.20 - Interfaces Typing StandardPorts Internal to the Power Subsystem (Block Definition Diagram)

194

OMG SysML™, Version 1.1

B.4.6 Defining Ports and Flows

Figure B.20 provides definition of the interfaces applied to Standard Ports associated with connector ¢l in Figure B.19.

B.4.6.1 Block Definition Diagram - ICE Interface

For purposes of example, the StandardPorts and related point-to-point connectorsin Figure B.19 are being refined into a
common bus architecture. For this example, FlowPorts have been used to model the bus architecture. Figure B.21 isan
incomplete first step in the refinement of this bus architecture, asit beginsto identify the flow specification for the
Internal CombustionEngine, the Transmission, and the Electrical PowerController..

bdd CAN Bus FlowSpecifications

/

«flowSpecification»
S_ICE

«flowProperties»
out engineData:ICEData
in mixture:Real
in throttlePosition:Real

«flowSpecification»
FS_TRSM

«flowProperties»

«flowSpecification»
FS_EPC

«signal»
ICEData

rpm:Integer
temperature:Real
knockSensor:Boolean

To be specified - what
is being exchanged
over the bus from\to
the transmission?

«flowProperties»

To be specified - what is being

- —i exchanged over the bus from\to

the electronic power controller?

B.4.6.2 Internal Block Diagram - CANbus

Figure B.21 - Initially Defining Flow Specifications for the CAN Bus (Block Definition Diagram)

Figure B.22 continues the refinement of this Controller Area Network (CAN) bus architecture using FlowPorts. The explicit
structural allocation between the original connectors of Figure B.19 and this new bus architecture is shown in Figure B.36.

OMG SysML™, Version 1.1

195

ibd [block] PowerSubsystem [CAN Bus description])

epc:ElectricalPower
Controller

fp:FS_EPC

trsm:Transmission

At

fp:FS_TRSM

ice:InternalCombustionEngine

Al

fp:FS_ICE

:CAN_Bus

epc:IFS_EPC

etrsm:IFS_TRSM

ice:lIFS_ICE

ecu:PowerControlUnit

Figure B.22 - Consolidating Interfaces into the CAN Bus. (Internal Block Diagram)

B.4.6.3 Block Definition Diagram - Fuel Flow Properties

The FlowPorts on the Fuel TankAssembly and Internal CombustionEngine (as shown in Figure B.19) are defined in Figure

B.23.

bdd [block] HSUV [PowerSubsystem Fuel Flow Definition])

PowerS

ubsystem

!

Fuel

temperature:Temp
pressure:Press

ft

FuelTankAssembly

«flowProperties»
in fuelSupply:Fuel
out fuelReturn:Fuel

ICEFuelFitting:FuelFlow

FuelTankFitting:FuelFlow

ice

InternalCombustionEngine

k3 «flowProperties»

out fuelSupply:Fuel
in fuelReturn:Fuel

«flowSpecification»
FuelFlow

out fuelSupply:Fuel
in fuelReturn:Fuel

«flowProperties»

Figure B.23 - Elaborating Definition of Fuel Flow. (Block Definition Diagram)

196

OMG SysML™, Version 1.1

B.4.6.4 Parametric Diagram - Fuel Flow
Figure B.24 is a parametric diagram showing how fuel flowrate is related to Fuel Demand and Fuel Pressure value properties.

par [BIock]PowerSubsystem/

ice.fi.FuelDemand:Real

ice.ft.FuelFlowRate:Real

injectorDemand:Real
L]
fuelflow:FuelFlow

flowrate:Real constraints
L] {flowrate=press/(4*injectorDemand)}

-

ice.fr.fuel.FuelPressure::Real

press:Real

Figure B.24 - Defining Fuel Flow Constraints (Parametric Diagram)

B.4.6.5 Internal Block Diagram - Fuel Distribution

Figure B.25 shows how the connectors fuel Delivery and fdist on Figure B.19 have been expanded to include design detail. The
fuelDelivery connector is actually two connectors, one carrying fuel Supply and the other carrying fuel Return. The fdist
connector inside the Internal CombustionEngine block has been expanded into the fuel regulator and fuel rail parts. These more
detailed design elements are related to the original connectors using the allocation relationship. The Fuel store represents a
quantity of fuel in the Fuel TankAssy, which is drawn by the FuelPump for use in the engine, and is refreshed, to some degree,
by fuel returning to the Fuel TankAssy viathe FuelReturnLine.

OMG SysML™, Version 1.1 197

ibd [block] PowerSubsystem [Fuel Distribution Detail])

allocatedFrom
«connector»fdist:

allocatedFrom
«connector»fuelDelivery:

)

ice:InternalCombustionEngine

l

fil:Fuellnjector

fi2:Fuellnjector

fi3:Fuellnjector

— i — i —&

fid:Fuellnjector

fra:FuelRall fre:FuelRegulator

DN

DG
~

N

~

w

9
~

ft:FuelTankAssy

pL: Fuel ‘ AN _fuelSupplyLine:

~]

Fuel

fp:FuelPump %

fuelSupply: FUEL fuelReturnLine: <

I
| sz Fuel

fuelReturn:Fuel

fuelFitting:Fuel

Figure B.25 - Detailed Internal Structure of

Fuel Delivery Subsystem (Internal Block Diagram)

B.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)

B.4.7.1 Block Definition Diagram

- Analysis Context

Figure B.26 defines the various model elements that will be used to conduct analysis in this example. It depicts each of the
constraint blocks/equations that will be used for the analysis, and key rel ationships between them.

198

OMG SysML™, Version 1.1

bdd [package] HSUVAnalysis [Analysis Context] /
0.1 delta-t]
CapacityContext UnitCostContext EconomyContext rﬁ GlobalTime
ex
0.1 1
0.1
' ' T
ad 1 0.1 0.1
1 ad 1
. ad .
«domain» «testCase,Interaction»
HSUVStructure:: MaxAcceleration
AutomotiveDomain
\
«verify»
cap rdrag fe dyn ! y
A}
«constraint» «constraint» «constraint» «constraint» «requirement»
I ‘ - o FuelEfficency StraightLine i
CapacityEquation Rolilzlgggtrilocrt]lon Equation VehicleDynamics Acceleration
constraints
{pcap = Sum(Vi)}
pl w adrag rb
parameters
V1:Vol))) «constraint»
V2:Vol «constraint» «constraint» «constraint» RegenBrake
V3:Vol PayloadEquation TotalWeight AeroDragEquation EfficiencyEquation

Figure B.26 - Defining Analyses for Hybrid SUV Engineering Development (Block Definition Diagram)

B.4.7.2 Package Diagram - Performance View Definition

Figure B.27 shows the user-defined Performance Viewpoint, and the elements that populate the HSUV specific
PerformanceView. The PerformanceView itself may contain of a number of diagrams depicting the elements it contains.

OMG SysML™, Version 1.1 199

pkg [package] HSUVViews [Performance View])

«views

{viewpoint=Performance Viewpoint}
PerformanceView

Driver

«moe»
HSUValt1.
FuelEconomy

«moe»
HSUValt1.
QuarterMileTime

g Comer>

«requirement»
Performance

id =“2"

text = "The Hybrid SUV
shall have the braking,
acceleration, and off-road
capability of a typical SUV,
but have dramatically better
fuel economy."

«constraint»
UnitCostEquation

CargoCapacity

«moe»
ZHSL:S\C/)?I'I'H. «constraint»
erobllime CapacityEquation
«moe»
HSUValt1. «constraint»

«moe»
HSUValt1.
CostEffectiveness

EconomyEquation

«testCase»
EPAFuel
EconomyTest

Ve
Ve

s

Performance Viewpoint

«viewpoint»
stakeholders="customer"
concerns="Will the system perform
adequately?"
purpose="Highlight the performance of the
system.”
methods="show performance requirements,
test cases, MOE, constraint models, etc.;
includes functional viewpoint"
languages="SysML"

T

|

|

I

|

I

- I
«conforms |
I
I
I
I
W

«viewpoint»
Functional Viewpoint

Figure B.27 - Establishing a Performance View of the User Model (Package Diagram)

B.4.7.3 Parametric Diagram - Measures of Effectiveness

Measure of Effectivenessisauser defined stereotype. Figure B.28 shows how the overall cost effectiveness of the HSUV will
be evaluated. It shows the particular measures of effectiveness for one particular alternative for the HSUV design, and can be
reused to evaluate other aternatives.

200

OMG SysML™, Version 1.1

par [block] MeasuresOfEffectiveness [HSUV MOEs])

«moe»

[‘EconomyEquation HSUValtl.FuelEconomy

.

«moe»
HSUValtl.CostEffectiveness

CE:
L]

«objectiveFunction»
:MyObjectiveFunction
{CE = Sum(Wi*Pi)}

[] []
Py Ps:

«moe»
HSUValtl.QuarterMileTime
b |
:MaxAcceleration
Analysis Z:
E «moe»
HSUValtl.Zero60Time
ivc:
. H : «moe»
[CapacityEquation HSUValtl.CargoCapacity
uc:
. H : «moe»
{ ‘UnitCostEquation %— HSUValt1.UnitCost

Figure B.28 - Defining Measures of Effectiveness and Key Relationships (Parametric Diagram)

B.4.7.4 Parametric Diagram - Economy

Since overall fuel economy is akey requirement on the HSUV design, this example applies significant detail in assessing it.
Figure B.29 shows the constraint blocks and properties necessary to evaluate fuel economy.

OMG SysML™, Version 1.1

201

par [block] EconomyContext)
delta-t
ad.HSUV.PayloadCapacity incline: rb:RegenBrake ?gfgrﬁz\ébpn%vfsrt?gﬁégﬁz'
EfficiencyEquation ICEEfficiency
adrag:Aero
volume: — DragEquation pvs pro
pcap: volume: Cd: | dt ebpwr: n_ice:
H E acc: acc: U U _
pl:PayloadEquation ad.drivingConditions. |, dyn:StraightLine — vel: vel: - fe:FuelEfficiency mpg:
’ road.incline incline: |~ VehicleDynamics = whipwr: whipwr: Equation
| | [1n n Q [] []
psgrwit: cgowt: w: | Cf X n_eg: n_em:
cgowt:
ad.HSUV.position
pSgrWt: w:TotalWeight
M M ’ tw: | Cf:
. - ad.HSUV.PowerSybsystem.
vdw: fw: o ElectricMotorGenerator.
rdrag:Rolling GeneratorEfficiency
ad.HSUV.VehicleDryWeight FrictionEquation
ad.HSUV.PowerSybsystem.
ElectricMotorGenerator.
MotorEfficiency
ad.HSUV.PowerSubsystem.
FuelTank.FuelWeight
ad.HSUV.mpg

Figure B.29 - Establishing Mathematical Relationships for Fuel Economy Calculations (Parametric Diagram)

B.4.7.5 Parametric Diagram - Dynamics

The StraightLineVehicleDynamics constraint block from Figure B.29 has been expanded in Figure B.30. ConstraintNotes are
used, which identify each constraint using curly brackets{}. In addition, Rational e has been used to explain the meaning of
each constraint maintained.

202 OMG SysML™, Version 1.1

par [constraintBlock] StraightLineVehicIeDynamics/

e

«rationale»
x(n+1) (ft) = x(n) + delta-x = x(n) + v*delta-t

{x(n+1) = x(n) + v(mph)*5280/3600*delta-t}5

tw: «rationale»
[a(g) = F/m = P*/m
Cf:
] {a = (550/32)*tp(hp)*delta-t*tw}
Cd:
1 T s
! ! s
whlpwr: / e
j 1 //
whipwr: | Cd: | Cf: | tw: tw: s
1,
LT OO OO L]
incline: tp: . : delta-t:
[pwr:PowerEquation acc.AcceII_erann
i tp: Equation
] H acc:
7 /! v a '
«rationale»
tp (hp) = wheel power - drag - friction a:
! :
/ L]
_ delta-t:
{tp = whipwr - (Cd*v) - (Cf*tw*v)}% vel:VelocityEquation
" e []
«rationale» - v vel
v(n+1) (mph) = v(n) + delta-v = v(n) + a*delta-t |-~ ’
{v(n+1) = v(n) + a(g)*32*3600/5280*delta-t)% A&
]
delta-t:

——

pos:PostionEquation

[

1

Figure B.30 - Straight Line Vehicle Dynamics Mathematical Model (Parametric Diagram)

The constraints and parametersin Figure B.30 are detailed in Figure B.31 in Block Definition Diagram format.

OMG SysML™, Version 1.1

203

bdd [package] HSUVAnalysis [Definition of Dynamics]/
«constraint»
StraightLine
VehicleDynamics
parameters
whlpowr:Horsepwr
Cd:Real
Cf:Real
tw:Weight
acc:Accel
vel:Vel
incline:Real
pur pos vel acc
«constraint» «constraint» «constraint» «constraint»
PowerEquation PositionEquation VelocityEquation AccelerationEquation
constraints constraints constraints constraints
{tp = whlpowr - (Cd*v) - {x(n+1) = x(n)+v*5280/3600*dt} {v(n+1 = v(n)+a*32*3600/5280*dt} {a = (550/32)*tp(hp)*dt*tw}
(Cftw*v)}
parameters parameters parameters M.Weigﬁtarameters
whlpowr:Horsepwr delta-t:Time delta-t:Time de.lta-t'Time
Cd:Real v:Vel v:Vel to:H)
Cf:Real x:Dist a:Accel p orsepwr
tw:Weight a:Accel
tp:Horsepwr
v:Vel
i:Real

Figure B.31 - Defining Straight-Line Vehicle Dynamics Mathematical Constraints (Block Definition Diagram)

Note the use of valueTypes originally defined in Figure B.2.

B.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

Timing diagrams, whileincluded in UML 2, are not directly supported by SysML. For illustration purposes, however, the
interaction shown in Figure B.32 was generated based on the constraints and parameters of the StraightLineVehicleDynamics
constraintBlock, as described in the Figure B.30. It assumes a constant 100hp at the drive wheels, 40001b gross vehicle weight,
and constant values for Cd and Cf.

204 OMG SysML™, Version 1.1

tim MaxAcceleration [100 Wheel Horsepower] /J% -

Satisfies
«requirement»Acceleration

0.5
0.45

o
S w 9
w & &

0.25

o
N

Accelleration (g)

0.15
0.1
0.05

«diagramDescription}
version="0.1"
description="Constant
100 wheel horsepower,
4000 Ib vehicle weight,
simple drag"
reference="Equations of
Motion”
completeness="assumes
perfect tire traction”

140

120

100

Velocity (mph)

40

20

1800
1600
1400
1200
1000
800
600
400
200

Distance (ft)

0 5 10

Time (sec)

15 20

Figure B.32 - Results of Maximum Acceleration Analysis (Timing Diagram)

OMG SysML™, Version 1.1

205

B.4.8 Defining, Decomposing, and Allocating Activities

B.4.8.1 Activity Diagram - Acceleration (top level)

Figure B.33 shows the top level behavior of an activity representing acceleration of the HSUV. It isthe intent of the systems
engineer in this example to allocate this behavior to parts of the PowerSubsystem. It is quickly found, however, that the
behavior as depicted cannot be all ocated, and must be further decomposed.

act Accelerate J

“T Comment:

PushAccelerator

O

«continuous»
accelPosition

MeasureVehicle
Conditionsr*j

«continuous»
vehCond

@<__/________

Can't allocate

these activities to
PwrSubSystem

«continuous»
drivePower

transModeCmd

Figure B.33 - Behavior Model for “Accelerate” Function (Activity Diagram)

206

OMG SysML™, Version 1.1

B.4.8.2 Block Definition Diagram - Acceleration
Figure B.34 defines a decomposition of the activities and objectFlows from the activity diagram in Figure B.33.

bdd [activity] Accelerate [Activity and Object Flow Breakdown])

«activity»
MeasureVehicle

«activity»
ProportionPower

Velocity

Conditions
mvel mbat
«activity» «activity»
MeasureVehicle MeasureBattery

Condition

«activity»
ProvidePower

«activity»
ProvideElectric

Power

a2 drivePower a3
«activity» «block» «activity»
ProvideGasPower Power ControlElectricPower

gasDrive% ﬁ

elecDrivePower

«block»
GasPower

«block»
ElecPower

Figure B.34 - Decomposition of “Accelerate” Function (Block Definition diagram)

B.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
Figure B.35 shows the ProvidePower activity, using the decomposed activities and objectFlows from Figure B.34. It also uses

AllocateActivityPartitions and an allocation callout to explicitly allocate activities and an object flow to partsin the

PowerSubsystem block.

Note that the incoming and outgoing object flows for the ProvidePower activity have been decomposed. This was done to

distinguish the flow of electrically generated mechanical power and gas generated mechanical power, and to provide further
insight into the specific vehicle conditions being monitored.

OMG SysML™, Version 1.1

207

(U zerDefined) Swimlane Diagrams
act ProvidePower [with Swimlane Allocation]
g e e e e e e e e ™,
- ‘3*| i wallocaten wallocates wallocates |
PoverCortrall nit InternalC ombustionEngi | ElectricalPowerContr | Electrical otorGener
| ne oller ator |
wcontinuouss | | wcontinuouss
eed aslrivePover
i a2 ProvideGas | 5
| Power |
wconfinuouss | wcontinuouss
vehCond | ad: Provide drivePower
wcontinuougs = Cpntrol ElectricPower
| aThratte ElectricPower |
wcontinuouss | wcontinuouss
battCond | elecDrivePower
wcontinuouss wcontinuouss
| eThrottle driveCurrent |
al:Proportion b |
| Pover I /
= e
scontinuouss /’/’/llﬂ £ '_‘_‘—'—-R—._._____}
aceelPostion | 7 | transh edeC md
dlincatedTo |
|\ itemFlowail £ IedricCurrentB‘ el
R P R G D T N -

Figure B.35 - Detailed Behavior Model for “Provide Power” (Activity Diagram)
Note hierarchical consistency with Figure B.33.

B.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation

Figure B.36 depicts a subset of the PowerSubsystem, specifically showing the allocation relationships generated in Figure
B.35.

208 OMG SysML™, Version 1.1

ibd [block] PowerSubsystem [Power Functional Allocation])

7
Ve
/
«diagramDescription |\ allocatedFrom
version="0.1" «objectNode»driveCurrent
description="allocation of
behavior and connectors to \
relleefg:ggtcsegfn%(?l\’/,v er subsystem epc:ElectricalPower ; emg:ElectricalMotor
completeness="partial. Power Controller o Electi ot Generator
subsystem elements that have allocatedFrom : C':urere::tc ! éuﬁegltc allocatedFrom
r]I(')dal(li?’catlon ethave been «activity»Control «activity»Convert
elde ElectricPower ElectricToPower
A1
fp:FS_EPC
can:CAN_Bus fp:FS_TRSM o
trsm:Transmission
allocatedFrom

«connector»cl:
ecu:PowerControlUnit «eonnector,cz.
allocatedFrom o FS ICE
E%m*;\tli(\e/irtly_/ggaoportion :tfs'm:”:S TRSM fp:FS—ICEé ice InternalCombustionEngine

allocatedFrom

«activity»ConvertGasToPower

Figure B.36 - Flow Allocation to Power Subsystem (Internal Block Diagram)

B.4.8.5 Table - Acceleration Allocation

Figure B.37 shows the same allocation relationships shown in Figure B.36, but in a more compact tabular representation.

Table [activity] ProvidePower [Allocation Tree for Provide Power Activitiesy
type name end |relation [end [type name
activity al:ProportionPower from |allocate [to block PowerControlUnit
activity a2:ProvideGasPower from |allocate |to block InternalCombustionEngine
activity a3:ControlElectricPower [from |allocate [to block ElectricalPowerController
activity a4:ProvideElectricPower [from |allocate [to block ElectricalMotorGenerator
objectNode |driveCurrent from |allocate |to itemFlow |il:ElectricCurrent

Figure B.37 - Tabular Representation of Allocation from “Accelerate” Behavior Model to Power Subsystem (Table)

OMG SysML™, Version 1.1

209

B.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test
Figure B.38 shows a particular Hybrid SUV (VIN number) satisfying the EPA fuel economy test. Serial numbers of specific

relevant parts are indicated.

ibd [block] SUV_EPA_Fuel_Economy_Test [Test Results])

Satisfies
«requirment» Emissions

Verifies

«requirement» Emissions%

«testCase»
testRun060401:
EPAFuelEconomyTest

TestVehiclel: HybridSUV

sn: ID =sn89012

initialValues

sn: ID =sn90123

L

b: BodySubsystem b-i: i Interior

initialValues initialValues
sn: ID = b12345 sn: ID =i23456
b-c:
c: ChassisSubsystem cbk: bk: BrakeSubsystem bk-I: I: LightingSubsystem
initialValues initialValues initialValues
sn: ID = c34567 sn: ID = bk45678 sn: ID = [t56789
c-p: bk-p:
p: PowerSubsystem
t: Transmission)
em-t: ice-t:
initialValues
em: ElectricalMotor ice: Internal

CombustionEngine

sn: ID = eid78901

initialValues

sn: ID = p67890

initialValues

VIN = G12345

initialValues

Figure B.38 - Special Case of Internal Block Diagram Showing Reference to Specific Properties (serial numbers)

210

OMG SysML™, Version 1.1

Annex C: Non-normative Extensions

(informative)

This annex describes useful non-normative extensions to SysML that may be considered for standardization in future versions
of the language.

Non-normative extensions consist of stereotypes and model libraries and are organized by major diagram type, consistent with
how the main body of this specification is organized. Stereotypesin this section are specified using atabular format, consi stent
with how non-normative stereotypes are specified in the UML 2 Superstructure specification. Model libraries are specified
using the guidelines provided in the Profiles & Model Libraries chapter of this specification.

C.1 Activity Diagram Extensions

C.1.1 Overview

Two non-normative extensions to activities are described for:
< Enhanced Functional Flow Block Diagrams.
e Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensionsis available at [Bock. C., “SysML and UML 2.0
Support for Activity Modeling,” val. 9, no. 2, pp. 160-186, Journal of the International Council of Systems Engineering,
2006).

C.1.2 Stereotypes

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a behavior
diagram. Most of its functionality is a constrained use of UML activities, as described below. This extension does not address
replication, resources, or kill branches. Kill branches can be transglated to activities using interruptible regions and join
specifications.

Table C.1 - Addition stereotypes for EFFBDs

Stereotype Base class Properties Constraints | Description
«effbd» UML4SysML::Activity (or subtype N/A See below. Specifies that the activity
of «nonStreaming» below) conforms to the constraints
necessary for EFFBD.

When the «effbd» stereotype is applied to an activity, its contents must conform to the following constraints:
[1] (On Activity) Activities do not have partitions.

2] (On Activity) All decisions, merges, joins and forks are well-nested. In particular, each decision and merge are
matched one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and input
parameters and control acting asajoin.

OMG SysML™ , Version 1.1 211

[3] (On Action) All actions require exactly one control edge coming into them, and exactly one control edge coming out,
except when using parameter sets.

[4] (Execution constraint) All control is enabling.
[5] (On ControlFlow) All control flows into an action target a pin on the action that hasisControl = true.
[6] (On ObjectNode) Ordering isfirst-in first out, ordering = FIFO.

[7] (On ObjectNode) Object flow is never used for control, isControl Type = false, except for pins of parametersin
parameter sets.

[8] (On Parameter) Parameters take and produce no more than one item, multiplicity.upper =1.

[9] (On Parameter) Output parameters produce exactly one value, multiplicity.lower = 1. The «optional» stereotype
cannot be applied to parameters.

[10] (On Parameter) Parameters cannot be streaming or exception.
[11] (On ParameterSet) Parameter sets only apply to output parameters.

[12] (On ParameterSet) Parameter sets only apply to control. Parameters in parameter sets must have pins with
isControl Type = true.

[13] (On ParameterSet) Parameter sets have exactly one parameter, and it must not be shared with other parameter sets.\

[14] (On ParameterSet) If one output parameter isin a parameter set, then all output parameters of the behavior or
operation must be in parameter sets.

[15] (On ActivityEdge) Edges cannot have time constraints.

[16] The following SysML stereotypes cannot be applied: «rate», «controlOperator», «noBuffers, «overwrite.
A second extension distinguishes activities based on whether they can accept inputs or provide outputs after they start and
before they finish (streaming), or only accept inputs when they start and provide outputs when they are finished

(nonstreaming). EFFBD activities are nonstreaming. Streaming activities are often terminated by other activities, while
nonstreaming activities usually terminate themselves.

Table C.2 - Streaming options for activities

Stereotype Base Class Properties Constraints Description
«streaming» UML4SysML::Activity N/A The activity has at least Used for activities that can
one streaming accept inputs or provide outputs
parameter. after they start and before they
finish.
«nonStreaming» UML4SysML::Activity N/A The activity has no Used for activities that accept
streaming parameters. inputs only when they start, and
provide outputs only when they
finish.

C.1.3 Stereotype Examples

Figure C.1 shows an example activity diagram with the «effbd» stereotype applied, translated from [Long. J., “Relationships
between common graphical representations in system engineering,” 2002]. The stereotype applies the constraints specified in
Section C.1.2, for example, that the data outputs on all functions are required and that queuing is FIF.

212 OMG SysML™, Version 1.1

«effbd»
act

2.4 Function in
Multi-exit
Construct

2.2 Multi-exit
Function

Item 1

[before third time]

External 2.1 Serial «optional» [after External
Input Function third Output
2.5 Function in time]

an lterate

Iltem 3 ~

«optional»

2.6 Output
Function

2.3 Function in
Concurrency

«optional»

Item 4

Figure C.1 - Example activity with «effbd» stereotype applied

Figure C.2 shows an example activity diagram with the «streaming» and «nonStreaming» stereotypes applied, adapted from
[MathWorks, “Using Simulink,” 2004]. It isanumerical solution for the differential equation x'(t) = -2x(t) + u(t). Item types
are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which subactivities take inputs and produce
outputs while they are executing. They are simpler to use than the { stream} notation on streaming inputs and outputs.

The example assumes a default of zero for the lower input to Add, and that the entire activity is executed with clocked token
flow, to ensure that actions with multiple inputs receive as many of them as possible before proceeding. Seethe article

referenced in Section C.1.1.

act

«streaming»
Integrate
Over Time

«streaming»
Generate

u(t)

I «streaming»
Display O
X

Figure C.2 - Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities

OMG SysML™ , Version 1.1 213

C.2 Requirements Diagram Extensions

C.2.1 Overview

This section describe an example of a non-normative extension for a requirements profile.

C.2.2 Stereotypes

This section includes stereotypes for a simplified requirements taxonomy that is intended to be further adapted as required to
support the particular needs of the application or organization. The requirements categories in this exampleinclude functional,
interface, performance, physical requirements, and design constraints as shown in Table C.3. As shown in the table, each
category is represented as a stereotype of the generic SysML «requirement». The table also includes a brief description of the
category. The table does not include any stereotype properties or constraints, although they can be added as deemed
appropriate for the application. For example, a constraint that could be applied to afunctional requirement isthat only SysML
activities and operations can satisfy this category of requirement. Other examples of requirements categories may include
operational, specialized requirements for reliability and maintainability, store requirements, activation, deactivation, and a
high level category for stakeholder needs.

Some general guidance for applying arequirements profileis as follows:

» The categories should be adapted for the specific application or organization and reflected in the table. This includes
agreement on the categories and their associated descriptions, stereotype properties and constraints. Additional
categories can be added by further subclassing the categories in the table below, or adding additional categories at the
pier level of these categories.

» The default requirement category should be the generic «requirement».

< Apply the more specialized requirement stereotype (functiona, interface, performance, physical, design constraint) as
applicable and ensure consistency with the description, stereotype properties, and constraints.

» A specific text requirement can include the application of more than one requirement category, in which case, each
stereotype should be shown in guillemets.

Table C.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Consgtraints | Description
«extendedRequirement» «requirement» source: String N/A A mix-in stereotype that contains
risk: RiskKind generally useful attributes for
verifyMethod: requirements
VerifyMethodKind

«functionalRequirement» «extendedrequirement» N/A satisfied by an Requirement that specifies an
operation or operation or behavior that a
behavior system, or part of a system, must

perform.

«interfaceRequirement» «extendedrequirement» N/A satisfied by a Requirement that specifies the
port, connector, ports for connecting systems and
item flow, and/ system parts and the optionally
or constraint may include the item flows across
property the connector and/or Interface

constraints.

214 OMG SysML™, Version 1.1

Table C.3 - Additional Requirement Stereotypes

Stereotype Base Class Properties Constraints | Description
«performanceRequirement» | «extendedrequirement» N/A satisfied by a Requirement that quantitatively
value property measures the extent to which a
system, or a system part, satisfies
a required capability or condition.
«physicalRequirement» «extendedrequirement» N/A satisfied by a Requirement that specifies
structural physical characteristics and/or
element. physical constraints of the system,
or a system part.
«designConstraint» «extendedrequirement» N/A satisfied by a Requirement that specifies a
block or part constraint on the implementation of
the system or system part, such as
the system must use a commercial
off the shelf component.

Table C.4 provides the definition of the non-normative enumerations that are used to type properties of
“extendedRequirement” stereotype of Figure C.3.

Table C.4 - Requirement property enumeration types

Enumeration
Literals

Enumeration Example Description

RiskKind High High indicates an unacceptable level of risk

Medium Medium indicates an acceptable level of risk

Low Low indicates a minimal level of risk or no risk

VerificationMethodKind Analysis indicates that verification will be performed by technical evaluation using
mathematical representations, charts, graphs, circuit diagrams, data reduction, or
representative data. Analysis also includes the verification of requirements under
conditions, which are simulated or modeled; where the results are derived from the

analysis of the results produced by the model.

Analysis

Demonstration indicates that verification will be performed by operation, movement or
adjustment of the item under specific conditions to perform the design functions without
recording of quantitative data.. Demonstration is typically considered the least restrictive
of the verification types.

Demonstration

Inspection indicates that verification will be performed by examination of the item,
reviewing descriptive documentation, and comparing the appropriate characteristics with
a predetermined standard to determine conformance to requirements without the use of
special laboratory equipment or procedures.

Inspection

Test Test indicates that verification will be performed through systematic exercising of the
applicable item under appropriate conditions with instrumentation to measure required
parameters and the collection, analysis, and evaluation of quantitative data to show that
measured parameters equal or exceed specified requirements.

C.2.3 Stereotype Examples

Figure C.3 shows the use of several subtypes of requirements extended to include the properties risk:RiskKind,
verifyMethod: VerficationM ethodKind, and a text attribute source: String, used to capture the source of the requirement.

OMG SysML™ , Version 1.1 215

Requirement Diagram Top-Level User Requirement%
«requirement»
HybridSUV
[
functionaRequirement: :
« Lo;g d «performanceRequirement> «performanceRequirement» «requirement»
Eco-Friendliness Performance Ergonomics
«functinalRquirement»
id="URL.1" ; i
" . «performanceRequirement> «performanceRequirement>

source = “Marketing id="URL2" id="URL.3"
text = “Load"” source = “Marketing” source = “Marketing”
verifyMethod =Test text =“Eco-Friendliness’ text = "Performance’
risk ~Low verifyMethod ="Analysis’ verifyMethod ="Test

risk = "High” risk ="Mediunm”

b
«requirement» «requirement» «requirement»
: : Acceleration Braking Power
«requirement»> «requirement»>
Passengers Cargo
@ erforgan _cel_%q uirement> «performanceRequirement» «requirement»
missIons FuelEconomy Range
«performanceRequirement» «performanceRequirement»
id="URL2.1" id="URL3.1"
- source = “Marketing” source = “Marketing”
«requirement» text = “The car shall meet 2010 Kyoto text =“Users shall obtain fuel
FuelCapacity Accord emissions standards .” economy better than that provided
verifyMethod =" Test” by 95% of cars built in 2004.”
risk ="Medium” verifyMethod = “Test”
risk = “High”

Figure C.3 - Example extensions to Requirement
C.3 Parametric Diagram Extensions for Trade Studies

C.3.1 Overview

This section describes a non-normative extension of a parametric diagram (refer to the Constraint Blocks chapter) to support
trade studies and analysis, which are an essential aspect of any systems engineering effort. In particular, atrade study isused to
evaluate a set of aternatives based on adefined set of criteria. The criteriamay have aweighting to reflect their relative
importance. An objective function (aka optimization or cost function) can be used to represent the weighted criteriaand
determine the overall value of each alternative. The objective function can be more complex than a simple linear weighting of
the criteria and can include probability distribution functions and utility functions associated with each criteria. However, for
this example, we will assume the simpler case.

216 OMG SysML™, Version 1.1

A measure of effectiveness (moe) represents a parameter whose value is critical for achieving the desired mission cost
effectiveness. It will also be assumed that the overall mission cost effectiveness can be determined by applying an objective

function to a set of criteria, each of which is represented by a measures of effectiveness.

This section includes stereotypes for an objective function and a measure of effectiveness. The objective function isa
stereotype of a ConstraintBlock and the measure of effectiveness is a stereotype of a block property.

C.3.2 Stereotypes.

Table C.5 - Stereotypes for Measures of Effectiveness

Stereotype Base Class Properties Constraints | Description
«objectiveFunction» «ConstraintBlock» or N/A N/A An objective function (aka optimization or
«ConstraintProperty» cost function) is used to determine the
overall value of an alternative in terms of
weighted criteria and/or moe’s.
«moe» UML4SysML::Property N/A N/A A measure of effectiveness (moe)

represents a parameter whose value is
critical for achieving the desired mission
cost effectiveness.

C.3.3 Stereotype Examples

Inthis example, operational availability, mission response time, and security effectiveness each represent moe's along with life
cycle cost. The overall cost effectiveness for each alternative may be defined by an objective function that represents a

weighted sum of their moe values. For each moe, there is a separate parametric model to estimate the value of operational
avialability, mission response time, security effectiveness and life cycle cost to determine an overall cost effectivenessfor each

aternative. It is assumed that the moe's refer to the values for system alternativej (g).

par Effectiveness Model [System Alternati\g])

«moe»
sj.responseTime

[moe 2 «objectiveFunction»
:AvailabilityModeI% fffffffffff [MOe» 21 :MyObjectiveFunction
A sj.availability "3 {CE = Sum Wi*Pi}
. s Madal M «moe» | i
[:SecurityModel D}S sj.security
{ :CostModel D} ----------- «moe»
c sj.cost

_______ «moe»
ce: | Sj-costEffectiveness

OMG SysML™ | Version 1.1

217

C.4 Model Library for Dimensions and Units

The dimensions and unitsin this section are a subset of units defined by the International System of Units (Sl) as defined in
NIST Specia Publication 330 (available from the NIST Reference on Constants, Units and Uncertainty at
http://physics.nist.gov/cuu/Units/units.html)..

pkg

«modelLibrary»
Sl Definitions

Figure C.4 - S| Definitions model library

pkg Sl Definitions [SI Base Units] /

«dimension» «dimension» «dimension» «dimension» «dimension» «dimension»
Length Mass Time ElectricCurrent ThermodynamicTemperature AmountOfSubstance

«dimension»
Luminousintensity

Meter Kilogram Second Ampere
«unit» «unit» «unit» «unit»
dimension = Length dimension = Mass dimension = Time dimension = ElectricCurrent
Kelvin Mole Candela
«unit» «unit» «unit»
dimension = ThermodynamicTemperature dimension = AmountOfSubstance dimension = LuminouslIntensity

Figure C.5 - SI Base Units

218 OMG SysML™, Version 1.1

pkg Sl Definitions [SI Derived Units Expressed In Base Units])

«dimension»

«dimension»

«dimension»

«dimension»

«dimension»

«dimension»

«dimension»
SpecificVolume

Area Volume Velocity Acceleration WaveNumber MassDensity
«dimension» «dimension» «dimension» «dimension»
CurrentDensity MagneticFieldStrength AmountOfSubstanceConcentration Luminance

SquareMeter

CubicMeter

MeterPerSecond

MeterPerSecondSquared

ReciprocalMeter

«unit»
dimension = Area

«unit»
dimension = Volume

dimension = Velocity

«unit»

«unit»
dimension = Acceleration

«unit»
dimension = WaveNumber

KilogramPerCubicMeter

CubicMeterPerKilogram

AmperePerSquareMeter

AmperePerMeter

«unit»

dimension = MassDensity

«unit»

dimension = SpecificVolume

dimension = CurrentDensity

«unit»

«unit»

dimension = MagneticFieldStrength

MolePerCubicMeter

CandelaPerSquareMeter

dimension = AmountOfSubstanceConcentration

«unit»

«unit»

dimension = Luminance

Figure C.6 - Sl Derived Units Expressed In Base Units

OMG SysML™ | Version 1.1

219

pkg Sl Definitions [SI Derived Units With Special Names])

«dimension»
PlaneAngle

«dimension»
SolidAngle

«dimension»
Frequency

«dimension»
Force

«dimension»
Power

«dimension»
Energy

«dimension»
Pressure

«dimension»
ElectricCharge

«dimension»

ElectricPotentialDifference

«dimension»
Capacitance

ElectricResist

«dimension»

«dimension»
ElectricConductance

ance

«dimension»
MagneticFlux

«dimension»

«dimension»

«dimension»

«dimension» «dimension»

MagneticFluxDensity Inductance CelsiusTemperature LuminousFlux Illuminance
«dimension» «dimension» «dimension» «dimension»
ActivityOfRadionuclide | | AbsorbedDose | | DoseEquivalent | | CatalyticActivity
Radian Steradian Hertz Newton
«unit» «unit» «unit» «unit»
dimension = PlaneAngle | | dimension = SolidAngle dimension = Frequency | | dimension = Force

Pascal

Joule

Watt

Coulomb

«unit»

«unit»

«unit»

«unit»

dimension = Pressure dimension = Power

dimension = Energy dimension = ElectricCharge

Volt Farad Ohm

«unit»
dimension = ElectricResistance

«unit»
dimension = Capacitance

«unit»
dimension = ElectricPotentialDifference

Siemens Weber Tesla

«unit»
dimension = MagneticFluxDensity

«unit»
dimension = MagneticFlux

«unit»
dimension = ElectricConductance

Henry Degree Celsius Lumen Lux

«unit»
dimension = llluminance

«unit»
dimension = LuminousFlux

«unit»
dimension = CelsiusTemperature

«unit»
dimension = Inductance

Bequerel Gray Sievert Katal

«unit»
dimension = CatalyticActivity

«unit»
dimension = DoseEquivalent

«unit»
dimension = AbsorbedDose

«unit»
dimension = ActivityOfRadionuclide

Figure C.7 - Sl Derived Units With Special Names

C.5 Distribution Extensions

C.5.1 Overview

This section describes a non-normative extension to provide a candidate set of distributions (see “DistributedProperty” on
page 47). It consists of a profile containing stereotypes that can be used to specify distributions for properties of blocks.

220 OMG SysML™, Version 1.1

C.5.2 Stereotypes

Package Distributions

«stereotype»
SysML::Blocks::
DistributedProperty

A\

«stereotype» «stereotype»
Basiclnterval Normal

min: Real mean: Real

max: Real standardDeviation: Real

«stereotype»
Interval

«stereotype»
Uniform

Figure C.8 - Basic distribution stereotypes

Table C.6 - Distribution Stereotypes

Stereotype Base Class Properties Constraints | Description
«Basiclnterval» «DistributedProperty» min:Real N/A Basic Interval distribution - value
max:Real between min and max inclusive
«Interval» «Basiclnterval» N/A N/A Interval distribution - unknown
probability between min and max
«Uniform» «Basiclnterval» N/A N/A Uniform distribution - constant
probability between min and max
«Normal» «DistributedProperty» mean:Real N/A Normal distribution - constant
standardDeviation:Real probability between min and max

C.5.3 Usage Example

Figure C.9 shows a simple example of using distributions; the force of the Cannon is specified using aNormal distribution
with parameters mean and standard Deviation. Whereas the use of aNormal distribution can be inferred from the names of its
parameters, an Interval distribution shares parameters with a Uniform distribution, hence the stereotype keyword «interval» is

used to distinguish it.

OMG SysML™ | Version 1.1

221

bdd [block] HringRangQ

«block»
Cannon

{mean=100.0,standardDeviation=1.0}orce: Newton

«block»
Shot

«interval»{min=101.0,max=105.0}volume: CubicMeter
density:KilogramPerCubicMeter
acceleration: MeterPerSquareSecond

Figure C.9 - Distribution Example

222

OMG SysML™, Version 1.1

Annex D: Model Interchange

(informative)

D.1 Overview

This annex describes several methods for exchanging SysML models between tools. The first method discussed is XML
Metadata | nterchange (XMI), which is the preferred method for exchanging models between UM L-based tools. The second
approach describes the use of 1SO 10303-233 Application Protocol: Systems engineering and design (AP233), which is one of
the series of STEP (Standard for the Exchange of Product Model Data) neutral data schemas for representing engineering data.
Other model interchange approaches are possible, but the ones described in this annex are expected to be the primary ones
supported by SysML.

D.2 Context for Model Interchange

Developing today’s complex systems typically requires engineering teams that are distributed in time and space and that are
often composed of many companies, each with their own culture, methods and tools. Effective collaboration requires
agreement on, and athorough understanding of, the various work assignments and resulting artifacts.

Many of these artifacts pertain to shared engineering data (e.g., requirements, system structural and behavioral models,
verification & validation) that transcend the entire life cycle of the system of interest and arethe basis for important systems
engineering considerations and decisions. So it is critical that the system information contained in these artifacts and
information models be accurately captured and readable by all appropriate team membersin atimely manner.

Today, thisinformation residesin an array of tools where each is only concerned with a portion of systems engineering data
and can't share its data with other tools because they only understand their own native schema. To mitigate this situation,
collaborating organizations are usually forced to either adopt a common set of tools or develop a unique, bidirectional
interface between many of the tools that each organization uses. This can be an expensive and untimely approach to data
exchange between team members. So there is a need to define standardized approaches for model interchange between the
different data schemasin use.

D.3 XMI Serialization of SysML

UML 2.0isformally defined using the OMG Meta Object Facility (MOF). MOF can be considered a language for specifying
modeling languages. The OMG XML Metadata Interchange (XMI) 2.1 standard specifies an XM L-based interchange format
for any language modeled using MOF. Thisresultsin a standard, convenient format for serializing UML user models as XMl
files for interchange between UML tools. The XMI specification also includes rules for generating an XML Schemathat can
be used for basic validation of the structure of those UML user model XMI files.

The UML language includes an extension mechanism called UML Profiles. UML Profiles are themselves defined as UML
models (MOF is not used). However, their intent is to specify extensions to the UML language semantics in much the same
way one could extend the UML language by adding to the MOF definition of UML. AsUML Profiles are valid UML models,
XMI does provide a mechanism for exchanging the UML Profiles between UML tools. However, as they are extensionsto
concepts defined in the UML language itself, the definition of aUML Profile refersto the UML language definitions. An XM
2.1 representation of the SysML profile (i.e., the UML Profile for SysML), aswell as XMI 2.1 representations of Model
Libraries defined by SysML, are provided as support documents to this specification. Aswith UML, XMI provides a

OMG SysML™ , Version 1.1 223

convenient serialized format for model interchange between SysML tools and basic validation of those files using an XML
Schema as well.

D.4 Overview of ISO 10303-233 STEP AP233

AP233isnot finalized at thistime, so this section reflects the background and current status of the AP233 work.

AP233isaneutral data schemafor representing systems engineering data. AP233 is being standardized under the ISO TC-184
(Technical Committee on Industrial Automation Systems and Integration), SC4 (Subcommittee on Industrial Data Standards),
and is part of the larger STEP effort, which provides standardized models and infrastructure for the exchange of product model
data.

D.4.1 Scope of ISO 10303-233 STEP AP233

AP233 will include support for describing:
e reguirement
« functional
» dtructure
e physical structure & allocation
e configuration & traceability
e project & data management

An IDEF activity that shows the scope of AP233 information requirementsis available at http://www.ap233.org/ap233-public-
information/AAM_AP233-Issue-1.pdf/view. Additional details on AP233 can be found at http://www.ap233.org/.

D.4.2 1SO 10303-233 STEP AP233 Development Approach & Status

AP233 and several other STEP application protocols are being built using a modular architecture. This enables the same
information model to be reused across disciplines and life cycle stages. In the STEP Modular Architecture these reusable
information models are called application modules, or more informally simply modules. AP233 will consist of a number of
modules that together will satisfy the scope of the requirements stated above. Support for several of systems engineering
viewpoints within the scope of AP233 already exist as the result of the development of other application protocols and will
simply be reused in AP233. When existing STEP modules do not provide needed capabilities, new modules are being defined
as part of AP233 development. Since AP233 ispart of STEP, it is easy to relate systems engineering data to that of other
engineering disciplines over the lifecycle of a system and to related product models.

Figure D-1 provides an overview of the modules planned to satisfy the scope of AP233 requirements and also shows the
current status of each.

224 OMG SysML™, Version 1.1

requirements breakdowns

PDM
_ static system product config

functional
property-based WBS

behaviour

. person &
security dig

analysis rules

state-based

verification &
validation

risk measurement

status Legend [[completed

model presentation

function-based

Figure D.1 - AP233 Modules

D.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms

A good understanding of the STEP architecture and its components are required to understand how SysML models will be
interchanged using AP233. This section provides an overview of the key elements of STEP that pertain to model interchange.

D.4.3.1 Modular Architecture

The scope of STEP isvery large. While anumber of STEP modules and application protocols have been devel oped (e.g.,
product data management, geometry, structural, electrical, and other engineering analysis support) and in use for several years,
other area such as AP233 are still being defined and devel oped.

AP233 and several other STEP application protocols are being built using amodular architecture. This enables the same
information model to be reused across disciplines and life cycle stages. In the STEP Modular Architecture these reusable
information models are called application modules, or more informally simply modules.

For more detail on the STEP architecture see the |ISO TC184/SC4 Industrial Data subcommittee web page at http://
www.tc184-sc4.org/: and for amore detailed view of where specific STEP parts fit into the architecture is available at http://
www.mel .ni st.gov/sc5/soap/soapgrf030407.pdf.

D.4.3.2 The Modeling Language for ISO 10303-233 STEP AP233
AP233, like all STEP application protocals, is defined using the EXPRESS modeling language (see | SO 10303-11 Description

method: The EXPRESS language reference manual). EXPRESS is a preci se text-based information modeling language with a
related graphical representation called EXPRESS-G

An example of the text-based format follows:

OMG SysML™ | Version 1.1 225

SCHEMA people;

TYPE year = integer;
END_TYPE;

TYPE person_or_organization = SELECT (person, organization);
END_TYPE;

ENTITY organization;

name : STRING;

END_ENTITY,

ENTITY building;

address : STRING;

Owner : person_or_organization;
END_ENTITY;

ENTITY person

ABSTRACT SUPERTYPE;
spouse : OPTIONAL person;
name : STRING;

birthyear : year;
biological_parents: SET[2:2] of person;
parents : SET[2:?] of person;
END_ENTITY;

ENTITY man

SUBTYPE OF (person);

sister : SET[0:?] of woman;
END_ENTITY;

ENTITY woman

SUBTYPE OF (person);

brother : SET[0:?] of man;
END_ENTITY;

END_SCHEMA,;

An overview of an XML Document Type Definition for the EXPRESS languageis available at http://stepmod.sourceforge.net/
express_model_spec/. Note however, that the powerful expression language for constraint writing is not addressed by that
DTD. EXPRESS expressions are similar in nature to OCL expressions and the two languages have similar expressiveness.

Work is underway to produce and standardize a M OF-based EXPRESS metamodel and EXPRESS/UML mappings.
Documentation related to those effortsis availabl e at the exff (Engineering eXchange For Free) web site (http://www.exff.org/
express_uml/index.html). Eventually these efforts should allow aformal SysML/AP233 relationship to be standardized within
the OMG

An early draft of one mapping of ISO EXPRESS to UML/XMI is available as an OMG document at http://www.omg.org/cgi-
bin/doc?iaison/2003-07-01. Please note that this specification is based on EXPRESS Edition 1, UML 1.4, MOF 1.4 and XMl
1.2.

D.4.3.3 Model Interchange Mechanisms

As part of the STEP series of EXPRESS-based information model, a series of implementation methods are also standardized:
e 1S0 10303-21 (Part 21), clear text encoding of the exchange structure
¢ 1S0 10303-22 (Part 22), standard data access interface (SDAI) specification

226 OMG SysML™, Version 1.1

* SO 10303-25 (Part 25), EXPRESS to OMG XMI binding
¢ 1S0 10303-28 (Part 28), XML representation of EXPRESS schemas and data

A conforming STEP implementation is the combination of a STEP application protocol and one or more of the
implementation methods.

SDAI specifies a standard programming interface for access to EXPRESS-based data. SDAI alows the implementorsto refer
to product datain terms of its conceptual EXPRESS definitions, regardless of the underlying data structure or storage
technology. Bindings of the SDAI to C++ (1SO 10303-23), C (1SO 10303-24), Java (SO 10303-27) provide standardized APIs
for accessing EXPRESS-based data

D.4.4 1SO 10303-233 STEP AP233 - SysML Alignment & Mapping Model

The requirements for AP233 and SysML have been largely aligned by the OMG and the | SO teams working together and in
close cooperation with the INCOSE Modd Driven System Design working group. However, there might be differencesin
breadth and scope of AP233 and SysML resulting from the different development life cycles of both activities and the different
nature of the modeling frameworks used to define SysML and AP233. To avoid semantic issues in exchanging data between
SysML and AP233, aneutral mapping model of systems engineering concepts will be defined. Thus the mappings between
the mapping model and SysML metamodel and the mapping model and AP233 metamodel can be maintained independently.
The neutral mapping model will also help to clarify the semantics of the data elements. This approach isillustrated in Figure
D-2.

AsAP233 and SysML are defined in different modeling frameworks, the AP233 metamodel will be converted to UML to ease
the mapping. OMG has started a standardization activity to capture EXPRESS semanticsin UML, but a custom mapping will
be used until the UML profile for EXPRESS has been adopted. The mapping model will be expressed as a plain MOF model.
The mapping model will be defined based on the concepts used and implemented for AP233 and SysML. Another important
input is the conceptual systems engineering model maintained by the INCOSE Model Driven System Design Working group.
Since development of the mapping model and SysML and AP233 mappings to it is an ongoing maintenance activity, these
specifications will be maintained separately and updates will be posted on the SE DSIG web site.

The mapping model can be used as the basis for the model-exchange methods discussed in the next section and also for the
development of conceptual level APIs, which should ease the usage of AP233 and generation of common test cases for SysML
and AP233.

OMG SysML™ , Version 1.1 227

<<MetaModel>>

UML 2
/|\
|
| <<extends>>
|
<<MetaModel>> <<Profiles>
UML 2 Express

0 ™

|

| <<extends>> :

l |

|

| I

<<MetaModel>> <<MetaModel>>
SysML AP233 (UML)
K K
N _ 7
N 7
N s
N s
AN P /]
N P <<mapping>>

<<mapping>>
PPINg <<MetaModel>>

MappingModel

Figure D.2 - Mapping Model

D.4.5 Generic Procedures for SysML and ISO 10303-233 STEP AP233 Model
Interchange

D.4.5.1 File-based Exchange

Industrial-strength STEP implementations are typically file exchange-based systems integration processes. As OMG has
standardized XMI asits model serialization format, one obvious approach is to use the STEP XML -based file exchange
capability (Part 28) by simply trandating the model contained in an XM fileinto amodel based on the AP233 XML Schema.
This approach encourages systems integrators and SysML tool vendors to develop interoperable SysML-AP233 exchange
capabilities. It dso provides SysML tool vendors with a means to directly export AP233 XML files.

D.4.5.2 API-Driven Model Interchange

Model interchange can be simplified by the use of high-level application program interfaces (APIs) . At the moment,
standardized APIsfor SysML- or AP233-specific models are not available, but work is underway in the industry to provide
implementations of such APIs. Ideally, application level developers can use the same APIs to access backend XML models
seridlized in either SysML XMI or AP233 XML format, depending on customer needs. When combined, standardized XML
serialization formats and high-level APIswill provide a very convenient and interoperable way for SysML tool vendors and
systemsintegrators to exchange SysML and AP233 models. These standardized capabilities will also provide the foundation
needed for building a set of Systems Engineering Web Services.

228 OMG SysML™, Version 1.1

Annex E: Requirements Traceability

The OMG SysML requirements traceability matrix traces this specification to the original source requirementsin the
UML for Systems Engineering RFP (ad/2003-03-41). The traceability matrix isincluded by reference in a separate document
(ptc/2007-03-09).

OMG SysML™ , Version 1.1 229

230 OMG SysML™, Version 1.1

Annex F: Terms and Definitions
(informative)

The SysML glossary isincluded as a support document ad/2006-03-04 to this specification. The terms and definitions are
referred to in the SysML specification and are derived from multiple sources including the UML 2.1 Superstructure specifica-
tion and the UML for Systems Engineering RFP (ad/2003-03-41).

OMG SysML™ | Version 1.1 231

232 OMG SysML™ | Version 1.1

INDEX

A

Actions 9, 13, 14
Activities 9, 13, 14, 15
activity diagram 172
Allocations 15, 129
Architecture 7,8
Attributes 27

B
Binding Connector 44

Block definition diagram 19, 38, 172

Blocks 15, 19, 31, 44, 67
contraints compartment 39
definitions 38
diagram elements 32

internal block diagram 37, 40

labeled compartments 38
namespace compartment 39
overview 31

structure compartment 39
valuetypes 38

C
Classes 9, 13, 14
Comments 21
note box 25
compartments 38
Complex humber 51
Compliance 13, 15
abstract syntax 15
concrete syntax 15
levels 13
ConnectorProperty 47
constraint 39
constraint block 79
Congtraint blocks 15, 19, 75
constraint property 79
Congtraints 21, 26, 27
Constructs 19

D

Design principles 7

Diagrams 11, 19, 171
elements 17
extensions 25

Dimension 47

DistributedProperty 47

E

Elements 17, 24

Extensions 14, 25
UML

OMG SysML™, Version 1.1

extensions 18

F

Feature support statements 16

FlowPort 61, 65, 68
FlowProperty 65, 69
Flows 15, 19, 61
FlowSpecification 66, 70
Formalism 17

levels 17

G
General behavior 9, 13

|

Icons 25

|IEEE 1471 standard 21
Information flows 9, 14
Interactions 9, 13

Internal block diagram 19, 40, 172

Interoperability 8
Item Flow 61, 66, 70

K
Keywords 25

L
Languages 7
formalism 17
SysML 7
UML 7,9
Layering 8
Library models 10

M

Metaclasses 8

Model Libraries 50

Model library 101, 157

Models 9, 14
elements 15, 19, 21
libraries 10

N
namespace compartment 39

NestedConnectorEnd stereotype 48

P
Package diagrams 19, 172
Parametric diagrams 19, 172
ParticipantProperty 48
Partioning 8
Ports 15, 19, 61

flow 61

standard 61
Problem description 26
Profiles 9, 14

SysML 8,10

233

Profiles package 157 \

property 31 VaueType 38, 50
property path name 41 Viewpoint description 27
R X
Rationale description 26 XML Metadata Interchange (XMI) 223
Real number 51
Realization
full 15
Relationships
conform 26

Requirements 7, 15, 141
Requirements diagram 172
Reuse 8

S
sequence diagram 172
Standard Port 61
State machine diagram 172
State machines 9, 14
StateMachine 115
Stereotypes 10, 43
keywords 25, 38
Structural Constructs 19
Structure
chapter specification 17
structure compartment 39
Structures 9, 13, 14
Syntax 15
concrete 17
SysML 7
blocks 31
compliance 13, 14
design principles 7
diagrams 11, 171
examples 18
extensions 10, 14
extensionsto UML 7
modeling constructs 17
packages 10
profile 8, 10
reuse 8
UML elements not included in 25
SysML VaueType 38
Systems engineering 18

U

UML
diagram extensions 10
elements not in SysML 25
extensions for SysML 7, 10
language units 9
stereotypes 10

Unit 49

Usecase 9, 13,121

use case diagram 172

234 OMG SysML™, Version 1.1

	Part I - Introduction
	1 Scope
	2 Normative References
	3 Additional Information
	3.1 Relationships to Other Standards
	3.2 How to Read this Specification
	3.3 Acknowledgments

	4 Language Architecture
	4.1 Design Principles
	4.2 Architecture
	4.3 Extension Mechanisms
	4.4 SysML Diagrams

	5 Compliance
	5.1 Compliance with UML Subset (UML4SysML)
	5.1.1 Compliance Level Contents

	5.2 Compliance with SysML Extensions
	5.3 Meaning of Compliance

	6 Language Formalism
	6.1 Levels of Formalism
	6.2 Chapter Specification Structure
	6.2.1 Overview
	6.2.2 Diagram Elements
	6.2.3 UML Extensions
	6.2.4 Usage Examples

	6.3 Conventions and Typography

	Part II - Structural Constructs
	7 Model Elements
	7.1 Overview
	7.2 Diagram Elements
	7.3 UML Extensions
	7.3.1 Diagram Extensions
	7.3.1.1 Stereotype Keywords or Icons Inside a Comment Note Box
	7.3.1.2 UML Diagram Elements not Included in SysML

	7.3.2 Stereotypes
	7.3.2.1 Conform
	7.3.2.2 Problem
	7.3.2.3 Rationale
	7.3.2.4 View
	7.3.2.5 Viewpoint

	7.4 Usage Examples

	8 Blocks
	8.1 Overview
	8.2 Diagram Elements
	8.2.1 Block Definition Diagram
	8.2.2 Internal Block Diagram

	8.3 UML Extensions
	8.3.1 Diagram Extensions
	8.3.1.1 Block Definition Diagram
	8.3.1.2 Internal Block Diagram
	8.3.1.3 UML Diagram Elements not Included in SysML Block Definition Diagrams
	8.3.1.4 UML Diagram Elements not Included in SysML Internal Block Diagrams

	8.3.2 Stereotypes
	8.3.2.1 Binding Connector
	8.3.2.2 Block
	8.3.2.3 ConnectorProperty
	8.3.2.4 DistributedProperty
	8.3.2.5 Dimension
	8.3.2.6 NestedConnectorEnd
	8.3.2.7 ParticipantProperty
	8.3.2.8 PropertySpecificType
	8.3.2.9 Unit
	8.3.2.10 ValueType

	8.3.3 Model Libraries
	8.3.3.1 Complex
	8.3.3.2 Real

	8.4 Usage Examples
	8.4.1 Wheel Hub Assembly
	8.4.2 SI Value Types
	8.4.3 Design Configuration for SUV EPA Fuel Economy Test
	8.4.4 Water Delivery

	9 Ports and Flows
	9.1 Overview
	9.1.1 Standard Ports
	9.1.2 Flow Ports
	9.1.3 Item Flows

	9.2 Diagram Elements
	9.2.1 Extensions to Block Definition Diagram
	9.2.1.1 Extensions to Internal Block Diagram

	9.3 UML Extensions
	9.3.1 Diagram Extensions
	9.3.1.1 FlowPort
	9.3.1.2 FlowProperty
	9.3.1.3 FlowSpecification
	9.3.1.4 ItemFlow
	9.3.1.5 StandardPort

	9.3.2 Stereotypes
	9.3.2.1 Block
	9.3.2.2 FlowDirection
	9.3.2.3 FlowPort
	9.3.2.4 FlowProperty
	9.3.2.5 FlowSpecification
	9.3.2.6 ItemFlow

	9.4 Usage Examples
	9.4.1 Standard Ports
	9.4.2 Atomic Flow Ports and Item Flows
	9.4.3 Non-Atomic Flow Ports and Flow Specification

	10 Constraint Blocks
	10.1 Overview
	10.2 Diagram Elements
	10.2.1 Block Definition Diagram
	10.2.2 Parametric Diagram

	10.3 UML Extensions
	10.3.1 Diagram Extensions
	10.3.1.1 Block Definition Diagram
	10.3.1.2 Parametric Diagram

	10.3.2 Stereotypes
	10.3.2.1 ConstraintBlock
	10.3.2.2 ConstraintProperty

	10.4 Usage Examples
	10.4.1 Definition of Constraint Blocks on a Block Definition Diagram
	10.4.2 Usage of Constraint Blocks on a Parametric Diagram

	Part III - Behavioral Constructs
	11 Activities
	11.1 Overview
	11.1.1 Control as Data
	11.1.2 Continuous Systems
	11.1.3 Probability
	11.1.4 Activities as Blocks
	11.1.5 Timelines

	11.2 Diagram Elements
	11.2.1 Activity Diagram

	11.3 UML Extensions
	11.3.1 Diagram Extensions
	11.3.1.1 Activity
	11.3.1.2 CallBehaviorAction
	11.3.1.3 ControlFlow
	11.3.1.4 ObjectNode

	11.3.2 Stereotypes
	11.3.2.1 Continuous
	11.3.2.2 ControlOperator
	11.3.2.3 Discrete
	11.3.2.4 NoBuffer
	11.3.2.5 Overwrite
	11.3.2.6 Optional
	11.3.2.7 Probability
	11.3.2.8 Rate

	11.3.3 Model Libraries
	11.3.3.1 ControlValue

	11.4 Usage Examples

	12 Interactions
	12.1 Overview
	12.2 Diagram Elements
	12.2.1 Sequence Diagram

	12.3 UML Extensions
	12.3.1 Diagram Extensions
	12.3.1.1 Exclusion of Communication Diagram, Interaction Overview Diagram, and Timing Diagram

	12.4 Usage Examples
	12.4.1 Sequence Diagrams

	13 State Machines
	13.1 Overview
	13.2 Diagram Elements
	13.2.1 State Machine Diagram

	13.3 UML Extensions
	13.4 Usage Examples
	13.4.1 State Machine Diagram

	14 Use Cases
	14.1 Overview
	14.2 Diagram Elements
	14.2.1 Use Case Diagram

	14.3 UML Extensions
	14.4 Usage Examples

	Part IV - Crosscutting Constructs
	15 Allocations
	15.1 Overview
	15.2 Diagram Elements
	15.2.1 Representing Allocation on Diagrams

	15.3 UML Extensions
	15.3.1 Diagram Extensions
	15.3.1.1 Tables
	15.3.1.2 Allocate Relationship Rendering
	15.3.1.3 Allocated Property Compartment Format
	15.3.1.4 Allocated Property Callout Format
	15.3.1.5 AllocatedActivityPartition Label

	15.3.2 Stereotypes
	15.3.2.1 Allocate(from Allocations)
	15.3.2.2 Allocated(from Allocations)
	15.3.2.3 AllocateActivityPartition(from Allocations)

	15.4 Usage Examples
	15.4.1 Behavior Allocation of Actions to Parts and Activities to Blocks
	15.4.2 Allocate Flow
	15.4.2.1 Allocating Structure
	15.4.2.2 Automotive Example

	15.4.3 Tabular Representation

	16 Requirements
	16.1 Overview
	16.2 Diagram Elements
	16.2.1 Requirement Diagram

	16.3 UML Extensions
	16.3.1 Diagram Extensions
	16.3.1.1 Requirement Diagram
	16.3.1.2 Requirement Notation
	16.3.1.3 Requirement Property Callout Format
	16.3.1.4 Requirements on Other Diagrams
	16.3.1.5 Requirements Table

	16.3.2 Stereotypes
	16.3.2.1 Copy
	16.3.2.2 DeriveReqt
	16.3.2.3 Requirement
	16.3.2.4 RequirementRelated
	16.3.2.5 TestCase
	16.3.2.6 Satisfy
	16.3.2.7 Verify

	16.4 Usage Examples
	16.4.1 Requirement Decomposition and Traceability
	16.4.2 Requirements and Design Elements
	16.4.3 Requirements Reuse
	16.4.4 Verification Procedure (Test Case)

	17 Profiles & Model Libraries
	17.1 Overview
	17.2 Diagram Elements
	17.2.1 Profile Definition in Package Diagram
	17.2.1.1 Extension

	17.2.2 Stereotypes Used On Diagrams
	17.2.2.1 StereotypeInNode
	17.2.2.2 StereotypeInComment
	17.2.2.3 StereotypeInCompartment

	17.3 UML Extensions
	17.4 Usage Examples
	17.4.1 Defining a Profile
	17.4.2 Adding Stereotypes to a Profile
	17.4.3 Defining a Model Library that Uses a Profile
	17.4.4 Guidance on Whether to Use a Stereotype or Class
	17.4.5 Using a Profile
	17.4.6 Using a Stereotype
	17.4.7 Using a Model Library Element

	Part V - Annexes
	Annex A: Diagrams
	A.1 Overview
	A.2 Guidelines

	Annex B: Sample Problem
	B.1 Purpose
	B.2 Scope
	B.3 Problem Summary
	B.4 Diagrams
	B.4.1 Package Overview (Structure of the Sample Model)
	B.4.1.1 Package Diagram - Applying the SysML Profile
	B.4.1.2 Package Diagram - Showing Package Structure of the Model

	B.4.2 Setting the Context (Boundaries and Use Cases)
	B.4.2.1 Internal Block Diagram - Setting Context
	B.4.2.2 Use Case Diagram - Top Level Use Cases
	B.4.2.3 Use Case Diagram - Operational Use Cases

	B.4.3 Elaborating Behavior (Sequence and State Machine Diagrams)
	B.4.3.1 Sequence Diagram - Drive Black Box
	B.4.3.2 State Machine Diagram - HSUV Operational States
	B.4.3.3 Sequence Diagram - Start Vehicle Black Box & White Box

	B.4.4 Establishing Requirements (Requirements Diagrams and Tables)
	B.4.4.1 Requirement Diagram - HSUV Requirement Hierarchy
	B.4.4.2 Requirement Diagram - Derived Requirements
	B.4.4.3 Requirement Diagram - Acceleration Requirement Relationships
	B.4.4.4 Table - Requirements Table

	B.4.5 Breaking Down the Pieces (Block Definition Diagrams, Internal Block Diagrams)
	B.4.5.1 Block Definition Diagram - Automotive Domain
	B.4.5.2 Block Definition Diagram - Hybrid SUV
	B.4.5.3 Internal Block Diagram - Hybrid SUV
	B.4.5.4 Block Definition Diagram - Power Subsystem
	B.4.5.5 Internal Block Diagram for the “Power Subsystem”

	B.4.6 Defining Ports and Flows
	B.4.6.1 Block Definition Diagram - ICE Interface
	B.4.6.2 Internal Block Diagram - CANbus
	B.4.6.3 Block Definition Diagram - Fuel Flow Properties
	B.4.6.4 Parametric Diagram - Fuel Flow
	B.4.6.5 Internal Block Diagram - Fuel Distribution

	B.4.7 Analyze Performance (Constraint Diagrams, Timing Diagrams, Views)
	B.4.7.1 Block Definition Diagram - Analysis Context
	B.4.7.2 Package Diagram - Performance View Definition
	B.4.7.3 Parametric Diagram - Measures of Effectiveness
	B.4.7.4 Parametric Diagram - Economy
	B.4.7.5 Parametric Diagram - Dynamics
	B.4.7.6 (Non-Normative) Timing Diagram - 100hp Acceleration

	B.4.8 Defining, Decomposing, and Allocating Activities
	B.4.8.1 Activity Diagram - Acceleration (top level)
	B.4.8.2 Block Definition Diagram - Acceleration
	B.4.8.3 Activity Diagram (EFFBD) - Acceleration (detail)
	B.4.8.4 Internal Block Diagram - Power Subsystem Behavioral and Flow Allocation
	B.4.8.5 Table - Acceleration Allocation
	B.4.8.6 Internal Block Diagram: Property Specific Values - EPA Fuel Economy Test

	Annex C: Non-normative Extensions
	C.1 Activity Diagram Extensions
	C.1.1 Overview
	C.1.2 Stereotypes
	C.1.3 Stereotype Examples

	C.2 Requirements Diagram Extensions
	C.2.1 Overview
	C.2.2 Stereotypes
	C.2.3 Stereotype Examples

	C.3 Parametric Diagram Extensions for Trade Studies
	C.3.1 Overview
	C.3.2 Stereotypes.
	C.3.3 Stereotype Examples

	C.4 Model Library for Dimensions and Units
	C.5 Distribution Extensions
	C.5.1 Overview
	C.5.2 Stereotypes
	C.5.3 Usage Example

	Annex D: Model Interchange
	D.1 Overview
	D.2 Context for Model Interchange
	D.3 XMI Serialization of SysML
	D.4 Overview of ISO 10303-233 STEP AP233
	D.4.1 Scope of ISO 10303-233 STEP AP233
	D.4.2 ISO 10303-233 STEP AP233 Development Approach & Status
	D.4.3 STEP Architecture, Modeling & Model Interchange Mechanisms
	D.4.3.1 Modular Architecture
	D.4.3.2 The Modeling Language for ISO 10303-233 STEP AP233
	D.4.3.3 Model Interchange Mechanisms

	D.4.4 ISO 10303-233 STEP AP233 - SysML Alignment & Mapping Model
	D.4.5 Generic Procedures for SysML and ISO 10303-233 STEP AP233 Model Interchange
	D.4.5.1 File-based Exchange
	D.4.5.2 API-Driven Model Interchange

	Annex E: Requirements Traceability
	Annex F: Terms and Definitions

